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Foreword
Josef Aschbacher, 
Director of ESA’s Earth Observation Programmes

Satellite data have drastically changed the view we have of the oceans. Covering 
about 70% of Earth’s surface, oceans play a unique role for our planet and for our 
life – but large areas remain unexplored and are difficult to reach. 

Since the 1980s, Earth-orbiting satellites have helped to observe what is happening at 
the ocean surface. Sensors like CZCS, AVHRR, SeaWifs and MODIS provided the first 
ocean colour data from space. Starting in 2002, ESA’s Medium Resolution Imaging 
Spectrometer (MERIS) on-board the environmental satellite Envisat, provided detailed 
information on phytoplankton biomass and concentrations of other matter in the 
global oceans.

These satellite observations laid the groundwork for studying the marine environment 
and how it responds to climate change, and the research community has since 
delivered information on the variability of marine ecosystems.

Part of this work is reflected in this stunning collection of peer-reviewed publications 
presented at the workshop, Colour and Light in the Ocean from Earth Observation 
(CLEO), held at ESA’s ESRIN site in Frascati, Italy, on 6–8 September 2016. The 
event attracted more than 160 participants from all over the world, including remote 
sensing experts, marine ecosystem modelers, in-situ observers and users of Earth 
observation data. Scientifically, the meeting covered applications in climate studies 
over primary productivity and ocean dynamics, to pools of carbon and phytoplankton 
diversity at global and regional scales. It also demonstrated the potential of Earth 
observation and its contribution to modern oceanography.  Looking to the future, 
new satellites developed by ESA under the coordination of the European Commission 
will further our scientific and operational observations of the seas.
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With Sentinel-3A in orbit and its twin Sentinel-3B following in 2017, there is a new 
category of data available for operational oceanographic applications and climate 
studies for years to come. These data are free and easy to access by anyone interested. 
Looking at the role of oceans in our daily lives, I am sure that this collection of 
scientific excellence will be valued by scientists of today and will inspire the next 
generation to carry these ideas into the future.
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One approach to deriving phytoplankton carbon biomass estimates (Cphyto) at

appropriate scales is through optical products. This study uses a high-resolution glider

data set in the Sub-Antarctic Zone (SAZ) of the Southern Ocean to compare four different

methods of deriving Cphyto from particulate backscattering and fluorescence-derived

chlorophyll (chl-a). A comparison of the methods showed that at low (<0.5mg m−3)

chlorophyll concentrations (e.g., early spring and at depth), all four methods produced

similar estimates of Cphyto, whereas when chlorophyll concentrations were elevated one

method derived higher concentrations of Cphyto than the others. The use of methods

derived from particulate backscattering rather than fluorescence can account for cellular

adjustments in chl-a:Cphyto that are not driven by biomass alone. A comparison of the

glider chl-a:Cphyto ratios from the different optical methods with ratios from laboratory

cultures and cruise data found that some optical methods of deriving Cphyto performed

better in the SAZ than others and that regionally derived methods may be unsuitable for

application to the Southern Ocean. A comparison of the glider chl-a:Cphyto ratios with

output from a complex biogeochemical model shows that although a ratio of 0.02mg

chl-a mg C−1 is an acceptable mean for SAZ phytoplankton (in spring-summer), the

model misrepresents the seasonal cycle (with decreasing ratios from spring to summer

and low sub-seasonal variability). As such, it is recommended that models expand

their allowance for variable chl-a:Cphyto ratios that not only account for phytoplankton

acclimation to low light conditions in spring but also to higher optimal chl-a:Cphyto ratios

with increasing growth rates in summer.

Keywords: phytoplankton carbon, chlorophyll to carbon ratios, particulate backscattering, gliders, Southern

Ocean

INTRODUCTION

Marine phytoplankton at the global scale have an average biomass turnover time of 1 week or
less (Falkowski et al., 1998). Despite their temporary existence, these living organisms can absorb
carbon at a rate of 40–50 Pg C y−1 and are responsible for roughly half the net primary production
on Earth (Longhurst et al., 1995; Antoine et al., 1996; Field et al., 1998; Falkowski et al., 1998;
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Westberry et al., 2008). The Southern Ocean is responsible for
40% of global CO2 uptake (Gruber et al., 2009) and the sub-
basin of the Sub-Antarctic Zone (SAZ) is recognized as one of
the regions of higher carbon export and an effective atmospheric
CO2 sink (Metzl et al., 1999; McNeil et al., 2001; Trull et al.,
2001; Wang et al., 2001). This region of the Southern Ocean is
characterized by deep convective mixed layers (>500 m) during
winter, which favors the injection of waters rich in inorganic
carbon into the mixed layer (Key et al., 2004). Conversely
during summer, seasonal heat flux shoals the mixed layer (Swart
et al., 2015), which improves the overall availability of light
for photosynthesis favoring the transformation of inorganic
carbon to particulate organic carbon (POC) and the potential
for an effective “biological carbon pump” (Broecker and Peng,
1982; Volk and Hoffert, 1985). The deep mixed layers formed
in the SAZ during winter are subducted northwards as Sub-
Antarctic Mode Water (SAMW) and Antarctic Intermediate
Water (AAIW, McCartney, 1977) driving an effective solubility
pump which in combination with the biological pump maintains
a strong CO2 sink year round (McNeil et al., 2007).

If researchers are to accurately reflect the seasonal cycle
of phytoplankton production in predictive climate models and
thereby improve our understanding of the sensitivities of the
biological carbon pump to changes in climate forcing factors
(both needed for predicting long term trends), the Southern
Ocean ecosystem has to be investigated at the appropriate scales
that link the physical drivers to the biogeochemistry (Lévy et al.,
2001; Le Quéré et al., 2007; Klein et al., 2008; Doney et al., 2009;
Thomalla et al., 2011; Racault et al., 2012; Joubert et al., 2014;
Carranza and Gille, 2015; Swart et al., 2015). There is increasing
evidence in the Southern Ocean that seasonal to sub-seasonal
temporal scales and meso- to submeso- spatial scales play an
important role in determining the response of primary producers
to physical forcing (Boyd, 2002; Fauchereau et al., 2011; Thomalla
et al., 2011, 2015; Lévy et al., 2012; Swart et al., 2015), which may
in turn affect their sensitivity to climate change.

Satellite remote sensing provides an essential tool for
investigating patterns of phytoplankton variability at high-
sampling frequency and with good spatial resolution globally.
However, remotely detected water-leaving radiances emanate
from only the first optical depth and require assumptions
about their representativeness of the vertical structure of the
water column. The frontier in ocean observation is adequate
and sustained spatial sampling of the sub-surface ocean
(Rudnick et al., 2004) conducted at an appropriate frequency to
define and understand the growth timescales of phytoplankton.
Autonomous platforms (e.g., floats and gliders) are able to
profile the water column (0–1000 m) and characterize vertical
biogeochemistry at smaller scales, but also for sufficiently long
periods that may help to reduce uncertainties associated with
carbon budgets at longer time scales. In addition, the volume
of information that a single glider mission retrieves, can be
instrumental in developing and validating statistically robust
parameterizations for numerical models, which are otherwise
performed with oftentimes inadequate data sets generated
from once-off or “classical” (low spatial and/or low temporal
frequency) sampling techniques. As such, high-resolution

sampling of phytoplankton biomass through the water column
is key to reducing uncertainties associated with carbon budgets.

Net autotrophic primary production is ultimately a function
of the standing population of phytoplankton biomass, which is
a system state variable that is not easily observed in remote
regions like the Southern Ocean. Phytoplankton biomass refers
to the total quantity of phytoplankton in a given volume of
water expressed here as weight in carbon (mg C m−3). Satellite
ocean color data can provide a proxy of phytoplankton biomass
through empirical combinations of radiometric information to
obtain estimates of carbon and/or chlorophyll concentration
(e.g., Stramski et al., 1999; Gardner et al., 2006; Blondeau-
Patissier et al., 2014). In addition, productionmodels are available
to turn this information into rates of primary production (e.g.,
Behrenfeld and Falkowski, 1997; Arrigo et al., 1998, 2008; Moore
and Abbott, 2000; Carr et al., 2006). However, chlorophyll
is a dynamic property of phytoplankton (MacIntyre et al.,
2002) that is influenced by shifts in the physiology of the
cells, with intracellular pigments being modulated in response
to changes in growth conditions (e.g., temperature, nutrients,
light) (e.g., Halsey and Jones, 2015; Behrenfeld et al., 2016).
In addition, different pigment content is expressed by the
phylogenetic evolution of phytoplankton species with changes
in accessory pigments leading to differences in light absorption
per unit chlorophyll (MacIntyre et al., 2002). As such, temporal
changes in chlorophyll over large ocean regions can result form
physiologically or community driven modifications in cellular
chlorophyll-to-carbon ratios, rather than to changes in biomass
(Behrenfeld et al., 2005, 2016; Westberry et al., 2008, 2016;
Mignot et al., 2014; Bellacicco et al., 2016). Such instances will
have strong implications on assessments of long term trends in
primary production, ecosystem trophic dynamics, and carbon
export (Behrenfeld et al., 2016).

Other optical observations such as backscattering are better
correlated to carbon than chlorophyll (Antoine et al., 2011) and
can provide independent measures of phytoplankton biomass in
open ocean waters (away from regions with highly scattering
inorganic material). In addition, they can be measured both in
situ and with satellite remote sensing. Unlike chlorophyll, these
measures are more likely to be insensitive to changes in the
intracellular concentration of pigments (Behrenfeld and Boss,
2006; Behrenfeld et al., 2016; Bellacicco et al., 2016; Westberry
et al., 2016). However, the use of optical proxies for total
organic carbon is complicated by the highly variable relationships
reported in the literature for POC vs. backscattering which
can vary by a factor of five (Cetinić et al., 2012). Much of
the variability between POC and backscattering is driven by
differences inherent to the types of particles in the system. For
example, the carbon density (or POC to volume ratio) varies
between species with diatoms and Phaeocystis having typically
lower POC to volume ratios (Cetinić et al., 2012). In addition,
the ability to differentiate phytoplankton specific carbon (Cphyto)
from other suspended particulate matter is a big challenge
operationally (Lü et al., 2009). Methodological constraints result
in the carbon biomass of phytoplankton being poorly identifiable
(Martinez-Vicente et al., 2013) and not easy to distinguish from
other types of carbon (Eppley et al., 1992; Oubelkheir et al.,
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2005). Nonetheless, the strong relationship observed between
bio-optical observations of carbon biomass allows the use of
autonomous instruments (e.g., gliders and floats) to retrieve data
at high spatial and temporal resolution, increasing the capability
of capturing higher frequency changes in ocean biogeochemistry
(e.g., Mignot et al., 2014; Thomalla et al., 2015). Despite their
advantages however, the availability of in situ bio-optical data on
both a regional and global scale is still sparse, highlighting the
need to prioritize their collection on future research campaigns.
Given their growing importance in the trajectory of ocean
ecosystem understanding, it is important to develop methods
of detecting biogeochemical properties from instruments on
autonomous platforms; and carbon from optical sensors is
certainly one of the first candidates, given the importance of
phytoplankton production in driving the carbon sink (Boss et al.,
2008).

Rates of carbon production can also be derived from
mathematical models that link standing biomass and
environmental conditions to growth rates. Since the very first
extensive discussions on models (e.g., Cullen, 1990) chlorophyll
and/or carbon have been considered necessary to model
irradiance-based growth. Mathematical models (empirical,
semi-analytical, and analytical) are used to reconstruct primary
production from satellite estimates of chlorophyll or carbon
(see Behrenfeld and Falkowski, 1997 for model summary),
and are similarly used in global ocean biogeochemical models
to determine rates of carbon production (e.g., Moore et al.,
2002; Aumont and Bopp, 2006; Vichi et al., 2007). Some of the
models include mechanistic representations of phytoplankton
acclimation that consider varying amounts of carbon and
chlorophyll in the modeled phytoplankton (largely relying on the
Geider et al., 1997 formulation). The Southern Ocean is likely
to experience light-saturated conditions for a rather limited
period, and therefore, the acclimation process and associated
changes in chlorophyll-to-carbon ratios in the period leading
to the summer blooms are very likely. The majority of global
ocean biogeochemical models and Earth SystemModels however
overestimate the magnitude of the spring-summer bloom (e.g.,
Doney et al., 2009; Steinacher et al., 2009; Vichi and Masina,
2009), which is usually attributed to the coarse resolution
global ocean models and their inability to simulate deep vertical
mixing. However, McKiver et al. (2015) demonstrated that an
increase in horizontal resolution down to 25 km (considered to
be eddy-permitting and partly eddy-resolving in the Southern
Ocean) did not help to improve the timing and magnitude of
the bloom in the SAZ. Coarse resolution models with a 1 to 2◦

grid tend to have an early bloom and a much larger magnitude
than observed, and the substantial increase in resolution only
partly reduced these biases. They went on to suggest that this
behavior might instead result from inaccurate parameterization
of the chlorophyll-to-carbon ratios. This strengthens the need to
obtain combined measures of chlorophyll and carbon from the
world oceans and particularly from the Southern Ocean.

This work tests four different methods of deriving
phytoplankton carbon from optical data collected by sensors
on a glider deployed in the SAZ. Some of these methods can
be adjusted using available data from the SAZ, while other

relationships are specific to the region of original sampling
and can only be applied to the SAZ as they are. By comparing
the different methods we aim to elucidate the differences of
choosing one method over another and their relative validity
in the Southern Ocean. In addition, the chlorophyll-to-carbon
(chl-a:Cphyto) ratios generated from the different methods are
compared with in situ data from the literature and a model
simulation to highlight their respective ranges and distribution.

MATERIALS AND METHODS

Glider Data
The data used for this research were collected in the framework of
the Southern Ocean Carbon and Climate Observatory (SOCCO;
http://www.socco.org.za) during the Southern Ocean Seasonal
Cycle Experiment (SOSCEx; Swart et al., 2012). Seaglider SG573
was deployed south of Gough Island in the South-East Atlantic
Ocean at 43.0◦S, 11◦W (Figure 1). The glider was deployed
on 25 September 2012 and retrieved on 15 February 2013,
resulting in a high-resolution transect of 143 days (∼5.5 months)
covering a total distance of 1693 km (see Swart et al., 2015 for
more detail). The glider measures a suite of parameters that
includes conductivity (salinity), temperature, pressure, dissolved
oxygen, chlorophyll-a fluorescence (proxy for phytoplankton
concentration), Photosynthetically Active Radiation (PAR), and
two wavelengths of optical backscattering by particles, bbp(470)
and bbp(700).

The glider was programmed to profile between the surface and
1000m continuously at a nominal vertical velocity of 10 cm s−1.
Each dive cycle (which includes a descent and ascent profile) took
∼5 h to complete and covered an average horizontal distance of
2.8 km, rendering a temporal resolution of 2.5 h and a spatial
resolution of 1.4 km (between each water column profile). Glider
data were linearly interpolated to a 6-hourly frequency in order
to grid unevenly spaced profiles, which typically ranged between
4 and 6 hourly. At the deployment and retrieval site of the
glider, ship-based CTD cross-calibration casts were carried out
yielding two independent inter-calibrations between the gliders,
CTD sensors and bottle samples (Swart et al., 2015).

Glider fluorescence from a WETLabs ECO puckTM (BB2Fl-
470/700) was dark corrected by subtracting the median
fluorescence below 300m from all raw instrument counts.
Fluorescence quenching was isolated by selecting all daylight
profiles between local sunrise and sunset plus 2.5 h (as quenching
was on occasion observed in the profile following sunset).
Fluorescence quenching was subsequently corrected using
optical backscattering (bbp), an alternate proxy for phytoplankton
biomass that is not susceptible to quenching, based on the
methods described in Sackmann et al. (2008). This method
assumes a constant chlorophyll-to-carbon ratio throughout
the surface waters and no cellular changes in chlorophyll
packaging with depth as a photo adaptive strategy to low
light levels. When backscattering was unavailable (intermittent
sensor malfunction), quenching was corrected by extrapolating
the maximum fluorescence value within the mixed layer to
the surface according to Xing et al. (2012). In this method,
the maximum fluorescence yield within the mixed layer is
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FIGURE 1 | Trajectory of the Seaglider (SG573) between 20 September 2012 and 15 February 2013 (pink line) together with cruise tracks of SANAE 53

(black solid line), SANAE 50 (grey line), WINTER (black dashed line), and SOSCEx (red line) overlaid on the bathymetry of the study region.

assumed to be representative of the mixed layer and implies
homogeneity. This however is not necessarily the case as mixing
and settling patterns between phytoplankton functional types are
dynamic (Quéguiner, 2013). As such, when backscattering data
are available, the Sackmann et al. (2008) method of quenching
correction is preferred as it allows for small-scale variability in
biomass with depth and reduces the possibility of overestimating
surface chlorophyll values in the event of a subsurface chlorophyll
maxima that is not biomass driven.

Fluorescence was converted to chlorophyll using a
combination of the manufacturer’s instrument specific
chlorophyll conversion factor and in situ chlorophyll samples
(250 ml filtered onto GF/F and extracted in 8 ml of 90%
acetone for 24 h at −20◦C) collected from CTD casts at glider
intercept stations. This allowed all five gliders deployed during
the SOSCEx experiment to be plotted simultaneously to form
a statistically significant regression from 83 co-located glider
chlorophyll and in situ chlorophyll samples (slope = 4.12,
intercept= −0.21, r2 = 0.66) with the manufacturer calibrated
glider-based measurements being∼4 times higher than the ship-
based chlorophyll measurements. The slope of the regression was
applied to all glider chlorophyll data to correct the manufacturer
conversion to chlorophyll to one more suited to the regional
characteristics of Southern Ocean chlorophyll (see Swart et al.,
2015 for more detail).

Spikes from raw backscattering (λ = 470) were separated
using a 7-point running median filter according to Briggs
et al. (2011). Raw digital counts were then converted into

particulate backscattering (bbp) according to Dall’Olmo et al.
(2009), following the equation:

bbp470 = 2π χp [S (C − D) − βsw] (1)

where S is the instrument specific scaling factor; C are the raw
digital counts and D are the dark counts (factory value); χp

(equal to 1.1) is the factor used to convert the particulate volume
scattering function into bbp (Boss and Pegau, 2001) and βsw is the
volume scattering of pure water estimated using the models of
Zhang and Hu (2009) and Zhang et al. (2009). Remaining spikes
in particulate backscattering were removed with a threshold
in shallow (bbp470 > 0.048) and deep (bbp470 > 0.0025) water.
Profiles with high mean backscattering (bbp > 0.001) in deep
waters (> 150 m) were identified as bad profiles and discarded
(see Thomalla et al., 2015 for more detail).

Mixed layer depth (MLD) was defined following the criterion
of de Boyer Montégut et al. (2004) as the depth where the
difference in temperature exceeds 0.2◦C in reference to the
temperature at 10m (1T10m = 0.2◦C). The temperature based
criteria was chosen because (1) the salinity data (and hence
density data) is contaminated in the final ∼5 weeks of the glider
data due to Gooseneck barnacles bio-fouling the conductivity
cell of the CTD sensor and (2) intermittent spiking and thermal
lag errors (see Garau et al., 2011) of the salinity data resulted
in intermittent false MLD determinations when using a density
criterion alone to determine the MLD. An investigation into the
twoMLDmethods used on the glider data shows that they match

Frontiers in Marine Science | www.frontiersin.org 4 February 2017 | Volume 4 | Article 3410

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Thomalla et al. Phytoplankton Carbon from Glider Optics

each other closely (r= 0.86, p≪ 0.01) throughout the experiment
(Swart et al., 2015).

Cruise Data
The in situ data used in this work were collected on four cruises
to the Southern Ocean between austral winter 2012 and late
summer 2013 (Table 1), which were typically separated into three
legs: The GoodHope Line between Cape Town and Antarctica,
the Buoy Run between Antarctica and South Georgia and the
marginal ice zone along the continental margin (Figure 1). Data
consisted of CTD casts and surface underway sampling for
chlorophyll and POC collected routinely on SOCCO summer
research cruises. CTD casts also provided bbp470 data that were
co-located with Niskin bottle samples for POC. Chlorophyll
samples (250 ml) were filtered onto Whatmann 25 mm GF/F
glass fiber filters and extracted in 8 ml of 90% acetone at −20◦C
for 12–24 h. Fluorescence was measured on a Turner Trilogy
Laboratory Fluorometer and converted to chlorophyll using a
standard chlorophyll dilution calibration. POC samples (∼2 L)
were filtered onto a pre-combusted 25 mm or 47 mmWhatmann
GF/F filters and oven dried at 50◦C. Filters were acidified by
fuming with concentrated Hydrochloric Acid for 24 h to drive off
inorganic carbon and re-dried in the oven. Filters were pelleted
into 5 x 8 mm tin capsules and analyzed using a CHN analyser
(Parsons et al., 1984; Knap et al., 1994). Blanks were interspersed
every 6 to 20 samples (typically every 12). No replicate samples
were analyzed.

Model Data
Numerical model results in the Sub-Antarctic zone were
obtained from a simulation of the Biogeochemical Flux Model
(BFM, http://bfm-community.eu) coupled with the NEMO
ocean model (http://www.nemo-ocean.eu) at 0.25◦ resolution
(PELAGOS025, McKiver et al., 2015). The BFM model (Vichi
et al., 2007) allows computing phytoplankton dynamics in terms
of stoichiometrically variable constituents, which also include
variable chlorophyll to carbon ratios modified after Geider et al.
(1997). All details of the model simulation are given in McKiver
et al. (2015) and full descriptions of the biogeochemical model
equations are available in Vichi et al. (2015). The variables
extracted from the model results were total phytoplankton
carbon and total phytoplankton chlorophyll, with the resulting
dominant functional group in the region throughout the year
being diatoms.

TABLE 1 | Names and dates of the various cruises indicating the different

legs covered and the number of POC samples per cruise, with leg 1

between Cape Town and Antarctica along the GoodHope Line, leg 2 from

Antarctica to South Georgia and leg 3 along marginal ice zone (Figure 1).

Cruise Date Leg Number of POC

samples

SANAE 50 02 Jan 2011–01 Feb 2011 1, 2 and 3 151

WINTER 09 July 2012–01 Aug 2012 1 132

SOSCEX 18 Feb 2013–10 Mar 2013 1 89

SANAE 53 28 Nov2013–11 Feb 2014 1, 2 and 3 149 (surface only)

Estimation of Phytoplankton Carbon
Four different methods of deriving the fraction of
phytoplankton-specific carbon (Cphyto) from backscattering
and chlorophyll were applied to the glider optical data. They
represent examples of the different types of methods available in
the scientific literature.

Linear Method (30%POC)
Linear relationships between POC and backscattering were first
proposed by Stramski et al. (1999). The high correlation in open
ocean waters was the result of the dominant organic particle
concentration which controls changes in both POC and bbp
(Stramski and Morel, 1990; Gardner et al., 1993; Stramski and
Reynolds, 1993; Loisel and Morel, 1998). In this method 221
POC samples from the cruises listed in Table 1 (except SANAE53
where no CTD POC samples were available) were plotted against
co-located bbp470 data (Figure 2). POC and bbp470 were linearly
correlated with one another to provide a regression equation
specific to the SAZ using a total least square method to account
for the uncertainty in both the POC data and the backscattering:

POC = (39418± 3000) bbp470 − (13± 6) . (2)

We have assumed an uncertainty of 7% for both the input data
to the total least square regression and reported the slope with
all digits, as it is customary in the literature (Table 2), with the
addition of the standard error. The relationships between bbp and
POC from various ocean basins in the literature (Table 2) are
included on Figure 2 for comparison.

POC however still needs to be converted into a fraction
specific to phytoplankton (Cphyto). Behrenfeld et al. (2005)
summarized ranges of field based Cphyto:POC ratios from
different oceanic regions to an average phytoplankton
contribution to total POC of ∼30%. Their 30% summary
was derived from the studies of Eppley et al. (1992), Durand et al.
(2001), Gundersen et al. (2001), and Oubelkheir (2001), where
Cphyto:POC ratios ranged between 19 and 49% in regions that
varied from eutrophic to oligotrophic. The 30%POC method as
applied here converts bbp470 into POC using the linear regression
(Equation 2) and then uses a constant 30% fraction to represent
Cphyto as the phytoplankton contribution to total POC. A
comparison of glider bbp470 with CTD bbp470 from five collocated
profiles (at glider deployment, intercept and retrieval sites) gave a
slope of 0.99 (n= 104) making it possible to apply the regression
from Equation (2) to the glider bbp470 data to retrieve POC.

Behrenfeld et al. (2005) Method (B05)
Behrenfeld et al. (2005) derived a method of estimating
Cphyto from remotely sensed backscattering data using a linear
relationship between bbp440 and chlorophyll. In this method,

chlorophyll and bbp at 440 nm (m−1) were estimated using
the Garver-Siegel-Maritorena (GSM) semi-analytical algorithm
(Garver and Siegel, 1997; Maritorena et al., 2002; Siegel et al.,
2002) applied to monthly SeaWiFS data from September 1997 to
January 2002. While the bbp wavelength analyzed by Behrenfeld
et al. (2005) (440 nm) differs to our study (B05) (470 nm) this
discrepancy would only result in a small percentage difference in
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FIGURE 2 | Relationship between in situ POC and particulate

backscattering (bbp 470 nm) from cruise data (Table 1, SANAE53 was

excluded as corresponding CTD backscattering data were not

available) with the linear least squared regression (r2 = 0.93) plotted in

solid red. Overlain with fits (summarized in (Cetinić et al., 2012)) from (1)

Stramski et al. (1999) from Ross Sea; (2) Stramski et al. (2008) from

Atlantic/Pacific (excluding upwelling data); (3) Graff et al. (2015) from the North

and South Atlantic and Equatorial Pacific; (4) Loisel et al. (2001) from

Mediterranean; (5) Cetinić et al. (2012) from North Atlantic; (6) Stramski et al.

(1999) from the Polar Frontal Zone (PFZ); (7) Balch et al. (2010) from north and

south Atlantic; (8) Stramski et al. (2008) from Atlantic/Pacific (entire data set,

including upwelling). See Table 2 for regression coefficients.

bbp values (Graff et al., 2015). As with Behrenfeld et al. (2005), our
bbp470 was corrected for contributions from non-algal organisms
other than phytoplankton (which also contribute to the optical
backscattering signal) by subtracting a background value of 3.5
10−4 m−1, with the assumption that this value represents the
portion of non-algal particulate matter that does not co-vary with
phytoplankton (Behrenfeld et al., 2005). Worth noting however
is that the proportion of non-algal particulate matter is not
constant as was shown by a study in theMediterranean where the
non-algal contribution to particulate backscattering varied both
seasonally and regionally by more than one order of magnitude
(Bellacicco et al., 2016). Only 0.02% of the glider backscattering
data fell below this threshold and they were discarded. The
corrected bbp470 was then converted into Cphyto through the
equation

Cphyto = 13000
(

bbp470 − 3.5 10−4
)

. (3)

The slope was chosen by Behrenfeld et al. (2005) to give satellite
chl-a:Cphyto values within the range compiled by Behrenfeld et al.
(2002) from laboratory experiments (average = 0.010, range =

0.001 to >0.06) and to give an average phytoplankton carbon
contribution to total particulate organic carbon of ∼30% (range:
24 to 37%). Behrenfeld et al. (2005) did not provide any statistical
assessment of the estimated parameters.

Martinez-Vicente et al. (2013) Method (M13)
Martinez-Vicente et al. (2013) derived phytoplankton carbon
from the relationship between Cphyto and in situ backscattering

TABLE 2 | Comparison of POC vs. bbp reported from literature for original

wavelength [taken from Cetinić et al. (2012)] with the addition of results

from Graff et al. (2015) and this study.

Author Sample Region POC vs. bbp

size

Stramski et al., 2008 54 Pacific, Atlantica 53607 bbp + 2.5

Stramski et al., 2008 59 Pacific, Atlanticb 7085.01 bbp–9.1

Stramski et al., 1999 33 APFZc 17069*b0.859bp

Stramski et al., 1999 24 Ross Sea 476935.8*b1.277bp

Balch et al., 2010 18 N and S Atlantic 841*b0.395bp

Loisel et al., 2001 Mediterranean 37550bbp + 1.3

Cetinić et al., 2012 321 North Atlantic 35422bbp –14.4

Graff et al., 2015 53 N and S Atlantic,

Equatorial Pacific

48811bbp–24

This study 220 South Atlantic

Southern Ocean

39418bbp–13

aexcluding upwelling data, bfor entire data set, including upwelling data and cAntarctic

Polar Frontal Zone.

bbp470 from the euphotic zone of a latitudinal study of the Atlantic
ocean using a total least square linear regression. Cphyto was
directly estimated from flow cytometry for 6 different groups of
phytoplankton using information on phytoplankton abundances,
cellular carbon per unit volume and mean cell volume. The total
Cphyto concentration per sample was calculated as the sum of the
contributions from each phytoplankton type. A significant linear
relationship was found between bbp470 and Cphyto:

Cphyto = (30100± 1100)
[

bbp470 − (7.6± 0.4) 10−4
]

(4)

The linear regression was limited to bbp470 < 0.003 m−1 because
samples above this threshold value (n= 8) exhibited a shift in
the relationship that was not possible to describe with a single
linear function. In this study we applied the M13 Equation (4)
to all glider data, even those higher than 0.003 m−1 (these are all
surface data representing about 3% of the total, with values up
to 0.0048 m−1). In addition, the form of Equation (4) implies
that the domain does not comprise bbp values lower than 7.6

10−4 m−1. Since in this study most of the bbp470 values collected
by the glider sensor deeper than 150m were lower than this
threshold (about 54% of the total data), they were discarded from
the analysis during the application of the method.

Sathyendranath et al. (2009) Method (S09)
Sathyendranath et al. (2009) derived a method of estimating
Cphyto using chlorophyll and POC observations from offshore
regions of the North West Atlantic Ocean and the Arabian Sea.
In their study, the authors considered that POC incorporates
all types of particulate carbon in the system (including
phytoplankton, bacteria, detritus, and viruses). The S09 method
then assumes that for any given chlorophyll concentration,
the minimum particulate carbon content represents an upper
bound on phytoplankton carbon. In the S09 method, the authors
log-transformed both POC and chlorophyll to linearize the
relationship and to reduce the weight of the stations with high
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values of POC and chlorophyll in the regression analysis. They
then used a 1% quantile regression to represent the upper limit
on carbon content from phytoplankton alone.

This method can be applied to the available data from the
South Atlantic Southern Ocean, using co-located POC and
chlorophyll data from both underway and profile CTD samples
collected on all cruises listed in Table 1 and depicted in Figure 1.
The 1% quantile regression was fitted to the log- transformed data
(Figure 3) to derive the following equation:

Cphyto = 42
(

chl
)0.86

(5)

The relationships derived by Buck et al. (1996) and
Sathyendranath et al. (2009) are included in Figure 3 for
comparison and show that the SAZ data are characterized by
lower carbon content per unit chlorophyll and that the values
converge to the Sathyendranath et al. (2009) line at higher
chlorophyll concentrations (Figure 3).

RESULTS

Seasonal Evolution of Chlorophyll and POC
The glider transect showed substantial seasonal changes
in chlorophyll (Figure 4A) with relatively low chlorophyll
concentrations (<0.5mg m−3) found at the beginning of the
transect between late September andOctober, coinciding with the
deepest MLDs (down to 200 m). Periods of enhanced chlorophyll
were shown to be associated with submesoscale physical forcing
of the MLD by Swart et al. (2015) and Thomalla et al. (2015). The
spatial scales of the physical field are evident in Supplementary
Figure 1, and investigated in more detail in a study by Du

FIGURE 3 | POC against chlorophyll for all cruise data. The least-square

fit to log-transformed data is shown in red [log10 POC = (2.08 +/− 0.01) +

(0.55 +/− 0.03) log10 Chla], the Cphyto minimum carbon estimates by

quantile regression [log10 POC = (1.63 +/− 0.05) + (0.86 +/− 0.09) log10
Chla, p = 0.01], in dark blue. The relationship between phytoplankton carbon

and chlorophyll from Sathyendranath et al. (2009) (green line) and Buck et al.

(1996) (light blue) are shown for comparison.

Plessis et al. (in review; see also their Figure 6), which shows
small-scale excursions of mixed layer density and surface (100m)
stratification for the glider time series. These rapid changes in
density are associated with submesoscale features that actively
slump horizontal density gradients (Mahadevan et al., 2012)
driving enhanced stratification during periods of lighter mixed
layers and weaker stratification when mixed layers are dense
(Supplementary Figure 1) (Du Plessis et al., in review). The
shoaling of the MLD from ∼100 to 20m through seasonal heat
flux in late November saw a concomitant increase in surface
chlorophyll (>0.55mg m−3) that was sustained throughout
summer until the end of the sampling period in mid-February.

Overall, there is a rather good visual correspondence between
the seasonal evolution of chlorophyll and POC (Figure 4B),
which was attained through the application of equation 2 to the
glider bbp470 data. The bulk of POC was located within the MLD,
as it occurs for chlorophyll, with lowest POC concentrations
(50–80mg C m−3) being observed in October, increasing in
November (to about 80–120mg C m−3) and reaching maximum
concentrations in December (with values up to 150mg C m−3)
extending through to February. The more evident difference
between the datasets is in late October where an increase in
POC is not observed in chlorophyll and in early January, when
a decrease in POC is not observed in chlorophyll.

Phytoplankton Carbon Estimates
Figures 5B–D compares the results from the different Cphyto

methods for selected depths. Corresponding chlorophyll
concentrations are also shown (Figure 5A). Cphyto shows a very
similar seasonal distribution to that of chlorophyll and very
little difference between surface 10 and 40m concentrations
highlighting the homogeneity expected in well-mixed surface
waters. When applied to the glider bbp470 and chlorophyll
data, 3 of the methods of retrieving Cphyto described in
Section Discussion showed similar results, despite differences
in the equations used. The 30%POC and B05 methods
(Figures 5B–D) showed almost identical distribution patterns
with concentrations ranging between 0 and 45mg C m−3. This
is not surprising since the slope of the B05 equation is about
1/3 of the one found in Equation (2), and by assuming a 30%
contribution due to phytoplankton carbon the numbers become
similar. These slopes are also very similar to the more recent
equation developed by Graff et al. (2015) Cphyto = 12128(bbp470
+ 4.86 x 10−5) (their Figure 3) that utilized direct measurements
of Cphyto from the temperate South Atlantic, equatorial upwelling
and oligotrophic gyres. In addition, the S09 method (Figure 5D),
the only method that uses chlorophyll rather than particulate
backscattering to retrieve Cphyto, showed remarkably similar
results to the methods of B05 and 30%POC.

Values of Cphyto from the M13 method were overall much
larger, particularly at 10 and 40m (Figures 5B,C), with values
up to 80mg C m−3. With this method, surface concentrations
of Cphyto in October (∼30–40mg C m−3) were lower relative
to the remaining transect but high when compared to the other
three methods (∼20mg C m−3). Similarly, from November to
February, high surface Cphyto from M13 ranged from ∼40–

100mg C m−3 compared with ∼ 20–50mg C mg−3 in the other
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FIGURE 4 | Section plot from the glider transect data for (A) chlorophyll and (B) particulate organic carbon (POC) derived from backscattering data from

equation (2). The mixed layer depth is marked as a solid black line.

three methods. The discrepancy between M13 and the other
methods decreases with depth (80 m) and is less prominent at
the beginning of the transect (October). This indicates that the
difference between M13 and the other three methods is generally
smaller when chlorophyll concentrations are low (<0.5mg chl-a
m−3) in early spring and at depth (>80 m).

Seasonal Changes in Chlorophyll to
Phytoplankton Carbon Ratios
In general, the surface ratios (Figure 6) appear lower in October
(0.01–0.02) when mixed layers were deeper and chlorophyll
concentrations were low, increasing toward mid-January (0.02–
0.04) with decreasing mixed layers and increasing concentrations
of phytoplankton biomass (Figure 4). The S09 method, despite
being less variable through its dependence on chlorophyll alone,
shows a similar background value to the chl-a:Cphyto ratios
of the B05 and 30%POC methods, except at the beginning
of the time series (last week of September through to the
first week of October) where a decrease in chlorophyll is not
mirrored by a corresponding decrease in Cphyto (from bbp470
computed methods) resulting in low chl-a:Cphyto ratios (from
bbp470 computed methods). A similar deviation occurred in the
last week of January to the first week of February where S09 chl-
a:Cphyto ratios were noticeably higher than B05 and 30%POC but
this time due to an increase in Cphyto (from bbp470 computed
methods) that was not evidenced in chlorophyll. A final example
of where chl-a:Cphyto ratios between fluorescence based and
bbp470 based methods deviated is in the last week of October

where a peak in the chl-a:Cphyto ratios from bbp470 computed
methods (Figure 6) was the result of a distinct drop in carbon
that was not evident in chlorophyll (see also Figure 4B).

The ratio obtained with the M13 method is about half that
obtained from the other methods, with similar short term time
variations (∼1–7 days) to the other bbp470 derived methods but a
different seasonal time evolution (i.e., no tendency for M13 chl-
a:Cphyto ratios to increase from October to mid-January). The
seasonal evolution of low to high chl-a:Cphyto ratios from spring
to summer is evidenced in 30%POC, B05 and S09 methods.

The ratios obtained from the glider data in the SAZ are
usually larger than the range obtained with global satellite data
(Behrenfeld et al., 2005) as shown in Figure 6. This range is more
in agreement with the M13 method and the ratio obtained by
applying the original Sathyendranath et al. (2009) equation to
the data, or by considering all POC as phytoplankton carbon.
Interestingly, the model simulation by McKiver et al. (2015),
which parameterizes a dynamical ratio, also shows a similar value
even if the temporal trend is opposite.

DISCUSSION

This study uses a high-resolution glider data set from the sub-
Antarctic Southern Ocean to compute Cphyto using four different
methods available in the literature. The ability to get sound
estimates of Cphyto is important as it provides a measure of
phytoplankton carbon biomass that is core to many models
of net primary productivity, a key indicator of the carbon
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FIGURE 5 | (A) Temporal chlorophyll distribution at different depths and (B) temporal distribution of phytoplankton carbon at 10 m, (C) 40m and (D) 80m See

supplementary Figure 3 for a version of panel (B) showing the ranges derived from using the standard error of the estimates for 30%POC equation (2), M13 equation

(4), and S09 equation (5).

cycle. In addition, good measurements of Cphyto enable us
to better understand changes in cellular chlorophyll-to-carbon
ratios, which provides information on phytoplankton physiology
(e.g., cellular adjustments to changes in light, temperature,
and nutrients, Behrenfeld et al., 2005). As such, deriving good
estimates of Cphyto and chl-a:Cphyto ratios will enable us to
refine model parameterizations of phytoplankton dynamics
(Sathyendranath et al., 2009). Since the biological pump in

the Southern Ocean drives 33% of global organic carbon flux
(Schlitzer, 2002; Lenton et al., 2013), it is of particular importance
that we improve our understanding of the biological response of
Southern Ocean phytoplankton to climate change.

Comparison of the Methods
Rather than assess the quality and merit of individual methods
of deriving Cphyto against each other, which would require
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FIGURE 6 | Time-evolution of chl-a:Cphyto ratios at the surface (10 m) derived from the 30%POC method (solid lighter green top line), the B05 method

(red line), the M13 method (blue line), and the S09 method (pink line). In addition, Chl-a:Cphyto ratios were calculated using the chl-a:POC ratio from the cruise

data (which implies that all POC is phytoplankton specific) and is presented as 100%POC (darker green bottom dashed line). Included for comparision are (1) the

chl-a:Cphyto ratios derived from the original equation from Sathyendranath et al. (2009) presented as S09original (purple line), (2) the satellite range of ratios from

Behrenfeld et al. (2005) (black dotted lines) and (3) the ratios derived from the PELAGOS025 model (McKiver et al., 2015, extracted from the model for the same

geographical co-ordinates as the glider transect in time but for a year 2011 simulation, solid black line). The inset shows a detail of the daily signal for the B05 method.

independent phytoplankton data that would inevitably be limited
in time and space, this study aims to evaluate the differences
of the various methods using high frequency optical glider data
from the SAZ as a benchmark. It should also be noted that the
methods applied in this research were developed using different
data obtained from different oceanic regions. The M13 method
is the only equation that was derived from in situ Cphyto data
(computed from cell counts and assumptions of carbon content
per cell) but from a latitudinal study of the Atlantic; the B05
equation is also non-specific to the Southern Ocean and derived
from global satellite data; the 30%POC and S09 methods were
recomputed using in situ POC and chlorophyll data from the
Southern Ocean. To further extend the number of methods,
the original equation from the S09 method developed using

data from the NW Atlantic and Arabian Sea (Sathyendranath
et al., 2009) has been included in Figures 6, 8 for comparison
(presented as S09original).

The most evident result of the comparison is that three of the

methods cluster together (30%POC, B05, and S09) with only one
(M13) being substantially different in magnitude from the others
(Figure 5). Despite their different origins, Cphyto from 30%POC,
B05, and S09 (the only method that is derived from chlorophyll
) all show similar results. The similarity in Cphyto derived using
B05 (which made use of a global data set to convert bbp to
POC) and 30%POC (that used a regionally specific conversion
based on Southern Ocean filtered samples) implies that the
conversion from bbp to POC used here is regionally robust. This is
confirmed by a comparison of the POC vs. bbp relationship from

previously published values (Figure 2, Table 2), which shows the
slope of the regression between POC and bbp to fall well within
the observed literature range from various ocean basins. The
relationship from our data (from the south Atlantic Southern
Ocean; Figure 2, Table 2) is very similar to that generated from
the Mediterranean (Loisel et al., 2001), the North Atlantic Bloom
Experiment (NABE, Cetinić et al., 2012) and the Polar Frontal
Zone (PFZ, Stramski et al., 1999). Our POC vs. bbp slope is
however lower than that from the North and South Atlantic and
Equatorial Pacific (Graff et al., 2015), the Ross Sea (Stramski et al.,
1999), and the slope that is the basis of the NASA POC algorithm
(Stramski et al., 2008), using data from the Pacific and Atlantic
but excluding data from the upwelling regions (Cetinić et al.,
2012). On the contrary, our slope is higher than that from the
Atlantic and Pacific including data from the upwelling regions
(Stramski et al., 2008) and yields higher POC (for bbp >0.0027)
when compared to the relationship from the north and south
Atlantic (Balch et al., 2010).

The M13 method returns much higher concentrations
of Cphyto with the difference being less when chlorophyll

concentrations are below< 0.5mgm−3) in themonth of October
(Figure 5) and at depth (∼ 80 m). The reason for the higher
Cphyto estimates using M13 is the steep slope (30100) of Equation
(4), which is more than twice the slopes used in B05 (13000)
and 30%POC (11825). The comparatively steep slope of M13
was noted in Martinez-Vicente et al. (2013) and the explanation
proposed for the doubling of parameters between their equation
and that of Behrenfeld et al. (2005) was due to “uncertainties
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in satellite and in situ estimates of bbp and/or differences in the
spatio-temporal scales of the two studies.” A big difference in the
steepness of the slope was similarly noted between M13 (slope =
30100) and a study by Graff et al. (2015) in the North and South
Atlantic and Equatorial Pacific (slope = 12128). They suggest
that the difference may be due to variability in the assumed
volume-based phytoplankton biomass conversions used in the
M13 method to convert volume to Cphyto. This can yield an order
of magnitude variability in resultant Cphyto estimates (Caron
et al., 1995; Dall’Olmo et al., 2011).

Equation (4) from Martinez-Vicente et al. (2013) was
generated from the typically low biomass region of the Atlantic,
where in situ bbp data were generally less than 0.003 m−1. The
eight data points that exceeded this threshold were removed
from the regression by the authors, as they showed a shift
in the relationship that could not be described with a single
linear function. An inclusion of the 8 data points (where
bbp was > 0.003) would drive an even steeper slope, even
higher concentrations of Cphyto, and a greater disagreement
between the different methods used here. These 8 data points
were characteristic of eutrophic conditions (as opposed to
oligotrophic conditions) where larger cells characterized the
phytoplankton community (more Nano- and Pico- eukaryotes
and less Prochlorochoccus) with lower bbp:Cphyto ratios (see
Martinez-Vicente et al., 2013, their Supplementary Figure
1). Similarly, if microphytoplankton were included in their
measurements (missed by flowcytometry), the slope would likely
be even steeper. This would be consistent with optical theory
that predicts a decrease in bbp:Cphyto ratios with an increase
in particle size, where Cphyto is proportional to volume (Boss
et al., 2004; Martinez-Vicente et al., 2013). However, worth
noting is that this theory represents phytoplankton cells as
homogenous spheres that can overestimate the real refractive
index for certain species (Vaillancourt et al., 2003). As described
in Section Martinez-Vicente et al. (2013) method (M13), the
M13 equation was applied to all glider bbp data (ranging from

0.001 to 0.01 m−1), with much of the data falling above the
domain of applicability of Equation (4) (bbp <0.003). It is thus
possible that the overestimated Cphyto concentrations generated
from the M13 method are the result of an unsuitable application
of a regionally derived model from the low backscattering field
of the Atlantic to the relatively high backscattering SAZ. This
possibility is supported by all four methods generating similar
Cphyto concentrations when biomass was below 0.5mg m−3 (i.e.,
in early spring and at depth ∼ 80 m, Figure 5). As such, when
chlorophyll concentrations are below 0.5mg m−3 it appears
to make little difference which method of estimating Cphyto is
chosen by the user.

The S09 method showed similar Cphyto results in range
and distribution to both B09 and 30%POC, highlighting its
robustness in converting chlorophyll to Cphyto. This information
is particularly useful for data sets that require conversion to
phytoplankton specific carbon in the absence of backscattering
measurements. However, when the chl-a:Cphyto ratios from the
different methods are compared (Figure 6), the limitations of
the S09 method are highlighted, namely the very low temporal
variability in chl-a:Cphyto ratios. This can be attributed to the

derivation of chl-a:Cphyto ratios from a monotonic function of
chlorophyll concentration:

chla : Cphyto =
1

a

(

chla
)1−b

(6)

where a= 42 and b= 0.86 are the coefficients derived from
Equation (5). The implication of this is that the S09 method,
though being non-linear, does not allow for a scenario where
Cphyto increases or decreases without a corresponding change
in chlorophyll. The remaining three methods on the other
hand allow Cphyto to vary independently of chlorophyll, which
accounts for the higher temporal variability observed in the
chl-a:Cphyto ratios using the B05, 30%POC and M13 methods
(Figure 6).

Seasonal and Sub-Seasonal Variations in
the Chlorophyll-to-Carbon Ratio
How do surface chlorophyll-to-carbon ratios (chl-a:Cphyto) vary
in time? In general chl-a:Cphyto ratios tend to be lower in
spring (October), higher in summer (December – January), and
decreasing again in late summer (February) in particular in the
backscattering methods (30%POC, B05, and M15). The absence
of a strong seasonal evolution in M13 is likely a consequence
of the method which drives higher Cphyto (relative to the other
methods) when chlorophyll concentrations are high, and more
similar Cphyto when chlorophyll is below 0.5mg m−3 thus
dampening any seasonal driven signal in surface chl-a:Cphyto

ratios.
According to the literature, chl-a:Cphyto ratios tend to be

highest when larger diatoms are present and lowest when smaller
species dominate (e.g., Prochlorococcus) (Sathyendranath et al.,
2009). As such, some of the seasonal variability observed in
the chl-a:Cphyto ratios could be the result of different sized
species dominating the community at different times. Smaller
cells in spring (October) when light is potentially limiting (mean
MLD = 87m and mean PAR in MLD = 0.01 µ E cm−2

s−1) and late summer (January) when nutrients are potentially
limiting (depleted reservoir), vs. larger cells in early summer
(December) when light (Supplementary Figure 2) and nutrients
are thought to be unrestricted (mean PAR in MLD = 0.03
µ E cm−2 s−1). Previous studies have shown that the range
of chl-a:Cphyto ratios observed in the Southern Ocean are the
result of seasonal variation in the physiological response of
phytoplankton to light and nutrient limitation (Behrenfeld et al.,
2005). Phytoplankton chl-a:Cphyto ratios tend to decrease with
increasing light conditions and decreasing temperature and
nutrient concentrations (and vice versa) (Geider et al., 1997; Socal
et al., 1997; Taylor et al., 1997; Behrenfeld et al., 2005; Lü et al.,
2009; Halsey and Jones, 2015; Westberry et al., 2016). Increasing
chl-a:Cphyto ratios as a physiological response of phytoplankton
to low light conditions enables them to increase their light
harvesting ability by increasing the volume of chlorophyll packed
into their cells (Behrenfeld and Milligan, 2013; Halsey and
Jones, 2015; Bellacicco et al., 2016). Indeed, photoacclimation to
changes in the underwater light field as a bloom develops have
been known to account for the entire range of seasonal variability
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observed in bulk chlorophyll (e.g., Winn et al., 1995; Westberry
et al., 2008). However, since Fe reservoirs are replenished in
winter through deep mixing and depleted through biological
uptake in the Spring Summer growing season (Boyd et al.,
2010), nutrients are not considered the likely driver of the
observed increase in chl-a:Cphyto ratios. Similarly, both light
(through increased PAR Supplementary Figure 2 and decreased
MLD Figure 4) and temperature (see Thomalla et al., 2015
their Figure 2B) tend to increase from October to December.
It is thus unlikely that these processes (light, temperature or
nutrients) are responsible for the seasonal increase in chl-a:Cphyto

ratios observed during this period (Figure 6). However, since
laboratory studies consistently show a decrease in chl-a:Cphyto

ratios under Fe stress (Greene et al., 1992; Sunda and Huntsman,
1995), it is possible that limiting nutrients could contribute
to the observed decrease in chl-a:Cphyto ratios in late summer
(February). Similar results of declining chl-a:Cphyto ratios were
observed by Behrenfeld et al. (2005) in regions dominated
by large spring–summer blooms in phytoplankton abundance,
where a decrease in chl-a:Cphyto ratio was observed prior to the
seasonal biomass crash..

The physiological response of phytoplankton to relief from Fe
stress has shown increases in chl-a:Cphyto ratios as growth rate
increases (Greene et al., 1992; Geider et al., 1997; Sunda and
Huntsman, 1997). This response is the result of upregulation
of photosynthetic machinery and light harvesting capacity
(Laws and Bannister, 1980). A measure of the growth rate
estimated as the rate of change of MLD integrated chlorophyll
(Supplementary Figure 2) shows an increase from 0 at the
beginning of the time series (October) to ∼0.017mg chl-a m−2

d−1 in mid-December. Although we are unable to quantify
the role of Fe in this study, the increase in chl-a:Cphyto ratios
over the same time period may be a physiological response to
increased growth rates when neither Fe or light were considered
limiting. This was a similar response to what was observed during
bloom conditions by Westberry et al. (2013) in both natural and
purposeful Fe addition experiments. In addition, phytoplankton
must photoacclimate as the bloom develops to counter the effects
of self-shading, further increasing chl-a:Cphyto ratios over the
growing season.

Finally, an alternative explanation for the observed seasonal
increase in chl-a:Cphyto ratios is that the ratio of Cphyto to
total POC (and to bbp) decreases as the seasonal bloom
develops. In other words, as the season progresses a greater
percentage of the particulate backscattering signal is due to
non-phytoplankton specific carbon (e.g., heterotrophic bacteria,
detritus, viruses, ciliates) (Christaki et al., 2011). This was
observed in a study in the Mediterranean where the non-
algal contribution to bbp470 was generally larger in the more
productive regions that had elevated phytoplankton abundances
(Bellacicco et al., 2016). Behrenfeld et al. (2005) reported that a
compiled data set of field derived Cphyto:POC ratios spanning
oligotrophic to eutrophic ocean regions ranged from 19 to
49%. These differences reflect system variability in producer-
consumer dynamics, processes influencing the particle field and
possible differences in export efficiency (Graff et al., 2015).
If this ratio varies seasonally as much as regionally (i.e., by

a factor of 2.5), it will have a substantial effect on optically
derived chl-a:Cphyto ratios. Of the four methods applied here,
all three bbp470 computed methods (B09, 30%POC and M15)
apply a constant Cphyto:POC ratio with time. On the other
hand, the S09 method may indirectly account for adjustments
in Cphyto:POC through the non-linear relationship between
chlorophyll and Cphyto that drives an increase in chl-a:Cphyto

ratios with increasing chlorophyll. To elaborate; as the bloom
develops, phytoplankton biomass increases with a concomitant
decrease in the percentage of Cphyto relative to total POC.
This may be reflected in the logarithmic relationship between
chlorophyll and Cphyto (Figure 3), which would be observed as
an increase in chl-a:Cphyto ratios with increasing chlorophyll
concentrations in the S09 method (Figure 6).

Over and above the characteristic seasonal cycle in chl-
a:Cphyto ratios, there is strong sub-seasonal and daily variability
that are likely driven by phytoplankton community responses
to smaller scale physical processes and day-night physiological
adjustments. In the case of the M13 method, where the seasonal
cycle is dampened, one can argue that the smaller sub-seasonal
scales are in fact dominating the variability. Some distinct
examples of smaller scale adjustments in the chl-a:Cphyto ratios
are as follows:

1. The low chl-a:Cphyto ratios (from bbp470 derived methods) at
the very beginning of the time series (late September/early
October) (Figure 6) that are associated with deep MLD’s
(∼150 m, Figure 4) when the glider crosses the cold core of
a mesoscale cyclone∼200 km in diameter (Swart et al., 2015);

2. A peak in chl-a:Cphyto ratios (from bbp470 derived methods)
in the last week of October (Figure 6) that coincides with
an intense shoaling of the MLD to ∼25m (Figure 4), the
timescale of which relates to an oceanographic feature and
an event that is mesoscale in nature (slumping of the lateral
gradient in density) (Mahadevan et al., 2012; Swart et al.,
2015); and

3. A distinct daily signal in chl-a:Cphyto ratios with higher
ratios during the day that are arguably the result of
daily physiological adjustments in phytoplankton chlorophyll
content per unit carbon.

The drivers of sub-seasonal variability in chl-a:Cphyto ratios seen
in late September (low) and late October (peak) are clearly linked
to mesoscale features and associated adjustments in the depth
of the mixed layer, which is deep in late September (∼150 m)
and shallow in late October (∼25 m). However, the adjustments
in chl-a:Cphyto ratios are not a physiological response of the
phytoplankton to light. Were this the case, the opposite response
would be true i.e., an increase in chl-a:Cphyto ratios would be
observed when MLD’s were deep and light was supposedly
limiting. It is thus more likely that these small scale adjustments
in chl-a:Cphyto ratios are the result of a shift in community
structure from a small cell dominated community with low
growth rates in late September to a population dominated by
large cells with high growth rates under high light conditions in
late October.

To test whether the diurnal variability in the chl-a:Cphyto

signal (see insert in Figure 6) was driven by an artifact
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of residual uncorrected solar quenching (or the quenching
correction itself), we compared in Figure 7 the linear regressions
of midnight and midday Cphyto (r2 = 0.93) to midnight and

midday chlorophyll (r2 = 0.66). Although the coefficient of
determination for chlorophyll is lower, this is what can be
expected from the effects of acclimation. The normal dispersion
of the data however suggests that the variability in chlorophyll
is not biased and hence implies that there is no systematic
artificial error introduced through the quenching correction
(Figure 7). As such, it is believed that the daily signal in
chl-a:Cphyto ratios is a real response of the phytoplankton
community. Interpreting this diurnal variability is difficult as it
depends on numerous parameters that include phytoplankton
concentration, composition and physiological status together
with the detrital and small heterotroph concentration, all of
which are typically not known and hence diurnal variability in
chl-a:Cphyto ratios remains poorly understood. The likely drivers
however include the balance between daytime production and
night time degradation, changes in particle size distribution
and changes in the refractive index driven by varying internal
concentrations of organic compounds (e.g., accumulation of
intracellular carbon through photosynthesis) (Kheireddine and
Antoine, 2014). Although this small-scale variability elicits
further detailed investigations it remains outside of the scope of
this manuscript.

Implications for Model Parameterizations
Some biogeochemical models apply a constant chl-a:Cphyto ratio

globally (usually 0.02mg chl-a mg C−1) even if the constraints
are not developed equally (i.e., some regions are data poor), while
others have a dynamical function that should include acclimation
to prevailing light conditions. It is entirely possible that the
inadequate parameterization of this ratio is the reason for the
seasonal biases found in biogeochemical models (Doney et al.,
2009; Steinacher et al., 2009; Vichi andMasina, 2009). In Figure 6

we compare the chl-a:Cphyto ratios generated from a Southern
Ocean data set (using the different optical methods) with those
constrained in satellite data, cruise data and from one medium
resolution global model (the PELAGOS025 model analyzed by
(McKiver et al., 2015), Model data). The chl-a:Cphyto data from
the model was extracted from the same location as the glider
transect and over the same dates (month and day) but from a
simulation for the year 2011, due to a limitation in the availability
of atmospheric forcing functions.

Since Cphyto cannot exceed POC, the chl-a:POC ratio from
the cruise data (Table 1) was used to set a minimum chl-a:Cphyto

ratio assuming all POC was phytoplankton specific (presented
as 100%POC, Figure 6). These ratios were understandably low
(<0.01mg chl-a mg C−1) but above the minimum satellite
range (0.004mg chl-a mg C−1) of Behrenfeld et al. (2005) and
oftentimes close in magnitude to the ratios generated by the M15
method. The ∼50% lower chl-a:Cphyto ratios for M13 are driven
by the high Cphyto values that this method generates relative to
the other methods, particularly when biomass is high (December
to February). It was proposed earlier that the low chl-a:Cphyto

ratios were a possible result of an unsuitable application of a
regionally derived model from the Atlantic to the SAZ. The S09
method allows us to do a direct comparison of the chl-a:Cphyto

results generated from one model derived predominantly from
data from theNWAtlantic (S09original) with the samemodel but
derived from data from the Southern Ocean (S09, Figure 6). This
comparison shows how the application of the S09original model
to the SAZ data set results in much lower chl-a:Cphyto ratios that
are more inline with those generated by the M13 method, that
was similarly derived from cell counts from the Atlantic.

Both the M13 and S09original methods produce chl-a:Cphyto

ratios that are very similar to the 100%POC method, which
outputs the minimum ratios possible assuming all POC is
phytoplankton specific. This is not surprising when one considers
that the slope of the M13 method (30100mg C m−2) is 76%

FIGURE 7 | Linear regressions of daily surface midnight vs. daily surface midday concentrations of (A) Cphyto from the glider transect using the B05

method (slope = 0.97, r2 = 0.93, rmse = 2.49) and (B) chlorophyll (slope = 0.8, r2 = 0.66, rmse = 0.15). The linear least square regression line appears in red with

the one to one line in black.
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of the POC: bbp slope found in this study (39418mg C m−2)
(Figure 2). This finding implies that when the M13 method is
applied to the glider data set, there is very little non-algal POC
that co-varies with Cphyto. This result is unlikely if one considers
that the maximum Cphyto:POC ratio reported by Behrenfeld et al.
(2005) is 49% and in the Equatorial Upwelling and temperate
spring waters of the Graff et al. (2015) study rarely exceeded
40% (mean= 25%). Although phytoplankton has been known to
dominate POC at a high biomass coastal upwelling site (Hobson
et al., 1973) this observation is in contrast to the typical low
contribution of Cphyto to POC in productive offshore waters
(Hobson et al., 1973; Andersson and Rudehäll, 1993). As such, it
is more likely that the slope of the M13 method (and S09original)
is too high for this region and that the 30%POC, S09 and B05
methods are more appropriately applied to Southern Ocean data
sets, supporting the argument of an unsuitable application of a
regionally derived model from the Atlantic to the SAZ. The M13
method still resolves the shorter-term variations likely driven by
photo-physiology but reduces the summer increase in the ratio
explained by adjustments in nutrient driven growth rates and
community structure.

A comparison of the results with the PELAGOS model
(Figure 6) imply that an overall chl-a:Cphyto ratio of 0.02mg chl-

a mg C−1 seems adequate to represent the SAZ phytoplankton
during spring and summer. However, the glider data indicate that
the sub-seasonal and seasonal variations of this parameter are
rather high and may play an important role in determining the
magnitude of the bloom. In addition, the PELAGOS025 model
shows an apparent misrepresentation of the seasonal cycle of
chl-a:Cphyto ratios, with high ratios in winter and low ratios in
summer (whereas the glider shows an increase in the chl-a:Cphyto

ratios from winter through to summer). This is likely because
PELAGOS025 is based on the Biogeochemical Flux Model (Vichi
et al., 2007; Vichi and Masina, 2009) that uses a variation of
the Geider et al. (1997) formulation for light acclimation and
chlorophyll regulation. As such, the seasonal mismatch may be
a result of the model assumption that all seasonal variability
is purely due to acclimation to a prescribed high optimal chl-
a:Cphyto ratio (deep mixed layers in winter driving increased
chlorophyll synthesis through packaging responses to low light
conditions). This may explain the observed seasonal biases of
the models when compared with ocean color data reported
in the literature. Rather, if our estimates of Cphyto based on
backscattering are appropriate for the Southern Ocean (and this
can only be validated with corresponding in situ estimates) then
the glider data suggest that models need to account for low
light adaptation in winter, which would dampen the acclimation
response and allow for lower optimal chl-a:Cphyto ratios in winter.
While in summer, the large increase in chlorophyll may need
to coincide with a shift toward a community characterized by
larger cells, relatively higher growth rates and higher optimal chl-
a:Cphyto ratios. Such a mechanism is currently not implemented
in any of the biogeochemical models because they usually
consider one single group of diatoms. Numerical models, even
the ones with a more sophisticated physiology like the BFM
(or PISCES) may account for acclimation to light but are still
dominated by the same kind of diatoms without any additional

plasticity. The PELAGOS025 model does however do a better job
in capturing the range of observed chl-a:Cphyto ratios, which the
satellite data do not (Figure 6; see satellite range from Behrenfeld
et al. (2005) for the Southern Ocean 0.004 – 0.013, their Table 1).

A Reference Chlorophyll-to-Carbon Ratio
for the Sub-Antarctic Zone?
The data used for this research provides for the first time
Cphyto obtained from a high-resolution glider data set to
derive independent surface chl-a:Cphyto ratios from the SAZ.
This is a much-needed parameter for biogeochemical models
to improve the simulation of phytoplankton blooms in the
region. To summarize the range of results obtained with the
glider data from the different methods described in Section
Materials and Methods, we compare in Figure 8 their surface
(10 m) chl-a:Cphyto ratios to several literature values and ranges
(Montagnes et al., 1994; Sunda and Huntsman, 1995; Llewellyn
and Gibb, 2000), as well as to the model results, using non-
parametric distributions (mean, median and 5–25 percentiles).

Our analysis suggests that it is not possible to establish
one single value for the conversion between chlorophyll and
carbon. The large range of observed variability is driven by
methodological uncertainties, regional differences and large
seasonal variations. All chl-a:Cphyto ratios from the different
methods applied to the glider data set (30%POC, B05, S09, M15)
fell within the data set limits compiled by Behrenfeld et al.
(2002), which for the global ocean range between 0.001 and
>0.06mg chl-a mg C−1 (Behrenfeld et al., 2005). Similarly, all
methods generated chl-a:Cphyto ratios that fell within the range of
laboratory culture measurements collated here (Supplementary
Table 1) and within the range of ratios generated when one
applies the 30% mean and 19–49% range in Cphyto:POC ratios
(Behrenfeld et al., 2005) to the cruise POC data. Worth noting
here is that although the Behrenfeld et al. (2005) range of 19–
49% is presented for comparison (derived from the following
references: (Eppley et al., 1992; Durand et al., 2001; Gundersen
et al., 2001, and Oubelkheir, 2001), this range has been shown to
extend to a minimum of 14% by Oubelkheir et al. (2005) and as
high as 75% by Martinez-Vicente et al. (2013).

The smaller range (0.02–0.025mg chl-a mg C−1) of
distribution in chl-a:Cphyto ratios from the S09 method (which
does not allow for independent adjustments in Cphyto relative to
chlorophyll) is clear (as in Figure 6). This range increases (0.008
– 0.018mg chl-a mg C−1) when applying the S09original model,
which is characterized by a lower phytoplankton carbon per unit
chlorophyll (Figure 3), likely due to the different region of origin
of the analyzed samples. A much greater spread is evidenced
in the cruise data (0.002–0.17mg chl-a mg C−1) relative to the
glider data (0.006–0.05mg chl-a mg C−1). This is likely driven
by the large regional coverage of the cruises relative to the glider
(Figure 1) with the cruises likely sampling a much wider range
of communities exposed to more varied growth conditions. In
line with this argument, it follows that the range of variability
of the cruise data is on a similar scale to that found in the
laboratory culture experiments (0.0001–0.05), which are from a
large variety of phytoplankton species and growing conditions.
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FIGURE 8 | Comparison of the distribution of chl-a:Cphyto ratios derived from (1) the four glider estimates in the SAZ (30%POC, S09, M13 and B05);

(2) the PELAGOS025 model for the glider transect (0–10 m); (3) a collation of laboratory culture experiments from the literature [Lab: n= 127,

Supplementary Table 1 (Montagnes et al., 1994; Sunda and Huntsman, 1995; Llewellyn and Gibb, 2000)]; (4) from Southern Ocean cruise data (Cruise,

0–20 m) assuming a phytoplankton carbon fraction of 19, 30, and 49%; (5) minimum possible ratios derived from the glider data if all POC was

phytoplankton specific (100%POC) and 6) from the original Sathyendranath et al. (2009) model developed from data from the NW Atlantic and Arabian

Sea (S09orig).

The high variability in observed chl-a:Cphyto ratios illustrates the
potential error associated with predicting Cphyto concentrations
based on chlorophyll concentrations alone.

If you round the median of the different data sets off to two
decimal places, they fall into two distinct groups. Those with low
median chl-a:Cphyto ratios (∼0.01mg chl-a mg C−1) from the
laboratory cultures and glider data when the 100%POC,M13 and
S09original methods are applied, and those with higher median
chl-a:Cphyto ratios (∼0.02mg chl-a mg C−1) from the cruise data,
PELAGOS025 model and the glider data with the 30%POC, B05
and S09 methods applied. Interestingly, another recent study
from the north and south Atlantic, using direct measurements of
Cphyto, had the same median chl-a:Cphyto ratio (0.01 range 0.029–
0.002) as the M13 and S09original methods that were similarly
all derived from the Atlantic (Graff et al., 2015). These results
suggest that if reality is a low median chl-a:Cphyto ratio (∼0.01),
then the M13 and S09original methods would produce the best
results when applied to the glider data set from the SAZ. On the
other hand, if reality is a higher median chl-a:Cphyto ratio (∼0.02)
then the 30%POC, S09, and B05 methods better represent reality
in the SAZ.

Nevertheless, even assuming that the values with a median of
0.02mg chl-a mg C−1 are more realistic, the spread is sensibly
large, and apparently not purely driven by acclimation given the
phase discrepancy between the model results and the glider data
(Figure 6). Further insights on the merit of one method over
another can only be obtained with the aid of concurrent data

on the phytoplankton community composition and their specific
chlorophyll and carbon content. To this end, recent advances in
technology such as sorting flow-cytometry and high sensitivity
elemental analysis can allow for quantitative assessment of Cphyto

(e.g., Graff et al., 2015) which will contribute to a more extensive
set of field data for evaluating and validating optical methods of
determining Cphyto concentrations.

CONCLUSIONS

This study used optical data from a high-resolution glider
transect in the SAZ to compare four different empirical
estimates of phytoplankton carbon (three based on particulate
backscattering and one on chlorophyll). The chl-a:Cphyto ratios
generated from the different methods were compared with in
situ data from the literature and a model simulation to inform
on their comparative range and distribution. Out of the four
methods used, three (30%POC, B05, and S09) showed similar
Cphyto concentrations, despite their different origins, in particular

when chlorophyll concentrations were below 0.5mg m−3. The
fourth (M13) derived higher concentrations of Cphyto when
chlorophyll concentrations were high (>0.5mg m-3). The S09
method produced very similar Cphyto concentrations to B09 and
30%POC, highlighting its robustness in converting chlorophyll
to Cphyto in the absence of particulate backscattering. However,
the S09 method does not allow for adjustments in Cphyto without
proportional changes in chlorophyll and hence cannot account
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for cellular adjustments in chl-a:Cphyto ratios that are not driven
by biomass. Methods derived from bbp on the other hand,
showed high seasonal and sub-seasonal variability in chl-a:Cphyto

ratios that can be attributed to adjustments in dominant species
composition, physiological adaptations to varying light and
nutrient regimes, changes in growth rates and variability in the
ratio of Cphyto to total POC.

All chl-a:Cphyto ratios generated from the four different
methods fell within the literature range compiled by
Behrenfeld et al. (2002), the range of collated laboratory
culture measurements and the cruise POC data (when a 19–
49% range in Cphyto:POC ratio was applied). Nonetheless, the
methods derived from the North Atlantic (M13 and S09original)
were shown to generate mean chl-a:Cphyto ratios that were

comparatively low (0.01mg chl-a mg C−1) and did not allow for
sufficient variation of non-algal POC with Cphyto. The 30%POC,
S09, and B05 methods on the other hand generated higher mean
chl-a:Cphyto ratios (0.02mg chl-a mg C−1) that were considered
more appropriate for application to the SAZ. This highlights
the potential for unsuitable application of regionally derived
methods to the Southern Ocean.

Model simulations tend to overestimate the magnitude
and miss the timing of the Southern Ocean spring-summer
bloom, which McKiver et al. (2015) suggested was a possible
result of inaccurate parameterization of the chl-a:Cphyto ratio.
A comparison of the glider surface chl-a:Cphyto ratios with
those from laboratory culture experiments from the literature,
Southern Ocean cruise data (assuming a Cphyto:POC range
of 19–49%) and the same model output used by McKiver
et al. (2015) show that although an overall chl-a:Cphyto ratio

of 0.02mg chl-a mg C−1 could adequately represent the SAZ
phytoplankton during spring and summer, the seasonal variation
of this parameter is high and may play an important role
in characterizing the bloom. It is proposed that the seasonal
mismatch between the model and the glider data may result from
the models assumption that all seasonal variability is simply due
to acclimation. If indeed the seasonal ramp in chl-a:Cphyto ratios
observed with the glider is related to higher growth rates (and not
to a decrease in % contribution of Cphyto to bbp as the seasonal
bloom develops) then these results suggest that models need
to accommodate a variable chl-a:Cphyto ratio that accounts for
phytoplankton adaptation to low light conditions in spring (low
optimal chl-a:Cphyto ratio) and higher optimal chl-a:Cphyto ratios
with species-specific increasing growth rates in summer. Another
option, as suggested by the work of Bellacicco et al. (2016), is
that methods converting backscattering to Cphyto need to take

into account the space-time variability of non-algal contributions
to particulate backscattering, which can vary by more than one
order of magnitude. To further our understanding of the merits
of different optical methods of determining Cphyto, additional
data is required on concurrent community composition and
specific chlorophyll and carbon content.
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Phytoplankton are composed of diverse taxonomical groups, which are manifested as

distinct morphology, size, and pigment composition. These characteristics, modulated

by their physiological state, impact their light absorption and scattering, allowing them to

be detected with ocean color satellite radiometry. There is a growing volume of literature

describing satellite algorithms to retrieve information on phytoplankton composition in the

ocean. This synthesis provides a review of current methods and a simplified comparison

of approaches. The aim is to provide an easily comprehensible resource for non-algorithm

developers, who desire to use these products, thereby raising the level of awareness

and use of these products and reducing the boundary of expert knowledge needed to

make a pragmatic selection of output products with confidence. The satellite input and

output products, their associated validation metrics, as well as assumptions, strengths,

and limitations of the various algorithm types are described, providing a framework for

algorithm organization to assist users and inspire new aspects of algorithm development

capable of exploiting the higher spectral, spatial and temporal resolutions from the next

generation of ocean color satellites.

Keywords: remote sensing, ocean color, optics, phytoplankton functional types, phytoplankton size classes,

particle size distribution, phytoplankton taxonomic composition, bio-optical algorithms
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INTRODUCTION

The determination of phytoplankton community structure using
satellite remote sensing has evolved from an aspiration to a highly
active area of research, with numerous published approaches
available over the past decade. Prior work had focused on the
discrimination of dominant single phytoplankton groups such
as coccolithophores, Trichodesmium spp., diatoms, and other
harmful species such as Karenia brevis, Karenia mikimotoi,
Nodularia, and Microcystis (IOCCG, 2014; see chapter 3 and
references therein). A variety of approaches have emerged that
attempt to discriminate “phytoplankton functional types” (PFT),
which include algorithms that retrieve phytoplankton size classes
(PSC), phytoplankton taxonomic composition (PTC), or particle
size distribution (PSD). In this way, a PFT is an aggregation of
phytoplankton, where irrespective of their phylogeny, they share
similar biogeochemical or ecological roles. This broad definition
lacks specificity, with no universal interpretation (Reynolds et al.,
2002). Here PSC, PTC, and PSD serve as a further refinement of
PFTs, where the choice of the considered functional type depends
on the question at hand. Surveying the existing algorithms, with
their varying inputs and outputs, can be overwhelming for non-
experts wishing to use the data products from such approaches
and determine which algorithm output may be most applicable
to their problem at hand. This guide serves as a synthesis of
the existing methods with clear articulation of the underlying
approach, satellite input and output products, assumptions,
strengths, limitations, and validation metrics.

There are several recent reviews of research accomplishments
of phytoplankton composition retrieval from satellite (Nair et al.,
2008; Brewin R. J. et al., 2011; De Moraes Rudorff and Kampel,
2012; IOCCG, 2014). Nair et al. (2008) provide a review of single-
species andmultiple type retrievals, while DeMoraes Rudorff and
Kampel (2012) review various algorithm approaches (empirical,
semi-analytical, analytic). Brewin R. J. et al. (2011) directly
compare the performance of PFT and PSC algorithms. IOCCG
(2014) provides a comprehensive report of PFT accomplishments
to date, giving users detailed information on the various satellite
PFT techniques. Yet, since the time of these reviews the literature
has grown quickly. Building on the IOCCG report, the goal
here is to provide a simple guide to current PFT techniques
that is attractive to a broad audience of marine scientists. We
provide a direct comparison of the assumptions, strengths,
limitations, required satellite input and output products and
performance metrics for the different approaches. The goal
of this guide is to provide such a comparison in accessible
form to reduce the barrier of expert knowledge needed for
users to make a sound and confident selection of an algorithm
or group of algorithms. To address a similar requirement for
primary productivity models, Behrenfeld and Falkowski (1997)
produced a “consumer’s guide to primary productivity models”;
this contribution seeks to address a similar need for the users
of PFT satellite products. Given phytoplankton form the base
of the aquatic food web and their composition impacts the
structure, function, and sustainability of the whole food web,
we anticipate a broad user community, including: numerical
model developers, environmental, and fisheries management

entities, those seeking to understand climate-related changes in
marine ecosystems and the carbon cycle, and members of the
satellite remote sensing community that are non-PFT algorithm
developers. Observationalists wanting to provide information to
the broadest community are often looking for guidance on what
variables or types of measurements would be of the highest value,
in addition to identifying tools to put their observations into a
larger context. Satellite remote sensing adds valuable synoptic
observations on spatio-temporal scales impossible to sample in
situ. In addition, by summarizing the parameters utilized in
algorithm development, as well as satellite inputs and outputs, we
aim to motivate identification of non-exploited parameter space
and new algorithm development for extended PFT capability into
the future.

Here, we focus on global open ocean methods solely
dependent on inputs from ocean color radiance or its derived
products. Thus, we exclude ecologically based methods that
require additional physical and spatio-temporal information
(e.g., Raitsos et al., 2008; Palacz et al., 2013). We utilize all of the
algorithms that Kostadinov et al. (2017) directly compare plus
three additional algorithms (Hirata et al., 2008; Devred et al.,
2011; Li et al., 2013).

Unlike the “consumer’s guide to primary productivity models”
(Behrenfeld and Falkowski, 1997), where net primary production
was the single common output between all compared models,
satellite PFT algorithms have a variety of phytoplankton classes,
units, and satellite product outputs. This presents an additional
layer of challenge, precluding direct comparison of algorithm
performance and explicit “how to” instructions as found in
Behrenfeld and Falkowski (1997). Instead, other metrics, such
as phenological cycles, are being explored as a way to inter-
compare PFT algorithms (Kostadinov et al., 2017). It is not our
purpose here to inter-compare algorithm performance, rather
we seek to provide users with a simplified “go to” reference to
understand existing algorithm types, their associated strengths
and limitations, input requirements and output products, to
aid in selecting the satellite PFT model that may best fit their
application.

ALGORITHM OVERVIEW

Here, we focus on the four algorithm types that derive PFTs
that are classified according to their theoretical basis, and
include abundance-, radiance-, absorption-, and scattering-based
approaches (Figure 1). The underlying assumptions and basic
constructs for each of these algorithm types are described. We
begin with the satellite inputs, followed by the outputs, then
describe how they were derived (algorithm basis) and how
successful the algorithm has been shown so far at retrieving the
desired products (validation). A summary of notation can be
found in Table 1.

Understanding Satellite Data Inputs:
Ocean Color Radiometry
A satellite ocean color radiometer measures light (radiance) at
the top of the atmosphere. On the global scale, the atmosphere
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FIGURE 1 | Schematic of various phytoplankton functional type (PFT) algorithms grouped according to their output classification (PTC, PSC, or PSD)

and algorithm development types (abundance-, radiance-, absorption-, and scattering-based). Color indicates the output classification of phytoplankton

taxonomic class (PTC, green), phytoplankton size class (PSC, yellow) or particle size distribution (PSD, blue).

alone typically accounts for >90% of this signal (Mobley, 1994).
After atmospheric correction, the primary measured variable is
spectral remote sensing reflectance [Rrs(λ)] or normalized water-
leaving radiance [nLw(λ)]. [Note that these variables are related
via Rrs(λ) = nLw(λ)/F0(λ), where F0(λ) is the extraterrestrial
solar irradiance centered at wavelength λ (Thuillier et al.,
2003)]. In open ocean waters, the threshold of uncertainty
acceptance for Rrs(λ) is 5% (Bailey and Werdell, 2006). All other
ocean color variables are estimated from Rrs(λ) (Figure 2). This
means that the inherent optical properties (IOPs, i.e., absorption
and scattering/backscattering), which are independent from the
ambient light field, as well as, biogeochemical variables such as
chlorophyll-a concentration, [Chl], are estimated from Rrs(λ),
not measured directly from space. Approximate relationships
between Rrs(λ) and IOPs were presented by Gordon et al. (1988)
so that:

Rrs(λ) = ℜ
f (λ)

Q(λ)

bb(λ)

a(λ) + bb(λ)
(1)

where, a(λ) is spectral total absorption coefficient and bb(λ)
is spectral total backscattering coefficient, ℜ is a factor that
accounts for reflection and refraction at the air-water interface,
and f/Q accounts for the bidirectional nature of reflectance
(Morel et al., 2002). The IOPs absorption and backscattering are

functions of biological/biogeochemical variables. Phytoplankton
abundance, composition and physiological status impact [Chl],
PSD, light absorption, and backscattering, and thus Rrs(λ). The
algorithms that utilize absorption and backscattering satellite
inputs obtain these IOP parameters from a variety of different
semi-analytical inversion algorithms that are all fundamentally
derived from the basic construct of Equation (1; Werdell et al.,
2013; Figure 2). In contrary, the Phytoplankton Differential
Optical Absorption Spectroscopy (PhytoDOAS) algorithm uses
top of atmosphere satellite reflectance directly as input, to fit (and
separate) simultaneously all absorbers in the atmosphere and
ocean—accounting for atmospheric affects within the algorithm
(Bracher et al., 2009; Sadeghi et al., 2012a).

Abundance-based algorithms use [Chl] as a satellite input
(Figure 2). To date, all published abundance-basedmodels utilize
[Chl] derived by an empirical approach (O’Reilly et al., 1998),

log10
[

Chl
]

= a0 +
∑

4
i= 1 ai log10

(

Rrs(λblue)

Rrs(λgreen)

)i

(2)

where, a0–a4 are sensor-specific coefficients and Rrs(λblue)
is the greatest of several input Rrs(λ) values. However,
within the constructs of the PFT algorithms, there is no
reason why semi-analytically determined [Chl] could not
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TABLE 1 | Summary of notation (units in parentheses, where applicable).

Optical parameters

nLw(λ) Normalized spectral water leaving radiance (mW cm−2
µm−1 sr−1)

Rrs(λ) Spectral remote sensing reflectance (sr−1)

a(λ) Total absorption (m−1)

aph Phytoplankton absorption (m−1)

acdm Absorption of colored dissolved and detrital material (m−1)

bb(λ) Total backscattering (m−1)

bbp Particulate backscattering coefficient (m−1)

η Spectral slope of the particulate backscattering coefficient (unitless)

S Spectral slope of colored dissolved and detrital material absorption

(nm−1)

CDOM Colored dissolved organic matter

NAP Non-algal particles

Pigments

HPLC High precision liquid chromatography

DP Diagnostic pigments

[Chl] Chlorophyll-a concentration (mg m−3)

Phytoplankton

PFT Phytoplankton functional type

PSC Phytoplankton size classes

PTC Phytoplankton taxonomic composition

PSD Particle size distribution

Micro Microphytoplankton (>20 µm in diameter)

Nano Nanophytoplankton (2–20 µm)

Pico Picophytoplankton (0.2–2 µm)

Hapto Haptophytes

Cocco Coccolithophores

Dino Dinoflagellates

Cyano Cyanobacteria

Pro Prochlorococcus

Syn Synechococcus

Phaeo Phaeocystis

Sf Size parameter representing fractional picoplankton

Sfm 1 – Sf

be used in place of empirically determined [Chl]. The
sensor-specific coefficients and bands are available at:
http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a. The level
of acceptable uncertainty for [Chl] is 35% (Bailey and Werdell,
2006).

Within the portion of the satellite Rrs(λ) signal that is
attributed to phytoplankton (absorption by pigments and
scattering by cellular material), pigment abundance is primarily
responsible for first order magnitude variability in Rrs(λ),
while spectral shape differences associated with diversity in
the taxonomic composition are secondary (Ciotti et al., 1999).
Therefore, it is important to consider the overall phytoplankton
contribution to total absorption and scattering budgets. Mouw
et al. (2012) quantified this by looking at model output over
the range of optical variability encountered in the global ocean
considering scenarios where phytoplankton size did and did

not vary. They find the magnitude of the [Chl] contribution to
Rrs(443) (443 nm is the wavelength where greatest phytoplankton
absorption occurs) is much greater than the contribution of
phytoplankton taxonomic composition to Rrs(443) variability
(see their Figures 6–8). This is due to the fact that chlorophyll-
a, a pigment ubiquitous to all phytoplankton, has maximum
absorption at 443 nm. PFT algorithms that exploit these second
order characteristics, after accounting for the presence of colored
dissolved organicmatter (CDOM) and non-algal particles (NAP),
are therefore subject to limitations due to relatively low signal-
to-noise ratio of the residuals, that is, they operate near the
limits of what is retrievable by the current state-of-the-art (e.g.,
Evers-King et al., 2014). Conversely, PFT algorithms that use
the dominant abundance signal, such as [Chl], phytoplankton
absorption, or particulate backscatter, are less impacted but have
to face other limitations such as uncertainty in relationships
between these properties and phytoplankton grouping.

Understanding Satellite PFT Outputs: PSC,
PTC, and PSD
Here, we seek to summarize and simplify the satellite
phytoplankton functional type algorithm products or outputs.
The PSC output is most commonly grouped as pico- (0.2–
2µm), nano- (2–20µm), and/or microplankton (>20µm)
following the size classification scheme proposed by Sieburth
et al. (1978). However, a few models allow for multicomponent
size classes not constrained by the traditional size groupings
(Roy et al., 2013; Brewin et al., 2014b). The PSD satellite
output (Kostadinov et al., 2009, 2010; Roy et al., 2013) can
conform to the Sieburth et al. (1978) size classification. The
PTC algorithms have a variety of outputs, dictated largely by
the resolution of information available from in situ calibration
and/or validation datasets. The PHYSAT approach (Alvain
et al., 2005, 2008; Ben Mustapha et al., 2014) retrieves
nanoeukaryotes, haptophytes (a major component of the nano-
flagellates), Prochlorococcus, Synechococcus-like cyanobacteria,
diatoms, coccolithophores, and Phaeocystis-like phytoplankton.
The Hirata et al. (2011) approach retrieves pico-eukaryotes,
prymnesiophytes (synonymous with haptophytes), diatoms,
prokaryotes, green algae (chlorophytes), dinoflagellates, and
Prochlorococcus sp., in addition to the main pico, nano, and
micro size classes. The PhytoDOAS algorithm (Bracher et al.,
2009; Sadeghi et al., 2012a) retrieves cyanobacteria, diatoms,
coccolithophores, and dinoflagellates. We group similar classes
together for clarity and simplicity. For example, haptophytes
retrieved by Alvain et al. (2005, 2008) and Sadeghi et al.
(2012a) are grouped with prymnesiophytes retrieved by Hirata
et al. (2011). Prochlorococcus and Synechococcus, along with
the broader prokaryotes class obtained by Hirata et al. (2011),
are grouped as cyanobacteria (Table 2). Algorithm abbreviations
follow those established by the algorithm’s author(s), are
consistent with those in Kostadinov et al. (2017), and are noted
in Figure 1 and Table 2.

These PFT output products are similar but are not identical
and are defined by distinct units. These include dominance,
[Chl] for each group (mg m−3), fractional [Chl] (%), fractional
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FIGURE 2 | Schematic of satellite product inputs utilized in each PFT algorithm. The red box indicates the Rrs(λ) measured by a satellite radiometer. Ovals are

derived satellite products and their connection to Rrs(λ) is indicated as black lines. Gray lines indicate the connection of satellite input products used in the various PFT

algorithms. The color of the algorithm abbreviation text indicates the algorithm type: abundance (green), radiance (red), absorption (yellow) and scattering (blue).

Algorithm abbreviations are as in Figure 1 and Tables 2, 3.

biovolume (%), absorption (m−1) of each group, and a
continuous size parameter varying from 0 to 1 (see Equation
1 and Table 3). We also simplify output with regards to units.
All phytoplankton groups or size classes, regardless of units,
are grouped together in Table 2 and Figure 3, which provide an
overview of all algorithms.While users will most certainly require
unit information, the overview table allows easy identification
of the citations for the outputs of interest. For greater depth of
information regarding units, a full list of output products, their
validation source, and validation metrics are provided in Table 3.

An important consideration is the aspect of phytoplankton
group dominance. Alvain et al. (2005, 2008) and Hirata et al.
(2008) retrieve the dominant group for a given satellite image
pixel. Alvain et al. (2005) define dominance as situations in which
a given phytoplankton group is the major contributor to the
radiance anomaly. This contribution is retrieved as dominant
when the ratio (biomarker pigment concentration/[Chl]) value
is at least equal to 50% of the value that will be observed if the
phytoplankton group was alone in the sample. This approach
allows an empirical relationship between radiances anomalies
and in situ information. For this reason, PHYSAT interpretation
needs to be carefully considered in terms of in situ data used to
give a name to the remotely sensed signal. Alvain et al. (2005)
classify daily images and compile monthly maps of the most
frequent dominant phytoplankton group. The group present in
more than half of the daily images is assigned as dominant in
the monthly compilation. When no group remains dominant
over the whole month, pixels are labeled as unidentified. Hirata
et al. (2008) determine PSCs from diagnostic pigments and
relate them to phytoplankton absorption at 443 nm [aph(443)]

to retrieve PSCs from satellite imagery. In the development stage
of relating diagnostic pigments to aph(443) in situ, a PSC is
defined as dominant if the marker pigment to diagnostic pigment
ratio is >45%. However, in applying the approach to aph(443)
imagery, PSCs are determined based on threshold ranges of
aph(443), as such for a given pixel, only a single dominant
type output is classified, regardless of temporal resolution of
the satellite imagery. These are considerations users need to be
aware of and can impact their interpretation and use. Further,
when comparing satellite algorithms with biogeochemical model
outputs, dominance (highest percentage of group) will vary
whether one considers dominance of [Chl], aph(λ), bbp(λ), or
carbon—requiring care to ensure comparisons are done on the
same terms.

Algorithm Basis
Abundance-based algorithms are based on the general
observation that in the global open ocean a change in [Chl]
is associated with a change in phytoplankton composition or
size structure. The basis of this approach is that there is an
upper limit of [Chl] in small cells imposed from genotypic and
phenotypic constraints. Beyond this value, larger phytoplankton
are responsible for an increase in [Chl] (Yentsch and Phinney,
1989; Chisholm, 1992).

Morel and Berthon (1989) suggested near surface [Chl] is
related to water column-integrated chlorophyll content and its
vertical distribution. Extending this work, Uitz et al. (2006)
proposed quantitative relationships between the near surface
[Chl] and (i) the water-column integrated chlorophyll content,
(ii) its vertical distribution, and (iii) its community composition
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FIGURE 3 | Schematic of parameter space utilized in algorithm development, as well as satellite input and output products. (A) Overview of the

parameters utilized in development of the four algorithm types. The primary optical data types are indicated with colored circles: pigments (green), radiance (red),

absorption (blue), and scattering (yellow). (B) Overview of the satellite input products for the four algorithm types. Satellite input products are indicated by the colored

(Continued)
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FIGURE 3 | Continued

circles: radiance (red), chlorophyll concentration (green), absorption (blue), and scattering (yellow). Overlapping circles indicate two or more satellite input products are

utilized. (C) Overview algorithms satellite output by PFT types. The colored circles indicate the PFT type of the output products (phytoplankton taxonomic class (PTC,

green), phytoplankton size class (PSC, yellow), and particle size distribution (PSD, blue). Overlapping circles indicate where a given algorithm produces two or more

satellite output product types. The color of the text in all subplots indicates the algorithm type: abundance (green), radiance (red), absorption (black) and scattering

(blue). Algorithm abbreviations are as in Figure 1 and Tables 2, 3.

in terms of three pigment-based PSC. The relationships were
established from the analysis of a large high precision liquid
chromatography (HPLC) pigment database, covering a broad
range of trophic conditions in the global open ocean. Uitz
et al. (2006) used a modified version of the diagnostic pigment
indices of Vidussi et al. (2001) (described in the Algorithm
Validation Section) to determine the depth-resolved contribution
to the total chlorophyll biomass of three PSCs (pico-, nano-
, and microphytoplankton). The resulting PSC-specific vertical
profiles of [Chl] from stratified waters were discriminated from
those sampled in well-mixed waters based on the ratio of the
euphotic layer depth (calculated from the vertical [Chl] profile
following Morel and Maritorena, 2001) and the mixed layer
depth (extracted from a global monthly climatology). For the
stratified and mixed waters, the [Chl] profiles of pico-, nano-
, and microphytoplankton were sorted in trophic categories,
defined by successive intervals of surface [Chl]. For each trophic
category, average profiles of [Chl] associated with the pico-
, nano, and microphytoplankton were calculated. The shape
and magnitude of these profiles showed regular changes along
the trophic gradient and, thus, could be parameterized as a
function of surface [Chl]. Applied in a continuous manner to
any given satellite-derived surface [Chl], the resulting empirical
parameterization enables the ability to derive a vertical profile of
[Chl] for each of the three pigment-based PSCs.

Hirata et al. (2011) estimate fractions of three PSCs and seven
PTCs from empirical relationships between [Chl] and diagnostic
pigments of various phytoplankton groups (see equations and
coefficients in Hirata et al., 2011), based on global observations
that abundance and composition of phytoplankton are not
necessarily independent/de-coupled on synoptic scale. Brewin
et al. (2010), extending the model proposed by Sathyendranath
et al. (2001), describe the exponential functions that relate [Chl]
to the fractional contribution of various PSCs,

[Chl]p,n = Cm
p,n[1− exp

(

−Sp,n
[

Chl
])

] (3a)

[Chl]p = Cm
p [1− exp

(

−Sp
[

Chl
])

] (3b)

[Chl]n = [Chl]p,n − [Chl]p (3c)

[Chl]m =
[

Chl
]

− [Chl]p,n (3d)

where subscripts p, n, and m refer to pico- (>0.2–2 µm), nano-
(>2–20 µm), and microplankton (>20 µm), respectively. Cm

p,n

and Cm
p are asymptotic maximum values for the associated size

classes and Sp,n and Sp determine the increase in size-fractionated
[Chl] (parameter values can be found in Table 2 of Brewin
et al., 2015), and have been found to vary with environmental
conditions (Brewin et al., 2015; Ward, 2015). Both Brewin et al.
(2010, 2012), Brewin R. J. W. et al. (2011) and Hirata et al. (2011)

utilize the continuum of [Chl] (please see Figure 2 in Hirata et al.,
2011 and Figure 4A in Brewin et al., 2010).

Radiance-based algorithms classify PFTs based on the
shape and/or magnitude or the satellite-observed Rrs(λ)
or nLw(λ). Radiance-based approaches assume that, after
normalization, changes in radiance coincide with changes in
PFT composition, as opposed to other in-water constituents
such as CDOM or NAP that may or may not covary with the
phytoplankton (e.g., Siegel et al., 2005). Alvain et al. (2005,
2008) normalize Rrs(λ) to [Chl] and identify characteristic
spectral bounds for several PTCs in terms of shape and
amplitude (Ben Mustapha et al., 2014): nanoeukaryotes,
Prochlorococcus, Synechococcus-like cyanobacteria, diatoms,
Phaeocystis-like cells, and coccolithophores. More recently,
based on theoretical relationships between radiance anomalies
and specific phytoplankton groups, PHYSAT has been
shown to potentially detect phytoplankton assemblages of
several PTC as opposed to a single dominant one (Rêve
et al., in revision). Alternatively, Li et al. (2013) consider a
variety of spectral features on surface reflectance and use
machine learning to select the most significant of these.
They find continuum-removed and spectral curvature
are the most significant spectral features with particular
importance around 440–555 nm, which isolate absorption
characteristics and measure non-linearity. They utilize
these results with support vector regression to estimate
PSCs.

Absorption-based algorithms comprise by far the majority
of existing approaches. All of the approaches have some
level of dependence on the spectral magnitude or shape of
phytoplankton absorption [aph(λ)]. The magnitude of aph(λ) is
related to pigment composition and total pigment concentration,
dominated by [Chl] at the peak wavelength (for oceanic
waters) of 443 nm. Size information is contained in the
absorption spectrum due to pigment packaging (e.g., Bricaud
and Morel, 1986). Some of the approaches utilize chlorophyll-
specific phytoplankton absorption in which phytoplankton
absorption is normalized to [Chl] (Bracher et al., 2009; Mouw
and Yoder, 2010a; Sadeghi et al., 2012a; Roy et al., 2013),
either for a specific wavelength or to derive a spectral shape
or slope that is related to second order signals including
pigment composition and packaging. Several of the approaches
(Ciotti and Bricaud, 2006; Mouw and Yoder, 2010a; Bricaud
et al., 2012) stem from the theoretical underpinning of Ciotti
et al. (2002) who identify that, despite the physiological
and taxonomic variability, variation in aph(λ) spectral shape
can be defined by changes in the dominant size class.
They determine chlorophyll-specific phytoplankton absorption
(a∗

ph
) as weighted between normalized mean pico- (ā∗

ph,pico
)
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and microplankton (ā∗
ph, micro

) chlorophyll-specific absorption
spectra.

a∗ph (λ) =

[

Sf × ā∗ph, pico (λ)

]

+ [
(

1− Sf
)

× ā∗ph, micro (λ)] (4)

where Sf is a dimensionless index constrained to vary
between 0 and 1, specifying the relative contributions of
microphytoplankton and picophytoplankton, respectively, to
phytoplankton absorption. Equation (4) is based on the fact that
the shape of the phytoplankton absorption spectrum flattens
with increasing cell size. This relationship results from pigments
being contained within particles (rather than in solution), known
as the “discreetness effect,” and secondarily how pigments are
packaged within the cell, known as the “packaging effect” (Morel
and Bricaud, 1981). Small cells have little cellular material
between the chloroplast and cell wall making them highly
efficient absorbers, resulting in higher magnitude and more
peaked absorption. With large cells, light has to penetrate more
cellular material to reach the chloroplast after passing through
the cell wall, resulting in muted absorption affinity and in
some cases shelf-shading (see Figure 7E in Ciotti et al., 2002).
Note that the shape of the phytoplankton absorption spectrum
(and therefore the Sf -value) can be affected by variations in
pigment composition and intracellular pigment concentration
resulting from photoacclimation, independent of cell size. Ciotti
and Bricaud (2006) proposed a new ā∗

ph,pico
vector, based on

an oceanic data set and Bricaud et al. (2012) utilize this
relationship directly to retrieve Sf , absorption due to non-
algal particles and colored dissolved organic matter at 443
nm [adg(443)] and the spectral slope of adg(λ) through an
inversion model. Mouw and Yoder (2010a) modify Equation
(4) to vary with the percentage of microplankton (Sfm) rather
than picoplankton. They develop an optical look-up-table (LUT)
that contains ranges of Sfm, [Chl], and adg(λ) from which
Rrs(λ) is calculated from radiative transfer. They utilize satellite
[Chl] and adg(443) to narrow the search space within the
LUT, then find the closest match between satellite Rrs(λ)
and LUT Rrs(λ) and retrieve the associated Sfm from the
LUT.

Hirata et al. (2008) do not use the Ciotti et al. (2002)
construct (i.e., Equation 4) that utilizes multiple wavelengths to
characterize the spectral shape of aph(λ). Instead, they identify
a tight relationship between the magnitude of phytoplankton
absorption at a single wavelength [aph(443)], related to [Chl], and
the slope of aph(443) to aph(510), which is influenced by pigment
packaging and composition. When this approach is applied to
satellite data, it only uses aph(443), and determines dominate size
class using boundaries in aph(443).

The approaches of Devred et al. (2011) and Brewin R. J.
W. et al. (2011) are similar to that of Brewin et al. (2010),
applying the constructs of Equations (3a–3d). Devred et al.
(2011) use Equation (3) to derive chlorophyll-specific absorption
coefficients for three PSCs. When this approach is applied to
satellite data, it uses a semi-analytic inversion algorithm together
with the derived chlorophyll-specific absorption coefficients
to estimate size-fractionated [Chl], not using Equation (3) at
this stage; hence this approach does not assume covariance

between total [Chl] and size-fractionated [Chl] (as with an
abundance-based approach). Fujiwara et al. (2011) is the only
absorption-based approach that also uses backscatter as an
input, which they determine empirically from Rrs(λ) band
ratios. They estimate PSC utilizing empirical relationships with
phytoplankton absorption-spectra ratios and the particulate
backscatter slope.

Roy et al. (2011) developed a semi-analytical algorithm based
on phytoplankton absorption at a red wavelength (676 nm) to
compute the equivalent spherical diameter of phytoplankton.
Roy et al. (2013) further extended the algorithm to heterogeneous
phytoplankton populations, where they utilized phytoplankton
absorption at 676 nm to compute the PSD corresponding
to the phytoplankton cells alone, and derived the power-law
exponent/slope of the phytoplankton size spectrum. Knowing the
slope of the phytoplankton cell-size distribution, the proportions
of [Chl] within any diameter range of PSCs can be calculated.

The PhytoDOAS algorithm (Bracher et al., 2009; Sadeghi
et al., 2012a) uses hyperspectral top of atmosphere reflectances
to identify spectral features associated with PTCs. This approach
requires hyperspectral satellite data and has been applied to the
SCanning Imaging Absorption SpectroMeter for Atmospheric
CHartographY (SCIAMACHY) onboard ENVISAT (more details
in Bovensmann et al., 1999), which has a limited spatial
coverage and resolution with 6-day revisit and 30 by 60 km pixel
size. The differential optical absorption spectroscopy (DOAS)
technique exploits sharp spectral features and when extended
to phytoplankton, differentiates on spectral specific-absorption
features of major PTCs. The DOAS method, utilizes observed
backscattered radiation, normalized to the solar irradiance, at the
top of the atmosphere and absorption cross sections (i.e., specific
absorption coefficients, of all important absorbing constituents
varying spectrally in the atmosphere-ocean system). The method
uses non-linear optimization to fit these “differential absorption
cross sections” of different phytoplankton groups, water vapor,
and atmospheric trace gases: O3, O4, NO2, glyoxal (CHOCHO),
iodine oxide (IO), and spectral features caused by filling-in of
Fraunhofer Lines due to Raman scattering. The contributions of
broad-band scattering and absorption features, such as Mie- and
Ray-leigh scattering in the atmosphere or NAP and CDOM in
water, are approximated by a second-order polynomial in each
fit. Bracher et al. (2009) adopted DOAS within 429–495 nm to
retrieve absorption and biomass of cyanobacteria and diatoms
independently. Sadeghi et al. (2012a) extended the method
further to simultaneously retrieve diatoms, coccolithophores,
and dinoflagellates over the 429–521 nm spectral range.

To date, there have only been two scattering-based algorithms
published. Backscattering approaches retrieve information on
all particles rather than just phytoplankton. Generally, the
backscattering coefficient decreases according to a power law
function with increasing wavelength. Smaller particles have a
greater backscattering slope (η) than larger particles. Montes-
Hugo et al. (2008) was the first to estimate phytoplankton size
by considering the backscattering slope. They demonstrated their
approach near the western shelf of the Antarctic Peninsula.
Kostadinov et al. (2009) was the first to demonstrate the approach
globally. They estimate spectral particulate backscattering
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[bbp(λ)] from Rrs(λ) and then calculate η from bbp(λ) based
on Loisel et al. (2006). Using η, the PSD slope and reference
abundance of particles are retrieved from a look-up-table that
is constructed based on theoretical Mie scattering computations.
These parameters are then used to estimate the number and
volume concentrations for pico, nano, and micro sized particles.
Assuming the relative proportions of biovolume are roughly
constant across size classes, Kostadinov et al. (2010) validate the
Kostadinov et al. (2009) approach with pigments and confirm
pigment-based micro-, nano-, and pico-sized phytoplankton
approximately represent micro-, nano-, and pico-sized particles
derived from backscattering. Kostadinov et al. (2016a) further
develop the KSM09 approach by using existing allometric
relationships (Menden-Deuer and Lessard, 2000) to convert bio-
volume calculated from the PSD to phytoplankton carbon (C)
in these three PSCs. These PSCs are the only carbon-based PFT
retrievals available to date. The approach can be used to estimate
phytoplankton carbon concentrations (absolute and fractional)
in any size class in the 0.5–50 µm diameter range. It is desirable
to express the PFTs in terms of carbon because: it is relatively
insensitive to variations in phytoplankton physiological, unlike
[Chl]; it is relevant to the carbon cycle and other biogeochemical
cycles; and carbon is the unit used for PFTs in climate models
(Hood et al., 2006).

Algorithm Validation
Nearly all algorithms are validated against estimates of
phytoplankton size and composition estimates determined from
in situ measurements of pigment concentrations with the HPLC
technique (Table 3). The chemotaxonomic approach provides
a means to quantify phytoplankton taxonomic composition
utilizing a set of biomarker pigments (e.g., Jeffrey et al., 1997;
Roy et al., 2011). Claustre (1994) and Vidussi et al. (2001)
further proposed to utilize groupings of biomarker pigments to
estimate phytoplankton size structure. They identified a set of
seven diagnostic pigments specific to phytoplankton taxa, which
were then assigned to one of the three size classes (micro-, nano-,
and pico-) depending on the average cell size of the organisms.
The diagnostic pigment-based approach enables estimating the
contribution of the three phytoplankton size classes to the total
chlorophyll a biomass as follows (Equation 5):

6DP =

7
∑

i= 1

WiPi (5a)

fmicro =

∑2
i= 1 WiPi

6 DP
(5b)

fnano =

∑5
i= 3 WiPi

6 DP
(5c)

fpico =

∑7
i= 6 WiPi

6 DP
(5d)

where, 6DP is the sum of all the diagnostic pigments
multiplied by the weight coefficients (Wi, values discussed
below), fmicro, fnano, and fpico are the fractions of the micro-,
nano- and pico-plankton size classes to [Chl], and Pi are
the pigments’ concentrations (P = {fucoxanthin; peridinin;

19′-hexanoyloxyfucoxanthin; 19′-butanoyloxyfucoxanthin;
alloxanthin; chlorophyll-b and divinyl chlorophyll-b;
zeaxanthin}). The most widely used coefficients are those
proposed by Uitz et al. (2006) (W = {1.41; 1.41; 1.27; 0.35; 0.6;
1.01; 0.86}), which were derived from a global HPLC pigment
database.

While diagnostic pigments have been widely used for
validation due to the availability of extensive datasets of HPLC
pigments across the global ocean (Peloquin et al., 2013), there
are important limitations to consider. The diagnostic pigment-
based approach does not necessarily reflect the true size structure
of the phytoplankton communities because some taxonomic
groups may spread over a broader size range (e.g., diatoms
are typically found in the micro- but could also occur in the
nano-size and sometimes in the pico-size classes) and some
diagnostic pigments are shared by different taxonomic groups
(e.g., fucoxanthin is the main carotenoid of diatoms but may
also be found in prymnesiophytes). Recently modifications to
the Vidussi et al. (2001) and Uitz et al. (2006) approach were
proposed that account for the presence of some diagnostic
pigments in more than one taxon. Hirata et al. (2011) and
Devred et al. (2011) proposed further adjustments to the
fucoxanthin pigment coefficient, to assign a portion of this
pigment to nanoplankton. To address the analogous issue that
prymnesiophytes predominate within the nanophytoplankton
but can also be present in the pico-eukaryote population,
Brewin et al. (2010) modified the 19′-hexanoyloxyfucoxanthin
(19′-hex) coefficient to attribute a portion of this pigment
to the picoplankton in low [Chl] waters. Furthermore, the
DP for diatoms, fucoxanthin, is the precursor pigment for
19′-hex leading to some prymnesiophytes being classified as
diatoms. For the algorithms that utilize HPLC pigments in
their development, it should be noted that direct comparisons
need to be considered carefully, as not all output products are
developed and validated with the same set of diagnostic pigment
coefficients. There are ongoing efforts to verify HPLC methods
(i.e., Equation 5) through comparison with other techniques
(e.g., Brewin et al., 2014a). As Nair et al. (2008) pointed out,
any single method alone may not be entirely dependable, thus
incorporating various methodologies leads to a more complete
diagnosis of phytoplankton groups. Future efforts are necessary
to complement HPLCmethods with independent information on
PFTs, for instance carbon-based size classes (Kostadinov et al.,
2016a).

Not all validation approaches are based on HPLC pigment
data, but rather use information on either absorption coefficients
(Ciotti and Bricaud, 2006; Brewin R. J. W. et al., 2011) or size-
fractionated [Chl] (Fujiwara et al., 2011). In addition, the study
of Sadeghi et al. (2012b) does not perform a true validation,
but rather compares numerical model results to other satellite
products (Table 3).

Validation metrics are not reported using uniform metrics
across algorithms causing an additional layer of complication
when comparing algorithm performance. While it would be
better to provide consistent validation measures across all
algorithms, as mentioned previously, different satellite product
outputs, units and use of variable development and validation
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datasets/coefficients, preclude this ability. Reported validation
measures are compiled inTable 3. Ideally, rootmean square error
(RMSE) (IOCCG, 2006) should be reported for matchups carried
out according to the methods of Bailey and Werdell (2006) that
specify the mean value of a five-by-five pixel box at the highest
available pixel resolution measured by the sensor surrounding
the location and within ±3 h of an in situ observation. In many
cases, 9 km global area coverage satellite data are used to infer
PFT classification. Thus, the spatial resolution is already coarse
for validationmatchups. However, algorithms can also be applied
to full resolution (1 km) imagery improving validation efforts.
In the case of PhytoDOAS, the input requires hyperspectral
resolution and has been developed for use with SCIAMACHY,
which has a resolution of 30 by 60 km. Spatial resolution
differences between in situ point observations and the large
SCIAMACHY pixels presents a limitation for validation using
matchups (Bracher et al., 2009), since only very few in situ
observations are within a homogeneous area of the size of a
SCIAMACHY pixel. However, Aiken et al. (2007) point out
that in the open ocean phytoplankton assemblages may be
homogenously distributed over 50–100 km and smaller scales
are possible for specific communities. In Sadeghi et al. (2012b),
PhytoDOAS coccolithophore [Chl] was validated by comparison
with satellite-derived particulate inorganic carbon (Balch et al.,
2005).

ALGORITHM SELECTION

Users often select satellite products that most closely align with
their application.When there are several satellite product choices
for a given PFT type with varying facets and complexity, the
optimal choice may not be clear. To help users determine
what might be best suited for their purpose, in addition to the
satellite inputs, outputs, and validation metrics described above,
we compile a comparative list of assumptions, strengths, and
limitations (Table 4). It is possible that merged products produce
the best output beyond any individually selected algorithm
(Palacz et al., 2013), yet an understanding of the underlying
inputs into a merged product is always desirable.

Abundance-based algorithms assume a change in size and
taxonomic structure with a change in chlorophyll. To the first
order, and for large time and space scales, this holds true, but
there are exceptions. Deviations from the mean state of the
data in which the relationship is developed may occur (Hirata
et al., 2011). This is particularly challenging at regional scales
and in optically complex water where CDOM and NAP also
complicate the retrieval of [Chl]. In a changing ocean, if shifts
toward different phytoplankton assemblages with similar [Chl]
occur, empirical relationships will require recalibration (Hirata
et al., 2011). Abundance-based algorithms begin with uncertainty
associated with the input satellite [Chl] product in addition to the
uncertainty in relationships between [Chl] and phytoplankton
grouping (Figure 2). Typically, band-ratio estimation of [Chl]
(O’Reilly et al., 1998) has an accepted 35% uncertainty (Bailey
and Werdell, 2006), which has recently been documented to
be much less in the open ocean (16%) (Brewin et al., 2016),

but becomes worse in coastal waters. Some semi-analytical
inversions that retrieve [Chl], also have similar uncertainty
across global scales (Brewin et al., 2015), but may maintain
accuracy in coastal waters due to their ability to account for
other in-water constituents contributing to the IOPs present that
vary independently of each other. However, PFT approaches,
which are broadly characterizing phytoplankton, may ultimately
result in less uncertainty than the starting [Chl] product. The
attractiveness of the abundance-based approaches is their ease
of implementation and that they exploit the first-order signal in
Rrs. [Chl] a primary biological variable that is routinely measured
in situ, thus enabling extensive association of PFT fields with
the abundance of in situ [Chl] that has accumulated across the
globe. Once you know [Chl], PSC, or PTC estimates are a simple
calculation.

Radiance-based approaches assume that after normalization
to [Chl], changes in radiance coincide with changes in PFTs.
They utilize Rrs(λ) [or nLw(λ)], the fundamental parameter
observed by a satellite radiometer and having uncertainty
thresholds of 5% (Bailey and Werdell, 2006). Thus, the strength
of radiance-based approaches is that they do not require or
have limited dependence on products derived from Rrs(λ).
However, any normalization of the signal to derive the second-
order relationships that tend to underpin these approaches will
inevitably suffer from reduced signal to noise. Furthermore,
when [Chl] is used in normalization (e.g., PHYSAT), the
uncertainty associated with [Chl] is introduced (Figure 2).
These algorithms are dependent on empirical relationships
between radiance and PTCs or PSCs, thus as with empirical
[Chl] dependencies described above, they require recalibration
for long-term analyses. As with absorption- and scattering-
based approaches and abundance-based approaches when using
[Chl] determined from a semi-analytical model, radiance-based
approaches allow for the ability to account for other optically
active in water constituents (CDOM and NAP) as these also
impact the spectral radiance (Alvain et al., 2012). This aspect
allows potential development by users who have their own in situ
datasets—it is possible to empirically associate a specific radiance
anomaly to phytoplankton assemblages or specific composition
(Alvain et al., 2012; Rêve et al., in revision). This highlights
the importance of continued investment of detailed in situ
databases to allow future development and use of remotely sensed
phytoplankton groups. Radiance-based approaches are also
influenced by physiological variability; however, the variability
likely represents a larger proportion of the signal in normalized
quantities.

PhytoDOAS (Bracher et al., 2009; Sadeghi et al., 2012a) has
so far only been applied to a single sensor that has sufficient
spectral resolution, precluding it from studies of phytoplankton
composition where 30 km spatial resolution would be limiting.
However, this is expected to improve in the near future:
adaptations of the algorithm to similar high spectrally resolved
satellite data with improved spatial coverage and resolution are
currently ongoing. Ozone Monitoring Instrument (OMI) (since
2004) with 13 km by 24 km and TROPOMI (tropospheric OMI,
to be launched in early 2017) with 3.5 km by 7 km global spatial
resolution are, or will be, used with PhytoDOAS. In addition,
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TABLE 4 | Comparative summary of algorithm assumptions, strengths and limitations.

Assumptions Strengths Limitations

Abundance • Change in size structure with change in

[Chl] based on generalized relationships

• Easy to implement • Primarily empirical relationships with [Chl] that

cannot detect regional deviations

• Strong ecological basis • Unable to distinguish mixed populations of

similar abundance

• Requires on-going recalibration as environmental

change alters phytoplankton assemblages

• Susceptible to physiological variability

Radiance • After normalization to [Chl], changes in

radiance are due primarily to variability in

phytoplankton type

• Do not require or limited dependence on

derived products

• Dependent on empirical relationships between

radiance and pigments

• Input data (Rrs) has lower error than derived

products

• Difficult to discriminate PFTs with similar

normalized radiance signatures

• Susceptible to physiological variability particularly

normalized spectra

Absorption • Variability largely the result of composition

and pigment packaging

• Not directly dependent on concentration • Susceptible to physiological variability

• Primary variability in absorption is related to

different PFTs

• Small deviations in spectral shape/magnitude

can be difficult to retrieve

• Difficult to discriminate PFTs with similar

absorption signatures

Scattering • PSD and bbp have a power-law shape • Less sensitive to physiological variability • Includes all particles, not just phytoplankton

• Relative proportions of biovolume to total

particulate volume are roughly constant

across classes

• Difficult to discriminate PFTs with similar

scattering signatures

ocean color sensors are planned for the future with significantly
increased spectral resolution (Mouw et al., 2015) that may allow a
wider adoption of the PhytoDOASmethod to even smaller spatial
scales. For example, NASA’s planned Plankton, Aerosol, Cloud,
and ocean Ecosystem (PACE) mission with a hyperspectral ocean
color sensor payload is expected to revolutionize the ability to
use algorithms, such as PhytoDOAS, on more adequate spatio-
temporal scales.

The number of existing absorption-based algorithms
indicates the clear impact phytoplankton cell size and pigment
composition have on the shape of the spectral absorption
coefficient. These relationships have been reported in the
literature for decades (e.g., Bricaud et al., 1988, 1995; Ciotti
et al., 1999). The strengths of this type of algorithm include
the ability to begin with inherent optical properties rather
than [Chl] as the satellite input product, thus starting with
reduced uncertainty at the onset. However, the assumed
spectral shapes and coefficients utilized in semi-analytical
approaches cannot fully capture natural variability across
a variety of conditions resulting in uncertainties. These
uncertainties are a balance of spectral accuracy and the accuracy
of particular parameters over others (Werdell et al., 2013).
As with Rrs approaches, those that require normalization by
[Chl] inevitably reduce signal to noise and also reintroduce
uncertainty associated with [Chl]. A limitation of absorption-
based approaches is that they are sensitive to physiological
variability associated with light and nutrient histories and these

are likely to be of more influence when normalized quantities
are used. Furthermore, small changes in the spectral shape
of phytoplankton absorption can be difficult to retrieve from
ocean-color (Garver et al., 1994; Wang et al., 2005), such that
identifying and distinguishing different PFTs may not always be
successful. Problems can also occur when trying to discriminate
different phytoplankton groups with similar absorption
signatures.

The scattering-based approaches presented here assume
the PSD has a power-law shape and relative proportions of
biovolume are roughly constant across size classes. Conversion
to phytoplankton carbon for the carbon-based PFTs requires
additional assumptions Kostadinov et al. (2016a). The models
assume a relationship between the PSD and the spectral slope
of bbp(λ). The use of bbp(λ) makes the approach less sensitive
to physiological variability than other approaches. However, the
particle size classes include all particles, not just phytoplankton
and the relationship between bbp(λ) and phytoplankton cell size
is still a matter of active debate (Stramski et al., 2004; Vaillancourt
et al., 2004; Dall’Olmo et al., 2009; Whitmire et al., 2010).
In addition, the sources of backscattering are still uncertain
(Stramski et al., 2004) and applicability of Mie theory to particles
and/or phytoplankton assemblages in seawater has its limitations
(e.g., Dall’Olmo et al., 2009). It has been suggested that this
approach represents phytoplankton carbon more closely—see
Martinez-Vicente et al. (2013), and backscattering has been used
to retrieve total phytoplankton carbon (Behrenfeld et al., 2005).

Frontiers in Marine Science | www.frontiersin.org 14 February 2017 | Volume 4 | Article 4139

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Mouw et al. PFT Consumer’s Guide

TABLE 5 | Online availability of permanently archived PFT algorithm products.

Algorithm Location

BR10 http://catalogue.ceda.ac.uk/uuid/7201151d40683a4420da90c30640d4fa (Brewin et al., 2010; Brewin R. J. et al., 2011)

KSM09 https://doi.pangaea.de/10.1594/PANGAEA.859005 (PSD and Carbon-based size classes; Kostadinov et al., 2016b)

http://hermes.acri.fr/index.php?class=demonstration_products (number-based size classes; Kostadinov et al., 2009)

MY2010 https://doi.pangaea.de/10.1594/PANGAEA.860474 (Mouw and Yoder, 2010b)

PHYSAT http://log.univ-littoral.fr/Physat-2?lang=fr (Alvain et al., 2005, 2008) http://hermes.acri.fr/index.php?class=demonstration_products (Alvain et al., 2005,

2008)

PhytoDOAS https://doi.org/10.1594/PANGAEA.870486 (Bracher et al., 2009, 2017; Sadeghi et al., 2012a)

Products were only available for SeaWiFS at time of writing for KSM09, BR10, PHYSAT, and MY2010 and for SCIAMACHY for PhytoDOAS.

Users are more focused on the satellite outputs, which they
can use for various applications, rather than the intricacies of
the type of algorithm used to produce the output. For ease
of information identification, we have provided the validation
metrics reported by algorithm type and satellite output types
(Table 3). However, our purpose here is not to intercompare
or validate algorithms. It is important to point out that the
algorithms all use different approaches, datasets, and validation
metrics. To be able to properly assess algorithm performance,
one would have to carry out a comprehensive inter-comparison
using the same validation data and consider errors of omission
and commission (see Brewin R. J. et al., 2011), which is
outside the scope of the present work. A validation effort is
planned as part of the International Satellite Phytoplankton
Functional Type Algorithm Inter-comparison Project (Hirata
et al., 2012; http://pft.ees.hokudai.ac.jp/satellite/index.shtml)
while an intercomparison based on phenology has been carried
out by Kostadinov et al. (2017).

It is important to point out that many of these methods
have been developed for the global open ocean. The optical
complexity encountered in coastal waters is quite different
from that found in the global datasets used to develop these
algorithms. Additionally, the assumptions made by some are
only valid for the global open ocean. The relationship between
[Chl], CDOM absorption, and particulate backscatter is more
variable in coastal water than the open ocean. For example,
riverine sources, resuspension, and mixing may cause CDOM
and NAP to vary independently of phytoplankton. For these
reasons, band-ratio [Chl] estimates that utilize the blue and
green region of the spectra are plagued with problems in coastal
waters (Matthews, 2011). Thus, it is not advisable to apply
open ocean abundance-based algorithms to coastal systems.
Relationships would need to be assessed and likely redeveloped
using a regionally specific dataset. Similar limitations would be
expected for radiance-based methods. While the atmospheric
correction can be a challenge over some coastal waters (Goyens
et al., 2013), if Rrs(λ) is accurately retrieved, the dynamic
range of CDOM and NAP that impart a significant signal to
Rrs(λ) require empirical relationships and thresholds defined
for various PFTs and PSCs to be reestablished. The approaches
that build upon semi-analytic expressions that first retrieve
IOPs from Rrs(λ) and then PFTs from the retrieved IOPs, have
the greatest ability to accommodate dynamic environments.

These approaches parse the contributions of NAP, CDOM and
phytoplankton before the phytoplankton IOPs are associated
with a PFT. Similarly, this is done within the PhytoDOAS
method by accounting for all relevant absorbers (from water
and atmosphere) within the fitting of hyperspectral top of
atmosphere reflectance. Accordingly, Brewin R. J. et al. (2011)
find absorption-based approaches show an improvement over
abundance-based approaches in coastal waters. However, the
thresholds of detectability of approaches targeting optical
signatures will not allow PFT retrieval in all cases.

The limitation of the ability to retrieve PFTs in some cases
needs to be acknowledged. For example, Mouw and Yoder
(2010a) are careful to consider the change in Rrs(λ) produced by
PSCs, [Chl] and CDOM absorption in relation to the radiometric
sensitivity of the satellite senor. They find that when [Chl]
or CDOM absorption were too high, the impact of size on
Rrs(λ) is masked. Likewise, when [Chl] is too low, the spectral
response of Rrs(λ) due to size is too small to differentiate from
noise. Additionally, PHYSAT in its first version (Alvain et al.,
2005) did not classify pixels where no phytoplankton group
dominated due to the use of biomarker pigment threshold during
the first empirical anomalies labeling steps. However, recent
developments of PHYSAT have shown its capability to detect
more than dominance cases utilizing detailed in situ data (Alvain
et al., 2012; Ben Mustapha et al., 2014; Rêve et al., in revision).

The accessibility of products is another reason why users
may select a given algorithm over another. Algorithms where
simple calculations extracted from the publication can be quickly
applied are far more likely to be utilized than those that
require multiple complicated steps. The algorithm developer
hosting the final output product for download by users has
often remedied difficulty in this later situation. The PFT
products that are currently accessible online are listed in Table 5.
Further, the PFT products compiled for phenological comparison
(Kostadinov et al., 2017) intend to be released in the near future.
The availability of PFT product access is anticipated to grow
substantially as future missions that have specified PFT products
as part of their mission goals come online.

PFT algorithm development thus far has been focused on
retrieving global distributions of PFTs. The next challenge
is to detect change in these distributions over time. The
temporal anomaly of PFTs can be a smaller signal than the
bulk composition retrievals achieved thus far. The anomalies
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are critical for understanding climate change issues and testing
ecosystem model prediction. However, detecting change is
confounded by inter- and intra-algorithm uncertainties and
the relatively short record length of satellite data. Further,
critical to this consideration are changes in phytoplankton
physiology. Behrenfeld et al. (2016) show the importance
of accounting for photoacclimation in temporal chlorophyll
variability, as light-driven changes in chlorophyll can be
associated with constant or increased photosynthesis. This
finding of the necessity to account for physiological plasticity
also directly impacts the PFT methods described here, most
acutely for abundance-, radiance-, and absorption-based
methods. While satellite PFT time series data have already
been used to assess regional PFT variability and trends
(Brewin et al., 2012; Sadeghi et al., 2012b; Alvain et al.,
2013; Soppa et al., 2016). there is a need to characterize
physiological plasticity in PFT retrievals to more accurately
quantify phytoplankton compositional response to a changing
ocean.

CONCLUSIONS

At the global scale, the current PFT algorithms demonstrate
proof of concept in retrieving phytoplankton composition from
satellite radiometry, opening the door for further development,
and expand the use of satellite observations. While there
are a variety of algorithm approaches, all agree on broad
understanding of PFT distribution at large spatial-temporal
scales, that are forced mainly by bathymetry and climatic regions.
Larger cells and taxa tend to be found near coastal regions,
especially under upwelling regimes, while smallest cells and taxa
dominate in the center of oceans. Temperate regions are likely
to present seasonal blooms of large cell sizes in spring and/or fall,
while a less variable size distribution of phytoplankton is expected
in tropical and subtropical areas and in the oligotrophic gyres.

Continual PFT algorithm development is anticipated,
particularly with the expansion of sensor capability with future
missions. Planned capability will expand spectral, spatial, and
temporal resolution, in addition to radiometric sensitivity
(Mouw et al., 2015). Increased spectral resolution will provide
the ability to exploit more spectral signatures of PFTs (Isada
et al., 2015; Wolanin et al., 2016). In addition to increased
spectral resolution, increased spatial resolution may lend
clarity to coastal processes and phytoplankton response to
finer scale physical features. Improved temporal resolution
on geostationary platforms will allow multiple views per day
to investigate diurnal phytoplankton variability. Improved
radiometric sensitivity will expand threshold detection required
to detect the secondary impact of PFTs on radiometric variability.
All of the potential capability in expanded satellite PFT products
with the next generation of satellite sensors hinges on continued
and increased investment in in situ observations to allow further
algorithm development and validation. In addition to HPLC
pigments that so many of these approaches are validated upon,
training datasets also need to include unambiguous metrics of
community composition that include particle size distribution

and taxonomy (from imaging technologies) (Bracher et al.,
2015). Exploiting compilations of abundance and biomass
(Leblanc et al., 2012) and connections to genetically determined
community composition (Malviya et al., 2016) are potentially
rich resources for expanding training and validation datasets. In
addition, coincident optical [i.e., Rrs(λ) and IOPs] observations
will be highly important to connect to the signals observed
by satellite radiometers. The expanding optical sensors on
Bio-Argo floats may also provide a valuable data stream for PFT
development, particularly for vertical structure of phytoplankton
communities (Mignot et al., 2014). It is important to expand
the capability to measure phytoplankton carbon in situ (Graff
et al., 2012, 2015) so future definitions of PFTs can be more
carbon-relevant (Kostadinov et al., 2016a).

This document provides an overview of the primary
components used in developing, implementing, and using
satellite PFT products. While we do not provide direct
recommendations for particular applications, our hope is that
providing an accessible overview of the primary components
of PFT algorithms will aid users in more confidently selecting
products for a given application and ignite future conversations
between satellite product developers and a variety of user
communities. The satellite PFT literature is rapidly expanding
and these tables and figures will require updating and the need
to develop anew. In addition to the value we hope this brings to
the user community, we equally hope this summary provides a
framework for algorithm organization to inform where possible
new approaches could be investigated into the future.
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To improve our understanding of the role of phytoplankton for marine ecosystems

and global biogeochemical cycles, information on the global distribution of major

phytoplankton groups is essential. Although algorithms have been developed to

assess phytoplankton diversity from space for over two decades, so far the

application of these data sets has been limited. This scientific roadmap identifies

user needs, summarizes the current state of the art, and pinpoints major gaps

in long-term objectives to deliver space-derived phytoplankton diversity data that

meets the user requirements. These major gaps in using ocean color to estimate

phytoplankton community structure were identified as: (a) the mismatch between

satellite, in situ and model data on phytoplankton composition, (b) the lack of

quantitative uncertainty estimates provided with satellite data, (c) the spectral limitation

of current sensors to enable the full exploitation of backscattered sunlight, and

(d) the very limited applicability of satellite algorithms determining phytoplankton

composition for regional, especially coastal or inland, waters. Recommendation for

actions include but are not limited to: (i) an increased communication and round-robin

exercises among and within the related expert groups, (ii) the launching of higher

spectrally and spatially resolved sensors, (iii) the development of algorithms that exploit
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hyperspectral information, and of (iv) techniques to merge and synergistically use the

various streams of continuous information on phytoplankton diversity from various

satellite sensors’ and in situ data to ensure long-term monitoring of phytoplankton

composition.

Keywords: ocean color, phytoplankton functional types, algorithms, satellite sensors, roadmap

USER NEEDS FOR PHYTOPLANKTON
DIVERSITY FROM SPACE

Marine phytoplankton play an important role in the global
carbon cycle via the biological carbon pump (e.g., IPCC, 2013)
and contribute about 50% to the global primary production (Field
et al., 1998). Over the past 30 years, ocean color remote sensing
has revolutionized our understanding of marine ecosystems
and biogeochemical processes by providing continuous global
estimates of surface chlorophyll a concentration (chl-a, mg
m−3), a proxy for phytoplankton biomass (e.g., McClain, 2009).
However, chl-a alone does not provide a full description of
the complex nature of phytoplankton community structure
and function. Phytoplankton have different morphological
(size and shape) and physiological characteristics (growth and
mortality rates, nutrient uptake kinetics, temperature, and
light requirements) as well as different biogeochemical and
ecological functions (e.g., silicification, calcification, nitrogen
fixation, aggregation and sinking rates, lipid production, energy
transfer; e.g., Le Quéré et al., 2005). Phytoplankton community
structure is thus important to many fundamental biogeochemical
processes, including: nutrient uptake and cycling, energy transfer
through the marine food web, deep-ocean carbon export, and
gas exchange with the atmosphere. Phytoplankton community
composition also has important consequences for fisheries (e.g.,
fish recruitment) and specific species (Harmful Algal Blooms,
HABs; a list of all abbreviations is given in Table 1) can directly
impact human health (e.g., Cullen et al., 1997).

The ability to observe the spatial-temporal distribution
(including phenology) and variability of different phytoplankton
groups is a scientific priority for understanding the marine food
web, and ultimately predicting the ocean’s role in regulating
climate and responding to climate change on various time scales.
Thus, identifying the drivers of phytoplankton composition on
global and regional scales is required to assess climate ecosystem
interactions and to increase our understanding of the role of
the ocean’s biodiversity for marine ecosystem service provision.
Coasts are especially vulnerable to major human threats caused
by harmful algal blooms, eutrophication, hypoxia, and other
processes deteriorating water quality. High resolution data on
phytoplankton diversity is urgently needed for many socio-
economic applications (e.g., fisheries, aquaculture, and coastal
management, see IOCCG, 2009).

Some fishery models (e.g., Jennigs et al., 2008) already utilize
information on phytoplankton biomass derived from ocean
color satellites, however information on size and taxonomic
composition from satellite is highly desirable to improve stock
assessments (IOCCG, 2009). To better represent the variable
biogeochemical state of the ocean, Earth System, and climate

TABLE 1 | Abbreviations and acronyms used throughout the text.

AC Atmospheric correction

AOP Apparent optical property

chl-a Chlorophyll a concentration

CDOM Colored dissolved organic matter

EnMAP Environmental Mapping and Analysis Program mission

HABs Harmful Algal Blooms

HICO Hyperspectral Imager for the Coastal Ocean

HPLC High Performance Liquid Chromatography

HyspIRI Hyperspectral InfraRred Imager

IOP inherent optical property

MERIS Medium Resolution Imaging Spectrometer

MODIS Moderate Resolution Imaging Spectroradiometer

MSI MultiSpectral Instrument

NASA National Aeronautics and Space Administration

OC Ocean color

OC-PFT Algorithm of Hirata et al. (2011)

OLCI Ocean and Land Colour Instrument

OMI Ozone Monitoring Instrument

PACE Pre-Aerosol, Clouds, and ocean Ecosystem

PhytoDOAS Algorithm of Bracher et al. (2009), further adapted by Sadeghi

et al. (2012a)

PFT Phytoplankton functional types

PG Phytoplankton groups

PSC Phytoplankton size class

PT Phytoplankton types

RTM Radiative transfer model

SCIAMACHY Scanning Imaging Absorption Spectrometers for Atmospheric

Chartography

SeaWiFS Sea-viewing Wide Field-of-view Sensor

S Sentinel

TROPOMI TROPOspheric Monitoring Instrument

UVN Ultra-violet/Visible/Near-Infrared Instrument

models (including those used in the IPCC assessments) have
increasingly included a larger amount of biological complexity
in their ocean biogeochemistry modules. To simplify the
representation of the vast planktonic diversity, plankton have
been grouped into plankton functional types according to
their biogeochemical functions (e.g., Le Quéré et al., 2005).
Biogeochemical models now commonly include 3–10 plankton
functional types (e.g., Bopp et al., 2013; Laufkötter et al., 2015),
with a few models including up to 100 or more types (Follows
et al., 2007; Dutkiewicz et al., 2015; Masuda et al., 2017). Since
in situ observations on plankton biogeography and abundance
are scarce and many vast oceanic regions are too remote to be
routinely monitored, biogeochemical modelers rely on surface
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ocean estimates of phytoplankton composition from satellite
observations to evaluate model simulations and help to develop
and validate their models. Increased biological realism in these
models has been suggested as a mean to reduce the large
uncertainty in future projections of net primary production,
and carbon export (Bopp et al., 2013; Laufkötter et al., 2015).
Information on global phytoplankton community composition
from ocean color satellites is therefore highly desirable for
Earth system model development and the quantification of key
processes related to present and future global biogeochemical
cycles. Particularly for the quantification of carbon fluxes in the
world’s ocean, high quality remote sensing data on phytoplankton
community composition are a first priority (see science plan of
the EXPORT project, Siegel et al., 2016).

Thus, continuous, global-scale, high-resolution satellite ocean
color products that go beyond bulk chl-a and provide
information on phytoplankton diversity is urgently needed to
improve near-real time and forecasting models for marine
services facilitating the above-mentioned applications. User
requests for satellite data on phytoplankton diversity as an
essential ocean/climate variable is providing impetus for its
incorporation into international climate change initiatives and
mission (capability) planning. In this article the current state of
the art regarding algorithms, their validation and application is
reviewed, then the gaps to meet user requirements are discussed,
and finally detailed recommendations for future medium and
long term actions are provided.

STATE OF THE ART

Diversity of phytoplankton, often represented by species richness
and evenness, can be characterized in multiple dimensions (e.g.,
taxonomic, phylogenetic, morphological, or functional diversity,
among others). This diversity is staggeringly large and even
within a species there are often a large range of ecotypes with
different environmental niches, life stages and/or morphological,

and physiological characteristics (e.g., Bouman et al., 2006). For
almost all purposes scientists tend to cluster species into groups
specific to the purposes of their research. For instance, climate
scientists and marine biogeochemists define phytoplankton
functional types (PFT) based on their biogeochemical functions
(e.g., diatoms as silicifying PFT). Based on satellite products,
we here refer to any clustering of species (and ecotypes) as
“Phytoplankton Groups” (PG). PG defined based on taxonomic
criteria are referred to as phytoplankton types (PT), and PG
defined based on their size range are referred to as phytoplankton
size classes (PSC).

Satellite ocean-color remote sensing is unsurpassed in its
ability to characterize the state of the surface ocean biosphere at
high temporal and spatial scales. Beyond chl-a, increasing efforts
have been invested internationally over the last two decades
to develop ocean color algorithms to retrieve information
on phytoplankton composition and size structure (see recent
summary in IOCCG, 2014 and list of global approaches applied
to satellite data in Table 2). These developments provide an
opportunity to yield new operational satellite products. Ocean
color algorithms to assess phytoplankton diversity make use
of information originating from phytoplankton abundance,
cell size, bio-optical properties (such as pigment composition,
absorption, and backscattering characteristics) to differentiate
PG (Table 2, Figure 1 left). The abundance based approaches of
Uitz et al. (2006), Brewin et al. (2010), Brewin et al. (2015), and
Hirata et al. (2011) use satellite chl-a as input to derive PSC
or PT based on empirical relationships linking in situ marker
pigments to chl-a which are determined using high precision
liquid chromatography (HPLC). Abundance-based approaches
use satellite chl-a as input and by that exploit the largest signal
in water leaving radiance to extract variability due to PG out of
chl-a. This is then a simple calculation and can be applied easily
to chl-a products from different sensors. However, they cannot
predict atypical associations and may not hold in a future ocean.

Another class of algorithms relies on spectral features in
reflectance, absorption, and/or backscattering spectra caused

TABLE 2 | A compilation of global algorithms to retrieve phytoplankton composition from satellite data.

Approach Phytoplankton composition product References

ABUNDANCE Size classes Uitz et al., 2006; Brewin et al., 2010, 2015

Size classes and multiple taxa Hirata et al., 2011

SPECTRAL REFLECTANCE Multiple taxa Alvain et al., 2005, 2008; Li et al., 2013; Ben Mustapha et al.,

2014

Single taxon Coccolithophores Brown and Yoder, 1994; Moore et al., 2012

Trichodesmium Subramaniam et al., 2002; Westberry et al., 2005

ABSORPTION Size index Ciotti and Bricaud, 2006; Mouw and Yoder, 2010; Bricaud

et al., 2012

Size classes Devred et al., 2006, 2011; Hirata et al., 2008; Fujiwara et al.,

2011; Roy et al., 2013

Multiple taxa Bracher et al., 2009; Sadeghi et al., 2012a; Werdell et al.,

2014

BACK-SCATTERING Size classes Kostadinov et al., 2009, 2016; Fujiwara et al., 2011

ECOLOGICAL Taxonomic groups Palacz et al., 2013
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FIGURE 1 | Illustration of phytoplankton diversity as found in nature impacted by environmental conditions, and how it can be derived from

observations and modeling. Through in situ measurements (which represent the most real conditions), phytoplankton are grouped according to cellular traits that

influence their optical properties such as pigments, size, morphology, and fluorescence, all also responding to photophysiology, which are named optical features of

phytoplankton groups (PG). In addition, inferences can be made about PG through non-optical features, such as nutrient requirements, stoichiometry, etc. The optical

properties can be measured by ocean color and used to infer PG from remote sensing (highlighted by blue arrows). Coupled biogeochemical-ocean general

circulation models (GCM) produce projections of phytoplankton functional types (PFT) which are, with PG classified according to functions, mainly incorporating

non-optical and rarely optical properties (highlighted by red arrows). PG information from ocean color and ecosystem models can be combined (highlighted by

blue-red arrows) to improve our knowledge. For instance, ocean-color PG can be used for model improvements and evaluation, and models could be re-developed to

explicitly include optical properties of which the ocean-color PG use which will help to advance the application of ocean color PG.

by the variation in phytoplankton structure and pigment
composition (Brown and Yoder, 1994; Subramaniam et al.,
2002; Alvain et al., 2005, 2008; Westberry et al., 2005; Ciotti
and Bricaud, 2006; Devred et al., 2006, 2011; Hirata et al.,
2008; Bracher et al., 2009; Kostadinov et al., 2009, 2016;
Mouw and Yoder, 2010; Fujiwara et al., 2011; Bricaud et al.,
2012; Moore et al., 2012; Sadeghi et al., 2012a; Li et al.,
2013; Roy et al., 2013; Ben Mustapha et al., 2014; Werdell
et al., 2014). Spectral-based approaches exploit as much of the
backscattered spectrum observed by satellite as necessary to
extract the signatures of specific PG to ocean color. Generally,
these methods are computationally much more expensive and
require specific adaptations for each sensor. However, these
algorithms rely on much less empirical relationships than
the abundance based approaches and are based on physical
principles (radiative transfer). Differences exist on the different
satellite inputs (e.g., radiance, absorption, backscattering) and
the underlying principles (for a comprehensive overview
Mouw et al., 2017). Another approach incorporates various
environmental parameters to predict PT based on their ecological
preferences (Raitsos et al., 2008; Palacz et al., 2013). This method
uses artificial neural networks to link the different biological and
physical data sets. While the approach of Raitsos et al. (2008)
was regionally developed for the North-Atlantic, the approach by
Palacz et al. (2013) is not purely based on remote sensing data but
also requires a coupling to a dynamic plankton model.

Products obtained from the PG algorithms (Table 2) are
typically dominance (Brown and Yoder, 1994; Alvain et al.,

2005; Moore et al., 2012; Ben Mustapha et al., 2014), presence
or absence of a certain PT (Westberry et al., 2005; Werdell
et al., 2014), fraction or concentration of chl-a of the three
PSC (Devred et al., 2006, 2011; Uitz et al., 2006; Hirata et al.,
2008, 2011; Kostadinov et al., 2009, 2016; Brewin et al., 2010,
2015; Fujiwara et al., 2011; Li et al., 2013; Roy et al., 2013)
or a size factor characterizing the contribution of pico- (or
micro-) phytoplankton to the phytoplankton community (Ciotti
and Bricaud, 2006; Mouw and Yoder, 2010; Bricaud et al.,
2012). Currently, only the products OC-PFT (Hirata et al., 2011)
and PhytoDOAS (Bracher et al., 2009; Sadeghi et al., 2012a)
enable the simultaneous determination of chl-a for several PT.
PhytoDOAS retrieves the imprints of absorption characteristics
of specific phytoplankton groups among all other atmospheric
and oceanic absorbers from top of atmosphere data of the
hyperspectral satellite sensor SCIAMACHY (Scanning Imaging
Absorption Spectrometers for Atmospheric Chartography). All
other satellite-based PG algorithms (Table 2) have been applied
to water-leaving reflectance data from multispectral sensors
[e.g., SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MERIS
(Medium Resolution Imaging Spectrometer), MODIS (Moderate
Resolution Imaging Spectroradiometer)].

To be able to detect unexpected changes in phytoplankton
community composition, satellite PG data based on exploiting
the spectral signatures, and based on limited empirical
assumptions are preferred. In the few last years, radiative
transfer models (RTM) have been used to develop and assess
the sensitivity of analytical (spectral) PG retrievals or to find
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suitable spectral characteristics necessary for ocean color sensors
to retrieve PG. Werdell et al. (2014) and Wolanin et al. (2016)
used the GIOP (Generalized Inherent Optical Property) model
software (Werdell et al., 2013) to invert reflectance spectra (either
water-leaving or top of atmosphere), and Wolanin et al. (2015)
used the coupled ocean-atmosphere RTM SCIATRAN (Rozanov
et al., 2014) to test the sensitivity of a PT retrieval (PhytoDOAS).
Evers-King et al. (2014) and Xi et al. (2015) used the ocean
RTM HydroLight (Sequoia Scientific.) to specifically model the
variation of composition of PSC or certain (dominant) PT,
respectively, and assessed the potential of retrievals in different
water types. Werdell et al. (2014) optimized the inversion scheme
of GIOP to finally retrieve absence or presence of Noctiluca
miliaris from MODIS data, while Wolanin et al. (2016) used
this method to identify optimal band placements for multi- and
hyper-spectral satellite data for successful retrievals of certain PT.
The results of this study indicate that four additional bands (381,
473, 532, and 594 nm) for theOcean and LandColour Instrument
(OLCI) would potentially enable absorption-based quantitative
retrievals of diatoms, cyanobacteria, and coccolithophores.
Recent methods have been developed to retrieve PG from in
situ hyperspectral algal or particulate absorption coefficients,
and validated using in situ measurements (Moisan et al., 2013;
Organelli et al., 2013; Zhang et al., 2015). As absorption
coefficients can be estimated from satellite measurements using
inverse bio-optical models, this opens the way to applications of
these methods to satellite data.

Some PG algorithms (most of the ones listed in Table 2)
have been inter-compared at the global scale: firstly using in
situ PSC (derived from HPLC pigments) in terms of dominance
(Brewin et al., 2011) and secondly, under the 2nd Satellite
PFT Algorithm International Intercomparison Project: http://pft.
ees.hokudai.ac.jp/satellite/index.shtml. The initiative strengthens
the links between algorithm developers at a global scale
which will help also to guide modelers and policy makers on
the specific assumptions underlying each product: the inter-
comparison among most algorithms presented in Table 2 and
to an ensemble mean of Earth System Models is presented
in Kostadinov et al. (2017). A user guide for application to
open ocean waters on the most common algorithms (Mouw
et al., 2017) explains the current global PG algorithms and
their associated uncertainties and also includes a discussion
on the advantages and disadvantages of these algorithms. A
global in situ dataset of HPLC and optical properties is being
developed to further evaluate these algorithms. This initiative
organized and held breakout sessions at the International
Ocean Color Symposia (IOCS) in 2013 and 2015 and at a
specific expert International Ocean-Colour Coordinating Group
(IOCCG) and National Aeronautics and Space Administration
(NASA)-sponsored workshop in 2014, which focused on PG
algorithms development, validation, and user needs. For each
meeting the outcome resulted in a written summary of
recommendation for community actions and the planning of
future activities (see IOCS, 2013; Bracher et al., 2015a; IOCS,
2015) which also form the baseline for Section Recommendations
toward Operational Products of Phytoplankton Diversity from
Space.

To date, the majority of existing PG satellite retrieval
approaches have relied on HPLC pigment data to derive in
situ PG data: for developing and validating algorithms large
in situ PT (e.g., Alvain et al., 2005; Hirata et al., 2011; Soppa
et al., 2014; Swan et al., 2016) and PSC (e.g., Uitz et al.,
2006; Brewin et al., 2010) data sets have been complied,
complemented by the global pigment data set compiled under
the MAREDAT project (Peloquin et al., 2013) and recent
submissions to public data bases: e.g., SEABASS (http://seabass.
gsfc.nasa.gov/), BODC (http://www.bodc.ac.uk), LTER Network
Data Portal (https://portal.lternet.edu/nis/home.jsp), PANGAEA
Data Publisher for Earth & Environmental Science (https://
www.pangaea.de). Among all available in situ PG data sets,
HPLC-phytoplankton pigment data contain the largest number
of observations resulting in the greatest spatial coverage with
standardized quality control protocols (Hooker et al., 2012).
However, size fractionated in situ data of chl-a serve as a more
direct validation data set for assessing satellite retrievals on PSC
(e.g., Brewin et al., 2014). The long-term and spatially extended
Continuous Plankton Recorder (CPR) data sets have been used
for constructing and evaluating ecological algorithms focusing
on larger phytoplankton (Raitsos et al., 2008). The CPRs,
especially with the recent global data effort (Global Alliance of
CPR Surveys, http://www.globalcpr.org/), may provide a unique
platform on taxonomic information to modern satellite sensors
for several oceanic regions around the globe. Inline (coupled)
flow cytometry and microscopy techniques have been developed
and enable a more precise classification of the phytoplankton
groupings than HPLC marker pigments (e.g., Sosik and Olson,
2007). In addition, phytoplankton group specific Inherent
Optical Properties (IOPs, i.e., absorption and backscattering)
determined in the field have been used as algorithm inputs for
several spectral approaches (Ciotti and Bricaud, 2006; Bracher
et al., 2009; Mouw and Yoder, 2010; Fujiwara et al., 2011;
Sadeghi et al., 2012a). Hyperspectral IOP measurements when
obtained via continuous measurements (e.g., Boss et al., 2013)
can help validating satellite-derived PG by increasing the number
of match-ups, assessing variability within a satellite pixel, and
quantifying the uncertainties in the two-step satellite methods
(i.e., from water-leaving reflectance to IOP to PG).

Satellite PG time series data have already been used to assess
regionally and globally the variability and trend of phytoplankton
community composition (e.g., Brewin et al., 2012; Sadeghi et al.,
2012b) and PG phenology (Alvain et al., 2013; Soppa et al., 2016a)
also linking to environmental variables. In addition, satellite
PG data were used to assess globally particulate organic carbon
export (Mouw et al., 2016), for detection of regional HAB events
(e.g., Kurekin et al., 2014), the estimation of recruitment of
juvenile fish (Trzcinski et al., 2013) and for inferring globally
oceanic emissions of volatile organic compounds (Arnold et al.,
2009; Booge et al., 2016).

All ocean color data are limited in coverage to sun-light, cloud
and ice-free conditions, and only deliver information on the
surface ocean (first optical depth which is 4.6 times shallower
than the euphotic depth). Therefore, for many applications,
additional methods have to be used to resolve variability and
trends of phytoplankton community structure and abundance.
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Satellite-derived algorithms are increasingly compared not only
to in situ data but to global model output from Earth System
Models. Starting over two decades ago, biogeochemical models
began incorporating multiple PT (e.g., Baretta et al., 1995;
Le Quéré et al., 2005; Gregg and Casey, 2007) mainly to
incorporate their biogeochemical relevance. As a first stepmodels
incorporated a “diatom” group given their importance in the
silica cycle, but also given their potential important role in carbon
export compared to other PT (e.g., Chai et al., 2002). As models
became more sophisticated and started to simulate nitrogen
biogeochemistry, many added a “diazotroph” class. Given the
biogeochemical importance of these groups of phytoplankton,
the modeling community refers to them as PFT (see Figure 1

right). This classification is the closest to ocean color PT products
as defined above. Though less common, models can also group
phytoplankton in terms of size: the model of Ward et al. (2012)
includes 25 size classes of phytoplankton. The advantage of such
an approach is that it can use empirical allometric relationships
of key growth parameters (e.g., maximum growth rates). Such a
model output is more compatible with ocean color PSC products.

Since 2009, marine ecosystem modelers collaborate
systematically with the remote sensing community in
the MARine Ecosystem Model Intercomparison Project
(MAREMIP). MAREMIP fosters the development of models
based on PFT. Complementary to the Coupled Model
Intercomparison Project Phase 5 and Phase 6 efforts (see
http://cmip-pcmdi.llnl.gov/), MAREMP thus specifically targets
the inter-comparison of the representation of current and
future marine biology in global ocean models, and promotes
the interactions between modelers and observationalists and
the development of targeted observations. MAREMIP, as well
as many single model studies conducted by marine ecosystem
modelers worldwide (e.g., Ye et al., 2012; Dutkiewicz et al.,
2015), have been using satellite-derived PT products for
the evaluation of model performance in terms of plankton
biogeography and global biogeochemical cycling (e.g., Hashioka
et al., 2013; Vogt et al., 2013; Laufkötter et al., 2015). Initial
studies have shown that models and satellite estimates of
phytoplankton biogeography diverge, for example (a) in the
timing of the phytoplankton bloom (Hashioka et al., 2013),
(b) in phytoplankton dominance patterns and the global
contribution of diatoms to total phytoplankton biomass (Vogt
et al., 2013), and (c) in net primary production (Laufkötter et al.,
2015).

GAP ANALYSIS

Current satellite data sets on phytoplankton composition (PG)
are not generally available in a format readily adoptable by a wide
user community. Some potential users (e.g., fishery managers)
still use chl-a rather than satellite PG data, in part due to a lack
of confidence in the PG products, and climate modelers use only
a limited fraction of the currently existing products, due to the
lack of uncertainty estimates associated with each product, and
issues related to the compatibility between model and satellite
output. In the following section, we detail the gaps, which need
to be addressed if we want to respond to user needs and promote

the use of a wider range of new remote sensing products (see
summary in Table 3, left columns).

Gap 1: Information Mismatch between
Satellite-Derived Phytoplankton
Composition Products and User Group
Target Variables
At present, there is a mismatch between the PG detected
from satellite (and which differ between algorithms) and the
groupings required by the user community. Figure 1 illustrates
PFT as they may be found in the environment, and which
respond to environmental conditions based on the interplay of
different variables (nutrients, temperature, salinity, light, and
others). Optical (size, morphology, pigmentation, fluorescence)
and non-optical (e.g., nutrient requirements, stoichiometry)
properties of phytoplankton allow for distinctive groupings.
The optical properties include photo-physiological responses
which are driven by photoadaptation associated with certain
PG, and photacclimation which is mostly independent of PG.
From ocean color (Figure 1 top-level left) absorption, scattering,
and fluorescence properties of different PG can be derived.
Coupled biogeochemical ocean models (Figure 1 top-level right)
often use groupings in terms functional groups (e.g., calcifiers,
nitrogen fixers, etc.) which necessarily do not link to the optically
based PG which are for example, either picophytoplankton
(PSC algorithms), prokaryotic phytoplankton (e.g., Bracher et al.,
2009), Synechococcus like cyanobacteria (e.g., Alvain et al., 2005),
prochlorophytes (e.g., Hirata et al., 2011) or Trichodesmium
only (e.g., Westberry et al., 2005) and not just nitrogen
fixers. This highlights the need to enhance linkages between
optical and functional PG to improve our knowledge. The
algorithms listed above also provide results in different units
(e.g., size factor, fraction of total chl-a, chl-a, dominance or
just presence of a PG), which do not always match with users
requirements (e.g., a numerical model might require carbon
biomass). There are also substantial differences in the PG
definitions among the users themselves (see IOCCG, 2014).
While biogeochemical and RT models require a quantitative
assessment of PT or PSC, end users for coastal environmental
management need PG products as indicators for water quality,
HAB presence, eutrophication and fisheries stock assessment.
To help users selecting the appropriate PG data sets, the work
already accomplished by inter-comparing (Kostadinov et al.,
2017) and by setting up a user guide (Mouw et al., 2017) on
global satellite PG needs to be extended to new algorithms
and more explicit recommendations on which algorithm is best
suited for specific users and science questions. The later can
only be done when the uncertainties of these algorithms have
been evaluated more consistently (see Gap 2). Improvements
are also needed in terms of the representation of PG in the
current generation of models to better constrain present and
future projections of marine biogeochemistry. Furthermore, as
the community is moving toward biogeochemical models of
increased complexity, information on phytoplankton community
composition from space including all PT, or other indices of
biodiversity (pigments, size) will provide valuable resources for
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TABLE 3 | Summary of gap analysis for phytoplankton composition from space: gap (left), status of existing work (second left), and recommendations for

actions (right columns).

Gap Status Medium-term action Long-term action

Mismatch 2nd PFT Intercomparison initiative (too little

funding): inter-comparison, user guide, in situ
data base

Workshops with users, in situ and algorithm

developers, ecologists

Mechanistic frame-work to connect

complementary different PG to PFT

Some application of satellite PG for models

have started

Extend Website and user guide on new PG

products

Uncertainties No appropriate in situ data:

Global HPLC-but not really PG

Round-robins on PG data format and quality

standardization, method standardization

Curate existing in situ PG data bases and time

series programs

Other PG data require integration Exploit additional in situ PG data

Difficult merging data bases Support new sensor validation Ensure in situ data acquisition and validation of

new OC missions

Spectral IOPs (esp. bb) limited Develop further inline and autonomous

techniques

Sparse in situ data can’t resolve sub-pixel

variability

Add AOP&IOP to PG in situ data

Deficient theoretical background: Inversion

limited success, RTM lack

Use complementary data to constrain

algorithms

Framework for clear traceability of uncertainties

PG information for all water types

Limited traceability of errors

Satellite sensors Multispectral sensors with limited PG: few

bands do not resolve optical difference of PG

Develop atmospheric correction for

hyperspectral sensors

Exploit adding bands to multispectral—OLCI

Hyperspectral sensors:

SCIAMACHY and OMI PG data but low spatial

resolution

Adapt PT algorithms to Sentinels TROPOMI

and UVN (high spatial coverage and resolution)

Merge all sensors’ PG data for long term high

coverage info

No Lw, RRS data (since no AC) Develop synergistic PT products from hyper

and multispectral data

Launch hyperspectral OC sensors (e.g., PACE)

HICO: no PG, low coverage

Regional capability Satellite PG (mostly) only global Exploit additional data to constrain algorithms Launch high spatial resolution of multi-spectral

(e.g., MSI) and hyperspectral (EnMAP, HyspIRI)

sensors

AC and standard OC products poor quality in

complex waters

Round-robins for PG algorithm development

and validation specific to regions

Some actions are related to several gaps but are only stated at the medium term (second right) with agency supported activities embedded in long-term actions at international level
(right); abbreviations in Table 1.

the next generation modelers. Thus, there is a need for on-
going product development along with effective communication
between remote-sensing scientists, biological oceanographers,
and modelers to ensure future developments are consistent and
comparable between parties and that ultimately improve climate
predictions.

Gap 2: Lack of Traceability of Uncertainties
in PG Algorithms
The quantitative assessment of uncertainty in PG satellite
products is still insufficient. This is due to the above mentioned
mismatch definition (see Gap 1), the limited theoretical
background to connect optical signatures to diversity of
phytoplankton communities across different environments and
limitations in appropriate in-situ data.

At the cellular level, a detailed understanding of how
pigment packaging (function of cell size and intracellular
pigment concentration; Morel and Bricaud, 1981) and pigment

composition that both govern the shape and magnitude of chl-a
specific absorption (especially in the blue-green regions of the
spectrum, which is commonly used in PG algorithms) requires
further work. Both reconstruction (Bidigare et al., 1990) and
decomposition (Hoepffner and Sathyendranath, 1993) methods
are often applied separately to bio-optical datasets to explore
the link between pigments and phytoplankton absorption.
Reconstruction approaches conventionally apply a single
pigment-specific absorption coefficient to a particular pigment
or pigment type (e.g., photosynthetic and photoprotective
carotenoids), often obtained from measurements of extracted
pigments in solvent. Only a handful of studies have examined
the absorptive properties of pigment-protein complexes
(e.g., Johnsen and Sakshaug, 2007), yet differences in the spectral
shape once pigments are embedded in proteins can be significant.
Improvedmodels on phytoplankton photoacclimation combined
with new approaches in determining cell size should assist in
improving our understanding of how pigment packaging
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influences the spectral signature of natural phytoplankton
assemblages. Efforts inverting hyperspectral reflectance and
absorption spectra to obtain PG have shown limited success,
leading to identification of certain PT with no quantification
(Werdell et al., 2014; Kudela et al, 2015; Xi et al., 2015) of PSC
fractions (Organelli et al., 2013) or quantification of accessory
pigments in addition to chl-a (Chase et al., 2013; Moisan et al.,
2013; Bracher et al., 2015b). PT specific absorption properties are
available but large spectral variability is related to algal culturing
and variations in size, pigment composition and pigment
packaging due to physiological responses of PT. In contrast, due
to high measuring uncertainties spectral scattering properties
(including back-scattering and volume scattering function) are
still less known (Tan et al., 2015; Harmel et al., 2016). Thus, PG
related specific IOPs are not adequately represented in RTMs.
This further limits tracing uncertainty in algorithms, pointing to
the need for coincident IOP observations along with expended
in situ datasets of phytoplankton composition.

Other errors in algorithms are also difficult to assess, for
instance the accuracy of in situ data used as input or for validation
of algorithms due to mostly non-standardized acquisition (see
details below), the above mentioned mismatch definition (see
Gap 1), and the spatial and temporal upscaling of specific PT
and PSC signatures of diverse communities. Several studies
have demonstrated that adding spectrally-resolved optics to
biogeochemical models improves model skill (e.g., Dutkiewicz
et al., 2015) as well as comparability to observed optical
properties (e.g., Fujii et al., 2007; Baird et al., 2016). A
minority of global numerical models resolve the bio-optical
properties of different PG (Gregg and Casey, 2007; Dutkiewicz
et al., 2015; Baird et al., 2016). These advancements may
provide a way forward to investigate the biological realism of
phytoplankton biogeography using a larger range of satellite PG
products.

In addition, the reliance on HPLC for development and
validation presents challenges to quantitatively assess the
uncertainty of PG satellite products. However, inputs to HPLC
PG datasets are (diagnostic) accessory pigment concentrations,
which are only to a certain degree congruent with taxonomy
or phytoplankton size. Size can vary considerably within
certain functional or taxonomic groups, e.g., diatoms can
range from 3 to 500 µm but are characterized by the
same diagnostic pigment (fucoxanthin) across this size range.
Similarly, grouping by accessory pigments can be problematic
as there is substantial variability in pigment concentration
as a function of physiological response to the environmental
conditions and more importantly a given biomarker pigment
is present in several PT (e.g., fucoxanthin in diatoms and
haptophytes). Some PT, e.g., coccolithophores, cannot be inferred
from HPLC pigments. In consideration of the expanding satellite
sensor capabilities, there is a need for coordinated efforts to
compile and generate comprehensive in situ datasets (not just
HPLC) for assessing phytoplankton composition. There is also
a need to provide best practice guidance to merge the different
types of datasets (e.g., HPLC, microscopy, flow cytometry)
into an integrated product that encompasses different ways of
grouping phytoplankton species.

Gap 3: Missing Capabilities of Current
Ocean Color Satellite Measurements
Differences among PT in their spectral absorption are small:
many PT contain, despite specific marker pigments, the same
suites of pigments or pigments of similar absorptive properties
(note that besides the pigment absorption properties, spectral
absorption is also ruled by the algal community size structure).
Given the limited number of wavebands and the broad band
resolution of current multi-spectral sensors can provide only
limited information on the variability in phytoplankton spectral
absorption caused by shifts in community structure (Bricaud
et al., 2004; Organelli et al., 2011). This restricts all multispectral
satellite phytoplankton composition products based on spectral
principles to either indicating dominance, presence of PT
or identifying major size class fractions within the total
phytoplankton community to a high level of uncertainty.

