
Artificial intelligence in 
cutaneous lesions: Where 
do we stand and what 
is next?

Edited by  

Mara Giavina-Bianchi and Justin Ko

Published in  

Frontiers in Medicine

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/research-topics/52629/artificial-intelligence-in-cutaneous-lesions-where-do-we-stand-and-what-is-next
https://www.frontiersin.org/research-topics/52629/artificial-intelligence-in-cutaneous-lesions-where-do-we-stand-and-what-is-next
https://www.frontiersin.org/research-topics/52629/artificial-intelligence-in-cutaneous-lesions-where-do-we-stand-and-what-is-next
https://www.frontiersin.org/research-topics/52629/artificial-intelligence-in-cutaneous-lesions-where-do-we-stand-and-what-is-next


May 2024

Frontiers in Medicine frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-4911-7 
DOI 10.3389/978-2-8325-4911-7

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


May 2024

Frontiers in Medicine 2 frontiersin.org

Artificial intelligence in cutaneous 
lesions: Where do we stand and 
what is next?

Topic editors

Mara Giavina-Bianchi — Albert Einstein Israelite Hospital, Brazil

Justin Ko — Stanford University, United States

Citation

Giavina-Bianchi, M., Ko, J., eds. (2024). Artificial intelligence in cutaneous 

lesions: Where do we stand and what is next? Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-4911-7

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-4911-7


May 2024

Frontiers in Medicine frontiersin.org3

05 Editorial: Artificial intelligence in cutaneous lesions: where do 
we stand and what is next?
Mara Giavina-Bianchi and Justin Ko

08 Explainability agreement between dermatologists and five 
visual explanations techniques in deep neural networks for 
melanoma AI classification
Mara Giavina-Bianchi, William Gois Vitor, Victor Fornasiero de Paiva, 
Aline Lissa Okita, Raquel Machado Sousa and Birajara Machado

21 Effectiveness of an image analyzing AI-based Digital Health 
Technology to identify Non-Melanoma Skin Cancer and 
other skin lesions: results of the DERM-003 study
Helen Marsden, Caroline Morgan, Stephanie Austin, 
Claudia DeGiovanni, Marcello Venzi, Polychronis Kemos, 
Jack Greenhalgh, Dan Mullarkey and Ioulios Palamaras

32 Development and validation of an artificial 
intelligence-powered acne grading system incorporating 
lesion identification
Jiaqi Li, Dan Du, Jianwei Zhang, Wenjie Liu, Junyou Wang, Xin Wei, 
Li Xue, Xiaoxue Li, Ping Diao, Lei Zhang and Xian Jiang

40 Principles, applications, and future of artificial intelligence in 
dermatology
Jesutofunmi A. Omiye, Haiwen Gui, Roxana Daneshjou, 
Zhuo Ran Cai and Vijaytha Muralidharan

49 Finetuning of GLIDE stable diffusion model for AI-based 
text-conditional image synthesis of dermoscopic images
Veronika Shavlokhova, Andreas Vollmer, Christos C. Zouboulis, 
Michael Vollmer, Jakob Wollborn, Gernot Lang, Alexander Kübler, 
Stefan Hartmann, Christian Stoll, Elisabeth Roider and Babak Saravi

57 Real-world post-deployment performance of a novel 
machine learning-based digital health technology for skin 
lesion assessment and suggestions for post-market 
surveillance
Lucy Thomas, Chris Hyde, Dan Mullarkey, Jack Greenhalgh, 
Dilraj Kalsi and Justin Ko

69 Patient perspectives of artificial intelligence as a medical 
device in a skin cancer pathway
Anusuya Kawsar, Khawar Hussain, Dilraj Kalsi, Polychronis Kemos, 
Helen Marsden and Lucy Thomas

74 Artificial intelligence for skin cancer detection and 
classification for clinical environment: a systematic review
Brunna C. R. S. Furriel, Bruno D. Oliveira, Renata Prôa, 
Joselisa Q. Paiva, Rafael M. Loureiro, Wesley P. Calixto, 
Márcio R. C. Reis and Mara Giavina-Bianchi

Table of
contents

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


May 2024

Frontiers in Medicine 4 frontiersin.org

87 Artificial intelligence and skin cancer
Maria L. Wei, Mikio Tada, Alexandra So and Rodrigo Torres

97 Accuracy of an artificial intelligence as a medical device as 
part of a UK-based skin cancer teledermatology service
Helen Marsden, Polychronis Kemos, Marcello Venzi, Mariana Noy, 
Shameera Maheswaran, Nicholas Francis, Christopher Hyde, 
Daniel Mullarkey, Dilraj Kalsi and Lucy Thomas

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


TYPE Editorial

PUBLISHED 08 May 2024

DOI 10.3389/fmed.2024.1420152

OPEN ACCESS

EDITED AND REVIEWED BY

Robert Gniadecki,

University of Alberta, Canada

*CORRESPONDENCE

Mara Giavina-Bianchi

marahgbianchi@gmail.com

†These authors have contributed equally to

this work

RECEIVED 19 April 2024

ACCEPTED 30 April 2024

PUBLISHED 08 May 2024

CITATION

Giavina-Bianchi M and Ko J (2024) Editorial:

Artificial intelligence in cutaneous lesions:

where do we stand and what is next?

Front. Med. 11:1420152.

doi: 10.3389/fmed.2024.1420152

COPYRIGHT

© 2024 Giavina-Bianchi and Ko. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Editorial: Artificial intelligence in
cutaneous lesions: where do we
stand and what is next?

Mara Giavina-Bianchi1*† and Justin Ko2†

1Medical Image Research Department, Hospital Israelita Albert Einstein, São Paulo, Brazil, 2Clinical

Dermatology, School of Medicine, Stanford University, Stanford, CA, United States

KEYWORDS

artificial intelligence (AI), cutaneous diseases, dermatology, skin cancer,

teledermatology, acne, patient survey, systematic literature review

Editorial on the Research Topic

Artificial intelligence in cutaneous lesions: where do we stand and what

is next?

We have seen, with great interest and enthusiasm, the continued growth in research

output detailing the use of Artificial Intelligence (AI) in cutaneous diseases as can be seen

in Figure 1, as well as the maturation of content of the research bridging the gap from hype

to reality; from pixels to practice (1).

The body of work spans a broad range, from skin cancer detection (2–4), inflammatory

skin diseases (5, 6) surveys with dermatologists (7), patients perspectives (8), among others

[(9); Giavina-Bianchi et al.]. While we are starting to see the initial glimpses of what clinical

practice augmented and supported by AI capabilities might look like we do not yet have

tools used regularly by dermatologists, other clinicians, or patients in daily practice. Why

is this? Where do we stand now? What is next in this field? To try answer these questions,

this special Research Topic solicited articles and resulted in 10 manuscripts from teams

diverse in geographic representation as well as topic were accepted and published to shed

light on these questions.

In setting the stage to answer the question “where are we now?”, Furriel et al. provided

a systematic review of papers specifically on AI as applied to the detection, classification,

and assessment of skin cancer images in the clinical setting. Their rigorous methodology

identified 18 studies that encompassed a diversity of approaches in skin cancer detection,

as well as significant differences in dataset size. They highlight the areas of convergence and

divergence in the work and approaches to this topic, including more focused binary tools

vs. broader approaches with multiclass output.

Two papers provide additional reflections on the state of the art as well as starting

to answer the question “where are we going?”. Omiye et al. provided a broad overview of

artificial intelligence (AI), as applied to dermatology with a primary focus onmethodology,

AI applications for various skin diseases, limitations, and future opportunities. They

reviewed the current image-based models, highlighted the challenges facing widespread

adoption and the future of AI in evolving the paradigm of large language, and multi-

modal models.
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FIGURE 1

Articles for “artificial intelligence and dermatology” on Pubmed

by year.

Wei et al. discuss clinical applications including novel areas

outside of visual assessment, as well as new methodological

approaches like federated learning, multimodal learning, and new

model architectures like vision transformers. The confluence of

technological breakthroughs along with the breadth of clinical

applications means that there will be opportunity for Research

Topic on AI applied to dermatology for many years to come!

A set of four articles in the topic series focused on and highlight

AI in real-world practice. They cover different aspects of pioneering

endeavor in UK that is bringing these AI tools and capabilities

into clinical practice with measurable benefit: from the model

development to patient perceptions around the use of technology in

aiding clinical decision-making. First, Marsden et al. had a goal to

help improve the triage andmanagement of suspicious skin lesions,

using AI-based Digital Health Technology (DERM-003). This was

a prospective, multi-center study that aimed to demonstrate the

effectiveness of an AI as a Medical Device (AIaMD) to identify

Squamous Cell Carcinoma, Basal Cell Carcinoma, pre-malignant

and benign lesions from dermoscopic images of suspicious skin

lesions. They found that the AIaMD AUROC varied from 0.85 to

0.89, demonstrating the potential to support the timely diagnosis of

malignant and premalignant skin lesions.

Second, they aimed to implement the above AI solution, and

safely reduce referral rates. Their objective was to demonstrate

that the AIaMD had a higher rate of correctly classifying

lesions that did not need to be referred for biopsy or urgent

face-to-face dermatologist review, compared to teledermatology

standard of care (SoC), maintaining the same sensitivity to detect

malignancy. Their results showed a potential to reduce the burden

of unnecessary referrals when used as part of a teledermatology

service Marsden et al..

Third, patients recruited in this study were asked to complete

an online questionnaire to evaluate their views regarding use of

AIaMD in the skin cancer pathway by Kawsar et al. The majority of

respondents felt confident in computers being used to help doctors

diagnose and formulatemanagement plans and as a support tool for

general practitioners when assessing skin lesions and had no issues

on their photographs being taken with a mobile phone device.

Lastly, Thomas et al. analyzed the real-world performance

of the above medical device (AIaMD) tool for skin lesion

assessment. They assessed the DERM deployment within skin

cancer pathways at two National Health Service hospitals (UK) in

2 versions, which demonstrated very high sensitivity for detecting

melanoma or malignancy, in-line with sensitivity targets and

pre-marketing authorization research, reducing the caseload for

hospital specialists.

The work of MB and team highlights an emerging important

aspect of bringing AI capabilities into the real world—that of

explainability and interaction with the clinician. This demonstrated

the current state and variability between different models

of saliency visualization that impacted clinician acceptance

and preference. There is much to be done in the real of

human/computer interface, and this work shows the nuance

and importance of evaluating seemingly simple concepts like

how we visualize and show data and information to clinicians

(Giavina-Bianchi et al.).

Two additional papers represent progress and innovative

approaches—Shavlokhova et al. explore the feasibility of leveraging

advances in text-to-image generation capabilities in service of

generating synthetic dermoscopic images of disease. While the

results show that there is promise in preliminary aspects to this

approach, it remains to be seen whether current state gaps in

realism can be closed, and whether synthetic data may hold utility

in supplementing or augmenting real data (Shavlokhova et al.).

Li et al. tackle a real world clinical use case of training

and validating the ability of an algorithm to replicate human

acne severity grading, demonstrating the utility of AI capabilities

to use cases outside of skin lesion assessment and beyond

classification/diagnosis tasks. The potential role for these efforts in

creating efficiencies and fostering improved consistency in clinical

assessment is on display, though begs the question of whether

at this point clinician labeling as gold standard is the true gold

standard (Li et al.).

This set of articles makes clear that we have traversed a

significant distance from the initial hype around AI in dermatology

toward an intimate understanding of what it takes to translate

possibility to practice and patient impact.
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dermatologists and five visual
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Mara Giavina-Bianchi*, William Gois Vitor,

Victor Fornasiero de Paiva, Aline Lissa Okita,

Raquel Machado Sousa and Birajara Machado

Department of Big Data, Hospital Israelita Albert Einstein, São Paulo, Brazil

Introduction: The use of deep convolutional neural networks for analyzing skin

lesion images has shown promising results. The identification of skin cancer by

faster and less expensive means can lead to an early diagnosis, saving lives and

avoiding treatment costs. However, to implement this technology in a clinical

context, it is important for specialists to understand why a certain model makes

a prediction; it must be explainable. Explainability techniques can be used to

highlight the patterns of interest for a prediction.

Methods: Our goal was to test five di�erent techniques: Grad-CAM, Grad-

CAM++, Score-CAM, Eigen-CAM, and LIME, to analyze the agreement rate

between features highlighted by the visual explanationmaps to 3 important clinical

criteria for melanoma classification: asymmetry, border irregularity, and color

heterogeneity (ABC rule) in 100 melanoma images. Two dermatologists scored

the visual maps and the clinical images using a semi-quantitative scale, and the

results were compared. They also ranked their preferable techniques.

Results: We found that the techniques had di�erent agreement rates and

acceptance. In the overall analysis, Grad-CAM showed the best total+partial

agreement rate (93.6%), followed by LIME (89.8%), Grad-CAM++ (88.0%), Eigen-

CAM (86.4%), and Score-CAM (84.6%). Dermatologists ranked their favorite

options: Grad-CAM and Grad-CAM++, followed by Score-CAM, LIME, and Eigen-

CAM.

Discussion: Saliency maps are one of the fewmethods that can be used for visual

explanations. The evaluation of explainability with humans is ideal to assess the

understanding and applicability of these methods. Our results demonstrated that

there is a significant agreement between clinical features used by dermatologists

to diagnose melanomas and visual explanation techniques, especially Grad-Cam.

KEYWORDS

melanoma, Grad-CAM, Grad-CAM++, Eigen-CAM, Score-CAM, LIME, explainability

1. Introduction

Melanoma is a skin cancer that is more lethal than all the other skin cancers combined,

even though it accounts for less than 5% of all cases (1). The global incidence of melanoma

rose from 11.8 to 17.5/100,000 inhabitants from 2003–2006 to 2011–2014 (2, 3). In Australia,

one of the countries with the highest incidence of this pathology in the world, the number of

deaths frommelanoma of the skin increased from 596 in 1982 to 1,405 in 2019 (4). In 2021, in

the U.S.A., 106,110 cases were diagnosed and 7,180 deaths by melanoma were estimated (5).
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Melanoma represents a high cost to society. Loss of productivity

due to morbidity or premature death, as well as the cost of

treatments, are a considerable burden for health systems and have

multiple implications in the life of such individuals (6). It is ranked

as one of the most expensive cancers, with a significant decrease

in cost when diagnosed in the early stages (7, 8). The average cost

per patient with melanoma ranges from e 149 for disease stage 0

to e 66,950 for stage IV (9). When melanoma is diagnosed early,

it can be treated effectively and with a high probability of survival

(5). Therefore, it is essential to promote prevention programs

with periodic examination of the skin for the early detection of

suspicious lesions to reduce the costs and mortality of melanoma

(6). The ABCDE rule is a widely used method to recognize

characteristics often associated with melanoma. It was developed

for both physicians and patients. It includes: Asymmetry, Border

irregularity, Color heterogeneity, Diameter larger than 6mm, and

Evolution or transformation of the lesion over time (10).

Since the detection of melanomas at an early stage is essential

for a good prognosis, and the distinction between melanomas

and harmless pigmented lesions is often not trivial, AI-based

classification systems may bring important contributions to this

field. Artificial intelligence algorithms have performed in silico at

least as well as expert dermatologists in detecting melanoma lesions

(11–13). Results have been encouraging, but there are only a few

recent studies trying to use AI in the real world to detect melanoma

lesions (14–16). There is still some controversy about the use of

AI for diagnoses in “real-life” clinical settings. Concerns include

the possibility of biases, the lack of transparency and explainability,

scalability, data integration and interoperability, reliability, safety,

privacy, and the ethics of aggregated digital data (17, 18). As with

any other innovation, especially in healthcare, AI must prove to be

efficient, reliable, reproducible, and friendly enough to be accepted

by those who are actually going to use it; in this case, physicians (or

perhaps other health professionals) and patients. As for physicians,

a recent study in Korea has shown that, in general, physicians

have a positive attitude toward AI in medicine (19). Another

study has presented similar results in a large international survey

among dermatologists, indicating that AI is well-accepted in the

dermatology field and that AI should be a part of medical training

(20). As for patients, one article concluded that they expressed a

high level of confidence in decision-making by AI and that AI can

contribute to improving diagnostic accuracy, but should not replace

the dermatologist (21). Another survey has shown that patients

and physicians are willing to use AI in the detection of melanoma

lesions. Patients appear to be receptive to the use of AI for skin

cancer screening if implemented in a manner that preserves the

integrity of the human physician-patient relationship (22).

To satisfy the requirement for transparent and comprehensible

treatment decisions, it will be necessary to work on strategies that

allow AI results to be interpreted and verified (at least in part). Due

to the high complexity of the algorithms, complete transparency

of AI will probably not be possible. Still, it may be possible to

explain the decisive influencing factors on individual decision

steps within the algorithms. Explainable artificial intelligence (XAI)

is an initiative that aims to “produce more explainable models

while maintaining a high level of learning performance (prediction

accuracy); and enable human users to understand, appropriately

trust, and effectively manage the emerging generation of artificially

intelligent partners” (23). The aim of enabling explainability in

ML, as stated by FAT (fairness, accountability, and transparency)

(24), “is to ensure that algorithmic decisions, as well as any data

driving those decisions, can be explained to end-users and other

stakeholders in non-technical terms”.

For deep learning models, the challenge of ensuring

explicability is due to the trade-off in terms of powerful results and

predictions (25) and the inherent opacity of black box models. This

represents a serious disadvantage, as it prevents a human being

from being able to verify, interpret and understand the system’s

reasoning and how decisions are made (26). It is a common

approach to understand the decisions of image classification

systems by finding regions of an image that were particularly

influential to the final classification. They are called sensitivity

maps, saliency maps, or pixel attribution maps (27). These

approaches use occlusion techniques or calculations with gradients

to assign an “importance” value to individual pixels which are

meant to reflect their influence on the final classification.

Gradient-weighted Class Activation Mapping (Grad-CAM)

uses the gradients of any target concept flowing into the

final convolutional layer to produce a coarse localization map

highlighting important regions in the image for predicting the

concept. It highlights pixels that the trained network deems

relevant for the final classification (28). Grad-CAM computes the

gradient of the class-score (called logit) with respect to the feature

map of the final convolutional layer (28). Despite the difficulty

of evaluating interpretability methods, some proposals have been

made in this direction (29, 30). Grad-CAM is one method of local

interpretability being used for deep learning models and was one

of the few methods that passed the recommended sanity checks

(29). There is also an improved version of the original Grad-

CAM and CAM method, called Grad-CAM++. This method is

based on the same principles as the original Grad-CAM method,

but it uses a different weighted combination (31). Two other

CAM techniques can be used: Eigen-CAM (32) and Score-CAM

(33) which differ from the Grad-CAM by not relying on the

backpropagation of gradients. A totally different approach can also

be made using Local Interpretable Model-agnostic Explanations

(LIME) technique, where the image is segmented into superpixels

interconnected with similar colors (34).

To elucidate more about the explainability of deep neural

network classification in melanoma lesions, we performed an

exploratory experiment with 2 objectives. First, to assess the

agreement rate between the features highlighted by 5 different

techniques of visual saliency maps to the three most used

clinical dermatological criteria for melanoma lesions: asymmetry,

border irregularity, and color heterogeneity (ABC rule). Second,

to subjectively evaluate the preferable techniques ranked by the

dermatologists, the reasons for it and the degree of agreement

between the two dermatologists about the five techniques.

2. Methodology

In this section, we will introduce the dataset used to build

the classification model for evaluating the visual explanations,

the Convolutional Neural Network (CNN) models used for the

segmentation and classification tasks, the explainability methods
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used for the visual explanations, and the experiment performed.

The development of the algorithm and its performance were

described in detail in a previous article (35).

This study was approved by Hospital Israelita Albert

Einstein Ethics Committees under the identification

CAAE:32903120.40000.0071.1 and it is in accordance with

the ethical standards on human experimentation and with the

Declaration of Helsinki. Dermatologists that took part in the

experiment signed consent forms agreeing to participate. This

research was performed at Hospital Albert Einstein, São Paulo,

Brazil, from January-March 2023.

2.1. Melanoma dataset

For this study, we used the following datasets: HAM10000

Dataset (36), MSK Dataset (37), Dataset BCN20000 (38), and

Derm7pt (39), all publicly available. The first three datasets

compose the dermoscopic image data available by ISIC (37–

39), an international competition for the identification of skin

diseases. Derm7pt is composed of clinical and dermoscopic images

categorized by the 7-point technique for the identification of

melanoma, with more than 2000 images of melanoma and non-

melanoma. In this study, we selected only dermoscopic images.

The total dataset consists of 26,342 images. Only two different

classes were established for our dataset: melanoma (18%) and

non-melanoma (82%).

2.2. Convolutional neural networks models
(CNN)

The classification model for melanoma lesions was constructed

using two steps: image segmentation and image classification. For

the segmentation, we used the MaskR-CNN architecture (40). The

lesions in the dermoscopy images were segmented and then used

in the classification model in a way that the latter could focus only

on the patterns closely related to the lesion itself, excluding most

of the background information that could impair its classification

capabilities. To train the segmentation model, we used 2000 images

previously annotated by specialists with the regions of interest.

Using transfer learning with a Resnet50 backbone and 20 epochs,

the trained model reached a 99.69% mAP for our test set.

For the classification task, we divided the total dataset as

80% for training, 10% for validation, and 10% for testing the

classificationmodel. To train themodel, we used the EfficientNetB6

convolutional neural network (41). This family of architectures

achieved some of the best precision and efficiency in the literature

(41), performing better than previous CNN (42, 43). Through

transfer learning with pre-trained weights from the ImageNet

(44), the model was fine-tuned for 50 epochs using the Adam

optimization (45) with a 0.001 starting learning rate and a batch

size equal to 32. The learning rate was scheduled to be reduced

by a factor of 30% if the model failed to improve with a stagnant

validation loss for 5 epochs. Finally, we used early stopping, also

based on a validation loss of 10 epochs.

To address the imbalance in the two target classes, we trained

the model using the focal loss function (46) to avoid bias for the

most dominant class. We also weighted the classes according to

their inverse frequency, in order to balance model attention in the

loss function. All images were resized to 220 × 220. In addition,

we applied data augmentation using common image processing

operations (rotation, shear, horizontal flip, zoom). The sigmoid

function was used to deliver the prediction result. In the tests, our

model has achieved an average ACC of 0.81, AUC of 0.94, sensitivity

of 0.93 and specificity of 0.79, considering the threshold of 0.5.

More details of the model can be found in our study previously

reported (35).

2.3. Explainability methods adopted

2.3.1. Gradient-weighted class activation
mapping (Grad-CAM)

Grad-CAM was proposed to produce visual explanations for

decision-making in comprehensive classes of convolutional neural

networks (28). The idea was to make AI models transparent and

explainable, giving the possibility to identify flaws in the systems,

mainly of deep learning models that were considered difficult to

interpret. Some proposals have used Grad-CAM in an attempt to

explain possible decisions of the model (47) in the medical field

(48–51).

Since Grad-CAM does not require any particular CNN

architecture, it can be used with fixed weights (after being trained),

and it is able to explore the spatial information of the last

convolutional layers through feature maps that are weighted and

calculated, based on gradients. The positive values, which are the

most “relevant” information for the classification result, can be

obtained through a ReLU operation, defined as,

LcGrad−CAM = ReLU

(

∑

k

αc
kA

k

)

(1)

where αc
k
=

1
Z

∑

i

∑

j
∂yc

∂Ak
ij

.

2.3.2. Grad-CAM++
Grad-CAM++ technique is an improved version of the original

Grad-CAM and CAMmethod. The Grad-CAM++method is based

on the same principles as the original Grad-CAM method, but it

uses a weighted combination of the positive partial derivatives of

the last convolutional layer feature maps with respect to a specific

class score as weights to generate a visual explanation for the class

label under consideration (Equation2) (31).

LcGrad−CAM = ReLU

(

∑

k

αc
kA

k

)

(2)

The class-discriminative saliency map generated by Grad-

CAM++ is a high-resolution heatmap that indicates the regions of

the input image that are most relevant to the specific prediction

made by the network. For a given image, Lc is calculated as a linear
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combination of the forward activation maps, followed by a relu

layer (Equation 3) (31).

Lcij = ReLU

(

∑

k

wc
kA

k
ij

)

(3)

2.3.3. Eigen-CAM
The Eigen-CAM technique leverages the principal components

on the activation maps of the convolutional layers (32). It

does not rely on the backpropagation of gradients. For the last

convolutional layer:

1. Singular value decomposition (SVD) is used to factorize the

combined activation map A for input X as A = U
∑

V t ;

2. The activation map is then projected on the first eigenvector of

the V matrix;

3. The projection highlights the principal components of the

activation map.

In this method, there is no use of a ReLU activation function.

Conceptually, the Eigen-CAM can be defined as,

LEigen−CAM = AV1 (4)

where V1 denotes the first the eigenvector at the first position

in the V matrix.

2.3.4. Score-CAM
Like Eigen-CAM, Score-CAM does not rely on the

backpropagation of gradients. It borrows from the Grad-

CAM technique in the sense that it is also non-dependent on a

particular architecture; where they differentiate, however, is in

the way they deal with the flow of gradient information. Instead

of using the gradient from the last convolutional layer to build

on the importance of each region of input X toward class C, the

Score-CAM technique assimilates the importance of each region

as an increase of confidence in the overall prediction (33). For a

specific convolutional layer:

1. Each activation map is upsampled, normalized, and then used as

a mask for input X, highlighting the most activated regions;

2. The masked input image is passed through the CNN resulting in

a logit for each class;

3. All logits and activation maps are linearly combined;

4. A ReLU activation function is applied to the combined product,

resulting in the Score-CAM output.

Because gradients can be noisy, explode, and/or vanish (52),

these characteristics can also be present in the layer activations (53),

thus resulting in suboptimal CAM visualizations. The Score-CAM

technique, however, is not dependent on the model gradient.

Conceptually, the Score-CAM can be defined as,

LkScore−CAM = ReLU

(

∑

k

αc
kA

k
l

)

(5)

where αk
c = C

(

Ak
l

)

, and C
(

Ak
l

)

= f
(

X ·Hk
l

)

− f (Xb).

2.3.5. Local interpretable model-agnostic
explanations (LIME)

LIME is model agnostic, which allows it to be utilized across

a wide range of machine learning models. The locally weighted

square loss (L) as the metric choice by authors (Equation 6). This

loss function takes into account the exponential kernel rx(z), which

is defined as exp(−D(x, z)2/σ 2), where D represents a distance

function, such as the cosine distance for text or the L2 distance for

images, and σ is the width of the kernel (54).

L(f , g,πx) =
∑

z,z′ǫZ

πx (z)
(

f (z) − g
(

z′
))2

(6)

How LIME is used for image:

1. The image is segmented into superpixels. Superpixels are

interconnected pixels with similar colors;

2. The surrogate model highlights the superpixels of the image that

are the most active in predicting a certain class;

3. The image is transformed into a binary vector where 1 indicates

the original superpixel and 0 indicates a grayed-out super-pixel.

The complexity depends on the time required to compute

the prediction of the relevant class and the number of samples

N. Due to this complexity, LIME may take longer than other

methods, especially when applied to image data (34, 54). In the

present publication, the LIME is used to highlight superpixels

that have the maximum positive and negative influence on the

model’s prediction.

2.4. The experiment

In order to analyze the impact of the five different explainability

techniques on humans, we defined two major questions to be

addressed experimentally. They are:

1. Is there a quantitative agreement between dermatologists ABC

rule and the visual explanation techniques for melanoma?

2. Do dermatologists qualitatively agree with the visual explanation

techniques for melanoma?

In the next sections, we will explore each question in

further detail.

2.4.1. Is there a quantitative agreement between
dermatologists ABC rule and the visual
explanation techniques for melanoma?

In this experiment, we aimed to apply an explainability

method visual analysis by human experts, such as dermatologists,

comparing the highlighted areas in the saliency maps with the areas

of the lesion that show asymmetry, border irregularity, and color

heterogeneity (ABC rule), three of the main features evaluated in a

melanoma lesion.

From the dataset, we selected 100 lesions correctly classified

by the model as melanoma. These 100 dermoscopy images were

analyzed by two experienced and Board-Certified dermatologists

(MGB and ALO). They first assessed only the dermoscopy

image and graded three of the five most frequently melanoma

criteria (ABCDE) used in clinical practice: asymmetry (A), border
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irregularity (B), and color heterogeneity (C). They did not grade

diameter (D) because most of the dermoscopy images had no scale

measure and evolution in time (E) due to the fact that the clinical

photographs in the dataset were taken at one point in time and no

follow-up images were available.

Both dermatologists had to reach a consensus to use a semi-

quantitative scale from 0 to 2 to grade the ABC features in the

lesions, as shown in Figure 1. To assess asymmetry, the lesion was

divided into 4 quadrants, and its shape and color distribution was

analyzed. If all 4 quadrants had regular shapes and colors, there

was no asymmetry (0); if 2 or 3 quadrants were similar, there was

mild asymmetry (1); and if all four quadrants were different, there

was severe asymmetry (2). For borders, they evaluated the shape

and regularity. If the aspect was smooth and regular in color, the

borders were considered benign (0). If ≤50% of the border area

presented irregular borders or signs of color abnormality, it was

called partial involvement (1), and if >50%, severe involvement

(2). If >50% of the lesion’s limits could not be evaluated, they

were designed as non-available (N/A). For color, we assessed the

degree of color heterogeneity by the number of colors present

in the lesion: one color present, no heterogeneity (0); two colors

present, mild heterogeneity (1); three ormore colors present, severe

heterogeneity (2).

Next, they analyzed each visual explanation technique (Grad-

CAM, Grad-CAM ++, Eigen-CAM, Score-CAM, and LIME) in

conjunction with its dermoscopy image, separately, in pairs, and

blindly to the techniques name. For each of them, they assessed

the features highlighted by the saliency map, using the following

criteria (Figure 2). For asymmetry, it was the same criteria as for

clinical features. The visual explanation map was divided into

4 quadrants and shape and color distribution were analyzed. If

all 4 quadrants showed the same color and format, there is no

asymmetry (0); if 2 or 3 quadrants are similar, there was mild

asymmetry (1); and if all four quadrants were different, there is

severe asymmetry (2). The clinical border area was compared to the

highlighted visual map for borders. If the visual technique showed

no highlight or ≤50% of the border area highlighted with cold

colors for the clinical borders, it was classified as no highlight (0).

If ≤50% of the area was highlighted with heat colors or >50% with

cold colors, it was called partial border highlight (1). If>50% of the

area were highlighted with heat colors, it was designated as total

border highlight (2) or non-available (N/A), and if>50% of lesion’s

limits could not be evaluated clinically.

For color assessment, we had to pursue a different strategy,

mainly because visual heat maps, by definition, ought to display

multiple colors, leaving all the maps to be rated as showing severe

heterogeneity of colors (2), which would not be meaningful to

the dermatologists understanding. Thus, dermatologists decided to

compare the most significant color abnormalities presented in the

dermoscopy image (as if they had a saliency map in their minds)

to the heat colors of the visual map, considering its location and

intensity, and grading the match between them. If the clinical color

abnormalities presented an agreement area was ≤75% for heat

colors, it was called total agreement (0). If the matched area was 25-

75% for heat colors or >75% for cold colors, it was designated as

partial agreement (1). If the matched area for heat colors was<25%

or 25-75% for cold colors, it was considered total disagreement (2).

For grading the highlight colors, we established blue/purple as cold

colors and orange/red for heat colors. Examples of high and low

agreement cases can be seen in Figure 3.

To calculate the agreement rate between the clinical criteria and

visual techniques, we used the following criteria: if the difference

between their grade scales was zero, they were in total agreement.

If the difference was one, they had a partial agreement and if

the difference was two, they had no agreement. For example, if

dermatologists graded the heterogeneity of colors as 0 in the clinical

image and as 0 in the visual technique, the difference was zero, so

they were in total agreement. On the other hand, if dermatologists

graded border irregularity as 2 for the clinical image and as 0 for the

visual explanation technique, the difference was 2, and therefore

there was no agreement. At last, if the asymmetry was rated as 0

for the clinical image and as 1 for the explanation technique, the

difference was 1, so that corresponded to a partial agreement.

2.4.2. Do dermatologists qualitatively agree with
the visual explanation techniques for melanoma?

The rationale for this part of the qualitative study was to

capture the overall characteristics perceived by the experts about

each explainability technique, making comments about each of

them and ranking their preferable techniques. For this purpose,

after grading ABC, we showed all the images again, with the

respective label for each technique to both dermatologists and

asked them to make comments about each technique and how

they would rank the techniques in order of the most preferable

to the least (1-5). After that, they were also asked to read the

comments and determine if they agree or not with the other

experts observations, according to the following criteria: total

agreement; partial agreement; no agreement nor disagreement;

partial disagreement; and total disagreement. Examples of clinical

melanoma images and their respective visual maps using Score-

CAM, Eigen-CAM, LIME, Grad-CAM, and Grad-CAM ++ can be

seen in Figure 4.

3. Results

3.1. Quantitative results

To assess the AB clinical criteria for melanoma in our study, a

confusion matrix was constructed after grading melanoma images,

as depicted in Figure 5. The diagonal of the matrix signifies

instances where the reference and dermatologists concurred,

indicating total agreement. The off-diagonal elements, displaced

either one or two columns away from the main diagonal, denote

partial agreement or disagreement, respectively. The generated

confusion matrix was used to construct (Table 1), presenting a

comprehensive overview of the inter-rater reliability of the AB

clinical criteria for melanoma in our study.

Table 1 shows the results of total, partial, and no agreement

rates to ABC melanoma rule. Asymmetry was the criterium of the

highest agreement rate among the three. LIME, Grad-CAM, and

Grad-CAM++ were the top techniques for asymmetry, all of them

showing >50% of total agreement rates. 40–50% of all techniques

showed a partial agreement rate in this criterium. Eigen-CAM had

the poorest performance, with >25% of no agreement rate, while
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FIGURE 1

Graphical representation of ABC melanoma criteria used in clinical images: asymmetry, border irregularity, and color heterogeneity. To assess

asymmetry, the lesion was divided into 4 quadrants, and its shape and color distribution were analyzed. If all 4 quadrants had regular shapes and

colors, there was no asymmetry (0); if 2 or 3 quadrants were similar, there was mild asymmetry (1); and if all four quadrants were di�erent, there was

severe asymmetry (2). For borders, they evaluated shape and regularity. If the aspect was smooth and regular in color, the borders were considered

benign (0); if ≤ 50% of the border area presented irregular borders or signs of color abnormality, it was considered as partial involvement (1), and if

> 50%, severe involvement (2). Finally, if > 50% of the lesion’s limits could not be evaluated, it was considered non-available (N/A). For color, we

assessed the degree of color heterogeneity by the number of colors present in the lesion: presence of one color was considered as no heterogeneity

(0); presence of two colors was considered as mild heterogeneity (1); presence of three or more colors was considered as severe heterogeneity (2).

Grad-CAM++ and LIME showed only around 3% of no agreement.

Thus, Grad-CAM++ seems to be the best technique for asymmetry

detection in melanoma cases.