Satellite instruments, with a very high spectral resolution
(1 nm and better, originally designed for atmospheric
applications), provide additional opportunities for distinguishing
multiple PT based on their optical properties. The capability to
retrieve quantitatively major PT groups based on their optical
signature has been clearly shown with the PhytoDOAS method
(Bracher et al., 2009; Sadeghi et al., 2012a) in the open ocean
using hyperspectral satellite data from the atmospheric sensor
SCIAMACHY. However, the exploitation of hyperspectral
satellite data for ocean color has been so far very limited because
hyperspectral sensors like SCIAMACHY (spectral resolution
<0.5 nm) do not provide operational water-leaving radiance
products and have very large foot-prints (30 by 60 km per
pixel) and low global coverage (6 days). This provides a major
constraint on assessing the retrieval’s accuracy with in situ point
measurements. It also limits the application of such PT satellite
data sets. The difficulty of working with SCIAMACHY data
is that one has to handle strong atmospheric absorbers (true
for all hyperspectral satellite data) and the heterogeneity of
big pixels; hence, the PhytoDOAS algorithm was designed to
retrieve three PT directly from top of atmosphere radiances, by
separating their high frequency absorptions from each other
and relevant atmospheric absorbers, while accounting for broad
band effects by using a low order polynomial. This method
requires high spectral resolution (<1 nm). SCIAMACHY data
acquisition ended with the lost contact to the ENVISAT satellite
(April 2012). First results from adapting PhytoDOAS to the
Ozone Monitoring Instrument (OMI) sensor (measuring since
2004) are very promising (Oelker et al., 2016) and will enable
the extension of the spectrally derived PT data into the future
with much improved global coverage (daily) and smaller foot
print (13 × 24 km). OMI is also the precursor instrument
to the in 2017 launched Sentinel-5-Precursor (S-5-P) with
TROPOspheric Monitoring Instrument (TROPOMI) and in the
2020s launched Ultra-violet/Visible/Near-Infrared Instrument
(UVN) instruments on Sentinel-4 and Sentinel-5 (all with a pixel
size of 3.5× 7 km).

The Hyperspectral Imager for the Coastal Ocean (HICO)
provided data with high spatial (100 m) and spectral (∼6 nm)
resolution and limited coverage (only a restricted number of
scenes globally). However, so far lack of robust atmospheric
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correction for HICO (see current implementation in http://
seadas.gsfc.nasa.gov/) has prevented the exploitation of the
full spectrum. Eventually, not much more than standard
phytoplankton information (chlorophyll, fluorescence line
height) as for multispectral data was derived (Ryan et al., 2014).
It is a big challenge to provide spectrally consistent high quality
atmospheric correction for PG retrievals.

The new ocean-color sensor OLCI on Sentinel-3 already
provides two more bands in the visible range than its predecessor
MERIS. It is anticipated that the number of bands will further
increase for futuremultispectral ocean-color sensors. In addition,
hyperspectral missions like Pre-Aerosol, Clouds, and ocean
Ecosystem (PACE; global, high coverage, 1 km pixels, launch
2022) and Environmental Mapping and Analysis Program
mission (EnMAP; regional, low coverage, 30m pixels, launch
2019) are planned for operating in the near future. However,
hyperspectral instruments like ENMAP or PACE with 5 nm
resolution are still very different from atmospheric instruments
like SCIAMACHY. Hence, algorithms will have to be developed
(or adapted) to retrieve the PT from these new instruments.

To monitor marine ecosystem and assess their vulnerability
to future anthropogenic and climate change, beyond a good
spatial-temporal resolution of existing data long-term time series
data are needed to monitor trends in phytoplankton community
structure, and its variability on inter-annual to decadal time
scales. The average cloud-free repeat time per pixel for an
ocean color sensor is only 100 observations per year for the
temperate and tropical zones (Werdell et al., 2007), while it is
much lower for high latitudes (e.g., 12 per year for the East
Greenland Sea, Cherkasheva et al., 2014). Yet, merged ocean-
color products significantly increase this temporal coverage
(Maritorena et al., 2010; Racault et al., 2015). The development
of long time series of PG satellite products, covering more
than a decade, has just started (e.g., references given in Mouw
et al., 2017). Such data sets are necessary to respond to user
needs. Efforts have been taken to apply the multispectral PG
algorithms not only to SeaWiFS but also to MODIS and MERIS.
Synergistic use of multiple sensors will enable creating long-term
time series moving from monthly to daily resolution, but also
provides an opportunity to improve performance of individual
retrievals. The ESA project SynSenPFT is an example for that
where an algorithm was developed by synergistically using PT
information from SCIAMACHY-PhytoDOAS and Ocean Color
Climate Change Initiative chl-a-OC-PFT retrievals. This was
done to obtain high spatially and temporally resolved PT chl
data using their spectral imprints retrieved from high spectrally
resolved satellite data and a global PT data set was developed,
from 2002 to 2012 on 4 by 4 km daily resolution (Soppa et al.,
2016b).

Gap 4: Lack of Regional Capability of PG
Algorithms
Thus far, most PG algorithms work globally or some of them have
been validated on restricted regions, but nearly all are limited
to open ocean conditions. A spatial pattern matching between
modeled- and satellite PG showed a relatively large discrepancy

on smaller spatial scales than larger scales, especially around
continental shelves (Hirata et al., 2013). However, PG satellite
products retrieved are necessary especially for coastal areas and
inland waters where water quality and HABs issues are most
urgent. In these optically complex waters, optical constituents
vary independently making ocean color retrievals challenging. In
extremely high colored dissolved organic matter (CDOM) and
low scattering waters, CDOM absorption dominates the whole
visible spectrum resulting in very low water-leaving reflectance
(<1%) and thus, the phytoplankton signal itself is weak. By
contrast, the main problems in highly scattering waters are
the masking of pigment absorption by non-algal (mineral)
particle absorption and significant near infrared water reflectance
(IOCCG, 2000). Successful results in these types of water are
hampered by limited spatial and spectral resolution of sensors.
This already makes it difficult to achieve accurate atmospheric
correction and obtain reliable ocean color standard products.
It also inhibits the observation of the patchy distribution of
phytoplankton communities. To derive certain PT beyond size-
and/or pigment-based discrimination of phytoplankton requires
developing empirical methods that rely on covariation: Via the
exploitation of additional data (light, temperature, nutrients, ...),
retrievals and optical modeling for specific regions could be
further constrained (and optimized), as for example in the study
by Brewin et al. (2015) where information on ambient light
field extracted from satellite information was combined with an
abundance based PSC approach.

RECOMMENDATIONS TOWARD
OPERATIONAL PRODUCTS OF
PHYTOPLANKTON DIVERSITY FROM
SPACE

In the following we give recommendations how to fill the
gaps identified in the previous chapter. Table 3 summarizes the
mid- and long-term actions that are detailed below. Note, that
several actions will address several gaps simultaneously. We
recommend that the implementation of these actions is done in
communication and collaboration between ocean color scientists,
observationalists, numerical modelers, and other users. This will
ensure that products are aligned to new in situ and satellite
observational techniques and fulfill the ever changing needs of
the wide range of user communities.

Improving Match between Satellite PG and
Users’ Needs
A mechanistic framework needs to be developed which draws
the complementary use of the various PG data and links them to
PFT (Figure 1). This will assure that users are aware of the actual
specific groups in the different satellite products and how they
compare to the groups they require in their specific application.
Such a framework requires an international effort and funding,
including experts in in situ measurements (HPLC, microscopy,
flow cytometry, genetics, bio-optics), algorithm developers and
representatives of the user communities (modeling, marine
services). Certain medium-term actions should be taken:
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– Regular workshops to improve communications between users
(biogeochemical-, ecosystem-, RT-modelers, taxonomists,
ecologists, fishery managers, HAB, and water quality experts)
and algorithm developers should be held to achieve a common
understanding and a consistent and comprehensive definition
of the “groups” in PG algorithms, but also of their metrics [%
vs. chl-a (or carbon) vs. dominance]. This could potentially
lead in joint future proposals.

– A website informing on PG algorithms activities and
development (user guide, algorithm inter-comparison and
validation protocols, forum, ...) should be sustained.

– A “living” user guide (regularly updated) should describe
available PG and PSC algorithms and satellite products
including their definition, uncertainty, strengths, and
limitations.

Curation and Acquisition of In situ Data for
Improving and Assessing PG Retrievals
Within international cooperation of space agencies the curation
of existing measurements of in situ PG abundance (HPLC,
microscopy, flow cytometry, particle imaging, genomics, ...)
and corresponding optical [IOPs, apparent optical properties
(AOPs)] data needs to be secured:

– Specific comprehensive datasets should be selected that
include coincident IOPs, AOPs, and phytoplankton
composition that serve as a resource for PG algorithm
development, refinement, and validation, and improve the
ability to inter-compare validation metrics.

– Standardized data quality, nomenclature, and format among
different data bases (e.g., SEABASS, LTER, PANGAEA,
BODC, ...) should be assured to enable easy compilation and
expansion.

– Pigment databases used for testing, validating and refining
PT algorithms should be archived along with complete
information on all detected pigments to allow rigorous inter-
comparison studies and sensitivity analysis.

– Methods to convert from in situ data to PG biomass or
fractions should be assessed and protocols for merging
different datasets (e.g., HPLC, microscopy, ...) should be
formulated.

– Existing time series sites of phytoplankton composition
collected at fixed sites, covering a range of oceanic regimes,
including the coastal ocean should be utilized to inter-compare
algorithms and to assess their uncertainties considering
seasonal and multiannual effects.

– In situmeasurements need to be calibrated and standardized to
advance the knowledge of phytoplankton composition in situ
with defined uncertainties.

– Existing relevant (hyperspectral and/or PG related) IOP data
from laboratory studies need to be curated, so they can be used
as algorithm input and to develop the necessary theoretical
background.

– Agency directed programs need to sustain the in situ data
acquisition in order to secure assessment of accuracy of PG and
related (e.g., atmospheric correction, CDOM, total suspended
matter) satellite products. The following is recommended:

– The protocols of data acquisition need to be standardized
by internationally run round-robin exercises and calibrations.
Currently, various NASA WGs are updating the ocean
optics protocols (Mueller et al., 2003), specifically for HPLC
pigments and IOPs which should be supported also by other
agencies.

– Methodological errors associated with different approaches
of measuring phytoplankton absorption (filter pad method
and methods measuring directly a water sample) need to
be identified and quantified. This also includes the inter-
comparison of in situ and bench top techniques over a range
of environmental settings (optically complex to oligotrophic
open ocean). For that, universal protocols for data collection
and processing need to be established.

– Methodological errors associated with different approaches
of measuring phytoplankton absorption (filter pad method
and methods measuring directly a water sample) need to
be identified and quantified which also include the inter-
comparison of in situ and benchtop techniques over a range
of environmental settings (optically complex to oligotrophic
open ocean). For that universal protocols for data collection
and processing need to be established, such as those currently
prepared by NASA.

– Differences in various particle imaging and identification
technologies (e.g., holography, flow cytometry, flow cam, etc.)
need to be assessed.

– Following the launch of new ocean color sensors (particularly
now OLCI on S-3), there is a need for validation activities to be
funded across all AOPs and IOPs to PG products.

– Additional phytoplankton composition observational
capability needs to be added to existing time series sites.

– Target locations for future field sampling (informed by existing
products), uncertainty assessments, and potentially supported
by modeling need to be identified.

– New technologies for in-line and autonomous measurements
should be supported via the use of robotic platforms (e.g.,
profiling floats, autonomous surface water vehicles) to
increase the spatial and vertical coverage of measurements.
The development of new miniature sensors that can be
deployed on these platforms to provide accurate measurement
of phytoplankton community and carbon (e.g., miniature
imaging flow cytometers, sensors for metagenomics
hyperspectral IOPs and AOPs) should also be supported
to ensure appropriate evaluation of satellite PG products
performance on their spatial and temporal resolution.

Theoretical Background to Further
Develop PG Retrievals and Assess Their
Uncertainty
To fill Gap 2, the development of a framework for clear
traceability of uncertainties in PG satellite products needs to
be supported by the specific assessment of mismatch definition,
in situ error, retrieval error, or errors due to the spatial
and temporal upscaling of specific PG signatures in diverse
communities. This requires the steps mentioned in Section
Improving Match between Satellite PG and Users’ Needs and
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in Section Curation and Acquisition of In situ Data for
Improving and Assessing PG Retrievals, but also steps linked
to improving PG algorithms (see also Section Sustaining Long-
Term PG Satellite Data) which require a solid theoretical
background.

On one hand inverse modeling needs to be optimized
by further developing the theoretical background to connect
optical signatures to diversity of phytoplankton communities
across different environments (especially in optically complex
waters). The degree of independent information in hyperspectral
wavelength signals will depend on the water type (e.g.,
waters optically dominated by phytoplankton alone, or other
particles, or CDOM) and will determine whether different
phytoplankton products can be independently derived from
a given hyperspectral spectrum. This statistical-informational
problem needs to be considered in the application of (global
or regional) inversion algorithms. Measurements on spectral
specific IOPs (in particular scattering properties) on natural
and cultured samples will lead to a better description of
optics in RTM. On the other hand, developing a mechanistic
understanding of the spectral properties of PG to retrieve
bio-optical indices of diversity requires a better utilization of
expertise crossing a wide range of fields, including taxonomy
and molecular ecology in connection with optically-derived PG.
The usage of global numerical models which resolve the bio-
optical properties of different PG will provide a way forward
for connecting more specifically a larger range of satellite
PG products (highlighted in Figure 1 with red-blue arrow
connecting optical PG with PFT). Models could group their
“model phytoplankton-analogs” according to more dimensions
of diversity (e.g., accessory pigments, scattering characteristics,
etc.—see optical PG in Figure 1) that link closer to the satellite
PG definitions than the more classical PFT designations (e.g.,
nitrogen fixers, silicifiers,...). Models that include spectrally-
resolved optics and bio-optical properties of phytoplankton
could also prove to be a powerful tool for exploring the inter-
dependency and regionally varying skill of different satellite PG
approaches.

Sustaining Long-Term PG Satellite Data
As outlined in Section Gap 3: Missing Capabilities of Current
Ocean Color Satellite Measurements, long-term data sets of
sufficient spatial and temporal resolution are needed to be
established which are also adequate for regional applications (see
Section Gap 4: Lack of Regional Capability of PG Algorithms).

At first, the exploitation of hyperspectral data needs to
be intensified in order to base those data on deriving
the spectral imprints of phytoplankton groups in ocean
color:

– In preparation for the exploitation of future hyperspectral
ocean color sensor [PACE, EnMAP orHyperspectral InfraRred
Imager (HyspIRI) and hopefully more] missions, much more
effort needs to be put into the development of atmospheric
correction for hyperspectral satellite data; methods should be
developed over open ocean and complex waters, with the help
of RTM, and consideringmultispectral atmospheric correction

methods. Also current hyperspectral satellite data sets, such as
SCIAMACHY, HICO, OMI (and from 2017 also TROPOMI),
should be explored further.

– Hyperspectral and quantitative spectral PT and PSC
algorithms should be adapted, extended and applied at global
and regional scales to data with high spectral resolution
from former, current and near-future “atmospheric”
satellite sensors such as SCIAMACHY, OMI, TROPOMI
and also, where possible, to the HICO data to set-
up time series of hyperspectral PG data from 2002
onwards.

– Hyperspectral and quantitative spectral PT and PSC
algorithms should be adapted, extended and applied at
global and regional scales to data with high spectral resolution
from former, current and near-future “atmospheric” satellite
sensors such as SCIAMACHY, OMI, TROPOMI, and also,
where possible, to the HICO data to set-up time series of
hyperspectral PG data from 2002 onwards.

– The potential of spectral PG quantitative satellite retrievals
for future satellite sensor should be further explored based
on assessment via RTM, hyperspectral satellite, and in situ
data to retrieve as many as possible of the PG requested by
users from hyper- (e.g., like PACE, ENMAP) and multispectral
data sets (e.g., like OLCI bands and a few additional
bands).

In addition a framework is needed at an international level
for integrating PG information from different sensors (hyper-
/multispectral, global coverage/high spatial, and/or temporal
resolution) to meet user requirements across different scales
with special focus to regional applications (in order to fill
Gap 4, see Section Gap 4: Lack of Regional Capability of PG
Algorithms).

– At first, a workshop with experts across the different
disciplines (in situ, algorithm, modeling) is necessary to
define round-robin exercises for the regional (thematic)
assessment of algorithms (validation, uncertainties) under
specified protocols. When these regional algorithm inter-
comparisons and assessments with different kinds of in situ
optical and PG data are executed, best practice to use different
kinds of PG data to obtain synergistic PG information should
also be developed.

– PG data merged from all low spatial resolution hyperspectral

available sources to date (incl. TROPOMI) should be used

synergistically with multispectral derived PG products for

building up high spatially resolved PG long-term global

records from 1997 into the future.
– In addition, PG retrievals should be optimized on trigonal

scale based on other environmental and ecological information

(e.g., from remote sensing, climatology) such as sea surface

temperature, available light, wind speed, mixed layer depth,

nutrients fluorescence, and optically active water constituents
(CDOM, total suspended matter) and better links to
biogeography.

Based on the outcome of the activities to foster hyperspectral
data exploitation, synergistic use of new satellite sensors
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for detection of phytoplankton diversity across all
oceanic, coastal, and inland water environments should
allow for merged PG products. This will secure the
prolongation of PG data time series as climate data
records.

CONCLUSIONS

Synoptic observations on phytoplankton diversity, obtained from
satellite ocean color data, have the potential to improve models
for assessing and predicting climate change and for managing
marine services, and they are currently the only means available
for high resolution, long-term monitoring of changes in marine
ecosystem structure at the regional to global scale. Yet, to meet
the requirements of an essential ocean/climate variable (highly
accurate and error-characterized) further scientific investment
into existing and further developed methods is needed. In
particular, the satellite phytoplankton group products should:
(i) match those requested by the user communities; (ii) provide
quantitative per-pixel uncertainty; (iii) exploit past, current and
future hyperspectral remote-sensing; (iv) be tuned for regional
applications (including coastal and inland-water regions); and
(v) exploit better the various streams of satellite information,
from the various sensors in space. Improved understanding
of how the optical signatures (inherent optical properties) of
phytoplankton groups vary will also aid algorithm development.
These actions can only be achieved with coordinated and
sustained investment, across national and international agencies,
and through interdisciplinary co-operation between satellite
algorithm developers, in situ experts and end users (e.g.,
ecosystem modelers).
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The NASA PACE mission is a hyper-spectral radiometer planned for launch in the

next decade. It is intended to provide new information on ocean biogeochemical

constituents by parsing the details of high resolution spectral absorption and scattering.

It is the first of its kind for global applications and as such, poses challenges for

design and operation. To support pre-launch mission development and assess on-orbit

capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic

simulation of global water-leaving radiances, using an ocean model containing multiple

ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC),

and chromophoric dissolved organic carbon (CDOC) along with optical absorption and

scattering processes at 1 nm spectral resolution. The purpose here is to assess the

skill of the dynamic model and derived global radiances. Global bias, uncertainty, and

correlation are derived using available modern satellite radiances at moderate spectral

resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are

simultaneously assimilated to improve the fidelity of the optical constituent fields. A

5-year simulation showed statistically significant (P <0.05) comparisons of chlorophyll

(r = 0.869), PIC (r = 0.868), and aCDOC (r = 0.890) with satellite data. Additionally,

diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716)

were significantly correlated with in situ data. Global assimilated distributions of optical

constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral

Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for

the spectral range 250–800 nm. These unassimilated radiances were within −0.074

mW cm−2
µm−1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and

667 nm. This difference represented a bias of −10.4% (model low). A mean correlation

of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These

results suggest skill in the global assimilated model and resulting radiances. The reported

error characterization suggests that the global dynamical simulation can support some

aspects of mission design and analysis. For example, the high spectral resolution of the

simulation supports investigations of band selection. The global nature of the radiance

representations supports investigations of satellite observing scenarios. Global radiances

at bands not available in current and past missions support investigations of mission

capability.

Keywords: PACE, ocean color, water-leaving radiances, biogeochemical model, radiative transfer model
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INTRODUCTION

The now 19-year time series of routine global ocean color
observations from space has led to advancements in the
science of ocean biology beyond expectations. From chlorophyll
interannual variability to inherent optical properties to physical-
biological coupling, the time series has been an invaluable
resource for scientists in a broad range of ocean and atmosphere-
related fields. As is often the case in science, the proliferation
of information from these moderate resolution missions has
raised as many questions as it has answered. Coupled with
improvements in detector technology, the time is now right for
advancement of ocean biogeochemical science from space using
higher spectral resolution missions.

Higher spectral resolution can potentially improve detection
of optical constituents in the oceans that have important
effects on biology, biogeochemistry, and light transmission. One
major objective is the determination of phytoplankton groups
from space. Research to detect phytoplankton groups from
space has been going on for some time using the fleet of
moderate spectral resolution sensors (e.g., Kamykowski et al.,
2002; Alvain et al., 2005; Aiken et al., 2007; Bracher et al.,
2009; Brewin et al., 2010, 2011; Kostadinov et al., 2010; Masotti
et al., 2010; Hirata et al., 2011). Methods to identify size
classes have also been pursued (e.g., Loisel et al., 2006; Brewin
et al., 2011) but these only loosely relate to phytoplankton
functionality/taxonomy. Several phytoplankton discrimination
methods resolve dominant groups only (Sathyendranath et al.,
2004; Alvain et al., 2005, 2008; Hirata et al., 2008; Raitsos et al.,
2008). Hirata et al. (2011) provides taxonomic classifications,
with relative and even absolute abundances quantified. Using
satellite ocean chlorophyll concentrations rather than radiances,
this empirical methodology essentially assumes that abundance
reflects taxonomy, which is valid in many instances but not
always (Rousseaux et al., 2013).

Moderate resolution ocean color sensors containing only
a few discrete spectral bands, such as the global missions
flown to date, do not contain sufficient spectral information
to enable unequivocal phytoplankton functional/taxonomic
discrimination. Many phytoplankton species/groups have subtle,
but distinct spectral signatures. Use of hyper-spectral remote
retrievals with many bands spanning the visible and ultraviolet
spectrum holds potential for resolving these spectral distinctions

Abbreviations: aCDM, absorption coefficient of Chromophoric Dissolved and

particulate organic Matter; aCDOC, absorption coefficient of CDOC; BIOSOPE,

Biogeochemistry and Optics South Pacific Experiment; CDOC, Chromophoric

Dissolved Organic Carbon; CZCS, Coastal Zone Color Scanner; DOC, Dissolved

Organic Carbon; EnMAP, Environmental MAPping and Analysis Program;

GMAO, Global Modeling and Assimilation Office; MAP, Modeling, Analysis

and Prediction; MERRA, Modern-Era Retrospective Analysis for Research and

Applications; MODIS, MOderate Resolution Imaging Spectroradiometer; NIR,

Near InfraRed; NOBM, NASA Ocean Biogeochemical Model; OASIM, Ocean-

Atmosphere Spectral Irradiance Model; PACE, Plankton, Aerosol, Cloud and

ocean Ecosystems ; PIC, Particulate Inorganic Carbon ; PRISMA, PRecursore

IperSpettrale della Missione Applicativa; PSU, Practical Salinity Units; SeaWiFS,

Sea-viewing Wide Field-of-view Sensor; S-NPP, Suomi National Polar-orbiting

Partnership.

(e.g., Bracher et al., 2009; Sadeghi et al., 2012; Palacios et al., 2015;
Neukermans et al., 2016).

To close this knowledge gap, NASA has proposed the
PACE mission, a global hyper-spectral sensor to test the ability
to retrieve phytoplankton population distributions, as well as
other important ocean constituents with optical signatures.
The mission, proposed for launch in the early 2020’s, can
potentially demonstrate the feasibility and capability of hyper-
spectral observations from space and enable scientists to observe
and quantify these important ocean biological features. PACE is
intended to follow future planned hyperspectral missions PRISM
(Meini et al., 2015) and EnMAP (Foerster et al., 2015) with
extended spectral range into the ultraviolet, faster observational
repeat times, and emphasis on global ocean observational
capability.

Since there is no global observational precedent, many
mission development activities, design tradeoff assessments,
operational strategies, and other issues, are speculative. Here
we develop a dynamic global model at extreme hyper-spectral
resolution (1 nm) to provide a platform to approximate realistic
ocean conditions and help with resolving at least some of
these issues and understand if such a simulation can assist in
resolving many of the issues that inevitably arise in the design
and testing of a new mission. The objective of this effort is to
quantitatively assess the skill of a global model using a forward
radiance representation to simulate global ocean water-leaving
radiances. The skill is evaluated spectrally with explicit error
characterization.

METHODS

Global Ocean Physical-Biogeochemical
Model Configuration
The underlying biogeochemical constituents are simulated by
the NOBM which is coupled to a global ocean circulation
model, Poseidon (Schopf and Loughe, 1995). It spans the domain
from −84◦ to 72◦ latitude in increments of 1.25◦ longitude by
2/3◦ latitude, including only open ocean areas, where bottom
depth >200m. NOBM incorporates global coupled physical-
biological processes, including four phytoplankton groups
(diatoms, chlorophytes, cyanobacteria, and coccolithophores),
which span much of the functionality of the global oceans,
four nutrients (nitrate, ammonium, silicate, and dissolved iron),
three detrital components (particulate organic carbon, silicate,
and iron), and two carbon components (dissolved organic and
inorganic carbon). It is a three-dimensional representation of
coupled circulation/ biogeochemical processes in the global
oceans (Gregg et al., 2003; Gregg and Casey, 2007).

Optically-active constituents have been added to NOBM
to improve realism and complexity of the ocean simulation
and better represent the ocean optical variability that will be
observed by PACE. We have added particulate inorganic carbon
(PIC) and chromophoric dissolved organic carbon (CDOC) as
prognostic state variables. PIC is produced by coccolithophores
as detached coccoliths and is lost via sinking and dissolution.
PIC is produced as a fraction (25%) of the coccolithophore
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growth rate (Gregg and Casey, 2007) minus respiration. The
PIC sinking rate is represented here as an exponential function
of concentration, assuming that large concentrations of PIC are
associated with larger coccolith size.

ws(PIC) = ao exp(a1∗PIC) (1)

where ws is the PIC sinking rate (m d−1), PIC is in units of µgC
l−1, a0 = 0.1m d−1 and a1 = 2.0 l µgC−1 (Gregg and Rousseaux,
2016). Dissolution follows Buitenhuis et al. (2001), except that
no dissolution is allowed for depths shallower than the calcium
carbonate compensation depth, which we define as 3500m.

Chromophoric dissolved organic carbon (CDOC) represents
the biogeochemical constituent necessary for the simulation of
absorption by aCDOC(λ), the absorption coefficient, which is an
optical quantity. CDOC is formed and destroyed the same as
DOC, using Aumont et al. (2002) with an assumed DOC:CDOC
production/loss ratio of 0.5. It is additionally destroyed by the
absorption of spectral irradiance. We follow the methodology of
Gregg and Rousseaux (2016) for photo-destruction (photolysis)
of CDOC per unit irradiance quanta, with a different quantum
yield ϕCDOC of 3.0E-6 (µM µmol photons absorbed m−3)
for results in reasonable agreement with MODIS-Aqua data
(Maritorena et al., 2010).

Ocean-Atmosphere Spectral Irradiance
Model
NOBM is coupled to OASIM (Gregg and Carder, 1990; Gregg,
2002; Gregg and Casey, 2009) to simulate the propagation of
downward spectral irradiance in the oceans and the upwelling
irradiance/radiance. The irradiance pathways for OASIM are
shown in Figure 1. The atmosphere and ocean portions of the
downwelling and upwelling irradiance are implemented at 25-
nm spectral resolution. Higher spectral resolution is impractical
for global models that integrate at 30 min time steps in our case.
Upwelling radiance is produced at 1 nm resolution, however.
Biases and uncertainties in the atmospheric component of
OASIM have been characterized for clear sky high spectral
resolution (1 nm; Gregg and Carder, 1990) and under mixed
cloudy and clear skies for integrated spectral resolution (Gregg
and Casey, 2009). We elaborate here on the ocean optical
calculations.

Optical Properties of Ocean Constituents
The coupled NOBM-OASIM model includes optically active
constituents, including seawater, phytoplankton, detritus, PIC,
and CDOC each with unique spectral characteristics (Figure 2).
All are prognostic state variables, with independent sources and
sinks. The optical properties of each constituent are taken from
various efforts in the peer reviewed literature.

Water
The spectral absorption and scattering properties of seawater
was reported by Smith and Baker (1981) for the 200–800 nm
spectral domain. Pope and Fry (1997) revised this for the range
380–720 nm, but this was for pure water. Morel et al. (2007)
derived new data for absorption and scattering for the spectral

range 300–500 nm using information in the clearest ocean waters
of the South Pacific (although absorption values >420 nm were
taken from Pope and Fry, 1997). Finally, Lee et al. (2015) reported
absorption coefficients in the range 350–550 nm derived using
remote sensing reflectance algorithms for the same clear ocean
water data used by Morel et al. (2007). Mason et al. (2016) used
laboratory observations to obtain new absorption coefficients for
the spectral range 250–550 nm. Like Pope and Fry (1997), their
results were specific to pure water.

Water absorption data used here are from Smith and Baker
(1981) for 200–300 nm and 730–800 nm, Morel et al., 2007) for
300–350 nm, Lee et al. (2015) for 350–550 nm, Pope and Fry
(1997) for 550–720 nm, Circio and Petty (1951) for 800 nm–2.5
µm, and Maul (1985) for 2.5–4 µm. Water scattering is from the
method of Zhang et al. (2009), which accounts for temperature
and salinity dependence. The backscattering-to-total scattering
ratio b̃bw for water is 0.5.

Phytoplankton
Phytoplankton optical properties are obtained from various
sources. Chlorophyll-specific absorption coefficients a∗p(λ)
are derived by taking reported spectra and normalizing to
the absorption at 440 nm [a∗p(440)]. Normalized specific
absorption spectra [a∗p(λ)]N are computed for each of the
four phytoplankton groups: diatom and chlorophyte [a∗p(λ)]N
are taken from Sathyendranath et al. (1987), cyanobacteria
from Bricaud et al. (1988), and coccolithophores from Morel
and Bricaud (1981). Then the specific spectral a∗p(λ) values
are derived using mean values at 440 nm. Diatom a∗p(440)
represents the mean of 5 observations containing 4 different
spp., chlorophytes 6 observations from 4 spp., cyanobacteria 5
observations from 3 spp., and coccolithophores 3 observations
of 1 spp.

Phytoplankton specific scattering coefficients b∗p(λ) are
obtained from measurements at 590 nm and extended to the
entire spectrum from specific attenuation coefficients (Bricaud
et al., 1988). Diatom and chlorophyte specific scattering
coefficients at 590 nm, b∗p(590) and b∗p(590), are the mean
of 5 observations and 6 observations, respectively, from Morel
(1987), Bricaud and Morel (1986), and Bricaud et al. (1988).
Cyanobacteria b∗p(590) is themean of 8 observations fromMorel
(1987), Bricaud and Morel (1986), Bricaud et al. (1988), and Ahn
et al. (1992). Coccolithophore b∗p(590) is derived from the mean
of 3 observations from Bricaud and Morel (1986), Bricaud et al.
(1988), and Ahn et al. (1992).

We assume no spectral dependence in the backscattering-
to-total scattering ratio b̃bp. Ahn et al. (1992) suggested a
spectral dependence for cyanobacteria but generally none for
the other groups. Reported values for b̃bp are 0.002 for diatoms
(Morel, 1988), 0.00071 for chlorophytes, 0.0032 for cyanobacteria
(Ahn et al., 1992), and 0.00071 for coccolithophores (Morel,
1988). Some of these values have come under question based
on non-sphericity of many natural phytoplankton populations
(Vaillancourt et al., 2004; Whitmire et al., 2010). Based on these
results, we increased b̃bp for chlorophytes and coccolithophores
by a factor of 10, but kept them as reported for diatoms and
cyanobacteria.
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FIGURE 1 | irradiance pathways in OASIM. Ed is direct downwelling irradiance, Es is diffuse downwelling. ρ surface reflectance, Eu is diffuse upwelling irradiance,

and LwN is normalized water-leaving radiance. All irradiances and radiances are spectrally resolved at 25 nm for Ed, Es, and Eu. and 1 nm for LwN.

Detritus
Detritus both absorbs and scatters light (Figure 2). Absorption
is typically considered an exponential function of wavelength
(Roesler et al., 1989; Gallegos et al., 2011).

ad(λ) = Da∗d exp[−Sd(λ − 440)] (2)

where ad(λ) is the absorption coefficient of detritus (m−1), D
is the concentration of detritus µg C m−3, Sd = 0.013 nm−1

(Gallegos et al., 2011) and a∗
d
is the mass-specific absorption

coefficient of detritus, which is set to 8.0E-5 m2 mg−1 for small
detritus as typically found in oceanic waters (Gallegos et al.,
2011). Only organic carbon detritus in the model is used for
detrital optics.

Detritus scattering is also taken from Gallegos et al. (2011).

bd(λ) = D b∗d (550/λ)
0.5 (3)

where bd is the total scattering coefficient, and b∗ d is the mass-
specific scattering coefficient, which is set as 0.00115 m2 mg−1,
and the backscattering-to-total scattering ratio b̃bd is 0.005.

PIC
PIC optical properties have been evaluated by Gordon et al.
(2009). We adopt this formulation for our simulation. PIC
scatters irradiance but does not absorb

bPIC(λ) = PIC b∗PIC (λ) (4)

where PIC is the concentration of PIC (mgC m−3) and b∗ PIC(λ)
is PIC-specific spectral scattering coefficient from Gordon et al.

(2009) in units of m2 mgC−1. The backscattering-to-total
scattering ratio b̃bpic is from Balch et al. (1996), using their lower
bound of 0.01.

CDOC
As a dissolved component, CDOC only absorbs and does not
scatter. Its spectral absorption is similar to detritus but with a
different slope

aCDOC(λ) = a∗cdoc exp[−Scdoc(λ − 443)] (5)

where a∗
cdoc

is the mass-specific absorption coefficient of CDOC

(m2 mg−1), Scdoc = 0.014 nm−1 (Bricaud et al., 1981, 2010).
S is in the low end range of observations in surface waters of
the Equatorial Atlantic (Andrew et al., 2013) but only slightly
lower than those observed in the Mediterranean Sea (Organelli
et al., 2014). There are few reports of the mass-specific absorption
coefficient of CDOC a∗

cdoc
. We have found three observations

in the literature (Carder et al., 1989; Yacobi et al., 2003; and
Tzortziou et al., 2007). The more recent two are in agreement at
2.98 × 10−4 m2 mg−1 in 4 rivers in Georgia, USA (Yacobi et al.,
2003) and 2.78 × 10−4 m2 mg−1 as the mean of 4 stations in the
Rhode River, Maryland, USA (Tzortziou et al., 2007). Carder et al.
(1989) reported a mean over about nearly an order of magnitude
lower in the Gulf of Mexico (4.74 × 10−5 m2 mg−1). We choose
Yacobi et al. (2003) for our simulation.

Upwelling Spectral Radiance
OASIMuses 25-nm spectral resolution in the 350–7700 nm range
in the coupled model for downwelling and upwelling irradiance
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FIGURE 2 | Spectral absorption and scattering coefficients of water, phytoplankton, detritus, PIC, and CDOC in OASIM.

needed for phytoplankton growth and CDOC destruction. For
enhanced realism of the PACE simulation of upwelling radiance
we increase the spectral resolution to 1 nm. Since all of the
optical properties data are available at 5 nm resolution or
less, it is reasonable to simply interpolate the 5 nm data.
The computation of upwelling spectral radiance LwN(λ) is
derived from the coupled expressions of downwelling and
upwelling irradiance by Aas (1987) as modified by Ackleson et al.
(1994).

dEd(λ)

dz
= − Cd(λ)Ed(λ) (6)

dEs(λ)

dz
= − Cs(λ)Es(λ) + Bu(λ)Eu(λ) + Fd(λ)Ed(λ) (7)

dEu(λ)

dz
= − Cu(λ)Eu(λ) − Bs(λ)Es(λ) − Bd(λ)Ed(λ) (8)

where Ed(λ) is the spectral downwelling direct irradiance at
the bottom of a model layer, Es(λ) is the downwelling diffuse

irradiance, and Eu(λ) is the upwelling diffuse irradiance. The
attenuation terms Cx (where x is an indicator for the irradiance
pathway d for direct downwelling, s for diffuse downwelling, and
u for diffuse upwelling), backscattering terms Bx, and forward
scattering Fx differ for each of the irradiance pathways because
of different shape factors (Aas, 1987; Ackleson et al., 1994) and
mean cosines.

Cd(λ) = [a(λ)+ b(λ)]/µ
d

(9)

Cs(λ) = [a(λ)+ rsbb(λ)]/µs
(10)

Cu(λ) = [a(λ)+ rubb(λ)]/µu
(11)

Bd(λ) = bb(λ)/µd
(12)

Bs(λ) = rsbb(λ)/µs
(13)

Bu(λ) = rubb(λ)/µu
(14)

Fd(λ) = (1− b′b)b(λ)/µd
(15)

where a is the absorption coefficient, b is the total scattering
coefficient, bb is the backscattering coefficient, b′

b
is the ratio
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of backscattering to total scattering, and µ is the mean cosine
(constant for diffuse irradiance, but varies with solar zenith
angle for direct irradiance). The shape factors are indicated by
the rx terms, and are specified as in Ackleson et al. (1994).
Equation 5 can be solved a priori, which can then be used as
a boundary condition, greatly simplifying the solution of the
coupled Equations 6, 7.

Equation 8 can be simplified for normalized upwelling
radiance since by its definition the surface downwelling
irradiance does not include attenuation effects of the atmosphere
and the solar zenith angle is assumed to be 0◦ with overhead
sun (Gordon, 1997). Substituting the mean extraterrestrial
irradiance (Thuillier et al., 2004) for downwelling irradiance,
we can obtain upwelling normalized water-leaving radiance
solving the Aas (1987) expressions and correcting for surface
reflectance.

LwN(λ) = Fo(λ, 0
−)(1− ρ)/(n2Q) (16)

where Fo is the mean extraterrestrial irradiance (mW cm−2

µm−1) just below the ocean surface (0−) derived using
Aas (1987), ρ is the surface reflectance (0.021), n is the
index of refraction (1.341) and Q is the radiance:irradiance
distribution function (= π for normalized surface
irradiance).

Using 1 nm spectral resolution LwN not only supports testing
PACE sensor and mission concepts, it also simplifies comparison
with MODIS-Aqua LwN by virtue of avoiding band mismatches.
The pathways of optical constituents to optical properties to
upwelling normalized water-leaving radiances as represented
by the NOBM-OASIM global coupled physical-biogeochemical-
optical model is depicted in Figure 3.

Data Assimilation
Global total chlorophyll from MODIS is assimilated into NOBM
using the method described in Gregg (2008). Additionally, global
PIC from MODIS (Balch et al., 2005) is assimilated, using the
same methodology except that the data are not log-transformed
before assimilation. CDOC is assimilated, however, it requires
a transformation before the process is executed. There is no
available satellite data for CDOC, but a satellite product called
aCDM is available (Garver and Siegel, 1997; Maritorena and
Siegel, 2005; Maritorena et al., 2010). We use the products
from MODIS-Aqua in this effort. This product represents the
absorption of both CDOM and detritus (hence the usage of
CDM tominimize confusion about its nature). Siegel et al. (2002)
estimated the detrital contribution as 12%. We assume this is
globally constant and apply a correction of 0.88 to the aCDM(443)
data fields prior to assimilation. We recognize this is a potential
error, but it is difficult to separate the two in a reflectance
inversion methodology because the spectral slopes of absorption
are quite similar. The satellite aCDM(443) is assimilated with
model aCDOC(443), which is then easily converted to CDOC
using the mass-specific absorption coefficient of CDOC (Yacobi
et al., 2003).

Upwelling radiances are not assimilated. They are computed
using the distributions of optical constituents in the model, their
optical properties (Figure 2), and Equation 16 at 1 nm spectral
resolution.

Model Setup
The model is integrated for 35 years from an initial state using
climatological atmospheric forcing, with the new variables PIC
and CDOC initialized to 0 concentrations. The model is then
run forward in time from 2003 through 2007 using transient
atmospheric forcing from MERRA (Rienecker et al., 2011) and
assimilating MODIS-Aqua total chlorophyll, PIC, and CDOC.

FIGURE 3 | OASIM spectral upwelling radiance and dependencies in the ocean. Shown are the visible bands. The spectral resolution for upwelling radiance is

1 nm. Inherent optical properties are derived from spectral characteristics of water, phytoplankton groups, detritus. PIC, and CDOC.
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Statistical Comparison
The optical constituents of the NOBM-OASIM assimilation
model are compared to in situ and/or satellite (MODIS) monthly
data where and when available. Phytoplankton groups are

compared to in situ data while total chlorophyll, PIC, and aCDOC
are compared to satellite estimates. The statistics are aggregated

over the 12 basins of the global oceans, mean differences (biases)
computed, and then correlations computed over the basins.
This provides an estimate of large scale correlations and is

very stringent considering the low number of observations.

The major ocean basins are divided into 3 main regions, high
latitudes (poleward of ± 40◦ latitude): North Atlantic and

Pacific and Southern Ocean, mid-latitudes (between ± 40◦

and ±10◦ latitude): North Central Atlantic and Pacific, South

Atlantic, Pacific and Indian, and North Indian, and tropical
basins (between ± 10◦ latitude): Equatorial Atlantic, Pacific,
and Indian. Comparison of assimilated model results with the
data used for assimilation is typically insufficient for assessing
assimilation performance (Gregg et al., 2009). However, in this
case the objective is to simulate dynamic global water-leaving
radiances to support a proposed mission, not to assess the
assimilation methodology. Here, knowledge of the biases and
uncertainties in the underlying ocean optical constituents derived
from the assimilation model is best achieved using the satellite
data inputs for assimilation. Normalized water-leaving radiance
using OASIM and the computed optical constituent distributions
are compared to MODIS at the available MODIS bands, 412, 443,

488, 531, 547, and 667 nm. Using 1 nm upwelling radiances at
the center of MODIS bands, we can evaluate the simulated bias
and uncertainty with MODIS data and avoid model/data band
misalignment. These statistics are not aggregated by basin.

RESULTS

We evaluate ocean optical constituents, specifically
phytoplankton, total chlorophyll, PIC, and aCDOC, the latter three
of which are provided as data sets from MODIS-Aqua. Water

TABLE 1 | Comparison of simulated optical constituents in NOBM-OASIM

with data (in situ or satellite).

Optical constituent Difference Correlation N (ocean basins)

Diatoms 17.0% (in situ) 0.890 P < 0.05 11

Chlorophytes −16.2% (in situ) −0.318 NS 10

Cyanobacteria −2.4% (in situ) 0.732 P < 0.05 11

Coccolithophores 5.3% (in situ) 0.716 P < 0.05 10

Total Chlorophyll −35.9% (satellite) 0.869 P < 0.05 12

PIC −28.5% (satellite) 0.868 P < 0.05 12

aCDOC −24.6% (satellite) 0.890 P < 0.05 12

Detritus NA NA NA

NS indicates not significant at 95% confidence. NA indicates data not available for

comparison. The satellite comparison uses MODIS-Aqua and model data used are

co-located and coincident with monthly mean MODIS data.

FIGURE 4 | Model assimilated total chlorophyll for June and December 2007 compared to MODIS-Aqua chlorophyll.
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is a constant background and we are not aware of global data
on detritus. We evaluate water-leaving radiances by comparing
model upwelling radiances at MODIS-Aqua wavelengths with
those MODIS-Aqua radiance data.

Global Ocean Optical Constituents
Total chlorophyll from the assimilated NOBM-OASIM model is
within −35.9% of satellite data (model low), with a correlation
across basins of 0.869 (P < 0.05; Figure 4; Table 1). The model is
low because of uncorrected aCDM in the satellite data, especially
near coasts and river mouths, which artificially drives up the
estimates of chlorophyll.

Phytoplankton group relative abundances are positively
correlated with in situ data for diatoms, cyanobacteria, and
coccolithophores (P < 0.05) but chlorophytes are not correlated
(Table 1). All four groups have relative abundance biases <

±20% compared to in situ data, with diatoms the largest at 17%.
Assimilated PIC is correlated with satellite estimates (P <

0.05) and concentrations are within −28.5% (Figure 5; Table 1).
Simulated PIC is overestimated and more widespread in the
Southern Ocean in December, but otherwise exhibits similar
variability as indicated by the correlation coefficient (r = 0.868).
It is unable to capture the localized extreme high concentrations
in June in the northern high latitudes, which leads to model
underestimates globally. Model comparison of aCDOC (443 nm)
is within −24.6% of satellite estimates of aCDM (443 nm)
(Table 1), which represents the combined absorption of dissolved

matter and particulate matter (detritus). A basin correlation
coefficient of 0.890 (P < 0.05) is obtained (Table 1). Maps of
global distributions for June and December 2007 illustrate the
comparison between model and data (Figure 6). Although river
discharge is not included in the model, high aCDOC is produced
at major river mouths (e.g., Amazon, Orinoco, Congo) via the
assimilation of aCDM (see Figure 6).

Global Normalized Water-Leaving
Radiances
The mean of the global median difference of model normalized
water-leaving radiances with MODIS-Aqua radiances for all 6
bands for the period 2003–2007 is−0.074 mW cm−2

µm−1 sr−1

(−10.4%) with a mean semi-interquartile range of 0.077 and a
significant correlation of 0.706 (P < 0.05). There is a positive
and significant correlation with all the simulated radiances with
satellite data (Figure 7). The largest relative difference (−30%)
and lowest correlation (r = 0.48) occurs in the longest MODIS
band, 667 nm (Figure 7). Band 1 (412 nm) has the largest
absolute difference (−0.19 mW cm−2

µm−1 sr−1; Figure 7), but
only the third largest relative difference with a mean of −12.5%,
and it has a high correlation of 0.946. All simulated radiances are
low relative to data (Figure 7). Correlations of the longer visible
wavelengths, 531, 547, and 667 nm are much lower than those of
the shorter wavelengths.

Global maps of water-leaving radiances illustrate the spatial
agreement and discrepancies between themodel and satellite data

FIGURE 5 | Model assimilated PIC for June and December2007 compared to MODIS-Aqua PIC.
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FIGURE 6 | Model assimilated aCDOC 443 nm for June and December 2007 compared to MODIS-Aqua aCDM 443 nm.

(Figures 8–10). The spatial distributions reflect the biases and
correlations shown in Figure 7. Low biases in model radiances
are apparent for all bands, but the locations differ. Low model
radiances are most apparent for the shorter wavelengths (412
and 443 nm) in the central gyres (Figure 8). Mid-range bands
(531 and 547 nm) show low model biases in the northern high
latitudes (Figures 9, 10). The longest MODIS band (667 nm)
does not exhibit a model bias as shown in Figure 7, but the bias
is below the spectral resolution of the figure.

Maps of normalized water-leaving radiances at various
wavelengths from the 1 nm hyper-spectral resolution capability
are shown in Figures 11, 12. The radiance wavelengths are
broken into the two figures to capture variability over the widely-
ranging radiance values shown. The second set of radiance maps
(Figure 12) uses a different scale for radiance values. Otherwise,
spatial variability in these radiances is not visible.

Two locations in the North Pacific Ocean are selected to
show hyperspectral variability in different oceanic environments
(Figure 13). One is a low-chlorophyll central gyre location which
is characterized by low chlorophyll, PIC and CDOC, southwest
of Hawaii. The other is in the high latitude North Pacific just
south of the Aleutian Islands, where high chlorophyll, PIC and
CDOC prevail. Hyperspectral 1 nm normalized water-leaving
radiances show considerable differences in magnitude and local
spectral slopes, suggesting the potential for discrimination of
ocean constituents from PACE.

DISCUSSION

We have described a comprehensive model of optical
constituents and their influences on hyper-spectral upwelling
radiance in the global oceans. The model contains a
representation of major optical constituents, namely, water, total
chlorophyll, four major phytoplankton taxonomic/functional
groups, organic detritus, PIC, and CDOC. All except water
are prognostic variables in the model with individual
sources and sinks, and with full dynamical capability
arising from advection and diffusion processes in the global
oceans.

Normalized water-leaving radiances from the global
distributions of optical constituents have been quantitatively
compared to MODIS-Aqua radiances for the 6 wavelengths
available at 412, 443, 488, 531, 547, and 667 nm. These 6
discrete wavelengths provide only a partial basis for estimating
the potential of a global dynamical model to represent the
hyper-spectral capability of the next generation PACE mission.
Thus, the error estimation is incomplete, and relevance to PACE
and its ability to simulate future global hyper-spectral radiances
is unconfirmed. However, the comparison of the model with
the 6 MODIS bands suggests a level of skill sufficient to support
some analysis of mission capability and design, and the level
of caution necessary to proceed in these activities is quantified
here.
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FIGURE 7 | Global statistics on model normalized water-leaving radiances LwN(λ) compared to MODIS-Aqua data for 2003–2011. Mean radiance and

difference is mW cm−2
µm−1 sr−1. Correlation is r-value. All correlations are significant (P < 0.05: N > 3.7 × 106. Error bars represent semi-interquartile range.

Global Ocean Optical Constituents
The global ocean biology model is optically comprehensive, but it
is not complete. There are optical constituents in the oceans that
are not included in themodel. Some can be important, sometimes
globally but most often regionally. For example, bacteria and
virus scattering is not present in the model. Bacteria scattering
is considered an important component of the scattering from
the living part of the particulate pool, possibly dominating the
phytoplankton (Balch et al., 2002; Stramski et al., 2004). However,
the scattering contributions from the living components are
estimated to be small relative to detritus (Stramski et al.,
2004). We assume here that bacteria covary with detritus. Virus
scattering is disputed. Balch et al. (2002) suggest it may be
important while Stramski et al. (2004) consider it negligible.

Minerals/suspended sediments are not included. These are
most important near river mouths at times of high discharge, but
they also occur from particulate deposition from the atmosphere,
such as desert dust (Wozniak Stramski, 2004) or organic carbon
from biomass burning. Absorption by mycosporine-like amino
acids (Moisan and Mitchell, 2001) is not included in the model.
This is most important in the ultraviolet spectrum, and casts
suspicion on the simulated representations of water-leaving
radiances in this spectral region by the model. PACE is nominally
expected to detect as low as 350 nm (PACE Mission Science
Definition Team Report, 2012), but there may be interest in

expanding that range if it is technically and economically feasible.
The most recent configuration concept is to expand the detection
limit to 320 nm. Inclusion of the effects of mycosporine-like
amino acids should be included in future improvements of the
biological global model.

Finally, four phytoplankton groups cannot possibly represent
the range and complexity of the phytoplankton taxa living in
the oceans. Unfortunately, detailed knowledge of the optical,
physical, and physiological properties of the world’s ocean
phytoplankton, which is required to parameterize our coupled
optical, physical, and biological model, is not available. We
recognize our four groups as a shortcoming, but they do
capture a substantial range of functionality. Diatoms represent
the fast growing, fast sinking component particularly important
in the carbon and silicon cycles. Cyanobacteria represent the
functional opposite, as a slow growing, nearly floating, very
small phytoplankton that occupy the nutrient-desolate vast
ocean gyres, and additionally have a limited nitrogen-fixing
capability (Rousseaux et al., 2013). Coccolithophores represent
a unique category of calcium-producing phytoplankton, which
scatter light out of the oceans effectively and play a role in the
carbon cycle by affecting alkalinity in addition to photosynthesis
and respiration processes. Finally, chlorophytes represent (or
at least are intended to represent) intermediate phytoplankton
with characteristics between diatoms and cyanobacteria. It

Frontiers in Marine Science | www.frontiersin.org 10 March 2017 | Volume 4 | Article 6069

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Gregg and Rousseaux Simulating PACE Global Ocean Radiances

FIGURE 8 | Model normalized water-leaving radiances LwN(λ) for 412 and 443 nm compared to MODIS-Aqua radiances.

is this intermediate category that is most under-represented
here and is where much of the diversity of the global ocean
arises.

The fact that chlorophytes are not significantly correlated with
in situ data in the model is particularly important because they

are the only group in the model representative of the diverse
phytoplankton component between the functional extremes of

diatoms and cyanobacteria, save for the unique coccolithophore
class. This is a deficiency in the model as it pertains to PACE

and we acknowledge that their lack of correlation with data
is important. However, in the model we assume chlorophytes
represent a very wide range of phytoplankton, often reported

to as nanoplankton. Since in situ data sets rarely specifically
identify chlorophytes, we compare our model chlorophytes to
in situ data reports of nanoplankton, non-diatoms or non-

pico-prokarytotes, representing this middle ground between
diatoms and cyanobacteria. We note that most of the lack of

correlation with in situ data occurs in the high latitudes, where
chlorophytes are not common, but other types on nanoplankton
are sometimes abundant. The abundance of these reported
nanoplankton in the high latitudes, coupled with the near-

absence of chlorophytes in the model, is the cause of the lack of
correlation. The model representation of chlorophyte abundance
corresponds much more closely with reported observations of
nanoplankton in the lower latitudes, suggesting that simulation
of PACE radiances in these basins is likely to be more
realistic.

Using Data Assimilation to Improve the
Representation of Global Optical
Constituents
The assimilation of chlorophyll has been demonstrated to
improve the representation of distributions regionally and
globally (Hu et al., 2012; Fontana et al., 2013; Gregg and
Rousseaux, 2014). Assimilation of PIC and aCDM has not
been attempted globally, to our knowledge. Our purpose in
assimilating PIC and aCDM is not novelty but fidelity. The optical
properties of PIC have been established (Balch et al., 1996;
Gordon et al., 2009) and one can find models of production
and dissolution in the literature (Buitenhuis et al., 2001; Gangsto
et al., 2011; Barrett et al., 2014). Our parameterization of sinking
processes is a matter of trial and error using global satellite
fields of PIC from MODIS-Aqua. Assimilation of aCDM is a
larger challenge. Although assimilation of optical properties,
in particular the diffuse attenuation coefficient, has shown
value (Ciavatta et al., 2014), the assimilation of aCDM is more
problematic because there a few examples of its use in coupled
physical-biogeochemical models (e.g., Buitenhuis et al., 2001;
Xiu and Chai, 2014; Dutkiewicz et al., 2015) We approach the
problem in a bottom-up fashion, adding a dynamical tracer
to the biogeochemical model suite, i.e., CDOC, which has the
optical properties of aCDOC(λ). The characterization of the
biological production and loss terms for CDOC is more or less
straightforward, as it can be related to those from the optically
inert DOC (e.g., Aumont et al., 2002). Loss of CDOC via the
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FIGURE 9 | Model normalized water-leaving radiances LwN(λ) for 488 and 531 nm compared to MODIS-Aqua radiances.

absorption of spectral irradiance is more difficult. Although the
absorption characteristics are well-established, how that relates
to CDOC concentration and subsequent destruction is difficult
to quantify. There is regional information on defining a quantum
yield for CDOC photolysis, ϕcdoc (e.g., Reader and Miller, 2012,
2014), but we require a global spectrally integrated solution. We
consider our parameterization of ϕcdoc to be tenuous, but we take
consolation that the assimilation guides us to a reasonable result
in the end, and even rectifies the absence of river input in the
model, which is a major source of CDOC to the oceans. For the
present purpose of providing a model to assist in the early stages
of development of a future mission, we believe our approach has
support as an initial step. The statistical comparison of CDOC
distributions with satellite data supports this approach as well
(Table 1; Figure 6).

Global Water-Leaving Radiances
The comparison of model water-leaving radiances with MODIS-
Aqua at the 6MODIS bands suggests some skill in the simulation:
the mean of the global median difference is −0.077 ± 0.079 mW
cm−2

µm−1 sr−1 (−10.4%). A statistically significant correlation
with all the simulated radiances with satellite data is found
(Figure 7), although some of the correlation coefficients are
low. We emphasize that the radiances are not assimilated. We
emphasize that the radiances are not assimilated. Rather, they are
the result of the distribution of optical constituents in the coupled
model.

The longer visible wavelengths, 531, 547, and 667 nm
have lower correlations with satellite data than the shorter
ones. There is much less spatial variability in the longer
wavelengths (Figures 9, 10). Ocean color sensors have much
larger uncertainty in these wavelengths (Mélin et al., 2016) which
contributes to the decrease in correlation of these radiances here.

The model is always low relative to the MODIS normalized
water-leaving radiances. The low model radiances occur in
different regions for the different bands. For the shortest MODIS
wavelengths, 412 and 443 nm, largest biases occur in the ocean
gyres (Figure 8), where ocean biological optical constituents are
at their lowest magnitudes. The 412 nm band has a larger model-
data discrepancy than the 443 nm band (Figure 7). For the mid-
range bands 531 and 547 nm, the model-data discrepancies occur
in the northern high latitudes.

The model low bias for LwN(412) and LwN(443) in the
central gyres suggests either missing scattering in the model
or overestimated absorption. These regions are biologically the
most barren regions in the global ocean, where the main
optical constituent is water. The southeast Pacific gyre has
been the subject of an intensive field campaign (BIOSOPE),
and several investigators have relied upon this data set to
revise the understanding of the optical properties of seawater
(Morel et al., 2007; Lee et al., 2015), CDOM and particulate
detrital absorption (Bricaud et al., 2010), and total particulate
backscattering (Twardowski et al., 2007). The Lee et al. (2015)
seawater absorption revision reduced the absorption coefficients,
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FIGURE 10 | Model normalized water-leaving radiances LwN(λ) for 547 and 667 nm compared to MODIS-Aqua radiances.

thus producing more scattering, which has helped in our
model here, since the revision is used in our calculations.
Residual underestimation of scattering and/or overestimation of
absorption still prevails in the simulation.

It is possible that the exclusion of mineral scattering in the
model is important in the central gyres. However, this argument
would be more persuasive for the North Central Pacific and
North Central Atlantic gyres than the South Pacific gyre, since
there are few atmospheric depositions to this region. One cannot
neglect the possibility of radiative model error as well. Perhaps
the use of empirical constants in a remote sensing reflectance
algorithm, such as Lee et al. (2002) or Gordon et al. (1988), would
improve radiances. However, this would sever connections in the
radiative modeling system, which uses an analytical model for
simulation of both irradiance transmittance in the ocean and the
irradiance and radiance re-emerging to and above the surface.

Finally, the spectral slope of detrital absorption Sd(λ) used
here, 0.013 nm−1, which was derived from assessment of small
particulates in the Chesapeake Bay (Gallegos et al., 2011), is
higher than that derived from the southeast Pacific by Bricaud
et al. (2010), 0.0094 nm−1. This could lead to the higher
absorption and subsequent lower backscatter, especially in the
shorter wavelengths, as we observe here. How much will depend
upon the concentration of detritus in this region and the other
central gyres.

The model also exhibits low radiances compared to MODIS
for the 531 and 547 nm bands (Figures 9, 10), except these are

mostly located in the northern high latitudes. These discrepancies
appear to be related to the distributions of PIC (Figure 5).
Model PIC distributions here largely correspond with satellite
distributions, although local maxima in the southern central
North Pacific and the Greenland Sea are subdued in the model
(Figure 5). These two locations are responsible for the largest
disagreements. However, additional local maxima in satellite PIC
occur in the northern Bering Sea and western Sea of Okhotsk
(Figure 5), that are not accompanied by high water-leaving
radiances in the MODIS 531 and 547 nm bands (Figures 10, 11).
High chlorophyll (Figure 4) and aCDOM (Figure 6) in the model
and MODIS likely suppress the scattering of PIC in the northern
Bering Sea and Sea of Okhotsk. But the lack of representation
of the high scattering by PIC in the south-central North Pacific
and Greenland Sea results from the spatially smoother PIC
distributions in the model compared to MODIS (Figure 5).
Overall widespread higher radiance dispersed throughout the
northern basins in likely due to inadequate PIC scattering
in the model, considering the correspondence between model
and satellite PIC distributions. Excessive absorption by other
constituents in the model can contribute to the differences in
radiances between model and data here. Such high absorption
would likely be due to phytoplankton (particularly diatoms,
which are predominant in the North Pacific), or coccolithophores
which are prevalent in the North Atlantic.

Global maps of selected normalized water-leaving radiances
other than those coincident with MODIS-Aqua show
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FIGURE 11 | Model normalized water-leaving radiances for selected wavelengths in the ultraviolet and visible region.

considerable spectral and spatial variability (Figures 11, 12).
The figures are divided into two groups because the spectral
range is so large that different scales must be utilized. Figure 10
shows radiances from two ultraviolet-b bands (300 and 320 nm),
to an ultraviolet-a band (340 nm), and 13 through mid-range
visible (360–560 nm). There is a steady increase in radiance
intensity as we progress from shorter to longer wavelengths
until about 400–410 nm, then a slow decline to 560 nm.
An exception to this trend is the radiance at 430 nm, which
shows a sharp decline relative to its neighbors at 420 and
440 nm (Figure 11). This is due to a local minimum in the
extraterrestrial irradiance that is employed at 1 nm resolution
(Thuillier et al., 2004). These local minima and maxima occur
occasionally in the radiance spectrum and represent a potential
issue when choosing band locations for PACE. There can
be very large swings in signal strength in short wavelength
segments.

The second selection of radiance wavelengths, at extreme
ultraviolet-b along with the long end of visible and 3 near
infrared wavelengths (Figure 12), shows increasing intensity
from 250 through 270 nm, and another from 600 to 630
nm, before reversing from 650 to 720 nm. There is very little
normalized water-leaving irradiance at 720 nm and spatial
variability will require another scale change to be visible.
There is another anomaly, this time a local maximum, at
270 nm, again due to the high spectral variability in the

extraterrestrial irradiance. This set of radiances, with the
possible exceptions of the shorter 600 nm bands, suggests
that ocean signal detection from a satellite will be challenging.
The longer 600 nm wavelengths are conventionally used for
atmospheric correction since there is so little ocean contribution
to the normalized water-leaving radiance (e.g., Gordon, 1997)
while NIR bands (e.g., Wang et al., 2016) have shown
additional promise for the rare conditions when the ocean does
contribute here.

Potential Uses for Pace Mission Design
and Analysis
The hyper-spectral 1 nm resolution ocean model presented
here suggests skill for simulating global normalized water-
leaving radiances, as shown by the comparison with the
moderate resolution bands for MODIS-Aqua. Quantitative
error characterization shows the limits of usefulness in the
MODIS bands and the potential for simulating radiances outside
the current satellite observational capability. This suggests
at least some usefulness for pre-launch PACE design and
analysis activities, guided by due caution of the limits of the
simulation.

Representation of remotely-sensed normalized water-leaving
radiances may be approached using airborne (e.g., Airborne
Visible/Infrared Imaging Spectrometer, Portable Remote
Imaging SpectroMeter), or in situ data, or coastal spaceborne
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FIGURE 12 | Model normalized water-leaving radiances for selected wavelengths in the ultraviolet, long visible, and near-infrared region. Note scale

change.

imagers, such as the Hyperspectral Imager for the Coastal
Ocean. However, the global observing simulation capability
of the present assimilated model can contribute in other
important ways that airborne, in situ and limited spaceborne
data cannot.

The most important attribute that separates PACE from
previous ocean color missions is its global hyper-spectral
resolution capability. The global simulation described here at 1
nm can help clarify questions about band selection, specifically
choice of bands, band widths, number of bands and their
center location. Variability over orbital tracks encountering a
range of solar and satellite angles complicates band selection
decisions in ways that in situ and most airborne activities
cannot resolve. The global seasonal nature of the simulation
assists in understanding potential signal strength issues over the
diverse regions and seasons encountered in a global mission.
It is possible to sample the simulated 1 nm bands in various
scenarios to observe and optimize their location and widths,
subject to the viewing constraints of an orbiting platform. Optical
effects, such as spectral response function can be included
in the analysis. As mission design and construction proceeds,
issues can arise and tradeoffs must be assessed. These often
include signal-to-noise ratios, detector saturation effects, gain
selection and operation (if applicable), stray light, and bright
target recovery. The existence of the simulation described here

can provide numerical answers from an orbital perspective,
even if approximate, as these issues emerge. The limitations
of the model are quantitatively characterized here and can
be factored into the decisions on how to proceed. A much
more modest simulation, using only a single global map of
ocean color data derived from the entire CZCS mission (Gregg
et al., 1997), proved helpful in designing and managing the
SeaWiFS mission, which, like PACE, had no global observational
precedent.

The second most important feature of this simulation is
to provide a platform for algorithm development activities.
Although the phytoplankton differentiation in the model is
necessarily simplified, it can be used in coarse algorithm
activities. At worst, algorithms that cannot differentiate among
the simple phytoplankton assemblage in the simulation would
likely have difficulties in actual ocean observations, where the
phytoplankton diversity is enormous.

The simulation can also assist in studies of data
collection strategies on orbit. Seasonal variability in
phytoplankton/PIC/CDOC distributions is explicitly
incorporated in the simulation to include a full representation
of optical combinations as seen to date with current
missions. If coupled with a similarly comprehensive and
hyper-spectral atmospheric simulation, and an orbital
viewing platform, the combined models can be used to
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FIGURE 13 | Normalized water-leaving radiances from two locations in the Pacific Ocean: a gyre location (low chlorophyll) and a high latitude location

(high chlorophyll).

explore signal retrieval at the sensor and help maximize
the ability to meet the challenging goals of this ambitious
mission.
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Standard NASA ocean color algorithm OC4 was developed on the basis of ocean optical

data and while appropriate for Case 1 oceanic waters could not be adequately applied

for the Black Sea waters due to its different bio-optical properties. OC4 algorithm is

shown to overestimate chlorophyll concentration (Chl-a) in summer and underestimate

Chl-a during early spring phytoplankton blooms in the Black Sea. For correct conversion

of satellite data to Chl-a, primary production and other indicators regional algorithms

should be developed taking into account bio-optical properties of the Black Sea waters.

Light absorption by phytoplankton pigments– aph(λ) have been measured in open sea

and shelf Black Sea waters in different seasons since 1998. It was shown that the first

optical depth was located within the upper mixed layer (UML) for most of the year with

the exception of the spring when seasonal stratification was developing. As a result

spectral features of water leaving radiance were determined by optical properties of

the UML. Significant seasonal differences in Chl-a specific light absorption coefficients

of phytoplankton within UML have been revealed. These differences were caused by

adaptive changes of composition and intracellular pigment concentration due to variable

environment conditions–mainly light intensity. Empirical relationships between aph(λ) and

Chl-a were derived by least squares fitting to power functions for different seasons.

Incorporation of these results will refine the regional ocean color models and provide

improved and seasonally adjusted estimates of chlorophyll a concentration, downwelling

radiance and primary production in the Black Sea based on satellite data.

Keywords: phytoplankton, light absorption, parameterization, chlorophyll a concentration, upper mixed layer, the

Black Sea

INTRODUCTION

Visible spectral radiometric data are used widely to assess water productivity (Saba et al., 2011) and
to study effect of climate change on ocean productivity (Behrenfeld et al., 2006). Optical scanners
of Sea-viewing Wide Field-of-view Sensor (SeaWiFS), MEdium Resolution Imaging Spectrometer
(MERIS), Moderate Resolution Imaging Spectroradiometer aboard the Terra and Aqua satellites
(MODIS-Aqua/Terra) measure water leaving radiance at several spectral bands (RRS) (Feldman
and McClain, 2013). The spectral distribution of RRS is influenced by particulate scattering
and absorbance of solar radiance by all in-water optically active components: phytoplankton,
non-algal particles (NAP), colored dissolved organic matter (CDOM) and pure water
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(Kirk, 1994). Light absorption by particles (ap (λ)),
phytoplankton (aph(λ)), NAP (aNAP (λ)) and CDOM (aCDOM(λ))
have been studied in different regions of the global ocean since
the 80-s (Hoepffner and Sathyendranath, 1992; Bricaud et al.,
1995, 1998; Cleveland, 1995; Babin et al., 2003) to develop
algorithms for assessment of water productivity based on remote
sensing. Inherent optical properties (IOPs) vary throughout
the world ocean. Due to high variability in light absorption
and scattering by optically active components, the world
ocean needs to be subdivided into various provinces based on
regional IOPs, and their features could be used to improve
remote-sensing algorithms for each province (Hoepffner and
Sathyendranath, 1992; Lutz et al., 1996; Suzuki et al., 1998).
Originally the standard NASA algorithm could be applied if
there was a high correlation between aph(λ) and absorption
by colored dissolved and suspended organic matter (aCDM(λ))
(Morel and Prieur, 1977). Although NASA standard algorithms
are continually being updated (O’Reilly et al., 2000), the latest
versions (OC4 for SeaWiFS, and OC3M for MODIS-Aqua
/Terra) do not provide an adequate assessment of chlorophyll a
concentration (Chl-a) in the Black Sea waters (Suslin and
Churilova, 2016) which belong to the Case 2 (Suslin et al., 2007).
Berthon et al. (2008) underlined that important uncertainties
for the retrieval of marine products like Chl-a still persisted
in areas (including the Black Sea) where relatively high
CDOM absorption and optically active water constituents
CDOM and NAP do not co-vary in a predictable manner with
Chl-a.

For correct conversion of optical scanner signals into water
productivity indices regional algorithms need to be developed
taking into account bio-optical properties of the Black Sea.
The assessment of the Chl-a needs to derive aph(λ) from total
light absorption by all optically active components and then
estimate Chl-a based on relationship between aph(λ) and Chl-a.
This relationship is also required for development of regional
algorithms of downwelling radiance and primary production
by spectral approach. Early versions of the regional bio-optical
algorithms (Suslin et al., 2008; Churilova et al., 2009; Churilova
and Suslin, 2010) were based on limited amount of bio-optical
data available. The bio-optical properties of the Black Sea (namely
aph(λ), aNAP(λ) and aCDOM(λ)) have been studied since 1995
in open and coastal waters of the Black Sea (Churilova, 2001;
Churilova and Berseneva, 2004; Churilova et al., 2004; Chami
et al., 2005; Berthon et al., 2008; Dmitriev et al., 2009). Variability
in aph(λ) spectral distributions and coefficient values in coastal
(Churilova and Berseneva, 2004; Chami et al., 2005; Dmitriev
et al., 2009) and openwaters (Churilova et al., 2004; Berthon et al.,
2008) have been demonstrated but seasonal variability in Chl-a
specific phytoplankton light absorption coefficients remains not
known in details. The bio-optical data measured in the deep
waters of the Black Sea from 2011 to 2015 will be examined in
this study.

The aim of the current research is to analyze seasonal
variability of relationship between phytoplankton light
absorption coefficients and chlorophyll a concentrations
in upper mixed layer (UML) of the Black Sea and derive
season-specific modeling parameters.

MATERIALS AND METHODS

Sampling
Bio-optical measurements were carried out during 7 cruises of
RV “Professor Vodyanitsky” in different seasons during 2011–
2015 in the deep-water areas (deeper 100m isobath) of Black Sea
(Table 1, Figure 1). Water samples were collected at 5–7 depths
within euphotic zone with 10 liter Niskin bottles of CTD/rosette
system MARK-III (Neil Brown Ocean Sensors, Inc) or SBE-
911plus (Sea Bird Electronics). Sampling depths were chosen
based on water transparency by Secchi disc depth (Zs), as well as
temperature and salinity profiles measured by CTD system. The
euphotic zone (Zeu), determined as penetration depth for 1% of
photosynthetically available radiance (PAR), was calculated based
on the light (I) attenuation with depth (z) (Kirk, 1994):

I(z) = I(0) × e(−Kd×z), (1)

where Kd–light attenuation coefficient on average for both
euphotic layer and for visible light waves (400–700 nm). Zeu was
calculated based on the Equation (1):

Zeu =
4.6

Kd
(2)

Values of Kd were estimated based on the relationship between
Kd and Zs obtained for the Black Sea (Vedernikov, 1989).
Average light intensity in the UML (PARUML) was estimated in
accordance with (Babin et al., 1996):

PARUML = PAR (0) ×

(

1− e

(

−4.6×
Zuml
Zeu

))

(

4.6×
Zuml
Zeu

) , (3)

where PAR(0)–PAR at the sea surface, data from Suslin et al.
(2015), Zuml–UML depth was determined using temperature
difference criterion (0.5◦C) and mean water temperature at 0–
3m as reference level. Optical depth (ζ ) of Zuml was assessed
using Kd calculated based on Zs (Vedernikov, 1989).

Pigment Analysis
For chlorophyll and phaeopigment concentration analysis 1–
2 L water samples were gently vacuum filtered (<25 kPa)

TABLE 1 | Information about scientific cruises of RV Professor

Vodyanitsky (PV) in the Black Sea.

Cruise Year Date Investigation area of

the Black Sea

PV 69 2011 2–11 August Deep western

PV 70 2011 19–27 August Deep western

PV 77 2014 3–7 September Deep eastern

PV 78 2014 28 November–9 December Deep eastern

PV 79 2015 25–30 September Deep eastern

PV 81 2015 3–10 November Deep western

PV 82 2015 5–9 December Deep eastern
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FIGURE 1 | Map of bio-optical stations in the scientific cruises on RV Professor Vodyanitskiy (PV) in the Black Sea: No 69 (crosses), 70 (circles), 77

(square), 78 (square, triangles), 79 (triangles), 81 (rhombs), 82 (triangles). The dotted line defines the 100m isobath.

onto 25 mm diameter Whatman GF/F glass fiber filters. Filters
were wrapped in an aluminum foil and stored in a liquid
nitrogen until analysis on a laboratory. Filters were placed in
5 ml of 90% acetone in a 10 ml glass centrifuge tube, then
were treated with vibration for 20 s using a vibration mixer
(FALK Falc instruments, Italy), extracted at 5◦C or below,
for at least 10 h and then centrifuged. The above procedure
was repeated using an additional 5 ml of 90% acetone for
a more complete extraction of phytoplankton pigments. The
second extraction of the pigments contributed 15% on average
to total concentration values. The extracts were then analyzed
for pigment content by spectrophotometric method (Lorenzen,
1967; Jeffrey and Humphrey, 1975) using spectrophotometer
Lambda 35 (Perkin Elmer). Proportion of non-photosynthetic
pigments in the total phytoplankton pigment content (NPP)
was determined in accordance with relationship between
environmental light condition (PAR) and NPP proposed by
Babin et al. (1996).

Phytoplankton Light Absorption
Optical densities of particulate matter were determined by the
filter pad technique (“wet filter technique”) (Yentsch, 1962;
Mitchell and Kiefer, 1988). aph(λ) was determined by the
difference between ap(λ) and aNAP(λ):

aph(λ) = ap(λ)− aNAP(λ) (4)

Values of aph(λ) were obtained from optical densities after
correction for differential scattering (setting the mean
absorption between 740 and 750 nm to zero) and for the
path length amplification factor, converting decimal to natural
logarithms, taking into account the volume filtered and the
filter area of filtration, and subtracting aNAP(λ) (Churilova,
2001). The sample optical densities were measured from 350
to 750 nm on Perkin Elmer Lambda 35 spectrophotometer
equipped with an integrating sphere. aNAP(λ) values were
experimentally determined using the chemical (bleaching
by NaClO solution) method (Tassan and Ferrari, 1995).

The path length amplification factor (beta-correction) was
estimated applying the quadratic equation described by Mitchell
(1990). To get Chl-a specific light absorption coefficients
of phytoplankton (a∗

ph
(λ)) the values of aph(λ) (m−1) were

divided by the sum of chlorophyll a and phaeopigments
concentrations (Chl-a) (mg m−3). Relationships between
aph(λ) and Chl-a were derived by least squares fitting to power
functions for visible spectral domain 400–700 nm with 1 nm
resolution.

Phytoplankton
Identification of phytoplankton species (micro- and nano-
size fractions), counting of cells and cell size measurements
were performed with transmission microscope Ergaval (Carl
Zeiss Jena) using Naumann chamber. Water samples (2–5 L)
were concentrated by inverse filtration method using nuclepore
filters with 1 µm pore diameter. The concentrated samples
were fixed with a solution (4% final concentration) of 25 g
paraformaldehyde dissolved in 100 ml of hot (80◦C) 25%
glutaraldehyde, clarified with few drops of 1 N NaOH solution.
Cells were sized and its volumes were assessed using geometrical
figures (sphere, ellipsoid or cylinder) corresponding to the cell
shapes. Phytoplankton analysis was conducted only at selected
stations in August 2011, September 2014 and December 2014,
2015.

In August 2011, September 2014 and December 2014, 2015
flow cytometric analysis was performed by flow cytometer
Cytomics FC 500 (Beckman Coulter, USA) equipped with a
single-phase argon laser (488 nm) (Marie et al., 1999; Schapira
et al., 2010). For all detected particles phycoerythrin fluorescence
emission (575 nm), and chlorophyll fluorescence emission (675
nm) were measured. The samples were fixed with formaldehyde
(final concentration 2%) immediately after the sampling, then
the samples were frozen in liquid nitrogen (−80◦C) and stored
at −20◦C until analysis in the laboratory. The cytometer
measurements were calibrated by the addition of a known
concentration of the Fluorospheres Flow-CheckTM (Beckman
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Coulter). Cytometric data were analyzed using CXP software
(Beckman Coulter).

RESULTS

Chlorophyll a Concentration
Chl-a in surface layer of the deep water regions of the Black
Sea were low in a summer. In the deep western part of the
sea in August 2011 (Figure 1) Chl-a in the UML were in a
range 0.15–0.30 mg·m−3. At this time, seasonal thermocline was
well developed with maximum of temperature gradient 3.3 ±

1.1◦C m−1 at the 12 ± 2.3m depth, where optical depth (ζ )
was 1.5 ± 0.42 (Table 2). In August water transparency was
high. Values of Zs and Kd were 16 ± 2.1m and 0.12 ± 0.013
m−1, correspondingly. Zeu values were 37 ± 4.0 m. Vertical
Chl-a profiles were characterized by rather homogeneous Chl-a
distribution within UML and deep Chl-a maximum (DCM)
located near the bottom of the euphotic zone with Chl-a values
5–10 times higher than in the UML (Figure 2). In the surface
layer of the deep eastern part of the Black Sea in September 2014
and 2015 (Figure 1) Chl-a values (0.21–0.35 mg·m−3) were very
similar to these measured in summer. In September maximum
temperature gradient (4.3 ± 1.2◦C m−1) and its location (9.5 ±

2.7m with ζ = 1.1 ± 0.40) were similar to those observed in the
summer. Vertical Chl-a distribution was similar to that observed
in August (Figure 2), but with less variability in Chl-a: Chl-a
concentration in the DCM was 3 times higher than in the UML
in comparison with 5–10 times differences in August. Water
transparency in the August and September was comparable (Zs

= 16± 1.4 m; Kd = 0.12± 0.0073 m−1; Zeu = 38± 2.6 m).
In the western deep part of the Black Sea in the late autumn

(November 2015) the seasonal thermocline was substantially
destructed. It resulted in an enlargement of the UML (28 ±

3.4 m), which become ∼3 times deeper than in the summer
(Figure 2). Chl-a in the surface layer in November 2015 varied
from 0.54 to 1.4mg m−3 with less transparency (Zs = 13 ± 1.0
m; Kd = 0.15 ± 0.009 m−1) (Table 2). Maximum temperature
gradient (1.5 ± 0.38◦C m−1) was located at the optical depth
of 4.2 ± 0.72. Consequently, Zeu (31 ± 2.0 m) was close
to UML depth. Chl-a was distributed homogeneously within
UML and decreased sharply in thermocline (Figure 2). Thus,
vertical pigment distribution in November contrasted with that
in summer, when seasonal thermocline divided euphotic zone
into two quasi isolated layers with different environments. In
fact, in late autumn phytoplankton was present in UML only.
In December 2014 and 2015 in surface layer of eastern deep
water part of the Black Sea (Figure 1) Chl-a varied from 1.0
to 2.0mg m−3 (1.3 ± 0.25mg m−3). UML was 32 ± 7.0 m.
Vertical distribution of Chl-a was homogeneous within UML
similar to Chl-a profiles observed in western waters in November
2015. In December Zs and Kd were equal to November 2015
data (12 ± 2.5m and 0.15 ± 0.023 m−1, correspondingly).
Maximum temperature gradient was 0.93 ± 0.45◦C m−1 and
located at optical depths of 4.9 ± 1.2 (Table 2). Consequently, in
December euphotic zone (30 ± 4.9 m) occurred within UML as
it was observed in November. In both December and November
phytoplankton was present within UML only.

Phytoplankton
In August 2011 in UML of western deep waters of the
Black Sea phytoplankton was dominated by dinoflagellates.
Wet biomass of phytoplankton was 540 ± 310 mg·m−3 on
average. Assuming intracellular organic carbon (C) content at
10% of wet biomass, C to Chl-a ratio (C/Chl-a) was 145 ±

76mg mg−1. Biomass of photosynthetic picoplankton was 2.7
± 0.46 mg·m−3 on average. The contribution of picoplankton
to total phytoplankton biomass was <1%. In September 2014
phytoplankton biomass in UML was assessed at selected stations.
Wet biomass was ∼450mg m−3. The phytoplankton was
dominated mainly (50–70%) by dinoflagellates Gymnodinium
spp (Gymnodinium fungiforme and Gymnodinium paululum).
C/Chl-a ratio was ∼110mg mg−1. Photosynthetic picoplankton
biomass was equal 1.7 ± 1.0 mg·m−3 on average and its
contribution to total phytoplankton biomass was < 1%. In
December 2014 and 2015 wet phytoplankton biomass in UML
varied from 190 to 430mg m−3. In 2014 Proboscia alata
dominated (by biomass) in phytoplankton community. In
2015 phytoplankton was represented mainly by large diatoms
Pseudosolenia calcar-avis with cell volume 19000–83000 µ m3.
C/Chl-a ratio was∼25–40mgmg−1. In December 2014 and 2015
biomass of photosynthetic picoplankton was 11.0 ± 4.9 and 13.0
± 4.4 mg·m−3 on average correspondingly, and picoplankton
contribution to total phytoplankton biomass was∼5%.

Phytoplankton Light Absorption
Phytoplankton light absorption spectra measured in UML are
presented on Figure 3. To examine the relationship between
aph(λ) and Chl-a in the UML results were grouped into 2
datasets: (1) summer dataset that included results from August
2011, September 2014, 2015; (2) winter dataset with results
from November 2014, December 2014 and 2015 (Table 1).
September 2014, 2015 was considered part to the summer season,
due to persistence of strong seasonal stratification with typical
“summer” type of vertical distribution of pigments. November
2015 was considered part of winter, because of water column
structure similarity to that in December 2014 and 2015. In
November depths of UML and euphotic zone were close and all
phytoplankton was present within UML as it was in December.

In the aph(λ) spectra two main peaks were observed: in
blue (near 440 nm) and red (near 678 nm) spectrum domains
(Figure 3). The seasonal differences in the phytoplankton light
absorption were manifested in both spectral shapes and values
of chlorophyll a specific coefficients. In the summer a∗

ph
(λ) were

relatively high in the blue spectrum domain. Ratio between blue
and red peaks (R) was 3.4 (± 0.61) on average in summer, which
was significantly higher than in winter (2.2± 0.45) (Figure 3). In
both winter and summer R values decreased if Chl-a increased.
The variations of aph(λ) as a function of Chl-a are shown in
Figure 4 at two wavelengths (∼440 and 678 nm) corresponding
to the blue and red peaks of the spectra. To describe the
relationship between aph(λ) and Chl-a a power function was used
(Figure 4):

aph(λ) = A(λ)× (Chl-a)B(λ), (5)

Frontiers in Marine Science | www.frontiersin.org 4 April 2017 | Volume 4 | Article 9082

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Churilova et al. Light Absorption by Phytoplankton in the Black Sea

TABLE 2 | Hydrophysical characteristics: maximum temperature gradient (1T) and depth (Ztc)/optical depth (ζ ) of its location; Secchi disc depth visibility

(Zs); euphotic zone (Zeu); diffuse attenuation coefficient for downwelling irradiance over the Zeu (Kd ); photosynthetically availably radiance incident on

the Black Sea surface [PAR(0)]and averaged over upper mixed layer [PAR(UML)].

Ztc, m ζ 1T, ◦C m−1 PAR (UML), E m−2 d−1 Zs, m Kd , m
−1 Zeu, m PAR(0), E m−2 d−1

AUGUST (2011)

mean 12 1.5 3.3 27 16 0.12 37 52

SD 2.3 0.42 1.1 8.1 2.1 0.013 4.0 1.2

min 8.0 0.84 2.2 31 12 0.10 30 46

max 13 2.0 5.7 24 20 0.15 46 56

SEPTEMBER (2014, 2015)

mean 9.5 1.1 4.3 22.5 16 0.12 38 38

SD 2.7 0.40 1.2 2.9 1.4 0.0073 2.6 4.1

min 5 0.55 2.9 21 12 0.11 30 28

max 14 2.1 7.8 31 17 0.15 45 46

NOVEMBER (2015)

mean 28 4.2 1.5 3.9 13 0.15 31 17

SD 3.4 0.72 0.38 1.2 1.0 0.0090 2.0 2.5

min 24 3.12 1.0 2.0 11 0.13 28 9

max 35 5.6 2.1 8.6 14 0.16 34 22

DECEMBER (2014, 2015)

mean 32 4.9 0.93 2.4 12 0.15 30 12

SD 7.0 1.2 0.45 0.8 2.5 0.023 4.9 1.7

min 27 2.9 0.24 2.5 7 0.11 20 7.8

max 55 12.7 2.0 1.2 19 0.23 43 15

FIGURE 2 | Examples of vertical profiles of temperature (T, line) and the sum of chlorophyll a and phaeopigments concentrations (Chl-a, circles) in the

deep water of the Black Sea in different time.

where A(λ)–spectral coefficient, which is equal to a∗
ph
(λ) in case

when Chl-a equal to 1mg m−3.
For two data sets following fit equations were obtained

(Figure 4):

(1) In summer:

aph(440) = 0.076 × (Chl-a)0.84(r2 = 0.66) (6)

aph(678) = 0.024× (Chl-a)0.95(r2 = 0.63) (7)

(2) In winter:

aph(440) = 0.045× (Chl-a)0.81(r2 = 0.78) (8)

aph(678) = 0.021× (Chl-a)0.95(r2 = 0.88) (9)

To infer aph(λ) spectral distribution from Chl-a relationship
between these parameters needs to be determined for entire
visible spectrum (400–700 nm). Based on two empirical data
sets the aph(λ) vs Chl-a dependencies were parameterized
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FIGURE 3 | Chl-a specific phytoplankton light absorption coefficients a*
ph

(λ) in upper mixed layer of the Black Sea in summer (A) and winter (B).

FIGURE 4 | Dependence of phytoplankton light absorption coefficients at red (aph(678)) (A) and blue (aph(440)) (B) peaks of spectra on the sum of

chlorophyll a and phaeopigments concentrations (Chl-a) in upper mixed layer of the Black Sea in summer (circles, red line of fitting) and winter (squares, blue line of

fitting).

using Equation (5) for summer and winter. The results of the
parameterization performed from 400 to 700 nm with 1 nm
spectral resolution are presented in Figure 5 and in Tables 3, 4. It
is evident that a∗

ph
(λ) values are higher in summer than those in

winter (Figure 3). This seasonal difference is more pronounced
in the blue spectrum domain. For summer phytoplankton the
value of A(λ) coefficient at 440 nm is about twice higher than
that for winter.

Photosynthetically available radiance incident on the Black
Sea surface [PAR(0)] varied seasonally (Suslin et al., 2015). In
August and September PAR(0) was on average 52 ± 1.2 and 38
± 2.6 E m−2 d−1 correspondingly (Table 2). In November and
December PAR(0) was 17 ± 2.5 and 12 ± 1.7 E m−2 d−1, which
were about 3 times lower than those in warm months. PAR in
UML depends not only on PAR(0) but also on water transparency
and ratio between ZUML and Zeu. In winter, waters were less
transparent than in summer. Moreover, UML was comparable
with Zeu in winter while in summer ZUML was located between
first and second optical depths. As results PAR in UML differed

more (∼10 times) between summer and winter in comparison
with seasonal dynamics of PAR(0) (Table 2). PAR in UML was
equal in August and September 27 ± 8.1 and 23 ± 2.9 E m−2

d−1, correspondingly (Table 2). In November and December
PAR in UML was equal 3.9 ± 1.2 and 2.4 ± 0.8 E m−2 d−1,
correspondingly (Table 2).

DISCUSSION

The first optical depth which determines water leaving radiance
spectral patterns (Gordon and McGlunev, 1975) detectable
by remote scanners is located within the UML in the deep
open waters of the Black Sea. It should be noted that Kd

averaged over the euphotic zone was used in our assessment.
However, domination of CDOM in total light absorption in
the Black Sea results in sharply decreasing Kd values with
depth. In the subsurface layer Kd values were estimated
to be ∼1.6 times higher than mean Kd for euphotic zone
(Churilova et al., 2009). Therefore, in our assessment Zuml was
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FIGURE 5 | Spectral values of the constants A(λ) (A) and B(λ) (B) obtained when fitting the variations of phytoplankton light absorption (aph(λ)) vs. the sum of

chlorophyll a and phaeopigments concentration (Chl-a) to power laws of the form aph(λ) = A(λ)(Chl-a)B(λ): for upper mixed layer of the Black Sea in summer (red lines)

and winter (blue lines) with comparison with data (gray lines) follow in Bricaud et al. (1995).

underestimated by using average Kd. In fact, it gives more
reasonable conclusion about location of the first optical depth
within UML. Consequently, bio-optical properties of the UML in
the Black Sea determine remotely sensed optical signals and could
be used for development and refining of the regional models of
productivity indicators.

Analysis of the link between phytoplankton light absorption
coefficients and chlorophyll a concentration revealed seasonal
differences in UML (Figures 3, 4 and Tables 3, 4) which were
related to difference of a∗

ph
(λ) values between summer andwinter.

The difference was more pronounced in the blue spectrum
domain (Figure 3). In summer values of parameterization
coefficient A(λ) relevant to red and blue peaks were on
average 15 and 70% higher than those for winter (Figure 5),
respectively. Seasonal differences in normalized (on Chl-a)
phytoplankton light absorbance capacity were related to strong
changes in environmental conditions in UML, mainly due to
the averaged PAR within UML (Figure 6). Observed seasonal
dynamics of (UML) and euphotic zone in the deep open
waters of the Black Sea are consistent with intraannual
changes of these parameters (Zuml and Zeu) in the Black Sea
outlined earlier (Ivanov and Belokopytov, 2011; Agirbas et al.,
2014).

In winter [PAR(0)] decreased but the ratio between ZUML

and Zeu increased in comparison with summer. As the result in
winter average light field within UML decreased in almost 10-
fold in comparison with PARUML in summer. Seasonal changes of
environmental conditions in UML caused ∼5–7 fold variability
in C/Chl-a ratio between winter and summer. Observed C/Chl-a
variability agrees with a change of intracellular concentration of
chlorophyll a (MacIntyre et al., 2002; Behrenfeld et al., 2005) due
to physiological acclimation of algae cultures and phytoplankton
to light intensity decreased in the same range as PAR varied in
the UML of the Black Sea. Intracellular pigment concentration
defines degree of pigment packaging, which in turn effects on

a∗
ph
(λ) (Morel and Bricaud, 1981; Bidigare et al., 1990; Hoepffner

and Sathyendranath, 1991; Kirk, 1994; Fujiki and Taguchi, 2002).
In the current research it was shown that a∗

ph
(λ) and C/Chl-a

were significantly less in winter than values of those parameters in
summer, which were relevant to “pigment packaging” effected on
a∗
ph
(λ) at red peak (∼678 nm) where light quanta are absorbed

by chlorophyll a and phaeopigments only (Jeffrey et al., 1997).
At shorter wavelengths (in blue spectrum domain) seasonal
variation in a∗

ph
(λ) wasmore pronounced than at red wavelengths

(Figure 3). In the blue part of the spectrum besides chlorophyll
a, other accessory pigments absorb light quanta (Bidigare et al.,
1990; Jeffrey et al., 1997) which lead to “smoothing” of spectra
due to accessory pigment “packaging” if Chl-a specific absorption
coefficients are considered. Ratio of accessory pigment-to-Chl-
a changes due to photoacclimation of algae (MacIntyre et al.,
2002; Grant and Louda, 2010), which is related mainly to
photoprotective (i.e., non-photosynthetic) pigments (NPP). In
review of photoacclimation of different microalgae taxons it was
shown that ∼order increase of light intensity resulted in ∼3–4
times increase of photoprotective xanthophyll to Chl-a ratio on

average (Figure 9 in MacIntyre et al., 2002). Investigations of

phytoplankton accessory pigments variability have demonstrated
that photoprotective pigments tend to be greater in the surface

low Chl-a waters at latitudes where radiance incident on the sea
surface is relatively high (Stuart et al., 1998; Barlow et al., 2004;

Sathyendranath et al., 2005). Variability of R (aph(440) /aph(678))

was shown to be correlated with NPP to Chl-a ratio (Lutz et al.,
2003). Altogether the increase of a∗

ph
(440) is related to low Chl-

a waters with lower intracellular concentrations of pigments,

and a greater proportion of photoprotective pigments occurred
in stratified, high light, nutrient-limited regions (Bricaud et al.,
1995; Cleveland, 1995; Aguirre-Hernandez et al., 2004). In
general these results are in a good agreement with the Black Sea
observations. Although in current research pigment composition
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TABLE 3 | Spectral values of the constant obtained when fitting the variations of aph(λ) vs. the (chlorophyll a + phaeopigment) concentration (Chl-a) to

power laws of the form.

λ A(λ) SD B(λ) λ A SD B(λ)

400 0.050 0.00779 0.82 544 0.013 0.00332 0.88

402 0.051 0.00774 0.83 546 0.013 0.0033 0.88

404 0.052 0.00777 0.83 548 0.012 0.00329 0.91

406 0.054 0.00799 0.83 550 0.012 0.00315 0.92

408 0.056 0.00805 0.83 552 0.011 0.00319 0.94

410 0.058 0.00813 0.84 554 0.010 0.00319 0.95

412 0.060 0.00845 0.84 556 0.010 0.00296 0.97

414 0.061 0.0086 0.85 558 0.009 0.00302 1.00

416 0.063 0.0087 0.86 560 0.009 0.00323 0.98

418 0.064 0.00896 0.86 562 0.008 0.00363 0.99

420 0.065 0.00901 0.86 564 0.008 0.00323 1.03

422 0.066 0.00911 0.86 566 0.008 0.00311 1.04

424 0.067 0.00949 0.86 568 0.007 0.00358 1.03

426 0.069 0.00966 0.86 570 0.007 0.00343 1.04

428 0.070 0.00974 0.86 572 0.007 0.00334 1.07

430 0.071 0.00989 0.85 574 0.007 0.00319 1.06

432 0.073 0.00991 0.85 576 0.007 0.00331 1.03

434 0.075 0.00983 0.84 578 0.006 0.00354 1.03

436 0.076 0.00977 0.84 580 0.006 0.00316 1.03

438 0.076 0.0097 0.85 582 0.006 0.00333 1.05

440 0.076 0.00946 0.84 584 0.006 0.00325 1.06

442 0.076 0.00941 0.85 586 0.006 0.00375 1.03

444 0.074 0.00934 0.84 588 0.006 0.00319 1.01

446 0.072 0.00914 0.85 590 0.006 0.00308 1.04

448 0.071 0.00898 0.85 592 0.006 0.00335 1.05

450 0.069 0.00876 0.84 594 0.006 0.00323 1.05

452 0.068 0.00888 0.85 596 0.006 0.00307 1.01

454 0.067 0.00873 0.85 598 0.006 0.0029 1.01

456 0.066 0.00871 0.85 600 0.006 0.00274 1.02

458 0.066 0.00875 0.84 602 0.006 0.00291 1.02

460 0.065 0.00865 0.84 604 0.005 0.00286 1.02

462 0.065 0.00856 0.83 606 0.005 0.00258 0.99

464 0.064 0.00842 0.83 608 0.006 0 1.01

466 0.063 0.00849 0.82 610 0.006 0.00289 1.04

468 0.062 0.00846 0.82 612 0.006 0.00281 1.00

470 0.061 0.00804 0.81 614 0.006 0.00261 1.01

472 0.059 0.00796 0.81 616 0.006 0.00257 1.02

474 0.058 0.00779 0.80 618 0.006 0.00237 1.01

476 0.056 0.00765 0.79 620 0.007 0.00246 1.00

478 0.055 0.00759 0.79 622 0.007 0.00253 1.00

480 0.054 0.00738 0.79 624 0.007 0.00251 1.02

482 0.053 0.00731 0.79 626 0.007 0.00217 1.02

484 0.051 0.00719 0.79 628 0.007 0.00223 1.01

486 0.051 0.00708 0.78 630 0.007 0.00248 1.00

488 0.049 0.00692 0.79 632 0.007 0.00227 1.01

490 0.048 0.00684 0.78 634 0.007 0.00212 0.99

492 0.047 0.00664 0.79 636 0.008 0.00214 0.98

494 0.046 0.00652 0.78 638 0.008 0.00216 0.98

496 0.044 0.00631 0.78 640 0.008 0.00214 0.97

498 0.042 0.00615 0.78 642 0.008 0.00187 0.96

(Continued)
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TABLE 3 | Continued

λ A(λ) SD B(λ) λ A SD B(λ)

500 0.040 0.00599 0.78 644 0.008 0.00206 0.98

502 0.038 0.00583 0.78 646 0.008 0.00209 0.99

504 0.036 0.00564 0.78 648 0.008 0.0021 0.98

506 0.034 0.00539 0.79 650 0.008 0.00189 0.97

508 0.032 0.00519 0.78 652 0.008 0.00204 0.96

510 0.030 0.00503 0.79 654 0.008 0.00217 0.96

512 0.028 0.00498 0.79 656 0.008 0.00181 0.96

514 0.027 0.00453 0.78 658 0.009 0.0017 0.95

516 0.025 0.00434 0.78 660 0.010 0.00178 0.95

518 0.024 0.00414 0.78 662 0.012 0.00162 0.94

520 0.023 0.00416 0.78 664 0.013 0.00184 0.94

522 0.022 0.00391 0.78 666 0.016 0.00213 0.94

524 0.021 0.00376 0.78 668 0.018 0.00225 0.93

526 0.020 0.00393 0.79 670 0.020 0.00244 0.94

528 0.019 0.00372 0.80 672 0.022 0.00249 0.95

530 0.018 0.00386 0.79 674 0.024 0.00253 0.95

532 0.017 0.00365 0.80 676 0.024 0.00251 0.93

534 0.017 0.00362 0.82 678 0.024 0.00262 0.92

536 0.016 0.00343 0.81 680 0.024 0.00262 0.98

538 0.015 0.00349 0.82 682 0.022 0.00245 0.98

540 0.014 0.00343 0.84 684 0.020 0.00234 0.98

542 0.014 0.00337 0.89 686 0.017 0.00224 0.98

688 0.014 0.00195 0.98

690 0.011 0.00162 0.98

692 0.009 0.00132 0.98

694 0.007 0.00112 0.98

696 0.005 0.00102 0.98

698 0.004 0.00105 0.98

700 0.003 0.0011 0.98

aph (λ) = A(λ) (Chl-a)ˆB(λ) and determination coefficients on the log-transformed data r2 (summer).

was not analyzed, but rough assessment of NPP (share of
photoprotective pigments in total weight all pigments) based on
dependence of NPP on light intensity (Babin et al., 1996) showed
that NPP in UML was∼5 times higher in summer in comparison
with NPP in winter (Figure 6).

Seasonal phytoplankton succession observed is typical for
the deep-water ecosystem of the Black Sea (Georgieva, 1993;
Berseneva et al., 2004; Mikaelyan et al., 2005). In general biomass
of the phytoplankton consists of Bacillariaphyceae, Dinophyceae,
and Prymnesiophyceae (presented mainly by coccolithophores).
Two-weekly monitoring at fixed stations in the western deep-
water part of the Black Sea showed a change in phytoplankton
species composition within an year (Berseneva et al., 2004): in
general diatoms were dominating in winter and in yearly spring
“blooms,” dinoflagellates and coccolithophores were prevailing
in the community in summer. Coccolithophores “bloom” in
May-June.

Shift in species dominating in phytoplankton community is
attributed with changes in size and shape of the cells. Cells
size effects on pigment package within the cells which results

in decreasing of a∗
ph
(λ) due to self-shading of pigments within

large cells (Morel and Bricaud, 1981; Sosik and Mitchell, 1994;
Fujiki and Taguchi, 2002). In different ocean regions variability
in the a∗

ph
(λ) was related with change in phytoplankton species

composition and cell size (Bricaud et al., 1995; Cleveland,
1995; Millan-Nunez et al., 2004). Package effect caused by

cell size is detected by decreasing of a∗
ph
(678) (Fujiki and

Taguchi, 2002) because at shorter wavelengths a∗
ph
(λ) is affected

by accessory pigments as well. Values of a∗
ph
(678) decreased

in winter by ∼15% compared with summer due to both
C/Chl-a and phytoplankton variability (Figures 3, 5) although

the large diatoms (Pseudosolenia calcar-avis) were dominated in
phytoplankton community.

The cells of Pseudosolenia calcar-avis have cylindrical shape
unlike dinoflagellates, cells of which are closer to the ellipsoid.
Volume of Pseudosolenia calcar-avis cell exceeds ∼2 orders of
magnitude the volume of the dinoflagellates (Gymnodinium spp)
cells. However, in the case of the cylindrically shaped cells the
large volume is not critical for the cell’s capacity to absorb
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TABLE 4 | Spectral values of the constant obtained when fitting the variations of aph(λ) vs. the (chlorophyll a + phaeopigment) concentration (Chl-a) to

power laws of the form.

λ A(λ) SD B(λ) λ A SD B(λ)

400 0.0285 0.00521 0.89 544 0.0147 0.00266 0.96

402 0.0294 0.00513 0.88 546 0.0143 0.00264 0.97

404 0.0306 0.00508 0.88 548 0.0137 0.00261 0.98

406 0.0318 0.00508 0.87 550 0.0131 0.00255 0.99

408 0.0331 0.00510 0.87 552 0.0125 0.00247 1.00

410 0.0343 0.00512 0.86 554 0.0118 0.00235 1.02

412 0.0354 0.00518 0.86 556 0.0111 0.00222 1.02

414 0.0363 0.00521 0.85 558 0.0104 0.00206 1.04

416 0.0371 0.00526 0.84 560 0.0097 0.00191 1.05

418 0.0376 0.00528 0.84 562 0.0090 0.00178 1.06

420 0.0381 0.00529 0.83 564 0.0085 0.00165 1.06

422 0.0386 0.00535 0.83 566 0.0080 0.00152 1.09

424 0.0391 0.00539 0.83 568 0.0076 0.00141 1.12

426 0.0397 0.00543 0.82 570 0.0073 0.00130 1.14

428 0.0405 0.00550 0.82 572 0.0070 0.00124 1.13

430 0.0415 0.00559 0.82 574 0.0069 0.00119 1.12

432 0.0426 0.00569 0.82 576 0.0069 0.00115 1.12

434 0.0436 0.00578 0.82 578 0.0069 0.00112 1.13

436 0.0444 0.00583 0.82 580 0.0070 0.00110 1.12

438 0.0448 0.00586 0.82 582 0.0071 0.00109 1.12

440 0.0448 0.00584 0.82 584 0.0072 0.00110 1.11

442 0.0444 0.00578 0.82 586 0.0073 0.00110 1.08

444 0.0436 0.00565 0.82 588 0.0074 0.00111 1.08

446 0.0426 0.00554 0.81 590 0.0075 0.00110 1.07

448 0.0416 0.00541 0.81 592 0.0075 0.00110 1.08

450 0.0407 0.00530 0.81 594 0.0074 0.00110 1.07

452 0.0400 0.00521 0.81 596 0.0073 0.00109 1.03

454 0.0396 0.00514 0.80 598 0.0071 0.00107 1.02

456 0.0394 0.00508 0.80 600 0.0069 0.00106 1.05

458 0.0393 0.00503 0.81 602 0.0068 0.00104 1.03

460 0.0394 0.00501 0.80 604 0.0066 0.00102 1.04

462 0.0394 0.00496 0.80 606 0.0065 0.00102 1.07

464 0.0394 0.00492 0.80 608 0.0065 0.00101 1.06

466 0.0393 0.00485 0.80 610 0.0066 0.00101 1.07

468 0.0390 0.00479 0.80 612 0.0066 0.00100 1.09

470 0.0386 0.00470 0.80 614 0.0067 0.00099 1.05

472 0.0381 0.00459 0.80 616 0.0069 0.00099 1.07

474 0.0374 0.00448 0.79 618 0.0070 0.00099 1.08

476 0.0366 0.00437 0.78 620 0.0071 0.00099 1.08

478 0.0358 0.00425 0.78 622 0.0072 0.00100 1.07

480 0.0350 0.00416 0.79 624 0.0073 0.00100 1.07

482 0.0341 0.00406 0.78 626 0.0074 0.00100 1.07

484 0.0334 0.00399 0.78 628 0.0075 0.00000 1.06

486 0.0326 0.00392 0.78 630 0.0076 0.00101 1.06

488 0.0319 0.00388 0.78 632 0.0077 0.00102 1.06

490 0.0311 0.00385 0.79 634 0.0079 0.00103 1.06

492 0.0304 0.00380 0.79 636 0.0080 0.00104 1.03

494 0.0296 0.00377 0.80 638 0.0080 0.00104 1.04

496 0.0288 0.00371 0.80 640 0.0080 0.00104 1.05

498 0.0279 0.00364 0.81 642 0.0080 0.00107 1.04

(Continued)
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TABLE 4 | Continued

λ A(λ) SD B(λ) λ A SD B(λ)

500 0.0270 0.00355 0.81 644 0.0080 0.00107 1.02

502 0.0261 0.00344 0.82 646 0.0079 0.00108 1.01

504 0.0252 0.00333 0.83 648 0.0078 0.00109 1.01

506 0.0243 0.00321 0.84 650 0.0078 0.00107 1.02

508 0.0235 0.00310 0.85 652 0.0079 0.00107 1.03

510 0.0227 0.00300 0.85 654 0.0082 0.00107 1.03

512 0.0220 0.00290 0.86 656 0.0087 0.00109 1.05

514 0.0213 0.00280 0.86 658 0.0095 0.00115 1.05

516 0.0206 0.00273 0.87 660 0.0106 0.00126 1.05

518 0.0200 0.00267 0.87 662 0.0121 0.00142 1.05

520 0.0194 0.00262 0.87 664 0.0137 0.00160 1.04

522 0.0189 0.00258 0.88 666 0.0156 0.00174 1.03

524 0.0184 0.00254 0.89 668 0.0175 0.00188 1.02

526 0.0180 0.00252 0.90 670 0.0191 0.00196 1.01

528 0.0176 0.00251 0.90 672 0.0203 0.00202 0.99

530 0.0172 0.00251 0.92 674 0.0210 0.00202 0.98

532 0.0169 0.00252 0.91 676 0.0211 0.00200 0.96

534 0.0165 0.00254 0.92 678 0.0206 0.00196 0.96

536 0.0162 0.00257 0.93 680 0.0194 0.00188 0.95

538 0.0159 0.00260 0.94 682 0.0178 0.00180 0.95

540 0.0155 0.00263 0.94 684 0.0156 0.00171 0.95

542 0.0152 0.00266 0.95 686 0.0132 0.00160 0.95

688 0.0108 0.00147 0.95

690 0.0086 0.00131 0.95

692 0.0066 0.00114 0.95

694 0.0051 0.00097 0.95

696 0.0038 0.00083 0.95

698 0.0029 0.00070 0.95

700 0.0022 0.00062 0.95

aph (λ) = A(λ) (Chl-a)ˆB(λ) and determination coefficients on the log-transformed data r2 (winter).

light. The light absorption capacity of cylindrically shaped cells
is determined by the diameter of their section (Kirk, 1976).
Therefore, despite the difference in the cell volume optically
significant size of cylindrical diatoms (10–30µm) was similar to
that of dinoflagellates (10–40 µm). Consequently, in this case the
effect of the size (volume) of the cells on the degree of pigment
packaging is not as significant as in the case of large spherical cells
(Morel and Bricaud, 1981). It explains weak (∼15%) seasonal
difference in a∗

ph
(678) observed in the Black Sea (Figure 5).

CONCLUSIONS

Seasonal differences in chlorophyll-a specific phytoplankton
light absorption coefficients are caused by annual dynamics
in environmental conditions in the (UML) and adaptive
response of algae cells/population (via variation of pigment
composition and concentration in the cell) and of phytoplankton
community (via shift in phytoplankton species composition with
attributed changes in size and shape of cell). Consequently,
parameterization of the relationship between phytoplankton

light absorption coefficients and chlorophyll a concentration
proceeded for different seasons (summer and winter) will allow
to refine the regional algorithm of Chl-a assessment based on
remote sensing (Suslin and Churilova, 2016). Because in the
Black Sea light absorption by dissolved organic matter there is
relatively high and not correlated with phytoplankton absorption
or chlorophyll a concentration regional Chl-a algorithm requires
splitting of light absorption into aph(λ) and aCDM(λ) (Suslin and
Churilova, 2016) and then Chl-a is retrieved from the aph(λ) at
490 nm. Relationships between Chl-a and aph(λ) obtained for
the summer and winter conditions in the Black Sea differ by
coefficients A(λ) in power equation, but coefficients B(λ) are
practically the same (Figure 5). Consequently, values of A(λ)
coefficient define the seasonal difference in retrieval of Chl-a
based on aph(λ). Values of A(λ) at 490 nm are equal 0.048

and 0.031 m2 mg−1 correspondently for summer and winter
conditions in UML of the Black Sea (Tables 3, 4). For instance,
using the summer relationship between Chl-a and summer
aph (490) values one can get Chl-a equal to 0.2–0.3mg m−3,
but using the winter link between these parameters or link
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FIGURE 6 | Photosynthetically available radiance in upper mixed layer (PARUML, blue bars), carbon to chlorophyll a ratio (C/Chl-a, green bars), share

of non-photosynthetic photoprotective pigments (NPP, red bars) in total pigments and coefficient [A(440), gray bars] in phytoplankton light absorption

parameterization fulfilled with power equation aph(λ) = A(λ)(Chl-a)B(λ) for upper mixed layer in the Black Sea in summer and winter.

obtained for different regions of the world ocean (Bricaud et al.,
1995) one gets Chl-a equal to 0.36–0.53 or to 0.34–0.55mg
m−3. Consequently, the retrieved Chl-a values become almost
twice lower if one takes into account the Black Sea summer
conditions and relevant relationship between aph(λ) and Chl-a.
Undoubtedly accuracy of splitting of light absorption into aph(λ)
and aCDM(λ) also affect the accuracy of Chl-a assessment (Suslin
and Churilova, 2016).

Moreover, seasonal difference in links between aph(λ) and
Chl-a could provide more correct assessment of downwelling
radiance and primary production in the Black Sea using spectral
approaches (Churilova et al., 2016). However, it should be
noted that application of the obtained aph(λ) parametrization
is limited by the rather narrow range of Chl-a, which
was measured in the deep waters. The relatively narrow
range of Chl-a caused the high values of B(λ) coefficients
in comparison of those obtained based on numerical data
measured in different regions of World Ocean with Chl-a
covering the range 0.02–25mg m−3 (Figure 5; Bricaud et al.,
1995).

The parameterization obtained based on bio-optical data
measured in deep waters is unlikely to be correct for
coastal waters. Coastal waters may differ from deep waters
in nutrient availability, transparency and turbulence. These
different environmental conditions would results in change of
intracellular pigment concentration and phytoplankton species
composition which in turn effect on a∗

ph
(λ). In this regard

since 2014 bio-optical properties have been investigated in the
Crimean coastal waters in different seasons. These new data will
be merged with summer results measured before (Churilova and

Berseneva, 2004; Dmitriev et al., 2009) and then analyzed to
determine the seasonality in aph(λ) parameterization.
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Over the past decade, techniques have been presented to derive the community

structure of phytoplankton at synoptic scales using satellite ocean-color data. There

is a growing demand from the ecosystem modeling community to use these products

for model evaluation and data assimilation. Yet, from the perspective of an ecosystem

modeler these products are of limited use unless: (i) the phytoplankton products provided

by the remote-sensing community match those required by the ecosystem modelers;

and (ii) information on per-pixel uncertainty is provided to evaluate data quality. Using

a large dataset collected in the North Atlantic, we re-tune a method to estimate the

chlorophyll concentration of three phytoplankton groups, partitioned according to size

[pico- (<2µm), nano- (2–20µm) and micro-phytoplankton (>20µm)]. The method is

modified to account for the influence of sea surface temperature, also available from

satellite data, on model parameters and on the partitioning of microphytoplankton into

diatoms and dinoflagellates, such that the phytoplankton groups provided match those

simulated in a state of the art marine ecosystem model (the European Regional Seas

EcosystemModel, ERSEM). The method is validated using another dataset, independent

of the data used to parameterize the method, of more than 800 satellite and in situ

match-ups. Using fuzzy-logic techniques for deriving per-pixel uncertainty, developed

within the ESA Ocean Colour Climate Change Initiative (OC-CCI), the match-up dataset

is used to derive the root mean square error and the bias between in situ and satellite

estimates of the chlorophyll for each phytoplankton group, for 14 different optical water

types (OWT). These values are then used with satellite estimates of OWTs to map

uncertainty in chlorophyll on a per pixel basis for each phytoplankton group. It is

envisaged these satellite products will be useful for those working on the validation of, and

assimilation of data into, marine ecosystem models that simulate different phytoplankton

groups.
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1. INTRODUCTION

The size structure and taxonomic composition of phytoplankton
influence many processes in phytoplankton biology, marine
biogeochemistry and marine ecology (Chisholm, 1992; Raven,
1998; Le Quéré et al., 2005; Marañón, 2009, 2015; Finkel et al.,
2010). Photosynthesis, growth, light absorption, nutrient uptake,
carbon export, and the transfer of energy through the marine
food chain, are all influenced by phytoplankton community
structure (Platt and Denman, 1976, 1977, 1978; Morel and
Bricaud, 1981; Prieur and Sathyendranath, 1981; Probyn, 1985;
Geider et al., 1986; Legendre and LeFevre, 1991; Maloney
and Field, 1991; Chisholm, 1992; Sunda and Huntsman, 1997;
Raven, 1998; Laws et al., 2000; Ciotti et al., 2002; Bricaud
et al., 2004; Devred et al., 2006; Guidi et al., 2009; Briggs
et al., 2011). In the face of considerable challenges (Shimoda
and Arhonditsis, 2016), growing emphasis has been placed
on the representation of biogeochemistry in ecosystem models
by explicitly incorporating different phytoplankton groups as
state variables, often partitioned according to their size or
taxonomic composition (Aumont et al., 2003; Blackford et al.,
2004; Le Quéré et al., 2005; Kishi et al., 2007; Marinov et al., 2010;
Ward et al., 2012; Butenschön et al., 2016). With this aspiration
comes a demand for observations on phytoplankton groups (e.g.,
for model validation and data assimilation) that is not being met
with current in situ observations that are sparse in time and space.
To address the issue of data availability, the past decade has seen
many attempts to estimate phytoplankton groups using satellite
remote-sensing (IOCCG, 2014), which is capable of viewing the
ocean with high temporal and spatial coverage.

Current techniques to estimate phytoplankton groups using

satellite data can be partitioned into three categories: spectral,

abundance and ecological approaches (Nair et al., 2008; Brewin
et al., 2011b; IOCCG, 2014). Spectral-based approaches seek to
use the optical signatures of the phytoplankton groups directly
for their detection from space. Abundance-based approaches
invoke relationships between the phytoplankton groups and
some index of phytoplankton abundance or biomass (e.g.,
chlorophyll concentration) that can be retrieved from satellites.
Ecological-based approaches use ocean-color together with
additional environmental data (e.g., sea surface temperature
(SST), irradiance, wind) that can also be retrieved from satellite
to identify ecological niches where particular phytoplankton
communities may be found. Spectral-based approaches are
more direct as they target known optical signatures, whereas
abundance-based and ecological-based approaches are indirect,
in that they use satellite remote-sensing as a means to extrapolate
known relationships between the phytoplankton groups and
a property that can by derived accurately from space (e.g.,
chlorophyll concentration, SST). Though it would appear more
sensible to use a direct approach, issues with spectral-based
techniques can arise when the signal-to-noise ratio in the ocean-
color data is too low to detect the targeted signature (Garver et al.,
1994; Wang et al., 2005), when the phytoplankton group being
targeted has a similar optical signature to other groups, when
the spectral signatures are not known sufficiently well, or when
the spectral resolution is not adequate for detecting the target

signature. In such cases, an indirect method (e.g., ecological
or abundance based) would be more suitable. Future ocean-
color missions will help address some of these issues through
improved accuracy and spectral resolution. For instance, the
recently launched Ocean and Land Color Instrument (OLCI) on-
board ESA’s Sentinel-3a satellite offers more spectral wavebands
than its predecessor (MERIS), and NASA’s planned Pre-Aerosol
Clouds and ocean Ecosystem (PACE) mission will aim to provide
hyperspectral ocean-color data, improving the potential for
phytoplankton group retrievals. For further details on all of
these methods, the reader is referred to the works of Nair
et al. (2008), Brewin et al. (2011b), De Moraes Rudorff and
Kampel (2012), IOCCG (2014), andMouw et al. (2017). Recently,
efforts have been made to combine abundance and ecological-
based approaches, for instance, Brewin et al. (2015) and
Ward (2015) modified the relationship between the chlorophyll
concentration of the phytoplankton groups and total chlorophyll
(abundance-based) according to the environmental (ecological-
based) conditions (e.g., temperature or light availability).

Phytoplankton group-specific satellite products are now being
used for the validation of (Ward et al., 2012; Hirata et al., 2013;
Hashioka et al., 2013; Rousseaux et al., 2013; Vogt et al., 2013;
Holt et al., 2014; de Mora et al., 2016; Laufkötter et al., 2016), or
assimilation of data into (Xiao and Friedrichs, 2014), ecosystem
models. However, there are two challenges that modelers face
when undertaking such analyses (Bracher et al., 2017). Firstly,
there is often a mismatch between phytoplankton products
provided by the remote-sensing community and those required
by the ecosystem modelers. These difficulties arise in cases
where a phytoplankton group adopted by the ecosystem modeler
has similar optical properties to other phytoplankton groups,
meaning they may not be detected directly using spectral-
based methods, or the phytoplankton group does not co-vary
in a predictable manner with variables amenable from remote-
sensing, limiting abundance-based and ecological-basedmethods
and rendering the use of satellite products difficult. Greater dialog
between ecosystemmodelers and the remote-sensing community
is required to bridge this mismatch where feasible.

The second challenge is associating a level of uncertainty to
the satellite phytoplankton group products, ideally on a per-pixel
basis (per grid cell of the model). This is an essential prerequisite
for both ecosystem model validation and data assimilation. If
the uncertainties in the satellite products are too high they may
not be useful for validation and may have little impact on a
data assimilation scheme, since the target for data assimilation
is to modify model simulations such that they agree with the
observations within their uncertainties (e.g., Gregg et al., 2009;
Ford et al., 2012; Ciavatta et al., 2014, 2016). Whereas many
approaches have been proposed to derive satellite phytoplankton
group products (IOCCG, 2014), few provide estimates of per-
pixel uncertainty.

There are two methods commonly used to estimate
uncertainty in ocean-color products: error propagation, or
model-based uncertainties, and comparison of satellite estimates
with in situ data (validation). Error propagation typically
involves propagation of errors from input to output products,
knowing the uncertainties in the input and model parameters.
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These techniques have been used for estimating uncertainties
in chlorophyll concentration and inherent optical properties
(Maritorena et al., 2010; Lee et al., 2011; Werdell et al.,
2013a), and for some satellite phytoplankton group products
(Kostadinov et al., 2009, 2016; Roy et al., 2013; Brewin et al.,
2017). In addition to estimating per-pixel uncertainty, these
techniques can be very useful for understanding the sensitivity
of model parameters and model inputs on the output products
(Roy et al., 2013; Kostadinov et al., 2016; Brewin et al., 2017).

In a user consultation of ocean-color products, conducted as
part of the ESA Ocean Colour Climate Change Initiative (OC-
CCI), there seemed to be a preference from ecosystem modelers
for estimates of uncertainties based on comparison with in situ
data, rather than model-based uncertainties (Sathyendranath,
2011). For most techniques, satellite phytoplankton group
products have been validated with in situ data (see Table 3
of Mouw et al., 2017). However, this information is typically
provided as a single statistic (e.g., root mean square error),
which can be difficult to convert to a per-pixel error, considering
uncertainties are likely to vary with the environmental conditions
and the magnitude of the product. Furthermore, the distribution
of data used in validation datasets may not be an adequate
representation of the spatial and temporal variability in the
region under study.

To overcome these issues, Moore et al. (2001, 2009, 2012)
proposed the use of an optical classification of pixels, together
with fuzzy-logic statistics, to estimate per-pixel errors in satellite
ocean-color products based on comparison with in situ data.
In this approach, satellite and in situ match-ups are segregated
into dominant optical water types (ranging from oligotrophic
to turbid waters), then error statistics are computed for each
dominant optical water-type. An ocean-color spectrum (at
a given pixel) is then compared with all the optical water
type spectra to determine its fuzzy membership. The fuzzy
membership is then used to compute the error by weighting the
errors in each dominant optical water type according to the fuzzy
membership. This approach can, to a certain degree, overcome
issues with the distribution of data used in the validation, and
account for uncertainties varying with the conditions and the
magnitude of the product. It has been adopted in the ESA
OC-CCI project and is used to provide per-pixel errors (root
mean square error and bias) for all OC-CCI products, including:
chlorophyll, diffuse attenuation coefficient, and the inherent
optical properties of oceanic waters. However, this approach has
not been applied to satellite phytoplankton group products.

The Copernicus Marine Environment Monitoring Service
(CMEMS) project “Toward Operational Size-class Chlorophyll
Assimilation (TOSCA)” seeks to address these issues by: (i)
providing remotely-sensed products on phytoplankton groups
that map onto those simulated by the European Regional Seas
Ecosystem model (ERSEM; Butenschön et al., 2016), which is
the ecosystem model adopted in this project; and (ii) provide
uncertainty estimates for the remotely-sensed products on a per-
pixel basis, based on in situ match-ups (the preferred choice for
ecosystem modelers; Sathyendranath, 2011). In this paper, we re-
tuned an abundance-based method (Brewin et al., 2010, 2015) to
estimate the chlorophyll concentration of three phytoplankton

groups, partitioned according to size, from satellite data in the
North Atlantic. The abundance-based method was modified to
account for the influence of SST (i.e., combining the method with
an ecological-approach), and partition microphytoplankton into
diatoms and dinoflagellates, so that the phytoplankton groups
provided by the satellite approach match those simulated by
ERSEM. Using an optical classification of pixels with fuzzy-
logic statistics (Moore et al., 2001, 2009, 2012; Jackson and
Sathyendranath, 2015), we present a method for deriving per-
pixel uncertainty for each phytoplankton group based on a
validation dataset of satellite and in situ match-ups, which is
independent of the data used to parameterize the method.

2. METHODS

2.1. Study Area: The North Atlantic
The chosen study site was the North Atlantic (Figure 1),
spanning 46◦ W to 13◦ E and 20◦ N to 66◦ N, and categorized
by the CMEMS Ocean Colour Thematic Assembley Centre
(OCTAC) as the Atlantic (ATL) region. This region encompasses
a range of bio-optical conditions from clear, deep open-ocean
waters to shallower optically-complex shelf seas. We chose this
site because of two factors: (i) it is a region that has been
extensively sampled over the past few decades, resulting in a
relatively large number of in situ observations on phytoplankton
groups when compared with other regions of the ocean; and
(ii) it has been subject to many studies on marine ecosystem
modeling (e.g., Holt et al., 2014). The North Atlantic is also home

FIGURE 1 | Locations of High Performance Liquid Chromatography

(HPLC) and size-fractionated filtration (SFF) in situ data (<20 m depth)

used in this study (CMEMS OCTAC ATL region). Background color show

pixel-by-pixel correlation coefficients (r) of monthly Sea Surface Temperature

(ESA SST products) and monthly average light in the mixed-layer between

2000 and 2010 [computed using Equation 11 of Brewin et al. (2015) with a

monthly climatology of mixed-layer depth (de Boyer Montégut et al., 2004),

monthly photosynthetic available radiation products from NASA SeaWiFS

(http://oceancolor.gsfc.nasa.gov/), and Kd estimated from Morel et al. (2007)

using OC-CCI monthly chlorophyll products].
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to one of the largest spring phytoplankton blooms on the planet
(Ducklow and Harris, 1993) and is known as a major region for
the biological drawdown of seawater CO2 (Takahashi et al., 2002,
2009) and primary production (Tilstone et al., 2014).

2.2. Statistical Tests
To compare the in situ and satellite chlorophyll concentrations,
we used the root mean square error (9) and bias (δ), consistent
with the statistical tests adopted in the ESA OC-CCI project
and used to provide per-pixel errors. The 9 and δ values were
computed according to

9 =

[

1

N

N
∑

i = 1

(

XE
i − XM

i

)2

]1/2

, (1)

and

δ =
1

N

N
∑

i = 1

(

XE
i − XM

i

)

, (2)

where X is the variable (chlorophyll concentration) and N is
the number of samples. The superscript E denotes the estimated
variable (e.g., satellite estimate) and M the measured variable
(e.g., in situ). Note that the unbiased root mean square error (1)
can be computed from 9 and δ according to 1 = (92 − δ2)1/2.
In addition we also used the Pearson linear correlation coefficient
(r), to see how well estimated variables and measured variables
are correlated. All statistical tests were performed in log10 space,
considering that the chlorophyll concentration is approximately
log-normally distributed (Campbell, 1995). Definitions for all
symbols used in the paper are provided in Table 1.

2.3. Data
2.3.1. High Performance Liquid Chromatography

(HPLC) Pigment Data
A total of 2,791 samples collected in the North Atlantic region
and analyzed by High Performance Liquid Chromatography
(HPLC) were used in this study (Figure 1), spanning 1995–2014.
This dataset comprised of samples from: the Atlantic Meridional
Transect (AMT) cruises 1-23 (Gibb et al., 2000; Barlow et al.,
2002; Aiken et al., 2009; Brewin et al., 2010; Airs and Martinez-
Vicente, 2014a,b,c; Brewin et al., 2015); the GeP&CO program
(Dandonneau et al., 2004); the North Atlantic bloom experiment
(Werdell et al., 2003; Westberry et al., 2010); the eastern Atlantic
Ocean (Brotas et al., 2013); the North Atlantic, collected by the
Bedford Institute of Oceanography (Sathyendranath et al., 2001;
Devred et al., 2006); the Western Channel Observatory in the
English Channel (Station L4 and E1; Smyth et al., 2010); a series
of UK NERC-funded research cruises (D261, D262, D264, D325,
JC011, JC037, and JCR656) in the North Atlantic and North Sea
(Tilstone et al., 2015); and from the NASA bio-Optical Marine
Algorithm Dataset (NOMAD Version 2.0 ALPHA, Werdell and
Bailey, 2005), following the removal of any AMT data so as to
avoid duplication. Details of HPLC methods used can be found
in the aforementioned references.

Only samples collected within the top 20m of the water
column (or within the 1st optical depth as in the case of the NASA

NOMAD dataset) were used [i.e., within the surface mixed-
layer depth (rarely <20 m; de Boyer Montégut et al., 2004)]. To
control the quality of the pigment data, we used only HPLC data
for which the total chlorophyll concentration was greater than
0.001mgm−3 (Uitz et al., 2006), and the difference between the
total chlorophyll concentration and the total accessory pigments
was less than 30% of the total pigment concentration (Trees et al.,
2000; Aiken et al., 2009; Brewin et al., 2015).

2.3.1.1. Size-fractionated chlorophyll estimates from HPLC
The fractions of total chlorophyll for the three phytoplankton
size classes (Fp, Fn, and Fm, for pico-, nano-, and microplankton,
respectively) were estimated following the methods of Brewin
et al. (2015), adapted from Vidussi et al. (2001), Uitz et al. (2006),
Brewin et al. (2010), and Devred et al. (2011). Note, whenever
we refer to microplankton, nanoplankton and picoplankton,
we are referring to phytoplankton. First, the total chlorophyll
concentration (C) was estimated from the weighted sum of the
seven diagnostic pigments, hereafter denoted Cw, according to

Cw =

7
∑

i = 1

WiPi, (3)

where, the weights are denoted [W], and the diagnostic pigments
[P] = {fucoxanthin; peridinin; 19′-hexanoyloxyfucoxanthin;
19′-butanoyloxyfucoxanthin; alloxanthin; total chlorophyll-b;
zeaxanthin}. We computed the weights [W] using multi-linear
regression on the 2,791 samples. Retrieved values for the weights
compare reasonably to values derived globally (Table 2), and
total chlorophyll (C) and total chlorophyll estimated from
Equation (3) (Cw) were in good agreement (r = 0.99, 9 =
0.10). Having derived Cw, the fractions of chlorophyll in each
size class relative to the total chlorophyll concentration were
estimated.

Following Brewin et al. (2015), the fraction of picoplankton
chlorophyll concentration (Fp) was computed according to

Fp =







(−12.5C + 1)W3P3
Cw

+

∑7
i = 6 WiPi
Cw

if C≤ 0.08mgm−3

∑7
i = 6 WiPi
Cw

if C > 0.08mgm−3.
(4)

The fraction of nanoplankton chlorophyll concentration (Fn) was
estimated by first apportioning part of the fucoxanthin pigment
(P1) to the nanoplankton pool, as conducted by Devred et al.
(2011), such that

P1,n = 10{q1 log10(P3) + q2 log10(P4)}, (5)

where P3 and P4 refer to 19′-hexanoyloxyfucoxanthin and
19′-butanoyloxyfucoxanthin. This is to account for the fact
that fucoxanthin is a precursor to 19′-hexanoyloxyfucoxanthin
and 19′-butanoyloxyfucoxanthin (Devred et al., 2011). We
recomputed these coefficients (q1 and q2) using the 2,791 HPLC
samples, and arrived at values of q1 = 0.14 and q2 = 1.35.
For any sample where P1,n was higher than P1, then P1,n was
set to equal P1. Following Brewin et al. (2015), the fraction of
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TABLE 1 | Symbols and definitions.

Symbol Definition Units

C Total chlorophyll concentration mgm−3

Cw Total chlorophyll concentration estimated from the seven diagnostic pigments (Equation 3) mgm−3

Cp Chlorophyll concentration for picophytoplankton (cells < 2µm) mgm−3

Cp,n Chlorophyll concentration for combined nano-picophytoplankton (cells < 20µm) mgm−3

Cn Chlorophyll concentration for nanophytoplankton (cells 2− 20µm) mgm−3

Cm Chlorophyll concentration for microphytoplankton (cells > 20µm) mgm−3

Cdiat Chlorophyll concentration for diatoms mgm−3

Cdino Chlorophyll concentration for dinoflagellates mgm−3

Cmp,n Asymptotic maximum value of Cp,n (cells <20µm) mgm−3

Cmp Asymptotic maximum value of Cp (cells <2µm) mgm−3

CSSTi Chlorophyll concentration for group i (where i = p, n,m,diat and dino) estimated using the SST dependent

paramaterizations (Equations 10–16)

mgm−3

Dp,n Fraction of total chlorophyll in combined nano-picophytoplankton (cells <20µm) as total chlorophyll tends to zero Dimensionless

Dp Fraction of total chlorophyll in picophytoplankton (cells <2µm) as total chlorophyll tends to zero Dimensionless

Fp Fraction of total chlorophyll for picophytoplankton (cells <2µm) Dimensionless

Fp,n Fraction of total chlorophyll for combined nano-picophytoplankton (cells < 20µm) Dimensionless

Fn Fraction of total chlorophyll for nanophytoplankton (cells 2− 20µm) Dimensionless

Fm Fraction of total chlorophyll for microphytoplankton (cells >20µm) Dimensionless

Fdiat Fraction of total chlorophyll for diatoms Dimensionless

Fdino Fraction of total chlorophyll for dinoflagellates Dimensionless

G1 Parameter of Equation (12) controlling lower and/or upper bound in Cmp,n mgm−3

G2 Parameter of Equation (12) controlling slope of change in Cmp,n with SST ◦C−1

G3 Parameter of Equation (12) controlling the SST mid-point of G2
◦C

G4 Parameter of Equation (12) controlling lower and/or upper bound in Cmp,n mgm−3

H1 Parameter of Equation (13) controlling lower and/or upper bound in Cmp mgm−3

H2 Parameter of Equation (13) controlling slope of change in Cmp with SST ◦C−1

H3 Parameter of Equation (13) controlling the SST mid-point of H2
◦C

H4 Parameter of Equation (13) controlling lower and/or upper bound in Cmp mgm−3

J1 Parameter of Equation (14) controlling lower and/or upper bound in Dp,n Dimensionless

J2 Parameter of Equation (14) controlling slope of change in Dp,n with SST ◦C−1

J3 Parameter of Equation (14) controlling the SST mid-point of J2
◦C

J4 Parameter of Equation (14) controlling lower and/or upper bound in Dp,n Dimensionless

K1 Parameter of Equation (15) controlling lower and/or upper bound in Dp Dimensionless

K2 Parameter of Equation (15) controlling slope of change in Dp with SST ◦C−1

K3 Parameter of Equation (15) controlling the SST mid-point of K2
◦C

K4 Parameter of Equation (15) controlling lower and/or upper bound in Dp Dimensionless

Pi Diagnostic pigments (where i = 1 to 7) for: fucoxanthin (1), peridinin (2), 19′-hexanoyloxyfucoxanthin (3),

19′-butanoyloxyfucoxanthin (4), alloxanthin (5), total chlorophyll-b (6), and zeaxanthin (7)

mgm−3

P1,n Diagnostic pigment fucoxanthin in nanophytoplankton mgm−3

q1→2 Empirical coefficients used to compute P1,n from P3 and P4 (Equation 5) Dimensionless

r Pearson correlation coefficient Dimensionless

SST Sea surface temperature ◦C

Ti Membership for each Optical Water Type (OWT) Dimensionless

Wi Weights in Equation (3) (where i = 1 to 7) for: fucoxanthin (1), peridinin (2), 19′-hexanoyloxyfucoxanthin (3),

19′-butanoyloxyfucoxanthin (4), alloxanthin (5), total chlorophyll-b (6), and zeaxanthin (7)

Dimensionless

α Parameter of Equation (16) controlling slope of change in Cdino/Cm with SST ◦C−1

β Parameter of Equation (16) controlling the SST mid-point of α ◦C

δ Bias between log10-transformed concentrations from estimated and measured data Dimensionless

1 Unbiased root mean square error between log10-transformed concentrations from estimated and measured data Dimensionless

9 Root mean square error between log10-transformed concentrations from estimated and measured data Dimensionless
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TABLE 2 | Key taxonomic groups of phytoplankton, their typical size class, their category in the ERSEM model and their diagnostic pigment.

Key taxonomic groups Typical size

class&
ERSEM

Group#
Pigment [W]

This study

(N. Atlantic)$
Brewin et al. (2015)

(Global)$
Uitz et al. (2006)

(Global)

Diatoms Microa Diatoms Fucoxanthine (P1) 1.65 (±0.01) 1.51 (±0.01) 1.41

Dinoflagellates Micro Dinoflagellatesd Peridinin (P2) 1.04 (±0.03) 1.35 (±0.02) 1.41

Prymnesiophytes Nanob Nano 19′-hexanoyloxyfucoxanthin2 (P3) 0.78 (±0.01) 0.95 (±0.01) 1.27

Pelagophytes Nano Nano 19′-butanoyloxyfucoxanthin (P4) 1.19 (±0.03) 0.85 (±0.02) 0.35

Cryptophytes Nano Nano Alloxanthin (P5) 3.14 (±0.04) 2.71 (±0.05) 0.60

Chlorophytes, Prochlorophytes Picoc Pico Total Chlorophyll-b∗ (P6) 1.38 (±0.02) 1.27 (±0.01) 1.01

Cyanobacteria, Prochlorophytes Pico Pico Zeaxanthin (P7) 1.02 (±0.01) 0.93 (±0.00) 0.86

The table also shows a comparison of the weights ([W]) computed for Equation (3) using the 2791 HPLC data samples collected in this study, with weights derived from two other
studies of the global ocean.
∗Total Chlorophyll-b refers to the sum of Chlorophyll-b and divinyl chlorophyll-b.
&Micro refers to cell cells >20µm, Nano cells 2–20µm and Pico cells <2µm in size.
$Bracketed values refer to the standards deviations for each coefficient.
#Phytoplankton state variables in ERSEM model.
aDiatoms can be found in the nano size class.
bPrymnesiophytes and 19′-hexanoyloxyfucoxanthin pigment can be found in the pico size class.
cSome chlorophytes can be found in the nanoplankton size class (Latasa et al., 2004).
dAlso named microplankton in ERSEM.
eFucoxanthin can be found in the nano size class.

nanoplankton chlorophyll concentration (Fn) was then estimated
according to

Fn =







12.5CW3P3
Cw

+

∑5
i = 4 WiPi+W1P1,n

Cw
if C≤ 0.08mgm−3

∑5
i = 3 WiPi + W1P1,n

Cw
if C > 0.08mgm−3.

(6)
Finally, following Devred et al. (2011) and Brewin et al. (2015),
the fraction of microplankton chlorophyll concentration (Fm)
was estimated as

Fm =

∑2
i = 1WiPi −W1P1,n

Cw
. (7)

Note that Fm can also be computed by simply subtracting Fn
and Fp from one. The fractions of chlorophyll in each size
class were then multiplied by the corresponding HPLC-derived
total chlorophyll concentration (C) to derive the size-specific
chlorophyll concentrations for each sample (Cp, Cp,n, Cn, and
Cp, where the subscripts “p” refers to pico-, “n” nano- and “m”
microphytoplankton, and the subscript “p, n” refers to combined
pico and nanophytoplankton).

2.3.1.2. Partitioning the fraction of microphytoplankton

chlorophyll into fractions of diatoms and dinoflagellates
The fraction of microphytoplankton chlorophyll concentration
(Fm) is estimated from two diagnostic pigments, fucoxanthin in
microphytoplankton (P1,m) and peridinin (P2). It is generally
assumed that fucoxanthin in microphytoplankton is the primary
pigment for diatoms (Stauber and Jeffrey, 1988) and peridinin for
dinoflagellates, as the majority of photosynthetic dinoflagellates
contain a chloroplast with peridinin as the major carotenoid (see
Table 1 and Zapata et al., 2012). Following Hirata et al. (2011),
this assumption was used to partition microphytoplankton
chlorophyll into the concentrations of the two groups.

The fraction of microplankton diatoms to total chlorophyll
(Fdiat) and the fraction of microplankton dinoflagellates to total
chlorophyll (Fdino) were computed as

Fdiat =
W1P1 −W1P1,n

Cw
, (8)

and

Fdino =
W2P2

Cw
, (9)

respectively. The chlorophyll concentrations for diatoms
and dinoflagellates (Cdiat and Cdino) were then obtained by
multiplying the fractions by the corresponding HPLC-derived
total chlorophyll concentration (C).

2.3.2. Size-Fractionated Filtration (SFF) Data
A total of 263 size-fractionated fluorometric chlorophyll (SFF)
measurements collected previously in the North Atlantic region
were also used in this study (Figure 1), spanning 1996–2015. This
comprised of samples from: the Atlantic Meridional Transect
cruises 2–23 (see Marañón et al., 2001; Serret et al., 2001;
Robinson et al., 2002; Brewin et al., 2014a,b; Tilstone et al., 2017,
for details); the Western Channel Observatory in the English
Channel (Station L4 and E1; see Barnes et al., 2014, for details);
and the NERC shelf seas biogeochemistry programme.

In all cases, ∼200–300ml samples were sequentially filtered
through 20, 2, and 0.2µm polycarbonate filters. Following
filtration, pigments were extracted by storing the filters in 90%
acetone at −20◦C for between 10 and 24 h. Samples were then
analyzed using a Turner Design Fluorometer, pre- and post-
calibrated using pure chlorophyll-a in 90% acetone as a standard.
The total chlorophyll concentration was taken as the sum of the
size fractions for each sample. The concentration of chlorophyll
passing through the 2µm filter was designated Cp (picoplankton
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chlorophyll), chlorophyll retained on the 20µm filter designated
Cm (microplankton chlorophyll) and the chlorophyll retained on
the 2µmfilter, having passed through the 20µmfilter, designated
Cn (nanoplankton chlorophyll).

2.4. Merging of in situ Datasets
Systematic biases in size-fractionated chlorophyll estimated from
HPLC pigments and from SFF have been observed in the Atlantic
Ocean (Brewin et al., 2014a), with implications for models
that estimate size-fractionated chlorophyll as a function of total
chlorophyll (Brewin et al., 2014b) and models that estimate size-
fractionated primary production (Brewin et al., 2017). Therefore,
care needs to be taken when combining these two datasets.
Figure 2 shows a comparison of 31 concurrent and co-located
data points of total chlorophyll (Figure 2A), picoplankton
chlorophyll (Figure 2B), nanoplankton chlorophyll (Figure 2C)
andmicroplankton chlorophyll (Figure 2D), from the HPLC and
SFF dataset used here.

Despite there being biases in size-fractionated chlorophyll
consistent with those observed by Brewin et al. (2014a)
(Figure 2), these biases are notably smaller (e.g., for picoplankton
chlorophyll δ = −0.07 compared with δ = −0.27 in see
their Figure 3 Brewin et al. (2014a), and for nanoplankton
δ = 0.15 compared with δ = 0.22), suggesting for surface
waters in the North Atlantic, there is reasonable agreement

between the two methods, at least for the datasets used here.
Given the good agreement in Figure 2, the two datasets were
combined into a single dataset, providing 3,054 measurements
of size-fractionated chlorophyll (2,791 HPLC and 263 SFF).
Figure 3 shows a schematic diagram of how the datasets were
combined and subsequently used for model parameterization
and validation.

For each sample, SST data were extracted by matching
each in situ sample in time (daily temporal match-up)
and space (closest latitude and longitude) with daily, 1/4◦

resolution Optimal Interpolation Sea Surface Temperature
(OISST) data (Version 2.0; Reynolds et al., 2007) acquired from
the NOAA website (http://www.esrl.noaa.gov/psd/data/gridded/
data.noaa.oisst.v2.highres.html).

2.5. Partitioning Into Parameterization and
Validation Datasets
Themerged dataset wasmatched to daily, level 3 (4 km sinusoidal
projected) satellite chlorophyll and optical water type (OWT)
data, from version 3.0 of the Ocean Colour Climate Change
Initiative (OC-CCI, a merged MERIS, MODIS-Aqua, SeaWiFS
and VIIRS product available at http://www.oceancolour.org/),
between 1997 and 2015. Each in situ sample was matched with
a single satellite pixel in time (daily match-up) and space (closest
pixel with a distance <4 km away). Of the 3,054 samples, there

FIGURE 2 | Concurrent and co-located size-fractionated chlorophyll estimated from High Performance Liquid Chromatography (HPLC) and

size-fractionated filtration (SFF) for surface waters in the North Atlantic region. (A) shows a comparison of total chlorophyll (C), (B) picoplankton chlorophyll

(Cp), (C) nanoplankton chlorophyll (Cn), and (D) microplankton chlorophyll (Cm). Black line represents the 1:1 line and dotted lines represent the 1:1 line ±30% log10
chlorophyll. N refers to the number of samples used to compute statistics, r refers to the Pearson linear correlation coefficient, 9 the root mean square error

(Equation 1) and δ the bias (Equation 2).
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FIGURE 3 | A flow chart of the processing techniques. Data collected in

the OCTAC ATL region [both High Performance Liquid Chromatography

(HPLC) and size-fractionated filtration (SFF)] were partitioned into two

databases [parameterization (Database A) and satellite validation (Database

B)], and used to re-tune, adapt and validate the model of Brewin et al. (2010),

compute the root mean square error (9) and bias (δ) for each optical water

type (OWT), and map phytoplankton group products and associated errors

using ocean-color data.

were 815 corresponding satellite chlorophyll and optical water
type (OWT) data. These 815 measurements were set aside and
used for independent validation of the satellite model and for
characterizing per-pixel error, leaving 2,239 measurements that
were used for model development (parameterization). Figure 3
shows a schematic diagram of how the data were partitioned into
the parameterization and validation dataset.

The OWT data provided in version 3.0 of the OC-CCI dataset
contains the per-pixel membership of 14 different optical classes,
ranging from oligotrophic (e.g., OWT 1) to very turbid (OWT
14) waters. Building on the work of Moore et al. (2001, 2009,
2012), this new set of optical classes were constructed for use
with OC-CCI remote sensing reflectance (Rrs) spectra (Jackson
and Sathyendranath, 2015). These classes were trained using Rrs
spectra from satellite data, rather than using a database of in
situ observations, as conducted in Moore et al. (2009), and the
number of optical water classes were increased to 14, to better
cover the range of Rrs spectra observed in the global oceans,
particularly the oligotrophic gyres. For further details of the

training and production of the 14 OWT the reader is referred to
Jackson and Sathyendranath (2015).

2.6. Satellite Model of Phytoplankton
Groups
2.6.1. Three-Component Model of Brewin et al. (2010)
As a starting point, we used the three-component model of
Brewin et al. (2010) to estimate the chlorophyll concentrations
in three phytoplankton size classes [pico- (<2µm), nano- (2–
20µm), and micro-phytoplankton (>20µm)] as a function of
total chlorophyll in the study region (Figure 1). This approach
has been successfully tuned to the global ocean (Brewin et al.,
2015; Ward, 2015) as well as different oceanic regions, including:
the Atlantic Ocean (North and South; Brewin et al., 2010, 2014b;
Tilstone et al., 2014); the North East Atlantic (Brotas et al., 2013);
the Indian Ocean (Brewin et al., 2012b); the Western Iberian
coastline (Brito et al., 2015); the Mediterranean Sea (Sammartino
et al., 2015); and the South China Sea (Lin et al., 2014). Estimating
size-fractionated chlorophyll from satellite data (using satellite
total chlorophyll as input to the three-component model) has
been tested extensively with in situ data in different oceanic
regions (Brewin et al., 2010, 2012b; Lin et al., 2014; Brewin et al.,
2015).

The three-component model is based on two exponential
functions (Sathyendranath et al., 2001), where the chlorophyll
concentration of picoplankton (Cp, cells <2µm) and combined
pico- and nanoplankton (Cp,n, cells <20µm) are obtained from

Cp,n = Cm
p,n[1− exp(−

Dp,n

Cm
p,n

C)], (10)

and

Cp = Cm
p [1− exp(−

Dp

Cm
p
C)]. (11)

The parameters Dp,n and Dp determine the fraction of total
chlorophyll in the two size classes (<20µm and <2µm,
respectively) as total chlorophyll tends to zero, and Cm

p,n and
Cm
p are the asymptotic maximum values for the two size classes

(<20µmand <2µm respectively). The chlorophyll concentration
of nano-phytoplankton (Cn) and micro-phytoplankton (Cm) are
simply calculated as Cn = Cp,n − Cp and Cm = C − Cp,n.

A single set of model parameters was first derived by
fitting (Equations 10 and 11) using a standard, nonlinear
least-squared fitting procedure (Levenberg-Marquardt, IDL
Routine MPFITFUN, Moré, 1978; Markwardt, 2008) with
relative weighting (Brewin et al., 2011a). The parameters
Dp,n and Dp were constrained to be less than or equal to
one, since size-fractionated chlorophyll cannot exceed total
chlorophyll. We used the method of bootstrapping (Efron, 1979;
Brewin et al., 2015) to compute a parameter distribution, and
from the resulting parameter distribution, median values and
95% confidence intervals were computed (see Table 3). The
parameters Dp,n and Dp were found to be significantly different
from the global parameters derived in Brewin et al. (2015) (see
Table 3). The model was found to capture the trends in the
fractions (Fp, Fn, Fp,n, and Fm) and absolute concentrations
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TABLE 3 | Parameter values for Equations 10 and 11 compared with global parameters derived in Brewin et al. (2015).

Study Parameters for equations 10 and 11 Location N#

Cmp,n
* Cmp

* Dp,n Dp

Brewin et al. (2015)$ 0.77 (0.72↔0.84) 0.13 (0.12↔0.14) 0.94 (0.93↔0.95) 0.80 (0.78↔0.82) Global 5841

This study$ 0.82 (0.76↔0.88) 0.13 (0.12↔0.13) 0.87 (0.86↔0.89) 0.73 (0.71↔0.76) N Atlantic 2239

This study$ (<15oC) 1.83 (1.47↔2.44) 0.31 (0.24↔0.47) 0.60 (0.58↔0.63) 0.26 (0.23↔0.30) N Atlantic 1017

This study$ (≥15oC) 0.86 (0.79↔0.96) 0.13 (0.12↔0.14) 0.93 (0.91↔0.94) 0.74 (0.72↔0.77) N Atlantic 1222

$Model parameters are computed as the median of the bootstrap parameter distribution and bracket parameter values refer to the 2.5 and 97.5% confidence intervals on the distribution.
#N = Number of samples used for model parameterization
∗Denotes units in mgm−3.

(Cp, Cn, Cp,n, and Cm) of the size classes as a function of
total chlorophyll for the North Atlantic parameterization dataset
(Figure 4).

2.6.2. Modification of Three-Component Model Using

SST
Brewin et al. (2015) and Ward (2015) have investigated the
influence of light availability and SST respectively on the
parameterization of the three-component model. In the North
Atlantic, seasonal variations in SST and the average light in
the mixed-layer are highly correlated (Figure 1). Therefore,
considering: (i) that there is, regionally, a covariation of SST with
the average light in the mixed-layer (Figure 1); (ii) that three
inputs are required to compute the average light in the mixed-
layer (photosynthetically-active radiation, diffuse attenuation
and mixed-layer depth), one of which is not amenable from
remote-sensing (mixed-layer depth); and (iii) that the maturity
(operational use) and accuracy of SST retrievals is very high
(Merchant et al., 2014), we chose to investigate the influence of
SST on model parameters in the study area, similar to the study
of Ward (2015) for a global dataset.

Figure 4 illustrates the general inverse correlation between
SST and total chlorophyll (r = −0.67 for SST and log10(C)),
highlighting that higher fractions of smaller cells (lower fractions
of large cells) are typically associated with higher SST. To
investigate if SST has any influence on the parameters of the
three-component model, we partitioned the parameterization
data into lower temperature waters (< 15◦C) and higher
temperature waters (≥ 15◦C), and fitted the model separately
to the two datasets of a roughly equal number (>1,000, see
Table 3). We observed significantly different model parameters
for high and low temperature waters (see Table 3 and Figure 4),
suggesting a relationship between SST and model parameters.
We then sorted the dataset according to SST, and conducted a
running fit of the three-component model (Equations 10 and
11) as a function of SST with a bin size of 600 samples [chosen
to ensure each fit had reasonable representation of observations
over the entire trophic range (low to high chlorophyll)]. We
used the method of bootstrapping (100 iterations) and derived
median values and 95% confidence intervals on each parameter
distribution (Figure 5).

Significant relationships between all model parameters (Cm
p,n,

Cm
p , Dp,n, and Dp) and SST were observed (Figure 5). The

relationship between SST and model parameters could be

represented using a logistic function, such that Cm
p,n and Cm

p may
be expressed as

Cm
p,n = 1− {

G1

1+ exp[−G2(SST− G3)]
+ G4}, (12)

and

Cm
p = 1− {

H1

1+ exp[−H2(SST−H3)]
+H4}, (13)

where G1 and G4 control the upper and lower bounds of Cm
p,n, G2

represents the slope of change in Cm
p,n with SST, and G3 is the SST

mid-point of the slope between Cm
p,n and SST. For Cm

p , Hi, where
i = 1–4, is analogous to Gi for C

m
p,n. The parameter Dp,n and Dp

were expressed as

Dp,n =
J1

1+ exp[−J2(SST− J3)]
+ J4, (14)

and

Dp =
K1

1+ exp[−K2(SST− K3)]
+ K4, (15)

where J1 and J4 control the upper and lower bounds of Dp,n,
J2 represents the slope of change in Dp,n with SST, and J3
is the SST mid-point of the slope between Dp,n and SST.
For Dp, Ki is analogous to Ji for Dp,n. The parameters for
Equations (12)–(15) were fitted using a nonlinear least-squared
fitting procedure (Levenberg-Marquardt) with bootstrapping,
and parameter values are provided in Table 4. The equations are
seen to capture the relationships between parameters and SST
accurately (Figure 5 and Table 4).

Figure 6 shows simulations of size-fractionated chlorophyll
as a function of total chlorophyll for different SST, when
incorporating (Equations 12–15) into the three-component
model (Equations 10 and 11). In general, the performance
for all size classes improved when using the SST-dependent
parameterization, when compared with that using a single
set of parameters (Figure 7), with a significant improvement
in the correlation coefficient for Cp (Z-test, p < 0.05).
Whereas modeled Cp,n, Cn, and Cp reach static asymptotes
at high concentrations when using a single set of parameters
(see Figure 7, top-row, horizontal purple dashed lines), the
SST-dependent parameterization does not, and captures the
variability in the size-fractionated chlorophyll at these higher
concentrations.
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FIGURE 4 | The absolute chlorophyll concentrations [Cm (a,b), Cp,n (e,f), Cn (i,j), and Cp (m,n)] and fractions [Fm (c,d), Fp,n (g,h), Fn (k,l) and Fp (o,p)] in

the parameterization dataset plotted as a function of total chlorophyll concentration (C), with the re-tuned (Brewin et al., 2010) model (parameters

from Table 3), overlain. The top row (a,e,i,m) and middle-bottom row (c,g,k,o) show bivariate histogram plots with the shading indicating the number of

observations (N). The bottom row (d,h,l,p) and middle-top row (b,f,j,n) show the same bivariate plots but the shading represents the median sea surface temperature

(SST) of the data points that lie within the bins.

2.6.3. Partitioning of Microphytoplankton Chlorophyll

Into Diatoms and Dinoflagellates
Considering diatoms are known to dominate the
microphytoplankton community in the North Atlantic
during the initiation of the spring bloom when SST is still
relatively low and nutrient concentrations high (Ducklow and
Harris, 1993; Sieracki et al., 1993; Savidge et al., 1995), and
that dinoflagellates typically increase in late summer and early
autumn (McQuatters-Gollop et al., 2007; Widdicombe et al.,
2010) when SST is generally at its highest in the North Atlantic,
we investigated the use of SST to partition microplankton

chlorophyll (Cm) into diatoms (Cdiat) and dinoflagellates (Cdino).
Figure 8A shows a significant relationship between ratio of
Cdino to Cm and SST (r = 0.28, p < 0.001), with the ratio
increasing with increasing SST. We modeled this relationship
by fitting a logistic function to the data (Figure 8A), such
that

Cdino

Cm
=

1

1+ exp[−α(SST− β)]
, (16)

where α = 0.10 (0.08↔0.13) and β = 32.5 (29.7↔36.1).
Figures 8B,C show model estimates of Cdino (obtained by
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FIGURE 5 | The relationship between sea surface temperature (SST)

and the parameters of the re-tuned (Brewin et al., 2010) model for the

North Atlantic dataset. (A) Shows the relationship between Dp,n and SST,

and Dp and SST. (B) Shows the relationship between Cmp,n and SST, and Cmp
and SST. Solid color lines show median values on the bootstrap parameter

distribution and lighter shades represent 95% confidence intervals. Black solid

and dashed lines represent logistic models fitted between the parameters and

SST shown in Equations (12–15), with the parameters provided in Table 4.

multiplying the modeled ratio (Equation 16) by Cm) plotted
against measured Cdino, and estimates of Cdiat (obtained as
Cm(1 − (Cdino/Cm))) against measured Cdiat . In general, there is
good agreement between the estimates and measurements, with
higher correlations and lower root mean square errors for Cdiat

compared with Cdino (Figures 8B,C). Combining estimates of
Cm using the three component model (Equations 10–15) with
estimates of the ratio ofCdino toCm (Equation 16),Cdino andCdiat

can be estimated as a function of total chlorophyll (C) and SST.

2.7. Validation of the Satellite Model,
Estimates of Per-Pixel Uncertainty and
Application to Satellite Data
The satellite match-up dataset (not used for model
parameterization) was used to validate the model by using
satellite-derived total chlorophyll (OC-CCI) and SST (NOAA
OISST) as inputs to Equations (10–15) and comparing the
results with independent in situ chlorophyll concentrations for
each phytoplankton group. In addition, the satellite match-ups
were partitioned into 14 OWT by selecting the highest OWT
membership for each sample. The root mean square error (9 ,
Equation 1) and bias (δ, Equation 2) in the satellite estimates were
computed separately for each OWT and for each phytoplankton
group.

We applied the model to a relatively cloud-free 8-day
chlorophyll (OC-CCI) and SST (NOAA OISST) composite for
the data between 17th and 24th June 2008, to illustrate its
application to a satellite image. Uncertainties (9 and δ) in
each pixel of the study area were computed by weighing the
uncertainties in each OWT by their membership. For instance,
9 at a given pixel for a hypothetical phytoplankton group would
be computed as

9 =

∑14
i = 1 9iTi

∑14
i = 1 Ti

, (17)

where i represents each OWT and T represents the membership
of each OWT.

3. RESULTS AND DISCUSSION

3.1. Satellite Validation
Considering the agreement between total satellite and in situ
chlorophyll in the validation dataset (r = 0.86, 9 = 0.29, δ =

−0.01), the satellite estimates of size-fractionated chlorophyll
compare well with the independent in situ data (Figure 9, r =

0.49 to 0.86, and 9 = 0.30 to 0.45), in agreement with previous
studies (Brewin et al., 2010, 2012b; Lin et al., 2014; Brewin et al.,
2015). Although the SST-dependent parameterization (CSST

i ) has
a similar statistical performance compared with that obtained
when using a single set of parameters, the SST-dependent
parameterization is not constrained by static asymptotes for Cp,n,
Cn, and Cp (Figure 9 top-row, horizontal purple dashed lines)
and captures better the variability in the size-fractionated
chlorophyll at these higher concentrations. Correlation
coefficients for picoplankton chlorophyll are higher for the
SST-dependent parameterization (CSST

p ) when compared with
the single set of parameters (Cp) in both the parameterization
(Figure 7) and validation (Figure 9) datasets. This finding is
consistent with results from Pan et al. (2013) who highlighted the
benefits of including SST when estimating zeaxanthin (diagnostic
pigment for picoplankton) from satellite data.

Satellite estimates of diatom and dinoflagellate chlorophyll
also compare reasonably well with the independent in situ
data (Figure 10). Satellite estimates of diatom chlorophyll have
higher correlation coefficient (r) and lower error (9) when
compared with dinoflagellate chlorophyll estimates, suggesting
better performance for this phytoplankton group. High errors
in satellite estimates of dinoflagellate chlorophyll reflect how
challenging it is to retrieve this phytoplankton group from space
(Raitsos et al., 2008; Shang et al., 2014), though it is encouraging
to observe significant correlations between the satellite and in situ
dinoflagellate chlorophyll concentrations (r > 0.64, p < 0.001)
in the validation dataset, especially when considering the lower
range of chlorophyll variability in dinoflagellates (Figure 10).

3.2. Changes in Performance With Optical
Water Types (OWT)
For each of the 14 OWT and for each of the phytoplankton
groups, the root mean square error (9), bias (δ) and number
of observations (N) for match-ups in the validation dataset are
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TABLE 4 | Parameter values for Equations (12) and (15).

Model parameter Equation Parameters for equations 12 and 15 r# p &

Cmp,n
∗ 12 G1 = −1.51 (−1.57↔−1.43) G2 = −1.25 (−1.41↔ −1.25) G3 =14.95 (14.87↔15.05) G4 = 0.25 (0.23↔0.26) 0.98 <0.001

Cmp
∗ 13 H1 = 0.29 (0.28↔0.30) H2 = 3.05 (2.87↔3.26) H3 =16.24 (16.19↔16.29) H4 = 0.56 (0.55↔0.57) 0.91 <0.001

Dp,n 14 J1 = 0.370 (0.367↔0.373) J2 = 1.13 (1.10↔1.16) J3 =14.89 (14.87↔14.91) J4 = 0.569 (0.566↔0.571) 1.00 <0.001

Dp 15 K1 = 0.503 (0.501↔0.505) K2 = 1.33 (1.31↔1.37) K3 =17.31 (17.28↔17.32) K4 = 0.258 (0.256↔0.259) 1.00 <0.001

$ Model parameters are computed as the median of the bootstrap parameter distribution and bracket parameter values refer to the 2.5 and 97.5% confidence intervals on the distribution.
# Correlation coefficients (r) were computed using the median parameter values reported.
& p refers to the significance of each correlation (<0.001 is highly significant), computed using the correlation coefficient (r) and the number of samples (N), based on the probability
that the correlation could have been produced by random data.
*Denotes units in mgm−3.

FIGURE 6 | Size-fractionated chlorophyll (A–D) and the fractions of

total chlorophyll in each size class (E–H) plotted as a function of the

total chlorophyll using the re-tuned (Brewin et al., 2010) model, and

varying the parameters according to the sea surface temperature

(SST) (Equations 12–15). Dashed black lines refer to the re-tuned model

using a single set of parameters (Table 3).

provided inTable 5. The9 , δ, andN are also plotted in Figure 11
for satellite estimates of total chlorophyll and chlorophyll
for the four phytoplankton groups using the SST-dependent
parameterization (Equations 12 to 15). The 9 values in each
OWT for total chlorophyll are consistent with those provided

in version 3.0 of the OC-CCI dataset, based on a much larger
global match-up dataset (∼14,500) (Figure 11A). The 9 values
for total chlorophyll increase from lower OWTs (characteristic of
oligotrophic open-ocean waters) to higher OWTs (characteristic
of more optically complex turbid coastal waters). A result that is
also consistent with the original work of Moore et al. (2009), see
their Table 2, and the theoretical limitations of using empirical
ocean-color chlorophyll algorithms in optically-complex waters
(IOCCG, 2000). Biases (δ) in total chlorophyll are generally quite
low (Figure 11B), consistent with version 3.0 of the OC-CCI
dataset, though do not always have the same sign, and are much
higher for OWT14, probably due to very few match-ups (N = 4)
in this class (Figure 11B).

Consistent with satellite estimates of total chlorophyll, there
is a tendency for 9 to increase from lower to higher OWTs
for all the phytoplankton groups (Table 5, Figures 11C,E,G,I),
particularly for smaller cells (pico and nano-plankton) and for
dinoflagellates. This is likely due to: i) the satellite estimates of
total chlorophyll, which are used as input to the phytoplankton
group model, having larger errors at higher OWTs (Figure 11A);
and ii) possible deviations in the relationships between the
phytoplankton groups and total chlorophyll in optically complex
waters, when compared with typical open-ocean conditions.
With the exception of diatoms, there is a slight tendency for
the models to overestimate chlorophyll for the phytoplankton
groups at higher OWTs (e.g., 8–14), as indexed by a positive bias
(Table 5, Figures 11F,H,J).

3.3. Application of the Model to a Satellite
Image
Figure 12 illustrates the application of the phytoplankton
group model (SST-dependent parameterization; Equations 10–
15) to satellite chlorophyll (OC-CCI) and SST (NOAA OISST)
composites for the period 17th to 24th June 2008. Satellite
products used as inputs to the model – chlorophyll (Figure 12A),
OWTmembership (plotted by dominance (highest membership)
in Figure 12B) and SST (Figure 12C)—highlight the different
biogeochemical areas in the region, with oligotrophic waters
to the south (high SST, low total chlorophyll, low OWT),
more productive waters to the north (lower SST, higher
chlorophyll and OWT), and very productive coastal waters
(variable SST, high chlorophyll and OWT). Figures 12D,G,J,M,
show estimates of chlorophyll for the four phytoplankton groups,
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FIGURE 7 | The modeled size-fractionated chlorophyll plotted against in situ size-fractionated chlorophyll in the parameterization dataset, for the

re-tuned (Brewin et al., 2010) model with a single set of parameters (top-row, Table 3) and using the SST-dependent parameterization (bottom row,

Equations 12–15, Table 4). The superscript SST denotes the modeled chlorophyll concentrations using the SST-dependent parameterization. The correlation

coefficient (r) and root-mean-square-error (9) are also shown. Statistical tests were computed using the parameter values reported in Tables 3, 4. The top panels also

show the maximum attainable concentrations for the different size classes as purple dashed horizontal lines when using a single set of parameters (Table 3).

diatoms (Cdiat), dinoflagellates (Cdino), nanoplankton (Cn) and
picoplankton (Cp), respectively. Picoplankton (Cp) are the
dominant group in the warm oligotrophic waters, nanoplankton
(Cn) in intermediate (mesotrophic waters), and diatoms (Cdiat)
in the northern productive waters and coastal regions (eutrophic
waters). Dinoflagellates rarely dominate (i.e., rarely have the
highest chlorophyll of the four groups), but typically have higher
concentrations in coastal regions.

In addition to the concentrations, per-pixel uncertainties (9
and δ) are plotted for each phytoplankton group (Figure 12),
through application of Equation (17) on a per-pixel basis, using
per-pixel OWT membership provided by the OC-CCI products
and statistics from Table 5. In general, lower 9 is observed in the
oligotrophic waters to the south of the region, with 9 increasing
toward more productive waters. Dinoflagellates have the highest
9 in these productive waters, reflecting higher uncertainty in
deriving the concentrations of this phytoplankton group (see
also Figure 10). Lower 9 are seen for nano- and picoplankton,
when compared with the larger size classes. Diatoms display a less
variable9 throughout the entire region, when compared with the
other three phytoplankton groups.

Biases (δ) are close to zero for all phytoplankton groups
in the warm oligotrophic waters (Figure 12), with positive
biases seen for dinoflagellates, nanoplankton and picoplankton
in the more productive waters, implying a slight overestimation
in chlorophyll by the satellite model in these waters. These
biases can be caused by two reasons: (i) biases in model
input (total chlorophyll); and (ii) biases in model parameters
used for partitioning total chlorophyll into the phytoplankton

groups. There were no major biases (with the exception of
OWT14) in total chlorophyll (model input) in the validation
dataset (Figure 11B). Nonetheless, it is likely that the use of
alternative input chlorophyll algorithms (e.g., a semi-analytical
algorithm) will impact these biases. The positive biases seen
for dinoflagellates, nanoplankton and picoplankton in the
more productive waters are likely caused by biases in model
parameters at higher OWTs. In the future, with a larger database,
modifications to model parameters according to OWT could be
feasible, and would likely reduce observed biases.

As well as varying within the region as illustrated in Figure 12,
temporal variations in chlorophyll concentration and associated
per-pixel errors can be captured by application of the model to
satellite data over the course of the seasons.

3.4. Potential Caveats In the Approach
3.4.1. In situ Estimates of Phytoplankton Group

Chlorophyll
The performance of a model is tightly related to the quality of
data used to tune it. We used estimates of phytoplankton group
chlorophyll principally from HPLC. Whereas recent refinements
in the use of HPLC to infer size-fractionated chlorophyll (Uitz
et al., 2006; Brewin et al., 2010; Devred et al., 2011; Brewin
et al., 2015) were used, diagnostic pigments determined by
HPLC can be found in a variety of phytoplankton taxa and
size classes, such that its use as a single in situ method may
not always be dependable (Nair et al., 2008). Therefore, we
combined data on size-fractionated chlorophyll estimated from
HPLC with those from SFF, which encouragingly, were found to

Frontiers in Marine Science | www.frontiersin.org 13 April 2017 | Volume 4 | Article 104105

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Brewin et al. Uncertainty in Ocean-Color Phytoplankton Group Chlorophyll

FIGURE 8 | (A) The ratio of dinoflagellate chlorophyll (Cdino) to

microplankton chlorophyll (Cm) plotted as a function of sea surface

temperature (SST). Gray points show raw values, black dots are binned

averages with 95% confidence intervals on the averages, and red line show

the fitted model (Equation 16). (B) Shows the modeled ratio (Equation 16)

multiplied by microplankton chlorophyll (Cm) to estimate Cdino, plotted against

measured Cdino. (C) Shows one minus the modeled ratio (Equation 16)

multiplied by microplankton chlorophyll (Cm) to estimate Cdiat, plotted against

measured Cdiat. r is the correlation coefficient and 9 the

root-mean-square-error.

be in reasonable agreement with each other for surface waters
in the North Atlantic region (Figure 2). Yet, biases between the
two techniques have been observed in Atlantic waters (Brewin
et al., 2014a). Uncertainties in the SFF technique can arise
from filter clogging, inaccurate pore sizes and cell breakage.
The partitioning of microplankton chlorophyll into diatoms and
dinoflagellates was based on the assumption that fucoxanthin in
microphytoplankton can be attributed to diatoms and peridinin
to dinoflagellates (Equations 8 and 9). Yet, there can also be
fucoxanthin-containing dinoflagellates (e.g., Kryptoperidinium
foliaceum) in Atlantic waters (Kempton et al., 2002), though

there occurrence is generally not well known. Greater efforts to
combine other sources of in situ data (e.g., flow cytometry, video
imagery, optical measurements and microscopy) should help
improve, and quantify uncertainty in, estimates of phytoplankton
group chlorophyll in situ and ultimately, the parameterization of
satellite models.

3.4.2. The Satellite Phytoplankton Group Model
The conceptual framework of the Brewin et al. (2010) model
has been supported by data from: phytoplankton spectral
absorption measurements (Brewin et al., 2011a); spectral particle
backscattering measurements (Brewin et al., 2012a); chlorophyll
estimated by size-fractionated filtration (Raimbault et al., 1988;
Chisholm, 1992; Riegman et al., 1993; Gin et al., 2000; Marañón
et al., 2012; Brewin et al., 2014a; Ward, 2015); flow cytometry and
microscopy (Brotas et al., 2013). The model has also been found
to reproduce inter-annual variations in size structure consistent
with theories on coupling between physical-chemical processes
and ecosystem structure (Brewin et al., 2012b), and found
to reproduce the typical normalized-biomass size-spectrum of
phytoplankton (Brewin et al., 2014b). The model has captured
relationships between size structure and total chlorophyll in a
variety of contrasting regions (e.g., Lin et al., 2014; Brito et al.,
2015; Sammartino et al., 2015).

Yet, as with any abundance-based method, the model
does not directly detect the phytoplankton groups: it simply
infers the concentrations of chlorophyll in each group based
on relationships, developed using data collected in the past,
with properties that can by derived accurately from space
(e.g., chlorophyll concentration and sea surface temperature).
The model is not expected to capture blooms that deviate
from the general trends observed in the parameterization
dataset (Figures 4,5). For this reason, such techniques may not
be appropriate for certain applications. For instance, under
a climate-change scenario, there is the possibility that the
relationships between properties (e.g., total chlorophyll and
group-specific chlorophyll) may change, which may not be
detected using an abundance-based approach (Sathyendranath
et al., submitted). For such applications, spectral-based methods
are likely to be preferable.

Two versions of the re-tuned Brewin et al. (2010) model
were carried forward in this study: one using a fixed set of
parameters (Table 3); and the other where the parameters were
tied with SST (Table 4). The Brewin et al. (2010) model with a
fixed parameter set has an advantage that only four parameters
are required to compute the size fractions (Table 3), compared
with 16 that are used in the SST-dependent model (Table 4). A
larger dataset is required to tune the SST-dependent model for
regional applications, when compared with the model with a
fixed parameter set. Furthermore, when considering all samples
together, only a slight improvement in model performance (9
and δ) was achieved when using the SST-dependent model
(Figures 7, 9). Yet, the SST-dependent model captured variations
in model parameters, such as the asymptotic maximum values for
small cells (Cm

p,n and Cm
p ), that are known to vary with changes

in bottom-up (e.g., nutrients and light) and top-down (grazing)
processes (Riegman et al., 1993; Brewin et al., 2014b). The
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FIGURE 9 | Satellite estimates of size-fractionated chlorophyll plotted against independent in situ size-fractionated chlorophyll in the validation

dataset, for the re-tuned (Brewin et al., 2010) model with a single set of parameters (top-row, Table 3) and using the SST-dependent parameterization

(bottom row, Equations 12–15). The superscript SST denotes the modeled chlorophyll concentrations using the SST-dependent parameterization. The correlation

coefficient (r) and root-mean-square-error (9) are also shown. Statistical tests were computed using the parameter values reported in Tables 3, 4. The top panels also

show the maximum attainable concentrations for the different size classes as purple dashed horizontal lines when using a single set of parameters (Table 3).

fixed parameter model simply failed to capture these variations,
resulting in unrealistic static asymptotes (Figures 7, 9 top-row,
horizontal purple dashed lines).

Variations in the relationships of size structure with total
chlorophyll and with SST were generally consistent with those
proposed by Ward (2015), with the fractions of larger cells
(e.g., microplankton) generally increasing with decreasing SST,
for concentrations of total chlorophyll less than 1mgm−3, and
the fractions of small cells (picoplankton) increasing (Figure 6).
Yet, in the Ward (2015) study these variations were typically
observed at lower temperature (<5◦C) than those shown in this
study (<17◦C). Results are also relatively consistent for small cells
(picoplankton) with those proposed by Brewin et al. (2015), when
using average light in the mixed-layer, rather than SST, to vary
model parameters, though differ for microplankton (see Figures
4, 5 of Brewin et al., 2015). Differences between studies are
possibly due to the regional-tuning of the model when compared
with the global studies of Ward (2015) and Brewin et al. (2015).
There are also differences in the two approaches: whereas Ward
(2015) introduces an additional term to the three-component
model to account for temperature dependence, here we have let
the model parameters change in response to SST variation.

Motivated by the need to provide satellite products
of phytoplankton groups that match those as defined in
ecosystem models, particularly ERSEM (Table 2), we proposed
a partitioning of microplankton chlorophyll (Cm) into diatoms
(Cdiat) and dinoflagellates (Cdino), by modeling the ratio of Cdino

to Cm as a function of SST (Figure 8A). This differs to that
proposed by Hirata et al. (2011) which is based solely on total

chlorophyll. We observed a significant relationship between
Cdino/Cm and SST that was consistent with known seasonal
variations of the two phytoplankton groups in the region
(McQuatters-Gollop et al., 2007; Widdicombe et al., 2010). Yet,
there still are significant variations surrounding this relationship
(Figure 8A), and Cdino was found to have the highest errors
in the satellite model (Figures 11, 12). The approach may fail
to capture blooms of microplankton chlorophyll (Cm) entirely
dominated by dinoflagellates (Figure 8A), that can occur in
the region (Widdicombe et al., 2010). Future improvements
in Cdino satellite estimates may be possible by incorporating
spectral information (Shang et al., 2014) or other environmental
data (Raitsos et al., 2008). Such improvements may significantly
aid ecosystem models considering the difficulties in modeling
this group due to their motility and complex trophic behavior
(Ciavatta et al., 2011).

3.4.3. Per-Pixel Uncertainties
In-line with methods used in the OC-CCI project (Jackson and
Sathyendranath, 2015), our satellite estimates of the chlorophyll
concentration of each phytoplankton group come with per-
pixel uncertainty (Figure 12), an essential requirement for use
in many applications, such as ecosystem model validation, data
assimilation and quantifying evidence of trends in a time-series.
Yet, estimates of uncertainty we provide are based on the
assumption that the in situ data is the truth. As discussed in the
previous section, in situ measurements of phytoplankton group
chlorophyll also have their uncertainties, which are difficult to
quantify (Brewin et al., 2014a). In addition, the estimates of
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FIGURE 10 | Satellite estimates of diatom (Cdiat) and dinoflagellate

(Cdino) chlorophyll plotted against independent in situ estimates of

Cdiat and Cdino in the validation dataset, using the Brewin et al. (2010)

model with a single set of parameters (top-row, Table 3) together with

estimates of Cdino/Cm (Equation 16), and using the SST-dependent

parameterization (bottom row, Equations 12–15) together with

estimates of Cdino/Cm (Equation 16). The superscript SST denotes the

modeled microplankton chlorophyll using the SST-dependent parameterization

(Equations 12–15) multiplied by estimates of Cdino/Cm (Equation 16). The

correlation coefficient (r) and root-mean-square-error (9) are also shown.

uncertainty are based on comparisons of co-incident discrete in
situ point measurements, representing volumes of sea water of
the order of 5 litres or less, with 4 km satellite pixels representing
a signal from ∼16× 1010 litres of water, assuming a 10m
optical depth. Additional uncertainties can occur because of vast
differences in the temporal scales associated with the two types of
measurements. In the future, such uncertainties may be reduced
with the aid of new in situ methods capable of continuously
measuring the optical and biogeochemical properties of the water
(Dall’Olmo et al., 2012; Boss et al., 2013; Chase et al., 2013;
Werdell et al., 2013b; Brewin et al., 2016).

By computing uncertainty statistics for each OWT, we can
overcome issues with the distribution of data used in the
validation. For instance, in our validation dataset, the majority of
samples came from three OWTs (10, 11, and 12, see Figure 11),
yet in the satellite image (Figure 12B), the majority of the region
is dominated by OWTs less than 10. If one were to consider a
single value of any statistical metric (as provided in Figures 9, 10)
as representative of the uncertainty in the entire satellite data, it
would not be well representative of the majority of the region.
Yet, as the number of samples in each OWT vary, so does our
confidence in the error statistics for each OWT. Some OWTs
(e.g., 1, 2, and 14) have very few observations (Table 5), and
consequently we have low confidence in the uncertainty estimates
for these OWTs. T
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FIGURE 11 | The average root-mean-square-error (9) and bias (9) for 14 dominant OC-CCI Optical Water Types (OWT) for total chlorophyll (A,B),

diatom chlorophyll (C,D), dinoflagellate chlorophyll (E,F), nanoplankton chlorophyll (G,H), and picoplankton chlorophyll (I,J). N (violet lines and

squares) shows the number of observations of each dominant OWT. Plots (C–J) are for the SST-dependent parameterization (Equations 12–15) together with

estimates of Cdino/Cm (Equation 16).

4. SUMMARY

We re-tuned an abundance-based model (Brewin et al., 2010,
2015) for estimating the chlorophyll concentration of three
phytoplankton size classes as a function of total chlorophyll

(available from satellite data) in the North Atlantic region using
a large dataset of size-fractionated chlorophyll measurements.
The model was modified to account for the influence of sea
surface temperature (SST, also available from satellite data) on
model parameters, and on the partitioning of chlorophyll in
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FIGURE 12 | Satellite estimates of phytoplankton group chlorophyll and per-pixel errors for an 8 day (relatively clear sky) composite (17th to 24th June

2008) of OC-CCI chlorophyll (a), (dominant) optical water type (b) and SST (NOAA OISST) data (c). Example shown is using the SST-dependent

parameterization (Equations 12–15) together with estimates of Cdino/Cm (Equation 16): (d) Diatom chlorophyll (Cdiat ); (e) per-pixel root-mean-square-error (9) of

Cdiat; (f) per-pixel bias (δ) of Cdiat; (g) dinoflagellate chlorophyll (Cdino); (h) 9 of Cdino; (i) δ of Cdino; (J) nanoplankton chlorophyll (Cn); (k) 9 of Cn; (l) δ of Cn; (m)

picoplankton chlorophyll (Cp); (n) 9 of Cp; and (o) δ of Cp.

large phytoplankton (microphytoplankton) into diatoms and
dinoflagellates, so that the phytoplankton groups provided
matched those used in a marine ecosystem model (ERSEM).
Results indicate that in the North Atlantic: (i) the relationship
between size-fractionated chlorophyll and total chlorophyll

changes with the environmental conditions (SST); and (ii) the
ratio of dinoflagellate chlorophyll to microplankton chlorophyll
increases with SST.

Application of the method to satellite estimates of total
chlorophyll and SST was validated using an independent dataset
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of satellite and in situ match-ups. This dataset was used with
information on the optical water type, based on fuzzy-logic
statistics developed within the ESA OC-CCI project, to derive
uncertainties in 14 different optical water types, which were then
used to map uncertainties in chlorophyll on a per-pixel basis for
each phytoplankton group in a satellite image. These satellite
products will be useful for those evaluating the performance
of the ERSEM model and assimilating chlorophyll for each
phytoplankton group into ERSEM in research and operational
applications. Such an approach could be extended to other
ecosystemmodels that simulate phytoplankton functional groups
in the oceans.
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Kostadinov, T. S., Milutinović, S., Marinov, I., and Cabré, A. (2016). Carbon-based

phytoplankton size classes retrieved via ocean color estimates of the particle size

distribution. Ocean Sci. 12, 561–575. doi: 10.5194/os-12-561-2016

Kostadinov, T. S., Siegel, D. A., and Maritorena, S. (2009). Retrieval of the

particle size distribution from satellite ocean color observations. J. Geophys. Res.

114:C09015. doi: 10.1029/2009JC005303

Latasa, M., Scharek, R., Gall, F. L., and Guillou, L. (2004). Pigment

suites and taxonomic groups in prasinophyceae. J. Phycol. 40, 1149–1155.

doi: 10.1111/j.1529-8817.2004.03136.x

Laufkötter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney, S., et al.

(2016). Projected decreases in future marine export production: the role of the

carbon flux through the upper ocean ecosystem. Biogeosciences 13, 4023–4047.

doi: 10.5194/bg-13-4023-2016

Laws, E. A., Falkowski, P. G., Smith, W. O. Jr., Ducklow, H., and McCarth, J. J.

(2000). Temperature effects on export production in the open ocean. Global

Biogeochem. Cycles 14, 1231–1246. doi: 10.1029/1999GB001229

Le Quéré, C., Harrison, S. P., Prentice, C. I., Buitenhuis, E. T., Aumont, O.,

Bopp, L., et al. (2005). Ecosystem dynamics based on plankton functional types

for global ocean biogeochemistry models. Global Change Biol. 11, 2016–2040.

doi: 10.1111/j.1365-2486.2005.1004.x

Lee, Z., Arnone, R., Hu, C., Werdell, P. J., and Lubac, B. (2011). Uncertainties of

optical parameters and their propagations in an analytical ocean color inversion

algorithm. Appl. Optics 49, 369–381. doi: 10.1364/AO.49.000369

Legendre, L., and LeFevre, J. (1991). “From individual plankton cells to pelagic

marine ecosystems and to global biogeochemical cycles,” in Particle Analysis in

Oceanography, ed S. Demers (Berlin: Springer), 261–300.

Lin, J., Cao, W., Wang, G., and Hu, S. (2014). Satellite-observed variability of

phytoplankton size classes associated with a cold eddy in the South China Sea.

Mar. Pollut. Bull. 83, 190–197. doi: 10.1016/j.marpolbul.2014.03.052

Maloney, C. L., and Field, J. G. (1991). The size-based dynamics of plankton food

webs. I. A simulation model of carbon and nitrogen flows. J. Plank. Res. 13,

1003–1038. doi: 10.1093/plankt/13.5.1003

Marañón, E. (2009). “Phytoplankton size structure,” in Encyclopedia of Ocean

Sciences, eds J. H. Steele, K. Turekian, and S. A. Thorpe (Oxford: Academic

Press). doi: 10.1016/b978-012374473-9.00661-5

Marañón, E. (2015). Cell size as a key determinant of phytoplankton

metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264.

doi: 10.1146/annurev-marine-010814-015955

Marañón, E., Cermeño, P., Latasa, M., and Tadonléké, R. D. (2012). Temperature,

resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 57,

1266–1278. doi: 10.4319/lo.2012.57.5.1266

Marañón, E., Holligan, P. M., Barciela, R., González, N., Mouriño, B., Pazó,

M. J., et al. (2001). Patterns of phytoplankton size structure and productivity

in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43–56.

doi: 10.3354/meps216043

Marinov, I., Doney, S. C., and Lima, I. D. (2010). Response of ocean phytoplankton

community structure to climate change over the 21st century: partitioning

the effects of nutrients, temperature and light. Biogeosciences 7, 3941–3959.

doi: 10.5194/bg-7-3941-2010

Maritorena, S., Fanton d’Andon, O. H., Mangin, A., and Siegel, D. A. (2010).

Merged satellite ocean color data products using a bio-optical model:

characteristics, benefits and issues. Remote Sens. Environ. 114, 1791–1804.

doi: 10.1016/j.rse.2010.04.002

Markwardt, C. B. (2008). “Non-linear least squares fitting in IDL with MPFIT,” in

Proceedings of the Astronomical Data Analysis Software and Systems XVIII, ASP

Conference Series, Quebec, Canada, vol. 411, eds D. Bohlender, P. Dowler, and

D. Duran (San Francisco, CA: Astronomical Society of the Pacific).

McQuatters-Gollop, A., Raitsos, D. E., Edwards, M., and Attrill, M. J. (2007).

Spatial patterns of diatom and dinoflagellate seasonal cycles in the NE Atlantic

Ocean.Mar. Ecol. Prog. Ser. 339, 301–306. doi: 10.3354/meps339301

Merchant, C. J., Embury, O., Roberts-Jones, J., Fiedler, E., Bulgin, C. E., Corlett,

G. K., et al. (2014). Sea surface temperature datasets for climate applications

from Phase 1 of the European Space Agency Climate Change initiative (SST

CCI). Geosci. Data J. 1, 179–191. doi: 10.1002/gdj3.20

Moore, T., Campbell, J.W., and Feng, H. (2001). A fuzzy logic classification scheme

for selecting and blending satellite ocean color algorithms. IEEE Trans. Geosci.

Remote Sens. 39, 1764–1776. doi: 10.1109/36.942555

Moore, T. S., Campbell, J. W., and Dowell, M. D. (2009). A class-based approach to

characterizing and mapping the uncertainty of the MODIS ocean chlorophyll

product. Remote Sens. Environ. 113, 2424–2430. doi: 10.1016/j.rse.2009.07.016

Moore, T. S., Dowell, M. D., and Franz, B. A. (2012). Detection of

coccolithophore blooms in ocean color satellite imagery: a generalized

approach for use with multiple sensors. Remote Sens. Environ. 117, 249–263.

doi: 10.1016/j.rse.2011.10.001

Moré, J. (1978). The Levenberg-Marquardt Algorithm: Implementation and Theory.

In: Numerical Analysis. Berlin: Springer-Verlag.

Morel, A., and Bricaud, A. (1981). Theoretical results concerning light absorption

in a discrete medium, and application to specific absorption of phytoplankton.

Deep Sea Res. 28, 1375–1393. doi: 10.1016/0198-0149(81)90039-X

Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz, B. A.

(2007). Examining the consistency of products derived from various ocean

color sensors in open ocean (case 1) waters in the perspective of a multi-sensor

approach. Remote Sens. Environ. 111, 69–88. doi: 10.1016/j.rse.2007.03.012

Mouw, C. B., Hardman-Mountford, N. J., Alvain, S., Bracher, A., Brewin, R.

J. W., Bricaud, A., et al. (2017). A consumer’s guide to satellite remote sensing

of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4:41.

doi: 10.3389/fmars.2017.00041

Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget, M.-H.,

et al. (2008). Remote sensing of phytoplankton functional types. Remote Sens.

Environ. 112, 3366–3375. doi: 10.1016/j.rse.2008.01.021

Pan, X., Wong, G. T., Ho, T. Y., Shiah, F. K., and Liu, H. (2013). Remote sensing of

picophytoplankton distribution in the northern South China Sea. Remote Sens.

Environ. 128, 162–175. doi: 10.1016/j.rse.2012.10.014

Platt, T., and Denman, K. L. (1976). The relationship between photosynthesis and

light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12,

421–430. doi: 10.1111/j.1529-8817.1976.tb02866.x

Platt, T., and Denman, K. L. (1977). Organisation in the pelagic ecosystem.
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Oceanic phytoplankton respond rapidly to a complex spectrum of climate-driven

perturbations, confounding attempts to isolate the principal causes of observed changes.

A dominant mode of variability in the Earth-climate system is that generated by the

El Niño phenomenon. Marked variations are observed in the centroid of anomalous

warming in the Equatorial Pacific under El Niño, associated with quite different alterations

in environmental and biological properties. Here, using observational and reanalysis

datasets, we differentiate the regional physical forcing mechanisms, and compile a global

atlas of associated impacts on oceanic phytoplankton caused by two extreme types of

El Niño. We find robust evidence that during Eastern Pacific (EP) and Central Pacific

(CP) types of El Niño, impacts on phytoplankton can be felt everywhere, but tend to be

greatest in the tropics and subtropics, encompassing up to 67% of the total affected

areas, with the remaining 33% being areas located in high-latitudes. Our analysis also

highlights considerable and sometimes opposing regional effects. During EP El Niño,

we estimate decreases of −56 TgC/y in the tropical eastern Pacific Ocean, and −82

TgC/y in the western Indian Ocean, and increase of +13 TgC/y in eastern Indian Ocean,

whereas during CP El Niño, we estimate decreases −68 TgC/y in the tropical western

Pacific Ocean and−10 TgC/y in the central Atlantic Ocean. We advocate that analysis of

the dominant mechanisms forcing the biophysical under El Niño variability may provide a

useful guide to improve our understanding of projected changes in the marine ecosystem

in a warming climate and support development of adaptation and mitigation plans.

Keywords: El Niño variability, ENSO, climate, ocean-color, ESA climate change initiative, phytoplankton

INTRODUCTION

Phytoplankton, the microscopic vegetal cells living at the surface of the oceans, yield globally
and annually some fifty billion tons of organic carbon through primary production (Longhurst
et al., 1995), contributing to the oceanic uptake of ∼25% of the carbon dioxide (CO2) emitted
to the atmosphere every year (Le Quéré et al., 2015). The rates of primary production are
not uniformly distributed across the ocean domain: the most highly productive oceanic regions
are found at high-latitudes and in coastal upwelling systems. Oceanic primary producers are
under the control of physical forcing on a broad spectrum of scales, and the forcing will be
modified under climate change. In the latest assessment report (AR5), the Intergovernmental Panel
on Climate Change (IPCC) has recognized “medium evidence” for the response of the highly
productive oceanic regions to recent warming (especially since the 1970s) and “low confidence”
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in the understanding of how equatorial upwelling systems might
change in response to El Niño variability (Hoegh-Guldberg et al.,
2014).

El Niño activity is characterized by anomalous warming of
Sea Surface Temperature (SST) in the tropical Pacific, linked to
a perturbation of atmospheric circulation patterns known as the
SouthernOscillation. This ocean-atmosphere coupling, called the
El Niño Southern Oscillation (ENSO), is a dominant mode of
variability in the Earth-climate system with a typical frequency of
2–7 years (McPhaden et al., 2006; Cai et al., 2015). Each El Niño
event is unique, exhibiting differences in surface and subsurface
water temperature amplitude, duration, and spatial patterns
(Capotondi et al., 2015). As an aid to classify El Niño events, the
location of maximum anomalous SST warming observed during
boreal winter has been used to delineate two extreme types of
El Niño (Trenberth and Stepaniak, 2001; Larkin and Harrison,
2005; Ashok et al., 2007; Yu and Kao, 2007; Ashok and Yamagata,
2009; Kao and Yu, 2009; Kug et al., 2009; Lee and McPhaden,
2010; Takahashi et al., 2011; Cai et al., 2015; Capotondi et al.,
2015). The Eastern-Pacific (EP) El Niño, also referred to as the
“typical” or canonical El Niño, is characterized by maximum
anomalous SST warming in the eastern tropical Pacific. In
contrast, the Central-Pacific (CP) El Niño, variously referred to as
El Niño Modoki (a Japanese word meaning pseudo), warm-pool
El Niño, or dateline El Niño, is characterized by weak anomalous
SST warming along the western coast of South America and
maximum anomalous SSTwarming in the central tropical Pacific.
The climatic perturbations generated by these two types of El
Niño are induced through different atmospheric teleconnections:
both have been associated with changes in temperature and
rainfall patterns over the continental U.S. (Yu et al., 2012; Yu and
Zou, 2013), in storm tracks in the SouthernHemisphere (Kao and
Yu, 2009) and in cyclone trajectories in the North Atlantic (Kim
et al., 2009). Since the beginning of the 1900s, two most extreme
EP and CP El Niño events (in terms of amplitude of maximum
SST anomalies in the Eastern and Central Pacific regions) have
occurred within the last 20 years, in 1997/1998 and 2009/2010
respectively (Capotondi et al., 2015). The latest 2015/2016 El
Niño has been reported with comparable magnitude of SST
anomalies to the 1982/1983 and 1997/1998 events but with more
limited intensity in the Eastern Pacific region (Paek et al., 2017;
L’Heureux et al., in press).

Contrasting influence of the extreme El Niño events of
1997/1998 and 2009/2010 on oceanic phytoplankton has been
characterized in the tropical Pacific domain (Gierach et al.,
2012; Radenac et al., 2012). In this region, ENSO is recognized
as the main driver of inter-annual phytoplankton variability.
Tropical, as well as extra-tropical, influences of ENSO and
ENSO Modoki have been demonstrated using statistical analyses
based on a range of indices applied to ocean-color remote-
sensing observations (Yoder and Kennelly, 2003; Behrenfeld
et al., 2006; Chavez et al., 2011; Vantrepotte and Mélin, 2011;
Messié and Chavez, 2012, 2013; Racault et al., 2012, 2017; Couto
et al., 2013; Raitsos et al., 2015). One of the most widely-used
environmental indices to characterize influence of ENSO on
ocean biology is the Multivariate ENSO Index (MEI). This index
is based on combined analysis of fields of sea level pressure,

surface winds, SST, surface air temperature, and cloudiness for
the entire Tropical Pacific domain (Wolter and Timlin, 1993).
Due to this broad domain and multivariate statistical approach,
the MEI encompasses the whole continuum of ENSO events
(from most extreme SST anomalies located in the Central to
Eastern Pacific regions), but as a result, the index does not
allow us to separate effects of EP and CP El Niño variations.
Separating EP and CP El Niño variations requires indices
isolating the centroid of El Niño activity along the equatorial
Pacific.

To date, the longitudinal position of the center of maximum
SST anomalies has been delineated in the Niño1+2 (0◦–10◦S,
90◦–80◦W), Niño3 (5◦–5◦N, 150◦W–90◦W), Niño3.4 (5◦N–5◦S,
170◦W–120◦W) and Niño4 (5◦–5◦N, 160◦E–150◦W) regions
(Ashok et al., 2007). Based on analyses of the SST anomalies
variations in these regions, a range of El Niño indices have
been constructed. In the present study, the EP and CP El Niño
signals are characterized using the EP and CP index defined
by Kao and Yu (2009). The EP index was calculated by first
applying regression analysis of SST anomalies onto the Niño4
index (average SST anomalies over the Niño4 region) to remove
the influence of the SST anomaly component associated with
central Pacific warming, and then using Empirical Orthogonal
Function (EOF) analysis to determine the spatial patterns and
associated temporal index of EP events. Similarly, the CP index
was calculated by applying regression analysis of SST anomalies
onto the Niño1+2 index to remove the influence of the SST
anomaly component associated with east Pacific warming, and
then using EOF analysis to characterize pattern and index
of CP events (Kao and Yu, 2009; Yu et al., 2012). Using
partial correlation and EOF analyses, the characterization of the
canonical El Niño and El Niño Modoki signals has also been
achieved based on SST anomalies from the Niño3 region and
by differentiating the influence of SST anomalies variations from
a combination of regions in the tropical Pacific. The specific
combination and definition of regions have been formulated as
the Trans-Nino Index TNI (Trenberth and Stepaniak, 2001),
the El Niño Modoki Index EMI (Ashok et al., 2007), and the
Improved EMI (Li et al., 2010). A comprehensive review of
El Niño indices definition is presented by Capotondi et al.
(2015).

The main obstacles to distinguishing the ecosystem effects
associated with El Niño variability may be summarized to arise
from: (i) the challenges to construct continuous, synoptic-scale,
long-term time-series of marine ecosystem state at high temporal
and spatial resolutions for the global oceans (Sathyendranath
and Krasemann, 2014); (ii) the diversity and complexity
of the mechanisms driving the biophysical interactions in
different oceanic sub-regions or provinces (Longhurst et al.,
1995; Boyd et al., 2014); (iii) the difficulties to elucidate the
roles of the local and remote-forcing mechanisms associated
with different El Niño events (Cai et al., 2015; Capotondi
et al., 2015); (iv) the issues of lag in the transmission of
El Niños influences at higher latitudes and to other basins
via different teleconnection mechanisms (Ashok et al., 2007;
Couto et al., 2013); and finally (v) the broad ranges of
meridional position, amplitude and evolution of SST anomalies
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observed during different El Niño events, which militate
against consensus in the choice of method to estimate indices
of El Niño variability (Capotondi et al., 2015). Here, we
propose an original approach that overcome some of these
obstacles based on climate-quality ocean-color products and
state-of-the-art reanalysis datasets, and allow us to establish
an atlas of the impact of CP and EP types of El Niño
on primary producers in the global oceans. Finally, we
document the associated environmental changes and identify
the dominant mechanisms driving the diverse biophysical
interactions involved.

MATERIALS AND METHODS

The list of biological and physical datasets obtained for the
analyses is summarized in Table 1. Based on datasets availability,
two periods of study have been considered: (1) 1997–2012 (15
years) for biological and physical datasets, and (2) 1979–2014 (35
years) for physical datasets only.

Biological Datasets
Remotely-Sensed Chlorophyll Concentration and

Associated Uncertainty Estimates
Chlorophyll is at the heart of primary production, it is the state
variable used in photosynthesis-irradiance models to compute
primary production; it has a distinct optical signature which
makes it one of the easiest phytoplankton properties to measure,
both by in-situ and satellite methods. Ocean-color sensors on
satellites provide estimates of chlorophyll concentration at high
spatial and temporal resolution and at global scale. Because
they provide data consistently and frequently and over long
periods of time, they are suitable for computations of certain
ecological indicators and for studying long-term trends in the
state of the marine ecosystem (Platt and Sathyendranath, 2008;
Racault et al., 2014). However, ocean-color sensors do have
a finite lifespan, and differences in instrument design and
algorithms make it difficult to compare data from multiple
sensors. When overlapping data are available from two or
more sensors, such data can be used to establish inter-sensor
bias and correct for it. Recently, under the European Space
Agency (ESA) Climate Change Initiative (CCI), the ocean-color
project (http://www.esa-oceancolour-cci.org) has produced new,
improved products, merging observations from the Sea-viewing
Wide Field-of-View Sensor (SeaWiFS, 1997–2010), the Moderate
Resolution Imaging Spectroradiometer (MODIS, 2002-present)
and the MEdium Resolution Imaging Spectrometer (MERIS,
2002–2012) to provide a 15-year (1997–2012 OC-CCIv2) global
scale, climate-quality controlled, bias-corrected, and error-
characterized data record of ocean-color (Sathyendranath and
Krasemann, 2014). Furthermore, implementation of the coupled
ocean-atmosphere POLYMER correction algorithm (MERIS
period; Steinmetz et al., 2011) has increased significantly
the coverage of chlorophyll observations (Sathyendranath and
Krasemann, 2014; Racault et al., 2015).

The OC-CCI v2.0 Level 3 Mapped data of chlorophyll
concentration, root-mean-square-difference (RMSD) and bias
estimates of monthly log-transformed (base 10) Chl, were

obtained at 4 km spatial resolution, and monthly temporal
resolution from the ESA CCI Ocean Color website at http://www.
esa-oceancolour-cci.org. To remain coherent with the resolution
of the different datasets used in the analyses (Table 1), the
chlorophyll concentration was mapped onto a 1◦ × 1◦ regular
grid by averaging all available data points within each new, larger
pixel. Standard deviation of chlorophyll product (computed from
bias and RMSD) was calculated by aggregating pixel values
at the same spatial (1◦ × 1◦) resolution. Then, the standard
deviation of the log10Chl was converted to its untransformed
value. The standard error in the reported mean value at each
pixel for the period 1997–2012 was computed, and values
ranging between ±1% in the tropical gyres (associated with low
chlorophyll concentration) and below ±0.5% at higher latitudes
(associated with high chlorophyll concentration) were observed
(Supplementary Figure 1). Uncertainties in the anomalies of
relative (%) changes in chlorophyll in selected box areas
were calculated using the standard methods for computing
propagation of errors (Topping, 1972).

Remotely-Sensed Primary Production (PP)
Global observations of water-column PP were obtained from
the Open Ocean Transboundary Water Assessment Programme
(TWAP) using the algorithm of Platt and Sathyendranath (1988),
with OC-CCI v2.0 Chlorophyll, SeaWiFS and MODIS spectrally-
resolved light (i.e., PAR) as inputs. The model parameters
(i.e., vertical structure of Chlorophyll and the photosynthesis-
irradiance parameters) are assigned following the partitioning
of the ocean into biogeographic provinces (Longhurst, 1998).
The TWAP primary production estimates have been shown
to compare consistently well with other global ocean primary
production models (Longhurst et al., 1995; Antoine et al.,
1996; Behrenfeld et al., 2005). The PP data have been
obtained at 9 km spatial resolution, and monthly temporal
resolution from https://www.oceancolour.org/thredds/catalog/
TWAP-PProd/catalog.html. The PP data were regridded to 1◦ ×
1◦ spatial resolution by averaging all available data points within
each new, larger pixel.

Physical Datasets
Remotely-Sensed Photosynthetically Active

Radiation (PAR)
The Level 3 Mapped data of PAR, collected during the SeaWiFS
and MODIS missions (Frouin et al., 2012), were obtained at 9
km spatial resolution and monthly resolution from the NASA
website at http://oceancolor.gsfc.nasa.gov/cms/. The PAR data
were regridded to 1◦ × 1◦ spatial resolution by averaging all
available data points within each new, larger pixel.

Remotely-Sensed Sea Surface Temperature (SST)
The sea surface temperature SST-CCI vexp1.2 Mapped gap-filled
daily blend of the Advanced Very High Resolution Radiometers
and the Along-Track Scanning Radiometers data (Merchant
et al., 2014) were obtained at 1◦ × 1◦ spatial resolution, and
monthly temporal resolution from the ESA-CCI National Centre
for Earth Observation (NCEO) portal at http://gws-access.ceda.
ac.uk/public2/nceo_uor/sst/L3S/EXP1.2/.
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TABLE 1 | Datasets obtained for the analysis.

Dataset Version Period Time Res. Source

Chlorophyll Concentration v2.0 1997–2013 Monthly 1◦ × 1◦ Ocean Color-CCI ESA

Primary Production v2.0 1997–2012 Monthly 1◦ × 1◦ TWAP project

Sea Level Anomaly v1.1 1993–2013 Monthly 0.25◦ × 0.25◦ Sea Level-CCI ESA

Sea Surface Temperature vEXP1.2 1991–2015 Monthly 1◦ × 1◦ SST-CCI ESA

Sea Surface Temperature ERA Interim 1979–2014 Monthly 0.75◦ × 0.75◦ ECMWF

Wind ERA Interim 1979–2014 Monthly 0.75◦ × 0.75◦ ECMWF

Surface Air Temperature Jan-15 1948–2014 Monthly 2.5◦ × 2.5◦ NCEP/NCAR/NOAA

Precipitation Jun-16 1979–2013 Monthly 2.5◦ × 2.5◦ NCAR/NOAA/ESRL CMAP

Photosynthetically Active Radiation R2010 1997–2012 Monthly 1◦ × 1◦ NASA SeaWiFS & MODIS

Ocean subsurface temperature v2p2p4 1950–2008 Monthly 0.5◦ × 0.5◦ SODA

EP and CP El Niño indices Jan-15 1948–2014 Monthly – (Kao and Yu, 2009; Yu et al., 2012)

Multivariate ENSO Index Jan-13 1950–2013 Monthly – ESRL/NOAA

Information about the regridding procedure and selected period of study are provided in the Materials and Methods section in the manuscript. Res, Spatial Resolution.

Remotely-Sensed Sea Level (SL)
The sea level SL-CCI v1.1 Mapped gap-filled blend of the
Topex/Poseidon, Jason-1/2 with the ERS-1/2 and Envisat
missions data (Ablain et al., 2015) were obtained at 0.25◦ × 0.25◦

spatial resolution, and monthly temporal resolution from the
ESA SL-CCI website at http://www.esa-sealevel-cci.org.

Reanalysis Products of SST and Wind
ERA Interim reanalysis of monthly 10m U wind component,
10m V wind component, 10m wind speed (Dee et al., 2011)
were obtained on 0.75◦ × 0.75◦ global grid-box from ECMWF
at http://apps.ecmwf.int/datasets/data/interim_full_moda/.

Reanalysis Product of Surface Air Temperature (SAT)
NCEP/NCAR reanalysis of monthly surface air temperature
(Kalnay et al., 1996) were obtained on 2.5◦ × 2.5◦ global grid-
box from National Oceanic Atmospheric Administration/Office
of Oceanic and Atmospheric Research/Earth System research
Laboratory at http://www.esrl.noaa.gov/psd/data/gridded/data.
ncep.reanalysis.surface.html. This dataset was chosen to be
consistent with the data used by Yu et al. (2012) in their analysis
on El Niño impact on U.S. winter air surface temperature.

Reanalysis Product of Precipitation
CPC Merged Analysis of Precipitation (CMAP) interpolated
data (Xie and Arkin, 1997) were obtained on 2.5◦ × 2.5◦

global grid-box at monthly temporal resolution from National
Oceanic Atmospheric Administration/Office of Oceanic and
Atmospheric Research/Earth System research Laboratory at
http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html.

Mixed Layer Depth (MLD)
The mixed layer depth (MLD) was estimated as the shallowest
depth at which ±0.2◦C change is observed compared with
the temperature at 10m depth, based on the temperature
criterion of de Boyer Montégut et al. (2004). The vertical profiles
of temperature were downloaded from Simple Ocean Data
Assimilation (SODA) model output v2p2p4 http://iridl.ldeo.
columbia.edu/SOURCES/.CARTON-GIESE/.SODA/.v2p2p4/ at

monthly temporal resolution and 0.25◦ × 0.4◦ × 40-level spatial
and vertical resolutions (Carton and Giese, 2008). The data were
regridded to 1◦ × 1◦ spatial resolution by averaging all available
data points within each new, larger pixel.

Zonal Surface Currents
Annual average zonal surface currents data were obtained at
1◦ × 1◦ resolution for the global oceans from NOAA Ocean
Surface Current Analyses Real-time (OSCAR) at http://www.esr.
org/oscar_index.html.

Nitrate Concentration
Annual average surface nitrate concentration data were obtained
at 1◦ × 1◦ resolution for the global oceans from the
World Ocean Atlas Climatology (Boyer et al., 2013) at
https://www.nodc.noaa.gov/OC5/woa13/.

Climate Impact Analysis
Climate Indices
Time-series of MEI based on principal component analysis of six
atmosphere-ocean variable fields in the tropical Pacific basin i.e.,
SL, SST, SAT, U, and V wind components, and total cloudiness
fraction of the sky (Wolter and Timlin, 1993) were obtained at
http://www.esrl.noaa.gov/psd/enso/mei/table.html. Time-series
of Eastern Pacific and Central Pacific El Niño indices based a
combination of regression and empirical orthogonal function
analyses applied to SST data in the tropical Pacific (Kao and Yu,
2009) were obtained at http://www.ess.uci.edu/∼yu/2OSC/.

Statistical Analysis
The influences of EP and CP El Niño events may propagate across
the world at different speed through different teleconnection
mechanisms (Ashok et al., 2007). To avoid implementing impact
analyses on monthly anomalies, which would involve different
lag-coefficients, the influence of the different types of El Niño
is characterized based on annual mean anomalies. Anomalies
of physical and biological variables were computed first by
removing the monthly mean climatology over the period 1997–
2012. Then, annual mean anomalies were calculated by averaging
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the monthly anomalies over the periods from June (of year
t) to May (of year t + 1) (i.e., spanning over two calendar
years). This 12-month delineation period was chosen to follow
the seasonality of ENSO activity, which generally peaks in the
month of November to January (i.e., higher SST anomalies in
the Equatorial Pacific, Niño 1–4 regions). Because chlorophyll
concentrations can span three orders of magnitude, relative
percent differences in chlorophyll were calculated such as:

Cra =
(

Ct − C̄
)

/
((

Ct + C̄
)

/2
)

∗ 100

where Cra is relative chlorophyll anomalies in percent, Ct is
annual chlorophyll concentration in mg.m−3 in year t, and C̄ is
the mean of annual chlorophyll concentrations over the 15 years
study period. Note that the results of the EP and CP impacts (see
method below) were not sensitive to the choice of normalization
function.

The climate impact analysis to identify the oceanic regions
that are most sensitive to El Niño variability is based on a
statistical approach initially developed in a study of El Niño
impact on U.S. winter air surface temperature using EP and
CP indices (Yu et al., 2012). In the present study, the global
and regional influences associated with each type of El Niño are
extracted by separately regressing at each 1◦ × 1◦ grid point the
EP and CP El Niño indices with: (a) annual mean anomalies
of chlorophyll concentration time-series (as a key measure of
phytoplankton population), and (b) annual mean anomalies of
primary production (i.e., the rate of phytoplankton growth)
time-series. To identify the mechanisms driving the regionally-
different biological responses associated with each type of El
Niño, we further applied the statistical analysis based on the EP
and CP indices, to annual mean anomalies of SAT, SST, SL, wind,
and precipitation.

The statistical significance of the regression coefficients was
estimated according to Student t-test. The autocorrelation of the
time-series was considered and the effective degrees of freedom,
which enter the significance test was determined based on the
method presented in Lin and Derome (1998).

Validation of EP and CP Impact on Interannual to

Decadal Time-Scales
The analyses of impact on phytoplankton and primary
production have been limited to 15 years by the availability of
consistent climate-quality controlled satellite data (Table 1). To
assess whether the results may be skewed due to the specific
1997/1998 EP event during the ocean-color satellite era, and to
investigate the validity of the results over multi-decadal time
scales, we have estimated the impact of EP and CP El Niño
(considering autocorrelation, Lin and Derome, 1998) on sea
and air surface temperatures, wind and precipitation during the
period 1979–2014 (35-years) and compared the results with the
analysis during the shorter period 1997–2012 (15-year). These
two periods of 15 and 35 years respectively have been selected
based on availability of physical and biological data products
(Table 1). The period 1997–2012 includes one strong EP El
Niño event in 1997–1998, and three CP events in 2002–2003,
2004–2005, and 2009–2010. The period 1979–2014 includes one

additional strong EP El Niño event in 1982–1983, and three
additional CP events in 1986–1987, 1991–1992, and 1994–1995
(Figure 1).

RESULTS AND DISCUSSION

EP and CP El Niño Impact on Oceanic
Phytoplankton
The confidence level of the response patterns (Figures 2A,B)
identified with the statistical analysis is assessed as very likely (i.e.,
within 90–100% probability range; IPCC Climate Change, 2013).
During EP El Niño, at the global scale, the median chlorophyll
impact is found to be −6.5%, mostly driven by a large decrease
of −7.5% in the tropics (3,529 pixels), and limited increases in
the Northern and Southern Hemispheres of +6.6 and +5.5%
respectively (505 and 643 pixels respectively). During CP El Niño,
global median chlorophyll impact is found to be −7.4%, which
is the resultant of large decrease estimated for the tropics of
−8.7% (1,948 pixels), and limited decrease estimated for the
Northern Hemisphere of −4.9% (342 pixels) and increase for
the Southern Hemisphere of+4.1% (500 pixels) (Supplementary
Table 1 and Supplementary Figure 2). The impact values are
estimated based on EP and CP indices equal to one (annual
mean index values over the period 1997–2012 are presented in
Figure 1). It is noteworthy that monthly impact values may be
∼3–4 times higher, particularly during the peak of El Niño events,
such as in December 1997 when the EP El Niño index reached
value of 3.9, and in December 2009 when the CP El Niño index
reached value of 2.6 (Yu, 2016).

The regions identified as most sensitive to the EP and CP
El Niño climatic perturbations compare well with the locations
where significant trends in chlorophyll have been estimated
previously using contemporary satellite records (Vantrepotte and
Mélin, 2011; Gregg and Rousseaux, 2014; Hoegh-Guldberg et al.,
2014). Furthermore, the biological and physical response patterns
to each type of El Niño observed in the present work over the
satellite record of 1997–2012 are consistent with contemporary
case studies of specific EP andCP El Niño events in the Equatorial
Pacific (Turk et al., 2011; Gierach et al., 2012; Radenac et al.,
2012), the Indian Ocean (Webster et al., 1999), the continental
U.S. (Yu et al., 2012; Yu and Zou, 2013), and the global
oceans (Behrenfeld et al., 2001; Messié and Chavez, 2012, 2013).
In addition, the response patterns observed for the physical
variables have also been shown to persist over decadal timescales
during the period 1979–2014 (see Section Physical Forcing
Mechanisms Associated with El Niño Variability). Finally, when
both EP and CP indices are equal to one, the sum of the
observed impacts observed in response to EP and CP El Niño
(Supplementary Figure 3) is shown to be approximately equal to
the impact observed using the MEI. This is coherent as the MEI
encompasses effects of both EP and CP El Niño variations.

Major Factors Influencing Phytoplankton
Growth
To understand the specific influence of the climatic perturbations
on phytoplankton, we must first identify the mechanisms
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FIGURE 1 | Climate indices of El Niño events during the period 1979–2014. Monthly anomalies of (A) Multivariate ENSO Index; (B) Eastern Pacific El Niño

Index; and (C) Central Pacific El Niño Index. Annual mean anomalies (thick red line and large dots) were calculated by averaging the monthly anomalies over the

periods from June (of year t) to May (of year t + 1). Classification of El Niño as EP and CP is based on Radenac et al. (2012) and Yu et al. (2012). EN, El Niño, EP,

Eastern Pacific, CP, Central Pacific.

driving the biophysical interactions at the global and regional
scales. Phytoplankton growth is light-limited at high-latitudes
where annual mean nitrate concentration is high and monthly
means of chlorophyll and PAR show positive correlation,
and monthly means of chlorophyll and MLD show negative
correlation (i.e., chlorophyll increases when MLD is shallower
and light availability is higher; Figures 3A,B). In contrast,
phytoplankton growth is nutrient-limited in the tropics and
subtropics where light-availability is plentiful all-year-round,
annual mean nitrate concentration is low (Figure 3C) and
monthly means of chlorophyll and MLD show positive
correlation (i.e., chlorophyll increases when MLD is deeper, and
nutrient-rich deep waters are mixed with nutrient-poor surface
waters, increasing nutrient availability for phytoplankton growth
to occur). Further to nutrient supply from vertical mixing,
the tropics display strong zonal surface currents (Figure 3D),
which can increase horizontal advection of nutrient and, in
turn, enhance phytoplankton growth. The latter mechanism
can explain the weak correlation coefficients observed between
monthly means of chlorophyll and MLD in some areas of the
tropics and subtropics. Finally, the negative correlation shown
between monthly means of chlorophyll and MLD in the eastern
Equatorial Pacific is coherent with the observed high annual
mean nitrate concentration (i.e., macronutrients are not limiting;

Figure 3C), and previously reported iron limitation (i.e., limiting
trace nutrient) occurring in the region (Gordon et al., 1997;
Moore et al., 2013). In some specific areas of the North and
Equatorial Pacific Ocean, and the Southern Ocean, known as
High Nutrient-Low Chlorophyll (HNLC) regions, the low trace
nutrients concentration (iron,manganese) present all year round,
limit phytoplankton production.

The results presented in Figure 3 are consistent with the
different physical regimes and global climatological relationships
previously demonstrated between open ocean satellite surface
observations of chlorophyll and subsurface parameters of
MLD, thermocline and nutricline depths at global scale
(Wilson and Coles, 2005; Messié and Chavez, 2012; Brewin
et al., 2014) and in the Equatorial Pacific (Turk et al.,
2011; Gierach et al., 2012; Radenac et al., 2012; Lee et al.,
2014). In coastal regions, phytoplankton production can
be modified further by local supply of nutrients through
coastal upwelling, riverine input (e.g., Turner et al., 2003)
or atmospheric dust deposition (Abram et al., 2003; Jickells
et al., 2005). In Polar regions, changes in phytoplankton
production are tightly coupled to variations in sea-ice extent
and timing of retreat, which can affect light and nutrient
availability (Kahru et al., 2011, 2016; Arrigo and van Dijken,
2015).
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FIGURE 2 | Observed impacts of Eastern and Central Pacific El Niño on biological and physical variables during 1997–2012. Annual mean anomalies are

regressed onto the (left) EP and (right) CP El Niño indices. Increase and decrease are indicated by positive (red) and negative (blue) anomalies respectively. (A)

Chlorophyll Concentration anomalies; (B) Primary Production anomalies; (C) SST anomalies; (D) SL and wind anomalies; (E) Surface Air Temperature anomalies; and

(F) Precipitation anomalies. In all panels, stippling indicates where the linear regression coefficients are significant at the 90% confidence level over the entire period of

1997–2012. The statistical significance of these regression coefficients was estimated according to Student t-test and considering the autocorrelation of the

time-series. The impact values are estimated based on EP and CP indices equal to one.
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FIGURE 3 | Major factors influencing phytoplankton growth. (A)

Correlation map between monthly surface chlorophyll concentration from

OC-CCIv2 and photosynthetically active radiation (PAR) over the period Sep.

1997 to Dec. 2012; (B) Correlation map between monthly surface chlorophyll

concentration from OC-CCIv2 and mixed layer depth (MLD) estimated using

SODA vertical profiles of temperature over the period Sep. 1997 to Dec. 2008;

(C) Annual average surface concentration of nitrate (µmol/l) from World Ocean

Atlas Climatology; and (D) Annual average zonal surface currents (m/s) from

OSCAR NOAA. (A,B) Positive correlation is indicated in red color and negative

correlation in blue color. Contour lines indicate correlation coefficients that are

significant at the 90% confidence level based on Pearson correlation

coefficients. (D) Positive values indicate eastward currents and negative values

westward currents.

Physical Forcing Mechanisms Associated
with El Niño Variability
The results of the biological and physical responses to the EP
and CP types of El Niño, which are statistically significant, are
presented in Figures 2, 4, and with an estimate of uncertainty

in the observational product in Figure 5. In the Equatorial

Pacific Ocean, where ENSO activity is rooted, an EP El Niño
event is generated when easterly trade winds weaken in the east
and westerlies prevail in the west (Figures 2D, 4C), pushing
warmer, nutrient-poor waters to the east (along the coast of
Peru and Chile), reducing nutrient availability, leading to a

decrease in chlorophyll and PP in the eastern Pacific of −12
± 5% and −56 ± 21 TgC/y (Figures 2A,B, 5). In contrast, a
CP El Niño event is generated when easterly trade winds in the
east and westerlies in the west are enhanced (Figures 2D,4C),
pushing warmer, nutrient-poor waters to the central Equatorial
Pacific, reducing nutrient availability, which is associated with
a decrease in chlorophyll and PP of −14 ± 5% and −68 ±

22 TgC/y (Figures 2A,B, 5). In both cases, regional decreases
in phytoplankton are caused by variations in horizontal and
vertical advective fluxes responsible for the transport of nutrients
to the surface layer, which are driven by perturbation in the
wind forcing (Ashok and Yamagata, 2009; Gierach et al., 2012;
Messié and Chavez, 2012, 2013; Radenac et al., 2012). Enhanced
advection is also observed during CP El Niño in the tropical
Atlantic Ocean as the Equatorial easterlies intensify in the east
(Figures 2D, 4C), bringing warmer, nutrient-poor waters to
around 15◦N (Richter et al., 2012), and leading to decreases
in chlorophyll and PP of −8 ± 3% and −10 ± 5 TgC/y
(Figures 2A,B, 5). In the Indian Ocean, Equatorial easterlies are
found to intensify during EP El Niño, promoting horizontal
advection of warmer and nutrient-poor waters to the western-
side of the basin (Figure 2C) (Webster et al., 1999), resulting
in decreases in chlorophyll and PP of −11 ± 4% and −82 ±

31 TgC/y (Figures 2A,B, 5), whereas in the eastern-side, the
observed increases in chlorophyll and PP of +7 ± 3% and
+13 ± 5 TgC/y (Figures 2A,B, 5) are likely to be driven by
enhanced upwelling (Figure 2C) and atmospheric fallout from
Indonesian fires and, further north in the basin, by enhanced
nutrient supply from the Ganges and Brahmaputra rivers. The
latter processes are consistent with the strong increase in fires
(Wooster et al., 2012; Huijnen et al., 2016) and dust deposition
reported off the west coast of Sumatra (Murtugudde et al.,
1999; Abram et al., 2003), and the increased precipitation
patterns observed over the Himalayas (Figure 4F). Furthermore,
in some regions, these processes may not be sufficient to
explain the observed variations in chlorophyll and PP, and
other processes may be involved, such as atmospheric dust
deposition from desert (e.g., EP El Niño impact in the Cape
Verde Sea), extent and duration of sea-ice cover in the Artic
(e.g., EP El Niño impact in the Bering and Labrador Seas),
and iron limitation in HNLC regions (e.g., EP and CP El
Niño impact in the Pacific sector of the Southern Ocean).
Further information would be required to validate these forcing
mechanisms.

The estimation of EP impact relies heavily on the El Niño
event of 1997–1998, which was the single, important EP event
that occurred within the relatively short time span of 15 years
for which we have the OC-CCI data. To evaluate the impact
that this single event had on our results, the correlation analyses
have been rerun without the 1997–1998 event. In this case,
the influence of EP El Niño on phytoplankton chlorophyll
concentration remained significant in the Eastern Pacific Ocean
and Western Indian Ocean, but not in the Eastern Indian
Ocean region (Figure 5), indicating further that other regional
climate oscillations are important drivers at basin scale (please
see discussion in Section Implications for Climate Impact
Research). In addition, the analyses of the EP and CP impact
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FIGURE 4 | Observed impacts of Eastern and Central Pacific El Niño on physical variables during the periods 1979–2014 and 1997–2012. Annual mean

anomalies are regressed onto the annual mean EP and CP El Niño indices. Increase and decrease are indicated by positive (red) and negative (blue) anomalies

respectively. In all panels, stippling indicates where the regression coefficients are significant at the 90% confidence level over the entire 35-year period (1979–2014;

left panels) and 15-year period (1997–2012; central panels). The statistical significance of these regression coefficients was estimated according to Student t-test and
considering the autocorrelation of the time-series. The probability density distributions of the regression coefficients are shown in gray shading for the 35 and 15-year

periods (right panels). The white dot indicates the position of the median, and the upper and lower ends of the black rectangle indicate the upper and lower quartiles

respectively. Surface air temperature and precipitation datasets are from NCEP/NCAR reanalysis, and sea surface temperature and wind datasets are from ECMWF

reanalysis (see Table 1). The impact values are estimated based on EP and CP indices equal to one.

on physical processes are further validated on interannual to
decadal timescales in Figure 4. The regression coefficients of
the EP and CP impact estimated for the two periods 1979–
2014 and 1997–2012 show similar spatial patterns and frequency
distributions for the physical variables studied. This indicates

that the results presented in Figure 2 (period 1997–2012) are not
skewed to the 1997–1998 EP El Niño event, and that the impact
patterns are stable over multi-decadal time scales (35-year), at
least for the physical variables. Since phytoplankton dynamics are
at the mercy of these physical conditions, we postulate that the
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FIGURE 5 | Regional impacts of ENSO climatic perturbations during the period 1997–2012. (A) Location of the areas used in the estimation of regional EP

and CP El Niño impact during the period 1997–2012; (B) Annual mean relative anomalies of Chlorophyll (in %) vs. EP index, and annual mean anomalies of Primary

Production (in TgC/y) versus EP index; and (C) Annual mean relative anomalies of Chlorophyll (in %) versus CP index, and annual mean anomalies of Primary

Production (in TgC/y) vs. CP index. The slope is provided ±Standard Error. Significant Pearson correlation coefficients at the 90% confidence level are indicated with a

star. (B) The Pearson correlation coefficients shown in parenthesis are based on the analyses run without including 1997–1998 El Niño event. (B,C) Error bars for

each point indicate the standard error based on the total number of observations in each corresponding box region. The standard error is calculated based on the

root-mean-square-difference and bias observations provided in OC-CCIv2.

inference may also hold for the biological variables studied here
(e.g., Figures 2, 5).

Implications for Climate Impact Research
Phytoplankton have a high turn-over rate, responding to
changes in their environment at scales ranging from seconds to
days, and illustrating well the first-level biological response to
environmental changes. At the same time, because of decadal-
scale variabilities in the physical forcing fields, it is generally
understood that multi-decadal, uninterrupted data are needed
to evaluate the impact of climate change on marine ecosystems.
Such data are only rarely available from limited in situ time
series stations (mostly coastal). Furthermore, satellite ocean-
color sensors have provided barely two decades of uninterrupted
data that can be used for climate research (Sathyendranath
and Krasemann, 2014). In this context, El Niño variability,
together with other large-scale inter-annual variations, provides
an important vehicle to study how phytoplankton in the ocean
(and hence the organisms at higher trophic levels) respond to
climate variability and identify the driving processes. In turn,
monitoring and analysis of long-term changes in these driving
processes would help us to improve understanding of projected
impact of long-term climate changes on the marine ecosystem.

In the present study, we have addressed potential issues
related to the collection of continuous ocean-color time-series
and processing of climate-quality products, to the study of
biophysical interactions, El Niño remote-forcing mechanisms
and their propagation, and the diversity of El Niño events by: (i)
using the longest, error-characterized, biased-corrected, climate-
quality controlled, global scale merged satellite ocean-color
data product from ESA Ocean-Color Climate Change Initiative
project; (ii) analyzing in synergy satellite ocean-color data record
and reanalysis datasets to identify the dominant mechanisms
driving the biophysical interactions; (iii) characterizing local and
remote influences of El Niño types on key driving variables of
SST, Sea Level, wind, and precipitation; (iv) analyzing annual
mean signal centered around the peak timing of El Niño activity
in boreal winter; and (v) selecting EP and CP indices, which are
computed to enhance differences in SST anomalies from the two
most eastern and central Pacific Niño1+2 and Niño 4 regions
respectively.

Our work highlights the importance of maintaining a long
time series of consistent ocean-color products, to be able to
evaluate the impact of climate variability on the biological fields.
For example, our results on the impact of EP events could
be improved when additional EP events can be incorporated
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into the analyses, such that the results would no longer be
so heavily dependent on a single EP event, as was the case
here. More data from longer time series are also essential to
explore non-linearities in biological responses, which could not
be investigated here because of limited data availability.

Our analysis shows that the modification of global oceanic
phytoplankton under climate change cannot be forecast with
respect to changes in a single ocean property. Rather, a
range of environmental properties may be involved (e.g.,
advection in three dimensions, wind, riverine input, atmospheric
dust deposition, stratification) whose intensity may vary on
a regional basis. The statistical approach to study El Niño
impact applied here has permitted us to characterize a complex
mosaic of biological responses illustrating that different forcing
dominates in different regions. The biophysical processes driving
phytoplankton production are summarized in Figure 6 in the
form of an atlas of EP andCP El Niño impact. The influence of CP
and EP El Niño events can be felt in the global oceans, although
the affected regions are predominantly located in the tropics and
subtropics encompassing 66–67% of the total areas affected, and
the remaining 33–34% are areas located in high-latitudes. In the
tropics and subtropics, 35–39% of the total affected areas showed
a decrease in PP associated with reduced nutrient availability
during CP and EP El Niño respectively, whereas in higher
latitudes 19–20% of the affected areas showed an increase in PP
associated with reduced light limitation (Figure 3). Even though,
the percent of total affected areas are relatively similar between
CP and EP El niño events, the regional differentiation is marked,
and may be of opposing sign (e.g., along the coast of Peru and
Chile, the Benguela upwelling, the Great Barrier Reef), or affected
during an EP event but not during a CP event (e.g., in the tropical
eastern and western Pacific). Several process-orientated studies
have further highlighted the important role played by horizontal
processes (together with vertical processes) in the supply of
nutrients in the surface layer, and specifically demonstrated
significant impacts in Winter new primary production in the
North Pacific transition zone (Ayers and Lozier, 2010), inter-
annual variations of chlorophyll concentration in the Equatorial
Pacific (Gierach et al., 2012; Messié and Chavez, 2013; Dave
and Lozier, 2015) and the Red Sea (Raitsos et al., 2015), and
decadal variations in phytoplankton abundance in the North
Atlantic Subpolar Gyre (Martinez et al., 2015). Thus, both the
development of statistical methods to study climate impact, and
the assessment of the future evolution of regional physical forcing
processes may help us to understand phytoplankton responses
to climate change and improve confidence in our projection of
future ecosystem state (Bopp et al., 2013; Boyd et al., 2014). The
first assessment based on a biogeochemical and ecosystem model
output of chlorophyll response to the EP and CP types of El Niño
was shown to compare well with remotely-sensed observations in
the Equatorial Pacific (Lee et al., 2014). However, the response to
El Niño variability projected from biogeochemical and ecosystem
models is yet to be investigated at the global scale.

Notwithstanding the dominant influence of El Niño on global
climate patterns, other driving factors may enhance or weaken
the observed biophysical impact. Examining links between
El Niño and inter-annual and decadal climate oscillations

(Di Lorenzo et al., 2010; Izumo et al., 2010) may provide
further insights toward improving projection of environmental
properties and associated phytoplankton responses to climate
forcing at global and regional scales. The regional variations
associated with El Niño may be superimposed on long-term
warming trends (Bopp et al., 2013; IPCC Climate Change,
2013; Boyd et al., 2014; Kumar et al., 2016) and regional-scale
oscillations at sub-seasonal and seasonal scales associated with
other large-scale climate modes of variability, such as the Atlantic
Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation
(PDO; Martinez et al., 2009), the North Pacific Gyre Oscillation
(NPGO; Di Lorenzo et al., 2008, 2010; Messié and Chavez, 2013),
the monsoon and Indian Ocean Dipole (IOD; Saji et al., 1999;
Ashok et al., 2007; Izumo et al., 2010; Brewin et al., 2012; Currie
et al., 2013). As a result, the regional climate response is not a
simple function of the strength and centroid location of an El
Niño event. Further, the regional patterns observed using EP and
CP El Niño indices may be sufficient to explain only a fraction
of all the regional variations on a year-to-year basis (except
perhaps where El Niño is likely to dominate the variability of
the system such as in the Equatorial Pacific region). For instance,
in the Indian Ocean, the ENSO and IOD indices can account
for ∼30% and 12% respectively of the regional variations in SST
(Saji et al., 1999), and years of co-occurrence of positive IOD
and El Niño events may provide positive feedbacks to the SST
(Kumar et al., 2016). Therefore, some apparent differences will
show between the observed impact of El Niño on biological and
physical variables, and the corresponding anomalies.

Implications for the Oceanic Ecosystem
and Carbon Cycle
Phytoplankton are at the base of the food chain and transfer
energy to higher trophic levels. This transfer of energy has a
knock-on effect on fisheries and dependent human societies
especially in highly productive and coastal upwelling regions,
as well as coral reef ecosystems. The larvae of many marine
species graze on phytoplankton during this most vulnerable
stage of their lives. Hence, changes in phytoplankton population
associated with climate variability may propagate rapidly up
the marine food chain and profoundly alter the functioning of
marine ecosystems (Platt et al., 2003; Edwards and Richardson,
2004; Lo-Yat et al., 2011). In addition, changes in environmental
conditions associated with EP and CP El Niño events have been
shown to impact mesozooplankton community with variable
time lags in the northern California Current, which in turn
can affect top down control on phytoplankton, and disrupt
the pelagic food chain (Fisher et al., 2015). Following EP and
CP El Niño events, quite different impact on commercially
important fisheries have been reported in anchovy catches in the
Humboldt Current LargeMarine Ecosystem (Jackson et al., 2011)
and tuna catches in the Indian Ocean (Kumar et al., 2014). In
coral reef ecosystems, changes in phytoplankton population and
mass bleaching following an El Niño event can critically affect
fisheries, recreation, and tourism services (Hoegh-Guldberg,
1999; Abram et al., 2003; Lo-Yat et al., 2011). Recent analysis
in the Andaman Sea, southeast Bay of Bengal, has further
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FIGURE 6 | Schematic atlas of the influence of El Niño variability on

oceanic phytoplankton in the global oceans. (A) Eastern Pacific El Niño

influence, and (B) Central Pacific El Niño influence. Increase and decrease in

primary production (PP) are indicated in red and blue filled colors respectively.

The color contours provide information about the controlling biophysical

mechanisms (which are described in Section Physical Forcing Mechanisms

Associated with El Niño Variability and Mapped in Figure 3): (yellow) PP is

nutrient-limited; (dark blue) PP is enhanced by nutrient availability; (orange) PP

is light-limited; (turquoise) PP is enhanced by light availability; (light pink or

dashed contour) PP may be further controlled by other mechanisms, such as

sea-ice melting, atmospheric dust deposition and availability of trace nutrients.

The contour delineation of the influence of EP and CP El Niño is generated

based on information displayed in Figure 2 and Supplementary Figure 4.

demonstrated that differences both in intensity and timing of
SST warming associated with EP and CP El Niño events, can
determine the extent of mass coral bleaching (Lix et al., 2016).
In this context, regional differentiation of the impact of each type
of El Niño events (Figure 6) may provide important information
to delineate and establish protected coral reef and fishing areas to
facilitate their recovery.

The oceanic carbon sink is part of a very active, natural
cycle, in which phytoplankton in the surface layer of the ocean
fix, by photosynthesis, dissolved CO2 in the water into organic
matter, some of which subsequently sinks below the mixed layer.
Through the associated decrease in the partial pressure of CO2 in
the surface ocean, phytoplankton contribute to the drawdown of
dissolved CO2 from the ocean surface layer (Hauck et al., 2015),
which in turn help to modulate the increase in anthropogenic
atmospheric CO2. The estimated El-Niño-driven changes in PP
at the regional scale can be considerable, reaching values of −57
± 21 and−68 ± 22 TgC/y in the Eastern and Central Equatorial
Pacific Ocean during EP and CP types of El Niño respectively

(Figure 5). However, to provide a more complete picture on
the influence on the carbon cycle, further investigations are
required to quantify the impact of El Niño on carbon export and
associated changes in air-sea CO2 fluxes. The buffering action
of the ocean in the carbon cycle is non-linear—it varies with
the water temperature (solubility pump), alkalinity (carbonate
pump), biological productivity and demineralization (biological
pump); the impact on environmental and ecosystem properties
must be evaluated at the appropriate scale to allow investigation
of the underlying mechanisms driving the variability in the ocean
carbon cycle.

As the frequency of extreme El Niño events and the relative
frequency of occurrence of CP-El Niño/EP-El Niño are projected
to increase under climate warming (Yeh et al., 2009; Lee and
McPhaden, 2010; Cai et al., 2015), it is essential to refine our
regional assessment of climate impact associated with El Niño
variability. The atlas of impact of CP and EP types of El Niño
on oceanic phytoplankton (Figure 6) can be used for societal
benefit. It provides key climate impact information that can
allow us to better inform fisheries management on possible
risks and opportunities associated with El Niño events, and
support more effectively mitigation and adaptation plans for
local fisheries-dependent societies. The atlas information can
also provide observational basis to test model predictions of the
impact of climate change on the marine ecosystem. Finally, from
a biogeochemical perspective, such insights on El Niño variability
impact are needed to improve our understanding of the buffering
capacity of the oceanic carbon cycle under climate change.

AUTHOR CONTRIBUTIONS

MFR designed and implemented the research. MFR, SS, RB, TJ
provided materials and analysis tools. MFR, SS, RB, TJ, DR, and
TP discussed the results and contributed to the writing of the
manuscript.

FUNDING

MFR is funded through a European Space Agency Living Planet
Fellowship Grant Ref Number (CCI-LPF-EOPS-MM-16-0078).
SS, TJ, and TP are funded through ESA Ocean Color Climate
Change Initiative program. SS, MFR, RB, and DR are funded
through the NERC’s UK National Centre for Earth Observation.

ACKNOWLEDGMENTS

This work is a contribution to the European Space Agency
Ocean Color Climate Change Initiative (ESA OC-CCI), the
European Space Agency Living Planet Fellowship program
(CLIMARECOS), and to the NERC National Centre for Earth
Observation (NCEO). The authors thank the ESA CCI teams
for providing OC-CCI chlorophyll data, SL-CCI sea level data,
and NCEO-ESA-SST-CCI sea surface temperature data. The
authors further acknowledge TWAP for providing primary
production data; NASA for providing SeaWiFS and MODIS
PAR data; NOAA for providing NCEP/NCAR air surface

Frontiers in Marine Science | www.frontiersin.org 12 May 2017 | Volume 4 | Article 133126

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Racault et al. ENSO Impact on Phytoplankton

temperature and precipitation reanalysis data; ECMWF for
providing ERA Interim wind and sea surface temperature
reanalysis data; and SODA for providing ocean temperature
reanalysis data. The authors thank James Dingle for technical
support with the OC-CCI data processing, Stéphane Saux-
Picart for help in processing the mixed layer depth, Sang-
Wook Yeh for discussion about El Niño phenomenon, and
Eleni Papathanasopoulou for discussion about socio-economic
impacts. The authors wish to acknowledge use of the Ferret
program for analysis and graphics in this paper—Ferret is a
product of NOAA’s Pacific Marine Environmental Laboratory
(information is available at http://ferret.pmel.noaa.gov/Ferret/).

The authors would also like to acknowledge the Nature Method
on-line web-tool BoxPlotR (http://boxplot.tyerslab.com/), which
was used to generate the boxplots, and Dimitrios Kleftogiannis
for information about boxplot analysis tools. We acknowledge
the two reviewers for providing constructive comments on our
manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmars.
2017.00133/full#supplementary-material

REFERENCES

Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère,

Y., et al. (2015). Improved sea level record over the satellite altimetry era

(1993–2010) from the Climate Change Initiative project. Ocean Sci. 11, 67–82.

doi: 10.5194/os-11-67-2015

Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J., and Hantoro, W.

S. (2003). Coral reef death during the 1997 Indian Ocean Dipole linked to

Indonesian wildfires. Science 301, 952–955. doi: 10.1126/science.1083841

Antoine, D., André, J.-M., and Morel, A. (1996). Oceanic primary production:

2. Estimation at global scale from satellite (Coastal Zone Color Scanner)

chlorophyll. Glob. Biogeochem. Cycles 10, 57–69. doi: 10.1029/95GB02832

Arrigo, K. R., and van Dijken, G. L. (2015). Continued increases in

Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70.

doi: 10.1016/j.pocean.2015.05.002

Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T. (2007). El

Niño Modoki and its possible teleconnection. J. Geophys. Res. 112:C11007.

doi: 10.1029/2006JC003798

Ashok, K., and Yamagata, T. (2009). The El Niño with a difference. Nature 461,

481–484. doi: 10.1038/461481a

Ayers, J. M., and Lozier,M. S. (2010). Physical controls on the seasonalmigration of

the North Pacific transition zone chlorophyll front. J. Geophys. Res. 115:C05001.

doi: 10.1029/2009JC005596

Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M. (2005). Carbon-

based ocean productivity and phytoplankton physiology from space. Glob.

Biogeochem. Cycles 19:GB1006:1-14. doi: 10.1029/2004gb002299

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L.,

Feldman, G. C., et al. (2006). Climate-driven trends in contemporary ocean

productivity. Nature 444, 752–755. doi: 10.1038/nature05317

Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S. O.,

Tucker, C. J. et al. (2001). Biospheric primary production during an ENSO

transition. Science 291, 2594–2595. doi: 10.1126/science.1055071

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen,

M., et al. (2013). Multiple stressors of ocean ecosystems in the 21st

century: projections with CMIP5 models. Biogeosciences 10, 6225–6245.

doi: 10.5194/bg-10-6225-2013

Boyd, P. W., Lennartz, S. T., Glover, D. M., and Doney, S. C. (2014). Biological

ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim.

Change 5, 71–79. doi: 10.1038/nclimate2441

Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, A., Grodsky, D.

R., et al. (2013). NOAA Atlas NESDIS 72. World Ocean Database 2013. Silver

Spring, MD.

Brewin, R. J. W., Hirata, T., Hardman-Mountford, N. J., Lavender, S. J.,

Sathyendranatha, S., and Barlow, R. (2012). The influence of the Indian

Ocean Dipole on interannual variations in phytoplankton size structure

as revealed by Earth Observation. Deep Sea Res. II 77–80, 117–127.

doi: 10.1016/j.dsr2.2012.04.009

Brewin, R. J. W., Mélin, F., Sathyendranath, S., Steinmetz, F., Chuprin, A., and

Grant, M. (2014). On the temporal consistency of chlorophyll products derived

from three ocean-colour sensors. ISPRS J. Photogramm. Remote Sens. 97,

171–184. doi: 10.1016/j.isprsjprs.2014.08.013

Cai, W., Santoso, A., Wang, G., Yeh, S.-Y., An, S.-I., et al. (2015). ENSO and

greenhouse warming. Nature 5, 849–859. doi: 10.1038/nclimate2743

Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J.-Y., et al.

(2015). Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938.

doi: 10.1175/BAMS-D-13-00117.1

Carton, J. A., and Giese, B. S. (2008). A reanalysis of ocean climate using Simple

Ocean Data Assimilation (SODA). Monthly Weather Rev. 136, 2999–3017.

doi: 10.1175/2007MWR1978.1

Chavez, F. P., Messié, M., and Pennington, J. T. (2011).Marine primary production

in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260.

doi: 10.1146/annurev.marine.010908.163917

Couto, A. B., Holbrook, N. J., and Maharaj, A. M. (2013). Unravelling

eastern pacific and central pacific ENSO contributions in south pacific

chlorophyll-a variability through remote sensing. Remote Sens. 5, 4067–4087.

doi: 10.3390/rs5084067

Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D. M., Aumont, O., Naqvi, S.

W. A., et al. (2013). Indian Ocean dipole and El Niño/southern oscillation

impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences

10, 6677–6698.

Dave, A. C., and Lozier, M. S. (2015). The impact of advection on stratification

and chlorophyll variability in the equatorial Pacific. Geophys. Res. Lett. 42,

4523–4531. doi: 10.1002/2015GL063290

de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Ludicone,

D. (2004). Mixed layer depth over the global ocean: an examination of

profile data and a profile-based climatology. J. Geophys. Res. 109:C12003.

doi: 10.1029/2004jc002378

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., et al. (2011).

The ERA-Interim reanalysis: configuration and performance of the data

assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597. doi: 10.1002/qj.828

Di Lorenzo, E., Cobb, K. M., Furtado, J. C., Schneider, N., Anderson, B. T., et al.

(2010). Central Pacific El Niño and decadal climate change in the North Pacific

Ocean. Nat. Geosci. 3, 762–765. doi: 10.1038/ngeo984

Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K., et al. (2008).

North Pacific Gyre Oscillation links ocean climate and ecosystem change.

Geophys. Res. Lett. 35:L08607. doi: 10.1029/2007GL032838

Edwards, M., and Richardson, A. J. (2004). Impact of climate change on

marine pelagic phenology and trophic mismatch. Nature 430, 881–884.

doi: 10.1038/nature02808

Fisher, J. L., Peterson, W. T., and Rykaczewski, R. R. (2015). The impact of El

Niño events on the pelagic food chain in the northern California Current.Glob.

Change Biol. 21, 4401–4414. doi: 10.1111/gcb.13054

Frouin, R., McPherson, J., Ueyoshi, K., and Franz, B. A. (2012). A time series

of photosynthetically available radiation at the ocean surface from SeaWiFS

and MODIS data. Remote Sens. Mar. Environ. II Proc. SPIE 8525, 852519.

doi: 10.1117/12.981264

Gierach, M. M., Lee, T., Turk, D., and McPhaden, M. J. (2012). Biological response

to the 1997-98 and 2009-10 El Niño events in the equatorial Pacific Ocean.

Geophys. Res. Lett. 39:L10602. doi: 10.1029/2012GL051103

Gordon, R. M., Coale, K. H., and Johnson, K. S. (1997). Iron distributions in

the equatorial Pacific: Implications for new production. Limnol. Oceanogr. 42,

419–431. doi: 10.4319/lo.1997.42.3.0419

Frontiers in Marine Science | www.frontiersin.org 13 May 2017 | Volume 4 | Article 133127

http://ferret.pmel.noaa.gov/Ferret/
http://boxplot.tyerslab.com/
http://journal.frontiersin.org/article/10.3389/fmars.2017.00133/full#supplementary-material
https://doi.org/10.5194/os-11-67-2015
https://doi.org/10.1126/science.1083841
https://doi.org/10.1029/95GB02832
https://doi.org/10.1016/j.pocean.2015.05.002
https://doi.org/10.1029/2006JC003798
https://doi.org/10.1038/461481a
https://doi.org/10.1029/2009JC005596
https://doi.org/10.1029/2004gb002299
https://doi.org/10.1038/nature05317
https://doi.org/10.1126/science.1055071
https://doi.org/10.5194/bg-10-6225-2013
https://doi.org/10.1038/nclimate2441
https://doi.org/10.1016/j.dsr2.2012.04.009
https://doi.org/10.1016/j.isprsjprs.2014.08.013
https://doi.org/10.1038/nclimate2743
https://doi.org/10.1175/BAMS-D-13-00117.1
https://doi.org/10.1175/2007MWR1978.1
https://doi.org/10.1146/annurev.marine.010908.163917
https://doi.org/10.3390/rs5084067
https://doi.org/10.1002/2015GL063290
https://doi.org/10.1029/2004jc002378
https://doi.org/10.1002/qj.828
https://doi.org/10.1038/ngeo984
https://doi.org/10.1029/2007GL032838
https://doi.org/10.1038/nature02808
https://doi.org/10.1111/gcb.13054
https://doi.org/10.1117/12.981264
https://doi.org/10.1029/2012GL051103
https://doi.org/10.4319/lo.1997.42.3.0419
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Racault et al. ENSO Impact on Phytoplankton

Gregg, W., and Rousseaux, C. S. (2014). Decadal trends in global pelagic ocean

chlorophyll: a new assessment integrating multiple satellites, in situ data, and

models. J. Geophys. Res. Oceans 119, 5921–5933. doi: 10.1002/2014JC010158

Hauck, L., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt, M., et al.

(2015). On the Southern Ocean CO2 uptake and the role of the biological

carbon pump in the 21st century. Glob. Biogeochem. Cycles 29, 1451–1470.

doi: 10.1002/2015GB005140

Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the

world’s coral reefs.Mar. Freshwater Res. 50, 839–866. doi: 10.1071/MF99078

Hoegh-Guldberg, O., Cai, R., Brewer, P. G., Fabry, V. J., Hilmi, K., et al. (2014).

“IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability Chapter

30 – The Ocean,” in Contribution of Working Group II to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change (Cambridge, UK;

New York, NY: Cambridge University Press).

Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J.,

Parrington, M., et al. (2016). Fire carbon emissions over maritime southeast

Asia in 2015 largest since 1997. Sci. Rep. 6:26886. doi: 10.1038/srep26886

IPCC Climate Change (2013). “The Physical Science Basis Summary for

Policymakers,” in Contribution of Working Group I to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change, eds T. F. Stocker, D.

Quin, G. -K. Plattner, M. Tignor, S. K. Allen, et al. (Cambridge, UK; New York,

NY: Cambridge University Press).

Izumo, T., Vialard, J., Lengaigne, M., De Boyer Montegut, C., Behera, S. K., Luo,

J. J., et al. (2010). Influence of the state of the Indian Ocean Dipole on the

following year’s El Niño. Nat. Geosci. 3, 168–172. doi: 10.1038/ngeo760

Jackson, T., Bouman, H. A., Sathyendranath, S., and Devred, E. (2011). Regional-

scale changes in diatom distribution in the Humboldt upwelling system as

revealed by remote sensing: implications for fisheries. ICES J. Mar. Sci. 68,

729–736. doi: 10.1093/icesjms/fsq181

Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., et al.

(2005). Global iron connections between desert dust, ocean biogeochemistry,

and climate. Science 308, 67–71. doi: 10.1126/science.1105959

Kahru, M., Brotas, V., Manzano-Sarabia, M., and Mitchell, B. G. (2011). Are

phytoplankton blooms occurring earlier in the Arctic? Glob. Change Biol. 17,

1733–1739. doi: 10.1111/j.1365-2486.2010.02312.x

Kahru, M., Lee, Z., Mitchell, B. G., and Nevison, C. D. (2016). Effects of sea ice

cover on satellite-detected primary production in the Arctic Ocean. Biol. Lett.

12:20160223. doi: 10.1098/rsbl.2016.0223

Kalnay, E., Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., et al.

(1996). The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 77,

437–470.

Kao, H.-Y., and Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific

types of ENSO. J. Clim. 22, 615–632. doi: 10.1175/2008JCLI2309.1

Kim, H.-M., Webster, P. J., and Curry, J. A. (2009). Impact of shifting patterns of

Pacific Ocean warming on North Atlantic tropical cyclones. Science 325, 77–80.

doi: 10.1126/science.1174062

Kug, J.-S., Jin, F.-F., and An, S.-I. (2009). Two types of El Niño events:

cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515.

doi: 10.1175/2008JCLI2624.1

Kumar, P. K. D., Steeven Paul, Y., Muraleedharan, K. R., Murty, V. S. N., and

Preenu, P. N. (2016). Comparison of long-term variability of Sea Surface

Temperature in the Arabian Sea and Bay of Bengal.Reg. Stud.Mar. Sci. 3, 67–75.

doi: 10.1016/j.rsma.2015.05.004

Kumar, P. S., Pillai, G. N., and Manjusha, U. (2014). El Niño Southern Oscillation

(ENSO) impact on tuna fisheries in Indian Ocean. SpringerPlus 3:591.

doi: 10.1186/2193-1801-3-591

Larkin, N. K., and Harrison, D. E. (2005). On the definition of El Niño

and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett.

32:L13705. doi: 10.1029/2005GL022738

Lee, K.-W., Yeh, S.-W., Kug, J.-S., and Park, J.-Y. (2014). Ocean chlorophyll

response to two types of El Niño events in an ocean-biogeochemical

coupled model. J. Geophys. Res. Oceans 119, 933–952. doi: 10.1002/2013JC0

09050

Lee, T., and McPhaden, M. J. (2010). Increasing intensity of El Niño in the central-

equatorial Pacific. Geophys. Res. Lett. 37:L14603. doi: 10.1029/2010GL044007

Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., et al.

(2015). Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85.

doi: 10.5194/essd-7-47-2015

L’Heureux, M., Takahashi, K., Watkins, A., Barnston, A., Becker, E., Di Liberto,

T., et al. (in press). Observing and predicting the 2015-16 El Niño. Bull. Amer.

Meteor. Soc. doi: 10.1175/BAMS-D-16-0009.1

Li, G., Ren, B., Yang, C., and Zheng, J. (2010). Indices of el niño and el niño

modoki: an improved el niño modoki index. Adv. Atmos. Sci. 27, 1210–1220.

doi: 10.1007/s00376-010-9173-5

Lin, H., and Derome, J. A. (1998). Three-year lagged correlation between the

North Atlantic Oscillation winter conditions over the North Pacific and North

America. Geophys. Res. Lett. 25, 2829–2832. doi: 10.1029/98GL52217

Lix, J. K., Venkatesan, R., Grinson, G., Rao, R. R., Jineesh, V. K., et al. (2016).

Differential bleaching of corals based on El Niño type and intensity in the

Andaman Sea, southeast Bay of Bengal. Environ. Monit. Assess. 188:175.

doi: 10.1007/s10661-016-5176-8

Longhurst, A. R. (1998). Ecological Geography of the Sea, 2nd Edn. San Diego, CA:

Academic Press.

Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C. (1995). An estimate

of global primary production in the ocean from satellite radiometer data. J.

Plankton Res. 17, 1245–1271. doi: 10.1093/plankt/17.6.1245

Lo-Yat, A., Simpson, S. D., Meekan, M., Lecchini, D., Martinez, E., and Galzin,

R. (2011). Extreme climatic events reduce ocean productivity and larval

supply in a tropical reef ecosystem. Glob. Change Biol. 17, 1695–1702.

doi: 10.1111/j.1365-2486.2010.02355.x

Martinez, E., Antoine, D., D’Ortenzio, F., and Gentili, B. (2009). Climate-

driven basin-scale decadal oscillations of oceanic phytoplankton. Science 326,

1253–1256. doi: 10.1126/science.1177012

Martinez, E., Raitsos, D. E., and Antoine, D. (2015). Warmer, deeper and greener

mixed layers in the north Atlantic subpolar gyre over the last 50 years. Glob.

Change Biol. 22, 604–612. doi: 10.1111/gcb.13100

McPhaden, M. J., Zebiak, S. E., and Glantz, M. H. (2006). ENSO as an integrating

concept in Earth science. Science 314, 1740–1745. doi: 10.1126/science.1132588

Merchant, C. J., Embury, O., Roberts-Jones, J., Fiedler, E., Bulgin, C. E., et al.

(2014). Sea surface temperature datasets for climate applications from Phase

1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci.

Data J. 1, 179–191. doi: 10.1002/gdj3.20

Messié, M., and Chavez, F. P. (2012). A global analysis of ENSO synchrony: the

oceans’ biological response to physical forcing. J. Geophys. Res. 117:C09001.

doi: 10.1029/2012jc007938

Messié, M., and Chavez, F. P. (2013). Physical-biological synchrony in the global

ocean associated with recent variability in the central and western equatorial

Pacific. J. Geophys. Res. 118, 3782–3794. doi: 10.1002/jgrc.20278

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., et al. (2013).

Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710.

doi: 10.1038/ngeo1765

Murtugudde, R. G., Signorini, S. R., Christian, J. R., Busalacchi, A. J., McClain,

C. R., and Picaut, J. (1999). Ocean color variability of the tropical Indo-

Pacific basin observed by SeaWiFS during 1997-1998. J. Geophys. Res. 104,

18351–18366. doi: 10.1029/1999JC900135

Paek, H., Yu, J.-Y., and Qian, C. (2017). Why were the 2015/2016 and

1997/1998 extreme El Niños different? Geophys. Res. Lett. 44, 1848–1856.

doi: 10.1002/2016GL071515

Platt, T., Fuentes-Yaco, C., and Frank, K. (2003). Spring algal bloom and larval fish

survival. Nature 423, 398–399. doi: 10.1038/423398b

Platt, T., and Sathyendranath, S. (1988). Oceanic primary production: estimation

by remote sensing at local and regional scales. Science 241, 1613–1620.

doi: 10.1126/science.241.4873.1613

Platt, T., and Sathyendranath, S. (2008). Ecological indicators for the pelagic zone

of the ocean from remote sensing. Remote Sens. Environ. 112, 3426–3436.

doi: 10.1016/j.rse.2007.10.016

Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S., and Platt, T.

(2012). Phytoplankton phenology in the global ocean. Ecol. Indic. 14, 152–163.

doi: 10.1016/j.ecolind.2011.07.010

Racault, M.-F., Raitsos, D. E., Berumen, M., Sathyendranath, S., Platt, T., and

Hoteit, I. (2015). Phytoplankton phenology indices in coral reef ecosystems:

application to ocean-color observations in the Red Sea. Remote Sens. Environ.

160, 222–234. doi: 10.1016/j.rse.2015.01.019

Racault, M.-F., Sathyendranath, S., Menon, N., and Platt, T. (2017). Phenological

responses to ENSO in the global oceans. Surveys Geophys. 38, 277–293.

doi: 10.1007/s10712-016-9391-1

Frontiers in Marine Science | www.frontiersin.org 14 May 2017 | Volume 4 | Article 133128

https://doi.org/10.1002/2014JC010158
https://doi.org/10.1002/2015GB005140
https://doi.org/10.1071/MF99078
https://doi.org/10.1038/srep26886
https://doi.org/10.1038/ngeo760
https://doi.org/10.1093/icesjms/fsq181
https://doi.org/10.1126/science.1105959
https://doi.org/10.1111/j.1365-2486.2010.02312.x
https://doi.org/10.1098/rsbl.2016.0223
https://doi.org/10.1175/2008JCLI2309.1
https://doi.org/10.1126/science.1174062
https://doi.org/10.1175/2008JCLI2624.1
https://doi.org/10.1016/j.rsma.2015.05.004
https://doi.org/10.1186/2193-1801-3-591
https://doi.org/10.1029/2005GL022738
https://doi.org/10.1002/2013JC009050
https://doi.org/10.1029/2010GL044007
https://doi.org/10.5194/essd-7-47-2015
https://doi.org/10.1175/BAMS-D-16-0009.1
https://doi.org/10.1007/s00376-010-9173-5
https://doi.org/10.1029/98GL52217
https://doi.org/10.1007/s10661-016-5176-8
https://doi.org/10.1093/plankt/17.6.1245
https://doi.org/10.1111/j.1365-2486.2010.02355.x
https://doi.org/10.1126/science.1177012
https://doi.org/10.1111/gcb.13100
https://doi.org/10.1126/science.1132588
https://doi.org/10.1002/gdj3.20
https://doi.org/10.1029/2012jc007938
https://doi.org/10.1002/jgrc.20278
https://doi.org/10.1038/ngeo1765
https://doi.org/10.1029/1999JC900135
https://doi.org/10.1002/2016GL071515
https://doi.org/10.1038/423398b
https://doi.org/10.1126/science.241.4873.1613
https://doi.org/10.1016/j.rse.2007.10.016
https://doi.org/10.1016/j.ecolind.2011.07.010
https://doi.org/10.1016/j.rse.2015.01.019
https://doi.org/10.1007/s10712-016-9391-1
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Racault et al. ENSO Impact on Phytoplankton

Racault, M.-F., Sathyendranath, S., and Platt, T. (2014). Impact of missing data on

the estimation of ecological indicators from satellite ocean-colour time-series.

Remote Sens. Environ. 152, 15–28. doi: 10.1016/j.rse.2014.05.016

Radenac, M.-H., Léger, F., Singh, A., and Delcroix, T. (2012). Sea surface

chlorophyll signature in the tropical Pacific during eastern and central Pacific

ENSO events. J. Geophys. Res. 117:C04007. doi: 10.1029/2011JC007841

Raitsos, D. E., Yi, X., Platt, T., Racault, M.-F., Brewin, R. J. W., et al. (2015).

Monsoon oscillations regulate fertility of the Red Sea. Geophys. Res. Lett. 42,

855–862. doi: 10.1002/2014GL062882

Richter, I., Behera, S. K., Masumoto, Y., Taguchi, B., Sasaki, H., and Yamagata, T.

(2012). Multiple causes of interannual sea surface temperature variability in the

equatorial Atlantic Ocean. Nat. Geosci. 6, 43–47. doi: 10.1038/ngeo1660

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.

(1999). A dipole mode in the tropical Indian Ocean. Nature 401, 360–363.

doi: 10.1038/43854

Sathyendranath, S., and Krasemann, H. (2014). Climate Assessment Report: Ocean

Colour Climate Change Initiative (OC-CCI) – Phase One. Available online at:

http://www.esa-oceancolour-cci.org/?q=documents

Steinmetz, F., Deschamps, P., and Ramon, D. (2011). Atmospheric correction

in presence of sun glint: application to MERIS. Opt. Express 19, 571–587.

doi: 10.1364/OE.19.009783

Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B. (2011). ENSO

regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett.

38:l10704. doi: 10.1029/2011GL047364

Topping, J. (1972). Errors of Observation and Their Treatment, 4th Edn., ed. J.

Topping (Whistable: Chapman & Hall), 72–114.

Trenberth, K. E., and Stepaniak, D. P. (2001). Indices of el niño evolution. J.

Climate 14, 1697–1701. doi: 10.1175/1520-0442(2001)014

Turk, D., Meinen, C. S., Antoine, D., McPhaden, M. J., and Lewis, M.

R. (2011). Implications of changing El Niño patterns for biological

dynamics in the equatorial Pacific Ocean. Geophys. Res. Lett. 38:L23603.

doi: 10.1029/2011GL049674

Turner, R. E., Rabalais, N. N., Justic, D., and Dortch, Q. (2003). Global patterns

of dissolved N, P and Si in large rivers. Biogeochemistry 64, 297–317.

doi: 10.1023/A:1024960007569

Vantrepotte, V., and Mélin, F. (2011). Inter-annual variations in the SeaWiFS

global chlorophyll a concentration (1997–2007). Deep Sea Res. I 58, 429–441.

doi: 10.1016/j.dsr.2011.02.003

Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R. (1999). Coupled

ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401,

356–360. doi: 10.1038/43848

Wilson, C., and Coles, V. J. (2005). Global climatological relationships between

satellite biological and physical observations and upper ocean properties. J.

Geophys. Res. 110:C10001. doi: 10.1029/2004JC002724

Wolter, K., and Timlin, M. S. (1993). “Monitoring ENSO in COADS with a

seasonally adjusted principal component index,” in Proceedings of the 17th

Climate Diagnostics Workshop (Norman, OK: NOAA/N MC/CAC, NSSL,

Oklahoma Climate Survey, CIMMS and the School of Meteorology, University

Oklahoma), 52–57.

Wooster, M. J., Perry, G. L. W., and Zoumas, A. (2012). Fire, drought and El Niño

relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980-2000).

Biogeosciences 9, 317–340. doi: 10.5194/bg-9-317-2012

Xie, P., and Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis

based on gauge observations, satellite estimates, and numerical model outputs.

Bull. Amer. Meteor. Soc. 78, 2539–2558.

Yeh, S., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., and Jin, F. F. (2009).

El Niño in a changing climate. Nature 461, 511–514. doi: 10.1038/nature08316

Yoder, J., and Kennelly, M. (2003). Seasonal and ENSO variability in global ocean

phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements.

Glob. Biogeochem. Cycles 17:1112. doi: 10.1029/2002GB001942

Yu, J.-Y. (2016). Monthly CP Index and EP Index. Available online at:

https://www.ess.uci.edu/∼yu/2OSC/Retrieved date March 2016.

Yu, J.-Y., and Kao, H.-Y. (2007). Decadal changes of ENSO persistence barrier in

SST and ocean heat content indices: 1958–2001. J. Geophys. Res. 112, D13106.

doi: 10.1029/2006JD007654

Yu, J.-Y., and Zou, Y. (2013). The enhanced drying effect of Central-Pacific El Niño

on US winter. Environ. Res. Lett. 8:014019. doi: 10.1088/1748-9326/8/1/014019

Yu, J.-Y., Zou, Y., Kim, S. T., and Lee, T. (2012). The changing impact

of El Niño on US winter temperatures. Geophys. Res. Lett. 39, L15702.

doi: 10.1029/2012GL052483

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Racault, Sathyendranath, Brewin, Raitsos, Jackson and Platt.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Marine Science | www.frontiersin.org 15 May 2017 | Volume 4 | Article 133129

https://doi.org/10.1016/j.rse.2014.05.016
https://doi.org/10.1029/2011JC007841
https://doi.org/10.1002/2014GL062882
https://doi.org/10.1038/ngeo1660
https://doi.org/10.1038/43854
http://www.esa-oceancolour-cci.org
https://doi.org/10.1364/OE.19.009783
https://doi.org/10.1029/2011GL047364
https://doi.org/10.1175/1520-0442(2001)014
https://doi.org/10.1029/2011GL049674
https://doi.org/10.1023/A:1024960007569
https://doi.org/10.1016/j.dsr.2011.02.003
https://doi.org/10.1038/43848
https://doi.org/10.1029/2004JC002724
https://doi.org/10.5194/bg-9-317-2012
https://doi.org/10.1038/nature08316
https://doi.org/10.1029/2002GB001942
https://www.ess.uci.edu/$\sim $yu/2OSC/Retrieved
https://doi.org/10.1029/2006JD007654
https://doi.org/10.1088/1748-9326/8/1/014019
https://doi.org/10.1029/2012GL052483
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


ORIGINAL RESEARCH
published: 11 May 2017

doi: 10.3389/fmars.2017.00140

Frontiers in Marine Science | www.frontiersin.org 1 May 2017 | Volume 4 | Article 140

Edited by:

Tiit Kutser,

University of Tartu, Estonia

Reviewed by:

Tim Moore,

University of New Hampshire, USA

Jenni Attila,

Finnish Environment Institute, Finland

Mark Matthews,

CyanoLakes, South Africa

*Correspondence:

Martin Hieronymi

martin.hieronymi@hzg.de

†
Present Address:

Dagmar Müller,

Brockmann Consult GmbH,

Geesthacht, Germany

Specialty section:

This article was submitted to

Ocean Observation,

a section of the journal

Frontiers in Marine Science

Received: 15 December 2016

Accepted: 26 April 2017

Published: 11 May 2017

Citation:

Hieronymi M, Müller D and Doerffer R

(2017) The OLCI Neural Network

Swarm (ONNS): A Bio-Geo-Optical

Algorithm for Open Ocean and

Coastal Waters.

Front. Mar. Sci. 4:140.

doi: 10.3389/fmars.2017.00140

The OLCI Neural Network Swarm
(ONNS): A Bio-Geo-Optical Algorithm
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The processing scheme of a novel in-water algorithm for the retrieval of ocean color

products from Sentinel-3 OLCI is introduced. The algorithm consists of several blended

neural networks that are specialized for 13 different optical water classes. These

comprise clearest natural waters but also waters reaching the frontiers of marine optical

remote sensing, namely extreme absorbing, or scattering waters. Considered chlorophyll

concentrations reach up to 200mg m−3, non-algae particle concentrations up to

1,500 g m−3, and the absorption coefficient of colored dissolved organic matter at

440 nm is up to 20 m−1. The algorithm generates different concentrations of water

constituents, inherent and apparent optical properties, and a color index. In addition, all

products are delivered with an uncertainty estimate. A baseline validation of the products

is provided for various water types. We conclude that the algorithm is suitable for the

remote sensing estimation of water properties and constituents of most natural waters.

Keywords: ocean color, remote sensing, Sentinel-3, OLCI, extreme Case-2 waters, neural network, fuzzy logic

classification

INTRODUCTION

The Sentinel-3 Ocean and Land Colour Instrument (OLCI) was developed by the European Space
Agency as part of the Copernicus Earth observation program (Donlon et al., 2012). The first
of a row of consecutive satellites, Sentinel-3A, was launched early in 2016. Mission objectives
include measuring of the ocean reflectance (color) as well as monitoring of sea-water quality and
pollution. OLCI is based on the heritage of theMedium Resolution Imaging Spectrometer (MERIS)
on board ENVISAT (mission between 2002 and 2012), but with six additional spectral bands.
OLCI operates in full resolution mode with a spatial resolution of approximately 300m and a
swath width of 1,270 km. Thus, the instrument images wide sea areas including details of coastal
waters, e.g., estuaries, intertidal mudflats, and lagoons, but also inland waters. The challenge is to
extract extensively reliable ocean color products such as chlorophyll concentration, Chl, from such
wide-scale satellite observations, which cover the high natural variability of optical water properties.

The spectral water-leaving reflectance or remote sensing reflectance, Rrs, is characterized by
absorption and scattering properties of four main components: sea-water, phytoplankton (together
with small organisms), colored dissolved organic matter (CDOM), and inorganic particulate
material (Mobley, 1994). In addition, wind-dependent air bubbles and boundary conditions
may influence the color signal. The composition of water constituents varies considerably, both
temporally and regionally. At the open ocean, inherent optical properties (IOPs) of water are
determined primarily by phytoplankton and related CDOM and detritus degradation products.
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In accordance with the classical (and not unambiguous) bipartite
differentiation, these are the so called “Case-1” (C1) waters
and all other water types correspond to “Case-2” (Morel
and Prieur, 1977; Mobley et al., 2004). Coastal and inland
waters can be significantly influenced by other constituents
whose concentrations do not covary with the phytoplankton
concentration, e.g., due to CDOM and mineral runoff from
adjacent land areas or resuspension of bottommaterial in shallow
waters. In extreme cases concentrations of CDOM or inorganic
particles can be exceptionally high; those are defined as (Case-
2) extremely absorbing (C2AX) and extremely scattering (C2SX)
waters respectively (Hieronymi et al., 2016). Absorbing waters are
characterized by very lowmarine reflectance and a shift of the Rrs
maximum toward the red spectral range. Typically, the CDOM
absorption at 440 nm is>1m−1 in C2AXwaters. There are “black
lakes,” e.g., many boreal lakes, where the reflectance is negligible
in almost the entire visible part of spectrum (VIS: 400–700 nm);
signal from chlorophyll is—if at all—only detectable in the near
infrared (Kutser et al., 2016; NIR in the sensor response division
scheme: 700–1,000 nm). Observations from remote sensing face
similar challenges for extreme turbid C2SX waters, because non-
algae particles mask optical properties of algae particles over
large parts of the visible spectrum. But in general, the water
appears much brighter; the water-leaving reflectance spectrum
has still significant amplitudes in the NIR (Ruddick et al., 2006)
and measurably non-zero reflectance at the last OLCI band at
1,020 nm (Knaeps et al., 2012). Typically, the concentration
of inorganic suspended matter, ISM, is >100 g m−3 in C2SX
waters (Hieronymi et al., 2016). An overview of water type sub-
classification, used for differentiation in this work, is provided in
Table 1.

Great variability of IOPs causes ambiguousness and therefore
a significant degree of uncertainty in the interpretation of
the remote sensing signal. We have to deal with a nonlinear
and multivariate problem and the ocean color algorithm must
be designed accordingly. The capability of bio-(geo)-optical
algorithms strongly varies on global, regional, and very small
scales and algorithms generally face more difficulties in Case-2
waters (e.g., Blondeau-Patissier et al., 2004; Darecki and Stramski,
2004; Gregg and Casey, 2004; Reinart and Kutser, 2006; Attila
et al., 2013; Beltrán-Abaunza et al., 2014; Harvey et al., 2015).
Indeed, it is a challenge to bridge the different scales with a
high degree of reliability of the ocean color products. And we
should not forget that marine atmospheric correction (AC),
which is necessary to derive Rrs at the sea surface from satellite
imagery and thus, provides input for in-water algorithms, is
a complex task with additional uncertainties, in particular for
extreme waters.

An artificial neural network (NN) is an appropriate regression
technique to parametrize the inverse relationship between optical
properties and reflectances. It has been proven in the last years
that NNs produce reasonable approximations of ocean color
products from optically complex (Case-2) waters. NNs have
been applied to different satellite sensors in order to derive
concentrations of water constituents, inherent and apparent
optical properties (IOPs and AOPs), and photosynthetically
available radiation (PAR), or to discriminate algae species (Gross

TABLE 1 | Water case sub-classification that characterize the database in

view of concentration ranges of chlorophyll, CDOM, and inorganic

suspended matter.

Case Description Chl [mg m−3] acdom (440) [m−1] ISM [g m−3]

C1 Open ocean and

algae bloom

0: 200 X ChlY <1.5

C2A Moderately to

strongly absorbing

0: 200 0.1: 1 <10

C2AX Extremely

absorbing

0: 200 > 1 <10

C2S Moderately to

strongly scattering

0: 200 < 0.5 1: 100

C2SX Extremely

scattering

0: 200 < 0.5 >100

In Case-1 (C1), CDOM is related to chlorophyll concentration with arbitrary parameters X
and Y.

et al., 1999; Schiller and Doerffer, 1999; D’Alimonte and Zibordi,
2003; Zhang et al., 2003; Tanaka et al., 2004; Schiller, 2006;
Bricaud et al., 2007; Schroeder et al., 2007; Ioannou et al., 2011;
Jamet et al., 2012; Chen et al., 2014; Hieronymi et al., 2015;
D’Alimonte et al., 2016). Due to their speed, NN-based ocean
color algorithms are deployed for operational and near-real time
satellite observations, e.g., the MERIS Case-2 water algorithm
(Doerffer and Schiller, 2007) and C2RCC (Brockmann et al.,
2016).

The objective of this study is to introduce a new in-water
processing scheme designed for OLCI ocean color observations
called OLCI Neural Network Swarm (ONNS). The distinctive
feature of this algorithm is its wide range of applicability in
terms of optical water properties ranging from oligotrophic
ocean waters to extremely turbid (scattering) or dark (absorbing)
waters. The specific goals of the study are: (1) to reference the
fundamental processing scheme, (2) to provide the scientific
background, (3) to introduce the derived ocean color products,
and (4) to evaluate the basic suitability of the algorithm for
oceanic and coastal waters, i.e., C1, C2A, C2AX, C2S, and C2SX
waters (Table 1).

ONNS BASIS AND ALGORITHM
DESCRIPTION

ONNS is an in-water processor, which retrieves ocean color (OC)
products from Sentinel-3 OLCI satellite scenes. Inputs to the
algorithm are normalized remote sensing reflectances (just above
the sea surface). Atmospheric correction is not part of the in-
water processing scheme, and thus, ONNS fully relies on proper
atmospheric correction (see Section Retrieval Accuracy). The
processor logic is illustrated in Figure 1 and documented in the
following.

Neural Network Algorithm
As it is the case for all ocean color algorithms, NNs are valid for a
certain range of constituents and their concentrations, and some
parameters may be deduced more accurately than others, e.g.,
retrieval of suspended matter is usually the least critical, whereas
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FIGURE 1 | Flowchart of the OLCI Neural Network Swarm in-water

ocean color processor.

CDOM retrievals are the most challenging (Odermatt et al., 2012;
Brewin et al., 2015). Our approach proposes to blend various NN
algorithms, each optimized for a specific scope. This swarm of
neural networks therefore, covers the largest possible variability
of water properties including oligotrophic and extreme waters
(Table 1).

Neural Network Data Basis
Basis for NN training is knowledge of the relationship
between water constituents, i.e., their optical activity, and the
spectral remote sensing reflectance, Rrs. The latter is defined
as ratio between water-leaving (upwelling) radiance, Lw, and
downwelling irradiance, Ed, both just above the water surface. For
training and validation (test) purposes, a large (>105) dataset has
been simulated using the commercial radiative transfer software
Hydrolight (version 5.2; Sequoia Scientific, USA; Mobley, 1994).
Hydrolight is a forward model to compute Rrs and many other
light field-related quantities from optical specifications of the
water body, such as specific absorption and scattering properties.
Considered concentration ranges are defined in Table 1. Basis
for estimating distributions, ranges, and covariances of optical
parameters in the model are different in situ datasets: (1)
primarily our data from the North and Baltic Sea (HZG), (2)
OC-CCI (ESA, worldwide; Valente et al., 2016), (3) HELCOM
(Baltic Sea 1997–2013; ICES, 2011), and (4) NOMAD (NASA,
worldwide; Werdell and Bailey, 2005). The simulations cover
the spectral range from 380 to 1,100 nm in 2.5 nm steps
(hyperspectral over full VIS and NIR). Resulting reflectances and
AOPs refer to a solar irradiation from zenith direction and nadir
viewing angle, i.e., they are fully normalized. Many standard
settings of Hydrolight are utilized (Mobley, 1994; Mobley and
Sundman, 2013); specific inputs are defined in the following.

FIGURE 2 | Bio-optical model of phytoplankton absorption.

(A), Fundamental absorption spectra of five algae groups. (B), Modelled

variability of the absorption coefficient of phytoplankton at 440 nm as function

of chlorophyll concentration. The solid line shows the regression line of

observations (Bricaud et al., 2004).

The total absorption contains fractions of absorption of pure
water, phytoplankton pigments, minerals (also inorganic detritus
or non-algae particles), and colored dissolved organic matter
(CDOM, also referred as yellow substance or gelbstoff ). The same
distinction is made for scattering; only to CDOM no scattering
is attributed. The absorption and scattering coefficients of pure
water depend on temperature, salinity, and wavelength (data
fromWOPP v2 by Röttgers et al., 2016).

Phytoplankton absorption is determined by the composition
and concentration of pigments, e.g., chlorophyll-a, Chl, which
is generally used to quantify the marine biomass concentration.
This means that different algae species have unique absorption
spectra. Xi et al. (2015) showed the impact of chlorophyll-specific
absorption spectra on Rrs. They identified five fundamental
absorption shapes from which an inversion of algae species from
remote sensing reflectance is possible. Figure 2A illustrates the
basic chlorophyll-specific absorption, a∗p , spectra normalized at
440 nm that are utilized in this work (from Xi et al., 2015).
Mixtures of these spectra represent the variability of spectral
shapes that are found in measured data. It has been decided
to combine two types of spectra, whereby one component
dominates the signal with 80%. The globally most common
spectral shape is labeled with “brown group”; it is very similar
to the standard absorption spectrum used in Hydrolight and
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summarizes Heterokontophyta, Dinophyta, Haptophyta, and
others that have a similar spectral shape. The “green group”
includes Chlorophyta. Cyanobacteria are separated into blue
(e.g., Aphanothece clathrata) and red (e.g., Synechococcus red)
species. The two spectra for cyanobacteria are derived from in
situ absorption measurements in the Baltic Sea. The three other
spectra are taken from cultures. The phytoplankton (particle)
absorption, ap, is related to the spectral chlorophyll-specific
absorption and chlorophyll concentration, ap (λ) = a∗p (λ) Chl.
The natural variability of phytoplankton absorption is very high
(e.g., Bricaud et al., 2004) and included in the simulations
(Figure 2B). Thus, when assessingChl retrieval performance, this
must be kept in mind.

The shape of CDOM absorption is nearly exponential.
Exponential functions have been used for C1 water simulations
(Table 1). Here, CDOM absorption coefficients, acdom, and
exponential slopes are varied strongly in order to display the
natural variability (e.g., Valente et al., 2016). In addition, the
present work uses modeled absorption spectra that are fitted
to spectral measurements (by Rüdiger Röttgers, HZG). Based
on this, further CDOM spectra are extrapolated toward ultra-
extreme absorption with acdom(440) = 20 m−1. The exponential
slope of these spectra (between 300 and 400 nm) is approximately
0.014 nm−1.

Fournier-Forand volume scattering functions have been
applied for algae and non-algae particles (see Mobley and
Sundman, 2013). The particle backscatter fraction, which actually
correlates poorly with Chl and mineral (ISM) concentrations,
is needed for the selection of appropriate phase functions. The
corresponding formula of Twardowski et al. (2001) has been used
for Chl-bearing particles. For inorganic particles, the mineral
backscattering-ISM relationship of Zhang et al. (2010) has been
utilized. The spectral mass-specific scattering coefficients are
approximated by exponential functions, following the natural
variability shown in measurements of organic-dominated and
mineral-dominated waters (Woźniak et al., 2010).

The atmospheric and surface boundary conditions in
Hydrolight are set constant, i.e., usage of the semi-empirical sky
radiance model, assuming dry air with a marine aerosol type and
moderate wind speed of 5m s−1. The refractive index of water
(as it is the case for absorption and scattering) is a function of
water temperature (0–30◦C) and salinity (0–35 PSU). The water
is (virtually) infinitely deep. Effects of light polarization are not
taken into account in Hydrolight.

All simulations have been carried out with and without
inelastic scattering, i.e., Raman scattering, CDOM and
Chl fluorescence, but without internal sources, i.e., no
bioluminescence. In the end, data without inelastic scattering
have been used for ONNS development. This is unproblematic
in the selected setup with the 11 OLCI bands. Seen over the
visible spectral range, differences mostly play no role, except
for extreme absorbing waters, where high CDOM fluorescence
is present. During algae bloom events, very high chlorophyll
fluorescence peaks can be observed in nature (e.g., Fawcett et al.,
2006), but modeling a certain quantum yield efficiency holds in
itself great uncertainties (see Section ONNS Design). However,
the simulations have been compared with observations and we

generally have found a good agreement (Hieronymi et al., 2016).
But we also have found some discrepancies partly related to
plausible measuring uncertainties and possibly due to model
simplifications.

NN Training
One part of the simulated dataset is put aside for later quasi-
independent test purposes (see Section ONNS Application to
Validation Data). The rest of the Rrs data is optically classified
(Section Out-of-Scope Test) and grouped together. The scopes
of concentrations together with median values are given in
Table 2.

The usable wavebands of the in-water algorithm are
determined by the atmospheric correction at OLCI bands. We
selected 11 (out of 21) OLCI wavebands for NN input (bands 1–
8, 12, 16, and 17, i.e., at 400, 412.5, 442.5, 490, 510, 560, 620, 665,
755, 777.5, and 865 nm). The instrument’s band widths vary and
to be precise, the centers of bands 12 and 16 are actually at 753.75
and 778.75 nm respectively (Donlon et al., 2012). In contrast
to other NN algorithms (e.g., Doerffer and Schiller, 2007), sun-
viewing geometry is no input to the present NNs, instead input
reflectances are normalized.

The selected output parameters are mostly common ocean
color products (e.g., Nechad et al., 2015; Valente et al., 2016):

(1) Concentration of chlorophyll, Chl [mg m−3],
(2) Concentration of inorganic suspended matter (minerals),

ISM [g m−3],
(3) Absorption coefficient of CDOM at 440 nm, acdom(440)

[m−1],
(4) Absorption coefficient of phytoplankton particles at

440 nm, ap(440) [m
−1],

(5) Absorption coefficient of minerals at 440 nm, am(440)
[m−1],

(6) Absorption coefficient of detritus plus gelbstoff at 412 nm,
adg(412) [m

−1],
(7) Scattering coefficient of phytoplankton particles at 440 nm,

bp(440) [m
−1],

(8) Scattering coefficient of minerals at 440 nm, bm(440) [m
−1],

(9) Total backscattering coefficient of all particles (organic and
inorganic) at 510 nm, bbp(510) [m

−1],
(10) Downwelling diffuse attenuation coefficient at 490 nm,

Kd(490) [m
−1],

(11) Upwelling diffuse attenuation coefficient at 490 nm,
Ku(490) [m

−1], and.
(12) Forel-Ule number, FU [-].

The 12 parameters are results of three independent sets of NNs,
one that computes concentrations, one gives IOPs at 440 nm,
and the last provides different IOPs and AOPs (see Appendix
Table A1). Concentrations can be directly derived with NNs
or alternatively, they can be estimated using IOPs, e.g., Chl
from ap(440) or ISM from bm(440) (Doerffer and Schiller,
2007). The latter approach allows better adaptation of empirical
relationships by means of in situ match-up data (which in case
of OLCI is not yet available at present). All absorption and
scattering contributions are retrieved at the reference wavelength
440 nm (pure water IOPs are known). Thereby, it is possible
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TABLE 2 | Chlorophyll, CDOM, and inorganic suspended matter concentrations for the 13 optical water types.

OWT Chl [mg m−3] acdom(440) [m−1] ISM [g m−3] Fractions of cases [%]

Min Median Max Min Median Max Min Median Max C1 C2A C2S C2AX C2SX

1 0.03 1.4 195 0 2.8 8.3 0 0.8 60 0 0.15 19.51 80.34 0

2 0.03 1.5 195 4.3 8.1 20 0 0.7 10 0 0 0 100 0

3 0.03 1.5 200 0 0.156 20 0 750 1500 0.01 0.01 0.01 0.34 99.63

4 0.03 1.8 195 0 0.164 17 0 110 300 2.41 2.88 25.42 5.24 64.05

5 0.03 2.3 195 0 0.224 2.1 0 2.5 25 6.3 31.42 58.7 3.59 0

6 0.03 1.1 195 0 0.162 0.5 0 0.9 6 8.91 63.31 27.79 0 0

7 70 185 200 0.002 0.262 20 0 2.6 750 20.64 23.49 23.49 23.13 9.25

8 70 185 200 0.008 0.223 18 0 2.75 1000 20.22 16.18 26.84 22.06 14.71

9 0.03 2 195 0 0.096 0.3 0 0.2 5 48.4 42.24 9.36 0 0

10 0.03 1.3 195 0 0.04 0.272 0 0.08 2 90.63 8.83 0.54 0 0

11 0.03 0.33 5 0.002 0.016 0.222 0 0.1 0.5 99.63 0.37 0 0 0

12 0.03 0.2 0.64 0.002 0.01 0.028 0 0.06 0.4 100 0 0 0 0

13 0.03 0.12 0.53 0.002 0.006 0.016 0 0.04 0.2 100 0 0 0 0

The composition of an optical water type with reference to the sub-classification in Table 1 is additionally shown.

to estimate the total absorption, total scattering, and total
attenuation coefficients. Mineral particles have usually lower
absorption characteristics than CDOM, but shape-wise both are
very similar. Following this reasoning, semi-analytical models,
designed to retrieve IOPs from satellite data, often combine
absorption by detritus (in this work only inorganic fraction) and
gelbstoff (all water constituents which pass a filter pore size of 0.2
µm, which is often synonymous with CDOM). This absorption
coefficient often corresponds to 412 nm. A similar idea holds true
for the backscattering parameter. It is usually the backscattering
coefficient of all marine particles together, which is measured
in the field (at 510 nm). The diffuse attenuation coefficients are
used to describe the attenuation of irradiance as a function of
depth in water. It can be used to compute the depth of the
euphotic zone. The Forel-Ule color scale was used for natural
water classification long before the satellite era. In open ocean
regions, the FU number is closely related to Chl concentration.
Thus, the index can support ocean color trend analysis in the pre-
satellite age and afterwards (Wernand et al., 2013; van derWoerd
and Wernand, 2015). The color scale visualizes the color of the
water body above a white Secchi disk that is hold at half Secchi
depth.

A subsequent set of neural nets serves to evaluate the
divergence of final OC products from the original training basis,
i.e., Hydrolight simulations. The results are part of an uncertainty
estimate (see Section Uncertainty Analysis).

The actual NN training procedure is described in Schiller
and Doerffer (1999). The utilized multilayer feedforward-
backpropagation neural net program is documented in Schiller
(2000). The code was embedded in a program to test many NN
architectures, i.e., varying numbers of hidden layers and neurons,
and to optimize the learning process.

NN Scoring and Selection
Several hundreds of nets per water class and task with
much different architecture have been produced. Afterwards,
a ranking system has been applied in order to determine

the optimal nets without over-training. In principle, statistical
parameters such as root-mean-square error and goodness of
fit are transformed into relative scores, which evaluate the
quality of individual nets (Müller et al., 2015a). The best
performing neural network architectures per water class are
specified in Table A1. Inputs and outputs for the NNs are
log10(X + 0.001), where X stands for Rrs or an ocean color
product. The only exception is the Forel-Ule number, which
is an integer between 1 and 21 and not logarithmized. The
logarithmic form of input/output enables a distribution of values,
which is closer to a uniform distribution within the range
of input data, and therefore better approximation of outputs.
The addition of 0.001 allows consideration of zero-values as
input.

Fuzzy Logic Classification
Optical water type, OWT, classification based on remote
sensing reflectance spectra has been developed to overcome
the simplifications of Case-1 and Case-2 waters (Moore
et al., 2001). It can bridge the gap between regionalized
optical models and the global scale by combining
several models according to their respective membership
to a certain water type (Moore et al., 2009, 2012,
2014).

The classification is based on the simulated Rrs spectra
(at 11 OLCI wavebands), but it is used for atmospheric
corrected satellite data afterwards. Negative reflectances can
occur after AC sometimes, while the spectral shape is still
realistic. In order to avoid conflict with negative reflectances,
the spectra are therefore transformed by log10(Rrs + 1) (note
that Rrs is treated differently during classification and the NN
application). Before the clustering, these transformed spectra
are normalized by their brightness (sum of log-transformed
reflectances), so that the classification is based on the shape
of the spectrum alone. As the goal is to derive representative
spectra, which have different spectral shapes and in particular
a different spectral maximum, the sample from the simulation
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database does not take into account the frequency of natural
occurrence of spectra. Spectra with their maximum at 510,
620, and 777.5 nm come in two distinctive shapes and there
is no spectrum with maximum at 865 nm, so that during
the agglomerative clustering 13 classes are selected. The 13
OWT classes are described by their class mean and standard
deviation per wavelength of the brightness-scaled Rrs, which
are used for the classification of spectra furthermore. The
mean reflectance spectra of the 13 OWT classes are plotted in
Figure 3.

The five water type categories (Table 1) are defined by
combinations of concentrations and thresholds. The water classes
are designed to represent spectra, which have their maximum in
the spectral shape at different wavelengths, independent of their
brightness. Combining the water classes and the concentration
categories is a test, which spectral shapes can be found in certain
concentration ranges (Table 2).

Fuzzy set theory allows an element to have membership to
one or more OWT classes (Moore et al., 2001). The weight of
a class (membership function) is altered to allow for graded
memberships, i.e., 0 ≤ wi ≤ 1, and to express partial class
membership to the ith class. For constrained fuzzy sets the
sum of all 13 weights equals 1. However, the class membership
had to be above a minimum threshold, which was set at
0.0001. The membership to a class (weight) is calculated by
determining the Mahalanobis distance between the given
spectrum and the class means using the classes’ covariance
matrix respectively. Reconstruction of Rrs spectra by means of
the fuzzy classification inversion yields mostly satisfying results.
However, Rrs inversion from different atmospheric corrections
reveals expected uncertainties in the violet-blue, which can be
the case, if the satellite-acquired spectrum provided by the AC
is distinctly different from modeled Rrs (which is basis of the
classification).

FIGURE 3 | Brightness-scaled remote sensing reflectances for 13

classes of optical water types. Utilized OLCI bands are marked.

Within the ONNS framework (Figure 1), the fuzzy logic
classification scheme is used to assess the atmospheric corrected
Rrs, and to determine the corresponding class memberships.
The final blended retrieval for each pixel and each ocean color
product is a weighted sum of the retrievals of all class-specific
NNs (Appendix Table A1).

Out-of-Scope Test
Well-constructed NNs have good interpolation properties but
produce unpredictable output when forced to extrapolate
(Doerffer and Schiller, 2000). Therefore, measures have to be
taken to recognize NN input not foreseen in the NN training
phase and thus out of scope of the algorithm. Regarding
simulated data, the fuzzy classification is well-constructed;
maximum (or high) membership of a water class usually
correlates well with the scopes of the corresponding NNs.
However, it may happen that the classification yields a broad
distribution of weights or that all memberships are such low that
the spectrum is not classifiable. In the latter case, the satellite
image pixel is flagged out. Despite the memberships, a quality
measure is applied that evaluates the deviation of the NN input
from the NN training range. The out-of-range parameter,OOR, is
zero if the input is within the range but increases with increasing
deviation. The assessment treats the input-reflectances spectrally
differently; wavebands in the green spectral range have highest
weights. The varying signal-to-noise specifications of OLCI are
one argument for this (Donlon et al., 2012). Uncertainties in
the fluorescence quantum yield efficiency of phytoplankton are
another argument. Furthermore, we observe higher uncertainties
in violet and blue wavebands generally shown in atmospheric
correction validations (Müller et al., 2015a), but also from in
situ determinations of Rrs due to the variable surface reflectance
factor (Hieronymi, 2016; Zibordi, 2016). The allowance for OOR
> 0 is one of the fine-tuning techniques to gain better spatial
homogeneity of an OLCI scene and to adapt the algorithm to in
situ observations.

Uncertainty Analysis
The determination of uncertainties of OC products is similar
to the procedure applied in the C2RCC algorithm (Brockmann
et al., 2016). All NNs per water class were reapplied to their
training datasets to estimate the OC products. The uncertainty
nets compare the estimated value, XE, with the initial training
value, XT . The uncertainty per product is given as approximation
(percent) error:

ε = 100
XE − XT

XT
. (1)

As it is the case for all OC products, the final approximation error
is a weighted sum of the retrievals of all class-specific uncertainty
NNs.

Test Data
Remote sensing reflectance data at OLCI wavelengths in
conjunction with bio-geo-optical properties of the top water layer
are used to evaluate the capacity of ONNS. For this purpose,
different statistical parameters have been utilized. The degree
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of deviation is presented by the absolute root-mean-square
error, RMSE. The Bias shows the average difference and is a
measure for systematic over- or underestimation. Furthermore,
the correlation coefficient, r, is calculated.

Simulated Data
Hydrolight-simulated data have been used to develop the
classification scheme and to train neural nets. From the same
data source (>105), a quasi-independent set of 23,445 reflectance
spectra is used for testing and validation; these particular data are
not used for ONNS development. The test data contain all water
types from Table 1 and are shared approximately equally.

Simulated CCRR Data
A second synthetic dataset has been used to evaluate the
performance of ONNS for the retrieval of water quality
parameters. The “CoastColour Round Robin” (CCRR) dataset
by Nechad et al. (2015) compiles inputs and results from
5,000 Hydrolight simulation. Atmospheric boundary conditions
and simulation setup are comparable with above mentioned
simulations. The used data refer to a sun zenith angle of
0◦. Remote sensing reflectance at the 11 needed OLCI bands
is interpolated from hyperspectral water-leaving reflectances
between 350 and 900 nm with 5 nm steps. Corresponding Chl
and ISM concentrations as well as CDOM absorption at 443 nm
are tested with the ONNS retrieval (note that ONNS CDOM
absorption coefficient refers to 440 nm).

In situ Data
Complete in situ datasets for the evaluation of OLCI-specific
algorithms like ONNS are not freely available. The accessible
data of CCRR (Nechad et al., 2015) and OC-CCI (Valente et al.,
2016), which compiles data from several sources (e.g., MOBY,
BOUSSOLE, AERONET-OC, NoMAD, MERMAID), lack of
several Rrs bands. The ONNS algorithm needs only 11 out of 21
OLCI bands, but coinstantaneous data at 400, 755, 777.5, and
865 nm are not available. However, many of these sub-datasets
are actually measured hyper-spectrally. Ramses radiometers, for
example, that are deployed during our in situ campaigns, measure
between 320 and 950 nm (TriOS optical sensors, Germany).
Extracted multi-spectral reflectances together with Chl, ISM,
and CDOM data are included in the CCRR in situ dataset; the
corresponding measurement protocols are described in (Nechad
et al., 2015). Our 48 data were collected between 2005 and
2006 (but not in winter) onboard a ferry from Cuxhaven
to the island Helgoland in the German Bight (see Figure 5).
Radiometric measurements were conducted under optimal sun-
viewing angles (e.g., Zibordi, 2016), but strictly speaking, ONNS
requires angle-normalized Rrs (with the sun in zenith) as input.
Nonetheless, these data are used to test ONNS as well.

Sentinel-3 OLCI Scene
One Sentinel-3 OLCI scene is shown with permission to illustrate
the qualitative and spatial application of ONNS (Figure 5). The
tripartite scene was captured on 20 July 2016 between 9:30 and
9:36 UTC and shows large parts of the North and Baltic Sea.
Thus, the scene images many different water types including
different algae blooms. The satellite image indicates transparent

cirrus clouds over the German Bight and Gulf of Finland, broken
clouds over the Skagerrak and Kattegat, and cloud shadows. In
comparison with MERIS, OLCI’s view is slightly tilted in order
to reduce the impact of sun glint, which is somewhat visible
at the right edge of the image. Level-1 data of the first OLCI
reprocessing are utilized for this work (IPF-OL-1-EO version
06.06). Atmospheric correction of the scene is provided by the
C2RCC algorithm (“Case-2 Regional CoastColour,” version 0.15,
Brockmann et al., 2016). An additional cloud mask was applied
using the provided path radiance and viewing angles. At the same
time of the satellite data acquisition, we measured Rrs in the
German Bight for Sentinel-3 validation purposes (Figure 5), but
these data are not used in this work.

RESULTS

ONNS Application to Validation Data
The classification of simulated test data reveals that a maximum
of four classes contribute to the inversion of Rrs spectra (the
classes have non-zero weights). In principle, all water types (clear
to extremely turbid) can be assigned properly. The classification
failed on <3% of validation data; of those 56% are absorbing
waters (C2A, C2AX) and approximately 70% have high Chl
concentrations (Chl > 10mg m−3). The classification of the
in situ and simulated CCRR data yields no plausible results
in approximately 10% of cases. The classifiable 4512 CCRR
spectra exhibit maximum memberships in OWTs 1 (9%), 2
(0.5%), 4 (0.16%), 5 (55.2%), 6 (14.9%), 9 (10.6%), 10 (6.9%),
11 (1.7%), 12 (0.3%), and 13 (0.5%). Thus, a high percentage of
these data correspond to the Case-1 or moderately to strongly
scattering waters (Tables 1, 2). The 43 in situ data points,
which are captured in coastal waters of the German Bight
(Figure 5), have maximum memberships in OWT 1 (10.4%) and
5 (89.6%).

Examples of the retrieval capabilities of ONNS in comparison
with validation data are illustrated in Figure 4. Estimates of
concentration of Chl, ISM, and CDOM are shown for different
water types, namely Case-1, extreme absorbing, and extreme
scattering waters (Table 1). In addition, ONNS retrieval tests are
shown for simulated data from the CCRR dataset and our in situ
data. The colors characterize the estimated uncertainty in terms
of the percent error. Green marks the generic ±5% uncertainty
target for satellite ocean color products (defined for oligotrophic
and mesotrophic Case-1 waters), orange and red colors signify
an overestimation of the retrieved value in comparison with the
expected (trained) value, and blue stands for an underestimation
respectively. The uncertainty can be high in ambiguous cases
with significant masking effects (in extreme waters) or if the
NN data basis already provides high (natural) variability, as for
example for Chl concentration (compare Figures 4A,D,G with
Figure 2B). Despite high Chl variability, the uncertainty target
can be achieved for all magnitudes of concentrations (varying
over five orders of magnitudes), but with different occurrence
in the water types: approximately 30% in C1, 10% in C2AX,
and 5% in C2SX waters. An acceptance level of ±50% can be
achieved in >97% of cases for C1, >80% in C2AX, and >70% in
C2SX respectively. In all the cases, mean and median percentage
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FIGURE 4 | ONNS retrieval capacity for chlorophyll concentration (left), concentration of inorganic suspended matter (center column), and CDOM

absorption at 440 nm (right) in comparison with simulated and in situ validation data. (A–C): Case-1 data from database, (D–F): Case-2 extreme absorbing

waters, (G–I): Case-2 extreme scattering waters, (J–L): simulated data from CoastColour Round Robin (Nechad et al., 2015), (M–O): HZG in situ data. Colors indicate

the retrieved uncertainty.
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errors are slightly negative, i.e., ONNS Chl retrieval shows a
tendency for underestimation of expected values. Even if the test
value is overestimated by ONNS, the uncertainty estimate may
point to underestimation. This may be due to blending of NN
from different OWT classes with distinctive different ranges of
concentrations. In contrast to the simulated validation data, the
ONNS Chl retrieval of CCRR and in situ data yields stronger
deviations from the one-to-one line (Figures 4J,M).

With regards to ISM, the retrieval performance is less
skilled if the optical signal of minerals is weak due to low
mineral concentrations—as it is the case in oligotrophic waters
(Figure 4B). The 5% uncertainty target is reached within
approximately 20% of all cases in C1 waters, 27% in C2AX, and
>87% in C2SX. Thus, the more non-algae particles are present,
the better ONNS performs. A similar trend can be observed for
CDOM retrieval (Figures 4C,F,I). Lowest concentrations vanish
in the noise, whereas high concentrations can be retrieved
accurately. Approximately 60% target-retrievals can be achieved
in C1 and >94% in extreme absorbing waters. Figure 4I

illustrates the difficulties to separate the absorption signal due
to CDOM and minerals; only 6% of estimates fall in the target-
uncertainty range. In comparison to the Chl retrieval, ISM
and CDOM retrievals of CCRR and in situ data show better
agreement (Figures 4K,L,N,O).

The NN-estimated uncertainties and corresponding color
distributions in Figure 4 reflect the comparative statistics that
are tabulated for all water types (Table 3). Additional statistics
of all OC products are listed in the (Table A2). With reference
to the simulated test data and seen over all water types, the
smallest differences between estimated and test data occur for the
Forel-Ule number and both “mixed” IOPs, adg(412) and bbp(510).
In comparison, larger deviations occur for low-concentration
mineral-related values. We found weak water type-independent
underestimation for the direct phytoplankton-related quantities
[Chl, ap(440), and bp(440)] and for FU, Kd(490), Ku(490),
adg(412), and bbp(510). But again, largest Biases are observed
for the retrieval of non-algae properties in clear oceanic (almost
mineral-free) C1 waters. The correlation coefficient reveals
strong linear relationship for all cases exclusive of CDOM in
extremely scattering waters, here the relation is weak (CDOM
retrieval correlation is >0.95 for C2S and the other cases). The
statistical values of the comparison with independent CCRR and
in situ data paint a somewhat different picture with generally
lower correlation coefficients (Table 3). Both datasets include
turbid Case-2 waters that are predominantly characterized by one
optical water type, i.e., OWT 5 (see Table 2). Most of the other
water types are not independently evaluated.

ONNS Application to OLCI Scene
Application of the new ONNS algorithm to the satellite image
is illustrated in Figure 6. Again, up to four optical water type
classes are needed for the inversion. In this particular scene,
water classes 3, 7, and 8 have no contribution to the products
(all rather extreme turbid cases, see Table 2); all other classes
give spatially dependent contributions (Figure 6A). Comparison
with the mean shapes of the Rrs (Figure 3) meets regional
expectations. In the western part of the Baltic Sea, including the

TABLE 3 | Statistics of ONNS retrievals vs. test data.

Statistics Dataset Chl [mg m−3] ISM [g m−3] acdom(440) [m−1]

RMSE C1 10.2577 0.0856 0.0174

C2A 10.5276 0.1116 0.0234

C2S 11.2224 1.4917 0.0290

C2AX 10.3555 0.1429 0.4356

C2SX 16.7236 35.6890 0.0971

CCRR 21.4129 8.5279 0.5067

In situ 4.3860 1.7515 0.1760

Bias C1 −1.3144 0.0170 −0.0023

C2A −1.1262 0.0110 −0.0049

C2S −0.5576 −0.3131 −0.0014

C2AX −1.0591 0.0162 −0.0201

C2SX −2.1005 −4.2457 −0.0355

CCRR 1.9023 −2.3966 0.2990

In situ −1.2786 −0.8777 0.1410

r C1 0.8702 0.9212 0.9515

C2A 0.8495 0.9880 0.9855

C2S 0.8163 0.9978 0.9540

C2AX 0.6856 0.9777 0.9932

C2SX 0.7017 0.9961 0.3120

CCRR 0.5855 0.7496 0.8030

In situ 0.3658 0.8616 0.7286

Datasets marked with C1, C2A, C2S, C2AX, and C2SX refer to simulated data that
are not used for NN training (numbers of points for comparison are 5392, 4699, 4049,
4526, and 4082 respectively). The independent Hydrolight-simulated CoastColour Round
Robin (CCRR) dataset contains 4512 data. 43 match-ups are basis for the in situ data
comparison. The corresponding plots in Figure 4 are shown in log form; the statistical
values here are not in log form.

Western Gotland Basin and the Bothnian Sea, the spectra show
the strongest resemblance to classes 6, 9, and 10. Spectra of the
Eastern Gotland Basin and Gulf of Finland fall into class 5 mostly
and the Lagoons behind the Bay of Gdansk have some spectra
with the shape of class 1. In contrast, we have found maximum
memberships of classes 9, 10, and 11 in the clear open North
Sea and Norwegian Sea and classes 1, 2, 4, 5, and 9 along the
German and Dutch coasts. In some clear water cases (OWT 9, 10,
and 11), the out-of-range warning flag for input spectra raises;
these cases are mostly in spatial conjunction with transparent
cirrus clouds (Figure 5). The Forel-Ule number that is estimated
with ONNS provides an intuitively color impression and
reconfirms expected geographic characteristics of the sea areas
(Figure 6B).

Concentrations of Chl, ISM, and CDOM together with their
accompanied uncertainty estimates are shown in Figure 7. Only
valid sea pixels are shown; land areas and clouds are masked
out. However, in spatial vicinity to clouds and coasts, apparently
wrong assessments of OC products are possible; here, the
predictions are overestimating the true values for the most part.
Some areas are very shallow, e.g., the Curonian and Vistula
Lagoons, and therefore, bottom reflections cannot be ruled out.
This again would lead to possible overestimation of (particle)
concentrations. All in all, the ranges of derived concentrations
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are reasonable (the colors on the left side of Figure 7 correspond
to the respective units). Previous match-up analyses showed that
most of the measured Baltic Chl values range between ∼1 and
10mg m−3 with somewhat smaller values in the Skagerrak-
Kattegat region in comparison with the Central Baltic Sea
(Pitarch et al., 2016). The ONNS-retrieved Chl values are in
this range and reflect the geographic expectations (Figure 7A).
But from the filamentous patterns it can be assumed that a
cyanobacteria bloom including floating vegetation has developed
in the Gotland Basin. In surface blooms, the concentrations are
typically much higher, but the estimated biomass concentration
seems too low. On the other hand, in some of these cases with
visible algae structures, the out-of-range warning flag is raised
(mostly OWT 9). Unfortunately, no in situ validation data of this
OLCI image are available. The spatial distribution of ISM yields
partly implausible features (Figure 7B). Commonly, significant
concentrations of non-algae particles are not expected at the open
sea. The concentration ranges, however, fit to observations by
Berthon and Zibordi (2010). The regional distribution of CDOM,
including the east-west gradient and high concentrations in the
northern Baltic and Gulf of Finland, is plausible (e.g., Kowalczuk,
1999; Berthon and Zibordi, 2010; Ylöstalo et al., 2016). The
corresponding uncertainty maps partly mirror the boundaries
of the dominant water classes. Again, the high Chl uncertainties
reflect the likewise high modeled variability (Figures 2B, 4, 7D).

ONNS application to contemporaneous Rrs measurements in
the German Bight yield plausible results. All measured spectra
exhibit maximum membership in OWT 5, the same as derived
from the OLCI image for the transect (Figure 6A) and from 90%
of the in situ data from the same area. The results are entirely
in the same magnitudes as our previously measured in this area.
ONNS estimates Chl along the transect between 1.7 and 4.5mg
m−3, ISM from 0.7 to 3.4 g m−3, and CDOM absorption (at
440 nm) between 0.38 and 0.68 m−1. Due to tides and hydrologic
changes of the Elbe river plume, ISM can be higher than 10 gm−3

near the coast.

DISCUSSION

Retrieval Accuracy
In general, the retrieval statistics of ONNS (Tables A1, A2,
Figure 4) display the general problems of OC algorithms in
the various water types (e.g., Blondeau-Patissier et al., 2004;
Gregg and Casey, 2004; IOCCG, 2010; Odermatt et al., 2012;
Brewin et al., 2015; Pitarch et al., 2016). All the more, one
has to critically assess the quality of the Rrs input spectra,
which is influenced by two factors: the sensor calibration (over
which we have no control) and the atmospheric correction (AC).
A careful atmospheric correction is of systematic importance
for the success of the in-water algorithm—in particular for
extreme Case-2 waters. Most of the light arriving at the satellite
has been scattered by the atmosphere or reflected at the sea
surface. The atmospheric path radiance is typically >85% of
the total signal in C1 waters, >60% in C2SX, and >94% in
C2AXwaters (IOCCG, 2010). Existing AC processors address the
various modeling aspects quite differently, e.g., the treatment of
subvisible cirrus clouds or aerosol properties, and therefore, have

FIGURE 5 | Sentinel-3 OLCI (top-of-atmosphere) scene of 20 July 2016

(contains modified Copernicus Sentinel data [2016] processed by

ESA/EUMETSAT/HZG). The boundaries of individual scenes are marked with

dashed lines. The picture detail shows the route with reflectance

measurements in the German Bight.

strengths and weaknesses for specific water types (Müller et al.,
2015a). In view of the new algorithm ONNS, which relies on
normalized reflectances, angle-dependent AC processes such as
“smile correction” and sun glint handling are important as well
to ensure spatial homogeneity of satellite data. OLCI’s viewing
direction is slightly shifted in comparison with MERIS in order
to reduce sun glint contaminated areas. However, some AC
processors incorporate sun glint contributions in their reflectance
models and derive normalized Rrs in this condition. These AC
yieldmuch larger coverage of data (Müller et al., 2015b), but areas
with high glint should nevertheless be considered cautiously. One
of the AC processors is Polymer (Steinmetz et al., 2011), which
reveals good performance in comparison with MERIS match-
ups (Müller et al., 2015a). Another processor is C2RCC (Case-
2 Regional CoastColour; Brockmann et al., 2016), which is an
evolution of the precursors “Case-2 Regional,” “ForwardNN,”
and the “MERIS Case-2 water” algorithm (Doerffer and Schiller,
2007). C2RCC is available through ESA’s Sentinel toolbox SNAP
and it is used in the Sentinel-3 OLCI ground segment processor
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FIGURE 6 | ONNS application to the OLCI scene (20 July 2016, Figure 5). (A): Optical water type classes with maximum membership. The gray color marks

land areas, white shows the cloud mask above water and inland waters, and the other colors correspond to the spectra in Figure 3. (B): Retrieved Forel-Ule colors

with true color impression.

of ESA for generating Case-2 water products. Both Case-2 AC
algorithms, Polymer and C2RCC, provide usable normalized
Rrs at OLCI bands and give comparable memberships of OWT
classes. Some differences between C2RCC and Polymer-derived
Rrs are visible, mainly in the shape of the reflectance spectrum in
the violet-blue spectral range. The sensor calibration especially
for shorter wavelengths is subject to current investigations.
Future versions of AC algorithms may incorporate the specific
sensor properties. For this reason, we have to keep in mind that
the results of ONNS to a certain degree rely on the applied
atmospheric correction and data reprocessing version (subject to
ongoing research).

One of the most important ocean color quantity is chlorophyll
concentration. It is our general impression that ONNS delivers
Chl in the expected orders of magnitude. Future tests must show
the suitability of ONNS in comparison with other algorithms,
globally and for the specific region (e.g., Blondeau-Patissier
et al., 2004; Darecki and Stramski, 2004; Gregg and Casey,
2004; Attila et al., 2013). However, the Baltic Sea for example is
known for intense cyanobacteria blooms with small-scale patches
and extreme high biomass conditions (Chl > 200mg m−3)
partly associated with surface scums and floating algae. Under
these conditions, results from different satellite sensors are
very variable, values of Chl may exceed processing limits and
atmospheric correction often fails (Reinart and Kutser, 2006).
Optical properties of floating (also air bubble containing)
material can be distinctly different from the data basis assumed in

this work, e.g., higher backscattering and also higher reflectance
in the NIR. Consequently, Rrs resembles dry vegetation rather
than water (e.g., Kutser, 2004; Matthews et al., 2012), or—in
terms of the defined optical water types—looks like (extreme)
scattering waters. This means, as a corollary, that high biomass
(Chl) is rather interpreted as non-algae particles (ISM). The out-
of-range warning is notified for some of the affected areas. But
here, it can be useful to raise an additional flag for surface scum
conditions as it is suggested by Matthews et al. (2012). With
regards to the possible misinterpretation of algae vs. non-algae
particles, we must concede a potential weakness of the bio-
geo-optical model assumptions underlying the simulated data
basis. For example, the data include high variability of scattering
properties but do not take scattering properties of different
species into account (only chlorophyll-specific absorption), but
it is likely that they are different (e.g., Harmel et al., 2016).

The selected OLCI scene is a good example for phytoplankton
diversity. It is not well visible in Figure 5, but different algae
blooms occur (none of them are confirmed). Very likely, a
cyanobacteria bloom occurred in the Gotland Basin of the Baltic
Sea. The bright water top left of the image along the Norwegian
coast points to the occurrence of blooming coccolithophore.
Moreover, west of the island Sylt in the German Bight fingerlike
structures related to enhanced biomass are recognizable. The fact
that we have to deal with different species within predominant
water types increases the uncertainties. Chlorophyll-specific
variability is included in the database for ONNS (Figure 2A).
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FIGURE 7 | ONNS application to the OLCI scene (20 July 2016, Figure 5). (A–C): Upper panels show concentrations of chlorophyll, inorganic suspended matter,

and CDOM (absorption coefficient at 440 nm). (D–F): The panels below show the corresponding retrieval uncertainties. Land and clouds are masked out.

This and the high natural variability of phytoplankton absorption
vs. Chl concentration are reflected in the uncertainty estimates
of ONNS. On this basis, future developments of ONNS
may be directed into optical differentiation of diversity with
corresponding traceability of uncertainties (Bracher et al., 2017;
Mouw et al., 2017).

It is a frequent practice to derive inherent optical properties
from ocean color and from this create an empirical relationship
to observed concentrations (e.g., Doerffer and Schiller, 2007).
Besides the directly retrieved concentrations, ONNS provides a
number of IOPs and AOPs. The nets which derive concentrations

(Table A1, second column) must balance their estimates
indirectly by means of the relationship between absorption
and scattering properties. NNs that retrieve IOPs or AOPs
can rather focus on either spectral reflectance reduction or
enhancement, i.e., absorption or scattering. This is demonstrated
by the statistical analysis shown in Table 3, A2. The correlation
coefficients of estimated IOPs and AOPs are generally very
high, even if we have to deal with cases of significant pigment
absorption masking due to the influence of sediments. Once
the spectrum is properly classified, the anticipated values are
significantly restricted, which leads to high correlation. The
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derived sets of IOPs and AOPs form closure in a similar manner
as the Hydrolight simulations, e.g., if we compare the sum of
absorption and scattering coefficients at 440 nm (which is the
attenuation coefficient) with the diffuse attenuation coefficient
of downwelling irradiance, Kd(490), the correlation coefficient
yields 0.856 for the test data and 0.841 for the ONNS-retrieved
values, both seen over all water types. Due to the high input-
variability of phytoplankton absorption vs. Chl concentration, we
expect higher uncertainties related to the biomass concentration
than related to other quantities as for example CDOM absorption
(Figures 4, 7). The exploitation of various IOPs, e.g., absorption
coefficient adg(412) or backscattering coefficient bbp(510),
may lead to more accurate and regionalized OC products.
Additionally, certain absorption or scattering properties may
help identifying oceanographic features such as water masses or
(sub-) mesoscale eddies and frontal systems (structures are best
visible in total particulate backscattering). ONNS already is a
regionally employable algorithm that delivers plausible outputs,
and is thus in line with new multi-water type ocean color
algorithms (e.g., D’Alimonte et al., 2014; Moore et al., 2014).

ONNS Design
The present version of the bio-geo-optical processing scheme
applies 11 (from 21) OLCI bands (namely at 400, 412.5, 442.5,
490, 510, 560, 620, 665, 755, 777.5, and 865 nm). Wavebands
that are affected by phytoplankton fluorescence (at 673.75,
681.25, and to only a minor degree at 708.75 nm) are not
utilized. In principle, the inclusion of these bands could help
the classification and Chl retrieval capacity, in particular for
highly eutrophic waters. Admission of the three additional bands,
also in the combined form of a fluorescence line height, slightly
increases the accuracy of the Chl retrieval with respect to the
simulated dataset, where inelastic scattering features with the
standard settings of Hydrolight are included. But we have to
keep in mind that fluorescence (quantum yield efficiency) is
subject to strong fluctuations and potential false assessment; it
has diurnal variability, depends on nutrient- and light-availability
and algae species (e.g., Greene et al., 1994). The retrieval
accuracy slightly decreases if the present fluorescence line height
mismatches the expected range from the training dataset. Our
tests show that this is less of a problem in case of in situ
measured remote sensing reflectance, but deviations can be
higher in case of atmospheric corrected satellite data (tested
with C2RCC and Polymer). A proper atmospheric correction
for these bands is difficult to achieve. For this reason, the Chl
fluorescence bands are not used in the present version of the
ONNS algorithm.

The main purpose of other OLCI NIR bands is atmospheric
correction, e.g., due to oxygen and water vapor absorption
and optical features of aerosols. Thus, satellite-derived Rrs
is not provided for all of the NIR bands (Steinmetz et al.,
2011). In contrast, many radiometers that are deployed for
in situ Rrs determination measure hyper-spectrally in the
VIS and NIR range (e.g., Ramses sensors). Hence, 20 OLCI
bands (or more bands) could be theoretically used for a
bio-geo-optical algorithm. The last OLCI band at 1,020 nm
is not covered by many radiometers. For this reason and

because of the little information gain in most waters, the
1,020 nm band was also not selected for ONNS input.
However, we must bear in mind that available spectral bands
in compiled in situ datasets (e.g., Nechad et al., 2015; Valente
et al., 2016) are limited too, making meaningful validation
difficult.

The new algorithm deploys Rrs that are angle-normalized, i.e.,
the sun is at zenith and the viewing direction is perpendicular.
All sun and viewing angle-related effects must be eliminated
by the atmospheric correction prior to ONNS application. The
approach simplifies for example comparisons of different satellite
sensors. The first step of the processing scheme is to transform
the input Rrs into brightness-scaled reflectances. The advantage
of this approach is that the classification is less sensitive to
the amplitude of Rrs spectra, which can be shifted by various
scattering processes, e.g., due to wind-dependent micro-bubbles
in water (white scatterer), marine particle aggregation, particle
size, or just under-estimation of the measured total scattering
(e.g., McKee et al., 2013).

OWT Classification
The classification of synthetic validation data with same data
source shows general good performance for most of the water
types. Occasionally, in <3% of the validation data, the fuzzy
classification yields no plausible memberships of the classes
and thus no ONNS-retrieval values. Classification of very
weak remote sensing reflectance signals, for example, is still
challenging but mostly possible. The reason is that, e.g., in
CDOM-rich lakes, the reflectance is near zero in almost the entire
VIS, but nevertheless, significant phytoplankton biomass can be
present (e.g., Kutser et al., 2016).

Fuzzy logic classification of the in situ and simulated
CCRR validation data yields no significant memberships in
approximately 10% of cases, i.e., in 5 and 488 cases respectively.
Hence, the spectra were not considered plausible and the final
blended retrieval delivers no results. One possible explanation is
that spectral shapes of Rrs appear which not occur in the database
with 105 spectra. Moore et al. (2001) propose a minimum
threshold for class memberships, which was arbitrarily set at
10−4. If this threshold is lowered to 10−5, the non-plausible cases
reduce to <1% of both datasets. Further tests are needed in the
framework of an all-water-type-embracing validation.

Applied to a satellite scene, all marine spectra are classifiable,
but water classification can be problematic and spatially
heterogeneous in association with cloud and adjacency effects.
Nonetheless, the optical water type classification of the scene
basically yields geographically expected results. Three of the
water classes (OWT 3, 7, and 8) gained never significant weights.
Therefore, they were not used for blending. Those cases include
extreme absorbing or scattering cases with very high biomass,
e.g., like the mentioned “black lakes” (Kutser et al., 2016) or the
Gulf of Finland (Ylöstalo et al., 2016), which is mostly flagged
out due to clouds in the example scene. In global terms, they are
restricted very locally. However, the three cases each represent a
spectral Rrs with maxima in one of the three selected NIR bands
(Figure 3); therefore, they have an essential function in the fuzzy
logic classification scheme.
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Application to Radiometric In situ Data
The OC processor ONNS can be applied to in situmeasurements
as well. In this case, an atmospheric correction is not needed.
Remote sensing reflectance can be determined from above- or in-
water radiometric measurements. Nechad et al. (2015) assembled
reflectance measurements that are gained in five different
manners. In case of above-water measurements for example,
downwelling irradiance, sky radiance, and upwelling radiance
are measured under specific sun-viewing angle conditions. From
this, Rrs is determined using a surface reflectance factor, which
depends on sun-viewing geometry and wind speed and which is
usually between 2 and 5% for optimal viewing angles (Hieronymi,
2016; Zibordi, 2016). The surface reflectance factor determines
the shape of Rrs mainly in the violet-blue range. Thus, there are
some uncertainties for the application of the classification scheme
and the overall processor. Optimally, the measured Rrs is adapted
to the input criteria for ONNS, i.e., fully normalized, a moderate
wind speed, no micro-bubbles in water, etc., In our tests, the
fuzzy logic classification scheme is applicable and yields useable
inputs for ONNS. Furthermore, ONNS retrieves OC products in
the expected orders of magnitude. However, this cannot hide the
fact that the retrieval statistic for the comparison with in situ
data could be better (Table 3). Thus, more and all-water-type-
embracing validation is needed.