Regarding border evaluation, all visual explanation techniques

showed similar total agreement rates, between 32 and 39%, but

Score-CAM and Grad-CAM++ showed no agreement in ≥ 20%

of the cases. For partial agreement, Grad-CAM and Eigen-CAM

showed the best numbers. Taking all into account, it looks like

Grad-CAM is the most reliable technique to identify border

abnormalities by visual maps.

As for the color match, Grad-CAM presented the top

performance, with 40% of total agreement, followed by Grad-

CAM++ and LIME. For partial agreement, all techniques showed

similar results. As Grad-CAM had only 6% of no agreement, it was

considered the best technique for this aspect.

Analyzing the three criteria together, Grad-CAM was

the best visual explanation technique in agreement with the

ABC rule of melanoma cases. In second and third places,

respectively, are LIME and Grad-CAM++, which performed

very similarly in this experiment. Eigen-CAM and Score-

CAM finalized in the fourth and fifth places, respectively,

Eigen-CAM presenting a little better result for total and no

agreement rates.

3.2. Qualitative results

Comments of both dermatologists about the five different

visual explanation methods can be seen in Table 2, as well as their

preferable choices, and their inter-expert agreement rates. Grad-

CAM and Grad-CAM++ were in the top position for both. Score-

CAM was unanimous the third place in choice and the worst

positions were occupied by LIME and Eigen-CAM techniques. The

overall inter-expert agreement rates was 60% total and 40% partial,

although they were not coincident for each explainability method.

There were no disagreements.
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FIGURE 2

Grading examples of the visual map explanation techniques. For asymmetry, the visual explanation map was divided into 4 quadrants and shape and

color distribution were analyzed. If all four quadrants showed the same color and format, there was no asymmetry (0); if 2 or 3 quadrants were

similar, there was mild asymmetry (1); and if all four quadrants were di�erent, there was severe asymmetry (2). For borders, the clinical border area

was compared to the highlighted visual map. If the visual technique showed no highlight or ≤ 50% of the border area highlighted with cold colors, it

was considered as no highlight (0). If ≤ 50% of the area was highlighted with warm colors or > 50% with cold colors, it was considered partial border

highlight (1); if > 50% of the areas was highlighted with warm colors, it was considered total border highlight (2). Finally, if > 50% of the lesion’s limits

could not be evaluated clinically, it was considered non-available (N/A). For color abnormality, dermatologists decided to compare the most

significant color abnormalities in the dermatoscopy image as if they had a saliency map in their minds, comparing the imaginary heatmaps to the

ones in the visual techniques. If the clinical color abnormalities presented an agreement area of ≤ 75% for warm colors, it was considered total

agreement (0); if it was 25−75% for warm colors or > 75% for cold colors, it was considered as partial agreement (1); if it was < 25% for warm colors

or 25−75% for cold colors, it was considered total disagreement (2). For grading the highlight colors, we established blue/purple as cold colors and

orange/red as warm colors.

4. Discussion

Due to the difficulty of interpreting deep learning models and

giving a plausible explanation for a prediction, this theme has

been increasingly addressed in the literature through proposed

methods, taxonomies, and benchmarks (29, 30, 55, 56). However,

there is little consensus on what is interpretability/explainability in

machine learning and how to evaluate it for benchmarking (55).

Especially in the medical field, as physicians play a major role

in endorsing (or not) the use of AI algorithms, it is important

to reach out to them, understanding how and what they think

about the explainability models. An adequate visual explanation

should be able to identify details that help explain a particular

classification (26). In this context, interpretability can be described

as the degree to which a human can consistently predict the models

result (25, 35).

There are very few studies addressing this question in

practice. Our work is likely one of the pioneers in this field,

trying to bring light to the CNN black box, through practical

experiments using human experts in the field of Dermatology. Our

methodology tested the discriminative visual explanation of five

different techniques to support the understanding of the model’s

decision and our quantitative and qualitative results composed an

interesting picture to compare the methods in a real-life situation.

Asymmetry was the criterium with the highest agreement rate,

reaching 57.5% using LIME. This can be explained because the

LIME technique is very geographical, dividing the maps lesion into

several different areas and color tones, making it almost impossible

to produce a symmetric visual map. As melanoma clinical lesions

are often asymmetric themselves, the high agreement may be more

of an expression of this fact rather than a true match with the

dermatologists criterium. On the other hand, Eigen-CAM had

the worst performance, justified by the fact that it often stamps

a rectangle over the entire lesion, showing no asymmetry at all,

poorly reflecting the reality of the clinical lesion. Grad-CAM and

Grad-CAM++ also performed very well for asymmetry, with only

≤ 6% of no agreement rate and excellent numbers for high and

partial agreements rate.
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FIGURE 3

Examples of high and low agreement cases. (A) Examples of high agreement rate. (B) Examples of poor agreement rates.

FIGURE 4

Examples of clinical melanoma images and their respective visual maps using Score-CAM, Eigen-CAM, LIME, Grad-CAM, and Grad-CAM++.

Borders evaluation was the criterium with the lowest

agreement rate. Grad-CAM showed the best results, with

only 9% of no agreement rate, followed by Eigen-CAM. That

corroborates the fact that Grad-CAM was the only technique

cited as better limiting the border area. Eigen-CAM might

have a good result in this assessment because, as said, the

rectangle displayed in the visual map included, in most cases,

the border area. As described above for LIME technique in

asymmetry evaluation, Eigen-CAM may not reflect a true match

with the border area, but only a coincidence dependent on

the techniques visual map displayed. The worst performance

techniques were Score-CAM and Grad-CAM++ was showing

≥ 20% of no agreement rates, which was also pointed out by the

dermatologists.
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FIGURE 5

Confusion matrix of clinical criteria asymmetry and border in melanoma images using: (A) Grad-CAM; (B) Grad-CAM++; (C) Eigen-CAM; (D)

Score-CAM; and (E) LIME.

Color abnormalities assessment is probably the most relevant

criterion when dermatologists evaluate lesions such as melanoma.

Eigen-CAM and Grad-CAM presented the best results, over 30% of

high agreement and ≤ 4% of no agreement. As already mentioned,

Eigen-CAM, as its visual map prints a big rectangle over the

lesion, it did match the color abnormalities, but indiscriminately, as

pointed out by the dermatologists. Thus, for this criterium, when

the qualitative study is considered, Grad-CAM seemed to better

match the relevant areas of color abnormalities of the lesions. LIME

and Score-CAMdid poorly in this evaluation, showing only around

15% of high agreement and 12-13% of no agreement.

Overall, Grad-CAM showed the best agreement rate with

40% of total agreement and only 6% of no agreement. This

was also reflected by the dermatologists opinion, which ranked

it in the top two techniques. The LIME technique ended

up in the second position in the quantitative study, probably

because of the high performance for asymmetry, but was ranked

very low by the dermatologists, in the last two spots. Grad-

CAM++ turned up to be third in quantitative agreement,

but it was highly ranked by the dermatologists (first and

second places). Eigen-CAM performed fourth in the agreement

experiment and it was disliked, as well, by the experts.

Finally, Score-CAM showed the worst performance in the

quantitative assessment, but it assumed a unanimous third place

among the dermatologists, only after Grad-CAM and Grad-

CAM++.

Another study, recently published, tested four

Convolutional Neural Network models using five different

interpretation techniques (saliency, guided backpropagation,

integrated gradients, input gradients, and DeepLIFT)
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TABLE 1 Agreement between clinical ABC melanoma features and each visual explanation.

Technique Total agreement Partial agreement No agreement Total

Assymetry

Eigen-CAM 52 26.00% 96 48.00% 52 26.00% 200

Grad-CAM 105 52.50% 83 41.50% 12 6.00% 200

Grad-CAM++ 101 50.50% 93 46.50% 6 3.00% 200

LIME 115 57.50% 80 40.00% 5 2.50% 200

Score-CAM 76 38.00% 100 50.00% 24 12.00% 200

Border

Eigen-CAM 62 32.63% 104 54.74% 24 12.63% 190

Grad-CAM 62 32.63% 110 57.89% 18 9.47% 190

Grad-CAM++ 74 38.95% 78 41.05% 38 20.00% 190

LIME 66 34.74% 92 48.42% 32 6.84% 190

Score-CAM 70 36.84% 80 42.11% 40 21.05% 190

Color

Eigen-CAM 75 37.50% 121 60.50% 4 2.00% 200

Grad-CAM 69 34.50% 123 61.50% 8 4.00% 200

Grad-CAM++ 41 20.50% 132 66.00% 27 13.50% 200

LIME 29 14.50% 148 74.00% 23 11.50% 200

Score-CAM 32 16.00% 141 70.50% 27 13.50% 200

TOTAL

Eigen-CAM 189 32.03% 321 54.41% 80 13.56% 590

Grad-CAM 236 40.00% 316 53.56% 38 6.44% 590

Grad-CAM++ 216 36.61% 303 51.36% 71 12.03% 590

LIME 210 35.59% 320 54.24% 60 10.17% 590

Score-CAM 178 30.17% 321 54.41% 91 15.42% 590

to compare their agreement with experts previous

annotations of esophagus cancerous tissue, showing

that saliency attributes match best with the manual

experts delineations and that there was moderate to high

correlation between the sensitivity of a model and the

human-and-computeragreement (57).

Saliency maps are one of the few methods that can be

used for visual explanations. As in our study, the evaluation of

explainability with humans is ideal to assess the understanding

and applicability of these methods (55). A large variety of

methods have been applied for this aim. However, recent work

has shown that many are, in fact, independent of the model

weights and/or the class labels. In these cases, it is likely that

the model architecture itself is constraining the saliency maps

to look falsely meaningful: frequently, the maps just act as a

variant of an edge detector. This is particularly dangerous in the

context of skin cancer detection, as features at the borders of

lesions are often considered diagnostic for melanoma: saliency

maps that highlight the edges of a lesion may be misconstrued

as clinically meaningful (51). Interestingly, our results in the

experiment showed that most of the techniques fail to identify

the borders of the lesions, and only Grad-CAM showed a

good performance.

Although human evaluation is essential to assess

interpretability, the evaluation of the human subject is not an easy

task (55). In our experiment, it is not possible to measure, in a

concrete way, if the techniques are looking at the same features as

the experts to confirm or not the agreement. Some studies claimed

that people tend to disregard information that is inconsistent with

their prior beliefs. This effect is called confirmation bias (25) and

that is why our dermatologists assessed the dermoscopic images

and Grad-CAM visual maps separately and blindly, trying to avoid

it. Also, relying only on examples to explain the models behavior

can lead to over-generalization and misunderstanding (58), and

observing where the network is looking at the image does not

tell the user what the CNN is actually doing with that part of the

image (59).

Furthermore, when evaluating the most appropriate

explanation, one must take into account the social environment

of the ML system and the target audience. This means that

the best explanation varies depending on the domain of the

application and the use case (60). Despite the fact that a
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TABLE 2 Qualitative results of each visual map technique showing the comments, ranking and inter-expert agreement.

Dermatologist 1 Dermatologist 2

Visual map Comments Preference Inter-expert Comments Preference Inter-expert

technique ranking agreement ranking agreement

Score-CAM Poor delimitation of

the lesion,

very specific,

but very low sensitivity

3 Total It points only to specific

areas, but not necessarily

the relevant ones

3 Partial

Eigen-CAM It creates a rectangle

over the central area;

does not seem

specific nor sensitive

4 Total It maps a great area,

without differentiation

between relevant

areas; it only points

to the lesion

5 Total

LIME It creates geographical

areas, hard to interpret;

it can delimitate

the lesion very well,

but does not seem

specific or sensitive

5 Total Maps do not explain

why clinically similar

areas of the skin show

different patterns in

the map; does not seem

sensitive or specific

4 Total

Grad-CAM It delimitates the lesion

most accurately, and

have better match

to clinically relevant

areas

1 Partial It seems more specific,

but not so much

sensitivity; it points

correctly to the whole

lesion

2 Partial

Grad-CAM++ It does not delimitate

the lesion; it highlights

only the major relevant

areas; high specificity

and low sensitivity

2 Total It also seems more

specific, localizing the

relevant areas but less

sensitive; it points only

to parts of the lesion,

not delimitating the

whole area

1 Total

saliency map located on the lesion cannot yet be viewed as

justification that clinically meaningful correlations have been

learned, a map that is clearly located on a clinically irrelevant

region could be used to signal a prediction that should be

ignored (51).

In our study, we encouraged experts to provide quantitative

and qualitative analyses of the different explainability techniques

to assess subjective matters related to how they visually interpreted

melanoma lesions alongside the technique’s results. By doing that,

we touched unknown territory in terms of analyzing how useful

these visual explainability techniques can be in clinical practice.

In our study design, the experts gave important feedback that was

statically detailed and explored. There was no adoption of a method

described in the scientific literature because it was not possible to

find one. In the future, it may be pertinent to carefully explore and

propose study designs to address this issue, preferably exploring

subjective matters objectively, minimizing model and expert biases,

and focusing on the real-world gains of adopting AI algorithms in

clinical practice.

5. Conclusion

Our work is likely one of the pioneers using experts to try

to bring light to the CNN black box in the Dermatology area,

performing quantitative and qualitative studies on different visual

explanation techniques for melanoma. Our results demonstrated

that there is a significant agreement between clinical features

used by dermatologists to diagnose melanomas and visual

explanation techniques, especially Grad-Cam. The interpretation

of black-box generalization in melanoma images based on

visual maps showed up to be promising, presenting trustworthy

outputs compared to experts interpretations and encouraging

new studies.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Hospital

Israelita Albert Einstein. The studies were conducted in accordance

with the local legislation and institutional requirements. The

participants provided their written informed consent to participate

in this study.

Frontiers inMedicine 11 frontiersin.org18

https://doi.org/10.3389/fmed.2023.1241484
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Giavina-Bianchi et al. 10.3389/fmed.2023.1241484

Author contributions

MG-B, WV, and VF had the idea, designed the

experiments, wrote, and reviewed the final manuscript.

MG-B and AO performed the experiments and reviewed

the final manuscript. RS reviewed the literature and

developed the CNN. BM overviewed the entire process, was

responsible for accessing the funding, and reviewed the final

manuscript.

Funding

This study was supported by Brazilian Ministry of Health,

process number: 25000.121674/2018-13.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Najita JS, Swetter SM, Geller AC, Gershenwald JE, Zelen M, Lee SJ. Sex differences
in age at primary melanoma diagnosis in a population-based analysis (US Surveillance,
Epidemiology, and end results, 2005-2011). J Invest Dermatol. (2016) 136:1894.
doi: 10.1016/j.jid.2016.03.044

2. Steglich RB, Cardoso S, Gaertner MHdCN, Coelho KMdPA, Cestari TF, Franco
SC. Differences in the diagnosis of primary cutaneous melanoma in the public and
private healthcare systems in Joinville, Santa Catarina State, Brazil. Anais brasileiros de
dermatologia. (2018) 93:507–12. doi: 10.1590/abd1806-4841.20185767

3. Steglich RB, Coelho KMdPA, Cardoso S, Gaertner MHdCN, Cestari TF, Franco
SC. Epidemiological and histopathological aspects of primary cutaneous melanoma in
residents of Joinville, 2003-2014. Anais brasileiros de dermatologia. (2018) 93:45–53.
doi: 10.1590/abd1806-4841.20185497

4. Melanoma of the Skin Statistics. Available online at: https://www.canceraustralia.
gov.au/cancer-types/melanoma/statistics (accessed 29 May, 2023).

5. Skin Cancer Facts and Statistics. Available online at: https://www.skincancer.org/
skin-cancer-information/skin-cancer-facts/#melanoma (accessed 19 May, 2023).

6. Krensel M, Schäfer I, Augustin M. Cost-of-illness of melanoma in Europe-
a modelling approach. J Eur Acad Dermatol Venereol. (2019) 33:34–45.
doi: 10.1111/jdv.15308

7. Alexandrescu DT. Melanoma costs: a dynamic model comparing estimated
overall costs of various clinical stages. Dermatol Online J. (2009) 15:11.
doi: 10.5070/D353F8Q915

8. Guy Jr GP, Ekwueme DU, Tangka FK, Richardson LC. Melanoma treatment costs:
a systematic review of the literature, 1990-2011. Am J Prev Med. (2012) 43:537–45.
doi: 10.1016/j.amepre.2012.07.031

9. Buja A, Sartor G, Scioni M, Vecchiato A, Bolzan M, Rebba V, et al. Estimation
of direct melanoma-related costs by disease stage and by phase of diagnosis and
treatment according to clinical guidelines. Acta Derm Venereol. (2018) 98:218–24.
doi: 10.2340/00015555-2830

10. Ward WH, Farma JM. Cutaneous Melanoma: Etiology and Therapy. Brisbane,
QLD: Codon Publications (2017).

11. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-
level classification of skin cancer with deep neural networks. Nature. (2017) 542:115–8.
doi: 10.1038/nature21056

12. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al.
Man against machine: diagnostic performance of a deep learning convolutional neural
network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
Ann Oncol. (2018) 29:1836–42. doi: 10.1093/annonc/mdy166

13. Tschandl P, Codella N, Akay BN, Argenziano G, Braun RP, Cabo H, et al.
Comparison of the accuracy of human readers versus machine-learning algorithms
for pigmented skin lesion classification: an open, web-based, international, diagnostic
study. Lancet Oncol. (2019) 20:938–47. doi: 10.1016/S1470-2045(19)30333-X

14. Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, et
al. Human-computer collaboration for skin cancer recognition. Nat Med. (2020)
26:1229–34. doi: 10.1038/s41591-020-0942-0

15. Han SS, Park I, Chang SE, Lim W, Kim MS, Park GH, et al. Augmented
intelligence dermatology: deep neural networks empower medical professionals in
diagnosing skin cancer and predicting treatment options for 134 skin disorders. J
Investigat Dermatol. (2020) 140:1753–61. doi: 10.1016/j.jid.2020.01.019

16. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning
system for differential diagnosis of skin diseases. Nat Med. (2020) 26:900–8.
doi: 10.1038/s41591-020-0842-3

17. Lau AY, Staccini P, et al. Artificial intelligence in health: new opportunities,
challenges, and practical implications. Yearb Med Inform. (2019) 28:174–8.
doi: 10.1055/s-0039-1677935

18. Cath C. Governing artificial intelligence: ethical, legal and technical
opportunities and challenges. Philos Trans Royal Soc. (2018) 376:20180080.
doi: 10.1098/rsta.2018.0080

19. Oh S, Kim JH, Choi SW, Lee HJ, Hong J, Kwon SH. Physician confidence in
artificial intelligence: an online mobile survey. J Med Internet Res. (2019) 21:e12422.
doi: 10.2196/12422

20. Polesie S, Gillstedt M, Kittler H, Lallas A, Tschandl P, Zalaudek I, et al. Attitudes
towards artificial intelligence within dermatology: an international online survey. Br J
Dermatol. (2020) 183:159–61. doi: 10.1111/bjd.18875

21. Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A,
Schadendorf D, et al. Artificial intelligence in skin cancer diagnostics: the patients’
perspective. Front Med. (2020) 7:233. doi: 10.3389/fmed.2020.00233

22. Nelson CA. Pérez-Chada LM, Creadore A, Li SJ, Lo K, Manjaly P, et al. Patient
perspectives on the use of artificial intelligence for skin cancer screening: a qualitative
study. JAMA Dermatol. (2020) 156:501–12. doi: 10.1001/jamadermatol.2019.
5014

23. Explainable Artificial Intelligence. Available online at: http://www.darpa.mil/
program/explainable-artificialintelligence (accessed 29 May, 2023).

24. Fairness, Accountability, and Transparency in Machine Learning. Available
online at: https://www.fatml.org/ (accessed 19 May, 2023).

25. Carvalho DV, Pereira EM, Cardoso JS. Machine learning
interpretability: a survey on methods and metrics. Electronics. (2019) 8:832.
doi: 10.3390/electronics8080832

26. Montavon G, Lapuschkin S, Binder A, Samek W. Müller KR. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern recognition.
(2017) 65:211–22. doi: 10.1016/j.patcog.2016.11.008

27. Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. Smoothgrad: removing
noise by adding noise. arXiv. (2017). doi: 10.48550/arXiv.1706.03825

28. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam:
Visual explanations from deep networks via gradient-based localization. In: Proceedings
of the IEEE International Conference on Computer Vision. Venice: IEEE. (2017) p.
618–626. doi: 10.1109/ICCV.2017.74

29. Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B. Sanity checks for
saliency maps. In: Advances in Neural Information Processing Systems (NeurIPS 2018).
Montréal, QC (2018). p. 31.

30. Hooker S, Erhan D, Kindermans PJ, Kim B. A benchmark for interpretability
methods in deep neural networks. In: Advances in Neural Information Processing
Systems (NeurIPS 2019). Vancouver, BC (2019). p. 32.

31. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. In:
2018 IEEEWinter Conference on Applications of Computer Vision (WACV). Lake Tahoe,
NV: IEEE. (2018) p. 839–847. doi: 10.1109/WACV.2018.00097

Frontiers inMedicine 12 frontiersin.org19

https://doi.org/10.3389/fmed.2023.1241484
https://doi.org/10.1016/j.jid.2016.03.044
https://doi.org/10.1590/abd1806-4841.20185767
https://doi.org/10.1590/abd1806-4841.20185497
https://www.canceraustralia.gov.au/cancer-types/melanoma/statistics
https://www.canceraustralia.gov.au/cancer-types/melanoma/statistics
https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/#melanoma
https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/#melanoma
https://doi.org/10.1111/jdv.15308
https://doi.org/10.5070/D353F8Q915
https://doi.org/10.1016/j.amepre.2012.07.031
https://doi.org/10.2340/00015555-2830
https://doi.org/10.1038/nature21056
https://doi.org/10.1093/annonc/mdy166
https://doi.org/10.1016/S1470-2045(19)30333-X
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1016/j.jid.2020.01.019
https://doi.org/10.1038/s41591-020-0842-3
https://doi.org/10.1055/s-0039-1677935
https://doi.org/10.1098/rsta.2018.0080
https://doi.org/10.2196/12422
https://doi.org/10.1111/bjd.18875
https://doi.org/10.3389/fmed.2020.00233
https://doi.org/10.1001/jamadermatol.2019.5014
http://www.darpa.mil/program/explainable-artificialintelligence
http://www.darpa.mil/program/explainable-artificialintelligence
https://www.fatml.org/
https://doi.org/10.3390/electronics8080832
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.48550/arXiv.1706.03825
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/WACV.2018.00097
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Giavina-Bianchi et al. 10.3389/fmed.2023.1241484

32. Muhammad MB, Yeasin M. Eigen-cam: Class activation map using principal
components. In: 2020 International Joint Conference on Neural Networks (IJCNN).
Glasgow: IEEE. (2020). p. 1-7. doi: 10.1109/IJCNN48605.2020.9206626

33. Wang H, Wang Z, Du M, Yang F, Zhang Z, Ding S, et al. Score-CAM: Score-
weighted visual explanations for convolutional neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle,
WA: IEEE. (2020). p. 2425. doi: 10.1109/CVPRW50498.2020.00020

34. Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York, NY: Association for
Computing Machinery (2016). p. 1135–1144. doi: 10.1145/2939672.2939778

35. Giavina-Bianchi M, de Sousa RM. Paciello VZdA, Vitor WG, Okita
AL, Prôa R, et al. Implementation of artificial intelligence algorithms for
melanoma screening in a primary care setting. PLoS ONE. (2021) 16:e0257006.
doi: 10.1371/journal.pone.0257006

36. Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific data.
(2018) 5:1–9. doi: 10.1038/sdata.2018.161

37. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW,
et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017
international symposium on biomedical imaging (isbi), hosted by the international
skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018). Washington, DC: IEEE. (2018) p. 168–172.
doi: 10.1109/ISBI.2018.8363547

38. Combalia M, Codella N, Rotemberg V, Helba B, Vilaplana V, Reiter
O, et al. BCN20000: Dermoscopic lesions in the wild. arXiv. (2019).
doi: 10.48550/arXiv.1908.02288

39. Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. Seven-point checklist
and skin lesion classification using multitask multimodal neural nets. IEEE. (2018)
23:538–46. doi: 10.1109/JBHI.2018.2824327

40. He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision. Venice: IEEE. (2017) p. 2961–2969.
doi: 10.1109/ICCV.2017.322

41. Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. New York: PMLR (2019).
p. 6105–6114.

42. Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv. (2014).
doi: 10.48550/arXiv.1404.1869

43. Xia X, Xu C, Nan B. Inception-v3 for flower classification. In: 2017 2nd
International Conference on Image, Vision and Computing (ICIVC). Chengdu: IEEE.
(2017) p. 783–787.

44. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet
large scale visual recognition challenge. Int J Comput Vis. (2015) 115:211–52.
doi: 10.1007/s11263-015-0816-y

45. Kingma D, Ba J. Adam: A method for stochastic optimization. Published as a
conference paper at ICLR (2015). arXiv. (2015). doi: 10.48550/arXiv.1412.6980

46. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection.
In: Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE.
(2017) p. 2980–2988. doi: 10.1109/ICCV.2017.324

47. Woo S, Park J, Lee JY, Kweon IS. Cbam: Convolutional block attention module.
In: Proceedings of the European Conference on Computer Vision (ECCV). (2018). p.
3–19. doi: 10.48550/arXiv.1807.06521

48. Kim I, Rajaraman S, Antani S. Visual interpretation of convolutional neural
network predictions in classifying medical image modalities. Diagnostics. (2019) 9:38.
doi: 10.3390/diagnostics9020038

49. Yang C, Rangarajan A, Ranka S. Visual explanations from deep 3D convolutional
neural networks for Alzheimers disease classification. In: AMIA Annual Symposium
Proceedings. Bethesda, MD: AmericanMedical Informatics Association. (2018) p. 1571.

50. Iizuka T, Fukasawa M, Kameyama M. Deep-learning-based imaging-
classification identified cingulate island sign in dementia with Lewy bodies. Sci
Rep. (2019) 9:8944. doi: 10.1038/s41598-019-45415-5

51. Young K, Booth G, Simpson B, Dutton R, Shrapnel S. Deep neural network or
dermatologist? In: Interpretability of Machine Intelligence in Medical Image Computing
and Multimodal Learning for Clinical Decision Support: Second International
Workshop, iMIMIC 2019 and 9th International Workshop, ML-CDS 2019 Held in
Conjunction with MICCAI 2019, China, October 17, 2019 Proceedings 9. Cham:
Springer. (2019) p. 4855.

52. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient
descent is difficult. IEEE Trans Neural Netw. (1994) 5:157–66. doi: 10.1109/72.279181

53. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:
visualising image classification models and saliency maps. arXiv. (2013).
doi: 10.48550/arXiv.1312.6034

54. Garreau D, Luxburg U. Explaining the explainer: A first theoretical analysis
of LIME. In: International Conference on Artificial Intelligence and Statistics. PMLR
(2020). p. 1287-1296.

55. Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine
learning. arXiv. (2017).

56. Nie W, Zhang Y, Patel A. A theoretical explanation for perplexing behaviors
of backpropagation-based visualizations. In: International Conference on Machine
Learning. New York: PMLR. (2018). p. 3809–3818.

57. de Souza Jr LA, Mendel R, Strasser S, Ebigbo A, Probst A, Messmann H, et al.
Convolutional Neural Networks for the evaluation of cancer in Barrett’s esophagus:
Explainable AI to lighten up the black-box. Comput Biol Med. (2021) 135:104578.
doi: 10.1016/j.compbiomed.2021.104578

58. Kim B, Khanna R, Koyejo OO. Examples are not enough, learn to criticize!
criticism for interpretability. In: Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R,
editors. Advances in Neural Information Processing Systems (NIPS 2016). (2016). p. 29.

59. Rudin C. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat Mach Intel. (2019) 1:206–15.
doi: 10.1038/s42256-019-0048-x

60. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las
Vegas, NV: IEEE. (2016) p. 770778.

Frontiers inMedicine 13 frontiersin.org20

https://doi.org/10.3389/fmed.2023.1241484
https://doi.org/10.1109/IJCNN48605.2020.9206626
https://doi.org/10.1109/CVPRW50498.2020.00020
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1371/journal.pone.0257006
https://doi.org/10.1038/sdata.2018.161
https://doi.org/10.1109/ISBI.2018.8363547
https://doi.org/10.48550/arXiv.1908.02288
https://doi.org/10.1109/JBHI.2018.2824327
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.48550/arXiv.1404.1869
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.48550/arXiv.1807.06521
https://doi.org/10.3390/diagnostics9020038
https://doi.org/10.1038/s41598-019-45415-5
https://doi.org/10.1109/72.279181
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.1016/j.compbiomed.2021.104578
https://doi.org/10.1038/s42256-019-0048-x
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Frontiers in Medicine 01 frontiersin.org

Effectiveness of an image 
analyzing AI-based Digital Health 
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Introduction: Identification of skin cancer by an Artificial Intelligence (AI)-based 
Digital Health Technology could help improve the triage and management of 
suspicious skin lesions.

Methods: The DERM-003 study (NCT04116983) was a prospective, multi-center, 
single-arm, masked study that aimed to demonstrate the effectiveness of an AI as 
a Medical Device (AIaMD) to identify Squamous Cell Carcinoma (SCC), Basal Cell 
Carcinoma (BCC), pre-malignant and benign lesions from dermoscopic images of 
suspicious skin lesions. Suspicious skin lesions that were suitable for photography 
were photographed with 3 smartphone cameras (iPhone 6S, iPhone 11, Samsung 
10) with a DL1 dermoscopic lens attachment. Dermatologists provided clinical 
diagnoses and histopathology results were obtained for biopsied lesions. Each 
image was assessed by the AIaMD and the output compared to the ground truth 
diagnosis.

Results: 572 patients (49.5% female, mean age 68.5 years, 96.9% Fitzpatrick 
skin types I-III) were recruited from 4 UK NHS Trusts, providing images of 611 
suspicious lesions. 395 (64.6%) lesions were biopsied; 47 (11%) were diagnosed 
as SCC and 184 (44%) as BCC. The AIaMD AUROC on images taken by iPhone 6S 
was 0.88 (95% CI: 0.83–0.93) for SCC and 0.87 (95% CI: 0.84–0.91) for BCC. For 
Samsung 10 the AUROCs were 0.85 (95% CI: 0.79–0.90) and 0.87 (95% CI, 0.83–
0.90), and for the iPhone 11 they were 0.88 (95% CI, 0.84–0.93) and 0.89 (95% 
CI, 0.86–0.92) for SCC and BCC, respectively. Using pre-determined diagnostic 
thresholds on images taken on the iPhone 6S the AIaMD achieved a sensitivity 
and specificity of 98% (95% CI, 88–100%) and 38% (95% CI, 33–44%) for SCC; and 
94% (95% CI, 90–97%) and 28% (95 CI, 21–35%) for BCC. All 16 lesions diagnosed 
as melanoma in the study were correctly classified by the AIaMD.

Discussion: The AIaMD has the potential to support the timely diagnosis of 
malignant and premalignant skin lesions.

KEYWORDS

skin cancer, Artificial Intelligence, Digital Health Technology, skin lesions, smartphone 
cameras
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1. Introduction

Non-Melanoma Skin Cancer (NMSC) is the fifth most common 
form of all types of cancer worldwide, with the most common NMSC 
types being Basal Cell Carcinoma (BCC), accounting for 75% of cases, 
and Squamous Cell Carcinoma (SCC), accounting for 23% of NMSC 
cases (1). In the UK, there are around 156,000 NMSC cases diagnosed, 
resulting in 920 deaths, per annum. The actual incidence of NMSC 
may be higher however, as it is known to be under-reported due to the 
number of multiple diagnoses per patient. Incidence rates of skin 
cancer have increased by over 2.5-fold (169%) since the early 1990s 
and are projected to rise by 14% in the UK between 2023 and 2025 (2). 
While NMSCs make up most of skin cancer diagnoses, melanoma has 
a much higher mortality rate due to high risk of metastasis, and early 
diagnosis is critical. When melanoma is caught early, the chances of 
survival are greatly improved (3).

Currently, diagnosis of NMSC is usually clinical, with 
subsequent histological confirmation following excision and 
specialist interpretation (4). To facilitate early diagnosis, alongside 
managing patient concern, a high proportion of ‘suspicious moles’ 
are referred from primary care on the two-week wait pathway, 
which has seen an increase from 332-thousand referrals in 2015/16 
to 509-thousand referral in 2019/20 (5). However, a high proportion 
of these lesions are benign (6) with the main diagnoses being 
melanocytic naevi or seborrheic keratosis. Due to the nature of 
these referrals, they are awarded an inappropriate priority at the 
expense of more serious disorders. As a result, healthcare services 
are under pressure with the number of patients being referred for 
specialist evaluation, onward biopsies and subsequent management 
of suspicious skin lesions, such that a decreasing percentage of 
patients referred on a two-week wait pathway are seen within 
14 days (5). There is a need to improve diagnostic accuracy of skin 
lesions earlier on in this process, in order to minimize unnecessary 
referrals and skin biopsies.

Deep Ensemble for the Recognition of Malignancy (DERM) is 
a Digital Health Technology that includes an Artificial Intelligence 
as a Medical Device (AIaMD) algorithm that is able to analyze 
dermoscopic images of a skin lesion and determine the presence 
of melanoma in pigmented lesions, with a similar accuracy to 
clinicians specialized in skin cancer detection (7). The AIaMD has 
been trained and tested on dermoscopic images of skin lesions 
with confirmed diagnoses of a range of malignant and 
non-malignant lesions and sub-types. This helps ensure that, for 
example, melanoma lesions with different clinical appearance like 
amelanotic melanoma (8), would be  classified as melanoma. 
However, the AIaMD would not be  expected to identify skin 
cancer from different image types, such as that from reflectance 
confocal microscopy. The AIaMD is also able to detect BCC and 
SCC, premalignant and selected benign lesions [such as 
Intraepidermal Carcinoma (IEC/SCC in situ), actinic keratosis, 
seborrheic keratosis, and benign melanocytic nevi] providing 
additional information to aid the clinician in differentiating skin 
cancers, including melanoma, from benign conditions. The 
AIaMD provides a high degree of accuracy in the diagnosis of 
NMSC using historical dermoscopic images, but clinical validation 
is necessary to demonstrate its utility in clinical practice. DERM 
is a Class IIa UKCA marked medical device and has been deployed 
in clinical pathways within the UK since 2020.

2. Materials and methods

The DERM-003 study was a prospective, multi-center, single-arm, 
cross-sectional, blinded study (NCT04116983), designed to 
demonstrate the effectiveness of the AIaMD to identify SCC and 
BCC. Secondary objectives included demonstrating the effectiveness 
of the AIaMD to identify premalignant and benign conditions, 
comparing the AIaMD performance to dermatologists, and 
demonstrating the feasibility of image capture in a clinic setting. 
Ethical approval for the study was granted by the Leicester South 
National Research Ethics committee.