Outlook
Proper validation of ONNS products using in situ data and
OLCI match-ups will be a future task. Every OWT class must be
validated (and possibly readjusted) independently, knowing that
it is the balance between the water constituents (phytoplankton,
minerals, and CDOM), represented in the training data, that
decides on the quality of the OC products (D’Alimonte et al.,
2016). Furthermore, higher validation uncertainties must be
expected in extreme Case-2 waters and heterogeneous waters in
coastal areas or during algae blooms (e.g., Kutser, 2004; Pahlevan
et al., 2016). These in situ validation uncertainties must be
incorporated into the delivered uncertainty products. The aim of
this paper is to provide the scientific background description of
the processor together with a baseline validation of the present
ONNS version (v0.4). Once the processor has been validated, it
is planned to make it freely accessible via ESA’s Sentinel toolbox
SNAP. After that, the algorithm will be compared with other
bio-geo-optical algorithms.

In principle, ONNS can provide results in near-real time. The
computational time depends on the (in our case high) number of
neurons of the NNs and a swarm of 4 × 13 NNs obviously takes
more time. However, single NNs are fast and the processing can
occur in parallel. Thus, OC products can be disseminated in near
real time mode, which usually comprises the time up to one day
after satellite acquisition.

CONCLUSIONS

This study presents a novel in-water algorithm for the retrieval
of ocean color remote sensing products from atmospheric
corrected OLCI-like satellite imagery or in situ radiometric
measurements. The algorithm consists of several specialized

neural networks with task-optimized architectures (OLCI Neural
Network Swarm). The products contain concentrations of water
constituents (Chl and ISM), inherent and apparent optical
properties [acdom(440), ap(440), am(440), adg(412), bp(440),
bm(440), bbp(510), Kd(490), and Ku(490)], and a sea color index
(FU). In addition, all products are delivered with an uncertainty
estimate that describes the deviation of the product from the
original data basis. The algorithm makes use of a comprehensive
fuzzy logic classification scheme. Thirteen optical water type
classes have been identified based on Hydrolight simulated and
brightness-scaled remote sensing reflectances at 11 OLCI bands
(400, 412.5, 442.5, 490, 510, 560, 620, 665, 755, 777.5, and
865 nm). The corresponding water types range from clearest
sea waters to extreme Case-2 waters (Table 1). This includes
chlorophyll concentrations up to 200mg m−3, non-algae particle
concentrations up to 1,500 g m−3, and an absorption coefficient
of colored dissolved organic matter up to 20m−1 at 440 nm.
A baseline validation of ONNS products for the various water
types is provided, showing principle strengths and weaknesses of
the algorithm. With simulated test data the algorithm performs
generally well within the wide range of optical properties
of the water. Additional tests have been conducted using
simulated data from the independent CCRR database and a
few in situ data; both datasets contain mostly turbid Case-2
waters, which are classified in few optical water type classes. As
might be expected, these comparisons revealed somewhat worse
correlation but are overall encouraging, for example regarding
ISM and CDOM retrieval. An appropriate full validation
for all OWT classes and all provided ocean color products
is still to be done. Conclusions on the performance using
OLCI Earth observation data can be drawn after throughout
validation against field measurements or other bio-geo-optical
algorithms. The shown example demonstrates that ONNS-
estimated ocean color products are mostly within the range of
observed concentrations (e.g., Kowalczuk, 1999; Berthon and
Zibordi, 2010; Pitarch et al., 2016; Ylöstalo et al., 2016). From
our present point of view, we conclude that the new ONNS in-
water algorithm is suited for the remote sensing estimation of
water properties and constituents of most natural waters.

AUTHOR CONTRIBUTIONS

MH and DM developed the concept of the processor ONNS with
consultancy of RD.MH prepared the synthetic data basis, trained
the neural networks, and wrote the paper. DM developed the
water type classification, processed data, and contributed text
modules. RD helped with the processor development and fed the
discussion.

FUNDING

This work is a contribution to the European Space Agency
(ESA) funded Ocean Colour Climate Change Initiative (OC-
CCI: AO-1/6207/09/I-LG), Case-2 Extreme Water project (C2X:
4000113691/15/I-LG), and Living Planet Fellowship Programme
(LowSun-OC: 4000112803/15/I-SBo).

Frontiers in Marine Science | www.frontiersin.org 14 May 2017 | Volume 4 | Article 140143

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Hieronymi et al. OLCI Neural Network Swarm

ACKNOWLEDGMENTS

This paper is an outcome of the CLEO Workshop “Colour
and Light in the Ocean from Earth Observation,” held in
Frascati, Italy in September 2016. The authors would like to
acknowledge data processing and discussions with colleagues
Rüdiger Röttgers, Hajo Krasemann, Kerstin Heymann, and
Wolfgang Schönfeld. In addition, the authors thank the C2X

project and science support team for valuable comments
throughout the algorithm development, in particular Carsten
Brockmann, Kerstin Stelzer, Ana Ruescas, François Steinmetz,
Kevin Ruddick, Bouchra Nechad, Gavin Tilstone, Stefan Simis,
and Peter Regner. We thank ESA/ EUMETSAT/ EU Copernicus
for providing Sentinel-3 data and for permission to use them.
Finally, the detailed comments of three reviewers and of the guest
associate editor Tiit Kutser are highly appreciated.

REFERENCES

Attila, J., Koponen, S., Kallio, K., Lindfors, A., Kaitala, S., and Ylöstalo, P. (2013).

MERIS Case II water processor comparison on coastal sites of the northern

Baltic Sea. Rem. Sens. Environ. 128, 138–149. doi: 10.1016/j.rse.2012.07.009

Beltrán-Abaunza, J. M., Kratzer, S., and Brockmann, C. (2014). Evaluation of

MERIS products from Baltic Sea coastal waters rich in CDOM. Ocean Sci. 10,

377–396. doi: 10.5194/os-10-377-2014

Berthon, J. F., and Zibordi, G. (2010). Optically black waters in the northern Baltic

Sea. Geophys. Res. Let. 37:L09605. doi: 10.1029/2010gl043227

Blondeau-Patissier, D., Tilstone, G. H., Martinez-Vicente, V., and Moore, G. F.

(2004). Comparison of bio-physical marine products from SeaWiFS, MODIS

and a bio-optical model with in situ measurements from Northern European

waters. J. Optics A 6:875. doi: 10.1088/1464-4258/6/9/010

Bracher, A., Bouman, H., Brewin, R. J., Bricaud, A., Brotas, V., Ciotti,

A. M., et al. (2017). Obtaining phytoplankton diversity from ocean

color: a scientific roadmap for future development. Front. Mar. Sci. 4:55.

doi: 10.3389/fmars.2017.00055

Brewin, R. J., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P.-

Y., Devred, E., et al. (2015). The ocean colour climate change initiative: III.

a round-robin comparison on in-water bio-optical algorithms. Rem. Sens.

Environ. 162, 271–294. doi: 10.1016/j.rse.2013.09.016

Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K. (2004). Natural variability of

phytoplanktonic absorption in oceanic waters: influence of the size structure of

algal populations. J. Geophys. Res. 109:C11010. doi: 10.1029/2004jc002419

Bricaud, A., Mejia, C., Blondeau-Patissier, D., Claustre, H., Crepon, M., and

Thiria, S. (2007). Retrieval of pigment concentrations and size structure of

algal populations from their absorption spectra usingmultilayered perceptrons.

Appl. Opt. 46, 1251–1260. doi: 10.1364/AO.46.001251

Brockmann, C., Doerffer, R., Peters, M., Stelzer, K., Embacher, S., and Ruescas, A.

(2016). “Evolution of the C2RCC neural network for Sentinel 2 and 3 for the

retrieval of ocean colour products in normal and extreme optically complex

waters,” in Proceeding of Living Planet Symposium (Prague: ESA SP-740).

Chen, J., Quan, W., Cui, T., Song, Q., and Lin, C. (2014). Remote sensing

of absorption and scattering coefficient using neural network model:

development, validation, and application. Rem. Sens. Environ. 149, 213–226.

doi: 10.1016/j.rse.2014.04.013

D’Alimonte, D., Kajiyama, T., and Saptawijaya, A. (2016). Ocean color remote

sensing of atypical marine optical cases. IEEE Trans. Geosci. Rem. Sens. 54,

6574–6586. doi: 10.1109/TGRS.2016.2587106

D’Alimonte, D., and Zibordi, G. (2003). Phytoplankton determination in an

optically complex coastal region using a multilayer perceptron neural network.

IEEE Trans. Geosci. Rem. Sens. 41, 2861–2868. doi: 10.1109/TGRS.2003.817682

D’Alimonte, D., Zibordi, G., Kajiyama, T., and Berthon, J. F. (2014). Comparison

between MERIS and regional high-level products in European seas. Rem. Sens.

Environ. 140, 378–395. doi: 10.1016/j.rse.2013.07.029

Darecki, M., and Stramski, D. (2004). An evaluation of MODIS and SeaWiFS

bio-optical algorithms in the Baltic Sea. Rem. Sens. Environ. 89, 326–350.

doi: 10.1016/j.rse.2003.10.012

Doerffer, R., and Schiller, H. (2000). Neural network for retrieval of concentrations

of water constituents with the possibility of detecting exceptional out of

scope spectra. in Proceedings IGARSS 2000. IEEE 2000 International, Vol. 2

(Honolulu), 714–717.

Doerffer, R., and Schiller, H. (2007). The MERIS Case 2 water algorithm. Int. J.

Rem. Sens. 28, 517–535. doi: 10.1080/01431160600821127

Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M. H., Féménias, P.,

Frerick, J., et al. (2012). The global monitoring for environment and

security (GMES) sentinel-3 mission. Rem. Sens. Environ. 120, 37–57.

doi: 10.1016/j.rse.2011.07.024

Fawcett, A., Bernard, S., Pitcher, G. C., Probyn, T. A., and du Randt, A. (2006).

Real-time monitoring of harmful algal blooms in the southern Benguela. Afri.

J. Mar. Sci. 28, 257–260. doi: 10.2989/18142320609504158

Greene, R. M., Kolber, Z. S., Swift, D. G., Tindale, N. W., and Falkowski, P.

G. (1994). Physiological limitation of phytoplankton photosynthesis in the

eastern equatorial Pacific determined from variability in the quantum yield of

fluorescence. Limnol. Oceanogr. 39, 1061–1074. doi: 10.4319/lo.1994.39.5.1061

Gregg, W. W., and Casey, N. W. (2004). Global and regional evaluation

of the SeaWiFS chlorophyll data set. Rem. Sens. Environ. 93, 463–479.

doi: 10.1016/j.rse.2003.12.012

Gross, L., Thiria, S., and Frouin, R. (1999). Applying artificial neural network

methodology to ocean color remote sensing. Ecol. Mod. 120, 237–246.

doi: 10.1016/S0304-3800(99)00105-2

Harmel, T., Hieronymi, M., Slade, W., Röttgers, R., Roullier, F., and Chami,

M. (2016). Laboratory experiments for inter-comparison of three volume

scattering meters to measure angular scattering properties of hydrosols. Opt.

Exp. 24, A234–A256. doi: 10.1364/oe.24.00a234

Harvey, E. T., Kratzer, S., and Philipson, P. (2015). Satellite-based water quality

monitoring for improved spatial and temporal retrieval of chlorophyll-a in

coastal waters. Rem. Sens. Environ. 158, 417–430. doi: 10.1016/j.rse.2014.11.017

Hieronymi, M. (2016). Polarized reflectance and transmittance distribution

functions of the ocean surface. Opt. Exp. 24, A1045–A1068.

doi: 10.1364/oe.24.0a1045

Hieronymi, M., Krasemann, H., Müller, D., Brockmann, C., Ruescas, A., Stelzer,

K., et al. (2016). “Ocean Colour Remote Sensing of Extreme Case-2 Waters,” in

Proceedings of Living Planet Symposium (Prague: ESA SP-740).

Hieronymi, M., Müller, D., Krasemann, H., Schönfeld, W., Röttgers, R., and

Doerffer, R. (2015). “Regional ocean colour remote sensing algorithm for the

Baltic Sea,” in Proceedings of Sentinel-3 for Science Workshop (Venice: ESA

SP-734).

ICES (2011).Historical Plankton Dataset. Copenhagen: ICES.

Ioannou, I., Gilerson, A., Gross, B., Moshary, F., and Ahmed, S. (2011). Neural

network approach to retrieve the inherent optical properties of the ocean from

observations of MODIS. Appl. Opt. 50, 3168–3186. doi: 10.1364/A.O.50.003168

IOCCG (2010). “Atmospheric correction for remotely-sensed ocean-colour

products,” in Reports and Monographs of the International Ocean-Colour

Coordinating Group, ed M. Wang (Dartmouth: IOCCG).

Jamet, C., Loisel, H., and Dessailly, D. (2012). Retrieval of the spectral diffuse

attenuation coefficient Kd (λ) in open and coastal ocean waters using a

neural network inversion. J. Geophys. Res. 117:C10023. doi: 10.1029/2012JC

008076

Knaeps, E., Dogliotti, A. I., Raymaekers, D., Ruddick, K., and Sterckx, S. (2012).

In situ evidence of non-zero reflectance in the OLCI 1020 nm band for

a turbid estuary. Rem. Sens. Environ. 120, 133–144. doi: 10.1016/j.rse.2011.

07.025

Kowalczuk, P. (1999). Seasonal variability of yellow substance absorption in

the surface layer of the Baltic Sea. J. Geophys. Res. 104, 30047–30058.

doi: 10.1029/1999JC900198

Kutser, T. (2004). Quantitative detection of chlorophyll in cyanobacterial

blooms by satellite remote sensing. Limnol. Oceanogr. 49, 2179–2189.

doi: 10.4319/lo.2004.49.6.2179

Frontiers in Marine Science | www.frontiersin.org 15 May 2017 | Volume 4 | Article 140144

https://doi.org/10.1016/j.rse.2012.07.009
https://doi.org/10.5194/os-10-377-2014
https://doi.org/10.1029/2010gl043227
https://doi.org/10.1088/1464-4258/6/9/010
https://doi.org/10.3389/fmars.2017.00055
https://doi.org/10.1016/j.rse.2013.09.016
https://doi.org/10.1029/2004jc002419
https://doi.org/10.1364/AO.46.001251
https://doi.org/10.1016/j.rse.2014.04.013
https://doi.org/10.1109/TGRS.2016.2587106
https://doi.org/10.1109/TGRS.2003.817682
https://doi.org/10.1016/j.rse.2013.07.029
https://doi.org/10.1016/j.rse.2003.10.012
https://doi.org/10.1080/01431160600821127
https://doi.org/10.1016/j.rse.2011.07.024
https://doi.org/10.2989/18142320609504158
https://doi.org/10.4319/lo.1994.39.5.1061
https://doi.org/10.1016/j.rse.2003.12.012
https://doi.org/10.1016/S0304-3800(99)00105-2
https://doi.org/10.1364/oe.24.00a234
https://doi.org/10.1016/j.rse.2014.11.017
https://doi.org/10.1364/oe.24.0a1045
https://doi.org/10.1364/A.O.50.003168
https://doi.org/10.1029/2012JC\penalty -\@M {}008076
https://doi.org/10.1016/j.rse.2011.07.025
https://doi.org/10.1029/1999JC900198
https://doi.org/10.4319/lo.2004.49.6.2179
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Hieronymi et al. OLCI Neural Network Swarm

Kutser, T., Paavel, B., Verpoorter, C., Ligi, M., Soomets, T., Toming, K., et al.

(2016). Remote sensing of black lakes and using 810 nm reflectance peak for

retrieving water quality parameters of optically complex waters. Rem. Sens.

8:497. doi: 10.3390/rs8060497

Matthews,M.W., Bernard, S., and Robertson, L. (2012). An algorithm for detecting

trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and

floating vegetation in inland and coastal waters. Rem. Sens. Environ. 124,

637–652. doi: 10.1016/j.rse.2012.05.032

McKee, D., Piskozub, J., Röttgers, R., and Reynolds, R. A. (2013). Evaluation and

improvement of an iterative scattering correction scheme for in situ absorption

and attenuation measurements. J. Atmos. Oceanic Tech. 30, 1527–1541.

doi: 10.1175/JTECH-D-12-00150.1

Mobley, C. D. (1994). Light and Water: Radiative Transfer in Natural Waters. New

York, NY: Academic.

Mobley, C. D., Stramski, D., Bissett, W. P., and Boss, E. (2004). Optical modeling

of ocean waters: is the Case 1-Case 2 classification still useful? Oceanography

17, 60–67. doi: 10.5670/oceanog.2004.48

Mobley, C. D., and Sundman, L. K. (2013). Hydrolight 5.2, Ecolight 5.2, Technical

Documentation. Bellevue: Sequoia Scientific Inc.

Moore, T. S., Campbell, J. W., and Dowell, M. D. (2009). A class-based approach to

characterizing and mapping the uncertainty of the MODIS ocean chlorophyll

product. Rem. Sens. Environ. 113, 2424–2430. doi: 10.1016/j.rse.2009.

07.016

Moore, T. S., Campbell, J. W., and Feng, H. (2001). A fuzzy logic classification

scheme for selecting and blending satellite ocean color algorithms. IEEE Trans.

Geosci. Rem. Sens. 39, 1764–1776. doi: 10.1109/36.942555

Moore, T. S., Dowell, M. D., Bradt, S., and Verdu, A. R. (2014). An optical

water type framework for selecting and blending retrievals from bio-optical

algorithms in lakes and coastal waters. Rem. Sen. Environ. 143, 97–111.

doi: 10.1016/j.rse.2013.11.021

Moore, T. S., Dowell, M. D., and Franz, B. A. (2012). Detection of

coccolithophore blooms in ocean color satellite imagery: a generalized

approach for use with multiple sensors. Rem. Sens. Environ. 117, 249–263.

doi: 10.1016/j.rse.2011.10.001

Morel, A., and Prieur, L. (1977). Analysis of variations in ocean

color. Limnol. Oceanogr. 22, 709–722. doi: 10.4319/lo.1977.22.

4.0709

Mouw, C. B., Hardman-Mountford, N. J., Alvain, S., Bracher, A., Brewin, R.

W., Bricaud, A., et al. (2017). A consumer’s guide to satellite remote sensing

of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4:41.

doi: 10.3389/fmars.2017.00041

Müller, D., Krasemann, H., Brewin, R. J., Brockmann, C., Deschamps, P. Y.,

Doerffer, R., et al. (2015a). The ocean colour climate change initiative:

I. A methodology for assessing atmospheric correction processors

based on in-situ measurements. Rem. Sens. Environ. 162, 242–256.

doi: 10.1016/j.rse.2013.11.026

Müller, D., Krasemann, H., Brewin, R. J., Brockmann, C., Deschamps, P. Y.,

Doerffer, R., et al. (2015b). The ocean colour climate change initiative: II.

spatial and temporal homogeneity of satellite data retrieval due to systematic

effects in atmospheric correction processors. Rem. Sens. Environ. 162, 257–270.

doi: 10.1016/j.rse.2015.01.033

Nechad, B., Ruddick, K., Schroeder, T., Oubelkheir, K., Blondeau-Patissier,

D., Cherukuru, N., et al. (2015). CoastColour Round Robin data sets: a

database to evaluate the performance of algorithms for the retrieval of

water quality parameters in coastal waters. Earth Syst. Sci. Data 7, 319–348.

doi: 10.5194/essd-7-319-2015

Odermatt, D., Gitelson, A., Brando, V. E., and Schaepman, M. (2012).

Review of constituent retrieval in optically deep and complex waters from

satellite imagery. Rem. Sens. Environ. 118, 116–126. doi: 10.1016/j.rse.2011.

11.013

Pahlevan, N., Sarkar, S., and Franz, B. A. (2016). Uncertainties in coastal ocean

color products: impacts of spatial sampling. Rem. Sens. Environ. 181, 14–26.

doi: 10.1016/j.rse.2016.03.022

Pitarch, J., Volpe, G., Colella, S., Krasemann, H., and Santoleri, R. (2016). Remote

sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012

using merged multi-sensor data. Ocean Sci. 12, 379–389. doi: 10.5194/os-12-

379-2016

Reinart, A., and Kutser, T. (2006). Comparison of different satellite

sensors in detecting cyanobacterial bloom events in the Baltic

Sea. Rem. Sens. Environ. 102, 74–85. doi: 10.1016/j.rse.2006.

02.013

Röttgers, R., Doerffer, R., McKee, D., and Schönfeld, W. (2016). The Water Optical

Properties Processor (WOPP): Pure Water Spectral Absorption, Scattering, and

Real Part of Refractive Index Model, ATBD, Issue 1.8, ESA Water Radiance

project.

Ruddick, K., De Cauwer, V., Park, Y. J., and Moore, G. (2006). Seaborne

measurements of near infrared water-leaving reflectance: the similarity

spectrum for turbid waters. Limnol. Oceanogr. 51, 1167–1179.

doi: 10.4319/lo.2006.51.2.1167

Schiller, H. (2000). Feedforward-Backpropagation Neural Net Program ffbp1. 0,

Report GKSS 2000/37.

Schiller, H., and Doerffer, R. (1999). Neural network for emulation of an

inverse model operational derivation of Case II water properties from

MERIS data. Int. J. Rem. Sens. 20, 1735–1746. doi: 10.1080/0143116992

12443

Schiller, K. (2006). Derivation of photosynthetically available radiation from

METEOSAT data in the German Bight with neural nets. Ocean Dyn. 56, 79–85.

doi: 10.1007/s10236-006-0058-1

Schroeder, T., Schaale, M., and Fischer, J. (2007). Retrieval of atmospheric and

oceanic properties from MERIS measurements: a new Case-2 water processor

for BEAM. Int. J. Rem. Sens. 28, 5627–5632. doi: 10.1080/014311607016

01774

Steinmetz, F., Deschamps, P. Y., and Ramon, D. (2011). Atmospheric correction

in presence of sun glint: application to MERIS. Opt. Exp. 19, 9783–9800.

doi: 10.1364/OE.19.009783

Tanaka, A., Kishino, M., Doerffer, R., Schiller, H., Oishi, T., and Kubota, T. (2004).

Development of a neural network algorithm for retrieving concentrations

of chlorophyll, suspended matter and yellow substance from radiance data

of the ocean color and temperature scanner. J. Oceanogr. 60, 519–530.

doi: 10.1023/B:JOCE.0000038345.99050.c0

Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H., and

Zaneveld, J. R. V. (2001). A model for estimating bulk refractive index from

the optical backscattering ratio and the implications for understanding particle

composition in case I and case II waters. J. Geophys. Res. 106, 14129–14142.

doi: 10.1029/2000JC000404

Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner,

M., et al. (2016). A compilation of global bio-optical in situ data

for ocean-colour satellite applications. Earth Syst. Sci. Data 8, 235–252.

doi: 10.5194/essd-8-235-2016

van der Woerd, H. J., and Wernand, M. R. (2015). True colour classification

of natural waters with medium-spectral resolution satellites: seaWiFS,

MODIS, MERIS and OLCI. Sensors 15, 25663–25680. doi: 10.3390/s1510

25663

Werdell, P. J., and Bailey, S. W. (2005). An improved in-situ bio-optical data set for

ocean color algorithm development and satellite data product validation. Rem.

Sens. Environ. 98, 122–140. doi: 10.1016/j.rse.2005.07.001

Wernand, M. R., van derWoerd, H. J., and Gieskes, W.W. (2013). Trends in ocean

colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE

8:e63766. doi: 10.1371/journal.pone.0063766
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APPENDIX

TABLE A1 | Numbers of neurons from selected neural network architectures (input, hidden, and output layers) for all 13 optical water type classes.

NN input 11 (Rrs at 400, 412.5, 442.5,

490, 510, 560, 620, 665, 755,

777.5, and 865 nm)

11 (Rrs at 400, 412.5, 442.5,

490, 510, 560, 620, 665, 755,

777.5, and 865 nm)

11 (Rrs at 400, 412.5, 442.5,

490, 510, 560, 620, 665, 755,

777.5, and 865 nm)

12 [NN outputs: Chl, acdom(440), ISM,

ap(440), am(440), bp(440), bm(440), FU,

Kd (490), Ku(490), adg(412), bbp(510)]

OWT 1 23 × 76 × 55 × 36 23 × 76 × 55 × 36 97 × 77 × 37 37 × 77 × 97

OWT 2 23 × 76 × 55 × 36 23 × 41 × 59 × 43 23 × 76 × 55 × 36 37 × 77 × 97

OWT 3 17 × 97 × 47 17 × 97 × 47 23 × 76 × 55 × 36 37 × 77 × 97

OWT 4 97 × 77 × 37 23 × 41 × 59 × 43 23 × 76 × 55 × 36 37 × 77 × 97

OWT 5 23 × 41 × 59 × 43 37 × 77 × 97 97 × 77 × 37 97 × 77 × 37

OWT 6 23 × 41 × 59 × 43 23 × 76 × 55 × 36 23 × 76 × 55 × 36 37 × 77 × 97

OWT 7 17 × 97 × 47 17 × 97 × 47 23 × 41 × 59 × 43 97 × 77 × 37

OWT 8 17 × 97 × 47 23 × 41 × 59 × 43 23 × 76 × 55 × 36 23 × 41 × 59 × 43

OWT 9 23 × 41 × 59 × 43 23 × 76 × 55 × 36 97 × 77 × 37 97 × 77 × 37

OWT 10 23 × 41 × 59 × 43 23 × 76 × 55 × 36 23 × 76 × 55 × 36 37 × 77 × 97

OWT 11 23 × 47 × 22 × 7 97 × 77 × 37 97 × 77 × 37 37 × 77 × 97

OWT 12 97 × 77 × 37 97 × 77 × 37 23 × 76 × 55 × 36 37 × 77 × 97

OWT 13 23 × 76 × 55 × 36 23 × 41 × 59 × 43 23 × 41 × 59 × 43 37 × 77 × 97

NN output 3 (Chl, acdom(440), ISM) 5 [acdom(440), ap(440),

am(440), bp(440), bm(440)]

5 [FU, Kd (490), Ku(490),

adg(412), bbp(510)]

12 [Training inputs: Chl, acdom(440),

ISM, ap(440), am(440), bp(440),

bm(440), FU, Kd (490), Ku(490),

adg(412), bbp(510)]

Three sets of NNs deliver selected concentrations, IOPs, AOPs, and the Forel-Ule color code. A fourth set of NNs (right column) estimates the uncertainties of the NN outputs. Inputs
and outputs for the NNs are log10(X + 0.001), where X stands for Rrs or an ocean color product (this applies not for FU).

TABLE A2 | Correlation coefficients of additional ONNS retrievals vs.

simulated validation data subdivided by water type.

OC product C1 C2A C2S C2AX C2SX

ap(440) 0.8548 0.9977 0.9990 0.9937 0.9370

am(440) 0.9228 0.9872 0.9975 0.9817 0.9818

bp(440) 0.9105 0.8974 0.8528 0.8030 0.7878

bm(440) 0.8412 0.9062 0.9838 0.8901 0.8274

FU 0.9854 0.9805 0.9802 0.9581 0.7230

Kd (490) 0.8488 0.9993 0.9989 0.9945 0.9991

Ku(490) 0.8464 0.9992 0.9989 0.9881 0.9992

adg(412) 0.9867 0.9943 0.9990 0.9936 0.9984

bbp(510) 0.9877 0.9981 0.9990 0.9960 0.9984

Statistics are based on NC1 = 5392, NC2A = 4699, NC2S = 4049, NC2AX = 4526, and
NC2SX = 4082.
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This study focuses on the seasonal and spatial characterization of inherent optical

properties and biogeochemical concentrations in the Van Diemen Gulf and Darwin

Harbour, two neighboring tropical coastal environments of Northern Australia that exhibit

shallow depths (∼20 m), large (>3 m) semi-diurnal tides, and a monsoonal climate. To

gain insight in the functioning of these optically complex coastal ecosystems, a total

of 23 physical, biogeochemical, and optical parameters were sampled at 63 stations

during three field campaigns covering the 2012 wet and dry seasons, and the 2013 dry

season. The total light absorption budget in the Van Diemen Gulf was dominated by non-

algal particles (aNAP; >45%) during the dry season (May–October) and colored dissolved

organic matter (aCDOM; 60%) during the wet season (November–April). The combined

absorption by aNAP and aCDOM generally exceeded∼80% of the total absorption budget

from 400 to 620 nm, with phytoplankton, aPhy, accounting for <20%. In Darwin Harbour,

where only the dry season conditions were sampled, the total absorption budget was

dominated by an equivalent contribution of aCDOM, aNAP, and phytoplankton. The major

processes explaining the seasonal variability observed in the Van Diemen Gulf are

resuspension from seasonal south-easterly trade winds in combination with the tidal

energy and shallow bathymetry during the dry season months, and mostly terrestrial

river runoff during the monsoon which discharge terrestrial CDOM from the surrounding

wetlands. Due to light-limited conditions all year round, the particulate scattering

coefficient [bp(555)] contributed significantly (90%) to the beam attenuation coefficient

c(555), thus strongly limiting phytoplankton growth (Chlorophyll a ∼1 mg.m−3). Spatially,

the Van Diemen Gulf had higher total suspended solids and nutrient concentrations than

Darwin Harbour, with dissolved organic carbon and aCDOM subjected to photobleaching

during the dry season. Key bio-optical relationships derived from this comprehensive
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set of parameters, the first ever to be collected in this tropical coastal environment,

were successfully used for a region-specific seasonal parameterization a region-

specific seasonally parameterized ocean color algorithm. Challenges related to the

parameterization, and the use, of ocean color remote sensing algorithms for these

optically complex waters are discussed.

Keywords: coastal waters, tropical waters, Northern Australia, optical properties, water quality, seasonal

variability

INTRODUCTION

Tropical coastal systems represent <1% of the world’s ocean
volume, yet they host some of the most productive and diverse
ecosystems on earth (Jennerjahn, 2012; Bowen et al., 2013).
Although, recent studies suggest that tropical marine regions will
experience less drastic environmental changes than temperate
regions in the future (Acevedo-Trejos et al., 2014), they remain
largely understudied. This is particularly true in the southern
hemisphere where very few datasets that capture the seasonal
variations in bio-optical properties exist. The literature available
on the tropical coastal waters of Far North Australia, referred
to as the North Marine Region (NMR, Figure 1), is limited to
marine phytoplankton productivity of this region (Hallegraeff
and Jeffrey, 1984; Ilahude and Mardanis, 1990), its geology
(Woodroffe et al., 1993) and the physical processes that influence
its oceanography (Condie, 2011; Li et al., 2014). Across the
NMR there is a need to develop better coastal ecosystem-based
management strategies, which require quantitative assessment
of the processes controlling the coastal marine environment.
Combined bio-optical and biogeochemicalmeasurements are key
to quantify the ecosystem response to physical and chemical
drivers. However, the remote location of the NMR makes the
acquisition of in situ data by conventional sampling methods
difficult (Figure 1), thus the use of ocean color and sea
surface temperature (SST) satellite datasets for the study of the
spatio-temporal patterns of biogeochemical processes in such
remote areas is ideal. Recent studies using satellite-derived sub-
surface light attenuation [Kd(λ)], Chlorophyll-a (Chl-a) and total
suspended solids (TSS) concentrations have shown the distinct
seasonal cycles of those parameters in the NMR (Schroeder et al.,
2009; Blondeau-Patissier et al., 2011, 2014). Standard ocean color
algorithms were used however, thus likely limiting the accuracy
of the quantitative retrievals of the above-mentioned products
due to the optical complexity of the North Australian shelf
waters (IOCCG, 2000). Recommendations for future applications
include the implementation of ocean color algorithms regionally
tuned to the NMR using in situ optical measurements collected
in this region for their parameterization. The success of such
approach has been previously shown in other coastal regions
(e.g., Brando et al., 2012; Tilstone et al., 2012; Roy et al., 2013).
The optical properties and concentrations presented in this study
are the first to have been collected in the region, and may be
used as a baseline in any future bio-optical assessments guiding
environmental management.

Located within the NMR and bounded to the east by the Gulf
of Carpentaria, the Van Diemen Gulf (VDG) is a semi-enclosed

bay (∼16,000 km2) with two narrow openings (∼25–30 km
wide), one to the North into the Arafura Sea and a second to the
West into the Beagle Gulf (Figure 1A). The VDG, our first study
region, is a dynamic marine environment that is characterized by
shallow depths (<20 m) and strong tidal forcing. Six major river
catchments surround the VDG: to the east are theWildman River
and the West, South (10,000 km2), and East Alligator Rivers; to
the west are the Mary (8,000 km2) and Adelaide Rivers (638 km2;
Figure 1A). While the western catchments have been actively
used for agricultural purposes, mainly cattle grazing, the eastern
catchments are primarily for conservation (indigenous lands and
national parks; CSIRO, 2009). Our second study region, Darwin
Harbour (DH) (Figure 1B), is a semi-enclosed, shallow macro-
tidal estuarine system (∼3,000 km2) connected to the VDG via
the Clarence Strait (e.g., Williams et al., 2006; Andutta et al.,
2014). Home to more than half of the Northern Territory’s
population (∼200,000), Darwin Harbour is an isolated coastal
region with the closest other cities being located >1,000 km
to the east (Cairns) or west (Broome) (Figure 1). While there
are no major ocean currents in the NMR, tidal currents play a
significant role in water movement in this region (Condie, 2011).
The monsoonal climate of the NMR region is characterized
by a wet season that extends from November to April, during
which more than three-quarters of the yearly rainfall occurs∗

(e.g., Story et al., 1969). Monsoonal rainfall (∼1,700mm·yr−1)1

generates large quantities of freshwater that enter the coastal
waters of the VDG via the surrounding catchments (Figure 1).
Monsoonal winds are mostly northerly or north-westerly, with
episodic cyclones (e.g., Acker et al., 2009; Lyon, 2010), while
south-easterly trade winds predominate during the dry season
(May–October). The rainfall, wind speed and direction vary
dramatically between the wet and dry seasons, thus seasonal
differences in water column mixing, turbidity, salinity, wave
patterns, and wind-driven surface currents are to be expected.
Overall a limited amount of light penetrates the water column
of our study regions all year around, thus phytoplankton
biomass and productivity are affected. In the neighboring Gulf
of Carpentaria, Burford et al. (2012c) found that sediment
resuspension from the tidal energy was the most important
physical process limiting light penetration, and consequently
phytoplankton primary production.

Surface inherent optical properties (IOPs) and biogeochemical
concentrations, as well as nutrients for some stations, were
sampled in the VDG and DH shelf waters during one wet

1BOM Bureau of Met., 73 year statistics (1941–1974) http://www.bom.gov.au,

Climate statistics for Australian locations: Darwin Airport.
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FIGURE 1 | (A) Locations of the dry and wet season sampling stations for the 2012 and 2013 field campaigns; (B) Darwin Harbour (inset). The extent of the Northern

Marine Region (NMR; dotted line) is shown. Bathymetry contours are indicated in light gray [isobaths −10 and −50m for (A), and isobaths −10, −20, −50m for (B)].

season (March 2012) and two dry seasons (September 2012,
2013; Tables 1A,B). The specific objectives of this study are (1)
to characterize the spatial and seasonal bio-optical variability of
DH and VDG to understand the functioning of these complex
coastal ecosystems by identifying the major controlling processes
and (2) to examine the relationships that can be derived
between parameters to provide recommendations for their use
in biogeochemical modeling and the parameterization of satellite

ocean color algorithms specific to this dynamic coastal region of
the NMR.

METHODS

Characteristics of the Sampling Effort
The dataset presented in this study comprises 23 metadata,
biogeochemical and optical parameters (Table 1) sampled at
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TABLE 1 | (A) Details of the seasonal field sampling and (B) the variables

measured, (C) Notations: abbreviations, symbols and units of all the

parameters referred to in this study.

A

Field Region Dates N Season

sampling

1 Van Diemen Gulf 29–31 March 2012 16 Wet

2 Darwin Harbour 24, 26 September;

8 October 2012

15 Dry

3 Van Diemen Gulf 10–13 September 2013 22 Dry

3 Darwin Harbour 13–15 September 2013 10 Dry

B

Field IOP Biogeochemical POC DOC Phytoplankton counts,

sampling concentrations EEM, nutrients

1 X X X

2 X X

3 X X X X X

3 X X X X X

C

Variable or Description Units

symbol

Salinity n/a PSU

Secchi depth n/a m

Temperature n/a ◦C

Chl-a Chlorophyll-a mg.m−3

DOC Dissolved organic carbon mg.L−1

CDOM Chromophoric dissolved organic matter m−1

NAP Non-algal particulate m−1

POC Particulate organic carbon mg.L−1

PSC Photosynthetic carotenoids mg.m−3

PPC Photoprotective carotenoids mg.m−3

TSS Total suspended solids mg.L−1

Sr EEM spectral slope ratio (276–295 nm/350–400 nm) nm−1

aCDOM(λ) Absorption coefficient of CDOM m−1

aNAP(λ) Absorption coefficient of non-algal particulate matter m−1

ap(λ) Absorption coefficient of particulate matter (aphy+aNAP ) m
−1

aphy(λ) Absorption coefficient of phytoplankton m−1

atot(λ) Total absorption coefficient (aphy+aNAP+aCDOM) m−1

SCDOM, SNAP Spectral slope coefficient of CDOM or NAP nm−1

aNAP* (λ) Specific absorption coefficient of NAP m2.g−1

aPhy*(λ) Specific absorption coefficient of Phytoplankton m2.mg−1

b(λ) Scattering coefficient m−1

c(λ) Beam attenuation coefficient [c(λ) = a(λ)+ b(λ)] m−1

bb(λ) Backscattering coefficient [bb(λ) = bbp(λ)+ bbw(λ)] m−1

b ˜bp(λ) Particulate backscattering to scattering ratio (bbp/bp) unitless

γ Slope of the backscattering coefficient nm−1

λ Wavelength lambda nm

63 stations over three field campaigns in the VDG and DH
(Figure 1). Overall, the sampling effort corresponds to 13 days
of field sampling—the distance from Darwin to the furthest

sampling site in the VDG is 125 nautical miles, equivalent to
>12 h of travel time for a vessel equipped for water sampling.
Two research campaigns were undertaken in the VDG during (1)
the wet season of 2012 (29–31 March 2012; N = 16) and (2) the
dry season of 2013 (10–15 September 2013; N = 22; Figure 1A;
Table 1A). Additionally, DH was also sampled on two occasions
but only during the dry season: first, an intensive field campaign
that solely focused on DH was undertaken during 3 days at the
end of the 2012 dry season (24, 26 September and 8October 2012;
N = 15) and second, several stations (N = 10) were sampled in
DH at the end of the September 2013 dry season field campaign
when returning from the VDG (Figure 1; Table 1A). At the time
of their sampling, the bottom depths of all stations ranged from 5
to 60m (median: 21m; N = 63). Water sampling was carried out
3–6 times a day to cover various tidal conditions.

The tidal regime in DH and VDG is semi-diurnal. While
the tides in DH are macro-tidal with a mean spring tidal range
of 6m, the tidal range in DH can reach up to 8m during
spring tides, which is large compared to the mean depth (<20
m; Figure 1B). The tides are meso-tidal in the VDG, with a
mean spring tidal range of 3m and some tidal amplification
up to 6m in the south east of the Gulf, near the mouths of
the Alligator Rivers (Figure 1). As a result the tidal phasing
between DH and VDG can be between 1.5 and 2 h, with
tides in the VDG occurring before those in DH. The tide
tables and tide charts that are publicly available are from the
Darwin City tide gauge only, and thus are not applicable to
the entire study region. As our field sampling occurred across
an area that covered both VDG and DH, the tidal properties
at each station were computed for the sampling dates, times
and locations using a two dimensional, depth-averaged, finite
element, hydrodynamic Resources Modeling Associates (RMA)
numerical model (Williams, 2009). The tidal range, the vertical
difference between succeeding (or preceding) high and low tides
depending on the time of sampling, was computed for each
station.

The wet season of 2012 was characterized by above-average
rainfall (1,661 mm > long term1941−2014 mean: 1,282 mm), with
March 2012 (570 mm) receiving 80% more rain than the long-
term average monthly rainfall. Similarly, the September 2012
rainfall (21 mm) exceeded the long-term average by 35%, while
September 2013 was exceptionally dry (0.2 mm) (source: BOM∗).

Optical Measurements
At each station, vertical profiles of temperature, salinity and
density (WET Labs Water Quality Monitor, WQM) as well
as light absorption, beam attenuation (WET Labs ac-s with
a 10-cm path-length), and light backscattering (WET Labs
ECO BB-9) coefficients were measured (Tables 1A,B). The BB-9
backscattering meter measures the light backscattered at an angle
of 124◦ with a fixed gain at nine wavelengths, which were set
at 412, 440, 488, 510, 532, 595, 650, 676, and 715 nm. The ac-s
measures the light absorption [a(λ)] and beam attenuation [c(λ)]
at multiple wavelengths (N = 82) from 401.6 to 739.7 nm. All
instruments were deployed together in an optics cage to allow
for simultaneous collection of the measurements. Corrections for
temperature and salinity effects on water optical properties were
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applied to the ac-s data using the WQM measurements (Pegau
et al., 1997). The incomplete recovery of the scattered light in the
ac-s absorption tube was rectified using the proportional method
described in Zaneveld et al. (1994). The BB-9 backscattering
dataset was corrected for light loss due to absorption over the
path length at each angle and wavelength using light absorption
and scattering values from the ac-s (Boss et al., 2004). All vertical
profiles were binned at 0.2m depth intervals. In addition, the
water transparency was visually estimated by the same observer
at all stations by lowering a black and white disk (Secchi disk).
The Secchi depth reported in this study is the depth at which the
disk is no longer visible.

Assuming that dissolved organic matter in water has
a negligible effect on scattering, the particulate scattering
coefficient bp(λ) was derived by subtracting the scattering
by pure water, bw(λ) from the difference between the
total light attenuation c(λ) and total light absorption
(particulate+dissolved), aTot(λ) [i.e., bp(λ) = (c(λ) −

aTot(λ)) − bw(λ)]. For the scattering coefficient, the particulate
backscattering coefficient, bbp(λ), was obtained by subtracting
the backscattering component of pure water, bbw(λ), from bb
(λ). The spectral slope of the backscattering coefficient, γ, was
computed as a power-law (Whitmire et al., 2007).

For the determination of the particulate absorption coefficient,
the sum of the phytoplankton and the non-algal particle (NAP)
components [aP(λ) = aphy(λ)+aNAP(λ)], a volume of 0.4–1 L
of surface seawater was filtered through a 25 mm Whatman
GF/F glass-fiber filters. Filters were stored flat in liquid nitrogen
until analysis. Optical densities were measured over the 250–
800 nm spectral range with 0.9 nm increments, using a Cintra
404 UV/VIS dual beam spectrophotometer equipped with an
integrating sphere. Pigmented material was extracted from the
sample filter using the method of Kishino et al. (1985) to
determine the optical density of the non-algal matter, ODNAP(λ).
The optical density due to phytoplankton was obtained by
difference [ODphy(λ) = ODP(λ)-ODNAP(λ)]. The pathlength
amplification effect due to the filter was corrected by using the
algorithm of Mitchell (1990). Finally, absorption coefficients of
phytoplankton [aphy(λ)], non-algal particles [aNAP(λ)], and its
slope SNAP were computed as described in Clementson et al.
(2004).

All phytoplankton absorption spectra were plotted and quality
controlled to avoid the inclusion of those contaminated by non-
algal material.

Biogeochemical Measurements
For all measurements, water samples were collected at the surface
(≤2 m), using either Niskin bottles (via a Rosette system) or by
lowering a clean, polyethylene bucket from the side of the ship.

CDOM, POC, and DOC Concentrations
Water samples were filtered through a Whatman Anodisc
membrane (0.22 µm; 47 mm) for CDOM and dissolved organic
carbon (DOC) analysis. Filters were pre-rinsed with Milli-Q
water prior to filtration. To track possible contamination of
the glass filtration unit by the filters, the initial filtrate (100
ml) of Milli-Q water was discarded, and the subsequent filtrate

of Milli-Q water was stored as a blank for the first and last
samples collected during the campaign. The final filtrate was
transferred to a SCHOTT glass bottle pre-rinsed with the same
filtered seawater; the same was done for the DOC samples
which were then preserved with 0.5 ml of 50% H3PO4. The
samples were stored at 4◦C. The analysis of DOC and Particulate
Organic Carbon (POC), derived from subtracting DOC (water
filtered through 0.22 µm) from the unfiltered water samples,
is further described in the method section of MacIejewska and
Pempkowiak (2014b). DOC and POC were not measured for 15
stations sampled in Darwin Harbour in the 2012 dry season, and
POC (N = 29) was only collected during the 2013 dry season
field campaign. The CDOM absorbance of each filtrate, after
equilibrating to room temperature, was measured from 250 to
800 nm in a 10 cm pathlength quartz cell using a Cintra 404
UV/VIS spectrophotometer, with fresh Milli-Q water (Millipore)
as a reference. The CDOM absorption coefficient (m−1) was
calculated using the equation a CDOM = 2.3(OD(λ)/l) where l
is the cell path length in meters. Finally, an exponential function
was fitted to the CDOM spectra over the wavelength range 350–
680 nm from which the slope, SCDOM, was derived as described
in Clementson et al. (2004).

During the dry season sampling of September 2013, a second
set of CDOM samples (N = 26) was analyzed by fluorescence
Excitation-Emission Matrix spectroscopy (EEM). EEM is often
used to trace photochemical and microbial reactions associated
with fluorescent dissolved organic matter (FDOM). In this study,
it was used to assess CDOM sources (terrestrial or marine).
Water samples were filtered through 0.45-µm syringe filters into
SCHOTT bottles pre-washed with HCl. The samples were stored
at 4◦C while at sea. They were then stored at −20◦C once in the
laboratory and were allowed to reach room temperature before
analysis. Each sample was analyzed using a Horiba Jobin Yvon
Aqualog Excitation-Emission spectro-fluorometer (240–600 nm)
and a Starna 1-cm quartz cell. The EEM spectra were recorded
under standard instrumental conditions and were subsequently
corrected for internal absorbance effects. Both the first and
second order Raman and Rayleigh lines were removed, and the
intensity was expressed inQuinine Sulfate Units (QSUs) using the
appropriate instrument normalization for the integration time
(Watson and Zielinski, 2013). The spectral slope ratios Sr, were
computed separately from the same data by least squares fitting
of the log transformed raw absorbance in the ranges 275–296 and
350–400 nm (Helms et al., 2008).

Total Suspended Solids
For the determination of TSS concentrations, water samples
(0.50–3.50 L) were filtered through pre-weighed Whatman GF/F
glass microfiber filters (0.7µm; 47mm) pre-combusted at 450◦C.
A blank filter with filtered seawater was used as a reference. The
filter was then rinsed with ∼50 ml of distilled water to remove
any salt from the filter and dried to constant weight at 65◦C to
determine the TSS (see Figure 1 of Neukermans et al., 2012). The
filters were then placed in a furnace at 450◦C for 3 h, allowed to
cool and weighed to determine the amount of inorganic material
remaining on the filter. To quantify sample variability between
TSS samples, triplicates were taken at each station. Overall, the
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relative standard deviation between all triplicates was 8% (N =

57), varying the least for the DH dry season samples (2%) and the
most for the VDGdry andwet season samples (13%). Laboratory-
estimated particulate inorganic (PIM) and organic (POM)matter
fractions of TSS were only available for the 2012 wet season
samples and were extracted as described in Oubelkheir et al.
(2014).

Determination of Phytoplankton Pigment

Concentrations and Cell Counts
For phytoplankton pigment concentration and composition,
water volumes of 0.10–1.20 L were filtered through Whatman
GF/F glass microfiber filters (0.7 µm; 25 mm) and stored
in liquid nitrogen until analysis. Phytoplankton pigments,
extracted by High-performance Liquid Chromatography
(HPLC) following Clementson (2013), were grouped into
five categories: (1) Chl-a (Chlorophyll-a, divinyl-Chl-a,
chlorophyllide-a and pheopigments); (2) Chl-b (Chl-b and
divinyl Chl-b); (3) Chl-c (Chl-c1, -c2); (4) photosynthetic
carotenoids (PSC; fucoxanthin, peridinin, 19–HF and 19–
BF); and (5) photoprotective carotenoids (carotenoids (PPC,
zeaxanthin, diadinoxanthin, alloxanthin, lutein, α- and β-
carotene). The relative contribution of picophytoplankton (<2
µm), nanophytoplankton (2–20 µm), and microphytoplankton
(>20 µm) was estimated for each sample using diagnostic
pigments as described in Uitz et al. (2006), improved from
Vidussi et al. (2001).

Surface water samples for microscopic phytoplankton cell
counts were collected in 100-ml darkened bottles and preserved
with paraformaldehyde for a final concentration of ∼1%
paraformaldehyde (2013 dry season campaign only). Using the
Utermöhl technique, sub-samples were settled in 100-ml settling
chambers for 24 h and examined using an inverted microscope
(Nikon Eclipse Ti-S) following the methodology outlined by
Hasle (1978). Large and numerically rare taxa were counted
during full examination of the settling chamber (×100), while
small and numerically dominant taxa were counted on 1–2
transects of the chamber (×400), or from cumulative counts of
5–10 fields of view. Diatoms and dinoflagellates were identified
to the genera or species level, based on Hallegraeff et al. (2010).
For picophytoplankton cell counts, samples were collected in 2.5-
ml cryovials, preserved in 1% paraformaldehyde, kept in liquid
nitrogen while at sea and stored at −80◦C until analysis. An
Accuri C6 Flow Cytometer was used, following the procedure
described in Zubkov et al. (2007). Cells’ viability was assessed
throughmicroscope counts, where cells that were broken or lysed
were considered to be non-viable cells. When cell numbers were
compared (i.e., between the phytoplankton community >2 µm
and picoplankton <2 µm), phytoplankton cell counts amounted
to <0.001% of the total (picoplankton+ phytoplankton).

Specific Inherent Optical Properties
Mass-specific inherent properties (SIOPs), the absorption
and backscattering coefficients normalized to their respective
concentrations, are necessary for the parameterization of (semi-)
analytical bio-optical models for complex coastal waters (e.g.,
Brando et al., 2012; Tilstone et al., 2012; Le et al., 2015).

However, SIOP datasets are seldom available for most of the
world’s coastal ocean. To further characterize our optical dataset
and to help the development of ocean color algorithms for this
sub-region of the NMR, we computed the specific absorption
coefficients for phytoplankton, aphy∗(λ), obtained by normalizing
aph(λ) to Chl-a, as well as the mass-specific non-algal particulate
absorption, aNAP∗(λ), and backscattering, bbp∗(λ), coefficients by
normalizing aNAP and bbp by their TSS concentrations. Further,
we acknowledge that the algal contribution to TSS may not have
been negligible, during the wet season in particular.

Nutrient Concentrations
Water samples for nutrients were collected at surface (0.5m; 2013
dry season campaign only) and filtered through pre-combusted
(500◦C) 25 mm Whatman GF/F glass fiber filters. The samples
were frozen and stored at −20◦C prior to analysis. Nutrient
species nitrite+nitrate (NO−

2 + NO−
3 ), ammonium (NH+

4 ) and

phosphate (PO3−
4 ) were analyzed using a segmented flow analysis

system following Ryle et al. (1981).

Statistics
The effect of seasons (i.e., dry vs. wet season) or locations (DH
vs. VDG) on the measured variables were tested using a one-way
analysis of variance (ANOVA). The normality of the distributions
was verified using the Shapiro–Wilk test statistics at p > 0.05
and the homogeneity of variance was tested with the Bartlett’s
test prior to analysis. If none of the transformations used led to
normally distributed data, the non-parametric Mann–Whitney–
Wilcoxon test was applied.

RESULTS

Metadata: Salinity, Secchi Depths, and
Tides
The range of a selected set of metadata, concentrations and
IOPs for the dry and wet seasons is shown in Table 2. Most
(13) of the variables showed significant seasonal variations due
to the monsoon (Tables 2, 3). Surface waters were found to be
significantly cooler (median dry/wet: 28.35/29.83◦C; p < 0.001;
N = 63) and more saline (median dry/wet: 34.64/29.43 PSU; p <

0.005; N = 63) during the dry season (Table 2). Surface salinity
varied by 33% during the wet season (N = 16), with stations
featuring differences of up to 4 PSU between the surface and the
bottom of the cast (Table 2). In comparison, dry season stations
showed little variation (median: 0.1 PSU; N = 47).

Significant differences in seasonal and regional Secchi depths
were found (Table 3). Most of the Secchi depths sampled ranged
from 1.0 to 3.0m (67%), with 45% of the stations having a Secchi
depth <2 m. The clearest waters were sampled in DH (Secchi
depth >3 m), in the straits (>4 m), and in the Beagle Gulf (4 m),
while most (N = 17) of the VDG dry stations had Secchi depths
<2m (Figure 1). Amongst the metadata, the Secchi depth was
the parameter most correlated, albeit mildly, with the tidal range
(R2 = 0.23, N = 56) and temperature (R2 = 0.22, N = 50), but
not with salinity (R2 < 0.1, N = 58). Secchi depths were strongly
correlated with aNAP (R2 = 0.73, N = 56) and aTot (R

2 = 0.73,
N = 46), while there was a mild co-variation with TSS (R2 =
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TABLE 2 | Range of surface (<2 m) values in metadata, concentrations and IOPs in the Van Diemen Gulf and Darwin Harbour during the 2012–2013 dry

and wet seasons field samplings.

Variable N Min–Max Mean ± SD N Min–Max Mean ± SD

Wet season Dry season

Temperature 16 27.31–30.62 29.71 ± 0.95 47 26.37–30.01 28.21 ± 1.10

Salinity 16 24.72–32.75 29.32 ± 2.55 47 34.12–35.05 34.62 ± 0.23

Secchi depth 16 0.31–5.53 2.78 ± 1.30 47 0.25–4.05 2.26 ± 1.00

TSS 13 1.73–27.1 5.99 ± 6.64 44 2.59–143.1 30.41 ± 29.5

Chl-a 11 0.33–2.33 0.98 ± 0.57 45 0.33–2.78 0.96 ± 0.44

Size index 11 11.23–36.21 24.9 ± 8.50 45 13.81–46.12 27.53 ± 9.24

DOC 13 0.92–1.85 1.39 ± 0.29 29 0.87–2.35 1.15 ± 0.28

POC n/a — — 29 1.18–2.23 1.38 ± 0.21

Sr n/a — — 29 1.59–3.37 2.08 ± 0.34

aCDOM(440) 10 0.07–0.27 0.17 ± 0.06 28 0.05–0.37 0.13 ± 0.07

SCDOM 10 0.010–0.017 0.014 ± 0.002 28 0.008–0.017 0.013 ± 0.002

aphy(440) 10 0.02–0.08 0.05 ± 0.01 42 0.02–0.10 0.05 ± 0.01

aphy440/676 10 1.86–2.77 2.28 ± 0.28 42 1.45–2.96 2.06 ± 0.32

aNAP(440) 11 0.02–0.79 0.14 ± 0.22 45 0.04–5.42 0.36 ± 0.88

SNAP 11 0.01–0.01 0.01 ± 0.00 45 0.01–0.01 0.01 ± 0.00

aNAP/ap(440) 9 0.38–0.73 0.56 ± 0.13 41 0.42–0.89 0.69 ± 0.12

atot(440) 11 0.16–2.32 0.51 ± 0.61 35 0.13–6.86 0.67 ± 1.22

bp555 15 0.46–4.14 1.55 ± 0.87 33 0.81–4.97 2.14 ± 1.30

c(555) 15 0.50–4.24 1.61 ± 0.88 33 1.05–5.07 2.38 ± 1.36

bbp(555) 15 0.01–0.10 0.03 ± 0.02 25 0.02–0.73 0.14 ± 0.21

γ 15 0.44–0.93 0.68 ± 0.17 25 0.23–1.90 0.82 ± 0.58

bbp*(555) 11 0.001–0.02 0.012 ± 0.005 27 0.00–0.03 0.026 ± 0.06

aNAP*(440) 11 0.02–0.03 0.025 ± 0.006 45 0.002–0.03 0.010 ± 0.01

˜bbp555 14 0.01–0.04 0.02 ± 0.00 25 0.02–0.06 0.03 ± 0.00

The number of samples, N, varies due to quality control. Dry season includes samples from both the Van Diemen Gulf and Darwin Harbour, Wet season includes samples from the Van
Diemen Gulf only. SD; Standard Deviation.

0.34, N = 57). Temperature was moderately correlated with TSS
(R2 = 0.47, N = 47). Tidal range was moderately correlated with
aNAP slopes (R2 = 0.45, N = 50), and weakly with any of the
concentrations.

Biogeochemical Concentrations and
Inherent Optical Properties
The overall average Chl-a concentrations sampled during these
three campaigns was 1.0 mg.m−3 (N = 56). The highest Chl-a
concentrations measured were 2.8 mg.m−3 during the dry
season and 2.3 mg.m−3 during the wet season, both sampled
at the same VDG station located <15 km from the mouth of
the Mary River (Figure 1A). Although, no significant difference
was found for Chl-a between seasons or locations (Table 3),
higher Chl-a concentrations (>1.3 mg.m−3) were found along
the VDG coast and within DH (with a gradual decrease from the
inner∼1.63 mg.m−3 to the outer∼<1 mg.m−3 of the Harbour),
while lower Chl-a concentrations were found in the middle of
the VDG (0.6–1.25 mg.m−3) and at stations sampled in the
Beagle Gulf and Dundas Strait (<0.6 mg.m−3; Figures 1, 2A;
Table 2). TSS was found to be significantly higher for stations
sampled during the dry season and located in the VDG (54.2 ±

40.0 mg.L−1; N = 20) in comparison to stations sampled in DH

(15.6 ± 9.7 mg.L−1; N = 24) or during the wet season (6.0 ± 6.6
mg.L−1; N = 13; Tables 2, 3). Higher TSS concentrations were
typically found along the coast, while lower TSS concentrations
were found in the inner Harbour (Figure 2B). There was no
interdependence between TSS and Chl-a (R2 < 0.1; N = 55;
Figure 3A; Table 5), while TSS concentrations seem to increase
with increasing tidal range, albeit with no significant relationship
(R2 < 0.1; p > 0.1, N = 51; Figure 3B). The wet season TSS
samples (VDG wet) were found to be mostly (75%) composed of
inorganic material (N = 13).

Organic carbon is divided into a particulate (POC) and a
dissolved (DOC) fraction, both playing major roles in the ocean
carbon cycle (Bauer et al., 2013) with the majority (∼95%) of
the ocean organic carbon being composed of DOC (e.g., Hansell
and Carlson, 2001). The concentration in organic carbon varies
according to the distance from land, with open ocean waters
having less organic carbon than those in coastal regions. For
instance, POC was found to be in the order ∼0.1 mg.L−1 in
Pacific Ocean waters (Claustre et al., 1999; Fabiano et al., 1999),
0.3 mg.L−1 in shallow shelf waters of the Northwest Atlantic
(Bauer et al., 2002), 1.4 mg.L−1 in the Baltic Sea coastal waters
(MacIejewska and Pempkowiak, 2014b), and up to 1.8 mg.L−1

in Chesapeake Bay (Fisher et al., 1998). For this study, POC
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TABLE 3 | One-way ANOVA results for selected concentrations, IOPs and

metadata. The factor “Season” refers to dry vs. wet seasons (Van Diemen

Gulf stations only), and “Location” refers to Van Diemen Gulf vs. Darwin

Harbour (during the dry season only).

Variable Season Location

df;F p df;F p

Chl-a 1; 0.05 0.81 (NS) 1;0.94 0.33 (NS)

TSS 1; 65.18 0.001*** 1;25.96 0.001***

DOC 1;18.58 0.001*** 1;12.63 0.002***

POC — 0.92 (NS)

aCDOM(440) 1; 2.39 0.134 (NS) 1;0.33 0.58 (NS)

aphy(440) 1; 0.22 0.644 (NS) 1;0.33 0.57 (NS)

aphy(440/676) 1; 2.24 0.148 (NS) 1;0.03 0.88 (NS)

aphy*(440) 1; 1.29 0.266 (NS) 1;8.32 0.006***

aTot (440) 1; 0.98 0.328 (NS) 1;6.81 0.021**

ap(440) 1; 12.10 0.002*** 1;9.10 0.005***

aNAP/ap(440) 1; 0.111 0.012** 1;16.0 0.001***

bp(555) 1;12.83 0.002*** 1;14.43 0.001***

bbp(555) 1; 25.28 0.001*** 1;37.58 0.001***

ϒ 0.475 (NS) ∼1 (NS)

bbp(555) 1; 8.30 0.008*** 1; 4.55 0.045**

bbp*(555) 0.006*** 0.08 (NS)

aNAP*(440) 0.001*** 0.15 (NS)

SNAP 1.00 (NS) 0.001***

Scdom 0.18 (NS) 0.22 (NS)

c(555) 0.003*** 0.008***

Fucoxanthin 1;1.89 0.18 (NS) 1;7.71 0.011**

Salinity 0.001*** 1;33.81 0.001***

Temperature 0.001*** 0.001***

Secchi 0.004** 0.001***

If only the p-value is indicated, a non-parametric test was applied on the dataset. p***
< 0.01; ** < 0.05; NS (i.e., not significant; p > 0.05).

(only available for the dry season samples) was found to be as
high as 2.23 mg.L−1, with a mean concentration of 1.42 ± 0.26
mg.L−1 (N = 19) in the VDG and 1.33 ± 0.06 mg.L−1 (N =

10) in DH (Table 2). No significant difference in POC between
the two locations was found (Table 3). In open ocean waters,
Morel (1988) proposed the empirical relationship POC= 90 Chl-
a0.57 (R2 = 0.68; N = 409), but in coastal waters, such robust
relationships between POC and Chl-a may not be observed
because of the higher non-phytoplankton contribution (e.g.,
Sathyendranath et al., 2009). For our dataset, after converting
POC from mg.L−1 to mg.m−3, we obtained POC = 1,444 Chl-
a0.19 (R2 = 0.40; N = 29; p < 0.005; Figure 3C; Tables 2, 5). TSS
samples were also examined in relation to their POC content to
assess their relative fraction of organic material but this was not
possible due to a poor covariation of POC with TSS (R2 = 0.14; p
< 0.05; N = 29) (Figure 3D).

Understanding the dynamics of DOC in coastal systems is
key to accurately assessing the important role coastal regions
play in the global carbon cycle (Fichot and Benner, 2014; Fichot
et al., 2014). While POC is the sum of the masses of all
organic particles, largely composed of phytoplankton and organic
detritus (e.g., fecal pellets; Romero-Ibarra and Silverberg, 2011),

DOC is directly related to micro-organism activities ranging
from photosynthesis to virus lysis (Agustí and Duarte, 2013). The
use of CDOM as a direct and reliable proxy for DOC in coastal
waters has been demonstrated in previous studies. For instance,
Fichot and Benner (2011) used multiple linear regressions to
successfully (R2 > 80%) retrieve DOC from aCDOM(275) and
SCDOM in the Beaufort Sea and the Northern Gulf of Mexico.
More recently, Vantrepotte et al. (2015) retrieved DOC from
aCDOM(412) using linear regressions and a dataset of contrasting
coastal waters, comprising samples from the English Channel
(R2 = 0.72), Vietnam (R2 = 0.81), and French Guiana (R2 =

0.78). For our dataset, there was no correlation between DOC
and aCDOM(400) (R2 ∼ 0.1; p > 0.1; N = 55; Figure 4C). DOC
was found to be significantly different between both seasons and
locations (Tables 2, 3). It was higher during the wet season (1.39
± 0.29 mg.L−1; N = 13; Table 2) and varied spatially from lower
concentrations in the embayment of the VDG (∼0.8–1.0mg.L−1)
increasing toward Clarence Strait (>1.0 mg.L−1) and reaching
up to 2.35 mg.L−1 in DH (Figure 1). Overall DOC (1.34 ± 0.37
mg.L−1; N = 10) in DH was found to be much lower than that
observed by Burford et al. (2012a) in Buffalo Creek (2.9 ± 1.8
mg.L−1), 20 Km North of Darwin. This difference can be partly
explained by the seasonal effect: samples from DH were from the
dry season, while Burford et al.’s Buffalo Creek DOC values were
sampled during the wet season (December 2008; Burford et al.,
2012a). No correlation was found between DOC and salinity
(R2 = 0.10; N = 38) (Figure 4D).

The absorption of CDOM at 440 nm was not found to be
statistically significantly different between seasons (Table 3). Yet
aCDOM(440) was characterized by higher values during the wet
season (median dry/wet: 0.11/0.18 m−1; Table 2), and stations
located in the VDG had slightly lower aCDOM (440) values (0.11
± 0.09 m−1; N = 21) than those in DH (0.14 ± 0.03 m−1;
N = 10; Figure 2C). Overall, aCDOM(440) was found to weakly
increase with Chl-a (R2 = 0.20, N = 37; Figure 4A). Also a
proxy for salinity, aCDOM can be used as a marker of freshwater
influence during flooding conditions (e.g., Schroeder et al., 2012),
but for our dataset, there was a very weak relationship between
salinity and aCDOM (Figure 4B): albeit with a poor relationship,
CDOMwas found to increase with salinity during the dry season
(R2 = 0.14; N = 26; Figure 4B), while it decreased with salinity
during the wet season (R2 = 0.34; N = 11) possibly due to its
terrestrial source (thus in higher concentration near the rivers).
Its spectral slope, SCDOM, was not seasonally or spatially uniform
(0.008–0.017; N = 38) but statistically, no seasonal or spatial
difference was found (Tables 2, 3; Figure 5A). SCDOM was within
the set range described by Blough and Del Vecchio (2002). The
spectral slope of NAP did not change between seasons but unlike
SCDOM, SNAP was found to differ spatially (p < 0.001; N = 45)
with the dry season samples located in the VDG (median: 0.014
m−1; N = 20) having steeper slopes than those from DH (0.012
m−1; N = 25) (Figure 5B). From the EEM, we found Sr to be
between 1.5 in DH and 3.5 in the VDG (Figure 13A). The slope
ratios are in accordance with coastal environments, as sampled
in our study, where Sr ranged from wetlands (0.69) to oceanic
(9.02) (Helms et al., 2008). In addition, aCDOM(350) was found
to exponentially decrease with S275−295 (Figure 13B), as per
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FIGURE 2 | Spatial distribution of measured (A) Chl-a, (B) TSS, (C) aCDOM(440), and (D) ˜bbp555 during the dry (gray) and wet (black) seasons. Symbol sizes are

representative of the concentration range sampled during a specific season.

Figure 6 of Fichot and Benner (2012), thus indicating possible
effects of photobleaching for the VDG-dry season samples.

The magnitude of the particulate backscattering coefficient
varied broadly [0.01 < bbp(555) < 0.73 m−1; N = 40; Table 2].

Its associated spectral slopes (0.2 < γ < 1.9 m−1) were well
within the range reported by previous studies (Snyder et al., 2008;
Figure 5C) but bbp(555) slopes did not feature any seasonal or

spatial variations (γ∼ −0.6m−1; Table 3). While bbp(555) was

evidently strongly correlated with bp(555) (R2 = 0.84; N =

37; p < 0.001; Table 5), there was also a significant correlation
between bbp(555) and TSS (R2 = 0.53; p < 0.001; N =

36; Figures 7A,B; Table 5). Overall, the mass-specific non-algal
particulate coefficient at 440 nm, aNAP∗(440), varied between
0.002 and 0.035m2.g−1 with amean value of 0.025m2.g−1 during
the wet season decreasing to 0.010 m2.g−1 during the dry season.
The wet season average is comparable to other coastal waters
around the world such as that found in French Guiana (i.e., 0.023
m2.g−1; Loisel et al., 2009) but it is much lower than that of the
North Sea (0.033 m2.g−1; Babin et al., 2003a) for instance; the

extremely low dry season average confirms that the dry season
samples are largely dominated by inorganic particles, which is in
accordance with our hypotheses of a NAP-dominated system at

that time of the year. A significantly strong correlation between
aNAP∗(555) and bbp∗(555) and bbp

∗(555) (R2 = 0.77, p < 0.001,
N = 36) is shown in Figure 7C. Such strong relationship between

the two parameters was previously reported in the Great Barrier

Reef, albeit at a different wavelength [aNAP∗(440) & R2 = 0.82;

see Figure 13 of Blondeau-Patissier et al. (2009)], and in the Gulf
of Mexico (D’Sa et al., 2007).

Temporal and spatial differences were found in the beam

attenuation coefficient, c555, which was significantly higher

during the dry season (p < 0.05; N = 33), particularly in the Gulf

(VDGdry: 3.33± 1.42 m−1; p= 0.01;N = 11), compared with the

wet season (VDGwet:1.61 ± 0.89 m−1; N = 15) and DH (1.91 ±
1.08 m−1; N = 22; Figure 6; Table 2). In the VDG, independent
of the season, the total absorption at 555 nm, aTot(555), was a
negligible portion of c555 (4 ± 1%; N = 26), while in DH it
played a more important role (15 ± 8%; N = 22). The beam
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FIGURE 3 | Relationships between: (A) TSS and Chl-a, (B) TSS and tidal range (note: × is linear), and POC as a function of (C) Chl-a and (D) TSS.

attenuation also displayed a strong relationship with bbp(555)

(R2 = 0.80; p < 0.001; N = 36; Figure 6A). While Secchi depths
were found to be relatively correlated with c(555) (R2 = 0.43;
N = 47; p < 0.005; Figure 6C), c(555) was not correlated with
the particulate backscattering to scattering ratio b˜bp(555) (N =

26; R2 = 0.20; p > 0.1; Figure 6B). This latter parameter, b˜bp,
has been linked to the composition of the particle assemblage
(e.g., Loisel et al., 2007), from the particle size distribution to
its refraction index (e.g., Twardowski et al., 2001; Boss et al.,
2004). For our dataset, b˜bp(555) surface values varied three-fold
(0.02–0.07; N = 36; Figure 7D; Table 2). We found a significant
difference in b˜bp(555) between locations and seasons (Tables 2,
3). Although, its mean value of 0.03 was above that found by
Whitmire et al. (2007) (i.e., 0.01 < b˜bp(555) < 0.02) over various
coastal, oceanic, and freshwater environments of the US, it was
in accordance with measurements found by McKee et al. (2009)
in the shallow, macro-tidal estuary of the Bristol Channel where
b˜bp(532) was found to reach up to 0.07. Albeit at a different,

shorter wavelength, the bulk of their b˜bp measurements had
a bi-modal distribution at 0.01 and 0.03. Spatially, b˜bp(555)
was found to differ (p < 0.05; N = 23), increasing from DH
(0.027 ± 0.005; N = 12) to the VDG (0.033 ± 0.009; N = 11;
Figures 2D, 7D). The scattering-to-attenuation ratio, b/c(555),
averaged 0.91 ± 0.08 (N = 48) (Figure 9A), with the scattering
coefficient, b(555), contributing >90% (N = 26) of the beam
attenuation coefficient in the VDG independently of the seasons
(Figures 6, 9D). In DH however, this contribution decreased to
79% during the dry season sampling in 2012 (N = 14) but was
equivalent to that of the VDG (>90%) during the dry season
sampling in 2013 (N = 8).

The relative contributions of phytoplankton, NAP andCDOM

absorptions to the total absorption budget for our samples (N

= 49) are displayed in Figure 8. Overall, the waters of this

region were largely (60%) dominated by CDOM during the wet
season and mostly (>45%) by NAP during the dry season, with

phytoplankton contributing very little to the total absorption at
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FIGURE 4 | Relationships between: (A) Chl-a and aCDOM(440), (B) aCDOM(440) and salinity, (C) DOC and aCDOM(400), and (D) DOC and salinity. The dashed line

indicates the regression line for the Darwin Harbour samples only (N = 9).

440 nm (Figure 8D). The combined absorption by NAP and
CDOM generally exceeded 70% of the total absorption from
400 to 620 nm. The second highest combination was CDOM
and phytoplankton (>60%), while NAP and phytoplankton
contributed 50–60% for the same wavelengths. The median
contribution of phytoplankton at 440 nm was 18% overall
(Figure 8D), increasing to >55% at 665 nm. Darwin Harbour
showed a mixed CDOM and NAP assemblage.

The particulate absorption coefficient, aP(440), was found to
be equally correlated with both TSS (R2 = 0.30; p < 0.001; N
= 51; Figure 9B) and Chl-a (R2 = 0.28; p < 0.001; N = 50 not
shown). A significant seasonal and local (VDG) variation was also
found for aNAP/aP(440) (p < 0.05; N = 50) (Figure 9C; Table 3).

The quality of the optical closure between ac-s and filter
pad total absorptions [aTot(λ)] was assessed at the selected
wavelengths of 412, 440, 510, 532, and 676 nm for the VDG
dry and wet season field campaign measurements. There was a
very good agreement (R2 > 0.9) between the two methods in the
blue and green spectral regions [i.e., aTot (ac−s) = 0.96xaTot (Filters);
R2 = 0.99; N = 26 at 412 nm and aTot (ac−s) = 0.79xaTot (Filters);

R2 = 0.97; N = 26 at 532 nm] but the optical closure largely
degraded in the near-infrared [i.e., aTot (ac−s) = 0.31xaTot (Filters);
R2 < 0.1;N = 26 at 676 nm]. The absolute relative errors between
the two measurements increased from 3% in the blue to 16%
in the green (532 nm) to 85% in the NIR. The correction for
residual scattering in the reflecting tube of an ac-s (or ac-9)
varies spectrally (Röttgers et al., 2013), while it is considered
wavelength independent in the proportional correction method
(as selected for this study). This may lead to high discrepancies
(Leymarie et al., 2010; Pitarch et al., 2016) and although we
acknowledge that the choice of the proportional correction
method significantly affected our ac-s estimates in the NIR, no
ac-s or bb-9 data beyond 555 nm was used in this study.

Phytoplankton: Absorption Coefficients,
Pigments, Cell Counts, and Nutrients
Phytoplankton cell sizes in DH were mostly (>50%) dominated
by picoplankton (<2 µm). In the VDG, the dry season samples
were dominated (>60%) by microplankton (>20 µm), and
the wet seasons samples were a mixed population assemblage
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FIGURE 5 | Spectral slopes. Slopes of (A) CDOM, (B) NAP, and (C) bbp as a function of their respective coefficients.

(Figure 10). The two major carotenoid pigments, fucoxanthin
and zeaxanthin, are diagnostic pigments for diatoms and
cyanobacteria, respectively (Figures 11E,F). Overall, fucoxanthin
was the most abundant pigment (60% of the 57 stations) and
was mostly present in the VDG dry season samples (30%)
(Table 3), while zeaxanthin characterized the DH samples (26%).
As expected, fucoxanthin strongly co-varied with Chl-a (N = 57;
R2 = 0.70; p < 0.001; Figure 11C). From the phytoplankton
cell counts (2013 dry season campaign only), we found that the
dominance of diatoms increased spatially, from DH to the Gulf.
For the VDG dry season samples, fucoxanthin/Chl-a ratios were
typically one order of magnitude higher than those of zeaxanthin,
confirming that diatoms were the most abundant phytoplankton
group (>70%; N = 36).

In the VDG, Chl-c, an accessory pigment in diatoms,
was found to be more abundant than Chl-b (53%), a
pigment generally associated with e.g., picophytoplankton
Prochlorococcus which was mostly present in DH (72%).
The pigment ratio Chl-b/Chl-a was low in the waters along
Melville Island and higher in Darwin Harbour, while Chl-c/Chl-a

increased from the VDG coast to Melville Island and was
higher in Darwin Harbour but lower in the VDG wet samples.
The VDG dry season dataset was characterized by higher PSC
(Figures 11A–D), while the VDG wet and DH samples were
higher in PPC. The PPC/PSC ratio provides a photo-physiologic
index for phytoplankton cells. Environmental stresses, such as
high light or low nutrient availability, are usually associated with
higher PPC, thus resulting in higher PPC/PSC ratios. A low
PPC/PSC ratio would in turn be associated with phytoplankton
cells receiving low light levels in high-nutrient surface waters.
However, the PPC/PSC ratio also varies between phytoplankton
taxonomic groups, as phytoplankton cells exhibit a variety
of tolerances and adaptations to light and nutrient exposure.
Overall, the VDG samples had lower PPC/PSC ratios (∼0.68)
during the dry season than during the wet season (∼1.50), which
is due to limited light penetration from high turbidity levels. In
contrast, the PPC/PSC ratios were generally high (∼1.55) for the
Darwin Harbour samples, likely due to a better light penetration
through the water column in this system at the time of our
sampling (Figure 6).
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FIGURE 6 | Beam attenuation coefficient (c555) as a function of (A)

backscattering (bbp555); (B) the backscattering-to-scattering ratio (bb555);

and (C) Secchi depth.

Cyanobacterium Trichodesmium sp. inhabits tropical waters,
and in low wind stress conditions it produces large surface
blooms that can be monitored from space (McKinna, 2014).
Blooms of Trichodesmium sp. are known to occur in the region,
although the dynamic coastal environment of the VDG may
not favor its optimum growth, due to water column mixing.
Trichodesmium sp. patches were seen at five stations over 3 days
during the September 2013 field campaign, and high counts
(>200 units/L) of cyanobacterial cells were found at one station
in the eastern embayment of the Gulf, thus confirming previous
findings from remote sensing observations of Blondeau-Patissier
et al. (2014) that these cyanobacteria blooms occur regularly
between August and October in the VDG-DH region.

The absorption coefficient of phytoplankton, aphy(440), was
found to decrease from the coast to the center of the Gulf and
was higher in the inner Harbour, but there was no significant
difference in aphy(440) between the dry and wet season samples.
There was a significant correlation between aphy(440) and Chl-

a (R2 = 0.55; p < 0.001; N = 50; Figure 12B; Table 5), and no
significant difference was found between the relationship derived
from our dataset and that of Bricaud et al. (2010) (p > 0.1)
or Bricaud et al. (2004) (p > 0.1). There was no significant
seasonal variation in aphy(440/676) (Figure 12A; Table 3), and
no significant difference was found between the model derived
for this dataset and that of Bricaud et al. (1995) (N = 50;
p > 0.05), therefore inferring that any of these models can
be used in the VDG and/or DH (Figure 12). A significant
difference (p< 0.005) however, was found for aphy∗(440) between
locations (Figure 12C; Table 3), thus reflecting the difference in
phytoplankton composition between the VDG and DH.

Nutrients, in particular nitrate and ammonium, have the
greatest potential to limit phytoplankton growth in coastal
marine systems (Malerba et al., 2015). For our study regions,
nutrient concentrations sampled during the dry season 2013
were much higher in the VDG in comparison to DH: mean
ammonium and phosphate concentrations were almost twice
those recorded in DH, while nitrate was three times greater
in the VDG (Figure 14; Table 4). DH is a nitrogen depleted
environment (Wolanski et al., 2006) and nitrate showed an
increasing concentration gradient from the inner Harbour
(∼0.06 µmol.L−1; N = 5) to the outer Harbour (∼0.1 µmol.L−1;
N = 6; Figures 1B, 14), consistent with the principle that oceanic
waters coming into the harbor are richer in nutrient content.

Summary of Results
Poor correlation (R2 < 0.2) was found between DOC and
aCDOM(400) or salinity, as well as between salinity and aCDOM
or Secchi depths, and between POC and TSS with Chl-a. A
mild correlation (0.2 < R2 < 0.4) was found between Secchi
depths and tidal range or temperature or TSS, between aP(440)
and TSS and Chl-a and also between aCDOM(440) and Chl-a. A
moderate correlation (0.4 < R2 < 0.6) was found between TSS
and temperature, and between the tidal range and aNAP slopes.
A moderate to strong correlation (0.6 < R2 < 1.0) was found
between Secchi depths and aNAP(440) and aTot(440). A very good
optical closure was found between ac-s measurements and the
filter pads for the total absorption coefficient [aTot(412–555);
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FIGURE 7 | Absorption and scattering properties of particles. Scatterplots of backscattering (bbp555) as a function of (A) TSS and (B) the scattering coefficient

(bp555), (C) Mass-specific NAP coefficient and mass-specific backscattering coefficient and (D) bb(555) as a function of Chl-a.

R2 = 0.9]. The backscattering bbp(555) and scattering bp(555)

coefficients were highly correlated (R2 > 0.8). DOC was found to
be significantly different between seasons and locations. While
CDOM was found to be higher during the wet season, TSS
concentrations were found to be higher during the dry season in
the VDG, especially for stations along the coast. DH (dry season)
was composed of a mixed assemblage of CDOM and NAP. No
data was available for the wet seasonmonths inDH. Chl-a and the
backscattering coefficient bbp(555) did not show any statistical
difference between seasons or locations, which is in contrast to
c(555) and the backscattering ratio which varied seasonally and
spatially.

DISCUSSION

A Complex Environment
Effect of Local and Seasonal Forcing
The major processes controlling the optical properties in DH
and the VDG are mainly the wind speed and direction during

the dry season, and the tides year round. In addition, the river
discharges in this region are controlled by seasonal rainfall and
thus add to the complexity of this coastal system by increasing
land-sourced CDOM delivery to the coastal waters. The coastal
waters of Northern Australia have a tidal range that is amongst
the largest in the world for a coastline facing an open ocean.
For our dataset, the tidal range varied from 1 to 6 m. Stations
located in DH (dry season only; N = 24) were mostly sampled
during neap tides, with a mean tidal range of 2.05 ± 1.04
m. In the VDG however, the tidal ranges were 20% higher
at the time of our dry season sampling (4.05 ± 1.15 m; N
= 16) than during the wet season sampling (3.30 ± 0.78m;
N = 12), partly explaining the higher concentrations in TSS,
from resuspension, found during the dry season. The strong tidal
currents in combination with the complex, shallow bathymetry
caused the high spatial variability observed in most of the
surface measurements from site to site (e.g., Figure 2) as a
result of localized, small scale up- and downwelling processes.
Previous modeling studies have shown that Darwin Harbour’s
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FIGURE 8 | Average relative contribution of CDOM, NAP, and phytoplankton to the total absorption between 400 and 700 nm (A–C). Wavelength-specific

ternary plot of their relative absorption at 440 nm (D).

hydrodynamics are driven mainly by tides, with the wind and
seasonal river inputs playing somewhat smaller roles (Li et al.,
2012). In particular, Li et al. (2014) reported that the dynamics
of TSS in DH vary with the spring-neap tidal cycle, with the
whole water column being well-mixed during spring tides. For
our study, the DH stations were sampled during the clearest
conditions (neap tides) and thus our DH dataset may not be the
most representative of this environment. However, it provides an

interesting comparison with the VDG that is further discussed in
the Section Challenges for Remote Sensing of Water Quality in
the NMR.

In addition to tidal movement, another physical forcing
explaining the higher TSS concentrations in the VDG during
the dry season are the prevailing south-easterly winds occurring
at this time of the year. These trade winds, when acting in
phase with the tidal currents, significantly enhance resuspension.
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FIGURE 9 | Relationships between (A) b/c(555) and Chl-a; (B) ap(440) and TSS; (C) proportion of non-algal particulate absorption to particulate absorption as a

function of Chl-a and (D) bp(555) and TSS.

While the recorded wind speeds were very low during the wet
season field campaign (<2 m.s−1; W-SW), winds of up to 10
m.s−1 occurred during the dry season sampling. Webster and
Ford (2010) found that wind-induced waves in combination
with tidal currents contributed to higher concentrations of
sediment in Keppel Bay, a shallow embayment adjacent to
the Fitzroy estuary in sub-tropical Queensland; In the North
Sea, Hommersom et al. (2009) also found that TSS showed
large short-term spatial variability due to the tidal energy, in
combination with winds. These studies align with our findings
that the combination of tidal energy, shallow depths, and
strong winds is the main physical process controlling the
increased TSS concentrations found during the dry season in
the VDG.

The Alligator Rivers are directly connected to the VDG
(Figure 1A), and their freshwater flows are substantial during
the first 4 months of the year due to the highly seasonal rainfall.
Their discharges, loaded with terrestrial material, are trapped
within the coastal boundary layer, a body of turbid inshore
water. Very little mixing occurs between the turbid coastal
boundary layer and the rest of the Gulf. Hence we sampled
much higher concentrations of sediment material along the
coast in comparison to the middle of the Gulf (Figure 2). In
addition the entire coastal area between DH and the Cobourg
Peninsula (Figure 1A) is dominated by mangroves and tidal
flats that are also known to play a key role in the sediment
redistribution (Li et al., 2014). An explanation for the surprisingly
low contribution of non-algal particles and TSS found for the
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FIGURE 10 | Proportions of phytoplankton cell sizes for the Darwin Harbour dry (N = 25), Van Diemen Gulf dry (N = 20), and Van Diemen Gulf wet

(N = 11) samples. Size classes are defined as micro >20 µm, nano, 2–20 µm, and pico, <2 µm.

wet season samples in the VDG is the river runoff being largely
filtered through most of the Kakadu National Park wetlands
(20,000 km2) prior to reaching the coast (Figure 1A; e.g., Pusey
et al., 2015). The seasonal variability in river runoff also directly
results in significant difference in salinity between seasons. The
large amount of runoff reaching the coastal waters at the end
of the wet season (∼April), which coincided with the timing of
our VDG 2012 wet season field campaign (Table 1A), explains
the lower salinity observed during this seasonal sampling.
Terrestrial runoff plays a role in CDOM characterization, by
changing its slopes and concentrations. Higher aCDOM(440)
values were observed during the wet season but surprisingly,
these concentrations were not found to be significantly different
from the dry season. Neither was a relationship found between
aCDOM and salinity, but it has to be stressed that the CDOM
dataset for the wet season was limited (N = 10), with only four
stations having salinities lower than 28 PSU. Further seasonal
sampling, in particular during the wet season and in DH, is
required.

Our results showed that there was, statistically, no spatial
(VDG vs. DH) or seasonal (dry vs. wet) differences in Chl-
a concentrations. But within the VDG however, there was an
inshore-offshore Chl-a gradient: stations close to the Alligator
Rivers and Mary River featured Chl-a from 1.3 up to 2.8
mg.m−3, steadily decreasing to 0.5 mg.m−3 in the Dundas Strait
(Figures 1, 2A). This distribution, which was not necessarily
reflected in the other properties (beside possibly CDOM;
i.e., Figure 2), is associated with the nutrient stock being
concentrated mostly along the coastline and in the eastern

embayment of the Gulf (VDG) due to the presence of the
boundary layer that allows phytoplankton to grow (Figure 14).
In DH, a similar mechanism occurs whereby the upper harbor
is characterized by a longer water residence time (exceeding 20
days; Williams et al., 2006) in comparison to the inner section
(Figure 14). It takes up to 22 days for the nutrients located
in the upper section of the harbor to reach the sea (DHAC,
2010).

Chl-a is an indicator of phytoplankton biomass and
light availability is undeniably playing a central role in the
phytoplankton production in this study region: while it was
found that phytoplankton production is highest in the wet season
(e.g., Blondeau-Patissier et al., 2014), it is limited during the dry
season possibly because of the high turbidity from the water
column mixing, generated by both the shallow bathymetry and
strong, dry seasonal winds, which will limit light penetration.
This as reflected by lower PPC/PSC ratios and lower Chl-a
concentrations found in the center of the VDG during the dry
season (Figure 2A). Wet season river discharges release large
amounts of nutrients and, together with the release of CDOM, are
likely to fuel the primary productivity (e.g., Burford et al., 2011).

Previous studies on subtropical estuarine systems of the South
East Australian coast have shown the pronounced effect of short-
timescale variability in dissolved and particulate matter (particle
size, composition) due to the spring-neap tidal cycle (Oubelkheir
et al., 2006), stressing the need to take into account the tidal
phase in the sampling strategy. Shi et al. (2011) demonstrated that
the magnitude of the spring-neap tidal cycle on the variations of
satellite-derived Kd(490) and TSS was comparable to the seasonal
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FIGURE 11 | Photo-acclimation and photo-adaptation processes in the NMR. Pigment ratios as a function of Chl-a. (A) photosynthetic carotenoids to Chl-a

ratios; (B) non-photosynthetic carotenoids/Chl-a ratios; (C) Chl-b to Chl-a ratios; and (D) Chl-c to Chl-a ratios. Fuxoxanthin and zeaxanthin as a function of Chl-a are

shown in (E,F), respectively.

effect observed in their coastal region of SE Asia. The tidal range
in their study region was comparable (∼3 m) to that observed
during our study of the VDG. Oubelkheir et al. (2014) also

emphasized the role of short-term processes, such as wind stress
and tides, as key drivers of the dissolved and particulate material
in the shallow and dynamic subtropical environment of Moreton
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FIGURE 12 | Relationships between phytoplankton and Chl-a. Reference models from Bricaud et al. (1995) (A–C) dotted line; Bricaud et al. (2004) (B) dash-dot

line, and Bricaud et al. (2010) long dash line are shown.

Bay (SE Queensland). In our study, the sampling strategy was
primarily to ensure our stations had a large spatial distribution
rather than to sample the small-scale temporal variability due to
the tides, thus the tidal phase was not taken into account. This
should be addressed in future field campaigns in this region, as
the spring-neap tidal cycles affect both the properties sampled in
the field and satellite-derived ocean color products.

A System Driven by CDOM and NAP
Characteristic of coastal waters, most optical properties and some
of the biogeochemical concentrations sampled during these three
field campaigns cover a large range of variability (Table 2). While
aNAP(440) (coefficient of variation = 252%), atot(555) (CV =

159%), and bbp(555) (CV = 167%) are the IOPs that varied
most across seasons and locations, aphy(440/676) (15%) and Chl-
a (45%) were amongst those parameters that varied the least.
Our results highlight that the optical properties of our coastal
system (VDG in particular) was mostly driven by NAP during
the dry season and CDOM during the wet season, with little
influence of phytoplankton on the total absorption budget at
440 nm. Sources of NAP include phytoplankton bio-products and

non-algal detritus and we concluded that NAP in the VDG did
not originate from phytoplankton but rather from sediment. This
is supported by the weak correlation of NAP with both Chl-
a (R2 = 0.33; N = 55) and aphy (R2 < 0.10; N = 52), while

being significantly correlated with TSS (R2 ∼ 0.50; N = 55). The
important (∼84%) contributions of aCDOM(440) and aNAP(440)
masked the contribution due to phytoplankton, which at ∼16%
was below the contribution of aphy(440) to the total absorption
budget (20–60%) obtained in European coastal waters by Babin
et al. (2003b).

For our study, it was found that only ∼10% of the
phytoplankton cells counted during the 2013 dry field campaign
were viable, thus indicating that the productivity must be
due to a contribution from the microbial population in this
system. The UV spectroscopic characteristics of the DOC
sampled in the VDG during the dry season of 2013 (low
absorbance at 350 nm) are consistent with organic matter
that has been subjected to bacterial degradation (Figure 13).
Our results therefore suggest that the DOC of the dry season
samples may have a different chemical character from the DOC
delivered during the wet season. The size of the DOC fraction
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FIGURE 13 | (A) EEM spectral slope ratios (Sr) showing a decline through the

course of the 2013 dry season field campaign from the VDG to DH and (B)

relationship between aCDOM and the EEM spectral slope in the UV.

in the samples remained stable, indicating possible shifts in
microbial community structure, which would be expected in a
tropical environment. Analysis of the FDOM from the EEM
also suggested that during the dry season, the material was
composed mostly (∼70%) of aromatic organic carbon (Weishaar
et al., 2003) with a relatively constant spectral slope (0.029 ±

−0.003), therefore inferring that only a small fraction of the
DOC was derived from terrestrial sources (Fichot and Benner,
2012). The underlying assumption that CDOM properties can be
inferred from DOC concentrations (Shanmugam, 2011; Hestir
et al., 2015) was, however, not verified in this dataset. Other
recent studies also reported the complete lack of relationship
between DOC and CDOM (e.g., Nelson and Siegel, 2013) because
the controlling factors for DOC and CDOM were different
(Yamashita et al., 2013).

Regional Differences during the Dry
Season
The waters of the VDG were found to have a higher scattering
component than the waters of DH, largely contributing to higher

beam attenuation during the dry season in particular. This result
is consistent with the higher TSS concentrations found in the
VDG (dry) in comparison to DH (e.g., Figure 2B). The two
environments were sampled over different tidal conditions, as
the sampling in DH only occurred during neap tides. The fetch
length—much larger in the VDG—and the seasonal forcing are
most likely explaining the significant differences between the two
locations. The VDG is ∼130 km wide from the shore to the tip
of the Cobourg Peninsula (Figure 1), thus offering much more
ocean surface for the wind to generate sea surface roughness and
resuspension. The harbor in comparison, is 15 km wide, mostly
protected from the wind and its entrance is the section the most
influenced by incoming waves from the ocean.

There were distinct differences in phytoplankton pigments,
composition and cell counts between the samples collected in
the VDG and those collected in DH (Figure 1). From cell counts
and identification during the 2013 dry season field campaign,
diatoms were present at 23 of the 33 stations sampled in the VDG
during the dry season. This microphytoplankton dominance
was also observed by Burford et al. (1995) in the neighboring
Gulf of Carpentaria, suggesting possible similarities between
the two gulfs; picophytoplankton however, was predominantly
present in DH. It can be inferred that at the time of the
2013 field sampling, the higher number of cyanobacteria cells
indicates a marine influence in DH. There was a low number
of phytoplankton cell counts for most samples (∼250 cells/L)
overall, possibly due to the low productivity at this time of
year (e.g., Blondeau-Patissier et al., 2014). In contrast, a greater
diversity in phytoplankton cells was found in the Gulf. This is
explained by the higher levels of nutrients being available in
the VDG while DH’s primary production is limited, mostly by
nitrogen (Burford et al., 2008; Figure 14; Table 4). Differences in
nutrient concentrations between the two locations was expected
because the oceanic and VDG waters are known to be richer in
nutrients in comparison to DH (Wolanski et al., 2006). Nitrate
and phosphate concentrations are relatively low in the VDG
(Table 4) but silicate is mostly present, explaining the large
dominance of diatoms in the VDG (Condie and Dunn, 2006).

CDOM was not found to be different between the two
locations, yet it has an inshore-offshore pattern (Figure 2C) with
an evident decrease from the inner (0.17 m−1) to the outer
(0.08 m−1) harbor for DH. We hypothesize that during the
wet season, the larger amount of CDOM delivered from river
runoff would compare differently to that of DH, as the amount
discharged into the Gulf (e.g., East Alligator River discharge: 7
GL/yr) is much larger than the amount of CDOM that would
discharged in DH (e.g., Elizabeth River discharge: 3 GL/yr).
The relative contributions of the three absorption components,
namely aphy(λ), aNAP(λ), and aCDOM(λ), were investigated in
this study and showed that DH was mostly characterized by
approximately equal contributions of aNAP(λ) and aCDOM(λ),
while aNAP(λ) was predominant in the VDG. The role of SNAP
is poorly understood but this parameter is often found to be
stable across marine environments (Matsuoka et al., 2011). This
was not the case in this study as SNAP(λ) was significantly
different between the two regions with significantly higher
slopes in the VDG. This difference is likely related to the
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FIGURE 14 | Boxplots of the nutrient budget for VDG and DH (inner and

outer harbor). Note change of scale.

particle assemblage characterizing the two regions, also reflected
in b˜bp(555). In contrast, the dominance of organic material
during the wet season months is consistent with an enhanced

TABLE 4 | Nutrient budget for the two regions (in µmol.L−1) as sampled

during the 2013 dry season field campaign.

Nutrient species Van diemen Gulf (N = 18) Darwin harbour (N = 10)

Ammonium 0.47 ± 0.20 0.32 ± 0.08

Phosphate 0.15 ± 0.05 0.08 ± 0.02

Nitrate 0.24 ± 0.24 0.08 ± 0.05

phytoplankton productivity, as reported in Blondeau-Patissier
et al. (2014). In the Gulf of Carpentaria, Burford and Rothlisberg
(1999) also reported higher integrated primary production (∼955
mg.C.m−2.day−1) during the wet season months, therefore
supporting this finding. Both bp555 (R2 = 0.97; N = 48) and
bbp 555 (R2 = 0.80; N = 36) were found to strongly co-vary
with c555 in DH and VDG, with the high b/c ratio (>90%)
emphasizing that standard ocean color algorithms would likely
fail in these waters, hence supporting the necessity to use a
regional algorithm with an (S)IOP-based parameterization for
the derivation of accurate water quality products in VDG and
DH. Table 5 provides a list of selected relationships between key
(S)IOP and concentrations.

Challenges for Remote Sensing of Water
Quality in the NMR
The effect of tidal currents on the spatial variability of suspended
sediments can easily be observed from space using satellite
observations. Figure 15 shows the two MODIS-Aqua (NASA)
images covering the study region at a 250-m resolution during
the 2013 dry season field campaign. Tidal currents are stronger
during spring tides resulting in a more contrasted spatial
distribution of suspended sediments, in comparison to neap
cycles. This highlights yet another challenge in these highly
dynamic environments: the scaling difference—while the satellite
integrates over a larger area, the ground measurements represent
point observations and their direct comparability, with respect to
the satellite observations, may be questioned.

A previous study on the dynamics of phytoplankton blooms
in the VDG from the MERIS mission (Blondeau-Patissier et al.,
2014) found that an increase in TSS was occurring predominantly
during the dry season. This observation is supported by the
findings of the present work (Tables 2, 3). MERIS sensor
estimates of dry season TSS concentrations from the 2014 satellite
study were much lower (4 ∼ 10 mg.L−1) when compared to
the results from these field samples. A total of 10 stations
(with associated biogeochemical measurements) from the dry
(N = 4) and wet (N = 6) season field trips in the VDG were
located within the water mass cluster selected for the satellite
study (see Figure 5B of Blondeau-Patissier et al., 2014). For
these station locations, in situ TSS was found to increase from
an overall average of 4 mg.L−1 during the wet season to 30
mg.L−1 during the dry season. This ∼10-fold increase in TSS
concentrations between seasons was observed in the MERIS
satellite study, but it is important to recall that only few (N =

4) dry season stations in the VDG were used for this comparison.
Conversely, in situ Chl-a concentrations weakly increased from
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TABLE 5 | Summary of selected relationships.

x y N Model R2

Chl-a TSS 55 y = 0.47x + 1.23 <0.1

Chl-a POC 29 y = 1444x0.19 0.40

POC TSS 29 y = 1.15x0.05 0.14

bbp(555) TSS 36 y = 0.01x6.77 0.53

bbp(555) bp(555) 37 y = 0.03x1.08 0.84

bp(555) TSS 44 y = 0.72x0.35 0.39

ap(440) TSS 51 y = 0.09x0.25 0.30

bbp(555) c(555) 36 y = 0.023x1.19 0.80

SCDOM aCDOM(440) 38 y = 0.008x−0.21 0.31

SNAP aNAP(440) 56 y = 0.015x0.09 0.51

Chl-a aCDOM(440) 37 y = 3.37x+0.36 0.20

DOC aCDOM(400) 55 y = 0.77x+0.99 0.14

aphy(440/676) Chl-a 50 y = 2.08x−0.14 0.24

aphy(440) Chl-a 50 y = 0.06x0.62 0.55

aphy*(440) Chl-a 50 y = 0.06x−0.42 0.35

The number of samples, N, varies due to quality control.

0.6 to ∼0.75 mg.L−1. We can only interpret this comparison
with caution for at least two reasons: first, because of the limited
in situ dataset used for this exercise, and second because of
the seasonal dominance of CDOM and NAP in this system
which will inevitably hamper accurate satellite retrievals, of Chl-
a in particular. This discrepancy also highlights the need to
parameterize a region-specific remote sensing algorithm for the
NMR. A seasonal parameterization, based on the wet and dry
season in situ optical observations presented in this study, has
been applied to MODIS-Aqua imagery of the VDG (Schroeder
et al., 2015).

In recent years, ocean color remote sensing has provided
a powerful means for studying ocean biogeochemistry and
ecosystems over large spatial scales (Gardner et al., 2006;
Tang, 2011; Swirgon and Stramska, 2015). Both the dissolved
and particulate fractions of organic carbon can affect light
penetration, and thus, optical properties may be used as proxies
for DOC and POC (Pan et al., 2014), but satellite retrievals of
these parameters may be a major challenge in the NMR because
of their poor correlation with any of the variables measured. It
is known that the use of optical proxies for satellite retrieval
of POC is not straightforward because of the highly variable
relationships between parameters (e.g., Cetinić et al., 2012). In
the VDG, the maximum POC concentrations were found to be
much higher than in other coastal systems, such as Chesapeake
Bay (Fisher et al., 1998). For this study, POC was found to be
strongly correlated with Chl-a (R2 = 0.40; N = 29) and less so
with TSS (R2 = 0.14; N = 29), probably due to the composition
of both the POC and the phytoplankton community (Zhu et al.,
2006;Wang et al., 2009; MacIejewska and Pempkowiak, 2014a,b).

Of particular interest from a coastal ecosystem-based
management point of view is the development of ecological
indicators from ocean color remote sensing, such as seasonal
cycle of phytoplankton biomass, spatial distribution of
phytoplankton types or the delineation of ecological provinces

FIGURE 15 | Large spatial variability of suspended sediment depending

on the tidal energy: MODIS-Aqua 250-m resolution images during the

dry season 2013 field campaign. (A) 12 September 2013 (spring tide) and

(B) 14 September 2013 (neap tide).

(Platt and Sathyendranath, 2008). These require accurate in
situ bio-optical measurements of phytoplankton absorption
and chlorophyll to be used for remote sensing algorithm
parameterization and validation. Long-term (>10 years)
satellite-time series are now commonly used to assess trends
in the productivity of coastal and ocean regions, and it is
always stressed that well-calibrated ocean color sensors and
algorithms are paramount to these estimates (e.g., Signorini
et al., 2015). First and foremost, sea-truth measurements
must be performed as closely as possible—both spatially
and temporally—to the satellite observations if they are to
be used for the validation of remote sensing algorithms. In
highly dynamic coastal environments such as those of this
study, it is recommended that in situ measurements be used
only from samples collected within less than ±30 min of the
satellite overpass to minimize bias (Martinez-Vicente et al.,
2003). Independent of the match-up, the choice of the satellite
algorithm, as well as its parameterization, is also an important
factor. Aurin and Dierssen (2012) tested the performance
of four semi-analytical algorithms at retrieving optical and
biogeochemical properties in the complex waters of Long Island
Sound (North Atlantic), a coastal system very similar to our
region because of its comparable high proportion of CDOM
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and NAP and its low (<20%) phytoplankton contribution to
the total absorption. The quasi-analytical algorithm (QAA; e.g.,
Lee et al., 2010) was found to perform better [in comparison to
the three other models tested, namely, a linear matrix inversion
(LMI)-type algorithm, GSM and C99] because both SNAP and
SCDOM were relatively stable in space and time. This is not the
case for SNAP in our study.

CONCLUDING REMARKS

The continental shelf of the NMR is the widest on the Australian
continent, it is also one of the most pristine coastal environments
worldwide (Morrison and Delaney, 1996; Halpern et al., 2008).
Currently, the Northern Territory has no specific coastal
management legislation or coastal climate change policy in place.
Catchments of this region and the coastal marine environment
are highly connected, yet the VDG lacks a coastal environmental
monitoring program extending beyond the boundary of the
well-managed Kakadu National Park. Therefore, long-term
monitoring of key bio-physical coastal water quality parameters
of the VDG, from in situ and satellite observations, would be of
benefit to the regional environmental management. But, to date,
the lack of in situ optical datasets in the NMR has limited the
derivation of regional ocean color satellite algorithms for this
region.

The dataset presented in this study fills this gap and is the first
collected in the tropical, optically complex coastal waters of VDG
and DH. Results from this study generally show that these two
regions are separate coastal environments with different optical
characteristics. The VDG was found to be mostly dominated by
CDOM during the wet season and NAP during the dry season,
while DH has a mixed absorption budget. The phytoplankton
populations are also different, with the VDG being characterized
by bigger phytoplankton cells (diatoms) in comparison to DH,
due primarily to differences in nutrient stocks (Table 4) and
light availability. The strong, south-easterly winds and the tidal
energy are a combination that increases water turbidity in the
Gulf during the dry season, thus limiting light penetration and
hence phytoplankton growth. This study did not allow for a
detailed assessment of the seasonal effect on optical properties
and concentrations in DH. Additional field observations during
the wet season would be necessary to seasonally characterize this
environment.

From a remote sensing point of view, algorithm developments
should focus on the synergistic use of new geostationary
satellites such as the recently launched (October 2014)
Advanced Himawari Imager (AHI) onboard Himawari-8
(Japan Meteorological Agency, JMA) in combination with
polar-orbiting sensors. Geostationary instruments offer far
greater temporal imaging resolution—up to 10 min intervals
using Himawari-8—and have therefore the potential to resolve
the bio-optical variability due to semi-diurnal tidal cycles.
The performance of a seasonally parameterized MODIS-Aqua
algorithm at retrieving CDOM, NAP, and Chl concentrations in
the VDG is evaluated in Schroeder et al. (2015). This regional
algorithm is based on the aLMI approach of Brando et al.

(2012) and the dataset presented in this study was used for its
parametrization.
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Tide-Driven Changes in Turbidity,
Chlorophyll Concentration and
Oyster Physiological Response at the
Scale of an Oyster Farm
Pierre Gernez 1*, David Doxaran 2 and Laurent Barillé 1
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The algorithms of Novoa et al. (2017) and Gons et al. (2005) were recalibrated and

applied to Sentinel2 data to retrieve suspended particulate matter (SPM) and chlorophyll

a (chl a) concentration in the environmentally and economically important intertidal zones.

Sentinel2-derived chl a and SPM concentration distributions were analyzed at the scale

of an oyster farm over a variety of tidal conditions. Sentinel2 imagery was then coupled

with ecophysiological modeling to analyze the influence of tide-driven chl a and SPM

dynamics on oyster clearance and chl consumption rates. Within the studied oyster

farming site (Bourgneuf Bay along the French Atlantic coast), chl consumption rate

mirrored the changes in chl a concentration during neap tides, whereas oyster clearance

and chl consumption rates were both negatively impacted by high SPM concentration

during spring tides.

Keywords: Sentinel2, ocean color, chlorophyll, turbidity, oyster, aquaculture, microphytobenthos, mudflat

INTRODUCTION

One of the most striking features of the intertidal zone is the formation of microphytobenthos
(MPB) biofilms at sediment surface during those low tides that occur in daylight (MacIntyre et al.,
1996; Paterson et al., 1998; Jesus et al., 2009). In many mudflat MPB biofilms are visible from space,
and they have been studied using airborne and satellite remote sensing (Méléder et al., 2003; van
der Wal et al., 2010; Kazemipour et al., 2012; Brito et al., 2013). Although MPB main ecological
functions are carried out when it is organized in the form of biofilms, benthic microalgae can also
be resuspended into the water column together with other sedimentary particles throughout the
tidal cycle (Koh et al., 2006; Ubertini et al., 2012). This can result in significant enrichment of
nearshore waters with a high concentration of chlorophyll a (chl a) that becomes available food
for suspension feeders such as the Pacific oyster Crassostrea gigas and other commercially and
ecologically important bivalves (Kang et al., 2006; Choy et al., 2009). In coastal zones, despite the
high contribution of tidal flats to primary production (Underwood and Kromkamp, 1999), the
spatial distribution and temporal dynamic of chl a concentration in intertidal waters has been little
studied using ocean color remote sensing so far.
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In the optically complex and very diverse coastal zone,
separating the contribution of chl a from other colored
constituents [namely particulate inorganic matter (PIM), and
colored dissolved organic matter (CDOM)] in the water column
is notoriously difficult due to the rapidly changing concentrations
of CDOM and PIM coming from sediment resuspension, river
plume, and land runoff (Blondeau-Patissier et al., 2014). In turbid
tidal flat and adjacent coastal areas, the main challenge arises
from the difficulty to detect chl a from the high load of suspended
particulate matter (SPM). In estuarine and nearshore waters,
algorithms based on the analysis of the chl a absorption band
in the near-infrared (NIR) spectral region around 675 nm were
demonstrated to generally outperform other methods (Le et al.,
2013).

Due to its spectral characteristics (namely the red and NIR
spectral bands at 665 and 705 nm), we hypothesize that the
Multi Spectral Imager (MSI) onboard Sentinel2 has the potential
to quantify chl a concentration in turbid waters, provided that
these waters are exposed to resuspension of benthic microalgae.
Besides its relevant spectral characteristics, Sentinel2 also offers
the advantage of high spatial resolution (20 m), making it
possible to observe narrow bays and estuaries where shellfish
farms are usually located. The first objective of the present study
is therefore to analyze the potential of Sentinel2 for shellfish
aquaculture monitoring, andmore specifically to test the retrieval
of SPM and chl a concentration in a turbid oyster farming
ecosystem. The second objective is to analyze the tide-driven
influence of SPM and chl a variability on oyster ecological
response at the scale of an oyster farm. For that purpose,
and building on previous studies (Gernez et al., 2014; Thomas
et al., 2016), Earth Observation (EO) and shellfish physiological
modeling were interconnected in order to remotely quantify
the influence of rapidly changing environmental conditions on
oyster clearance and chl consumption rates.

MATERIALS AND METHODS

Study Site
Bourgneuf Bay is a macrotidal bay along the French Atlantic
coast, mostly constituted of mudflats, and widely used for
shellfish aquaculture (oyster annual yield was 5,330 tons in 2010,
Dessinges et al., 2012). In the present study, a focus was made on
a shellfish farming site located at the northern limit of the oyster
aquaculture zone (Figures 1, 2). Due to tidal resuspension, SPM
concentration seldom decreases below 50 g m−3 and regularly
exceeds 500 g m−3. As a too high SPM concentration impacts
oyster clearance rate and other physiological functions (Barillé
et al., 1997), oysters grown in this farming site are negatively
impacted by high SPM concentration (Gernez et al., 2014). Daily
mean chl a concentration was reported to vary between 4 and
14mg m−3 (Dutertre et al., 2009), and monthly means between
5 and 30mg m−3 were previously reported at the study site
(Barillé-Boyer et al., 1997).

In situ Data
Field data were acquired during two bio-optical cruises in
Bourgneuf Bay from 08 to 12 April 2013 and from 12 to 13 April

FIGURE 1 | Bourgneuf Bay on the French Atlantic coast. Intertidal zone,

oyster farms, and sampling stations are shown in gray, black, and white

symbols, respectively. The location of the rectangle corresponds to the oyster

farm’s region of interest (ROI).

2016 in the frame of the ANR GIGASSAT and FP7 HIGHROC
projects, respectively. During both cruises, water sampling and
radiometric measurements were performed following the same
protocol. Sampling stations were located nearshore, mostly
within the intertidal zone and in the vicinity of farming sites
(Figure 1). Sampling took place at different times of the tidal
cycle in order to acquire reflectance spectra over a wide range of
SPM and chl a concentration. The same flat-bottomed barge was
used during both cruises. This kind of vessel makes it possible
to navigate throughout the shallow intertidal waters, even during
low tide. Some stations were visited when the water depth was as
low as 0.5 m. The bottom was never visible from above surface,
even at the shallowest station due to the extremely high turbidity.

Radiometric Data
Above-water radiometric measurements were conducted
following standard protocols (Mueller et al., 2000) to determine
the spectral water-leaving radiance reflectance (also commonly
referred as the marine reflectance), ρw(λ), defined as:

ρw(λ) = π[Lu (λ)− ρsky Lsky(λ)]/Ed(λ) (1)

where Lu (λ) is the upwelling radiance from the water and air-
sea interface measured at a zenith angle of about 37◦, Lsky(λ)
is the sky radiance, ρsky is the air-water radiance reflection
coefficient, Ed(λ) is the above-water downwelling irradiance, and
λ is the wavelength. The barge was oriented away from the sun
to avoid shadowing effects. Radiance sensors were pointed at a
solar azimuth angle between 90 and 135◦. The radiometric data
were acquired simultaneously during about 5 min of stable sky
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FIGURE 2 | Rayleigh-corrected Sentinel2 Red Blue Green (RGB) image

of the oyster farming site during low tide the 30 September 2015 (A),

and during high tide the 15 March 2016 (B). The mudflat is emerged during

low tide, and the oyster tables are visible from above. During high tide, oyster

tables are not visible due to the extremely high turbidity.

conditions using three TriOS radiometers, two measuring the
radiance signal and one measuring the downwelling irradiance.

A thorough quality control was made and only clear sky data
were selected. Wave height was <0.5m and wind speed was
<5.0m s−1 during both cruises. The ρsky coefficient was taken
as 0.02 following Austin (1974). The TriOS data were averaged
over the time span of the measurement, smoothed over a 10 nm
moving-window, cut within 400 and 900 nm (Figure 3A), and
then spectrally downgraded at the resolution of the MSI onboard
Sentinel2 using the spectral response function provided by the
European Space Agency (Figure 3B).

Seawater Samples
Seawater samples were collected just below the surface
concomitantly with radiometric measurements. Seawater

FIGURE 3 | In situ marine reflectance ρw(λ) at TriOS (A), and Sentinel2

(B) spectral resolution.

samples were stored in 1 l bottles until they were filtered in
the laboratory in the evening. The turbidity, T (in Formazin
Nephelometric Unit, FNU), of each water sample was determined
in triplicate using a 2100Q portable turbidimeter (Hach
Company, Loveland, CO, USA) in order to optimize the volume
of filtered seawater as in Neukermans et al. (2012). SPM, defined
as the dry mass of particles per unit volume of seawater, was then
determined using a standard gravimetric technique. Measured
volumes of seawater (between 10 and 200 ml depending of the
turbidity of the sample) were filtered through 25 mm diameter
preweighed Whatman GF/F glass-fiber filters. At the end of
filtration, sample filters were rinsed with deionized water to
remove sea salt. The filters were frozen and shipped at the
Laboratoire d’Océanographie de Villefranche (LOV). The dry
mass of particles collected on the filter was then measured with a
MT5 microbalance (Mettler-Toledo Intl. Inc.) with a resolution
of 0.001 mg. A significant relationship between SPM and T was
obtained (p < 0.01).

Depending on the turbidity, between 10 and 300 ml of
seawater was also filtered through 25 mm GF/F filters for high
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performance liquid chromatography (HPLC) pigment analysis.
The filters were frozen in liquid nitrogen and shipped for analysis
at LOV, where HPLC analysis was performed according to Ras
et al. (2008). The total chlorophyll a (chl a) concentration
was computed as the sum of the “true” chlorophyll a, divinyl-
chlorophyll a, and chlorophyllide a.

Bio-Optical Algorithms
Chlorophyll a Algorithm
Several algorithms are available for Sentinel2/MSI (Beck et al.,
2016; Toming et al., 2016) to retrieve chl a concentration from
ρw(λ) in coastal waters. For our study site, an intercomparison
exercise based on in situ measurements demonstrates that the
chlorophyll-retrieval algorithm of Gons et al. (2005) provided
the most satisfactory results (see Supplementary Information for
more details). This algorithm was originally developed for the
Medium Resolution Imaging Spectrometer (MERIS) using the
bands at 665, 705, and 775 nm (Gons, 1999; Gons et al., 2002,
2005). It was applied here to Sentinel2/MSI using bands B4
(665 nm), B5 (705 nm), and B7 (783 nm). Due to the shift from
775 to 783 nm, a recalibration has been performed to update the
algorithm to Sentinel2/MSI. The chlorophyll-retrieval is done in
three steps. First, the backscattering coefficient (bb) is estimated
from ρw at 783 nm:

bb(783) = 1.56 ρw(783)/[0.082− 0.6 ρw(783)] (2a)

Note that Equation (2a) is specific to Sentinel2/MSI, and replaces
the original equation for MERIS:

bb(775) = 1.61 ρw(775)/[0.082− 0.6 ρw(775)] (2b)

Second, the phytoplankton absorption at 665 nm is retrieved
from a NIR/red band ratio:

aphy(665) = (0.70+ bb)ρw(705)/ρw(665)− 0.40− b
p

b
(3)

where p is a unitless tuning parameter. Third, chl a concentration
is computed by division with the chlorophyll-specific absorption
coefficient at 665 nm, a∗

phy
(665):

[chl a] = aphy(665)/a
∗

phy(665) (4)

It is assumed in Equation (3) that bb(λ) is spectrally neutral
between 665 and 783 nm, and that at 665 nm the absorption
by chlorophyll a and by pure seawater is much higher than the
absorption by mineral particles and CDOM.

The parameters a∗
phy

(665) and p were initially estimated

using a large dataset of field measurements from diverse inland,
estuarine and coastal waters (Gons, 1999; Gons et al., 2002, 2005).
For our study site in Bourgneuf Bay, a∗

phy
(665) was recalibrated

to 0.133 m2 (mg chl a)−1 (standard error is 0.002m2 (mg chl
a)−1) and p to 1.02. The recalibration was done using a fitting
procedure based on a root mean square error minimization
(Figure 4).

FIGURE 4 | (A) Linear regression between the measured and simulated

chlorophyll a concentration, obtained from in situ measurements. The thick line

shows the fit between 4 and 52.5mg m−3. The fit was used to calibrate the

Gons et al. (2005) algorithm. (B) Linear regression between the measured and

simulated suspended particulate matter concentration, obtained from in situ
measurements. The thick line shows the fit between 10 and 700 g m−3. The fit

was used to calibrate the Novoa et al. (2017) algorithm.

SPM Algorithm
The SPM concentration was computed using a multi-conditional
algorithm previously developed for Bourgneuf Bay and the Loire
estuary (Novoa et al., 2017). This algorithm has been validated for
the Operational Land Imager (OLI) onboard Landsat8 (Novoa
et al., 2017). A spectral recalibration has been performed here
so that the algorithm could be applied to Sentinel2/MSI using
bands B4 (665 nm) and B8A (865 nm). The algorithm is based
on a switching method that automatically selects the most
relevant SPM vs. ρw relationship to avoid saturation effects at
high turbidity. The final SPM concentration is computed as a
dynamic combination of SPM retrievals in the red and NIR
bands:

[SPM] = α[SPM]red + β[SPM]NIR (5)
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where [SPM]red, [SPM]NIR, α, and β are defined as:

[SPM]red = 297ρw(665) / [1− ρw(665)/0.1238] (6)

[SPM]NIR = 4302ρw(865) / [1− ρw(865)/0.2115] (7)

α = log[0.090/ρw(665)] / log(0.090/0.046) (8)

β = log[ρw(665)/0.046] / log(0.090/0.046) (9)

Due to the shift from 655 nm (Landsat8/OLI) to 665 nm
(Sentinel2/MSI) the coefficients used in Equation 6 were
recalibrated for Sentinel2/MSI using a fitting procedure based
on a root mean square error minimization (Figure 4). The
coefficients used in Equations (7–9) are the initial values
computed by Novoa et al. (2017).

Satellite Data and Processing
Atmospheric Correction
Ortho-rectified, geo-located, and radiometrically calibrated
top-of-atmosphere (TOA) reflectance Sentinel2 images were
downloaded in the SAFE format from the US Geological
Survey web portal (https://earthexplorer.usgs.gov). A single
scene can contain multiple granules (sub-tiles), but the USGS
web portal makes it possible to directly download Sentinel2
data at granule level, thus reducing downloading and processing
time. Sentinel2 TOA data was processed using the ACOLITE
software (http://odnature.naturalsciences.be/remsem/software-
and-data/acolite) to derive the water-leaving radiance. This
software proposes two options for the atmospheric correction
(AC): (i) the NIR algorithm based on the assumption of spatial
homogeneity of the red/NIR ratio for aerosol and marine
reflectance (Ruddick et al., 2000; Vanhellemont and Ruddick,
2014) using Sentinel2 spectral bands at 665 and 865 nm, (ii)
and the SWIR algorithm based on the assumption of zero water-
leaving reflectance in the SWIR, using Sentinel2 spectral bands
at 1,610 and 2,190 nm (Vanhellemont and Ruddick, 2015, 2016).
ACOLITE establishes a per-tile aerosol type (or epsilon) as the
ratio between the Rayleigh corrected reflectance in the two
aerosol correction bands, for pixels where the marine reflectance
can be assumed to be zero (i.e., where ρw(665 nm) <0.005, as
defined by Vanhellemont and Ruddick, 2014). The epsilon is
then used to extrapolate the observed aerosol reflectance to the
NIR and visible bands. For the SWIR algorithm, ACOLITE also
provides a choice for aerosol correction using a fixed epsilon over
the region of interest (ROI), or a per pixel variable epsilon.

As the NIR AC option is not adapted to turbid waters
(Vanhellemont and Ruddick, 2015), we used here the SWIR
AC option with a fixed epsilon over the ROI, as recommended
by several authors (Van der Zande et al., 2016; Novoa et al.,
2017; Tristan Harmel, personal communication). The ROI was
taken as Bourgneuf Bay and the Loire estuary (i.e., longitude
from −2.35 to −1.95◦E, and latitude from 46.85 to 47.35◦N).
The atmospheric correction is then performed in two steps: (i)
a Rayleigh correction for scattering by air molecules using a
look-up table generated using 6SV (Vermote et al., 2006), and
(ii) an aerosol correction based on the assumption of black
water reflectance in the SWIR bands due to the extremely high
pure-water absorption, and an exponential spectrum for multiple

scattering aerosol reflectance. Due to the low signal in the SWIR
wavelengths, a spatial smoothing filtering for these bands was
performed (Vanhellemont and Ruddick, 2016)

The final output of ACOLITE software is the ρw(λ) data
in Network Common Data Form (NetCDF). SPM and chl a
concentrations were then computed from ρw(λ) using the R
project for statistical computing (R Development Core Team,
2008).

Selection, Clustering, and Sorting of Satellite Data
In intertidal waters, the spatio-temporal distribution of in-water
suspended constituents is mainly driven by tidal dynamics. A
total of 12 clear sky images was selected in order to observe the
oyster farming site over a variety of seasonal, hydrological, and
tidal conditions (Table 1). The time difference between satellite
observation and low tide varied from <1 h to more than 5 h,
thus providing a set of images acquired from low to high tide.
The water height at the nearest reference harbor varied between
0.93 and 4.43 m, and the oyster farming site was observed over
a variety of tidal configurations, from almost full emersion to
complete submersion.

During the selected days of satellite acquisition the tidal range
varied from 2.75 to 6 m, encompassing neap and spring tides
(Table 1). The dataset was then divided in two subsets according
to the tidal amplitude so that images were either clustered into
neap tide (tidal amplitude <4 m) or into spring tide (tidal
amplitude >4 m).

Irrespective of their acquisition date, Sentinel2 data were
tidally sorted from ebb tide to flow tide according to the time
difference between satellite observation and low tide, and to
the water height at the time of acquisition. Sentinel2-derived
SPM and chl a concentration maps were thus clustered in 2
composite tidal cycles, either representative of neap or spring
tide. In order to investigate the influence of changes in SPM and

TABLE 1 | Sentinel2 data used in the present study.

Date Time Water height

(m)

Time of

low tide

Tidal range

(m)

Tide type

20150729 11:06 3.65 08:03 3.81 Neap

20150801 11:16 0.93 10:22 5.49 Spring

20150821 11:16 3.30 13:50 2.97 Neap

20150910 11:16 3.88 14:13 3.48 Neap

20160315 11:01 4.43 14:58 3.31 Neap

20160318 11:15 4.31 06:06 2.75 Neap

20160407 11:12 1.28 09:43 6.00 Spring

20160723 11:07 1.46 12:10 4.59 Spring

20160815 11:08 4.06 07:35 3.05 Neap

20160822 11:05 1.71 12:37 4.98 Spring

20161021 11:03 3.41 13:45 4.08 Spring

20161130 11:04 1.53 10:24 4.11 Spring

Tide information was taken from the service hydrographique et océanographique
de la Marine (SHOM) web portal using Pornic (France) as reference harbor
(http://maree.shom.fr/). All times are UT. Data acquired during neap and spring tides were
used in Figures 5, 6, 9, and in Figures 7, 8, 10, respectively.
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FIGURE 5 | Suspended particulate matter concentration during neap tides. Sentinel2 data were sorted following a composite tidal cycle from ebb tide (A–C) to

flow tide (D–F). Time difference between Sentinel2 acquisition and low tide is indicated, as well as the water height at the nearest reference harbor. The black

polygons show the location of oyster tables. The white lines show the isobaths from 0 to 6m above chart datum. The emerged part of the intertidal zone is in gray.

Circled crosses around isobaths 0, 1, and 2m show the points for which oyster clearance and consumption rates were computed (see Figures 9, 10).
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FIGURE 6 | Same as for Figure 5 but for chlorophyll a concentration.
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FIGURE 7 | Same as for Figure 5 but during spring tides. Note the change in the color scale.
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FIGURE 8 | Same as for Figure 6 but during spring tides.
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FIGURE 9 | Using Sentinel2 data shown in Figures 5, 6, composite tidal cycle of suspended particulate matter (SPM) concentration (A), oyster clearance

rate (B), chlorophyll a (chl a) concentration (C), and chl consumption rate (D) during neap tides at three bathymetric locations, as indicated.

chl a concentration on oysters, several physiological functions
were directly retrieved from satellite data, as described below.

Simulating Oyster Physiology from Space
Oyster clearance rate was computed from SPM concentration as
in Barillé et al. (1997) using a non-linear function response (see
also Figure 3 in Gernez et al., 2014). Briefly, oyster clearance rate
is constant and equal to 4.8 L h−1 when SPM concentration is
lower than 60 g m−3. Over this threshold the clearance rate is
negatively impacted by the high turbidity. It follows a linear and
decreasing trend between 60 and∼200 g m−3, and exponentially
collapses over ∼200 g m−3. This latter point corresponds to the
saturation of the oyster gills (Barillé et al., 1997). The chlorophyll
consumption rate, defined as the biomass of chl a consumed per
hour, is then computed as the product of the chl a concentration
by the clearance rate (Barillé et al., 1997):

CONS = [chl a].CR (10)

where CR and CONS are, respectively the oyster clearance and
chlorophyll consumption rates.

The clearance and chl consumption rates were simulated for
each pixel of the Sentinel2 images using satellite-derived SPM
and chl a data. In order to analyze the influence of the tide-
driven chl a and SPM dynamic on oyster physiological response,

composite tidal cycles of the clearance and chl consumption
rates were also computed for the neap tide and spring tide
clusters.

RESULTS

In situ Reflectance Spectra
In situ hyperspectral marine reflectance spectra show some
typical characteristics of coastal turbid waters (Figure 3A). From
400 to 580 nm ρw(λ) is relatively insensitive to changes in SPM
and chl a concentration, preventing the use of a blue to green
ratio algorithm to derive chl a concentration. From 600 to 900
nm the changes in the magnitude and spectral composition of
the marine reflectance are mainly driven by variation in SPM
concentration, notably as a result of particulate scattering.

In the red and NIR spectral region, the ρw spectra also
display several features associated with the presence of pigment-
bearing particles. An inflection in the reflectance slope is visible
around 632 nm, attributable to the absorption by both chl a
and chl c, a pigments association specific to diatoms (Méléder
et al., 2005). The most striking feature is however the trough
at 675 nm associated with chl a absorption, and the resulting
reflectance shift between 675 and 700 nm, generally referred
to as the NIR/red edge (Gons et al., 2002). Significant chl a
concentration was confirmed by the analysis of HPLC data.
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FIGURE 10 | Same as for Figure 9 but using Sentinel2 data shown in Figures 7, 8, during spring tides.

It most likely originates from the tide-driven resuspension
of benthic microalgae resuspended together with surface
sediments.

Though a significant loss of information results from the
downscaling of the TriOS hyperspectral reflectance to S2/MSI
spectral resolution, a NIR/red edge between 665 and 705 nm is
still noticeable on several S2-simulated ρw spectra (Figure 3B),
making it possible to apply the Gons et al. (2005) algorithm in
Bourgneuf Bay’s intertidal waters.

In situ Calibration of the SPM and Chl a
Algorithms
The SPM and chl a in situ data acquired concomitantly with the
ρw(λ) were used to calibrate the bio-optical algorithms using a
fitting procedure (Figure 4). In situ SPM concentration ranged
from 10.92 to 700.83 g m−3, with a mean of 146.53 g m−3.
Over this range, a significant relationship was obtained between
simulated and measured SPM concentration (p-value < 10−5,
correlation coefficient of 0.96, a slope of 0.93 and an intercept
of 0.32). For the SPM retrieval, the root mean square error was
56.26 g m−3.

The range of chl a concentration was from 3.97 to 52.51mg
m−3, with a mean of 18.48mg m−3. In the initial algorithm
of Gons et al. (2005), the chlorophyll-retrieval parameters were
originally set to p= 1.05 and a∗

phy
(665)= 0.014 m2 (mg Chl a)−1

using observations performed in a variety of inland, estuarine
and coastal waters over a range of chl a concentration from
1 to 181mg m−3 (Gons, 1999; Gons et al., 2002). For the
present study p was recalibrated to 1.02. A mean a∗

phy
(665) of

0.013 m2 (mg Chl a)−1 was obtained, a value consistent with
previously reported specific absorption coefficients for the Saint
Laurent Estuary (Bricaud et al., 1995), and for the Baltic and
North seas (Babin et al., 2003). The comparison between the
marine reflectance- and HPLC-derived chl a concentration was
satisfactory (Figure 4A). The obtained linear regression shows a
significant correlation coefficient of 0.93 (p-value< 10−5), a slope
of 1.02 and an intercept of −0.07. For the chl retrieval, the root
mean square error was 3.05mg m−3.

Chl a Concentration within the Oyster Farm
The high spatial resolution (20 m) and spectral characteristics
of Sentinel2 made it possible to quantify the distribution of
SPM and chl a concentration at the scale of an oyster farm
(Figures 5–8). Three main features characterized SPM and chl a
spatial distribution in the shellfish farming site. First, both SPM
and chl a concentrations are generally high, often exceeding 200 g
m−3 and 10mg m−3, respectively. Second, their spatial structure
depends on the bathymetry. SPM and chl a concentrations
generally increase coastward, and the changes observed in their
spatial distribution are more or less parallel to the isobaths (see
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for examples Figure 6C where the change in [chl a] from <5 to
>10mg m−3 occurred around the 1m isobath, and Figure 7D

where [SPM] displayed a clear gradient coastward). Third, the
tidal cycle is a significant driver of SPM and chl a dynamics.
Due to the tidal resuspension of benthic microalgae together
with the other particles of the sedimentary surface, the chl
a distribution was generally associated with SPM, a common
feature of intertidal mudflats (Koh et al., 2006). Spatial fronts
of highest chl a concentration generally move seaward during
ebb tide (Figures 6A–C, 8A–C), and coastward during flow tide
(Figures 6D–F, 8D–F).

SPM and chl a concentrations exhibited similar spatial pattern
during neap tide and spring tides, but the amplitude of the
changes in their concentrations varied markedly between neaps
and springs. For example, within the oyster farming zone SPM
concentration varied from <10 to 300 g m−3 during neap
tides and from 50 to >1,000 g m−3 during spring tides. Chl a
concentration varied from <5 to 25mg m−3 during neap tides
and from 10 to 40mg m−3 during spring tides.

The tide-driven variability was confirmed by the analysis
of SPM and chl a concentration at the three selected fixed
locations (black circled crosses in Figures 5–8). Both SPM and
chl a concentration increased during ebb tide, reaching their
maximum value during low tide and the start of the flow
tide, and eventually decreasing during the end of the flow
tide (Figures 9A,C, 10A,C). The temporal correlation between
SPM and chl a concentration is attributable to the tide-driven
resuspension of surface sediments, which contain both mineral
particles and benthic microalgae. As expected, the amplitude of
the tide-driven changes in SPM and chl a was higher during
spring than during neap tides.

The temporal changes in clearance and chl consumption rates
were then analyzed in order to quantify the influence of the
tide-driven SPM and chl a dynamic on the oyster physiological
responses.

Influence of SPM and Chl a Variation on
Oyster Physiology
During neap tides the simulated chl consumption rate mirrored
the changes observed in chl a concentration (Figures 9C,D).
This is attributable to the limited negative impact of SPM
concentration on the clearance rate (Figures 9A,B). Generally
SPM concentration remained below 100 g m−3 throughout the
composite tidal cycle, except during flow tide where SPM
concentration increased up to 175 g m−3 due to the erosion of
surface sediments by tidal currents. The clearance rate mostly
fluctuated between 4 and 5 L h−1, and the decrease which
occurred just after low tide was too small to counterbalance the
increase in chl consumption.

During spring tides the simulated oyster physiological
functions were more complexly affected by SPM and chl a tidal
variability (Figure 10). First, a significant part the intertidal zone
rapidly became emerged, and after mid-ebb the oysters could no
longer filter seawater nor consume particles (see plain lines in
Figure 10). In the waters just outside the intertidal zone, SPM
concentration rapidly exceeded 200 g m−3 due to the strong tidal

currents occurring from mid-ebb to the end of flow tide (dashed
and dotted lines in Figure 10A). Such high SPM concentrations
are known to saturate the oyster gills (Barillé et al., 1997), and it
resulted in the dramatic collapse of the clearance rate from mid-
ebb to the end of flow tide (Figure 10B). Meanwhile, the positive
effects of the tide-driven increase in chl a concentration were
rapidly counterbalanced by the collapse of the clearance rate, and
the chl consumption rate dropped to zero from mid-ebb to the
end of the flow (Figure 10D).

In summary, during neap tide, the tidal cycle in SPM
concentration does not negatively impact oyster physiological
response very much, and the low-tide increase in chl a
concentration was directly translated into an increase in chl
consumption for the farmed oysters. As most of the intertidal
zone remains immerged during neap tides, the altitudinal
location of the oyster farms has little influence on the tidal cycle of
the clearance and chl consumption rate (Figure 9). During spring
tides on the contrary, a significant fraction of the intertidal zone
is emerged. In the waters adjacent to the intertidal zone and in
the intertidal areas still under water, the high SPM concentration
negatively impacts both clearance and chl consumption rate,
whatever the chl a concentration, thus further limiting oyster
physiological activity during a significant fraction of the tidal
cycle (Figure 10).

DISCUSSION

Chl a Algorithms in Turbid Coastal Waters
The Gons et al. (2005) algorithm, recalibrated to Sentinel2/MSI,
was fitted to in situmeasurement (Figure 4) before being applied
to Bourgneuf Bay. The fit was satisfactory, as demonstrated by the
consistency of the value of a∗

phy
(665) with the literature (Bricaud

et al., 1995; Gons et al., 2002; Babin et al., 2003). Other algorithms
could have been used. Besides the Gons et al. (2005) method,
various approaches were previously developed for turbid and/or
eutrophic coastal and inland waters, including the 2-, and 3-band
models (Dall’Olmo et al., 2005; Gitelson et al., 2008; Le et al.,
2013), the fluorescence line height (FLH, Gower et al., 1999),
the maximum chlorophyll index (MCI, Gower et al., 2005), and
the 705 nm peak height (Toming et al., 2016). These algorithms
are all based on a NIR/red edge either associated with chl a
absorption at 675 nm or with sun-induced chl a fluorescence.
An obvious limitation of these NIR/red algorithms is the lack of
sensitivity in waters where the reflectance trough associated with
chl a absorption around 675 nm is hardly pronounced (see for
example the lowest ρw(λ) spectrum in Figure 3). In less eutrophic
waters (i.e., chl a concentration smaller than∼4mgm−3), the use
of blue-green wavelengths would be more relevant to retrieve chl
a concentration.

A recent study demonstrated that the 2- and 3-band
models (Dall’Olmo et al., 2005) worked well with simulated
Sentinel2/MSI-like imagery (Beck et al., 2016). In our algorithm
inter-comparison (see Supplementary Information), the most
performant method for our study site was the Gons et al. (2005)
algorithm. Besides its good performance, another advantage
of the Gons et al. (2005) algorithm is that the p and a∗

phy
(665)
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parameters seem to be relatively stable over a variety of coastal
waters, including the numerous inland, estuarine, and coastal
sites initially sampled by Gons (1999), and the intertidal waters of
Bourgneuf Bay. Additional field data are however needed to assess
the geographical robustness of a common set of parameters, as
well as its seasonal stability.While the range of chl a concentration
retrieved from Sentinel2 data in our study site was consistent
with previous field measurements (Barillé-Boyer et al., 1997),
the accuracy of the chl a concentration maps is more difficult to
quantitatively appraise due to the lack of validation data. More in
situ and match-up data are needed to improve the method.

Advantages and Limitations of Sentinel2
for Aquaculture Applications
The retrieval of chl a concentration using a NIR/red algorithm
is relevant in eutrophic waters, but at lower chl a concentration
the accuracy would probably decrease. It is then generally advised
to switch toward shorter wavelengths in the blue-green parts
of the visible spectrum. As far as Sentinel2 is concerned, the
lack of a spectral band at around 412 nm will certainly limit
the performance of chl a inversion methods, as it has been
long demonstrated that such a spectral band improves the
deconvolution of chl a, PIM, and CDOM absorption (Carder
et al., 1999). For sensors equipped with a spectral band at
412 nm such as MERIS, the ocean color 5 (OC5) algorithm
(Gohin et al., 2002) has been recently recommended in recent
intercomparison studies of the North West European (Tilstone
et al., 2017) and Vietnamese (Loisel et al., 2017) coastal waters. As
already indicated by Vanhellemont and Ruddick (2016), several
other limitations specific to Sentinel2 can also arise, due to
its relatively wide bands, low signal-to-noise ratio, and lack of
vicarious calibration.

Despite these issues, Sentinel2 offers four main advantages
for the remote-sensing of shellfish farming ecosystems. First,
its high spatial resolution (20m) made it possible to observe
aquaculture sites located nearshore, in narrow bays and estuaries
(Gernez et al., 2014), and to analyze within-farm spatial
variability. Second, its relatively small revisit time (which
is now 5 days since the launch of Sentinel-2B) increases
the probability of acquiring cloud-free data over a given
site. Sentinel2 acquisition frequency also limits subsampling
and observation biases for the study of rapidly varying
environments. There is no doubt that the Sentinel2 time-series
will strengthen observation robustness and statistical descriptors
of the very dynamic and changing coastal waters. Third, its
SWIR spectral band facilitates atmospheric correction over
turbid waters (Vanhellemont and Ruddick, 2015). Fourth, its
spectral resolution in the red and NIR spectral regions made it
possible to apply a variety of chlorophyll inversion algorithms
(see previous section). Altogether, these characteristics represent
a significant improvement for the remote sensing of turbid
oyster farming ecosystems, and more generally for coastal zone
observation.

Shellfish Ecology from Space?
The combination of EO and shellfish physiological models opens
new perspectives for aquaculture management, shellfish farming

ecosystems studies (Gernez et al., 2014), and more broadly for
a better understanding of the coastal ocean response to global
changes. For example, the poleward extent of the Pacific oyster
(a well-known invasive species, Herbert et al., 2016) along the
European coasts has been recently quantitatively analyzed using
an original coupling of EO with mechanistic physiological oyster
modeling (Thomas et al., 2016). In another recent study the
EO time-series archive has been used with climatic, biological
and energetics models to better understand predicted changes
in growth, reproduction and mortality risk for commercially
and ecologically important bivalves in the Mediterranean Sea
(Montalto et al., 2016).

Concurrently with the increase of EO aquaculture
applications, the development of improved satellite products
should not be neglected. The detection of phytoplankton species
causing harmful algal blooms (HABs) is a major concern
for fisheries and shellfish farming management (Sourisseau
et al., 2016), and recent algorithm developments have proved
useful to provide early warnings (Davidson et al., 2009) or
statistical estimation of HAB-related risks (Kurekin et al., 2014).
Enhanced characterization of the composition of the particulate
assemblage could also be used to improve satellite-derived
aquaculture products. For example, as oysters have the ability to
preferentially select organic rather than mineral particles before
ingestion (Barillé et al., 1997; Dutertre et al., 2009), estimation of
the organic fraction of the particulate assemblage (Woźniak et al.,
2010) could be used to better constrain shellfish physiological
models.

CONCLUSION

In summary, it has been demonstrated that Sentinel2/MSI has
the potential to map chlorophyll a and SPM concentration in
turbid, chlorophyll-rich, intertidal waters. Sentinel2 high spatial
resolution (20 m) made it possible to analyze SPM and chl a
distribution at the scale of an oyster farm, thus opening new
opportunities for aquaculture applications. The influence of the
tidal dynamic on SPM and chl a concentration was highlighted,
and its influence on oyster physiological response was analyzed
in the shellfish farm and adjacent nearshore waters. During
neap tides oysters were little influenced by the high turbidity,
whereas during spring tides their clearance and chl consumption
rates were significantly impacted by the extremely high SPM
concentration during a significant fraction of the tidal cycle. This
study confirms the potential of EO for marine spatial planning
(Ouellette and Getinet, 2016), and offers a generic framework
where the combination of high resolution satellite remote sensing
with bivalves ecophysiological model makes it possible to explore
the response of cultivated suspension feeders to environmental
conditions in many coastal areas, and to optimize site selection
for shellfish farming.
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Regional relationships to estimate the main Phytoplankton Functional Types (PFTs) and

Size Classes (PSCs) from satellite data are presented. Following the abundance-based

approach and selecting the Total Chlorophyll a (TChla) as descriptor of the trophic

status of the environment, empirical relations between the TChla concentration and

seven accessory pigments, marker for the main algal groups, have been developed

for the Mediterranean Sea. Using only in-situ data acquired in this basin, firstly a

previous regional diagnostic pigment analysis has been conducted to evaluate the

specific pigment ratios featuring the phytoplankton assemblage that occurs in the

Mediterranean Sea. Secondly, the new regional PFT and PSC algorithms have been

calibrated and validated on the in-situ dataset. The statistical analysis showed a very

good predictive power for all the new regional models. A quantitative comparison

with global abundance-based models applied to our validation dataset showed that

the regionalization improves the uncertainty and the spread of about one order of

magnitude for all the classes (e.g., in the nano class, where the mean bias error improves

from −0.056 to 0.001mg m−3). These results highlighted that a regionalization for the

PSC and PFT estimates are required, to take into account the peculiar bio-optical

properties of the Mediterranean Sea. Finally, the new regional equations have been

applied to the Mediterranean TChla satellite (1998–2015) time series to estimate annual

andmonthly PFT and PSC climatology. The analysis of the climatological maps, relative to

the phytoplankton assemblage distribution patterns, reveals that all the three size classes

reach their maxima in the higher nutrient areas, with absolute values >3mg m−3 of

TChla for micro-, and about 1.6 and 0.4mg m−3 for nano- and pico-phytoplankton,

respectively. Moreover, the nano component shows intermediate percentage values

in the whole basin, ranging from 30 to 40% of the TChla in the western basin, up

to 45% in the more productive areas. In terms of chlorophyll concentration, in the

coastal areas we find the predominance of the Diatoms and Haptophytes, while in the

ultra-oligotrophic waters Prokaryotes predominates on the other groups, constituting the

principal component of the pico-phytoplankton.
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Di Cicco et al. Mediterranean Algorithms for Phytoplankton Satellite Retrieval

INTRODUCTION

Phytoplankton have a key role in the biogeochemistry of
the Earth, with a predominant position in several ecological
processes as climate regulation, food webs, fossil fuel formation,
and correlated economic human activities (Falkowski et al.,
2003). The biogeochemical functions performed by the
phytoplankton assemblage are closely linked to its composition.
Key groups of organisms with their specific biogeochemical
metabolism mediate the elemental fluxes in the biosphere
(Falkowski et al., 2003; Le Quéré et al., 2005). The composition
and succession of various phytoplankton taxa in the community
are also a mirror of the ecological status of the marine
environment (Devlin et al., 2007). Within this context, in the
recent years the scientific interest in the comprehension of the
phytoplankton assemblage structure is surging. The methods
for the identification of these organisms have strongly evolved,
moving from single cell counting and taxonomic identification
based on the traditional microscopic techniques to most recent
approach based on remote sensing investigation (IOCCG,
2014).

Proper identification of Linnaean taxonomic species that
compose a natural phytoplankton assemblage requires the use

TABLE 1 | Diagnostic Pigments (DP) and their taxonomic meaning in microalgal divisions or classes (Jeffrey and Vesk, 1997; Prezelin et al., 2000; Vidussi

et al., 2001; Wright and Jeffrey, 2006; Ras et al., 2008; Brunet and Mangoni, 2010).

Pigments (abbreviation) Principal taxonomic meaning aSecondary taxonomic meaning *PSCs

Chlorophyll a (Chla)
(includes allomers and epimers)

All divisions unless Prochlorophyta

Divinil-Chlorophyll a (Dv-Chla) Prochlorophyta

Total Chlorophyll a (TChla)
(Chla + Dv-Chla + Chlide a)

All divisions

Fucoxanthin (Fuco) Bacillariophyceae: diatoms Haptophyta Micro

Chrisophyceae

Raphydophyceae

Dinophyta

Peridinin (Peri) Dinophyta: dinoflagellates Micro

Alloxanthin (Allo) Cryptophyta Nano

19′-butanoiloxyfucoxanthin (But-fuco) Haptophyta: coccolithophores

Chrysophyceae

Nano

19′-hexanoiloxyfucoxanthin (Hex-fuco) Haptophyta: coccolithophores Dinophyta Nano/Pico

Chlorophyll b (Chlb) Green algae: Pico

- Chlorophyta

- Euglenophyta

Divinil Chlorophyll b (Dv-Chlb) Prochlorophyta Pico

Total Chlorophyll b (TChlb)
(Chlb + Dv-Chlb)

Green algae & Prochlorophyta

Zeaxanthin (Zea) Prokaryotes: Chlorophyta Pico

- Cyanophyta Euglenophyta

- Prochlorophyta Chrisophyceae

Raphydophyceae

Eustigmatophyta

Chlorophyllide a (Chlide a) Damaged centric diatoms and

senescent tissue

*Sieburth et al. (1978) Classification: Micro (>20 µm), Nano (2–20 µm), Pico (<2 µm)

aDP presents in lower concentration or in some types only (Jeffrey and Vesk, 1997); *PSCs: grouping of the main taxa into size classes selected for this work (see text).

of multiple combined techniques. By using the classical optical
microscopy only, which remains one of the best approaches for
the identification of the largest phytoplankton cells, it has been
ignored for years the smallest fraction of the phytoplankton,
instead detectable through specific techniques such as flow-
cytometry, chemotaxonomy, epifluorescence microscopy, size-
fractionation, and determination of chlorophyll a content with
High Performance Liquid Chromatography, HPLC (Siokou-
Frangou et al., 2010). A species-specific identification also
requires great time demanding and needs of deep experience
in the taxonomy knowledge (Reynolds, 2006). Nowadays,
the systematic classification of phytoplankton at the level
of phyla and of certain classes is well-established, with the
agreement of microscopists and biochemicals (Reynolds, 2006).
For several years, one of the most useful techniques for the
algal classification at these taxonomic levels has been the HPLC.
The liquid chromatography allows the separation, with resulting
identification and quantification, of the main algal pigments,
some of them considered markers for specific phytoplankton
groups (see Table 1). The number of phytoplankton species
is by far smaller than the terrestrial plants, but with a
greater phylogenetic diversity, strictly related with the principal
ecological functions (Falkowski and Raven, 1997; Falkowski

Frontiers in Marine Science | www.frontiersin.org 2 May 2017 | Volume 4 | Article 126191

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Di Cicco et al. Mediterranean Algorithms for Phytoplankton Satellite Retrieval

et al., 2003). Phylogenetic studies on the oxygenic phytoplankton
evolution suggested three main recognizable lineages. The first,
in the prokaryotic empire, consists of all the Cyanobacteria.
The other two, within the eukaryotic algae, are divided in
“green lineage,” characterized by chlorophyll b as secondary
pigment and by a small quantity of several carotenoids (Phyla
Chlorophyta and Euglenophyta) and in “red-lineage” including
Rhodophyta, pigmented with phycobiliproteins and a number
of other algal groups characterized by chlorophyll c and a
wide variety of carotenoids. These groups involve Cryptophyta,
Heterokontophyta, Haptophyta, and probably those Dinophyta
pigmented with peridinin (Delwiche, 1999; Falkowski et al., 2003;
Reynolds, 2006).

In order to better understand the ecological systems and
monitor the ecological status of marine environment, the main
target is to identify the structures and processes that can
explain ecosystem dynamics, linking descriptors of state to
descriptors of change. Recent trends in the comprehension of the
community structure and functioning are aimed to the research
of those “functional traits” species-independent able to act as
non-taxonomic “descriptors of community.” Two of the most
relevant taxonomic-free descriptors are the body size class and
the functional group (Basset et al., 2004; Mouillot et al., 2006).

The definition of “functional group” is open to different
interpretations, clustering phytoplankton on the base of various
ecological roles and specialized requirements. This term groups
species with similar “morphological and physiological traits
and ecologies” (Reynolds et al., 2002): a functional group
is composed by different species that, starting from the
same resource or ecological component, perform a common
ecological function (Blondel, 2003). On the basis of their
biogeochemical metabolism or, farther, on the “resource” shared
by the organisms, main taxonomic phytoplankton groups can be
assembled in four specific “functional groups” (Blondel, 2003;
Falkowski et al., 2003; Litchman et al., 2007; IOCCG, 2014):
nitrogen fixers (this ability is unique to the Prokaryotes), calcifiers
(including the taxonomical class of Haptophyceae, generally
known as coccolithophores), silicifers (represented by the class
of Bacillariophyceae, tipically known as diatoms, followed by
some chrysophytes, silicoflagellates, and xanthophytes, which
are not very widespread in the Mediterranean Sea), and
Dimethylsulfoniopropionate (DMSP) producers (referred to
some marine phytoplankton organisms belonging primarily to
the group of Dinoflagellates, followed by Haptophytes).

The other important “taxonomic-free” descriptor is the
“size.” A great number of single organism and community
characteristics depend, in a known manner, on individual
dimension. The “metabolic theory” of Brown et al. (2004),
closely links the performance of “individuals” in terms of
metabolism and energy transfer efficiency to the ecology of
“population, community, and ecosystems.” There is a flow
of energy and matter between the various ecological systems
at different hierarchical scales, depending on environmental
and individual characteristics that regulate the metabolism of
the single organism and consequently, the features of each
hierarchical level. According to this theory, body size, together
with temperature and stoichiometry, is one of three key

factors that affect individual metabolism and, consequently, the
community ecology.

Although, also size measurements may be affected by
uncertainties, especially at ecological “individual” level,
morphometric, or “body size” descriptors offer however
important advantages with respect to the taxonomic ones: cell
size is simpler to measure in quantitative and reproducible way
and overcomes the long times and great experience required
for taxonomic identification (Basset et al., 2004; Mouillot et al.,
2006). In the aquatic ecosystems, the role of the individual
dimension as phytoplankton community descriptor is based on
the relationship between size and pigmentary content, different
taxa, or stages of growth in the same taxon, photosynthetic
efficiency, bio-optical phytoplankton properties, and water
column dynamic (Chisholm, 1992; Raven, 1998; Organelli
et al., 2007). Raven (1998), in his important work “The twelfth
Tansley Lecture. Small is beautiful: the picophytoplankton”,
summarizes the influences of the phytoplankton cell size on its
photosynthetic activity and its role in biogeochemical cycling
and biodiversity. Size affects, above all, maximum specific
growth rate, photon acquisition, nutrient solute, and water fluxes
across the plasmalemma and loss of cells in the euphotic layer
(Chisholm, 1992; Raven, 1998). On the base of the different
ecological hierarchical levels of investigation, it is possible
to identify several specific morphometric descriptors. For
individual levels, we have bio-volume, surface area, or surface-
volume ratio. Instead, for population and guild, we can consider
body size-abundance distribution, body size-spectra, or biomass
size fractions (Vadrucci et al., 2007). In the present work we take
into account the biomass fractions of three Phytoplankton Size
Classes (PSCs) related to the Sieburth et al. (1978) classification,
micro- (>20 µm), nano- (2–20 µm), and pico- (<2 µm)
phytoplankton and the main Phytoplankton Functional Types
(PFTs).

In the recent years, several physical, biological, and ecological
models have been proposed to estimate PSCs and PFTs from
remote sensing data. Satellite technologies provide a great tool
for a synoptic observation of the ecological state of the marine
ecosystem at daily and global scale.

The most important current approaches used to detect
dominant phytoplankton groups are designed for global
application and are based on Brewin (2011) and IOCCG
(2014): spectral-response, taking into account the specific optical
signature of the different algal groups and deriving from both
Apparent (AOPs) and Inherent (IOPs) Optical Properties (e.g.,
Ciotti et al., 2002; Sathyendranath et al., 2004; Alvain et al., 2005,
2008; Ciotti and Bricaud, 2006; Kostadinov et al., 2009; Pan et al.,
2010, 2011; Roy et al., 2013; Navarro et al., 2014); phytoplankton
abundance, based on the well-known inter-current relation
between phytoplankton types and cell size and trophic status
of environment (Chisholm, 1992; e.g., Devred et al., 2006; Uitz
et al., 2006; Hirata et al., 2008, 2011; Brewin et al., 2010, 2011);
ecological approach, in which additional ecological and physical
information supports the ocean color data (e.g., Raitsos et al.,
2008).

The applications of these approaches to the optical
characteristics of Mediterranean Sea, featured by unique
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optical properties in the water column, with “oligotrophic
waters less blue (30%) and greener (15%) than the global ocean”
(Volpe et al., 2007), are very few. The great interest in the
Mediterranean Sea rises from its peculiarities of quasi enclosed
sea with dimension, morphology, dynamics, and external forcing
that make it a “miniature model” for a better comprehension
of the global ocean complex processes, from mesoscale to basin
scale (Lacombe et al., 1981; Robinson and Golnaraghi, 1995;
Siokou-Frangou et al., 2010). Only recently, Navarro et al.
(2014) exploited the PHYSAT method of Alvain et al. (2005),
based on an empirical correlation between normalized water
leaving (nLw) radiances (AOPs) and diagnostic pigments of
an HPLC global dataset, performing its regionalization for the
Mediterranean Sea. The new PHYSAT-Med has been validated
mainly for nanoeukaryotes, Prochlorococcus, Synechococcus,
and diatoms and provides the dominant phytoplankton
group for each satellite pixel. Furthermore, Sammartino et al.
(2015) exploited the capability of a global empirical model,
Brewin et al. (2011), solely based on chlorophyll a data, to
describe the phytoplankton size biomass distribution in the
Mediterranean Sea.

In this work, with the intent to investigate the composition
of phytoplankton assemblage and its variability, we first analyze
the relationship between chlorophyll a content and diagnostic
pigment composition of phytoplankton assemblage in the
Mediterranean Sea. Afterwards, following the global abundance-
based approach and selecting the Total Chlorophyll a (TChla) as
descriptor of the trophic status of the environment, we identified
Mediterranean empirical relations between the concentration of
TChla and seven accessory pigments considered diagnostic for
the main algal groups (Table 1). This allows us to develop new
regional algorithms for satellite biomass estimates of PFTs and
size classes and assess their accuracy respect to global models.
Finally, we applied these new regional algorithms to the 1998–
2015 TChla satellite time series to compute Mediterranean PFT
and PFC climatologies.

The paper is organized as follows: second section presents
the in-situ and remote “data and methods” selected for this
work, also describing the diagnostic pigment analysis performed
on the Mediterranean pigment dataset; in Section “Results,” we
present and validate new Mediterranean regional algorithms for
the identification of PFTs and PSCs and compared them with the
results obtained by applying two global models; at last, Section
“Discussion and Conclusions” are exposed in fourth section.

DATA AND METHODS

In-situ Pigment Data and Quality
Assurance
Diagnostic pigment data for the determination of the in-situ PFTs
and PSCs come from aMediterranean subset of the SeaWiFS Bio-
optical Archive and Storage System (SeaBASS) HPLC pigment
in-situ dataset (Werdell and Bailey, 2005). Data were collected
during different cruises and periodical activities of fixed mooring
monitoring. More in details, this subset consists of data from
Prosope cruise (1999, September–October), Boussole mooring
data (with sampling activities nearly every month from 2001 to
2006 and only in July for the 2008) and Boum cruise (2008,
July). It consists of 1,454 sets of pigments, including stations
sampled in case 1 waters and in various trophic conditions.
Figure 1 shows the location of the whole SeaBASSMediterranean
in-situ measurements. We used all the in-situ data acquired in
the first 50m of the water column. Since these field samples
were collected by several teams and were analyzed in different
laboratories using a variety of HPLC instruments and protocols,
we performed a quality assurance analysis to build up coherent
combination of the data sets. At first, pigment data were
visually checked in order to identify and remove suspected
low quality values (for instrumental or clear stochastic errors).
Then, we applied the Aiken et al. (2009) method to remove
the outliers, according to Trees et al. (2000), which identified
a strong log-linearity between TChla and accessory pigments.

FIGURE 1 | Spatial distribution of the phytoplankton pigments in the SeaBASS Mediterranean HPLC subset (Werdell and Bailey, 2005) used for this

work.
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The data outside of the 95% confidence interval were eliminated.
Following Hirata et al. (2011) and Brewin et al. (2010) we
performed a 5-point moving average to the raw data, sorted
according to increasing values of TChla, tomaximize the signal to
noise ratio and underline the main trend of the data. The quality
control reduces the useful measurements to 1,379, with values
ranging from 0.02 to more than 5mg m−3 (well-representative
of the Mediterranean chlorophyll a variability). Even if the
in-situ dataset is predominantly collected in the western and
central Mediterranean Sea while the eastern Mediterranean is
less sampled, it includes a significant part of samples (38% of
the total) that fall in the oligotrophic chlorophyll a range typical
of the eastern basin, therefore our dataset can be considered
representative of the entire Mediterranean trophic regimes.

Determination of PFTs and PSCs from
Pigment Composition: Diagnostic Pigment
Analysis (DPA)
Information about the composition of phytoplankton assemblage
in terms of “types” and “size classes” has been obtained from the
analysis of cell’s pigmentary content of in-situ samples, exploiting
the diagnostic properties of some marker pigments.

Following Vidussi et al. (2001), according to previous
works on chemotaxonomy (Wright and Jeffrey, 1987; Gieskes
et al., 1988; Everitt et al., 1990; Williams and Claustre, 1991;
Claustre, 1994; Jeffrey and Vesk, 1997), we take into account
seven diagnostic pigments (DPs), able to detect the main
phytoplankton types and to outline the size structure of the
whole assemblage in the Mediterranean Sea. Some of these
pigments are unambiguous markers, others typify a principal
group (with a minor contribution of some other classes, see
Table 1). In Vidussi et al. (2001) the identification of the PSCs
is founded on the relation between taxonomic groups and their
most common dimensions in the Mediterranean Sea. Although,
the phytoplankton grouping method based on the auxiliary
pigments does not exactly reflect the phytoplankton size such as
the one based on the size fractionated chlorophyll (lacking for the
Mediterranean Sea), nevertheless several investigations about the
typical off shore composition of phytoplankton Mediterranean
community have proven the validity of this approach (Vidussi
et al., 2001; Siokou-Frangou et al., 2010). Therefore, it
must be taken into account that, on the basis of Sieburth
et al. (1978) size classification, “micro” consists of Diatoms
and Dinoflagellates in general, nano includes Cryptophytes,
Haptophytes, and some classes of Heterokontophytes, and pico-
phytoplankton is referred to Cyanobacteria, green flagellates, and
Prochlorophytes (Table 1). In this work we also applied the linear
adjustment of Brewin et al. (2010) for the assignment of 19′

hexanoyloxyfucoxanthin (primarily marker of the Haptophytes),
more traceable to pico size class rather than to nano-
phytoplankton in the ultra-oligotrophic waters (Hirata et al.,
2008; Ras et al., 2008).

For the quantification of each type, a now well-established
method is to estimate the contribution of different phytoplankton
groups to the TChla of the whole assemblage on the basis of the
pigment ratio of each marker to the TChla (Gieskes and Kraay,

1983; Gieskes et al., 1988; Barlow et al., 1993). Following this
approach, Uitz et al. (2006), carried out a multiple regression
analysis between the concentrations of TChla and the seven
diagnostic pigments suggested by Vidussi et al. (2001), providing
the best estimates of the “Total Chlorophyll a–Diagnostic
Pigments” ratios (TChla/DPs) for a global data set. Applying this
method, recently Di Cicco (2014) found a regional TChla–DPs
relationship, based on Mediterranean data only, to evaluate the
different pigment ratios of the phytoplankton assemblage that
occur in this basin (Sammartino et al., 2015).

In this work, we revised this regional relationship defining
new coefficients according to the new quality assurance applied
to the SeaBASS data. The analysis is carried out on the 1,379
individual samples where TChla and all the seven selected
biomarker pigments were available at the same time. It is
important to underline that in accordance with Hooker et al.
(2012) we defined TChla as the sum of Chlorophyll a with its
allomers and epimers, Divinyl-Chlorophyll a, and Clorophyllide
a (see Table 1).

Table 2 presents the best estimates resulting from the
multiple regression analysis for the determination of the seven
Mediterranean TChla/DPs ratios. The coefficients for each
DP with their standard deviation and significance level are
shown. The regression is highly significant, with a determination
coefficient (r2) between the SeaBASS in-situ TChla and TChla
estimated (TChla∗, Table 3) equal to 0.99, and a p< 0.001 (based
on the t-test).

The final estimation formulas used for the in-situ
quantification of each PFT and PSC fractions are schematically
presented in Table 3 (each group is expressed as fraction of
TChla∗).

PSC and PFT Model Development
The in-situ dataset of PSC and PFT fractions resulted from
the DPA has been randomly divided in two independent
subsets, the first used for the model calibration (70% of the
total data) and the remaining 30% for their validation. The
existing co-variability founded between the accessory pigments
linked to each fraction and the TChla allows the use of the
latter as an index of the phytoplankton assemblage structure
(Chisholm, 1992; Hirata et al., 2011). For each PFT and PSC
group the relative in-situ fractions were regressed against the
corresponding log10-transformed in-situ TChla concentrations

TABLE 2 | Best estimates (new coefficients) of the “TChla to DP” ratios for

the Mediterranean SeaBASS subset with their standard deviation and

significance value (p-value).

Diagnostic pigments New coefficients Standard deviation p-value

Fuco 1.60 0.01 <0.001

Peri 1.67 0.05 <0.001

Hex-fuco 1.18 0.01 <0.001

But-fuco 0.57 0.07 <0.001

Allo 2.70 0.04 <0.001

TChlb 0.88 0.04 <0.001

Zea 1.79 0.03 <0.001
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TABLE 3 | PSCs and PFTs used in this work with their in-situ estimation formulas (fraction of TChla*, ranging from 0 to 1) resulted from the Diagnostic

Pigment Analysis.

PFTs Estimation formula PSCs Estimation formula

Diatoms 1.60[Fuco]/[TChla*] Micro
1.60[Fuco] + 1.67[Peri]

[TChla*]

Dinophytes 1.67[Peri]/[TChla*]

Cryptophytes 2.70[Allo]/[TChla*] Nano For TChla > 0.08mgm−3:

Haptophytesb

(Nanoflagellates)

1.18[Hex · fuco] + 0.57[But · fuco]

[TChla*]

1.18[Hex · fuco] + 0.57[But · fuco] + 2.70[Allo]

[TChla*]

aFor TChla < 0.08mgm−3:

12.5[TChla]1.18[Hex·fuco] + 0.57[But·fuco] + 2.70[Allo]

[TChla*]

Green algae & Prochlorophytes 0.88[TChlb]/[TChla*] Pico For TChla > 0.08 mg m−3:

Prokaryotes 1.79[Zea]/[TChla*]
0.88[TChlb] + 1.79[Zea]

[TChla*]
aFor TChla < 0.08 mg m−3:
(−12.5[TChla] + 1)1.18[Hex · fuco] + 0.88[TChlb] + 1.79[Zea]

[TChla*]

[TChla*] = 1.60[Fuco]+ 1.67[Peri] + 1.18[Hex-fuco] + 0.57[19′But-fuco] + 2.70[Allo] + 0.88[TChlb] + 1.79[Zea]

aLinear adjustment of Brewin et al. (2010) for the assignment of 19′ hexanoyloxyfucoxanthin to pico size class in the ultra-oligotrophic waters.
bThe contribute of the But-Fuco is so low in Mediterranean data that Haptophytes can be considered the only component of the Nanoflagellates.

(Figure 2), considering the log-normal distribution of this
pigment (Campbell, 1995). We used the ordinary least square
fit to define the functional forms that were better appropriate
to represent the Mediterranean data distribution. Different
functional forms were tested against our calibration dataset,
starting from linear equation to more complex polynomial or
exponential function, obviously also including the functions
adopted by global PFT and PFC models. This allowed us to select
the most appropriate functional forms, corresponding to those
that better minimize the residual between the estimates and the
observations. This results in six empirical relationships obtained
by the regression technique, while the other three are derived as
difference to maintain the mass balance. To obtain the TChla
concentration related to each PFT and PSC group is sufficient to
just multiply the fraction for the in-situ TChla.

Satellite Data and Processing
For the PSC and PFT determination from remote sensing we used
the TChla Mediterranean reprocessed product available from
Copernicus Marine Environment Monitoring Service (CMEMS,
see OCEANCOLOUR_MED_CHL_L3_REP_OBSERVATIONS_
009_073 product). These data were produced by the CMEMS
Ocean Color Thematic Assembling Centre (OCTAC) using
the ESA OC-CCI (European Space Agency—Ocean Color
Climate Change Initiative) processor. MERIS, MODIS-Aqua,
and SeaWiFS observations were merged into a single data
by applying a series of state-of-the-art algorithms, from the
atmospheric correction to the band shift correction schemes (for
a comprehensive overview of the ESA-CCI products see http://
www.esa-cci.org). Remote Sensing Reflectance (Rrs) spectrum is
used as input to compute surface TChla (nominal resolution of

1 Km) via regional ocean color algorithm. The specific product
used in this work, specialized for the Mediterranean Sea, is
a merged Case 1—Case 2 product that takes into account
the different optical properties of the offshore and inshore
waters. Two different regional algorithms were applied on the
reflectance: the MedOC4 algorithm (Volpe et al., 2007) for the
case 1 waters, developed by the Group for Satellite Oceanography
(GOS-ISAC) of the Italian National Research Council (CNR),
and the AD4 (D’Alimonte and Zibordi, 2003), specialized for
the case 2 ones. The exact identification of the two water types
is performed by taking into account the whole light spectrum
from blue to NIR bands for both two water types from in-situ
data (D’Alimonte et al., 2003). For the waters with intermediate
features, a weighted average of the two former algorithms was
applied, based on the distance between the actual reflectance
spectrum and the two reference reflectance spectra for case 1 and
2 waters, respectively.

For more details on the processing adopted by the data
producers and the quality product assessment see Volpe et al.
(2012) and http://marine.copernicus.eu/documents/QUID/
CMEMS-OC-QUID-009-038to045-071-073-078-079-095-096.
pdf.

In this work, we used 18 years (from 1998 to 2015) of

daily TChla to compute Mediterranean daily PFT and PSC

maps using the new regional algorithms described in Section

Empirical Algorithms for the Identification of the PFTs and PSCs:

Calibration and Validation. Daily fields were then used to build-
upMediterranean PFT and PSC climatology. Taking into account
the applicability range of our models (0.02–5.52mg m−3), in our
processing we considered “good values” only the satellite TChla
data falling in this range, masking the outsider.
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FIGURE 2 | Regional relationships between in-situ TChla and the fraction (f) of each PSC and PFT: calibration (Cal) results. The blue dots refer to the

in-situ PSC/PFT fraction obtained from equations in Table 3 (966 data) and the red line indicates the best fitting curve obtained from the calibration (see equations in

Table 4). (A) Micro-Cal, (B) Nano-Cal, (C) Pico-Cal, (D) Diatoms-Cal, (E) Cryptophytes-Cal, (F) Green algae & Prochlorophytes-Cal, (G) Dinophytes-Cal, (H)

Haptophytes-Cal, and (I) Prokaryotes-Cal.

RESULTS

Empirical Algorithms for the Identification
of the PFTs and PSCs: Calibration and
Validation
The new regional algorithms with their mathematical equations
and the resulting regression coefficients are showed in Table 4.
Most of the considered phyto-groups are well outlined by simple
polynomial functions (cubic for micro, Diatoms, Cryptophytes,
and Prokaryotes and quadratic for nano), except for the class
of “Green algae & Prochlorophytes,” better represented by a
different equation following the approach of Hirata et al. (2011,
see Table 4). These functions, shown in Table 4, are applicable
over a TChla range from 0.02 to 5.52mg m−3.

Figure 2 shows the results of the algorithm calibration. Micro-
phytoplankton function (Figure 2A) increases monotonically
with the increase of the TChla, ranging from the 8% to the 63%
of the TChla concentration. Pico equation (Figure 2C), instead,
shows an opposite behavior, with minimum and maximum
values for maximum and minimum TChla concentrations,
respectively, ranging between 5 and 81% of TChla. The nano
function (Figure 2B) presents an intermediate trend, ranging
from 12 to 48% of TChla, with a maximum in correspondence
of about 0.57mg m−3 of TChla. The micro component consists
almost entirely of the Diatom group contribution, represented by
a cubic function (Figure 2D) similar to the micro one, increasing
monotonically with the TChla too. The contribution of the
Dinophytes (Figure 2G) to the micro component and to the
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TABLE 4 | Regional algorithms developed to estimate the PSCs and PFTs in the Mediterranean Sea (as fraction of TChla, ranging from 0 to 1). For each

dimensional and functional group, the equation and its relative coefficients are given.

PSCs and PFTs Function a b c d

Micro ax3 + bx2 + cx + d 0.0667 0.1939 0.2743 0.2994

Nano bx2 + cx + d −0.1740 −0.0851 0.4725

Pico 1−micro− nano − − − −

Diatoms [1] ax3 + bx2 + cx + d 0.0482 0.1877 0.2946 0.2533

Dinophytes [2] micro− diatoms − − − −

Cryptophytes [3] ax3 + bx2 + cx + d 0.0171 0.0667 0.1153 0.0952

Green algae & Prochlorophytes [4] [exp (ax + b) + cx]−1
−1.5780 2.1841 22.6833

Prokaryotes [5] ax3 + bx2 + cx + d 0.0664 0.1410 −0.2097 0.0979

Haptophytes [6] 1−micro− [3] − [4] − [5] − − − −

x = log10(TChla)

TChla concentration is very low, with a small range of variation
between 1 and 6% of TChla, indicating that diatoms are themajor
constituent of the micro-phytoplankton in the Mediterranean
Sea. Prokaryotes curve (Figure 2I) decreases monotonically
from 55 to 3%, co-varying with the TChla increase. At lower
chlorophyll concentrations Prokaryotes represents the main
component of the pico group (with the contribution of small
Haptophytes in the ultra-oligotrophic water). Increasing the
chlorophyll value, the non-monotonic signal of the “Green algae
& Prochlorophytes” (Figure 2F) grows up to the maximum value
(about 13%) in correspondence of the TChla concentration of
about 0.5mg m−3. For higher value of TChla the function
decreases with a weaker slope, concurring to the pico group
more than to the Prokaryotes. Also the Cryptophytes (Figure 2E)
co-vary with the TChla, growing up with the increment of
this pigment from a minimum of 1% to a maximum of 22%
at higher TChla values. At last but not least in terms of
relative contribution to the TChla, the Coccolithophores curve
(Figure 2H) presents a small range of variation (35–40%) for
almost the entire range of chlorophyll, decreasing up to a
minimum value about 10% at maxima TChla concentrations
(about 5mg m−3).

The results of the application of theMediterranean algorithms
(Table 4) on the validation dataset are shown in Figures 3, 4
(right panels), for the PSCs and the PFTs, respectively. The
scatter plots of the TChla, estimated for each class applying the
algorithms against the observed TChla fractions, clearly show the
goodness of the fits for all the considered groups. The data points
are uniformly distributed around the 1:1 line with a very narrow
scatter.

A more quantitative evaluation of the proposed algorithm
performances comes from the computation of the mean absolute
error (root mean squared error, RMSE) and other statistical
parameters (see Table 5 for the relative reference equations)
with respect to the original PSC and PFT in-situ data (Table 6,
calibration; Table 7, validation). A hindcast evaluation of the
algorithm performances was also carried out (i.e., the same
calibration data were used for fitting and testing). Furthermore,
the error relative to the new regional algorithms is compared

to the error associated with global abundance-based models
applying them to the same validation dataset (Table 7). In
particular, we used the empirical global relationships of Hirata
et al. (2011), the only ones based on the abundance which are
focused also on the PFTs, and the Brewin et al. (2010) models,
applying the coefficients recalibrated in Brewin et al. (2011),
developed only for the PSCs.

The new regional algorithms show good performances for
most of the groups taken into account (Table 6, calibration;
Table 7, validation). The results obtained applying the algorithms
to the validation dataset are consistent with the hindcast
evaluation. Pearson correlation coefficient, which gives an
estimate of the covariance between the models and the in-situ
validation data, shows high correlation, with values ranging from
0.75 to 0.99 both for PSCs and PFTs, excluding the group of the
Dinophytes (r = 0.60), probably also because of this group is
derived as difference. All groups show very low values of mean
bias error (MBE), ranging from −0.002 to 0.003mg m−3 for
the validation dataset. The RMSE, which gives a measure of the
spread of the estimated values around the in-situ observed ones,
goes from 0.018mgm−3 for the “Green algae & Prochlorophytes”
to 0.068mg m−3 for the Diatoms in the PFT group and from
0.042mg m−3 for the pico- to 0.070mg m−3 for the micro-
phytoplankton in the PSCs.

The comparison of the scatter plot obtained by the
application of the PSC regional models with respect to
the global models (Figure 3) shows that the Mediterranean
algorithms perform better than the global ones for all the
three groups. This evidence is confirmed by the statistical
analysis (Tables 6, 7). Although, the Brewin et al. (2011)
models applied to the Mediterranean data show high values
of the correlation coefficient (0.9 for micro- and nano-
phytoplankton), the statistical results highlighted that the
regionalization improves the uncertainty (MBE) and the spread
(RMSE) of about one order of magnitude for all the size classes.
For example, for the micro-phytoplankton the MBE decreases
from 0.068 to 0 when the regional algorithm is applied. In
particular, the Brewin’s algorithm slightly overestimates the
micro component (Figure 3A) in the entire dynamical range
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FIGURE 3 | Comparison between the validation (in-situ vs. estimated PSC TChla concentrations) of the new PSC regional algorithms (Val, right panel:

B,D,F) vs. the global PSCs model of Brewin et al. (2011) (Brewin, left panel: A,C,E). For the statistics, see Table 7.

of concentration. The behavior of this global model is exactly
the opposite for the nano class, always underestimating the
observed values (Figure 3C) resulting into a MBE of −0.056.
As consequence, the main trend is the overestimation of
the pico-phytoplankton component for concentrations lower
than 0.1mg m−3, and the underestimation at greater values
(Figure 3E).

Figure 4 shows that applying the global models of Hirata
et al. (2011) to the Mediterranean data Prokaryotes (Figure 4M),
Haptophytes (Figure 4G), and Diatoms (Figure 4A) would be
underestimated. This underestimation results into a mean
relative percentage difference, RPD, of −20, −19, and −29%,
respectively. The “Green algae & Prochlorophytes” (Figure 4I),
instead, are overestimated (RDP = 116%). The predictive power
for the Dinophytes (Figure 4C) is negligible, as in the global
validation of the model (see (Hirata et al., 2011) for more details),

with an r = 0.26 (Table 7). It must be taken into account that,
unlike to this work, the development of the models of Diatoms
and Haptophytes in Hirata et al. (2011) is based on in-situ
Fuco and Hex-fuco data at which a background correction was
applied. The Fuco signal in oligotrophic waters (<0.25mg m−3)
is assumed to be due to smaller Haptophytes rather thanDiatoms.
This correction is significant only at lower TChla concentrations.
It means that, applying this global model in this TChla range,
the estimates of Diatoms could be slightly improved for the
Mediterranean Sea but, at the same time, the estimates of the
Haptophytes would get worse. As for the PSCs, also for the
PFTs (Figure 4) the regionalization reduces the bias of about
one order of magnitude for all the types (Tables 6, 7). The
preliminary analysis of r, MBE, and RMSE has showed a very
good predictive power for all the new regional models. The
best performances seem to be associated with the algorithms
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FIGURE 4 | Comparison between the validation of the new PFT regional

algorithms (Val, right panel: B,D,F,H,L,N) vs. the global PFT model of Hirata

et al. (2011) (Hirata, left panel: A,C,E,G,I,M): in-situ (x axis) vs. estimated

(y-axis) PFT TChla concentrations. (A) Diatoms-Hirata, (B) Diatoms-Val, (C)

Dinophytes-Hirata, (D) Dinophytes-Val, (E) Cryptophytes-Hirata, (F)

Cryptophytes-Val, (G) Haptophytes-Hirata, (H) Haptophytes-Val, (I) Green

algae & Prochlorophytes-Hirata, (L) Green algae & Prochlorophytes - Val, (M)

Prokaryotes - Hirata, (N) Prokaryotes - Val. For the statistics, see Table 7.

of Cryptophytes and “Green algae & Prochlorophytes” for the
PFTs, followed by Haptophytes and Diatoms, and with the nano
model for the PSC group. The study of the RPD and the mean

TABLE 5 | Mathematical equations used to compute the statistic

parameters.

Mean bias error (MBE) MBE =
1
N

N
∑

i=1

(

Modeli − Situi
)

Root mean squared error (RMSE) RMSE =

√

1
N

N
∑

i=1

(

Modeli − Situi
)2

Pearson’s correlation coefficient (r)

∑N
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(

Modeli−Modeli
) (

Situi−Situi
)

√
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(
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)2

√
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(
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1
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x 100

Mean absolute percentage

difference (APD)

APD =
1
N

N
∑
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∣

∣

∣
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Situi

∣

∣

∣
x 100

TABLE 6 | Statistical results of the new regional algorithms (Med) applied

to the calibration dataset (70% of the entire subset = 966 data).

PSCs and PFTs Med (Calibration)

MBE RMSE r RDP(%) ADP(%)

Micro 0.001 0.054 0.988 11 28

Nano −0.002 0.040 0.990 2 11

Pico 0.001 0.033 0.907 5 18

Diatoms 0 0.053 0.987 16 35

Dinophytes 0.001 0.023 0.646 47 71

Cryptophytes −0.001 0.027 0.983 41 67

Green algae &

Prochlorophytes

0 0.015 0.958 13 36

Prokaryotes 0 0.021 0.781 9 25

Haptophytes −0.001 0.038 0.971 2 12

The statistic is computed on TChla concentration values (mg m−3 ). MBE and RMSE are
expressed in mg m−3, while r, RPD (%), and APD (%) are dimensionless.

absolute percentage difference, APD, has integrated this statistic
information, taking also into account the different dynamical
range of the TChla concentration represented by each class.
Weighing the uncertainty on the dynamical range of the observed
concentration values, statistical data confirmed the goodness of
the fits for all the phytoplankton groups (Table 7) and showed
the best predicted power for the algorithms which estimate the
nano (RDP= 3% and ADP= 12%) and Haptophytes (RDP= 4%
and ADP = 13%) components, for PSCs and PFTs, respectively.
These considerations are also confirmed by the validation results
represented in Figures 3, 4.

Application of the New Regional
Algorithms to the Daily Mediterranean
Reprocessed TChla CASE1–2 Time Series:
PSC and PFT Climatology (1998–2015)
The new regional algorithms (Table 4) are applied on an 18
years’ time series of TChla satellite estimates (see Section Data
and Methods) to compute PSCs and PFTs. Figures 5, 6 show
annual PSC and PFT (1998–2015) climatology, respectively.
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TABLE 7 | Statistical results of the new regional algorithms (Med) validation compared with the statistics resulting by applying the global models (Brewin

et al., 2011; Hirata et al., 2011) on the same validation dataset (30% of the entire subset = 413 data).

PSCs Brewin et al. (2011) Med (Validation)

MBE RMSE r RDP (%) ADP (%) MBE RMSE r RDP (%) ADP (%)

Micro 0.068 0.219 0.989 36 45 0 0.070 0.985 11 29

Nano −0.056 0.168 0.907 −23 24 0.001 0.045 0.989 3 12

Pico −0.012 0.062 0.780 10 27 −0.001 0.042 0.875 4 19

PFTs Hirata et al. (2011) Med (Validation)

Diatoms 0.039 0.164 0.980 −29 61 −0.001 0.068 0.983 19 38

Dinophytes 0.007 0.099 0.263 30 89 0 0.028 0.599 46 72

Cryptophytes − – – – – −0.002 0.027 0.990 41 66

Green algae & Prochlorophytes 0.022 0.035 0.909 116 117 0 0.018 0.946 13 35

Prokaryotes −0.020 0.033 0.722 −20 29 −0.001 0.024 0.752 8 26

Haptophytes −0.058 0.126 0.805 −19 24 0.003 0.048 0.956 4 13

The statistic is computed on TChla concentration values (mg m−3). MBE and RMSE are expressed in mg m−3, while r, RPD (%) and APD (%) are dimensionless.

In the left panel, each map shows the fractions of the
TChla represented by each phytoplankton component. For
each pixel the percentage maps give fraction values relative
to the chlorophyll concentration (Figure 5, top panel), whose
distribution is typically characterized by a West–East decreasing
gradient in the Mediterranean Sea (Siokou-Frangou et al., 2010;
Estrada and Vaqué, 2014). In the right panel, instead, the maps
show the relevance of each class in terms of TChla estimates (mg
m−3).

All the three size classes reach their maxima absolute values,
>3mg m−3 of TChla for micro (Figure 5B), and about 1.6
and 0.4mg m−3 for nano (Figure 5D) and pico (Figure 5F),
respectively, in the more productive zones of the basin (see
Figure 5, top panel). In the eastern basin these areas are: the
North Adriatic Sea and in general the whole Adriatic coast (due
to the great nutrient supply from the Po river); the south-eastern
area of the Levantine basin influenced by the outflow of the
Nile river; the Northern Aegean Sea and the Gulf of Gabès
(probably only an area of very shallow water). Otherwise, in the
western basin, these more productive regions are the Gulf of
Lion, the eastern cost of Spain, and the Tyrrhenian Sea coast.
Very high values (greatest for the nano class) are also evident
in the North–western Alborán Sea and along the Algerian and
Tunisian coasts up to the Sicily channel, in the Liguro-Provençal
and part of the Catalan Basin and in the cyclonic area of theNorth
Tyrrhenian Sea. As expected, the existing co-variability between
the accessory pigments linked to each fraction and the TChla
is highlighted by the percentage maps (Figure 5, left panel).
In the more oligotrophic eastern Mediterranean Sea, where
TChla climatology shows the lower absolute concentrations
(Figure 5, top panel), the relative dominant component is
the pico class (Figure 5E). Here, the TChla concentration of
the pico-phytoplankton (Figure 5F) is about five times micro
(Figure 5B) and two times the nano one (Figure 5D). On
the contrary, in the regions where the TChla reaches higher
values, the percentage contribution of the nano and micro
components increase (Figures 5A,C, respectively). Generally, in

the whole basin the nano component shows intermediate values,
in particular ranging from 30 to 40% of the TChla in the
western basin, growing up to 45% in highly productive areas
(Figure 5C).

Moving to the PFTs, the abundance of each class in terms of
TChla concentration (Figure 6, right panel) reflects, as occurred
in the size classes, the gradient of this pigment (Figure 5, top
panel), showing for all groups higher values in the western basin
and in the already mentioned high productive zones of the
entire basin. This is true for all groups. In the climatological
analysis, Prokaryotes constitute the principal component of
the pico-phytoplankton in almost all areas, both in terms of
percentage (Figure 6M) and concentration (Figure 6N). They
are the absolute dominant group in the oligotrophic and
ultra-oligotrophic waters of the eastern basin, but also for the
western basin in the southern Tyrrhenian Sea and in some areas
of the Algero-Provençal basin (Figure 6M). In the Levantine
basin the second group in terms of TChla concentration is the
Haptophytes (Figure 6H). They represent the dominant class
within the nano-phytoplankton in the whole Mediterranean Sea
and constitute the main group featuring the case 1 water of the
western basin (Figure 6G). Diatoms (Figures 6A,B) dominate
in the micro-phytoplankton and can be considered the third
group in terms of TChla concentration in the open sea, followed
by the Green algae (Figure 6L), Cryptophytes (Figure 6F) and,
finally, Dinoflagellates (Figure 6D). Otherwise, in coastal areas
Diatoms dominate, reaching values about of 3mg m−3. This is
well-evident in the North Adriatic Sea and in general in the
entire Adriatic coast, in the southeastern area of the Levantine
basin influenced by the outflow of the Nile River and in the
Gulf of Gabès (Figure 6B). In general, in terms of chlorophyll
concentration, in the coastal areas we find the predominance of
the Diatoms and Haptophytes, followed by the remaining classes
(Figure 6, right panel).

At last but not least in terms of biological importance, the
phytoplankton distribution in the Alborán Sea and along the
Algerian-Tunisian coasts is characterized by the dominance of
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FIGURE 5 | Annual climatological maps (1998–2015) of the TChla (top panel) and the PSCs: for each pixel, fractions are expressed in % with respect to

the TChla (left panel: A,C,E) and the contribution of each PSC group to the TChla concentration in mg m−3 (right panel: B,D,F). PSCs are retrieved applying the

new regional algorithms (see Table 4) on the daily TChla times series (Mediterranean reprocessed product produced by the CMEMS-OCTAC). (A,B)

Micro-phytoplankton, (C,D) Nano-phytoplankton, (E,F) Pico-phytoplankton.
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FIGURE 6 | Annual climatological maps (1998–2015) of the PFTs: for each pixel, fractions are expressed in % with respect to the TChla (left panel:

A,C,E,G,I,M) and the contribution of each PFT group to the TChla concentration in mg m−3 (right panel: B,D,F,H,L,N). PFTs are retrieved applying the new regional

algorithms (see Table 4) on the daily TChla time series (Mediterranean reprocessed product produced by the CMEMS-OCTAC). Since the wide range of TChla
variability related to each PFT, note that the color scales could be different. (A,B) Diatoms, (C,D) Dinophytes, (E,F) Cryptophytes, (G,H) Haptophytes, (I,L) Green

algae & Prochlorophytes, (M,N) Prokaryotes.
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FIGURE 7 | Mean monthly climatology (1998–2015) of the PSCs (A) and

the PFTs (B) over the Mediterranean Sea in terms of their contribution to the

TChla (mg m−3 ). The PSCs and PFTs are retrieved applying the new regional

algorithms (see Table 4) on the daily Total Chlorophyll a time series

(Mediterranean reprocessed product produced by the CMEMS-OCTAC).

the Haptophytes, followed by Diatoms, and then Prokaryotes,
Green algae, Cryptophytes, and at last Dinoflagellates.

In addition, in Figure 7 we show the results of the
monthly climatology of each group, averaged over the whole
Mediterranean Sea. On basin scale, the component mostly
representative of the TChla seems to be the nano-phytoplankton
for the PSCs (top panel), especially in the bloom periods
typical of the midlatituds. Nano is followed by pico and the
component with the lower contribution to the TChla is the
micro one. Only in summer, pico-phytoplankton dominates on
the TChla concentration, exceeding the other two classes. In
the same season, the micro component reaches its minimum
values. The monthly mean PFT climatology (Figure 7, bottom
panel) confirms the predominance of the Haptophytes within
the nano-phytoplankton in the whole Mediterranean Sea as
highlighted in the previous PFT map analysis (Figure 6H). This
is also the predominant group all over the year. The Haptophytes
are followed by Diatoms and Prokaryotes representing the
main component for the micro- and the pico-phytoplankton,
respectively. More in detail, the contribute of the Diatoms to
the TChla concentration is greater than the Prokaryotes only
in the early spring. The two classes show similar concentrations
in late autumn and winter season while, in the remaining part
of the year, Prokaryotes dominate. Cryptophytes and “Green
algae & Prochlorophytes” always reveal a same contribution,
even if the concentration of the latter is slightly greater in
late winter—early spring. These two functional groups represent
the smallest fractions within the nano- and pico- size classes,

respectively. At last, Dinophytes constitute the class with the
lowest TChla concentration all over the year.

DISCUSSION AND CONCLUSIONS

The Mediterranean Sea is typically characterized by peculiar
optical properties that make its color different from the global
ocean (Volpe et al., 2007). In addition to an abundant aerosol
dominated by continental anthropogenic pollution (Moulin
et al., 1997) and the presence of Saharan dust in the water column
(Claustre et al., 2002), one of the main reasons that justifies its
color seems to be a different phytoplankton assemblage structure
typical of this basin (Volpe et al., 2007). This is also confirmed by
the presence of pigment ratios different with respect to those of
the global ocean (Sammartino et al., 2015). This implies the need
of regional algorithms that take into account all these peculiar
characteristics. In the last year, several specialized algorithms
have been proposed for the detection of the chlorophyll a
concentration (e.g., Volpe et al., 2007; Santoleri et al., 2008).
Instead, PFT and PSC regional algorithms do not exist, except
for the recent work of Navarro et al. (2014). They adapted
the previous version of the PHYSAT method of Alvain et al.
(2005, 2008), providing regional estimates of dominant PFT
groups. In our work, for the first time, new regional algorithms
have been advanced to identify, together, the contribution of
each PSC and PFT group to the satellite estimates of TChla
concentration. This different approach, based on the close link
existing between the abundance of each group and the trophic
status of the environment (Margalef, 1967, 1978; Brewin, 2011),
provides new kind of information, complementary to the results
of the PHYSAT-Med.

Our assessment of the uncertainty associated to the
new developed regional algorithms and the most used
global models based on the same approach, highlight and
confirm that a regionalization for the PSC and PFT satellite
algorithms is required. As shown by our validation results
(Section Empirical Algorithms for the Identification of the
PFTs and PSCs: Calibration and Validation), the use of
Mediterranean PSC and PFT algorithms allowed to eliminate
the bias between observations and estimates and to reduce
the RMSE of an order of magnitude respect the global
models.

Even if the uneven distribution of the in-situ observations
between western-central Mediterranean Sea and the eastern
basin could imply that the new formulations are more
appropriate for the western basin, we are confident that the
derived parameterizations can be applied also in the eastern
Mediterranean Sea without introducing a significant bias on
satellite estimates. In fact, the in-situ dataset used for the
algorithm calibration includes the typical values of chlorophyll
a observed in the oligotrophic waters of eastern Mediterranean
Sea (ranging from 0.02 to 0.14mg m−3). The number of the
samples that fall in this chlorophyll range represent the 38%
of the total number of the calibration data, 18% of which are
acquired in the eastern Mediterranean Sea. This implies that the
oligotrophic condition is well represented in our dataset. For
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a further assessment, we made a preliminary evaluation of the
new parameterizations limited to the eastern Mediterranean Sea
using all available in-situ observation in our dataset. This results
into a bias (from −0.001 to 0.001 depending on the PFT/PCS
parameterization) and RMS (from 0.002 to 0.004 depending on
the PFT/PCS parameterization), values comparable with the bias
obtained in western Mediterranean for the same TChla range
and with the values resulting from the algorithm validation (see
Table 7). Even if this result cannot be considered conclusive since
has been obtained with a limited number of in-situ observations,
the statistical results seem to indicate that our parameterization
should not introduce any significant bias to satellite derived
estimates.

The analysis of the phytoplankton assemblage distribution
patterns resulted from the application of our new algorithms to
theMediterraneanmulti-sensor reprocessed dataset (1998–2015)
is consistent with the main previous knowledge, both in terms
of distribution and phytoplankton ecology (Siokou-Frangou
et al., 2010; Uitz et al., 2012; Estrada and Vaqué, 2014; Navarro
et al., 2014). Pico-phytoplankton, with Prokaryotes as the main
component, is widespread throughout the whole basin and
always dominant in oligotrophic and stratifiedwaters (see Section
Results) in agreement with the observation of Siokou-Frangou
et al. (2010), according to which the pico component constitutes
more than 50% of the total biomass in these conditions (Estrada
and Vaqué, 2014). Furthermore, our results show that pico class
reaches its maximum value (about 0.4mg m−3) in the more
productive areas. These considerations are also in consonance
with ecological behavior and strategy of this group. Size affects
nutrient solute and water fluxes across the plasmalemma,
favoring the smaller sized cells in the oligotrophic water. This is
due to the larger surface to volume ratio of small cells with respect
to the larger ones, which make the former efficient nutrient
absorber in very low nutrient conditions. Moreover, in stratified
environments the probability of sinking out from the euphotic
zone is greater in the micro-sized cells than in the smaller ones,
undergoing a lower loss of organisms (Chisholm, 1992; Raven,
1998). However, this does not imply that Prokaryotes and pico-
phytoplankton in general reach the maxima values in terms
of chlorophyll concentration in the oligotrophic conditions.
In fact, Chisholm (1992) suggested that they usually achieve
their “maximum potential biomass” (of about 0.5mg m−3) in
high nutrient conditions, in accordance with our estimates. We
showed that, in the more productive region of the basin, the
chlorophyll concentrations of the pico and Prokaryotes classes
correspond to relative small percentage of TChla (Chisholm,
1992). Indeed, our climatological maps shows the dominance,
in these conditions, of the micro component with values that
exceeds up to the 50% of the TChla, followed by nano- and,
at last, by a minor contribute of the pico-phytoplankton (about
10–15%).

Within the micro group, the major contribute is clearly due
to the Diatoms in the higher nutrient areas. This is justified by
the ecological strategy of this functional group, physiologically
better adapted to high dynamic conditions and more efficient
in the nutrient absorption. Moreover, they are also able to
subtract nutrients from the surrounding environment and to

store them in their large vacuoles, depriving other groups and
supporting their growth at the same time (Margalef, 1978;
Falkowski et al., 2003; Litchman et al., 2007; Estrada and Vaqué,
2014). About the Dinoflagellates, their contribution to the micro-
phytoplankton is very low with respect to the Diatoms one.
This is probably due to their different ecological strategy, well-
adapted to high dynamical environment but with a higher
affinity for low nutrient conditions. Moreover, Estrada and
Vaqué (2014) suggested that the use of peridinin as biomarker
pigment for the Dinoflagellates identification could cause an
underestimation of their abundance because it could be not
present in some organisms of this class (Jeffrey and Vesk,
1997).

An important result of this study is the information on
the Nanoflagellate distribution, mainly represented by the
Haptophytes in our dataset. This can represent a precious
novelty, considering the lack of knowledge on the Nanoflagellate
spatial distribution, improved only in the last years thanks to
the more diffused usage of chemotaxonomic and molecular
techniques (Latasa et al., 2010). The widespread distribution
of the nano component and its high contribution to the
TChla in the whole basin confirms the Uitz et al. (2012)
results, according to which the primary production in the
Mediterranean Sea is mainly due to the nano-phytoplankton
component.

The lack of data on the phytoplankton biogeography at
different spatio-temporal scales in the whole Mediterranean Sea
and the well-known difficulties in the long-term acquisition
of in-situ data at basin scale make essential the use of the
remote sensing technique for a synoptic observation of the
phytoplankton assemblage composition and its diversity.
Our analysis revealed the importance of providing regional
algorithms strictly required to suit the peculiar bio-optical
properties featuring this basin. The statistical results
demonstrated the goodness of the performance and the
applicability of our models for the abundance estimations of
PSCs and PFTs together.

Nowadays, in the context of international Climate Change
Initiatives and cooperation, a synergic effort of the Space
Agencies in collaboration with remote sensing scientist is
conducted to identify the major gaps (both instrumental
and scientific) that should be filled to improve the accuracy
of satellite estimates of the phytoplankton groups and their
variability (Bracher et al., 2017). In this framework, the following
actions summarize our future perspectives to improve remote
observations on the Mediterranean Sea: (a) to extend the
validation and calibration of the PFT new regional algorithms
including new in-situ dataset of HPLC Total Chlorophyll a
and diagnostic pigments acquired, in recent years, by the
Mediterranean scientific community; (b) to improve the accuracy
of the PSC algorithms with a new calibration and validation
only based on TChla size-fractions; (c) to carry on the in-
situ bio-optical measurements to cover all the un-sampled
Mediterranean regions, also with the intent to exploit different
approaches (e.g., spectral response-based); (d) to extend this
regionalization activity to new generation sensors (e.g., OLCI
for Sentinel-3) to obtain higher resolution information also
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for phytoplankton dynamical studies at mesoscale; (e) to
analyse the Mediterranean PFT and PSC trends, thanks to the
availability of consistent long term satellite observation time
series.

On time scales larger than the period we considered, climate
or human induced changes in environmental conditions can
produce modifications of phytoplankton pigment composition
and thus the pigment ratios to the Total chlorophyll a. This
implies that the simple empirical relations used to compute the
PFTs and PFCs from the chlorophyll observations need to be
re-evaluated and or a more sophisticated approach which links
the pigment ratios, the PFT, and PSC composition and the major
environmental forcing should be developed.
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The effect of biomass dynamics on the estimation of watercolumn primary production

is analyzed, by coupling a primary production model to a simple growth equation

for phytoplankton. The production model is formulated with depth- and time-resolved

biomass, and placed in the context of earlier models, with emphasis on the canonical

solution for watercolumn production. A relation between the canonical solution and

the general solution for the case of an arbitrary depth-dependent biomass profile was

derived, together with an analytical solution for watercolumn production in case of a

depth dependent biomass profile described with the shifted Gaussian function. The

analysis was further extended to the case of a time-dependent, mixed-layer biomass,

and two additional analytical solutions to this problem were derived, the first in case

of increasing mixed-layer biomass and the second in case of declining biomass. The

solutions were tested with Hawaii Ocean Time-series data. The canonical solution for

mixed-layer production has proven to be a good model for this data set. The shifted

Gaussian function was demonstrated to be an accurate model for the measured biomass

profiles and the shifted Gaussian parameters extracted from the measured profiles were

further used in the analytical solution for watercolumn production and results compared

with data. The influence of time-dependent biomass on mixed-layer production was

studied through analytical solutions. Re-examining the Critical Depth Hypothesis we

derived an expression for the daily increase in mixed-layer biomass. Finally, the work

was placed in a remote sensing context and the time-dependent model for biomass

related to the remotely sensed-biomass.

Keywords: primary production, watercolumn production integrals, analytic solutions, growth models, critical

depth criterion, remote sensing

1. INTRODUCTION

In the ocean, phytoplankton form the foundation of the pelagic ecosystem and by virtue of their
phototsynthesis (primary production) act as a source of organic carbon for the remainder of the
ecosystem (Chavez et al., 2011). The abundance and growth of virtually all marine life on earth
depend on phytoplankton. Consequently, the world’s largest fisheries are concentrated around
ocean areas with high primary production (Cushing, 1971; Mann and Lazier, 2006). Moreover, the
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role of phytoplankton does not end with the food chain itself.
Through the action of the so-called biological pump, a complex
ecosystem process which starts with primary production (Volt
and Hoffert, 1985), phytoplankton contribute to the transfer of
carbon into the deep ocean (Longhurst and Harrison, 1989) and
subsequently affect atmospheric carbon concentration on longer
time scales (from decadal tomillennial) (Honjo et al., 2008).With
this in mind, prediction of primary production is important,
not just for the open ocean, but also for coastal seas, and is
also relevant to fisheries and climate change research. Given the
vastness of the ocean, the basic means by which such predictions
are made is through the combined use of primary production
models and ocean-color data, acquired by satellites (Platt and
Sathyendranath, 1991; Siegel et al., 2014).

In such applications prediction of the total amount of
carbon assimilated in the water column in 1 day, i.e., daily
watercolumn production, is the target (Platt et al., 1991b).
Models for watercolumn production predict the amount of
carbon assimilated by phytoplankton per unit area of ocean
surface during the day (Platt and Sathyendranath, 1988, 1993).
Typical models have chlorophyll concentration as an initial
condition and use photosynthesis parameters to determine the
response of phytoplankton to light (Platt et al., 1977). The
light attenuation coefficient and daylength are also required to
determine the depth interval in which photosynthesis takes place
and the time interval during which photosynthesis occurs (Kirk,
2011). Surface photosynthetically-active radiation is the forcing
variable, which integrated over daylength gives the amount of
energy available for photosynthesis.

Various attempts have been made to relate watercolumn
production mathematically to environmental factors. Models of
various complexities have been proposed and equations have
been derived for predicting the amount of primary production
per unit area of ocean surface (Kirk, 2011). These equations
are often referred to as estimators of watercolumn production
(Platt and Sathyendranath, 1993). A straightforward application
of such estimators is in converting satellite images of ocean
color into primary production maps of the ocean (Platt and
Sathyendranath, 1988; Campbell et al., 2002; Platt et al., 2008).
For example, with such applications the global annual primary
production has been estimated at ∼ 45 − 50 (Longhurst et al.,
1995), ∼ 52 (Westberry et al., 2008), and 58 ± 7 (Buitenhuis
et al., 2013) giga tonnes of carbon per year.

Some of the earliest primary production estimators date back
to Ryther (1956), Ryther and Yentsch (1957), and Talling (1957),
all semi empirical. These are followed by Rodhe (1965) whose
model has later been used by Bannister (1974) and others (Smith
and Baker, 1978; Eppley et al., 1985). Platt (1986) developed a
linear model and finally in 1990 the first, and until today the only,
analytical solution of the nonlinear model for daily watercolumn
production was given by Platt et al. (1990). A thorough historical
review of the topic is found in Platt and Sathyendranath (1993).
A common feature of the models mentioned is their assumption
of daily time-independent, vertically-uniform biomass (Platt and
Sathyendranath, 1993). Therefore, strictly speaking, they are valid
only for calculating watercolumn production occurring in the
mixed layer during non bloom conditions (when net growth is

low). These conditions do prevail over vast ocean areas and for
prolonged periods of the year, but it is precisely when highest
primary production occurs, that they do not.

Since for the open ocean the depth of the mixed layer is on the
same order of magnitude as the photic depth (de BoyerMontegut
et al., 2004), vertical uniformity in biomass is thought not to
be a severe limitation for calculating watercolumn production.
However, during stratified periods the mixed layer production
(i.e., production taking place from the ocean surface up to the
base of the mixed layer) may no longer constitute a major
segment of watercolumn production. The reason is that when
stratification is strong, the mixed layer depth is often found to be
much shallower then the photic depth (Longhurst, 1998). In such
conditions biomass tends to develop vertical dependency below
the base of the mixed layer, and the water column below it can
contribute significantly to daily watercolumn production. These
conditions tend to prevail during summer periods of intense
surface sunlight and in oligotrophic environments (Mignot et al.,
2014). In such conditions the correctness of applyingmodels with
vertical uniformity in biomass, for the whole photic depth, may
be challenged.

Also, resolving the daily time dependence of biomass when
calculating watercolumn production may be advantageous in
some situations. Consider for example the period of a bloom.
After stratification sets in, circulation of phytoplankton to greater
depths is prevented and rapid growth can occur (Sverdrup,
1953; Sathyendranath et al., 2015). Certainly, during such a
period the usage of time-independent biomass in watercolumn
production models can be challenged. After all, the bloom is
defined as the period of rapid growth in biomass. For estimating
production during such conditions a model with time-dependent
biomass would be more suitable. Another case in which the time
dependence of biomass may be important is during periods of
sharp decline in biomass, whichmay be caused by intense grazing
or dilution losses from deepening of the mixed layer (Zhai et al.,
2010). Thanks to remote sensing technologies, time dependence
in biomass is easily seen in serial satellite records of chlorophyll
(Platt and Sathyendranath, 2008; Racault et al., 2012; Cabre et al.,
2016).

Therefore, during periods of blooming/declining biomass or
periods of strong biomass stratification, a different specification
of model biomass may be more suitable. In this work, we
begin with an outline of the model, followed by mathematical
descriptions of the aforementioned problems and derivation of
the solutions. The basic model we use is already established
in the literature. It was first put forward by Platt et al.
(1990) and has since received numerous applications. This
primary production model was coupled to hydrodynamical
models (Platt and Sathyendranath, 1991), put in the context of
Sverdrup critical depth theory (Platt et al., 1991a), used in the
estimation of primary production from satellite data (Platt and
Sathyendranath, 1993), in studying the interaction between the
mixed layer and watercolumn production (Platt et al., 1994)
and finally in explaining the dynamics of high nutrient low
chlorophyll zones (Platt et al., 2003). Here we extend this model,
providing additional solutions for watercolumn production and
analyzing its relation to biomass dynamics through simple
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growth models. By doing so we broaden the range of applicability
of the model and place it on a more rigorous foundation.

First we define the watercolumn production integral and
proceed to discuss different ways of calculating watercolumn
production based on the way biomass is specified. We then
explore the general case of depth dependent biomass and give
an exact solution for watercolumn production with the shifted
Gaussian biomass. After that we explore the case of time
dependent mixed layer biomass and provide analytical solutions
for the case of growing and declining biomass. We test the new
solutions on data collected at the Hawaii Ocean Time-series
station located in the Pacific. Finally, we discuss the implications
of this model for Sverdrup’s Critical Depth Hypothesis and for
remote sensing applications.

2. THEORY

Watercolumn Primary Production
Let the z axes be positive downwards with the origin at the
ocean surface (Figure 1). Let time t equal zero at sunrise and
D at sunset. At an arbitrary depth z and time t, primary
production P(z, t) (measured in mgCm−3 h−1) is the product
of phytoplankton biomass B(z, t) (measured in mgChlm−3)
and the biomass-normalized production PB(z, t) (measured in
mgC (mgChl)−1 h−1):

P(z, t) = B(z, t)PB(z, t). (1)

In analytical models of primary production, the usual definition
of watercolumn primary production is that of a double integral of
the product of initial biomass B(z, 0) and the biomass-normalized
production PB(z, t):

PZ,T =

D
∫

0

∞
∫

0

B(z, 0)PB(z, t) dz dt. (2)

The subscript Z denotes integration over depth, whereas
subscript T denotes integration over time, following the notation
of Platt et al. (1990). The biomass-normalized production is a
function of irradiance and is specified with the photosynthesis
irradiance function pB(I) (Jassby and Platt, 1976), which is stated
as:

PB(z, t) = pB(I(z, t)), (3)

where I(z, t) is the irradiance, calculated from surface irradiance
I0(t) with the aid of a light penetration model (Kirk, 2011).
Typically, production increases linearly with irradiance, the
increase begins to decline with higher irradiance and saturation
occurs, or production is reduced if irradiance reaches high
enough levels, i.e., photoinhibition occurs (Platt et al., 1980).
Neglecting photoinhibition leaves the photosynthesis-irradiance
function determined by two parameters: the initial slope αB

and the assimilation number PBm (Platt and Sathyendranath,
1988). The effects of nutrients and temperature on production
are assumed to be included implicitly in the magnitude of
the photosynthesis parameters, following the approach of Platt

FIGURE 1 | Sketch of the basic model relations with respect to depth. With

the information on surface irradiance I0(t) and the optical properties of the

water column, the irradiance at depth I(z, t) (gray curve) is first calculated.

Using I(z, t) and the photosynthesis irradiance function pB(I), along with the

information on biomass B(z, t) (blue curve on the left hand side), normalized

instantaneous production PB(z, t) is obtained (orange curve). Further on, taking

the product of B(z, t) and PB(z, t) and integrating it over time we get the daily

production at depth (blue curve on the right hand side). In this depiction

watercolumn production PZ,T is the blue surface under the PT (z) curve. Blue
arrows indicate mixing and Zm marks the mixed layer depth. Daily production

from the surface up to Zm is marked with PZm,T .

and Jassby (1976). When evaluating the integral (2), various
approaches and assumptions may be adopted. It can either be
integrated over depth, following integration over time, or vice
versa. Depth dependence of biomass can be specified, or biomass
can be set constant with depth. Similarly, surface irradiance can
be considered as time-dependent or constant, spectrally-resolved
or spectrally integrated. Different photosynthesis-irradiance
functions can be used (Jassby and Platt, 1976). How to solve
integral (2) depends in large part on mathematical convenience,
in the context of the particular problem under study.

Using dimensional analysis Platt and Sathyendranath (1993)
showed that the canonical form for the solution of integral (2), in
the case of vertically uniform biomass B(z, 0) = B, is:

PZ,T ∼
BPBmD

K
f (Im∗ ), (4)

where K is the diffuse attenuation coefficient for downward
irradiance (Kirk, 2011) and Im∗ = αBIm0 /PBm the scaled noon
irradiance, with Im0 as noon irradiance. The f (Im∗ ) function
is determined by the formulation of the production-light
relationship. In case of the Platt photosynthesis irradiance
function (Platt et al., 1980):

pB(I) = PBm
(

1− exp
(

−αBI/PBm
))

, (5)
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the f (Im∗ ) is:

f (Im∗ ) =

∞
∑

n=1

2
(

Im∗
)2n−1

π (2n− 1) (2n− 1)!

(2n− 2)!!

(2n− 1)!!

−

∞
∑

n=1

(

Im∗
)2n

2n (2n)!

(2n− 1)!!

(2n)!!
. (6)

In that case the exact solution to integral (2) is:

PZ,T =
BPBmD

K
f (Im∗ ). (7)

When the water column is of a finite depth Zm (Figure 1) the
solution is:

PZm,T =
BPBmD

K

(

f (Im∗ )− f (Im∗ e
−KZm )

)

. (8)

This solution was derived by Platt et al. (1990) and thus far no
other analytical solution for watercolumn production has been
reported in the literature. It is called the canonical solution.
The assumptions of the model regarding light conditions
are: optically-uniform water column with sinusoidally varying
surface irradiance, such that the irradiance at depth is given by:

I(z, t) = Im0 sin(π t/D)e−Kz . (9)

Inserting this expressions into (5) gives the biomass normalized
production as:

PB(z, t) = PBm
(

1− exp
(

−αBIm0 sin (π t/D) e−Kz/PBm
))

. (10)

Time integral of PB(z, t) gives the daily normalized production
PBT(z). Here we shall use this same model setup but will relax
the assumptions of homogeneous and constant biomass. We
will allow for time- and depth-dependent biomass, seek the
solution for PZ,T in specific situations and explore the influence
that a time-, or depth-, dependent biomass has on watercolumn
production. Therefore, in this paper, a more complete definition
for PZ,T would be:

PZ,T =

D
∫

0

∞
∫

0

B(z, t)PB(z, t) dz dt. (11)

A complete list of symbols with corresponding descriptions is
given in Appendix A.

Biomass Specification
As formulated, this watercolumn production integral requires
the specification of biomass as a function of depth and time. To
specify biomass for integral (11) it is useful to write a differential
equation for the time evolution of the biomass. In this way
biomass dynamics are incorporated into the integral and its
solution. The dynamics of biomass can be modeled by a simple
equation of the following form:

∂

∂t
B(z, t) =

1

χ
PB(z, t)B(z, t), (12)

Sathyendranath and Platt (2007) assuming the carbon to
chlorophyll ratio χ constant during time (Sathyendranath et al.,
2009). This equation governs the time evolution of biomass
resulting from photosynthesis and allows for the accumulation
of biomass at each depth in accordance with (10).

Let B∗(z, t) be the solution to the growth equation (12). A
direct approach for calculating PZ,T would be to insert B∗(z, t)
into the integral (11) and solve for PZ,T :

PZ,T =

D
∫

0

∞
∫

0

B∗(z, t)PB(z, t) dz dt. (13)

With the usage of the solution B∗(z, t) in (11), watercolumn
production is coupled to the biomass dynamics expressed by
(12). However, this approach can be mathematically complex,
depending on the form of the solution B∗(z, t). A simpler
approach follows by recognizing that the process of biomass
accumulation described by (12) is in fact primary production.
Therefore, the difference between the final B∗(z,D) and
initial biomass B∗(z, 0), multiplied by χ , equals daily primary
production at depth z. Mathematically, the solution B∗(z, t)
satisfies (12) and the following holds:

B∗(z, t) =
χ

PB(z, t)

∂

∂t
B∗(z, t). (14)

Inserting this expression into (13) and solving yields:

PZ,T = χ

∞
∫

0

(

B∗(z,D)− B(z, 0)
)

dz. (15)

This expression gives the watercolumn production as the
difference between the final and initial biomass multiplied by the
carbon to chlorophyll ratio. The two integrals, (13) and (15), are
equivalent. The advantage of the second approach (15) is evident
in cases when the biomass dynamics are governed by the simple
growth equation, such as (12), whereas the first approach (13)
is more useful when the solution to equation (12) is a simple
mathematical expression. Both approaches will be used later.

If in the time interval from t = 0 (sunrise) until t = D (sunset)
the following expression holds for the solution B∗(z, t):

∂B∗(z, t)

∂t
≈ 0, (16)

it is safe to assume B∗(z,D) ≈ B∗(z, 0) and justified to use
initial biomass throughout the calculation of daily production.
Biomass profiles of this type can be considered to be in, or
close to, a steady state (Hodges and Rudnick, 2004). From the
dynamical perspective this approach is crude, but solutions with
initial biomass are valid in situations when the biomass does not
change significantly during the time course of 1 day. In this sense,
integral (2) is a special case of integral (13) when (16) is valid.
The accumulation of biomass due to photosynthesis is either not
significant compared with the initial biomass, or is balanced by
the loss processes. With this approach, the functional form of the
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initial biomass profile can be inferred frommeasurement, instead
of by solving the model equations, which is an advantage. In fact,
this is the standard practice in remote sensing applications (Platt
and Sathyendranath, 1988; Behrenfeld and Falkowski, 1997).

Stratified, Time-Independent Biomass
In summer periods of intense heating and weak mixing, strong
stratification in temperature, as well as stratification in biomass,
tend to develop below the mixed layer (Mann and Lazier, 2006).
In this stratified region, the biomass tends to remain virtually
constant in time, with only slight fluctuations in the shape of
the chlorophyll profile as the season advances. In the tropical
ocean stratification can be a permanent feature, whereas in
the temperate regions stratification tends to be eroded during
autumn and winter (Longhurst and Harrison, 1989). Given that
stratification usually persists for intervals of time longer than 1
day, it is safe to assume constant biomass when calculating daily
watercolumn production. Depth variation in biomass is assumed
to have a larger influence on the magnitude of daily watercolumn
production than time dependence does. Mathematically, integral
(2) is appropriate in these conditions and model solutions with
time-independent biomass are valid, because we assume that
biomass does not change significantly during the time course of
1 day, as stated by (16). This assumption is valid in regions of
the ocean where a stratified biomass profile is observed to be
persistent on time scales longer than that of 1 day.

General Case
When the biomass profile is held constant in time
B(z, 0) = B(z), a link between the canonical solution and
the general solution to integral (2) can be established. To
demonstrate this relation, we take advantage of the daily
normalized production profile PBT(z). With it, integral (2)
becomes:

PZ,T =

∞
∫

0

B(z)PBT(z) dz. (17)

In this way, watercolumn production is given as an integral of
the product between the time-independent biomass B(z) and
normalized daily production PBT(z). The solution for the daily
normalized production profile PBT(z) in case of the Platt et al.
(1980) photosynthesis irradiance function (5) is Kovač et al.
(2016a):

PBT(z) = PBmDfz(I
m
∗ e

−Kz), (18)

where the fz(I
m
∗ e

−Kz) function is related to the f (Im∗ ) function in
the following manner:

fz(I
m
∗ e

−Kz) = −
1

K

d

dz
f
(

Im∗ exp(−Kz)
)

. (19)

Inserting this expression into (17) and solving by partial
integration gives:

PZ,T =
PBmD

K

(

B(0)f
(

Im∗
)

+

∞
∫

0

dB(z)

dz
f
(

Im∗ e
−Kz

)

dz

)

, (20)

Where we have used B(∞)f (Im∗ e
−K∞) = 0. The first term on

the right hand side is simply the canonical solution (7) and the
second term is recognized as the contribution arising from the
shape of the biomass profile (stratification term).

The interpretation of the first term is simple: it gives the
watercolumn production in the case where surface biomass
stretches over the entire watercolumn. According to the second
term, any change in biomass with depth causes a deviation
from the canonical solution. If there is an increase in biomass,
dB(z)/ dz > 0, this contribution is positive, whereas if there is a
decline, dB(z)/ dz < 0, this contribution is negative. The change
in biomass dB(z)/ dz is scaled by the f (Im∗ e

−Kz) function. The
product dB(z)f (Im∗ e

−Kz) equals the production that would occur
below the depth z in case the biomass from z to∞ were equal to
dB(z). Total contribution from all these infinitesimal changes in
B(z) is accounted for by the integral on the right hand side of (20).
With increase in depth, the contribution from biomass variation
decreases, simply because production declines with increasing
depth (10).

Expression (20) is a formal relation linking the canonical
solution (7) to the solution for watercolumn production with
stratified biomass (2). It is valid for an arbitrary biomass profile
and clearly displays the role surface biomass B(0) has on
the magnitude of PZ,T . Surface biomass appears as a leading
factor in PZ,T . The significance of this result is emphasized
given that surface biomass is readily accessible to satellite
measurement. Therefore, if the remotely-sensed surface biomass
is precise, and assuming the remaining parameters of the
model are characteristic of the ocean region in question, the
error in the estimated watercolumn production arises solely
as a consequence of the error in estimating the biomass
profile, which is inaccessible to remote sensing and has to be
assigned based on prior information (Platt and Sathyendranath,
1988).

Shifted Gaussian Biomass Profile
An important case of the time independent biomass profile is that
of the shifted Gaussian superimposed on a constant background.
The shifted Gaussian is a suitable function for the description of
the vertical structure of biomass for diverse regions of the oceans
(Platt et al., 1991b), especially for the case of the widespread
deep chlorophyll maximum (Longhurst, 1998; Mignot et al.,
2014). In remote sensing applications it has been widely used
to model biomass profiles in algorithms for primary production
calculation (Platt and Sathyendranath, 1988, 1991). It is also
used in operational oceanography (Platt et al., 2008), with well-
established and tested procedures (Platt et al., 1988; Longhurst
et al., 1995). The role of the shifted Gaussian in ocean color
remote sensing has been studied and modeled by many authors,
including: Morel and Berthon (1989), Sathyendranath and Platt
(1989), Andre (1992), Stramska and Stramski (2005), Uitz et al.
(2006), Xiu et al. (2008), and Mignot et al. (2011).

In this case the biomass profile equals:

B(z) = B0 +
h

σ
√
2π

exp

(

−
(z − zm)

2

2σ 2

)

, (21)
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where the integrated biomass beneath the Gaussian curve is
given by h, the depth of the maximum is at zm and the width
of the biomass peak is determined by σ . B0 is the background
biomass. The peak biomass above the background B0 at zm is
H = h/(σ

√
2π). Upon inserting this expression into integral (17)

we get:

PZ,T =

∞
∫

0

B0P
B
T(z) dz +

∞
∫

0

h

σ
√
2π

exp

(

−
(z − zm)

2

2σ 2

)

PBT(z) dz.

(22)
The first integral can be replaced with the canonical solution and
the second integral can be simplified with the help of (18) to give:

PZ,T =
B0P

B
mD

K
f (Im∗ )

+
hPBmD

σ
√
2π

∞
∫

0

exp

(

−
(z − zm)

2

2σ 2

)

fz
(

Im∗ e
−Kz

)

dz. (23)

With reference to (20) we label the second term on the right
hand side as 1PZ,T (stratification term). The exact mathematical
derivation of the solution for 1PZ,T is given in the Appendix B.
The final solution is:

1PZ,T = PBmD
h

2

[

∞
∑

n=1

exp

(

z22n−1 − z2m

2σ 2

)

2
(

Im∗
)2n−1

π (2n− 1)!

(2n− 2)!!

(2n− 1)!!

(

1+ 8

(

z2n−1
√
2σ

))

−

∞
∑

n=1

exp

(

z22n − z2m
2σ 2

)

(

Im∗
)2n

(2n)!

(2n− 1)!!

(2n)!!

(

1+ 8

(

z2n
√
2σ

))

]

,

(24)

where 8 is the error function, z2n−1 = zm − (2n − 1)σ 2K and
z2n = zm − 2nσ 2K. The complete solution to (22) is now:

PZ,T =
B0P

B
mD

K
f (Im∗ )+ 1PZ,T , (25)

where the 1PZ,T depends explicitly on the values of h, zm, σ , α
B,

PBm, I
m
0 , and D. This expression calculates the amount of carbon

assimilated during 1 day per meter squared of the ocean surface,
by phytoplankton distributed vertically according to the shifted
Gaussian function (21).

The shifted Gaussian is flexible enough to describe various
features in the measured chlorophyll profiles and therefore this
solution covers a wide range of situations encountered in the
field. That flexibility is achieved by altering the parameters of
the function, namely: B0, zm, σ , and h. The disadvantage is that
in addition to the six basic quantities: αB, PBm, B0, I

m
0 , D, and

K, which appear in the canonical solution, the solution for the
shifted Gaussian has three more: zm, σ , and h. To apply the
solution, the values of these quantities need to be specified.

Time-Dependent, Mixed-Layer Biomass
Accounting for time dependence may be advantageous when
considering mixed-layer production, especially during the period
of a bloom. Blooms are typically initiated by stratification, either
from heating, river discharge or from sea ice melt (Mann and
Lazier, 2006). After the onset of stratification, the phytoplankton

become trapped in the upper, well-illuminated, nutrient-rich
layer, where conditions for growth are fulfilled, and in this
upper layer production is most intense, which can lead to
rapid accumulation of biomass (Chiswell et al., 2015). Blooms
last until nutrients are depleted, after which they crash (Levy,
2015), or are terminated by overgrazing. How rapidly the
bloom develops will be determined by physical conditions, the
physiological status of the phytoplankton population and by
loses (Banse and English, 1994), resulting in diverse patterns
of seasonal cycles of phytoplankton biomass, as evident in
remotely sensed records of chlorophyll concentration (Vargas
et al., 2009; Racault et al., 2012). In the model, the physiological
status is described by the photosynthesis irradiance function,
whereas the physical conditions are presented by the mixed
layer depth, surface irradiance, and the attenuation coefficient.
Next, we calculate primary production in the mixed layer
and show how it is affected by rapidly-growing or declining
biomass.

Increasing Mixed-Layer Biomass
Let us consider a mixed layer of depth Zm (constant in time) with
uniformly-distributed biomass at initial time B(z, 0) = B0, for
z = 0 to z = Zm. To simplify the equations, we introduce the
following notation for the total biomass in the mixed layer:

BZm (t) =

Zm
∫

0

B(z, t) dz. (26)

At time t = 0 the total biomass is BZm (0) = B0Zm. Let us
also assume that the newly-synthesized mixed layer biomass at
time t is redistributed through the mixed layer during a time
interval 1t, so that there is no stratification in biomass at t+1t.
Mixed-layer biomass at time t + 1T is now:

BZm (t + 1t) = BZm (t)+
1

χ
PZm (t)1t, (27)

with PZm (t) given as PZm (t) =
∫ Zm
0 P(z, t) dz. In the limit of

1t → 0, that is instantaneous mixing of newly-synthesized
biomass, this equation reduces to:

∂

∂t
BZm (t) =

1

χZm
PBZm (t)BZm (t). (28)

Derivation of this equation is given in the Appendix C. The
solution for the mixed-layer production with time-dependent
biomass described by (28) and initial biomass BZm (0) = B0Zm
is:

PZm,T = χB0Zm

[

exp

[

PBmD

χZmK

(

f (Im∗ )− f (Im∗ e
−KZm )

)

]

− 1

]

.

(29)
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The solution is found by the application of (15); details are given
in the Appendix C. The term in the exponent is recognized as
the canonical solution (8) divided by χ , Zm, and B0. It is clear
that the canonical solution (8) will underestimate production in
comparison with this solution. Due to photosynthesis, at a given
moment there will be more biomass in the mixed layer, than in
the case of time-independent biomass.

Declining Mixed-Layer Biomass
Given that the term PB(z, t) is always positive, we have considered
so far only the case of growing biomass. Here we consider the
case when this term is reduced in magnitude by a loss term, and
investigate the effect biomass loss has on the magnitude of daily
production. With this goal, equation (12) is modified by addition
of a loss term in the most general form LB:

∂

∂t
B(z, t) =

(

1

χ
PB(z, t)− LB

)

B(z, t). (30)

For there to be a negative growth (decline) in biomass the term
LB has to be greater than PB(z, t):

LB ≫
1

χ
PB(z, t). (31)

In this case the solution to equation (30) at time t is:

B(z, t) = B0e
−LBt , (32)

where we have used the initial condition B(z, 0) = B0. Time
dependence of this type is often observed in satellite records of
surface biomass, for example during the termination phase of a
bloom (Cabre et al., 2016). Therefore, to calculate mixed layer
production in this case, we insert the previous expression into
(11) and obtain the following integral:

PZm ,T =

D
∫

0

Zm
∫

0

B0e
−LBtPB(z, t) dz dt. (33)

This procedure is in accord with (13). The derivation of the
solution to this integral is given in the Appendix D. The final
solution is:

PZm ,T =
B0P

B
mD

K

[

(e−LBD
+ 1)

∞
∑

n=1

(

Im∗
)2n−1

−
(

Im∗ e
−KZm

)2n−1

π(2n− 1)

n
∏

m=1

1

(−LBD/π)2 + (2m− 1)2

−
(e−LBD − 1)

−LBD

∞
∑

n=1

(

Im∗
)2n

−
(

Im∗ e
−KZm

)2n

2n

n
∏

m=1

1

(−LBD/π)2 + (2m)2

]

.

(34)

In the expression inside the square brackets, the loss term
LB and daylength D appear as a product LBD, which imposes
itself as a dimensionless factor for the problem, determining
just how much the continual loss of initial biomass reduces
watercolumn production. This type of loss can occur when the
grazing pressure on phytoplankton is significant, or by sinking
out of the mixed layer. Potentially, the magnitude of the loss
term could be determined from time series of satellite-estimated
surface chlorophyll.

Relation to the Canonical Solution
In case of increasing, mixed layer biomass, the canonical solution
(8) is easily recognized in the exponential function on the right
hand side of expression (29). Writing the exponential as a sum
and rearranging, gives:

PZm,T =
B0P

B
mD

K

(

f (Im∗ )− f (Im∗ e
−KZm )

)

+ B0

∞
∑

n=2

(PBmD)
n

n!(χZm)n−1Kn

(

f (Im∗ )− f (Im∗ e
−KZm )

)n
.

(35)

The first term on the right hand side is the canonical solution
(8) and the additional terms arise due to time dependent
biomass. When the biomass is time independent, as is the case
with the canonical solution, these terms will vanish. Therefore,
when biomass is time dependent the canonical solution (8)
can be interpreted as the first order approximation for mixed
layer production, representing the lower limit on watercolumn
production. Important to note is that biomass has to increase
with time in accordance with (28) for this interpretation to hold.

On the other hand, when biomass is declining with time, as
stated in (32), the canonical solution will be the upper limit on
daily watercolumn production, given that at each time instant
there is less biomass in the mixed layer, in comparison with
constant biomass B0. In this case we were unable to find an exact
link between solution (34) and the canonical solution. Instead, we
have found by numerical exercises, the canonical solution with

noon biomass B0e
−LBD/2, in place of initial biomass B0, to be a

good approximation for the full solution (34):

PZm,T ≈ B0 e
−LBD/2 P

B
mD

K

(

f (Im∗ )− f (Im∗ e
−KZm )

)

. (36)

It is important to emphasize the initial assumption behind
solution (34). For it to hold, the loss rate has to be significantly
larger than normalized production (31) so that the growth due to
production is insignificant in comparison with losses and (32) is
valid. Therefore, solution (34) is valid when (31) holds and the
approximation (36) is only then justified.

3. DATA

The models described so far and the solutions derived therefrom
require parameter values to be implemented and tested against
data. Oceanic time series are suitable sources of such information.
For our model, the Hawaii Ocean Time-series (HOT) is an
ideal testing ground. Data from it have already served for
other model testing, with over 600 publications testifying to
the quality of the data. The entire data set is publicly available
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with full documentation of the methods and procedures used.
Information on the data set can be found in Karl et al. (2001)
and Karl and Church (2014).

HOT is a program of oceanic measurements started in
1988 at station Aloha, located near the Hawaii Islands at
22◦45′N 158◦W. The basic set of measurements relevant
for this model encompasses: primary production using the
standard in-situ implemented 14C method (Steemann Nielsen,
1952), fluorimetric determination of chlorophyll concentration
(Strickland and Parsons, 1972), optical measurements using bio-
optical profilers, surface photosynthetically-available radiation
(PAR) measurement using on deck radiometer, and finally
the mixed-layer depth determination based on potential
density.

There are in total 194 cruises with available data. Production
and chlorophyll weremeasured at: 5, 25, 45, 75, 100, 125, 150, and
175 m. Surface PARwas given inµEm−2 s−1 and the conversion
to Wm−2 was done using Smith and Morel’s procedure (Morel
and Smith, 1974). From it Im0 was determined as˜Im0 =˜ITπ/2D,
where ˜IT is the total received irradiance throughout the day.
Daylength was provided from PAR measurement. The diffuse
attenuation coefficient was calculated from one percent light level
which was given for 150 cruises, based on optical profiles. For
the remaining cases, the average value of 0.0435 m−1 has been
used. Mixed-layer depth Zm was estimated by the offset of 0.125
kgm−3 in potential density at depth, from the surface value (de
Boyer Montegut et al., 2004; Suga et al., 2004). Photosynthesis
parameters were estimated from chlorophyll and production
profiles using the method of Kovač et al. (2016a,b). The data on
production, chlorophyll, PAR, one percent light depth and mixed
layer depth are publicly available at hahana.soest.hawaii.edu/hot,
whereas the data on the photosynthesis parameters are publicly
available at jadran.izor.hr/∼kovac/parameters. There were no
data on the carbon-chlorophyll ratio.

With the available data, we now proceed to test the solution
for the mixed layer production and the shifted Gaussian
solution. We further use the solutions with time dependent
biomass to predict the influence that time-dependent biomass
exerts on mixed layer production. For the measured/known
value of a variable/parameter we use ,̃ e.g., x̃, whereas
for a model variable/parameter we use ordinary symbols,
e.g., x.

4. RESULTS

Testing the Canonical Solution for
Mixed-Layer Production
A straightforward way of testing the canonical solution is simply
to calculate mixed layer production with it. The mixed layer is
by definition a region of uniform biomass and the assumption
of uniformity in biomass required by the canonical solution is
fulfilled. To test the model structure we calculate mixed-layer
production with expression (8) and compare it with themeasured
mixed layer production, calculated with the trapezoidal rule
from the measured production profile. The obtained results are
displayed in Figure 2.

For the mixed-layer biomass in expression (8) the average
value of the measured biomass from the first two measuring
depths was used. As can be seen from the figure, the match
between the modeled and the measured mixed-layer production
is quite satisfactory. The coefficient of determination is r2 =

0.94. Therefore, the canonical solution is a good model for
mixed-layer production. Some discrepancy is seen at higher
values of production. These errors may be caused by the way
in which the mixed-layer depth was estimated. It may not
always be the case that the mixed layer depth estimated from
potential density corresponds well with the depth of active
mixing and it is the depth of active mixing that is relevant
for biomass homogenization (Franks, 2015). In some data sets
we have observed the biomass not to be homogeneous from
the surface all the way down to the base of the mixed layer
estimated from potential density. This increase in biomass causes
more production, than would otherwise occur without it and is
reflected in the slight deviation in Figure 2.

Testing the Shifted Gaussian Solution
A prerequisite in the application of the solution (25) is to know
the values for the parameters of the shifted Gaussian. These have
to be estimated fromHOT data on chlorophyll profiles. To obtain
the biomass parameters we have fitted the shifted Gaussian to the
measured chlorophyll profiles by adjusting the parameter values.
The conjugate gradient method was used (Baldick, 2006; Knyazev
and Lashuk, 2008). The shifted Gaussian was convergent for
each chlorophyll profile. Average concentration of background
biomass B0 is 0.085 mgChlm−3, with a standard deviation
of 0.025 mgChlm−3. Average depth of the deep chlorophyll
maximum zm is 104.12 m, with a standard deviation of 19.00 m.

FIGURE 2 | Scatter plot of measured mixed layer production˜PZm ,T calculated

with the trapezoidal rule from the measured production profile and modeled

mixed layer production PZm ,T calculated with the canonical solution (8) using

the average measured biomass from 5 to 25 m depth.
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Average width of the biomass peak σ is 21.93 m, with a standard
deviation of 8.89 m, and finally the average height of the biomass
peak H is 0.175 mgChlm−3, with a standard deviation of 0.075
mgChlm−3.

With the estimated parameters we have further calculated the
accuracy of representing the measured biomass profiles with the
shifted Gaussian. The biomass given by the shifted Gaussian was
calculated at the depth of each measurement and compared with
the measured value. The results are shown in Figure 3. There
are in total 1552 measurements of chlorophyll. As can be seen,
the shifted Gaussian is a good model for the biomass profile at
all the measuring depths except the last two (150 and 175 m).
The coefficient of determination for the data from all depths
is 87.84%. However, once the last two depths are excluded the
coefficient of determination jumps to a high 98.39%, signifying
that the shifted Gaussian is an even better model for the biomass
up to the measurement depth of 125 m. The contribution to
watercolumn production from depths >125 m is expected to be
minimal.

The results of applying the analytical solution (24) are
displayed in Figure 4. The solution did not exhibit convergent
behavior for all the cruise data: out of 194, it converged for
168 cruises. The reason for divergence in the remaining 26
cruises comes from the behavior of the exponential terms
exp

(

(z22n−1 − z2m)/2σ
2
)

and exp
(

(z22n − z2m)/2σ
2
)

, which upon
summation in solution (24) divergee when σ is high and zm
is small. This corresponds to the case of a wide chlorophyll
maximum close to the surface. The solution behaves well when

FIGURE 3 | Scatter plot of measured ˜B and modeled biomass B with the

shifted Gaussian (21). The first six measurement depths are given in orange,

whereas the data from 150 m measurement depth is given in light gray and the

data from 175 m measurement depth is given in gray. The gray line represents

the 1:1 model vs. data ratio. For the points above/below the gray line the

shifted Gaussian overestimates/underestimates the measured biomass.

σ is small and zm large, which is the case of a narrow deep
maximum, i.e., a deep chlorophyll maximum. As ameasure of the
applicability of the given solution the 3σ rule can be applied. For
the Gaussian function 99% of the biomass concentration above
B0 is located in the depth interval (zm − 3σ , zm + 3σ ). When
zm is larger than 3σ this biomass is located below the surface.
That is the dominant situation at HOT station and the solution
converges, as evident in Figure 4.

Predictions with the Time-Dependent
Biomass Solutions
Application of the canonical and the shifted Gaussian solutions
is straightforward, given that all the necessary parameters
are available. The solutions with time-dependent biomass are
more complex to apply due to the requirement for additional
parameter values. However, even without knowledge of these
parameter magnitudes, the solution can be used to estimate the
effect of growth, or decline, in biomass on the magnitude of
mixed-layer production. If the biomass is allowed to accumulate,
then production is expected to increase in comparison with the
case for a time-independent biomass. The opposite holds for
the case of a decline in biomass. Just how strong these effects
are can easily be calculated for hypothetical cases, but to be as
close as possible to real scenarios we apply the solutions with the
parameter values typical of HOT.

To illustrate our point, we calculate mixed-layer production
using the new solutions with the median values for the mixed-
layer depth, assimilation number, mixed-layer biomass, and the
attenuation coefficient from HOT. We plot the solutions as a
function of the dimensionless noon irradiance to demonstrate

FIGURE 4 | Scatter plot of measured watercolumn production˜PZ,T ,
calculated with the trapezoidal rule from the measured production profile, and

modeled watercolumn production PZ,T , calculated with the analytical solution

for the shifted Gaussian biomass (24). The solution did not converge for 26,

out of 194 tested cruises.
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the effect light has on the magnitude of mixed-layer production
(Figure 5). In this exercise daylength D is set to 10 h. The blue
curve on the figure gives the canonical solution for mixed layer
production with the median parameter values: Zm = 54.75 m,
PBm = 7.85 mgC (mgChl)−1 h−1, B = 0.072 mgChlm−3, and
K = 0.043 m−1. The orange curve is the solution (29) with the
carbon-chlorophyll ratio equal to 150 mgC (mgChl)−1 and the
light orange with the carbon-chlorophyll ratio equal to to 100
mgC (mgChl)−1. As expected, the production is higher when
increase in biomass is accounted for. The red curve corresponds
to the solution (34) with the dimensionless factor LBD = 1. In
this example D = 10 h, which gives LB = 0.1 h−1, i.e., a 10%
decrease of biomass per hour. At this rate the biomass at sunset
declines to its e-folding value B(D) = B0/e. Finally the pink curve
is the approximation (36), of the solution (34), with the same
parameter values.

In both cases the effect on mixed layer production is
significant. The effect of growth is more pronounced for
phytoplankton with lower values of carbon-chlorophyll ratio.
This is simply understood by considering that for higher value
of χ more carbon is required for a unit increase of chlorophyll.
Mathematically, χ appears in the denominator in equation (28)
signifying that the change in biomass per unit time is inversely
proportional to χ . A straightforward conclusion is that the
growth effect on primary production will be more pronounced
for phytoplankton with lower values of χ and vice versa. The
effect of loss on primary production is also straightforward: the
decline of biomass during the day results in lower production.
The greater the loss, the greater the diminution in production
in comparison with the canonical solution. The exact magnitude
of the reduction is now easily calculated using solution (34).
The agreement between the approximation (36) with the exact
solution (34) is remarkable.

FIGURE 5 | Mixed layer production calculated with the canonical solution (8,

blue curve), solution for growing biomass (29, two orange curves with different

carbon-chlorophyll ratio), the solution with declining biomass (34, red curve)

and the approximation to the solution with declining biomass (36, pink curve).

The parameters used in the solutions are typical of the Hawaii area and are

given by the median values of: Zm = 54.75 m, PBm = 7.85

mg C (mg Chl)−1 h−1, B = 0.072 mg Chl m−3, and K = 0.043 m−1. Daylength

D is set to 10 h, the dimensionless factor LBD to 1, carbon to chlorophyll ratio

χ to 150 mg C (mg Chl)−1 (orange curve) and to 100 mg C (mg Chl)−1 (light

orange curve).

5. DISCUSSION

Taken together, the solutions presented cover a wide range
of different mixing and growth conditions (Figure 6), such as
might be encountered in the field: from intense mixing and
low growth—canonical solution (8), intense mixing and high
growth—increasing mixed-layer biomass solution (29), intense
mixing and negative growth—declining mixed-layer biomass
solution (34), and finally low mixing and low growth—shifted
Gaussian solution (24). As all these conditions are indeed
observable at times in the ocean, so too are the assumptions of
the outlined solutions fulfilled to some extent, and the application
of the solutions justified. The only case not solved here is of low
mixing and high growth in biomass, which corresponds to the
case of time-dependent stratified biomass. Analytical solution to
this problem has yet to be found and is a potential topic for future
theoretical work. The problem can be treated as formulated
in this work, by first solving the growth equation for biomass
(12) and inserting the solution directly into the integral for
watercolumn production with time-dependent biomass (11).

Irrespective of the model, there are in essence three possible
outcomes concerning temporal evolution of biomass. It can
be constant, or accumulating or declining. Time dependence
in biomass is easily seen in satellite records of chlorophyll
(Racault et al., 2012; Cabre et al., 2016) which can potentially
serve for assessing whether or not time dependence in biomass
should be accounted for when calculating primary production.

FIGURE 6 | Conceptual diagram highlighting the relations of the model

assumptions and analytical solutions with respect to growth (abscissa) and

mixing (ordinate). Growth is presented as change in biomass over time dB/dt,
whereas the effects of mixing are presented as dB/dz. Lines sketch the

biomass profiles: orange for stratified biomass with week mixing and low

growth, blue for uniform biomass with intense mixing and low growth, and pink

for time dependent biomass with intense mixing. Solution for watercolumn

production with time dependent stratified biomass has yet to be found.
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If the chlorophyll time series displays quiet periods with no
temporal dependence in biomass, the canonical solution is then
a valid model for mixed layer production. The model with
increasing time-dependent biomass is adequate for primary
production calculation during a blooming period. This period
is also easy to diagnose from satellite chlorophyll time series.
After the bloom crashes and the decline of chlorophyll begins
to show in the record, the assumption behind the model with
declining mixed-layer biomass becomes valid. The value of
the loss rate can potentially be determined empirically from
the chlorophyll record. Therefore, with respect to the annual
cycle of biomass, the solutions presented in this work are each
appropriate for a particular period of the year when their
respective assumptions are met. Calculating annual watercolumn
production in this manner can potentially be a topic for future
research.

In earlier literature, integrals for watercolumn production
were usually formulated with time-independent biomass (Platt
and Sathyendranath, 1993) and could therefore be applied at
any stage during the course of the annual cycle. Calculating
production in this manner proved suitable for ocean areas where
field biomass was known not to change considerably during
the interval over which production was calculated, and was in
a sense mandatory from the practical standpoint, given that
observations of biomass were predominantly performed once per
day. However, this approach resulted in biomass accumulation
due to primary production having no effect on daily production.
Formulating production integrals with biomass constant in
time presumes incremental production due to newly-synthesized
biomass as insignificant in comparison with production arising
from initial biomass. The approach presented here alleviates
this limitation and allows a positive feedback between biomass
accumulation and primary production, with newly-synthesized
biomass contributing to primary production.

The approach advocated here treats the temporal evolution
of biomass as being governed by the growth equation, with the
growth term dictated by instantaneous production. Coupling this
equation to the watercolumn production integral was achieved
through the reformulation of the integral via a time-dependent
biomass term multiplying the normalized production term.
Due to mathematical complexities of this formulation, different
approaches for handling the problem were proposed. First, the
problem of depth-dependent biomass was analyzed, with an
important note that in this context it was viewed as a special
case of a steady state solution for biomass distribution. Assuming
steady state is reasonable for non-bloom conditions in the
oligotrophic ocean, during summer periods at higher latitudes
and below the mixed layer (Fennel and Boss, 2003). Biomass
profiles of this sort are assumed to be solutions to amore complex
equation for biomass, which accounts for other processes besides
growth, such as losses by grazing, mixing, and sinking (Beckman
andHense, 2007). These processes are easily included in vertically
resolvedmodels for biomass, but the price paid for their inclusion
is the increase in model complexity, which makes them difficult
to solve analytically, with numerical procedures stepping in as
the method of choice to obtain solutions (Huisman et al., 2002;
Taylor and Ferrari, 2011).

To circumvent the problem of finding an analytical, steady-
state solution to a more general equation, involving not only
the nonlinear, time-dependent production term, but also sinking
and mixing, we have employed the shifted Gaussian as an
approximation to the solution for the biomass profile at steady
state. The types of profiles described by the shifted Gaussian
are indeed in close agreement with the numerical simulations of
the biomass profiles (Beckman and Hense, 2007; Liccardo et al.,
2013). More importantly, they are often obtained as results of
measurements, and biomass profiles observed in the open ocean
are a prototype example for using the shifted Gaussian in the
integral for watercolumn production (Platt and Sathyendranath,
1988; Platt et al., 1991b). For vast regions of the open ocean
biomass is vertically structured (Longhurst and Harrison, 1989).
The most common structure is that of the deep chlorophyll
maximum (Navaro and Ruiz, 2013), which is a perfect match for
the shifted Gaussian. The deep chlorophyll maximum is often
observed to be a quasi permanent feature, existing for months,
if not for the duration of the whole annual cycle (Platt and
Sathyendranath, 1988). In this case the processes that act to create
the deep chlorophyll maximum, and sustain it, are in equilibrium
on time scales longer than that of 1 day (Chiswell et al., 2015),
justifying the assumption of time independent biomass in daily
watercolumn production calculations. Deep chlorophyll maxima
are also observed on majority of HOT cruises, with the shifted
Gaussian demonstrated here to be a good model for HOT data
(Figure 3). From this alone stems the legitimacy of using the
shifted Gaussian as a model for the biomass profile in the
watercolumn production integral for HOT.

In addition, when biomass remains stratified for prolonged
periods of time it is safe to assume that mixing is not vigorous
enough to distort the established stratification (Liccardo et al.,
2013). Mixing itself is caused by various physical agents such
as wind, waves, and convection (Franks, 2015), which increase
turbulent kinetic energy in the mixed layer. In numerical models
this process is parameterized with the mixing coefficient through
turbulence closure schemes (Cushman-Roisin and Beckers,
2011). In the presented model however, mixing is not expressed
explicitly, but rather the consequences of mixing are assumed
implicit through the effect it had on shaping the initial biomass
profile. In the field, uniform biomass profiles are most likely
associated with strong mixing, whereas stratified biomass profiles
are surely associated with less intense mixing. For if mixing were
intense, stratification in biomass would not come about, because
any incipient stratification would be quickly eroded. This process
is well represented in numerical models of the biomass profile
(Beckman and Hense, 2007). When assuming a uniform biomass
profile we are in fact assuming that mixing was strong enough to
cause homogenization of biomass.

This is of course valid for the mixed layer, in which biomass
is homogeneous by definition, but it is important to make
a distinction between the mixed layer and a layer of active
mixing, as highlighted by Franks (2015). The solutions for mixed
layer production presented here are strictly valid for a layer of
active mixing, since we assume that mixing of newly-synthesized
biomass is occurring instantaneously. However, it is often the
case that mixed layer depth is determined based on density, or
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temperature, offset from the surface value (de Boyer Montegut
et al., 2004), even though the mixed layer depth determined in
this way may not always correspond well with the depth of active
mixing (Franks, 2015). We suspect this to be the cause for the
slight bias evident in Figure 2. For the model presented here, the
assumption of active mixing is required to redistribute the newly-
synthesized biomass so that growth occurs uniformly throughout
the mixed layer.

Another relevant consequence of the assumption of active
mixing is that it enabled the loss rate to be assumed vertically
uniform in the mixed layer. In addition to vertical uniformity,
not stating the loss rate explicitly left a certain flexibility in the
presented model. The loss rate of the phytoplankton population
is known to be a complex mixture of various processes such as
mixing, sinking, predation, andmortality (Platt et al., 1991a; Zhai
et al., 2010), and in the ocean these processes can combine to
give amore complex pattern than simply a vertically-uniform loss
rate. However, since the work of Sverdrup (1953), it is commonly
assumed in theoretical considerations of mixed layer production
that losses are in fact uniform due to mixing itself, and here
presented model follows this basic approach.

Contrary to the loss rate, a basic feature of the model, shared
also by all the previous models of watercolumn production
(Platt and Sathyendranath, 1993), is depth resolved instantaneous
production, caused by the decline of light intensity with depth.
This allows for the accumulation of biomass in the growth
equation to proceed in accord with the well established response
of primary production to light, stated in (10). Therefore,
production is given a more realistic treatment, than losses
are. The lack of detailed treatment of the loss terms is not
a serious drawback for this model, because parameterizations
for respiration, excretion, grazing by micro- and macro-
zooplankton, and sedimentation were already studied by Platt
et al. (1991a) and Zhai et al. (2010). Inclusion of parametrization
for losses given in Zhai et al. (2010) is straightforward here. Losses
became as important as production in considerations of bloom
dynamics and the model used here can shed some light on this
topic, specifically on the Critical Depth Hypothesis.

Implications for the Critical Depth
Hypothesis
The new formulation of the mixed-layer production model
also has consequences for the Critical Depth Hypothesis. To
demonstrate, let us again return to the case of the mixed layer
with uniform biomass and the mixing depth given by Zm.
According to Sverdrup (1953), if the mixing depth is shallower
than the critical depth Zcr conditions for the initiation of a
bloom are fulfilled (Siegel et al., 2002; Fischer et al., 2014).
Critical depth is defined as the depth at which the mixed-
layer production is balanced by mixed layer losses (Platt et al.,
1991a; Sathyendranath et al., 2015) and is derivable from a
conservation of biomass equation (Levy, 2015; Mignot et al.,
2016). Mathematical formulations of the critical depth criterion
are well established in the literature (Sverdrup, 1953; Platt et al.,
1991a) and Sverdrup’s criterion is usually acknowledged to be
a necessary and a sufficient condition for bloom initiation, but

not a sufficient condition for determining the amplitude of the
bloom (Platt et al., 1994). It specifies whether the bloom can
occur, but leaves the bloom amplitude unspecified. With the
dynamic approach for primary production calculation, we now
demonstrate that Sverdrup’s criterion can also be used to calculate
the daily increase in mixed layer biomass.

To elaborate, let us augment the production equation (28)
with the loss term, so that the time evolution of mixed layer
biomass becomes:

∂

∂t
BZm (t) =

1

χZm

(

PBZm (t)− LBZm

)

BZm (t), (37)

where LBZm represents total losses in the broadest sense, arising
from respiration, excretion, grazing, sinking, and so on (Zhai
et al., 2010). Let the growth and loss of the mixed layer biomass
be on the same order of magnitude. We assume the loss rate to be
vertically uniform and time independent, a justifiable assumption
given the mixing. The solution to this equation at time D + N,
where N marks the night interval, is then:

BZm (D+ N) = BZm (0) exp

(

1

χZm

(

PBZm ,T − LBZm ,T

)

)

. (38)

If there is to be an increase in biomass during a 24 h period,
that is:

BZm (D+ N) > BZm (0), (39)

the term in the exponential function has to be greater than
zero. It will be greater than zero when the mixed layer
production surpasses the losses, that is PBZm ,T > LBZm ,T .
Since the net production decreases with depth, because light
intensity decreases and losses remain constant, there will be a
depth at which the vertically-integrated production PBZm,T equals

vertically-integrated losses LBZm . The depth at which the two terms

exactly balance PBZcr ,T = LBZcr ,T is recognized as the critical depth
Zcr , defined by Sverdrup (1953). If the mixing depth is shalower
than the critical depth the term in the exponential function is
positive.

Invoking the canonical solution for PBZcr ,T we get the implicit
expression for the critical depth:

PBmD

K

(

f (Im∗ )− f (Im∗ e
−KZcr )

)

= LB(D+ N)Zcr , (40)

where we have used LBZcr,T = LB(D + N)Zcr . Dividing both sides

by Zcr gives:

PBmD

KZcr

(

f (Im∗ )− f (Im∗ e
−KZcr )

)

= LB(D+ N). (41)

This expression states that the average production in the mixed
layer equals the average loss when the mixed layer depth is equal
to the critical depth, which is precisely the critical depth criterion
of Sverdrup (1953). Therefore, when the mixed layer extends to
the critical depth there is no accumulation of biomass. Mixing
beyond the critical depth leads to losses in the mixed-layer
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biomass, and finally mixing not extending to the critical depth
leads to accumulation of mixed-layer biomass. The mathematical
condition expressing this latter statement is simply:

Zm < Zcr , (42)

with Zcr given as a solution of (41). If this condition is met so is
condition (39) and accumulation of mixed-layer biomass occurs.
Whenever condition (42) is met, there will be a positive increase
in mixed layer biomass over the course of 1 day of the following
magnitude:

1BZm = BZm (0)

[

exp

(

1

χZm

(

PBZm,T − LBZm ,T

)

)

− 1

]

. (43)

The critical-depth criterion can now be restated as: when
the mixed layer depth is shallower/deeper than the critical
depth, there is an increase/decrease in mixed layer biomass of
magnitude 1BZm . If the critical depth and the mixed-layer depth
are equal, the biomass remains constant.

Implications for Remote Sensing
Applying the models presented in this work as estimators of
watercolumn production, based on remotely-sensed data on
ocean color, is straightforward. The solutions can be used as
a part of existing remote sensing algorithms for watercolumn
production, requiring only alterations to be made on the module
that calculates watercolumn production, with the analytical
solutions taking place of the commonly employed numerical
ones. The models are formulated in a similar fashion to our
previous ones and when implemented require information on
the same parameters and variables (Platt and Sathyendranath,
1993), of which the following are accessible by remote sensing:
chlorophyll concentration, surface irradiance and the attenuation
coefficient. A relevant distinction from the previous models
concerns the assumption of time dependence in biomass. This
has implications for remote sensing applications, given that all
prior models assumed biomass constant in time, implying that
sampling biomass at any time of the day was sufficient for these
estimators. However, in the newly presented models temporal
evolution of biomass is accounted for and we can ask how the
biomass sampled at a specific time of day relates to the initial
biomass required by the models.

Acknowledging that ocean color satellites have access to
surface chlorophyll (approximately up to the first photic depth
1/K) and in line with the models presented so far, we write the
equation for the time evolution of surface chlorophyll B(0, t) as:

∂

∂t
B(0, t) =

( 1

χ
PB(0, t)− LB

)

B(0, t), (44)

ignoring advection and mixing, which makes it valid for laterally
uniform fields, or for time scales short enough so that neither
advection, nor mixing, cause significant changes in biomass over
the course of integration. Let us assume that the satellite samples

surface biomass at time ts and label it˜B(0, ts). From the previous
equation surface biomass at time ts is:

B∗(0, ts) = B(0, 0) exp

(

ts
∫

0

( 1

χ
PB(0, t)− LB

)

dt

)

. (45)

Equating the remotely sensed biomass ˜B(0, ts) with B∗(0, ts)
enables as to express the initial surface biomass as:

B(0, 0) =˜B(0, ts) exp

(

−

ts
∫

0

(

1

χ
PB(0, t)− LB

)

dt

)

. (46)

This expression takes the remotely sensed biomass ˜B(0, ts)
and transforms it into the initial biomass B(0, 0), under the
assumption that biomass evolves according to equation (44).
It corrects the remotely sensed surface biomass for dynamical
processes of growth and loss, to yield the initial biomass. Taking
the satellite overpass time to be at local noon ts = D/2, further
enables us to express initial biomass explicitly as:

B(0, 0) =˜B(0,D/2) exp

(

−
D

2

(

PBm
χ

fz(I
m
∗ )− LB

))

. (47)

According to these expressions, having dynamically evolving
biomass in the model, affects not only the magnitude of
watercolumn production, but also the way in which initial
biomass should be calculated from remotely sensed biomass, to
compensate for growth and loss. It is important to note that
the correction is not linear, but exponential, with respect to
production and loss.

6. CONCLUSIONS

The work presented here extends on the standard formulation
of daily watercolumn production by allowing for depth- and
time-resolved biomass. In the standard formulation, biomass
was specified in advance and treated as unrelated to primary
production (Platt and Sathyendranath, 1993), leaving prior
models without proper dynamics in this regard. To avoid having
this problem, we proposed an alternative approach and stated a
growth equation for biomass, thus allowing for a time-dependent
solution in biomass. Coupling this equation to the watercolumn
production integral was achieved by reformulating the integral
with time-dependent biomass. Therefore, biomass was related
to growth, and as such, subsequently used in the watercolumn
production integral.

Depth-resolved biomass was set via an initial condition and
we distinguished two possibilities regarding depth dependence
in biomass: stratified water column and a mixed layer. For
the mixed layer, we further distinguished between growing
and declining biomass, providing analytical solutions for
watercolumn production in both cases. For the stratified water
column we used the shifted Gaussian function to represent
biomass profiles and derived an exact analytical solution for daily
watercolumn production in this case. No analytical solutions to
these problems have been reported in the literature until now.
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The new solutions were tested with data from the HOT
program. The shifted Gaussian was used to model biomass
profiles and it was demonstrated to be a good model. The
canonical solution for mixed layer production and the solution
with the shifted Gaussian were applied as models of watercolumn
production. Both analytical solutions proved to be good models
for this open ocean station. The solutions for growing and
declining biomass were used to predict mixed layer production in
the cases where biomass was increasing/decreasing in accordance
with the assumptions of the models.

Sverdrup’s critical depth criterion was explored further and an
exact expression for mixed layer biomass increment during 1 day
was derived. The final statement of the critical depth criterion
remained unaltered, although it was based on the argument of
growth, whereas prior statements of the criterion were based
on the balance between watercolumn production and losses
(Sverdrup, 1953; Platt et al., 1991a). The two approaches are now
seen equivalent with respect to the final outcome, that being the
critical depth criterion.

It was further discussed how tomerge the temporally-evolving
surface biomass with the remotely-sensed surface biomass, to get
to the initial condition on biomass. We expect the processes of
growth and loss to affect surface biomass significantly during the
initiation or termination phases of a bloom, when the biomass is
changing rapidly on time scales shorter than 1 day. A potential
course for future research would be to implement this approach
in producing maps of chlorophyll from remotely-sensed data.
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We derive the chlorophyll a concentration (Chla) for three main phytoplankton functional

types (PFTs) – diatoms, coccolithophores and cyanobacteria – by combining satellite

multispectral-based information, being of a high spatial and temporal resolution,

with retrievals based on high resolution of PFT absorption properties derived from

hyperspectral satellite measurements. The multispectral-based PFT Chla retrievals are

based on a revised version of the empirical OC-PFT algorithm applied to the Ocean

Color Climate Change Initiative (OC-CCI) total Chla product. The PhytoDOAS analytical

algorithm is used with some modifications to derive PFT Chla from SCIAMACHY

hyperspectral measurements. To combine synergistically these two PFT products

(OC-PFT and PhytoDOAS), an optimal interpolation is performed for each PFT in every

OC-PFT sub-pixel within a PhytoDOAS pixel, given its Chla and its a priori error statistics.

The synergistic product (SynSenPFT) is presented for the period of August 2002 March

2012 and evaluated against PFT Chla data obtained from in situ marker pigment

data and the NASA Ocean Biogeochemical Model simulations and satellite information

on phytoplankton size. The most challenging aspects of the SynSenPFT algorithm

implementation are discussed. Perspectives on SynSenPFT product improvements and

prolongation of the time series over the next decades by adaptation to Sentinel multi- and

hyperspectral instruments are highlighted.

Keywords: synergistic, Sentinel, satellite retrievals, phytoplankton functional type

1. INTRODUCTION

Phytoplankton supplies over 90% of the nutrition consumed by the higher trophic levels of
the marine ecosystem and contributes to 50% of the global primary production (Field et al.,
1998). Therefore, it is very important for global biogeochemical fluxes (e.g., carbon) since it
fixes atmospheric carbon, CO2, and produces organic carbon compounds. In combination with
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physical factors, this process helps to determine which part of
the ocean is a sink or source of CO2 (Laufkötter et al., 2016).
Furthermore, global biogeochemical fluxes can be impacted
by the size and composition of phytoplankton, in addition to
the structure of the trophic community. Ocean color remote
sensing has revolutionized our understanding of these processes
in the past decades by providing globally continuous data on
surface chlorophyll a concentration (Chla, mg m−3). Chla,
however, is an index of total phytoplankton biomass within
which each phytoplankton group has a specific morphology and
photophysiology and plays a particular role in biogeochemical
cycling. For instance, diatoms are the phytoplankton silicifiers,
which contribute to most of the primary production and
biomass during the spring bloom in temperate and polar regions
(Buesseler, 1998). Their importance is related to the efficiency
of carbon export through the direct sinking of single cells, key
grazing pathways and through mass sedimentation events at the
end of the spring blooms when nutrients are depleted (Le Qur
et al., 2005). Coccolithophores are the main planktonic calcifiers
in the ocean: through building and releasing calcium carbonate
plates, coccoliths, coccolithophores make a major contribution
to the total content of particulate inorganic carbon in the open
oceans (Milliman, 1993; Ackleson et al., 1988). Cyanobacteria
regenerate nutrients and, therefore, influence themarine recycled
production (Waterbury et al., 1986; Morán et al., 2004).

The ability to observe the phenology and variability of
different phytoplankton groups simultaneously is “a scientific
priority for understanding the marine food web, and ultimately
predicting the oceans role in regulating climate and responding
to climate change on various time scales” (Bracher et al., 2017b).

Abbreviations: AWI, Alfred Wegener Institute; Chla, chlorophyll “a”

concentration; c-micro, microphytoplankton Chla; CNRS, Centre National

de la Recherche Scientifique; c-nano, nanophytoplankton Chla; c-pico,

picophytoplankton Chla; coc, coccolithophores Chla; cya, cyanobacteria Chla;

dia, diatom Chla; DOAS, Differential Optical Absorption Spectroscopy; DPA,

Diagnostic Pigment Analysis; ESA, European Space Agency; f-micro, fraction of

microplankton Chla to total Chla; f-nano, fraction of nanoplankton Chla to TChla;

f-pico, fraction of picoplankton Chla to TChla; f-PSC, fraction of phytoplankton

size class Chla to TChla; IOCCG, International Ocean-Color Coordinating Group;

IOP, Inherent Optical Properties; IUP, Institute of Environmental Physics; LOV,

Laboratoire d’Oceanographie de Villefranche; LUT, Look Up Table; MAE, Mean

Absolute Error; MAD, Mean Absolute Differences; micro, microplankton; nano,

nanoplankton; NASA, National Aeronautics and Space Administration; NOBM,

NASA Ocean Biogeochemical Model; OCI, Ocean Color Instrument; OC-PFT,

Algorithm of Hirata et al. (2011) to retrieve phytoplankton functional types; OC-

CCI, Ocean Color Climate Change Initiative; OI, Optimal Interpolation; OLCI,

Ocean Land Color Instrument; OMI, Ozone Monitoring Instrument; PACE,

Plankton, Aerosol, Cloud, ocean Ecosystem; PCA, Principal Component Analysis;

PFT, Phytoplankton Functional Type; PhytoDOAS, DOAS applied for retrieval

of phytoplankton and PFT biomass; pico, picoplankton; PSC, Phytoplankton

Size Class; PML, Plymouth Marine Laboratory; PVR, product validation report;

QAA Quasi-Analytical Algorithm; RMSD, root mean square difference; Rrs,

Rotational Raman Scattering; RTM, Radiative Transfer Model; SCIAMACHY,

Scanning Imaging Absorption Spectrometers for Atmospheric Chartography;

SCIATRAN, Radiative Transfer Model and Retrieval Algorithm; SEOM, Scientific

Exploitation of Operational Missions; Sf, phytoplankton size factor; SynSenPFT,

Synergistic hyper- and multispectral satellite PFT product; SZA, Solar zenith

angle; TChla, total chlorophyll “a” concentration; TC, Triple collocation; TOA,

Top of Atmosphere; TROPOMI, TROPOspheric Monitoring Instrument; UV-A,

Ultraviolet A; VRS, Vibrational Raman Scattering; WF, Weighting-function.

Highly resolved information about phytoplankton diversity
is also essentially required for a variety of socio-economic
applications dealing with predicting harmful algal blooms,
eutrophication, hypoxia and other events affecting water quality
(see IOCCG 2009). Nearly all global ocean color products
presently available are retrieved from multispectral ocean color
sensors (IOCCG, 2014; Mouw et al., 2017) providing information
on water leaving radiance at number of spectral bands (up to
5 used for ocean color) with the bands width varying from
7.5 nm to 20 nm. Compared to available sensors allowing
for more detailed spectral information (hyperspectral), multi-
spectral sensors provide data with relatively high spatial (∼1 to
4.6 km) resolution and temporal (within a few days) coverage.
This spatial and temporal resolution as well as the legacy
of the data make them especially attractive for exploiting in
phytoplankton diversity and phenology.

Some of the well-known multispectral-based algorithms
differentiating phytoplankton groups (IOCCG 2014) are applied
to the total Chla (TChla) product that due to strong absorption
of Chla (a pigment produced by all phytoplankton species) at
443 nm can be retrieved quite accurately given the spectral
resolution and radiometric sensitivity of the ocean color sensors
(Mouw et al., 2017). To derive either the fraction or Chla of
phytoplankton size classes (PSC) (Uitz et al., 2006; Brewin et al.,
2010, 2015; Hirata et al., 2011) or phytoplankton functional
types (PFT) (Hirata et al., 2011), these so-called abundance-
based approaches use empirical relationships between TChla
and in situ marker pigments determined using high precision
liquid chromatography (HPLC). The HPLC method itself
is based on spectral absorption properties of the specific
phytoplankton marker pigments, which allows to identify
particular phytoplankton groups. However, the empirical nature
of their relation to TChla (usually estimated in a global context)
leads to some limitations of the abundance-based approaches:
they cannot predict atypical associations, the relationships
derived may differ regionally (Soppa et al., 2014), may vary with
environmental conditions and thus the model parameters may
change in a future ocean state (Brewin et al., 2010; Ward, 2015;
Brewin et al., 2017) or if shifts in phytoplankton composition
occur without any change in TChla. For instance, the shift
from diatom-dominated composition to haptophyte-dominated,
as observed in the Arctic Ocean under resent warming conditions
and indicated by (Nöthig et al., 2015).

Other so-called spectral-based approaches, besides being
different in underlying physical principles and input information
(radiance, absorption, backscattering), rely explicitly on spectral
signatures of specific PFT or PSC retrieved directly from the
input information (or satellite radiometric measurements) (for a
comprehensive overview see Mouw et al. 2017) and, therefore,
have the potential to discriminate blooms of phytoplankton
groups which are not correlated with TChla. These methods also
use to some extent empirical relationships by parameterizing
their spectral models based on, for example, choosing certain
(mean) phytoplankton absorption spectra measured in the field
as representative of specific PSC or PFT. Current discretization
of multispectral-based inputs (up to five wavebands) limits the
ability to differentiate among the optical imprints of different
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water constituents. Although phytoplankton types have different
marker pigments, the differences in the spectral absorption
structures can be small, since they also have many pigments
in common. The small number of wavelength bands and the
broadband resolution of multispectral sensors provide only
limited information on the difference of the phytoplankton
absorption structures (Bricaud et al., 2004; Organelli et al., 2011).
In the study by Organelli et al. (2013) it was highlighted that
the use of hyperspectral data (radiometric information with a
spectral resolution higher than those coming from the current
ocean color sensors) would allow to improve the accuracy of
spectral-based phytoplankton composition retrievals. This was
also supported by Wolanin et al. (2016b) who applied PFT
retrievals to a large synthetically simulated data set testing
different band settings for multispectral data and various
resolutions of hyperspectral information. The authors showed
that hyperspectral data are the most beneficial for various PFT
retrievals.

Former and current satellite instruments with a very high
spectral resolution (1 nm and higher) provide the opportunity
for distinguishing more accurately multiple PFTs using
spectral approaches. The capability to retrieve quantitatively
major PFTs (even several PFTs simultaneously) based on
their absorption properties has been demonstrated with the
Phytoplankton Differential Optical Absorption Spectroscopy
(PhytoDOAS) method (Bracher et al., 2009; Sadeghi et al.,
2012) in the open ocean using hyperspectral satellite data from
the sensor “SCanning Imaging Absorption Spectrometer for
Atmospheric CHartographY" (SCIAMACHY). Being originally
developed for atmospheric applications, hyperspectral sensors
like SCIAMACHY do not provide operational water-leaving
radiance products as do ocean color sensors. Hence, the
PhytoDOAS algorithm was designed to retrieve three PFTs
directly from top-of-atmosphere radiances, which requires
handling properly strong atmospheric absorbers. Due to the high
spectral resolution of SCIAMACHY (<0.5 nm) it is possible to
separate high frequency absorptions features of each particular
PFT from optical signature of the relevant atmospheric absorbers
(broad band effects are accounted for by a low order polynomial).
However, the global exploitation of hyperspectral satellite data
for ocean color applications has been so far very limited, since
the pixel size of these data is very large (30 km by 60 km per
pixel) and global coverage by these measurements is reached only
within six days. This circumstance constrains any assessment of
the retrievals accuracy with in situ point measurements. It also
limits the application of hyperspectral-based PFT data products.

The aim of this study was to overcome the aforementioned
short-comings of current multispectral PFT products (supplying
either dominant groups only, Bracher et al. 2017a, or data
products with strong linkage to a priori information) and of
current PhytoDOAS-data products (low temporal and spatial
coverage). This was done based on the synergistic use of
low spatial resolution hyperspectral data with higher spatial
and temporal resolution multispectral data. In this study a
quantitative estimation of the abundance (given as Chla in
mg/m3) of the same (diatoms and cyanobacteria/i.e., prokaryotic
phytoplankton) or similar (coccolithophores vs. haptophytes)

PFTs are obtained by the PhytoDOAS (Bracher et al., 2009;
Sadeghi et al., 2012) and by the abundance-based OC-PFT
algorithm (Hirata et al., 2011). Comparison to other satellite
products bears the limitation that different aspects of diversity
of phytoplankton groupings are compared (see also Bracher
et al. 2017a for mismatch between satellite products). Figure 1
summarizes the different classifications of phytoplankton used
as PFTs within the study (PhytoDOAS: Bracher et al. 2009, OC-
PFT: Hirata et al. 2011). Note that OC-PFT retrieves haptophytes
while PhytoDOAS coccolithophores, a sub-group of haptophytes
(often dominating). Figure 1 also illustrates how the considered
PFTs relate to main PSCs (Brewin et al., 2010, 2015) and size
factor (Sf, Ciotti and Bricaud 2006).

This paper highlights the first development of a
synergistic algorithm (SynSenPFT) and shows its potential
via evaluation against in situ PFT data (derived from HPLC) and
intercomparison with the satellite phytoplankton composition
products focusing on the variation in phytoplankton size (Ciotti
and Bricaud, 2006; Brewin et al., 2010, 2015) and the PFT
products from the NASA ocean biogeochemical model (NOBM,
Gregg and Casey 2007). Given the evaluation results, we discuss
the potential of this method for future applications to other
recent and upcoming sensors data, such as the Ocean Land
Color Instrument (OLCI) on Sentinel-3 (in operation since
2016), the hyperspectral sensor Ozone Monitoring Instrument
(OMI) on Aura (in operation since 2004) and the TROPOspheric
Monitoring Instrument (TROPOMI) on Sentinel-5P to be
launched in 2017. Such a synergistic approach shall enable a
PFT time series from 2002 onwards which can then be extended
by exploiting the data of the hyperspectral global Ocean Color

FIGURE 1 | Diagram describing the different phytoplankton classifications

given by the different data products of this study and how they relate to each

other: functional types (PFTs), size classes (PSCs) and size factor (Sf). In bold

are the data used in this study: in the SynSenPFT algorithm (PFTs) and for

validation (PSC and Sf). The numbers in the boxes indicate the corresponding

references of the products used in this study: 1Ciotti and Bricaud (2006),
2Brewin et al. (2010, 2015), 3Hirata et al. (2011), 4Bracher et al. (2009) and

Sadeghi et al. (2012). Note that different PFTs can vary among size classes,

e.g., diatoms also can spread into the nanoplankton fraction.
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Instrument (OCI) planned by NASA for launching within the
“Plankton, Aerosol, Cloud, ocean Ecosystem” (PACE) mission in
the early 2020 (see Gregg and Rousseaux 2017).

The structure of the paper is as follows. Section 2 introduces
the materials and methods used: the input PhytoDOAS and
OC-PFT products with the theoretical description and updates
to the algorithms provided; the independent PFT in situ
observations and satellite retrievals; a method to evaluate the
initial products; details on the synergistic algorithm SynSenPFT
and its implementation using the OC-PFT and PhytoDOAS
data products. Section 3 provides results and discussions on
intercomparison of the initial OC-PFT and PhytoDOAS Chla
products, introduces an example of the SynSenPFT product
and discusses the SynSenPFT product evaluation. Summary and
Outlook are presented in Section 4.

2. MATERIALS AND METHODS

2.1. Initial PFT Products
2.1.1. Multispectral Retrieval: OC-PFT
The OC-PFT, an abundance based approach developed by Hirata
et al. (2011), was applied to multispectral-based satellite-derived
TChla (OC-CCI version 2, https://rsg.pml.ac.uk/thredds/catalog-
cci.html, OC-CCI 2015) with revised empirical relationships
between TChla and PFTs or PSCs to retrieve diatom, haptophyte
and prokaryotic phytoplankton Chla. Being an empirical
approach, the OC-PFT requires refinement when additional data
become available to improve the retrievals for both global and
under-sampled oceans, as shown by Soppa et al. (2014). Thus,
the OC-PFT algorithm of Hirata et al. (2011) was revised using
a larger and more evenly spatially distributed data set of in situ
phytoplankton pigment data (Section 2.2.1) compared to Hirata
et al. (2011).

FollowingHirata et al. (2011) the Diagnostic Pigment Analysis
(DPA) developed by Vidussi et al. (2001) and modified by Uitz
et al. (2006) was used to derive PFTs and PSCs (microplankton,
nanoplankton and picoplankton) from a large global in situ
HPLC phytoplankton pigment data set (Table 1 in 2.2.1, detailed
description is provided in Supplementary Section 1). Based
on the fractions of PFTs (f-PFT) and TChla in each in situ
sample, a statistical model of the relationship between TChla
and f-PFT was built. Such a statistical model when applied to
satellite TChla data allows to retrieve the f-PFT on a global
scale. The revised statistical models and the new ones proposed
were found to represent well the relationship between the f-PFTs
(diatom, haptophyte and prokaryote, in particular) and TChla
(see Supplementary Section 2). Based on the results, the model
of Soppa et al. (2014) for f-Diatoms with here revised parameters
and the new models for f-Haptophytes and f-Prokaryotes based
on Hirata et al. (2011), also with revised parameters, were chosen
to retrieve the f-PFTs.

Given the models, their statistical parameters and OC-CCI
TChla, the diatom, haptophyte and cyanobacteria were derived
in a fractional form (f-PFT) and then in terms of abundance
(mgChla/m3). To retrieve the PFT abundance, the f-PFT is
multiplied by the TChla value of each sample/pixel. This OC-PFT
Chla data product is provided globally over the ocean with the

TABLE 1 | List of databases, two French campaigns (Atalante-3, KEOPS, and

Bonus Good Hope) and German research vessels (RV) Maria S. Merian, Meteor,

Polarstern, Poseidon and Sonne.

Database/cruise References

SeaWiFS Bio-optical Archive and

Storage System (SeaBASS)

Werdell et al., 2003

Marine Ecosystem Data (MAREDAT) Peloquin et al., 2013

LTer long term research station https://portal.lternet.edu/nis/home.jsp

Bermuda Atlantic Time-Series Study http://bats.bios.edu/

AESOP-CSIRO database http://aesop.csiro.au/

KEOPS Uitz et al., 2009

Bonus Good Hope Sauzde et al., 2015

ANT-XVIII/2 (EisenEx) Peeken and Nachtigall, 2014a

Soppa et al., 2014

ANTXXI/3 (EIFEX) Peeken and Hoffmann, 2014c

Peeken and Hoffmann, 2014b

Soppa et al., 2014

ANTXXIII/1 Bracher et al., 2015b

Bracher et al., 2015a

ANTXXIV/1 Bracher, 2015b

Bracher et al., 2015a

ANTXXIV/2 Peeken et al., 2017c

ANTXXIV/4 Bracher, 2015c

Bracher et al., 2015a

ANTXXV/1 Taylor et al., 2011a

Taylor et al., 2011b

ANTXXV/3 (LOHAFEX) R. Roy (CSIR, National Institute of

Oceanography (NIO),

Goa, India, pers. communication)

ANT XXVI/3 Peeken and Nachtigall, 2014b

Soppa et al., 2014

ANT XXVI/4 Bracher, 2015d

Bracher et al., 2015a

ANT XXVII/2 Bracher, 2015e

Trimborn et al., 2015

ANT XXVIII/3 Bracher, 2014a

Soppa et al., 2014

ARK XXIV/1 Nöthig et al., 2015

ARK XXIV/2 Nöthig et al., 2015

ARK XXV/1 Nöthig et al., 2015

ARK XXV/2 Nöthig et al., 2015

ARK XXVI/3 I. Peeken, AWI (pers. communication)

MSM 9/1 Bracher and Taylor, 2017

MSM 18/3 Bracher, 2015a

Bracher et al., 2015a

Sonne SO202/2 Taylor and Bracher, 2012

Zindler et al., 2012a

Sonne SO218 Bracher, 2014b

Cheah et al., 2013

POS 320-1 Peeken and Quack, 2017

Quack et al., 2007

POS 348 Peeken and Walter, 2017

Atalante 3 Zindler et al., 2012b

(Continued)
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TABLE 1 | Continued

Database/cruise References

Meteor 68 Franklin et al., 2009

Indonesia 2005 Peeken et al., 2017d

Marion Dufresne 7/1 Peeken et al., 2017a

Marion Dufresne 7/2 Peeken et al., 2017b

Meteor 55 Peeken and Hoffmann, 2014a

Soppa et al., 2014

Meteor 60 Peeken and Nachtigall, 2014c

Soppa et al., 2014

Cruises with RV Polarstern to the Southern hemisphere are labeled as ANT, to the Northern
hemisphere as ARK, with RV Poseidon as POS, with RV Maria S. Merian with MSM,
with RV Meteor as M and with RV Sonne as SO. A campaign in Indonesian waters was
conducted from a small fisher boat.

∼4 km (sinusoidal) spatial resolution over the period of August
2002–March 2012 on a daily time scale.

2.1.2. Hyperspectral-Based Retrieval: PhytoDOAS
The other PFT Chla data products considered in this study
are based on the Differential Optical Absorption Spectroscopy
(DOAS) method (Perner and Platt, 1979) exploited with
respect to phytoplankton absorption properties (PhytoDOAS),
as introduced by Bracher et al. (2009). The current PhytoDOAS
PFT retrieval of Chla for cyanobacteria (that includes all
prokaryotic phytoplankton), diatoms and coccolithophores was
obtained with the algorithm PhytoDOAS version 3.3 applied to
SCIAMACHY hyperspectral measurements of the radiance at
the top of atmosphere (TOA) for the sensor’s operation period
of August 2002–March 2012. The cyanobacteria and diatom
PhytoDOAS retrievals are based on the algorithm by Bracher
et al. (2009). For coccolithophores the algorithm by Sadeghi
et al. (2012) has been used. Both algorithms, however, have been
slightly modified to obtain optimal results for the whole time
series. In particular, the changes include the following:

- Data aquired during SCIAMACHY instrument
decontamination are excluded in the analysis.

- SCIAMACHY level-1b input data for PhytoDOAS are now
version 7.04 data instead of version 6.0.

- The wavelength window for all three PFTs fit factor starts at
427.5 nm instead of 429 nm.

- Coccolithophores fit factors are obtained when fitting
simultaneously only diatoms and coccolithophores instead of
a triple fit as in Sadeghi et al. (2012) where dinoflagellates were
additionally fitted.

- Vibrational Raman Scattering (VRS) is now fitted directly in
the blue spectrum following Dinter et al. (2015), instead of
in the UV-A region as in Vountas et al. (2007). However,
here a shortened wavelength window is used: 450–495 nm
instead of 450–521 nm as in Dinter et al. (2015). Moreover,
the correction for some instrumental effects varying over time
is done with a VRS pseudo absorption spectrum calculated
following Vountas et al. (2007) based on a daily solar
background spectrum measured by SCIAMACHY instead of

using a radiative transfer model (RTM) simulated background
spectrum as done in Dinter et al. (2015).

- The PFT Chla are derived from the ratio of the PFT fit factor to
the VRS fit factor applying a LUT (Look Up Table) approach.
The LUT is derived from the SCIATRAN RTM simulations
(Rozanov et al., 2014) and accounts also for changes in solar
zenith angle (SZA).

Within the current study we used seven days composites of
the PhytoDOAS PFT Chla retrievals interpolated onto a 0.5◦

× 0.5◦ grid covering the global ocean on a daily basis. Data
are available at http://doi.pangea.de/10.1594/PANGAEA.870486
(Bracher et al., 2017b).

2.2. Independent PFT Estimates Used for
Evaluation
2.2.1. In situ Observations
The in situ data set used for the SynSenPFT satellite validation
and improvement of OC-PFT approach was built with HPLC
pigment data compiled from several databases and individual
cruises (Table 1). The spatial distribution of the in situ data
set is depicted in Figure S5 (Supplementary Section 3). Chla
of PFTs from in situ phytoplankton pigment data was derived
using the Diagnostic Pigment Analysis of Vidussi et al. (2001)
and Uitz et al. (2006) modified as in Hirata et al. (2011) and
Brewin et al. (2015). The weights were revised in accordance
to this enlarged in situ pigment data set (Table 1). We refer
the reader to the Supplementary Material (Section 1) for more
details. The final version of the global data set is available at
https://doi.pangaea.de/10.1594/PANGAEA.875879 (Soppa et al.,
2017).

2.2.2. Size Factor
The estimate of the dimensionless size factor (Sf), following
Ciotti et al. (2002) and Ciotti and Bricaud (2006), is based
on the fact that the shape of the phytoplankton absorption
spectrum flattens with increasing cell size (“packaging effect”). Sf
varies between 0 and 1, which represent the extreme situations
(100 % microphytoplankton and 100 % picophytoplankton,
respectively). The Sf value thus provides information on the
dominant size of the population: values close to 0 (1) indicate
dominance of microplankton (picoplankton). Note that the
contribution of nanophytoplankton is not explicitly taken into
account. Also, for a given population, the shape of the absorption
spectrum (and therefore the Sf value) can be affected by
photoacclimation to ambient light. On the other hand, as the
method is spectral-based, Sf variations are not constrained
by Chla variations. The Sf maps have been derived from
remote sensing reflectances data from daily OC-CCI (version 2)
products covering the same time period as the OC-PFT data set.
First, the total absorption coefficients were computed using the
Quasi-Analytical Algorithm (QAA) (Lee et al., 2002) version 6.
This step was followed by an optimization procedure (revised
from Bricaud et al. 2012) which retrieves three independent
variables: Sf and two parameters related to Colored Detrital
Matter absorption properties. The Sf data were obtained at daily
temporal resolution binned globally on a 4 km sinusoidal grid.
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2.2.3. Phytoplankton Size Classes
The model of Brewin et al. (2010), using global parameters
from Brewin et al. (2015), was used to compute the fractions
of total chlorophyll for three PSC (pico- < 2 µm, nano- 2-
20 µm and micro-phytoplankton > 20 µm). The model is
designed to estimate the fractions of the three phytoplankton
size classes as a continuous function of TChla. Based on the
work of Sathyendranath et al. (2001), the model assumes small
cells are incapable of growing beyond a particular Chla, with an
upper limit imposed possibly from a combination of bottom-up
(e.g., nutrient control) and top-down (e.g., grazing) processes,
and that, beyond this value, chlorophyll is added to a system
solely by the addition of larger size classes of phytoplankton (see
Raimbault et al. 1988; Chisholm 1992). For further details on the
model, the reader is referred to Brewin et al. (2010, 2015). The
model was applied to the same daily OC-CCI TChla data set as
used for the OC-PFT product, for the period of August 2002 –
March 2012, producing global data on the fractions of the three
size classes. The PSC data (f-micro, f-nano and f-pico) and TChla
were obtained with the same spatial and temporal resolution as
used for OC-PFT and Sf. TChla data where then multiplied by
f-PSC to obtain the respective Chla of PSC (c-PSC).

2.2.4. Phytoplankton Functional Types from the NASA

Ocean Biogeochemical Model
The NOBM (Gregg and Casey, 2007) is a global biogeochemical
model with coupled circulation and radiative models (Gregg,
2002). NOBM simulations combine assimilated global SeaWiFS
and MODIS Chla data with global data sets on nutrient
distributions, sea surface temperature and current conditions to
calculate four PFTs: diatoms, coccolithophores, cyanobacteria (as
defined in PhytoDOAS) and chlorophytes. NOBMPFT data span
from 84◦ S to 72◦N on a 1.25◦ by 2/3◦ of longitude/latitude grid.
Data were obtained at daily and monthly temporal resolution at
http://giovanni.gsfc.nasa.gov/giovanni/ for the same time period
as other aforementioned products.

2.3. Initial (Input) Product Evaluation
Given the PFT Chla information based on two distinct
algorithms, different not only with respect to temporal and
spatial resolution but also with respect to underlying physical
and/or statistical principles, it is essential to compare these OC-
PFT and PhytoDOAS PFT data against each other to evaluate
whether/where and to what extent one could expect the retrieval
algorithms to provide similar (different) results. For this purpose,
we consider the triple collocation (TC) analysis (Stoffelen, 1998)
known as a powerful tool for global scale product evaluation and
intercomparisons (Gruber et al., 2016).

The triple collocation method requires analysing three
independent products (but, following Zwieback et al. 2012, can
be extended to a larger amount of products) describing exactly
the same variable state: Chla of PFT in our case. To complete the
required triplet, the PFT Chla estimates of the NOBM (Gregg and
Casey, 2007) were considered in addition to those of PhytoDOAS
and OC-PFT products. Opposed to the PSC and Sf algorithms,
the NOBMprovides estimations of diatom, coccolithophores and
cyanobacteria abundance in terms of Chla as the PhytoDOAS

and OC-PFT do (except that OC-PFT provides haptophytes Chla
instead of coccolithophores Chla). The TC method is briefly
described in the following subsection.

2.3.1. Triple Collocation Analysis
The TC allows to estimate the absolute error variances (σ 2

εi
), or

the root-mean-square deviation (RMSD, σεi ) of three collocated
data sets (i = {1, 2, 3}, in our case i = {PhytoDOAS,
OC-PFT, NOBM}) with unknown uncertainties and assuming
uncorrelated errors. Among other assumptions underlying the
method are the linearity, stationarity of the signal and errors,
and independence of the error from the variability of the
measured signal itself (orthogonality). Under the aforementioned
assumptions, the σεi can be estimated from the unique terms
covariance matrix (McColl et al., 2014) (Q11, Q12, Q13, Q22, Q23,
Q33):

σεi =











√

Q11 −
Q12Q13
Q23

√

Q22 −
Q12Q23
Q13

√

Q33 −
Q13Q23
Q12











(1)

It is worth mentioning that the TC analysis is usually used for
calibration purposes (Stoffelen, 1998; Vogelzang et al., 2011).
The estimates provided by the analysis are normally so-called
“unscaled” and include also any biases, if available, of the
particular data product with respect to the “truth". The “truth”
is determined by the “joint covariance” σ 2

2 observed by all
three analyzed data products. Here we consider the “unscaled”
uncertainties σεi as a merit of difference between the distinct
features of PFT Chla temporal variability observed and described
by the satellite retrievals (PhytoDOAS and OC-PFT) and NOBM
numerical model over a particular time period.

2.4. Synergistic Product
The synergistic (SynSenPFT) product is obtained as Chla for
diatoms, coccolithophores and cyanobacteria presented globally
on a 4 km sinusoidal grid on a daily basis over the period of
August 2002 – March 2012.

2.4.1. SynSenPFT Algorithm
The SynSenPFT combines OC-PFT and PhytoDOAS level-3 Chla
products with an optimal interpolation (OI, Gandin and Hardin,
1965). In a generalized form, the OI method is formulated as
following:

xa = xb +W(y−Hxb) (2)

xa denotes state analysis, in our case SynSenPFT product; xb

is a background, for the particular application it is the OC-
PFT product. y refers to observations – PhytoDOAS. H is the
observation operator projecting OC-PFT into PhytoDOAS space.
W is a weight matrix reflecting data error statistics.

In terms of Kalman-type filtering, the synergistic estimates of
x or so called state vector analysis xa is expressed as:

x(tn)
a
= x(tn)

b
+ Kn(yn −Hx(tn)

b) (3)
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where x(tn)
a and x(tn)

b denote the analysis (SynSenPFT) and
OC-PFT, respectively, at certain time tn and OC-PFT grid points,
yn is the PhytoDOAS observations available at tn, and K is the
so-called Kalman gain:

Kn = PbnH
T(HPbnH

T
+ R)−1 (4)

Here Pbn and R are the OC-PFT and PhytoDOAS error covariance
matrices, respectively.

As seen, the SynSenPFT is an update of OC-PFT with
PhytoDOAS values weighted in accordance to our degree of belief
to both initial-input data products. Note that within the current
version of SynSenPFT algorithm the update is done for every
subpixel of OC-PFT within a PhytoDOAS pixel (Figure 2). Thus,
SynSenPFT in every OC-PFT sub-pixel on average is nudged
toward PhytoDOAS values as close as allowed by the prescribed
R matrix (considered diagonal for simplicity). The SynSenPFT
spatial distribution within the PhytoDOAS pixel is based on the
information carried by Pbn that reflects OC-PFT spatial structure
if the Pbn matrix is estimated based on the OC-PFTs covariances
within the PhytoDOAS grid cell.

As an illustration, Figure 3 shows examples of SynSenPFT
diatom Chla (on the OC-PFT sub-grid) within three different
PhytoDOAS pixels. As seen, on average within a PhytoDOAS
pixel, SynSenPFT Chla is closer to PhytoDOAS retrievals, subject
to assumed PhytoDOAS error statistics (an absolute error value
of 0.4 mgChla m−3, given on Figures 3a–c, or the relative error
of 40% ( 0.15 mgChla m−3), given on Figure 3d. Comparing
Figure 3c and Figure 3d one can conclude about the sensitivity
of SynSenPFT product to the assumed PhytoDOAS errors: the
more accurate PhytoDOAS PFT product is assumed, the more
it influences the SynSenPFT Chla estimates. In comparison with

OC-PFT, the spatial variability of the SynSenPFT Chla will
be smoother, however. In this study as absolute PhytoDOAS
errors approximating the R matrix, we assume 0.4, 0.3, and 0.1
mgChla m−3 for diatom, coccolithophores and cyanobacteria,
respectively.

3. RESULTS AND DISCUSSIONS

3.1. Initial Product TC Analysis
Here we present the results of the TC analysis carried out
with respect to OC-PFT, PhytoDOAS, and NOBM PFT data
products. Figure 4 shows an example of the spatial distribution
of PhytoDOAS, OC-PFT, and NOBM unscaled uncertainties
for diatom, coccolithophore (haptophytes for OC-PFT) and
cyanobacteria Chla, calculated with the TC analysis for each 0.5◦

by 0.5◦ box based on PhytoDOAS, OC-PFT and NOBM PFT
information over the period of 2003–2009. When comparing
σε of PhytoDOAS diatom (Figure 4A) against those of OC-
PFT (Figure 4B) and NOBM (Figure 4C) one can notice much
higher PhytoDOAS diatom Chla temporal variability all over
the World Ocean, except for Northern Hemisphere mid- and
high latitudes and a tiny belt around the Antarctica, while
the OC-PFT diatom Chla product reveals higher σε in the
upwelling regions and in the Arabian Sea (Figure 4B). The
σε of PhytoDOAS coccolithophores Chla (Figure 4D) also
exceeds similar statistical estimates of NOBM coccolithophores
(Figure 4F) andOC-PFT haptophytes products (Figure 4E), now
even also in the high Northern latitudes, and the OC-PFT
shows higher haptophytes Chla ranges in the Arabian Sea and
upwelling regions (Figure 4E). However, NOBM has very low
coccolithophores Chla σε (also compared to NOBM diatom Chla
σε) all over low- and mid latitudes. The spatial distribution of

FIGURE 2 | Diagram exemplifying the SynSenPFT algorithm (Equations 2–4) that updates the PFT information from each OC-PFT sub-pixel (xb) within a PhytoDOAS

pixel given the PhytoDOAS Chla (y) and a priori error statistics introduced in K, which results in SynSenPFT Chla (xa) at each OC-PFT sub-pixel.
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FIGURE 3 | Examples illustrating variability of OC-PFT and updated (nudged toward PhytoDOAS) SynSenPFT diatom Chla within three PhytoDOAS pixels with

different OC-PFT Chla variability, PhytoDOAS Chla on average either lower (a,c) or higher (b) than OC-PFT Chla and given PhytoDOAS error statistics (0.4 mgChla

m−3 for a–c). (c,d) depict SynSenPFT diatom Chla obtained for the same PhytoDOAS grid cell but assuming different PhytoDOAS errors: 0.4 mgChla m−3 (c) and

0.15 mgChla m−3 (d). Thus, lower panels illustrate the sensitivity of SynSenPFT diatom Chla product to the assumed PhytoDOAS error statistics.

cyanobacteria σεi is depicted on Figures 4G–I. Opposed to OC-
PFT, NOBM, and PhytoDOAS show larger cyanobacteria Chla
deviation in the oligotrophic and equatorial regions with higher
σε values in the PhytoDOAS data product (Figure 4G). These are
the regions where we can expect most of the differences between
the OC-PFT and synergistic cyanobacteria Chla.

3.1.1. Approximation of Prior Error Statistics
As concluded from subsection 2.3.1, the performance of the
SynSenPFT strongly depends on the plausibility of the assumed
quality of the input data products approximated by the R and Pbn
matrices. As mentioned above, Pbn matrix can be (was) presented
by the OC-PFT Chla covariances within a PhytoDOAS pixel.
However, per se, we can say little about the quantitative estimates
of PhytoDOAS errors to properly approximate the Rmatrix. The
following is dedicated to the opportunity and challenges of the R
matrix specification.

The PhytoDOAS error covariance matrix can be provided by
using the TC analysis (Crow and van den Berg, 2010), since
the TC analysis in general provides quantitative information

about quality of the data product considered (Stoffelen, 1998;
Gruber et al., 2016). Nevertheless, the estimates presented in
Figure 4 and discussed in 2.3.1 can be considered only as the
merit of differences between the collocated products unless the
quality of at least one data product is well-known. Not as
an attempt to find a possible scaling for our TC estimates,
but rather for an additional evaluation of our TC analysis,
the OC-PFT TC unscaled uncertainties were compared against
statistics of the OC-PFT match-up with in situ observations.
Figure 5 illustrates the mean absolute error (MAE) of OC-PFT
diatom (Figure 5A), haptophytes (Figure 5C), and cyanobacteria
(Figure 5E) Chla relative to in situ Chla calculated for the
biomes determined following Hardman-Mountford et al. (2008).
In addition, it presents the ratio of the MAE to the OC-
PFT TC-based uncertainties (Figures 5B,D,F). The ratio values
less than 1 indicate that the uncertainties obtained with the
TC overestimate the product error statistics while the values
larger than 1 would correspond to the situation with the TC
uncertainties being underestimated. For instance, the TC-based
OC-PFT unscaled uncertainties for diatoms (haptophytes) are
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FIGURE 4 | Triple collocation analysis: spatial distribution of PhytoDOAS (A,D,G), OC-PFT (B,E,H), and NOBM (C,F,I) unscaled uncertainties σε (mg m−3) for diatom

Chla (A–C), coccolithophore Chla (D–F), and cyanobacteria Chla (G–I) based on the time period of 2003–2009. White dots are the grid points with negative σ2
εi

and/or with no satellite information available.

overestimated (underestimated) in the “high Chla” biome
(Hardman-Mountford et al., 2008) covering, for instance,
southwest mid-to-high northern latitudes, southwest Southern

Ocean, the edge of equatorial upwelling regions, the Arabian
Sea and the shelf seas of South-East Asia (Figure 5). In the
“low-intermediate Chla” biome, the TC σε for diatoms and
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FIGURE 5 | Additional statistics assessing OC-PFT against in situ on the biomes grid by Hardman-Mountford et al. (2008): the mean-absolute-error (MAE, mgChla

m−3, A,C,E) and the ratio of MAE to the OC-PFT unscaled uncertainties obtained based on the TC analysis (B,D,F) for for diatom (A,B), haptophytes (C,D) and

prokaryotes (E,F).

haptophytes are in agreement with the MAE estimates. The
MAE of OC-PFT diatom Chla is higher than TC σε in the
“high-intermediate Chla” biome (for example, in equatorial areas
outside the upwelling regions and in the Pacific, easten Atlantic
and Indian Ocean sectors of the Southern Ocean). As seen
from Figure 5F, the TC estimates for OC-PFT cyanobacteria are
highly underestimated all over the ocean. That might indicate
that PhytoDOAS overestimates cyanobacteria Chla. Following
(Gruber et al., 2016) an additional evaluation of the TC estimates
was done (not shown) with the fractional mean-squared-error
(fMSEi) that can be also calculated within the frame of the triple
collocation analysis. The fMSEi criterion explains the existence of
white dots in Figure 4, correspondent to negative σ 2

εi
, by too low

values of the product noise to the true signal ratio, which shows
that the joint variability of all three products does not always exist
(Supplementary Section 4, Figure S6). Or due to underestimation
of the variability of one collocated triple or because of some

violations of the assumptions essential for TC, the joint variability
might not represent the truth. Before treating the TC estimates
as product uncertainties, a more detailed evaluation of the
plausibility of our TC-based PFTs uncertainties as well as the
product evaluation with respect to violating the assumptions
underlying the method might be needed. For instance, errors
of NOBM PFT estimates and OC-PFT can be correlated since
both are based on multispectral satellite data from the SeaWiFS
and MODIS sensors: OC-PFT algorithm input OC-CCI Chla
product includes in addition to MERIS, also SeaWiFS and
MODIS information; NOBM assimilates SeaWiFS and MODIS
TChla.

The more detailed assessment of the TC analysis of
SynSenPFT initial input product would allow in future to use
the TC estimates for approximating R matrix. In this study,
the values of the R diagonal are assumed constant and partly
based on the current TC results. It is worth commenting
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on representation/representativeness errors due to ‘physical’
mismatch between the initial algorithms (Bracher et al., 2017a),
and up-(down-)scaling the products when regridding. These
errors also impact the TC estimates. In data assimilation
applications (Losa et al., 2012, 2014; Yang et al., 2016) to
account for such representation errors as well as for any
possible errors in the Pbn approximation, the assumed σεi is
normally enlarged. So did we in our study: the assumed errors
exceed the PhytoDOAS unscaled uncertainties discussed in
2.3.1.

3.2. Example of SynSenPFT Product
Figure 6 illustrates the monthly mean SynSenPFT Chla product
for diatom, coccolithophores and cyanobacteria in September
2006. Figure 7 depicts absolute differences between SynSenPFT
and OC-PFT averaged over the September 2006 and shows where
the synergistically combined PFT information are influenced
by PhytoDOAS product and over which regions OC-PFT
dominates. For instance, by directly comparing Figures 6A,C,
7A,C one can conclude that at high latitudes SynSenPFT diatom
and cyanobacteria estimates contain mostly the OC-PFT signal
(because of low dia-(cya-)PhytoDOAS coverage in these regions).
Note that the spatial distribution of the mean absolute differences
(MAD) between SynSenPFT and OC-PFT Chla corresponds
to either PhytoDOAS or OC-PFT TC uncertainties patterns
(Figure 4). We remind that the TC uncertainties are considered
as a merit of differences between OC-PFT and PhytoDOAS
(and NOBM) products, therefore they indicate per se the
areas where the largest updates of OC-PFT Chla by values

of PhytoDOAS are expected. Consequently, the dia-SySenPFT
Chla differ from OC-PFT estimates most of all in the Southern
Ocean (except for the very high latitudes), in the Arabian Sea
and north of Australia. The mean differences reach 0.5 mgChla
m−3. The differences between coc-PhytoDOAS and OC-PFT
haptophytes Chla are also in agreement with the TC estimates,
but hardly exceed 0.2 mgChla m−3, and are most apparent in
the Equatorial Pacific, southwest of Africa, in the Arabian Sea
and north as well as southeast of Australia. For the considered
time period of September 2006 relatively high MAD values
for cyanobacteria are distributed over the tropical areas with
a maximum of 0.05 mgChla m−3 in the equatorial upwelling
systems, in the northwest part of the Indian Ocean and north of
Australia.

3.3. SynSenPFT Product Evaluation
The SynSenPFT Chla products were evaluated by comparison
with in situ observations, other satellite PFT/PSC products and
the NOBM model simulations over the period of August 2002–
March 2012.

3.3.1. Match-Ups with In situ Observations
Daily SynSenPFT products at ∼4 km spatial resolution were
matched with samples from the global in situ validation dataset.
The in situ dataset was matched with satellite data from OC-CCI
Chla product (but restricted to the life time of SCIAMACHY)
at daily temporal resolution and satellite values were retained
when located at the same date within a distance of 4 km from
the in situ measurement. Note: for OC-PFT model development

FIGURE 6 | Monthly mean SynSenPFT Chla product of diatoms (A), coccolithophores (B), and cyanobacteria (C) for September 2006.
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FIGURE 7 | Monthly mean absolute deviation of SynSenPFT Chla from OC-PFT Chla for diatoms (A), coccolithophores (B), and cyanobacteria (C) in September 2006.

the in situ pigment data not matching the OC-CCI TChla were
used, such that the validation data are independent of the data
used to train the model. In the case of more than one in situ
sample within one satellite pixel, respective match-ups were
treated independently. To finally derive high quality match-ups,
those were considered valid where the coefficient of variation
of the 3 x 3 pixels of satellite TChla (OC-CCI) around each
in situ was lower than 0.15. This is a similar quality control
as applied by Werdell et al. (2007), but here we applied it to
TChla instead of Rrs data. In addition, only match-ups above
a threshold of 0.01 mgChla m−3 were selected. The rationale
for this threshold is that the surface Chla values encountered
in the clearest ocean waters (south Pacific gyre) were found
to be in the range 0.01–0.02 mg m−3 (Morel et al., 2007).
Therefore, values below 0.01 mg m−3 may be considered as
questionable.

To compare the satellite SynSenPFT products and in situ
Chla of the PFTs the mean absolute error (MAE), root mean
squared difference (RMSD), un-biased RMSD and bias (as
formulated in Sá et al. 2015) were used. The determination
coefficient, slope and intercept (type II regression based on
log10 data) were also computed. Figure 8 and Table 2 present
the results of the validation of SynSenPFT Chla against in
situ PFT Chla considering the data all over the global ocean.
High R-square values around 0.5 were achieved for coc-
SynSenPFT and dia-SynSenPFT with a slightly better slope,
intercept, MAE, and RMSD for coc-SynSenPFT, but lower
bias for dia-SynSenPFT. The dia-SynSenPFT RMSD and bias
are comparable to the statistics presented by Brewin et al.

(2017) for different optical water types in the North Atlantic
(RMSD varying from 0.29 to 0.60, bias varying from −0.30
to 0.23). For all three PFTs, the estimated SynSenPFT bias
is less than reported in the study by Gregg and Rousseaux
(2017).

Looking at the grouping of diatom match-ups according
to latitude (Figure 8A), we can note the underestimation of
diatom Chla at high southern latitudes, which could be related
to the general underestimation of TChla when applying standard
algorithms to Southern polar areas (Johnson et al., 2013). It
is worth keeping in mind that south of 65◦ most of the dia-
SynSenPFT values are derived from OC-PFT since PhytoDOAS
pixel based information was sparse at these latitudes and low
SZA.

Figure 8C shows that correlation is not significant for cya-
SynSenPFT to in situ PFT data which may be due to the
limited spread of the in situ PFT as compared to the two
other PFT products evaluated. Cya-SynSenPFT Chla reaches a
maximum concentration at −0.8 log10Chla (0.18 mg Chla/m3).
This fact implies a high weighting toward OC-PFT, since this
feature is an artifact of the OC-PFT approach. Nevertheless,
the amount of in situ cya Chla exceeding 0.18 mg Chla/m3

is quite small (see Supplementary, Figure S7). Figure 8D

depicts the same as Figure 8C but with the density of cya-
SynSenPFT match-ups as a background. From this figure
panel one can see that the most frequent or dense match-
ups are located close to the 1:1 curve. As a result, the
MAE and RMSD are lower for cya-SynSenPFT than for dia-
SynSenPFT.
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FIGURE 8 | Comparison of in situ Chla and SynSenPFT Chla for diatom (A), haptophytes against coccolithophores (B), and prokaryotes vs. cyanobacteria (C). The

continuous line represents the 1:1 line and the dashed line the type II linear regression. (D) Depicts the same as (C), but colored in accordance with the matchups

density. The statistical analysis was performed in log10 space.

TABLE 2 | SynSenPFT match-ups statistics.

PFT r2 MAE RMSD Bias Slope Number of

match-ups

diatom 0.45 0.42 0.53 0.05 (5.6%) 0.70 4946

coccolithophores 0.48 0.29 0.38 0.05 (4%) 0.73 8940

cyanobacteria 0.03 0.30 0.38 0.00 0.17 9288

3.3.2. Comparison Against Satellite Sf and PSC and

Model PFT
The comparison with other satellite-derived products and
model simulations was performed by investigating time-latitude
Hovmöller diagrams (longitudinal averaged from 180◦W to
180◦E). All analyses were based on monthly averages. Monthly
averages of SynSenPFT were calculated from daily binned data
averaged in log10 space as Chla data are typically log-normally
distributed (Campbell, 1995). Monthly averages of Sf and c-
PSC were calculated from daily data onto a 0.25◦ spatial grid.
Monthly NOBM PFT Chla were resampled to 0.25◦ spatial grid

in log10 space. Those intercomparison data representing Chla
concentration, as the NOBM PFT and c-PSC products, were
averaged in log10 space, while Sf were averaged in linear space.

The Hovmöller diagrams are presented in Figures 9–12, on
the left, together with the climatological annual cycle, on the
right. Generally the NOBM model results data are available
year round at every latitude between 72◦N to 80◦S as opposed
to the satellite products (SynSenPFT Chla, c-PSC, and Sf)
which are limited by light availability and cloud-, ice-, glint,
foam free conditions. While NOBM and SynSenPFT provide
Chla for exactly the same PFT, c-PSC shows the Chla of the
respective size class (micro, nano, pico), and Sf and 1-Sf show
the contribution of pico- and microplankton, respectively, to
total Chla.

When comparing c-micro and dia-NOBM (Figures 9B,C)

directly, c-micro has in general higher Chla between 80◦N and

40◦S as expected since c-micro include not only diatoms but also
dinoflagellates. However, south of 45◦S dia-NOBM is higher than
c-micro. Dia-SynSenPFT (Figure 9D) follow rather strictly the
patterns of c-micro but values are higher in low andmid latitudes
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FIGURE 9 | Hovmöller diagrams of 1-Sf (Ciotti and Bricaud, 2006) (A), c-micro [mg m −3] (B), dia-NOBM [mg m −3] (C), and dia-SynSenPFT [mg m −3] (D) from

August 2002 to March 2012 (left panel) together with the corresponding climatological annual cycle (right panels).

and the gyres are not as pronounced as for the c-micro and dia-
NOBM. At the polar regions c-micro and dia-SynSenPFT show
similar ranges. However, in the Arctic Ocean dia-SynSenPFT
spread for longer in the year (Apr-Oct), while higher values are
rather limited to Apr-Jun for c-micro. In the Southern Ocean
dia-SynSenPFT and dia-NOBM have consistently higher Chla

than c-micro. The 1-Sf (Figure 9A) shows a weaker seasonality
and indicates high contribution ofmicroplankton throughout the
observed seasons for the Arctic which seems to agree more with
the dia-SynSenPFT results than the c-micro. For the Southen
Ocean region 1-Sf shows rather an inverse seasonality as opposed
to Chla given by the other three products. The former peaks
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FIGURE 10 | Hovmöller diagrams of c-nano [mg m −3] (A), coc-NOBM [mg m −3] (B), and coc-SynSenPFT [mg m −3] (C) from Aug. 2002 to Mar. 2012 (left panel)

together with the corresponding climatological annual cycle (right panels).

at 40◦S to 60◦S in late winter to spring (Aug to Oct), while
the others show highest Chla in summer (Dec-Feb) which is ,
e.g., in agreement with the diatom phenology studied by Soppa
et al. (2016). It is recalled here that (1-Sf) represents a relative
contribution of microplankton to total biomass, therefore its
seasonality can be different from that observed for the other
products which consider the magnitude of biomass in terms of
Chla.

Similar distributions can be found between coc-SynSenPFT
and c-nano (Figure 10). Values are lower in most parts for
coc-SynSenPFT, which is probably related to the fact that
coccolithophores are only part of c-nano. C-nano might also
include green algae, Phaeocystis sp. and small diatoms for
instance. However, coc-SynSenPFT values are a bit higher at
20◦N to 40◦N. Opposed to that, large differences are observed
between c-nano and coc-SynSenPFT when compared with coc-
NOBM (Figure 10). Especially south of 45◦S coc-NOBM shows

absents of coccolithophores which is in disagreement not only to
coc-SynsenPFT, but also to findings by O’Brien et al. (2013). They
show that coccolithophores have been sampled during many
research campaigns up to 80◦S. While coc-SynSenPFT and c-
nano show elevated values at equator with similar seasonality,
coc-NOBM is low, but enhanced north and south of the equator
as opposed to the two other products. However, it is worth
pointing out that the NOBM is the product that is not purely
satellite-based (though it assimilates some satellite data) so it may
not be surprising that it shows the most different patterns. All
three products (c-nano, coc-SynSenPFT and coc-NOBM) show
similar seasonal cycles at around 60◦N.

Generally c-pico and cya-SynSenPFT (Figure 11) show very
similar patterns and a low chl-a conc. range. Both products
show clear maxima in the Arctic and nearly as high values
in the Southern Ocean and at the equator, while values in
the subtropics are low, especially in the gyres. They show a
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FIGURE 11 | Hovmöller diagrams of c-pico [mg m −3] (A), cya-NOBM [mg m −3] (B), and cya-SynSenPFT [mg m −3] (C) from August 2002 to March 2012 (left

panel) together with the corresponding climatological annual cycle (right panels).

similar seasonality at the mid- and high latitudes as for the c-
nano and coc-SynSenPFT products. Opposed to that, the cya-
NOBM shows quite different patterns: values are very low at
latitudes higher than the subtropics and show also a minimum
at the equator. Oligothrophic areas at around 20◦ to 35◦ are
seen by low values in all three products. However, there, cya-
NOBM Chla increases from January till May, while for c-pico
and cya-SynSenPFT an increase in Chla is observed from June
till September (Figure 11, right panels). Again, concentrations
of PSC, in this case c-pico are higher than cya-NOBM, mainly
north of 40◦S, south of 40◦S and just south of 0◦ (Figure 11).
Between 0◦ and 40◦N and 5◦S and 40◦S, cya-NOBM has
larger concentrations. Cya-NOBM is nearly absent in latitudes
higher than 40◦ as a result of the used cyanobacteria growth
parametrisation with the growth rate decreased in cold waters
(Gregg and Casey, 2007).

Sf (Figure 12) indicates clearly the dominance of
picoplankton for the tropical waters which is reflecting

what can be concluded from comparing globally the three
c-PSC and the three SynSenPFT products among each other.
The Hovmöller diagram for Sf (Figure 12A) also shows that
phytopicoplankton contribution is higher (especially during
summer) in the Antarctic than in the Arctic. Similar could
be concluded by looking at the Hovmöller plots of f-Cya-
SynSenPFT (Figure 12B) calculated as a ratio of cya-SynSenPFT
product to the OC-CCI TChla. Though, for SynSenPFT it
should be noted that the product is designed to identify three
different PFTs which are only part of the whole phytoplankton
community. Although cyanobacteria make up the largest
fraction in the tropics, high diversity of cyanobacteria and other
phytopicoplankton has been reported also in the Atlantic Arctic
region (e.g., Fram Strait and the Greenland Sea, Díez et al.
2012).

When comparing f-Cya-SynSenPFT against Sf, we see that
the observed dominance of the cyanobacteria in north tropical
regions is weaker (not in Autumn however) and reveals more
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FIGURE 12 | Hovmöller diagrams of Sf (Ciotti and Bricaud, 2006) (A), fraction of cya-SynSenPFT (B) with respect to OC-PFT TChla for the period of August

2002–March 2012 (left panel) together with the corresponding climatological annual cycle (right panel).

pronounced seasonality for the SynSenPFT product. The f-Cya-
SynSenPFT is lower than Sf also in the equatorial region, while
f-Cya-SynSenPFT estimates exceed Sf in southern tropical areas.
One can also notice differences in temporal variability of pico-
plankton dominance in the Southern Ocean. It is worth, however,
emphasizing one more time that SynSenPFTs represent only a
part of the whole pico-phytoplankton community.

Overall, all three SynSenPFT global products seem to
reproduce the seasonality in their respective dominant
phytoplankton size class (the c-PSC products), except that
dia-SynSenPFT seems to be generally higher. Patterns
of 1-Sf and Sf indicating the contribution of pico- and
microplankton to the phytoplankton community seem also
in agreement with the two former products, in terms of the
spatial distribution. The temporal pattern is often different
which may be due to differences between contribution of a
size class and abundance. However, NOBM products, which
identify the same PFTs as SynSenPFT, show for most regions
quite different patterns and Chla ranges in the distibution
of cyanobacteria and coccolithophores, while diatom results
are closer to dia-SynSenPFT (and to c-micro). The model
has parametrizations limiting the latitudinal extension of the
two former groups (Gregg and Casey, 2007). Distribution
of global HPLC marker pigments for PFTs (Peloquin et al.,
2013), PFT abundance based on HPLC pigment data sets (Swan
et al., 2016) and coccolithophore counts (O’Brien et al., 2013)
clearly show presence of cyanobacteria and coccolithophores
also in temperate and high latitudes. In this respect, these
studies as well as the satellite-based study by Alvain et al.

(2008) support the global patterns of the SynSenPFT, Sf and
PSC.

4. SUMMARY AND OUTLOOK

A first version of a synergetic hyper- and multispectral-based
satellite product for diatom, coccolithophore, and cyanobacteria
(i.e., prokaryotic phytoplankton) Chla was developed globally
(being binned at 4 × 4 km resolution) on a daily basis from
August 2002 to April 2012. As input data OC-PFT Chla level-3 at
the same resolution and daily 7-days composites of PhytoDOAS
PFT Chla on a 0.5◦ by 0.5◦ resolution grid were used.

The SynSenPFT products were evaluated globally through
validation against in situ PFT Chla data and intercomparison
with satellite retrievals of Phytoplankton Size Classes Chla (c-
PSC) of Brewin et al. (2015), Size Factor (Sf) of Ciotti and Bricaud
(2006) and PFT Chla from the NASA Ocean Biogeochemical
Model (NOBM) of Gregg and Casey (2007). When compared
to in situ PFT data, good performance of SynSenPFT was
achieved for all three products. Although cya-SynSenPFT does
not correlate with global in situ match-ups (maybe due to the
limited Chla range), nevertheless its RMSD and MAE were
lower than for dia-SynSenPFT in the in situ validation. Also
cya-SynSenPFT shows reasonable spatial and temporal patterns
as detected by the other satellite-derived (especially c-pico)
estimates and with results shown in literature based on in situ
measurements.

Overall we can conclude that this first version of SynSenPFT
products compare reasonably well with in situ data and
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also with other satellite products. Nevertheless, the current
version of the synergistic cya-SynSenPFT as well as dia-
SynSenPFT in the higher than 65◦ regions is mostly influenced
by OC-PFT data because of large gaps in the PhytoDOAS
version 3.3 diatoms and cyanobacteria products at high
latitudes.

It is worth emphasizing that we do not introduce the
SynSenPFT only as a PFT product, but also as an established
dynamic system (see Figure 13) including several components
within a network allowing the system to further educate
and develop. Any possible future improvements of the
SynSenPFT system’s components would lead to improved
quality of the synergistic PFT product. In the following we
consider each (1–4) component in a perspective of the future
development.

(1) Input initial product. To reduce the deficiencies of the
PhytoDOAS diatom Chla product, the PhytoDOAS
algorithm may be optimized by including the packaging
effect when converting its DOAS fit factor to its Chla via
extending the LUT. Accounting for the packaging effect is
probably not appropriate for the coc-SynSenPFT and cya-
SynSenPFT products, since a very low pigment packaging
effect in coccolithophores and if any in cyanobacteria is
expected. This may reduce the observed overestimation of
dia-SynSenPFT as compared to other products.
The input OC-PFT and PhytoDOAS algorithms can be
applied to various similar multi- and hyperspectral-based
information from other satellite missions. For instance,
OC-PFT is worth applying to OLCI (Sentinel-3), while
PhytoDOAS product might be based on the information
from OMI (Aura) or TROPOMI- and UVN-instruments
onboard Sentinel-5P and Sentinel-4 and -5. Respectively,
OMI products, and especially the hyperspectral Sentinel-PFT
information might allow PhytoDOAS global coverage to be
improved by a factor of 2-3 temporally with spatial resolution

also being improved by a factor of 4 for OMI and 40 for the
upcoming hyperspectral Sentinel instruments.
PhytoDOAS is currently sensitive to the number of retrieved

PFTs as shown by the PhytoDOAS sensitivity study using

radiative transfer simulations with SCIATRAN (Wolanin

et al., 2016a) and the model study assessing the potential of

the retrievals on remote sensing reflectance data (Wolanin

et al., 2016b). The SCIAMACHY retrievals were limited to

channel 3 cluster 15 of the sensor which represents the

wavelength range from 425 to 529 nm. Above and below this
range the pixel resolution is worse (240 by 30 km). The OMI

and TROPOMI sensors allow for a continuous exploitation

from the UV to 500 nm. Therefore, the algorithms may be

further revised and extended to enable accurate estimates of

enlarged number of PFTs simultaneously retrieved.

(2) In situ and independent information. Continuous
enlargement of the in situ pigment data set would enable
OC-PFT algorithm and product to be revised, evaluation
of the satellite retrievals and model estimates to be more
accurate, and the error statistics to be more precise.

(3) Metrics. A more detailed TC-based analysis is desired
to prescribe a priori error statistics spatially variable.
Accounting for a seasonal variability of the used error
statistics approximation would be also preferable in the
context of stationarity (one of the assumptions underlying
the TC).
More precise information on data quality – measurement
errors traced through particular retrieval algorithms as well
as estimates of the any possible representation errors – would
allow for better SynSenPFT algorithm performance due to
more plausible approximation of the input product a priori
error statistics.
There is also a need in additional metrics for a posteriori
assessment of the SynSenPFT product as well as for
initial input products evaluation: the PFT/PSC/Sf phenology

FIGURE 13 | Schematic presentation of the SynSenPFT system and development flowchart. In orange color possibilities for further improvements and/or augments

are emphasized.
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intercomparison on a weekly basis (for example) for various
biogeochemical provinces (e.g., according to Longhurst
1998).

(4) SynSenPFT algorithm. The synergistic algorithm is to
be further explored to include the PhytoDOAS level-2
information within a certain time window. The level-2
information can then be weighted relatively to the time
interval between the date of the analysis and the date of
the PhytoDOAS information used. A similar approach can
be used to introduce a spatial radius of data influence. That
would, however, require a calibration of the algorithm, since
such a radius is spatially variable being dependent on the
system dynamics which vary a lot between different regions.
The synergistic algorithm can be extended with respect
to augmenting input products (including, for instance,
biogeochemical modeling). Details of the implementation
and the algorithm design will depend on the model
resolution, the output, nevertheless, could even represent
a vertical structure of PFTs and cover the areas and time
periods where (when) no satellite data are available.
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During the last two decades, several satellite algorithms have been proposed to retrieve

information about phytoplankton groups using ocean color data. One of these algorithms,

the so-called PHYSAT-Med, was developed specifically for the Mediterranean Sea due to

the optical peculiarities of this basin. The method allows the detection from ocean color

images of the dominant Mediterranean phytoplankton groups, namely nanoeukaryotes,

Prochlorococcus, Synechococcus, diatoms, coccolithophorids, and Phaeocystis-like

phytoplankton. Here, we present a new version of PHYSAT-Med applied to the Ocean

Colour—Climate Change Initiative (OC-CCI) database. The OC-CCI database consists of

a multi-sensor, global ocean-color product that merges observations from four different

sensors. This retuned version presents improvements with respect to the previous

version, as it increases the temporal range (since 1998), decreases the cloud cover,

improves the bias correction and a validation exercise was performed in the NW

Mediterranean Sea. In particular, the PHYSAT-Med version has been used here to

analyse the annual cycles of the major phytoplankton groups in the Mediterranean

Sea. Wavelet analyses were used to explore the spatial variability in dominance both

in the time and frequency domains in several Mediterranean sub-regions, such as

the Alboran Sea, Ligurian Sea, Northern Adriatic Sea, and Levantine basin. Results

extended the interpretation of previously detected patterns, indicating the dominance

of Synechococcus-like vs. prochlorophytes throughout the year at the basin level, and

the predominance of nanoeukaryotes during the winter months. Themethod successfully

reproduced the diatom blooms normally detected in the basin during the spring season

(March to April), especially in the Adriatic Sea. According to our results, the PHYSAT-Med

OC-CCI algorithm represents a useful tool for the spatio-temporal monitoring of dominant

phytoplankton groups in Mediterranean surface waters. The successful applications of

other regional ocean color algorithms to the OC-CCI database will give rise to extended

time series of phytoplankton functional types, with promising applications to the study of

long-term oceanographic trends in a global change context.