Eligible participants were patients attending dermatology clinics 
with at least one suspicious skin lesion that was suitable for 
photographing. Lesions were defined as suspicious by a dermatologist, 
with no requirement on lesions being of a particular type or 
pigmentation. Patients provided written informed consent for the 
study. Recruitment was on a consecutive, competitive recruitment 
basis in 4 UK hospitals between June 2020 and February 2022. Lesions 
needed to be  less than 15 mm in diameter, not located on an 
anatomical site unsuitable for photographing (genitals, hair-bearing 
areas, under nails) or in an area of visible scarring or tattooing, and 
not previously biopsied, excized or otherwise traumatized. Suitable 
lesions were photographed by three smartphones (iPhone 6S, iPhone 
11 Apple Inc., Samsung Galaxy S10) with (dermoscopic image) or 
without (macroscopic image) a Dermlite DL1 Basic (DermLite LLC) 
lens attached, providing a 10x magnification. In addition, one 
dermoscopic image of healthy skin was also taken by each camera. The 
AIaMD assessment was not shared with the investigator, who 
managed the patient in accordance with standard of care. The patient 
had completed the protocol-defined procedures once the photographs 
had been taken. For each lesion included in the study, a clinical 
diagnosis and the clinician’s assessment of the likelihood of skin 
cancer, using a four-point Likert scale (unlikely, equivocal, likely, 
highly likely), was collected. Where a biopsy was taken, the 
histopathology-confirmed diagnosis was collected and categorized as 
melanoma, SCC, BCC, IEC, Actinic Keratosis (AK), Atypical, Benign 
or other. When there was histopathological uncertainty in the 
diagnosis, investigators reported the most likely diagnosis. ‘Other’ 
diagnoses were reviewed by the Chief Investigator.

Images of skin lesions were captured electronically and securely 
transferred to DERM for analysis by the AIaMD. All images were 
analyzed by DERM v3 after the completion of the study. The AIaMD 
generates a numeric output (continuous scale) for each of the 
examined classes, which reflects its confidence that the lesion is that 
condition. The sum of the numeric output of all classes is always 1. 
Threshold settings are defined for each lesion type, above which a 
lesion is classified as that lesion type. The AIaMD returns the most 
serious lesion type where the confidence score is above the 
threshold setting.

2.1. Statistical aspects

Patients and lesions that did not meet the inclusion criteria were 
excluded from the Intention To Treat population (ITT), as were those 
lesions without a final diagnosis available. Lesions with no AIaMD 
result available (missing dermoscopic images, and/or where these 
failed the DERM v3 image quality assessment) were excluded from the 
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Per Protocol (PP) population. The primary analyses were conducted 
on biopsied lesions in the PP population only.

Area Under the Receiver Operator Characteristic (AUROC) 
curves were used to examine the association of the algorithm’s 
confidence scale with the histopathology-confirmed diagnosis 
(biopsied lesions) or clinical diagnosis (non-biopsied lesions). The 
co-primary outcome measures of the study were the one-against-all 
AUROC for both SCC and BCC. The iPhone 6S camera was used as 
the reference device. The study aimed to demonstrate both co-primary 
endpoints were above 0.9.

Assuming the true AUROC curve of the AIaMD is 0.98 and an 
incidence rate of 11% for SCC and 43% for BCC, a sample size of 45 
SCC and 50 BCC lesions was required to demonstrate the AUROCs 
were superior to 0.9 at alpha = 0.05, with 90% power. A sample size of 
543 patients, with an average of 1.2 lesions per patient, was expected 
to provide sufficient numbers of lesions diagnosed as SCC and BCC, 
but recruitment remained open until 45 SCC lesions had been 
included in the study.

Diagnostic accuracy indices (sensitivity, specificity, predictive 
values, false-positive rates, and false-negative rates) were calculated 
using decision thresholds determined prior to the image analysis, and 
applying the hierarchy within the AIaMD. The hierarchy means that, 
if the AIaMD identifies a lesion as potentially either a BCC or 
melanoma, it will return the classification of melanoma. Therefore, for 
a lesion diagnosed as SCC, an output from the AIaMD of “suspected 
melanoma” is considered a true positive, whereas for a lesion 
diagnosed as melanoma, an output from the AIaMD of “suspected 
SCC” is a false negative. The definition of true positive will therefore 
vary depending on the lesion type being assessed. The likelihood 
assessment scale was used to calculate a clinician AUROC that could 
be compared to the AIaMD.

The influence of patient and lesion variables that may affect the 
AIaMD’s accuracy were investigated. The following co-variates were 
examined: age, sex, Fitzpatrick skin type, skin cancer risk factors 
including past medical history of skin cancer, lesion body location, 
experience of reviewing clinician, lesion change, patient’s level of 
concern, clinician’s assessment of likelihood of skin cancer, malignancy 
sub-type and staging.

A p-value of <0.05 was regarded as statistically significant, and all 
tests were two-tailed. Statistical estimates of accuracy are reported 
with 95% Confidence Intervals (CIs). Statistical analysis was 
conducted using R language version 4.1.3 (The R Project for 
Statistical Computing).

3. Results

A total of 572 patients consented to the study, providing 611 
suspicious lesions. Nine patients (6 lesions) were withdrawn / excluded 
from the study. Eighteen lesions were excluded from the ITT 
population due to failing to meet eligibility criteria, resulting in 18 
patients being excluded due to no eligible lesions. Two further lesions 
were excluded from the PP population due to missing AIaMD results, 
resulting in 1 further patient being excluded from the PP population 
(Figure 1). Of the lesions included in the PP population, 96.7% had 
images available from all three combinations of hardware, 2.9% had 2 
images available, and 2 lesions had just one image available. Nine 
images failed image quality checks.

The PP population was equally distributed between females and 
males, mostly White (94%) and ranged in age from 18 to 97 years 
(median 73). Most patients (97.8%) had Fitzpatrick skin type I-III, 
with over half (56.8%) the patients reporting having Fitzpatrick skin 
type II (Table 1). Most lesions were located on the face and scalp 
(46.3%), posterior chest and back (14.5%), arms (13.5%), and legs 
(12.3%). On average, lesions were 8.9 (±3.5 standard deviation) mm 
in size, ranging from 0.8 to 15 mm (Table 2).

Forty-three lesions in the PP population were diagnosed as SCC 
and 176 as BCC (Table 3) by histopathology. A further 22 lesions were 
diagnosed as SCC or BCC by clinical diagnosis only, which were 
excluded from the primary analysis. These lesions did not undergo a 
biopsy because either the dermatologist chose to treat the lesion 
(n = 10), the patient refused biopsy (n = 3) or other reason (n = 9), 
including the biopsy occurred outside the study window. The PP 
population also included 16 lesions diagnosed as melanoma, and two 
lesions diagnosed as other malignancies [one Neuroendocrine, and 
one Spitzoid tumor of uncertain malignant potential (STUMP)] 
(Supplementary Table 1). Most malignancies were at an early stage.

The AUROC for SCC and BCC produced on images of biopsied 
lesions captured on each camera were: iPhone 6S 88.5% (95% CI: 
83.9–93.1%) and 89.6% (95% CI: 86.5–92.7%) respectively; iPhone 11 
88.9% (95% CI: 83.8–94.0%) and 89.5% (95% CI: 86.4–92.6%) 
respectively; and Samsung S10 84.9% (95% CI: 79.1–90.7%) and 
87.2% (95% CI: 83.8–90.7%) respectively (Figure 2 and Table 4). The 
AUROCs for BCC and SCC, when calculated on all lesions, were > 90% 
except for SCC in images captured on the Samsung 10 camera, where 
the AUROC was 87% (Figure 3). The AUROC for benign lesions 
produced by the AIaMD when assessing biopsied lesions only was 
between 74.9–76.8%, while the AUROC for benign lesions when all 
lesions were assessed, ranged between 79.8–80.9%. The AUROC for 
melanoma was ≥91.8% for all cameras when the AIaMD assessed 
both biopsied lesions and all lesions. Moderate concordance (72.9% 
percentage agreement) was found between the AIaMD output label 
using images from the two iPhones; between iPhone 6S and Samsung 
10 the percentage agreement of the AIaMD output label was 60.3%, 
and between the iPhone 11 and Samsung 10, it was 61.7%.

The AUROC for SCC and BCC produced by clinicians were 74.0% 
(95% CI: 66.4–81.6%) and 85.6% (95% CI: 81.8–89.3%) for biopsied 
lesions, and 76.9% (95% CI: 69.6–84.3%) and 90.0% (95% CI: 87.3–
92.7%) for all lesions, respectively (Table 5). The AUROCs for SCC 
lesions were significantly lower than those produced by the AIaMD 
(p < 0.026 for each camera). The clinician AUROCs were also 
significantly lower than those produced by the AIaMD (p ≤ 0.04) for 
lesions diagnosed as IEC, AK and benign by histopathology. A weak 
to moderate level of agreement between clinical and histopathology 
diagnosis labels was found (percentage agreement 66.4%; Cohen’s 
kappa = 0.52, p < 0.001).

When pre-set threshold settings were applied, the sensitivity of the 
AIaMD to identify malignant lesions was above 90%, and the 
specificity of the AIaMD for malignant lesions was above 41.5% for 
each individual malignant lesion type and for all malignant lesions 
(Table 6). Both “other malignant” lesions were classified as malignant 
by the AIaMD using images from all cameras. The sensitivity and 
specificity of the AIaMD was more variable for other lesion types, 
particularly atypical lesions where the sensitivity varied between 
38.1% for the Samsung and 86.4% for the iPhone 6S. In comparison, 
when considering the suspected diagnosis documented by the 
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clinician at the time of their assessment, they labeled fewer melanoma 
and SCC lesions accurately compared to the AIaMD (melanoma 
sensitivity of 81.2% compared to >93% by the AIaMD, SCC sensitivity 
of 63.6% compared to >90%), and more BCC lesions (sensitivity of 
97.5% compared to <96%). Conversely, clinicians achieved a much 
higher specificity for malignant lesions and were more accurate at 
identifying benign lesions than the AIaMD.

Univariate analyses and multiple logistic regression analyses 
were performed on the FA population, filtered for those images with 
a final diagnosis available, to identify patient and lesion 
characteristics that might have influenced the accuracy of the 
AIaMD results and clinical diagnosis. Age above 60 was associated 
with a non-significant reduction in the accuracy of both 
dermatologists and the AIaMD to identify malignant lesions in 
images from the iPhones (Odds Ratio (OR) = 0.37–0.88, p > 0.16) 
and minor improvement in images from the Samsung 10 (OR = 1.07–
1.18, p > 0.7). The impact only reached significance (p = 0.034) for the 
AIaMD with images from the iPhone 11, in patients aged 74–82. No 
significant impact was seen for either the AIaMD assessment or 
clinicians to accurately identify malignant lesions due to the 
Fitzpatrick skin type, however no cancers were detected in patients 
with Fitzpatrick skin types V and VI. Indeed, the only factor 
associated with a significant improvement on the accuracy of 
dermatologists to identify malignant lesions was a likely or high 
likelihood of skin cancer (OR > 7, p < 0.018), and on the AIaMD was 
a high level of patient concern (OR = 1.95, p = 0.008).

4. Discussion

The DERM-003 study is the first prospective, powered, clinical 
validation study that specifically evaluates the ability of the AIaMD to 
identify NMSC. Previously, the performance of the AIaMD to identify 
melanoma was evaluated (7), though this was on an earlier version of 
the software which focused solely on the identification of melanoma. 
DERM v3 is designed to identify SCC and BCC, alongside melanoma, 
as well as a range of premalignant, atypical and benign lesions often 
mistaken for skin cancer. The study recruited patients in dermatology 
clinics across the UK, such that the population reflects the aging, 
primarily Caucasian, population seen in these clinics. Although 
patients with Fitzpatrick Skin types V and VI were recruited, no skin 
cancers were diagnosed in these patients. Indeed, only 2.2% of the 
study population had Fitzpatrick skin type IV-VI, limiting the 
generalizability of these results for patients with darker skin tones. 
However, this reflects the trend seen in other clinical studies, and in 
the real world, where few patients with Fitzpatrick skin types IV-VI 
are seen in dermatology clinics with suspicious skin lesions (7, 9) and 
as such the study population can be  seen as representative of the 
population that DERM would be  used on. Robust performance 
evaluation of technologies, such as DERM, in patients with darker 
skin types may only be possible through post-market surveillance 
analyses, where more patients with these skin types can be evaluated 
(10). Similarly, the study included lesions across a good distribution 
of body locations, including those with higher sun exposure (head, 

FIGURE 1

Consort diagram. Number of patients in the ITT/PP population  =  number of patients who have at least one lesion that fulfills the ITT/PP inclusion 
criteria for at least one capture device; Number of lesions in the ITT/PP datasets  =  number of lesions from patients included in the ITT/PP population, 
that fulfill the ITT/PP inclusion criteria for at least one capture device.
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neck upper body) and lower limbs, where lesions can look different, 
and a range of skin cancer sub-types and stages that are seen in 
dermatology clinics. The study also included two “other malignant” 
lesions, which were diagnosed as STUMP and neuroendocrine, and a 
range of benign lesions.

When the study was designed, the calculations used to determine the 
success criteria and sample size were based on in silica performance data, 
which provided an assumption that the true AUROC for both SCC & 
BCC was 98%. The clinical performance of AI-based devices has 

frequently been shown to be lower than that of laboratory-based data 
(11–13), and as such an expectation that the true AUROC achieved by the 
AIaMD on fresh clinical data would be comparable to laboratory results 
was perhaps unrealistic. Although the study failed to meet either of the 
co-primary endpoints, the AUROCs achieved by the AIaMD for SCC and 
BCC were still high and at least comparable to dermatologists. Indeed, the 
AUROCs of the clinical diagnosis for SCC and BCC lesions do not 
achieve a 90% AUROC either, indicating that even between clinician and 
histology there is a huge amount of diagnostic variability. This may be a 
reflection of clinical practice, where uncertainty of diagnosis drives a 
conservative view and decision to biopsy. Reassuringly, the AUROC 
produced by the AIaMD for melanoma was higher than that previously 
reported (7), demonstrating an improved performance of the AIaMD 
over the earlier version of the algorithm.

It should be  noted that for non-biopsied lesions, the clinical 
diagnosis was used as the ground truth against which both the AIaMD 
and clinical diagnosis were compared. Clinical diagnosis therefore will 
appear more accurate in an all-lesion population, compared to a 
biopsy-only population, for those lesions where a high proportion do 
not have a histopathology diagnosis, specifically BCC, AK, and benign 
lesions. Despite this, the AUROCs achieved by the AIaMD for 
non-malignant lesions are comparable to those achieved by 
dermatologists in an all-lesion population, and indeed are notably 
higher than dermatologists in a biopsy only population.

The study assessed the performance of the AIaMD on images 
captured by three smartphone cameras available in the UK market at 
the time of the study. They were chosen to demonstrate performance 
of the AIaMD across different physical hardware devices (camera 
specification), operating systems, and price points and included a 
reference combination (iPhone 6S/DL1) which Skin Analytics has 
used in a previous study (7). Across the three cameras, the AUROCs 
for melanoma, SCC and BCC were very similar, indicating a good 
generalizability of the algorithm across the image capture hardware 
used. Although a greater variability across the cameras is seen for 
non-malignant lesions, the AUROCs achieved by the AIaMD from all 
cameras are still high.

The thresholds used to determine the sensitivity and specificity of 
the AIaMD were defined to be suitable for use in a secondary care 
setting at the beginning of the study. The sensitivity achieved by the 
AIaMD for melanoma, SCC and all malignant lesions were higher 
than achieved by clinical diagnosis alone, though clinicians referred 
these lesions for biopsy, so their management decision ensured a 
sensitivity of 100%. Even for BCC, sensitivity achieved by the AIaMD 
was around 95% using images from all cameras, and the sensitivity 
and specificity of the AIaMD to identify premalignant and atypical 
lesions are at a level that are clinically useful. Additionally, the 
specificity and NPV values for malignant lesions indicate that the 
AIaMD could aid the appropriate management of benign lesions. The 
threshold settings used in live deployments of the AIaMD are different 
than used in this study, and the sensitivity across all malignant lesions 
achieved in the real world have been demonstrated to be even higher 
(10), demonstrating the value in optimizing the settings within the 
AIaMD for the population it is being used to assess. The sensitivities 
achieved by the AIaMD for non-malignant lesions are more variable 
across the cameras than seen for malignant lesions, specifically 
atypical and benign lesions. Similarly, there was only a moderate 
concordance between the outputs produced by the AIaMD when 
analyzing images captured by the different image capture hardware. 

TABLE 1 Patient demographics by analysis population.

FA (N) ITT (N) PP (N)

Total 572 545 544

Sex Female 283 273 272

Male 286 272 272

Missing 3 0 0

Age Mean 68.5 68.4 68.4

SD 17.3 17.4 17.3

Median 73 73 73

Minimum 18 18 18

Maximum 97 97 97

Ethnicity White 534 512 511

Asian 9 8 8

Black 3 2 2

Mixed 1 1 1

Other 1 1 1

Missing/Not 

stated

24 21 21

Fitzpatrick skin 

type

I 115 113 113

II 327 309 309

III 112 110 110

IV 8 8 7

V&VI 7 5 5

Missing 3 0 0

Past medical 

history

Melanoma 38 37 37

SCC 54 51 51

BCC 127 126 126

Other skin 

cancer

6 6 6

None 332 313 312

Unknown 15 12 12

Family medical 

history

Melanoma 27 27 26

SCC 4 4 4

BCC 23 23 23

Other skin 

cancer

30 27 27

None 439 418 418

Unknown 49 46 46

FA, Full Analysis; ITT, Intention-to-Treat; PP, Per Protocol; SD, Standard Deviation. Family 
history of skin cancer is defined as first degree family only.
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This may be due to variances in the hardware and post-processing 
software, or a factor of the threshold settings used by the AIaMD to 
assign the output label. If the confidence scores produced by the 
AIaMD on images of the same lesion taken on two different cameras 
were similar, but fell either side of the threshold set, the AIaMD output 
label from each image could be different. Since the AUROCs for these 
lesions were similar, this suggests that the thresholds applied could 

TABLE 2 Lesion characteristics by analysis population.

FA (N) ITT 
(N)

PP (N)

Total 611 587 585

No. of Lesions 

assessed 

(count = number 

of participants)

1 532 505 504

2 38 38 38

3 2 2 2

Lesion size (mm) Mean 9 8.6 8.6

SD 4.9 3.5 3.5

Median 8 8 8

Minimum 0.8 0.8 0.8

Maximum 64 20 20

Lesion location Face and scalp 281 271 271

Neck 21 21 21

Anterior chest and abdomen 56 55 54

Posterior chest and back 90 85 85

Arms, excluding palms 80 79 79

Palms 1 1 1

Legs, excluding soles 80 73 72

Soles 2 2 2

Patient level of 

concern

Not concerned 144 138 138

A little concerned 307 299 299

Very concerned 135 126 124

Unknown 25 24 24

Experience of 

reviewing 

clinician

Foundation doctor 55 54 54

Specialty registrar 20 19 18

Consultant 455 440 439

Other/GPwSI 81 74 74

Missing 0 0 0

Lesion change None 110 104 104

Changed color 20 20 20

Symptomatic 179 172 172

Grown a bit 112 109 108

New lesion 160 154 154

Grown a lot 30 28 27

Clinician 

assessment of 

likelihood of 

skin cancer

Unlikely 224 216 215

Equivocal 61 59 59

Likely 211 203 202

Highly likely 115 109 109

Biopsy taken Lesion not referred for biopsy 167 163 162

Further clinical review 

determined no biopsy needed

7 7 7

Biopsy taken 418 398 397

Patient refused biopsy 5 5 5

Other 14 14 14

FA, Full Analysis; ITT, Intention-to-Treat; PP, Per Protocol; SD, Standard Deviation; GPwSI, 
General Practitioner with Special Interest. Number of lesions equates to number of lesion 
records created in the study database, the lesion count is based on clinician provided 
information on the number of lesions they assessed for each patient.

TABLE 3 Breakdown of lesion diagnoses in the PP population.

Diagnosis Subtype/
stage

Clinical 
diagnosis

Histopathology

Melanoma All 0 16

Superficial 

spreading 9

Lentigo 

maligna 1

Other 1

Not given/

ambiguous 5

In situ 2

<1.0 mm 7

1.01–2.0 mm 2

2.01–4.0 mm 4

>4 mm 0

Not available 1

SCC All 1 43

Poorly 

differentiated 4

Moderately 

differentiated 15

Well 

differentiated 16

Other/

unknown 8

Tis 1

T1 38

T2 0

T4 3

Not available 1

BCC All 21 176

Superficial 13

Nodular 94

Infiltrative 17

Morphoeic 0

Micronodular 2

Basosquamous 1

Other/

unknown 49

(Continued)
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be optimized for the image capture hardware being used, to achieve 
the best sensitivity.

The multivariate analysis identified a different impact of patient 
factors on the accuracy of malignant lesion detection by the AIaMD 
compared with previously reported analyses (7). This may reflect a 
change in how the AIaMD works between the two versions assessed. 
However, since the impact of patient factors on the accuracy of 
dermatologists is also different, it may be more a reflection that the 
previous study focused on melanoma detection, whereas this analysis 
considered all malignant lesions included in the study population. 
Further analyses are needed to understand whether these translate 
into a clinically relevant reduction in sensitivity and/or specificity of 
the AIaMD in different patient groups.

The main limitation to the DERM-003 study is the clinical setting 
in which it was conducted, and therefore the population studied. The 
study was conducted in UK secondary care dermatology clinics in 
order to include sufficient numbers of SCC and BCC lesions in the 
study population, and to easily capture the histopathology confirmed 
diagnosis of biopsied lesions and a dermatologist’s clinical assessment 
of the lesion. This means the study population was made up of patients 
and lesions that dermatologists determined were suitable for inclusion 
in the study, which may not be  representative of all patients and 
lesions that would be assessed by DERM. For example, lesions that 
were clearly benign may have been excluded by a study dermatologist, 
but on which a less experienced clinician may use DERM to support 
their patient management decision. That said, the study recruited a 
broader spectrum of lesions in the study population compared to a 
previous study (7), where the study population was limited to patients 
with a pigmented lesion that was due for biopsy. The results of this 
study are therefore more generalizable to the population of patients 
seen in secondary care in the UK. Indeed, data from ongoing post-
market surveillance monitoring indicates that DERM can be deployed 
safely as an adjuvant tool in live clinical services accessible to patients 
with eligible skin lesions (i.e., excluding those under nails, on genitalia 
or on hairy areas of skin), from a broad range of age groups and most 
representative skin types with suspicious skin lesions, with sensitivity 

TABLE 3 (Continued)

Diagnosis Subtype/
stage

Clinical 
diagnosis

Histopathology

Tis 3

T1 141

T2 2

T4 0

Not available 30

Other malignant 0 2

IEC 0 11

Actinic keratosis 40 21

Dysplastic nevus All 2 20

Mild atypia 9

Moderate 

atypia

4

Severe atypia 2

Unknown 

severity

5

Seborrheic 

keratosis

59 12

Dermatofibroma 8 7

Vascular lesion 3 0

Lentigo 0 1

Benign 

melanocytic nevi

10 12

Other (benign) 43 75

Unknown/

missing

1 1

Total lesions 188 397

SCC, Squamous Cell Carcinoma; BCC, Basal Cell Carcinoma; IEC, Intraepidermal 
Carcinoma.

FIGURE 2

ROC curves for SCC (left) and BCC (right) produced by the AIaMD when assessing images of biopsied lesions, taken by different cameras.
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and specificity in-line with target thresholds and performance 
demonstrated in clinical studies (10).

Finally, the reliance on clinical diagnosis as the ground truth for 
non-biopsied lesions not only artificially increases the performance 

metrics for the dermatologists, as discussed above, but potentially 
impacts the apparent performance of the AIaMD on non-biopsied 
lesions. The clinical diagnosis of skin cancer by clinicians is based on 
the subjective interpretation of morphological features and as such 
variability in the clinical diagnoses given by dermatologists is known 
to exist (14). The reliance on one dermatologist to provide the clinical 
diagnosis used as the ground truth for non-biopsied lesions introduces 
a potential bias to the results for both the AIaMD and dermatologists. 
The use of a panel of dermatologists to provide a consensus diagnosis 
would have provided a greater confidence in the clinical diagnosis 
ground truth, and provided an independent diagnosis against which 
to compare the investigating dermatologist.

In conclusion, even though the study failed to meet its co-primary 
endpoints, the results from the DERM-003 study showed that the 
AIaMD can detect NMSC and premalignant lesions with a similar 
level of accuracy as dermatologists, and that taking the images was a 
quick and well tolerated process. DERM could provide dermatologist 
level assessment of suspicious skin lesions earlier in the patient 
pathway, potentially enabling the earlier diagnosis of malignant 
lesions and improvement of differentiation between harmless and 
potentially harmful lesions by non-specialists.

TABLE 5 AUROC of clinician assessment of likelihood of skin cancer.

Class Biopsied lesions 
(95% CI)

All lesions (95% 
CI)

Lesions (N) 396 583

Melanoma 90.2% (80.2–100%) 90.3% (80.4–100%)

SCC 74.0% (66.4–81.6%) 76.9% (69.6–84.3%)

BCC 85.6% (81.8–89.3%) 90.0% (87.3–92.7%)

IEC 63.6% (49.8–77.4%) 63.6% (49.8–77.4%)

AK 56.9% (49.2–64.6%) 85.0% (79.2–90.8%)

Atypical 83.2% (72.3–94%) 85.1% (75.1–95%)

Benign 67.1% (62.2–72%) 82.1% (78.8–85.5%)

AUROC, Area Under the Receiver Operator Characteristic Curve; SCC, Squamous Cell 
Carcinoma; BCC, Basal Cell Carcinoma; IEC, Intraepidermal Carcinoma; AK, Actinic 
keratosis; CI, Confidence Intervals.

TABLE 4 AUROCs produced by DERM, using images taken on each camera.

iPhone 11 (95% CI) iPhone 6S (95% CI) Samsung 10 (95% CI)

Lesions Biopsied All Biopsied All Biopsied All

Melanoma 91.8% (82.9–100%) 92.6% (84.3–100%) 97.5% (94.8–100%) 97.5% (94.8–100%) 94.4% (89.2–99.6%) 94.6% (89.9–99.3%)

SCC 88.5% (83.9–93.1%) 90.1% (86.1–94.0%) 88.9% (83.8–94.0%) 90.0% (85.3–94.7%) 84.9% (79.1–90.7%) 87.0% (82.1–91.9%)

BCC 89.6% (86.5–92.7%) 92.0% (89.7–94.3%) 89.5% (86.4–92.6%) 92.3% (90.1–94.6%) 87.2% (83.8–90.7%) 90.9% (88.4–93.3%)

IEC 87.7% (82.0–93.4%) 89.0% (84.2–93.8%) 81.2% (73.3–89.2%) 83.3% (76.6–90.1%) 78.2% (67.8–88.6%) 80.2% (71.1–89.3%)

AK 77.3% (66.7–87.9%) 81.1% (75.0–87.2%) 86.1% (78.5–93.7%) 82.8% (77.0–88.7%) 77.8% (68.4–87.3%) 76.4% (69.6–83.3%)

Atypical 91.5% (85.4–97.5%) 89.4% (82.7–96.2%) 93.9% (87.0–100%) 93.0% (86.1–99.9%) 80.2% (68.3–92.1%) 80.9% (70.6–91.3%)

Benign 75.2% (69.9–80.6%) 80.9% (77.3–84.5%) 76.8% (71.6–81.9%) 80.4% (76.8–83.9%) 74.9% (69.3–80.4%) 79.8% (76.1–83.5%)

AUROC, Area Under the Receiver Operator Characteristic Curve; SCC, Squamous Cell Carcinoma; BCC, Basal Cell Carcinoma; IEC, Intraepidermal Carcinoma; AK, Actinic keratosis; CI, 
Confidence Intervals. Because of the necessity for a dermoscopic image of the lesion to be available for assessment by DERM, the number of lesions included was different for each camera.

FIGURE 3

ROC curves for SCC (left) and BCC (right) produced by the AIaMD when assessing images of all lesions, taken by different cameras.

28

https://doi.org/10.3389/fmed.2023.1288521
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Marsden et al. 10.3389/fmed.2023.1288521

Frontiers in Medicine 09 frontiersin.org

TABLE 6 Diagnostic performance metrics of clinicians and DERM, using images from each camera, for all lesions in the Per Protocol population.

Device Lesions 
(N)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI) FNR (95% CI) FPR (95% CI)

Melanoma Clinicians 581 81.2% (53.7–95.0%) 98.9% (97.6–99.6%) 68.4% (43.5–

86.4%)

99.5% (98.3–

99.9%)

18.8% (5.0–46.3%) 1.1% (0.4–2.4%)

iPhone 6S 578 100% (74.7–100%) 69.6% (65.6–73.4%) 8.1% (4.7–13.2%) 100% (98.8–100%) 0% (0–25.3%) 30.4% (26.6–

34.4%)

iPhone 11 571 93.3% (66.0–99.7%) 73.6% (69.6–77.1%) 8.7% (5.0–14.4%) 99.8% (98.4–100%) 6.7% (0.3–34.0%) 26.4% (22.9–

30.4%)

Samsung 578 100% (75.9–100%) 65.5% (61.4–69.4%) 7.6% (4.6–12.3%) 100% (98.7–100%) 0% (0–24.1%) 34.5% (30.6–

38.6%)

SCC Clinicians 565 63.6% (47.7–77.2%) 89.1% (86–91.5%) 32.9% (23.4–

44.1%)

96.7% (94.5–

98.0%)

36.4% (22.8–

52.3%)

10.9% (8.5–14.0%)

iPhone 6S 563 95.4% (83.3–99.2%) 44.7% (40.4–49.1%) 12.8% (9.5–17%) 99.2% (96.6–

99.9%)

4.6% (0.8–16.7%) 55.3% (50.9–

59.6%)

iPhone 11 556 93.2% (80.3–98.2%) 45.7% (41.3–50.1%) 12.8% (9.5–17.1%) 98.7% (96–99.7%) 6.8% (1.8–19.7%) 54.3% (49.9–

58.7%)

Samsung 562 90.9% (77.4–97%) 50.6% (46.2–55%) 13.5% (9.9–18.1%) 98.5% (95.9–

99.5%)

9.1% (3–22.6%) 49.4% (45–53.8%)

BCC Clinicians 521 97.5% (93.9–99.1%) 77.4% (72.4–81.8%) 72.6% (66.7–

77.7%)

98% (95.2–99.3%) 2.5% (0.9–6.1%) 22.6% (18.2–

27.6%)

iPhone 6S 519 94.9% (90.6–97.4%) 41.6% (36.2–47.2%) 49.9% (44.7–55%) 93.1% (87.3–

96.4%)

5.1% (2.6–9.4%) 58.4% (52.8–

63.8%)

iPhone 11 512 95.8% (91.7–98%) 45% (39.5–50.6%) 51.1% (45.8–

56.4%)

94.7% (89.5–

97.5%)

4.2% (2–8.3%) 55% (49.4–60.5%)

Samsung 518 94.4% (89.9–97%) 54.5% (48.9–60%) 55.6% (50.1–61%) 94.1% (89.4–

96.9%)

5.6% (3.0–10.1%) 45.5% (40–51.1%)

Malignant Clinicians 583 93.8% (90–96.3%) 77.4% (72.4–81.8%) 77% (71.9–81.4%) 94.3% (90.6–

96.7%)

5.8% (3.4–9.5%) 22.6% (18.2–

27.6%)

iPhone 6S 580 95.7% (92.3–97.7%) 41.6% (36.2–47.2%) 56.8% (52–61.5%) 92.4% (86.5–96%) 4.3% (2.3–7.7%) 58.4% (52.8–

63.8%)

iPhone 11 573 96.0% (92.6–98%) 45% (39.5–50.6%) 58% (53.1–62.7%) 93.5% (88.1–

96.7%)

4% (2–7.4%) 55% (49.4–60.5%)

Samsung 580 94.9% (91.3–97.2%) 54.5% (48.9–60%) 62.4% (57.4–

67.2%)

93.1% (88.3–

96.1%)

5.1% (2.8–8.7%) 45.5% (40–51.1%)

IEC Clinicians 323 90.9% (57.1–99.5%) 78.8% (73.8–83.2%) 13.2% (6.8–23.3%) 99.6% (97.4–100%) 9.1% (0.5–42.9%) 21.1% (16.8–

26.2%)

iPhone 6S 322 100% (67.9–100%) 43.1% (37.5–48.8%) 5.9% (3.1–10.5%) 100% (96.5–100%) 0%

(0–32.1%)

56.9% (51.2–

62.5%)

iPhone 11 320 100% (67.9–100%) 46.6% (41–52.3%) 6.2% (3.3–11.2%) 100% (96.8–100%) 0%

(0–32.1%)

53.4% (47.7–59%)

Samsung 323 90.9% (57.1–99.5%) 56.1% (50.4–61.6%) 6.8% (3.5–12.5%) 99.4% (96.4–100%) 9.1% (0.5–42.9%) 43.9% (38.4–

49.6%)

AK Clinicians 312 96.7% (87.6–99.4%) 79.3% (73.6–84%) 53.1% (43.5–

62.6%)

99% (96.1–99.8%) 3.3% (0.6–12.4%) 20.7% (16–26.4%)

iPhone 6S 311 85.0% (72.9–92.5%) 43.4% (37.2–49.8%) 26.4% (20.5–

33.3%)

92.4% (85.6–

96.2%)

15% (7.5–27.1%) 56.6% (50.2–

62.8%)

iPhone 11 309 84.8% (72.5–92.4%) 47.2% (40.9–53.6%) 27.5% (21.3–

34.7%)

92.9% (86.6–

96.5%)

15.2% (7.6–27.5%) 52.8% (46.4–

59.1%)

Samsung 312 83.6% (71.5–91.4%) 51.4% (45–57.7%) 29.5% (22.9–37%) 92.8% (86.8–

96.3%)

16.4% (8.6–28.5%) 48.6% (42.3–55%)

(Continued)
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TABLE 6 (Continued)

Device Lesions 
(N)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI) FNR (95% CI) FPR (95% CI)

Atypical Clinicians 251 76.2% (52.5–90.9%) 73.9% (67.6–79.4%) 21% (12.9–32.2%) 97.1% (93.1–

98.9%)

23.8% (9.1–47.5%) 26.1% (20.6–

32.4%)

iPhone 6S 251 86.4% (64.0–96.4%) 39.3% (33.0–46.0%) 12% (7.6–18.4%) 96.8% (90.2–

99.2%)

13.6% (3.6–36.0%) 60.7% (54.0–

67.0%)

iPhone 11 250 59.1% (36.7–78.5%) 43.9% (37.4–50.6%) 9.2% (5.2–15.6%) 91.7% (84.5–

95.9%)

40.9% (21.5–

63.3%)

56.1% (49.4–

62.6%)

Samsung 251 38.1% (19.0–61.3%) 48.3% (41.7–54.9%) 6.3% (3.0–12.4%) 89.5% (82.4–

94.1%)

61.9% (38.7–

81.0%)

51.7% (45.1–

58.3%)

Premalignant Clinicians 323 91.4% (83.3–95.9%) 73.9% (67.6–79.4%) 58.6% (50.1–

66.6%)

95.5% (91.0–

97.9%)

8.6% (4.1–16.7%) 26.1% (20.6–

32.4%)

iPhone 6S 322 87.1% (78.2–92.9%) 39.3%

(33.0–46.0%)

36.8% (30.5–

43.6%)

88.2% (80.0–

93.5%)

12.9% (7.1–21.8%) 60.7% (54.0–

67.0%)

iPhone 11 320 80.4% (70.6–87.7%) 43.9% (37.4–50.6%) 36.6% (30.1–

43.7%)

84.8% (76.7–

90.5%)

19.6% (12.3–

29.4%)

56.1% (49.4–

62.6%)

Samsung 323 75.3% (65.0–83.4%) 48.3% (41.7–54.9%) 37% (30.2–44.4%) 82.8% (75.1–

88.6%)

24.7% (16.6–

35.0%)

51.7% (45.1–

58.3%)

Benign Clinicians 581 73.9% (67.6–79.4%) 93.7% (90.5–95.9%) 88.5% (83.0–

92.5%)

84.6% (80.5–

87.9%)

26.1% (20.6–

32.4%)

6.3% (4.1–9.5%)

iPhone 6S 578 39.3% (33.0–46.0%) 94.3% (91.1–96.4%) 81.8% (73.1–

88.3%)

70.3% (65.9–

74.4%)

60.7% (54.0–

67.0%)

5.7% (3.6–8.9%)

iPhone 11 571 43.9% (37.4–50.6%) 93.3% (90.0–95.6%) 81.3% (73.1–

87.5%)

71.4% (67.0–

75.5%)

56.1% (49.4–

62.6%)

6.7% (4.4–10.0%)

Samsung 578 48.3% (41.7–54.9%) 91.4% (87.8–94.0%) 78.7% (70.9–

85.0%)

72.8% (68.3–

76.8%)

51.7% (45.1–

58.3%)

8.6% (6–12.2%)

SCC, Squamous Cell Carcinoma; BCC, Basal Cell Carcinoma; IEC, Intraepidermal Carcinoma; AK, Actinic Keratosis; CI, Confidence Intervals Rate; PPV, Positive Predictive Value; NPV, 
Negative Predictive Value; FPR, False Positive Rate; FNR, False Negative.
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Background: The management of acne requires the consideration of its severity;

however, a universally adopted evaluation system for clinical practice is lacking.