Keywords: PHYSAT-Med algorithm, OC-CCI database, phytoplankton functional types, Mediterranean Sea,

wavelet analysis
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INTRODUCTION

Since the launch of the Coastal Zone Color Scanner (CZCS) in
the late 1970s, ocean color remote sensing has deeply improved
our understanding of the ocean system by providing global
estimations of the surface chlorophyll concentration (Chla), a
parameter known to be a good proxy of phytoplankton biomass
(e.g., McClain, 2009). Marine phytoplankton are located at the
base of the marine food web (Chassot et al., 2010; and references
therein), play a major role in the global biogeochemical cycles
(Field et al., 1998) and participate actively in the regulation
of the global climate (Sabine et al., 2004). During the last 40
years, observations of regional-to-global Chla data have been
acquired by different ocean color sensors (IOCCG, 2012), such
as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate
Resolution Imaging Spectroradiometer (MODIS), Medium-
Resolution Imaging Spectrometer (MERIS) and Visible Infrared
Imager Radiometer Suite (VIIRS). In order to extend the existing
time series beyond that provided by a single satellite sensor,
the European Space Agency (ESA) has recently generated the
Ocean Colour—Climate Change Initiative (OC-CCI), a multi-
sensor, global, ocean-color product mainly devoted to climate
research (Storm et al., 2013) that merges observations from four
different sensors: SeaWiFS, MODIS, MERIS, and VIIRS. As an
ESA-funded CCI project, the OC-CCI focuses specifically in
creating a consistent, error-characterized time-series of ocean-
color products, with a strong focus in climate-change studies
(Brewin et al., 2015). Remote-sensing reflectance (Rrs) data
from MODIS-Aqua and MERIS are then band-shifted to match
the wavelengths of SeaWiFS by using an in-water bio-optical
model (e.g., see Mélin and Sclep, 2015). The main reason behind
this choice is that SeaWiFS is widely considered as the highest
quality sensor with the best match to in situ observations, and
is commonly used in peer literature (Couto et al., 2016). This
dataset improves the bias correction, thus reducing the sensitivity
to medium-term changes and extending the method applicability
beyond the lifetime of SeaWiFS. As a result, the current OC-CCI
database allows for the examination of the spatial and temporal
variability of surface Chla since September 1997 (Couto et al.,
2016).

Even though remote sensing derived phytoplankton types

does not provide a full description of the marine ecosystem, its
spatio-temporal distribution (including phenology, Kostadinov
et al., 2017), and identification of key groups give powerful
insights on the dynamics of the marine food web and the ocean’s

role in climate regulation in the context of the global change
(Bracher et al., 2017). This relevance was early recognized by
Platt et al. (2006), who concluded that detection of phytoplankton
from remote sensing images was a major challenge in ocean
optics. Therefore, over the last decade, several remote sensing
algorithms have been developed to characterize the global
distribution patterns of phytoplankton functional types (PFT)
or size classes (PSC; e.g., Sathyendranath et al., 2004; Alvain
et al., 2005, 2008; Ciotti and Bricaud, 2006; Raitsos et al., 2008;
Aiken et al., 2009; Bracher et al., 2009; Brewin et al., 2010;
Kostadinov et al., 2010; Hirata et al., 2011; Uitz et al., 2012; see
recent summary in Table 2 in (Bracher et al., 2017 and Table 3 in

Mouw et al., 2017). A complete guide of the available approaches
can be found in Mouw et al. (2017). Some of these algorithms
are based on various spectral features, such as backscattering
(e.g., Kostadinov et al., 2010), absorption (e.g., Ciotti and
Bricaud, 2006; Bracher et al., 2009; Mouw and Yoder, 2010; Roy
et al., 2013) or a hybrid between absorption and backscattering
(Fujiwara et al., 2011). Other algorithms exploit second-order
anomalies of reflectance spectra (Alvain et al., 2005, 2008), which
is the case of the so-called PHYSAT that was first developed
at a global scale by Alvain et al. (2005, 2008). The PHYSAT
approach relies on the identification of specific signatures in
the normalized water leaving radiance (nLw) spectra measured
by an ocean color sensor (Alvain et al., 2005, 2008), thereby
enabling the identification of nanoeukaryotes, haptophytes
(a major component of the nanoflagellates), Synechococcus-
like cyanobacteria, diatoms, Prochlorococcus, Phaeocystis-like
phytoplankton, and coccolithophorids. The PHYSATmethod has
been successfully validated with phytoplankton in situ data and
extensively used by many authors (e.g., Bopp et al., 2005; Arnold
et al., 2010; D’Ovidio et al., 2010; Gorgues et al., 2010; Masotti
et al., 2010, 2011; Alvain et al., 2012, 2013; Belviso et al., 2012;
Demarcq et al., 2012; De Monte et al., 2013; Hashioka et al., 2013;
Ben Mustapha et al., 2014; Thyssen et al., 2015).

Navarro et al. (2014) later proposed a regionalized version
of the algorithm for the Mediterranean Sea (Figure 1),
the PHYSAT-Med, using the MODIS era (2002–2013)
for identification of nanoeukaryotes, Prochlorococcus,
Synechococcus-like cyanobacteria and diatoms, which was
compared with more than 3,000 high-performance liquid
chromatography (HPLC) in situ measurements (see Table 3 in
Navarro et al., 2014). The main utility of the PHYSAT-Med is that
it allows for the tracking of specific features of phytoplankton
community structure occurring in the basin, along with their
associated bio-optical relationships that are heavily affected
by continental inputs, such as desert dust events and rivers
discharge (Bricaud et al., 2002; Claustre et al., 2002; Alvain et al.,
2006; Loisel et al., 2011). Volpe et al. (2007) early suggested
that the unique phytoplankton assemblages of the basin could
alter its spectral signature, therefore being responsible for the
peculiar color of the Mediterranean. Due to these characteristics,
standard remote sensing approaches tend to either overestimate
or underestimate Chla levels in the Mediterranean. In fact,
Volpe et al. (2007) also showed that NASA SeaWiFS standard
chlorophyll products are affected by an uncertainty in the
order of 100%. Specific algorithms have been thus developed
to retrieve Chla in the region, namely DORMA-SeaWiFS
(D’Ortenzio et al., 2002), BRIC-SeaWiFS (Bricaud et al., 2002),
MedOC4-SeaWiFS (Volpe et al., 2007), MedOC3-MODIS
(Santoleri et al., 2008), and MedOC4ME-MERIS (Santoleri et al.,
2008).

Furthermore, these bio-optical characteristics of the basin
described above clearly indicate the necessity to use customized
algorithms to detect PFT or PSC in Mediterranean Sea. Recently,
Sammartino et al. (2015) described the temporal variability of
PSC in Mediterranean Sea using the model proposed by Brewin
et al. (2011). Di Cicco et al. (2017) presented a new regional
algorithm to identify simultaneously the contribution of each
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FIGURE 1 | Map of the Mediterranean Sea. Gray areas show the sub-regions selected in this study for a regional assessment: Alboran Sea (ALBS), Ligurian Sea

(LIGS), Northern Adriatic Sea (NADS), and Levantine basin (LEVB).

PSC and PFT group to the satellite estimates of total Chla
concentration in the basin.

The Mediterranean (Figure 1) is the largest inland ocean
basin on Earth, only connected to the rest of the world’s oceans
by the Strait of Gibraltar. It exhibits an oligotrophic regime
(Krom et al., 1991), notwithstanding relatively external high
inputs of essential nutrients (Ludwig et al., 2009; Huertas et al.,
2012; Powley et al., 2016). Nevertheless, local physical structures
generate convergences zones, which are reflected in the distinct
biogeochemical properties of the twoMediterranean sub-regions,
the Western and the Levantine. Thus, a notable decreasing
gradient in Chla concentration is detected from the west to the
east, which causes a significant longitudinal variation in primary
production (Turley et al., 2000; Uitz et al., 2012). This gradient in
oligotrophy is evidenced both by in situ measurements (Tanhua
et al., 2013) and satellite data (D’Ortenzio and Ribera d’Alcalá,
2009). However, the seasonal evolution of Chla distribution still
follows the typical succession of temperate regions, characterized
by a phytoplankton biomass increase in late winter/early spring,
a decrease during the summer season and a second smaller
phytoplankton bloom in autumn (Siokou-Frangou et al., 2010;
Sammartino et al., 2015).

Phytoplankton community structure in oligotrophic
areas throughout the world’s ocean is mainly composed by
picoplankton and ultraplankton (Li et al., 1983; Brunet et al.,
2006; Dandonneau et al., 2006). Nevertheless, the Mediterranean
phytoplankton communities structures reveals a considerable
variability over both temporal and spatial scales, and large
dissimilarities in phytoplankton assemblage composition along
with other microorganisms across the basin have been also
highlighted (Siokou-Frangou et al., 2010). Many studies have
pointed to the dominance of picoplankton as the fingerprint
of the Mediterranean Sea and its overriding oligotrophy, but
the occurrence of regional phytoplankton blooms cause the
coexistence of numerous microalgal groups (Siokou-Frangou
et al., 2010).

The satellite empirical model applied by Sammartino et al.
(2015) encompassed this unusual and complex community
structure in the Mediterranean Sea and allowed assessment of
the spatio-temporal variability of the three phytoplankton size
classes (micro-, nano-, and pico-plankton) during the entire
SeaWiFS era (1998–2010). Previously, Navarro et al. (2014) had
redefined the PHYSAT algorithm (Alvain et al., 2005, 2008) to
the Mediterranean Sea’s bio-optical characteristics to estimate
the dominant functional phytoplankton types (Prochlorococcus,
Synechococcus, diatoms, nanoeukaryotes, coccolithophorids, and
Phaeocystis-like) from the MODIS sensor. More recently, Di
Cicco et al. (2017) developed a new regional algorithm for
satellite biomass estimates of PSC and PFT in Mediterranean
Sea and assessed their accuracy with respect to global models,
improving the uncertainty and the spread of about one order of
magnitude for all phytoplankton classes.

Regarding the distribution of chlorophyll, low values (less 0.2
mg/m3) are found over vast areas of the basin, with the exception
of large blooms observed in late winter and early spring in the
North Western Mediterranean (Siokou-Frangou et al., 2010).
Mesoscale activity also increases the chlorophyll concentration
mainly in the Alboran Sea, Balearic-Catalan Sea, Adriatic Sea
and the South Eastern Levantine Sea, by about one order of
magnitude for all phytoplankton classes. In other coastal areas
close to major rives, such us the Po in the North Adriatic Sea,
the Rhone in Gulf of Lions and the Nile in the Levantine Sea,
and river discharge generates a large increase in chlorophyll levels
(Siokou-Frangou et al., 2010). In the eastern basin, the Chla
rarely exceeds 0.5 mg/m3, with minima as low as 0.003 mg/m3

(Siokou-Frangou et al., 2010). Low biomass values are generally
associated with the dominance of cyanobacteria, prochlorophytes
and picoplankton-sized flagellates (Siokou-Frangou et al., 2010
and references therein), and represents 59% of the total Chla and
65% of the primary production. However, nanoflagellates are the
dominant group in terms of cell numbers throughout most of
the year in the Mediterranean Sea. Finally, observed increases in
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Chla correlate with decreases in the contribution of picoplankton
and nanoplankton, and increases in diatom concentration during
February and March (Siokou-Frangou et al., 2010).

Bracher et al. (2017) recently highlighted the limited
applicability of global satellite algorithms to determine the
composition of phytoplankton at a regional scale as one of
the major gaps in satellite research. Accordingly, these authors
suggest a roadmap for future developments in regionally adapted
algorithms. The main goal of this paper is thus to bridge the gap
diagnosed by Bracher et al. (2017) by updating and improving
the original version of the PHYSAT-Med method (Navarro et al.,
2014) with the new OC-CCI database. Firstly, the advantages of
this new version are: (a) an increase in the temporal range (1997–
2015; (b) a decrease of the cloud cover due to the use of several
ocean color sensors; (c) an improvement in the bias correction,
thus reducing sensitivity to medium-term changes; and (d) the
validation of the temporal range in the NW Mediterranean Sea
using diagnostic pigments analysis (DPA, Vidussi et al., 2001).
Secondly, wavelet analysis is applied to the retuned version in
order to analyse the contributions of different temporal cycles of
dominance variability of the major phytoplankton groups in the
Mediterranean Sea.

MATERIALS AND METHODS

PHYSAT-Med OC-CCI Algorithm
The OC-CCI is a long-term, consistent and error-characterized
dataset generated from merged normalized remote-sensing
reflectance derived from four satellite sensors: SeaWiFS, MODIS,
MERIS, and VIIRS (Storm et al., 2013; Jackson et al., in press).
In this work, we have used OC-CCI v3.0, where more data have
been included (VIIRS and SeaWiFS LAC). In addition, the bias
correction has been improved, reducing sensitivity to medium-
term changes and extending the method to work beyond the
lifetime of SeaWiFS. Daily level 3 remote sensing reflectance
data (Rrs) at 412, 443, 490, 510, 555, and 670 nm and diffuse
attenuation coefficient (Kd490) were downloaded from the OC-
CCI website covering the period from January 1998 to December
2015 (Figure 2, step 1). These products were displayed on a
regular 4 km grid, with an equi-rectangular projection with
constant longitude and latitude steps. Error specification (RMSE
and bias) is based on comparison with match-up in situ data and
extrapolation to global scale ocean.

In a second step (Figure 2, step 2), the Chla concentration in
the Mediterranean Sea was calculated using a regional algorithm
(MedOC4, Mediterranean ocean color four-bands, Volpe et al.,
2007) developed for the basin for SeaWiFS bands (or CCI),

MedOC4− Chla = 10(0.4424 − 3.686R + 1.076R2 + 1.684R3 − 1.437R4)(1)

where

R = log10
[

MAX
(

Rrs443555 , Rrs
490
555 , Rrs

510
555

)]

(2)

This bio-optical algorithm is based on a fourth-power polynomial
regression between log-transformed Chla and log-transformed
maximum band ratio (MBR). It is known that using multiple

FIGURE 2 | Schematic view of steps of the PHYSAT-Med OC-CCI algorithm.

Rrs ratios decreases the noise-to-signal ratio, thereby enhancing
the algorithm’s performance (O’Reilly et al., 1998). The MedOC4
algorithm was calibrated on a representative open-water bio-
optical dataset collected in the Mediterranean Sea, and is the
best algorithm matching the requirement of unbiased satellite
orophyll estimates (Volpe et al., 2007; Santoleri et al., 2008).
At a global scale, the SeaWiFS algorithms have shown errors
in the range of <5% for radiances and <35% for chlorophyll
(Mueller and Austin, 1995; Gregg and Casey, 2004). The accuracy
limit for chlorophyll using these standard algorithms has been
shown to be unrealistic in Mediterranean Sea, yielding a severe
overestimation (>70% for chlorophyll <0.2 mg/m3; Volpe et al.,
2007, 2012).

At the third step (Figure 2), the Rrs was converted to nLw
using the nominal band solar irradiance (Fo, in mW cm−2

µm−1) for any specific spectral band (λ) of the SeaWiFS sensor
(Gregg et al., 1993; Thuillier et al., 2003).

nLw(λ) = Rrs (λ)* Fo(λ) (3)

During step 4 (Figure 2), a new Look-Up-Table (LUT, Figure 3
and Table 1 in Supplementary Material) of nLwref (λ, Chla) was
empirically generated for the Mediterranean Sea from a large
dataset of OC-CCI Chla and nLw pixels for all daily images
contained within the study period (January 1998 to December
2015). Turbid pixels (defined as nLw555>1.3 mW cm−2 mm−1

sr−1, Nezlin and DiGiacomo, 2005) were excluded in order to
minimize the impact of high-suspended matter loads. Briefly,
nLwref is calculated from nLw data, and the associated Chla
computed from theMedOC4 algorithm within the concentration
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FIGURE 3 | Look-Up-Table for PHYSAT-Med OC-CCI algorithm. Normalized

water-leaving radiance nLw as a function of wavelength for various

MedOC4-Chla concentration (color scale, in mg/m3) for the Mediterranean

Sea (excluding Black Sea) during the study period (January 1998–December

2015).

range between 0.01 and 10 mg/m3 (41 narrow intervals). This
figure is similar to the one used in the development of the
PHYSAT-Med algorithm (Navarro et al., 2014).

Once the new LUT (Figure 3, Table 1 in Supplementary
Material) for the Mediterranean Sea was calculated using
the regional MedOC4-Chla algorithm, the radiance anomalies
[Ra(λ), see Figure 3, step 5] were computed for all daily OC-
CCI wavelengths analyzed using Equation (4) for all available
wavelengths (412, 443, 490, 510, 555, and 670 nm). Ra(λ) is
an adimensional parameter independent of the Chla level, and
hence also independent of the biomass. Ra(λ) thus represents the
second order variation in nLw(λ) after removal of the first order
effect of the Chla variation (Alvain et al., 2005):

Ra(λ) =
nLw(λ)�

nLw
ref

(λ)

(4)

The analyses by Alvain et al. (2005) showed that for a
given Chla concentration, the particle scattering variability
explains the largest fraction of the remotely sensed Ra spectral
variability, especially when focusing on Ra magnitude changes.
The labellization step was performed using the thresholds of Ra
for each of the six phytoplankton groups examined in PHYSAT-
v2008 (see Table 5 in Alvain et al., 2008), which is specifically
set up for SeaWiFS channels. These thresholds were used to
process daily images to calculate daily PFTs map (Figure 3,
step 6). For a spectrum to be associated with one group, all
criteria must be fulfilled. Thresholds (Table 5 in Alvain et al.,
2008) were fixed in order to avoid any overlapping. Pixels
with nLw values that were not classified for any phytoplankton
groups were cataloged as “unidentified (unid.),” and this can
sum up a significant fraction (Navarro et al., 2014). PHYSAT-
Med retrieves the dominant group for a given satellite image

pixel (4 km) for Mediterranean Sea, where a given phytoplankton
group is the major contributor to the radiance anomaly. From
this database (near to 6,600 daily images), 10-day and monthly
maps of dominant phytoplankton groups were obtained by
calculating the phytoplankton group that was present more days
during the integration period (10-day or monthly, respectively)
at each geographical pixel, not including “unidentified” pixels.
To estimate the proportion of each phytoplankton group in the
entire basin and several Mediterranean sub-regions (Alboran
Sea, Ligurian Sea, Northern Adriatic Sea, and Levantine basin in
Figure 1, Bricaud et al., 2002), the number of the pixels of each
PFT during 10-day or 1 month was calculated for each area in
proportion to all the identified pixels, excluding the unidentified
pixels. The box plot figures were created usingMatlab R© software
(boxplot.m function), where the central mark corresponds to the
median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. These statistics
were calculated for each climatological month by considering all
the values obtained during a particular month for the whole data
series (from 1998 to 2015).

In situ Validation
In order to validate the PHYSAT-Med output, we have compared
the temporal variability of PFT obtained from remote sensing
algorithm with diagnostic pigments analysis (DPA, Vidussi et al.,
2001) obtained from HPLC in North-Western Mediterranean
Sea. A total of 5,400 samples were collected from the basin and
analyzed by HPLC (Figure 1). This dataset consisted of samples
from the DYFAMED (Dynamics of Atmospheric Fluxes in the
Mediterranean Sea) time series included in theMAREDAT global
database of HPLC (Peloquin et al., 2013) and the BOUSSOLE
(Buoy for the acquisition of a Long-Term Optical Time Series)
program (i.e., Antoine et al., 2006). Details of HPLC methods
used can be found in the aforementioned references. Here,
we only considered samples limited to the first optical depth
(Z90), which reduces the number of available pigment inventories
to 1,615 samples and comprising the temporal range analyzed
(1998–2015). The first optical depth was calculated using daily
Kd490 images fromOC-CCI data [Z90 = 1/Kd490], which is about
15–35m on average in the Mediterranean Sea (D’Ortenzio and
Ribera d’Alcalá, 2009). The OC-CCI Kd490 product is computed
from the inherent optical properties (IOPs) at 490 nm (Lee et al.,
2005; Grant et al., 2016).

This comparison is based on many pigments specific to
individual phytoplankton taxa or groups (i.e., Gieskes et al., 1988;
Goericke and Repeta, 1993; Claustre and Marty, 1995; Jeffrey
and Vesk, 1997). For instance, Divinyl Chlorophyll-a (dChla)
is a typical marker of prochlorophytes (Goericke and Repeta,
1992; Claustre and Marty, 1995; Vidussi et al., 2001), whereas
zeaxanthin (Zeax) is associated with cyanobacteria (Guillard
et al., 1985). Fucoxanthin (Fuco) pigment is the principal marker
of diatoms (Jeffrey, 1980). For nanoplankton cuantification,
Vidussi et al. (2001) used three diagnostic pigments: alloxanthin
(Allox), that is a pigment typical of the cryptomonads (Gieskes
and Kraay, 1983); 19′-hexanoyloxyfucoxanthin (HexFuco),
whose concentration is related to prymnesiophytes and
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chromophytes nanoflagellates (Wright and Jeffrey, 1987); and
19′-butanoyloxyfucoxanthin (ButFuco), a typical marker of
chromophytes nanoflagellates (Wright and Jeffrey, 1987). Other
pigments used in this method are total chlorophyll-b (TChlb,
chlorophyll b + Divinyl-Chlorophyll b) and peridinin (Perid),
which appears in small dinoflagellates (Jeffrey and Hallegraeff,
1987). This approach has been used at global scale (Uitz et al.,
2006) and particularly in the Mediterranean Sea (i.e., Vidussi
et al., 2001; Marty et al., 2002; Sammartino et al., 2015; Di Cicco
et al., 2017; Mayot et al., 2017).

In this study, we have compared the in situ chlorophyll
concentration of nanoplankton and diatoms using the method
recently applied to the Mediterranean Sea by Di Cicco et al.
(2017). Following the DPA procedure, originally proposed by
Vidussi et al. (2001) and later refined by Uitz et al. (2006) to scale
diagnostic pigments to Chla, it is possible to apply DPA-based
approaches to satellite-derived Chla:

Chladiatoms =

(

1.60 [Fuco]

6DPW

)

x Chla (5)

Chlanano =

(

1.18 [HexFuco]+ 0.57 [ButFuco]+ 2.70
[

Allo
]

6DPW

)

x Chla if TChla > 0.08mg/m3 (6)

Chlanano =









12.5 [TChla]

+1.18 [HexFuco]+ 0.57 [ButFuco]+ 2.70
[

Allo
]

6DPW









x Chla if TChla < 0.08mg/m3 (7)

where

6DPW = 1.18 [HexFuco]+ 0.57 [ButFuco]+ 2.70
[

Allo
]

+ 1.67
[

Perid
]

+ 1. 60 [Fuco]+ 0.88
[

TChlb
]

+ 1.79 [Zeax] (8)

Alternatively, the method described by Alvain et al. (2005) was
used to compare Prochlorococcus and Synechococcus time series,
as this method uses the pigment ratio of divinyl-Chla and
zeaxanthin, respectively, and has been applied previously for the
Mediterranean Sea (Navarro et al., 2014):

Prel =
P�(Chla + dChla) (9)

where P is the measured pigment concentration (dChla or
zeaxhantin), and Chla and dChla are the concentrations of
chlorophyll-a and divinyl Chlorophyll-a, respectively.

As HPLC and PHYSAT-Med OC-CCI output data are
measured in different units, we used Spearman’s rank-order
(non-parametric) correlations to assess the strength of the
temporal association between both variables for each of the
phytoplankton functional types. We used 10,000 bootstrap
samples to construct 90% empirical confidence intervals for the
correlations (Efron and Tibshirani, 1993). In order to check for
possible time lags between the timing of seasonal blooms within
the Ligurian Sea, as measured with both methods, we inspected
the effect of different time lags in both variables on the strength
of the association.

Wavelet Analysis
Wavelet analysis has emerged as a tool for characterizing
periodicities in non-stationary time series, as it decomposes a
time series both in the frequency and time domains (Percival
and Walden, 2000). In this study, wavelet analysis has been
used to characterize the different periodic components of the
variability in dominance of the major phytoplankton groups in
the Mediterranean Sea across time. Wavelet analysis performs
a time-scale decomposition of the signal by estimating its
frequency characteristics as a function of time (Torrence and
Compo, 1998; Grinsted et al., 2004; Winder and Cloern, 2010).
In order to normalize time series data and obtain the wavelet
power spectrum of the different phytoplankton groups, the
continuous Morlet wavelet transform was applied by using the
Matlab R© toolbox provided by Torrence and Compo (1998)
and Grinsted et al. (2004) (http://atoc.Colorado.edu/research/
wavelets/). The wavelet power spectrum identifies the periods
that are the most important sources of variability across time.
Additionally, it is possible to define a global wavelet spectrum,
which identifies the variance associated to each period for a
given time series, and is similar to Fourier spectra (Percival and
Walden, 2000). Wavelet analysis was performed over the 10-day
times series of nanoeukaryotes, Prochlorococcus, Synechococcus-
like cyanobacteria and diatoms for the entire Mediterranean Sea
and for four selected sub-regions (Alboran Sea, Liguarian Sea,
Northern Adriatic Sea and Levantine sea).

RESULTS AND DISCUSSION

Validation
Figure 4 shows the temporal variability of several diagnostic
pigments and PFT in the Ligurian Sea, where DYFAMED and
BOUSSOLE sampling stations are located. The comparison
exercise covers all range of the PFT analyzed, except for
zeaxanthin pigment for which there were no values during 1998.
Prochlorococcus showed maximum values in autumn over several
years, at the end of the stratification period (Figure 4A). The
maxima found by the PHYSAT-Med OC-CCI algorithm were
in close agreement with the maxima in the concentrations of
the pigment ratio for dChla measured by HPLC method, which
is indicative of prochlorophytes (Goericke and Repeta, 1992;
Claustre and Marty, 1995; Vidussi et al., 2001). These results
agree with the pattern reported by Vaulot et al. (1990) and
Marty et al. (2002) estimated by flow cytometry and HPLC
analysis, respectively. During summer, also coinciding with the
stratification period, the dominant group is Synechococcus, and
a maximum in zeaxanthin concentration is observed across the
basin all years (Figure 4B). This pigment is associated with
cyanobacteria (Guillard et al., 1985) and has been widely used
to estimate Synechococcus concentration in the Ligurian Sea
(Vidussi et al., 2001; Marty et al., 2002). However, during the
spring bloom period, when the mixed layer depth is at its
maximum (Marty et al., 2002), the diatom group and diatom
Chla concentration also reached its highest value (Figure 4C).
Finally, the nanoeukaryotes distribution presented maxima
during winter, normally around January, coinciding with the
maximum of nanoplankton chlorophyll concentration estimated
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FIGURE 4 | Temporal percentage (10-day) of each PFT (black bars, left axis) and diagnostic pigments (DYFAMED–red dots and BOUSSOLE–green dots, right axis) in

the Ligurian Sea. (A) Prochlorococcus and Divinyl-Chla. (B) Synechococcus and zeaxanthin. (C) Diatoms and Chladiatom. (C) Nanoeucaryotes and Chlanano.

using Equations 6 and 7 (Figure 4D; Di Cicco et al., 2017).
Overall, the broad coincidence between PHYSAT-Med outputs
and HPLC pigments in the temporal pattern suggests that the
new version of PHYSAT-Med algorithm using OC-CCI v3.0
database is in agreement with the results obtained through long-
term monitoring programs for phytoplankton distribution, at
least in the Ligurian Sea area.

Even though the OC-CCI database provided per-pixel errors
(RMSE and bias) for all OC-CCI products, this approach is not
so common in retrieving phytoplankton functional types, except
for the recent works published by Brewin et al. (2017) and Di
Cicco et al. (2017) for the Mediterranean Sea. In fact, Di Cicco
et al. (2017) showed the improvements obtained from the use
of regional models with respect to the global models, with the
reduction of bias being of about one order of magnitude. As we
described above, the PHYSAT algorithm allows for the detection
of dominant PFT. This approach is based on the analysis of
the second order variation in nLw measurements after removal
of the impact of Chla variation. Alvain et al. (2012) found
acceptable results for diatoms (73%) and nanoeucaryotes (82%),
but relatively low for Prochlorococcus and cyanobacteria (61 and

57% of successful identification, respectively). For PHYSAT-Med,
Navarro et al. (2014) found similar results for Synechococcus and
nanoeucaryotes (61 and 74%, respectively).

Table 1 shows the results of the validation exercise. For
both nanoeucaryotes and diatoms the correlation between the
PHYSAT-Med OC-CCI and the HPLC data is relatively large,
with narrow bootstrapped confidence intervals non-overlapping
0. For Synechococcus the correlation is weaker but, again,
the confidence interval does not contain 0. In contrast, for
Prochlorococcus the association between PHYSAT-Med and
HPLC data is weaker, and now the 0 is included within the
confidence interval. In this later case, the sample size is clearly
lower. The reason might be that the largest Prochlorococcus
abundance is located near the deep chlorophyll maximum,
deeper than the first optical depth (Siokou-Frangou et al., 2010).

Spatio-Temporal Patterns at the Basin
Scale
Figure 5 shows the monthly climatology (1998–2015) of the
dominant phytoplankton groups in the Mediterranean Sea
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TABLE 1 | Validation results of the PHYSAT-Med dataset with HPLC data from the

Ligurian Sea.

Functional type Sample size rs 90% B.C.I.

Nanoeucaryotes 231 0.426 0.339 – 0.509

Diatoms 228 0.397 0.299 – 0.491

Synechococcus 234 0.112 0.019 – 0.204

Prochlorococcus 115 −0.133 −0.272 – 0.008

Shown are the sample size of the time series used, the Spearman’s rank-order correlation
between both time series (rs) and the 90% bootstrapped confidence interval. 10,000
bootstrapped samples of the original series were used to construct the intervals.

obtained with the OC-CCI database. These patterns are similar
to those obtained by Navarro et al. (2014) using the PHYSAT-
Med and the MODIS imagery for the period comprised from
July 2002 to May 2013. In addition, the analysis of the
PFT is consistent with the previous knowledge of this area
(Siokou-Frangou et al., 2010; Uitz et al., 2012; Sammartino
et al., 2015; Di Cicco et al., 2017). It is evident that
Synechococcus is the most abundant group detected at the
basin scale and particularly during spring-summer months,
whereas nanoeukaryotes seem to dominate during autumn-
winter months. Prochlorococcus is preferentially distinguished
during February and October in offshore waters, in opposition
to diatoms that prevail in coastal areas, such as the Gulf
of Lions, the Ligurian Sea and the northern Adriatic Sea,
and mostly during the spring season. This last finding agrees
with the microplankton distribution provided by Sammartino
et al. (2015) and Di Cicco et al. (2017) who concluded
that the fraction of microplankton significantly increases in
the Northwestern Mediterranean Sea, reaching values from
30 to 57% (Sammartino et al., 2015). The presence of
coccolithophorids in the basin is particularly evident along the
Mediterranean coastline and particularly in the surroundings
of the large river mouths (Ebro, Rhone and Nile) and in the
Adriatic Sea (Figure 5). However, it is worthy to highlight that
fluvial inputs of terrestrial matter or suspended solids may
slightly mask the signals and affect phytoplankton distribution
(Navarro et al., 2014). Even though PHYSAT-Med is also
appropriate for detecting Phaeocyctis-like phytoplankton, no
signal of this group was found in the current study. These spatio-
temporal patterns were subsequently corroborated by the time
series of monthly climatology (Figures 6B, 7B, 8B, and 9B)
although only nanoeukaryotes, Prochlorococcus, Synechococcus-
like cyanobacteria and diatoms were considered because
these groups were compared with in situ pigment markers
(Figure 4).

The abundance of nanoeukaryotes in the Mediterranean Sea
(Figure 6A) follows recurrent 12-months cycles across time,
as suggested by the power of the wavelet spectrum at this
cycle (Figure 6C). Some weaker 6-months cyclic components
can be observed during certain particular years (2003, 2006–
2014). The mean annual cycle or the monthly climatology
for this group (Figure 6B) showed a maximum percentage
of abundance during the winter months, mainly November,
December and January. The global wavelet spectrum (Figure 6D)

demonstrated that the 12-months periodicity was highly
significant, with a minor peak at 6-months also contributing
to the variance. The amplitude of the seasonal variations of
nanoeukaryotes at a basin scale is similar to that described
by Sammartino et al. (2015) and Di Cicco et al. (2017),
who found minimum values of abundance for nanoplankton
during summer and maximum during winter, when the mixed
layer depth (MLD) is also deeper (Siokou-Frangou et al.,
2010). In the Levantine basin this group was the second most
abundant in terms of Chla, but it was the main group in
the western basin (Di Cicco et al., 2017). Nanoplankton make
a dominant contribution (up to 43–50%) to total primary
production throughout the year at the basin scale (Uitz et al.,
2012).

For Synechococcus the wavelet power spectrum also revealed a
persistent 12-months periodicity (Figures 7C,D), with virtually
no secondary 6-months cycles. The higher percentages of
Synechococcus abundance were effectively observed during the
summer season (Figures 4, 5, and 7B), particularly in June and
July, coinciding with the stratification period (Siokou-Frangou
et al., 2010).

Interestingly, the temporal patterns of Prochlorococcus
(Figure 8A) exhibited a less periodic fluctuation in dominance
at the basin scale as compared to those of Synechococcus
(Figure 7A).The continuous wavelet spectrum (Figures 8B,C)
suggests that prior to 2002, no cyclic component dominated
(the time series conformed to a white-noise process). From
this year onwards, a 6-months periodicity pattern became
apparent, particularly from 2007. An annual cycle also
appeared during this period, but the power was smaller
as suggested by the global wavelet spectrum (Figure 8D).
This indicates that most of the temporal variance in the
dominance of Prochlorococcus in the Mediterranean Sea occurs
at different periodicities, perhaps dominated by a seasonal
period. Synechococcus tends to be more abundant at the surface
waters, whereas Prochlorococcus thrives mainly in the deep-
chlorophyll maximum (Marty and Chiavérini, 2002; Casotti
et al., 2003).

The temporal patterns of diatoms were characterized by a
robust periodicity of 12 months across time (Figure 9). In this
case, the largest dominance was observed during spring, in
agreement with the diatom blooms reported in the basin over
this season (Marty and Chiavérini, 2002). In contrast, the minima
occurred in September, coinciding with nutrient exhaustion.

Spatio-Temporal Patterns at the
Sub-Regional Scale
The PHYSAT-MedOC-CCI approach was also applied in four
selected sub-regions in order to track the temporal evolution
of phytoplankton groups at smaller spatial scales. To allow
for meaningful comparisons, the chosen areas resemble those
considered by Sammartino et al. (2015): the Alboran Sea, the
Ligurian Sea, the North Adriatic Sea and the Levantine basin
(Figure 1). Figure 10 shows the monthly climatology in the
percentage of dominance of the four phytoplankton groups for
each sub-region. Nanoeukaryotes occurrence exhibited a marked
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FIGURE 5 | Monthly climatology of the dominant phytoplankton groups detected by PHYSAT-Med OC-CCI during the study period (January 1998–December 2015).

FIGURE 6 | Temporal patterns of variability for nanoeukaryotes for Mediterranean Sea. (A) Temporal percentage (10-day) of nanoeukaryotes. (B) Box plot (red lines

stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of

nanoeukaryotes. (C) Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges

of the data and should not be considered. (D) Global wavelet spectrum for the 10-day time series.

longitudinal gradient, with a higher abundance in the western
basin (Alboran Sea and Ligurian Sea) in relation to the Levantine
basin. Nonetheless, a marked annual cycle is evident in all
sub-regions, which is characterized by the presence of maxima

over the winter months and a minimum in summer. This was
confirmed by a regional wavelet analysis that clearly revealed
a consistent 12-month periodicity (Figure 11). Interestingly
however, a longitudinal increase in the importance of 6-months
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FIGURE 7 | Temporal patterns of variability for Synechococcus for Mediterranean Sea. (A) Temporal percentage (10-day) of Synechococcus. (B) Box plot (red lines

stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of

Synechococcus. (C) Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges

of the data and should not be considered. (D) Global wavelet spectrum for the 10-day time series.

FIGURE 8 | Temporal patterns of variability for Prochlorococcus for Mediterranean Sea. (A) Temporal percentage (10-day) of Prochlorococcus. (B) Box plot (red lines

stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of

Prochlorococcus. (C) Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges

of the data and should not be considered. (D) Global wavelet spectrum for the 10-day time series.
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FIGURE 9 | Temporal patterns of variability for diatoms for Mediterranean Sea. (A) Temporal percentage (10-day) of diatoms. (B) Box plot (red lines stand for the

median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of diatoms. (C)

Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges of the data and

should not be considered. (D) Global wavelet spectrum for the 10-day time series.

periodicities also became apparent: both in the North Adriatic
Sea and in the Levantine basin, recurrent seasonal periods
contribute to the overall variability (Figure 11). Nevertheless,
the overall abundance of this group kept values above 20%,
with the exception of the Levantine basin over summer months.
This temporal pattern resembles that of nanoplankton found
in the selected areas by Sammartino et al. (2015), and reflects
the constant contribution of this group to primary production,
as previously reported (Vidussi et al., 2000, 2001; Uitz et al.,
2012).

Prochlorococcus abundance in the four regions was higher
over the late summer months and similar in terms of percentage
between the Western and Eastern basins. This phytoplankton
group is, however, less represented in the Northern Adriatic Sea.
It is worthy to note that an additional winter peak (February)
of Prochlorochoccus can be identified in the Levantine basin.
This pattern of abundance at a sub-regional scale coincides
with the wavelet analyses (Figure 11). The annual cycle of
Synechococcus is also evidenced by the maximum of abundance
in the four sub-regions during the summer months coinciding
with the stratification period and when Chla concentration in
the basin is low (Volpe et al., 2007). During this season, the
temporal climatology of Synechococcus reached values close to
100% in the Levantine basin, in agreement with the values
given by Sammartino et al. (2015) for picoplankton. These
authors indicated that this size class (closely corresponding
to Synechococcus) seems to cover homogenously the entire
Mediterranean Sea, with percentages of abundance close to

70%, although a decreasing concentration gradient from west
to east can be still observed, which was also revealed by
our analysis particularly for Prochlorococcus. According to our
analysis (Figure 10), Synechococcus dominated in the Eastern
basin, where ultraoligotrophic conditions are present and
particularly during summer (Siokou-Frangou et al., 2010).
During this season, primary production by the picoplankton
exhibits a maximum (Uitz et al., 2012. It is well known
that due to their high surface/volume ratio, Synechococcus
(and also Prochlorococcus) can cope optimally with nutrients-
impoverished environments (Le Quéré et al., 2005). The presence
of Synechococcus in the Levantine basin has been widely
reported (Uitz et al., 2012 and references therein), and the
PHYSAT-Med OC-CCI clearly revealed its presence in the
ultraoligotrophic Levantine basin and depicted a realistic annual
cycle (Figures 10, 11).

As expected, diatoms were the least abundant of the four
phytoplankton groups analyzed in the Mediterranean sub-
regions. In fact, with the exception of the Northern Adriatic Sea,
the percentage of abundance of diatoms fell within the range
of 10–20% in the Western sub-regions and in the Levantine
basin during the whole year. A moderate spring maximum
could be still detected, coinciding with the seasonal blooms
normally described for this phytoplankton group along the
Mediterranean (Marty and Chiavérini, 2002). As suggested
by the wavelet analyses, the annual cycle for diatoms is
rather less robust compared to other groups (Figure 11).
These findings agree with previous studies, where higher
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FIGURE 10 | Box plot for monthly climatology for each group in Mediterranean sub-regions. Each row represents each phytoplankton group (nanoeukaryotes,

Prochlorococcus, Synechococcus, and diatoms) and each column corresponds to the same sub-region (Alboran Sea, Ligurian Sea, Northern Adriatic Sea, and

Levantine Basin). In the box plot figure red lines stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th

percentiles, respectively, of monthly climatology for each group.

FIGURE 11 | Continuous wavelet power spectrum for the 10-day time series for each group and four sub-regions. Each row represents each phytoplankton group

(nanoeukaryotes, Prochlorococcus, Synechococcus, and diatoms) and each column corresponds to the same sub-region (Alboran Sea, Ligurian Sea, Northern

Adriatic Sea, and Levantine Basin). Red line indicates the region of time and frequency affected by the edges of the data and should not be considered.
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phytoplankton biomass, particularly diatoms, was found in the
Adriatic Sea (Socal et al., 1999; Casotti et al., 2003). This group
represented an important faction (14%) of phytoplankton only
in winter (Socal et al., 1999). Nevertheless, the contribution of
picoplankton typically exceeds that of microplankton most of
the year except during the winter-spring bloom (Uitz et al.,
2012).

According to our assessment using the new OC-CCI database,
the most abundant phytoplankton group during the winter
months in the Mediterranean Sea was the nanoeukaryotes, but
particularly in the sub-regions of the Western Mediterranean,
the Alboran and the Ligurian Seas. Regardless of a specific
area, the convective mixing in winter over the basin that uplifts
deep nutrients to the upper layer triggers the proliferation
of the bigger phytoplankton groups (Marty and Chiavérini,
2010), which is evidenced here by the major presence of
nanoeukaryotes in winter months (Figures 5, 10). Our data
also reproduce the basin-wide diatom peaks of abundance in
spring (Figure 9), following the Mediterranean phytoplankton
succession previously reported (Marty et al., 2002) and with
a consistent pattern every year (Figures 9–11). It should
be indicated, however, that our approach presents certain
limitations in diatoms detection, as acknowledged by Navarro
et al. (2014). Hence, it is likely that diatoms abundance
may have been slightly underestimated across the basin
although studies on extensive distribution of this group
along the Mediterranean are scarce to allow for an accurate
comparison. Conversely, Synechococcus and Prochlorococcus,
which are more favored by stratification conditions during
summer due to their better efficiency under nutrient depleted
conditions, were successfully identified both at the basin
(Figure 5) and sub-regional scales (Figure 10). Moreover, the
well-known dominance of Synechococcus with respect to
Prochlorococcus (Schauer et al., 2003), particularly in the
ultraoligotrophic Eastern basin, was neatly reproduced in our
study.

Overall, the spatio-temporal patterns obtained by applying
the PHYSAT-Med to the satellite OC-CCI database are
consistent with the previous distributions of the major
phytoplankton groups observed in the Mediterranean Sea
(Vidussi et al., 2000, 2001; Marty and Chiavérini, 2002,
2010; Marty et al., 2002; Siokou-Frangou et al., 2010;
Navarro et al., 2014; Sammartino et al., 2015; Di Cicco
et al., 2017). These results suggest that our approach is highly
suitable at basin scale and in selected sub-regions. This new
dataset for PFT could be an efficient tool for recording and
understanding the response of the marine ecosystem to
human pressures and thus for detecting eutrophication in the
Mediterranean Sea (Vantrepotte and Mélin, 2010; Colella et al.,
2016).

CONCLUSIONS

This work presents an updated version of the PHYSAT-
Med algorithm that has been specifically developed using
the OC-CCI database. This ESA initiative aims at gathering

ocean color measurements from four sensors since 1997.
The distribution of the major phytoplankton groups in the
Mediterranean basin during a 18 years period was consistent
with the previous knowledge on the distribution patterns
of phytoplankton in the basin. In addition, the modeled
distributions are in concordance with the distribution of
HPLC pigments analyzed in NW Mediterranean Sea for the
whole temporal range. The utility of the updated approach
was confirmed by the temporal analysis using the wavelet
spectrum, which allowed for the identification of shifting patterns
of periodicities across time for the dominant phytoplankton
groups. Therefore, the new version of the PHYSAT-Med is
appropriate for assessing the shifting spatio-temporal patterns of
the most abundant phytoplankton groups in the Mediterranean
Sea.
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Particulate Organic Carbon (POC) plays a vital role in the ocean carbon cycle. Though

relatively small compared with other carbon pools, the POC pool is responsible for large

fluxes and is linked to many important ocean biogeochemical processes. The satellite

ocean-color signal is influenced by particle composition, size, and concentration and

provides a way to observe variability in the POC pool at a range of temporal and spatial

scales. To provide accurate estimates of POC concentration from satellite ocean color

data requires algorithms that are well validated, with uncertainties characterized. Here,

a number of algorithms to derive POC using different optical variables are applied to

merged satellite ocean color data provided by the Ocean Color Climate Change Initiative

(OC-CCI) and validated against the largest database of in situ POC measurements

currently available. The results of this validation exercise indicate satisfactory levels

of performance from several algorithms (highest performance was observed from the

algorithms of Loisel et al., 2002; Stramski et al., 2008) and uncertainties that are within the

requirements of the user community. Estimates of the standing stock of the POC can be

made by applying these algorithms, and yield an estimated mixed-layer integrated global

stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary

regionally, suggesting that blending of region-specific algorithms may provide the best

way forward for generating global POC products.

Keywords: satellite ocean color, particulate organic carbon, algorithms, validation, essential climate variables
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1. INTRODUCTION

Total particulate organic carbon (POC or Co) in the ocean is
a key currency used in studies of both the biological export of
carbon from the surface to the deep ocean, and the availability
of food for marine organisms. The pool of POC in the ocean is
relatively small (estimates include: 0.43 Pg C in the first light-
attenuation depth—Gardner et al., 2006; 2.28 Pg C over a 200
m surface layer—Stramska, 2009). Despite the relative small
size of the POC compartment, its components (phytoplankton,
bacteria, zooplankton, and organic detritus) are responsible for
large fluxes in the ocean, because of their high turnover rates. The
organic tissue generated by photosynthesis in the sunlit ocean
is either exported from the surface via the “biological pump”
(Volk and Hoffert, 1985; Ducklow et al., 2001), transferred to
higher trophic levels through the food chain, transformed into
detritus, or recycled via the microbial loop, with some of it going
into the pool of dissolved organic (DOC) and inorganic carbon
(DIC). Organic particles are therefore involved in two important
carbon fluxes in the ocean, primary production and export to
either the deep ocean or the DOC and DIC pools, in addition
to being an integral part of the marine food web. In addition
to the components of POC arising from local sources, POC
may be transported to a particular location from distant sources:
for example, by currents that move POC horizontally in the
ocean, or by transport of POC of terrestrial origin to the oceans
by river outflow. Though POC is typically treated as a single
pool, there is growing awareness of the importance of different
particles, such as defined by their size, because of their variety
of biogeochemical functions, and their effect on ocean optical
properties. For example, it has been shown that around 40% of
POC concentration in the oligotrophic regions may be associated
with bacteria alone (Cho andAzam, 1990) and submicron detrital
particles can alsomake a significant contribution to the POC pool
(Mel’nikov, 1976). Similarly, relatively large particles (generally
larger than a fewmicrometers) can play an important role in POC
export (e.g., Boyd and Newton, 1995; Dall’Olmo et al., 2009). The
importance of particles characteristics in determining the optical
signal of POC has also been recognized.

The theoretical work of Stramski and Kiefer (1991),
assuming spherical and homogenous particles, indicated that
small particles can make an important contribution to the
backscattering signal in the oceans. Further work has shown the
impact of non-sphericity and intracellular structures on optical
properties, particularly backscattering (Meyer, 1979; Kitchen and
Zaneveld, 1992; Quirantes and Bernard, 2004, 2006; Clavano
et al., 2007; Matthews and Bernard, 2013; Robertson Lain
et al., 2017). Work by Cetinić et al. (2012) linked variation
in the beam attenuation coefficient with plankton community
composition, and variability in particle backscattering with
changes in particle composition due to remineralization. They
also highlighted how measurement artifacts might influence
the observed relationships between POC and optical properties.
Further work has explored separation of the phytoplankton
component in POC—through both indirect (Behrenfeld et al.,
2005; Kostadinov et al., 2016) and direct methods (Graff et al.,
2012, 2015). The contribution of phytoplankton to the POC

pool leads to the covariance between chlorophyll a concentration
([Chl]) and POC concentrations, although some scatter exists in
these relationships, as a result of variability in the phytoplankton
community composition, physiological factors that can affect
the carbon-chlorophyll ratio in phytoplankton, and the variable
contribution of substances other than phytoplankton (including
detritus and bacteria) to POC (see discussion and references
within Stramska and Stramski, 2005; Sathyendranath et al.,
2009).

POC is readily quantifiable by filtering seawater samples,
and forms a key component of many biological ocean
models. However, in situ samples are expensive to collect,
leading to a scarcity of data that hinders efforts to both
validate ocean models and develop a complete understanding
of POC dynamics. Satellite ocean color data offers the
opportunity to quantify POC at the global scale on an
almost daily basis. Ocean color or more specifically the
water-leaving radiance and corresponding remote sensing
reflectance spectra, and derived [Chl] are recognized as
Essential Climate Variables (ECVs) by the Global Climate
Observing System (GCOS, 2011). This is in recognition of
their importance for studying various biological variables and
processes in the ocean. In fact, of all the oceanic ECVs that
are amenable to remote sensing, ocean color is the only
one that targets a biological property. In response to the
GCOS requirements, the European Space Agency (ESA) Ocean
Color Climate Change Initiative (OC-CCI) has generated a
time series of merged satellite products for climate research,
using data from the ESA satellite sensor MERIS (MEdium
spectral Resolution Imaging Spectrometer) and NASA (National
Aeronautics and Space Administration) satellite sensors SeaWiFS
(Sea-viewing Wide Field-of-view Sensor) and MODIS-Aqua
(Moderate-resolution Imaging Spectroradiometer-Aqua). The
products include the normalized remote-sensing reflectances,
Rrs at SeaWiFS wavelengths and [Chl], as well as some
additional inherent optical properties (IOPs) such as absorption
and backscattering coefficients of phytoplankton and other
particulate matter, and diffuse attenuation coefficient for
downward plane irradiance, Kd at 490 nm. There is a recognized
need in the user community for additional products from
ocean color that deal directly with POC, including separation
of the contribution of phytoplankton, and the size distribution
of particles. Further, these products need to be regionally
optimized and their uncertainties well characterized. Both of
these requirements may be addressed via optical classification
(e.g., Moore et al., 2009), whereby waters are classified
according to their spectral or bio-optical properties. Optical
classification allows specific algorithms to be applied to the
different optical water types (resulting in a global, merged
product) and provides provides a method (Moore et al., 2009;
Jackson et al., in press) that can be used to calculate per pixel
errors. Other methods exist: e.g., formal error propagation (Lee
et al., 2010), or estimation of uncertainties based on model-
observation comparison (Maritorena et al., 2010). However,
the users consulted within the OC-CCI project expressed a
preference for uncertainties based on comparison with in situ
data (Sathyendranath et al., in press).
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Remote sensing of POC through ocean color radiometry
requires the exploitation of some optical signal that is associated
with the material. In fact, optically, the beam attenuation
coefficient of particles (cp), particle scattering coefficient (bp),
backscattering coefficient (bbp) and the attenuation coefficient of
downward irradiance Kd are all sensitive to particle abundance
(to a first order), and to particle composition (through
refractive index), size, shape and internal structure. It has been
demonstrated that POC is correlated with in situ cp measured
using transmissometers (Gardner et al., 1993; Bishop, 1999;
Claustre et al., 1999; Stramska and Stramski, 2005), which has
provided a robust optical method for measuring POC using
in situ devices. Although bp and cp are not among the data
products that are routinely retrieved from remote sensing,
satellite-based algorithms exist for retrieving POC from all the
optical properties listed above, as well as from remote-sensing
reflectance values.

This paper compares five different algorithms for estimating
POC concentrations, selected as being representative of varied
approaches that are prevalent for POC retrieval from ocean-
color data. Each algorithm is applied to different optical
properties derived from satellite ocean color data, and each uses
different formulations for linking the parameters to the POC
concentration. Matchups between in situ measurements of POC
and satellite ocean color allow for the validation, intercomparison
of global performance, and estimation of uncertainties associated
with the POC calculated using these algorithms.

2. METHODS

2.1. Collation of an In situ Database
For this study, POC concentration data were collected
from a number of existing databases and from individual
contributors. Databases collated included PANGAEA
(https://www.pangaea.de/) and SeaBASS (Werdell and Bailey,
2005), and those compiled by Martiny et al. (2014) and the
Biological and Chemical Oceanography Data Management
Office (BCO-DMO, USA). Further data were included from the
Atlantic Meridional Transect (AMT) (including data derived
from both CTD and the ship’s clean water supply) and other
cruises in the Southern Ocean (see a description of the Good
Hope line and associated data collection in Thomalla et al.,
2017). Operationally, POC is defined as all the organic carbon
that is retained on GF/F filters (nominal pore size of 0.7 µm). To
measure POC, samples are collected on pre-combusted (450◦C)
GF/F filters and dried overnight at 65◦C before analysis. To
remove particulate inorganic carbon, filters are acidified either
by adding low-carbon HCl directly or by overnight exposure
to the fumes of a concentrated HCl solution in a desiccator.
Filters are then dried, packed in pre-combusted tin capsules,
combusted at 960◦C in an elemental analyser to convert the
organic carbon in CO2. The liberated CO2 is finally detected
by thermal conductivity (Sharp, 1974). Acetanilide is used as
a standard. The procedure for applying a blank however is
not always consistent across studies, and as such could be a
source of bias within the data set collated here. Cetinić et al.
(2012) (and references therein) have studied the consequences of

different methodologies for treating POC blanks, summarizing
that the effect of DOC adsorption on filters (if not accounted
for with an adequate blank correction) can cause substantial
bias at low POC concentrations. In the database used here, a
large quantity of the samples from low POC regions (i.e., the
oligotrophic gyres) are from the AMT cruise programme, where
a multiple-volume intercept blank methodology is used to reduce
potential bias from blanks. Where data was provided at depth,
measurements were averaged over 10m to provide the “surface”
value for the matchup. Optical weighting of these measurement
were considered, however given the variability of the water types
sampled and associated mixed layer depths, and the necessary
assumptions to apply an optical model for this purpose, it was
decided not to introduce additional sources of uncertainty for
these data points.

2.2. Extraction of Satellite-In situ Matchups
Matchup extraction was based on the procedure developed for
the OC-CCI. The daily, 4 km, sinusoidally projected OC-CCI
version 2 data (Sathyendranath et al., 2016) were searched to
find satellite data associated with each in situ data point. The
OC-CCI data is a merged product from three sensors, each
with a different overpass time. However these overpass times
are generally around 12 p.m. ± 2.5 h, meaning a maximum
time difference between the in situ and satellite data of <12
h. The OC-CCI data used contain all of the relevant optical
and biogeochemical properties necessary for implementation of
the different algorithms under consideration, as well as water
class membership of each pixel which quantifies the similarities
between the remote-sensing reflectance spectrum at that pixel
and the characteristic mean and covariance spectra associated
with each of the optical classes (Jackson et al., in press), see also
the OC-CCI product user guide (http://www.esa-oceancolor-
cci.org/?q=documents). The OC-CCI data were interrogated to
assess the availability of data covering the latitude and longitude
of the in situ data point, on the same date as the in situ data
collection. If the central pixel contained valid data, the data
surrounding eight pixels are also extracted from the selected data
(a 3 × 3 pixel box, corresponding to a 12 km × 12 km region) .
The central value and the mean, median, and standard deviation,
number of valid pixels out of the nine pixels, the optical class with
the dominant membership, and the calculated POC products
using various algorithms applied to the central and mean pixel
values, are returned as output, along with the in situ data values
and metadata.

2.3. Candidate Algorithms
Five different algorithms for determination of POC
concentration were considered. For consistency of comparison,
all algorithms were implemented using the appropriate variables
from the OC-CCI product suite. Another reason for using
the OC-CCI products is that a rigorous algorithm selection
procedure for atmospheric correction (Müller et al., 2015) and
in-water properties (Brewin et al., 2015) (including derivation
of [Chl], IOPs and the diffuse attenuation coefficient), had
been put in place, to ensure quality of products. Furthermore,
being a merged product, OC-CCI coverage is higher than that
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available from single-sensor products, ensuring a higher number
of match-up points with in situ data. However, we recognize
that all the five candidate algorithms were initially developed,
implemented and tested using other ocean-color products, and
that any systematic differences between the OC-CCI products
and the datasets used by the algorithm developers, could be a
potential source of difference in performance. Therefore, in the
description of the algorithms, we also provide details of how the
algorithms were implemented in the original work.

We also note that there are differences in how the five
algorithms compared here were developed and implemented
in the original work. For example, two of the algorithms
(algorithms A and B presented below) were derived solely
from coincidentally collected in situ data, whereas Algorithm D
(G06—described below) combined in situmeasurements of POC
and beam attenuation, with satellite-derived measurements of
diffuse attenuation coefficient. Algorithms A and B are based
on some 50 measurements, whereas the POC—beam attenuation
coefficient relationship used in Algorithm D was based on over
3,000 measurements. Algorithm C (described below) relies on a
large in situ database of [Chl] and backscattering ratio to estimate
total particle scattering coefficient from particle backscattering
coefficient, and then relies on an extensive literature review to
find a conversion factor between particle scattering coefficient
and POC. Here we use a common set of satellite data (OC-CCI)
to compute POC using the different algorithms and compare
the products against a common set of in situ data. Where there
are differences between how the various steps in the algorithms
were implemented in the original work, and howOC-CCI treated
similar steps in its product generation, they are highlighted,
since such differences could have potential impact on algorithm
performance.

2.3.1. Algorithm A Based on Remote-Sensing

Reflectance
This algorithm (designated Co(A)) proposed by Stramski et al.
(2008) uses remote-sensing reflectance at 443 and 555 nm
(equation 1) as inputs, and takes the following form:

Co(A)(mg m−3) = 203.2

[

Rrs(443)

Rrs(555)

]−1.034

. (1)

The model parameters were determined using some 53 pairs of
co-located in situmeasurements of both POC and spectral values
of Rrs from oligotrophic and upwelling waters of the East Atlantic
and the South Pacific. The authors have provided various fits
to the models for different pairs of wavebands for Rrs and for
different selections of data. The one we have used here is based
on all data, and for the 443–555 waveband pair, as recommended
by the authors. This algorithm is currently used by the NASA
Ocean Biology Processing Group to generate the global POC
data product from ocean color data. The Rrs values in the OC-
CCI product suite were used as input to this algorithm for the
validation exercise presented here. We note that a similar POC
algorithm based on the blue-to-green reflectance ratio has been
developed and validated with the data from the Southern Ocean
(Allison et al., 2010). For the Southern Ocean algorithm the best

fit coefficients of the power function of the same form as Equation
(1) were determined to be 189.29 and -0.87. A power function
was found to provide better error statistics compared with those
usingmodified fits of those typically used inmaximum band ratio
algorithms for [Chl].

2.3.2. Algorithm B Based on Backscattering by

Particles
This algorithm (Co(B)), also proposed by Stramski et al. (2008)
uses bbp(555), the particulate backscattering coefficient at 555 nm
(2), as input. The equation has the form:

Co(B)(mg m−3) = 53606.7× bbp(555)+ 2.468 . (2)

Stramski et al. (2008) tested two approaches for calculating
bbp for the eventual determination of POC: firstly, the method
of Maffione and Dana (1997) as refined by Boss and Pegau
(2001) was used to derive spectral backscattering coefficient from
in situmeasurements of volume scattering function at 140o. Next,
using a two-step empirical approach, Stramski et al. (2008) then
calculated bbp by removing the backscattering coefficient for pure
water [they used pure-water backscattering coefficients proposed
by Buiteveld et al. (1994) and by Morel (1974), and reported that
the difference between the measurements of bbw was likely within
the range of errors associated with the measurements themselves,
and therefore did not substantially impact the performance of the
algorithm for deriving POC]. Then, bbp was empirically related
to POC concentrations (Equation 2). Stramski et al. (2008)
provide various fits to this equation, but the parameters selected
above correspond to the results (number of observations =

54) excluding upwelling data, which provided better uncertainty
metrics, and may better reflect the data within the database used
here. Secondly, to provide the remote-sensing context, Stramski
et al. (2008) used either a direct empirical relationship between
the backscattering coefficient (bb) and Rrs or the Quasi Analytical
Algorithm (QAA) approach of Lee et al. (2002) to derive bbp
from Rrs. They found that the comparison with measured bbp
was improved considerably when an empirical correction based
on their measurements of bbp was applied to the QAA algorithm.
Thus, this algorithm uses a two-step approach: first, bbp is derived
from Rrs, and then that bbp is used in Equation (2) to calculate
POC.

In the computation of OC-CCI bbp products, the QAA
model was used, along with Zhang et al. (2009) for the pure-
water backscattering coefficient (Sathyendranath et al., 2016).
In QAA the spectral backscattering coefficient is calculated
empirically using Rrs at 440 nm and at 555 nm. A power
law is then used to calculate the particle backscattering
coefficients at other wavelengths given the value of the
spectral backscattering coefficient and bbp(555), estimated from
an analytical relationship using Rrs(555) and the absorption
coefficient (a(555)). These values of bbp were used to compute
POC in the calculations presented here, without any empirical
correction. For this algorithm a linear fit provided the best error
statistics in the original study of Stramski et al. (2008).
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2.3.3. Algorithm C Based on both Backscattering

Coefficient and Chlorophyll-a Concentration
This algorithm (Co(C)) is based on a combination of bbp(490)
and [Chl], and was proposed by Loisel et al. (2002) (3). They
derived bbp and [Chl] from SeaWIFS data using the method of
Loisel and Stramski (2000) and the OC4 algorithm (based on
O’Reilly et al., 1998) respectively. They then used a relationship
proposed by Twardowski et al. (2001) to compute the total
particle scattering coefficient given the particle backscattering
coefficient (bbp) and [Chl] (designated B in Equation 3). They

then adopted a conversion value of 400mgCm−2 to go from total
scattering coefficient to POC concentration. Combining these
steps yields the following algorithm:

Co(C)(mg m−3) = 41666.7× bbp(490)× B0.25 . (3)

AlgorithmC is implemented here using the Lee et al. (2002) QAA
approach (for bbp), and a more recent OC4 (v6) for [Chl].

2.3.4. Algorithm D Based on the Diffuse Attenuation

Coefficient for Irradiance and Beam Attenuation

Coefficient
This algorithm (Co(D)), based on Gardner et al. (2006), uses
a two-step relationship relating Kd(490) to beam attenuation
coefficient for particles (cp), and then the beam attenuation
coefficient to POC:

cp = exp(1.124× log 10(Kd(490)+ 1.1361)), (4)

and

Co(D)(mg m−3) = 12× (31.7× cp + 0.785). (5)

In Gardner et al. (2006), Kd(490) is obtained from SeaWIFS
data where the algorithm of Mueller (2000) is used, based on
water-leaving radiances at 490 and 555 nm. Gardner et al. (2006)
used an extensive database (number of observations = 3,462)
of concurrent measurements of POC and beam attenuation
coefficient from Atlantic, Pacific and Indian Oceans, to derive the
parameters of Equations (4) and (5) empirically.

The Kd(490) values used in the comparison presented here are
obtained from theOC-CCI version 2 data, which uses themethod
of Lee et al. (2005).

2.3.5. Algorithm E Based on Spectral Backscattering

Coefficient:
This algorithm (Co(E)) was developed by Kostadinov et al. (2009)
and Kostadinov et al. (2016). It correlates the slope (η) of
backscattering as a function of wavelength to the slope (ξ ) of the
particle size distribution (PSD) that is assumed to follow a power-
law. The method has three steps: firstly, η is calculated from
the spectral bbp values at 490, 510, and 555 nm extracted from
the OC-CCI matchup data (for which OC-CCI uses Lee et al.
(2002)). Note that in Kostadinov et al. (2009) and Kostadinov
et al. (2016), bbp is instead retrieved using the formulation of
Loisel and Stramski (2000). Secondly, look-up-tables (LUTs) are

used to retrieve the parameters of the PSD, namely the slope
(ξ ) and the differential number concentration at a reference
diameter of 2 µm, (No), given η and bbp at 443 nm. The LUTs
are constructed using theoretical forward simulations using Mie
code (Bohren and Huffman, 1983). Finally, to compute Co, the
PSD is integrated to calculate particle volume in the 0.5 to 50 µm
diameter range, and then volume is converted to carbon using
existing allometric relationships derived from phytoplankton
cultures (Menden-Deuer and Lessard, 2000), assuming biogenic
origin for all the scattering particles. An empirical correction is
applied toNo (based on PSD validation statistics) to achievemore
realistic absolute carbon concentration values (Kostadinov et al.,
2016).

2.4. Separation of Matchups by Optical
Water Class and Calculation of
Uncertainties
The OC-CCI product suite includes memberships of each pixel
in 14 optical classes, following the fuzzy logic classification
methodology of Moore et al. (2009), with some modifications as
described in Jackson et al. (in press). The memberships of the
14 optical water classes associated with the satellite matchups
were extracted alongside the radiometric and biogeochemical
properties required for the validation. Each matchup point
was then assigned to the optical class that had the dominant
membership in the central match-up pixel. The statistical
analyses were carried out for the global dataset as well as for
subsets of the data grouped according to dominant optical class.
These uncertainty metrics per optical class were then used to
assign uncertainties at each pixel, by calculating the weighted
average of the metrics associated with each of the water classes,
with the membership of the classes in that pixel providing the
weighting function.

Statistical analysis used in the assessment of each algorithm
was based on that used by OC-CCI (see Brewin et al., 2015). The
Kolmogorov-Smirnov test for normality of the in situ matchup
data showed a significant deviation of normality for log10
transformed and un-transformed data (p <0.001). Therefore, for
completeness, the statistical analysis was conducted for both log10
transformed using parametric tests and for un-transformed data
using non-parametric, rank-based, statistics. Statistical metrics
computed were:

• Pearsons correlation coefficient for log10 transformed data,
and Spearman’s correlation for un-transformed data (rp and
rs respectively),

• Root mean square differences for log10 transformed and un-
transformed data (RMSD - 9 , in log10 for the transformed
data and mg m−3 of POC for the untransformed data),

• Bias for log10 transformed data and untransformed data ((δ),
in log10 for the transformed data and mg m−3 of POC for the
untransformed data),

• Median absolute percentage deviation between predictions
and observations (MAPD in %), an estimate of bias and
precision was estimated as the interquartile range (IQR) of the
absolute percentage deviation for the untransformed data,
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• Center pattern root mean square deviation (1), in mg m−3),
which is the error of the predicted values with respect to the
observations, irrespective of the average bias between the two
distributions. It is related to the RMSD and bias as follows: 12

= 9 - δ2, and was calculated for both the log10 transformed
and un-transformed data,

• Slope and intercept (S, I) from a Type-II linear regression
(Reduced Major Axis) for log10 transformed and un-
transformed data.

To provide an indication of the stability of the statistics and
to compute confidence intervals on them, bootstrapping (Efron,
1979; Efron and Tibshirani, 1993) with random re-sampling and
replacement was used to construct 1,000 different datasets from
which confidence intervals were computed for some statistics.
Statistics were computed for the whole dataset, and also after
segregating the data according to dominant water class, at the
central matchup pixel.

3. RESULTS

3.1. Distribution of Validation Data and
Matchups
Geographic distribution of the data in the in situ data base is
shown in Figure 1, with the color scale representing the average
POC concentration (mg m−3) over measurements made in the
top 10 m (total N = 63, 704, depth averaged N = 19, 282).
Figure 2 shows the in situ data with valid satellite data matchups
(N = 3891), colored according to the concentration of POC (mg
m−3) measured. A number of expected patterns can be observed.
Firstly, the number of valid matchups is much reduced relative
to the total number of data points in the in situ database. This is
a result of several factors including: the averaging of the in situ
data over the top 10m, elimination of data points outside of
the OC-CCI period (1997–2012); and failure of matchup when
there were no satellite observations corresponding to the date
and location of the in situ sampling. Other factors are spatially
heterogenous, such that there is some regional skew in the
likely success of obtaining a matchup, for example cloud cover
has a spatially and temporally variable influence on matchup
availability, such that in some areas it is less likely that a matchup
will be found, e.g., in the tropics, or during winter in the mid
latitudes—where satellite coverage was relatively poor. There
is a high concentration of data in the Atlantic—as a result
of the substantial AMT cruise data. Similarly, there is a high
concentration of data from some coastal regions, particularly
in the northern hemisphere. Observed concentrations of POC
follow an expected distribution, with higher values in coastal
and shelf regions, and lower concentrations in the oligotrophic
gyres (Figure 2). A bimodal distribution can be observed in the
in situ data, as a result of the high numbers of data from the
AMT cruises which go predominantly through the oligotrophic
gyres, and from coastal regions, which tend to be predominantly
high-POC areas (Figure 3).

3.2. Algorithm Performance
The histogram of the in situ data frequency distribution is
replicated to a degree by all the algorithms (Figure 3). The

histogram of Algorithm A is very similar to that of the in situ
data, with both histogram shapes and peak locations reproduced.
Algorithm B tends to overestimate the POC values relative to
in situ data at the lower end of POC concentrations, resulting
in the first peak in the histogram being offset toward the
right of the figure (i.e., toward higher POC concentrations).
By contrast, Algorithm C underestimates POC slightly, at the
lower end. The range of estimates provided by Algorithm D
is narrower than that of the in situ data. Algorithm E also
has a narrower range, and in general underestimates POC
concentrations. Both algorithms D and E show significant shifts
in both peaks of the distribution relative to those of the in situ
data.

As could be expected from the histograms (Figure 3), there
is generally a high correlation between the algorithm estimates
and in situ measurements of POC, with r values between 0.75
and 0.82 for all algorithms tested (Figures 4A–E). It is of
note that all algorithms show a small cloud of underestimated
concentrations associated with high in situ POC. These points
are from different data sources, and from different regions, and
as such, outliers do not appear to be related to any systematic
errors in the in situ measurements. Furthermore, not all of
these substantial underestimates are associated with common
data points across all the algorithms. It is important to note,
however, that although we compare the satellite-derived POC
with in situ POC over a very broad range, extending to very
high values >1,000 mg m−3, the original formulations of the
algorithms were not, in general, implemented with such high
POC data.

The scatter plots and uncertainty statistics for Algorithm A
shown in Figure 4A and Table 1 suggest that this algorithm,
on average, performs better than the other algorithms shown in
Figures 4B–E. Algorithm A has the smallest bias, a linear fit that
is closest to the 1:1 line, with a slope of 0.92 and a relatively
small intercept value (the second smallest after Algorithm C),
and also the highest (albeit slightly) correlation coefficient
and the smallest values (albeit slightly) of the Root Mean
Square Difference. The statistical parameters are consistently
good for Algorithm A, though the results for Algorithm C
also present some advantages. The performance of Algorithm
C has a slope of 1 and intercept closest to zero, but has
a slightly higher RMSD, CRMSD and bias compared with
Algorithm A (Figure 4C). Algorithm B has relatively small bias,
however other parameters are clearly inferior compared with
Algorithm A (Figure 4B). Some statistical parameters associated
with the performance of Algorithm D are significantly inferior
compared with those associated with algorithms A and C,
especially the slope and intercept of linear fit which indicate
a large deviation of this fit from the 1:1 line (Figure 4D).
As a result, low values of POC are overestimated, and
high values underestimated, compared with the in situ data.
The statistical performance for Algorithm E is poorest with
significant negative bias and the best fit regression deviating
greatly from the 1:1 line (Figure 4E). Performance statistics
are summarized for all algorithms in the first section of
Table 1. A statistical analysis was also conducted for the non-
transformed data, and provided in the second section of
Table 1.
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FIGURE 1 | Geographic distribution of Particulate Organic Carbon (POC) measurements within the in situ database. The color scale represents the averaged POC

concentration (mg m−3) over the top 10 m.

FIGURE 2 | Locations of OC-CCI satellite data matchups and associated in situ concentrations of Particulate Organic Carbon (mg m−3).

3.3. Performance Per Water Class
To further understand algorithm performance, the matchups
were separated by their optical water class. The total number
of matchups per water class, and their distribution spatially,
is shown in Figures 5, 6 respectively. The lower water classes
are associated with oligotrophic regions, such as in the gyres,
whilst the higher classes correspond to progressively more
turbid shelf and coastal waters. Statistical performance of the
algorithms across the different water classes is summarized in
Figure 7.

Performing the statistical analysis across the different water
classes reveals some similarities in performance across all
algorithms, and some consistency with the overall performance
(Figure 7). Algorithms A, C, and D show little differences
between them in terms of RMSD across the water classes, with
the exception of water class 14 (i.e., the most optically complex
waters) (Figure 7A). The RMSD associated with Algorithm E
follows the same broad pattern as algorithms A and D across
the water classes, although its RMSD is substantially higher than
those algorithms in all instances. Algorithm B shows slightly
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FIGURE 3 | Histograms summarizing distribution of in situ POC data and associated satellite based estimates for (A) Algorithm A (Stramski et al., 2008, Rrs based),

(B) Algorithm B (Stramski et al., 2008, bbp based), (C) Algorithm C (by Loisel et al., 2002) , (D) Algorithm D (by Gardner et al., 2006), (E) Algorithm E (by Kostadinov

et al., 2016).

TABLE 1 | Summary of statistics of the algorithm performances for log10 and untransformed data.

Statistic A B C D E

log10 TRANSFORMED DATA

rs 0.80 0.73 0.79 0.80 0.78

9 0.29 ± 0.01 0.33±0.01 0.34± 0.01 0.32± 0.01 0.53±0.01

1 0.29 ± 0.01 0.32± 0.01 0.31± 0.01 0.29± 0.01 0.30± 0.01

δ -0.04± 0.01 0.03 ± 0.01 -0.13± 0.01 -0.13± 0.01 -0.43± 0.01

S 0.92± 0.01 0.63± 0.01 1.00 ± 0.01 0.63± 0.01 0.66± 0.01

I 0.14± 0.02 0.76± 0.02 −0.13 ± 0.03 0.63± 0.02 0.27± 0.02

UNTRANSFORMED DATA

rp 0.84 0.80 0.84 0.85 0.83

9 420± 12.7 443± 13.3 463± 13.9 413 ± 12.46 444± 13.1

1 417± 12.4 442±13.1 460± 13.8 401 ± 11.8 417± 12.1

δ -51.9± 13.1 -41.1 ± 14.0 -48.5± 14.5 -98.8 ± 12.6 -154± 13.1

S 0.15 0.27 0.49 0.13 0.05

I 126 112 58.8 83.3 45.3

MAPD±IQR 25.5 ± 37.3 42.5± 58.0 31.4± 36.5 31.7± 34.6 60.9 ± 30.0

For log10: rs is Spearman’s correlation; slope and intercept for were calculated with a Type-II linear regression model (Major Axis) and the statistics provided have uncertainty estimates
(95% confidence interval), derived from 1,000 bootstrap realizations. For untransformed data: rp is Pearson’s correlation; 9, δ and 1 are provided with uncertainty estimates (95%
confidence interval), derived from 1000 bootstrap realizations; slope and intercept for were calculated with a Reduced Major Axis regression model; MAPD is the median absolute
percent deviation between predictions and observations and is a measure of bias, and IQR is the interquartile range of the absolute percent error, and is a measure of precision. Bold
italic numbers are the best results for each statistic, for some is the highest value (e.g., rs or rp), for some is the lowest (e.g., 9, δ, 1, Intercept and MAPD) and for some is the closest
to one (e.g., Slope).

higher RMSD than the other algorithms in some of the more
oligotrophic water classes (1–5), then largely follows the same
patterns as algorithms A and D. The cloud of outlier points
observed in the overall comparisons are associated with water
classes 6, 7, and 8, where RMSD is relatively high for most
of the algorithms. The estimates of bias for each of the water
classes is consistent with the results from the global application
e.g., Algorithm A shows very little bias, and this is consistent
across water classes, whilst Algorithm E generally underestimates
across all classes (Figure 7B). Algorithm C shows slight negative
bias across most of the water classes, except 12 and 13, whilst
algorithms D and B show slight (larger) positive bias in the
more oligotrophic classes. Algorithm B shows large positive
bias in water class 13, as with Algorithm C; however, both

algorithms show negative bias in class 14. The center-pattern (or
unbiased) RMSD in Figure 7C shows the largest uncertainties
are associated with water classes 6, 7, and 8 whilst the largest
differences in algorithm performance across the water classes are
found in water classes 12, 13, and 14. The regional variability in
algorithm performance, which can be associated with the optical
water classes, is discussed further in Sections 3.4, 3.5, and 4.2
below.

3.4. Mapped Products
In addition to application to the matchups points, the POC
algorithms can also be applied to global satellite data to compare
algorithm performance at synoptic scales. POC concentrations
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FIGURE 4 | Scatter plots and statistics detailing performance of (A) Algorithm A by Stramski et al. (2008) (using Rrs), (B) Algorithm B by Stramski et al. (2008) (using

bbp), (C) Algorithm C by Loisel et al. (2002), (D) Algorithm D by Gardner et al. (2006), and (E) Algorithm E by Kostadinov et al. (2016). Statistical parameters are as

follows: correlation coefficient (r), bias (δ), Root Mean Square Difference (9), Center Patterned Root Mean Square Difference (1), slope (s), intercept (I). The solid line is

the 1:1 line, and the dashed line is the line of best fit for the linear regression.
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FIGURE 5 | Locations and associated water class for each satellite-in situ matchup.

FIGURE 6 | Histogram showing number of matchups associated with each OC-CCI water class.

FIGURE 7 | Calculated RMSD (A), Bias (B), and Center Patterned RMSD (C) for each algorithm per water class based on the matchup statistics.

were estimated by applying algorithms A-E to a sample set of OC-
CCI monthly products fromMay 2005 (Figure 8). All algorithms
produce the broad patterns that were observed in the in situ

measurements and would be expected to be associated with
POC, i.e., increased POC associated with regions of high [Chl]
in upwelling zones, lower concentrations in the oligotrophic
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FIGURE 8 | POC estimated using the five candidate algorithms applied to a monthly composite of OC-CCI data from May 2005 (A) Stramski et al. (2008) (Rrs), (B)
Stramski et al. (2008) (bbp), (C) Loisel et al. (2002), (D) Gardner et al. (2006), (E) Kostadinov et al. (2016), and (F) POC associated with an extracted transect through

the Atlantic at 20o W for each algorithm, and the associated [Chl] from the OC-CCI data.

gyres, and higher concentrations in turbid shelf and coastal
regions. However, there are some notable differences between
the POC concentrations estimated by the different algorithms.
Algorithm A and C perform similarly (Figures 8A,C). Algorithm
B (Figure 8B) produces estimates that are generally higher
relative to Algorithm A and C, particularly at low POC
concentrations. Algorithm D (Figure 8D) underestimates at
higher POC concentrations relative to all other algorithms, whilst
at low concentrations its estimates are generally higher than

algorithms A and C, and lower than algorithm B. In contrast,
Algorithm E (Figure 8E) estimates lower POC concentrations
relative to the other methods. A transect, extracted along
from 20o west, shows the regional differences in algorithm
estimates for POC, and the associated OC-CCI [Chl] for
reference (Figure 8F). Histograms of these products (not shown),
show a similar range to the in situ data used for validation
(≈ 10–1,000), though values greater than 1,000 mg m−3

are scarce in the satellite products (though higher values
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FIGURE 9 | Root Mean Squared Difference calculated for POC as estimated using water-class specific performance of the the five candidate algorithms applied to

monthly composite OC-CCI data from May 2005 (A) Stramski et al. (2008) (Rrs), (B) Stramski et al. (2008) (bbp), (C) Loisel et al. (2002), (D) Gardner et al. (2006), (E)
Kostadinov et al. (2016), and (F) the associated OC-CCI water classes.

are more frequent with Algorithm C than with Algorithm
A). Also, the pronounced bimodal frequency distribution of
the in situ data is absent in the satellite products, which
show a unimodal distribution. This difference between the
frequency distribution of in situ data and satellite products could
have had an impact on the comparative statistics presented
here.

3.5. Mapped Uncertainties
Each algorithm has uncertainties associated with its performance
for each water class, calculated from the validation exercise.
These values can be used to estimate uncertainties for pixels
outside of direct matchup locations, using a weighted average
based on the percent membership to each of the classes. This
procedure was applied to the data in Figure 8 to calculate
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FIGURE 10 | Bias as estimated using per water class performance of the five candidate algorithms applied to monthly composite OC-CCI data from May 2005 (A)

Stramski et al. (2008) (Rrs), (B) Stramski et al. (2008) (bbp), (C) Loisel et al. (2002), (D) Gardner et al. (2006), (E) Kostadinov et al. (2016), and (F) the associated

OC-CCI water classes.

per pixel RMSD and bias. As could be expected from the
performance of the algorithms across the substantial in situ
data set, Algorithm A (Rrs based algorithm of Stramski
et al., 2008) shows low RMSD and bias when uncertainties
are calculated (Figures 9, 10). Algorithms B and particularly
Algorithm C show higher RMSE, particularly in the gyre
regions, consistent with the distribution of the matchup-
based estimates in Figure 3. Algorithm D has low RMSD

and bias in the oligotrophic gyres, but relatively higher
values appear in the more productive (upwelling and coastal)
areas. Algorithm E shows high RMSE throughout the image.
Highest positive bias estimates are associated with algorithm
B, relating to overestimation in the gyre regions (Figure 10B).
Bias for Algorithm E (Figure 10E) shows negative bias globally,
consistent with the general trend toward underestimation shown
in Figures 4E, 8E.
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FIGURE 11 | Percentage error for POC as estimated using per water class performance of the Stramski et al. (2008) (Rrs) applied to monthly composite OC-CCI data

from May 2005.

4. DISCUSSION

4.1. Variability in Algorithm Performance
As a Result of Input Satellite Data, Choice
of Optical Models, and Regional Optical
Properties
The strength of the relationships between bio-optical properties
and POC concentration has been quantified in the original
studies where the algorithms examined above were formulated,
and in some cases, validated against satellite data. To the
extent that some of the satellite data used in the original
studies are included in the match-up dataset used here, the
impact on the results is likely to be small because the
size of the match-up data used here is much larger than
that used in any of the previous studies. Furthermore, the
comparisons presented here are based on a common satellite
product suite (OC-CCI). However, further insights are gained
from the bigger in situ data base assembled for this study,
and from the climate-quality data set provided by OC-
CCI.

Results from the OC-CCI based validation are generally
consistent with the observations made by Stramski et al. (2008).
The in situ data used by Stramski (Stramski et al., 2008) were
limited to the south eastern Pacific and eastern Atlantic Oceans
and covered a POC range of 12—270 mg m−3, whilst the range
for the data used here cover a broader range (2.7–8,097 mg
m−3). The waters sampled by Stramski et al. (2008) ranged
from upwelling to oligotrophic, with significant contributions
of mineral particle matter to the particle assemblage at some
stations. Consistent with the results here, Stramski et al.
(2008) found that empirical relationships between Rrs and POC
performed better than two-step approaches where an inherent

optical property (IOP) is derived from the Rrs and then related
to the POC. They also indicated relatively better performance
of the Rrs relationship over that derived from bbp, highlighting
the uncertainties in the derivation of bbp as one source of error
in estimation of POC from IOPs. Additionally, the relationships
between POC and IOPs would be expected to vary as a result
of the particle size distribution (PSD), the refractive index
of particles, and the fractional POC concentrations within
different particle types in the assemblage. For example, significant
variations in the POC-specific backscattering coefficient has been
reported for different water bodies of the Southern Ocean (see
Figure 1 in Stramski et al., 1999). Whilst variability in the
POC-specific backscattering introduces uncertainty in total POC
estimates, a better understanding of the relationship between

particle characteristics and IOPs has the potential to provide
further insight into the composition of the POC pool, and

therefore to improve POC algorithms. Hence, it is important to

pursue this line of algorithm development, even if the current
performance of these methods might not be as good as that of

some more empirical approaches. The line of investigation that
accounts for the contributions of different types of POC to their
optical properties is already yielding fruit (Stramski et al., 2008).

The algorithm of Loisel et al. (2002) (Algorithm C) is also
a two-step approach, drawing on the relationship between bp
and POC, via a relationship between bbp and [Chl]. Though

Loisel et al. (2002) did not directly validate their POC estimation

from SeaWiFS data, they found a good match between retrieved
bbp and that measured in situ in a previous study (Loisel et al.,
2001). Loisel et al. (2002) did indicate variability in the bbp:[Chl]

relationship, linked to changes in the particulate pool; they
highlighted the variable influence of small particles consisting

of dead cells, grazers, and minerals. Gardner et al. (2006)
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FIGURE 12 | Covariance between POC and [Chl] extracted from the OC-CCI matchups with the in situ database for (A) in situ POC data, (B) POC estimated using

Stramski et al. (2008) (Rrs), (C) POC estimated using Stramski et al. (2008) (bbp), (D) POC estimated using Loisel et al. (2002), (E) POC estimated using Gardner et al.

(2006), (F) POC estimated using Kostadinov et al. (2016).

(Algorithm D ) also uses a two-step approach, exploiting the
relationship between the beam attenuation coefficient (cp) and
POC. This relationship was shown to be strong, when in situ
POC was compared with transmissometer profiles. Although no
fully-validated algorithm exists for routine derivation of cp from
satellite ocean color measurements, Gardner et al. (2006) showed
in situ cp was strongly correlated with [Chl] (r = 0.845–0.897)
and Kd(490)) (r = 0.846-0.878) derived from SeaWIFS data over
different oceanic regions.

Algorithm E, by Kostadinov et al. (2016), addresses some
sources of variability between optical properties and POC, such
as the influence of the particle size distribution, which was
also identified as being important by Stramski et al. (2008).
The method of Kostadinov et al. (2016) uses spectral values
of bbp to derive a PSD, which is then converted to POC (and
phytoplankton carbon) using allometric relationships. The focus
of the Kostadinov et al. (2016) paper was on phytoplankton
carbon, computed as 1/3 of POC. Relationships between the

phytoplankton carbon estimated from in situ PSDmeasurements
and direct analytical determinations, showed r values between
0.5 and 0.714, depending on the limits of integration of the
PSD, with wider limits resulting in the lower r. As discussed
by Stramski et al. (2008), Kostadinov et al. (2016) also notes
the impact of uncertainties in retrieved backscattering arising
from both measurement and theory. In particular, assumptions
of sphericity and homogeneity used in Mie theory are likely to
be violated in real seawater particle assemblages, particularly for
backscattering and in coastal and more productive areas (which
are included in the database used here). For a more detailed
discussion of the sphericity and homogeneity assumption, see
Kostadinov et al. (2009) and refs. therein. Future work needs
to focus on developing and more widely adopting bio-optical
models that relax the Mie assumptions (e.g., Quirantes and
Bernard, 2004, 2006; Clavano et al., 2007; Matthews and
Bernard, 2013; Robertson Lain et al., 2017). Understanding
of PSD variability, how it relates to backscattering, and how
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FIGURE 13 | Summary of (A) POC to [Chl] relationships including the in situ POC data collated in this study and the extracted OC-CCI [Chl (gray dots)] and the

relationships proposed by Morel (1988) (green line), Stramska and Stramski (2005) (red line), Legendre and Michaud (1999) (blue line), and Sathyendranath et al.

(2009) (pink line), a best fit line for the in situ data vs. the OC-CCI chlorophyll (dashed line), and the estimated POC using Stramski et al. (2008) (cyan dots) are

provided for context, (B) estimated POC from the previously listed approaches, plotted against the Rrs (443) to Rrs(555) to show relationship to this ratio commonly

used in algorithms to derive [Chl].

particle composition affects scattering over broad marine regions
are required to develop further such detailed mechanistic
approaches.

General sources of error associated with any ocean-color
product include differences introduced by choice of sensor,
sensor calibration, and the atmospheric correction procedure
used to retrieve Rrs. In addition to these, a further consideration,
particularly in the cases where algorithms use IOPs, is the
methods used to derive the IOP product from the Rrs data.
The OC-CCI processing uses the Quasi-Analytical Algorithm
(QAA) of Lee et al. (2002) to calculate IOPs, including the bbp
values used in this study. The original study by Kostadinov et al.
(2016) used the method of Loisel and Stramski (2000) to estimate
bbp. Stramski et al. (2008) also used different formulations to
calculate bbp from Rrs, finding a corrected version of QAA
produced a better estimate of bbp, and a strong relationship
with POC (r = 0.933). The effect of the choice of method to
derive bbp on the POC estimates requires further consideration,
which goes beyond the scope of this study, as this IOP is
particularly poorly understood and validated (Lee et al., 2002).
The differences in algorithm performance across the different
water classes indicate that regional variability in performance
of the different algorithms can be expected. This is confirmed
in the mapped regional distribution of uncertainties (Figures 9,
10). These results suggest that algorithms either need to be
selected carefully for applications in different regions, or that
a selection of optimal algorithms may have to be blended for
a global product (as done in Jackson et al., in press). This
point is also raised in Stramski et al. (2008), where different
formulations are provided for global application, and excluding
upwelling data. Uncertainties in the underlying satellite data
may also be responsible for a portion of this variability: for
example, an IOP model may be more or less suitable to derive
backscattering. It should also be noted that there can also
be uncertainties in the in situ data and the validation process

that can affect the assessment of uncertainties in algorithm
performance. Ideally, multiple replicates will be taken to quantify
uncertainties in the in situ measurement, and instruments will
have a well-characterized calibration history, and be processed
with community endorsed methodologies. For POC, the issue
of blank correction was already highlighted in Section 2.1.
Uncertainties resulting from variable methods used for the
in situ data collated for this study may influence the results
presented here, particularly at low POC concentrations. In
terms of comparison to matchups, further uncertainties can be
introduced by comparing values at different scales, i.e., point
measurements may not represent the average over a pixel (in this
case of 4 km in size). These uncertainties will limit the ultimate
accuracy to which any satellite based product can be derived and
validated. However, issues of spatial mismatch are beginning to
be addressed with the use of underway systems (for example,
Brewin et al., 2016).

Despite the difficulties highlighted above, the overall
performance of the algorithms studied here is encouraging.
Percentage error estimates based on the OC-CCI methodology
show how well these algorithms can generate products suitable
for the needs of the scientific community. For example, the
percentage errors associated with the Stramski et al. (2008) Rrs
algorithm applied to OC-CCI data in May 2005 (Figure 11),
show that a majority of pixels fall within an error range that is
widely accepted by the ocean color community for [Chl] (30%;
GCOS, 2011).

4.2. Variability in the Ratio of Particulate
Organic Carbon to Chlorophyll-a
Further perspective on the performance of the different
algorithms can be gained by considering the covariance between
POC and [Chl]. The relationship between the in situ POC data
and satellite [Chl] is shown in Figure 12A, where the color
indicates the associated dominant optical water class. These data
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then forms the background for each of the subsequent panels
of Figure 12, which show the relationship between the POC
estimated by each algorithm, and the satellite [Chl]. Algorithm
A shares a commonality in method with the algorithms used
to derive satellite [Chl], in that the same reflectance ratios
are used to derive POC, and [Chl] (at lower concentrations);
hence it shows a very constrained relationship in this domain
of the parameter space (Figure 12B). Other algorithms capture
the scatter in the POC:[Chl] relationship to a greater or lesser
degree, though offsets can be seen, associated with the behavior
identified in the validation exercise, i.e., overestimation of POC
relative to lower [Chl] in the case of Algorithm B (Figure 12C),
and underestimation of the ratio at low [Chl] using POC from
Algorithm C (Figure 12D—though it should also be noted that
this algorithm is also dependent on [Chl] to derive POC). As
with Algorithm A, Algorithm D shows a relatively constrained
relationship between POC and [Chl]. Algorithm E produces
similar variability between POC and [Chl] as seen in the in situ
data, in terms of shape and scatter of the curve, but the bias of
this algorithm toward lower estimates of satellite derived POC is
clear (Figure 12D).

The ratio of POC to [Chl] is important in the context of the
discussion here for two reasons. Firstly, this ratio is important
in the context of biogeochemical modeling, and the ecological
and physiological processes that influence this ratio. Secondly,
empirical relationships between POC and chlorophyll have been
developed, which can be applied to satellite derived estimates
of [Chl]. As mentioned above, these algorithms are typically
similar to those employing blue:green reflectance ratios (e.g.,
Algorithm A from Stramski et al., 2008), and as such were
not initially considered in the algorithm intercomparison here.
Figure 13A shows a number of these empirical relationships,
against a background of the same in situ POC and [Chl] data
as shown in Figure 12. Figure 13B shows POC estimated using
these [Chl]-based algorithms on OC-CCI [Chl] as a function of
the blue-green Rrs reflectance ratio. The same reflectance ratio is
employed by Stramski et al. (2008) to derive POC, and is also used
in a number of empirical [Chl] algorithms. A linear regression of
the in situ POC concentrations, against the satellite derived [Chl],
results in an r2 value of 0.70. Using the various relationships
shown in Figure 13A to estimate POC based on the satellite
[Chl] returns r2 values between 0.63 and 0.69, lower than those
returned for all the other algorithms assessed. The [Chl] based
approaches show in Figure 13 produce RMSD values (between
0.27 and 0.47) and bias (between −0.03 and 0.117) in the same
range as the other algorithms.

Even though to first order Chl and POC are positively
correlated in the global ocean, a residual scatter in the
relationship remains (e.g., in satellite observations—Figure 12A,
and in situ observations as well—e.g., Kostadinov et al., 2012).
Ideally, a POC algorithm should be able to retrieve POC
independently of [Chl] and capture the variable POC/[Chl] ratio
correctly. Note that this ratio can vary due to both variability
in the fraction of living phytoplankton carbon in the total
POC pool, due to the physiology and photoacclimation of the
phytoplankton component of POC (Geider, 1987; Geider et al.,
1998; Behrenfeld et al., 2005), and species specific differences

among phytoplankton themselves (Stramski, 1999). Therefore,
independent knowledge of total POC, living phytoplankton
carbon, and [Chl a] should be the goal of future bio-optical
algorithm development.

4.3. Estimates of Total Pools of Carbon
The OC-CCI archive can be used to estimate total pools of
POC in the mixed layer, taking into account interannual and
regional variability, which is well captured by this merged
dataset. Algorithms A-D were applied to the monthly OC-CCI
version 2 data, and the values integrated over the mixed-layer
depth (derived from MIMOC, Schmidtko et al., 2013), assuming
homogeneity over the mixed layer. These were then averaged
over all the months and for all the years of the OC-CCI version
2 (1998-2012) to provide estimates of the average standing pool
of POC as follows: Algorithm A: 0.86 Pg C, Algorithm B: 1.3
Pg C, Algorithm C: 0.87 Pg C, Algorithm D: 0.77 Pg C. These
are larger than the estimate of Gardner et al. (2006) and smaller
than the estimate of Stramska (2009). Comparison of these
estimates with those of phytoplankton carbon pools estimated in
a parallel study (Martinez-Vicente et al., in review), indicates that
phytoplankton carbon represents between 17 and 48% of the total
POC pool. Whilst this ratio shows considerable variability, the
often assumed value of 1/3 for phytoplankton carbon:POC falls
within this range. High levels of variability in the phytoplankton
carbon to POC ratio were also observed in situ by Graff et al.
(2015). Satellite based estimates calculated by Kostadinov et al.
(2016) (using a different set of mixed layer depth values) suggest
a phytoplankton carbon standing stock of around 0.24 Pg C,
implying a corresponding POC stock of around 0.72 Pg C when
using the 1/3 assumption. Kostadinov et al. (2016) showed the
estimated phytoplankton standing stock to be similar to estimates
derived from the application of both the Stramski et al. (2008) bbp
based algorithm, combined again with a 1/3 assumption and the
method of Behrenfeld et al. (2005) to SeaWIFS data, and tomodel
estimates from the Coupled Model Intercomparison Project 5
(CMIP5). The estimate of phytoplankton carbon standing stock
from Kostadinov et al. (2016) is similar to that estimated by other
size class based approaches, such as that of Roy et al. (2017)
which used size classes derived from absorption to estimate a
total phytoplankton carbon stock of 0.26 Pg C. Though the global
estimates of POC from the different approaches assessed here are
quite similar to each other, the differences are more pronounced
at smaller scales, as can be seen in Figure 8F.

5. CONCLUSIONS

A variety of POC algorithms were applied to matchup pixels
extracted from the satellite OC-CCI ocean color data, and
validated against in situ data. The database used here represents
the largest collection of in situ POC data available, to the author’s
knowledge. The five algorithms showed strong predictive
capacity for estimating POC, with Algorithm A (based on
Rrs—Stramski et al., 2008) and C (based on Loisel et al., 2002)
performing well across the broad range of the in situ dataset.
Algorithms A and C performed consistently across different
water types as defined in the OC-CCI data. From the water class
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based validation, errors can be estimated per pixel. For Algorithm
A and C, the errors were mostly within the range requested by
the user community. These results suggest a maturity in POC
algorithms and their suitability for production of long term time
series for climate related studies. However, several key points
of development are highlighted from the inter comparison
of the different algorithms and the various studies reviewed
here. Greater knowledge of the composition of the particulate
pool, and how it affects the IOPs of the oceans, may allow
increased accuracy of POC algorithms (within the constraints
of the sensitivities of current satellite ocean color radiometry),
as well as providing further information on different types of
particles, many of which play important roles in water quality
and ocean biogeochemistry. To support this aim, further in situ
data should be collected, including additional measurements
to provide detail on phytoplankton community size structure,
physiology, and photoacclimation. Further, it is recommended
that future work seeks to use consistent methodology for blank
correction of POC measurements, and clarify any trends in the
low POC region which may be influenced by these uncertainties.
Further understanding of the sources of variability between
POC and optical parameters can then be incorporated in
to future, semi-analytical algorithms. New understanding
of these relationships may also inform future sensor
development (e.g., hyperspectral sensors) and optical modeling
techniques.
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In the present study we investigate the bio-geo-optical boundaries for the possibility

to identify dominant phytoplankton groups from hyperspectral ocean color data. A

large dataset of simulated remote sensing reflectance spectra, Rrs(λ), was used. The

simulation was based on measured inherent optical properties of natural water and

measurements of five phytoplankton light absorption spectra representing five major

phytoplankton spectral groups. These simulated data, named as C2X data, contain more

than 105 different water cases, including cases typical for clearest natural waters as well

as for extreme absorbing and extreme scattering waters. For the simulation the used

concentrations of chlorophyll a (representing phytoplankton abundance), Chl, are ranging

from 0 to 200mg m−3, concentrations of non-algal particles, NAP, from 0 to 1,500 g

m−3, and absorption coefficients of chromophoric dissolved organic matter (CDOM) at

440 nm from 0 to 20 m−1. A second, independent, smaller dataset of simulated Rrs(λ)

used light absorption spectra of 128 cultures from six phytoplankton taxonomic groups to

represent natural variability. Spectra of this test dataset are compared with spectra from

the C2X data in order to evaluate to which extent the five spectral groups can be correctly

identified as dominant under different optical conditions. The results showed that the

identification accuracy is highly subject to the water optical conditions, i.e., contribution

of and covariance in Chl, NAP, and CDOM. The identification in the simulated data is

generally effective, except for waters with very low contribution by phytoplankton and for

waters dominated by NAP, whereas contribution by CDOM plays only a minor role. To

verify the applicability of the presented approach for natural waters, a test using in situ

Rrs(λ) dataset collected during a cyanobacterial bloom in Lake Taihu (China) is carried

out and the approach predicts blue cyanobacteria to be dominant. This fits well with

observation of the blue cyanobacteria Microcystis sp. in the lake. This study provides

an efficient approach, which can be promisingly applied to hyperspectral sensors, for

identifying dominant phytoplankton spectral groups purely based on Rrs(λ) spectra.

Keywords: ocean color, remote sensing, phytoplankton spectral groups, light absorption, extreme case-2 waters
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INTRODUCTION

Phytoplankton play a fundamentally key role in oceans, seas, and
freshwater basin ecosystems, as well as in related biogeochemical
cycles. Phytoplankton communities are characterized by large
taxonomic diversity that strongly determines their role in the
ecosystem and their biogeochemical functioning (Uitz et al.,
2015). The aquatic environment, whether inland, coastal, or
open-ocean waters, is rarely comprised of a single algal class
(IOCCG, 2014). Different phytoplankton groups adapt to
environmental conditions such as high or low light, temperature,
nutrient availability, and turbulence level (Aiken et al., 2008).
Specific phytoplankton groups are characterized by some specific
pigments—biomarkers—and can, thus, be identified from
pigment inventories derived from in situ samples (Alvain et al.,
2005). Recently, different bio-optical and ecological models have
been developed for identifying phytoplankton functional types
(PFTs), phytoplankton taxonomic composition, and specific
phytoplankton species (e.g., Craig et al., 2006; Astoreca et al.,
2009) by means of light absorption spectra, spectral response
based on reflectance anomalies, backscatter-based derivation
of the particle size distribution, phytoplankton abundance, or
through look-up table of Rrs(λ) that incorporates the range of
absorption and scattering variability (e.g., Ciotti and Bricaud,
2006; Alvain et al., 2008, 2012; Hirata et al., 2008; Bracher
et al., 2009; Kostadinov et al., 2009; Mouw and Yoder, 2010;
Brewin et al., 2015; Lorenzoni et al., 2015). Two recent review
articles provide an overview of the different methodological
approaches, remote sensing algorithms, and a gap analysis for
obtaining phytoplankton diversity from ocean color (Bracher
et al., 2017; Mouw et al., 2017). One technical requirement
for better phytoplankton identification comprises the utilization
of hyperspectral ocean color data over the full visible range
between 400 and 700 nm. A limited traceability of uncertainties in
connection with phytoplankton group information for all water
types has been identified as a current gap of knowledge (Bracher
et al., 2017).

With recent advances in optical measurements and future
improvements in satellite sensors, approaches of phytoplankton
group discrimination have been proposed based on various
types of data from in situ measurements, model simulations
and satellite sensors (Hunter et al., 2008; Lubac et al., 2008;
Nair et al., 2008; Taylor et al., 2011; Isada et al., 2015). The
rapid development of hyperspectral sensors allows providing
more comprehensive remote sensing data of water reflectance
spectral properties, attributable to the full range of visible light,
i.e., to more wavebands, and higher spectral resolution. The
increasing quantity of hyperspectral satellite missions, from
existing Hyperion (Folkman et al., 2001), CHRIS (Barnsley
et al., 2004), and HICO (Corson et al., 2008) (terminated in
2014) to the expected missions such as EnMAP (Foerster et al.,
2015), PRISMA (Meini et al., 2015), HyspIRI (Lee et al., 2015),
HYPXIM (Michel et al., 2011), and PACE (Gregg and Rousseaux,
2017), has and will provide much potential for applications
of hyperspectral satellite data in aquatic ecosystems (Guanter
et al., 2015; Xi et al., 2015). Band placement for improving PFTs
retrieval from remote sensing data was investigated by analyzing

dominant spectral features in the absorption spectra of the
PFTs determined with different methods, with recommendations
of using continuous hyperspectral data as they will provide
better results (Wolanin et al., 2016). Attempts on hyperspectral
identification and differentiation of phytoplankton taxonomic
groups have been carried out with various approaches (e.g.,
Bracher et al., 2009; Torrecilla et al., 2011; Sadeghi et al., 2012;
Uitz et al., 2015; Xi et al., 2015; Kim et al., 2016). Progresses
achieved so far have not only provided recommendations on
the directions into which more effort need to be put, but
also suggested the constraints and difficulties lying in these
approaches. Our previous study has shown that identification of
phytoplankton taxonomic groups is successful when using light
absorption spectra, but the identification performance varies in
different water types when using remote sensing reflectance,
Rrs(λ), as variability in water optical components changes Rrs(λ)
spectra significantly, both in magnitude and spectral shape
(Xi et al., 2015). Light absorption spectra of phytoplanktonic
algae are determined by pigment composition and pigment
cell concentrations, both can alter e.g., with light condition
during growth (photoacclimation). Modeling and identification
approaches that are based on phytoplankton absorption features
also need to take these intra-taxa and intra-species variability
into account, but are due to computer performance issues usually
based on just a few single spectra representing a taxonomic or
spectral group.

Given that a commonly used parameter obtained directly from
hyperspectral Earth observation sensors is the remote sensing
reflectance of the water surface, we focused on phytoplankton
identification using Rrs(λ) only. In a former study (Xi et al.,
2015) we have also shown that absorption features of pure
water in Rrs(λ) affect the identification performance when
phytoplankton concentration is low. In the present study,
based on five standard absorption spectra representing five
phytoplankton spectral groups, an extensive dataset including
105 Rrs(λ) spectra was simulated using HydroLight with various
water optical conditions. This simulated dataset is part of a
database compiled within the ESA SEOM C2X project (C2X,
2015). An identification approach is proposed to determine
phytoplankton groups with the use of the C2X database. The
objectives of this study are (i) to test the skill of the identification,
(ii) to investigate how and to what extend other water optical
constituents impact the accuracy of this identification, and (iii)
to show the applicability of this approach in natural waters using
in situ data.

DATA AND METHODS

Absorption Data
In order to obtain spectral absorption coefficient of different
phytoplankton groups, 128 cultures of various algal species
from six major phytoplankton taxonomic groups were
prepared. Cultures had been prepared from 68 different
species, these included 19 diatom species [Heterokontophyta
(Bacillariophyceae)], 13 species of dinophytes [Dinophyta
(Dinophyceae)], four species of prymnesiophytes [Haptophyta
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(Prymnesiophyceae)], three species of cryptophytes [Cryptophyta
(Cryptophyceae)], 23 species of chlorophytes [Chlorophyta
(Chlorophyceae, Picocystophyceae, and Trebouxiophyceae)],
and six species of cyanobacteria (Cyanophyceae). Culture
preparation, growth and light conditions are detailed in Xi
et al. (2015) and included different light conditions for each
species to introduce some spectral variability for each species.
The absorption coefficient spectrum of each culture, aph(λ)

(m−1), was measured with a Point-Source Integration-Cavity
Absorption Meter (PSICAM) following the procedures outlined
in Röttgers et al. (2007). All measurements were done at least in
triplicate against pure water as the reference. The PSICAM offers
accurate determinations of the absorption coefficient without
errors induced by light scattered on the algal cells. aph(λ) spectra
were measured and area-normalized in the full spectral range of
photosynthetically active radiation, i.e., 400–700 nm (Xi et al.,
2015).

Datasets of Simulated Remote Sensing
Reflectance
In-water radiative transfer simulations have been carried
out using HydroLight (version 5.2; Sequoia Scientific, Inc.,
USA; Mobley, 1994). The numerical model computes radiance
distributions and other related quantities such as remote sensing
reflectance, Rrs(λ), for any given water body. Optical properties

of the homogeneous water body are varied in a controlled light
environment, i.e., clear maritime atmosphere, moderate wind,
and the sun is at its zenith. Two datasets of Rrs(λ) were modeled
using HydroLight’s “Case-2” model, assuming the same external
conditions but differ in the number of representative spectra
for the phytoplankton spectral groups. Thus, they have some
similarities but are quasi-independent. The so-called C2X dataset
(from ESA’s Case-2 Extreme Water Project) that is based on
five phytoplankton absorption spectra representing five spectral
(taxonomic) groups is used as the standard database and the
second one, which comprises optical situations based on 128
phytoplankton absorption spectra from cultures, is for testing;
detailed descriptions of the datasets are provided in Hieronymi
et al. (2017) and Xi et al. (2015), respectively (the test dataset
used here contains more different CDOM absorption and non-
algal particles, NAP, concentrations than in the previous study of
Xi et al., 2015). Basic information about the HydroLight input for
the two datasets is provided in Table 1.

The main feature of the C2X database is that it covers most
water types, from clearest oceanic Case-1 waters to CDOM-
dominated (extreme absorbing) and sediment-dominated
(extreme scattering) Case-2 waters. For example, the total
(organic and inorganic) particulate backscattering coefficient
at 510 nm, bbp(510), varies between 0.0007 and 15.4m−1 and
the combined absorption coefficient of detritus and gelbstoff
at 412 nm, adg(412), is between 0.004 and 120.2 m−1. On the

TABLE 1 | Specifications of the two used Rrs (λ) datasets, C2X database and test data, both simulated with the “Case-2” model of HydroLight (with references in Mobley

and Sundman, 2013).

Description Notation Unit C2X database Test data

Number of Rrs spectra N [−] 100,000 15,360

Wavelengths λ [nm] 380: 2.5: 1,100 400: 2.5: 700

Water Pure water absorption and scattering coefficients aw, bw [m−1] data from WOPP v2 by Röttgers et al. (2016)

Water temperature T [◦C] [0 30] 10

Water salinity S [PSU] [0 35] 30

Chlorophyll-bearing

particles

Chlorophyll-a (Chl) concentration [Chl] [mg m−3] [0.02 200] 0.1, 0.3, 0.5, 1, 5, 10, 50,

100

Number of chlorophyll-specific absorption

coefficient spectra, aph
* [ m2 mg−1]

5 (as mixtures of two of these 5

spectra with 80 and 20%)

128

Scattering coefficient by Chl bph [m−1] Standard power law

Scattering phase function βph [sr−1] Fourier-Forand with specified

backscatter fraction

Petzold phase function for

“average particle”

Particle backscatter fraction of phase functions Bph [−] [0.002 0.022] 0.018

CDOM Absorption coefficient of colored dissolved organic

matter at 440 nm

aCDOM(440) [m−1] [0 20] 0, 0.05, 0.1, 0.5, 1, 2

Slope of CDOM absorption between 300 and 440

nm

SCDOM [nm−1] [0.0004 0.032] 0.014

Non-algal particles Concentration of non-algal particles (minerals) [NAP] [g m−3] [0 1,500] 0, 0.5, 1, 5, 10, 50

Mass-specific NAP absorption coefficient at 440

nm

aNAP
*(440) [m2 g−1] 0.0615 (from average of in situ

spectra)

0.051 (from one in situ
spectrum)

Mass-specific NAP scattering coefficient at 440 nm bNAP
*(440) [m2 g−1] [0.273 1.093] 0.8902 (standard average)

NAP scattering phase function βNAP [sr−1] Fourier-Forand with specified

backscatter fraction

Petzold phase function for

“average particle”

NAP backscatter fraction of phase functions BNAP [−] [0.001 0.035] 0.018

Two values in square brackets refer to a range.
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basis of the Xi et al. (2015) study, five fundamental spectral
shapes of chlorophyll-specific absorption were selected. The five
absorption spectra (of different species of algae) are supposed to
have the highest potential for identification of these five different
spectral groups from a remote sensing reflectance spectrum.
These normalized spectra are shown in Figure 1A and stand for:
(1) a “brown spectral group” representing Heterokontophyta,
Dinophyta, and Haptophyta, (2) a “green spectral group”
representing Chlorophyta, (3) a group for Cryptophyta, (4) a
blue-green cyanobacteria, and (5) a red cyanobacteria. The first
four spectra are absorption spectra from single cultures that are
close to the mathematical mean for all spectra of cultures from
this group (from the 128 measured culture absorption spectra).
As an example, the absorption spectrum for the “brown spectral
group” was chosen from all the cultures in the brown group
in Figure 1B. These culture-spectra are realistic as very similar
spectra can be found in the HZG in situ database (unpublished
data). The spectrum of the red cyanobacteria was obtained
from field measurements in the Baltic Sea during a bloom of
cyanobacteria (most likely Nodularia sp.). Culture spectra (e.g.,
a red Synechococcus sp.) of this type mostly exhibit much higher
phycobilin-related absorption peaks around 570 nm. In order
to account for natural variability in the simulation for the C2X
database, the actually used aph

∗(λ) spectra are always mixtures

from two of the five groups with individual contributions of

80 and 20%, respectively. The total phytoplankton absorption,

aph, is related to the spectral chlorophyll-specific absorption and

chlorophyll a concentration (denoted as [Chl] hereafter), aph (λ)

= aph
∗ (λ) × [Chl]. The natural variability of phytoplankton

absorption is very high (e.g., Bricaud et al., 2004); and the
full range of observed natural variability is included in the

simulations (Figure 2). Basis for estimating distributions, ranges,

and covariances of optical properties and concentrations are

several in situ datasets (e.g., Valente et al., 2016), but mainly

our HZG in situ data from the North and Baltic Sea. The

simulated data have been compared with in situ observations,
e.g., bbp(510) and adg(412) vs. different reflectance band ratios

(Hieronymi et al., 2016), and we generally found a good
agreement. But we have also found some discrepancies partly
related to plausible measuring uncertainties and possibly due to
model simplifications. In this context, it should be mentioned
that the model assumptions for spectral scattering properties
are identical for all five phytoplankton groups, i.e., the particle
backscatter fraction depends on chlorophyll a concentration
(Twardowski et al., 2001), but not on algae-specific (back-)
scattering properties.

For the HydroLight simulations, the considered Rrs(λ) is fully
normalized, i.e., the sun is at zenith and the viewing angle is
perpendicular; the water is infinitely deep; inelastic scattering,
i.e., Raman scattering and Chl and CDOM fluorescence,
are taken into account. Nonetheless, how inelastic scattering
processes and their natural variability influence the results is

FIGURE 2 | Phytoplankton absorption coefficient at 440 nm, aph(440), vs.
chlorophyll a concentration [Chl] used in simulations for the C2X database.

The trend line is also shown in comparison to that by Bricaud et al. (2004).

FIGURE 1 | (A) Five area-normalized absorption spectra of phytoplankton used in Rrs(λ) simulation for the C2X database, and (B) corresponding spectra of cultures

representing the “brown spectral group.”
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out of scope of this work. Ultimately, the C2X database built
with HydroLight simulations includes in total 1 × 105 Rrs(λ)
spectra with five phytoplankton groups with various water optical
conditions; while the test dataset includes 15,360 Rrs(λ) spectra,
for 120 different water conditions ([Chl] varys from 0.1 to
100mg m−3, [NAP] from 0 to 50 g m−3, and CDOM from 0
to 2 m−1) with 128 phytoplankton absorption spectra (Table 1).
The corresponding concentration values were listed in Table 1,
and rational of the water condition settings was described and
discussed in Xi et al. (2015) where this dataset was firstly used.

Phytoplankton Group Identification
The general scheme of the identification approach is illustrated
in Figure 3. At first, all Rrs(λ) spectra are area-normalized
and then second-order derivative is calculated. Details on the
normalization and derivative transformation are described in
Xi et al. (2015). To identify the corresponding phytoplankton
groups in a test data set, each Rrs(λ) spectrum in the test data set
is compared to all spectra in the C2X database using the similarity
index (SI) as an angular distance (Millie et al., 1997):

SI = 1−
2

π
× arccos

(

x1 · x2

|x1| |x2|

)

(1)

where x1 is a second-derivative spectrum of Rrs(λ) in the C2X
database, and x2 is one in the test dataset. The SI is a number
between 0 and 1, where 0 indicates no similarity and 1 indicates
perfect similarity between the two spectra. It is noteworthy that
only the second-derivative spectra of Rrs(λ) in the range of 420–
620 nm was used for SI calculation to minimize the influence of
noises at shorter wavelengths, where reflectance is often low, and

FIGURE 3 | Flowchart showing the approach for dominant phytoplankton

group identification.

that of strong water absorption features at longer wavelengths (Xi
et al., 2015).

This approach produces 105 SI values for each spectrum of the
test dataset. The first 20 spectra in the C2X database providing
highest SI values for each test spectrum are selected and their
corresponding known phytoplankton spectral group is recorded.
The group that is dominant in these 20 spectra is taken as the
identified spectral group for this test spectrum. For each test
spectrum one of the five spectral groups is identified as being
dominant. Each taxonomic group in the test data is represented
by five to 48 Rrs(λ) spectra (from 5 to 48 different cultures), and
all taxonomic groups are categorized into five spectral groups,
the spectral group identification accuracy is thus determined
by calculating the percentage of the correctly identified Rrs(λ)
spectra in each spectral group. In the end, given that there are
120 water optical conditions in the test data, 120 values for the
identification accuracy of each group are calculated.

In situ Rrs(λ) Data of Lake Taihu
An investigation campaign was carried out from 5th to 17th
October 2008 in Lake Taihu (China). A set of in situ Rrs(λ) spectra
was obtained by measuring the water-leaving radiances and sky
radiances with a dual channel spectrometer, ASD FieldSpec Pro
Dual VNIR (FieldSpec 931, ASD Inc., USA), following NASA
ocean optics protocols (Mueller et al., 2003). When performing
the measurements, the viewing angels of the two channels from
the water surface at the zenith angle and the azimuth angle
were 40◦ and 135◦, respectively. Radiances of a 25 cm by 25
cm plaque with 25% reflectivity, water and sky radiances (each
preceded by a dark offset reading) were measured and repeated
five times. The measurements were performed at a location that
minimized shading, reflections from superstructure, ship’s wake,
foam patches, and whitecaps. Moreover, the location was also
pointed away from the sun to reduce the sunglint effect. Upon the
upward radiance (Lu), sky radiance (Lsky), gray plaque radiance
(Lplaq), and the water-air interface reflectivity determined based
on the lake state at that time, Rrs(λ) were calculated referring
to the method proposed by Mobley (1999). Details of the
approaches for radiance measurements and Rrs(λ) calculation
are illustrated in Ma et al. (2006). Water samples were taken
simultaneously with the spectrometer for lab measurements of
Chl, NAP, and CDOM concentrations. Absorption spectra by
the total particles and the NAP were determined by quantitative
filter technique (QFT) method (Mitchell, 1990) and aph (λ)
was obtained by subtracting aNAP(λ) from ap(λ). aCDOM(λ)
was also measured spectrophotometrically in a 10 cm cuvette
using 0.7 mm Whatman GF/F-filtered water sample pads by the
same UV-2401 spectrophotometer. More details on the above
determinations are described in Xi (2011).

As one of the biggest freshwater lakes in China, Lake Taihu
covers an area of 2427.8 km2 with highly varying water quality
from area to area. Water types in Lake Taihu are mainly classified
into two categories: optically deep waters (ODWs) and optically
shallow waters (OSWs) (Xi, 2011). ODWs cover most area of the
lake with highly eutrophicated and turbid waters and frequent
occurrence of cyanobacteria blooms, while the southeastern area
is mostly OSWs with clear waters and abundant aquatic plants.
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Data used here are from ODWs only, as Rrs(λ) from OSWs has
much influence from the submerged aquatic plants and the lake
bottom and are thus not suitable for use in this study. Due to the
large area of the lake, water optical conditions in ODWs are also
diverse. Variations of the water components are known: [Chl]
varied from 4.0 to 180mg m−3, [NAP] from 9.5 to 95 g m−3 and
CDOM from 0.4 to 1.7 m−1. For the present study, Rrs(λ) spectra
together with other optical parameters for 66 stations in ODWs
are obtained. This additional “Taihu dataset” is used to test the
applicability of the presented approach in natural waters.

RESULTS

Spectral Analysis of C2X Reflectances
The C2X database contains simulated Rrs(λ) spectra that
included as model input a standard absorption spectrum for
each of five different phytoplankton spectral groups. These
Rrs(λ) spectra show different spectral features reflecting various
water optical conditions. Prior to utilizing the C2X data in
the identification approach, Rrs(λ) spectra in the database are
firstly normalized and transformed to the second derivative
spectra. To have an general understanding on the C2X database,
representative Rrs(λ) spectra of the five phytoplankton groups
and their second derivatives are selected for a few water cases.
For each water case, five Rrs(λ) spectra with similar water
optical conditions representing the five phytoplankton groups
are chosen. Figure 4 shows examples of Rrs(λ) spectra and their
second derivative spectra, for different phytoplankton groups in
five water cases. The five water cases are however not exhaustive.
According to Hieronymi et al. (2017), 13 different water optical
classes in total are classified by a fuzzy logic classification
approach, but they are not completely included here as this
study is not focusing on water type interpretation. Only examples
of five water cases are chosen to show spectral variations in
different scenarios. These five water cases possess the following
conditions:

(1) low [Chl], low [NAP], and low CDOM (Figure 4A–C);
(2) low [Chl], low [NAP], and moderate CDOM (Figure 4D–F);
(3) low [Chl], moderate [NAP], and moderate CDOM

(Figure 4G–I);
(4) high [Chl], moderate [NAP], and moderate CDOM

(Figure 4J–L); and
(5) moderate [Chl], extremely high [NAP], and moderate

CDOM (Figure 4M–O).

The corresponding water optical conditions of the five water
cases and the variation of water optical components are listed in
Table 2. Note that the ranges of “low,” “moderate,” and “high”
concentrations are a bit varying from case to case which may
cause slight difference in the spectral magnitude as well as the
chlorophyll fluorescence. Water case (1) represents clear Case-
1 waters (Figure 4A) where phytoplankton, CDOM and pure
water are the main contributors to the Rrs(λ); phytoplankton
absorption contributes to the suppression at 440 nm and the
reflectance in the blue spectral region is high; low scattering and
the high absorption by water at red and near infrared wavelengths
results in low reflectance in this region. In absorbing waters

such as water case (2) where CDOM is moderate but other
concentrations are low (Figure 4D), reflectance is lower in the
blue band suggests a strong CDOM absorption, and the peak
at about 682 nm is due to the fact that Chl fluorescence was
included in the simulations. In scattering dominated waters as
water case (3) (Figure 4G), NAP are the dominating component;
the reflectance is high in the whole visible region and the
maximum is shifted to longer wavelength with the increase of
NAP concentrations; peaks and troughs attributable to pigment
absorption are suppressed. In high [Chl] waters as water case
(4), the contribution by different phytoplankton pigments in
the Rrs(λ) spectra is clearly seen (Figure 4J), suggesting that
it is relatively easy to identify phytoplankton groups in such
waters. Scattering by NAP results in higher reflectance at
longer wavelengths (>550 nm), therefore when sediment load
is extremely high, as shown in Figure 4M, the reflectance
shows an increasing pattern with wavelengths in the visible
region. In NAP-dominated waters, little spectral difference
can be observed among the different phytoplankton groups
(Figure 4N); absorption and scattering by sediments mask the
algae pigment features. This masking effect is a generally known
limitation and uncertainty source for remote sensing of biomass
in turbid Case-2 waters (e.g., IOCCG, 2000).

Though phytoplankton groups exhibit distinct spectral
features in some water cases, the corresponding second derivative
spectra of Rrs(λ) in Figure 4 (third column) show much
variation in different water cases even for the same dominating
phytoplankton group, due to the different contribution of
other water optical constituents to the reflectance spectra. This
indicates a possible difficulty in identifying phytoplankton groups
for highly variable natural waters, by only inter-comparing the
reflectance spectra without references. Given that, our theoretical
basis is the C2X database that in the following is used as a look-
up table (LUT) of standard reflectance spectra with information
about the dominating phytoplankton groups, so that any test
spectrum can be spectrally compared to the LUT and a certain
phytoplankton group can be allocated to it. With the use of the
simulated test data, the performance by the LUT identification
approach can be evaluated for various water optical conditions.

Phytoplankton Spectral Group
Identification
In order to investigate how accurate the phytoplankton groups
can be identified under different water optical conditions, Rrs(λ)
spectra of the test data are compared with those in the C2X
database by following the identification approach described
above. Identification accuracy based on the 120 water conditions
is generated for each spectral group via the proposed approach.
The identification accuracy is presented for each spectral group
as a function of the different water conditions using a ternary plot
(Figure 5). Since a triangular diagram displays the proportion
of three variables that sum to a constant, absorption coefficients
by phytoplankton and NAP are used here to represent [Chl]
and [NAP], respectively. CDOM itself is typically represented by
the absorption of CDOM. The sum of these three absorption
coefficients can be normalized to be 1, ignoring the absorption
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FIGURE 4 | Representatives of Rrs(λ) spectra (first column), the corresponding area-normalized Rrs(λ) spectra (second column) and second derivative spectra (third

column) for five phytoplankton spectral groups and different water conditions. (A–C) Low [Chl], [NAP], and CDOM; (D–F) low [Chl] and [NAP], moderate CDOM; (G–I)

low [Chl], moderate [NAP] and CDOM; (J–L) high [Chl], moderate [NAP] and CDOM; and (M–O) moderate [Chl], extremely high [NAP], and moderate CDOM. Note

that the second derivative spectra were only for 420–620 nm, i.e., the spectral range used in the identification approach.

TABLE 2 | Corresponding variations of [Chl], [NAP] and CDOM for Rrs (λ) spectra
in Figure 4.

Figure 4 [Chl] (mg m−3) [NAP] (g m−3) CDOM (m−1)

A–C Low: 0.25–0.27 Low: 0.1–0.2 Low: 0.01–0.015

D–F Low: 0.25–0.3 Low: 0.1–0.2 Moderate: 0.1–0.15

G–I Low: 0.25–0.27 Moderate: 5–8 Moderate: 0.1–0.15

J–L High: 30–60 Moderate: 10–20 Moderate: 0.1–0.2

M–O Moderate: 5–10 Extremely high: 200–400 Moderate: 0.1–0.3

of pure water. Their proportions for all the 120 water conditions
can be well displayed in a ternary plot. [Chl] and [NAP] are
thus transformed to the corresponding absorption coefficients
at 440 nm, aph(440) and aNAP(440), and used together with
aCDOM(440). Four hundred and forty nanometers is chosen as
all components do significantly absorb light at this wavelength,
and contribution by pure water is low. The transformation from
[Chl] to aph(440) is based on the relationship shown in Figure 2:

aph(440) = 0.06 × [Chl]0.728 and aNAP(440) = aNAP
∗(440) ×

[NAP], where the mass-specific NAP absorption at 440 nm,
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FIGURE 5 | Ternary plots showing the identification accuracy of phytoplankton groups (A) Cyanobacteria (red and blue), (B) Chlorophyta (green spectral group), (C)

Cryptophyta (red), and (D) Brown spectral group in different water conditions with respect to fractions of phytoplankton, NAP, and CDOM absorption at 440 nm:

Contour lines indicate the accuracy of identification. Colors of dots indicate Chl concentrations; sizes of dots indicate NAP concentrations.

aNAP
∗(440) = 0.0615 m2 g−1 as shown in Table 1. Different

colors and sizes of the dots are used to represent the actual [Chl]
and [NAP] respectively, as the position in the ternary plot only
shows each relative contribution.

Contour lines of the identification accuracy are plotted
for each spectral group (Figure 5). The contour lines indicate
different distribution of the identification accuracy for the
different groups. However, a main finding in common is that
low identification (50% contour line) for all groups located in
the plot area where [NAP] is high (bigger dots) and [Chl]
(blue dots) is low. However, this is not always true. If taking
a further look on the plots one can see that the identification
accuracy is also dependent on the absorption contribution of each
water components but not only on concentrations. In Figure 5,
for simplification, blue and red cyanobacteria are combined, as
they show distinct spectral features compared to other groups
and their identification results are highly similar. Cyanobacteria

blue and red (combined in Figure 5A) show a relatively distinct
contour pattern: the contour lines are roughly parallel with
low Chl contributions, e.g., the identification rate of 90% is
approximately at aph(440) taking up only 10% of the total non-
water absorption (aph+CDOM+NAP), and the 99% contour line
is between 10 and 20%, meaning that cyanobacteria can be
successfully identified when aph(440) takes up more than 20%
of the total non-water absorption. The approach also performs
well on the green spectral group (Chlorophyta), as Figure 5B

shows that the identification rates falls in 90% only when [Chl]
is extremely low [aph(440) is <5%] and [NAP] is as high as 50 g

m−3, in all other conditions chlorophytes are correctly identified.
The identification contour lines for cryptophytes in Figure 5C

show more variations for different water conditions, due to the
fact that there are only five cultures for Cryptophyta in the
test dataset and one culture showed higher similarity with red
cyanobacteria and is thus misidentified at some water conditions.
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This has lowered 20% of the identification rate. The overall
performance of identifying species of the brown spectral group
show that 90% of the cultures fromHeterokontophyta,Dinophyta,
and Haptophyta are correctly identified as being brown when
aph(440) contributes more than 20% and aNAP(440) contributes
<60% to the total non-water absorption (Figure 5D).

Applicability Test Using Taihu In situ

Dataset
Thoughtheperformanceofusingthesimulatedtestdatasetshowed
satisfactory results at specific water conditions, the ultimate goal
of our approach is to identify phytoplankton groups by using
reflectance spectra of natural waters. A set of in situ Rrs(λ) spectra
of Lake Taihu is taken to perform an additional test on the
applicability of the proposed approach. The second derivative
spectra of in situ Rrs(λ) in 420–620 nm are compared with that
in C2X database to produce highest SIs leading us to find the
corresponding dominating phytoplankton groups. Results show
that only two phytoplankton spectral groups are found, blue
cyanobacteria and Chlorophyta, In the examined 66 stations,
for 52 (80%) the dominating phytoplankton are identified as
cyanobacteria (blue)and14(20%)aschlorophytes.Figure 6 shows
theclassifiedspectraof insituRrs(λ),thecorrespondingnormalized
Rrs(λ) in400–700nm,andthesecondderivativespectra. It isclearly
seen that most spectra identified as Chlorophyta exhibit higher
reflectance in 500–600 nm and lower chlorophyll fluorescence
peaks around 690 nm, indicating higher sediment concentrations
and lower Chl concentrations. On the contrary, spectra that are
identified as cyanobacteria show distinct absorption peaks at
675 nm and more pronounced fluorescence (Figure 6B). Table 3
lists the identification results for Lake Taihu when stations are
selected by different [Chl], showing that the identification rate of
cyanobacteria increases with the increasing minimum [Chl]: 90%
when[Chl]>10mgm−3, 98%when[Chl]>20mgm−3, and100%
when [Chl]> 30mgm−3.

It has been known in the context that [Chl] has an order of
two in magnitude, and water optical conditions highly varied
from station to station in Lake Taihu. The information we had
from the campaign was that in waters where [Chl] was roughly
30mg m−3 or higher, cyanobacteria aggregated obviously and
were the dominating group. Whereas, lower [Chl] waters could
either be green algae or cyanobacteria dominated according
to the identification. To explore whether the two identified
groups are relating to the absorption contributions of each
water component, proportions of aph(440), aNAP(440), and
aCDOM(440) to the total non-water absorption at 440 nm were
statistically summarized for cyanobacteria identified stations and
green algae identified stations, respectively (Table 4). The overall
[Chl] and contribution of aph(440) at cyanobacteria dominating
stations are higher than that at green algae dominating stations.
Mean aph(440) contribution is 16.1% for cyanobacteria while
only 9.8% for green algae. aNAP(440) contribution shows the
opposite with aph(440), with lower mean value (58.1%) for
cyanobacteria but slightly higher for green algae; no difference
is found in CDOM contribution between the two groups. These
statistical results in Table 4 also reveal that CDOM has little

FIGURE 6 | Phytoplankton-group-classified spectra of (A) in situ Rrs (λ) in Lake

Taihu in 400–700 nm, (B) the corresponding area-normalized Rrs(λ), and (C)

second derivative spectra in 420–620 nm.

TABLE 3 | Phytoplankton groups identification in Lake Taihu with different [Chl]

ranges.

Number of

stations

[Chl] (mg m−3) Identification rate of

cyanobacteria

Identification rate of

chlorophyta

66 (all) 4–180 80% (52 stations) 20% (14 stations)

56 10–180 90% 10%

39 20–180 98% 2%

25 30–180 100% 0

influence in the identification, in agreement with results from
the simulated test dataset. Lower phytoplankton contribution
in green algae dominating stations might suggest that the
identification of green algae is less accurate.
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TABLE 4 | Identified phytoplankton groups with relation to contributions of aph (440), aNAP(440), and aCDOM(440) to the total non-water absorption.

Number of stations [Chl] (mg m−3) % aph(440) % aNAP(440) % aCDOM(440)

Min Max Mean (SD) Min Max Mean (SD) Min Max Mean (SD)

Cyanobacteria 52 8–180 5.5 46.1 16.1 (8.6) 27.9 84.2 58.1 (11.3) 8.6 54.3 27.4 (9.7)

Chlorophyta 14 4–26 5.2 16.5 9.8 (3.1) 53.6 77.0 62.4 (6.1) 14.9 39.5 27.8 (6.2)

DISCUSSION

Simulated C2X Data
Generally, the simulated reflectance spectra in the C2X database
are plausible and fit to in situ measurements. For example,
many lakes have signal-dominating CDOM fractions and exhibit
reflectance spectra as shown in Figure 4D (e.g., Eleveld et al.,
2017) and Figure 4M shows similar spectra as measured in
a turbid estuary (e.g., Knaeps et al., 2012). Nonetheless, the
simulations are based on some spectral assumptions that
may lead to inaccuracy and therefore uncertainties in the
group identification. One simplification regards the scattering
properties of phytoplankton; some natural variability is included
in the simulations, but due to the lack of reliable specific
information, all phytoplankton groups are modeled with the
same scattering assumptions. But due to different particle shapes
and size distribution, it is evident that the spectral scattering
properties vary (e.g., Morel, 1987; Evers-King et al., 2014;
Harmel et al., 2016). Robertson Lain et al. (2017) showed the
potentially considerable influence of different phytoplankton
phase functions on modeled remote sensing reflectance over
the entire visible range. A second point of model uncertainties,
particularly in the range 650–700 nm, regards inelastic scattering
effects such as CDOM and phytoplankton fluorescence; in
nature, the quantum yield efficiency of phytoplankton varies
significantly depending on nutrient- and light-availability and
algae species (e.g., Greene et al., 1994). However, in the
HydroLight simulations, the standard quantum yield efficiency
was used.

Identification Approach and Its Skill
The proposed approach was chosen for phytoplankton group
identification based on the idea of whether we can identify
phytoplankton groups by only knowing Rrs(λ), which is a directly
obtained parameter from satellite sensors. All other inversion
models require information on water inherent optical properties
and the retrieval accuracy can be various (e.g., Werdell et al.,
2014; Wang et al., 2016). In our previous study, we have made a
performance comparison between using Rrs(λ) directly and using
QAA-inverted absorption spectra from Rrs(λ) for phytoplankton
group differentiation (Xi et al., 2015). Results show that the
inverted absorption spectra performed less precise compared
to the Rrs(λ). Due to the retrieval algorithm constraints,
pigment information in the derived absorption spectra might
be lost or distorted as theoretical or empirical relationships
between the IOPs and AOPs are normally used in the retrieval
algorithm. Upon the simulated extensive Rrs(λ) database, a direct
comparison in spectral shapes between the second derivatives of

a test Rrs(λ) spectrum and that of the spectra in the database
is carried out by the current approach, omitting the knowledge
of optical properties as well as the retrieval errors introduced
by inversions. The benefit of this approach would be that we
provide a straightforward way allowing us to know the dominant
phytoplankton group (if it is one of the five) once Rrs(λ) is
obtained from either in situ measurements or hyperspectral
satellite data.

Skill of the proposed approach varies in different water
conditions. Results derived by using the test dataset for
various water optical properties indicated that the identification
accuracy was highly subject to the water optical conditions; the
identification was effective for waters with high phytoplankton
contribution but less effective in NAP dominated waters, whereas
CDOM has little influence even when it is extremely high. It is
not only in agreement with the results by Xi et al. (2015) that
phytoplankton groups differentiation is unsuccessful in waters
with [Chl] lower than 1mg m−3, but also suggested the low
efficiency in high [NAP] waters. However, regarding the optical
boundaries of the successful identifications, it should be clarified
that the accuracy of the identification is not only dependent
on the concentrations of water components but also on the
contribution of absorption by each water component to the
total absorption. That means the identification accuracy can
possibly be high both in case 1 clear waters and in highly
turbid productive (phytoplankton abundant) waters. There are
no clear concentration boundaries. And the optical boundaries
in terms of absorption contribution are nicely shown in the
ternary plots (Figure 5). Regarding this matter, ternary plots
exhibit clearly the contour line distribution of the identification
accuracy for all water optical conditions generated by 120 points
representing 120 water optical conditions. We can roughly wrap
up some general findings from the ternary plots, that are—the
identification accuracy is higher than 90% when the absorption
by phytoplankton is taking up more than 20% and the NAP
contribution is <60% to the total absorption; for the groups of
cyanobacteria and green algae, the identification accuracy is even
higher at the above boundaries.

Though there were only 120 water optical conditions
considered in the test dataset, it included most of the natural
aquatic environment from clear to moderate turbid and
productive waters. The findings have provided us a basic
knowledge that the proposed approach for phytoplankton
group identification performs well except for waters where
phytoplankton contribution to the overall absorption is low
and for NAP dominated waters. Regarding the five spectral
groups included in C2X database, they are not exhaustive but
are chosen to represent natural common groups. In addition,
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due to modeling and computing constraints, the phytoplankton
groups that were taken into account in the simulation have to be
representative and the number of the groups should be as low as
possible to allow extensive simulations. This database is however
adjustable, when absorption features of other phytoplankton
groups (or species with typical features) are important.

Phytoplankton Group Identification in Lake
Taihu
To test the applicability of the proposed approach in natural
waters, in situ remote sensing reflectance data obtained from
Lake Taihu were used. Though lacking the information of
dominant phytoplankton species or pigment analysis for this
campaign in October 2008, previous investigations on the
phytoplankton community and composition in Lake Taihu
can be taken as reference. Chen et al. (2003) revealed that
phytoplankton groups commonly observed in Lake Taihu
are cyanobacteria, Chlorophyta, Bacillariophyta, and flagellates.
A study on phytoplankton community structure succession
in Lake Taihu from 1992 to 2012 by Deng et al. (2014)
showed that Cryptomonas (Cryptophyta) was the dominant
species in spring during the early 1990s. Dominance then
shifted to Ulothrix (Chlorophyta) in 1996 and 1997. However,
Cryptomonas again dominated in 1999, 2000, and 2002,
with Ulothrix regaining dominance from 2003 to 2006. The
bloom-forming cyanobacterial species Microcystis sp., a typical
blue cyanobacteria, dominated in 1995, 2001, and 2007–2012.
Another study revealed thatMicrocystis sp. is themost commonly
seen cyanobacteria species, approximately taking up 85% of
algae biomass and forming algal blooms each summer (Zhu
et al., 2007). More importantly, a year-long investigation
in dominant phytoplankton species from October 2008 to
October 2009 conducted in the lake showed that Microcystis
sp. dominated in October 2008, when our in situ data was
collected, contributing more than 90% of total biovolume
in most area of the lake, coexisted with minor portion of
the cyanobacteria Dolichospermum flos-aquae and the diatom
Cyclotella meneghiniana (Ai et al., 2015). Our identification
results showed good agreement with these investigations, except
that chlorophytes were identified as the dominant group at some
stations when [Chl] was moderate. Comparison in absorption
contributions between cyanobacteria and green algae identified
stations shows that phytoplankton contribute <10% on average
to the total non-water absorption at green algae identified
stations (Table 4), leading to lower identification accuracy
as indicated in Figure 5. It is highly likely that this is a
misinterpretation, as still cyanobacteria were codominant.

The in situ data of Lake Taihu are used as a first example.
Coinciding data of spectral reflectance and information of
phytoplankton taxonomic composition are still quite rare.
However, this first example has given optimistic outcome and the
fact that the approach is applicable in this optically complex lake.
More datasets in different water types are under collection and
processing, with expectations to testify further the identification
approach in more natural waters.

CONCLUSIONS AND OUTLOOK

A database of Rrs(λ) spectra, C2X database, based on five
phytoplankton groups was built using HydroLight simulations
for various water optical conditions. A similarity-index approach
was proposed to identify phytoplankton groups, using remote
sensing reflectance spectra only, by spectrally comparing an input
test spectra with the Rrs(λ) in C2X database. The performance of
the approach was tested using another simulated Rrs(λ) dataset
with 128 spectra of phytoplankton algae from six taxonomic
groups arranged into five spectral groups. For 120 water optical
conditions, the identification was high at most occasions except
for waters with a low phytoplankton contribution and for waters
dominated by NAP. Whereas, the influence of CDOM is less
pronounced and only significant at extremely high level. Though
the proposed approach was based on simulated datasets, its
applicability in natural waters was also tested by using in situ
Rrs(λ) spectra from Lake Taihu, China. Despite of possibly
wrong identification of chlorophytes that could not be validated,
cyanobacteria were successfully identified in Lake Taihu as a
dominating group in high [Chl] waters, proving the applicability
of the approach in natural waters when a single group is
dominating.

The current approach is only capable of identifying spectral
groups that are already presented in the C2X database. However,
the database can be expanded by running the same HydroLight
simulations with different absorption characteristics of other
phytoplankton groups. The following aspects might be worth
to investigate: (1) more validation with in situ data and
measurements; (2) applicability in extreme events such as floating
algae in highly turbid waters; (3) determination on the required
or lowest spectral resolution for a wider use of hyperspectral
Rrs(λ); and (4) examination of using hyperspectral satellite
data in consideration of influences of radiometric, spectral, and
atmospheric effects on Rrs(λ) from the space.
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A widely-used theory of the photoacclimatory response in phytoplankton has, until

now, been solved using a mathematical approximation that puts strong limitations

on its applicability in natural conditions. We report an exact, analytic solution for the

chlorophyll-to-carbon ratio as a function of the dimensionless irradiance (mixed layer

irradiance normalized to the photoadaptation parameter for phytoplankton) that is

applicable over the full range of irradiance occurring in natural conditions. Application

of the exact solution for remote-sensing of phytoplankton carbon at large scales

is illustrated using satellite-derived chlorophyll, surface irradiance data and mean

photosynthesis-irradiance parameters for the season assigned to every pixel on the basis

of ecological provinces. When the exact solution was compared with the approximate

one at the global scale, for a particular month (May 2010), the results differed by at least

15% for about 70% of Northern Hemisphere pixels (analysis was performed during the

northern hemisphere Spring bloom period) and by more than 50% for 24% of Northern

Hemisphere pixels (approximate solution overestimates the carbon-to-chlorophyll ratio

compared with the exact solution). Generally, the divergence between the two solutions

increases with increasing available light, raising the question of the appropriate timescale

for specifying the forcing irradiance in ecosystem models.

Keywords: photoacclimation, phytoplankton, carbon-to-Chlorophyll, photo-physiology, primary production

1. INTRODUCTION

When quantifying the standing stock of marine phytoplankton or its rate of change, various metrics
can be used, depending on the application envisaged. The possibilities include cell count, cell
volume, carbon content, nitrogen content and chlorophyll concentration. Primary production (rate
of production of organic material by phytoplankton through photosynthesis) is typically measured
in carbon units, a convenient measure in studies of the global carbon cycle. It is also a practical
unit in calculations of fluxes of material through the food chain or through the water column.
On the other hand, chlorophyll-a concentration is by far the most commonly-used measure of
phytoplankton abundance. There are many reasons for this choice also, including its principal
role in the photosynthetic apparatus and in primary production; its presence in all types of
phytoplankton, either in its common form or as derivates such as divinyl chlorophyll-a; and the
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ease with which it can be measured at a variety of scales, from
single cells in the laboratory to ocean-basin scales using remote
sensing by satellites.

The carbon-to-chlorophyll ratio, necessary to convert between
these two common measures of phytoplankton biomass, is
a dynamic, and highly-variable property of phytoplankton.
Phytoplankton growing in high-light environments need to
absorb only a small fraction of the available light, and they
adapt to the ambient light field by reducing their pigment quota,
resulting in a high carbon-to-chlorophyll ratio. The opposite is
true in low-light conditions, for example in deep chlorophyll
maxima in the ocean gyres, where chlorophyll concentration
increases relative to the carbon concentration (Cullen, 1982,
2015; Morel and Berthon, 1989). Estimating such changes in
carbon-to-chlorophyll ratio in response to variations in available
light, i.e., due to photo-acclimation, is not a trivial task, but it is
an essential step in many biogeochemical models. As reviewed
by Halsey and Jones (2015), nutrients can also play a role
in carbon-to-chlorophyll variations, although the sign of the
change depends on the nutrient in question, with some nutrients
being utilized for the production of pigments and others for
photosystem reaction centers.

The links between carbon-to-chlorophyll-a ratios,
photosynthesis and photo-acclimation are discussed in the
works of Platt and Jassby (1976) andGeider (1987). Subsequently,
Geider et al. (1996, 1997) developed a mechanistic model of
photo-acclimation that has become commonly used to assign
the chlorophyll:carbon ratio of phytoplankton populations in
ecosystem models (Hickman et al., 2010; Dutkiewicz et al.,
2015; Laufkötter et al., 2015). In a further development,
Geider et al. (1998) dealt with the possible variations in
photosynthetic parameters with nutrients and temperature.
But the approximation used to derive the solution to the
photoacclimation model (Geider et al., 1997) still limits the range
of irradiance levels for which the solution holds. Some authors
have addressed this problem by a numerical solution to the
Geider et al. (1997) model rather than the approximation (e.g., Li
et al., 2010), while others have imposed a numerical upper limit
on the C:Chl ratio (Butenschön et al., 2016) to constrain model
output.

Here, we present an exact solution that dispenses with the
need for an approximation, removes the existing limitation
and is therefore universally applicable. We examine conditions
under which the differences between the approximate solution
and the exact solution become significant, and discuss some of
the implications for implementation of the model to compute
carbon-to-chlorophyll ratios under natural environmental
conditions. We show that, in some instances, the differences
between the exact and approximate solutions depend on the
assumptions in the model regarding the time scales on which
photo-acclimation occurs in phytoplankton.

2. DATA

To demonstrate some applications of the new solution, a variety
of datasets were used, which are described here briefly.

Monthly, climatological Photosynthetically Available
Radiation (PAR) data from SeaWiFS (Frouin et al., 2002) are
used for demonstrating an application of the new solution at
large scales (http://oceancolor.gsfc.nasa.gov/cms/atbd/par). We
used monthly composites to minimize data gaps. Climatological
mixed-layer depth (MLD) was obtained from de Boyer Montégut
et al. (2004) and also re-gridded onto a 9 km grid to match the
input PAR data.

We used mean values of photosynthesis-irradiance
parameters (the assimilation number PBm and the initial
slope αB, where the superscript B indicates normalisation to
biomass B, in chlorophyll units; see Table 1) organized by
season and by ecological provinces (as defined by Longhurst
et al. 1995), from Mélin and Hoepffner (2004), which were
then re-gridded, with a 30 × 30 pixel smoothing filter, to 9 km
resolution to match the PAR data. These parameters can be used
to calculate the chlorophyll-normalized production (PB) at any
value I of photosynthetic irradiance (PAR), in the absence of
photoinhibition, as described by Platt et al. (1980):

PB = PBm

(

1− exp(
−αBI

PBm
)

)

. (1)

The PBm and αB values allow the calculation of the
photoadaptation parameter Ik, defined as PBm/αB. Surface
Chl-a concentration from the Ocean Colour Climate Change
Initiative (OC-CCI) dataset, Version 2.0 (European Space
Agency, available online at http://www.esa-oceancolour-cci.org/)
and the spectral light-transmission model of Sathyendranath and
Platt (1988) were used to compute Kd, the diffuse attenuation
coefficient for photosynthetically-active radiation for the mixed
layer. The daily average irradiance in the mixed layer (Im) was
computed as

Im =
I0

KdZm
(1− exp(−KdZm)), (2)

where I0 is the daily (24 h) average PAR at the sea-surface and Zm
is the mixed-layer depth (Platt et al., 1991; Cloern et al., 1995).

An in-situ bio-optical dataset of particulate organic carbon
(POC), chlorophyll, and photosynthesis-irradiance parameters
(Sathyendranath et al., 2009) was also used in this work. This
dataset lacked information on PAR and MLD, which were filled
in using the climatological data mentioned above.

3. EXACT SOLUTION FOR THE
CHLOROPHYLL-TO-CARBON RATIO (θ ) IN
THE GEIDER ET AL. (1997) MODEL

According to Geider et al. (1997), the chlorophyll-to-carbon
ratio, θ , is a function of irradiance I:

θ2 = θma

(

1− exp

(

−
θ

a

))

, (3)

where (θm) is a prescribed model parameter, corresponding to
the maximum attainable value of θ . The above equation is
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equivalent to equation A12 in Geider et al. (1997), noting that
there is a typographical error in the equation, such that the
denominator of the argument to the exponential term should be
a, and not αBI. For conditions of balanced growth, Geider et al.
(1997) point out that their parameter kchl, which represents the
maximum proportion of photosynthesis that can be directed to
chlorophyll-a synthesis, would be equivalent to the parameter
θm. We have applied the equivalence here, such that the solution
would be valid only for balanced growth. Themodel development
also assumes that the specific respiration rates of carbon and
chlorophyll are either negligible or equal to each other.

We note that a = PCm/(αBI), where PCm is the carbon-specific,
light saturated photosynthesis. By definition, PCm = PBmθ , such
that a = PBmθ/(αBI). Substitution into Equation (3) gives:

θ2 = θma

(

1− exp

(

−
θαBI

PBmθ

))

. (4)

Applying the equivalence Ik = PBm/αB, we get

θ2 = θma

(

1− exp

(

−
I

Ik

))

, (5)

and setting I/Ik = I∗, a dimensionless irradiance, the equation
becomes

θ2 = θm
θ

I∗

(

1− exp (−I∗)
)

. (6)

Solution for θ is obtained by simplifying the equation above:

θ =
θm

I∗

(

1− exp (−I∗)
)

. (7)

The solution expresses θ as a function I∗, such that the
chlorophyll-to-carbon ratio can be calculated explicitly as a
function of the dimensionless scaled irradiance (I∗). Note that
the carbon-to-chlorophyll ratio χ = 1/θ . As I∗ tends to zero, the
exact solution (Equation 7) tends to θm. As I∗ tends to infinity,
the solution tends to zero. However, this limit for high values of
I∗ is approached very slowly, well beyond reasonable values of I∗
that might be expected in the natural environment. The solution
remains well-constrained for plausible values of I∗.

We note that the same solution is obtained when, instead of
substituting PCm = PBmθ , we make the equivalent change of αB =

αC/θ . The key to solution is consistency: both parameters have
to be normalized to the same quantity, carbon or chlorophyll, it
does not matter which. The solution is indifferent to the choice
as (apart from θ) it contains only the dimensionless quantity I∗.
However, ecosystem models are often formulated to use carbon-
normalized PCm as input, along with αB, in which case, Equation 7
becomes (see also Li et al., 2010):

θ = ((θmP
C
m)/(Iα

Bθ))(1− exp((−IαBθ)/PCm)). (8)

In this context, θ can be retrieved from the above equation
iteratively.

It is is also possible to calculate the sensitivity (relative) of θ to
changes (relative) in I∗; and we find

∣

∣

∣

∣

∣

(

dθ

θ

/dI∗

I∗

)

∣

∣

∣

∣

∣

=

(

exp(−I∗)(1+ I∗)− 1
)

(

1− exp(−I∗)
) ≤ 1, (9)

such that the relative error in θ will not be greater than that in I∗.

3.1. The Approximate Solution
Geider et al. (1997) provided an approximate solution for θ using
the first three terms of the Taylor expansion of exp (−θ/a):

θ2 = θma

(

1− 1+
θ

a
−

θ2

2a2

)

. (10)

For comparison with the exact solution (Equation 7), we can
rearrange terms in the approximate solution, such that it is also
expressed as a function of I∗. Following an initial simplification:

θ2 = θma

(

θ

a
−

θ2

2a2

)

; θ = θm

(

1−
θ

2a

)

. (11)

We can then substitute for a = PBmθ/(αBI) to find

θ = θm

(

1−
I∗

2

)

. (12)

Geider et al. (1997) noted that the approximation holds for only
for I∗ < 1. This limitation is overcome by the analytic solution
for θ (Equation 7), which is valid for all values of I∗.

The approximate solution (Equation 12) and the exact
solution (Equation 7) are identical and equal to θm as I∗ tends to
zero. But the approximate solution θ becomes zero when I∗ = 2,
and becomes negative for higher values. Hence the limitation
with using the approximate solution for high values of I∗.

3.2. Effects of Nutrients and Temperature
We see from the exact solution (Equation 7) that θ depends on PBm
through Ik. In the Geider et al. (1998) model, effects of nutrient
limitation and ambient temperature on PBm are accounted for, as
follows:

PCm = PCref
N

N + KN
f (T), (13)

where PC
ref

is the maximum C-specific rate of photosynthesis at a

reference temperature, T is the ambient temperature, f (T) is the
Arrhenius function, N is the nitrate concentration and KN is the
half saturation constant for nitrate uptake.

PBm, defined as PCm × θ , therefore contains implicitly the
effects of temperature and nutrients on photosynthetic rates.
Consequently, Equation 7 accounts for their effects on θ through
PBm. Since P

B
m is more readily measured in the field than PCm, the

new solution facilitates the study of C:Chl ratio in the natural
environment.
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TABLE 1 | Definitions of symbols.

Symbol Definition Units

θ Chlorophyll-a:Carbon ratio dimensionless

θm Maximum Chlorophyll-a:Carbon ratio dimensionless

χ Carbon:Chlorophyll-a ratio dimensionless

B Chlorophyll-a concentration mg Chl-a m−3

Kd Downwelling attenuation coefficient m−1

Zm Mixed layer depth m

Cp Phytoplankton Carbon mg C m−3

POC Particulate Organic Carbon mg C m−3

Im Mean daily irradiance in the mixed layer Wm−2

I0 Mean daily surface irradiance Wm−2

Ik Photoadaptation parameter Wm−2

I* Dimensionless scaled irradiance dimensionless

I Irradiance Wm−2

PBm Assimilation number mgC mgChl−1h−1

αB PI curve initial slope mgC mgChl−1 (Wm−2)−1 h−1

PCm Carbon specific assimilation number mgC mgC−1h−1

RB Respiration loss of Chlorophyll-a d−1

RC Respiration loss of Carbon d−1

µ Growth Rate d−1

ξ Cost of Biosynthesis gC gN−1

4. RESULTS

4.1. Comparison between Exact and
Approximate Solutions
4.1.1. Theoretical Comparison
The approximate solution (Equation 12) and the exact solution
(Equation 7) for 1/θ = χ are shown in Figure 1 for three
values of θm: 0.005, 0.01 and 0.02 (corresponding to carbon-
to-chl ratios of 200, 100, and 50). For low values of I∗ the
exact and approximate solutions are practically indistinguishable
from each other. But as I∗ approaches and exceeds 0.8, the
deviation between them becomes significant. For I∗ close to 2.0
the approximate solution for θ tends to zero and the inverse of θ
(the carbon-to-chlorophyll ratio, χ) tends to infinity, whereas the
exact solution remains stable. Figure 1A shows that the absolute
error is dependent on both θm and I∗. However, the relative
error (Figure 1B) is independent of θm. The approximation
overestimates the carbon-to-chlorophyll ratio by around 15%
when I∗ = 0.8, by 50% at I∗ = 1.235 and by 100% at I∗ = 1.478.

4.1.2. A practical example
To see whether the differences between the exact and
approximate solutions are likely to be significant under
conditions encountered in the natural environment, we made
some calculations at the global scale, using a combination of
satellite and in situ data. The sequence of images in Figure 2

shows the input data fields (daily mean irradiance at the
surface, mixed-layer depth, photoadaptation parameter Ik and
chlorophyll-a concentration) and resultant daily mean irradiance
in the mixed layer (Im) and I∗ for May 2010, where in this

instance I∗ = Im/Ik. Of the valid ocean pixels in Figure 2F),
70.3% in the Northern hemisphere (which at the time would
be the hemisphere of greater phytoplankton growth due to the
spring bloom) have I∗ values greater than 0.8, such that for these
pixels the difference between the approximate and exact solutions
would be greater than 15%. The error in the approximate
solution is greater than 50% in some 24% of the Northern
hemisphere pixels. During November a similar situation occurs
in the Southern hemisphere, with I∗ values greater than 0.8 in
61.5% of pixels (results not shown).

This demonstrates that phytoplankton in the surface oceans
are frequently exposed to conditions in which the difference
between the approximate and exact solution for θ is significant,
and worth accounting for.

4.2. Computation of Phytoplankton Carbon
in the Ocean
In this section, we first impliment the analytic solution using
the in situ bio-optical data to compute phytoplankton carbon
at the observation points. Since it is known that θm varies with
phytoplankton type (Geider et al., 1997), we assigned values of
θm according to phytoplankton size classes. First, based on the
work of Brewin et al. (2010), the chlorophyll-a concentration at
each data point was used to estimate the proportions of the three
phytoplankton size classes (micro-, nano- and pico-plankton)
present in the sample. Next, based on the C:Chl ratios given in
Sathyendranath et al. (2009) for different phytoplankton types
sampled in the natural environment, θm was set to 0.05, 0.02,
0.008 for micro-, nano- and pico-phytoplankton, corresponding
to a minimum C:Chl ratio of 20, 50 and 125 for each size class.
These values are consistent with θm values reported by Geider
et al. (1997) for various phytoplankton species in culture and
also by Li et al. (2010) in the natural marine environment.
The θm for the populations was then computed as a weighted
sum of the three components of the population. As θm dictates
a maximum Chl:C ratio, it also sets a minimum C:Chl ratio.
The photosynthesis-irradiance parameters (PBm and αB) in the
database were then used to compute Ik (in situ) and the daily
average I∗ for the mixed layer, given the daily average Im for the
layer.

For each sample in the in situ dataset taken at a depth
within the climatological mixed-layer depth (410 samples), we
calculated the C:Chl ratio χ using I∗ and θm, and then multiplied
χ by the chlorophyll concentration measured in situ to estimate
total phytoplankton carbon (Cp). Figure 3 shows measured
POC plotted against computed phytoplankton carbon (Cp). The
model imposes no upper limit on the C:Chl ratio. Therefore,
if the model parameters were incorrectly assigned, it could
lead to many Cp values being greater than the measured POC,
which would clearly indicate an overestimation of phytoplankton
carbon, since it should not exceed POC concentration. The
Cp estimated using the analytical solution and estimated θm
exceeds total POC in only 4 of the 410 points. Most of the
Cp:POC ratios lie in the range of ≈10–70% with a mean of
31%, which is consistent with existing in situ measurements
from the Atlantic and Pacific oceans (Martinez-Vicente et al.,
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FIGURE 1 | (A) The divergence of the approximate (gray) and exact (blue) solution estimates of the C:Chl ratio as a function of I*. Solid, dotted and dot-dash lines are

for θm values of 0.005, 0.01, and 0.02 respectively. The exact solution is clearly stable across the full range of I* values, while the approximate solution is not. (B) The

relative difference between the approximate and the exact solutions as a function of I*.

2013; Graff et al., 2015), suggesting that θ values are not
grossly underestimated either. The results using the approximate
solution are significantly higher (I∗ > 0.8 and difference >

15%) in 130 of the 410 in situ measurements. The differences
when using the in situ Ik values were greater than when the
calculations were performed using the province-based average
Ik values, demonstrating that sometimes, the errors from the
approximate solution are reduced when using broadly-averaged
fields of Ik, since averaging eliminates extreme values.

As the calculations yielded plausible values of phytoplankton
carbon when compared with measured POC values, we applied
the method to the I∗ map and the satellite-derived chlorophyll
field shown in Figure 2 to produce global maps of C:Chl
ratio and Cp. The results are compared with the approximate
solution to the Geider et al. (1997) model and with the
method of Sathyendranath et al. (2009) (see Figure 4), which
implemented the equation Cp = 64B0.63, where B is Chlorophyll-
a concentration (see their Figure 1B). As expected, the C:Chl
ratios from the exact solution are lower than those from the
approximate solution, with the largest differences occurring in
regions of high I∗. The corresponding Cp values are also lower
for the exact solution. The distribution of Cp values using the
analytical solution appears more natural than those using the
approximate solution, with fewer artificial boundaries present in
the output fields.

The exact solution forCp is also closer (smaller mean absolute-

difference) than the approximate one to the results from the

empirical approach of Sathyendranath et al. (2009), but some
of the similarities have to be attributed to the use of θm values
from Sathyendranath et al. (2009) in this work. Both the exact
solution and the method of Sathyendranath et al. (2009) show
the anticipated increase in C:Chl ratio toward the subtropical
gyres (associated with the dominance of pico-plankton in these
areas), although the magnitudes differ. Similarly, in both these

examples, the C:Chl ratio decrease toward the Southern Ocean.
The similarities in patterns are encouraging. However, the exact
solution provides a lower range for the C:Chl ratio globally, when
compared with the outputs from the method of Sathyendranath
et al. (2009). This is to be expected as the averaging of Ik
by province and by season removes extreme values, as well as
any small-scale variability that might otherwise be present in a
dynamic assignment of Ik. On the other hand, we recognize that
the method of Sathyendranath et al. (2009) is purely empirical
and was designed to provide something of an upper limit to
the carbon-to-chlorophyll ratio, whereas the Geider et al. (1997)
model has a strong mechanistic basis and is able to account
for the effects of photo-acclimation on θ . Clearly, more work is
required to reconcile the differences between the empirical and
theoretical approaches.

4.3. Application in Marine Ecosystem
Models
In addition to the remote-sensing applications demonstrated
above, the Geider et al. (1997) model is also used extensively
in marine ecosystem models (Laufkötter et al., 2015). But to
estimate the impact that the exact solution might have on
the calculated fields of carbon-to-chlorophyll ratio, we have to
consider the time scales over which light is averaged, before
carbon-to-chlorophyll ratio is computed in the models. For
example, in the European Regional Seas Ecosystem Model
(ERSEM), the instantaneous light field is used to compute θ

at each time step of the model (Butenschön et al., 2016). The
common time step for ERSEM is 15 min. But other models,
such as the “Darwin” model developed at MIT, perform these
calculations at longer time steps (Dutkiewicz et al., 2015). A
model with a 24 h time step might use daily-averaged light fields.
Calculations that use short time-steps would have a greater range
in I∗ values, relative to those that use daily averages.
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FIGURE 2 | Map showing the input data and resulting I* estimates at the global scale during May 2010. (A) SeaWiFS PAR product converted into W m−2 (Morel and

Smith, 1974) and averaged over the day (24 h), (B) MLD climatology (de Boyer Montégut et al., 2004), (C) OC-CCI v2.0 monthly composite of chlorophyll-a,

(D) Biogeochemical-province based Ik (Mélin and Hoepffner, 2004), (E) daily-mean mixed-layer irradiance, and (F) daily-mean mixed-layer dimensionless irradiance.

Values of I* around 0.8 or greater (yellow and warmer colors) will give a significant difference between the approximate and exact solutions for C:Chl.

An example of a calculation of θ done at a 2-h time-step is
shown in Figure 5, where results are plotted for optical depths of
zero (surface) to 4. Note that one optical depth is the depth at
which light is reduced to 1/e of the initial value, and that only
1% of the surface value remains at an optical depth of 4.6. In this
example, we used a fixed Ik value of 50Wattsm−2, and a noon-
time maximum value of I at the surface of 400Wm−2, and set
θm = 0.01. The total daily irradiance was allowed to vary, over
a 12-h day, as described by a sine function. At noon, I∗ values
of 1.0 or greater occur even down to the first optical depth and
the errors in the approximate solution are high in the surface
waters for a large portion of the day. The value of irradiance
averaged over 24 h at the optical depth of 1 (dashed lines shown
for comparison) is well below the peak values seen at noon; and
as expected, the difference between the exact and approximate
solutions is reduced, though still significant (over 20%), for this
case. Even in this instance, the errors would increase toward
the surface, as average light increased. This is consistent with
the findings of Moore et al. (2006) that for surface populations,
the peak irradiance can be significantly higher than the
measured Ik.

5. DISCUSSION AND CONCLUSION

In this paper we have presented a new, exact solution for
the Geider et al. (1997) model for estimating the C:Chl ratio
in phytoplankton as a function of a dimensionless irradiance
scaled to the photoadaptation parameter, Ik. The result is
directly applicable to remote-sensing and modeling of marine
ecosystems, as demonstrated here, but finds further applications
in modeling phytoplankton physiological properties, growth
rates and stoichiometry (Sathyendranath et al., 2009; Dutkiewicz
et al., 2015; Laufkötter et al., 2015). Using an in situ bio-optical
database and the model, we have computed phytoplankton
carbon, and shown that the derived ratios of phytoplankton
carbon to POC were plausible.

The Geider et al. (1997) model was initially conceived to be
implemented with PCm and αB as inputs. The work presented
here provides a new exact solution to the model. The advantage
of the solution is that it allows the Geider et al. (1997) model
to be implemented in any instance where there are direct
measurements or indirect estimates of Ik. So the starting point for
implementation of the new solution would be estimates of Ik or
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FIGURE 3 | Comparison of phytoplankton Carbon estimates using the approximate and exact solution with in situ Ik data from around 400 samples, mostly from the

N.W Atlantic region. (A) Calculated Phytoplankton Carbon (θ ∗ B) in relation to POC measured for the BIO samples using the exact solution. Red, orange, yellow and

green lines correspond to phytoplankton carbon equalling 100, 75, 50, and 25% of POC respectively. The θm values are calculated using an estimate of the

community size structure calculated using the method of Brewin et al. (2010). (B,C) show the absolute and % difference between results from the exact and

approximate solutions.

FIGURE 4 | Maps comparing the C:Chl and Cp estimates using the original approxmiate solution, the new exact solution, and the method of Sathyendranath et al.

(2009) globally for May 2010. The I* and Chl input fields can be seen in Figure 2.
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FIGURE 5 | Variation in I* and resultant C:Chl ratios through the a diurnal cycle at various optical depths in a simple optical model. The value set for Ik (50.0 W m2)

was taken as a reasonable value from the fields seen in Figure 2. Both Ik and θm (0.01) were assumed uniform within a mixed layer extending to the euphotic depth.

Dashed red lines show the value for the first optical depth when calculations are performed using a daily mean (24-h time step). Missing values in the final panel are

due to values of I* exceeding the limit of the Taylor expansion.

PBm and αB. In this regard, the new solution takes the Geider et al.
(1997) model in a new direction. However, in ecosystem models
that are implemented with with PCm and αB as inputs, the value
of θ can be found from the exact solution iteratively (note that Li
et al., 2010 have also proposed a numerical solution). The extra
computation required for an iterative solution would certainly
be worth the effort, especially for I∗ > 0.8, when errors in the
approximate solution begin to be greater than 15% (Figure 1).

Irradiance is a fundamental driver of phytoplankton growth,
and phytoplankton employ a suite of strategies in response to the
range of irradiance conditions in the global oceans. Some groups
of cyanobacteria have genetically diversified into “high-light” and
“low-light” variants (Moore et al., 1998) taking advantage of the
stable irradiance conditions in the central gyres. Inmore dynamic
regions it is essential for algae to be able to respond to changes
in the light environment. Here we have presented a refinement
of the Geider et al. (1997) mechanistic model of carbon-to-
chlorophyll ratio allowing a smooth response in phytoplankton
C:Chl ratios across a greater range of irradiance conditions. This
allows a more accurate calculation of model results across a
complete range of spatial and temporal scales.

Geider et al. (1997) give two solutions for the Chl:C ratio, both
for balanced growth. One of them assumes that the chlorophyll-
a losses due to respiration are zero (RB = 0) or that the
chlorophyll-a specific degradation has the same dependence
on specific growth rate as cellular carbon specific respiration
(RB = RC = µξ , where µ is growth rate and ξ is the
cost of biosynthesis). This is the option that has been pursued
here, since it would be appropriate for use in models of gross
primary production using photosynthesis-irradiance parameters
that have already been corrected for respiration. If, instead, we
were to use the model for the case where carbon respiration
was not zero, an equivalent solution would exist, provided that
a correction term were applied to θm as suggested by Geider
et al. (1997). But, given the uncertainties in θm, and given
that the correction term is typically found to be small, we can
assume that the model discussed here is sufficient to cover such
conditions as well, under our current state of knowledge. A
more pertinent question is at what time scales the condition of
balanced growthmight bemet. In fact, acclimation from one light
level to another will take place over a finite period, with Geider
et al. (1986) and Raven and Geider (2003) suggesting that the
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appropriate time scale for acclimation is of the order of hours
to days, implying that balanced growth would hold on daily time
scales. Moore et al. (2003, 2006) have provided examples where
photoacclimation timescales were longer than those for surface
mixing, and Talmy et al. (2013) highlighted the importance of
surface irradiance, depth of mixing, and light attenuation using
a resource allocation based model of photoacclimation. It is also
apparent that when numerical models are run at short time steps
(less than an hour), it will be increasingly important to account
in some manner for non-balanced growth during the transition
phase.

The solution for C:Chl can produce both high C:Chl values,
in line with those exceeding 300 observed in cultures (Cloern
et al., 1995), and the low values (25–70) observed in ocean
samples (Riemann et al., 1989). That said, a suitable θm is
essential to obtain the correct result. In the example presented
here (Figure 3), a three-component model of phytoplankton size
classes is used in the assignment of θm. Although this allows a
dynamic estimation of θm it is still derived from fixed values for
each group. Refinements in the estimation of θm would also result
in improved estimates of the realized C:Chl values.

Our application of the model at large scales using remote-
sensing data (Figure 2) utilized average estimates of Ik (by season
and province), whereas in reality the values would be more
variable. Dynamic assignment of parameters would lead to a
greater range of I∗ values, increasing the potential for errors when
using the approximate solution for θ . The concept of dynamic
estimates of photosynthesis parameters using environmental
variables, has been discussed by Platt and Sathyendranath (1993,
1995), Saux-Picart et al. (2013), and Silsbe et al. (2016).

The computed carbon-to-chlorophyll ratio depends strongly
on available light. It raises the question of what would be the
appropriate value of I to use in the calculations, given that
phytoplankton experience changes in available light over a variety
of time scales. These include changes at time scales of seconds, as
the sun rises and sets and as clouds pass, to seasonal scale changes
dictated by the Earth’s declination. In addition, phytoplankton
are at the mercy of vertical movement of the water column due
to, for example, turbulence, internal waves or upwelling. But
what would be the appropriate time scales for acclimation of
carbon-to-chlorophyll ratio? As noted above, previous studies
have indicated that it is of the order of 1 day. But further
information on this point would be valuable. A related matter,
from a modeling perspective is that the photosynthetic response
of phytoplankton to available light is instantaneous. So it is clear
that computation of photosynthesis within numerical ecosystem
models has to be driven by instantaneous light. If, along with
such calculations, we need light fields averaged over some yet-to-
be-defined time scale for computation of θ , simulation models
would have to be designed to keep track of at least two values
of available light, to be used as required. This time scale would

be related to that appropriate for balanced growth, as discussed
above.

The Geider et al. (1997) model presented here is re-formulated
as a function of I∗, which requires only the photosynthesis
parameter Ik for implementation, in addition to data on available

light. Bearing in mind the body of data on photosynthesis-
irradiance parameters that exists, and the relative ease with
which these parameters can be measured, compared with direct
measurements of phytoplankton carbon in the field (see Casey
et al., 2013; Graff et al., 2015), these results open up the
possibility of significant augmentation of the information base
on carbon-to-chlorophyll ratio in the marine environment. But
when photosynthesis-irradiance parameters, available light and
phytoplankton carbon are measured concurrently, we also have
the possibility to estimate the parameter θm, about which we have
so little information from the field.
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Assessing the role of sea ice algal biomass and primary production for polar ecosystems

remains challenging due to the strong spatio-temporal variability of sea ice algae.

Therefore, the spatial representativeness of sea ice algal biomass and primary production

sampling remains a key issue in large-scale models and climate change predictions

of polar ecosystems. To address this issue, we presented two novel approaches to

up-scale ice algal chl a biomass and net primary production (NPP) estimates based

on profiles covering distances of 100 to 1,000 s of meters. This was accomplished

by combining ice core-based methods with horizontal under-ice spectral radiation

profiling conducted in the central Arctic Ocean during summer 2012. We conducted

a multi-scale comparison of ice-core based ice algal chl a biomass with two profiling

platforms: a remotely operated vehicle and surface and under ice trawl (SUIT). NPP

estimates were compared between ice cores and remotely operated vehicle surveys.

Our results showed that ice core-based estimates of ice algal chl a biomass and NPP

do not representatively capture the spatial variability compared to the remotely operated

vehicle-based estimates, implying considerable uncertainties for pan-Arctic estimates

based on ice core observations alone. Grouping sea ice cores based on region or ice

type improved the representativeness. With only a small sample size, however, a high

risk of obtaining non-representative estimates remains. Sea ice algal chl a biomass

estimates based on the dominant ice class alone showed a better agreement between

ice core and remotely operated vehicle estimates. Grouping ice core measurements

yielded no improvement in NPP estimates, highlighting the importance of accounting

for the spatial variability of both the chl a biomass and bottom-ice light in order to

get representative estimates. Profile-based measurements of ice algae chl a biomass

identified sea ice ridges as an underappreciated component of the Arctic ecosystem
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because chl a biomass was significantly greater in this unique habitat. Sea ice ridges

are not easily captured with ice coring methods and thus require more attention in future

studies. Based on our results, we provide recommendations for designing an efficient

and effective sea ice algal sampling program for the summer season.

Keywords: ice algae, ice core, chl a, remotely operated vehicle, surface and under-ice trawl, net primary

production, spectral irradiance, bio-optics

INTRODUCTION

There is mounting evidence for an overall increase in Arctic-wide
net primary production (NPP) as a result of the declining sea
ice cover and increasing duration of the phytoplankton growth
season (Arrigo and van Dijken, 2011, 2015; Fernández-Méndez
et al., 2015). However, it remains uncertain how sea ice algae NPP
will respond to continued changes of the sea ice environment. It
has been suggested that a thinning Arctic sea ice cover, which will
lead to increased light transmittance, will also result in increased
sea ice algal NPP rates due to more available photosynthetically
active radiation (PAR; Nicolaus et al., 2012; Fernández-Méndez
et al., 2015). On the other hand, some forecasts predict increased
snow precipitation in the Arctic (IPCC, 2013), whichwould result
in less available light for bottom-ice algal growth during spring.
Other than available light, other variables may have an equal
or greater influence on Arctic primary production depending
on region and season. Such variables include nutrient supply,
temperature, and CO2 intake (Tremblay et al., 2015). Declining
sea ice may increase oceanic CO2 intake, which would result in
increasedNPP, but could be counteracted by increased runoff and
higher temperatures expected throughout the Arctic (Tremblay
et al., 2015).

In the central Arctic Ocean sea-ice algae has been documented
to contribute up to 60% of the NPP during summer (Gosselin
et al., 1997; Fernández-Méndez et al., 2015). However, net
sympagic (ice-associated) primary production is relatively low
accounting for 1–10% of total NPP in the Arctic Ocean (Dupont,
2012; Arrigo and van Dijken, 2015). Regardless of the overall
low contribution of sympagic NPP, both sympagic and pelagic
organisms showed a high dependency on ice-algae produced
carbon within the central Arctic Ocean (Budge et al., 2008;
Wang et al., 2015; Kohlbach et al., 2016, 2017). The key role
of sea ice algae in Arctic foodwebs, particularly in terms of
reproduction and growth of key Arctic organisms, such as:
Calanus glacialis (Michel et al., 1996; Søreide et al., 2010),
highlights the importance of timing and duration of ice algal
growth, and the availability of algal biomass throughout different
times of the year.

Spatial variability of springtime ice algal chl a biomass has
been related to the distribution of snow on first-year sea ice
(FYI), due to the large influence of snow on light transmission
by the reflection and scattering of light near the surface. This
relationship explains the similar patch sizes observed for snow
and sea ice algae biomass on the same study sites. Between study
sites, however, patch sizes had a large range between 5 and 90m,
which was the result of differences in the snow distribution and
drifting patterns over relatively level FYI (Gosselin et al., 1986;

Rysgaard et al., 2001; Granskog et al., 2005; Søgaard et al., 2010).
In contrast, the undulating surface topography of MYI plays an
important role in the distribution of snow, which has been linked
to the presence of high ice algal chl a biomass at the bottom of
thick MYI hummocks with little or no snow cover (Lange et al.,
2015, 2017). Gradinger et al. (2010) identified sea ice ridges as
important accumulation regions of sea ice fauna during advanced
melt. This further highlights the ecological importance of thick
sea ice features. Using traditional coring methods, however, it is
very difficult to sample ridges and hummocks resulting in sparse
observations for ice algae at the bottom or within these features.

In summer when the snow is melted and melt ponds are
present, light availability has a less important role in controlling
the distribution of ice algal chl a biomass. This is due to increased
melt induced algal losses during late-spring and early-summer,
which becomes the limiting factor controlling the ability of algal
communities to remain in the bottom-ice environment (Grossi
et al., 1987; Lavoie et al., 2005). The spatial distribution of ice algal
chl a biomass during mid- to late-summer, however, remains
poorly understood and under-sampled, particularly in the central
Arctic Ocean (Wassmann et al., 2011; Miller et al., 2015).

The high spatial and temporal variability of sea ice algae, in
addition to sparse sampling, results in poorly constrained sea
ice algal chl a biomass and PP estimates for the central Arctic
Ocean (Miller et al., 2015). Large-scale estimates of sea ice algal
chl a biomass and PP are limited to modeling studies as satellites
are unable to observe the underside of sea ice. Lee et al. (2015)
demonstrated that pelagic phytoplankton PP models for the
Arctic Ocean were highly sensitive to uncertainties in chlorophyll
a (chl a) and performed best with in situ chl a data. In situ ice
algal chl a estimates used in models, however, are typically based
on a small number of ice core observations (e.g., Fernández-
Méndez et al., 2015). A recent study comparing ice core chl a
biomass to sea ice algal chl a biomass derived from an 85m ROV
transect of under-ice spectral radiation measurements showed
large differences, which could carry high uncertainties for large-
scale estimates based on these ice core data alone (Lange et al.,
2016).

Miller et al. (2015) reviewed the different methods for PP
measurements with spatial sampling resolution on the order of
0.01m for ice coring-based in vitro incubations (e.g., Gosselin
et al., 1997; Gradinger, 2009; Fernández-Méndez et al., 2015) or
in situ incubations (e.g., Mock and Gradinger, 1999; Gradinger,
2009). At larger scales the under-ice eddy covariance method
integrates primary production over an area of 100m2 (Long et al.,
2012). Thus there is a large gap in spatial coverage between the
0.01 to 100 m2 scales, which is not resolved by these methods. It
is within this spatial range that many sea ice and snow properties
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(such as thickness, porosity, temperature) can vary, which can
have a large influence on light availability, ice melt and growth,
nutrient availability, and therefore, the spatial distribution of ice
algae. Typical patch sizes of snow have been reported in the
range 20–25m (Gosselin et al., 1986; Steffens et al., 2006). Surface
properties such as albedo have patch sizes of ∼10m (Perovich
et al., 1998; Katlein et al., 2015a) and sea ice draft can vary at scales
of around 15m (Katlein et al., 2015a).

Here we present a novel approach to fill this important gap in
the spatial scales of ice algal chl a biomass and NPP estimates
by combining in vitro photosynthetic parameters of ice algae
with chl a biomass derived from under-ice spectral radiation
measurements and under-ice available PAR measurements
obtained from a moving under-ice profiling platform, the ROV.
Furthermore, we investigate the spatial patterns of chl a biomass
and NPP estimates, using two under-ice profiling platforms: the
ROV and Surface and Under Ice Trawl (SUIT), with special
emphasis on sea ice ridges, and evaluate potential discrepancies
between the up-scaled and ice core-based estimates. Based on our
results, we provide recommendations for designing an efficient
and effective sea ice algal sampling program for the summer
season.

MATERIALS AND METHODS

The Profiling Platforms
All surveys were conducted during the RV Polarstern expedition
PS80 to the central Arctic Ocean in August and September 2012.
Under-ice profiling platform surveys were conducted using an
under-ice Remotely Operated Vehicle (ROV) V8Sii-ROV (Ocean
Modules, Åtvidaberg, Sweden) and a SUIT (van Franeker et al.,
2009), with mounted sensor arrays, described in Nicolaus and
Katlein (2013), David et al. (2015), and Lange et al. (2016).
Simplified diagrams and images showing the deployment of the
under-ice profiling platforms were presented in Lange et al.
(2016). The ROV is an under-water vehicle with mounted sensor
array deployed through a small 2 × 2m man made hole in
the sea ice, and is attached by a 300m long fiber optic cable.
The ROV is controlled remotely from a sheltered base station
(e.g., tent) located adjacent to the deployment hole. A detailed
description of the ROV spectral measurements, calibration and
calculations, and ROV operation was provided by Katlein et al.
(2015b) and Nicolaus and Katlein (2013). The V8ii ROV was
equipped with an altimeter (DST Micron Echosounder, Tritech,
UK), a sonar (Micron DST MK2, Tritech, UK), one zoom-
camera (Typhoon, Tritech, UK), and one fixed focal length
camera (Ospray, Tritech, UK). The SUIT is a net developed for
deployment in ice covered waters, typically behind an icebreaker,
for sampling sea ice associated zooplankton and micronekton
in the upper 2m of the water within the ice-water interface.
During this cruise the sensor array was specifically enhanced
to measure the variability of sea ice algae chl a biomass
within the sea ice and sea ice habitat properties along the
SUIT hauls. The new sensor package included an Aquadopp
Acoustic Doppler Current Profiler (ADCP; Nortek AS, Rud,
Norway), a Conductivity Temperature Depth probe (CTD; Sea
and Sun Technology, Trappenkamp, Germany) with a built-in

Cyclops 7 fluorometer (Turner Designs, Sunnyvale, CA, USA), an
PA500/6S altimeter (Tritech International Ltd., Aberdeen, UK),
one RAMSES-ACC irradiance sensor (Trios, GmbH, Rastede,
Germany), one RAMSES-ARC radiance sensor (Trios GmbH,
Rastede, Germany) and a forward-looking video camera (GoPro
Hero 2).

The ROV spectral surveys were conducted during seven ice
stations (Table 1; Figure 1). The SUIT spectral surveys were
conducted at 6 stations (Table 1; Figure 1). Stations conducted
in relatively close proximity (<50 km) to each other were
grouped into similar locations represented by the letters A to
I (Figure 1). Two profiles separated by small distances were
sampled using the SUIT (<10 km) at location B, and using the
ROV (<500m) at locations C and D. Incoming solar radiation
observations were measured on-ice for ROV-based spectral
measurements, and from a ship-mounted sensor for SUIT-based
spectral measurements. To ensure high quality spectra, data were
limited to observations at a distance to the ice-bottom of ≤1m
and with a pitch and roll between −10◦ and 10◦, as suggested by
Nicolaus and Katlein (2013) and Katlein et al. (2016). Reducing
the pitch and roll, and distance to ice bottom also reduced the
potential influence of spectral absorption by the water. Since the
SUIT behaves less predictable near ridges (e.g., it hits the ridge
and is redirected in an unpredictable direction), we manually
inspected the spectra to identify reliable spectral measurements
at sea ice ridges (e.g., noisy spectra). Less than 1% of the spectra
were excluded from analyses.

Sea ice draft was calculated based on sensor measurements
of depth and distance to ice bottom, and corrected for pitch
and roll angles as described in Lange et al. (2016) and David
et al. (2015). Sea ice ridges were identified from the SUIT ice
draft profiles using the Rayleigh criteria, following procedures
described by Rabenstein et al. (2010) and Castellani et al. (2014)
for the sea ice surface topography, and Castellani et al. (2015)
for the sea ice bottom profile. Ice draft local minima (thicker
sea ice draft values are more negative) identified along the SUIT
profiles with a threshold of 1.5m deeper than the surrounding ice,
following Castellani et al. (2015), were selected as potential ridges.
Adjacent minima needed a separation distance between points
which was less than half the depth of the first minima in order
to be identified as two single elements not belonging to the same
ridge. Ridge depth and width were measured in order to calculate
ridge density (ridges km−1) and percent coverage of ridges. Here,
ridge depth was calculated as the width at half maximum. During
one SUIT haul (station 358, location H) there were no altimeter
measurements. Because the SUIT generally travels directly under
the ice, the depth measurements can be used to reliably (R2 =

0.78) derive level ice draft using a simple linear model (David
et al., 2015).We could calculate ridge density, ridge coverage, and
ridge width from these ice draft measurements without altimeter
data. The absolute draft values at ridges, however, were less
accurate and therefore excluded from analysis.

All profiling platform-derived observations (i.e.,
transmittance, sea ice algal chl a, NPP, draft) were divided
into 5 ice classes based on the sea ice draft values in the
following ranges: (1) 0–0.5m; (2) 0.5–1.0m; (3) 1.0–1.5m; (4)
1.5–2.0m; and (5) >2.0m. Furthermore, we separated profiling
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TABLE 1 | Summary of downwelling surface and bottom-ice light, chlorophyll a biomass (chl a), net primary production (NPP), and explained variance of NPP per location

(shown in Figure 1) and sampling method (gear): ice cores (FM or LA), remotely operated vehicle (ROV) and surface and under-ice trawl (SUIT).

Group Geara Sample size Station Downwelling

surface PARb
Scalar PAR (I)b Chl ac mg m−2 NPPcmg C m−2 d−1 Explained variance

(R2) of NPP by

µmols photons m−2 s−1 I Chl a

A SUIT 46 216 – – 0.0 (0.0–0.2) – – –

B FFM 1 224 249 ± 90 40.8 ± 14.7 1.2 10.16 – –

LLA 8 224 – – 0.3 (0.2–0.5) – – –

CORES 9 224 – – 0.4 (0.2–0.7)* – – –

ROV 468 224 211 ± 72 51.2 ± 25.0 1.0 (1.0–1.2) 8.45 (5.59–12.29) 0.64 (0.54–0.70) 0.10 (0.07–0.19)

SUIT 43 223 – – 0.2 (0.0–0.7) – – –

SUIT-2 45 233 – – 0.1 (0.0–0.4) – – –

C FM 1 237 174 ± 90 28.5 ± 14.7 1.7 (+)• 0.56 (−)• – –

LA 12 237 – – 0.6 (0.5–1.1) – – –

CORES 13 237 – – 0.7 (0.5–1.2)* – – –

ROV 156 237a 137 ± 59 28.9 ± 23.2 1.0 (0.8–1.1)• 0.60 (0.30–0.98) 0.61 (0.37–0.82) 0.11 (0.02–0.24)

ROV-2 1378 237b 137 ± 59 18.7 ± 8.2 1.3 (1.1–1.5)• 0.89 (0.62–1.03)• 0.61 (0.38–0.79) 0.09 (0.03–0.17)

D FM 1 255 104 ± 71 26.7 ± 18.2 0.6 (−)• 0.62 (−)• – –

LA 4 255 – – 0.8 (0.7–1.2)* – – –

CORES 5 255 – – 0.7 (0.6–1.2) – – –

ROV 186 255 93 ± 60 36.3 ± 20.3 1.4 (1.4–1.5)• 1.73 (1.48–1.91)• 0.12 (0.0–0.25) 0.70 (0.52–0.93)

E FM 1 277 101 ± 57 25.9 ± 14.6 0.4 (−)• 0.45 – –

SUIT 91 285 – – 0.1 (0.0–0.9) – – –

F FM 1 323 81 ± 63 24.2 ± 18.8 0.3 (−)• 0.02 (−)• – –

LA 6 323 – – 0.2 (0.1–0.2)* – – –

CORES 7 323 – – 0.2 (0.0–0.3) – – –

ROV 1145 323 67 ± 49 7.7 ± 8.8 1.5 (1.3–1.7)• 0.14 (0.10–0.19)• 0.84 (0.72–0.90) 0.18 (0.14–0.23)

SUIT 63 321 – – 0.9 (0.0–1.7) – – –

G FM 1 335 49 ± 43 5.9 ± 5.2 0.4 (−)• 0.05 (−)• – –

LA 6 335 – – 0.9 (0.4–1.1)* – – –

CORES 7 335 – – 0.8 (0.3–1.1) – – –

ROV 762 335m 46 ± 39 3.0 ± 7.6 2.3 (1.9–2.8)• 0.13 (0.07–0.22)• 0.93 (0.89–0.94) 0.01 (0.01–0.02)

ROV-2 302 335f 46 ± 39 2.3 ± 2.7 2.7 (2.3–3.1)• 0.13 (0.08–0.23)• 070 (0.68–0.70) 0.09 (0.08–0.10)

SUIT 18 345 – – 1.9 (0.0–4.4) – – –

H FM 1 349 25 ± 15 1.4 ± 0.9 8.0 (+)• 1.00 (+)• – –

LA 7 349 – – 0.6 (0.3–2.3) – – –

CORES 8 349 – – 0.8 (0.3–4.7) – – –

ROV 282 349 23 ± 13 2.4 ± 1.5 1.3 (1.2–1.5)• 0.14 (0.08–0.21)• 0.16 (0.11–0.21) 0.61 (0.56–0.68)

SUIT 101 358 – – 0.9 (0.4–1.7) – – – –

I FM 1 360 13 ± 7 0.9 ± 0.5 8.0 (+)• 0.39 (+)• – –

LA 4 360 – – 7.3 (4.9–9.0) – – –

CORES 5 360 – – 8.0 (4.3–9.3) – – –

ROV 647 360 10 ± 5 0.4 ± 0.4 4.3 (2.8–6.6)• 0.07 (0.05–0.12)• 0.79 (0.78–0.80) 0.15 (0.15–0.16)

a“FM” corresponds to FM-cores from Fernández-Méndez et al. (2015); “LA” correspond to LA-cores from Lange et al. (2016); “ROV” correspond to the up-scaled remotely operated
vehicle estimates; and “SUIT” correspond to the up-scaled surface and under-ice trawl estimates.
bDownwelling surface PAR and bottom ice scalar PAR (I) are presented as mean ± sd to maintain consistency with Fernández-Méndez et al. (2015).
cChl a and NPP are presented as median (interquartile range).
•Correspond to FM-cores not representative of the corresponding up-scaled ROV estimates for that location, i.e., FM-core estimate outside the interquartile range of ROV estimates.
(+) indicates over-estimate; (−) under-estimate of the FM cores compared to up-scaled ROV estimates.
*Represents significant difference between the CORES (FM and LA cores combined) and the up-scaled ROV estimates.
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FIGURE 1 | Map of the Arctic Ocean with sea ice extent and concentration

data, and the locations of the corresponding station groupings conducted

during the 2012 PS80 cruise (station numbers for each grouping are listed in

Table 1). Locations are color coded to identify which variable, light (red) or chl

a biomass (white), explains the dominant portion of the net primary production

variance. The ice station with identified ridges, station 224 (location B), is

identified by a triangle. Sea ice concentration data acquired from www.

meereisportal.de according to algorithms in Spreen et al. (2008). Sea ice

extent correspond to the 2012 September monthly mean (extent data

acquired from NSIDC, (Fetterer et al., 2002, updated 2011).

platform-derived observations into level ice and ridged ice.
This was done by manually identifying all observations acquired
under the identified ridges.We identified dominant ice classes for
each location using the modal ice thickness (converted to draft
by multiplying by 0.9) from electromagnetic induction sounding
ice thickness surveys, using an EM31 instrument, of the entire
floe (data presented in Boetius et al., 2013; Fernández-Méndez
et al., 2015; Katlein et al., 2015b). We used these larger scale ice
thickness surveys to assign the dominant ice class because these
surveys were conducted specifically for the purpose of assessing
the distribution of ice thickness at the ice floe. Ground-based EM
surveys are a common method to representatively capture the
spatial variability of ice thickness on floe scales (Haas et al., 1997;
Haas, 2004).

Sea Ice Algal Chl a Biomass Estimates
Derived from Under-Ice Spectral Radiation
Ice algal chl a biomass estimates were derived from under-
ice profiling platform-based spectral transmittance observations
using empirical orthogonal function (EOF) analysis combined
with generalized linearmodels (GLM), as described in Lange et al.
(2016). EOF analyses reduce the dimensionality of the data while
maintaining the variability of key spectral absorption properties,
which can then be used to relate to chl a concentrations or

other environmental variables. GLMs were fitted using ice core
chl a concentrations as a response variable and EOF modes
as predictor variables. All ice cores were extracted along ROV
spectral radiation profiles. The best set of EOF modes used
as predictor variables was selected by searching all possible
combinations of EOFmodes and using the Bayesian Information
Criterion (BIC) to assess the quality of the GLM. The EOFs used
represented the spectral variability that can best be explained by
the variability within the ice algal chl a biomass. Furthermore,
EOF analyses captured variability within multiple regions of the
PAR light spectrum (400–700 nm) where chl a light absorption
occurs. In addition, we used mean robustness R2 and true
prediction error estimates as ranking criteria to find the best
predictive model for our data set. Each model was applied to 5
data subsets not used to fit the model then we determined the
predicted vs. observed R2-value for each data subset then took
the mean R2-value as the mean robustness R2. To determine the
true prediction error estimate we used 10-Fold Cross-Validation
(10 FCV). In 10 FCV, data are randomly separated into 10 data
subsets then model fitting and error estimation are repeated 10
times. Each time the model is fitted to 9-folds then applied to
the 10th-fold. This is repeated 100 times and the mean of all root
mean square error (RMSE) values is used as the true prediction
error estimate. Based on these criteria we determined that the
combination of spectral transmittance, calculated according to
Nicolaus et al. (2010), and the EOF approach resulted in the
most reliable predictive model (EOF-Transmittance) with a
predicted vs. observed chl a R2 of 0.90, and a true prediction
error estimate (10-fold cross validated root mean squared error,
RMSECV), of 1.8mg chl a m−2 (model M15 from Lange et al.,
2016). In addition, the selected predictive model showed good
agreement between chl a estimates derived from independent
spectral data (spectra not used to fit the model) and ice core chl a
concentrations, which were all extracted along the ROV profiles.

ROV Data Re-Sampling
We resampled the ROV chl a, ice draft and transmittance
observations in order to account for potential spatial sampling
biases (e.g., multiple or overlapping measurements at the same
location; Figure 2), and variable footprint size of the under-ice
ROV spectral measurements. Data were resampled to a grid (x,
y) of equally spaced 1m diameter circles (grid circles; Figure 2).
A grid of circles was created for the ROV measurements (ROV
circles) with each circle’s center location determined by the
measurement location (x, y) and the diameter determined by
the footprint of the measurement (i.e. distance to ice bottom
multiplied by 2, as described in Lange et al. (2016). For
each grid circle with only one overlapping ROV circle, which
had an overlapping area ≥0.2 m2 (25% of the 1m circle),
the corresponding ROV-based transmittance and chl a were
assigned to that grid circle. For each grid circle that had
more than one overlapping ROV circle, of which at least one
ROV circle had an overlapping area ≥0.2 m2, weighted means
of the corresponding ROV-based transmittance, draft and chl
a were assigned to the grid circle. Weighting factors were
calculated for all overlapping ROV circles in each grid as the
overlapping area of each ROV circle with the corresponding
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FIGURE 2 | Detailed diagram and example calculation of the re-sampling process. A grid of circles was created for the ROV measurements (e.g., ROV1-4 circles) with

each circle’s center location determined by the measurement location (x, y) and the diameter determined by the footprint of the measurement. An additional grid of

circles (e.g., GridA-D circles) was created where each adjacent circle was spaced 1m apart and each had a diameter of 1m. For each grid circle (e.g., GridB and D)

with only one overlapping ROV circle (e.g., ROV1 and 3, respectively), which had an overlapping area ≥0.2 m2 (e.g., WB,1 and WD,3, respectively), the corresponding

ROV-based transmittance and chl a were assigned to that grid circle. For each grid circle (e.g., GridA and C) that had more than one overlapping ROV circle (e.g.,

ROV2−4 and ROV1−2, respectively), of which at least one ROV circle had an overlapping area ≥0.2 m2 (e.g., WA,1-2 and WC,2-4, respectively), weighted means

(e.g., µA for GridAchl a) of the corresponding ROV-based transmittance, draft and chl a were assigned to the grid circle. Weighting factors were calculated as the

overlapping area of each ROV circle with the corresponding grid circle divided by the sum of all overlapping areas for that grid circle.

grid circle relative to the total ROV circle area. Figure 2 shows
a detailed diagram outlining the resampling process with an
example calculation. SUIT data were not re-sampled because they
represent a straight linear profile and therefore themeasurements
have no possibility to have overlapping footprints for the same
regions.

ROV-Derived Net Primary Production
Estimates
All NPP estimates were calculated based on the re-sampled ROV
observations of chl a and transmittance. Up-scaled daily ice algal
NPP estimates, P (mg C m−2 d−1), were calculated using the
photosynthesis equation from (Platt et al., 1980):
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where PBs is the chl a-normalized maximum fixation rate with
no photoinhibition (mg C [mg chl a]−1 h−1); α

B is the initial
slope of the saturation curve (mg C [mg chl a]−1 h−1 [µmol
photons m2 s−1]−1); and β

B is strength of photoinhibition (same
units as α). PBs , α

B, and β
B correspond to the photosynthetic

parameters determined by Fernández-Méndez et al. (2015) using
the 14C method and incubating for 12 h, based on ice core
samples collected from the same seven ice stations. Derivation of
the photosynthetic parameters was conducted for upper-half and
lower-half portions (mean: 0.58m; range: 0.40–0.98m) of the sea
ice melted at 4◦C in the dark for 24 h. NPP estimates were only
calculated and compared for the bottom ice portions because
previous in situ incubations studies demonstrated bottom-
ice had the highest primary production rates, despite lower
irradiance levels (Mock and Gradinger, 1999). Furthermore,
because sea ice algal chl a biomass typically accumulates in
the bottom-ice portion it is safe to assume a large majority
of the primary production also occurred in the bottom-ice.
Accordingly, we used only chl a biomass estimates for the lower
portion, where 75% of the total chl a biomass was observed
Fernández-Méndez et al. (2015). ROV-based chl a correspond to
the total chl a biomass within the entire ice column, therefore we
multiplied by 0.75 to get the appropriate fraction of the total chl
a in the bottom ice portion. B represents the bottom-ice algae chl
a concentrations derived from ROV-based spectral transmittance
measurements. It is the hourly-averaged transmitted PAR (µmol
photons m2 s−1) at the ice-water interface, converted to
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bottom-ice scalar irradiance according to Katlein et al. (2014),
and calculated for each hour (t) over a 24 h period (t=1, 2, . . . 24)
by multiplying the ROV spectral (PAR) transmittance by hourly-
averaged (t) incoming PAR (µmol photons m2 s−1) measured
during each ice station.

Statistical Analyses
All statistical analyses were conducted using R software Version
2.15.2 with all relevant packages (R-Development-Core-Team,
2012) listed after the corresponding analysis description.

Ice core chl a data used for comparison were presented in
Fernández-Méndez et al. (2015), hereafter referred to as “FM”
cores (1 core per station), and were melted in filtered sea water.
Since the FM-cores were used to characterize the NPP for each
ice station (Fernández-Méndez et al., 2015) we assessed the
representativeness of the single cores compared to the up-scaled
ROV surveys of chl a biomass and NPP. NPP was not measured
on the LM-cores, thus we only compared NPP estimates for FM-
cores with the ROV estimates, which had both chl a biomass
and under-ice light measurements. FM-cores were considered
representative of the area if they were within the interquartile
range (IQR; 25–75 percentiles) of the up-scaled ROV and SUIT
estimates.

Cores from Lange et al. (2016), hereafter referred to as
“LA” cores (4–12 cores per station) were directly melted. For
comparisons of chl a biomass between ice core and ROV-
derived estimates and between level ice and ridged ice, FM and
LA cores were grouped together, referred to as CORES. The
significance of differences between these groupings was assessed
using the non-parametric Wilcoxon rank sum test (Wilcoxon,
1945). We used a non-parametric test because the assumption
of normality required for parametric tests (e.g., t-test) could
not be achieved for the entire datasets using common data
transformation methods (e.g., log, square root, squared, cube-
root).

The relative importance of each variable (B and It), in terms
of explaining the variance of NPP for each ROV station, was
assessed using the coefficient of determination (R2) for all up-
scaled NPP estimates (Pt) vs. chl a (B) estimates (i.e., explained
variance due to chl a), andNPP estimates (Pt) vs. bottom-ice light
(It) observations (i.e., explained variance due to light). The R2

was calculated for each hour (t) of the 24 h period to capture the
diurnal variability of light conditions. Values provided in Table 1

correspond to the daily mean R2.

Spatial Autocorrelation Analyses
Spatial autocorrelation was used to investigate the horizontal
patchiness of sea ice draft, transmittance, chl a biomass and NPP
measured at the seven ice stations (Table 1). Autocorrelation was
estimated using Moran’s I (Moran, 1950; Legendre and Fortin,
1989; Legendre and Legendre, 1998), which was calculated for
each of the eight sites at equally spaced (3m) distance classes.
Individual autocorrelation coefficients or Moran’s I estimates
were plotted for each distance class in the form of a spatial
correlogram (Legendre and Fortin, 1989; Legendre and Legendre,
1998). These analyses were conducted using the “R” software
function correlog from the “pgirmess” package. Autocorrelation

coefficients for each distance class were assigned a two-sided
p-value following methods in Legendre and Fortin (1989)
and Legendre and Legendre (1998). Global significance was
determined on the correlogram using the Bonferroni-corrected
significance level. The presence of spatial autocorrelation (i.e.,
spatial patterns or patchiness) was determined if the correlogram
was globally significant at p < 0.05. We identified the first x-
intercept of globally significant correlogram lines as the patch size
(P) of the variables (Legendre and Fortin, 1989; Legendre and
Legendre, 1998). Here, patches were identified for sea ice draft
(Pd), transmittance (Pt), chl a biomass (Pc), and NPP (Pp). This
methodology is consistent with spatial autocorrelation analyses
used in other snow and sea ice studies to identify patch sizes of
both biological and physical variables (e.g., Gosselin et al., 1986;
Rysgaard et al., 2001; Granskog et al., 2005; Søgaard et al., 2010).

We classified the correlograms according to correlogram
curve patterns described in Legendre and Legendre (1998): (i)
multiple-bumps; (ii) wave-like structure; (iii) single bump; (iv)
gradient; (v) step; or (vi) random. Because we do not have fully
gridded data, it is difficult to differentiate between i) vs. ii), or
iv) vs. (v), as the correlograms are very similar. Therefore, we
combined these pattern types together resulting in four categories
(1) multi-bump/wave; (2) one-bump; (3) gradient/step; and (4)
random/noisy. Interpretations of the correlograms together with
the xy gridded maps allowed for more detailed interpretation of
the patterns (Legendre and Legendre, 1998). Patches or regions
of high chl a biomass, high transmittance, thick draft, and high
NPP were identified manually by visually inspecting the gridded
maps. The identified patches were compared between variables to
identify coincident patches for different variables.

RESULTS

Sea Ice Algal Chl a Biomass Estimates
The median chl a concentrations were generally low (<3.0mg
m−2) at sampling locations A-H, irrespective of the method used
(Table 1). Only at location I, median chl a concentrations were
above 4mg m−2 for ice core and ROV estimates (Table 1). The
range of chl a concentrations observed, however, appeared to
be greater at locations G to I compared to locations A to F
(Figure 3A).

At 5 of the 7 locations sampled for ice cores and ROV
measurements, (B-D, F-G), sea ice cores had significantly lower
chl a biomass than ROV estimates (Wilcoxon test, p < 0.05).
No significant differences were observed at locations H and
I (Wilcoxon test, p > 0.05; Table 1; Figure 3A). On average,
ice core-based estimates of chl a concentration were 63% of
the ROV-based estimates from the same sampling sites. The
range was 13–62% for locations B to H, however, location I was
substantially larger at 182%. Excluding location H results in a
mean underestimation of core based estimates of 43% compared
to ROV based estimates. There was no significant difference
between integrated estimates of sea ice chl a concentrations of
ROV and nearby SUIT profiles (Wilcoxon test, p < 0.05).

FM-cores were not representative (i.e., within the IQR) of
the ROV-derived chl a biomass estimates at all locations, except
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FIGURE 3 | Chl a and NPP summarized per sampling gear and location, and subset into dominant ice classes. (A) chl a biomass for the entire datasets of each

sampling gear; (B) NPP for the entire datasets of each sampling gear; (C) chl a estimates from only the dominant ice class; and (D) NPP estimates from only the

dominant ice class. Dominant ice classes for each location are listed in Table 3. Bars represent median and error bars the interquartile range. *Indicates significant

Wilcoxon rank sum test at p < 0.05 between the CORES and ROV data for the corresponding location. (A,C) CORES are the combined datasets of FM-CORES, data

from Fernández-Méndez et al. (2015); LA-CORES, data from Lange et al. (2016). (B,D) CORES are only the FM-CORES.

location B (Table 1). FM-cores at location C, H, and I, over-
estimated chl a biomass compared to the ROV-derived estimates
(Table 1). At locations D, E, F, and G the FM-cores under-
estimated chl a biomass compared to ROV-derived estimates
(Table 1). When chl a estimates were combined by FYI and MYI
stations for each samplingmethod, mean FM-core chl a estimates
were considerably lower than spatially integrated ROV- and
SUIT-based estimates, but these differences were not significant
due to the large variability of the datasets (Wilcoxon test, p >

0.05; Table 2). Regardless of the sampling method, MYI stations
had consistently higher chl a concentrations and lower PP rates
than FYI stations (Table 2).

All gridded ROV surveys of chl a, sea ice draft, transmittance
and NPP are shown in Figures S1–S8. SUIT profiles of chl a, sea
ice draft, and identified ridges are shown in Figures S9–S16.

ROV-Derived Sea Ice Algal NPP
We accounted for the spatial variability of NPP by combining the
variability of both chl a and bottom-ice light in the calculations of
the larger-scale NPP estimates. All gridded ROV surveys of NPP
are shown in Figures S1–S8. We then determined the explained
variance of NPP by each variable individually. At locations B, C,
F, G, and I, the spatial variability of bottom-ice light explained
most of the spatial variability of the up-scaled NPP estimates,
whereas at locations D and H, chl a explained most of the spatial
variability of NPP (Table 1; Figure 4).

The largest diurnal variabilities of light levels and explained
variances were observed at locations with the highest mean
bottom-ice light levels (Table 1; Figure 4). At all stations, the
explained variance of chl a was inversely related to light, which
is expected since NPP is a function of both variables and chl a
estimates were constant over the diurnal cycle while only light
varied. The inter-location differences regarding which variable
(chl a or light) explained most of the variance in NPP cannot
be stated for certain as we observed no significant correlations
between the explained variance for each station and any other
station variable (e.g., nutrient concentration, median and IQR chl
a or bottom-ice light).

FM-core NPP estimates were representative (i.e., within the
IQR) of the up-scaled estimates at station group B and one
ROV survey at station group C (Table 1; Figure 3B). FM-cores
under-estimated NPP at station groups C, D, F, and G, and
over-estimated NPP at station groups H and I compared to the
up-scaled ROV-based NPP estimates (Table 1; Figure 3B). The
differences between methods were likely the result of differences
in chl a and/or light. Location B had similar chl a biomass and
NPP for both the FM-core and up-scaled estimates (Table 1;
Figures 3A,B). Station groups D, F, and G had higher up-scaled
chl a biomass and NPP estimates compared to FM-core estimates
(Table 1; Figures 3A,B). Conversely, station groups H and I had
lower up-scaled chl a biomass and NPP estimates compared to
FM-core estimates (Table 1; Figures 3A,B). Only station group
C had higher chl a biomass but lower NPP estimates for
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TABLE 2 | Ice algal chlorophyll a biomass and NPP summarized for sampling gears into MYI and FYI. Means, range (min–max), and sample size [N] are provided for

comparison to values presented in Fernández-Méndez et al. (2015).

Sampling Method Summary statistics Chl a (mg m−2) Net Primary Production (mg C m−2 d−1)

MYI FYI MYI FYI

FM-CORES Mean (range) [N] 5.5 (0.4–8.0) [3] 0.84 (0.3 −1.7) [5] 0.48 (0.05 −1.0) [3] 2.36 (0.02 −10.16) [5]

ROV Mean (range) [N] 3.4 (0.0 −19.8) [1,993] 1.46 (0.0 −18.5) [3,333] 0.18 (0.0 −4.45) [1,993] 2.05 (0.0 −141) [3,333]

SUIT Mean (range) [N] 2.5 (0.3 −16.7) [132] 1.7 (0.0 −18.5) [242] – –

FM-CORES Median (IQR) 8.0 (4.2 −8.0) 0.6 (0.4 −1.2) 0.39 (0.22 −0.70) 0.56 (0.45 −0.62)

ROV Median (IQR) 2.6 (1.8 −3.9) 1.3 [1.1 −1.6] 0.11 (0.06 −0.20) 0.71 (0.17 −1.17)

SUIT Median (IQR) 1.8 (1.4 −2.7) 1.3 (0.8 −2.1) – –

the FM-cores compared to the up-scaled estimates (Table 1;
Figures 3A,B). Furthermore, light levels were comparable (237a)
or slightly higher (237b) for the FM-core derived NPP estimates
compared to the ROV surveys (Table 1; Figures 3A,B). When
FM-cores and the up-scaled NPP estimates were pooled into FYI
andMYI stations, we observed no significant differences between
the methods (Wilcoxon test, p > 0.05; Table 2). The median and
IQR-values had large differences between sampling methods for
the MYI stations but the mean values were similar (Table 2).

Sea Ice Algal Chl a Biomass and NPP in
Relation to Sea Ice Properties
Sea Ice Classes
Chl a biomass and NPP estimates were divided into the five
different ice classes. The values showed large variability between
ice classes and locations, and within ice classes and locations
(Figure 5). ROV-derived chl a biomass estimates at locations
B and I were highest in the thickest sea ice class (2.0m +;
Figure 5A). Locations B and C had high ROV-derived chl a
biomass in the thinnest ice class (0.0–0.5m; Figure 5A). The
three middle ice classes generally had uniform ROV-derived
biomass estimates, with the exception of location H which had
the highest ROV-derived chl a biomass in the 1.5–2.0m ice
class (Figure 5A). The SUIT-derived estimates were very low at
location B for all ice classes and highly variable within the ice
classes for all other stations with no obvious patterns (Figure 5C).
In general, at each location ROV-derived NPP estimates showed
a decreasing trend with increasing range of ice class thickness
values (Figure 5B).

The dominant ice class surveyed by the ROVwas identified by
the modal sea ice draft of ice floes based on EM31 measurements
(Table 3). Ice core and ROV chl a biomass estimates for the
dominant ice classes differed significantly (Wilcoxon test, p <

0.05) at 2 locations (F,G; Table 3; Figure 3C). NPP estimates
derived from FM-cores and ROV observations showed no
obvious changes and maintained the same patterns (i.e., non-
representativeness) for all locations. Most obvious differences
were observed between the entire chl a biomass surveys and
dominant ice class subsets for the SUIT at locations B, F and G,
and for the ROV at locations H and I (Tables 1, 3; Figures 3A,C).
Furthermore, the separation between low chl a biomass locations
B to F and high chl a biomass locations G to I is more obvious
from the large scale dominant ice class estimates (Figure 3C).

Two sea ice regimes were identified at station 349 of group
H: one thicker sea ice region and one thinner region (Figure
S7). The thicker region (median: 1.9, IQR: 1.2–3.5mg chl am−2)
had significantly higher (Wilcoxon test, p < 0.05) chl a biomass
than the thinner region (median: 1.3, IQR: 1.2–1.4mg chl a
m−2). NPP, however, was significantly lower at the thicker region
(median: 0.07, IQR: 0.04–0.19mg C m−2 d−1) compared to the
thinner region (median: 0.14, IQR: 0.12–0.21mg Cm−2 d−1). Ice
cores from the thicker region had higher chl a biomass (median:
0.3, IQR: 0.2–0.5mg chl a m−2) compared to ice cores from the
thinner region (median: 4.6, IQR: 2.8–6.2mg chl am−2) although
the p-value of the Wilcoxon test was 0.06 due to the low sample
size.

Sea Ice Ridges
At ice location B (station 224; Figure 1) we identified two sea
ice ridges based on the ROV draft measurements (Figure 6A).
Ridge 1 had a median sea ice draft of 4.5m and ridge 2 had a
median draft of 2.8m based on ROV measurements (Table 4).
Bottom-ice light was significantly higher in level ice compared
to both ridges (p < 0.05; Table 4). Nonetheless, both ridges had
significantly higher ice algal chl a biomass than the level ice (p
< 0.05; Table 4; Figure 6C). Ridge 2, however, had significantly
lower NPP compared to level ice, whereas ridge 1 had similar
NPP compared to the level ice (Table 4; Figure 6D). Conversely,
ridge 1 had both higher draft values and higher bottom-ice scalar
irradiance values I at the bottom compared to ridge 2 (Table 4;
Figures 6A,B,D). In the level ice, chl a biomass and bottom-
ice light explained comparable amounts of the NPP variance. At
ridges 1 and 2, however, chl a biomass explained relatively more
variance compared to bottom-ice light (Table 4).

Based on the ridge identification analysis for all SUIT stations
we calculated a mean (min–max) ridge density of 7.5 ridges
km−1 (2.5–18.0), mean ridge width of 68.7m (47.6–100.3), and
a mean percent total ice coverage by ridges of 9.2% (2.5–15.4%).
Ridge analysis summaries for each SUIT station are shown
in Table 5. SUIT profiles with identified ridges are shown in
Figure 7 (station 223) and for all other stations in Figures S9–S16.

High chl a biomass sea ice ridges were also identified within
three SUIT stations (station 223: Figure 7; stations 233, 285,
and 358 Figures S11, S13, S16). These identified high chl a
biomass ridges had chl a biomass estimates in the range 2–
9mg chl a m−2 (Table 5), which was larger than the overall
SUIT profile median values in the range 1.2–1.9mg chl a m−2
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FIGURE 4 | Explained variance (R2) of NPP by up-scaled chlorophyll a and bottom-ice PAR (light) per hour for each ROV station and survey listed in Table 1.

(Table 1). When comparing chl a biomass values at coincident
identified sea ice ridges with chl a biomass at level ice for
each SUIT haul separately, we observed significantly higher
(Wilcoxon test, p < 0.05) sea ice ridge chl a biomass than
level ice chl a biomass at 2 SUIT hauls (stations 223 and 233;
Table 5). When comparing all SUIT observations combined,
sea ice ridge chl a biomass (median: 0.7 and IQR: 0.2–1.4mg
chl a m−2) was significantly higher (Wilcoxon test, p < 0.05)
than level ice chl a biomass (median: 0.3 and IQR: 0.0–1.0mg
chl am−2).

Spatial Variability of Sea Ice Properties,
Algae Chl a Biomass, and NPP
Autocorrelation analyses for each station were conducted using
correlograms (i.e., Moran’s I vs. distance classes), and were all
globally significant at the Bonferonni corrected level (p < 0.05/n;
n = the number of distance classes). Patch sizes, identified as the
distance class at which the first zero value of Moran’s I occurred
in the correlograms, were highly variable between stations and
between measured variables (Table 6). Patch sizes for chl a
(Pc) had a lower range of values between 7 and 30m, whereas
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FIGURE 5 | Summary of chlorophyll a and NPP estimates per ice class and location for: (A) ROV derived chlorophyll a biomass; (B) ROV-derived NPP estimates; and

(C) SUIT derived chlorophyll a biomass estimates. Bars represent median and error bars the interquartile range. † Indicates missing values.

patch sizes for transmittance (Pt), draft (Pd) and NPP (Pp) were
slightly higher in the range 10–50m (Table 6). Pt and Pp were
comparable (within 5m) at all ROV stations except 224, which
had the two identified ridges. The shapes of correlogram curves
were similar for transmittance and NPP for all station surveys
(Figure 8 and Figures S17–S24). Correlogram shape comparisons
for all stations were highly variable with no obvious patterns for
all other measured variables (Figure 8 and Figures S17–S24).

Based on the manually identified patches within the gridded
maps, coincident patches of high transmittance and high NPP
were observed at all stations. Coincident patches of only high chl
a and thick draft values were observed at stations 224 and 237b,
although the patches at 237b were more subtle (Figure 6 and
Figure S18). The two draft patches observed at 224 correspond
to ridge 1 and ridge 2 (Figure 6) described in the previous
section Sea Ice Ridges. Coincident patches of only high chl a,
transmittance and NPP were observed at stations 224, 335f,m,
and 360 (Figure 6, Figures S5, S6, S8).Coincident patches of
only high chl a and NPP were observed at stations 255 and 349
(Figures S3, S7).

DISCUSSION

Overall Representativeness of the Ice Algal
Chl a Biomass and NPP Estimates Using
Different Sampling Methods
Chl a Biomass
During land-based campaigns in coastal regions it is possible
to achieve ice core sample sizes well over 50 ice cores (e.g.,
Gosselin et al., 1986; Rysgaard et al., 2001; Granskog et al.,

2005; Mundy et al., 2007; Campbell et al., 2015). However,
such studies are conducted over a period of weeks to months
and are typically confined to a local study region. Furthermore,
land-based studies are generally conducted on landfast sea ice,
in regions dominated by seasonal sea ice. Thus, during the
advanced melt stages in seasonally ice covered regions sampling
sea ice is typically not done because it also coincides with the
termination of the algal bloom, and/or due to logistical and safety
constraints. Where sea ice survives into late-summer (e.g., the
central Arctic Ocean), ship-based sampling is the most effective
sampling approach. Although ship-based sampling has some
advantages (e.g., bringing the equipment and lab to the study
region), the main disadvantage is that sampling is generally time-
limited. Thus, ice core sampling during ship-based campaigns is
generally limited to <10 algal chl a biomass or NPP cores per
ice station making it difficult to conduct spatial studies of sea
ice algae (e.g., this study; Gosselin et al., 1997; Gradinger, 1999;
Schünemann andWerner, 2005; Fernández-Méndez et al., 2015).
Even during long term ship-based studies (e.g., Melnikov et al.,
2002) ice core sampling was limited to a small number of cores
for each sampling interval every 1–2 weeks.

Our results demonstrate large uncertainties in coring-based
methods for capturing the larger-scale variability of ice algal
chl a biomass observed by the ROV-based methods. However,
assessing the magnitude of this uncertainty for other studies is
not possible. In general, our ice coring results under-estimated
ice algal chl a biomass at the relatively lower chl a biomass
locations (B-F), which implies an overall under-estimation of
total chl a biomass. Only at the higher chl a biomass locations
(H and I) the ice cores accurately captured the variability of
ice algal chl a biomass. The higher chl a biomass observed at
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FIGURE 6 | Gridded x-y (meters) map of the remotely operated vehicle (ROV) station 224, showing: (A) draft (m); (B) transmittance; (C) chlorophyll a biomass (mg

m−2) derived from ROV spectral radiation measurements; and (D) net primary production-NPP (mg C m−2 s−1) derived from ROV measurements. R1 and R2 depict

ridge 1 and ridge 2, respectively. Gray circles represent values greater than the scale maximum value.

locations G-I was likely the result of less melt-induced algal losses
due to thicker ice and lower melt rates at these high-latitude
locations (Lange et al., 2016). This difference can be explained
because at low chl a biomass stations relatively higher chl a
biomass patches had a lower probability to be sampled by coring
compared to higher chl a biomass stations, and hence were not
accurately represented, whereas at high chl a biomass locations
the probability of sampling higher chl a biomass locations was
higher. We must also note that the possibility that the up-
scaled spectrally derived estimates over-estimated the true chl a
biomass is unlikely, because the model for spectrally deriving chl
a biomass had no directional bias related to chl a concentration
in sea ice (Lange et al., 2016).

The higher chl a biomass location I showed no significant
difference between the cores and ROV-based chl a biomass
estimates. In the individual core values, however (0.05, 6.46,
8.03, 8.00, and 11.83mg chl a m−2), only one core was within
the IQR (2.96–6.70mg chl a m−2). In this sample size, one
core with near-zero chl a biomass was highly influential and
may have impeded the detection of significant differences. A
similar pattern was also apparent at location H, which also
showed no significant difference, but also had only one core
within the IQR of the up-scaled chl a biomass estimates. The
discrepancy between the ice core-based and ROV-derived chl
a biomass estimates indicates the ice algal chl a biomass was
highly variable at small scales (<2m), which was difficult to
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TABLE 3 | Modal sea ice draft from literature (Boetius et al., 2013; Katlein et al., 2015b) and ROV measurements, dominant ice class based on literature modal draft,

interquartile range of chlorophyll a biomass observations for the dominant ice class using different gears (ice coring, ROV, and SUIT) summarized for each location.

Location Dominant ice class Floe drafta (m) Modal ROV draft (m) Modal SUIT draft Gear chl a (mg m−2) NPP (mg C m−2 d−1)

B 1.0–1.5m 1.1 1.0 CORES 0.4 (0.2–0.7) 10.16

ROV 0.99 (0.95–1.05) 8.43 (6.73–12.29)

SUIT 0.0 (0.0–0.27) nd

C 1.0–1.5m 1.1 1.2 CORES 0.7 (0.5–1.2) 0.56•(–)

ROV 1.26 (1.11–1.49) 0.92 (0.76–1.06)

D 0.5–1.0m 0.8 0.8 CORES 0.7 (0.6–1.2) 0.62•(–)

ROV 1.42 (1.37–1.53) 1.72 (1.45–1.86)

F 0.5–1.0m 0.7 1.3 CORES 0.2 (0.0–0.3)* 0.02•(–)

ROV 1.43 (1.34–1.60) 0.12 (0.06–0.22)

SUIT 0.8 (0.1–1.8) nd

G 1.0–1.5m 1.3 1.1/1.4 CORES 0.8 (0.3–1.1)* 0.02•(–)

ROV 2.48 (2.04–3.03) 0.13 (0.08–0.23)

SUIT 3.34 (3.34–3.34) nd

H 1.5–2.0m 1.7 1.2 CORES 0.8 (0.3–4.7) 1.00•(+)

ROV 2.87 (1.65–4.19) 0.17 (0.06–0.48)

SUIT 1.4 (1.3–3.7) –

I 1.5–2.0m 1.6 1.1 CORES 8 (4.3–9.3) 0.39•(+)

ROV 5.14 (2.62–9.46) 0.05 (0.02–0.10)

aLiterature modal ice thickness converted to draft by multiplying by 0.9. “–” indicates no data. Noteworthy wilcoxon test results are indicated by * for a significant difference at p < 0.05
for comparisons between cores and ROV chl a biomass for observations on ice within the dominant ice class. • Indicates a CORES NPP estimate outside the IQR of the ROV NPP
estimates for observations within the dominant ice class. (+) indicates CORES greater than ROV 75th percentile; and (−) indicates CORES smaller than ROV 25th percentile. nd refers
to no data.

FIGURE 7 | Horizontal profile of Surface and Under-Ice Trawl (SUIT) station 223 showing sea ice draft, identified ridges and chlorophyll a biomass derived from

spectral radiation measurements. Highlighted is an identified high chlorophyll a biomass sea ice ridge. Width of the white bars corresponds to the relative along-track

footprint of spectral radiation measurements. The black line corresponds to the smoothed sea ice draft curve used for the ridge identification procedure and was

determined from the ice draft measurements (gray shaded area).

capture with average measurement footprints between 1 and 2m
for ROV surveys. Individual data points of up-scaled estimates
averaged chl a concentration over a larger area, and were thus
less likely to capture small patches of extremely high chl a
biomass or extremely low chl a biomass (i.e., values in the range
8–12mg chl a m−2 or with near-zero chl a biomass). These
considerations highlight two important sampling constraints.
First, the cores did not capture the large-scale variability; and

second, we were unable to assess the small-scale variability
below 2m. The second limitation is less drastic since the signal
received from the sensor under the ice does capture the small-
scale variability within its measurement by averaging it over a
larger distance. Since little is known or has been reported on
summertime spatial variability of ice algal chl a biomass we
propose that observations from both core-based and under-ice
spectral profiling systems should be combined when making
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TABLE 4 | Comparison of chlorophyll a biomass and net primary production between sea ice ridges and level ice at station 224.

Variable Ridge 1 (N = 20) Ridge 2 (N = 21) Level Ice (N = 427)

Draft (m) 4.5 (2.4–5.0)* 2.8 (2.7–2.9)* 1.1 (0.95–1.4)

Chl a (mg m−2) 1.8 (1.7–17.9)* [0.91]a 3.4 (2.5–5.3)* [0.58]a 1.0 (0.97–1.1) [0.78]a

NPP (mg C m−2) 6.9 (5.7–17.9) 4.0 (2.9–4.2)* 8.7 (5.9–12.3)

I (µmol photons m−2 s−1) 11.6 (4.8–12.9)* [0.79]a 2.5 (2.2–5.6)* [0.0]a 39.0 (22.8–61.2) [0.71]a

Ridges are identified in Figure 7. * Indicates a statistically significant (p < 0.05) Wilcoxon test between the corresponding Ridge and Level Ice.
aValue within square brackets represents the explained variance of NPP by the corresponding variable and data subset of ridge or level ice. “I” is the bottom ice light levels (PAR).

TABLE 5 | Summary of ridge identification analysis from the SUIT hauls conducted during PS80.

SUIT station

(location)

Ridge

count

Chl a in ridges

(mg m−2)

Chl a in level ice

(mg m−2)

Total Distance

(km)

Density

(ridges km−1)

Mean ridge

width (m)

Ridge coverage

(% of total ice)

216 (A) 4 0.2(0.2–0.8) [3] 0.0(0.0–0.2) [43] 1.6 2.5 47.6 3.0

223 (B) 12 0.6(0.5–1.2) [9]* 0.0 (0.0–0.4) [34]* 0.8 15.8 79.5 10.5

233 (B) 12 0.5(0.1–0.7) [10]* 0.1(0.0–0.3) [35]* 1.5 8.1 60.8 4.1

248 (C) 4 0.6(0.4–1.1) [3] 0.3(0.1–0.7) [58] 1.5 2.7 91.1 6.2

285 (E) 4 0.5(0–1.1) [7] 0.2(0.0–0.9) [84] 1.3 3.1 91.5 7.1

321 (F) 3 0.0 (0.0–0.0)[3] 1.0 (0.0–1.9) [60] 0.7 4.6 100.3 15.4

345 (G) 8 4.7 [1] 0.0 (0.0–3.2) [17] 1.2 6.6 49.3 4.1

358 (H) 11 2.7(1.2–2.8) [9] 0.8(0.4–1.4) [92] 2.0 5.6 48.7 2.5

376 (-) 3 4.6(2.3–7.7) [3] 0.9(0.6–1.9) [10] 0.2 18.0 49.5 29.6

* Indicates a statistically significant (p < 0.05) Wilcoxon test comparing chl a biomass in ridges and level ice.

assumptions about multi-scale spatial variability of ice algal chl
a biomass.

The fact that no statistical differences (Wilcoxon test, p >

0.5; Table 2) were observed between ROV-based and ice core-
based estimates (both chl a and NPP) when they were grouped
into MYI and FYI stations, an approach taken by Fernández-
Méndez et al. (2015), may suggest an improvement because it
increased the probability of the ice cores to be representative of
the larger area. In this case the sample sizes and range of chl
a biomass values were sufficient to obscure any differences at
the station level. This method should only be considered when
other options are not possible, because large uncertainties are
still present even though significant differences were not found.
For example, even though in this case the mean MYI FM-core
chl a biomass values were not significantly different (Wilcoxon
test, p > 0.05), each MYI FM-core value was higher or lower
than the IQR of the larger-scale estimates. A similar pattern
was observed with the FYI grouping comparison although not
as drastic because overall the values were smaller, particularly
the range of values. Potential uncertainties of grouping ice
cores should also be considered depending on the objectives of
your study. Grouping the ice cores into MYI and FYI would
result in mean ice core MYI algal chl a biomass estimates
160% larger than the ROV MYI estimates. In contrast, FYI
ice core estimates would be around 60% of the ROV FYI
estimates. For grouped ice core-derived NPP the difference for
MYI is even more pronounced at 270% larger compared to ROV
estimates. FYI NPP values, however, were comparable between
both methods.

Photoacclimation may be another potential factor
influencing the chl a to carbon ratios, which could in
turn explain the increased chl a biomass at higher latitude
stations due to increased chl a production under lower light
conditions. Fernández-Méndez et al. (2015) measured lower
photoacclimation indices for the higher latitude stations (Ik;
mean: 30 µmol photons m−2 s−1, range 17–45) compared to the
lower latitude stations (mean: 60 µmol photons m−2 s−1, range:
34–77). However, we did not observe any variability (<1 g C:
g chl a) between high and low latitude stations in the chl a to
POC ratios (data not presented here), therefore it is unlikely that
photoacclimation explains the regional chl a biomass differences.

NPP
In general, NPP sampling involves measuring available PAR
levels through a hole in the ice (Gosselin et al., 1997), which
may produce higher than expected values due to the hole.
PAR available for bottom-ice algae may also be modeled by
using simple light extinction models (Fernández-Méndez et al.,
2015). Both methods are established and regularly employed,
however, both are limited in the fact that they do not account
for the spatial variability of the bottom-ice PAR levels. During
spring, ice algae are typically light-limited and therefore have
higher chl a biomass where light levels are higher (e.g., Gosselin
et al., 1986), assuming there is no or limited photo-inhibition.
During our summer sampling period, however, we found no
strong correlation at any station between the ROV-derived chl
a estimates and available under-ice light (maximum spearman
correlation coefficient, r = 0.22). This means the under-ice light
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TABLE 6 | Summary of the autocorrelation analyses per location and ROV survey.

Location Station P*
c Pt

* P*
d

P*
p Pattern chl a Pattern TM Pattern draft Pattern NPP Similar

Correlogramsa
Coincident patchesb

B 224 10 12 25 30 Bumps-waves Bumps-waves Bumps-waves Bumps-waves Chl a-TM-NPP 2 × chl a-draft;

4 × TM-NPP;

1 × chl a-TM-NPP;

C 237a 10 18 30 20 Random-noisy Bumps-waves Step-gradient Bumps-waves TM-NPP 3 × TM-NPP

237b 23 15 19 15 Bumps-waves

or 1-bump

Bumps-waves Bumps-waves Bumps-waves Chl a-draft-NPP;
TM-NPP

1 × chl a-NPP-draft;

3 × TM-NPP

D 255 7 10 12 10 1-bump or

random

Bumps-waves Bumps-waves Bumps-waves TM-NPP 1 × chl a-NPP;

1 × TM-NPP

F 323 14 31 47 35 Bumps-waves 1-bump 1-bump 1-bump TM-NPP-Draft 1 × large/multi-patch TM-NPP

G 335m 13 14 24 14 Bumps-waves Bumps-waves 1-bump Bumps-waves TM-NPP-chla 1 × chl a-TM-NPP;

2 × TM-NPP

335f 15 50 47 51 Bumps-waves Step-gradient Step-gradient Step-gradient TM-NPP 1 × large/multi-patch chl

a-NPP-TM

H 349 25 39 41 40 Bumps-waves Step-gradient Step-gradient Step-gradient TM-NPP 1 × large/mulit-patch chl a-NPP;

2 × TM-NPP

I 360 30 29 33 29 Bumps-waves 1-bump 1-bump 1-bump TM-NPP-Draft 1 × chl a –TM; 1 × TM- NPP

Patch sizes for chl a, Pc; transmittance, Pt; draft, Pd ; and NPP, Pp. TM corresponds to transmittance, and NPP to net primary production.
*All correlograms globally significant at the Bonferonni corrected level (p < 0.05/n; where n is number of distance classes; Legendre and Legendre, 1998).
a Identifies correlogram curves which are similar in shape to each other (e.g., chl a-TM-NPP means the correlogram curves are similar for the chl a, transmittance and net primary
production).
bManually identified patches that are coincident in location to each other. The number of patches per ROV survey is followed by which patches are coincident (e.g., TM-NPP refers to
a transmittance patch coincident to an NPP patch). Large/multi refers to a larger area with multiple small patches in close proximity.

and chl a varied independently of each other. This behavior is
expected, because in late-summer biomass losses due to high
melt rates have a dominant influence on bottom-ice biomass
(e.g., Grossi et al., 1987; Lavoie et al., 2005; Lange et al., 2016).
These conditions would not have sustained a bottom-ice algal
community, and therefore even if light conditions were suitable
for high primary production rates the NPP would have been
almost zero if no algae were present. With an additional variable
(i.e., melt), which can influence NPP, the spatial distribution of
NPP may be more complex in late-summer than during the
spring to summer transition making it even more important to
understand and account for the spatial variability of both chl a
biomass and the bottom-ice light field.

Location B had similar NPP estimates for the FM-core and
up-scaled observations (Table 1; Figure 2), which we attributed
to the similar chl a biomass estimates (Table 1; Figure 1). Even
though light levels and chl a biomass were only slightly larger
at location B compared to groups C and D, group B had NPP
estimates almost an order of magnitude larger than groups C
and D. This was attributed to the substantially higher value
of the photosynthetic parameter PBs determined for this station
(Fernández-Méndez et al., 2015), compared to all other stations.
This demonstrates that the combination of data from several
stations, an approach described by Fernández-Méndez et al.
(2015) and used by others (Mundy et al., 2011; Campbell et al.,
2016), was not only able to improve the spatial representativeness
of light and chl a but also accounted for the potential variability
of the derived photosynthetic parameters. Our results suggest

pooling ice core samples increases the chance for the samples
to be representative of both chl a biomass and NPP estimates.
Because of the large range of chl a biomass and NPP estimates,
and the small number of samples, however, this approach can still
carry a high risk of obtaining non-representative estimates (e.g.,
overestimates of up to 270% for MYI).

The same directional difference of chl a biomass and NPP
observed between up-scaled and FM-core estimates for all station
groups, except group C, suggests the differences between the FM-
cores and up-scaled NPP estimates were driven by the differences
in chl a biomass. This was further confirmed by the fact that the
bottom-ice light levels used for each method were comparable
for each station (Table 1). The opposing pattern of chl a biomass
and NPP between up-scaled and FM-core estimates at location
C, even though light levels were comparable, suggests that the
spatial variability of both the chl a biomass and bottom-ice
light had a combined influence on the observed differences
that is not apparent from the overall survey estimates. The
explained variance of NPP by chl a and light showed large diurnal
variability and large inter-location variability, which indicates a
complex and highly variable relationship between ice algal chl
a biomass and light levels during our sampling period. These
results emphasize the importance of accounting for both the
spatial variability of ice algal chl a biomass and the bottom-
ice light field in order to make representative NPP estimates.
We must also note the possible influence of nutrients since
we found a significant (p < 0.05) positive correlation (r =

0.46) between explained variance of NPP by chl a with sea
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FIGURE 8 | Correlograms showing Moran’s I vs. distance classes at ROV station 224 for: (A) draft (m); (B) transmittance; (C) chlorophyll a biomass (mg m−2) derived

from ROV spectral radiation measurements; and (D) net primary production-NPP (mg C m−2 s−1) derived from ROV measurements. Red filled circles represent

significant values at p < 0.05.

ice NO3 concentrations (data from Fernández-Méndez et al.,
2015), and a significant (p < 0.05) negative correlation between
explained variance of NPP by bottom-ice light with sea ice NO3

concentrations (r = −0.55). These correlations provide some
indication that the sea ice nutrient regime could have also had
some influence on the relative (inter-station) importance of chl a
biomass vs. light on NPP.

Gosselin et al. (1997) measured ice algal NPP of up to 300mg
C m−2 d−1 in the high Arctic Ocean (>87◦N) during August.
Our results for September in the high Arctic Ocean (station
360) were over 3 orders of magnitude lower than those found
by Gosselin et al. (1997) in August for the same area. The
large difference in NPP estimates between the studies could
partially be explained by the higher incoming solar irradiance
in August compared to September. However, upscaling results
from Fernández-Méndez et al. (2015) for August were also
substantially lower with a mean (range) of 5.8 (0.06–42) mg
C m−2 d−1 and with a similar range of daily mean incoming
solar irradiance (101–249 µmols photons m−2 s−1). Therefore,
we applied the range of incoming irradiance values (∼125–
214 µmols photons m−2 s−1) observed at the high latitude
stations (>87◦N) during the Gosselin et al. (1997) study to
this studies ROV survey at station 360. We used our observed
chl a biomass and transmittance in order to calculate potential
NPP under higher incoming irradiance conditions typical for
August at these high latitudes. Overall NPP increased by
nearly the same relative amount as the available light, however,

with median values between 0.82 and 1.32mg C m−2 d−2

(Table 7) this remains two orders of magnitude lower than ice
algal NPP observed by Gosselin et al. (1997). This suggests
that something other than available light is influencing these
observed differences. This is likely explained by the fact that
the Gosselin et al. (1997) estimates were dominated by the sub-
ice algal species Melosira arctica, whereas Fernández-Méndez
et al. (2015) measured primary production on ice samples with
a lower contribution of M. arctica. Thus, our samples represent
a good estimate for in-ice algal NPP, however, a conservative
estimate for overall ice-associatedNPP (Fernández-Méndez et al.,
2015).

The explained variance of NPP by bottom-ice light compared
to chl a using the increased incoming irradiance levels, which
were observed in August at high latitudes by Gosselin et al.
(1997), showed interesting differences (Table 7). As the incoming
irradiance increased, the explained variance of chl a biomass also
increased, while the explained variance of the bottom-ice light
decreased to nearly equal values of 0.39 and 0.48, respectively, at
an incoming irradiance of 214µmols photons m−2 s−1 (Table 7).
This indicates that under increased irradiance levels the spatial
variability of chl a biomass becomes more important in terms
of contribution to overall NPP estimates. Furthermore, these
results suggest a complex spatio-temporal relationship of the
relative importance of chl a biomass and available bottom-ice
irradiance for NPP estimates, which can only be accounted for by
characterizing biomass and under-ice light at spatial scales from

Frontiers in Marine Science | www.frontiersin.org 16 November 2017 | Volume 4 | Article 349320

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Lange et al. Ice-Algal Biomass and NPP

TABLE 7 | Net primary production estimates for the ROV survey at station 360 with observed downwelling surface irradiance (PAR) and using different downwelling

surface irradiance conditions as observed for the same region (>87◦ N) earlier in the season (∼ mid-August) by Gosselin et al. (1997).

Station Chl a Downwelling surface PAR Scalar PAR (I)b NPP Explained Variance by:

(mg m-2) µmols photons m−2 s−1 mg C m−2 d−1 I Chl a

360 4.3 (2.8 −6.6) 10 ± 5 0.4 ± 0.4 0.07 (0.05–0.12) 0.78 0.15

125a 4.8 ± 5.7 0.82 (0.55–1.39) 0.61 0.29

214a 8.3 ± 9.7 1.32 (0.86–2.20) 0.48 0.39

aDownwelling surface irradiance data presented in Gosselin et al. (1997) from the same region as station 360.
bThe bottom-ice scalar irradiance used to calculate NPP.

meters to 100s of kilometers, and temporal scales accounting for
diurnal and seasonal variations.

Sea Ice Algal Chl a Biomass and NPP in
Relation to Sea Ice Properties
Sea Ice Classes
Electromagnetic (EM) sea ice thickness surveys are commonly
used to representatively characterize the overall ice thickness
distribution (Eicken, 2001; Haas and Eicken, 2001; Haas, 2004)
and thus represent a reliable characterization of the dominant
ice class for the surveyed floe and overall region. The differences
between the ROV-derived and EM-derived modal draft values at
several ice stations warranted the use of the EM data to determine
dominant ice types. The range of modal ice thicknesses for
locations B-G dominated by FYI (0.8–1.3m) were consistent with
previous studies that conducted large-scale airborne and floe-
scale ground-based electromagnetic ice thickness surveys for the
same region and season (Haas et al., 1997; Haas and Eicken, 2001;
Rabenstein et al., 2010). The two locations H and I dominated by
MYI had modal thicknesses between 1.6 and 1.8m, which were
also consistent with modal ice thickness values for second-year
sea ice from the same region and season (Haas and Eicken, 2001).

Since the dominant ice type thickness value (i.e., modal
ice thickness) is a commonly used metric to characterize the
sea ice environment it stands to reason that sea ice algal chl
a biomass from the dominant ice class would also provide a
representative metric to describe the overall sea ice algal chl a
biomass. Comparing the ice algal chl a biomass estimates solely
from the dominant ice classes showed better agreement between
ROV and ice core-derived values (Figure 3C). Therefore, we
suggest that using chl a biomass estimates from the dominant ice
class only may be an improvement on providing a single value,
which is representative of the large scale sea ice algal chl a biomass
for that region. There remain some limitations to this approach,
since these estimates do not account for the chl a biomass of the
other ice types/classes. Sampling other ice types/classes may be
of particular importance in regions of low chl a biomass (e.g.,
station 224) where high chl a biomass features such as ridges
may have a substantial contribution to the overall large-scale ice
algae chl a biomass. A further step to improve these overall chl
a biomass values could be to use the larger-scale ice thickness
density distributions (data not available for this study) to provide
weighting factors for chl a biomass values of each ice type/class.

The observed trend of higher chl a biomass at higher
latitude stations was more obvious within the dominant ice
class estimates (Figure 3C). This was previously attributed to
enhanced melt-induced algal losses at lower latitude stations,
although based on a smaller number of stations (Lange et al.,
2016). Here we have a larger sample size covering a larger
geographic region and confirmed the pattern related to latitude
and the presence of thicker ice. Enhanced melt is a common
mechanism for substantial losses of bottom-ice algae in summer
(Grossi et al., 1987; Lavoie et al., 2005). Gosselin et al. (1997) also
observed a shift from low to high bottom-ice chl a biomass with
a shift from low to high latitude, which is consistent with our
observed trend. Furthermore, the higher dominant ice class chl
a biomass estimates between 2.5 and 5.1mg chl a m−2 observed
at the three high latitude, thicker ice (1.4–1.9m) locations G–I
is consistent with previous studies from high latitude regions of
the central Arctic Ocean with bottom-ice algae concentrations in
the range of 3–14mg chl am−2 (Gosselin et al., 1997), and up to
22mg chl am−2 (Melnikov, 1997).

Castellani et al. (2017) introduced a pan-Arctic Sea Ice Model
for Bottom-Algae (SIMBA) coupled with a 3D sea-ice-ocean
model and also showed that within the eastern Eurasian basin
during late-summer (this studies sampling region/period) there
was an increasing trend in bottom-ice algal chl a biomass from
lower to higher latitudes. The SIMBA model, however, showed
the opposite trend with increasing chl a biomass from higher
to lower latitudes in the region from the North Pole toward
the northern coast of Canada and Greenland (the Lincoln Sea)
where the thickest ice in the Arctic Ocean is located. During late-
summer Castellani et al. (2017) identified sea ice thickness as
a main factor controlling bottom-ice chl a biomass by limiting
basal melt-induced algal losses during a period of advanced melt.
Based on observations alone, a purely latitudinal effect may have
been identified as driving the large-scale spatial patterns of sea
ice algae. Therefore, the modeling results of Castellani et al.
(2017) emphasize the need for more observations in the region
between Canada, Greenland and the North Pole (a region coined:
the “Last Ice Area”), and that modeling studies are essential in
the context of interpreting large-scale patterns of sea ice algae
observations. Furthermore, the SIMBA model included different
ice classes, such as sea ice ridges. The SIMBA results showed that
ridges, though exhibiting lower peak chl a biomass compared to
level ice, the maximum chl a biomass was reached later in the
season compared to level ice. More information is required in
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order to accurately parameterize sea ice features such as ridges
in pan-Arctic models, however, SIMBA is a big step forward
in terms of including ice classes within models, which we have
identified as an important component of sea ice algal spatial
variability.

In contrast to chl a biomass, NPP estimates showed no
improvement when comparing only the dominant ice class
(Figure 3D). This suggests that NPP estimates require a different
approach for up-scaling and parameterizing models. The
complex and highly variable relationship between ice algal chl a
biomass and light levels during our sampling period suggests that
more representative sea ice algal NPP estimates may be achieved
by accounting for the relative contribution of NPPwithin each ice
type. This would involve using larger scale ice thickness estimates
to assign weighting factors to each ice classes’ NPP estimate.
In the absence of larger scale observations it is not possible to
discover the spatial patterns of sea ice algal chl a biomass and
NPP, or assess if the ice cores are actually representative of the
area. To further improve upon the large scale pan-Arctic NPP
and chl a biomass estimates we suggest to integrate our five ice
classes, together with weighting factors for each ice class (based
on large-scale ice thickness surveys), into pan-Arctic studies
(e.g., Fernández-Méndez et al., 2015). Accurately assessing sea
ice associated NPP in models is of particular importance since
it can represent a dominant portion of total (water plus sea ice)
NPP in regions covered by sea ice for most of the year (e.g.,
Gosselin et al., 1997; Fernández-Méndez et al., 2015). In general,
pan-Arctic models of NPP, which include sea ice contributions to
NPP are very limited (e.g., Lee et al., 2015) highlighting the need
for improved sea ice algae model parameterizations.

Sea Ice Ridges
One source of variability in sea ice chl a concentrations, light
transmittance and derived NPP may be topographical features
of sea ice, such as ridges. Sea ice ridges are often under-sampled
due to the logistical challenges to sampling this type of ice.
Despite this fact, sea ice ridges have been reported to host high
abundances of sea ice fauna during advanced melt (Gradinger
et al., 2010). Furthermore, in the northern Baltic Sea high chl a
biomass were observed within the ice along the upper sides of
sea ice ridges and within the interstitial spaces, typically present
within the unconsolidated aggregation of ice blocks that form
ridge keels (Kuparinen et al., 2007). Therefore, we specifically
investigated sea ice ridges with the hypothesis that they could
host high abundances of ice algae during advanced melt due to
lower melt rates in these locations.

We showed that the identified sea ice ridges at ROV station
224 and all SUIT stations (measurements grouped together) had
significantly higher chl a biomass than measurements under
relatively more level ice (e.g., areas that are not ridges). It can
be assumed that ridges were under-represented in the ROV
sampling due to a preference for relatively uniform sampling
sites. In SUIT profiles, the natural distribution of ridges was likely
well-represented, because the sampled profile cannot be chosen
after the deployment of the net. The overall difference between
median level ice chl a biomass and median ridge chl a biomass
from the SUIT surveys, however, was relatively small (0.4mg chl

a m−2). The small difference is likely the result of not all ridges
having high chl a biomass.

Our results of sea ice ridge densities between 2.5 and 18.0
ridges km−1 are within the range of larger scale airborne surveys
with mean ridge sail densities between 4.3 and 7.2 ridges km−1

(Rabenstein et al., 2010). With the high resolution (0.5m)
under-ice topography measurements, we were able to accurately
estimate the widths of the ridge and determined that these
features represented up to 10% of the total sea ice area. Together
with the higher chl a biomass observed at sea ice ridges, this
indicates that these features require more in-depth investigations
and may have a significant impact on overall chl a biomass
estimates and availability of food for under-ice organisms.

Gradinger et al. (2010) showed sea ice ridges had elevated
concentrations of ice meiofauna and under-ice amphipods,
which was attributed to the flushing of the sea ice and low-
salinity stress imposed at the thinner sea ice environment. Sea ice
ridges may also extend into higher salinity water below the highly
stratified, fresher surface melt water, which accumulates adjacent
to the ridges under thinner ice (Gradinger et al., 2010). These
results suggest that higher ice algal chl a biomass at ridges may
be the result of reduced flushing and lower environmental stress.
Furthermore, the presence of high algal chl a biomass as a food
source may provide an additional explanation for the observed
accumulation of organisms at ridges by Gradinger et al. (2010).

In addition to the possibility of reduced flushing and lower
environmental stress at ridges, we suggest that the thicker ice
experienced lower melt rates than the surrounding level ice
resulting in lower algal losses. Perovich et al. (2003) indicated
that sea ice ridges experienced an overall greater amount of melt
than the surrounding undeformed sea ice, which may appear
to contradict our premise. The higher overall melt observed at
ridges by Perovich et al. (2003), however, was partially attributed
to a few very thick ridges extending deep into the water, which
were experiencingmelt the entire year even during winter. Except
for one weekly measurement in August, the melt rates for ridges
were lower than the mean and were among the lowest of all ice
types for that entire month during advancedmelt (Perovich et al.,
2003).

NPP estimates for sea ice ridges showed some interesting
patterns at ROV station 224. Although both ridges had
significantly higher chl a biomass than the level ice, ridge 2
had significantly lower NPP rates than ridge 1 and the level ice,
whereas ridge 1 and level ice were not significantly different.
These differences were due to the available light measured under
the different types of sea ice. The higher chl a biomass at ridge
1 compensated for lower light levels compared to the level ice,
resulting in similar NPP estimates compared to the level ice.
However, the chl a biomass at ridge 2 was not sufficient to
compensate for the lower bottom-ice light levels. Even though
ridge 2 had a thinner median draft (2.8m) value compared to
ridge 1 it still had lower light levels. This shows that ridges
can have a considerable impact on the complex relationship
between chl a biomass and available PAR for NPP estimates at
larger spatial scales. Furthermore, these results imply that sea
ice features such as ridges have a different and perhaps more
complex relationship between available light and chl a biomass
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than the surrounding sea ice. As a consequence, ridges must be
sampled representatively, and both the variability of bottom-ice
light levels and the variability of chl a biomass are required to
make representative large-scale ice algal chl a biomass and NPP
estimates.

The identification of sea ice ridges as potential chl a biomass
and NPP hotspots warrants further dedicated research of these
features. Further work should include dedicated modeling of
the (bio)optical properties of sea ice ridges, which would
require ice core chl a biomass estimates from ridges and
high spatial resolution spectral radiation measurements under
ridges.

Spatial Variability and Patchiness of Sea
Ice Properties, Algae Chl a Biomass, and
NPP
Our results indicated high variability of patch sizes between
locations, which suggests that there is large regional and temporal
variability of ice algal chl a biomass. Patch sizes of algal chl
a biomass were within the range of springtime chl a biomass
patch sizes between 5 and 90m (Gosselin et al., 1986; Rysgaard
et al., 2001; Granskog et al., 2005; Søgaard et al., 2010). However,
the upper limit of this range is nearly the scale of some ROV
surveys. The above mentioned studies were limited to the spring
and found that ice algal chl a biomass and NPP typically
followed the light regime (Gosselin et al., 1986; Rysgaard et al.,
2001; Granskog et al., 2005), which is primarily controlled by
the overlying snow pack (Perovich, 1996). Furthermore, these
studies were conducted on uniform, landfast sea ice from coastal
regions and thus are not representative of sea ice from the
central Arctic Ocean. During our study, we also found that patch
sizes and spatial variability of NPP was controlled primarily
by light availability, albeit in the absence of snow. This was
evident by the high explained variance of NPP by bottom-
ice light, the similarity of NPP and transmittance correlogram
curves, and the coincidence of high NPP patches with high light
transmittance. Similar to a recent study by Campbell et al. (2017)
that demonstrated a disjoint in ice algal carbon biomass and
NPP over the spring to summer transition period, our chl a
biomass patches did not always follow the light and NPP regimes,
which clearly illustrates one key difference between the spring
and summer ice algal communities.

We also demonstrated that patches of high NPP were
associated with patches of high chl a biomass in the absence of
high light availability. The fact that both chl a and transmittance
show spatial patterns consistent with NPP patterns is not
surprising given the fact that NPP estimates were calculated from
light and chl a biomass. However, this emphasizes the need to
account for the spatial variability of both the bottom-ice light
and chl a biomass to properly characterize the spatial variability
of NPP in order to make accurate large-scale estimates. At a few
stations (most notably 360), however, we did observe high chl a
biomass patches directly adjacent to high transmittance locations
(e.g., melt ponds). NPP was also high at the high transmittance
locations and the adjacent high chl a biomass patches creating
one high NPP patch. We propose that the presence of high

chl a biomass adjacent to high transmittance regions could be
explained by a combination of lower melt rates in the thicker
ice adjacent to high transmittance regions and increased bottom-
ice light levels due to horizontal light scattering from e.g., melt
ponds. This would have allowed for higher NPP rates and
increased accumulation of chl a biomass while having reduced
melt-induced losses, however, we note that more work is needed
to confirm this hypothesis.

Sea Ice Algae Sampling Recommendations
In this section we provide some recommendations for
conducting the most representative sea ice algae sampling
possible under the typical time limitation of an ice station on
this cruise of ∼8 h. We assume that the dominant ice class (e.g.,
modal ice thickness) is known before sampling. Knowledge of
the dominant ice class is important to ensure representative
sampling; however, this depends on the objectives of the study.
Knowledge of the spatial distribution for all ice types and classes
will provide the best sampling protocol since a representative
sample of each ice type/class will provide the most accurate and
reliable estimates for the region.

Ice Core Chl a Biomass and NPP
A nested approach has been outlined inMiller et al. (2015), which
identifies four hierarchical levels of sea ice sampling. We suggest,
however, some modifications for sampling during summer. If the
main objective of the study is to acquire one representative ice
algal chl a biomass value for that ice station, then we suggest
following the quaternary scale of the nested approach according
to Miller et al. (2015) by extracting replicate cores (N = 3)
within a small area (<2m). This accounts for the small scale
variability. The tertiary scale of the nested approach should be
selected based on ice type/class. Here we have demonstrated that
a representative chl a biomass value may be best estimated by
the dominant ice class (NOTE: this should only be considered if
additional sampling is not possible). Therefore, ice cores should
be sampled in triplicate (quaternary scale) at three different
dominant ice class locations (tertiary scale).

To capture the spatial variability of chl a biomass using ice
coring alone, all ice classes should be considered. The nested
approach should sample triplicate ice cores (quaternary scale) at
10m intervals (tertiary scale) based on our observed patch sizes
between 10 and 30m. We further suggest that the replicates and
direction of tertiary scale transects should be designed to capture
all ice classes. A systematic approach would be to classify the sea
ice using 0.5m interval classes (as presented here). The sample
design must also consider other ice types such as melt ponds,
bare ice and thick ice features (e.g., ridges and hummocks).
We must also note that the time requirements for conducting a
spatial variability study using ice coring will be highly variable
depending on season and ice conditions. For example, to quantify
the spatial variability of thick MYI in early spring over a distance
of 100m (e.g., 3 cores at 11 sites = 30 cores) would take
30 h (based on previous experience coring spring MYI). This
same task could be accomplished by an ROV with a typical
deployment time of 8 h for two perpendicular survey transects
of 100m.

Frontiers in Marine Science | www.frontiersin.org 19 November 2017 | Volume 4 | Article 349323

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Lange et al. Ice-Algal Biomass and NPP

We demonstrated that NPP estimates have a complex
relationship between light and chl a biomass. Therefore, in order
to acquire a representative estimate the spatial variability of both
the under ice light field and chl a biomass must be accounted
for. We suggest a nested approach similar to that proposed
for assessing the spatial variability of ice algal chl a biomass.
Triplicate ice cores (quaternary scale) should be sampled at
10m intervals (tertiary scale). In general, nested NPP sampling
schemes should be conducted at the 5 different ice classes, as
proposed earlier (N = 15).

ROV Chl a Biomass and NPP
ROV surveys should be conducted either over a grid or
perpendicular transects with at least 60m axis lengths in both
directions for chl a biomass (two times maximum patch size of
chl a) and at least 100m for NPP estimates (two times maximum
patch sizes for TM and NPP ∼50m). This ensures you cross the
boundary of the patch at least once. The survey should be chosen
so that it covers these dimensions depending on the objectives
of the study. However, the main criteria for setting transect/grid
dimensions should be so that all 5 ice classes are surveyed (or all
identified ice classes for the study site), of particular importance
is the inclusion of unique and under-sampled sea ice features
such as ridges or MYI hummocks (Lange et al., 2017). As we have
shown, even over distances of 100m the dominant ice classes and
all ice features such as ridges were not representatively sampled.
This is partly due to the location chosen and also due to filtering
of the data resulting in inconsistent sample spacing-coverage.
This in turn may over-sample some regions compared to others
and result in non-representative surveys for certain ice classes.
Therefore, we recommend that care is taken to choose ROV
transects or grids that cover all ice classes, and to ensure ROV
measurements are conducted while minimizing distance to the
ice bottom, and pitch and roll angles.

During data analyses one should always consider the
dominant ice class for the corresponding region based on larger
scale ice thickness surveys. Because universal algorithms are not
yet available for deriving chl a biomass from spectral radiation,
ice cores should always be conducted at as many locations
as possible along the ROV surveys for training bio-optical
models, deriving photosynthetic parameters for up-scaling ROV
NPP estimates and subsequently to parameterize algae models.
Because the time requirements for ice coring (this does not
include laboratory processing times) at the distances required for
spatial variability studies (e.g., >100m) are likely much greater
than a typical ROV deployment of 8 h, we strongly recommend to
conduct both ROV and ice core sampling particularly for spatial
variability studies of both chl a biomass and NPP.

This method does have limitations in terms of assessing the
temporality of ice algal chl a biomass and NPP due to the
limited period of sampling and logistical constraints. This is
a common drawback in observational sea ice biogeochemistry,
which results from the limitations of sample processing and
incubation times, and the shear difficulty of sampling within
the Arctic Ocean in order to cover the necessary periods of
weeks to months. However, our approach showed the successful
application on spatially extensive datasets and thus is an ideal

approach that should be applied to long-term studies (e.g., ice-
tethered sensor arrays; Nicolaus et al., 2010) in order to assess the
short- to long-term temporal variability of ice algal chl a biomass
and NPP.

CONCLUSIONS

We provided, for the first time, a detailed multi-scale
comparison of ice-core based ice algal chl a biomass and
NPP estimates with estimates derived from under-ice spectral
radiation measurements conducted over distances of tens
to thousands of meters. These approaches demonstrated
substantial improvements regarding representative sea ice
algae observations. Our results showed that ice core-based
estimates of summertime ice algal chl a biomass and NPP do
not representatively capture the spatial variability compared to
the spatially more extensive estimates of moving platforms. This
may carry similar uncertainties, with an overall negative bias of
∼60%, for pan-Arctic estimates based on ice core observations
alone.

Our autocorrelation analyses showed patch sizes of algal chl a
biomass (10–30m) and NPP (10–50m) that were highly variable
between locations and with scales of variability unlikely to be
captured by ice coring alone. Based on our results we presented
sampling recommendations depending on the objectives of the
study. To estimate ice algal chl a biomass alone, taking a
representative sample (N = 3) of each ice type/class using
the ice core method should provide a reliable estimate of the
overall area if there is also knowledge/observations of the ice
thickness distribution on large scales (>1 km). Upscaling chl a
biomass estimates would benefit from sampling all ice classes
and factoring in weights for the spatial coverage of different ice
classes in the region of interest. For NPP estimates, however,
a combination of larger scale (>100m) under ice light and
ice algal chl a biomass is required because of the independent
relationship between light and chl a biomass during the end of
summer. In order to get the most representative estimates and
to address the spatial variability of chl a biomass and NPP, we
recommend that future sea ice sampling should combine ice-core
based methods with the larger-scale under-ice spectral profiling
approaches presented and described here and in Lange et al.
(2016). This combined approach is also logistically justified since
the time requirements for ice coring, which does not include
processing times, at the distances required for spatial variability
studies are typicallymuch greater than a typical ROVdeployment
of 8 h.

We also identified high chl a biomass ridges within several up-
scaled surveys, which have been generally neglected in sea ice
biogeochemical studies. Sea ice ridges had significantly higher
chl a biomass than the level ice and accounted for up to 10%
of the total areal ice coverage. This suggests that these features
may represent important regions for sea ice algal growth that
are not easily captured by ice coring methods due to logistical
difficulties of coring such thick sea ice. Further dedicated sea
ice ridge studies are warranted particularly in terms of ice algal
chl a biomass, nutrients, primary production and bio-optical
properties.
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An equation is derived to express the sensitivity of daily, watercolumn production by

phytoplankton in the ocean to variations in irradiance at the sea surface. Assuming no

spectral effects, and a vertically uniform chlorophyll profile, the sensitivity is a function only

of the dimensionless irradiance. Spectral effects can be accounted for as a function of the

chlorophyll concentration. At the global scale, the relative reduction in daily production

consequent on halving the surface irradiance (representing the expected scope for

variation in surface irradiance under natural conditions) is found to be from 30 to 40%.

Choice of data source for irradiance may incur a further systematic error of up to 15%.

Given that local irradiance (the principal forcing for primary production) may vary from day

to day, the issue of how to archive production data for the most generality is discussed

and recommendations made in this regard.

Keywords: primary production, data archiving, sensitivity analysis, irradiance, photophysiology, photosynthesis

measurements

1. INTRODUCTION

Conventionally, there are two approaches to the measurement of phytoplankton production at
sea, both of which require incubation of phytoplankton samples for a finite time (Table 1). One
is the so-called in situ method (or its variant, the simulated in situ method) (Lohrenz et al.,
1992; Lohrenz, 1993). The object here is to produce data representing the vertical distribution of
phytoplankton production through the photic zone. The irradiance that drives the photosynthesis
is solar irradiance, attenuated by the sea itself (or by other filters in the case of the simulated in
situ method). The estimated vertical profile of phytoplankton photosynthesis can be integrated
over depth to calculate production in the water column during the period of the incubation. If
the duration of incubation is less than that of the light day, the data may be extrapolated to obtain
daily water-column production. The result expresses the daily, autotrophic carbon flux under unit
area of sea surface at the place and time from which the sample was drawn, under all prevailing
conditions, physical and biological.

The other method is through construction of photosynthesis–light curves. Here, the
samples are incubated in artificial light at a sufficient number of irradiance levels that the
curve of photosynthetic response can be established, fitted to a standard equation, and the
parameters (minimum two for a normal range of irradiances) extracted (Platt and Jassby, 1976).
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TABLE 1 | Comparison of two approaches (in situmethod and photosynthesis-irradiance curve) to measuring primary production of aquatic samples.

In situ method Photosynthesis–irradiance curve

Incubation time Longer Shorter

Demands on ship’s programme Severe Minimal

Light source? Natural sunlight Artificial & constant

What is the output? Watercolumn production Photosynthesis parameters

Results valid for what irradiance? Irradiance at time of sampling All irradiances

Utility of results for Modeling? Limited to model validation Broader, key model parameter

Generality of results? Less general (local) More general

How to archive results? Straightforward Less straightforward

These parameters index the photosynthetic performance
of the phytoplankton present at the time and place from
which the sample was drawn. The results can be applied
in mathematical models to calculate daily watercolumn
production (Platt et al., 1977; Sathyendranath and Platt,
1989; Sathyendranath et al., 1989; Morel, 1991; Morel
et al., 1996). This serves the same purpose as in situ
measurements of primary production, but calculations using the
photosynthesis parameters can be tailored for any reasonable
time interval, to suit any application. Light-dependent models
of primary production are used in remote sensing (Platt and
Sathyendranath, 1988; Mélin and Hoepffner, 2004, 2011) and
in large-scale simulation models of the marine ecosystem
(Laufkötter et al., 2015). The photosynthesis parameters
are fundamental bio-optical properties of phytoplankton
and have many other applications beyond estimation of
water-column production, for example in the calculation of
chlorophyll-to-carbon ratio in phytoplankton (Jackson et al.,
2017).

The photosynthesis parameters may therefore be considered
to contain more information than estimates of in situ
production (which they subsume through application of
a mathematical model). In the planning of present-day
oceanographic expeditions on which phytoplankton production
estimates are required, a choice is usually made in favor of the
photosynthesis–parameter method (which also imposes fewer
restrictions on the movement of the ship than does the in situ
method).

The question then arises: How should these data be archived?
In the case of in situ production estimates, the picture is clear,
except possibly for the time scale involved. The data represent
the photosynthetic carbon flux per unit area of the sea surface
for the duration of the incubation, perhaps extrapolated to a
time scale of 1 day, and can be archived as such. For the
(preferred) photosynthesis–response method, the parameters
can be archived but they do not in themselves constitute an
estimate of phytoplankton production. If they are to be applied
to the calculation of daily water-column production, what should
be taken as the forcing irradiance? Does it matter? Here,
we analyse the sensitivity of daily, water-column production
to variable surface irradiance, and discuss the archiving of
data on primary production, for example as used in climate
studies.

2. THEORETICAL BACKGROUND:
NON-SPECTRAL-LIGHT,
UNIFORM-BIOMASS CASE

The photosynthesis–irradiance curve relates phytoplankton
photosynthesis P to irradiance I. It is convenient, and more
general, to work with the normalized photosynthetic rate
PB, where the superscript B indicates normalization to the
chlorophyll biomass. Thus,

PB(I) = pB(I; parameters), (1)

where pB is a function to be specified and where various
choices are available for the parameter sets. We have shown that,
regardless of the parameter set chosen and for any plausible
choice of pB, the various manifestations of Equation (1) can all
be recast into a single common form (Platt and Sathyendranath,
1993). The discussion to follow is thus robust against alternative
choices of pB and the parameters. Therefore, with no loss of
generality, we shall use as parameters the assimilation number PBm
and the initial slope αB of the photosynthesis–irradiance curve.
Then,

PB(I) = pB(I;αB, PBm). (2)

In the sea, irradiance is a function of depth z and of time of day t,
such that we can write

PB(I) = pB
(

I(z, t);αB, PBm
)

. (3)

The desired result is the double integral of Equation (3) over time
and depth, which is the daily watercolumn production PZ,T .

PZ,T = B

∫ D

0

∫ ∞

0
pB

(

I(z, t);αB, PBm
)

dz dt, (4)

where D is the length of day in hours from sunrise and where it
is assumed that there is no production outside the interval 0 ≤

t ≤ D. The factor B is taken outside the integral signs because we
assume that the chlorophyll biomass is independent of depth. The
choice of infinity as the upper limit on the integral over z avoids
any ambiguity over depth of the photic zone, without invoking
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any simplifying assumption. Contributions to the integral from
all depths below the photic zone are negligible for all practical
purposes.

Under clear-sky conditions, the irradiance at the sea surface
I(0, t) can be calculated for any latitude and date according to
standard astronomical functions (Bird, 1984; Bird and Riordan,
1986; Sathyendranath and Platt, 1988; Platt et al., 1990).
Analytically, the time course of clear-sky irradiance I(t) can
be described by a function with two parameters (D and the
irradiance at local noon Im0 ). Thus, I(0, t) = Im0 g(t;D), where
g(t) is a function to be specified. The effect of clouds may
be represented through a reduction in the magnitude of Im0
according to the proportion of the sky covered by clouds.

Given observations of αB and PBm (and a choice of pB) we
can evaluate the double integral of Equation (4) for any station
and time. The result will depend upon the magnitude of Im0 . For
archival purposes, is it appropriate to use the clear-sky value of Im0
(which would return the maximum possible value of production
under the prevailing conditions at that time and place)? Or is it
more appropriate to use the value of Im0 corresponding to the
sky conditions at the station and time (which would return the
best value of production for the conditions, but which would lack
any generality for other sky conditions)? Would the differences
be significant?

To address these issues, we need to look at the derivative of
Equation (4) with respect to irradiance. Let us first select pB(I) =
PBm

(

1 − exp(−I/Ik)
)

as the formulation of the photosynthesis–
light curve, where the photoadaptation parameter Ik = PBm/αB.
The ratio I/Ik is a dimensionless irradiance that we designate
as I∗. The dimensionless noon irradiance is Im∗ . We assume a
vertically-homogeneous water column so that B(z) = B, and light
attenuation can be characterized by a single coefficient K such
that I(z) = I(0) exp(−Kz) where the sea surface is at z = 0 and z
is positive downwards. Then Equation 4 may be written as

PZ,T = BPBm

∫ D

0

∫ ∞

0

(

1− exp
(

−Im∗ g(t) exp(−Kz)
)

)

dz dt. (5)

With a change of variable x = Im∗ g(t) exp(−Kz), we have

PZ,T =
BPBm
K

∫ D

0

∫ Im∗ g(t)

0

(

1− exp(−x)

x

)

dx dt. (6)

The inner integral (on x) is a standard form, the entire
exponential integral Ein

(

Im∗ g(t)
)

, so that

PZ,T =
BPBm
K

∫ D

0
Ein

(

Im∗ g(t)
)

dt. (7)

In the specification of the surface irradiance, the dimensionless
irradiance at noon Im∗ can be considered as a scale factor, with
the function g(t) describing the time course of variation through
the day. Our immediate interest is on the derivative of PZ,T with
respect to this scale factor Im∗ ,

dPZ,T

dIm∗
=

BPBm
K

∫ D

0

d

dIm∗
Ein

(

Im∗ g(t)
)

dt. (8)

By virtue of the definition of the function Ein (.) as an integral,
the differentiation returns the integrand of the definition:

dPZ,T

dIm∗
=

BPBm
K

∫ D

0
g(t)

(

1− exp(−Im∗ g(t))

Im∗ g(t)

)

dt. (9)

The functions g(t) in numerator and denominator cancel to give
the simple result

dPZ,T

dIm∗
=

BPBm
KIm∗

∫ D

0

(

1− exp
(

−Im∗ g(t)
)

)

dt. (10)

The choice of function g(t) = 1 − (1 − 2t/D)2 gives a good
representation of the time course of surface irradiance through
the day. With this choice, and with the substitution θ = π t/D,
Equation 10 becomes

dPZ,T

dIm∗
=

BPBm
KIm∗

D

π

∫ π

0

(

1− exp
(

−Im∗ [1− (1− 2θ/π)2]
)

)

dθ .

(11)
Given the symmetry of g(θ) about θ = π/2, we can express
Equation (11) as

dPZ,T

dIm∗
=

BPBm
KIm∗

D

π

{

π − 2

∫ π/2

0
exp

(

−Im∗ [1− (1− 2θ/π)2]
)

dθ
}

.

(12)
At this point it is convenient to make the substitution s =
√

Im∗ (1− 2θ/π). Then,

dPZ,T

dIm∗
=

BPBm
KIm∗

D

π

{

π −
πe−Im∗
√

Im∗

∫

√
Im∗

0
es

2
ds

}

. (13)

Using the definition of Dawson’s integral:

Daw(x) = e−x2
∫ x

0
es

2
ds (14)

with x =
√

Im∗ , we see that Equation (13) can be written as

dPZ,T

dIm∗
=

BPBmD

KIm∗

{

1−
1

√

Im∗
Daw(

√

Im∗ )
}

. (15)

This form is convenient because there exist robust numerical
forms for computing Daw(x).

We want to assess the sensitivity of the daily production
estimates to changes (errors) in the surface irradiance Im0 . Noting
that dIm0 = Ik dI

m
∗ , we can rewrite Equation (15) as

dPZ,T

dIm0
=

BPBmD

KIm0

{

1−
1

√

Im∗
Daw(

√

Im∗ )
}

. (16)

It was shown in Platt and Sathyendranath (1993) that all solutions
to Equation (4) can be written in the canonical form

PZ,T = Af (Im∗ ), (17)
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FIGURE 1 | Relative sensitivity of daily, watercolumn primary production (PZ,T )
to changes in dimensionless irradiance at noon (Im∗ ), non-spectral solution,

Equation (18).

where A = BPBmD/K is a scale factor with dimensions of daily
production, and f (Im∗ ) is a (known) function of the dimensionless
irradiance whose particular form depends on the choice of the
photosynthesis-light curve. Dividing both sides of Equation (16)
by Af (Im∗ ), we obtain

(

dPZ,T

PZ,T

)/(

dIm0
Im0

)

=
1

f (Im∗ )

{

1−
1

√

Im∗
Daw(

√

Im∗ )
}

. (18)

Here, we can see that the relative change in daily primary
production for a given relative change in surface irradiance
depends only on a function of the scaled irradiance.

3. ESTIMATING DAILY, WATER-COLUMN
PRODUCTION

In the previous section, we found an expression for the sensitivity
of primary production to variations in surface irradiance, of an
idealized water column chosen for mathematical tractability. We
next consider the detailed calculation of primary production in
operational mode and the sensitivity of the results to changes in
the surface irradiance.

Various procedures exist for estimating daily, water-column
production by phytoplankton, given information on the two

FIGURE 2 | Relative sensitivity of daily, watercolumn primary production (PZ,T )
to changes in dimensionless irradiance at noon (Im∗ ), spectral results by

numerical integration for different chlorophyll concentrations. Non-spectral

result also shown, for comparison.

photosynthesis parameters PBm and αB (Platt et al., 1977, 1990,
2008; Platt and Sathyendranath, 1988, 1993). All require an
estimate of surface irradiance. Briefly, the differences among
them depend mainly on whether a depth-independent biomass
profile is assumed and on whether the (known) wavelength
dependence of light penetration and photosynthetic response is
included or suppressed. A depth-independent, spectrally-neutral
treatment provides a frame of reference (Sathyendranath et al.,
1989; Platt and Sathyendranath, 1991); it has the canonical
solution given in Equation (17).

At the other extreme, a wavelength-dependent and
non-uniform biomass treatment has no analytic solution
(although Equation 17 remains a reliable guide) and must be
integrated numerically (Sathyendranath et al., 1989; Platt and
Sathyendranath, 1991). This is the preferred calculation, and its
reliability has been demonstrated (Platt and Sathyendranath,
1988). Applications of the various models have been compared
(Platt et al., 1991; Kyewalyanga et al., 1992). In the most detailed
models, the angular distribution of the irradiance is included
(Platt and Sathyendranath, 1988; Sathyendranath and Platt,
1989; Sathyendranath et al., 1989), the light field being separated
into its direct and diffuse components. The direct component is
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FIGURE 3 | Effect on daily, watercolumn production of a 50% reduction in surface irradiance for May 2011. (A) Surface PAR field before reduction; (B) Surface PAR

field after reduction; (C) daily production before reduction of surface light; (D) daily production after reduction of surface light; (E) relative change in primary production

following reduction of surface light; and (F) relative change in primary production following reduction of surface light, normalized to the relative change in surface light.

affected much more strongly by the presence of clouds, and the
diffuse component (which may be one half of the total) will still
be available for photosynthesis even under 100% cloud cover.
For this reason, separation of the forcing irradiance into direct
and diffuse components is a key step in addressing the sensitivity
of water column production to variations in cloud cover.

For the calculations presented here, we use a spectral-
and angular-distribution-resolving primary-production model
(Platt and Sathyendranath, 1988; Longhurst et al., 1995; Platt
et al., 1995; Sathyendranath et al., 1995), forced by remotely-
sensed chlorophyll and light data, and information derived from
ship-based in situ measurements on phytoplankton physiology
and vertical biomass profile parameters. These model parameters
were organized according to season and ecological province,
as in Longhurst et al. (1995). Photophysiological parameter
(PmB and αB) values for defined biogeochemical provinces
were taken from the work of Mélin and Hoepffner (2004).
The vertical structure of the phytoplankton biomass profile
was described by three parameters: the depth of maximum
chlorophyll concentration (Zm), the thickness of the subsurface

peak in chlorophyll concentration (σ ) and the ratio of the
peak chlorophyll concentration to the background chlorophyll
concentration (ρ), also provided on a provincial basis following
Mélin and Hoepffner (2011). To provide a smooth transition
of parameter estimates across province boundaries, a smoothing
filter was applied to the province values of Mélin and Hoepffner
(2004) where values at a given pixel were averaged from a 30 ×

30 pixel box, with a pixel size of 9 km, centered on the pixel of
interest.

The chlorophyll profile parameters were used in conjunction
with the remotely-sensed chlorophyll data from the OC-CCI
v1.0 products (Sathyendranath et al., 2016), to create chlorophyll
profiles for each 9 km pixel. Average sea-surface irradiance
(Photosynthetically-Active Radiation) for May 2011 was taken
from three data sources. The first PAR data source was the NASA
MODIS PAR product (OBPG, 2014b); the second data source
was the NASA MERIS PAR product (OBPG, 2014a); the third
source was a new ESA processing ofMERIS as documented in the
Algorithm Theoretical Baseline Document (ATBD) for the PAR
and Primary Production (PPP) SEOM project.
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In each of the three cases, the remotely-sensed PAR was
used to scale the results of a spectral clear-sky model to
provide spectrally-resolved irradiance for input to the primary
production model. The propagation of spectral light to various
depths in the water column accounted for attenuation by water,
phytoplankton and other colored and scattering substances,
assuming all optical properties were related to chlorophyll
concentration (open-ocean conditions). The profile of light was
then combined with the vertical profile of chlorophyll and
photosynthetic parameters to obtain estimates of depth-resolved
primary production. The calculations were repeated for 12 time
steps during half the day length. The results were then integrated
over time and depth to yield total primary production per day
and per unit area.

4. SENSITIVITY OF PZ,T TO VARIATIONS IN
SURFACE IRRADIANCE

For the non-spectral approximation, with vertically-uniform
biomass profile, the sensitivity of daily, water-column production
is given by Equation (18), shown in Figure 1. The spectral
analog, calculated by numerical integration for the case of
uniform biomass, is shown in Figure 2. The spectral results
lie in the same range as that for the non-spectral case,
varying slightly according to the chlorophyll concentration. The
differences are greater for higher values of chlorophyll and
higher values of normalized irradiance. We see that, in both
spectral and non-spectral calculations, sensitivity is high and
approaches one (corresponding to the case when relative change
in primary production is the same as the relative change in
surface irradiance) when the dimensionless noon-time irradiance
approaches zero. As the scaled noon-time irradiance increases,
the sensitivity decreases, reaching values less than 0.5 for Im∗
greater than 10. For the spectral model, there is an additional
dependence of the answer on chlorophyll concentration: the
sensitivity is less than that of the non-spectral case at low Im∗ , but
the opposite holds for high Im∗ values. The additional dependence
of the results on chlorophyll concentration arises from the
effect of phytoplankton absorption on the spectral quality of the
underwater light field, which is not taken into account in the non-
spectral model.When phytoplankton absorption increases (high-
chlorophyll conditions), the water turns progressively green,
and less suitable for phytoplankton absorption, introducing
a decrease in light available for photosynthesis. The effect
on primary production is equivalent to decreasing Im∗ in a
non-spectral model. For chlorophyll concentration less than 1
mgm−3, which would be typical of most open-ocean waters, the
spectral and non-spectral models yield results that are quite close
to each other, such that the analytical solution may be taken to be
a reasonable guide to realistic open-ocean conditions.

In global-scale computations, in addition to the spectral
effects, we also have to explore the effect of vertical structure
in chlorophyll concentration. We have estimated the global-
scale effect of variations in surface irradiance as follows. We
selected the month of May, 2011 to illustrate the results. First,
we calculated primary production using a detailed, spectral

model integrated numerically (Figure 3C), forced by the typical
irradiance at each pixel for the month concerned (Figure 3A),
using a spectral model, and with the photosynthesis parameters
and chlorophyll profile parameters assigned according to
provinces and season, as noted earlier. Then, we repeated the
calculation (Figure 3B), but with irradiance only one half of that
in the previous calculation (Figure 3D). The difference between
values of PZ,T calculated for the two irradiances is a measure of
the sensitivity of the daily, water-column production to changes
in surface light (Figure 3E) and the relative sensitivity (change in
production normalized to change in surface irradiance) is shown
in Figure 3F.

The results, which vary with region (especially with latitude)
are not symmetrical about the equator: they represent Spring
in the northern hemisphere, but Winter in the southern
hemisphere, with corresponding changes to the surface light
field (Figure 3A). The results also reflect the regional assignment
of photosynthesis parameters. The relative reduction in daily,
water-column production lies generally in the range from
30 to 40%, consequent on halving the surface irradiance
(Figure 3E).The sensitivity of daily production to changes in
surface irradiance is typically in the range from 60 to 80%
(Figures 3F, 4), showing that the relative change in primary
production is almost always less than the relative change in
incoming solar radiation. The relative effect is stronger in areas
with low surface irradiance, consistent with the diagnosis of the
analytical solution.

Systematic errors may be introduced into the calculation of
primary production through the choice of the surface field of
photosynthetically-active radiation (PAR). We have examined
this possibility by comparing the results arising from use of

FIGURE 4 | Histogram of relative change in daily production for a 50%

reduction in surface irradiance on all sea pixels in Figure 3E.
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MERIS (Figures 5A,C) and MODIS (Figure 5E) fields of PAR
(Figures 5B,D,F). We find that the differences in surface PAR
between the two data streams are usually in the range from
5 to 20% (Figure 5E), implying a potential systematic error in
primary production of some 15% or less arising from the choice
of PAR field. Though these differences may be small, they are
systematic; their effect could be significant in studies associated
with climate change: when results from multiple sensors are
merged to create a long time series, differences between
PAR data from individual sensors may lead to an erroneous
conclusion on trends in primary production, which is to be
avoided.

5. DISCUSSION

In this paper, we have examined the sensitivity of modeled
primary production to changes in the solar radiation available
at the sea surface. Using an analytical solution derived for a
non-spectral model assuming uniform chlorophyll concentration

in the water column, using a spectral model with uniform
chlorophyll concentration, and finally using a spectral model
with non-uniform chlorophyll profile, we have demonstrated
that the relative changes in primary production are likely to
be always less than the relative change in surface irradiance.
The effect of surface light on primary production decreases
as the scaled surface irradiance increases. In the non-spectral
model, the only parameter that affects the sensitivity is the
photoadaptation parameter Ik. In the spectral model, the
chlorophyll concentration has an additional modulating effect on
the sensitivity.

In the light of these results, how might we enhance the
management of primary production data? Given an archived
set of photosynthesis-light parameters what is the most useful
information that could be archived about the corresponding
phytoplankton production? We suggest the following: First,
calculate the phytoplankton production under the climatological
value of the clear sky irradiance for the day number and
latitude concerned. This represents the maximum phytoplankton
production that could be achieved with the given photosynthesis

FIGURE 5 | Systematic differences in surface PAR arising from choice of data stream, exemplified by difference between MERIS and MODIS streams for May 2011.

(A) PAR field from MERIS using ESA protocol (test product); (C) PAR field from MERIS using NASA product; (E) PAR field from MODIS Aqua using NASA product; the

differences between the products are shown in (B,D,F).
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FIGURE 6 | Schematic showing principal factors affecting spectral irradiance

field under water, and consequences for watercolumn production. The

underwater light field is the resultant of a complex and reciprocal interplay

between physics and biology.

parameters on that day of the year at that latitude. Next,
calculate the production under 100% cloud cover, representing
the minimum production that could be achieved under the
prevailing conditions. These two calculations would establish the
range of possible values of phytoplankton production expected
at the relevant time and place under most of the possible values
of surface irradiance. In fact, because the surface irradiance
has both diffuse and direct components, 100% cloud cover will
correspond to a reduction in Im0 of nominally 50% (loss of direct
component); all light reaching the sea surface will be in the diffuse
component. The effect on daily production of halving the surface
irradiance varies with region and season. Taking 50% as a rough
estimate of the scope for variation in surface irradiance at a
given time and place, we have shown that the implied relative
variation in daily, water column is roughly 30–40%. The relative
sensitivity, as given by Equation (18), will be independent of
the magnitude chosen for the reduction in surface irradiance.
A further systematic difference of about 15% may arise from
the choice of data source for the surface irradiance field,
indicating the value of improving the satellite-derived estimates
of PAR.

The most useful particular value of phytoplankton production
would be that at the climatologically-averaged value of surface
irradiance at the time and place concerned. This average
would take into account the effect of latitude on day length
and also the local effect of cloud cover. As an example,
for the Northwest Atlantic Ocean, we have developed from
the SeaWiFS irradiance an empirical function that yields the
climatological total daily irradiance as a function of latitude

and day number (Platt et al., 2009). If longitudinal differences
in cloud cover are to be taken into account, one could use
the climatological data on cloud cover to estimate the relevant
irradiance.

Paradoxically, the estimate of phytoplankton production
made with the irradiance measured at the same time as the
parameters themselves were measured (if available) is often the
least useful (lowest generality) of all the estimates. Of course, the
matter depends on the question being addressed. If the goal is to
close a local carbon budget or a local energy budget over a short
time period including the day of measurement, then the estimate
of phytoplankton production made with the actual irradiance for
that particular day would be the one to choose.

However, we expect that most applications of the archived
data would be more general than this. In such cases, we would
seek estimates of phytoplankton production that were suitably
general, and the options we have indicated above would probably
be preferred.

The light field in the sea is the resultant of a complex and
reciprocal interplay between physics and biology (Figure 6).
The effect on daily, water-column production consequent on
changes in irradiance at the sea surface depends, at least, on
the processes shown in Figure 6. A guide to the scale of the
effect (not accounting for spectral dependence) is provided by
Equation (18). Spectral effects can be parameterized as a function
of chlorophyll concentration (Figure 2).
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The differences among phytoplankton carbon (Cphy) predictions from six ocean color

algorithms are investigated by comparison with in situ estimates of phytoplankton

carbon. The common satellite data used as input for the algorithms is the Ocean

Color Climate Change Initiative merged product. The matching in situ data are derived

from flow cytometric cell counts and per-cell carbon estimates for different types of

pico-phytoplankton. This combination of satellite and in situ data provides a relatively

large matching dataset (N > 500), which is independent from most of the algorithms

tested and spans almost two orders of magnitude in Cphy. Results show that not a single

algorithm outperforms any of the other when using all matching data. Concentrating

on the oligotrophic regions (Chlorophyll-a concentration, B, less than 0.15 mgChlm−3),

where flow cytometric analysis captures most of the phytoplankton biomass, reveals

significant differences in algorithm performance. The bias ranges from −35 to +150%

and unbiased root mean squared difference from 5 to 10 mgCm−3 among algorithms,

with chlorophyll-based algorithms performing better than the rest. The backscattering-

based algorithms produce different results at the clearest waters and these differences

are discussed in terms of the different algorithms used for optical particle backscattering

coefficient (bbp) retrieval.

Keywords: phytoplankton carbon, carbon-to-chlorophyll, ocean color remote sensing, picophytoplankton, flow

cytometry, optical water class, algorithm uncertainty

1. INTRODUCTION

One of the standard products from ocean-color remote sensing is the concentration of chlorophyll-
a (B) in the surface layers of the ocean, which is an estimation of phytoplankton abundance. This
product has proven to be extremely useful for various applications (e.g., Platt and Sathyendranath,
2008). More recently, there has been a growing interest in monitoring the standing stock of
phytoplankton in carbon units (CEOS, 2014), in addition to chlorophyll units. There are many
reasons for this interest, which include calculation of primary production using carbon-based
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models (Behrenfeld et al., 2005; Westberry et al., 2008);
estimating phytoplankton loss rates (Zhai et al., 2008, 2010);
comparison with estimates of phytoplankton biomass in carbon
units from marine ecosystem models (Dutkiewicz et al., 2015);
and establishing the budget of the pools of carbon in the
ocean (CEOS, 2014), their turnover rates (Casey et al., 2013),
and their exchanges with the atmospheric and terrrestrial
domains (CEOS, 2014). With increasing appreciation of the
different roles of various phytoplankton functional types in the
oceanic biogeochemical cycles (Le Quéré et al., 2005), there is
a corresponding need to know the pools of carbon associated
with the different phytoplankton types, rather than just the total
phytoplankton carbon.

A handful of algorithms have been proposed for deriving
phytoplankton carbon from satellite data. These include
methods based on particle back-scattering coefficient (bbp) at
a single wavelength (Behrenfeld et al., 2005; Martínez-Vicente
et al., 2013); empirical relationships based on chlorophyll
concentration (Sathyendranath et al., 2009;Marañón et al., 2014);
and methods based on allometric considerations combined with
either the spectral slope of the particle back-scattering spectrum
(Kostadinov et al., 2009, 2016) or with the phytoplankton
absorption characteristics (Roy et al., 2017). Of these, the
method proposed by Martínez-Vicente et al. (2013) dealt with a
fraction of the phytoplankton community (diameter < 20µm),
whereas those of Behrenfeld et al. (2005), Sathyendranath
et al. (2009), and Marañón et al. (2014) dealt with the whole
phytoplankton community. The methods based on allometric
structure (Kostadinov et al., 2009, 2016; Roy et al., 2017), on the
other hand, have the advantage of being able to target the whole
of the phytoplankton community, and partition phytoplankton
carbon among any user-defined size-intervals. Comparison of
these algorithms is not straightforward, because of the differences
in approaches used and the products obtained. Furthermore,
they have been subjected to varying degrees of validation, with
differences in the number of validation points used and in
their regional and seasonal coverage. Another difficulty lies
with having access to in situ data in sufficient quantity and
comprehensive enough for algorithm assessment.

Various methods for in situ measurements of phytoplankton
carbon in the laboratory or in the field have been reviewed by
Casey et al. (2013). Some of the in situ methods require a proxy
measurement, which is then calibrated against phytoplankton
carbon. Subsequently, the carbon concentration is inferred from
measurements of the proxy, which would typically be easier to
measure than the carbon concentration itself. The proxies include
adenosine triphosphate (ATP) (Sinclair et al., 1979); the refractive
index of phytoplankton cells (Stramski, 1999); and the forward
light scatter by phytoplankton cells in a flow cytometer (Casey
et al., 2013). Redalje and Laws (1981) used chlorophyll-a labeling
and showed that the specific activity of carbon in chlorophyll-
a became equivalent to that of total phytoplankton carbon in
incubations of 6–12 h, and so chlorophyll-a labeling could be
used to infer phytoplankton carbon and growth rates. Graff
et al. (2015) used flow cytometer cell sorting (Graff et al., 2012)
to measure phytoplankton carbon in sorted samples, thereby
avoiding contamination of results by non-pigmented particles.

An accepted approach to estimating phytoplankton carbon at sea
is to use a flow-cytometer to count phytoplankton cells sorted
into different types. Using laboratory-based estimates of carbon
per cell and typical (or measured mean) cell diameters for those
phytoplankton types, the total carbon is computed by adding
the carbon contribution of each phytoplankton cell type. This
is obtained by multiplying the number of cells enumerated with
the flow cytometer by the carbon per cell (DuRand et al., 2001;
Oubelkheir et al., 2005; Martínez-Vicente et al., 2013). Such
methods have an upper limit on measured cell size, depending
on how the flow-cytometer is set up (typically D < 50µm).

We present in this work a comparison of six different
algorithms for estimating phytoplankton carbon from space. The
algorithms have been selected as representative of all existing
state-of-the-art approaches. The comparisons are based on a
newly-compiled, global, flow-cytometric dataset that is used to
compute the in situ picophytoplankton carbon, matched with
satellite data from the same location, and for the same day. The
performance of these products is explored in different optical
water classes. The comparison is limited to picophytoplankton,
because the flow-cytometric database dealt largely with this size
class. The objective of the comparison is to learn more about
the advantages and limitations of the algorithms, rather than
to rank them. We expect that the results will allow a more
informed use of phytoplankton carbon products from satellites,
for example, when they are compared with model outputs, and
serve to identify areas where improvements are needed and
potential avenues for achieving them. The analysis also brings to
light some of the limitations of the in situ database, and highlights
areas where progress is needed, to enable better validation of
satellite data.

2. METHODOLOGY

2.1. In Situ Dataset
As part of this study, more than 12,000 observations of
picophytoplankton abundance have been collated from
coastal and oceanic regions (Table 1), building upon a dataset
compiled by the modeling community through MAREDAT
(http://maremip.uea.ac.uk/maredat.html) (Buitenhuis et al.,
2012). Additional data come from a long-term observation
program, the Atlantic Meridional Transect (AMT); as well as
recently available data collected independently during AMT-22
and in the Pacific (Graff et al., 2015) and from other regions in
the Atlantic ocean (Taylor et al., 2013). The dataset assembled
consists of cell counts (in cells per milliliter), from water samples
originating between 0 and 200 m depth, and collected in the
period between 1997 and 2014, to match satellite observations
available. Flow cytometry analysis of the samples provides cell
abundances segregated into different types of phytoplankton.
At this stage, the database consisted of 12,431 sample entries.
Only the picophytoplankton cells (<2µm) were available in the
MAREDAT dataset, which were separated into Prochlorococcus
spp., Synechococcus spp. and picoeukaryotic phytoplankton.
For consistency, only information on the same phytoplankton
types were extracted from the additional data sources (Zubkov
et al., 1998; Tarran et al., 2001, 2006; Taylor et al., 2013;
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TABLE 1 | Summary of in situ data.

Area Number of in situ

observations

Selected

match-ups

(Total)

Cphy (mgm−3)

(Match-ups

median ± IQR/2)

References

Pacific and

Atlantic Ocean

2 (57) 18.3 ± N.A. Graff et al., 2015

Atlantic Ocean

(AMT)

174 (5,860) 10.6 ± 4.5 Zubkov et al.,

1998; Tarran et al.,

2001, 2006

Western English

Channel (WCO)

0 (1,196) N.A Tarran, 2015;

Tarran and Bruun,

2015

Atlantic Ocean 48 (224) 11.7 ± 3.5 Taylor et al., 2013

Global Oceans 333 (5,153) 12.1 ± 5.9 MAREDAT

(Buitenhuis et al.,

2012)

All data 557 (12,490) 11.5 ± 5.3 This study

Graff et al., 2015; Tarran, 2015; Tarran and Bruun, 2015) (see
Table 1). The carbon concentration (Cphy, in mgCm−3) for each
phytoplankton group (i) and for each sample (j), Cphy(i, j), was
calculated as follows:

Cphy(i, j) = 10−6
× N(i, j)ε(i) (1)

where N(i, j) is cell abundance (cellmL−1) for each of the three
phytoplankton types (i = Prochlorococcus spp., Synechococcus
spp. or picoeukaryotic phytoplankton) at sample j; and ε(i)
is cellular carbon per cell (fgC cell−1) for each of the
picophytoplankton types. The factor 10−6 converts mL to m3

and fgC to mgC. We used the mean ε(i) for each phytoplankton
type proposed by Buitenhuis et al. (2012): 60 fgC cell−1 for
Prochlorococcus spp., 154 fgC cell−1 for Synechococcus spp. and
1319 fgC cell−1 for picoeukaryotic phytoplankton. These values
of ε(i) are comparable to values from the Bermuda Atlantic Time-
series Study (BATS) (Casey et al., 2013), for Prochlorococcus spp.
and Synechococcus spp., whereas picoeukaryotic phytoplankton
ε(i) values are lower than in BATS. The total picophytoplankton
carbon concentration per sample j, i.e., Cphy(j) is the sum of the
contributions from each picophytoplankton type (i.e., Cphy(i, j)),
and will be hereafter referred to as Cphy at a given location and
depth.

The choice of phytoplankton types included in this
computation, as well as the parameters used for the conversion
to carbon, matches the modeling community approach
as represented in Buitenhuis et al. (2012). The choice of
phytoplankton types is such that phytoplankton types with
diameter >2µm are not taken into account. Furthermore,
the choice of a mean carbon concentration per cell for each
phytoplankton type does not permit accounting for any
variations in size or cellular carbon spatially or temporally
for each type of phytoplankton. To test our choice of carbon
conversion parameters we compared direct measurements of
Cphy with estimates computed using the conversion factors
above. In samples from the AMT-22 (N = 15) (Graff et al., 2015),

the slope of the regression between direct measurements of Cphy

and computed Cphy, was 0.8 (r2 = 0.6, p< 0.05). According to
this result, the estimates of picoplankton Cphy in our dataset are
significantly correlated with direct estimates of phytoplankton
carbon, and could be an overestimate of direct observations
of Cphy, which include nanophytoplankton, although a larger
sample is required to support this conclusion.

2.2. In Situ and Satellite Match-up
Selection
The in situ database described above was matched with merged
ocean-color satellite data from the Ocean Color Climate Change
Initiative (OC-CCI) (Sathyendranath et al., 2012). These merged
products were used to maximize the possibility of finding
matching in situ data as well as to use a set of common inputs
to the different algorithms. The OC-CCI version 2 data had a
daily sinusoidal projection (binned) and a 4 km spatial resolution.
These satellite data were used as inputs for Cphy algorithms: total
B from OC4v6, bbp from the Quasi-Analytical Algorithm (QAA)
v5 (a modification to v4 in Lee et al., 2002, 2007, but that does not
include Raman scattering, Westberry et al., 2013; Lee and Huot,
2014). Second, the water class membership (Moore et al., 2001,
2009; Jackson et al., 2017).

The procedure for match-up selection was the same as that
used for particulate organic carbon (POC) data (Evers-King et al.,
2017). The day of year the in situ sample was collected was
matched with the same day of year from the merged satellite
products. Then all relevant data were extracted from a 3× 3 pixel
set with the sample location at the center. The number of valid
data, within the 3 × 3 grid, and mean and standard deviation of
the valid points were recorded for each computed Cphy product.
The 3 × 3 grid was used to identify where sufficient satellite data
were available. In this dataset only 11 matched points had 3 valid
pixels or less. The Cphy algorithms were applied to the central
pixel of the satellite matched up data. The match-up process
reduced the sample size considerably. Further reduction came
from depth-averaging (between 0 and 10 m) the Cphy profiles
that matched the satellite data, and ignoring the deeper samples,
leaving 647 data points. Finally, to remove outliers, the top and
bottom 2 percentile were removed from the dataset, leaving
N = 557 for the analysis. The geographical distribution of match-
up database for the picophytoplankton carbon concentration,
Cphy, is given in Figure 1. The match-up dataset usable for the
algorithm comparison was only about 5% of the inital data
(Table 1). It is worth emphasizing that the match-up data set has
not been used for the calibration or development of most of the
algorithms compared (see section 4).

2.3. Ocean-Color Phytoplankton Carbon
Algorithms
The following section describes the six algorithms compared
in this exercise. All the phytoplankton algorithms were
implemented using as input data the appropriate OC-CCI
product for consistency and to isolate the effects of the different
algorithms. Table 2 provides a comparison of the input data
and the phytoplankton size range that is included in the
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FIGURE 1 | Geographical distribution of the match-up dataset (N = 557) used for algorithm testing. Color scale is concentration of picophytoplankton, Cphy in

mgCm−3.

TABLE 2 | Summary of Cphy algorithms main characteristics and median values predicted for the in situ match-up database (N = 557).

Model Algorithm type Input (wavelength) Output Cphy (Median ± IQR/2) References

A Chlorophyll-based B All sizes 16.8 ± 6.7 Sathyendranath et al., 2009

B Chlorophyll-based B All sizes 9.2 ± 5.2 Marañón et al., 2014

C Backscattering-based bbp (440) All sizes 18.7 ± 5.2 Behrenfeld et al., 2005

D Backscattering-based bbp (470) D < 2 µm 20.9 ± 6.4 Martínez-Vicente et al., 2013;

modified, see section 2.3.2

E Allometric conversion bbp spectral slope from the 490, 510,

and 555 nm bands, and bbp at 443 nm

0.5 < D < 2 µm 5.6 ± 0.8 Kostadinov et al., 2009, 2016

F Allometric conversion aphy (676) and B D < 2 µm 5.0 ± 2.2 Roy et al., 2017

Chlorophyll concentration, B, in mgChlam−3; optical particulate backscattering coefficient, bbp, in m−1; phytoplankton absorption coefficients aphy , in m−1; pico phytoplankton carbon
concentration, Cphy , in mgC m−3.

outputs of each algorithm. These are important characteristics
of the algorithms, required for the interpretation of the results.
For phytoplankton carbon, Cphy in mgCm−3, six products
were derived and they are briefly described in this section.
According to their common characteristics, they can be grouped
into chlorophyll-based, backscattering-based and allometric
algorithms.

2.3.1. Chlorophyll-Based Algorithms
This family of algorithms use chlorophyll concentration as
an input, B with units of mgChlam−3. Chlorophyll in this
study is obtained from OC-CCI merged dataset with the
algorithm OC4v6, which is a band switching algorithm, mainly
a fourth-order polynomial relationship between remote sensing
reflectance in the blue and green bands. The two algorithms in
this group use the same input and have a similar formulation,
however, the assumptions made in their construction and
hence their definition of Cphy are different. Algorithm A
(Sathyendranath et al., 2009) was developed from an empirical

relationship between in situ measurements of total particulate
carbon and B. For this model, Cphy in Equation (2) below is an
upper bound on the total phytoplankton carbon:

Cphy = 65× B0.63. (2)

Algorithm B (Marañón et al., 2014) was also developed from an
empirical relationship using in situ measurements of B, and not
originally designed as an algorithm for ocean color applications.
However, the estimates of total phytoplankton carbon originated
from applying a conversion factor to microscope (counting cells
with diameter, D > 5µm) and flow cytometry (D < 10µm)
phytoplankton cell counts. This model is formulated in
Equation (3) as:

Cphy = 62× B0.89. (3)

Because of the difference in their definition of Cphy, Algorithm
A and Algorithm B have been considered separately in our
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analysis. A priori, the expectation is that both chlorophyll-
based algorithms, using total chlorophyll concentration as input
data, will overestimate the picophytoplankton carbon from
our in situ match-up dataset, since they are both designed
to calculate total phytoplankton carbon, rather than just the
picophytoplankton in our dataset. Further, it is also worth noting
that the conversion factors used to compute phytoplankton
carbon from cell abundance in Algorithm B are different to the
ones used in our in situmatch-up dataset.

2.3.2. Backscattering-Based Algorithms
Some semi-empirical algorithms use the (wavelength dependent)
optical particulate backscattering coefficient, bbp in m−1, to
estimate Cphy. The backscattering coefficient in this study is
obtained from the OC-CCI merged dataset by applying the
algorithm by the Quasi-Analytical Algorithm (QAA) v5 (a
modification to v4 in Lee et al., 2002, 2007). In essence, the
QAA first computes bbp(555), from combining remote sensing
reflectance at 555 nm with an empirical relationship between
remote sensing reflectance ratios and the total absorption
coefficient and the backscattering of pure seawater (modeled).
Then, to propagate the bbp(555) at other wavelengths, the
algorithm uses a band ratio (again blue to green bands) to
compute the backscattering spectral slope. The same QAA bbp
product is used for both backscattering based Cphy algorithms,
but at different wavelengths. Algorithm C (Behrenfeld et al.,
2005) uses bbp(443) as an input:

Cphy = 13000× (bbp(443)− 0.00035). (4)

As this algorithm was developed from MODIS-Aqua (Moderate
Resolution Imaging Spectroradiometer) ocean-color data, and
443 nm is a native OC-CCI band, no spectral adjustment
is therefore needed. However, it is worth noting that the
algorithm was developed originally using the GSM algorithm
(Garver and Siegel, 1997; Maritorena et al., 2002; Siegel et al.,
2002), but in this test, the bbp input come from the QAA
algorithm. The Cphy derived with this algorithm includes all
the phytoplankton size ranges. Algorithm D (Martínez-Vicente
et al., 2013) is another semi-empirical algorithm, developed
from the relationship between in situ flow cytometry-based
carbon and bbp(470), but is included in the comparison
with some changes. The first modification was to re-compute
the coefficients in the original equation by using the same
computation of picoplankton as the one used in this work,
which meant ignoring the nanoeukaryotes, cryptophytes and
coccolithophorids contributions to the picoplankton carbon and
use the same carbon to cell conversion factors as in this study
(i.e., those of MAREDAT; Buitenhuis et al., 2013). This re-
calculation led to lower (pico)phytoplankton carbon estimates
which were, on average, 27% less than the published values of
phytoplankton carbon (from pico- and nano-plankton) used in
Martínez-Vicente et al. (2013).When the new picophytoplankton
Cphy estimate was used with the original in situ bbp data, the
resulting fit was:

Cphy = 18000× (bbp(470)− 43 ∗ 10−5),N = 70. (5)

This equation explains considerably less variance in the observed
data (r2 = 0.4) than the r2 of 0.89 reported in the original
work. However, it makes the definition of Cphy by this model
directly comparable to the in situ data. The second modification
was to adjust the backscattering coefficient wavelength from the
available value, 490 to 470 nm. To do so, the spectral slope of the
bbp from the OC-CCI data was obtained by doing an ordinary
least squares fit to the log10 transformed data and calculated the
new bbp(470) needed for Equation (5).

2.3.3. Allometric Type Algorithms
These algorithms belong to a family of algorithms that use
optical properties to compute phytoplankton size structure and
then convert it into biomass (Mouw et al., 2017). Algorithm E
(Kostadinov et al., 2016) retrieves the absolute and fractional
phytoplankton carbon biomass in three phytoplankton
size classes (or, approximately equivalent − phytoplankton
functional types) − picophytoplankton (0.5–2µm in diameter),
nanophytoplankton (2–20µm) and microphytoplankton
(20–50µm). The algorithm uses retrievals of the particle size
distribution (PSD) to estimate particle volume. Note that the
PSD is estimated for all particles in suspension in the water.
Particle volume is then converted to carbon concentrations using
a compilation of existing allometric relationships between size
and carbon content of phytoplankton cells (Menden-Deuer and
Lessard, 2000). Derived carbon concentration is then divided by
3 to estimate the living phytoplankton carbon fraction. The PSD
retrievals themselves are based on a PSD algorithm (Kostadinov
et al., 2009), which relates the spectral slope andmagnitude of the
backscattering coefficient spectrum to the underlying parameters
of an assumed power-law PSD, via look-up tables (LUTs)
constructed using Mie theory modeling. In the implementation
used here, the input backscattering spectrum comes from the
standard QAA products of the OC-CCI dataset, which are
derived using Lee et al. (2002) algorithm, as summarized above.
This is different from the original implementations (Kostadinov
et al., 2009, 2016), where the Loisel and Stramski (2000)
algorithm was used to retrieve spectral bbp. The PSD parameters
retrieved are the power-law slope (ξ ) and the scaling parameter
(i.e., differential particle number concentration at a reference
diameter of 2µm,No, [m

−4]). Kostadinov et al. (2016) applied an
empirical correction to the PSD scaling parameter No obtained
from the model LUT, to improve absolute phytoplankton carbon
concentration estimates.

A further allometry-based method, Algorithm F (Roy et al.,
2017), uses chlorophyll concentration and the absorption
coefficient of phytoplankton at 676 nm, aph(676), to compute
phytoplankton carbon. In this algorithm, the exponent of the
phytoplankton size spectrum (ξ ) is first computed from the
specific-absorption coefficient of phytoplankton at 676 nm,
a∗
ph
(676) using a method developed by Roy et al. (2013). This

algorithm uses as input B from OC4v6 and aph(676) from
QAA, both standard products in the OC-CCI dataset. The
estimated exponent of the size spectrum ξ and the allometric
relationships between the cellular content of phytoplankton
carbon (Ccell) and cell volume (Vcell) reported by Menden-
Deuer and Lessard (2000) are then used to compute the
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concentration of phytoplankton carbon (Ctotal, in mgCm−3)
contained in the cells within any specified diameter range. To
do so, the allometric parameters corresponding to the mixed
populations of phytoplankton are derived from the allometric
relationships found for individual groups of phytoplankton, as
reported in Menden-Deuer and Lessard (2000), by performing
linear regression. The derived allometric relationship is used
then to compute the magnitude of the carbon-to-chlorophyll
ratio (χ), using the derived allometric expressions for the
concentrations of chlorophyll and phytoplankton carbon,
Ctotal. Finally, phytoplankton carbon for the specified size
range is computed as the product of χ and satellite-
derived chlorophyll concentration (for more details see Roy
et al., 2013, 2017). The allometry-based algorithms E and
F were used to compute picophytoplankton concentration
within a diameter range 0.2–2.0 µm, which is directly
comparable with the size range included in the matching in situ
database.

In summary, each method is thus based on a satellite
measurement that provides underlying variability in the resulting
Cphy (reflectance ratio or analytically-derived backscatter) which
is then combined with selected empirical relationships that scale
those measurements to Cphy (using either linear or non-linear
relationships and sometimes including more than one step, such
as via B). The strength of this study lies in the use of the
OC-CCI satellite dataset as a common source of inputs for
all the algorithms, which removes sources of uncertainty from
other parts of the satellite processing. A limitation, however,
comes from the differences in the definition of the Cphy for
each algorithm (Table 2). It is expected that the algorithms
which compute total Cphy (i.e., Algorithms A, B, and C) will
be most comparable to the in situ data when the contribution
to the phytoplankton Carbon by nano and picoplankton is not
significant.

2.4. Statistical Metrics and Their
Contribution to the Study
Ranking of algorithms according to their performance is a
classic exercise for the ocean-color community, that has evolved
from comparisons of chlorophyll algorithms (O’Reilly et al.,
1998) to more complex and comprehensive approaches recently
(Brewin et al., 2015; Kostadinov et al., 2017). Typically, a
battery of statistical metrics is used to construct an index of
overall performance against a set of matched data with in situ
observations (Brewin et al., 2015). In this exercise, however, we
do not use a scoring system to rank algorithms, since one of the
aims of this work is to provide an overall idea of the current
accuracy of the phytoplankton Carbon product from a group of
algorithms. The Kolmogorov-Smirnov test for normality of the in
situmatch-up data showed a significant deviation from normality
for log10 transformed and un-transformed data and the residuals
(p < 0.001). Therefore, statistical metrics that assume normality
would be less reliable. For completeness, the statistical tests were
computed for log10 transformed data, using parametric tests;
and for un-transformed data, using non parametric, rank-based,
statistics. Statistical metrics computed were:

• Pearsons correlation coefficient for log10 transformed data,
and Spearman’s correlation for un-transformed data (rp and
rs respectively),

• Root mean square differences (RMSD, 9),
• Signed average bias (δ),
• Median absolute percentage deviation between predictions

and observations, (MAPD in %) was an estimate of bias and
precision was estimated as the interquartile range (IQR) of the
absolute percentage deviation for the untransformed data.

• Center pattern root mean square differences for log10
transformed and un-transformed data (1), and

• Slope and intercept (S, I) from a Type-II linear regression
(Reduced Major Axis) for log10 transformed and un-
transformed data.

To provide an indication of the stability of the statistics and
to compute confidence intervals on them, bootstrapping (Efron,
1979; Efron and Tibshirani, 1993) with random re-sampling
and replacement was used to construct 1,000 different datasets
from which confidence intervals were computed for some of
the statistical metrics above. These metrics were computed for
all the algorithms tested against the match-up dataset as a
whole and, in adition, they were also computed after segregating
the match-up dataset according to the dominant water class
at the central match-up pixel. Because of the nature of the
ocean color CCI satellite data and the Cphy algorithms, it is
expected that algorithm performance will degrade toward more
turbid environments (water classes 8 and over). Furthermore, the
statistical results per water class provided a measure of dispersion
of the phytoplankton Carbon product among algorithms,
describing in which optical environments the algorithms show
greater agreement. The statistics per water class were used to
produce uncertainty maps (RMSD and bias). To generate the
uncertainty maps, the optical class memberships at each pixel,
and the per-class uncertainty values for each class were used to
produce a weighted average uncertainty value for the pixel, with
the weighting function being provided by the class membership.
This is the method followed by the OC-CCI and described fully
in Jackson et al. (2017).

3. RESULTS

3.1. Distribution of in Situ Data and
Accuracy of Algorithms
The sources and geographic distribution of the in situ data, as well
as the corresponding median values of the picophytoplankton
carbon data are summarized in Table 1. The spatial distribution
of the match-ups (Figure 1) shows their limited coverage of the
oceans, with most of the data (71%) located in the Northern
Hemisphere and from the Atlantic Ocean. The overall median
value of Cphy from the match-up database was 11.7 ± 5.3

mgCm−3 (median ± IQR/2), with values ranging from 1.7 to
60.2 mgCm−3. As a comparison,chlorophyll concentration (B)
from the coincident satellite data was 0.12 ± 0.08 mgChlam−3,
ranging from 0.01 to 3.53 mgChlam−3. The median values of
Cphy from the algorithms applied to the matching data (Table 2)
were not significantly different to the Cphy in situ (Mann-Witney
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test, N = 557, p < 0.05). Relative frequency histograms of these
data (Figure 2) however, show some bias. The peaks of the
histogram of the chlorophyll-based algorithms (Algorithms A
and B) were closest to the in situ; the backscattering-basedmodels
(Algorithms C and D) were double the median of in situ and
allometric algorithms (Algorithms E and F), were half the in situ
median value (Figure 2). The distribution spread of chlorophyll-
based algorithms were about the same or wider than the in situ
(C.V. between 40 and 56%), with backscattering and allometric
algorithms having narrower distributions (C.V. lower than 30%).

Figure 3 shows the results from the algorithm estimates
of Cphy against in situ derived estimates of Cphy and the
relevant statistical metrics are in Table 3. All the algorithms
showed different predictions of Cphy, but as expected, there
were commonalities among models that shared the same
formulation. For example, both chlorophyll-based algorithms
(Figures 3A,B) presented an elongated cloud with a weak but
positive (∼0.6) and significant correlation with in situ data,
and stayed mostly along the 1:1 line, with slopes close to 1;
whereas both backscattering-based algorithms (Figures 3C,D),
had weaker correlations (∼0.4) and, although the slopes where
also close to 1, the data cloud does not capture the lower Cphy

measurements. Contrary to the other two groups of algorithms,
the allometric-based do not share a formulation, hence their
results (Figures 3E,F) differ significantly among them.

The statistical metrics (Table 3) provide a range of values
among the algorithms tested, showing that there is not a clearly
superior performance of a single algorithm on all metrics.
The bias (δ) ranged from 3.5 mgCm−3 for Algorithm B
(Marañón et al., 2014) to 15 mgCm−3 for the Algorithm
D (Martínez-Vicente et al., 2013) as modified in this work.
Chlorophyll and backscattering based algorithms had a positive
bias, less than 15 mgCm−3, whereas allometric algorithms had

a negative bias, less than 7 mgCm−3. The un-biased RMSD
(1), which gives an idea of the dispersion of the predictions,
ranged from 8.9 mgCm−3 for Algorithm E (Kostadinov et al.,
2016) to 29 mgCm−3 for Algorithm D, (Martínez-Vicente et al.,
2013) as modified in this work. The lowest median absolute
percentage difference (MAPD), a measure of accuracy, for the
untransformed data was for Algorithm B (Marañón et al.,
2014), in agreement with the bias indicator for log and non-log
transformed data. The inter-quartile range of the MAPD (IQR), a
measure of precision of the algorithm, was lowest for AlgorithmE
(Kostadinov et al., 2016), and coincided with another indication
of dispersion (1) in the non-log statistics, but differed for the
log-transformed data.

Overall, chlorophyll-based algorithms had higher correlation
and indicators of lower bias (i.e., δ, MAPD), whereas allometric
algorithms had indicators of lower dispersion (i.e., 1, IQR of
MAPD). Between algorithms, there was a factor 4 of difference
between the maximum and minimum predictions from the
algorithms for all matchups pooled together as a median (i.e., the
median of the fractional difference between the minimum and
the maximum predictions by the algorithms in each match-up
point).

An additional way to assess model performance is to study
their emergent properties (de Mora et al., 2016). Here we
have compared the in situ and the algorithm derived Cphy to
the chlorophyll concentration, B (standard OC4v6 OC-CCI-
product) for the match-ups (Figure 4 and Table 4), to investigate
the behavior of the Cphy:B ratio. Figure 4A displays the positive
correlation between the satellite derived B (for the whole of
the phytoplankton assemblage) and the in situ derived Cphy

for the picophytoplankton fraction only, over more than two
orders of magnitude of chlorophyll concentration. Because of
the mismatch between the particle assemblage in B and Cphy,

FIGURE 2 | Relative frequency distribution of Cphy of the in situ data compared with the algorithms outputs. Note change in the scale of y-axis for Algorithms C and E.
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FIGURE 3 | Density plot of in situ vs. algorithm Cphy from the match-up database (N = 557). Black solid line is the 1:1 line and blue dashed line is the Type II linear

regression (Reduced Major Axis) fitted to the log10 converted data. (A) Sathyendranath et al. (2009), (B) Marañón et al. (2014), (C) Behrenfeld et al. (2005),

(D) Martínez-Vicente et al. (2013) modified, (E) Kostadinov et al. (2009, 2016), (F) Roy et al. (2017).

the overall values reported for the Cphy:B ratio are smaller
than they would be if the ratio had been derived from B
for picoplankton only. However, with a median value of 91

mgCmgChla−1, the in situ Cphy-to-satellite-B-ratio falls within
or close to observed values in oligotrophic areas. For instance,
Sathyendranath et al. (2009) reported average values of this
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TABLE 3 | Summary of statistics of algorithm performance (algorithms A–F, columns) for log10 and untransformed data (N = 557).

Statistic A B C D E F

log10 TRANSFORMED DATA

rp 0.61 0.61 0.32 0.31 0.42 0.32

9 0.35 ± 0.02 0.33 ± 0.02 0.43 ± 0.02 0.48 ± 0.02 0.37 ± 0.02 0.57 ± 0.03

δ 0.23 ± 0.02 −0.02 ± 0.03 0.28 ± 0.03 0.33 ± 0.03 −0.24 ± 0.02 −0.32 ± 0.04

1 0.27 ± 0.01 0.32 ± 0.02 0.33 ± 0.02 0.35 ± 0.02 0.29 ± 0.01 0.47 ± 0.03

S 0.90 ± 0.05 1.27 ± 0.07 0.75 ± 0.17 0.86 ± 0.21 0.44 ± 0.05 1.47 ± 0.44

I 0.34 ± 0.04 −0.29 ± 0.05 0.53 ± 0.04 0.48 ± 0.05 0.34 ± 0.02 −0.81 ± 0.10

UNTRANSFORMED DATA

rs 0.58 0.54 0.36 0.37 0.49 0.52

9 19.9 ± 1.37 22.2 ± 1.63 24.6 ± 1.75 32.6 ± 2.34 11.3 ± 0.67 13.0 ± 0.83

δ 9.55 ± 1.45 3.55 ± 1.82 10.8 ± 1.84 15.0 ± 2.41 −7.04 ± 0.74 −4.76 ± 1.01

1 17.4 ± 1.16 21.8 ± 1.54 22.1 ± 1.62 29.0 ± 2.16 8.86 ± 0.51 12.1 ± 0.83

S 1.76 2.16 1.77 3.87 2.29 0.25

I 2.65 −8.42 1.57 −10.9 3.46 3.62

MAPD ± IQR/2 55.1 ± 70.1 46.1 ± 19.4 78.9 ± 81.4 99.9 ± 98.8 55.1 ± 18.0 53.2 ± 18.6

Statistics provided have uncertainty estimates (95% confidence interval), from 1,000 bootstrap realizations (See section 2.4). Bold numbers are the best results for each statistic: highest
value for rs and rp, lowest for Ψ , δ, ∆, I and MAPD, and closest to one for S.

FIGURE 4 | Density plot of covariance between OC-CCI standard chlorophyll product and Cphy from the match-up database (N = 557). (A) In situ Cphy ,
(B) Sathyendranath et al. (2009), (C) Marañón et al. (2014), (D) Behrenfeld et al. (2005), (E) Martínez-Vicente et al. (2013) modified, (F) Kostadinov et al. (2009, 2016),

(G) Roy et al. (2017). Blue dashed line is the Type II linear regression (Reduced Major Axis) fitted to the log10 converted data. Black solid line is the regression line

between chlorophyll and in situ for comparison with the regressions by the algorithms. For comparison, data in (A) are repeated (gray) in the other panels.

ratio greater than 100 mgCmgChla−1 for prymnesiophytes,
cyanobacteria and Prochlorococcus sp. Direct observations of
pico and nano plankton carbon in the Northern and Southern
Atlantic gyres produced carbon-to-chlorophyll ratio estimates,
on average, of 106 and 190 mgCmgChla−1, respectively (Graff
et al., 2015). Marañón et al. (2014) also reports values in the range

of 80–117 mgCmgChla−1 for oligotrophic regions. Therefore,
the Cphy:B ratio used as reference in this study compares well
with existing observations reported in the literature, despite the
mismatch between the phytoplankton assemblages considered.
These data are repeated as the background of the other panels in
Figure 4 for reference along with their corresponding regression
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TABLE 4 | Summary of statistics for the Cphy to B relationships.