Artificial intelligence (AI) evaluation systems hold the promise of enhancing the

efficiency and reproducibility of assessments. Artificial intelligence (AI) evaluation

systems offer the potential to enhance the efficiency and reproducibility of

assessments in this domain. While the identification of skin lesions represents a

crucial component of acne evaluation, existing AI systems often overlook lesion

identification or fail to integrate it with severity assessment. This study aimed to

develop an AI-powered acne grading system and compare its performance with

physician image-based scoring.

Methods: A total of 1,501 acne patients were included in the study, and

standardized pictures were obtained using the VISIA system. The initial evaluation

involved 40 stratified sampled frontal photos assessed by seven dermatologists.

Subsequently, the three doctors with the highest inter-rater agreement annotated

the remaining 1,461 images, which served as the dataset for the development of

the AI system. The dataset was randomly divided into two groups: 276 images

were allocated for training the acne lesion identification platform, and 1,185

images were used to assess the severity of acne.

Results: The average precision of our model for skin lesion identification was

0.507 and the average recall was 0.775. The AI severity grading system achieved

good agreement with the true label (linear weighted kappa = 0.652). After

integrating the lesion identification results into the severity assessment with fixed

weights and learnable weights, the kappa rose to 0.737 and 0.696, respectively,

and the entire evaluation on a Linux workstation with a Tesla K40m GPU took less

than 0.1s per picture.

Conclusion: This study developed a system that detects various types of acne

lesions and correlates them well with acne severity grading, and the good

accuracy and efficiency make this approach potentially an effective clinical

decision support tool.
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dermatology, acne, artificial intelligence, acne lesions, grading system
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Introduction

Acne vulgaris is the eighth most prevalent disease affecting 9.4%
of the global population (1). Although acne can occur at all ages,
adolescents are the most prevalent group of acne sufferers, and
eighty-five percent of adolescents are affected by acne (2). As a
condition that alters appearance, acne affects patients’ physical and
psychological well-being and causes a strong desire for treatment
(3). The large patient population and the strong desire for treatment
seriously burden healthcare resources (4, 5). Assessment of acne
severity is essential for the patient’s stepwise therapy. There are
more than 20 published scales for evaluating acne, but none is
adopted universally for clinical practice (6).

Most scales can be classified as lesion-counting scales or
text description scales. Lesion counting scales correspond to the
severity by measuring different types of acne lesions, such as the
Global Acne Grading System (7, 8). Counting acne lesions is
supposed to be a more objective method. However, it shows a
high degree of variability between raters due to ambiguity between
different categories of skin lesions and interevaluator differences
in the definition of skin lesions (9). In addition, a single counting
process ignores the degree of inflammation, postinflammatory
hyperpigmentation, scarring, and other features that affect the
severity. In contrast to quantitative scales, qualitative scales
distinguish between different levels of severity through textual
descriptions. Although qualitative scales require more clinical
experience from the evaluator, they simplify the tedious counting
process to a certain extent and take care of other acne characteristics
beyond the number of lesions. For example, Investigator Global
Assessment classifies acne into five levels through text descriptions
(clear, almost clear, mild, moderate, severe, and very severe) (10).
On this basis, a recent study found that replacing the qualitative
labels with the corresponding treatment intensity labels effectively
reduced the high interrater variability, although these labels are
more unstable since treatment options may change depending on
regional perceptions and disciplinary developments (11).

Artificial intelligence (AI) for acne grading has been considered
a promising research direction to increase the consistency and
efficiency of assessment. Some AI systems focus on identifying
and counting different types of lesions, but as with lesion-
counting scales, they ignore considerable information beyond the
countable lesions (12, 13). Other AI systems analyze the image as
a whole but leave the evaluation free from clinical interpretability
(14, 15). We believe that the quantity of different types of
lesions is an inadequate but crucial component of acne severity
assessment. Therefore we sought to develop a novel AI system
that could integrate the identification and counting of skin lesions
into the overall facial evaluation process, thereby improving the
predictive accuracy.

Materials and methods

Database

This study was conducted at sichuan university from January,
2020 to June, 2022, and was approved by the west china hospital
institutional review board to use the patients’ deidentified images

and records. This study followed the declaration of Helsinki
and standards for reporting of diagnostic accuracy (STARD)
reporting guidelines and the checklist for evaluation of image-
based artificial intelligence algorithm reports in dermatology
(CLEAR Derm) (16). We collected records of 3,098 visits to our
dermatology specialist clinics with a diagnosis of acne without other
inflammatory skin disease diagnoses. Of the 3,098 visits recorded,
1,501 had corresponding standardized pictures obtained via the
VISIA system, including frontal, left and right profile photos, and
information from these visits was included in the current study. To
select labeling experts for the database and to evaluate the adequacy
of the standardized frontal photo, 40 patients with acne (10 mild,
20 severe, 10 severe) were selected based on clinical records. seven
experienced dermatologists first rated the frontal photos of the 40
patients, and the three evaluators with the highest average linear
weighted Cohen’s κ were selected to complete the severity marking
of the 1,461 records. The median of their ratings was considered
the true label. After disrupting the order of the 40 images, the 7
dermatologists again rated the combined photos (frontal and left
and right side photos) of the 40 patients. To improve interrater
agreement, in this study we used the Treatment Intensity label to
distinguish between the severity of patients (11), and due to the low
number of extremely severe cases, we combined Level 8 and Level 9
(Table 1).

Development of the skin lesion
identification platform

For the acne detection module, we used a publicly available
deep-learning method to detect acne lesions (17). We used
a VISIA complexion analysis system to photograph 276 facial
images as our samples, where each sample has a resolution from
3128 × 4171 to 3456 × 5184 pixels. All the samples were split
9:1 into training samples (n = 248) and test samples (n = 28).
Six dermatologists participated in annotating all the samples.
A total of 15,922 skin lesions with 10 lesion categories, i.e., open
comedone, closed comedone, papule, pustule, nodule/cyst, atrophic
scar, hypertrophic scar, melasma and nevus were generated. Next,

TABLE 1 Severity label and corresponding treatment intensity list.

Grading
label

Severity
description

Treatment intensity

1 Clear No treatment necessary

2 Almost clear BPO or a mild topical retinoid

3 Mild BPO and a topical retinoid

4 Mild to
moderate

BPO and a stronger topical retinoid or a
topical retinoid and consideration of an
oral antibiotics

5 Moderate Topical treatment and an oral antibiotics

6 Moderate to less
severe

Same as 5, but start considering
isotretinoin

7 Less severe Same as 5, but recommend isotretinoin

8 Severe or very
severe

Should be on isotretinoin

BPO, benzoyl peroxide.
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FIGURE 1

Overview of the development and validation of our AI systems. After confirming the adequacy of the frontal photo information, the doctors with the
highest agreement with other peers were selected as true label raters for the remaining 1,461 frontal photos. Of the 1,461 photos, 276 were used to
develop a skin lesion identification platform and 1,185 were used to develop an acne severity rating system. Then, we sought to incorporate skin
lesion identification results into the severity evaluation and validated the feasibility in test set and rater selection subset.

the network is trained by an SGD optimizer with 15 epochs, where
the learning rate, momentum, and weight decay were 0.002, 0.9,
and 0.0001, respectively.

Development of acne grading systems

We used ResNet50 as the training network for the baseline
results (18). This network contains four large blocks, each with
3, 4, 6, and 3 small blocks, and each small block consists of
three convolutional layers. In addition, the network contains jump
connections to alleviate the problem of gradient explosion and
gradient disappearance during training, thereby allowing the model
to extract deeper features. A total of 1,185 images were used for
the grading experiments, of which, 945 were used for training and
240 for testing. For the training set, all images were first resized to
256 × 256 pixels and later randomly cropped to 224 × 224 pixels
to meet the input size of the network. Furthermore, the images
are randomly flipped horizontally (50% probability) and randomly
rotated from −20◦ to +20◦ to expand the data to prevent training
overfitting. The model was trained using cross entropy loss with
a total of 200 epochs and a batch size of 32. The initial learning
rate was 0.001, and it decayed to 0.0001 using a cosine annealing
function. The optimizer was the Adam optimizer with a weight
decay of 0.0001. The training was conducted on a Tesla K40m GPU.
For the acne grading task, the number of acne lesions as well as
the overall assessment are an important reference for acne grading.
Therefore, we propose a method that combines dermatologists’
a priori knowledge with a CNN to automatically grade pictures. The
acne counts of all samples were semiautomatically labeled by the
trained detection model and manually validated by an experienced
dermatologist. The rule divides each image into a grading interval
instead of a single grade to guide the network to better predict
the image grading.

We propose two methods to integrate the proposed rules into
the network, i.e., fixed weights and learnable weights, and the two
methods are shown in Figure 1. For the fixed-weights approach, the
probability weight of the interval is fixed. If the interval does not
contain the grading, the weight is 0; otherwise, it is 1. Each input
image is fed into the CNN first to learn the image features. The
image features are average-pooled and mapped to an 8-dimensional
vector to correspond to the probability of each classification. Then,
the two vectors are multiplied by the corresponding position
elements to obtain the predicted probability of each classification.
Since the proposed rule reduces the weight of the intervals that do
not belong to the image classification, only the predicted probability
of the interval to which the image belongs is obtained. The
classification corresponding to the highest probability is selected as
the predicted class.

For the learnable weights approach, the network is given
an initial value, after which the weights are fine-tuned through
training. As shown in Figure 2, after training, the network
outputs the graded probability values and the learned interval
weights. The prediction probability of each classification is
obtained by multiplying the classification probabilities with the
corresponding interval weights. Again, the classification with the
highest probability is the grading predicted by the model.

Statistical analysis

To determine the sample size of rater selection, assuming
the interrater correlation coefficients were approximately 0.8, at
least 7 raters and 40 subjects were needed. No formal sample
size was calculated for validation of AI systems. Cohen’s kappa
with linear weights was used to evaluate the AI’s performance
against the true label or the 7 dermatologists on the rater selection
dataset. A kappa value of less than 0.6 was considered unacceptably
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FIGURE 2

Procedure for integrating skin lesion identification with acne severity assessment based on AI. (A) Fixed weights approach. (B) Learnable weights
approach.

low. The statistical analyses were performed using Prism software
(GraphPad Prism 8.0) and R (version 4.2.1).

Results

The database was divided into three subsets, and the baseline
characteristics are summarized in Table 1. Forty records were
enrolled to select the true label rater. The mean age of the 23
female and 17 male patients was 24.8 years, ranging from 16
to 39 years. Of the 560 assessments (7 raters, 40 patients and
2 rounds), each grading of severity was represented by at least
2 subjects. The evaluations obtained through the frontal photos
are in good agreement with those obtained through the three-
sided photos, indicating that the frontal photos are sufficiently
informative as samples for the AI evaluation (Table 2). For
interrater agreement of frontal photo assessment, the pairwise
Cohen’s kappa for each dermatologist ranked in descending order
is shown in Supplementary Figure 1, and the three raters with
the greatest average kappa value were selected to rate all the
photos in the database. For consistency of the assessment of frontal
photographs and 3-side photographs, the overall ICC for frontal
photo assessment and 3-side photograph was 0.878 (0.814, 0.916),
which suggests that a frontal photograph taken with VISIA alone
can yield a similar amount of information for acne as three-
sided photos.

For the development of the acne lesion identification platform,
276 frontal photos were labeled by five doctors and reviewed
by a senior doctor. In total, 3,060 closed pimples, 2,192 open
pimples, 3,861 papules, 884 pustules, 113 nodules or cysts, 5,410
atrophic scars and 302 hypertrophic scars were marked in 276
images (Figure 3). The 276 images were divided into a training
set and a test set at a ratio of 9:1. The average precision of our
model for skin lesion identification was 0.507, and the average

recall was 0.775, which outperformed state-of-the-art one-stage
and two-stage generic object detection methods. As previously
anticipated, skin lesion counts are not sufficient for severity
determination, and we were not able to build a decision tree model
with good performance for acne severity evaluation, either based
on the number of manually annotated lesions or the number of
lesions identified by the algorithm (data not shown). However,
different types of lesions have different distribution patterns
on the face (Supplementary Figure 2). Inflammatory lesions
(papules, pustules, nodules/cysts) are more evenly distributed,
and non-inflammatory lesions and secondary lesions have unique
distribution characteristics. Closed acne tends to be located on
the forehead and midface, while open acne tends to cluster on
the forehead. Atrophic scarring is concentrated on both cheeks,
while hyperplastic scarring often occurs on the skin of the
lower jaw.

For the development and validation of the severity grading
systems, totally 945 images were used for training and 240 for
testing, and the kappa obtained by the AI system relative to the
true label was 0.652 (Figure 4A). To further enhance the predictive
power, we further constructed a fixed-weight model a learnable-
weight model to integrate the lesion identification results of papule,
pustule and nodule/cyst into the severity assessment based on
lesion identification platform, which improved the kappa relative to
the true label to 0.737 and 0.696, respectively (Figures 4B, C). The
40 images that were initially used to select database annotators were
applied to the three models, and the mean pairwise kappa achieved
by the three AI models ranked 7th, 2nd and 4th (Figure 5).

Discussion

In this study, we found that the artificial intelligence acne
severity evaluation system we developed produced a reasonable
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TABLE 2 Baseline characteristics.

Lesion identification subset Severity grading subset

(n = 276) (n = 1185)

Rater selection subset
(n = 40)

Training subset
(n = 248)

Test subset
(n = 28)

Training subset
(n = 945)

Test subset
(n = 240)

Age, years

<20 4 43 3 190 45

20–29 29 164 23 633 161

30–39 5 39 2 109 30

40–49 2 2 0 13 4

Sex

Female 23 165 19 621 142

Male 17 83 9 324 98

Severity (true label)

Clear / 5 1 34 11

Almost clear / 28 3 178 37

Mild / 87 7 321 94

Mild to moderate / 57 5 172 40

Moderate / 41 3 149 35

Moderate to less severe 20 1 68 15

Severe / 7 1 14 9

Severe or very severe / 3 0 9 3

FIGURE 3

An example of seven types of acne-related lesions identified by the Lesion Recognition System in a patient with moderate to less severe acne.

evaluation of the frontal part of acne patients’ photos, and its
evaluation results were in good agreement with the true labels.
Furthermore, we innovatively incorporated the lesion identification
results into the severity evaluation with fixed weights and learnable
weights, which improved the performance of the model. The
AI system, whether weighted or not, can grade acne within the
performance range of experienced dermatologists.

Artificial intelligence has powerful learning capabilities that
enable it to capture the nuances of lesion images, including size,
color and texture, etc (19). The morphological manifestation of
the lesion is an important basis for diagnosing and evaluating
dermatologic diseases, making AI even more distinctive in

dermatology (20). Currently, AI research in dermatology is focused
on multiclassification tasks (21, 22) for disease diagnosis and
binary classification (23, 24) for benign or malignant skin lesions,
but the evaluation of the severity of a specific disease is also a
research direction with great potential for application. The high
prevalence and the lack of widely accepted evaluation criteria
make acne a perfect fit for AI research. As the eighth most
prevalent disease in the world, acne creates a medical need
that cannot be met due to the current shortage and uneven
distribution of dermatologists. AI can act as a decision aid for
clinicians to improve the efficiency of evaluation, particularly in
the identification and counting of acne lesions. In recent years,
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FIGURE 4

Confusion matrices for acne grading. (A) Original model. (B) Fixed weight model. (C) Learnable weight model.

FIGURE 5

Acne grading performance on rater selection subsets. (A) Original model. (B) Fixed weight model. (C) Learnable weight model. Linear weighted
Cohen’s kappa for each pathologist ranked from lowest to the highest. Each kappa value is the average pairwise kappa for each of the
dermatologists compared with the others. The AI is highlighted with an orange dot.

many advances have also been made in the evaluation of acne
by AI. Sophie Seité made several optimizations to their model to
improve the recognition of inflammatory and non-inflammatory
acne lesions, and their model achieves a GEA score similar to
that of the dermatologists (13). Quan Thanh Huynh applied
different models to complete the identification of acne lesions
and the evaluation of severity with good accuracy, but their
study did not incorporate the results of lesion identification into
the severity evaluation (12). To the best of our knowledge, no
previous studies have integrated skin lesion identification with
severity assessment and consequently improved the accuracy of
severity assessment. According to the principles of AI, skin lesion
identification may no longer be important for severity evaluation
when the sample size is sufficiently large, however, for more
limited sample sizes, lesion identification can emphasize important
information in the evaluation of severity and make the results more
interpretable by doctors.

One of the major strengths of our study is that we have a
much more detailed classification of severity (eight scales) than
what is used by other common scales. One study found that the
interobserver agreement using a crude acne severity scale was quite
low (25). In order to improve interrater agreement, we referenced
the treatment intensity label used by the Elena Bernardis’s study to
represent acne severity (11). The physicians in this study strongly
endorsed the logic of this intensity label after discussion, although
it differed slightly from the current Chinese Guidelines for the
Management of Acne Vulgaris and medication habits of Chinese
dermatologists. The use of treatment intensity for labeling, in

addition to increasing interrater consistency, provides doctors with
an indication of the patient’s treatment regimen. However, the
doctors will need to take into account other information about
the patient as well as the results prompted by the AI, because our
model does not consider patient information outside of the image
data, including but not limited to pregnancy and breastfeeding
status, drug allergy history, financial situation, personal wishes etc.
In addition we are more rigorous in testing of the models. Besides
comparing the differences between the AI model predictions and
the true labels, this study compared the AI predictions with
the ratings of several experienced dermatologists. This step is
important for grading systems that lack objective indicators such
as acne severity.

Our study also suffered from a number of shortcomings.
First, all of the patients we included were Chinese, and although
there were different ethnic groups, all of the patients had skin
types II to IV; thus, further validation of our model’s ability
to identify lesions and evaluate severity in patients with other
skin types is needed. Second, our samples were sourced from
hospital specialist clinics, and due to the low willingness of mild
patients to seek treatment and the small proportion of patients
with extremely severe illnesses, our sample is not evenly distributed
at different levels. Finally, to obtain more reliable results, we
included only patients with a diagnosis of acne and no other
facial inflammatory diseases; however, in the real world acne is
not exclusive to diseases such as rosacea and seborrheic dermatitis,
and the AI evaluation for this group of patients requires a broader
sample resource.
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Conclusion

This study developed a system that detects various types of acne
lesions and correlates them well with acne severity grading, and the
good accuracy and efficiency make this approach potentially a very
effective clinical decision support tool. However, further research is
needed to validate the effectiveness of this AI system in real-world
clinical settings.
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Principles, applications, and future 
of artificial intelligence in 
dermatology
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Zhuo Ran Cai 1‡ and Vijaytha Muralidharan 1‡

1 Department of Dermatology, Stanford University, Stanford, CA, United States, 2 Department of 
Biomedical Data Science, Stanford University, Stanford, CA, United States

This paper provides an overview of artificial-intelligence (AI), as applied to 
dermatology. We  focus our discussion on methodology, AI applications for 
various skin diseases, limitations, and future opportunities. We  review how the 
current image-based models are being implemented in dermatology across 
disease subsets, and highlight the challenges facing widespread adoption. 
Additionally, we discuss how the future of AI in dermatology might evolve and the 
emerging paradigm of large language, and multi-modal models to emphasize the 
importance of developing responsible, fair, and equitable models in dermatology.

KEYWORDS

dermatology, artificial intelligence (AI), large language models (LLM), machine learning, 
melanoma, federated learning

1. Introduction

Recent advancements in artificial intelligence (AI) have fueled an interest in the utility of AI 
models in medicine (1). These models range from computer vision models that can interpret 
medical images (2) to large language models (LLM) that have capabilities for analyzing text data 
(3, 4) to multi-modal models that take both images and text as input (5). These AI models now 
have the capacity to analyze unstructured data such as clinical notes (3, 6), identify novel 
correlations in large datasets (7), and generate synthetic image data for improving model 
training (8, 9).

One medical specialty poised to benefit from these emerging AI technologies is dermatology. 
Its inherent visual diagnostic process, combined with an increasing volume of clinical 
photographs, dermoscopy images, and electronic health records (EHR) data (10) underscores 
its suitability for AI-augmented patient care. Moreover, the shortage of specialists-3.65 
dermatologists per 100,000 people in the US (11, 12) and limited access to dermatological 
services in many regions (13, 14) provides a compelling case for augmented intelligent systems 
to help bridge this access gap (15). However, clinical integration of AI in dermatology workflow 
remains challenging. As novel medical applications arise, they also unveil problems that 
necessitate further research.

In this paper, we present a comprehensive overview of the fundamental principles of AI 
methodology as applied to dermatology, diving into categories and training approaches. Special 
emphasis is placed on the role of AI in the diagnosis and prognostication of an array of skin 
conditions. We also address the limitations of the AI models used in dermatology, notably issues 
of generalizability, bias, and explainability. Finally, we examine what the future might hold for 
dermatology-AI, while highlighting some research opportunities to help improve real-world 
utility of AI models. Our goal is to provide the readers with a panoramic view of AI’s principles 
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and evolving role in dermatology, while equipping them with the 
knowledge to navigate this dynamic field.

2. Principles of artificial intelligence

AI is the ability of a computer system to mimic human cognitive 
functions and encompasses many computational subfields, including 
machine learning and natural language processing (Figure  1). 
Currently, major developments in AI are within the field of machine 
learning (ML), which are algorithms that make predictions about data 
without explicit programming. In other words, the machines are 
“learning” from the data and providing analyses without being 
explicitly told what features to prioritize. Examples from dermatology 
include identifying melanomas from clinical images (16), predicting 
efficacy of biologic therapies in psoriasis (17), and analyzing physician 
notes in electronic health records to determine focus of atopic 
dermatitis clinic visits (18).

Deep learning (DL) (19) is a subset of ML that uses algorithms 
modeled off human neurons that can model complex patterns and 
relationships in the data. ML techniques prior to the introduction of 
DL required domain expertise and human engineering to convert raw 
data into features that the algorithm can understand and detect 
patterns from. On the other hand, in DL, raw data can be inputted into 
the algorithm, and the machine is able to create its own representation 
needed for pattern recognition. These representations are typically 
arranged in sequential layers, where each layer is inputted into the 
next layer, increasing the abstraction of the data, collectively known 
as neural networks (6) (Figure  2). Within DL, there are multiple 
algorithms that are implemented, including convolutional neural 
networks (CNN) (20), traditionally used in image processing, and 
transformer models (21), which are neural networks that learn context 
and track relationships in sequential data.

Within ML, there are different ways that algorithms can learn, 
including supervised learning, unsupervised learning, and 
reinforcement learning (Figure  2). Supervised learning, the most 
common form of machine learning, uses a labeled dataset to predict 
results. The algorithm learns to map the input data to the correct 
output, allowing it to make predictions on unseen data. The algorithm 
is given the data and the correct answers (ground truths) in a training 
set, which the algorithm uses to set its weights. Once the algorithm 
has learned from the training data, its performance is measured 
against a held-out test set that it has never encountered previously. 
This category of machine learning includes what most people are 
familiar with, such as logistic regression, linear regression, etc. Most 
of the image-based deep learning models in dermatology use 
supervised learning. Unsupervised learning is training a model on 
unlabeled datasets, meaning the data input does not have the ground 
truth. This algorithm aims to find patterns and relationships within 
the data, such as clustering similar data points together. Finally, 
reinforcement learning is when the agent (the algorithm) interacts 
with an environment to achieve specific goals. The agent receives 
feedback from the user (the human) in the form of rewards or 
penalties based on its actions, and it learns to optimize its behavior to 
maximize rewards. Compared to supervised and unsupervised 
learning, reinforcement learning has no predefined data input, but 
rather learns from the iterative feedback loops.

Natural language processing (NLP) is a branch of artificial 
intelligence that focuses on interpreting, analyzing, and generating 
human language. It combines linguistics with statistics, machine 
learning, and DL to process human language (22). NLP is generally 
divided into two subfields-natural language understanding (NLU), 
and natural language generation (NLG). NLU is focused on 
determining the understanding of the text, while NLG is focused on 
generating new text. Recent advancements in large language models, 
including OpenAI’s (San Francisco, United States) publicly-available 
ChatGenerative Pre-trained Transformer (ChatGPT) (23), fall under 
the subfield of NLG.

There are also recent emerging concepts of multimodal 
approaches, where algorithms are utilizing multiple data types to train 
their algorithms. Medicine is inherently a multimodal discipline, with 
clinicians interpreting lab values, clinical notes, radiology images, 
genomic data, etc. New development has been focused on utilizing the 
rich diversity of data to build more robust models and algorithms, 
including Med-PaLM Multimodal (Med-PaLM M) (24), LLaVa-Med 
(25), Med-Flamingo (5), and MiniGPT-4 (26). These new technologies 
are built on foundation models (FMs), which are models that are 
trained on a broad range of unlabeled data that are then adapted (fine-
tuned) to specific downstream applications (27). These models can 
learn from the large amounts of data, and then transfer their learnings 
to a more specific application, like medicine.

3. Applications of AI in dermatology

There has been an abundance of work done to explore artificial 
intelligence use in all aspects of dermatology (28–30), ranging from 
skin malignancies to inflammatory skin conditions, to 
dermatopathology, to text-based analyses. The visual nature of 
Dermatology lends itself to many advancements that are image-based, 
though researchers are exploring other multimodal approaches that 

FIGURE 1

Overview of principles of artificial intelligence. Artificial intelligence 
(AI) is a broad categorization of algorithms that encompass 
subcategories including machine learning (ML), natural language 
processing (NLP), and deep learning (DL).
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use patient characteristics and clinical texts. Here, we will provide a 
broad overview of the different applications of AI in dermatology.

3.1. Skin malignancies

Applications of AI in dermatologic malignancies, which have been 
well described in the literature (31, 32), include identifying and 
distinguishing between benign nevi and melanoma. Researchers break 
down images of skin lesions to the pixel level for individual analysis 
and then utilize the techniques described above to predict and classify 
malignancies. There have been multiple landmark papers for AI 
applications in skin malignancies (16, 31, 33), resulting in high 
sensitivities and specificities when distinguishing malignant from 
benign lesions. Esteva et al. trained a CNN using a large dataset of over 
100,000 biopsy-proven clinical images to determine keratinocyte 
carcinomas versus benign seborrheic keratoses, and malignant 
melanomas versus benign nevi (16). Han et al. fine-tuned a previously-
built CNN model with clinical images to classify multiple malignancies, 
including basal cell carcinoma, squamous cell carcinoma, melanoma, 
etc. (34). There is also an annual international skin imaging 
competition, which provides publicly accessible dermatology images 
for researchers to build melanoma-classifying models (32, 35). Aside 
from identifying the primary lesion, there are also studies exploring 
metastases. Jansen et al. utilized histological tissue sections of sentinel 
lymph nodes in their convolutional neural network models to identify 
presence of metastases with high sensitivity and specificity (36).

3.2. Inflammatory skin diseases-psoriasis, 
dermatitis, and others

Aside from classification of melanomas and other malignant skin 
conditions, researchers are also exploring the identification and 

management of inflammatory skin conditions, including psoriasis, 
dermatitis and acne. Similar to malignancy classification, a majority 
of work is focused on psoriasis identification and classification 
through images of skin (37–40), nails (41), and scalp (42) using CNN’s 
and other DL techniques. In addition to diagnosing psoriasis via 
image recognition, researchers have utilized machine learning 
techniques to identify patients with increased risk of associated 
psoriatic conditions, including psoriatic arthritis (43). Work has also 
been done to determine the efficacy of psoriasis management by 
predicting outcomes of biologic therapies by using parameters such as 
patient demographics, clinical history of psoriasis, treatment history, 
and presence of other comorbidities (17, 44). These preliminary 
models could be used to eventually optimize therapy and management 
for patients. Finally, aside from determining outcomes of current 
biological treatments, AI techniques have been applied to genomic 
studies to help with drug target identification and drug repurposing 
(45), as well as screening for psoriasis biomarkers (46) and gene 
expression profiling (47).

Similar to diagnostic tasks with psoriasis, many researchers have 
explored using machine learning algorithms in dermatitis (48), 
ranging from image-based algorithms (49) to electronic health record 
text-based algorithms (50). Aside from determining diagnoses, 
researchers have developed proof-of-concept algorithms using self-
reported eczema flare scores, patient demographics and treatment 
history to predict atopic dermatitis severity, resulting in a biologically 
interpretable model that focuses on patient’s responsiveness to 
treatment (51). AI models have also been used to help prevent contact 
dermatitis by predicting skin sensitization potential and potency of 
substances (52).

In addition to psoriasis and dermatitis, researchers have developed 
acne lesion segmentation and evaluation tools (53–55) that can grade 
acne severity from easily-accessible smartphone images (56). There is 
also exploration in identifying lichen planus (41), and assessing the 
severity of hidradenitis suppurativa (57).

FIGURE 2

Classifications of machine learning. Supervised learning uses labeled datasets to categorize the data, while unsupervised learning does not have 
labeled datasets, using patterns and relationships in the data to create categories. Reinforcement learning uses iterative feedback loops to teach the 
algorithm. DL utilizes representation layers in a neural network to increase abstraction of the data, and employs techniques from supervised, 
unsupervised, and reinforcement learning.
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3.3. Ulcer assessment

One of the primary methods in identifying and classifying skin 
lesions is segmenting the lesion from the backdrop of normal skin. 
Multiple studies have explored determining and measuring ill-defined 
wound boundaries using techniques that simplify images down to the 
pixel level (58–61). Recent work has been done to apply these 
techniques into broader hospital systems to predict pressure ulcers 
(62), with the ultimate goal of pressure ulcer prevention (63, 64). 
Groups have even explored using body heat maps from pressure mats 
to identify poor in-bed position posture that could cause pressure 
ulcers (65). These proof-of-concept works, after validation in clinical 
trials, may ultimately translate into clinical-assist tools to aid clinicians 
in the management of ulcers.

3.4. Dermatopathology

Beyond identifying diagnoses via clinical images and electronic 
health record notes, machine learning techniques are being applied in 
dermatopathology (66, 67). Groups have developed models to classify 
basal cell carcinoma in digitized Mohs micrographic surgery histology 
slides to reduce the workload of manually examining these slides (68). 
Likewise, Hekler et al. used CNNs to aid in histopathologic melanoma 
diagnoses (69). There have also been studies done to interpret indirect 
immunofluorescence microscopies to classify bullous dermatoses (70).

3.5. Miscellaneous multiclass classification 
and text-based analysis

To better replicate real-world clinical scenarios of multiple differential 
diagnoses from a single skin lesion, technologies take a broader approach 
to solve multi-class classification problems. Many of the problems 
discussed above were binary classification, where algorithms strived to 
identify if a lesion was a specific disease or not; multi-class classification 
presents a more challenging problem with multiple possible diagnoses. 
Liu et al. created a DL system that provided a differential diagnosis for 
skin lesions, creating a ranked list of the most likely diagnoses for the skin 
lesion (71). Taking another multi-class approach, Sitaru et al. have worked 
to classify body parts from dermatology clinical images, creating body 
distribution maps for different diagnoses (72).

While dermatology is a visual specialty that focuses on using 
visual cues for diagnoses, there are aspects of written data that can 
be used to aid in better understanding questions posed by the research 
community. Frequently, this written data is unstructured and 
freeform, using natural human language; to understand and interpret 
this data, one needs to implement NLP techniques. Researchers have 
used NLP methods to examine dermatology discussion forums on 
social media to understand patient perceptions of the field (73). 
Others conducted analyses of clinical notes in the electronic health 
records to identify specific topics that providers and patients discuss 
during clinical visits (18). This analysis provided insights into the lack 
of documentation of the disease’s impact on a patient’s life, which may 
ultimately affect management and treatment options.

In addition to understanding natural language, there are also 
recent advances in technologies that generate new text, including 
ChatGPT. This technology could be utilized to guide patients, aid 

clinicians with administrative tasks, educate trainees, etc. Groups are 
exploring ChatGPT’s ability to generate responses to patient inquiries 
about melanoma (74), create patient education guides for acne (75), 
and even triage surgical management of cutaneous neoplasms (76).

3.6. Human-AI hybrid models

Given all the innovation that is occurring at the intersection of AI 
and dermatology, the logical next step is to evaluate the performance of 
these AI algorithms against clinicians (77, 78). Esteva et al.’s landmark 
study was the first to compare a DL algorithm against dermatologists, 
showing that their model was able to match the performance of 21 
dermatologists in melanoma classification (16). Others have even 
shown that, in a group of 58 international dermatologists, many were 
outperformed by a CNN model (79). Because of the incredible ability 
of the technology to perform diagnostic tasks, many researchers are 
exploring ways to incorporate AI in a clinical workflow to help 
clinicians. There have now been multiple studies creating AI-based 
assistive tools to aid clinicians in interpreting clinical images. Groups 
have designed pipelines with the ultimate goal of real-time AI analysis 
of skin lesions in the clinics (77). Marchetti et al. prospectively assessed 
the diagnostic accuracy and utility of a melanoma AI algorithm used in 
real-world clinical settings to help determine the necessity of biopsying 
a suspicious lesion (33). Han et al. conducted a randomized trial and 
showed that AI can augment the accuracy of non-expert physicians in 
the real-world setting (80). With these smaller pilot studies showing 
promising results, the AI research community may be  looking to 
increase prospective studies and randomized trials to help further assess 
AI’s application in the real-world clinical setting.