Algorithm Median Cphy :B ± IQR/2

(mgC/mgChla)

rp α × B+ β

In situ 91.3 ± 47.3 0.6 22.1× B+ 7.94

A 143 ± 34.1 N.A. N.A.

B 78.5 ± 5.4 N.A. N.A.

C 162 ± 102 0.7 53.4× B+ 10.7

D 180 ± 115 0.7 70.2× B+ 10.5

E 47.9 ± 29.5 0.8 6.70× B+ 4.85

F 52.5 ± 18.6 0.4 30.5× B+ 1.03

Cphy was computed from the algorithms and B from the standard OC-CCI chlorophyll
product for the match-up dataset (N = 557). Pearson correlation (rp) was computed for
log10 converted data. Type II linear regression (Reduced Major Axis) was computed for
untransformed data, with dependent variable Cphy and independent variable is B.

line. Algorithms A and B are chlorophyll-based, therefore their
predictions fall on the line of the equations used, respectively
Equations 2, 3 in Figures 4B,C. Their predictions are close to
the in situ data cloud and the resulting median phytoplankton
carbon-to-chlorophyll ratio encompass the in situ reference
value, Algorithm A providing an upper limit, as expected from
the assumptions made in its construction. Backscattering-based
algorithms (Algorithms C and D, in Figures 4D,E, respectively)
overestimate the Cphy:B reference relationship, specially at
the lower concentrations of chlorophyll, and produce median
phytoplankton carbon-to-chlorophyll ratio values up to two
times greater than the reference. However these algoritms
capture some of the variability around the prediction line, which
is in the same order of the in situ data. Algorithms using inherent
optical properties with allometric conversions (Algorithms E
and F, in Figures 4F,G, respectively) underestimate the reference
Cphy:B reference relationship, with Algorithm E showing a
narrower distribution of data points than Algorithm F.

The in situ Cphy dataset is representative only of a fraction
of the particle population (picophytoplankton). However, its
geographical distribution, the median Cphy concentrations and
carbon-to-chlorophyll ratios derived from this dataset are in
agreement with existing observations in oligotrophic oceanic
conditions. Taking into account this charcteristic of the dataset,
the overall performance of the algorithms was on the low
side, with chlorophyll-based algorithms producing slightly lower
bias and allometric algorihms slightly lower dispersion. Among
algorithms there was a median dispersion of a factor 4 between
minimum and maximum predictions. The algorithms were also
tested on their ability to produce realistic a Cphy:B ratio, which
again highlighted great dispersion in predictions among and
within algorithms types. Arguably, part of the dispersion in the
statistical results may have arised from the fact that the in situ
Cphy dataset is representative only of a fraction of the particle
population (i.e., picophytoplankton). Therefore if we limited the
study to the optical cases where picophytoplankon is expected
to dominate the phytoplankton carbon pool and the chlorophyll
content, we would expect an improvement on the results from
the algorithms. In the next part of this study we present results
obtained from segregating the data into optical water types.

3.2. Algorithm Comparisons for Individual
Optical Water Types
An optical water class, in this context, is defined by a mean
remote sensing reflectance spectrum representative of particular
optical characteristics, i.e., an end-member spectrum. Each
extracted satellite pixel coinciding with a match-up in situ
data has contributions from the different end-members in
different proportions. The water class contributing with the
largest proportion to the pixel water class membership is classed
as belonging to that water class (Jackson et al., 2017). The
geographic locations of the match-up points per water class and
the number of observations per class are shown in Figure 5.
There was a good correspondence between the geographic
location of the optical water types (note that the classes are
numbered such that i = 1 is the most oceanic type and i = 14
the most coastal type) in Figure 5A and the Cphy concentrations
(Figure 1), such that the higher-numbered optical classes tend
to be representative of higher concentrations of phytoplankton
carbon. The majority of the data (63%), though can be classed as
representative of an oligotrophic environment (i 1 to 6, B < 0.15
mgChlam−3). A boxplot summary of the descriptive statistics
per optical water class per algorithm is provided (Figure 6).
Table 5 summarizes the median Cphy values highlighting a
steady increase from oceanic to coastal waters, except for i
= 13, which only has N = 5 observations, and is hereafter
discarded from the analysis. The magnitude and the increase
of the picophytoplankton carbon is in agreement with oceanic
and coastal data (Tarran et al., 2006). For instance, using the
current carbon conversion parameters on existing abundance
data (Tarran and Bruun, 2015), Cphy median in the coastal area of

the Western English Channel is 12.1± 6.1 mgCm−3 (N = 68).
Algorithm performance per water class was quantified by the

signed bias (δ) and the center-pattern RMSD (1) (seeTable 5 and
Figure 7). These statistical indicators of performance improved
by limiting the analysis to oligotrophic waters (i 1 to 6) as
expected: bias, δ, was similar or lower than those obtained
when considering all data, for all the algorithms (section 3.1,
Table 3). Center-pattern RMSD, 1 an indicator of precision,
was, on average, half that when considering all data, indicating
decreased noise in the retrieval for all algorithms (for non-
log results, section 3.1). Chlorophyll-based algorithms had, on
average, similar δ and 1 to the allometric-based algorithms,
with back-scattering based algorithms producing higher bias and
higher 1 values.

Mesotrophic waters (0.15 < B < 0.7 mgChlam−3, or optical
water classes 7–10) comprise 32% of data. With respect to the
results obtained for all data available (section 3.1), the chlorophyll
based algorithms had an increased δ, whereas 1 was similar.
Backscattering-based algorithms had higher uncertainties than
chlorophyll-based algorithms in the more turbid waters (high
optical class numbers) in the untransformed data (Figure 7D).
Bias increased for all of the algorithms for these water classes
except for Algorithm E, which remained negative and relatively
constant at −60%. However, the results for mesotrophic and
more turbid waters, should be taken with caution as the use of
in situ Cphy data comprising only picophytoplankton is more
problematic in these waters.

Frontiers in Marine Science | www.frontiersin.org 10 December 2017 | Volume 4 | Article 378346

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Martínez-Vicente et al. Satellite Algorithms for Phytoplankton Carbon

FIGURE 5 | Distribution of the Cphy from the match-up dataset per optical water class. (A) Geographical distribution. (B) Number of data per optical water class.

TABLE 5 | Median Cphy from in situ matchups and non-log average bias (δ) and un-biased RMSD (1) of the different algorithms (algorithms A–F, columns headers) per

water class number (i) in mgCm−3, alongside with the number of observations per water class (Ni ).

Water class Median Cphy (mgCm−3) Ni A B C D E F

i δ 1 δ 1 δ 1 δ 1 δ 1 δ 1

1 4.8 51 2.6 4.0 −2.3 3.6 13.3 7.0 15.5 8.2 −0.2 3.5 −2.8 3.4

2 7.5 30 1.2 3.9 −3.8 3.7 9.1 6.2 10.7 7.2 −2.3 3.8 −4.1 3.9

3 6.4 67 3.2 3.3 −2.5 3.3 10.1 4.2 12.0 4.7 −1.8 3.4 −3.3 3.3

4 10.5 68 3.1 5.7 −3.6 5.5 10.3 10.3 13.1 12.2 −4.9 5.5 −5.3 4.9

5 12.9 81 3.6 6.3 −3.9 6.1 7.1 10.4 9.6 12.3 −7.2 5.9 −6.7 5.2

6 13.6 54 4.2 8.3 −3.7 8.2 5.1 11.8 7.7 13.6 −8.9 8.2 −7.3 6.9

7 13.8 60 6.6 5.7 −1.7 5.5 3.3 8.5 5.5 10.2 −8.8 5.3 −7.3 5.4

8 15.9 49 9.5 8.3 0.6 8.3 4.4 8.8 8.0 9.9 −11.7 10.2 −10.0 8.0

9 20.4 33 18.4 14.5 11.1 16.1 8.9 13.9 16.2 16.8 −16.4 14.3 −8.4 13.6

10 21.1 34 36.0 23.6 33.3 30.2 14.1 16.9 22.9 21.2 −13.0 11.4 4.5 28.8

11 16.7 16 44.3 33.0 45.3 46.8 12.6 24.2 20.6 32.3 −8.8 10.2 −5.0 22.4

12 34.0 9 79.1 15.7 103.2 25.5 99.8 46.2 141 59.5 −14.3 12.0 31.8 30.1

13 6.8 5 19.1 19.2 11.9 21.1 113.1 119.8 144.8 157.4 4.2 12.6 −3.3 8.8
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FIGURE 6 | Box-whiskers plots of Cphy (in mgCm−3 ) for the optical water classes (OWC in the figures) 1–13 corresponding to sub-figures (A–M) respectively. The

output of each algorithm (A–F) is compared to the in situ measurement for each optical water type. Note change of vertical scale in plots (I–M), corresponding to

optical water classes greater than 9. Box, Inter Quartile Range (IQR); red line, median; whiskers, ±1.5×IQR.

The in situ median Cphy:B ratio by optical water class were
also compared to the median Cphy:B ratio from the algorithms
(Figure 8). The in situ data (solid gray line and error bars) is
repeated as a reference throughout Figure 8, showing that for i
from 1 to 6 (oligotrophic waters), the range of variation is narrow
(106 to 165 mgCmgChla−1, median 133 mgCmgChla−1) and
error bars are overlapping among the optical water classes 1 to 6.
For mesotrophic waters (i from 7 to 10), there was a decreasing
tendency of the in situ Cphy:B ratio.

The analysis of the algorithm predictions of the Cphy:B
ratio focusses on the optical water classes 1 to 6, where
Cphy and B are expected to describe the same phytoplankton
assemblage. Essentially, the behavior observed for the Cphy is
also repeated here. Algorithm A was an upper limit to the Cphy,
it is also an upper limit to Cphy:B ratio, which decreases with
increasing optical water class number (Figure 8A). Algorithm
B shows relatively little variation of the median Cphy:B ratio
for the optical water classes of interest and beyond (i > 6).
Backscattering-based algorithms, Algorithm C (Behrenfeld et al.,
2005) and Algorithm D (Martínez-Vicente et al., 2013), showed
also decreasing median Cphy:B ratio with increasing water class
number, with large overestimations with respect to the in
situ Cphy:B ratio at the clearest waters. The allometric-based

algorithms, Algorithm E (Kostadinov et al., 2016) and Algorithm
F (Roy et al., 2017), were generally predicting lower than
observed Cphy, and also predicted lower median Cphy:B ratios.
However, both algorithms had a decreasing tendency for the
median values with increasing turbidity (or water class number,
in this study), with Algorithm E being closest to observations for
i from 1 to 3.

Finally, Figure 9 shows an example of the Cphy product
from algorithms A to D using the OC-CCI monthly product
from May 2005. All algorithms reproduce the broad patterns
that would be associated with Cphy i.e., increased values in
high-chlorophyll areas (upwelling sites and coastal regions) and
lower concentrations in the gyres, however the salient point of
this Figure is the large differences in predictions among the
algorithms, as expected from the statistical results.

4. DISCUSSION

4.1. The Picophytoplankton C Match-up
Dataset
This study has compiled a large in situ database of
picophytoplankton carbon, building on a combination of a
substantial pre-existing effort by the modeling community (the
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FIGURE 7 | Center pattern root mean square deviation (1) for log10 (A,C,E) and non-transformed (B,D,F) data from the Cphy match-up dataset per optical water

class. Out of scale from the plot in (D) Algorithm C for water class 13 has 1 = 120 mgCm−3; Algorithm D for water class 13 has 1 = 157 mgCm−3. (E) Algorithm F

for water class 10 has 1 = 1.12 mgCm−3.

MAREDAT data) and long time series observation programmes
in the open ocean (Atlantic Meridional Transect, AMT). The
ambition is to see this dataset growing with time, as new data are
incorporated.

There are a number of advantages and limitations for this
dataset with respect to its use for algorithm testing and validation.

An advantage is that only a small fraction of the data have been
used for the development of any of the algorithms tested here.
Algorithms A, B, C, and E are completely independent of the
match-up dataset. Algorithm D as implemented by Martínez-
Vicente et al. (2013), was developed using a small subset of the
new database, N < 70, but the subset included nanoplankton.
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FIGURE 8 | Median Cphy :B for each optical water class in the match-up

dataset per type of algorithm: (A) chlorophyll-based algorithms A and B; (B)

backscattering-based algorithms C and D and (C) allometric algorithms E and

F. Error bars are the IQR/2 for the water class. Gray line and error bars in all

sub-figures are obtained from the in situ dataset.

Algorithm F usedMAREDAT for testing algorithm performance,
but not for its development. So the data for the validation
presented here are mostly independent of the data used in the
construction of algorithms. The geographic distribution of the
match-up database, though largely limited to the Atlantic, with
some additional points from the Pacific, does cover a variety
of oceanic regions. It is a purpose-built database for satellite

validation studies, and therefore, only an average of the matching
data in the top 10m have been selected for convenience.

However, the dataset also has limitations. One of them is
that it is only composed of picophytoplankton: though they
are important contributors to the open-ocean phytoplankton
biomass, picophytoplankton form a decreasing proportion of the
phytoplankton biomass in more productive waters, where larger
cells tend to become more important (Marañón et al., 2012;
Marañón, 2015). One interesting avenue would be to expand
the database with other phytoplankton groups (Buitenhuis et al.,
2013; Sal et al., 2013). Nanoplankton can also be counted using
flow cytometry, and microphytoplankton groups counted using
microscope or automated image processing (Sosik and Olson,
2007; Álvarez et al., 2012), but the relationship between carbon
and abundance becomes more variable for larger and more
irregularly-shaped phytoplankton (Moberg and Sosik, 2012;
Saccà, 2016).

Because the data are confined to the surface layers, they may
also be adversely affected by underestimation of Prochlorococcus
sp. abundance by flow cytometry because of extremely low
fluorescence per cell (Partensky et al., 1996; Heywood et al.,
2006). Furthermore, by limiting our dataset to the top 10m, we
have precluded the possibility of testing any potential impact that
the vertical structure in the first optical depth might have on
algorithm performance. Examples exist in the literature where
the depth variations in particulate organic carbon been taken into
account (Duforêt-Gaurier et al., 2010), and this may be an avenue
worth exploring also for phytoplankton carbon algorithms.

Finally, the conversion of abundance to carbon using
estimates from the laboratory could cause errors in the computed
Cphy in the field, if the laboratory estimates do not hold under
natural environmental conditions. These factors can vary with
physiological state and with depth (Casey et al., 2013) and have
been discussed previously (Buitenhuis et al., 2012; Martínez-
Vicente et al., 2013). It is important to highlight that in this
study we have used indirect estimates of phytoplankton carbon
(through cell counts and cell size) only because of the lack of
direct measurements. However, methods for direct quantification
of Cphy have recently become available (Graff et al., 2012; Casey
et al., 2013) and the expectation is that there will be more direct
Cphy data available in the future.

Limiting the study to the optical water classes where the
composition of the phytoplankton assemblage is expected to be
dominated by picoplankton ( i 1 to 6, B up to 0.15mgChlm−3)
median values of Cphy and Cphy:B ratio matching the literature
(Marañón et al., 2001; Marañón, 2015), were obtained, and the
algorithms results showed more stability and less dispersion.
However, some algorithms displayed significant differences
which are discussed hereafter.

4.2. Algorithm Comparison by Type:
Chlorophyll Based, Backscattering Based
and Allometric
The algorithms presented here were broadly classified into three
classes: chlorophyll-based, back-scattering based and allometric.
In the results presented here, it is evident that algorithms based
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FIGURE 9 | An example of the Cphy product for May 2005, estimated using each of the algorithms (A–F) applied to the monthly OC-CCI data. Black color in the

gyres indicate values close or below 5 mgCm−3, light gray indicates invalid retrieval or unavailable input data.

on similar approaches perform alike. So it is worth examining
each of these approaches in some detail, to explain the differences
observed in the results for oligotrophic waters.

The two chlorophyll-based algorithms were designed
to consider all the phytoplankton groups: Algorithm A
(Sathyendranath et al., 2009) provides an upper limit to the
phytoplankton contribution to the total particulate carbon
pool and Algorithm B (Marañón et al., 2014) is based on
phytoplankton carbon computed from flow-cytometric data
supplemented with microscopic counts for larger phytoplankton.

Yet, when compared with only one fraction of the total
phytoplankton pool (the picophytoplankton in this study), the
results are similar, with Algorithm A slightly overestimating and
Algorithm B slightly underestimating in situ Cphy. Algorithm A
was designed as the upper limit to the phytoplankton carbon,
hence this result is as expected. Algorithm B was computed using
a similar conversion method between cell count and carbon
concentration to the one used in this study, but with different
conversion coefficients. We speculate that a possible reason for
the difference observed between the predicted Cphy by Algorithm
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B and the in situ Cphy could be found in the differences in
conversion between cell counts and carbon. Production of
datasets with consistent conversion factors would help eliminate
this source of discrepancy.

Differences in results are greater with the backscattering-
based algorithm, which produced overestimation of Cphy and
greater dispersion statistics than the other algorithms. Because
it has been verified in situ that bbp increases with pico and nano
plankton carbon (Martínez-Vicente et al., 2013; Graff et al., 2015),
the degradation of results may be linked to the backscattering
input from the algorithm. Algorithm C equation was derived
using the GSM algorithm for obtaining a relationship between
the backscattering coefficient and the B. It has been found in
situ, that at low B there may be an overestimation of the bbp
by using this satellite-derived relationship (Huot et al., 2008;
Antoine et al., 2011; Brewin et al., 2012), yet in situ data
also have shown overestimation of backscattering by the QAA
algorithm (Behrenfeld et al., 2013). It has been found recently,
that Raman scattering plays a role in the discrepancy of the
retrievals of the backscattering coefficient in very clear waters
from satellite (Westberry et al., 2013), causing an overestimation
in backscattering. This effect of Raman scattering has been
only identified recently (Lee and Huot, 2014), and was not
incorporated in the QAA version used for the production of the
OC-CCI version 2 data used for this study, but can be analytically
corrected (McKinna et al., 2016), and future versions of the
OC-CCI dataset will address this issue.

While validation of the OC-CCI chlorophyll product has
been performed intensively in Atlantic oligotrophic waters and
showed low error statistics (Brewin et al., 2016), investigations
to improve the validation of bbp and to understand better the
relationships of bbp with particles in oligotrophic areas are
still required (Brewin et al., 2015). At a fundamental level,
backscattering is dependent on the refractive index of the cells,
their abundance and size, whose interplay is not yet fully
understood. But in addition to phytoplankton, other particles
(e.g., detritus) are known to contribute to the backscattering
signal, and their variability relative to phytoplankton could
potentially contribute to the discrepancies observed in this study.

Algorithm E used in its original formulation an inversion
model to retrieve the backscattering spectral slope (Loisel et al.,
2006) that is different from the one used in this comparison
as input (i.e., QAAv5). The QAA used here invoked a band
ratio to solve for the backscattering spectral slope, and this
may account for at least part of the observed tighter coupling
between B and Algorithm E. Algorithm E provides consistently
low 1 values across the water classes, although it underestimates
the in situ data systematically. This may be pointing to a
need to re-adjust the size scaling parameter (like No), the
empirical correction for which is now based on a rather
limited in situ validation data set (Kostadinov et al., 2016).
Ultimately, a better optical closure is needed between modeled
and observed backscattering spectra, and a better understanding
of the underlying particle assemblages, their refractive indices,
and their relative contributions to the backscattering coeffient.
It remains to be validated if at more productive waters, the
prediction of low Cphy (from Algorithm E picophytoplankton

fraction) remains valid, whereas the current in situ dataset
showed an increase (Table 5).

Algorithm F was similar to algorithm E in all water classes
except for water classes 8 to 11, where the uncertainty is
almost double compared with the rest of the algorithms,
pointing perhaps to a vulnerability to uncertainties in the
aph(676) retrieval in these waters. More accurate estimates of
phytoplankton carbon by Algorithm F would possibly require
improving the retrievals of the input aph(676) values, especially
in high-chlorophyll waters.

5. CONCLUSIONS AND FUTURE WORK

Further work is required to extend the in situ dataset
to include additional phytoplantkon sizes to evaluate if
uncertainties can be reduced in the product by including larger
phytoplankton to capture phytoplankton dynamics at wider
scales. Despite the limitations of the in situ data used, it has
been shown that where chlorophyll concentrations are less than
0.15mgChlam−3, chlorophyll-based algorithms provide the
best estimates of Cphy, allometric-based algorithms consistently
underestimate Cphy and backscattering-based algorithms, can
produce large overestimations of Cphy, at least for the
particular case of back-scattering data, provided using the
QAA algorithm, as implemented in OC-CCI version 2.0. To
improve back-scattering products from satellites, fundamental
optical work on explaining the relationship between the bbp
and particles in oligotrophic areas is still needed. Satellite-
based phytoplankton carbon product, once validated to a level
that meets user requirements, and in situ datasets, similar
to the one presented here, will be useful for validation of
marine ecosystem and biogeochemical models at a wider scale
(Dutkiewicz et al., 2015).

DATA AVAILABLE

The Cphy data, computed from in situ phytoplankton counts,
and the matching Cphy data, computed from different
algorithms using OC-CCI version 2.0 satellite data, can be
obtained from http://www.zenodo.org with doi: 10.5281/zenodo.
1067229.
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In climate research, an important task is to characterize the relationships between

Essential Climate Variables (ECVs). Here, satellite-derived data sets have been used to

examine the seasonal cycle of phytoplankton (chlorophyll concentration) in the waters

off Somalia, and its relationship to aerosols, winds and Sea Surface Temperature

(SST). Chlorophyll-a (Chl-a) concentration, Aerosol Optical Thickness (AOT), Ångström

Exponent (AE), Dust Optical Thickness (DOT), SST and sea-surface wind data for a

16-year period were assembled from various sources. The data were used to explore

whether there is evidence to show that dust aerosols enhance Chl-a concentration in

the study area. The Cross Correlation Function (CCF) showed highest positive correlation

(r2 = 0.3) in the western Arabian Sea when AOT led Chl-a by 1–2 time steps (here, 1

time step is 8 days). A 2 × 2◦ box off Somalia was selected for further investigations.

The correlations of alongshore wind speed, Ekman Mass Transport (EMT) and SST

with Chl-a were higher than that of AOT, for a lag of 8 days. When all four variables

were considered together in a multiple linear regression, the increase in r2 associated

with the AOT is only about 0.02, a consequence of covariance among AOT, SST,

EMT and alongshore wind speed. The AOT data show presence of dust aerosols

most frequently during the summer monsoon season (June–September). When the

analyses were repeated for the dust aerosol events, the correlations were generally

lower, but still significant. Again, the inclusion of DOT in the multiple linear regression

increased the correlation coefficient by only 2%, indicating minor enhancement in

Chl-a concentration. Interestingly, during summer monsoon season, there is a higher

probability of finding more instances of positive changes in Chl-a after one time step,

regardless of whether there is dust aerosol or not. On the other hand, during the

winter monsoon season (November–December) and rest of the year, the probability

of Chl-a enhancement is higher when dust aerosol is present than when it is absent.

The phase relationship in the 8-day climatologies of Chl-a and AOT (derived from

NASA’s SeaWiFS and MODIS-A ocean colour processing chain) showed that AOT
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led Chl-a for most of the summer monsoon season, except when Chl-a was very high,

during which time, Chl-a led AOT. The phase shift in the Chl-a and AOT climatological

relationship at the Chl-a peak was not observed when AOT from Aerosol Climate Change

Initiative (Aerosol-CCI) was used.

Keywords: essential climate variables, aerosol optical thickness, Ångström exponent, chlorophyll-a, ocean colour

climate change initiative, climate change, remote sensing, dust aerosols

1. INTRODUCTION

Phytoplankton, Sea-Surface Temperature (SST), sea-surface
winds and aerosols are all Essential Climate Variables (ECVs)
identified by the Global Climate Observation System (GCOS,
2011) as being worthy of sustained global observations at high
spatial resolution and over long time scales, to aid studies of
Earth’s climate and climate change. As we strive to understand
how the Earth system might respond holistically to climate
change, it is important to explore not only the behavior of
individual ECVs, but also their inter-relationships and the
feedbacks between them. In the western Arabian Sea, the
relationships between phytoplankton, winds and SST are better
understood than that between phytoplankton and aerosols.

Yet, there are known functional links betweenmarine aerosols
and phytoplankton. For example, dust aerosols, transported
by winds over the ocean, can be an important source of
micronutrients such as iron, essential for phytoplankton growth
(Duce and Tindale, 1991; Martin et al., 1991, 1994; Prospero
et al., 2002; Cropp et al., 2005; Jickells et al., 2005; Mahowald
et al., 2005; Meskhidze et al., 2005; Gallisai et al., 2014), with the
proviso that not all the iron contained in dust particles is usable
by phytoplankton. Winds over the ocean are also responsible for
the formation of aerosols through generation of sea salt sprays
(O’Dowd et al., 1997; Smirnov et al., 2003; Satheesh et al., 2006;
Mulcahy et al., 2008; Glantz et al., 2009; Huang et al., 2010;
Meskhidze and Nenes, 2010) and the same winds also mix the
surface layer of the ocean, dictating the entrainment of nutrients
from the deeper waters into the surface layer and controlling
the average light available for phytoplankton growth in the layer.
In addition to sea salt sprays, biological particles (for example,
fragments of phytoplankton) contained in sea spray can also aid
aerosol formation (Leck and Bigg, 2005; Facchini et al., 2008;
Hawkins and Russell, 2010; Quinn and Bates, 2011). Feedback
mechanisms (both positive and negative) have been proposed
between dimethyl sulphide in the atmosphere of phytoplanktonic
origin and the Earth’s radiation budget, via aerosols (Charlson
et al., 1987; Lovelock, 2006).

Positive (Martin et al., 1994; Jickells et al., 2005; Patra et al.,
2007; Banerjee and Prasanna Kumar, 2014) and negative (Mallet
et al., 2009; Paytan et al., 2009; Jordi et al., 2012) correlations
between marine aerosols and phytoplankton concentration have
been reported for different parts of the world ocean. Some
studies have also identified regions where no relationship exists
between the two (Cropp et al., 2005; Gallisai et al., 2014). Possible
explanations for the positive correlations include the fertilizing
role of iron contained in dust aerosols, or phytoplankton
themselves, acting as a source of marine aerosols. Negative

correlations might arise from high winds causing production of
wind-spray aerosols, while at the same time forming deep mixed
layers that may be able to support only low concentrations of
phytoplankton, because of low average light levels available in the
layer.

Satellite-based measurements provide a valuable tool for
studies of aerosols and phytoplankton. Aerosol Optical Thickness
(AOT), amenable to remote sensing, is an often-used measure
of aerosol concentration. The Ångström Exponent (AE), which
defines the wavelength dependence of AOT, is indicative of the
type of aerosols present, and is also available through remote
sensing. Dust Optical Thickness (DOT) can be inferred from
AOT and the AE. Satellite data have been used to track dust
aerosols for thousands of kilometers away from their source
(Myhre et al., 2005). Likewise, ocean colour measured from
space provides information on the concentration of chlorophyll-
a (Chl-a), which is a major photosynthetic pigment contained
in phytoplankton. Furthermore, estimates of winds (speed and
direction) and SST, essential for understanding phytoplankton
dynamics, are also available through remote sensing. An
advantage of remote sensing is that it provides data at large scales
and over many years, allowing studies of time-series at multiple
locations in a systematic manner. But some caution should be
exercised when using ocean colour derived Chl-a concentration,
AOT and AE. Sometimes they are all produced from the same
processing chain, and one might argue that, in the extreme case,
any relationships observed between the three are purely artifacts
of the processing algorithm. Furthermore, the effects of clouds on
satellite retrievals are significant and sometimes lead to biases by
overestimation or underestimation of aerosol data, particularly
for dust aerosols (Levy et al., 2007; Torres et al., 2007; Baddock
et al., 2009; Kahn et al., 2010). However, some authors have used
cloud-screening techniques to reduce such errors (Kaufman et al.,
2005). Therefore, the processing chain issues should be verified to
arrive at conclusive results.

In this paper, we examine the relationships of Chl-a with
winds, SST, AOT and dust aerosols in the western Arabian Sea,
at a selected site off Somalia. The region is characterized by
a high dynamic range in Chl-a values that vary seasonally, in
response to the reversing wind patterns and associated upwelling
(Prasanna Kumar et al., 2001; Schott and McCreary, 2001;
Schott et al., 2002; Shankar et al., 2002; Wiggert et al., 2005;
Lévy et al., 2007; Wiggert and Murtugudde, 2007; Prakash
et al., 2012). Diverse physical forcings of both oceanic and
atmospheric origins drive biological production off Somalia
region. During summer monsoon season, the Somalia coastal
region is characterized by strong upwelling with high primary
productivity due to the swift Somali current caused by strong
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south-westerlies along the coast (Smith and Codispoti, 1980;
Schott, 1983; Hitchcock and Olson, 1992; Brock et al., 1994;
Schott et al., 2002; deCastro et al., 2016). The anti-cyclonic
eddies associated with the Somali current during the same season
further enhance production by transporting andmixing upwelled
water (Fischer et al., 1996; McCreary et al., 1996; Schott et al.,
1997; Koning et al., 2001; Schott et al., 2002; Santos et al., 2015).
The consequent nutrient enrichment in the mixed layer of the
ocean leads to high phytoplankton production during summer
monsoon season (Banse, 1987; Owens et al., 1993). Because of
its proximity to the Arabian Peninsula, the region also receives
seasonally-varying dust deposition (Pease et al., 1998; Li and
Ramanathan, 2002; Prospero et al., 2002; Léon and Legrand,
2003; Zhu et al., 2007; Prasanna Kumar et al., 2010). Thus, the
same winds that transport dust aerosols to the western Arabian
Sea during the summer monsoon season also induce upwelling,
favoring phytoplankton blooms. Hence the relationship between
Chl-a and aerosols in this region would be incomplete, unless
we examined the effect of winds on phytoplankton dynamics as
well. Here, we use 16 years of satellite data (1998–2013) to make
a systematic study of the relationship of Chl-a with AOT, winds
and SST in the waters off Somalia.

2. MATERIALS AND METHODS

2.1. Data
Level-3 8-day composite Aerosol Optical Thickness (AOT)
at 865 nm and Ångström Exponent (AE) from Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) during January
1998–December 2010 and Moderate Resolution Imaging
Spectro-radiometer (MODIS) Aqua during January 2011–
December 2013 downloaded from National Aeronautics and
Space Administration’s (NASA’s) ocean colour website (https://
oceancolor.gsfc.nasa.gov) were used in this work. The AOT
and AE data from NASA are referred to here as NASA-AOT
and NASA-AE respectively. The daily AOT at 550 nm and AE
data from European Space Agency’s (ESA’s) Aerosol Climate
Change Initiative (Aerosol-CCI) programme (de Leeuw et al.,
2015; Popp et al., 2016, see also http://www.esa-aerosol-cci.org)
were also used in this study, as an independent source of aerosol
data, unconnected with ocean colour atmospheric correction
routines. The AOT and AE data from the Aerosol-CCI website
are referred to here as CCI-AOT and CCI-AE respectively. The
data are available at 1◦ spatial resolution for the period from
January 1998–December 2010.

The relationship between the AOT (τ ) at any given
wavelength λ0 and that at any other wavelength λ depends on
the AE (α) through the equation:

(

τλ

τλ0

)

=

(

λ

λ0

)−α

. (1)

In principle, if the optical thickness at one wavelength and the AE
are known, the optical thickness can be computed at any other
wavelength using Equation (1).

Chlorophyll-a (Chl-a) concentration, for the period
January 1998–December 2013, was obtained from ESA’s

Ocean Colour-Climate Change Initiative (OC-CCI) website
(Sathyendranath et al., 2016, see also https://www.oceancolour.
org). One of the major reasons for the choice of the Chl-a data
was the improved coverage provided by the OC-CCI data in the
Arabian Sea, especially during the summer monsoon season.
The 8-day composite AOT data from SeaWiFS are available
at only 9 km resolution, so we used MODIS Aqua data at the
same resolution (9 km) even though they are available at 4 km
resolution. The Chl-a concentration from OC-CCI (version-2),
which is available at 4 km resolution, was also re-gridded to 9 km
resolution. Since the CCI-AOT data are available at 1◦ spatial
resolution, the Chl-a concentration from OC-CCI was also re-
gridded to 1◦ resolution to analyse the correlation between them.
The daily value of AOT at 865 nm was calculated from daily
CCI-AOT at 550 nm and CCI-AE using Equation (1). The data
were merged to genereate 8-day composites and extracted for the
region off Somalia. The daily 1◦ gridded Sea Surface Temperature
(SST) data were obtained for the period January 1998–December
2013 from Woods Hole Oceanographic Institute’s (WHOI’s)
objectively-analyzed air-sea heat fluxes available at Asia-Pacific
Data-Research Centre (APDRC) website (http://apdrc.soest.
hawaii.edu). The SST anomaly has been calculated using these
data after merging into 8-day composites. In addition, the daily
NCEP/NCAR reanalysis U-wind (zonal velocity) and V-wind
(meridional velocity) data with 2.5 × 2.5◦ spatial resolution at
10m above the sea surface were obtained for the same period
from their official website (https://www.esrl.noaa.gov/psd). The
data have been merged to generate 8-day composites and used
to derive the south westerly wind component along the Somalia
coast. All the above mentioned information is summarized in
Table 1.

2.2. Methods
The methods used in this study are shown schematically in
Figure 1, and described below.

2.2.1. Correlation between Chl-a and AOT in the

Arabian Sea
Correlation between Chl-a and AOT concentration for the 1998–
2013 period over the Arabian Sea was studied using the 8-
day composites. The results showed areas of both positive and
negative correlation. The western Arabian Sea showed strong
positive correlation. A 2 × 2◦ box (54–56◦ E longitude and 10–
12◦N latitude) off Somalia coast, with high positive correlation,
was chosen for further analyses.

2.2.2. CCF Analysis and Lagged Correlation
We studied the lags in the correlation between Chl-a and
AOT using Cross Correlation Function (CCF). CCF analysis
produces cross correlations in which the observations of one
time series are correlated with the observations of another time
series at different lags and leads, to identify the variables which
are leading or lagging indicators of other variables. The basic
premise is that, if the relationships between the variables were
merely a processing artifact, the correlations would peak at zero
lag. In instances where phytoplankton might be contributing
biological material for aerosol formation, the correlation would
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TABLE 1 | Summary of data sets analyzed in the study.

Variable Sensor/provider Units Spatial

resolution

Temporal

extent

Source

Chlorophyll-a (Chl-a) Ocean Colour Climate Change Initiative (OC-CCI) mgm−3 4 km 1998–2013 https://www.oceancolour.org

Aerosol Optical Thickness

(AOT)

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and

Moderate Resolution Imaging Spectro-radiometer

Aqua (MODIS-Aqua)

Dimensionless 9 km 1998–2013 https://oceancolor.gsfc.nasa.gov

Aerosol Climate Change Initiative (Aerosol-CCI) Dimensionless 1◦ 1998–2010 http://www.esa-aerosol-cci.org

Ångström Exponent (α) SeaWiFS and MODIS Aqua Dimensionless 9 km 1998–2013 https://oceancolor.gsfc.nasa.org

Aerosol-CCI Dimensionless 1◦ 1998–2010 http://www.esa-aerosol-cci.org

Sea Surface Temperature

(SST)

Woods Hole Oceanographic Institute (WHOI) ◦C 1◦ 1998–2013 http://apdrc.soest.hawaii.edu

U & V wind components NCEP NCAR ms−1 2.5◦ 1998–2013 https://www.esrl.noaa.gov/

FIGURE 1 | Schematic diagramme showing the methods and analyses used in this work.

be maximum when AOT lagged behind Chl-a concentration. On
the other hand, if the oceans were fertilized by aerosols, then
Chl-a would lag behind AOT.

The CCF analysis was also carried out between Chl-a
concentration and alongshore component of wind speed. If wind-
induced upwelling were a causative factor for the increment in
Chl-a concentration in the Somalia coast, then we anticipate that
the correlation between them would peak when Chl-a lagged
behind wind (because of the finite time it takes for phytoplankton
to bloom in response to the nutrients brought to the surface by
upwelling). Though the alongshore wind speed over the Somalia
coast is a fairly good indicator of upwelling strength, we have
calculated the Ekman Mass Transport (EMT) as an upwelling
index for the analysis. Since a surface signature of upwelling is
a decrease of SST in the upwelling zone, we have also taken SST
as another proxy for upwelling.

2.2.3. Ekman Mass Transport
For the Somalia region, the alongshore component of the wind
stress is favorable for upwelling during summermonsoon season.
A positive value for the EMT represents upwelling along the coast
of Somalia. The alongshore wind stress for Somalia coast was
calculated by the bulk aerodynamic formula from Koracin et al.
(2004) as shown in Equation (2):

τy = ρa × Cd × w× v . (2)

where τy is the alongshore wind stress; ρa is the density of air,
which was taken to be 1.2 kg/m3; w is the magnitude of the
wind speed; v is the alongshore component of wind speed in
m/s; and Cd is the nonlinear drag coefficient based on Large and
Pond (1981) and Trenberth et al. (1990) for low wind speeds.
So, the EMT along the Somalia coast can be calculated using
Equation (3):

Mev =
τy

f
. (3)

where, Mev is mass transport by the alongshore wind, f is the
Coriolis parameter (2× � × sinφ), � is the angular frequency
of the Earth and φ is the latitude.

Multiple linear regression analysis with Chl-a as dependent
variable andNASA-AOT (or DOT), alongshore wind speed, EMT
and SST as independent variables was carried out. We used 8-
day composites with lags of 1–2 time steps for this analysis
(these lags correspond to the maximum correlation between Chl-
a and NASA-AOT data). The analysis was repeated by replacing
NASA-AOT with CCI-AOT (or DOT) with a lag of 3 time steps,
corresponding to the maximum correlation between Chl-a and
CCI-AOT. We have also calculated the 8-day climatologies of all
these variables, and plotted against time of year, to study their
phase relationships.

2.2.4. Derivation of Dust Optical Thickness (DOT)
The desert dust transported by winds over the ocean contains
micronutrients such as iron, which can regulate phytoplankton
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activity (Martin et al., 1994; Lenes et al., 2001; Muhs et al., 2007;
Donaghay et al., 2015). Since the seasonal monsoon winds bring
large quantities of iron-containing dust aerosols to the study
area (Li and Ramanathan, 2002; Banerjee and Prasanna Kumar,
2014), we investigated the effect of dust aerosols on Chl-a
concentrations. The AE, which is often used as a qualitative
indicator of aerosol particle size, and AOT, which indicates the
aerosol load, can be used to differentiate dust aerosol from other
types of aerosol. Generally, a higher value of AE (α > 1) is
indicative of fine, submicron aerosols, whereas lower values (α <

1) are representative of coarse, super-micron particles (Kaufman,
1993; Gobbi et al., 2007; Yoon et al., 2012). The AOT values
are lower for fine aerosols and higher for coarse aerosols. In the
literature, different criteria have been proposed to identify dust
aerosols at different locations: for example, α < 0.6 (Dubovik
et al., 2002; Brindley et al., 2015), α < 0.8 (Eck et al., 2005;
Che et al., 2013), α < 1 (Eck et al., 1999; Schuster et al., 2006;
Papaynannis et al., 2007; Yoon et al., 2012; Valenzuela et al., 2014;
Zu et al., 2014; Pakszys et al., 2015) and α < 1.4 (Gobbi et al.,
2007; Pereira et al., 2011; Shinozuka et al., 2011); similarly, AOT
> 0.11 (Toledano et al., 2007; Balarabe et al., 2016), AOT > 0.2
(Salinas et al., 2009; Pakszys et al., 2015) and AOT> 0.25 (Guleria
et al., 2012) have been recommended to identify dust aerosols.
After considering all these studies, we have adopted the ranges
of AOT and AE for off Somalia as follows: AE less than 1, and
AOT at 440 nm (τ440) greater than 0.2 (i.e., α < 1 and τ440 >

0.2) are designated as DOT or dust aerosols. The NASA-AOT
at 865 nm (τ865) and NASA-AE were used to calculate NASA-
AOT at 440 nm (τ440), using Equation (1). Similarly, CCI-AOT
at 550 nm (τ550) and CCI-AE were used to calculate CCI-AOT at
440 nm (τ440), using Equation (1).

3. RESULTS

3.1. Relationship between Chl-a and AOT
in the Arabian Sea
The correlation between Chl-a and NASA-AOT using 8-day time
series from 1998 to 2013 data for the Arabian Sea is mapped
in Figure 2. The results are based on data for all the seasons
rather than for specific seasons as in Patra et al. (2007) or in
Banerjee and Prasanna Kumar (2014). The western Arabian Sea
exhibits high positive correlations, whereas the south eastern
Arabian Sea shows low to moderate positive correlations. There
are also regions (south central) where no statistically-significant
correlation is evident and extensive regions (north-central and
north-eastern) of significant negative correlations. The region
off Somalia shows high positive correlation between Chl-a and
NASA-AOT and it is located along the path of winds carrying
dust aerosols emanating from South Asia, South-West Asia,
North Africa (Sahara) and the eastern Horn of Africa (Pease
et al., 1998; Ginoux et al., 2001; Goudie and Middleton, 2001;
Prospero et al., 2002; Léon and Legrand, 2003). Although there
are several studies (Banzon et al., 2004; Kayetha et al., 2007;
Patra et al., 2007; Singh et al., 2008; Nezlin et al., 2010; Banerjee
and Prasanna Kumar, 2014) that have examined the relationship
between Chl-a and AOT in various parts of the Arabian Sea, the

region off Somalia has not yet been explored in detail, and it is the
region selected for our investigation.

3.2. Climatologies of Chl-a, Aerosols,
Winds and SST off Somailia
The 16-year 8-day climatological seasonal cycles of Chl-a
concentration, NASA-AOT, CCI-AOT, SST and along-shore
wind speed are shown in Figure 3A, for the selected study
area off Somalia. SST data are reported as anomalies from 8-
day average. When the aerosols are identified as dust aerosols,
they are indicated in the plot using black and purple filled
circles. Out of 46 observations involved in both AOT data sets,
for the 8-day climatology, 24 observations were dust aerosols
for CCI-AOT data whereas 14 were identified as dust aerosols
for NASA-AOT data. It was found that the CCI-AOT data
showed the presence of dust aerosols not only during the summer
monsoon season, but also during the winter monsoon season.
The corresponding climatological wind vectors are shown in
Figure 3B. During the first 100 days of the year, winds are north
easterly, the wind speed decreasing with time. These conditions
are unfavorable for upwelling off Somalia. During this period,
SST increases steadily by some 3◦C. At the same time, the Chl-
a concentrations decrease, and AOT also remains low. After this,
the winds reverse direction and intensify, resulting in upwelling
(indicated by decreasing SST) that favors phytoplankton growth.
We note that the initial response of phytoplankton to the intense
south westerly winds is a decrease in concentration, perhaps
a consequence of the phytoplankton being mixed into deeper
layers. After this, the Chl-a increases, with a lag of a couple of
time steps behind the increasing wind speed. Both AOT and Chl-
a reach their respective maxima during the summer monsoon
season.

In Figure 3A, the NASA-AOT andChl-a reach their respective
maxima during the summer monsoon season. Although the
seasonality of CCI-AOT is more or less similar to that of NASA-
AOT, the occurrence of peak values is different. The maximum
value for CCI-AOT occurred during early summer monsoon
season (Day of Year, DoY 170) while the Chl-a is still increasing,
whereas the NASA-AOT peak occurred at DoY 224 during the
waning phase of summer monsoon season and after the Chl-
a peaks at DoY 216. An interesting feature in the figure is
that, towards the peak of the summer monsoon (around DoY
180), when Chl-a concentration reaches ≈ 0.8mgm−3, there is
a brief period when Chl-a continues to increase and leads NASA-
AOT by up to 3 time steps until DoY ≈ 220. However, this
feature was not found in CCI-AOT data. Just before the Chl-
a peak is reached, the wind speed starts to drop, followed by
Chl-a and NASA-AOT, until all variables reach minima toward
DoY 300, at which point the wind direction again reverses. SST
starts to increase when the south-westerly winds drop, reaching a
secondary peak at around DoY 310.

The seasonal patterns are consistent with the known
geography of the area. However, there is a tantalizing suggestion
in Figure 3 that when the winds speed are at their highest, and
Chl-a levels are high, the NASA-AOT concentrations may be
enhanced by maritime aerosols, in addition to the dust aerosols,
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FIGURE 2 | Correlation map between 8-day composited Chl-a and NASA-AOT during 1998–2013 for the Arabian Sea. Pale to dark red shading and pale to dark blue

shading represent positive and negative correlation respectively. The black square box off Somalia shows the study area selected for further analyses.

and that some of these aerosols may have a biological origin,
as indicated by Chl-a leading NASA-AOT during this period.
However, this observation is not supported by CCI-AOT, and in
the absence of additional information, it would be premature to
conclude that such is the case. But it would be a point worthy of
further investigation.

3.3. The Relationship between Chl-a, AOT
and DOT off Somalia
Since Figure 3 indicates that there is a lag in the relationships
between Chl-a and the other variables studied here, further
analysis has beenmade for the 2× 2◦ box using Cross Correlation
Function (CCF) between Chl-a and AOT. The result (Figure 4A)
shows that the highest significant positive correlation (r = 0.55)
between Chl-a and NASA-AOT in the study region occurred for
Chl-a lagging NASA-AOT by 1 to 2 time steps (1 time step is
8 days). The CCF analysis was also carried out between CCI-
AOT and Chl-a and shows a significant positive correlation.
Further, the maximum correlation (r = 0.54) occurred when
Chl-a lagged behind CCI-AOT by 3 time steps (Figure 4B). So
the analysis using CCI-AOT data confirmed the results obtained

using NASA-AOT on the existence of a significant correlation
between Chl-a and AOT in the region off Somalia, the magnitude
of the correlation and also the sign of the lag.

The relationship between Chl-a and AOT (or DOT) with
lag of 8 days is explored further in Figure 5 using NASA-AOT
(or DOT). Scatter plot between Chl-a and AOT is shown in
Figure 5A, with the fitted curve and the r value of 0.55 for the
fit, consistent with the CCF. However, we recognize that the
relationship of maritime and dust aerosols with Chl-a would be
functionally different (for example, we do not anticipate that
maritime aerosols could fertilize the oceans, whereas it would
be plausible with dust aerosols). Dust aerosols are present more
frequently during the summer monsoon season because of the
favorable wind from adjacent land masses, compared with other
seasons. Out of 736 observations over 16 years, around 203
observations were identified as dust aerosols. Figure 5B shows
the relationship between Chl-a and DOT. We see that there is a
general tendency for Chl-a to increase with DOT.

We checked further whether the presence of dust aerosols
enhances the Chl-a concentration in the subsequent time steps by
calculating the difference in Chl-a (1Chl-a) in 1 time step after
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FIGURE 3 | Time series of 8-day climatology, (A) for Chl-a, NASA-AOT, CCI-AOT, SST anomaly and Wind speed and (B) for the wind vectors. The black and purple

coloured dots in the NASA-AOT and CCI-AOT graph denote the presence of dust aerosols.

a dust event, and plotting it against NASA-AOT (Figure 5C).
The presence of more positive 1Chl-a following high aerosol
events would be indicative of a positive effect of aerosols on
phytoplankton concentration. The data (Figure 5C) show no
obvious relationship between aerosols and 1Chl-a either for
all aerosols taken together or for dust aerosol events (circles
in red colour) by themselves. However, for all the DOT events
considered by themselves, the frequency of 1Chl-a is slightly
skewed toward positive numbers, with some 114 values being
positive out of 203 events (see histogram of 1Chl-a, Figure 5D).
So the probability that Chl-a enhancement is associated with
the presence of dust aerosols throughout the year is 56% (114
out of 203), compared with 238 out of 532 in the absence of
dust aerosols (45%). The higher number of positive 1Chl-a
observations is significant (p< 0.05) according to a binomial test.
For the non-dust events, there is a higher number of negative
values (294) compared with positive values (238) of 1Chl-a.
These results are summarized in Table 2.

We supplemented these calculations after splitting the data
according to monsoon (summer monsoon) and non-monsoon
seasons, recognizing the differences in oceanographic and
meteorological conditions during these two parts of the year
(Table 2). Out of 224 observations during the summer monsoon
season, 140 are dust aerosol events and 84 are non-dust events.
Within these 140 dust events, the number of positive 1Chl-a
values is 82 (59%), compared with 58 (41%) negative values.
However, for non-dust events during this season, we also find
more positive 1Chl-a values (58 events, or 69%) than negative

ones (26 events, or 31%). For the non-monsoon season, out of
511 total observations, 448 are non-dust aerosol events and 63
are dust events. Within these non-dust observations, there is
higher number of negative values (268, or 60%) when compared
with positive values (180 or 40%). But during dust events,
the number of positive observations is slightly higher, with 32
(51%) positive values compared with 31 (49%) negative ones.
We conclude from all of the above that the probability of Chl-
a enhancement during the summer monsoon season does not
depend much on the presence or absence of dust aerosols. In
other words, during the summer monsoon season, there is a
higher probability of finding positive 1Chl-a values, regardless
of whether there is a dust event or not. On the other hand, during
the rest of the year, the probability of chlorophyll enhancement
is a little higher during dust events than during non-dust
events.

The analysis was also repeated for CCI-AOT data to verify the
above results and is presented in Table 3. For this dataset, the
probability of Chl-a enhancement is again more in the presence
of dust aerosols when the whole year is considered, at 53% (134
out of 251), compared with 142 out of 344 in the absence of
dust aerosols (41%). Out of 208 observations during the summer
monsoon season, 154 are dust aerosol events and 54 are non-
dust events. Within these 154 dust events, the number of positive
1Chl-a values is 83 (54%), compared with 71 (46%) negative
values. However, for non-dust events during this season, we also
find more positive1Chl-a values (31, or 57%) than negative ones
(23, or 43%). The results from winter monsoon season indicate
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FIGURE 4 | Cross Correlation Function between (A) Chl-a and NASA-AOT

(B) Chl-a and CCI-AOT for study area off Somalia.Time step is 8 days.

that, though the dust aerosol events are fewer in number (49)
comparedwith non-dust (93) within 142 observations, there were
more positive 1Chl-a values (28, or 57%) than negative values
(21, or 43%) when dust aerosols were present in the region. But,
during the absence of dust aerosols, there is a higher number of
negative values (48, or 52%) compared with positive values (45 or
48%).

Thus both NASA-AOT and CCI-AOT lead to the conclusion
that the probability of Chl-a enhancement during the summer
monsoon season does not depend on the presence or absence
of dust aerosols. In other words, during the summer monsoon
season, there is a higher probability of finding positive 1Chl-
a values, regardless of whether there is a dust event or not. On
the other hand, during the winter monsoon season and rest of
the year, the probability that dust events may be associated with
chlorophyll enhancement is higher than that during non-dust
periods.

3.4. Relationship of Chl-a with Winds, SST,
AOT, and DOT
To elucidate further the relationship between Chl-a and
environmental conditions, we next examined the CCF between
Chl-a and alongshore wind speed, since it is known that the
alongshore winds determine upwelling, and hence influence
phytoplankton dynamics in the area (Goes et al., 2005; Gregg
et al., 2005; Wiggert et al., 2005; Prasanna Kumar et al., 2010);
(see also Figure 3). The result (Figure 6) shows, similar to the

CCF between Chl-a and NASA-AOT, that the correlation peaks
with a lag of 1-2 time steps, with wind speed leading Chl-a, but
with a higher correlation coefficient (r = 0.69, p < 0.05).

Since the correlation coefficients of Chl-a with both aerosols
and wind speed peak with a lag of 1–2 time steps, we chose a lag of
1 time step, for a linear step-wise multiple regression study with
Chl-a as dependent variable, and NASA-AOT (or DOT), Ekman
Mass Transport (EMT), alongshore wind speed and SST as
independent variables. The upwelling indices, the wind speed and
EMT both show more or less similar correlation with Chl-a. So,
we excluded the EMT from themultiple linear regression analysis
(but the results from the multiple linear regression including
EMT are presented as Table S1). When the correlations with
each of the independent variables are considered individually,
the highest r2 values were found for alongshore wind speed
(r2 = 0.47) for the ensemble of year-round data, with the
corresponding r2 dropping to 0.17 when dust aerosol events
are considered separately (140 dust events during the summer
monsoon, and 63 outside of it, totalling 203), followed by SST
(r2 = 0.33 and r2 = 0.20 for the same two cases respectively),
and then by NASA-AOT (r2 = 0.30 and r2 = 0.08 for the
corresponding cases). From the results of pair-wise regression
analysis, we see that the addition of NASA-AOT (or DOT) as
an independent variable, in addition to wind speed, increases r2

values by a modest 0.02. With all three variables taken together as
independent variables, the explained variance (r2) is 0.52 for all
data, and 0.25 for DOT events (Table 4). The results for a lag of 2
time steps (not shown) are similar to those for lag of 1 time step,
but with lower correlation coefficients.

The multiple regression analysis was also repeated for CCI-
AOT data with Chl-a as dependent variable and CCI-AOT (or
DOT), alongshore wind speed and SST as independent variables
(Table 5). Since the correlation coefficients of Chl-a with CCI-
AOT peak with a lag of 3 time steps, we chose a lag of 3 time
steps for this analysis. When the correlations with each of the
independent variables are considered individually, the highest r2

values were again found for alongshore wind speed (r2 = 0.49)
for year-round data and r2 = 0.38 for dust aerosol events (154
dust events during the summer monsoon, and 97 outside of it,
totalling 251) considered separately, followed by SST (r2 = 0.32
and r2 = 0.15 for the same two cases respectively), and then by
CCI-AOT (r2 = 0.29 and r2 = 0.09 for the corresponding cases).
From the results of pair-wise regression analysis, the addition of
CCI-AOT (or DOT) on wind speed as independent variables did
not make any improvement in the r2 value of 0.49. However, a
small increase in r2 value by 0.06 or 0.08 was found when adding
CCI-AOT (or DOT) respectively to SST.

4. DISCUSSION

4.1. The Satellite Data Used
Much of the interpretation of results for the region off Somalia
depends on the quality of the satellite data used for the analysis,
especially during the summer monsoon season, since this is a
highly dynamic season, with high winds, high AOT and high Chl-
a concentrations. The OC-CCI Chl-a dataset (Sathyendranath
et al., 2016) was selected because of the significantly-improved
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FIGURE 5 | (A) The scatter plot between 8-day composite AOT (NASA-AOT) and Chl-a with lag of one time steps, for the study area. The straight line in red colour

indicates the regression equation and the correlation coefficient (r) is shown in the top right side. (B) Scatter plot between DOT and Chl-a with lag of one time steps

(subset of all the data points in (A). (C) Scatter plot between AOT and 1Chl-a with lag of one time step. The circles in red colour indicate dust aerosols. (D) Histogram

for 1Chl-a during the presence of dust aerosols with lag of one time steps.

TABLE 2 | The number of observations with enhancements in Chl-a (+ve 1Chl-a) or reductions in Chl-a (−ve 1Chl-a), for all data, and for the summer monsoon, for the

non-monsoon and sorted according to whether the aerosols were identified as dust or not (here, dust aerosols were derived from NASA-AOT data).

Dust + Dust, Non-dust, Dust + Dust, Non-dust, Dust + Dust, Non- Non-dust,

non-dust, All All non-dust, Summer Summer non-dust, monsoon Non-

All seasons seasons Summer monsoon monsoon Non- season monsoon

seasons monsoon season season monsoon season

season season

TOTAL NUMBER OF OBSERVATIONS

735 203 532 224 140 84 511 63 448

NUMBER OF POSITIVE AND NEGATIVE 1Chl-a VALUES

+ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve

352 383 114 89 238 294 140 84 82 58 58 26 212 299 32 31 180 268

PERCENTAGE OF POSITIVE AND NEGATIVE 1Chl-a VALUES

48 52 56 44 45 55 62 38 59 41 69 31 41 59 51 49 40 60

seasonal coverage that the data provide in the study area,
compared with other datasets, especially during the summer
monsoon season. But it is important to reassure ourselves that the
data are of sufficient quality for the analysis presented. Though
the OC-CCI data have been validated using a global dataset
as part of the project, and also for the neighboring Red Sea

(Brewin et al., 2015) and the Gulf of Aden (Gittings et al., 2016),
we do not have in situ data from off Somalia region for local
validation. However, the data are reassuring in some respects:
the first one is that, if the relationship between Chl-a and AOT
were an artifact of the processing, then one would anticipate
that the relationship would peak at zero lag. In fact, we see
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TABLE 3 | The number of observations with enhancements in Chl-a (+ve 1Chl-a) or reductions in Chl-a (−ve 1Chl-a), for all data, and for the summer monsoon, for the

winter monsoon and sorted according to whether the aerosols were identified as dust or not (here, dust aerosols were derived from CCI-AOT data).

Dust + Dust, Non-dust, Dust + Dust, Non-dust, Dust + Dust, Non-dust,

non-dust, All All non-dust, Summer Summer non-dust, Winter Winter

All seasons seasons Summer monsoon monsoon Winter monsoon monsoon

seasons monsoon season season monsoon season season

season season

TOTAL NUMBER OF OBSERVATIONS

595 251 344 208 154 54 142 49 93

NUMBER OF POSITIVE AND NEGATIVE 1Chl-a VALUES

+ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve

276 319 134 117 142 202 114 94 83 71 31 23 73 69 28 21 45 48

PERCENTAGE OF POSITIVE AND NEGATIVE 1Chl-a VALUES

46 54 53 47 41 59 55 45 54 46 57 43 51 49 57 43 48 52

FIGURE 6 | Cross Correlation Function between Chl-a and alongshore wind speed for study area off Somalia. Time step is 8 days.

that, typically, the maximum correlation occurred with a lag,
suggesting a functional relationship between the two variables,
rather than an artifact. The second is that the seasonal patterns
in Chl-a are consistent with the known oceanography of the
area, and appear as a consequence of the seasonal changes in
the oceanographic conditions, as indicated by the winds and
SST. The AOT and AE data from both NASA and CCI also
show seasonal changes with high AOT values and low AE during
summer monsoon season and vice versa for the rest of the year.

We have used aerosol data from the NASA ocean colour
web site, partly to reassure ourselves that the aerosol and Chl-a
products that are outputs of the same processing chain do not
show inter-dependencies associated with the assumptions that
underlie the processing. In the OC-CCI processing version-2
used here, SeaWiFS andMODIS-Aqua data were processed using
NASA’s SeaDAS software, consistent with the processing chain
that generated the aerosol products at the NASA ocean colour

website. That the analysis presented here has indicated that the
patterns in Chl-a and in the aerosol properties are consistent
with the known oceanography of the study area, and that the
correlations vary with region (Figure 2) as oceanographic and
meteorological conditions change, lends some confidence to the
quality of the data, in the absence of direct validation data. To
further substantiate the application of satellite data to studies of
relationship between aerosol and phytoplankton, Aerosol-CCI
data sets were also subjected to identical analysis and the data
confirmed our findings.

4.2. Aerosols and Phytoplankton in the
Western Arabian Sea off Somalia
There have been a few previous studies that dealt with the
influence of aerosols on phytoplankton dynamics in the Arabian
Sea. A recent study (Banerjee and Prasanna Kumar, 2014) has
shown that episodic dust storms could generate phytoplankton
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TABLE 4 | Results of multiple linear regression analysis with Chl-a as the

dependent variable and NASA-AOT or DOT, alongshore wind speed and SST as

independent variables for 1 time step lag.

NASA-AOT DOT Wind SST N r2 Adj. r2 r

+ − + + 735 0.52 0.52 0.72

+ − − − 735 0.30 0.30 0.55

− − + − 735 0.47 0.47 0.69

− − − + 735 0.33 0.33 0.57

+ − + − 735 0.49 0.49 0.70

+ − − + 735 0.46 0.46 0.68

− − + + 735 0.50 0.49 0.71

− + + + 203 0.25 0.24 0.50

− + − − 203 0.08 0.07 0.28

− − + − 203 0.17 0.17 0.41

− − − + 203 0.20 0.19 0.45

− + + − 203 0.19 0.18 0.44

− + − + 203 0.22 0.21 0.47

− − + + 203 0.24 0.24 0.49

Number of observations (N), r2, adjusted r2 and r are shown, for each of the analyses
and they are statistically significant (p < 0.05). The first set of calculations with 735
observations is for the whole year. The second set, with 203 observations, is for the dust
aerosol events. Plus signs indicate variables that were used, and minus signs indicate
variables that were excluded in each analysis.

blooms in the central Arabian Sea during the winter monsoon.
Nezlin et al. (2010) reported a correlation between Chl-a and
aerosols when studying inter-annual variations in the Persian
Gulf area. Prasanna Kumar et al. (2010) reported an increasing
trend in phytoplankton in the central Arabian Sea during winter
months of 1997–2007, and attributed it to increasing supply of
iron by dust aerosols. Singh et al. (2008) studied a series of
dust storms in the northern Arabian Sea during a 3-year period,
and reported chlorophyll enhancement within 1–4 days of dust
events, but also pointed out other mechanisms that might be
responsible for the relationship observed.

Our results for the western Arabian Sea off Somalia indicate
only a possible minor role for dust aerosols enhancing Chl-a
concentration during the summer monsoon, supplementing the
major role of alongshore winds inducing upwelling favorable
for phytoplankton growth. The upwelling component of winds
off Somalia during summer monsoon season appears to be far
stronger than the classic eastern coastal upwelling zones in the
world ocean (Bakun et al., 1998). In the data used here, the
wind speed was greater than 15 m/s during summer monsoon
season over the Somalia coast. Recently, deCastro et al. (2016)
studied the evolution of Somali coastal upwelling under future
warming scenarios using models. When the intensity of Somali
coastal upwelling during summer monsoon season was projected
for the twenty first century, the trends showed that changes
in coastal upwelling were mainly related to the wind-induced
Ekman transport. Further, our findings are consistent with those
of Gallisai et al. (2014) for the Mediterranean: they concluded
that the main driver of phytoplankton dynamics is the supply
of nutrients from the deep water to the surface layers through

TABLE 5 | Results of multiple linear regression analysis with Chl-a as the

dependent variable and CCI-AOT or DOT, alongshore wind speed and SST as

independent variables for 3 time step lag.

CCI-AOT DOT Wind SST N r2 Adj. r2 r

+ − + + 595 0.49 0.49 0.70

+ − − − 595 0.29 0.29 0.54

− − + − 595 0.49 0.49 0.70

− − − + 595 0.32 0.32 0.57

+ − + − 595 0.49 0.49 0.70

+ − − + 595 0.38 0.38 0.62

− − + + 595 0.49 0.49 0.70

− + + + 251 0.39 0.38 0.62

− + − − 251 0.09 0.09 0.30

− − + − 251 0.38 0.38 0.62

− − − + 251 0.15 0.15 0.39

− + + − 251 0.38 0.38 0.62

− + − + 251 0.23 0.22 0.48

− − + + 251 0.38 0.38 0.62

Number of observations (N), r2, adjusted r2 and r are shown, for each of the analyses
and they are statistically significant (p < 0.05). The first set of calculations with 595
observations is for the whole year. The second set, with 251 observations, is for the dust
aerosol events. Plus signs indicate variables that were used, and minus signs indicate
variables that were excluded in each analysis.

vertical mixing. However, the results of the multiple regression
presented here do not necessarily imply that the effect of aerosols
on Chl-a is only 2%, but only that, because AOT covaries
with the other variables, especially wind speed, it is difficult
to disentangle their individual effects on Chl-a concentration.
Perhaps more interesting is the possibility that the effect of dust
events on Chl-a enhancement might be a little stronger during
the winter monsoon season and rest of the year than during
the summer monsoon season (Tables 2, 3), consistent with the
results of Prasanna Kumar et al. (2010) for the central Arabian
Sea during winter monsoon season. The direction of the winds
during the winter monsoon would suggest an origin in the Asian
subcontinent for these dust aerosols, rather than the Arabian
peninsula.

We used the cross correlation function to study the phase
relationship between aerosol (AOT) and phytoplankton (Chl-
a) dynamics. The correlation between the two variables peaked
at a lag of 1–2 time steps, with AOT leading. However, since a
similar lag was found in the CCF between Chl-a and alongshore
winds, it is difficult to attribute a causal relationship to the
aerosols by themselves. The phase relationship also throws light
on whether or not the biological particles might be enhancing
the production of aerosols in the study area. If such events were
commonplace, then one would expect that Chl-a enhancement
might occur prior to increase in aerosol concentration. The CCF
results do not support this in general, but the climatologies
of the studied variables (Figure 3A) do show that there is a
reversal in the phase relationship for a brief period, with Chl-a
leading NASA-AOT when Chl-a concentration approaches its
peak during the summer monsoon season. However, this result
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is not confirmed by CCI-AOT data. Thus, conclusive evidence
for biological enhancement of aerosols remains elusive. The
intriguing result with the NASA-AOT certainly merits further
investigation.

5. CONCLUDING REMARKS

Essential Climate Variables, or ECVs, are our sentinels for
observation of climate change. However, to understand climate
change, it is not sufficient to study individual ECVs in isolation.
Instead, it is also important to study how they interact with each
other, and to understand how these interactions might change in
the future. Of the marine ECVs, Chl-a concentration is the only
biological ECV that is currently amenable to routine observations
by remote sensing.

In this paper, we have examined one piece of the puzzle, by
studying how the variability of Chl-a in the western Arabian
Sea is related to those in three other ECVs: aerosols, winds and
SST, focussing more on aerosol- Chl-a interactions, using 16
years of satellite data. What emerges is a complex pattern of
relationships, in an area where many ECVs co-vary with each
other. While it is difficult to elucidate causal relationships from
simple correlations, the phase relationships between the variables
can throw some light on the underlying causes.

A question that had to be addressed first, when using satellite
data for the analysis, was whether there were artifacts in the
patterns in Chl-a, introduced by the atmospheric correction
process, which depends to some extent on aerosol optical
properties. The correlation between Chl-a andNASA-AOT (a by-
product of ocean colour processing) peaking with a lag provided
reassurance on this point, since the peak should have been
observed at zero lag had processing artifacts been the cause
of the correlation. This point was reinforced by repeating the
analysis with data from Aerosol-CCI products, which are derived
independently of the ocean colour processing chain.

Though the NASA aerosol properties and the CCI aerosol
properties are generally consistent with each other, there is
a significant phase shift in the time when they peak during
the summer monsoon season. The underlying causes for this
difference deserve to be investigated further, but fall outside

the scope of this paper. In the Somali region, under upwelling
regimes, the Chl-a concentration is strongly correlated with wind.
Analysis of Ekman Mass Transport supports the hypothesis that
wind-induced upwelling is the underlying cause of the high
correlation between wind and Chl-a. According to the linear
multiple regression analysis, aerosols have amodest effect on Chl-
a, at best, with a lag of one to two time steps during this period. An
unexpected outcome from this study is related to the importance
of dust aerosols in stimulating Chl-a enhancement during the
winter monsoon season, suggesting that the abundance of dust
aerosols might enhance Chl-a in the absence of wind-induced
upwelling.
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Knowing the spatial and temporal distribution of the underwater light field, i.e., the

spectral and angular structure of the radiant intensity at any point in the water column, is

essential to understanding the biogeochemical processes that control the composition

and evolution of aquatic ecosystems and their impact on climate and reaction to

climate change. At present, only a few properties are reliably retrieved from space,

either directly or via water-leaving radiance. Existing satellite products are limited to

planar photosynthetically available radiation (PAR) and ultraviolet (UV) irradiance above

the surface and diffuse attenuation coefficient. Examples of operational products are

provided, and their advantages and drawbacks are examined. The usefulness and

convenience of these products notwithstanding, there is a need, as expressed by the

user community, for other products, i.e., sub-surface planar and scalar fluxes, average

cosine, spectral fluxes (UV to visible), diurnal fluxes, absorbed fraction of PAR by live

algae (APAR), surface albedo, vertical attenuation, and heating rate, and for associating

uncertainties to any product on a pixel-by-pixel basis. Methodologies to obtain the new

products are qualitatively discussed in view of most recent scientific knowledge and

current and future satellite missions, and specific algorithms are presented for some new

products, namely sub-surface fluxes and average cosine. A strategy and roadmap (short,

medium, and long term) for usage and development priorities is provided, taking into

account needs and readiness level. Combining observations from satellites overpassing

at different times and geostationary satellites should be pursued to improve the quality

of daily-integrated radiation fields, and products should be generated without gaps

to provide boundary conditions for general circulation and biogeochemical models.

Examples of new products, i.e., daily scalar PAR below the surface, daily average cosine

for PAR, and sub-surface spectral scalar fluxes are presented. A procedure to estimate

algorithm uncertainties in the total uncertainty budget for above-surface daily PAR, based

on radiative simulations for expected situations, is described. In the future, space-borne

371

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2018.00003
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2018.00003&domain=pdf&date_stamp=2018-02-14
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rfrouin@ucsd.edu
https://doi.org/10.3389/fmars.2018.00003
https://www.frontiersin.org/articles/10.3389/fmars.2018.00003/full
http://loop.frontiersin.org/people/381380/overview
http://loop.frontiersin.org/people/373386/overview
http://loop.frontiersin.org/people/423697/overview
http://loop.frontiersin.org/people/459559/overview
http://loop.frontiersin.org/people/519524/overview
http://loop.frontiersin.org/people/519482/overview
http://loop.frontiersin.org/people/30001/overview
http://loop.frontiersin.org/people/415261/overview
http://loop.frontiersin.org/people/205630/overview
http://loop.frontiersin.org/people/463394/overview
http://loop.frontiersin.org/people/373399/overview


Frouin et al. Light Fields Products for Oceanography

lidars with ocean profiling capability offer the best hope for improving our knowledge

of sub-surface fields. To maximize temporal coverage, space agencies should consider

placing ocean-color instruments in L1 orbit, where the sunlit part of the Earth can be

frequently observed.

Keywords: photosynthetically available radiation, average cosine, attenuation coefficient, ocean color, remote

sensing

INTRODUCTION

From the point of view of biology and chemistry, solar radiation
in the photosynthetically active range (roughly 400–700 nm),
referred to as PAR, controls the growth of aquatic plants
(e.g., Ryther, 1956; Platt et al., 1977; Kirk, 1994; Falkowski
and Raven, 1997). It ultimately regulates the composition and
dynamics of marine ecosystems. Solar radiation in the ultraviolet
(UV) (280–400 nm), by damaging cellular constituents, may
stress phytoplankton and inhibit their growth (e.g., Cullen
and Neale, 1994; Häder et al., 2011). UV light, via photo-
oxidation of colored dissolved organic matter (CDOM), may
increase the bioavailability of nutrients (Sulzberger and Durisch-
Kaiser, 2009). In the process, absorption by CDOM is reduced,
increasing light penetration. Knowing the distribution (spectral,
spatial, and temporal) of UV and visible solar radiation in the
upper ocean is critical to understanding biogeochemical cycles
of carbon, nutrients, and oxygen, and to addressing climate
and global change issues, such as the fate of anthropogenic
atmospheric carbon dioxide (CO2).

From the point of view of physics, sunlight absorbed by
phytoplankton and other water constituents (CDOM, mineral
particles, etc.) heats the upper ocean and distributes heat
horizontally and vertically, affecting mixed-layer dynamics
and oceanic circulation (e.g., Nakamoto et al., 2000, 2001;
Ballabrera-Poy et al., 2007). These changes in turn influence
atmospheric temperature and circulation, with remote effects
(Miller et al., 2003; Shell et al., 2003). Solar radiation diffusely
reflected by the ocean also affects the outgoing radiative flux
from the planet (planetary albedo), with climate consequences
(Frouin and Iacobellis, 2002). In order to make predictions
for future conditions, we need to get some idea of how the
phytoplankton concentrations and optical properties will evolve
with changing conditions. Many processes and feedbacks in
which solar radiation absorption plays a role are involved and
difficult to untangle, and a large fraction of the uncertainties
in projections of future climate is associated with physical-
biological interactions (Friedlingstein et al., 2006).

This article reviews operational satellite radiation products,
the user needs and gaps, and it provides a scientific roadmap
for the use of, and priorities for improving existing products
and developing new products, i.e., for closing the gaps in ocean
biology and biogeochemistry, including studies of biological-
physical interactions and feedbacks. This roadmap emerged
from the presentations (oral and poster) and discussions during
the Color and Light in the Ocean from Earth Observation
(CLEO) workshop at ESRIN, Frascati, Italy on 6–8 September
2016. The following questions are addressed: (1) Do existing

shortwave downward flux products meet the requirements of
the dynamics and bio-geochemical communities? What can be
done to serve better the needs of the user community in general
and the modeling community in particular? (2) What additional
products should be added to the processing streams to increase
their usefulness? What should be the characteristics of these
products in terms of temporal, spatial, and spectral resolution,
spectral range, and accuracy? (3) What are the needs in terms
of harmonization between sensors, methodologies, ancillary data
and radiative transfer tools?

Current Products
The underwater light field is defined at any point in space
by the spectral radiance (W/m2/sr/nm) from all directions.
Useful properties can be derived from radiance, i.e., planar
and scalar irradiance, average cosine, reflectance, and vertical
attenuation coefficient (see, e.g., Mobley, 1994 or Kirk, 1994 for
definitions). Only a few of these properties are presently inferred
reliably and operationally from space, namely daily above-surface
downward planar irradiance integrated from 400 to 700 nm
(known as “daily PAR product”), above-surface planar spectral
UV irradiance at noon, spectral reflectance of the water body,
and diffuse attenuation coefficient at 490 nm (derived from water
reflectance). These products are generated for each ocean color
mission individually (note that UV products are not available in
standard ocean-color missions).

Examples of level-3 daily, weekly, and monthly above-surface
PAR products at 9 km resolution from MODIS-Aqua data are
displayed in Figure 1. Dates are March 22, March 22–29, and
March 1–31, 2010, respectively. The NASA Ocean Color Biology
Group (OBPG) in Greenbelt, Maryland generates and archives
these products operationally. Typical uncertainty (RMS) is ±6.5
(19%), ±4.2 (12%), and ±2.6 Em−2d−1 (7%) for daily, weekly,
and monthly estimates (Frouin et al., 2012). The daily maps
exhibit missing values, especially at low latitudes, due to the
limited spatial coverage of the instruments, but the weekly and
a fortiori monthly maps are completely filled, except at latitudes
where the Sun zenith angle at the time of satellite overpass is
above 75 degrees, since the data is discarded in the OBPG ocean-
color processing line. The weekly and monthly PAR fields exhibit
similar patterns, but the monthly product is smoother (lower
variability at small scales), which is expected when the averaging
period is longer.

The corresponding maps of level-3 daily, weekly, andmonthly
diffuse attenuation coefficient (Kd) at 490 nm, also produced by
the OBPG, are displayed in Figure 2. RMS uncertainty on log-
transformed instantaneous estimates is about ±0.1 (e.g., Morel
et al., 2007). Since Kd is only retrieved in clear sky conditions, the
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FIGURE 1 | Daily, weekly, and monthly above-surface PAR at 9 km resolution,

derived from MODIS-Aqua. Top: March 22, 2010; Middle: March 22-29,

2010; Bottom: March 1–31, 2010 (From NASA OBPG).

daily map has many gaps (only about 10–15 % of the observed
pixels typically pass through the strict glint and cloud filters),
and the weekly product show many areas with no information.
On a monthly time scale, information is still missing at low
latitudes. The spatial gaps limit considerably the utility of the Kd

retrievals for propagating light below the surface. In the open
ocean, global coverage every 3–5 days is necessary to resolve
variability associated with seasonal biological phenomena such
as phytoplankton blooms. In coastal waters, wind forcing create
“events” (e.g., upwelling) that occur every 2–10 days, and 1-
day coverage is the requirement for resolving the event time
scale.

Figure 3 provides examples of level 3 daily, weekly, and
monthly maps of noon surface UV irradiance at 1◦ resolution
and 324 nm from OMI-Aura. Irradiance at 305, 310, and 380 nm
as well as erythemally weighted daily dose and erythemal dose

FIGURE 2 | Daily, weekly and monthly Kd at 9 km resolution, derived from

MODIS-Aqua. Top: March 22, 2010; Middle: March 22–29, 2010; Bottom:

March 1–31, 2010 (From NASA OBPG).

rate are also available. Dates are the same as those of Figure 1.
The data are routinely processed at the OMI Science Investigator-
led Processing System (SIPS) Facility in Greenbelt, Maryland,
and are archived at the NASA Goddard Earth Sciences Data and
Information Services Center (GES DISC). Overall uncertainty
of UV irradiance estimates ranges from ±5 to over ±30%,
depending on atmospheric conditions and geolocation (e.g.,
Arola et al., 2009). The UV irradiance and PAR fields have
similar spatial coverage (Figures 1, 3), with missing values due to
instrument swath on a daily time scale, except that UV irradiance
estimates are obtained at high latitudes. Variability patterns are
also similar, since UV irradiance variability is also governed by
Sun zenith angle and cloudiness, although ozone absorption plays
a bigger role in modulating the surface values (but gradients of
total ozone content remain mostly latitudinal). Spatial resolution
is coarser than for the MODIS products (OMI sensor footprint is
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FIGURE 3 | Daily, weekly and monthly noon above-surface UV irradiance at 1◦

resolution, derived from OMI-Aura. Top: March 22, 2010; Middle: March

22–29, 2010; Bottom: March 1-31, 2010. (From NASA GES DISC).

13× 24 km2), , and no daily-averaged values (only daily values at
noon or overpass time) are generated.

The situation regarding spatial coverage is summarized in
Figure 4, which displays the percentage of the ocean surface
covered by PAR, Kd, and UV irradiance products on daily,
weekly, and monthly time scales (imagery of Figures 1–3). In
the equatorial region, percent coverage is 65, 80, and 5% for
daily PAR, UV irradiance at 324 nm, and Kd, respectively. It
is increased to 100% for weekly and monthly PAR and UV
irradiance, and to 30 and 70% for weekly and monthly Kd. In
middle latitude regions, daily coverage is almost 100% for PAR,
about 80% for UV irradiance, and 15–20% for Kd. Weekly and
monthly coverage is 100% for PAR and UV irradiance, and
reaches 70–75 and 100% in sub-tropical regions for Kd. At high
latitudes (>70◦), monthly coverage is <40% for PAR and Kd.
This lack of coverage is limiting in view of the large productivity

of high latitude marine ecosystems (Southern ocean, Arctic
ocean). Furthermore, monthly Kd products may only contain
estimates during a few days, and therefore may not represent
accurately actual monthly values in dynamic regions (IOCCG,
2015).

Multiple satellites can improve the daily ocean coverage,
especially for Kd (can only be retrieved in clear sky conditions).
For example, three instruments of MODIS type, flying in a
constellation on satellite orbits differing by the mean anomaly
(angular distance from pericenter), would increase the daily
spatial coverage of water reflectance, therefore Kd, from 15
to 25% over 1 day and from 40 to 60% over 4 days (Gregg
et al., 1998). Figure 5 shows, for March 22, 2010, the increase
in daily ocean coverage obtained by combining estimates from
MODIS-Aqua (overpass at 13:30 local time) and –Terra (overpass
at 10:30 local time) instead of using MODIS-Aqua only. For
PAR, the increase is from 60 to 80% in equatorial regions,
and complete coverage is reached at sub-tropical latitudes. For
Kd, the ocean coverage is more than doubled at most latitudes
(e.g., 35–50%, instead of 15–20% in the sub-tropics). Combining
PAR estimates from instruments orbiting at different times not
only increases spatial coverage, but perhaps more importantly,
also takes into account cloud diurnal variability, yielding more
accurate estimates.

Satellite instruments in geostationary orbit, by observing
the same target multiple times during the day (e.g., every
30min for GOCI onboard COMS and 10min for AHI onboard
Hiwamari-8) offer an efficient way to account for diurnal changes
in cloudiness in daily PAR products. Figure 6 displays daily
PAR imagery obtained with GOCI data acquired on April 5,
2011 at 3:16 GMT and at 00:16, 01:16, 02:16, 0.3:16, 04:16,
05:16, 06:16, and 07:16 GMT. In clear-sky regions (north of
Japan), the values are close using one or 8 observations, which
is expected since the governing parameter is the Sun zenith
angle. In cloudy regions (South of Japan), the PAR spatial field
is smoother and the range of values smaller since cloudiness
changes are accounted for in the daily average. The lowest value
is about 12 Em−2d−1 with 8 observations instead of 5 Em−2d−1

with one observation. The two types of estimates compare
well, with a bias of 0.11 Em−2d−1 (0.2%), i.e., slightly higher
values using one observation, and a root-mean-squared (RMS)
difference of 5.92 Em−2d−1 (13.5%), largely due to differences
in cloudy situations. Figure 7 displays an example of AHI daily
PAR product (July 20, 2011) and the corresponding MODIS-
Aqua product. Observations every 10min were used to estimate
daily PAR from AHI data. The patterns of variability are similar
in both products, but as for GOCI, the AHI PAR imagery is
smoother and contains less extreme values. The AHI product,
unlike the MODIS product, does not exhibit spatial gaps. In
terms of comparison statistics, the AHI values are lower by
1.38 Em−2d−1 (4.8%) on average, and the RMS difference is
6.46 Em−2d−1 (22.7%).

In summary, existing satellite products generally do not cover
the global open oceans (e.g., retrievals limited to Sun zenith
angles < 75◦), except for UV irradiance, and they do not provide
information below sea ice, where significant blooms may develop
(e.g., Arrigo et al., 2012). In addition, cloud diurnal variability
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FIGURE 4 | Percentage of the ocean surface covered by (Left) PAR, (Middle) Kd, and (Right) noon irradiance products on daily, weekly, and monthly time scales,

i.e., March 22, March 22–29, and March 1–31, 2010. Situation is dramatic for Kd, which is only retrieved in clear-sky conditions (<15% coverage at most latitudes).

FIGURE 5 | Percentage of ocean coverage by daily PAR and Kd products when using MODIS-Aqua data only (red curves) and combining MODIS-Aqua and -Terra

data (black curves). Date is March 22, 2010. Coverage is almost total (>80%) in low to middle latitude regions for PAR (left) and at least doubled at most latitudes for

Kd (right).

FIGURE 6 | Daily above-surface PAR distribution for April 5, 2011 obtained from 8 hourly GOCI observations during the day (right) and a single GOCI observation at

03:16 GMT (left). In the stormy region South of Japan, the range of PAR values is smaller when using 8 observations due to diurnal changes in cloudiness.

Reproduced with permission from Springer Nature (After Frouin and McPherson, 2012).
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is not accounted for in daily PAR calculations when using polar
orbiting satellites. Geostationary satellites observing frequently
during the day account properly for cloudiness changes, but the
drawback is a decreased spatial resolution at high latitudes and
potentially large uncertainties for slanted viewing geometries.
Propagation of surface radiation to depth currently assumes
that the ocean is homogenous, neglecting potentially important
effects of stratification on the absorption of solar radiation.
In sum, our view of the underwater light field from space is
limited. Nevertheless, the operational radiation products have
been used to address a variety of topics related to aquatic
photosynthesis, for example biosphere productivity during an
El Niño transition (Behrenfeld et al., 2001), phytoplankton
class-specific productivity (Uitz et al., 2010), chlorophyll and
carbon-based ocean productivity modeling (Behrenfeld et al.,
2005; Platt et al., 2008), climate-driven trends in productivity
(Behrenfeld et al., 2006; Kahru et al., 2009; Henson et al.,
2010), and inter-comparison of productivity algorithms (Carr
et al., 2006; Lee et al., 2015). They have also been used
to check the stability of CERES measurements (Loeb et al.,
2006).

Users Needs
User needs vary widely in terms of products, spectral, spatial,
and temporal resolution, and acceptable uncertainties, depending
on the scientific or societal subject of interest. Applications
requiring knowledge of radiomeric quantities and apparent
properties (radiance, irradiance, average cosine, attenuation
coefficients) are multiple and diverse, including phytoplankton
phenology, carbon inventory, heat budget and ocean dynamics,
fisheries and ecosystem management, toxic algal blooms, and
eutrophication (see National Research Council, 2011 for a
comprehensive list). Observational and uncertainty requirements
(satellite products) generally range from 1 h to 1 day, 0.1 to
50 km, and ±5 to ±20% for PAR and 0.1 to 10 km, 1 to 7 days,

and ±10 to ±25% for spectral Kd (Malenovsky and Schaepman,
2011), but higher resolution may be needed in some cases,
for example rapidly changing phenomena occurring in small
water bodies. For applications that need analyzing long-term
records (e.g., associated with climate), the products need to be
sensor independent, consistent, and continuous across satellite
missions.

The satellite products should be defined unambiguously and
completely, they should be easily accessible, and they should have
associated ATBDs with detailed protocols including description
of all ancillary data used and their sources. For example, defining

a PAR product merely as downward quantum flux at the surface
in the 400–700 nm spectral range is insufficient. One needs to
precise whether the flux is just above or just below the surface,
whether it is instantaneous or time-averaged (e.g., over 24 h for

“daily PAR”), and to indicate spatial resolution. Advantages and
limitations should be specified (e.g., product not valid at Sun
zenith angles above 75◦, or over sea ice, or in the presence of
Sun glint), and uncertainties assessed, preferentially provided
on a pixel-by-pixel basis, to make sure that observed changes
are interpreted correctly. Computer codes used to derive the
products should be available to users with proper documentation,

as well as standardized processing tools (e.g., open-source
toolboxes).

A survey about satellite PAR observations was conducted

in 2015 by Plymouth Marine Laboratory (PML), requesting
feedback from the user community on adequacy of available

products, including importance, usage, and accuracy, and
additional features one would like to see. Figure 8 summarizes
the results about desired PAR attributes and new products and

acceptable PAR uncertainties. Most respondents answered it was
very or extremely important to have uncertainties associated

with PAR products. About 50% of the respondents indicated

that ±10–25% uncertainty was acceptable, and about 40%
wanted uncertainty better than ±10%. A substantial majority of

FIGURE 7 | Daily above-surface PAR for July 20, 2011 obtained from AHI (observations every 10min) and MODIS-A data at 9 km resolution (left and right,

respectively). Patterns of spatial variability are similar for the two sensors, but the AHI PAR field is smoother, contains less extreme values, and does not exhibit spatial

gaps (Courtesy of H. Murakami, Japanese Aerospace Exploration Agency).
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FIGURE 8 | Results of PML user requirement questionnaire for satellite-derived PAR (Left). Histogram of desired products and attributes (Right). Histogram of

acceptable uncertainty for PAR. (Based on data from 63 respondents).

respondents ranked PAR below the surface and the fraction of
PAR absorbed by phytoplankton about equally as the top two
new products to generate. Based on this survey and in view of

the extensive list of research and societal applications, current
and potential, a list of required (new) products was compiled,
including products that may be challenging to generate from
space:

• Sub-surface planar and scalar irradiance (as opposed to above
the surface).

• Fraction of PAR absorbed by phytoplankton (APAR).
• Diffuse fraction of total irradiance (average cosine of light field

just below the surface).
• Spectral planar and scalar irradiance.
• Spectral diffuse attenuation coefficient for downward

irradiance.
• Surface albedo (ratio of planar upward irradiance to downward

planar irradiance just above the ocean surface).
• UV-A, UV-B scalar irradiance (with photon and energy units).
• Products without gaps (in space/time) to provide boundary

conditions to models.
• Upper-ocean heating profile.
• Diurnal distribution of PAR and its attenuation.
• Averaged mixed-layer PAR.
• Under-ice light fields.

Gap Analysis
Some new products (such as below surface planar and
scalar PAR) can be easily implemented while others require
development (e.g., APAR, vertical attenuation of PAR). For some
products (e.g., under-ice light fields), the readiness level, in terms
of methodology, is low. The state-of-the-art, however, is such that
the strategy to obtain the new products described above is known
and summarized below.

Sub-surface planar PAR and scalar PAR depend essentially
on the sunlight transmission across the air-water interface,
therefore the angular distribution of radiance incident at the
surface and surface roughness (Mobley and Boss, 2012). The

24 h-averaged quantities, as well as the average cosine for total
light, can be parameterized as a function of latitude and daily
cloud factor (i.e., the ratio of actual PAR and clear-sky PAR)
and wind speed. This may require look-up tables for clear sky
and overcast quantities. Details about procedures are provided
in section Examples of New Products, where examples of sub-
surface products are presented. Note that in the OBPG approach
to estimating above-surface daily planar PAR, it is actually
easier (more direct) to compute the downward flux below the
surface. This “penetrative” flux is obtained by subtracting from
the incident extraterrestrial solar irradiance the reflected flux
and the flux absorbed by the surface/atmosphere system. The
“penetrative” flux is then corrected by 1/(1−As), where As is the
surface albedo, to yield the incident flux onto the surface (e.g.,
Frouin et al., 2012). This second step introduces uncertainty,
but allows for extensive evaluation at PAR measuring sites,
an activity that cannot be performed easily for sub-surface
fluxes (lack of data and difficulty to measure sub-surface fluxes
accurately).

The above variables, integrated over the PAR spectral range,
can be calculated without difficulty for the spectral bands of the
ocean color sensors (i.e., visible to near infrared), in which cloud
absorption is negligible. Providing the information at regular
spectral intervals (e.g., every 5 or 10 nm), a requirement of
some primary production models (e.g., Sathyendranath et al.,
1989; Antoine et al., 1996), is straightforward since cloud
optical properties (extinction coefficient, asymmetry factor) are
similar, i.e., cloud albedo can be assumed constant in the
entire spectral range, and the coupling between molecules and
cloud droplets/crystals is relatively small (i.e., fairly unique
relation between cloud transmittance at different wavelengths).
In spectral regions of strong gaseous absorption, however,
uncertainties may be introduced due to the coupling between
absorption and scattering processes (depends on the unknown
vertical distribution of the absorbers and scatterers). Extending
the calculations to the ultraviolet (e.g., UV-A, UV-B) from
measurements in the visible is more complicated, but definitely
feasible. The complication is not due to cloud optical properties
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(they remain similar to those in the visible), but to the coupling
between molecules and cloud droplets/crystals, which is effective.
In other words, the relation between cloud transmittance (in
the presence of molecules and aerosols) in the ultraviolet
and visible depends on the type of clouds and their location
in the vertical. This indicates that de-coupling the clear
atmosphere from clouds, as it is done in the OBPG PAR
algorithm, may introduce significant errors in the estimation of
ultraviolet irradiance. Suitable modeling of the relation between
atmospheric transmittance at visible and ultraviolet wavelengths
is therefore required, which can be accomplished via radiation
transfer calculations to various levels of accuracy depending on
user needs (may require additional information on clouds).

From the spectral downward irradiance at the surface,
minimally affected by photons reflected by the surface and
backscattered by the water body (spherical albedo of the
atmosphere is small, i.e., about 0.15 in the visible) and the spectral
upward irradiance at the surface, one may compute the spectral
surface albedo. The computation, however, can only be done in
clear-sky conditions since water optical properties are necessary
but generally not retrieved in cloudy conditions from ocean-color
sensors. Estimating the spectral upward irradiance at the surface
requires retrieving spectral water reflectance (i.e., the signal
backscattered by the water body), which is routinely achieved by
satellite project offices, andmodeling the bidirectional reflectance
function of the surface (e.g., using Cox and Munk, 1954) and
the water body (e.g., using Morel and Gentili, 1996 or Park and
Ruddick, 2005).

Although daily averaged quantities are often used (therefore
required) in applications, instantaneous quantities (i.e.,
determined at time of satellite overpass) can be easily provided.
In fact instantaneous products, unlike 24 h-averaged products, do
not require assumptions about diurnal changes in atmospheric
and oceanic properties. Diurnal variability can be described well
using sensors onboard geostationary satellites, such as GOCI
and AHI, see section Current Products, all the more as these
sensors have ocean-color capabilities. One limitation, however,
is the reduced spatial resolution at high latitudes, and managing
data from different instruments, which may be operated by
different space agencies, to achieve global coverage. Observations
from the Earth-Sun the Lagrangian-1 (L1) point, 1.5 million
kilometers from Earth, such as those made by the EPIC camera
onboard DISCOVR (1–2 h temporal resolution, 21 km spatial
resolution), provide a suitable alternative to several sensors on
geostationary orbit. Because of the high orbit, spatial resolution
at high latitudes is much less an issue. Diurnal information
may also be obtained from a constellation of Sun-synchronous
instruments with local overpass times spread during the day,
for example MODIS-Terra at 10:30 am, SeaWiFS-SeaStar
observing at noon, and MODIS-Aqua observing at 1:30 pm.
From a unique instrument in Sun-synchronous orbit, ancillary
data about variability of clouds and aerosols is necessary, for
example Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) products, available at a 1/2×
2/3 degree every hour for the day of the satellite observation.

Propagating fluxes vertically below the surface requires
knowledge of the vertical profile of diffuse attenuation coefficient,

Kd. From space, this can only be achieved in clear sky conditions
with passive optical sensors, since Kd is deduced from water
reflectance (empirical algorithms) or inherent optical properties
(e.g., IOCCG, 2006). The Kd estimates are actually weighted
averages over one optical depth (from which most of the photons
from the water body reaching the satellite sensor originate); no
vertical information is obtained. In first approximation, one may
propagate light below the first optical depth (shallower than the
depth of the euphotic zone) by assuming no vertical variation in
spectral diffuse attenuation. However, this is generally inaccurate,
as many oceanic regions (e.g., oligotrophic provinces) exhibit
maximum chlorophyll concentration well below the first optical
depth. One has therefore to rely on statistical relations between
concentrations of oceanic constituents at the surface and below
(e.g., Morel and Berthon, 1989) to estimate the Kd depth profile,
or to use outputs of predictive coupled physical-biogeochemical
numerical models. In the future, with the advent of space-borne
polarization lidars such as CALIOP onboard CALIPSO or the
Aerosol/Cloud/Ecosystems (ACE) lidar (being designed), one
will be able to profile Kd in both clear and cloudy conditions,
day and night, up to 3 optical depths in the green (532 nm) at a
vertical resolution of 3 to 30m (e.g., Lu et al., 2014; Behrenfeld
et al., 2016). The sub-surface fluxes and the vertical profile of
diffuse attenuation coefficient give access to fluxes at the bottom
(important for studies of shallow coastal ecosystems), average
fluxes in the mixed layer (requires knowledge of mixed-layer
depth, e.g., from ocean circulation models), and the upper-ocean
heating rate profile. Knowing mixed-layer fluxes and vertical
heat distribution is especially useful to characterize the role of
solar penetration and biological-physical interactions on ocean
circulation and climate (Olhmann et al., 1996; Shell et al.,
2003; see section Introduction).

In a homogeneous ocean, APAR depends on the ratio of the
spectral absorption coefficient by live phytoplankton, aph, and
total absorption (water, yellow substances, non-algal particles),
atot, in the PAR spectral range and the spectral planar irradiance
just below the surface. In a vertically heterogeneous ocean, the
vertical distribution of those quantities plays a role, as well as
the vertical distribution of the diffuse attenuation coefficient
for downward irradiance, Kd. Computing APAR from space,
therefore, requires estimates of spectral planar irradiance below
the surface, and vertical profiles of aph, atot, and Kd. Sub-
surface spectral irradiance and its vertical attenuation can be
obtained as discussed above, and absorption coefficients using
various techniques (e.g., IOCCG, 2006). Some of these variables
are difficult to retrieve with good accuracy, in particular aph
(requires partitioning atot into its components), and vertical
information in the euphotic zone is generally not directly
available (except from future space-borne lidars, see above).
Consequently, uncertainties on APAR computations based on
satellite estimates of individual variables may be large. Since
APAR strongly depends on the spectral ratio of sub-surface
reflectance, R(0−) and pure seawater reflectance, Rw(0

−), one
may envision approximating APAR by a linear combination of
R(0−)/Rw(0

−) in the PAR spectral range (Frouin et al., 2014).
Since APAR is expressed linearly in water reflectance, the method
is applicable to average values of water reflectance (e.g., spatially
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averaged), which may reduce the impact of water reflectance
noise on the APAR estimate.

Primary production under sea ice is considerable, as evidenced

from in situ measurements of phytoplankton concentrations
and suggested by numerical model simulations. In the Arctic

Ocean, it may constitute more than 30% of the total production
(Popova et al., 2010). As a consequence, the seasonal cycle is
shifted, with maximum primary production occurring in July,

not in August-September (case of open waters). There is a
need, for primary production modeling and studies of under-

ice phytoplankton blooms, to determine light fields under the

ice (Laliberté et al., 2016). This is quite difficult to realize from
space, since knowledge of sunlight transmission though sea ice is

required, and this parameter is quite variable depending on ice

type and thickness, and the presence of snow and melt ponds.
Transmission models are now becoming available (Arndt and
Nicolaus, 2014), and they can make use of sea-ice thickness
and age, snow depth, and melt pond fraction observations from

microwave and optical sensors (SIRAL on Cryosat-2, AMSR-2 on

CGOM-W1, ATLAS on IceSta-2, MODIS on Terra and Aqua).
One issue is separating the contribution of clouds to the planetary
albedo, in order to access the surface albedo. Algorithms are not

mature for generating operationally shortwave fluxes under sea
ice.

The possible methodologies, difficulties, opportunities, and
readiness level for developing and creating the new products
were discussed above. The following recommendations regarding
these products are made:

1) Spectral fields should be provided at the sensor resolution

with protocols (and codes) describing how to interpolate and
extrapolate for obtaining other spectral distributions (e.g.,

1 nm irradiance field from a multi-spectral sensor).

2) Vertical propagation of products requires an appropriate
attenuation coefficient from which other products can be
derived (e.g., euphotic depth, mixed-layer depth, isolume
depth). Clear guidelines on how to produce the derived
products using the attenuation should be provided.

3) Horizontal/temporal gap filling is necessary for certain
applications (e.g., ecological forecasting). This can be done
using merged products across sensors and/or interpolation
schemes (using known de-correlation scales ormodels). Many
techniques are available (e.g., Pottier et al., 2006; Alvera-
Azcarate et al., 2007; Krasnopolsk et al., 2016).

4) Products should have associated uncertainties that
are consistent with those obtained when validating
estimates against in situ measurements, taking into
account uncertainties in the in situ data. This requires a
calibration/validation program. The product protocol should
provide a description of how the uncertainty was derived. It
is desirable to provide a per-pixel uncertainty. It is recognized
that the level of effort to obtain a very accurate uncertainty
estimate can be very large and therefore some trade-offs may
need to be done, in consultation with user requirements.

5) Data access should be tailored to users need. For example,
modelers will use multithreading with simultaneous access
to associated error fields. In contrast, the Earth observation

community will, typically, want to access data using FTP.
Most users do not care about the satellite mission from which
a product was derived, but rather care about the products
being continuous in time and consistent across missions.

6) Cross-agency efforts should be made to homogenize their
respective products so it is easy for users to use these products
(e.g., the definition of a PAR product should be the same). For
climate relevant products, it is critical to merge them (and de-
bias) across missions so that models to not experience secular
jumps as they assimilate such data.

EXAMPLES OF NEW PRODUCTS

Par Simulator
Radiative Transfer Code
To develop new shortwave radiation products from satellite data
(such as those discussed above) and assess accuracies, one needs
to simulate the TOA radiance measured by a given sensor and
the variable to retrieve (e.g., planar or scalar spectral irradiance
below the surface, average cosine). For this, we use the Speed up
Monte-Carlo Advanced Radiative Transfer using GPU (SMART-
G) radiative transfer code (Ramon et al., 2017). This code,
based on the Monte-Carlo method, is fast and massively parallel.
It computes the complete light field (i.e., radiance, including
polarization) in the ocean and atmosphere.

The code simulates the transfer/propagation of solar
radiation in a 1-dimensional coupled ocean-atmosphere
system with a wavy interface. It accounts for absorption and
scattering by molecules, aerosols, and hydrosols, and Fresnel
reflection/refraction at the interface. Polarization properties
of the various atmospheric and oceanic constituents and the
surface are explicitly considered. Inelastic processes (i.e., Raman
scattering, fluorescence) are omitted in the current version. The
ocean can be infinitely deep or bounded by a reflective bottom at
finite depth. The computations are made in either plane-parallel
or spherical geometry. The four components of the Stokes vector
can be obtained at any wavelength of the solar spectrum and any
level of the coupled ocean-atmosphere system.

Gaseous absorption is treated either by correlated k-
distribution (Kato et al., 1999) or an equivalent like REPTRAN
(Gasteiger et al., 2014; Emde et al., 2016). In the multispectral
mode, each photon is assigned a wavelength. All optical
properties of the medium are pre-calculated for these
wavelengths. The spectrum is computed in one pass but is
under the influence of Monte-Carlo noise. For higher spectral
resolution computations without spectral noise, for example
in order to handle line-by-line (LBL) gas absorption, the ALIS
method (Emde et al., 2011) is also implemented in SMART-
G. This allows for the calculation of spectra by tracing the
photon paths once for all wavelengths (by absorption/scattering
decoupling).

Simulations
In the Monte-Carlo code, photon packets are carrying
planar irradiance (Wm−2) perpendicular to their direction
of propagation. Therefore downward or upward spectral planar
irradiances are obtained by performing the weighted sum of
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irradiances crossing a unit area of horizontal surface located
above or below the air-sea interface. For spherical irradiances,
each photon is assigned an additional weight of 1/cos(θi) where
θi is the photon’s zenith angle arriving on the detector. The runs
were optimized for the calculation of spectral daily fluxes above
and below the ocean surface. For 1 day, one run was executed
by injecting a large number of photons whose wavelength was
chosen randomly as well as the injection angles at TOA and
in the atmosphere depending on the hour of the day. Typical
runtime is 1 s to reach ±1% uncertainty for clear sky conditions
and for 1 day. It becomes 30 s for a totally overcast situation with
a cloud optical thickness of 50.

The aerosol and cloud optical properties are taken from
the OPAC database (Hess et al., 1998) and distributed within
the libradtran software package (www.libradtran.org). Aerosols
are supposed to be spherical. The clouds are supposed to be
composed of liquid water droplets with a varying effective radius.
Rayleigh optical depth is computed according to Bodhaine
et al. (1999). The gaseous absorption is parameterized as a
correlated k-distribution with spectral intervals of 10 nm from
line-by-line calculations using the Py4Cats code (Schreier and
Gimeno Garcia, 2013) and HITRAN 2012 (Rothman et al., 2013)
absorption parameters for H2O and O2. Ozone and NO2 smooth
absorption coefficient are taken from Bogumil et al. (2003).
The wind-roughened sea surface is modeled as an ensemble of
uncorrelated facets with a slope distribution (Cox and Munk,
1954) and a uniform azimuth distribution. The reflection and
transmission coefficients are then computed using Fresnel’s laws.
Ocean bulk optical properties correspond to Case-I waters with a
chlorophyll-a concentration of 0.5 g.m−3. The ocean’s bottom is
black and is located at a depth of 50m. The ocean phase function
is represented by a Fournier-Forand function with a varying
truncation angle.

An example of outputs of the SMART-G code in the context
of PAR simulations (both spectral irradiance and reflectance)
is given in Figure 9 for various levels in the atmosphere-ocean
system (top, just above the surface, just below the surface, and at
the black bottom of the water column) and several atmospheric
conditions (clear and cloudy situations with different Sun zenith
angles). The TOA reflectance in the MERIS bands is also
indicated. The various graphs show the importance of Sun zenith
angle and cloud optical thickness in controlling the downward
PAR above and below the surface. They also illustrate the
usefulness of the SMART-G tool for algorithm development.

For the year 2011, and for 14 latitudes ranging from −64.5
to 64.5, the various spectral irradiances listed in the Annex
were computed at 11 times regularly distributed throughout
the day. The typical spectral TOA reflectance for a MERIS-like
instrument measuring at 10:30 local time was also computed. The
atmospheric content was changing according to the MERRA-
2, hourly, gridded datasets of water vapor and ozone contents,
aerosol optical depths of black carbon, dust, organic carbon,
sea salt, and sulfates aerosols at 550 nm, and cloud optical
thicknesses. Individual clear sky and overcast plane-parallel
radiative transfer calculations were then mixed using the
Independent Pixel Approximation (IPA) using MERRA-2 cloud
cover variable as the mixing value.

The following quantities were then computed: PAR0−o (t)
and PAR0+

d (t) (to describe diurnal variation of sub-surface

fluxes),
〈

PAR0+
d

〉

24h
(the main product),

〈

PAR0−o
〉

24h
(the key

product for primary production and photo-chemical processes),
〈

PAR0−o
〉

24h
(λi) (spectral scalar flux, as requested by modelers,

at a resolution of 10 nm), and
〈

µ0−
0

〉

24h
(to characterize the

angular structure of the light field). Definitions are provided in
the Annex.

Algorithm for 〈PAR0−
o 〉24h and 〈µ0−

0 〉24h
Rationale
We define a Cloud Factor (CF) as the deviation from a pure clear
sky daily averaged PAR above the surface. It is a “measure” of the
influence of clouds on the daily PAR:

〈CF〉24h =

〈

PAR0+
d

〉

24h
〈

PAR0+
d

〉clear

24h

One typical day of simulations is displayed in Figure 10 for a
latitude of 55.5◦N. The Sun zenith angle and the length of the day
mainly drive the diurnal cycle of both clear sky PAR and partly
cloudy PAR. For that particular day, the influence of cloudiness
is important (and somehow stable) reducing the daily PAR by a
factor 〈CF〉24h = 0.34. The average cosine µ0−

0 is very stable for
cloudy conditions, with a value around 0.82 throughout the day.
A clear sky has a variableµ0−

0 culminating at noon. In both cases

the spectral variation of µ0−
0 , not shown here, is weak. The 24 h-

averaged value of µ0−
0 should be representative of the direction

of propagation of the largest fraction of the daily PAR. That is
why we define the 24 h-averaged

〈

µ0−
0

〉

24h
as the ratio of the 24

h-averaged net and scalar PAR (and not the 24 h average of their
instantaneous ratios):

〈

µ0−
0

〉

24h
=

〈

E0−net
〉

24h
〈

E0−o
〉

24h

The normalized spectral PAR, obtained by dividing the spectral
PAR by its value at 675 nm, is defined in the same manner as:

〈

PÃR0−o

〉

24h
(λi) =

〈

PAR0−o
〉

24h
(λi)

〈

PAR0−o
〉

24h
(675nm)

It gives the spectral shape of the PAR and it is very stable and close
to the TOA solar irradiance spectrum in most cases. The spectral
shape of the clear sky PAR is slightly influenced by the mean Sun
zenith angle because the absorption of ozone in Chappuis bands
becomes more and more effective. The spectral dependence of
the cloudy PAR is smaller. It increases in the blue part of the
spectrum as cloud influence increases.

Following the approach of Mobley and Boss (2012), 24
h-averaged secondary radiative quantities may be obtained
from a reduced set of parameters, the most important ones
being the location and date which control the day length
and mean Sun zenith angle, then the influence of the clouds
which is between null (clear sky) and maximum (100% cloud
cover), and finally the wind speed. The chlorophyll content
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FIGURE 9 | Examples of outputs of the SMART-G RTC code for 4 situations. On the left axis is reported the “spectral PAR” in units of light quanta per unit time, unit

area and unit wavelength for planar and spherical upwelling (“u”) or downwelling irradiances (“d”) at several levels in the ocean-atmosphere coupled system: at TOA,

just above (0+) or below (0−) the surface, or at the black bottom (superscript B) of the ocean located here at a depth of 50m. On the right axis is plotted the TOA

spectral reflectance at the same resolution, and at the center of MERIS wavebands. The top two graphs are for a clear-sky situation for two Sun zenith angles (SZA)

and the bottom two graphs a liquid water cloud, located between 2 and 4 km with droplets of effective radius = 11mm whose of optical thickness 10 is added. The

clear atmosphere model is the US62 standard atmosphere, with maritime polluted aerosols as described in the OPAC database with an AOT at 550 nm equal to 0.1.

The ozone column is 300 DU and the precipitable water quantity is 2 g/cm2.

of the water is of minor importance for calculating the scalar
and net PAR just below the surface. Figure 11 displays the
coefficients to be applied to

〈

PAR0+
d

〉

24 h
in order to obtain

〈

PAR0−o
〉

24h
, or

〈

PAR0−
d

〉

24h
, and also shows how

〈

µ0−
0

〉

24h
and

〈P˜AR0−o 〉24h (λi) vary for various latitudes and wind speeds
and for the two extreme cases, i.e., clear and totally overcast.
Figure 12 displays the result of the application of the coefficients
described above for estimating the scalar PAR below the
surface. We processed one full year of global simulated data
(2011, see section PAR Simulator) for 3 wind speeds (0, 7,
and 15m.s−1) and checked the quality of the regression vs.
the “actual” (or prescribed) values, i.e., the values obtained
by running the Monte Carlo code with the various input

variables (MERRA-2 hourly data, see above). These values
provide the reference in calculating algorithm performance
statistics. The regression is excellent with a residual bias and a
R.M.S. difference of about 0.5mol.ph m−2.day−1. Wind speed
or cloudiness do not apparently impact the quality of the
regression.

Figures 13, 14 depict the normalized spectral PAR and average
cosine for the year 2011, for a latitude of 55.5◦N and a wind
speed of 7m.s−1. For both parameters, the clear sky and totally
overcast situations are also plotted. They constitute an envelope
wihin which the actual values are included, and the deviation
from the clear sky value seems proportional to the actual cloud

factor 〈CF〉24h. This suggests a method to derive 〈P˜AR0−o 〉24h (λi)
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FIGURE 10 | (Left plot) Diurnal variation of the downward above-surface PAR (squares) and scalar below-surface PAR (dots) for the 21st of June and for a latitude of

55.5◦ N and a wind speed of 0 m/s. On the right vertical axis is reported the mean cosine below the surface. Two simulations are shown: (i) one for clear sky (solid

lines) and (ii) one for “real” sky with cloud cover and cloud optical thickness as given by MERRA-2 and mixed with the clear-sky simulations using the Independent

Pixel Approximation (IPA). (Right plot) Normalized spectral PAR at 675 nm for both clear and IPA situations.

and
〈

µ0−
0

〉

24h
from look-up tables of the clear sky and overcast

situations and from an estimation of the actual cloud factor.

Equations
We propose to use the observed cloud factor 〈CF〉obs as a proxy
of 〈CF〉24h and then linearly interpolate between clear sky and
overcast look-up tables as a function of 〈CF〉obs. We have:

〈CF〉obs =

〈

PAR0+
d

〉obs

24 h
〈

PAR0+
d

〉clear

24 h

S1 =

〈

P˜AR0−o

〉clear

24h

(λi) −

〈

P˜AR0−o

〉overcast

24h

(λi)

1− 〈CF〉overcast24h

〈P˜AR0−o 〉24h (λi) = S1 .
(

〈CF〉obs − 〈CF〉overcast24h

)

+ 〈P˜AR0−o 〉

overcast

24h (λi)

S2 =

〈

µ0−
0

〉clear

24h
−

〈

µ0−
0

〉overcast

24h

1− 〈CF〉overcast24h
〈

µ0−
0

〉

24h
= S2 .

(

〈CF〉obs − 〈CF〉overcast24h

)

+
〈

µ0−
0

〉overcast

24h

The error will be large when cloudiness changes a lot during the
day and thus we may suspect that 〈CF〉obs deviates substantially
from 〈CF〉24h and when the values of the parameters in clear or
totally cloudy conditions are substantially different.

Look- Up Tables for Clear Sky and Overcast

Situations

Models
The clear sky model is based on the AFGL US 62 standard
atmosphere with a surface pressure of 1012.15 hPa, an O3

vertically integrated content of 300 DU, and a H2O vertically
integrated content of 2 g.cm−2. The aerosol model is the
maritime clean model from the OPAC database with an AOT
of 0.1 at 550 nm. The air-sea interface is a wind-roughened

surface. The ocean bulk optical properties correspond to Case-I
waters with a chlorophyll a concentration of 0.5 g.m−3. The ocean
bottom is black and is located at a depth of 50m. For the totally
overcast model we added a permanent cloud layer between 5 and
10 km consisting of water droplets with reff = 11µm and a cloud
optical thickness of 50. The aerosols, hydrosols and cloud phase
matrices are computed at 550 nm and are assumed spectrally
invariant between 400 and 700 nm.

Computations
For latitudes between −90◦ and 90◦ by step of 10◦, for every 30
days along the year, and for 3 wind speeds: 0, 7 and 15m.s−1, we
computed the following quantities:

〈CF〉overcast24h , 〈P˜AR0−o 〉

overcast

24h (λi) , 〈P
˜AR0−o 〉

clear

24h (λi) ,
〈

µ0−
0

〉overcast

24h
,

and
〈

µ0−
0

〉clear

24h
.

First Results
For the MERIS sensor, first examples of the new parameters
(daily and monthly global products for May 15 and May 1–
31, 2011) are displayed in Figures 15–17. Data at high latitudes
were masked using ESA CCI Sea Ice Concentration products
v2.0 (cci.esa.int). The scalar PAR below the surface (Figure 15)
follows the planar PAR above the surface (not shown here), but
the values are somewhat higher, as expected. The spatial coverage
of the daily MERIS product is less than for the MODIS products
(Figure 1), because of the narrower swath of MERIS and the
glitter mask (more glint in the MERIS imagery). The average
cosine product (Figure 16) is smoother because it is influenced
mainly by the average solar elevation. The latitudinal variation is
important with the highest values (0.85) in the tropics whatever
the cloudiness. At high latitudes the contrast between clear and
cloudy sky conditions becomes more marked with an average
cosine closer to the tropics values in cloudy sky conditions and
the lowest values (0.65) under clear skies. For monthly averages,
the mixture between cloudy and clear skies tends to further
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FIGURE 11 | Simulations of 24 h averaged secondary radiative products for clear-sky (solid lines) and totally overcast situations (dashed lines, cloud optical thickness

= 50, constant along the day) and for several wind speed as a function of latitude. (Top left) Ratio of planar PAR below and above surface. (Top right) Ratio of scalar

PAR below the surface to planar PAR above surface. (Bottom left) Average cosine below the surface. (Bottom right) Ratio of spectral scalar PAR below the surface

at 405 and 765 nm. The date is 21st of June.

smooth the product, which becomes a simple function of latitude.
The normalized spectral PAR at 405 nm (Figure 17), like the
mean cosine, exhibits a contrast between clear and cloudy sky
situations that is increasing toward the high latitudes. However
on a monthly time scale the latitudinal gradient is very weak and
the dispersion of the product is also very weak with a mean of
0.63 and a standard deviation of 0.024 over the global ocean.

Algorithm Uncertainties for 〈PAR
0+
d

〉24h
Associating uncertainties to the satellite radiation products,
preferentially on a pixel-by-pixel basis, is obligatory to quantify
their quality. This is important to ensure that variability or trends
detected in scientific analyses are of geophysical nature, i.e.,
that the data are interpreted properly in view of their strengths
and limitations, and to merge different data sets. This is also
essential for data assimilation, a primary application of the
products (large uncertainties will have little impact on model
runs, small uncertainties will constrain the model to behave
like the data). Expressing uncertainties requires modeling the

measurement, identifying all possible error sources (e.g., noise in
the input variables, imperfect/incomplete mathematical model),
and determining the combined uncertainty, as described in
JGCM-100 (2008) and subsequent publications.

In the following, algorithm uncertainties associated
with

〈

PAR0+
d

〉

24h
are considered, i.e., those due to model

approximations and parameter errors (e.g., decoupling effects
of clouds and clear atmosphere, neglecting diurnal variability
of clouds, using aerosol climatology) assuming that the input
variables (TOA reflectance at wavelengths in the PAR spectral
range) are known perfectly. A procedure is provided to estimate
and provide, for each pixel of a product, this uncertainty
component of the total uncertainty budget, which is expected
to dominate. The uncertainty characterization has been done
using an extended simulation dataset covering the 2003–2012
time period still using 1 hourly MERRA-2 input data. The
large number of data points allows one to sample well the
atmospheric variability and in particular many variations of
daytime nebulosity, for all latitudes.
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FIGURE 12 | Estimated scalar PAR below the surface from the planar PAR

above surface and the clear sky “transmission factors” shown in Figure 11 for

all the days of 2011 and 3 wind speeds. The color of the symbols is a function

of the cloud factor.

Figure 18 displays the result of the uncertainty analysis for
the whole dataset. The bias and the standard deviation of the
daily PAR estimates are plotted as a function of the clear-
sky PAR (which depends itself mainly on latitude and date)
and the actual cloud factor for that day. The Monte Carlo
calculations, assumed accurate, provide the reference. This is
justified in view of the bias and standard deviation values. The
bias exhibits a slight dependence on the clear sky PAR, suggesting
an overestimation reaching 2.5 E.m−2.day−1 (∼4%) for the
maximum clear sky PAR values, and a slight underestimation
1 E.m−2.day−1 (∼6.5%) when the clear sky PAR reaches a low
value of 15 E.m−2.day−1. When looking at the dependence
upon 〈CF〉24h, a slight overestimation exists between 1 and
1.5 E.m−2.day−1. This overestimation is independent of the
cloudiness of the day, with the exception of totally clear days
(〈CF〉24h = 1), for which the bias drops to 0.5 E.m−2.day−1.
The bias is also quite small for totally overcast situations. A bias
correction can be considered, based on the clear-sky PAR value.

The standard deviation (SD) is peaked toward intermediate
cloud factors, where the risk of deviation of cloudiness at the time
of the satellite measurement and the mean cloudiness of the day
is maximum. When the clear sky PAR is large and 〈CF〉24h is
about 0.5, SD reaches 8 E.m−2.day−1 (∼11%). But SD drops to
1 E.m−2.day−1 (1.5%) for clear sky situations (〈CF〉24h = 1). SD
is drastically reduced when dealing with monthly PAR estimates.
Whatever the cloudiness, SD is lower than 2 E.m−2.day−1. The
main feature is that SD seems to be proportional to the clear-sky
PAR value, and thus we can consider associating an uncertainty
to each pixel of the product from an estimate of the clear-sky
value, in addition to the cloud factor. This model uncertainty
component could be extended to situations with multiple satellite

FIGURE 13 | (Top) Scalar PAR below the surface integrated in a narrow

spectral band (400–410 nm) for all the days of 2011 (dots), for a particular

latitude and wind speed, as well as predicted values for clear sky (solid line)

and totally overcast situations (dashed lines). (Bottom) Same as top but

normalized by the band integrated scalar PAR below the surface between 670

and 680 nm. The color of the dots is a function of the cloud factor.

measurements per day, as it is often the case for high latitudes
with polar orbiting sensors like MERIS or VIIRS. In that case
we anticipate a reduction of the standard deviation of the daily
PAR product. For a complete per-pixel uncertainty budget, the
uncertainty associated with TOA reflectance noise (radiometric
and due to vicarious calibration) should be included, which may
require evaluating the sensitivity of the daily PAR to the TOA
reflectance and the covariance of the input reflectance in the
various spectral bands (since the measurements are correlated).

SUMMARY AND RECOMMENDATIONS

Studying and understanding the chemical, physical, geological,
and biological processes that govern the composition of the
marine environment requires knowledge of the underwater light
field. Ideally, one wants to figure out and monitor the spectral
and angular structure of the radiant intensity at any point in
the water body. From space, by means of remote sensing, only
limited information about the radiative properties of a water
body can be obtained, but the advantage is global and repetitive
coverage. Existing satellite products are restricted to planar PAR
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and UV irradiance above the surface, and diffuse attenuation
coefficient (average in the upper layer). These products, despite
their drawbacks (e.g., no information at high Sun zenith angles
and diurnal variability poorly described for PAR, no retrieval in
cloudy conditions for the diffuse attenuation coefficient), have
been useful to many studies of aquatic photosynthesis, heat
budget, and chemical effects of light. There is a need, however,
for other products, i.e., sub-surface planar and scalar fluxes,
average cosine, spectral fluxes (UV to visible), diurnal fluxes,
APAR, surface albedo, vertical attenuation, and heating rate,
and for associating uncertainties to any product on a pixel-by-
pixel basis. Possible approaches and methodologies to generate
these new products, in view of state-of-the-art knowledge and
current and planned satellite missions, were discussed, including
difficulties, assumptions, and readiness level. A strategy and

FIGURE 14 | Mean cosine PAR for all the days of 2011 (dots), for a particular

latitude and wind speed, as well as predicted values for clear sky (solid line)

and totally overcast situations (dashed lines). The color of the dots is a function

of the cloud factor.

a roadmap, with development priorities and opportunities to
obtain the new products, could be established. Examples of
new products, i.e., daily scalar PAR below the surface, daily
average cosine for PAR, and spectral scalar fluxes below the
surface, and their algorithms, were presented. A statistical way
to estimate uncertainties for each pixel, based on radiative
transfer simulations for expected clear and cloudy situations, was
proposed.

In the short term, the focus should be on
improving/completing existing products from satellite
ocean-color sensors, i.e., extending calculations of above-
surface fluxes to high Sun zenith angles and accounting, at
least statistically, for diurnal variability of clouds. One should
also work on how to compute similar products from different
missions and their likely uncertainties, to obtain platform-
independent global products. On the other hand, with existing
scientific knowledge, the following new products (see sections
Current Products and Users Needs) should be derived from past
and current missions: planar and scalar PAR below the surface,
average cosine for PAR below the surface, diffuse attenuation
coefficient for PAR, and respective spectral quantities (visible
to near infrared), spectral albedo, and APAR. These products
should be in the form of daily averages, except for diffuse
attenuation coefficient. New processing lines will require links
with other ocean and atmosphere products and/or ancillary
data (e.g., reanalysis products from observations and models,
such as MERRA-2). A calibration/validation program should be
planned to evaluate the new products and their uncertainty over
a representative set of conditions.

In the medium term (longer-term effort, not lower priority),
with specific efforts and new avenues in algorithm development,
the aim should be to generate the following products, not
only from past and current missions, but also from future
missions: spectral fluxes below the surface and diffuse attenuation
in the UV (or integrated over UV-A and UV-B ranges), in
both photon and energy units, especially using TROPOMI on
Sentinel 5P/5, average mixed-layer PAR (will require mixed-layer
depth fields from Argo-assimilated circulation models), upper-
ocean heating profile, and under-ice light fields (in conjunction
with cryosphere missions andmodeling). Diurnal-cycle resolving
measurements, combining different satellites over-passing at
different times with geostationary satellites, should be pursued

FIGURE 15 | Daily, and monthly scalar PAR below surface (unit: E/m2/day), 0.1◦ spatial resolution derived from MERIS. Top Left: May 15, 2011; Top Right: May

1–31, 2011.
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FIGURE 16 | Same as Figure 15 but for the average cosine below the surface.

FIGURE 17 | Same as Figure 15 but for the ratio of spectral scalar PAR below the surface at 405 and 675 nm.

FIGURE 18 | Error budget of the daily “MERIS” PAR product above the surface (estimated PAR–actual PAR) from simulations for the period 2003–2012 using 1-hourly

resolved MERRA-2 input data. For each day, a set of MERIS spectral reflectance data is simulated for a typical observation at 10:30 UT local time and several viewing

geometries (nadir and 20◦ view zenith angle (VZA) with relative azimuth of 0, 90, and 180◦, with sun glint avoidance). (Left) 2D plot of the error bias as a function of

the clear sky daily PAR above surface (x axis) and cloud factor (y axis), along with 1D (marginal) distribution. (Right) Same as left but for the error standard deviation.

For the 1D marginal distribution as a function of the clear-sky PAR is also reported the monthly PAR error bias and standard deviation in magenta.

to describe hourly changes in radiation fields and improve daily-
integrated values (e.g., due to clouds). The products should also
be generated without gaps (applying gap-filling techniques) to

provide boundary conditions for general circulation models. At
this stage, evaluation of the products and their uncertainty should
be ongoing on a continuous basis.
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In the long term (future vision), for significant improvement
of sub-surface light fields, space lidars could be used (e.g., the
CNES MESCAL), as they can resolve the vertical distribution of
material in the ocean (while all the products described above,
derived from passive optical sensors, assume a homogeneous
upper ocean). This is particularly critical in high-latitude regions
(near the ice) and near land. Approaches using hyper-spectrally
resolved sensors such as SCHIMACHY to retrieve the availability
of light in the ocean (depth-integrated scalar irradiance) from the
vibrational Raman scattering effect of water molecules (Dinter
et al., 2015) should be explored. Finally, satellites missions with
instruments in L1 orbit (such as the NASA EPIC onboard
DISCOVR) would offer the opportunity to continuously observe
the sun-lit part of the ocean, maximizing the temporal coverage.
Space agencies should consider exploiting using such orbit for an
ocean-color satellite mission.
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ANNEX: NOTATIONS AND DEFINITIONS

Irradiances (W.m−2.nm−1)
-Spectral scalar irradiance

E0±o (λ, t) =

∫ 2π

φ=0

∫ π/2

θ=−π/2
L0± (λ, t, θ ,φ) sin (θ) dθdφ

where L0± is the radiance just above or just below the surface
(superscript 0+ or 0−), λ is wavelength, t is time, and θ and φ

are zenith and azimuth angles.
-Spectral downward planar irradiance

E0±
d (λ, t) =

∫ 2π

φ=0

∫ π/2

θ=0
cos (θ) L0± (λ, t, θ ,φ) sin (θ) dθdφ

-Spectral upward planar irradiance

E0±u (λ, t) =

∫ 2π

φ=0

∫ 0

θ=−π/2
cos (θ) L0± (λ, t, θ ,φ) sin (θ) dθdφ

-Spectral net irradiance

E0±net (λ, t) = E0±
d (λ, t) − E0±u (λ, t)

Band-Integrated Irradiances (W.m−2)
-PAR-integrated scalar irradiance

E0±o (t) =

∫ 700nm

λ=400nm
E0±o (t, λ) dλ

-PAR-integrated downward planar irradiance

E0±
d (t) =

∫ 700nm

λ=400nm
E0±
d (t, λ) dλ

Band-Integrated Quanta Fluxes
(mol.ph.m−2.s−1)
-PAR-integrated scalar quanta flux

PAR0±o (t) =

∫ 700nm

λ=400nm

E0±o (t, λ) · λ

hcNA
dλ

-PAR-integrated downward planar quanta flux

PAR0±
d (t) =

∫ 700nm

λ=400nm

E0±
d (t, λ) · λ

hcNA
dλ

-Narrowband-integrated scalar quanta flux

PAR0±o (t, λi) =

∫ λi+1λ/2

λi−1λ/2

E0±o (t, λ) · λ

hcNA
dλ

where λi is the central wavelength of any spectral interval 1λ

in the PAR spectral range, h is Plank’s constant, c is the speed of
light, and NA is the Avogadro number.

Average Cosines (Dimensionless)
-Spectral average cosine

µ0±
0 (λ, t) =

E0±net (λ, t)

E0±o (λ, t)

-PAR-integrated average cosine

µ0±
0 (t) =

E0±net (t)

E0±o (t)

24h-Averaged Quantities
-Daily scalar PAR-integrated quanta flux (mol.ph.m−2.day−1)

〈

PAR0±o
〉

24h
= Nsec ·

∫ 1day

0
PAR0±o (t)dt

where Nsec = 86400 s.day−1 and t is expressed in day.
-Daily downward planar PAR-integrated quanta flux
(mol.ph.m−2.day−1)

〈

PAR0±
d

〉

24h
= Nsec ·

∫ 1day

0
PAR0±

d (t)dt

-Daily PAR-integrated average cosine (dimensionless)

〈

µ0±
0

〉

24h
=

〈

E0±net
〉

24h
〈

E0±o
〉

24h
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Coastal waters are optically diverse; studying their optical characteristics is an important

application of satellite oceanography. In coastal ecosystems of the northern Indian

Ocean, optical diversity has been little studied, except for the global analysis by Mélin and

Vantrepotte (2015). This paper is a contribution toward identification and characterization

of optical classes in the coastal regions of the northern Indian Ocean. The study

identified eight optical classes using the monthly climatological datasets of remote

sensing reflectance for the 1998–2013 period from the Ocean Color Climate Change

Initiative (OC-CCI, www.oceancolour.org). The optical classification we adopted uses

the fuzzy logic method, based on Moore et al. (2009). The seasonal variations of the

eight resultant optical classes of the coastal waters of the northern Indian Ocean were

explored. From the mean reflectance spectral signals obtained, it appears that classes

1–6 belong to Case-1 waters and classes 7 and 8 correspond to Case-2 waters. Classes

1 to 2 appear in deeper oligotrophic waters; classes 3–6 are present in intermediate

depths; classes 7 and 8 are mostly found within inshore eutrophic regions with high

chlorophyll concentrations, sediments from river plumes and land runoffs. The optical

variability between seasons (the summer and winter monsoon and the intermonsoon

seasons) are influenced by variations in physical forcing, such as surface winds, ocean

currents, precipitation, and sediment influx from rivers and land runoff. Optical diversity

index ranged from around 0.3 to 1.36. High diversity indices ranging between 1 and

1.36 were found in areas dominated by classes 1–4, whereas low diversity indices 0.3

occurred in areas where classes 7 and 8 dominated. The variations in the dominant

optical classes are shown to be related to changes in chlorophyll concentration and

suspended sediment load, as indicated by remote sensing reflectance at 670 nm. On the

other hand, optical diversity appears to be high in zones of transition between dominant

optical classes.

Keywords: coastal ecosystems, satellite ocean color, classification, remote sensing reflectance, ecosystem

management

1. INTRODUCTION

In an ocean under rapid modification by climate change, the boundaries between marine ecological
provinces will move, but in ways that are difficult to predict (Karl et al., 1995; Platt and
Sathyendranath, 1999). However, there is a premium on knowing the large-scale structure of the
ocean ecosystem as it changes through time, in other words on developing and maintaining a
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biogeography of the ocean basin. Conventional biogeography
relies on collecting and identifying individual specimens through
samplings and survey techniques. At large geographical scales,
it is a costly and time-consuming procedure to make even
a single survey at one time point; making serial surveys to
detect possible changes may be prohibitive on the grounds of
expense. An alternative approach would be to use data streams
from sensors carried on satellites in Earth orbit. Such data have
the advantages of high-resolution at the ocean surface, high
frequency of coverage, cost-effectiveness and synoptic coverage
(Platt and Sathyendranath, 1999, 2008). Potentially, their use
could yield a different kind of biogeography, based on data
free from the limitations of coarse resolution in space and
time. Visible spectral radiometry of the ocean provides a data
stream that is particularly useful for ecosystem analysis: the
visible spectrum carries information on the pigments and size of
phytoplankton cells, as well as on the optical properties of the
other constituents (such as suspended sediments and colored or
chromophoric dissolved organic matter) in the surface waters of
the ocean (Guzman et al., 1995; Babin et al., 2003; Dowell and
Platt, 2009; Garaba and Zielinski, 2013). Mélin and Vantrepotte
(2015) have pioneered the classification of coastal waters at global
scale using annually-averaged fields of optical radiances from
satellite data.

The Northern Indian Ocean is landlocked toward the north
and bifurcates into two intra-continental seas: the Arabian Sea
and the Bay of Bengal. Seasonally reversing monsoons and
reversal of ocean currents are the major distinguishing features
of the Indian Ocean basin (Shetye, 1998; Qasim, 1999). The
monsoonal cycle, including southwest or summer monsoon and
northeast or winter monsoon, determines the climate of the
region. Southwest monsoon is the continuation of the southern
hemisphere trade winds that bring monsoon rains and floods
to the Asian landmass (Tomczak and Godfrey, 2001). Northeast
monsoon is characterized by high pressure over the Asian land
mass and northeasterly winds over the tropics and northern sub-
tropics (Shetye and Shenoi, 1988). A strong coastal upwelling
occurs along the western coast during the southwest monsoon
season, whereas during the northeast monsoon season, cold
continental winds cause convective mixing and winter cooling
along the north Indian coast (Tomczak and Godfrey, 2001).
Other oceanographic features of interest in this region include
the Indian Ocean warm pool (Vinayachandran and Shetye, 1991)
and monsoon depressions and cyclones (Schott and McCreary,
2001; Schott et al., 2009).

In the Northern Indian Ocean, biogeographical analysis has
so far been restricted to what can be found using conventional
methods (Krishnamurthy et al., 1978; Schills and Wilson, 2006;
Obura, 2012, 2016; Jeffries et al., 2015). Few notable studies
on global ocean biogeographic partitions using satellite datasets
include: Longhurst province classification (Longhurst, 1998),
based on regional oceanography of major oceanic basins, and a
global database of chlorophyll profiles; and the 56 biogeochemical
provinces proposed by Reygondeau et al. (2013) using the
datasets of Sea Surface Temperature (SST), Chlorophyll and
Sea Surface Salinity (SSS). The current study region includes at
least parts of four provinces proposed by Longhurst (1998): the

Red Sea and Persian gulf province (REDS), Northwest Arabian
Sea upwelling province (ARAB), Western India coastal province
(INDW), and Eastern India coastal province (INDE). Studies
on biogeographic partitioning of the Indian Ocean region using
remotely-sensed datasets are relatively few. Here, we follow
the lead of Mélin and Vantrepotte (2015) through a detailed
implementation of their optical remote-sensing method to the
Indian Ocean region. We extend the temporal resolution to
reveal seasonal changes in the optical classification of the coastal
waters of the region. We interpret the results in the context of the
seasonally-reversing wind and ocean current system that is the
unique oceanographic characteristic of the region.

2. DATA AND METHODS

2.1. Study Area
Northern Indian Ocean is subdivided by landmasses into the
Arabian Sea in the west and the Bay of Bengal in the east and
it opens into the equatorial Indian Ocean to the south. The Bay
of Bengal coast is shared among India, Bangladesh, Myanmar, Sri
Lanka, and the western part of Thailand. The Arabian Sea coast
is shared among India, Yemen, Oman, Iran, Pakistan, Sri Lanka,
Maldives, and Somalia. The area of interest is the coastal waters of
the northern Indian Ocean within the 2,000 m isobath (Figure 1)
(extending from 0 to 30◦ N latitude and 50 to 100◦ E longitude).
Rather than using a more shallow depth (100–200m) as the outer
limit of the coastal zone, we have opted to use the 2,000 m isobath
for the outer limit. This was to explore whether optical signatures
of offshore waters appeared close to shore, and vice versa. In this
choice, we were guided by Antony et al. (2002) who suggested
that the offshore influence of coastal waters could extend as far
out as 400 km from the shore. This region is well-known for the
alternate upwelling and downwelling processes occurring during
the contrasting seasons of southwest and northeast monsoons.

Here, we use satellite remote-sensing reflectances (Rrs) at six
wavelengths (412, 443, 490, 510, 555, and 670 nm) to identify
optically-distinct regions of the coast. Figure S1 provides a
schematic diagram of the methods used in the current study.

2.2. Satellite Dataset
Remote sensing reflectance (Rrs) of six wavelengths and
Chlorophyll datasets were obtained from Version 2 of
the Ocean Color Climate Change Initiative (OC-CCI, see
www.oceancolour.org) (Sathyendranath et al., 2016, 2017)
with spatial resolution of 4 km. Chlorophyll concentration
was calculated from the remote-sensing reflectance, using
the National Aeronautics and Space Administration (NASA)
Ocean Color Chlorophyll Version 4 (OC4) algorithm (O’Reilly
et al., 1998). This algorithm performed best in an algorithm
comparison carried out as part of OC-CCI activities (Brewin
et al., 2015). The OC-CCI satellite datasets affords superior
coverage for the area of interest, compared with previously
available data. These data products are band-shifted, bias-
corrected and merged data archives obtained from three sensors:
Sea-WIFS (Sea-Viewing Wide Field-of-View Sensor), MODIS-
Aqua (Moderate Resolution Imaging Spectro-radiometer of the
Aqua earth Observing System), and MERIS (Medium Resolution
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FIGURE 1 | Northern Indian Ocean region showing 2,000 m and shallower isobaths.

Imaging Spectrometer). OC-CCI datasets were validated using
the in-situ datasets from Teledyne/Webb APEX-Argo floats
deployed in the Arabian Sea (Roxy et al., 2016). The OC-CCI
dataset are limited to the six SeaWiFS wavebands in the visible.
We recognize the limitations of the bandset that were identified
by Mélin and Vantrepotte (2015) for coastal optical classification.
Therefore, the analyses and interpretation are restricted to the
optical differences that are amenable to identification by the
available dataset. All grid points of the selected region (depth
range of 0–2,000 m) were used in the classification: grid points
outside the 2,000 m depth range were excluded. Isobaths of the
region were taken from the General Bathymetric Chart of the
Oceans (GEBCO) 1-min gridded data set (Figure 1).

2.3. Normalization of Dataset
The remote-sensing reflectances (Rrs) at six wavelengths (412,
443, 490, 510, 555, and 670 nm) for the years 1998–2013 were
used for the study. The remote-sensing reflectance values were
skewed in their distribution and to minimize skewness, each Rrs
spectrum was transformed to its log10 values. They were then
normalized by its integral from λ1 (412 nm) to λ2 (670 nm),
where λ is the wavelength.

Ex = log10Rrs(λ)/

∫ λ2

λ1

log10Rrs(λ)dλ, (1)

where (Ex) (in units of nm−1) indicates the normalized spectrum.
The denominator was computed by trapezoidal integration.
The normalization allows analysis of changes in the shape of
the Rrs spectra, rather than in their magnitudes. Typically,
changes in the shape of the spectra would be more affected by
the composition of the materials present in the water, whereas
the magnitude of the spectra is likely to be more indicative of the

concentration of the substances, especially of highly-scattering
substances. In this work, the vector Exj of six log-transformed
and normalized reflectance values from a particular location
and time (pixel, here indexed by subscript j) is referred to as
an object. The total number of objects in a classification is N.
Notation and Definitions used in this study are presented in
Table 1.

2.4. Fuzzy C Mean Algorithm
Fuzzy classification evolved from classical set theory. The
classical clustering approach determines whether an object is
a member or non-member of a given set of any system. Only
these two options are possible. In contrast, fuzzy logic allows
that an object may have partial memberships in more than
one set. The classification algorithms based on fuzzy logic
are often used in classifying data from natural systems. The
method allows for overlap between boundaries of particular
classes or sets, and recognizes that more than one class
may be represented at a particular location at any given
time.

The membership Fij of a cluster i in the object j is given

by (1 − Q(EZ2
ij)) where

EZij is the Mahalanobis distance given by

(Exj − EMi)/ESi where EMi is the mean, ESi is the standard deviation
and Q is a cumulative χ2 distribution (Zadeh, 1965).

In this study, the log-transformed, normalized reflectance
spectra (Ex) were analyzed using the Fuzzy C-mean (FCM)
algorithm. Our implementation of fuzzy C mean classification
follows Moore et al. (2001). It calculates the centres of each class
or cluster and the percentage membership of each class in the
data at each pixel. The FCM algorithm also uses several validity
functions to assess the optimal number of clusters to be chosen
for the classification (Bezdek, 1973; Rezaee, 2010).
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TABLE 1 | Definition and Notations used in this study.

Notations Definitions

Ci ith cluster

ci Center of cluster Ci

d(ci , ck ) Distance between center of clusters i and k (i 6= k)

d(Exj , ci ) Distance between object Exj and center of cluster Ci

Fi,j Membership of object j in cluster i

F∗i,j Membership of object j in cluster i, normalized by the total

membership in all clusters

Hj Shannon diversity of the object j

i Cluster index, i = {1„nc}

j Index for object Ex, j = {1, ....,N}

EMi Mean of cluster Ci

N Total number of objects, Ex

nc Number of clusters

ni No. of objects in cluster Ci

P Partition Coefficient

Q Cumulative χ2 square distribution

Rrs Remote-sensing reflectance

ESi Standard deviation of Cluster Ci

X Xie-Beni Index

Exj An object, defined as the vector consisting of six remote

sensing reflectances Rrs after log transformation and

normalization (equation 1) for a given pixel j

EZij Mahalanobis distance between the object Exj and the center Ci
of cluster i

2.5. Optimal Cluster Validity Functions
Cluster validity function is a statistical measure used to select
the optimal number of clusters in the classification (too many
clusters would imply that individual clusters resemble each other;
too few would imply that all possible cases are not covered).
We have used two methods: 1. Xie-beni index and 2. Partition
co-efficient. These two methods are used only for selecting the
optimal cluster number to run the fuzzy C-means classification.
Cluster validity methods are statistical functions that determine
the performance of a clustering procedure. Criteria of merit
for a clustering method include the distance between clusters
(separation) and the distribution of points around a cluster
(compactness) (Deborah et al., 2010). We can rely on multiple
validity functions to aid selection of the optimal cluster number.
The principal strategy used is to cluster the data over a range of
cluster numbers (nc) and evaluate each clustering result with each
validity function (Moore et al., 2009).

The Partition Coefficient and the Xie-Beni index are cluster
validity methods designed specifically for use with fuzzy
algorithms. These two methods are preferred to aid selection of
the optimal number of clusters in fuzzy classification (Halkidi
et al., 2001).

2.6. Xie-Beni Index
The Xie-Beni index X is one of the measures used to determine
the best cluster number for the fuzzy classification of a particular
dataset. This index depends on the geometric properties of the

dataset and the membership matrix. To calculate X, we need to
calculate two quantities: the sum over all clusters of the mean
squared distance of each data object from the centre ci of cluster
Ci; and the square of the minimum distance between two cluster
centers (Xie and Beni, 1991). The ratio of these two quantities is
the Xie-Beni index:

X =

[

∑

i

∑

Ex∈Ci

d2(Ex, ci)
]/[

N. min
i,j6=i

{d2(ci, ck)}
]

. (2)

The smallest value of the index indicates the best cluster number
(Halkidi et al., 2001; Zhao et al., 2009).

2.7. Partition Coefficient
The Partition Coefficient P is a validity function that uses the
membership values (Fij) to provide the optimal cluster number.
It measures the amount of overlap between clusters. It is defined
as the ratio of the sum of squares of the membership matrix
elements of all the clusters to the total number of objects.

P =
1

N

N
∑

j=1

nc
∑

i=1

(F2ij). (3)

The index values lie in the range [1/nc, 1], where nc is the number
of clusters. The closer the value is to one the better the data
are classified. The cluster number with a maximum partition
coefficient is said to be the best cluster number to choose for
classification (Bezdek, 1973; Bezdek et al., 1984).

2.8. Optical Diversity
Optical diversity is an indicator of the overall variability in optical
constituents at a given space and time. Optical diversity, (Hj) is
defined here, followingMélin and Vantrepotte (2015), by analogy
with the Shannon Diversity Index (Shannon, 2001),

Hj = −

nc
∑

i=n

(F∗i,j) ln(F
∗
i,j), (4)

where F∗i,j is the normalized membership of the optical classes

and nc is the number of classes represented. The membership Fi,j
was normalized by the integral of Fi,j over all optical classes to
obtain F∗i,j :

F∗i,j = (Fi,j)/
(

nc
∑

i=1

Fi,j

)

. (5)

3. RESULTS AND DISCUSSION

3.1. Selection of the Optimal Class Number
The Xie-Beni Index and the Partition Coefficient were calculated
for monthly climatologies of Ex for the study area, computed
from the OC-CCI monthly Rrs climatologies, which are based
on years 1998–2013. Monthly values allowed study of seasonal
variations in the distribution of optical classes in this region,
which is known for its pronounced seasonality. Climatologies
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were selected tominimize the effect of outliers through averaging,
and also to improve the coverage and reduce gaps in data.
Climatological data also provide a baseline against which trends
in anomalies can be studied at a future date. Both indices varied
between months, and the Xie-Beni index often showed a broad
minimum, whereas the Partition Coefficient often showed a
broad maximum, such that selection of the optical class number
was not straightforward. Nevertheless, eight emerged as the
optimal number. To aid the selection of optimal class number
further, we also studied the maps of cumulative membership
(sum of the memberships of all the classes) calculated using class
numbers nc from 5 to 15. The maps were studied for evidence of
over-classification (large areas where the cumulative membership
was >1) and under-classification (large areas where cumulative
membership was <1). This study also showed that nc = 8 gave
the best compromise, with low numbers of both under-classified
and over-classified pixels. Therefore, finally, eight classes were
selected as the optimal cluster number for all the analyses
presented here.

3.2. Identification of the Optical Classes
The mean spectra EMj of the eight selected optical classes are
shown in Figure 2. Optical class 1 is characterized by a maximum
in the blue, with the signal decreasing progressively toward the
red, indicative of clear oceanic waters. With increasing class
number, the signal decreased steadily at the shortest wavelength
(412 nm), and the maximum shifted toward longer wavelengths:
the maximum is at 490 nm for class 6 and 555 nm for class 8.
Conversely, class 1 has the minimum value in the red at 670 nm,
whereas classes 7 and 8 have the highest values in the red. The
values of the mean spectra at the six SeaWiFs wavelengths for
each of the classes and their corresponding covariance matrix are
provided in Tables S1, S2. It is useful to assess how these optical
classes relate to Case-1 and Case-2 waters as defined byMorel and
Prieur (1977) and Prieur and Sathyendranath (1981). From the
shapes of the spectra, it appears that classes 1–6 are representative
of Case-1 waters and classes 6–8 of turbid Case-2 waters.

The distributions of the dominant classes of representative
months of the four seasons are shown in Figure 3. The mean
(Figure 2) and covariance values of the optical classes were then
used to classify the waters of the study area for all the months
of the year, using the climatological satellite Rrs data as inputs,
after log-transformation and normalization to obtain Ex. Seasonal
cycles used in description of the optical classes are: 1. southwest
monsoon or summer monsoon (June–September), 2. northeast
monsoon or winter monsoon (December–March), 3. spring
intermonsoon (April–May), 4. autumn (fall) intermonsoon
(October–November).

3.3. Spatio-Temporal Variations of Optical
Classes in the Northern Indian Ocean
3.3.1. Classes 1 and 2

Optical classes 1 and 2 vary strongly with season. They occur
along with class 3 over deeper waters (>200 m). During
the southwest monsoon season (June–September), these classes
represent very few pixels in deeper waters near the Andaman Sea.
In the intermonsoon period (October–November) and northeast

FIGURE 2 | Mean Reflectance Spectra EMi of the eight optical classes, with the

envelopes corresponding to the Mean ± SD.

monsoon (December–March), classes 1 and 2 are present in
the deeper waters along the Southwest coast, West Bengal, and
Andaman Sea. The Eastern India coastal current carries the low
salinity waters (Optical classes 1 and 2) of the Bay of Bengal to
the southwest coast of India during the months of February and
March in the winter monsoon season. In the months of March
and April, the nearshore waters of the Somalia coast and Gulf
of Aden are represented by optical classes 1 and 2, extending
to the Gulf of Yemen and Oman. The region 17–20◦ N, 69–
72◦ E (deeper waters) was also characterized by classes 1, 2, and
3 during the transition period (April–May). The Chlorophyll
concentration corresponding to these classes ranged from 0 to
0.2 mg m−3 and the optical diversity index fell in the range from
1 to 1.3.

3.3.2. Classes 3 and 4

Optical classes 3 and 4 occurs in the isobaths of 100–2,000
m (shallow to deeper depths). These classes show irregular
boundaries in the offshore waters during southwest monsoon
season along west and east coasts of India, extending to the
deeper waters of Andaman Sea. The classes are found near
Gulf of Aden and Oman waters only in June, i.e., during the
onset of southwest monsoon. In the autumn intermonsoon
(October–November), the classes were distributed over the
shallow depths (0–500 m) along the near-shore waters of Gulf
of Yemen, Oman, Arabian Sea, and Bay of Bengal. In the
northeast monsoon, these classes occurred around the islands
off Somalia coast, Gulf of Yemen, west coast, and east coast of
India. The Gulf of Oman waters flowing toward the Arabian Sea
represents class 4 in May (spring intermonsoon). Chlorophyll
concentration corresponding to these classes fell in the range
of 0.5–0.75 mg m−3 and the diversity index ranged from 0.3
to 0.9.
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FIGURE 3 | Monthly climatologies of dominant classes (classes of maximum memberships) in the coastal waters of the Northern Indian Ocean. (Top left) July,

representative of southwest monsoon season. (Top right) January, representative of northeast monsoon season. (Bottom left) May, representative of Spring

intermonsoon season. (Bottom right) November, representative of Fall intermonsoon season. All monthly climatalogies are calculated for the years 1998–2013.

3.3.3. Class 5

This optical class dominates in regions with isobaths of<1,000m
but >200m. During the onset of southwest monsoon, class 5
is prominent in the inner Persian Gulf, Strait of Hormuz, Gulf
of Oman, Somalia, west and east coasts of India. At the end of
southwest monsoon season and onset of the fall intermonsoon
period, this class is distributed throughout the coastline in the
depth range 0–500 m. This trend persists until the month of
January (northeast monsoon) along the entire coastline. In the
spring intermonsoon this class is present toward the Persian
Gulf, Gulf of Oman flowing into the Northwest coast and
further extending toward the east coast of India including the
Andaman Sea. This class has chlorophyll levels ranging from
0.75 to 1 mg m−3 and the diversity index falls between 0.2
and 0.8.

3.3.4. Classes 6–8

Classes 6–8 dominate in the regions with depths <200 m. Class
6 is dominant in the Persian Gulf characterized by high dense
saline waters in all the seasons. Chlorophyll concentration of
regions with class 6 varied from 1 to 1.5 mg m−3. Classes 7
and 8 are present in the inner shelf regions with shallower
depths influenced by boundary currents and river influx. These
classes appear in the near-shore waters off the Somalia coast,
Gulf of Oman, Inner Gulf of Kutch and Khambhat, Inner Ganges
shelf, and Irrawady river basin near Andaman Sea. Local wind-
driven circulation brings in the waters of optical classes 7 and 8
from the major river deltas and minor rivers. The influxes from
rivers are seasonally variable and rain-fed according to changing
precipitation. In the northeast monsoon, waters belonging to
classes 7 and 8 flow toward the Strait of Hormuz and into

the Arabian Sea in the months of December to April under
the influence of strong northwest wind during winter monsoon
(Hunter, 1983), turning the Gulf of Oman waters into classes 7
and 8 in February. These classes do not show major variations
in the transition periods. The chlorophyll concentration in the
regions with classes 7 and 8 was high, ranging from 2 to 2.5
mg m−3. The diversity index of the classes 6–8 were low,
around 0.3.

3.4. Optical Diversity Index
The previous section describes the distribution of the dominant
classes, but contains no information on contributions to the
optical signal from non-dominant classes. The optical diversity
index, which depends on membership of all classes represented
in a pixel provides complementary information on the extent to
which non-dominant classes are contributing to the signal. If a
single class contributed to the optical signal of a pixel, then the
optical diversity would be a minimum of 0.26 in our classification
with 8 classes represented. On the other hand, if all classes
contributed equally, then the optical diversity index would reach
a maximum of 2.08.

The optical diversity index H (Equations 4 and 5) was
calculated for all months to study the seasonal and regional
variations in optical diversity. The optical diversity index H
(Figure 4) fell mostly between 0.3 and 1.36. Regardless of season,
higher H values (1–1.36) were found in deeper waters off the
south west coast of India (6–15◦ N), around Lakshadweep
and Maldive Islands in the Arabian Sea, around Andaman
and Nicobar Islands in the Bay of Bengal and off Myanmar.
The highest H values are found in these locations during
the winter or northeast monsoon season (December–March),
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FIGURE 4 | Monthly climatologies of Optical diversity index in the coastal waters of the Northern Indian Ocean. (Top left) July, representative of southwest monsoon

season. (Top right) January, representative of northeast monsoon season. (Bottom left) May, representative of Spring intermonsoon season. (Bottom right)

November, representative of Fall intermonsoon season. All monthly climatalogies are calculated for the years 1998–2013.

when the areas covered by high H values were also more
extensive. High diversity indices were also found in the fall
intermonsoon and spring intermonsoon periods. During the
summer monsoon season (June–September), the diversity index
lay mostly in the 0.5–1 range along the entire study region with
some pixels having index >1 appearing in the deeper waters.
High diversity indices (1–1.36) occur along the productive
upwelling areas, the transition zones between coast and open
ocean, oligotrophic waters and regions with the influence of
boundary currents. Low diversity indices occur in the regions of
most turbid waters, regions of high river water influx and inland
waters.

3.5. Optical Classes, Optical Diversity, and
Chlorophyll Concentration
In coastal waters, we know that the optical remote-sensing
reflectance spectra are affected not only by chlorophyll
concentration, but also by suspended sediment load. The
seasonal variability of the chlorophyll concentration for the
representative months is shown in Figure 5. The remote-
sensing reflectance value at 670 nm is often taken to be a
measure of suspended sediment load. Therefore, in Figure 6,
we have plotted the dominant optical class as a function
of chlorophyll-a concentration and Rrs(670), for the monthly
climatology of February, as an example. Only well-classified
pixels (cumulative class membership >0.5) are plotted. We see
a gradual progression in the optical classes 1–8, with increasing
chlorophyll concentration and increasing Rrs values, clearly
indicating that the optical classification is affected by both
chlorophyll concentration and suspended sediment load. Since
the chlorophyll concentration in Version 2 of OC-CCI was
calculated with a single, global algorithm, we can discount the
possibility that the relationship seen in Figure 6 is emerging

from the use of different algorithms for different optical classes.
On the other hand, it is worth discussing whether a single
chlorophyll algorithm would work equally well in all optical
classes in the coastal waters of the northern Indian Ocean.
Tilstone et al. (2011) reported that there was a good agreement
between OC4v6 and another algorithm (OC5) in open-ocean
and coastal waters with chlorophyll concentration up to 2
mg m−3 for the Arabian Sea and the Bay of Bengal. In the
current study, the classes 7 and 8 had chlorophyll concentrations
ranging from 1.5 to 2.5 mg m−3, quite close to conditions
discussed by Tilstone et al. (2011), so that we can assume that
OC4 algorithm was suitable for even these high-turbid classes.
Nevertheless, it would be interesting, in a future study, to
explore the advantages of using algorithms designed for coastal
waters (e.g., Le et al., 2013; Loisel et al., 2017; Tilstone et al.,
2017).

A similar plot (Figure 7) for the optical diversity index H
reveals a more complex pattern, with very high and very low
indices appearing in close juxtaposition to each other in clear
waters (where both chlorophyll concentration and Rrs values are
low). Strands of high values of the index also appear for higher
values of chlorophyll concentration and Rrs. The differences in
the distribution of H values, compared with Figure 6 for the
optical classification, suggest that optical diversity H perhaps
tends to be high during transition between optical classes.

3.6. Comparison of Regional Optical
Classes With Results of a Global
Classification
The question remains whether the regional classification
presented here yields results similar to those found in the
global classification of Mélin and Vantrepotte (2015). The first
difference we note is that the regional classification yielded
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FIGURE 5 | Monthly climatologies of chlorophyll concentrations in the coastal waters of the Northern Indian Ocean. (Top left) July, representative of southwest

monsoon season. (Top right) January, representative of northeast monsoon season. (Bottom left) May, representative of Spring intermonsoon season. (Bottom

right) November, representative of Fall intermonsoon season. All monthly climatalogies are calculated for the years 1998–2013.

FIGURE 6 | Relationship between chlorophyll concentration and Rrs(670). Climatological data for February are shown as an example. Only well-classified pixels

(cumulative membership >0.5) are plotted here. The dominant optical classes are identified using different colors.

only eight classes, whereas the global classification produced 16
distinct classes. The log-normalized mean reflectance spectra
(Figure 2) of our optical classes 1–4 are similar to those of
classes 10–16 of Mélin and Vantrepotte (2015). The spectral
characteristics of their classes 8–16 of Mélin and Vantrepotte
(2015) are typical of clear waters, and are similar to those of
our classes 1 and 2. We also see similarities between the optical
signatures of our classes 6, 7, and 8 and the classes 1–7 of
Mélin and Vantrepotte (2015), and both these sets are typical of
highly turbid waters, with mineral particles and dissolved organic

matter (Vantrepotte et al., 2012). For the optical diversity, the
values of H from this study lie in the range of 0–1.3 which was
lower than the range (0–3) reported by Mélin and Vantrepotte
(2015) globally. These differences in values of optical diversity
are associated, by definition, with the differences in the number
of classes, which has a direct impact on the values of optical
diversity (Mélin and Vantrepotte, 2015). It is important to note
therefore, that the values of optical diversity reported here are
not directly comparable with those of Mélin and Vantrepotte
(2015). Similarly, the differences in the class numbers have to be
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FIGURE 7 | Relationship between chlorophyll concentration and Rrs(670). Climatological data for February are shown as an example. Only well-classified pixels

(cumulative membership >0.5) are plotted here. The optical diversity indices are identified using different colors.

accounted for, when comparing our results with those of Mélin
and Vantrepotte (2015).

CONCLUDING REMARKS

We have implemented an optical classification using a log-
transformed, normalized, remote-sensing reflectance (Rrs)
datasets, with spatial resolution of 4 km. In this study, eight
optical classes were obtained in the coastal waters of the northern
Indian Ocean. Seasonally-reversing monsoons are a defining
oceanographic characteristic of the Indian Ocean. Here, we
have discussed variations in optical classes with reference to
the southwest and northeast monsoon seasons of the study
region. The distribution pattern of optical classes in the study
region showed major variations between seasons. An example
is the presence of optical classes 1, 2, 3, and 4 in the latitudes
(0–18◦ N) during December–March, whereas they were not
found in the months of June–September. The influence of class
5 in intermediate coastal waters is consistent in all the regions
with fewer variations in each month. Class 6 is also a minimal
contributor to the coastal waters of India, restricted the Persian
Gulf in northeast monsoon season. These patterns show that
in southwest monsoon season, the optical constituents of the
coastline are affected mainly by precipitation and river water
intrusion; this condition is not prevalent in northeast monsoon
season. The regional distribution of dominant optical classes, and
how they are related to physical and biological oceanographic
features and processes, is presented in the Table S3.

We have also used the memberships of different optical
classes in a given pixel, to study optical diversity within a pixel.
Both the dominant optical class and the optical diversity index
appear to be related to the chlorophyll concentration and the
remote-sensing reflectance at 670 nm (used here as an index of
suspended sediment load), but in quite different ways. Whereas,

the dominant optical classes transition in a systematic matter
from classes 1 to 8 with increasing concentration of chlorophyll
and increasing Rrs 670, the diversity index appears to be high
in areas of transition between optical classes. We also see that
the diversity index was high in clear waters around coral islands
and in deeper waters away from the shore. Since it is well-
known that biological diversity tends to be high when chlorophyll
concentration is high, these results suggest that optical diversity
indices might run counter to biological diversity. This suggestion
can only be verified when data on phytoplankton diversity in the
study area become available on a systematic, and extensive basis.
But once such relationships are established, optical diversity and
optical classification would pave the way for mapping biological
diversity at large scales, using remote sensing.

We opted for the Ocean Color Climate Change Initiative
products for the study, because of the long time series
of data available, which would facilitate extension of our
work to study trends and inter-annual variability, and also
because of the better spatial coverage, especially during the
monsoon season. However, the dataset is limited to six SeaWiFS
wavebands in the visible, which was dictated by the historical
sensor capabilities. The number of wavebands available also
determined the extent to which optical diversity could be
explored. No doubt as better-resolution data become available
over long time scales from missions such as Sentinel 3,
which carries the Ocean and Land Color Instrument (OLCI)
sensor with 10 wavebands in the visible domain, it would
become possible to investigate optical classes and optical
diversity with higher spectral resolution, which may reveal
additional optical classes which were not captured in the present
analysis.

The optical classification presented in this work enables us
to study the seasonal dynamics in the bio-optical characteristics
of the coastal waters of the Northern Indian Ocean, and
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how they are related to the physical and biological processes.
Spatio-temporal variations of the eight optical classes under the
influence of seasonally reversing monsoons were profound. This
study will aid as a first step for investigations of the inter-annual
variations in distribution of optical classes and their shifts in
response to changing climatic conditions such as El Niño and La
Niña events.
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