4. Limitations and ethical 
considerations of AI in dermatology

AI research in dermatology is still in its infancy and encounters a 
myriad of challenges. From biases and lack of interpretability to 
regulatory hurdles and difficulty in integrating with existing clinical 
workflows, these issues are complex and need to be tackled before AI 
can become ubiquitous in clinical practice. Robust, transparent, and 
equitable AI algorithms are needed in order to truly enhance patient 
care without introducing new problems.

4.1. Datasets

AI algorithms learn by identifying features and patterns found in 
their training datasets and then use this knowledge to make future 
predictions. However, the presence of confounders in these datasets can 
influence the validity of AI algorithms. Confounders are features that 
may be correlated with the AI algorithm’s outcome through spurious 
associations. An illustrative example involves the presence of surgical 
pen markers or rulers on clinical dermatology images. As demonstrated 
in research by Winkler et al., lesions marked with surgical pen markers 
are more likely to be classified as malignant by the models (81). This 
finding is due to the fact that these markings are frequently used during 
biopsy procedures, which are typically performed on lesions suspected 
of malignancy. Therefore, an algorithm may incorrectly learn an 
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association between these markers and malignancy, when in fact the 
markings only indicate which lesions were biopsied, not necessarily 
those that are malignant. This example highlights the importance of 
identifying and managing confounders during the training phase of AI 
models to ensure their accuracy and validity.

Bias in training datasets can also inadvertently perpetuate pre-existing 
inequities in healthcare. In dermatology, this issue is particularly 
highlighted by early AI models trained on datasets that predominantly 
featured lighter Fitzpatrick skin types (I-IV). Daneshjou et al. has shown 
that some of these existing algorithms tend to underperform when 
assessed with images of darker Fitzpatrick skin types (V-VI) (15). 
Fortunately, fine-tuning these original algorithms with a dataset featuring 
darker Fitzpatrick skin types improved their performance, effectively 
closing the gap in performance between different skin types. Diverse and 
equitable data representation in the training dataset is primordial to 
ensure accurate and fair outputs in AI algorithms.

4.2. Image quality and image capturing 
modalities

Standardizing images in Dermatology AI research is important to 
preserve data quality. Images can originate from diverse sources, 
including various devices (e.g., iPhones, Android smartphones, or 
professional cameras) and with or without the help of diagnostic tools 
such as dermatoscopes (82). Additionally, the images may be captured 
under various settings (e.g., at home or in a clinic) and by different 
individuals (e.g., patients or healthcare providers). These factors result 
in a highly heterogeneous dataset comprising images of differing quality. 
Just as human interpretation can be  affected by image quality, AI 
algorithms are equally sensitive. Blurry images with poor lightning have 
been shown to negatively impact the performance of AI models (83). 
Simple image manipulations such as rotation can change the output of 
an algorithm (84). These considerations underscore the importance of 
establishing robust image capturing standards and Digital Imaging and 
Communications in Medicine (DICOM) standards similar to those in 
other medical fields such as cardiology and radiology (85).

4.3. Black box

The mechanisms behind traditional medical devices are often 
transparent and logical in nature. In contrast, AI algorithms appear 
more mysterious and impenetrable, like a “black box.” This 
phenomenon makes it difficult for humans to understand its reasoning 
process and to trust its outputs. Various techniques have been 
developed by researchers to tackle this problem including saliency 
maps (e.g., highlighting relevant areas on a picture) and content-based 
image retrieval (e.g., retrieving similar images from a database based 
on the query image). As AI penetrates high stake fields such as 
medicine, it becomes increasingly important to bring transparency 
and interpretability to AI models.

4.4. Implementation

Implementing AI into clinical practice presents a number of 
challenges that extend beyond technological complexity. The rapid 
advancement of AI technologies has created a complex landscape of 

medical-legal challenges regarding its use in the healthcare sector, 
spanning from concerns about patient consent and data privacy to 
liability in the event of AI-induced medical errors (86, 87). Scholars 
and professionals must work collaboratively to devise sound and 
comprehensive guidance to navigate the ethical and legal intricacies 
of integrating AI into our healthcare systems (87). Medical AI devices, 
by their very nature, will evolve as they learn from newly acquired 
data, a process that may continue long after receiving approval from 
regulatory bodies such as the Food and Drug Administration (FDA). 
This continual learning and adaptation, while a strength in many 
respects, also presents a challenge in ensuring the devices’ sustained 
reliability and performance over time. Without vigilant monitoring 
and a robust framework for ongoing validation, there may 
be unforeseen shifts in the accuracy or effectiveness of these tools, 
which could potentially negatively impact patient care. Moreover, 
there is a lack of high quality prospective randomized controlled trials 
of AI algorithms. While AI holds immense promise in dermatology, 
the absence of prospective trials hinders the validation of AI models 
in real-world clinical situations where there will be a diverse photo 
quality, image capturing modalities and demographically diverse 
population (33). For these reasons, an AI model validated in a hospital 
in Asia might not perform similarly in another hospital in North 
America. Wu et al. have shown that 126 out of 130 FDA approved 
medical AI devices were trained on retrospective data at the time of 
their approval (88). Most of the datasets used are not publicly available, 
thus preventing regulatory bodies and researchers from auditing their 
algorithms. Future AI models should undergo multi-site validation on 
a diverse and representative population in order to assess the 
generalizability of AI models. Furthermore, establishing trust among 
AI and various stakeholders will be vital in realizing AI’s full potential 
in the field. While model accuracy is very important, research has 
shown that dermatologists and patients value the potential of 
augmented intelligence in dermatology and also put a high priority on 
the human physician-patient relationship (89, 90).

5. Future directions and opportunities

5.1. LLMs and the advent of generalist 
medical AI

In recent months, advanced language models, in the form of 
chatbots, have gained popularity in medicine (4, 91–93). For 
dermatology, an extension of these models—Vision-Language Models 
(VLMs) and multi-modal models—offer immense potential. VLMs 
are large-scale models adept at associating visual inputs, such as 
images and videos, with text data (5). Their capabilities span generative 
tasks (creating new content), retrieval of information, and navigation. 
Recent studies underscore their impact on dermatology. For instance, 
Skin-GPT4, a VLM, can provide descriptions and diagnosis from 
clinical skin lesion photos (94). Further, research by Moor et al. and 
Tu et  al. show the accuracy of VLMs in medical visual question-
answering tasks (5, 24). In a related vein, Kim et al.’s study on FMs 
underscore the capacity of this new class of models to generate 
accurate skin images annotations (95).

The rapid advancements in this domain have the potential to 
usher a future of a generalist medical AI (96). These generalist models 
could be  capable of giving approximate diagnoses from clinical 
photos, generate treatment options, and offer deeper insights into 
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patient data by integrating demographics, visual inspection, and 
genetic data when applicable. Their potential applications can range 
from patient chatbots to triage tools (96). Additionally, the inclusion 
of genetic data could improve the diagnosis of orphan skin conditions. 
As dermatological datasets expand and computing power increases, 
FMs are on track to become more accurate and prove utility in 
dermatology. They could augment the practice of dermatology to 
provide more precise and holistic care.

5.2. Federated learning and the possibility 
of local models

Medical data, including skin images, are difficult to access largely 
due to privacy, legal, and the ethical risks associated with sharing 
health data. Currently, many dermatological images reside in data 
silos within healthcare institutions all over the world. Also, medical 
data is hard to collate, and often requires years of planning with 
significant costs (97). This is even more pronounced in resource-
limited settings, where there is less infrastructure to support collection 
and sharing of data. Since the DL model’s performance significantly 
improves with more diverse data (98, 99), new approaches are needed 
to expand model access to more distributed high-quality datasets.

Federated learning (FL) is a concept that enables DL models to 
be trained on different datasets without the need to leave their original 
locations (100). In FL, multiple collaborators can train a model on 
separate institutional datasets. It is an approach that can enable the 
preservation of data privacy, and it has already demonstrated similar 
performance—compared to centralizing the data—in fields like 
radiology and oncology (100). Although in some cases, there have 
been drawbacks in which the model sometimes memorizes the data 
inputs (101). Appropriately implemented, FL has the potential to 
enable fairer and more generalizable dermatology models by 
incorporating diverse demographics, thereby capturing the nuances 
in skin conditions across different societies. This is crucial in 
dermatology where the popular models significantly perform worse 
on underrepresented skin types of Fitzpatrick IV–VI (15).

Beyond FL, the concept of FMs introduces the possibility of local 
models. FMs have the distinct capability to learn from unlabeled data 
and can be adapted for a variety of downstream tasks without the 
necessity of specific training (96). This characteristic allows FMs to 
be fine-tuned with local data, from which they can glean insights and 
achieve impressive performance across diverse tasks. Given that the 
fine-tuning procedure is more cost-efficient than full-scale training 
(27), it amplifies the appeal of FMs within institutional contexts. 
Consequently, dermatology institutions can harness bespoke models 
attuned to their unique demographics and guidelines. While 
promising, progress towards this will require resolving data quality, 
aggregation, and infrastructural challenges. However, these new 
techniques could be  instrumental in building invaluable 
dermatology-AI models.

5.3. Improvements in model architecture 
and metrics evaluation

Recent years have witnessed notable advancements in the 
architectures of AI models, leading to enhanced performance across 

numerous medical tasks as previously discussed. As the industry 
attracts more investment and data generation surges, new 
architectures will likely further improve on existing tasks and expand 
into new areas. However, with these advancements arises a vital 
question: how should we holistically evaluate these models? While 
metrics like accuracy, area under the curve are common, 
comprehensive model evaluation will need to go beyond mere 
percentages. Clinical value needs to be demonstrated. As reported by 
Wornow et  al., standard evaluations are lacking for evaluating 
emerging models (102). In addition, many models fail to be evaluated 
on fairness and transparency metrics, and in many cases there’s no 
standard for this evaluation frameworks (103). Holistic model 
evaluation is likely to emerge in the near future as the desire for 
clinical integration increases. This could include uncertainty, model 
interpretability, and subpopulation analysis—which is important 
for dermatology.

Developing these types of model benchmarks will require 
collaboration among dermatologists, researchers, and patients. 
We  posit that soon, more robust consensus guidelines are likely 
to emerge.

5.4. Regulation, clinical utility, and usability 
in resource-poor settings

The current rapid model evolution underscores the pressing need 
for robust regulation (104). Such regulatory measures serve a two-fold 
purpose: Firstly, they shield the dermatology community from 
prematurely adopting under-tested models by establishing stringent 
benchmarks. Secondly, they foster trust, ensuring that AI tools 
resonate with the foundational clinical values practitioners hold dear. 
For AI models to achieve widespread adoption, especially in 
dermatology, they must be both reproducible and generalizable (105). 
As these models seek to bridge the dermatology access gap, especially 
in resource-limited settings, generalizability becomes even more 
pivotal. Also, standardizing the data collection process is another 
important factor towards optimizing model training and thus, 
performance. As highlighted in the position statement by the 
American Academy of Dermatology Augmented Intelligence working 
group, research in the dermatology-AI space needs to be directed 
towards prospective and randomized clinical trials that rigorously vet 
models before deployment (29, 106). Also, although most DL models 
are in the form of “black-boxes” (107), emerging FMs could further 
obfuscate their inner workings, making the issue of explainability 
vital. Research addressing explainability will be invaluable for model 
advancement and deployment.

6. Conclusion

Dermatology presents both opportunities and challenges to 
integrate AI into its daily workings. Whilst in its infancy, with many 
regulatory standards that are specific to the field yet to be developed, 
current trajectories of innovation and advance showcase the potential 
of AI is likely to emerge a critical element of the dermatologists 
workflow, with the need for the clinician to have a global 
understanding of its workings. Steering this ship towards a future of a 
transparent, fair, safe, and responsible dermatology-AI will be  an 
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interdisciplinary effort that involves the leadership of the 
dermatology community.
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Finetuning of GLIDE stable 
diffusion model for AI-based 
text-conditional image synthesis 
of dermoscopic images
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Basel, Basel, Switzerland

Background: The development of artificial intelligence (AI)-based algorithms and 
advances in medical domains rely on large datasets. A recent advancement in 
text-to-image generative AI is GLIDE (Guided Language to Image Diffusion for 
Generation and Editing). There are a number of representations available in the 
GLIDE model, but it has not been refined for medical applications.

Methods: For text-conditional image synthesis with classifier-free guidance, 
we have fine-tuned GLIDE using 10,015 dermoscopic images of seven diagnostic 
entities, including melanoma and melanocytic nevi. Photorealistic synthetic 
samples of each diagnostic entity were created by the algorithm. Following this, 
an experienced dermatologist reviewed 140 images (20 of each entity), with 10 
samples originating from artificial intelligence and 10 from original images from 
the dataset. The dermatologist classified the provided images according to the 
seven diagnostic entities. Additionally, the dermatologist was asked to indicate 
whether or not a particular image was created by AI. Further, we  trained a 
deep learning model to compare the diagnostic results of dermatologist versus 
machine for entity classification.

Results: The results indicate that the generated images possess varying degrees of 
quality and realism, with melanocytic nevi and melanoma having higher similarity 
to real images than other classes. The integration of synthetic images improved 
the classification performance of the model, resulting in higher accuracy and 
precision. The AI assessment showed superior classification performance 
compared to dermatologist.

Conclusion: Overall, the results highlight the potential of synthetic images for 
training and improving AI models in dermatology to overcome data scarcity.
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1. Introduction

In recent years, artificial intelligence (AI) has rapidly transformed 
various fields of medicine, bringing significant improvements to 
diagnostics, treatment, and patient care (1). With advances in machine 
learning and deep learning techniques, AI-based algorithms have 
shown great promise in revolutionizing medical practices, including 
the analysis of complex multimodal data and the automation of 
routine tasks (2).

Dermatology, in particular, has witnessed substantial benefits 
from AI applications. The development of AI algorithms for the 
analysis of dermoscopic images has led to improved diagnosis of 
various skin conditions, including skin cancer (3). These algorithms 
can analyze large volumes of dermoscopic images with a high degree 
of accuracy, enhancing the diagnostic capabilities of dermatologists 
and ultimately leading to better patient outcomes (4).

One of the key challenges in the development of AI algorithms for 
medical applications is the need for large, high-quality datasets. 
However, obtaining such datasets can be problematic due to privacy 
concerns, limited access to data, and the time-consuming nature of 
data acquisition (5). This data scarcity hinders the progress and 
effectiveness of AI algorithms, especially in fields like dermatology, 
where high-quality image data is crucial for accurate diagnosis 
and treatment.

To address the issue of data scarcity, recent research has focused 
on the development of stable diffusion models, such as GLIDE 
(Guided Language to Image Diffusion for Generation and Editing), 
for generating high-quality synthetic images (6, 7). Kather et  al. 
recently proposed to apply these algorithms to the medical field (8). 
These models can produce diverse and realistic images that can 
be  used to augment existing datasets, effectively overcoming the 
limitations imposed by data scarcity. The application of diffusion 
models like GLIDE has the potential to significantly advance the field 
of AI-based medical image analysis, particularly in dermatology.

The primary aim of this study is to explore the potential of the 
GLIDE model in generating synthetic dermoscopic images for use in 
AI algorithm development and dermatological education. By fine-
tuning the GLIDE model for medical applications, we  seek to 
contribute to the ongoing efforts to overcome data scarcity challenges 
and enhance the capabilities of AI algorithms in the field 
of dermatology.

2. Methods

2.1. GLIDE model fine-tuning

In this study, we fine-tuned the GLIDE model recently developed 
by Nichol et al. (6). This baseline framework serves as a foundation for 
guided language-to-image diffusion, which is optimized for generating 
high-quality synthetic images based on textual descriptions. We used 
the dermoscopic image dataset available through the Harvard 
Dataverse repository for the fine-tuning of the GLIDE model (9). This 
dataset consists of 10,015 dermoscopic images representing seven 
different diagnostic entities, i.e., Actinic Keratoses (Solar Keratoses) 
and Intraepithelial Carcinoma (Bowen’s disease), Basal cell carcinoma, 
Benign keratosis, Dermatofibroma, Melanocytic nevi, Melanoma, and 
Vascular skin lesions. Each image in the dataset is annotated with the 

corresponding diagnostic entity. Prior to fine-tuning the model, 
we preprocessed the dataset to ensure compatibility with the GLIDE 
model’s input requirements (image and text pairs). All parameters 
used can be found in the code provided in the data availability section. 
In summary, we used 128 × 128 images as input and trained the base 
model with a learning rate of 1e−5, Adam weight decay and 
unconditional probability set as zero, half-precision training set as 
false, batch size = 4, group sampling set as 8 for a total of 60 epochs.

We began the fine-tuning process by initializing the GLIDE model 
with the pre-trained weights provided by the original authors. As part 
of the GLIDE model fine-tuning, we also trained the upsampler, a 
neural network designed to increase the resolution of the generated 
images, with an upsampling factor of 4 to a maximum of 256 × 256 
output image size that is capable by the upsampler. The upsampler 
uses a combination of convolutional layers and residual connections 
to upscale the low-resolution images produced by the GLIDE model 
to a higher resolution while maintaining the quality and fidelity of the 
generated images. We initialized the upsampler with the pre-trained 
weights provided by the original authors.

2.2. Model evaluation

The evaluation of generated images was based on a combination 
of image quality metrics, including Structural Similarity Index (SSIM), 
Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), 
Frechet Inception Distance (FID), and Inception Score (IS). Ground 
truth images and their corresponding synthetic images were loaded. 
The images were paired and sorted into different categories (entities) 
based on the information stored in text files.

The InceptionV3 model, pre-trained on ImageNet, was initialized 
with average pooling and without the top layer. The model was used 
to calculate FID and IS scores. For each category, the following metrics 
were calculated for the image pairs:

 • SSIM: calculated separately for each color channel and averaged. 
This metric quantifies the structural similarity between the real 
and synthetic images.

 • PSNR: a metric that measures the ratio between the maximum 
possible pixel value and the mean squared error (MSE) of the real 
and synthetic images.

 • MSE: the average squared difference between the corresponding 
pixels of the real and synthetic images.

 • FID: calculated using the InceptionV3 model to obtain feature 
activations for both real and synthetic images. FID quantifies the 
similarity between the distributions of the real and synthetic 
image features.

 • IS: based on the feature activations obtained from the 
InceptionV3 model, IS measures the quality and diversity of the 
synthetic images.

The SSIM, PSNR, MSE, FID, and IS scores were then averaged 
over all the image pairs within a category. The results were obtained 
for each category. Further, the average metrics for each category were 
combined to obtain the overall SSIM, PSNR, MSE, FID, and IS scores, 
providing a comprehensive assessment of the generated images’ 
quality. This evaluation approach ensures a thorough assessment of 
the generated images’ quality and similarity to the ground truth, 
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considering various aspects such as structural similarity, pixel-level 
differences, feature distributions, and the diversity of the 
generated images.

2.3. Dermatologist assessment

After completing the fine-tuning process for the GLIDE model 
and the upsampler and generation of the synthetic images, an 
experienced dermatologist (>10 years of dermoscopy experience) 
assessed the synthetic and ground truth images (blinded evaluation). 
For each of the seven diagnostic entities, we randomly selected 10 
synthetic images based on textual descriptions, resulting in a total of 
70 generated images. Additionally, we randomly selected 70 original 
(ground truth) images from the dataset for a total of 140 images to 
be evaluated (10 per entity).

To assess the quality and realism of the generated images, 
we conducted a blinded evaluation with a board-certified dermatologist. 
Each image was resized to a uniform size of 256 × 256 pixels to maintain 
comparability. The dermatologist was provided with the 140 images (70 
synthetic and 70 original) in a randomized order and asked to perform 
two tasks. First, the dermatologist was asked to classify each image 
according to the seven diagnostic entities represented in the dataset. 
Second, the dermatologist was asked to identify whether the image was 
generated by the AI model or was an original image from the dataset. 
This evaluation aimed to determine the ability of the dermatologist to 
distinguish between synthetic and original images and assess the 
diagnostic accuracy of the generated images.

To evaluate the dermatologist’s assessment of AI-generated images 
and original images, we conducted a comprehensive analysis using 
various performance metrics, including confusion matrices, 
classification reports, and receiver operating characteristic (ROC) 
curves. The dermatologist’s assessments were extracted from an Excel 
file, which contains the true entity labels and their respective 
predictions. In addition, the file also contains a column indicating 
whether the image assessed was classified as AI-generated or original. 
We  then computed the classification report for AI-generated vs. 
original images, followed by the entity classification report for the 
entire dataset. Moreover, we performed an ablation study to compare 
the performance of the GLIDE model on the original, the synthetic 
and the combined dataset. To further explore the performance of the 
dermatologist’s assessment in different subsets, we divided the dataset 
into AI-generated and original subsets and computed the classification 
reports for each. Confusion matrices were generated for both entity 
classification and AI-generated vs. original image classification, 
providing a visual representation of the performance of the 
dermatologist’s assessment. These matrices were plotted with the 
x-axis representing the predicted labels and the y-axis representing the 
true labels. To assess the discriminative ability of the dermatologist’s 
assessment, we computed the ROC curves and area under the curve 
(AUC) values for each entity. The true and predicted labels were 
binarized, and the ROC curves were plotted for each class, with the 
false-positive rate on the x-axis and the true-positive rate on the 
y-axis. Additionally, the ROC curve for AI-generated vs. original 
images was computed and plotted to compare the performance of the 
dermatologist’s assessment in distinguishing between the two types 
of images.

2.4. Deep learning assessment

To assess the deep learning model’s performance in adequately 
classifying the dermoscopic images to their respective entities, 
we  designed a Convolutional Neural Network (CNN) for the 
classification. We loaded the dataset of images and their respective 
labels (10,015 original and 10,015 synthetic images). The images were 
then normalized by dividing the pixel values by 255, and the labels 
were encoded using a LabelEncoder. We  divided the dataset into 
training and testing sets with an 80–20% ratio. We created a sequential 
CNN model with three convolutional layers, each followed by a 
max-pooling layer. After the convolutional layers, we added a flatten 
layer, a dense layer with 64 units and a ReLU activation function, and 
a dropout layer with a rate of 0.5. The output layer consisted of a dense 
layer with 7 units (assuming there are 7 classes) and a softmax 
activation function. The model was compiled using the Adam 
optimizer, sparse categorical cross-entropy loss, and accuracy as the 
performance metric. We applied data augmentation to the training 
images using the ImageDataGenerator class. The augmentation 
techniques included rotation, width and height shift, zoom, and 
horizontal flip. We  then trained the model using the augmented 
training images and their respective labels. We  also employed an 
EarlyStopping callback with a validation loss monitor, a patience of 5, 
and restoring the best weights. The model was trained for a maximum 
of 100 epochs with a batch size of 32. For performance visualization, 
we plotted the training and validation loss curves to visualize the 
model’s performance during the training process. The x-axis 
represents the epochs, while the y-axis represents the loss values. 
We evaluated the model’s performance using the test set. We computed 
the classification report and plotted the confusion matrix, with the 
x-axis representing the predicted labels and the y-axis representing the 
true labels.

2.5. Metrics calculation, programming 
framework, and web application

All analyses were performed in Python. The following metrics 
were calculated for the assessment of the dermatologist and AI for 
classifying the entities:

Precision: The proportion of true positive predictions among all 
positive predictions made by the classifier.

 • Recall: the proportion of true positive predictions among all 
actual positive instances in the dataset.

 • F1-score: the harmonic mean of precision and recall, providing 
a single metric that balances both aspects of the 
classifier’s performance.

 • Accuracy: the proportion of correct predictions made by the 
classifier among all predictions.

 • Macro avg.: the average of a particular metric (e.g., precision, 
recall, or f1-score) calculated separately for each class and then 
averaged without considering class imbalances.

 • Weighted avg.: the average of a particular metric calculated 
separately for each class and then averaged, with each class’s 
contribution to the average weighted by its support (i.e., number 
of occurrences).
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In addition, we developed a free web application for dermoscopic 
image generation of the 7 entities.1 The web application uses a CPU 
for image generation, which can take up to 20 min per image. With a 
high-end GPU, image generation could be significantly reduced to 
under 1 min, resulting in a large set of synthetic images generated per 
day. Further, we uploaded the weights of the finetuned model and the 
upsampler for other work groups to allow them to proceed with 
training utilizing more extensive and diverse datasets (see data 
availability section).

3. Results

3.1. Evaluation metrics for synthetic images

The synthetic image generation model demonstrated varying 
degrees of performance across different skin lesion types. For 
melanoma and melanocytic nevi lesions, the model seemed to 
perform better, while other lesion types such as dermatofibroma and 
vascular lesions require further improvements.

Specifically, the synthetic images for melanoma and melanocytic 
nevi lesions exhibited a reasonable degree of similarity to the original 
images. On the other hand, actinic keratoses and intraepithelial 
carcinoma/Bowen’s disease lesions demonstrated a lower structural 
similarity between the synthetic and original images. The synthetic 
images for benign keratosis-like lesions, basal cell carcinoma, and 
dermatofibroma lesions showed moderate to low similarity.

The average metrics for all lesion types suggest that the model can 
generally reproduce the structural and visual features of the original 

1 https://huggingface.co/spaces/Freiburg-AI-Research/

dermoscopic_image_generation

lesions to a fair extent, albeit with room for further refinement. For a 
more detailed examination of the performance metrics such as SSIM, 
PSNR, MSE, FID, and IS, please refer to Table 1, which compiles the 
specific values for each lesion type, providing a comprehensive 
overview of the synthetic image generation model’s performance 
across various skin lesion types.

It is worth noting that the quality of the generated images varied 
across different categories of dermatological lesions. For instance, 
synthetic melanoma images had a higher SSIM and lower FID compared 
to dermatofibroma images, indicating better structural similarity and 
distributional similarity for melanoma images. Conversely, synthetic 
basal cell carcinoma images showed the highest PSNR, indicating a 
higher image quality in terms of noise. Table  1 shows the metrics 
obtained for the evaluation. Figure 1 illustrates a random set of original 
and synthetic images. In the visual analysis of a random subset of the 7 
entities (7 original and 7 synthetic images), certain patterns and 
differences become apparent. Dermatofibroma synthetic images exhibit 
„science fiction-like “structures, which could be attributed to the fact that 
original dermatofibroma lesions occasionally present with similar 
appearances, and the baseline model was trained on such structures. This 
observation suggests that the synthetic image generation model might 
have captured certain unique features of dermatofibroma lesions, 
resulting in these unusual structures. Also, color-intense images, such as 
those depicting vascular lesions, appear to have an artificial quality. This 
could be due to the challenges faced by the synthetic image generation 
model in accurately reproducing the intricate color patterns and textures 
found in vascular lesions. In contrast, the synthetic images of the other 
entities exhibit a higher degree of realism. This observation might 
be indicative of the model’s better performance in capturing the essential 
features of these lesions, such as color, texture, and shape. The more 
realistic appearance of melanocytic nevi, melanoma, and basal carcinoma 
images could potentially be  beneficial in the context of clinical 
applications considering their high incidence. In conclusion, the deep 
learning model used to generate synthetic medical images demonstrated 
varying performance across different categories of dermatological lesions.

3.2. Dermatologist’s assessment

The dermatologist demonstrated a high level of accuracy in 
distinguishing AI-generated images from original images. The overall 
accuracy in this classification task reached 96%. A balanced 
performance with a precision of 0.99 and 0.95, and recall of 0.94 and 
0.99 was reached for original images and AI-generated images, 
respectively. The macro-average and weighted average f1-scores were 
0.96 for both.

In the task of classifying skin lesions, the dermatologist achieved 
an overall accuracy of 64% in the combined dataset. The performance 
varied across the different classes, with class 7 (precision: 0.82, recall: 
0.90) achieving the highest f1-score of 0.86, and class 2 (precision: 
0.62, recall: 0.50) exhibiting the lowest f1-score of 0.56. The macro-
average and weighted average f1-scores were both 0.64.

When evaluating the AI-generated and original subsets separately, 
the dermatologist showed a markedly higher performance in the 
AI-generated subset. The overall accuracy for the AI-generated subset 
was 89%, with macro-average and weighted average f1-scores of 0.88 
and 0.89, respectively. In contrast, the overall accuracy for the original 
subset was 40%, with macro-average and weighted average f1-scores of 

TABLE 1 Evaluation metrics for the fine-tuned GLIDE model.

Dermatological 
lesion category

SSIM PSNR MSE FID IS

Melanoma 0.2186 60.1854 0.0698 115.1804 1.3630

Melanocytic nevi 0.2229 61.0407 0.0604 99.2504 1.4739

Actinic keratoses and 

intraepithelial 

carcinoma/Bowen’s 

disease

0.0612 62.2664 0.0435 174.9675 1.2991

Benign keratosis-like 

lesions (solar lentigines/

seborrheic keratoses 

and lichen-planus like 

keratoses)

0.1174 61.7934 0.0506 203.4957 1.3379

Basal cell carcinoma 0.1347 64.2892 0.0289 189.7611 1.3193

Dermatofibroma 0.0873 63.0862 0.0358 275.1849 1.2379

Vascular lesions 

(angiomas)

0.1589 60.1402 0.0785 252.0546 1.3672

Overall Metrics 0.1430 61.8288 0.0525 187.1278 1.3426

SSIM, structural similarity index (SSIM); PSNR, peak signal-to-noise ratio; MSE, mean 
squared error; FID, Fréchet inception distance; IS, inception score.
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0.37 and 0.40, respectively. The results indicate that the dermatologist 
was highly accurate in distinguishing between AI-generated and 
original images. The performance in entity classification was moderate, 
with a notable difference in accuracy between the AI-generated and 
original subsets. The ROC curves for the dermatologist assessment of 
entities and AI versus the original are shown in Figure 2.

3.3. Comparison AI versus dermatologist 
for dermoscopic entity classification

Table 2 shows the performance metrics of AI and dermatologist 
for classifying the dermoscopic entities. The AI model achieved an 
overall accuracy of 0.86, with varying performance across different 

lesion types. The model demonstrated high precision and recall scores 
for some lesion classes, such as “benign keratosis-like lesions (solar 
lentigines/seborrheic keratoses and lichen-planus like keratoses)” 
(precision = 0.87, recall = 0.97), while lower scores were observed for 
classes such as “Actinic keratoses and intraepithelial carcinoma/Bowen 
disease” (precision = 0.91, recall = 0.55).

The dermatologist achieved an overall accuracy of 0.64, with 
precision and recall scores also varying across lesion classes. The 
highest precision and recall scores were observed for “vascular lesions” 
(precision = 0.82, recall = 0.90), while the lowest scores were seen for 
“benign keratosis-like lesions (solar lentigines/seborrheic keratoses 
and lichen-planus like keratoses)” (precision = 0.46, recall = 0.85).

Comparing the AI model assessment to the dermatologist 
assessment, the AI model demonstrated a higher overall accuracy 

FIGURE 1

Illustration of 7 random original and AI-generated images for the entities. Class 1: melanoma; Class 2: melanocytic nevi; Class 3: Actinic keratoses and 
intraepithelial carcinoma/Bowen disease; Class 4: benign keratosis-like lesions (solar lentigines/seborrheic keratoses and lichen-planus like keratoses); 
Class 5: basal cell carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.

FIGURE 2

Receiver operating characteristic curves (ROC) for the dermatologist assessment of entities (A) and AI versus original (B). Class 1: melanoma; Class 2: 
melanocytic nevi; Class 3: Actinic keratoses and intraepithelial carcinoma/Bowen disease; Class 4: benign keratosis-like lesions (solar lentigines/
seborrheic keratoses and lichen-planus like keratoses); Class 5: basal cell carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.
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(0.86) compared to the dermatologist (0.64). This suggests that the AI 
model can provide a reliable alternative for the classification of skin 
lesion entities, potentially assisting dermatologists in their clinical 
practice. However, it is important to note that the performance of both 
the AI model and dermatologist varied across different lesion types. 
The confusion matrices for the classification of entities for AI and 
dermatologist are presented in Supplementary Figures S1, S2.

3.4. Ablation study on GLIDE model 
utilizing original, synthetic, and combined 
data

Table  3 showcases an ablation study that compares the 
classification performance between models utilizing original images, 
synthetic images, and a combination of both for classifying 
dermoscopic entities. The specific effects on different lesion types are 
detailed below:

The model employing only original images achieved an overall 
accuracy of 0.65. Performance varied significantly across lesion 
classes, with relatively lower scores for “benign keratosis-like lesions” 
(Class 4, precision = 0.30, recall = 0.23) and higher scores for “basal cell 
carcinoma” (Class 5, precision = 0.70, recall = 0.75).

The synthetic-only approach yielded an overall accuracy of 0.80. 
Notable improvements were observed in classes such as “melanoma” 
(Class 1, precision = 0.75, recall = 0.65) and “vascular lesions” (Class 7, 
precision = 0.70, recall = 0.60).

By integrating synthetic and original images, the model reached an 
overall accuracy of 0.86. This combined approach enhanced precision 
and recall across all classes, with remarkable performance in “melanoma” 
(Class 1, precision = 0.81, recall = 0.60), and “vascular lesions” (Class 7, 
precision = 0.96, recall = 0.76). “Benign keratosis-like lesions” (Class 4) 
also saw a considerable boost (precision = 0.91, recall = 0.55).

4. Discussion

This study demonstrated the successful fine-tuning of GLIDE on 
10,015 dermoscopic images to generate synthetic dermoscopic images, 
addressing data scarcity in dermatology research and AI applications. 

The results indicate that the generated images possess varying degrees of 
quality and realism, with melanocytic nevi and melanoma having higher 
similarity to real images than other classes. The AI assessment showed 
superior classification performance compared to the dermatologist, 
highlighting the potential of synthetic images for training and improving 
AI models in dermatology to overcome data scarcity. Additionally, the 
ablation study conducted on the GLIDE model revealed that combining 
original and synthetic data provided enhanced performance across all 
classes, with particularly notable improvements in precision and recall 
for challenging classes such as Actinic keratoses and intraepithelial 
carcinoma/Bowen disease. The combined approach yielded an accuracy 
of 0.86, outperforming the original-only and synthetic-only models, 
reinforcing the value of leveraging both original and synthetic data in 
AI-driven dermatology applications.

The generation of synthetic dermoscopic images has the potential 
to revolutionize dermatology research and AI applications by 
providing a large, diverse dataset for training AI models (8). The 
results of this study indicate that the fine-tuning of GLIDE can 
produce images with varying degrees of realism, which could 
be further improved through iterative optimization, diverse datasets, 
and by incorporating domain-specific knowledge (8, 10). The 
improved realism in the generated images could contribute to the 
development of more accurate and robust AI models for skin lesion 
classification, diagnosis, and treatment planning. Furthermore, the use 
of synthetic images can facilitate the development of AI models that 
are less susceptible to overfitting, given the increased dataset size and 
diversity. This could lead to AI models with better generalization 
capabilities, translating to improved performance in real-world 
clinical settings (11). Synthetic dermoscopic images could also enable 
researchers to explore rare or underrepresented skin conditions, 
enhancing the understanding and management of these conditions. 
Additionally, the generated synthetic images could be  used for 
education and training purposes in dermatology. Medical students, 
residents, and dermatologists could benefit from exposure to a diverse 
range of images for various skin conditions, improving their diagnostic 
skills and knowledge.

Recent advancements in text-conditional image models have 
enabled the synthesis of images based on free-form textual prompts, 
generating semantically plausible compositions with unrelated objects 
(12–14). However, these models have not yet reached the capability of 

TABLE 2 Classification metrics for AI assessment and dermatologist (“Derm.”) Assessment.

Class AI Precision AI Recall AI F1-Score Derm. Precision Derm. Recall Derm.  
F1-Score

1 0.81 0.60 0.69 0.67 0.70 0.68

2 0.83 0.70 0.76 0.62 0.50 0.56

3 0.80 0.63 0.71 0.60 0.60 0.60

4 0.91 0.55 0.69 0.46 0.85 0.60

5 0.87 0.97 0.92 0.62 0.40 0.48

6 0.82 0.61 0.70 1.00 0.55 0.71

7 0.96 0.76 0.85 0.82 0.90 0.86

Accuracy 0.86 0.64

Macro Avg 0.86 0.69 0.76 0.68 0.64 0.64

Weighted Avg 0.86 0.86 0.85 0.68 0.64 0.64

The table compares the performance of the AI assessment and the dermatologist assessment in classifying the entities. The metrics presented include precision, recall, f1-score, accuracy, macro 
average (macro avg), and weighted average (weighted avg). Class 1: melanoma; Class 2: melanocytic nevi; Class 3: Actinic keratoses and intraepithelial carcinoma/Bowen disease; Class 4: 
benign keratosis-like lesions (solar lentigines/seborrheic keratoses and lichen-planus like keratoses); Class 5: basal cell carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.
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generating images with full photorealism that accurately represent all 
aspects of the corresponding textual descriptions. In contrast, 
unconditional image models have shown success in synthesizing 
photorealistic images (15, 16), occasionally producing images 
indistinguishable from real ones by humans (17). Diffusion models 
(18) have emerged as a promising subset of generative models, 
achieving state-of-the-art sample quality in various image generation 
benchmarks (6, 19). Dhariwal and Nichol introduced classifier 
guidance to diffusion models for photorealistic class-conditional 
image generation (19). The technique involves training a classifier on 
noised images and using its gradients during the diffusion sampling 
process to guide the sample toward the desired label. Ho and Salimans 
achieved comparable results using classifier-free guidance, which 
interpolates between predictions from a diffusion model with and 
without labels (20).

Inspired by the photorealistic sample generation capabilities of 
guided diffusion models and the versatility of text-to-image models 
in handling free-form prompts, we applied guided diffusion to text-
conditional image synthesis in the medical field for the first time. 
Nichols et  al. trained a 3.5 billion parameter diffusion model 
conditioned on natural language descriptions using a text encoder 
which we used as the baseline model. The text-to-image model, 
which employs classifier-free guidance, generates photorealistic 
samples demonstrating a broad spectrum of world knowledge. 
Human judges preferred the GLIDE samples to those from DALL-E 
87% of the time when evaluating photorealism and 69% of the time 
when assessing caption similarity (12). When further trained based 
on our finetuned model and considering a larger subset for selected 
entities, this approach holds great promise to advance the field of 
AI-based dermatology.

Despite the promising results, this study has some limitations. 
First, the quality of synthetic images varies across different skin 
conditions, with some classes exhibiting lower similarity to real 
images. This could potentially affect the AI model’s performance when 
trained on these synthetic images. Future research should aim to 
refine the image generation process for some entities and include a 

larger subset for these entities to ensure more consistent quality across 
all classes. Second, the AI assessment results were obtained using a 
single deep learning model that was compared to the dermatologist’s 
assessment, which might not represent the full potential of AI models 
in dermatology. Evaluating the performance of multiple AI models on 
the synthetic dataset could provide a more comprehensive 
understanding of the applicability of synthetic images in AI-based 
dermatology research. Moreover, the current study only incorporated 
a single dermatologist for image evaluations. Future research should 
involve a greater number of dermatologists with diverse expertise in 
dermoscopic image assessments. Lastly, the study only considered the 
use of synthetic images for skin lesion classification. The potential 
applications of synthetic images extend to other dermatology-related 
tasks, such as segmentation, detection, and treatment planning, which 
were not explored in this study. Furthermore, our study, though 
meticulous, presents a number of limitations inherent to the use of the 
HAM10000 dataset. First, it is noteworthy that all images in this 
dataset are captured through dermatoscopy, which does not exactly 
replicate the visual conditions under which dermatologists typically 
examine skin lesions. Dermatologists conventionally use 
dermatoscopy primarily for the differential diagnosis of melanocytic 
naevi and malignant melanoma, whereas the other types of lesions are 
generally examined without such technical aids. Consequently, the 
dataset, to some extent, offers an artificial advantage to our AI model 
that might not entirely correspond to real-world clinical settings. 
Second, while more than half of the lesions in the HAM10000 dataset 
are confirmed via histopathology, the remaining cases’ diagnoses are 
established through follow-up examinations, expert consensus, or 
in-vivo confocal microscopy. Although these are recognized and valid 
methods for diagnosing skin lesions, the absence of histopathological 
confirmation in a proportion of the cases introduces a certain level of 
uncertainty. As histopathology is considered the gold standard for 
diagnosing skin conditions, this gap between the diagnosis methods 
could potentially influence the generalizability of our findings. In light 
of these considerations, while the HAM10000 dataset presents a 
valuable resource for developing and testing AI models for diagnosing 

TABLE 3 Classification metrics for the ablation study comparing GLIDE’s model performance on original data, synthetic data, and the combined 
dataset.

Class Combined Original only Synthetic only

AI Precision AI Recall AI F1-
Score

AI Precision AI Recall AI F1-
Score

AI Precision AI Recall AI F1-
Score

1 0.81 0.60 0.69 0.40 0.35 0.37 0.75 0.65 0.70

2 0.83 0.70 0.76 0.60 0.55 0.57 0.78 0.70 0.74

3 0.80 0.63 0.71 0.58 0.50 0.54 0.80 0.75 0.77

4 0.91 0.55 0.69 0.30 0.23 0.26 0.70 0.60 0.65

5 0.87 0.97 0.92 0.70 0.75 0.73 0.85 0.87 0.86

6 0.82 0.61 0.70 0.50 0.40 0.44 0.76 0.68 0.72

7 0.96 0.76 0.85 0.60 0.50 0.55 0.70 0.60 0.65

Accuracy 0.86 0.65 0.80

Macro Avg 0.86 0.69 0.76 0.49 0.73

Weighted 

Avg
0.86 0.86 0.85 0.64 0.80

The metrics presented include precision, recall, f1-score, accuracy, macro average (macro avg), and weighted average (weighted avg). Class 1: melanoma; Class 2: melanocytic nevi; Class 3: 
Actinic keratoses and intraepithelial carcinoma/Bowen disease; Class 4: benign keratosis-like lesions (solar lentigines/seborrheic keratoses and lichen-planus like keratoses); Class 5: basal cell 
carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.
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skin lesions, future studies might benefit from incorporating natural 
lesion images and increasing the proportion of lesions confirmed 
through histopathology to further enhance the model’s real-world 
applicability and reliability.

In conclusion, this study demonstrates the potential of fine-tuning 
GLIDE to generate synthetic dermoscopic images for addressing data 
scarcity in dermatology research and AI applications. The results show 
promise for the use of synthetic images in the training and evaluation 
of AI models, with implications for improving diagnosis, treatment 
planning, and education in dermatology. This work highlights the 
potential of combining text-to-image and guided diffusion techniques 
to generate high-quality synthetic dermoscopic images, providing an 
innovative approach to addressing data scarcity in dermatology 
research and AI applications. Further research is necessary to refine 
the image generation process, evaluate the performance of multiple AI 
models, and explore additional applications of synthetic images 
in dermatology.
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Introduction: Deep Ensemble for Recognition of Malignancy (DERM) is an

artificial intelligence as a medical device (AIaMD) tool for skin lesion assessment.

Methods: We report prospective real-world performance from its deployment

within skin cancer pathways at two National Health Service hospitals (UK)

between July 2021 and October 2022.

Results: A total of 14,500 cases were seen, including patients 18–100 years old

with Fitzpatrick skin types I–VI represented. Based on 8,571 lesions assessed

by DERM with confirmed outcomes, versions A and B demonstrated very high

sensitivity for detecting melanoma (95.0–100.0%) or malignancy (96.0–100.0%).

Benign lesion specificity was 40.7–49.4% (DERM-vA) and 70.1–73.4% (DERM-vB).

DERM identified 15.0–31.0% of cases as eligible for discharge.

Discussion: We show DERM performance in-line with sensitivity targets and

pre-marketing authorisation research, and it reduced the caseload for hospital

specialists in two pathways. Based on our experience we offer suggestions on

key elements of post-market surveillance for AIaMDs.

KEYWORDS

artificial intelligence, skin cancer, AI for skin cancer, AI as a medical device, DERM, deep
ensemble for the recognition of malignancy, Skin Analytics

Introduction

One in every three cancers diagnosed is skin cancer (1). Melanoma is responsible
for 90% of skin cancer deaths despite accounting for only ∼1% of skin cancers (2). In
the United Kingdom (UK), suspected cancer cases are referred to the urgent 2-week-wait
(2WW) pathway, in which guidelines suggest that the patient should be seen by a specialist
within 2 weeks. Setting this target has been shown to improve the average 5-year melanoma
survival by 20%, when compared to historical data (3); however UK cancer registry data
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shows that the number of 2WW referrals for skin cancer has
increased by more than 200% over the last decade, from 159,430
patients in 2009/2010 to 506,456 patients in 2019/2020 (4), leading
to significant access pressures and challenges to achieve standards
for timely assessment. Adding to the challenge, approximately
25% of melanoma are found in routine (non-urgent) dermatology
referrals or follow-up appointments (5). While in 2009/2010,
>94% of patients referred for routine dermatology assessment
were seen within the target of 18 weeks, only 80% were seen
within this target in 2019/20. Increased patient backlogs since
the COVID-19 pandemic mean waiting times have increased with
routine clinics often cancelled in order to accommodate additional
2WW activity, leading to downstream delays in the skin cancers,
including melanomas, presenting in the routine pathway (6). The
increase in skin cancer referrals is expected to continue to rise
in the coming decades across Europe and the USA due to ageing
populations (7).

Artificial intelligence as a medical device (AIaMD) has the
potential to help increase workflow efficiency through triage and
supporting clinical decisions in skin cancer pathways (8–13);
however, evidence for AIaMDs has largely reflected performance
using retrospective data (13–16). There remains the need
to understand how appropriately regulated AIaMD platforms
perform in real-world clinical settings, including how algorithmic
improvements or optimisation for different patient populations
affects performance over time. Implementing AI systems in real-
world settings reveal often-unforeseen complexities (17). Post-
market surveillance (PMS) of medical devices, including AIaMDs,
is mandated by regulatory agencies, including the UK Medicines
and Healthcare Regulatory Agency (MHRA) and the United States
Food and Drug Administration (FDA), but these bodies do not
stipulate specific approaches on what data should be collected
with what frequency, how it should be analysed, or what auditing
and quality control processes should take place (Figure 1) (18–
20).

Deep Ensemble for Recognition of Malignancy (DERM;
Skin Analytics, London, UK) is an AIaMD that uses deep
learning techniques to assess dermoscopic images of skin lesions,
identify features associated with malignancies and support referral
decisions for patients ≥18 years (8–13). DERM is intended to
be used for the screening, triage, and assessment of skin lesions,
and outputs a suggested diagnosis and referral recommendation.
DERM can output a suggested diagnosis of melanoma, squamous
cell carcinoma (SCC), basal cell carcinoma (BCC), intraepidermal
carcinoma (IEC), actinic keratosis, atypical naevus, or benign,
alongside a referral recommendation as agreed for the pathway
with local clinical teams. In June 2022 it became the first and
only AIaMD for dermatology to be certified as a Class IIa UKCA
medical device after an in-depth assessment of Skin Analytics’
quality management system and technical documentation by a
UK approved body (SGS United Kingdom Ltd, Leicester, UK)
designated by the MHRA (previously DERM was a Class I CE
device). This manuscript describes the real-world deployment of
DERM in clinical practice at two National Health Service (NHS)
Trusts in the UK and proposes an approach for the prospective
collection and presentation of real-world PMS data from AIaMDs
deployed within clinical pathways for ongoing post-deployment
monitoring and quality control.

Materials and methods

Study type and location

The analysis is part of the ongoing PMS protocol for DERM
to assess its performance in the identification of malignant skin
lesions. The data was collected for the service evaluation of DERM
commercial deployments in line with its approved intended use.
Consistent with medical device regulations, the analysis did not
require additional institutional ethics committee approval. All data
were collected and analysed according to good clinical practice
guidelines and the relevant national laws. All participating patients
provided informed consent for their assessment using DERM as
part of the service provided by Skin Analytics (data used for case-
level analysis), and nearly all (96.7%) provided additional written
informed consent for their data to be used for purposes of research
and education (data used in the lesion-level analysis).

The data were collected from commercial deployments at
University Hospitals Birmingham NHS Foundation Trust (UHB)
and West Suffolk NHS Foundation Trust (WSFT). UHB is a large
Trust in England treating over 2.8 million patients each year (21).
WSFT serves a smaller and predominantly rural geographical area
with a population of around 280,000 (22).

DERM software deployment

During the time covered by the analysis, there were two
versions of DERM deployed and we refer to them as DERM-version
A (DERM-vA) (July 2021 to April 2022), and version B (DERM-vB)
(April 2022 to October 2022). Each version used fixed sensitivity
thresholds in order to meet sensitivity targets of at least 95%
for melanoma and squamous cell carcinoma (SCC) and 90% for
basal cell carcinoma (BCC), intraepidermal carcinoma (IEC) and
actinic keratosis. The decision to update to DERM-vB was based
on confidence in the revised version’s ability to maintain target
threshold sensitivity for malignancy diagnoses while increasing
specificity for benign lesions.

Urgent skin cancer referral pathway

Patient selection for DERM deployment
Figure 2 shows the deployment workflow at UHB and WSFT

where DERM was used as a triage tool within the urgent 2WW
referral pathway. The referral pathways incorporating DERM
were designed in collaboration with the clinical teams at both
hospitals and consistent with regulated intended use. Patients
with suspicious skin lesions were referred by their general
practitioner (GP) to attend a teledermatology hub where a
clinical photographer or healthcare assistant (CP/HCA) captured
standardised photographic images of their lesion(s) and recorded
their medical history. Fitzpatrick skin type was optionally assessed
and recorded by the CPs/HCAs in conjunction with the patient
(23). The imaging team members were also responsible for
recording patient consent and assessing whether the patient’s
lesions were suitable for assessment by DERM according to its
intended use (Table 1).
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FIGURE 1

Current post-market surveillance requirements for AIaMDs (11, 12). AIaMD, artificial intelligence as a medical device; PMS, post-market surveillance;
PMCF, post-market clinical follow-up.

FIGURE 2

Post-referral pathway for DERM. 2WW, 2-week-wait; AIaMD, artificial intelligence as a medical device; DERM, deep ensemble for recognition of
malignancy.

TABLE 1 Eligibility criteria for assessment by DERM according to its intended use.

Inclusions Exclusions

Lesions are eligible to be assessed by DERM if they are:
• Located on adults =18 years
• Between 1 and 3 suspicious lesions which are not larger

than the dermatoscopic lens (=15 mm)

• Patients <18 years
• Skin lesions that are not potentially malignant (e.g., rashes, eczema, infectious diseases, lupus)
• Skin lesions requiring monitoring for treatment response
• Skin lesions that require staging of disease
• Non-dermoscopic images of skin lesions
• Open ulcerated skin lesions
• Skin lesions too large to be entirely imaged within the dermoscopic device (=15 mm)
• Lesions obscured by hair, tattoos or scars
• Lesions which are subungual, or on mucosal, genital or palmoplantar surfaces
• Lesions that have been previously biopsied

DERM, deep ensemble for recognition of malignancy.

Lesion imaging
Patients had locating, macroscopic and dermoscopic digital

images of their lesion(s) captured by CPs/HCAs using a
smartphone (iPhone 6S or 11; Apple, CA, USA) and polarised

dermoscopic lens attachment (Dermlite DL1 basic, Schuco, UK).
For some patients, additional images were captured using a
digital single-lens reflex camera (DSLR) with a dermoscopic lens
attachment for clinical use (the DSLR images were not assessed

Frontiers in Medicine 03 frontiersin.org59

https://doi.org/10.3389/fmed.2023.1264846
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1264846 October 31, 2023 Time: 11:34 # 4

Thomas et al. 10.3389/fmed.2023.1264846

by DERM). Routine post-market auditing identified that a small
number of images were captured in error using an unapproved
non-polarised dermoscopy tool; however, none of these were
excluded from this analysis.

DERM assessment and triage recommendation
The dermoscopic image of eligible patients’ lesion(s) was

assessed by DERM, which provided a suggested diagnosis and
corresponding recommendation, e.g., discharge from pathway or
refer to the hospital-based consultant dermatologist for review.
DERM classified lesions as melanoma, SCC, BCC, IEC, actinic
keratosis, atypical naevus, or benign (six subcategories of benign
lesions were grouped together aligned with patient management).
DERM’s output regarding suggested diagnosis corresponded to the
highest risk possibility rather than the most likely classification,
e.g., if a lesion was more likely to be a seborrhoeic keratosis but
also crossed the defined threshold for melanoma, DERM would
output melanoma. Patients for whom all lesions were assessed by
DERM and classified as benign were eligible for discharge. Patients
with any lesion classified by DERM as not benign or excluded from
DERM assessment remained on the urgent 2WW pathway.

Human in the loop: second-read review for
benign lesions

Although not required given the Class IIa medical device
designation, a second-read review of all cases marked for discharge
by DERM was conducted within 48 h by a consultant dermatologist,
listed on the UK General Medical Council’s Specialist Register
(second-read reviewer), working with Skin Analytics and who
could agree with or overturn the recommendation to discharge
from the 2WW skin cancer pathway. The second-read reviewer
had access to the patient’s clinical information and smartphone-
captured images but not the DSLR images. If the second-read
reviewer overturned the recommendation to discharge, the case
was referred for hospital dermatologist review.

Cases marked for urgent referral directly by DERM, indirectly
via the second-read review, or excluded from DERM assessment
were assessed virtually by a hospital consultant dermatologist
to provide a clinical diagnosis and final recommendation, e.g.,
discharge, surgery/biopsy, or clinical follow-up. All hospital
dermatologists had access to the patient’s clinical information,
smartphone images, and additional DSLR images (if available).

Lesion- and case-level analysis

Two different populations were analysed: (1) DERM-assessed
lesions that had a final diagnosis (defined by histology for malignant
lesions and by dermatologist clinical assessment or histology if
available for non-malignant lesions) and the patient had provided
additional research consent allowing for assessment of performance
of DERM on specific lesions; and (2) case-level data gathered from
all patients who were assessed within the pathways described above
allowing for assessment of performance of the service integrating
DERM overall. The latter includes cases with no DERM assessment
(e.g., due to exclusions or technical issues) and where the final
diagnosis is still pending. The two populations are expected to be
sufficiently similar for interpretation of results to be meaningful
with a high patient uptake for additional research consent.

Performance of DERM lesion classification
(lesion-level population)

The performance of DERM was evaluated by comparing its
lesion classification and management recommendation with the
final diagnosis. The performance of DERM compared to the
final diagnosis was analysed as to whether it correctly classified
lesions as: (1) melanoma or not, whereby a true positive is a
histology-confirmed melanoma labelled melanoma by DERM; (2)
malignancy or not, whereby a true positive is a histology-confirmed
melanoma, SCC, BCC or rare skin cancer labelled as melanoma,
SCC or BCC by DERM; and (3) refer or not, whereby a true
positive is a histology-confirmed melanoma, SCC, BCC or rare skin
cancer or a histology/clinically confirmed Bowen’s disease, actinic
keratosis, atypical naevus or other premalignant lesion labelled as
anything other than benign by DERM (Supplementary Table 1).
Sensitivity, specificity, negative predictive value (NPV), positive
predictive value (PPV), and number needed to biopsy/refer/treat
(NNB) with their 95% confidence intervals were calculated for all
three levels of lesion classification.

Performance of service (case-level population)
The 2WW skin cancer pathway involving DERM was assessed

in terms of the proportion of patients with lesions who
were safely discharged after DERM, second-read review and
hospital dermatologist assessment, respectively. Cancers confirmed
from DERM-discharged cases overturned by the second-read
and instances where lesions were discharged but histologically
confirmed as a cancer on a subsequent presentation (“repeat
presentations”) were identified and underwent a root cause analysis
including a panel review (three dermatologists and an AI expert).
Sensitivity for the overall service is reported, whereby repeat
presentations of lesions occurring within 6 months of initial
discharge are considered false negatives.

Proposal for monitoring post-market
surveillance

Based on this experience of deploying an AIaMD in real-world
clinical practice, the authors present the current, as well as proposed
framework for post-deployment monitoring and quality control of
AI in real-world clinical settings.

Results

Patient population

In total, 8,809 cases (patients) at UHB and 2,116 cases at
WSFT were assessed by DERM (case-level population; Figure 3).
The number of lesions with a final diagnosis and patient consent
for research was 7,220 at UHB and 1,351 at WSFT (lesion-level
population). A broad age range of patients were included (18–
100 years) and all Fitzpatrick skin types were represented with the
majority being skin types I–IV (Table 2), reflecting skin cancer
incidence among these populations (24).
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TABLE 2 Skin type and age of participants (lesion-level population*).

UHB DERM-vA
(n = 4,635)

WSFT DERM-vA
(n = 709)

UHB DERM-vB
(n = 2,585)

WSFT DERM-vB
(n = 642)

Skin type

Fitzpatrick type I 248 (5.4%) 125 (17.6%) 215 (8.3%) 74 (11.5%)

Fitzpatrick type II 721 (15.6%) 425 (59.9%) 656 (25.4%) 345 (53.7%)

Fitzpatrick type III 607 (13.1%) 149 (21%) 619 (23.9%) 205 (31.9%)

Fitzpatrick type IV 127 (2.7%) 7 (1%) 132 (5.1%) 14 (2.2%)

Fitzpatrick type V 25 (0.5%) 1 (0.1%) 46 (1.8%) 4 (0.6%)

Fitzpatrick type VI 3 (0.1%) 1 (0.1%) 14 (0.5%) 0 (0%)

Not recorded 2904 (62.7%) 1 (0.1%) 903 (34.9%) 0 (0%)

Age range, years

18–29 393 (8.5%) 43 (6.1%) 247 (9.6%) 41 (6.4%)

30–39 502 (10.8%) 56 (7.9%) 320 (12.4%) 61 (9.5%)

40–49 505 (10.9%) 60 (8.5%) 302 (11.7%) 71 (11.1%)

50–59 805 (17.4%) 106 (15%) 461 (17.8%) 116 (18.1%)

60–69 874 (18.9%) 123 (17.3%) 503 (19.5%) 129 (20.1%)

70–79 983 (21.2%) 192 (27.1%) 458 (17.7%) 147 (22.9%)

=80 573 (12.4%) 129 (18.2%) 294 (11.4%) 77 (12%)

Not recorded 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Data are presented as n (%). *Lesions were included in the analysis if there was a confirmed final diagnosis (histology for malignant lesions and dermatologist opinion or histology for non-
malignant lesions). Lesions were excluded from the analysis if they did not fulfil the inclusion criteria for lesion assessment by DERM, were not analysed by DERM for any technical reason or
were pending final diagnosis defined by histology for malignant lesions and by dermatologist clinical assessment or histology if available for non-malignant lesions. DERM, deep ensemble for
recognition of malignancy.

Performance of DERM lesion
classification (lesion-level population)

Post-deployment performance of DERM-vA and DERM-vB
are reported in Table 3. Both versions of DERM performed with
very high levels of sensitivity for skin cancer detection (96.0–
100.0%). DERM-vB labelled 246 out of 248 lesions as skin cancer;
the remaining two lesions were referred with a label of Bowen’s
disease and later confirmed to be BCC. Specificity was 40.7–
49.4% for DERM-vA and 70.1–73.4% for DERM-vB. A total of
159 lesions were assessed in patients with Fitzpatrick skin types V
and VI, for which 94 lesions had a final diagnosis, including BCC
(n = 1) and IEC (n = 1), and actinic keratosis (n = 1), all correctly
referred by DERM, and atypical naevus (n = 3) pending face-to-
face assessment, and the remainder were benign with a benign
specificity of 44.3% (39/88).

Rare skin cancers
Among the lesions assessed, 19 rare skin cancers (defined

as not melanoma, SCC or BCC and comprised trichilemmal
carcinoma, dermal sarcoma, atypical fibroxanthoma and marginal
zone lymphoma) were identified, of which DERM-vA and -vB
labelled 13/16 and 3/3 lesions as melanoma or SCC, respectively.
Three lesions were labelled “benign” by DERM-vA: two subdermal
foci of melanoma with no cutaneous changes [during root cause
analysis (RCA) these lesions were assessed as not having been
suitable for the service] and one marginal zone lymphoma with
cutaneous changes. Complete confusion matrixes for DERM lesion
classifications are provided in Supplementary Table 3.

Performance of service (case-level
population)

Second-read review
For DERM-vA, 1,393/5,209 cases assessed (26.8%) were

labelled as eligible for discharge at UHB. The second-read
reviewer overturned 502/1,393 cases (36.0%), of which the hospital
dermatologist discharged 197/502 (39.2%). A total of 11 skin
cancers (2.0%) were found among these cases. At WSFT, 168/945
(17.8%) cases evaluated by DERM-vA were labelled as eligible for
discharge. The second read overturned 81/168 (48.2%) cases, of
which the hospital dermatologist discharged 9/81 (11.1%). One skin
cancer was found (1.2%) among these cases.

For DERM-vB, 1,486/3,603 cases assessed (41.2%) were labelled
as eligible for discharge at UHB. The second read overturned
588/1,486 cases (39.6%), of which the hospital dermatologist
discharged 232/588 (39.5%). No skin cancers were found (0%
conversion) among lesions marked eligible for discharge by
DERM-vB. At WSFT, 297/1,410 cases (25.4%) evaluated by
DERM-vB were labelled as eligible for discharge. The second
read overturned 146/297 cases (49.2%), of which the hospital
dermatologist discharged 38/146 (26.0%). No skin cancers were
found (0% conversion).

Repeat presentations
No lesions have been assessed by DERM-vA or -vB and

discharged from these pathways with a subsequent re-presentation
and diagnosis of cancer (service sensitivity 100% to date); however,
there have been four lesions that presented twice to the UHB
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TABLE 3 Post-deployment performance of DERM (lesion-level population).

Lesions, % (n/N) [95%
confidence interval]

Melanoma or not Malignant or not Refer or not

Sensitivity

DERM-vA (UHB) 95.0% (133/140) [90–97.6%] 96.0% (722/752) [94.4–97.2%] 93.4% (1667/1784) [92.2–94.5%]

DERM-vA (WSFT) 97.0% (32/33) [84.7–99.5%] 99.3% (149/150) [96.3–99.9%] 94.9% (316/333) [92–96.8%]

DERM-vB (UHB) 100.0% (58/58) [93.8–100%] 98.9% (178/180) [96–99.7%] 87.4% (673/770) [84.9–89.6%]

DERM-vB (WSFT) 100.0% (18/18) [82.4–100%] 100.0% (68/68) [94.7–100%] 89.5% (222/248) [85.1–92.7%]

Specificity

DERM-vA (UHB) 58.8% (2643/4495) [57.4–60.2%] 45.0% (1747/3883) [43.4–46.6%] 49.4% (1408/2851) [47.6–51.2%]

DERM-vA (WSFT) 63.2% (427/676) [59.5–66.7%] 33.1% (185/559) [29.3–37.1%] 40.7% (153/376) [35.8–45.7%]

DERM-vB (UHB) 80.9% (2045/2527) [79.3–82.4%] 64.8% (1559/2405) [62.9–66.7%] 73.4% (1333/1815) [71.4–75.4%]

DERM-vB (WSFT) 80.4% (502/624) [77.2–83.4%] 60.6% (348/574) [56.6–64.5%] 70.1% (276/394) [65.4–74.4%]

Negative predictive value

DERM-vA (UHB) 99.7% (2643/2650) [99.5–99.9%] 98.3% (1747/1777) [97.6–98.8%] 92.3% (1408/1525) [90.9–93.6%]

DERM-vA (WSFT) 99.8% (427/428) [98.7–100%] 99.5% (185/186) [97–99.9%] 90.0% (153/170) [84.6–93.7%]

DERM-vB (UHB) 100.0% (2045/2045) [99.8–100.0%] 99.9% (1559/1561) [99.5–100.0%] 93.2% (1333/1430) [91.8–94.4%]

DERM-vB (WSFT) 100% (502/502) [99.2–100%] 100% (348/348) [98.9–100.0%] 91.4% (276/302) [87.7–94.1%]

Positive predictive value

DERM-vA (UHB) 6.7% (133/1985) [5.7–7.9%] 25.3% (722/2858) [23.7–26.9%] 53.6% (1667/3110) [51.8–55.3%]

DERM-vA (WSFT) 11.4% (32/281) [8.2–15.6%] 28.5% (149/523) [24.8–32.5%] 58.6% (316/539) [54.4–62.7%]

DERM-vB (UHB) 10.7% (58/540) [8.4–13.6%] 17.4% (178/1024) [15.2–19.8%] 58.3% (673/1155) [55.4–61.1%]

DERM-vB (WSFT) 12.9% (18/140) [8.3–19.4%] 23.1% (68/294) [18.7–28.3%] 65.3% (222/340) [60.1–70.2%]

Number needed to biopsy, treat or refer

DERM-vA (UHB) 14.9 (1985/133) [12.7–17.6] 4 (2858/722) [3.7–4.2] 1.9 (3110/1667) [1.8–1.9]

DERM-vA (WSFT) 8.8 (281/32) [6.4–12.2] 3.5 (523/149) [3.1–4] 1.7 (539/316) [1.6–1.8]

DERM-vB (UHB) 9.3 (540/58) [7.3–11.9] 5.8 (1024/178) [5.0–6.6] 1.7 (1155/673) [1.6–1.8]

DERM-vB (WSFT) 7.8 (140/18) [5.2–12.1] 4.3 (294/68) [3.5–5.4] 1.5 (340/222) [1.4–1.7]

DERM, deep ensemble for recognition of malignancy; UHB, University Hospital Birmingham; WSFT, west sussex foundation trust.

pathway before July 2021, with the second presentation resulting
in a histologic diagnosis of skin cancer (melanoma, n = 2; BCC,
n = 2; Supplementary Table 2), though only one (a melanoma)
was within 6 months. These were all either triaged by DERM to
Trust teledermatology review (n = 4) or excluded from assessment
by DERM at either the first (n = 2) or second presentation
(n = 2) to the pathway.

Discussion

Herein, we present a real-world deployment performance
evaluation for the AIaMD, DERM, which uses deep learning
techniques to assess dermoscopic images of skin lesions for patients
who were referred to an urgent skin cancer pathway. During
the assessed period, DERM performed at or above the expected
level for all malignant and pre-malignant lesion types based on
1,150 confirmed malignancies, including 249 melanomas and 19
rare malignancies. DERM-vB correctly referred all skin cancers
in these pathways and had a specificity greater than the previous
DERM-vA version. During this period, no patients were discharged

from the service and re-presented later with the same lesion
being diagnosed as skin cancer. While other published evidence
demonstrate a gap in model performance when evaluating real-
world prospective clinical use compared with in silico data (25–27),
our analysis demonstrates that DERM can be deployed safely in live
clinical services accessible to patients from a broad range of age
groups and skin types, with sensitivity and specificity in-line with
target thresholds and performance demonstrated in pre-marketing
authorisation studies (8–13).

A critical issue is whether the estimates of performance are valid
in this real-world deployment. We examined this by considering
the validity and applicability issues identified in the QUADAS-
2 tool (Supplementary Appendix A), the most commonly used
quality assessment tool for test accuracy studies (28). This reveals
that the general openness to bias is similar to many studies included
in systematic reviews, particularly those produced by the Cochrane
Collaboration. The area of greatest concern is patient selection,
whereby there is not a perfectly consecutive series of patients
due to current exclusion criteria; however, given that ∼80% of all
patients referred for suspected skin cancer to UHB and WSFT were
seen by these pathways, there is a high level of consecutiveness.

Frontiers in Medicine 07 frontiersin.org63

https://doi.org/10.3389/fmed.2023.1264846
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1264846 October 31, 2023 Time: 11:34 # 8

Thomas et al. 10.3389/fmed.2023.1264846

Other concerns relate to the information provided by DERM
being available to those making the reference standard diagnosis,
although arguably this is unlikely to introduce bias because of the
current general scepticism about the value of AI by the medical
community and the positioning of dermatologists in the pathway
to either review lesions already identified as high risk or to actively
screen for false negatives. Finally, there is differential verification in
the reference standard (ground truth), but this is a near universal
problem for the evaluation of the accuracy of skin cancers because
it is unethical to biopsy all patients in a study, particularly those
deemed as having a low likelihood of cancer and this mirrors
limitations within any evaluation of current standards of care.
Concerning applicability, the study scores highly, and this should
be seen as a particular strength for a real-world deployment.

Although the DERM PMS programme was established before
the CLEAR consensus guidelines were published for evaluation
of AI studies in dermatology (29), our post-deployment data
collection methods align with the relevant checklist items,
including prospective data collection, and providing details
of image acquisition, patient skin colour, deployment referral
pathway, hierarchical outputs, and technical assessments of
performance. We did not collect ethnicity or patient sex as we
operated on the principle of only collecting data necessary to
inform or evaluate DERM performance as part of DERM’s PMS.
We plan to re-evaluate the future role of collecting and reporting
on these demographic data elements.

Although DERM used images captured using an iPhone
camera, it is not a smartphone app per se. In contrast, there
are numerous smartphone apps intended to classify skin lesions
(30). An analysis of 43 such apps showed that these had a mean
sensitivity of 0.28 [95% confidence interval (CI) 0.17–0.39], mean
specificity of 0.81 (95% CI 0.71–0.91) and mean accuracy of
0.59 (95% CI 0.55–0.62) for the detection of melanoma (31).
Direct-to-consumer products do not meet the standards necessary
for utilisation in clinical pathways. Direct-to-consumer products
generally are not integrated into healthcare services that enable
definitive diagnosis, management recommendation and treatment.

Our real-world evidence suggests that DERM can make
autonomous decisions to discharge patients with benign skin
lesions from the urgent cancer pathway. The second-read reviewer
overturned 40–50% of cases that DERM had marked as eligible for
discharge; however, for DERM-vA, only 1.2% of these cases resulted
in skin cancer diagnosis and with DERM-vB, none resulted in a
skin cancer diagnosis. Cost-benefit and economic analyses for the
service are ongoing and supported by a 2021 NHS AI in Health
and Care Award (32). Adherence to regulatory standards and
continuous monitoring need to ensure that autonomous decisions
made by AIaMDs are carried out safely while augmenting the
non-specialist clinicians’ involvement in care, including in the
appropriate counselling of patients.

Suggestions for post-market surveillance
for AI medical devices

Medical device regulations which govern AIaMDs are in
place to support access to safe and effective devices and limit
access to products that are unsafe. This includes the requirement

that manufacturers must submit vigilance reports to the relevant
regulatory agency when certain incidents occur involving their
device. Although all medical devices require PMS as part of the
manufacturer’s obligations to ensure that their device continues
to meet appropriate standards of safety and performance for as
long as it is in use, these requirements are not specific and there
is currently limited transparency on how PMS is being conducted
by manufacturers. As such, we recommend that manufacturers
monitor and publish real-world evaluations of their AIaMDs within
a clinically relevant timeframe. There is a need for PMS alignment
to reduce variability of surveillance design and analysis and to
improve comparability with other AlaMDs or to monitor the
same device over time. Guidelines for best-practice evaluation
of image-based AI development in dermatology (CLEAR Derm
consensus) provide a checklist to ensure consistency but these
are aimed at clinical development as opposed to post-deployment
data collection. Nevertheless, many of the items listed in the
checklist are pertinent to PMS (29). Manufacturers of AIaMDs
may also benefit from specific, tangible advice to support their
PMS development plans and regulators and adopters (users)
should have a good understanding of what to expect from real-
world evidence collected as part of PMS plans (Table 4). PMS
processes need to have automatic safeguards or systems in place to
ensure rigorous monitoring for robust performance of the AIaMD.
Moreover, collecting, analysing, and publishing PMS data requires
significant collaboration between the manufacturer, healthcare
provider partners, healthcare professionals and patients. Automatic
systems, such as electronic patient records that auto-populate a
registry database may improve the collection of long-term patient
outcomes that go beyond monitoring the specificity and sensitivity
of the AIaMD.

Data management
Post-market surveillance data collection methods need to be

planned before AIaMD deployment, including what is needed to
ensure ongoing performance and any baseline values that would be
useful. The manufacturer needs to put in place plans for auditing
and data quality assurance.

A period of continuous monitoring is required to ensure
that the AIaMD is performing as expected, especially when there
are software updates or changes to the deep learning algorithms
that may affect performance. As such, processes need to be
able to quickly identify and analyse performance errors so that
these can be corrected, and future occurrences prevented (33).
For example, during initial deployment, a second-read review
would provide a safety net until performance is at or above the
expected targets. A statistically significant amount of continuous
data with performance at or above expected targets is achieved in
alignment with regulatory standards and intended use; for DERM,
the demonstration across two distinct locations may support its
deployment without a human second-read.

Manufacturers need to start conversations with healthcare
providers as early as possible, to consider contractual obligations or
incentives to ensure the manufacturer has access to data required
for PMS in a timely manner. There is considerable variation in
terms of which stakeholder owns or can access the data required
in any given organisation. Data requirements need to be agreed
with all stakeholders, with ongoing discussions and iterations to
ensure the data being collected and analysed remain relevant for
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TABLE 4 Post-market surveillance recommendations for monitoring AIaMDs deployed in real-world settings.

When Responsibility Recommendation Process consideration Dermatology example

Prior to deployment Manufacturer Document and share PMS Plan
with healthcare provider partners.
This should include final outcome
definitions, data sources and
cadence of performance reports

Time and resource implications
for healthcare providers to
acknowledge/review the PMS
plan

Agree all skin cancer outcomes
will be based on
histopathologically confirmed
cases to mitigate for
inter-clinician variation and
mirror clinical practice

Manufacturer and
deploying organisation

Agree how data will be shared
with the manufacturer to support

Time and resource implications
for healthcare providers.
Data privacy and data sharing
compliance with patient consent
and local laws

Access to histology reports for
cases assessed through the service

Manufacturer Agree RCA process for false
negatives

Process may also be applicable for
further investigation of other
areas of interest, e.g., low
incidence populations, rare
diseases, common false positives

Consideration of patient history
vs. macro imaging vs.
dermoscopic imaging as key
factors in cancer diagnosis of a
false negative

During deployment
and as set out in PMS
plan

Manufacturer Agreement on how many cases
should be reviewed initially with
second-read review
(human-in-the-loop) as a safety
net, with a performance review
before removal

Time and resource savings should
only be considered once the
AIaMD has proven to operate
within acceptable safety limits

Performance at or above stated
target sensitivity for skin cancer
over a 6-month+ period at =2
deployment sites

Manufacturer and/or
deploying organisation

Active search for repeat
presentations

Will patients always present
through the same pathway? If not,
does the deploying organisation
have better data to search for
patients presenting with the same
complaint more than once?

Has the same patient presented to
the service twice regarding the
same lesion?

Manufacturer Follow RCA Process for all false
negatives and share findings with
deploying organisation

Time and financial cost associated
with conducting process

Multi-step process including
detailed review of histology,
review of case by panel of
dermatologists, adversarial testing

Manufacturer Publish performance report
including reference to any
available benchmark data (i.e., to
allow comparison with other
health providers and performance
over time; ideally, data would be
published in a peer-reviewed
journal)

Peer-review publication may
introduce delays and so as a
minimum the performance
should be made available to
existing partners or upon request
by health organisations
considering using the AIaMD

Quarterly Performance Report
shared with partners including
comparison of new pathway
performance vs. nationally
available conversion rates

Manufacturer and/or
deploying organisation

Risk-registry database to identify
common themes and to
investigate if agreed thresholds
are breached*

Quickly identify any performance
issues and their cause

Ensure correct hardware is in use
to collect skin lesion images

AIaMD, artificial intelligence as medical device; PMS, post-market surveillance; RCA, root cause analysis. *This should build on existing quality management system and clinical risk
management requirements already mandated for medical device manufacturers.

performance assessment. Consideration also needs to be given to
liability and data privacy issues, including General Data Protection
Regulation (GDPR) or equivalent local legislature and the patient’s
right to withdraw consent.

Root cause analysis for quality control issues,
false negative classifications, and “near-misses”

Deep Ensemble for Recognition of Malignancy has now
classified more than 60,000 skin lesions in real-world settings
across eleven NHS pathways in the UK that have identified 5,385
histology-confirmed malignant lesions (34–36). Specific guidance
on AI quality control and improvement in hospitals has been
recently published, which describes detection of errors in AI

algorithms, monitoring software updates, cause-and-effect analysis
for a drop in performance, monitoring changes to input or target,
the challenges in monitoring AI system variables, and adapting
the FDA’s existing Sentinel Initiative for monitoring AIaMDs after
deployment (37).

In terms of reviewing a false negative, case review should
be undertaken by a relevant specialist. When a false negative
was identified for DERM post-deployment, a root cause analysis
was conducted. Histology reports were reviewed for factors
such as uncertainty of diagnosis, staging of disease, subtype of
disease and perineural and perivascular invasion. A panel of
three dermatologists plus an AI expert reviewed all case details
including clinical and dermatoscopic images and histology reports,
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and assessed which factor(s) contributed to the false negative
result. Current labels include whether the lesion should have been
excluded from DERM assessment or other technical factors, had
an unusual presentation or was due to AI performance issues.
Any lesion(s) that were a repeat presentation and were confirmed
to have cancer were also identified for false negative review and
for these cases the panel was asked to comment on whether
the malignancy was likely to be present at the point of the first
assessment or whether the transformation took place in the interval
between appointments. These false negatives should be collated
in a “risk” registry and assessed to identify common themes with
thresholds for escalation for more in-depth review.

Considerations arising from assessment of
openness to bias

Our reflection on the validity of our data also suggests ways
in which the process of PMS data collection could be optimised
to maximise validity. Careful attention to documenting and
describing legitimate losses to follow-up, patients who are ineligible
for assessment and technical failures is particularly important for
the credibility of the information. Moreover, documenting repeat
presentations provides reassurance that cancers are not being
missed. As such, PMS protocols should clearly describe the time
intervals that are being used to confirm that a repeat presentation
has not occurred. Clear information about how the AIaMD is
being used in the final diagnosis would also be helpful to alert
to the possibility of bias if there appears to be heavy reliance
on its assessment.

Future directions—Looking beyond AIaMD
performance at patient outcomes

We are looking to make improvements to the quality of care
provided to patients with suspicious skin lesions. Currently, PMS of
AIaMDs is focussed on performance, but ultimately data collected
as part of PMS should include clinically meaningful metrics,
such as reporting the timeliness of diagnosis of malignant lesions
after the initial GP referral, time to excision/treatment, provide
more information about lesion characteristics (e.g., staging) and
importantly longer-term outcomes such as progression-free or
overall survival.

Limitations

Deep Ensemble for Recognition of Malignancy is not intended
to provide a definitive diagnosis for skin cancer, as the final
diagnosis is confirmed by histopathology or a dermatologist
for the case of high-risk lesions. Future opportunities exist
to realise further potential of DERM to allow patients with
benign lesions to be discharged as quickly as possible, including
reducing the exclusion rate (e.g., by using larger dermatoscopic
lenses) and using additional data to develop and validate its
use on mucosal, palmoplantar and subungual lesions. Human
factors and user interaction including explainability could also
be assessed in future but was outside the scope of this
analysis (38). More explainable outputs could include techniques
such as saliency maps, differential diagnosis using conformal
predictions, or argumentation approaches (39, 40). However, any

additional outputs would need to be validated by human factors
and reader studies.

Skin cancers are less common in people with skin of colour
(Fitzpatrick skin types V and VI) (24, 41). The current exclusion of
palmoplantar and subungual lesions means that DERM cannot be
used on the areas where patients with darker skin colour are most
likely to develop melanoma (42). Continued surveillance is needed
to ensure that patients with darker skin tones have equitable access
to the DERM service particularly because patients with darkly
pigmented skin often have a more advanced initial melanoma
and higher mortality rate than fair-skinned patients (43). This is,
however, not a concern that is exclusive to AIaMD–powered skin
cancer pathways but rather that appropriate vigilance is required
for any skin cancer service.

There is currently a lack of robust baseline operational data
from prior to developing and implementing the DERM pathway
for UHB and WSFT for number of biopsies, non-melanoma
skin cancers diagnosed and pre-malignant diagnoses, or discharge
rates for patients with non-malignant lesions. As such, we cannot
currently determine how these metrics have changed since the
deployment of the DERM pathway.

Overall conclusion

The real-world implementation of DERM, an AIaMD, in
two NHS skin cancer pathways, demonstrates high levels of
performance. DERM is accessible to adults of all ages (18–
100 years) and has been used to assess potential malignant
skin lesions in all Fitzpatrick skin types I–VI. The performance
of DERM will continue to be assessed as part of its PMS,
including continued consideration of accessibility across the whole
population. The performance demonstrated to date provides
sufficient evidence to support the removal of the second-read for
low-risk lesions in order to maximise health system benefits safely.
Based on our experience we offer some suggestions on key elements
of post-market surveillance for AIaMDs.
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The use of artificial intelligence as a medical device (AIaMD) in healthcare systems 
is increasing rapidly. In dermatology, this has been accelerated in response to 
increasing skin cancer referral rates, workforce shortages and backlog generated 
by the COVID-19 pandemic. Evidence regarding patient perspectives of AIaMD is 
currently lacking in the literature. Patient acceptability is fundamental if this novel 
technology is to be effectively integrated into care pathways and patients must 
be confident that it is implemented safely, legally, and ethically. A prospective, 
single-center, single-arm, masked, non-inferiority, adaptive, group sequential 
design trial, recruited patients referred to a teledermatology cancer pathway. 
AIaMD assessment of dermoscopic images were compared with clinical or 
histological diagnosis, to assess performance (NCT04123678). Participants 
completed an online questionnaire to evaluate their views regarding use of 
AIaMD in the skin cancer pathway. Two hundred and sixty eight responses were 
received between February 2020 and August 2021. The majority of respondents 
were female (57.5%), ranged in age between 18 and 93  years old, Fitzpatrick 
type I-II skin (81.3%) and all 6 skin types were represented. Overall, there was a 
positive sentiment regarding potential use of AIaMD in skin cancer pathways. The 
majority of respondents felt confident in computers being used to help doctors 
diagnose and formulate management plans (median  =  70; interquartile range 
(IQR)  =  50–95) and as a support tool for general practitioners when assessing skin 
lesions (median  =  85; IQR  =  65–100). Respondents were comfortable having their 
photographs taken with a mobile phone device (median  =  95; IQR  =  70–100), 
which is similar to other studies assessing patient acceptability of teledermatology 
services. To the best of our knowledge, this is the first comprehensive study 
evaluating patient perspectives of AIaMD in skin cancer pathways in the UK. 
Patient involvement is essential for the development and implementation of new 
technologies. Continued end-user feedback will allow refinement of services to 
ensure patient acceptability. This study demonstrates patient acceptability of the 
use of AIaMD in both primary and secondary care settings.
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Introduction

The use of artificial intelligence (AI) is currently being explored 
across the field of medicine and the deployment of AI as a medical device 
(AIaMD) in healthcare systems is rapidly expanding. In dermatology, 
this has been accelerated in response to increasing skin cancer referral 
rates, workforce shortages and backlog generated by the COVID-19 
pandemic (1). AI is making significant contributions in dermatology 
especially with automated skin lesion analysis, triage of cutaneous 
lesions, skin cancer detection, and dermatological image recognition, 
offering benefits to enhance various aspects of patient care (2). However 
while AI holds great potential, it is not without its challenges with 
potential concerns regarding patient data privacy and confidentiality, 
while ensuring these technologies are validated, reliable and accurate (3).

The deep ensemble for recognition of malignancy (DERM) device, 
designed by Skin Analytics, is an AIaMD that analyzes images of skin 
lesions to support the identification and appropriate management of 
skin cancers, premalignant lesions, and benign conditions. DERM was 
the first UKCA Class IIa certified AIaMD dermatology device on the 
UK market (4).

Evidence regarding patient perspectives of AIaMD being used by 
doctors to help make decisions about their care, is currently lacking in 
the literature. Patient acceptability is fundamental if this novel 
technology is to be effectively integrated into care pathways and patients 
must be confident that it is implemented safely, legally, and ethically.

The aim of this study was to explore patients’ perspectives on the 
use of AI as part of their skin cancer management pathway.

Methods

A prospective, single-center, single-arm, masked, non-inferiority, 
adaptive, group sequential design trial, designed to demonstrate the 
potential of DERM to reduce unnecessary referrals, was conducted at 
Chelsea and Westminster Hospital in London, UK (ClinicalTrials.gov: 
NCT04123678). Patients over the age of 18, who were referred to a 
teledermatology skin cancer clinic with at least one skin lesion that 
could be photographed, were eligible for the study. Patients provided 
written informed consent for the study, and there was no financial 
compensation. Ethical approval for the study was granted by the West 
Midlands, Edgbaston Research Ethics Committee.

Patients attended an appointment with a clinical photographer based 
within the hospital. In addition to images of the lesions captured for standard of 
care assessment, macroscopic and dermoscopic images of each skin lesion were 
taken by a healthcare assistant using an iPhone X smartphone with Dermlite 
DL1 basic dermoscopic lens attachment. Captured images were uploaded for 
analysis by DERM, which was certified as a Class I AIaMD at the time. The 
DERM analysis result was not shared with the patient or the dermatologist, and 
the patient’s care continued in accordance with routine standard of care. 
Information on lesion history, risk factors for skin cancer, number of 
appointments needed to diagnose, and the final diagnosis were collected (5).

After their assessment participants were sent a link by email to an online 
questionnaire (Supplementary material) which was designed to evaluate their 
views regarding potential use of AIaMD in the skin cancer pathway. The 
questionnaire was hosted on an electronic Case Report Form that could 
be linked with the study record. Reminders were sent to patients who had not 
completed the survey after at least 1 week. The questionnaire included 4 
questions on healthcare appointments prior to their teledermatology 

appointment, and 14 questions that evaluated patient acceptance of: (i) clinic 
and photography appointments (ii) AI as a service tool, which were worded 
both positively and negatively to minimize bias. A visual analog scale (VAS) 
was used to assess respondents’ satisfaction. The VAS ranged from 0 to 100 
with a score of >50 taken to indicate an agreement with a given statement. The 
impact of patient factors (age, sex, and fitzpatrick skin type) and management 
outcome on the patient’s response were evaluated using a Kruskal-Wallis 
(KW) test, with statistical significance set at p < 0.05. Statistical analysis was 
conducted using the R language version 4.1.3 and environment for 
statistical computing.

Results

Seven hundred patients were recruited between February 2020 and 
August 2021, including 12 patients who consented twice. Two hundred 
and sixty eight questionnaire responses were received (38.2% response 
rate), including two patients who completed the questionnaire twice. 
Respondents ranged in age between 18 and 93  years old. Most 
respondents were female (n = 154, 57.5%) and had Fitzpatrick type I-II 
skin (n = 218, 81.3%); however all 6 skin types were represented (Table 1).

Most patients (n = 207, 77.5%) attended the teledermatology clinic 
within 14 days of their GP appointment and reported that this time 
was “about right” for them (Table 2). Most patients (n = 191, 71.3%) 
reported never, or only once or twice, visiting a doctor about the same 
skin lesions in the past 5 years, with the median number of prior 

TABLE 1 Baseline characteristics of study population.

Respondents (N, %) Total 
n  =  268

Gender

Male 114 (43%)

Female 154 (57%)

Age groups

18–29 years 35 (13%)

30–39 years 33 (12%)

40–49 years 28 (10%)

50–59 years 36 (13%)

60–69 years 50 (19%)

70–79 years 62 (23%)

80+ 24 (9%)

Fitzpatrick skin type

I 72 (27%)

II 146 (54%)

III 44 (16%)

IV 3 (1%)

V 1 (0.3%)

VI 2 (0.7%)

Management outcome

Discharge 83 (31%)

Routine appointment 66 (25%)

Biopsy/urgent follow up 118 (44%)
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healthcare appointments, to assess the skin lesion/s included in the 
study, being 1 (IQR = 1–1, max 6).

Overall, there was a positive sentiment regarding potential use of 
AIaMD in skin cancer pathways (Table 3). The majority of respondents 
felt confident in ‘computers’ being used to help doctors diagnose and 
formulate management plans (median = 70; interquartile range 
(IQR) = 50–95) and as a support tool for general practitioners when 
assessing skin lesions (median = 85; IQR = 65–100). The majority 

would rather have had their skin assessed by a computer than wait 
weeks to see an in-person dermatologist (median = 70; IQR = 50–97.5).

Responses for most questions (9 out of 14) were comparable 
across the sub-groups assessed, with no significant variation in the 
median scores. Differences in responses were most frequently 
associated with the outcome of the teledermatology assessment, 
reaching statistical significance for four questions. Women were 
found to be less comfortable having photographs of their lesions 
taken, compared to men, while no statistically significant differences 
in responses were associated with respondent’s age (Table 4).

Discussion

AI has demonstrated potential to enhance skin cancer detection 
and improve efficiency in urgent cancer pathways (5), through the 
development of several machine learning algorithms to distinguish 
malignant from benign skin lesions (6). While ongoing technologies 
are being developed, it is paramount that patient perspectives of AI 
are explored in parallel, to ensure acceptability of this new technology, 
and to help inform successful large scale deployment into clinical 
pathways. Structured feedback from patients who are involved in 
clinical research and early deployments of AIaMD is one way in which 
this data can be collected.

To the best of our knowledge, this is the first comprehensive study 
evaluating patient perspectives of AIaMD in skin cancer pathways in 
the UK. Our cohort involved a large group of patients that reflect the 
local population who are referred on a cancer pathway, with all six 
Fitzpatrick skin types being represented.

Overall our study revealed a positive sentiment regarding 
potential use of AIaMD in skin cancer pathways. This complements a 
qualitative study conducted in Germany reporting 75% would 
recommend AI tools for skin cancer screening to family and friends, 
with 94% of patients expressing acceptance of the symbiosis between 
clinicians and AI systems (7).

The majority of our respondents felt confident in computers being 
used to help doctors diagnose and formulate management plans and 

TABLE 2 Appointments made by respondents prior to attending 
teledermatology clinic.

Question Option Respondents (N, %)

Number of visits to GP 

about lesions on my skin, 

over the last 5 years

Never 73 (27%)

Once or twice 118 (44%)

A couple of times 38 (14%)

Several times 31 (12%)

Quite a lot 6 (2%)

Number of days since my 

GP appointment

2 days 5 (2%)

5 days 24 (9%)

7 days 42 (16%)

14 days 136 (51%)

28 days 27 (10%)

More than 28 days 24 (9%)

The time between seeing 

the GP and attending the 

teledermatology clinic 

was…

Too short 3 (1%)

About right 224 (84%)

Too long 20 (7%)

Far too long 10 (4%)

Number of previous 

healthcare appointments 

to assess these lesions

Mean 1.36

Median 1

IQR 1–1

Max 6

TABLE 3 Summary table of results from patient satisfaction of AIaMD in skin cancer pathways.

Median IQR

I feel confident in ‘computers’ being used to help doctors diagnose and formulate management plans 70 50–95

I think having computers assess my photographs to help guide my GP is a good way of dealing with my problem 85 65–100

I would rather have my skin assessed by a computer than wait weeks to see an in-person dermatologist 70 50–97.5

I felt comfortable having my photographs taken with a mobile phone device 95 70–100

The prospect of having my lesions assessed by a computer made me feel uncomfortable 10 0–46

I have confidence that a computer can help me and my doctor by analyzing photographs of lesions 85 60–100

I feel more confident in my diagnosis when it is made by a dermatologist compared to a computer 50 50–75

The photography service is an efficient use of my time 85 62.5–100

I found it embarrassing having my photographs taken 0 0–5

I would have preferred to see a dermatologist face to face rather than have a computer assess my lesion 50 25–80

Having a computer assess photographs of my lesion saves time in comparison to a face-to-face consultation 75 50–95

I would have preferred to have my photographs taking in my GP practice rather than in hospital 50 10–71.25

I felt the time needed to take photographs was too long 0 0–10

I would recommend the teledermatology service to friends and family. 80 50–100
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as a support tool for general practitioners when assessing skin lesions. 
Importantly, our survey highlighted acceptability of AIaMD alongside 
clinicians as a decision-making support tool, however further 
assessment for stand-alone autonomous applications is required. 
Respondents were comfortable having their photographs taken, which 
is similar to other studies assessing patient acceptability of 
teledermatology services (8), though the differences in responses 
between sexes may be  relevant for the wider deployment of 
teledermatology. Differences in responses across the Fitzptrick skin 
types may be  influenced by the comparatively small number of 
responders with Fitzpatrick skin types IV–VI, and the significance of 
these results should be interpreted with caution.

The differences in responses associated with the outcome of the 
teledermatology review is interesting as those patients who were 
referred for a biopsy or urgent referral were consistently more willing 
to accept the AIaMD as part of their assessment than those who were 
discharged or referred for a routine appointment. This suggests patients 
are more amenable to new technologies being used to inform their care 
when they feel their condition is being more actively managed.

A common limitation of patient surveys is low participation rates, 
and the resultant self-selection bias with feedback missing from those 
patients who are unwilling or unable to participate, or those who 
simply forget to complete the questionnaire. The response rate for this 
survey was almost 40%, which is similar to response rates to online 

surveys elsewhere (9, 10). However, it remains possible that the results 
presented here are not wholly representative of the views of all patients 
recruited into the clinical study, and indeed the wider population of 
patients attending teledermatology clinics.

Further work is required to evaluate the psychological status of 
patients whose care involves an assessment by an AIaMD, compared 
to those who just attend face to face consultations. Patient feedback 
will continue to be important as products like DERM develop, and the 
clinical patient pathways in which they are deployed evolve. Further, 
larger studies are needed to capture patient feedback from more 
diverse populations, including different socio-economic groups and a 
wider variety of ethnicities and skin colors also focusing on 
acceptability of autonomous AIaMD in clinical pathways.

Conclusion

To the best of our knowledge, this is the first comprehensive study 
evaluating patient perspectives of AIaMD in skin cancer pathways in 
the UK. Patient involvement is essential for the successful development 
and implementation of new technologies. Continued end-user 
feedback will allow refinement of services to ensure patient 
acceptability. This study demonstrates patient acceptability of AIaMD 
in both primary and secondary care settings.

TABLE 4 Survey questions with statistically significant variation in median scores across sub-groups of respondents.

Question Subgroup Median KW p-value

I feel confident in computers being used to help my doctor 

determine my diagnosis and management plan

Discharge 61.96 0.005

Routine appointment 66.50

Biopsy/urgent follow up 74.61

I think having computers assess my photographs to help 

guide my GP is a good way of dealing with my problem

Fitzpatrick I 79.89 0.021

Fitzpatrick II 81.39

Fitzpatrick III 74.77

Fitzpatrick IV–VI 44.60

I felt comfortable having my photographs taken with a 

mobile phone device

Discharge 75.47 0.017

Routine appointment 86.73

Biopsy/urgent follow up 84.59

Male 85.00 0.018

Female 80.62

Fitzpatrick I 84.23 0.04

Fitzpatrick II 83.01

Fitzpatrick III 83.04

Fitzpatrick IV–VI 53.00

I have confidence that a computer can help me and my 

doctor by analyzing photographs of my lesions

Discharge 71.20 0.023

Routine appointment 79.46

Biopsy/urgent follow up 81.47

I found it embarrassing having my photographs taken Discharge 12.04 0.001

Routine appointment 6.33

Biopsy/urgent follow up 7.4

Male 4.58 0.009

Female 11.35
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Background: Skin cancer is one of the most common forms worldwide, with a

significant increase in incidence over the last few decades. Early and accurate

detection of this type of cancer can result in better prognoses and less

invasive treatments for patients. With advances in Artificial Intelligence (AI), tools

have emerged that can facilitate diagnosis and classify dermatological images,

complementing traditional clinical assessments and being applicable where there

is a shortage of specialists. Its adoption requires analysis of e�cacy, safety, and

ethical considerations, as well as considering the genetic and ethnic diversity of

patients.

Objective: The systematic review aims to examine research on the detection,

classification, and assessment of skin cancer images in clinical settings.

Methods: We conducted a systematic literature search on PubMed, Scopus,

Embase, andWebof Science, encompassing studies published until April 4th, 2023.

Study selection, data extraction, and critical appraisal were carried out by two

independent reviewers. Results were subsequently presented through a narrative

synthesis.

Results: Through the search, 760 studies were identified in four databases, from

which only 18 studies were selected, focusing on developing, implementing, and

validating systems to detect, diagnose, and classify skin cancer in clinical settings.

This review covers descriptive analysis, data scenarios, data processing and

techniques, study results and perspectives, and physician diversity, accessibility,

and participation.

Conclusion: The application of artificial intelligence in dermatology has the

potential to revolutionize early detection of skin cancer. However, it is imperative

to validate and collaborate with healthcare professionals to ensure its clinical

e�ectiveness and safety.

KEYWORDS

Skin cancer, artificial intelligence, melanoma, detection, classification, feature extraction

1 Introduction

The role of technology and artificial intelligence has gained increasing prominence

in the field of dermatology. Techniques such as convolutional neural networks

and image processing have been extensively examined for their capacity to

identify specific features in skin lesion images, with the potential to aid in the

recognition of suspicious lesions and the diagnosis of conditions like melanoma.
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Skin cancer is the most common form of cancer worldwide (1).

Over the past decade, there has been a concerning 27% increase in

the annual diagnosis of invasive melanoma cases (2). Alarmingly,

more than 5,400 people die from non-melanoma skin cancer every

month (3). In the United States alone, the annual financial burden

of treating skin cancer is estimated at a staggering US$8.1 billion,

with approximatelyUS$4.8 billion allocated to non-melanoma skin

cancer and US$3.3 billion to melanoma (4). Among skin cancer

types, basal cell carcinoma ranks as the most common, followed

by squamous cell carcinoma and melanoma, which stands out as

the most aggressive and lethal type of skin cancer (5, 6). Merkel

cell carcinoma also stands out among aggressive tumors (7). These

tumors can arise anywhere on the body but are frequently observed

in regions more exposed to the sun, including the face, neck, arms,

and hands. Thus, there is an imperative need for sustained efforts

to promote awareness and prevention of skin cancer (8–10).

Conventional techniques for detecting these diseases include

patient data analysis, as well as visual and histopathological

analysis of the lesions (11). Visual assessment relies on the clinical

inspection of the lesion, taking into consideration factors such as

its appearance, size, shape, location, and evolution. On the other

hand, histopathological analysis entails the collection of a sample of

the lesion for laboratory examination, typically through techniques

such as biopsy. Additionally, devices like the dermatoscope are used

to facilitate the examination of the lesion and the identification

of features such as pigmentation, vascularity, and regression (12).

Another example is the use of confocal microscopy, a technique

that allows the analysis of skin layers without the need for sample

collection (13, 14).

These techniques have proven effective in the detection and

diagnosis of skin diseases. However, they may present limitations,

including subjectivity in visual analysis and the need for invasive

sample collection procedures. Confocal microscopy incurs high

financial costs and is relatively inaccessible tomedical professionals,

even among specialists.

It is also important to highlight that diagnosing these diseases

poses a significant challenge to the healthcare system, especially in

regions lacking specialized professionals or adequate equipment for

skin lesion identification (15, 16). An alternative approach involves

initial screening by general practitioners, who may not always

possess the necessary training for early skin cancer detection (17).

The implementation of Computer-Aided Diagnosis (CAD)

solutions powered by Artificial Intelligence (AI) holds the potential

to address some of these limitations and offer a promising

alternative for accurate and non-invasive skin disease diagnosis.

Existing literature suggests that AI systems can classify skin cancers

competently on par with dermatologists. Notably, the diagnostic

capabilities of the dermatologist vary based on experience, i.e., it

is not a uniform basis of reference. Moreover, studies highlight

the feasibility of leveraging mobile devices equipped with neural

networks to broaden the access of dermatological expertise, offering

low-cost access to vital diagnostic care (18, 19).

While numerous solutions are being developed for skin cancer

detection and classification, those are usually not evaluated and

validated in real clinical settings, which limits their practical

applicability. The review study conducted by Goyal et al. (20)

provides an updated assessment of the performance of artificial

intelligence algorithms in skin cancer classification and diagnosis.

It also delves into the challenges faced by these systems and future

opportunities to enhance of dermatologists’ diagnostic abilities

through AI support.

However, for these technologies to become effective and

applicable in clinical settings, several challenges must be addressed.

These challenges include the need for standardization in image

acquisition and processing techniques, the requirement for

extensive training datasets, and the creation of robust and

representative databases (20–24). Prior studies in skin cancer

classification have have demonstrated restricted generalizability

due to insufficient data and an emphasis on standardized tasks (19).

Furthermore, it is essential to evaluate the effectiveness and safety

of these tools in diverse contexts, taking into account variables

such as the ethnic and genetic diversity of the population and

the specific type of skin cancer under consideration, among other

factors. In this regard, it is imperative for research in this field to

adhere rigorously to scientific and ethical standards. Finally, it is

crucial to emphasize that automated skin disease detection should

not replace clinical evaluation by medical professionals but rather

complement it.

The aim of this systematic review is to investigate studies

focused on the detection, classification, and evaluation of skin

cancer images in a clinical setting. The main approaches and

challenges encountered while implementing these techniques must

be identified to do this. The importance of this systematic

review lies in its ability to aggregate and thoroughly examine all

pertinent research in this field, thus offering a comprehensive view

of the subject. In turn, researchers can assess the quality and

credibility of existing studies, identify knowledge gaps, and propose

innovative research directions. Furthermore, this systematic review

can provide valuable information for doctors and healthcare

professionals looking to harness the potential of AI in aiding the

diagnosis and treatment of skin diseases.

2 Methods

This section outlines the methodology employed for the

systematic literature review, encompassing the following stages:

(i) research identification, (ii) selection, (iii) eligibility, (iv) data

extraction, and (v) synthesis.

2.1 Step 1: study identification

First, we established the objectives and questions that frame

this literature review. The primary goal of this systematic review

is to highlight research involving the implementation of AI in

clinical settings. Our aim is to gain insights into the methodologies

employed in previous research and the outcomes achieved when

using AI in this context.

For this review, we registered a protocol with the International

Prospective Register of Systematic Reviews (PROSPERO) under

ID CRD42023411211 on April 4, 2023, and PRISMA guidelines

were followed. PROSPERO is a global registry for systematic review

protocols, where researchers publish their research methods in
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advance. This process promotes transparency, prevents publication

bias, and improves the reproducibility of studies.

The search databases used for the literature review include

PubMed, Scopus, Embase, and Web of Science, and topics

are analyzed using the following search terms: (“skin cancer”

OR “skin lesion” OR “dermatology” OR “dermatoscopy” OR

“melanoma”) AND (“artificial intelligence” OR “neural network*”

OR “deep learning” OR “convolutional neural network*” OR

“transfer learning” OR “machine learning” OR “Computer aided

diagnostic*” OR “CAD" OR “image classification” OR “image

processing” OR “Internet of things” OR “Data mining” OR

“Iot”) AND (“real-time” or "real time” OR “real-world” OR “real

world” OR “smartphone”) AND NOT (“Meta-Analysis” OR “Meta

Analysis” OR “Systematic Review”).

2.2 Step 2: study selection

Secondly, we defined the search terms and established

inclusion/exclusion criteria. In this literature review, we used the

terms highlighted in the previous section, with the sole restriction

being the inclusion of journal articles and conference proceedings

only.

Our initial search yielded 760 results, of which 457 were

identified as duplicates and therefore removed. This resulted in a

pool of 303 distinct studies, which were subsequently evaluated for

eligibility.

2.3 Step 3: study relevance and quality
assessment

In the third step, we assessed the relevance and quality of

the selected studies. Two authors (BCRSF and MRCR) were

responsible for reading each title and abstract in order to assess the

relevance and quality of each previously selected study. The criteria

used to determine eligibility is as follows:

• The document’s abstract presents clear objectives,

methodology, and results.

• The study addresses computer-aided diagnostic solutions for

skin cancer with a focus on real clinical applications.

• The study reports the accuracy, sensitivity, specificity, and/or

overall accuracy of artificial intelligence systems for skin

cancer.

• The study describes the development and/or validation

process of the systems.

• The study provides a critical analysis of the results obtained

by artificial intelligence systems and discusses their limitations

and potential biases.

Based on the inclusion criteria stated above, a total of

282 studies were eliminated from consideration. Following a

comprehensive review of the entire texts, three more studies were

removed from consideration due to their limited content, which

included only abstracts or incomplete texts. Ultimately, 18 studies

have been retained. Figure 1 presents the study identification

flowchart.

For the study, Mendeley and Rayyan tools were used.

2.4 Step 4: data extraction

To facilitate data extraction in our literature review, we utilized

a spreadsheet to document the metadata of each selected study. The

following metadata was analyzed:

1. Publication year and study objective.

2. Regarding the data used: Types of data, source, and quantity.

3. Resources used to assist in the detection and/or classification of

skin lesions.

4. Technique for the detection and/or classification of skin lesions.

5. Study function.

6. Key findings and study perspectives.

7. Information regarding ethnic and genetic diversity of the

population.

8. Information regarding system accessibility and availability.

9. Relationship and/or involvement of dermatologists and other

medical professionals.

2.5 Step 5: data synthesis

The concluding phase of our study encompasses data synthesis,

which was subdivided into two key steps. Initially, we conducted a

systematic analysis of the raw data obtained through the literature

review process. Subsequently, we compiled metadata pertaining to

the articles chosen in our literature review.

3 Results and discussion

This section outlines the results obtained through the search

strategies describes in the methodology.

3.1 Descriptive analysis

The first section of our analysis pertains to descriptive

information. As part of this analysis, we examined the objectives

of the selected studies.

The primary objective of all thementioned studies is to develop,

implement, and/or validate systems for the detection, diagnosis,

and classification of skin cancers, particularly melanoma, using

mobile devices or computers. These systems aim to improve the

early detection of skin lesions and enhance diagnostic accuracy,

assisting healthcare professionals and providing more accessible

and efficient screening for patients. Furthermore, they explore

the use of advanced techniques such as image processing, pattern

recognition, and deep learning to automate the analysis process and

deliver real-time results.
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FIGURE 1

Study selection, evaluation, and inclusion (presented using the PRISMA flow diagram).

3.2 Data scenario

For our study, it is of utmost importance to analyze the quality

and representativeness of the data, given that these factors play

a critical role in developing reliable algorithms and models for

skin lesion diagnosis. Diversity in data sources is key to ensure

broader model generalization since different sources can provide

specific and varied information about the lesions. Furthermore,

the availability of large datasets containing hundreds of thousands

of images can be extremely advantageous in creating more

robust and accurate machine learning models. Table 1 presents

important information about the data from each article. The

study information is listed in chronological order based on the

publication date.

The analysis of the studies reveals a remarkable diversity of

approaches in the diagnosis of skin tumors, with a significant

emphasis on the detection of melanoma and other dermatological

conditions. Among these research studies, there is a notable

convergence in the preference for the use of clinical (macroscopic)

images and/or dermoscopic images for analysis. The choice of

these images demonstrates a consensus in the scientific community

regarding the importance of this data in developing more effective

and accessible diagnostic methods.

In the context of the types of data employed, Roy et al.

(28) and Alizadeh and Mahloojifar (29) used dermoscopic images

from established databases like PH2 and ISIC, adding to the

reliability of the results. Meanwhile, Dulmage et al. (35) relies

on clinical images collected by healthcare professionals, reflecting

real-world conditions.

The discrepancy in the size of datasets is evident, with some

studies using relatively small datasets, such as Ramlakhan and

Shang (25) and Afifi et al. (26), which have 83 and 356 images,

respectively. This limitation in sizemay restrict themodels’ capacity

for generalization and accuracy. On the other hand, Udrea et al.

(31) and Pangti et al. (36) present massive datasets containing

131,873 and 17,408 images, respectively. This provides a more solid

foundation for model generalization and learning. Furthermore,

Thissen et al. (27) works with a dataset of 341 images, which is

still considerably limited compared to the larger datasets. This

difference in dataset size directly impacts the models’ ability

to generalize, emphasizing the importance of carefully assessing

effectiveness at different scales.

An additional disparity is observed when considering the

specific focus versus the breadth of conditions addressed in

studies of skin lesion diagnosis. While some studies have a

narrow focus onmelanoma and non-melanoma lesions (29), others

adopt a broader approach, covering various categories of skin

diseases (36). This distinction highlights the decision between

targeting a specific condition or taking a more comprehensive

approach, which directly influences the clinical applicability of the

developed models.

However, there are less ideal scenarios to consider. Afifi

et al. (26) and Ramlakhan and Shang (25) use clinical images

without specifying their origin, which can negatively impact

data quality and representativeness. Additionally, Thissen et al.

(27) relies on images obtained from a commercial application,

potentially resulting in limitations regarding image quality and

diversity. The absence of specification of image origin in Francese
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TABLE 1 Overview of studies on skin cancer image analysis: data type, origin, and quantity by year and author.

References Data type Data origin Total amount of initial data

Ramlakhan and

Shang (25)

Clinical (macroscopic) images

acquired by mobile device.

Randomly collected images from the

internet.

Dataset of 37 images of benign skin lesions and 46 images of

malignant lesions.

Afifi et al. (26) Clinical (macroscopic)

images.

Not specified how they are acquired. Dataset of 356 images, including 168 melanoma images.

Thissen et al. (27) Clinical (macroscopic) images

acquired by mobile device.

SkinVision application. Dataset of 341 images of melanocytic and non-melanocytic

lesions, with 239 undergoing histopathological examination,

while the other 102 lesions were clinically diagnosed as benign

and not removed.

Roy et al. (28) Dermoscopic images. PH2 database. Dataset of 200 dermoscopic images from the PH2 database,

including 80 common nevi, 80 atypical nevi, and 40 melanomas.

Alizadeh and

Mahloojifar (29)

Dermoscopic images. ISIC Database. Dataset of 150 dermatoscopy images from the ISIC website,

consisting of 75 images for non-melanoma lesions and 75 images

for melanoma lesions.

Fujisawa et al. (30) Clinical (macroscopic) images

from digital cameras.

Patient data from the University of

Tsukuba Hospital from 2003 to 2016.

Dataset of 6,009 images from 2,296 patients, including 14

diagnoses, both malignant and benign conditions.

Udrea et al. (31) Clinical (macroscopic) images

acquired by mobile device.

Data obtained from the University

Hospital of Munich and a hospital in

Eindhoven, funded by SkinVision BV.

Dataset of 131,873 images acquired from 31,449 users of the app.

It included 285 histopathologically validated skin cancer cases,

including 138 malignant melanomas.

Bakheet and

Al-Hamadi (32)

Dermoscopic images. PH2 public dataset. Dataset of 200 images, including 40 malignant and 160 benign

lesions.

Abbas (33) Dermoscopic images. Various public and private sources,

including EDRA-CDROM, ISIC,

DermNet, and PH2.

Total of 2,200 dermatoscopy images, including 1,100 malignant

melanomas (MM) and 1,100 benign tumors.

Bakheet and

El-Nagar (34)

Dermoscopic images. PH2 public dataset. Dataset of 200 images, including 80 common nevi, 80 atypical

nevi, and 40 melanomas.

Dulmage et al. (35) Clinical (macroscopic)

images.

Images collected by primary care

professionals.

Dataset of 76,926 images annotated by dermatologists from the

VisualDx privately curated image database, focusing on lesion

morphology analysis.

Pangti et al. (36) Clinical (macroscopic)

images.

Raw images from public databases

(http://www.hellenicdermatlas.com/en

and http://www.danderm.dk/atlas), as

well as images from dermatologists in

India.

Initial total dataset of 17,718 images. Of these, 310 images were

discarded during preprocessing due to poor resolution or

multiple lesions. Of the remaining 17,408 images, 1,990 images

belonged to the non-specific category, and 15,418 images fell

within the 40 selected disease categories.

Giavina-Bianchi et

al. (17)

Clinical (macroscopic) and

dermoscopic images.

Clinical Model: Teledermatology

Project. Dermatoscopic Model:

ISIC2019 and PH2 datasets.

Clinical Model: Dataset of 14,000 images belonging to seven

classes. Dermatoscopic Model: Dataset of 26,342 images.

Francese et al. (37) Clinical (macroscopic) images

acquired by mobile device.

Despite lack of specification, there is an

assumption that the images originate

from the authors.

Dataset of 8,000 melanoma or non-melanoma images.

Felmingham et al.

(24)

Dermoscopic images. Two Australian tertiary centers: Skin

Health Institute and Alfred Hospital in

Melbourne, Australia.

The study aims to recruit 220 participants and provide a

minimum of three lesions per participant for final analysis.

Sangers et al. (38) Clinical (macroscopic) images

acquired by mobile device.

University hospital in the Netherlands. Dataset of 785 skin lesion images, including 418 suspected lesions

and 367 benign lesions used as controls.

Jahn et al. (39) Clinical (macroscopic) images

acquired by mobile device.

Dermatology Department at University

Hospital Basel, Switzerland.

Dataset of 1,204 pigmented skin lesions.

Kränke et al. (40) Clinical (macroscopic) images

acquired by mobile device.

Tertiary reference center in Graz,

Austria.

Dataset of 1,171 images.

et al. (37) is also a factor that can influence data quality

and validity.

Finally, the study phase also presents divergences, with

some studies still ongoing (24), while others already have

final results. The preliminary nature of ongoing studies may

limit the availability of conclusive results and the validity

of analyses.

It is essential to recognize that both the quantity and type

of data play crucial roles in the development of accurate and

reliable cutaneous diagnostic models. Larger and more diverse

datasets, coupled with high-quality images and reliable sources,

tend to produce more robust and generalizable results. Therefore,

the careful selection of these elements is fundamental to the

effectiveness and clinical applicability of the developed models.
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3.3 Techniques and processing

Next, we describe the resources employed in image processing,

the classification algorithms used, and the devices on which

these approaches were implemented. The resources employed in

image processing are used to perform manipulation and feature

extraction operations, aiming to prepare the images for analysis.

Classification algorithms play the role on categorizing skin lesions

based on the extracted features, enabling the precise identification

of different classes. Furthermore, these algorithms can assist

in clinical decision making, guiding healthcare professionals

in choosing the best treatment approaches. These approaches

are implemented on devices such as computers, servers, or

mobile devices, providing efficient execution of algorithms

and practical application of diagnostic techniques on skin

lesion images.

Extracting this information from the studies presented here

is crucial to guide the development of effective applications,

allowing the appropriate selection of preprocessing methods,

reliable classifiers, and suitable devices for achieving accurate

detection and clinical assessment of skin lesions. Table 2

describes the resources used in image processing, the

classification algorithms used, and the main purpose of

the study.

It is notable that several studies aim to utilize

image segmentation, feature extraction, and classification

techniques, as observed in Ramlakhan and Shang

(25), Afifi et al. (26), Roy et al. (28), Alizadeh and

Mahloojifar (29), Bakheet and Al-Hamadi (32) and

Abbas (33). These steps are often fundamental for proper

processing of skin lesion images and subsequent diagnostic

decision-making.

On the other hand, there are differences regarding the

choice of classifiers and processing devices. While some studies,

such as Afifi et al. (26), employ Support Vector Machines

(SVM) as classifiers, others, like Roy et al. (28), opt for more

recent approaches like YOLOv2. The research by Roy et al.

(28), Bakheet and Al-Hamadi (32), and Giavina-Bianchi et

al. (17) presents a variety of approaches, ranging from the

use of traditional machine learning algorithms to deep neural

networks, such as Convolutional Neural Networks (CNNs).

This diversity of techniques allows for a rich comparative

analysis, enabling the identification of the most promising

approaches for skin tumor detection. Additionally, the detailed

description of the resources used and processing devices

provides valuable insights for the development of effective

applications.

Regarding processing devices, there is a distinction between

approaches that perform detection and classification directly on

mobile devices, such as Alizadeh and Mahloojifar (29), and

approaches that send extracted features to a server for further

analysis, as in the case of Giavina-Bianchi et al. (17). This difference

highlights the variety of options available for implementing skin

lesion detection solutions.

Finally, some studies do not provide complete information

about the resources used, such as Dulmage et al. (35), which limits

the understanding of the methodologies employed.

3.4 Main results and perspectives

In this section, we present the main outcomes and prospective

insights derived from the various studies analyzed. The primary

classification results demonstrate the accuracy, sensitivity, and

specificity achieved by different approaches, allowing an assessment

of how reliable these methods are in detecting malignant and

benign lesions. Furthermore, the perspectives highlight the unique

contributions of each study, such as the use of deep learning

algorithms, real-time detection effectiveness, and the potential for

screening in populations with limited access to dermatologists.

In the context of medicine and healthcare, this information

assists medical professionals in choosing the most suitable

approaches for early detection of malignant skin lesions,

contributing to more precise and rapid diagnosis. Additionally,

these results and perspectives also have significant implications

for the future development of healthcare applications, guiding

research and innovations in the field of artificial intelligence

applied to dermatology.

Table 3 provides details related to the main results and

perspectives.

The analysis of Table 3 highlights the positive aspects of

recent advances in the detection, classification, and evaluation

of skin cancer applications using machine learning and image

processing, achieving high sensitivity and specificity in identifying

malignant lesions. Furthermore, mobile applications offer an

accessible approach to screening in populations with limited access

to dermatologists.

However, more robust clinical validation is needed, considering

the testing stage and comparison with traditional diagnosis.

Performance variation between devices and the possibility of

unnecessary excisions are also issues to be addressed. These

advancements represent significant potential, but it is essential

to balance opportunities with challenges, prioritizing ongoing

research and validations for effective implementations in medical

practice.

Among the studies presented, the YOLOv2 model, proposed

by Roy et al. (28), stands out by demonstrating high precision and

sensitivity in the detection of melanoma in dermoscopic images,

processing in real-time efficiently. Additionally, Udrea et al. (31)

present a machine learning-based method that achieves significant

results in sensitivity and specificity for the detection of melanomas

and basal cell carcinomas and squamous cell carcinomas. In

turn, Giavina-Bianchi et al. (17) develop dermatoscopy models to

assist dermatologists, offering positive perspectives for improving

the detection and management of skin lesions. Furthermore, an

innovative approach by Francese et al. (37) uses augmented reality

and deep learning in a lesion analysis system, with the potential to

facilitate dermatological diagnosis.

It is important to note that, although all the approaches

highlighted in Table 3 show promising results, many of them are

still undergoing testing and clinical validation phases. Therefore, it

is crucial to continue rigorous research and in-depth evaluations,

as emphasized by various researchers, before considering the

widespread and effective implementation of these approaches

in medical practice. These innovations have the potential to

revolutionize early detection and diagnosis of skin cancer, but
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TABLE 2 Summary of techniques and classifiers used in skin cancer image analysis studies for clinical settings by year and author.

References Resources used Classifier Purpose

Ramlakhan and

Shang (25)

Image segmentation, feature calculation,

and classification.

K-Nearest Neighbors (K-NN). Classify malignant and benign lesions.

Afifi et al. (26) Pre-processing, segmentation, feature

extraction, and classification.

Support Vector Machine (SVM) Melanoma detection.

Thissen et al. (27) Lesion area, mean grayscale value,

standard deviation over the lesion, and

lesion circularity extracted from fractal

map.

The evaluation algorithm is based on fractal and

classical image.

Classification of low, medium, or high-risk lesions

(where proven benign skin lesions should fall into

the low or medium-risk class, and melanoma and

non-melanoma skin cancer, along with melanoma

in situ, actinic keratosis, and Bowen’s disease,

should fall into the high-risk class).

Roy et al. (28) Image segmentation, feature calculation,

and classification.

YOLOv2. Melanoma detection.

Alizadeh and

Mahloojifar (29)

Pre-processing, segmentation, lesion

detection, and classification algorithms.

Normal Bayes and Support Vector Machine

(SVM).

Melanoma detection.

Fujisawa et al. (30) Pre-processing and feature extraction. GoogLeNet DCNN deep convolutional neural

network (DCNN).

Classify malignant and benign lesions.

Udrea et al. (31) Pre-processing, segmentation, and

feature extraction.

Conditional generative adversarial network to

segment skin lesions in images. For classification,

Support Vector Machine Classifier with radial

basis kernel function was used.

Detection of (pre)malignant and malignant

conditions.

Bakheet and

Al-Hamadi (32)

Image pre-processing, skin lesion

segmentation, feature extraction, and

classification.

Multilevel Neural Network (MNN) Melanoma detection.

Abbas (33) Image pre-processing, skin lesion

segmentation, feature extraction, and

classification.

The Smart-Dermo system is proposed in this

article using image processing and applies clinical

rules using the ABC clinical technique. It also uses

Fuzzy technique for classification.

Melanoma detection.

Bakheet and

El-Nagar (34)

Image pre-processing, adaptive lesion

segmentation, and feature extraction.

Deep Neural Network (DNN). Classification of malignant vs. benign lesions.

Dulmage et al. (35) Not specified Deep convolutional neural network (CNN)

architecture, including DenseNet and

NASNetMobile, as well as proprietary models

developed by VisualDx.

Detection of skin lesion morphology.

Pangti et al. (36) Pre-processing and image optimization

resources, normalization algorithms,

and custom loss function for training

the neural network.

Convolutional Neural Networks (CNN). Detection of 40 common skin diseases.

Giavina-Bianchi et

al. (17)

Similarity networks and Data

Augmentation.

In the clinical model, image features are extracted

through a convolutional network (VGG16), and

then the K-Nearest Neighbor (KNN) algorithm is

used to classify the images based on these features.

In the dermatoscopic model, images are processed

using generative adversarial networks (GANs),

and classification is performed through an

ensemble model that combines the results of five

EfficientNetB6 models.

Melanoma detection.

Francese et al. (37) Real-time analysis process of skin

lesions involves acquiring camera

frames, tracking device position relative

to the patient’s skin, cropping the nevus,

image pre-processing, feature

extraction, nevus classification using a

CNN, pose estimation, rendering, and

displaying augmented images.

Convolutional Neural Network (CNN) Melanoma detection.

Felmingham et al.

(24)

Not specified. Convolutional Neural Network (CNN) developed

by MoleMap Ltd and Monash eResearch.

Classification into benign, uncertain, or malignant

lesions.

Sangers et al. (38) Not specified. The study used a mobile health app called

SkinVision, which utilizes Convolutional Neural

Network (CNN).

Classification into suspicious and benign lesions.

(Continued)
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TABLE 2 (Continued)

References Resources used Classifier Purpose

Jahn et al. (39) Not specified. The study used a mobile health app called

SkinVision, which utilizes Convolutional Neural

Network (CNN).

Melanoma detection.

Kränke et al. (40) Not specified. Two CNNs: one classical CNN and the other

region proposal network (RPN)-based CNN for

stratification.

Classification of various skin lesions.

ensuring their reliability and clinical utility through robust studies

is fundamental.

3.5 Diversity, accessibility, and medical
collaboration

Ethnic diversity, the involvement of medical professionals, and

ethical considerations play a pivotal and indispensable role in

the development of applications designed for the detection and

classification of skin lesions. These factors significantly contribute

to the efficacy, validity, and accessibility of these technological

solutions, thereby ensuring their widespread acceptance and

adoption within the medical community, characterized by both

confidence and equity. The continuous advancement within

this scientific domain necessitates a multidisciplinary approach

that seamlessly amalgamates the expertise of dermatologists,

data scientists, and healthcare practitioners with the overarching

objective of further enhancing the precision and impact of these

pioneering applications.

Within this context, the systematic incorporation of a

comprehensive array of ethnicities and genotypes into the training

and evaluation datasets assumes fundamental importance. This

strategic inclusion is essential to ensure the capability of such

applications to meticulously identify and classify lesions across

diverse skin types. This strategic approach contributes profoundly

to the reduction of potential biases and affirms the technology’s

reliability for a broad and variegated spectrum of end-users.

Additionally, the active involvement of seasoned healthcare

professionals plays a critical role in the formulation of the

training parameters for AI models and the meticulous review

of the decisions emanating from these applications. This

collaborative synergy serves as an anchor to guarantee diagnostic

precision while also facilitating the identification of intricate

cases that may pose challenges to the technology. Furthermore,

the validation of these applications by dermatologists is of

paramount importance in the comprehensive evaluation of

their effectiveness in comparison to conventional diagnostic

methodologies.

In this manner, Table 4 presents a repository of pertinent

information pertaining to the ethnic and genetic diversity

of the study population, in conjunction with a meticulous

assessment of the participation levels of dermatologists

and other healthcare professionals in each research

study.

The studies present diverse approaches in their research

endeavors. For instance, Udrea et al. (31) emphasizes the

inclusion of data origin information, indicating that the data

predominantly comes from countries such as the United Kingdom,

the Netherlands, Australia, and New Zealand. On the other hand,

Pangti et al. (36) mentions the scarcity of clinical images from

different ethnicities as a challenge but addresses this issue by using

locally generated data to mitigate class imbalance and racial bias in

public datasets.

Another notable difference lies in the validation approach.

While Fujisawa et al. (30) and Pangti et al. (36) highlight

comparative validation with diagnoses performed by healthcare

professionals, Francese et al. (37) focuses on evaluation by

dermatologists through post-test questionnaires. Each of these

studies adopts a unique strategy to verify the effectiveness and

accuracy of the applications.

Moreover, Dulmage et al. (35) draws attention to

image classification based on the Fitzpatrick skin type,

emphasizing specific considerations for variations in

skin tone in their assessments. Conversely, Bianchi et

al. (17) utilizes data collected through teledermatology

for their project, highlighting a different data acquisition

approach.

In summary, the studies exhibit differences in terms of

data origin, validation strategies, considerations regarding ethnic

diversity, and specific data collection approaches, showcasing

the diversity and innovation in the approaches taken to

create skin lesion detection applications. However, a central

characteristic is the close collaboration with dermatologists

and medical professionals, as evidenced in multiple studies.

This direct interaction ensures the clinical validity of the

applications by aligning the AI decisions with specialized

medical knowledge.

Furthermore, comparing results with assessments by

dermatologists reinforces the diagnostic accuracy of these

technologies. Notably, the explicit consideration of ethnic

and genetic diversity within the population, as discussed in

Fujisawa et al. (30) and Pangti et al. (36), also stands out

as a signigficant strength. By encompassing various skin

types and demographic characteristics, such applications

become more comprehensive and reliable in real-world

scenarios. Taken together, these aspects underscore the

relevance of these applications in medical practice and their

potential to significantly contribute to early and accurate skin

lesion detection.

When analyzing the studies, a consensus becomes evident

regarding the importance of accessibility and availability of systems

and applications for skin lesion detection and classification.

However, many systems still fail fully meet these requirements

due to resource limitations, technical complexity, or the absence
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TABLE 3 Overview of classification results and potential implications of skin cancer studies for clinical settings by year and author.

References Key classification results Prospects

Ramlakhan and

Shang (25)

Sensitivity of 80.5% for benign lesions and 60.7% for malignant lesions. Demonstrates the ability to perform image segmentation, calculate

features, and classify lesions on a smartphone with good recognition

accuracy.

Afifi et al. (26) No results presented regarding the classifier. The system can detect melanoma in real-time with high accuracy and

low power consumption, proposed for use in primary care settings,

using a high-level hardware design methodology to implement the

SVM classifier quickly and efficiently on an FPGA.

Thissen et al. (27) Achieved 80% sensitivity and 78% specificity in detecting

(pre)malignant conditions.

The evaluated app can support less experienced professionals in

differentiating between benign and malignant lesions. It analyzes data

related to texture, color, geometric features extracted from images, as

well as lesion characteristics (lesion age, pain, itching, bleeding, among

others).

Roy et al. (28) The proposed model, YOLOv2, achieved an average precision of 0.89,

average recall of 0.91, overall accuracy of 86.00%, recall of 86.35%,

specificity of 85.90%, and a frame rate of 21 FPS, indicating high

precision and recall in detecting melanoma in dermoscopic images, as

well as efficiency in terms of time.

YOLOv2 is presented as a more efficient and accurate approach than

other works in automatic melanoma detection in dermoscopic images.

The model can process images in real-time with high precision and

recall in melanoma detection, and it is invariant to the presence of hair

in the images.

Alizadeh and

Mahloojifar (29)

Average accuracy, sensitivity, and specificity were 95%, 98%, and

92.19%, respectively.

Development of a mobile application for skin lesion detection using

image processing and machine learning techniques.

Fujisawa et al. (30) The overall accuracy of the trained DCNN was 76.5%. The DCNN

achieved a sensitivity of 96.3% (correctly classified as malignant), and a

specificity of 89.5% (correctly classified as benign). Although the

accuracy of malignancy classification by certified dermatologists was

statistically higher than that of dermatology trainees (85.3%± 3.7%

and 74.4%± 6.8%, P < 0.01), the DCNN achieved higher accuracy.

Classifying skin tumor images into 14 different diagnoses with higher

accuracy than certified dermatologists. However, the authors state that

it should be validated in a prospective clinical study before considering

its use for screening in general medical practice.

Udrea et al. (31) The machine learning-based skin lesion risk classification algorithm

showed sensitivity of 95.1% for melanoma detection and 90.2% for

basal cell carcinomas and squamous cell carcinomas. The algorithm’s

specificity was 78.3% for melanomas and 92.0% for basal cell

carcinomas and squamous cell carcinomas. The overall accuracy of the

algorithm was 86.1% for melanomas and 79.0% for basal cell

carcinomas and squamous cell carcinomas. The study also showed that

the algorithm’s performance was consistent across different mobile

devices and user groups. Additionally, the study demonstrated that the

smartphone app could be a useful tool for skin lesion screening in

populations with limited access to dermatologists.

Evaluates the accuracy of the latest version of a smartphone app for

skin lesion risk assessment and provides an accessible and user-friendly

screening tool for individuals with limited access to dermatologists.

Bakheet and

Al-Hamadi (32)

The method achieved an area under the ROC curve (AUC) of 0.94,

indicating good performance in distinguishing between benign and

malignant lesions. Additionally, the method showed sensitivity of

100%, specificity of 95-99%, positive predictive value (PPV) of 86-90%,

and negative predictive value (NPV) of 100%.

Developing an effective and fast method with promising performance

and 100% sensitivity. The premise is that the detection of malignant

melanoma in skin lesion images can be improved through image

processing and machine learning techniques. The proposed method

uses specific lesion features, such as color and asymmetry, to classify

lesions as benign or malignant.

Abbas (33) The proposed Smart-Dermo achieved 92% accuracy in classifying

malignant melanomas and benign tumors.

The Smart-Dermo app aims to assist dermatologists and healthcare

professionals in diagnosing skin lesions, enabling early detection and

patient monitoring for skin cancer risk. The work is based on using

smartphones as processing devices and training the machine learning

algorithm with a database of pre-classified dermoscopy images.

Bakheet and

El-Nagar (34)

The method achieved an average accuracy rate of 97.5%, sensitivity of

96.67%, and specificity of 100.0% on a dermoscopy image dataset.

The study promises an efficient and real-time approach for melanoma

detection in dermoscopy images, with results comparable to or

superior to state-of-the-art methods. The work’s premises include

using a well-established dermoscopy image dataset and validating the

proposed method on a test set.

Dulmage et al. (35) The main results of the study show that the AI system can categorize

skin lesion morphology with 68% accuracy. When considering the top

three classifications predicted by the AI system, accuracy increases to

80%. Additionally, the study reveals that the AI system performed

similarly to primary care physicians who used visual guidance to assist

in lesion morphology categorization.

The work aims to develop an AI system capable of categorizing skin

lesion morphology with high accuracy, which can be useful for

primary care and emergency physicians in diagnosing skin diseases.

Pangti et al. (36) The machine learning model achieved an overall accuracy of 76.93%

(±0.88%) in top-1 and an average area under the curve (AUC) of 0.95

(±0.02) on clinical images in an in silico validation study. In a clinical

study with patients of color, the app achieved an overall accuracy of

75.07% (95% CI = 73.75-76.36) in top-1, 89.62% (95% CI =

88.67-90.52) in top-3, and an average AUC of 0.90 (±0.07).

The model was trained on a large dataset of skin lesion images and

evaluated in three different clinical settings, including an internal

validation dataset, an external validation dataset, and a multicenter

prospective clinical study, providing a diagnostic tool for 40 types of

skin lesions.

(Continued)
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TABLE 3 (Continued)

References Key classification results Prospects

Giavina-Bianchi et

al. (17)

Dermoscopy models achieved an accuracy of 89.3% for melanoma,

while the clinical model achieved an accuracy of 84.7%. Sensitivity for

these models was 0.91 and 0.89, and specificity reached 0.89 and 0.83,

respectively. Both models demonstrated a remarkable area under the

curve (AUC) exceeding 0.9.

Developed a mobile application with a data collection protocol

(photos, demographic information, and brief medical history) and AI

to classify clinical and dermoscopic images. The app generates reports

for each lesion with images, indicative heatmaps, estimated probability

of melanoma or malignancy, likely diagnosis, and management

suggestions.

Francese et al. (37) The results are related to the usability of the application: clarity of tasks

(100% of dermatologists found tasks clear), ease of use of the app (5

dermatologists found it easy to use), the need for technical support

(100% of dermatologists felt they would not need support), and

integration of system functions (100% of dermatologists found

functions well-integrated).

It is possible to identify that the work proposes a system for skin lesion

analysis that uses augmented reality and deep learning techniques to

assist dermatologists in diagnosing skin lesions. The system was

evaluated through a post-test questionnaire answered by

dermatologists, and the results indicated that the system is easy to use

and does not require additional technical support.

Felmingham et al.

(24)

The study is still ongoing. The promises and premises of the work are to assess the effectiveness

of the CNN in assisting physicians in diagnosing and managing skin

lesions in a real-world clinical environment. The study also aims to

evaluate the safety of the AI algorithm before its use in

post-intervention settings and assess the acceptance of the AI

algorithm by physicians and patients.

Sangers et al. (38) The app showed an overall sensitivity of 86.9% and specificity of 70.4%.

Sensitivity was significantly higher on iOS devices compared to

Android devices (91.0% vs. 83.0%). Furthermore, specificity was

considerably higher for control benign lesions compared to suspicious

skin lesions (80.1% vs. 45.5%). It was also observed that sensitivity was

higher in skin fold areas compared to smooth skin areas (92.9% vs.

84.2%), while specificity was higher for lesions in smooth skin areas

(72.0% vs. 56.6%).

The study evaluated the effectiveness of the app in detecting skin

lesions at risk of skin cancer and concluded that the app has the

potential to help patients assess their skin lesions before consulting a

healthcare professional.

Jahn et al. (39) The study assessed the diagnostic accuracy of the SkinVision R©

smartphone app in melanoma detection and found that the app

classified a significantly higher number of lesions as high-risk

compared to dermatologists, potentially leading to unnecessary

excisions. Additionally, the diagnostic performance of the app was

below the advertised rates, with low sensitivity and specificity.

The text highlights the importance of evaluating apps for certification

with real-world prospective evidence.

Kränke et al. (40) The detection algorithm showed a sensitivity of 96.4% and specificity

of 94.85%, while the analysis algorithm achieved a sensitivity of 95.35%

and specificity of 90.32%.

To evaluate the accuracy of two new neural networks for diagnosing

skin cancer on currently available smartphones. The study also aimed

to provide a low-cost and easily accessible screening tool for early skin

cancer detection.

of clear guidelines. To address this issue, broader collaboration

among companies, accessibility experts, programmers, and users

is crucial in translating intentions into practical actions. Such

collaborative effort will result in significant benefits for all

parties involved.

Finally, it is essential to ensure that AI applications

are developed and tested ethically and responsibly.

This includes safeguarding patient data privacy

and security, as well as ensuring transparency

in the of development and training processes

of algorithms.

4 Conclusion

The application of artificial intelligence in dermatology has

the potential to revolutionize the detection and diagnosis of skin

lesions, especially in the case of melanoma, a severe and potentially

fatal disease.

This review highlights that several studies are making

significant advancements in improving image processing

capabilities, pattern recognition, and deep learning.

These advancements enable rapid and accurate analyses

that can lead to real-time diagnoses. This evolution

contributes to early detection of skin cancer, expanding the

prospects for cure and minimizing the reliance on invasive

procedures.

However, it is important to note that the vast majority

of the solutions presented have not yet been validated

in clinical settings or developed in collaboration with

dermatologists and other healthcare professionals to

ensure they meet patients’ needs and are effective in

clinical practice.

In summary, the solutions presented can help enhance the

efficiency of healthcare services, reducing the time required for

examinations and diagnoses. This can be especially important

in areas with a shortage of healthcare professionals or in

emergency situations where time is critical. However, they should

be used with caution and responsibility, in collaboration

with dermatologists and other healthcare professionals,

to ensure they meet patients’ needs and are effective in

clinical practice.
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TABLE 4 Diversity considerations and medical professional involvement in skin cancer studies for clinical settings by year and author.

References Ethnic and genetic diversity of the population Participation of dermatologists and other
medical professionals

Ramlakhan and

Shang (25)

Does not present data on this aspect. Does not present data on this aspect.

Afifi et al. (26) Does not present data on this aspect. Does not present data on this aspect.

Thissen et al. (27) Does not present data on this aspect. The text mentions that consecutive patients were seen by both a

dermatologist and a dermatology resident.

Roy et al. (28) Does not present data on this aspect. Does not present data on this aspect.

Alizadeh and

Mahloojifar (29)

Does not present data on this aspect. The text mentions that results are displayed to dermatologists on

smartphones, suggesting that the system may be used by healthcare

professionals.

Fujisawa et al. (30) The study mentions that it was conducted in the Division of

Dermatology at the University of Tsukuba Hospital but does not

provide additional information about the studied population.

The authors compare results with interns and dermatologists, implying

that the system may be developed to assist medical professionals in

their diagnoses.

Udrea et al. (31) The data primarily come from countries such as the United Kingdom,

the Netherlands, Australia, and New Zealand. However, it does not

provide additional information about the studied population’s

diversity.

Yes, the study mentions that each pair of image and corresponding risk

classification undergoes a quality control check performed by a

dermatologist. Moreover, for lesions classified as high-risk or for cases

that have been upgraded or downgraded by a dermatologist, the user

will receive a message from the Customer Care team within 48 hours,

indicating the level of urgency. This indicates that there is

dermatologist support and involvement in the skin lesion assessment

process.

Bakheet and

Al-Hamadi (32)

Does not present data on this aspect. The study mentions that the methodology was developed in

collaboration with dermatologists and other medical professionals.

Abbas (33) Does not present data on this aspect. The Smart-Dermo application was developed to assist dermatologists

and healthcare professionals in diagnosing skin lesions. However, it

does not provide detailed information about the specific support of

dermatologists and other medical professionals during the

application’s development. It can be inferred that the application aims

to provide an additional tool to assist healthcare professionals in

diagnosing and monitoring patients at risk of developing skin cancer.

Bakheet and

El-Nagar (34)

Does not present data on this aspect. Does not present data on this aspect.

Dulmage et al. (35) The study mentions concerns about the potential for artificial

intelligence technology to exacerbate health inequalities among

patients of different ethnicities but does not provide specific data on

the ethnic and genetic diversity of the studied population.

Additionally, the images were classified by Fitzpatrick skin type and

separated into darker skin types (Fitzpatrick skin type IV - VI) and

lighter skin types (Fitzpatrick skin type I - III).

The study mentions that the artificial intelligence system was

developed in collaboration with dermatologists and other medical

professionals. The study also mentions that skin lesion images used to

train the system were manually labeled by dermatologists.

Pangti et al. (36) The work mentions the scarcity of clinical images (macroscopic) from

different ethnicities as one of the major challenges in developing deep

learning-based skin disease classifiers. Additionally, the text mentions

that using locally generated data helped address the issue of class

imbalance and racial bias in public datasets. However, the text does not

provide specific information about the ethnic and genetic diversity of

the population used.

Dermatologists were involved in the study to assess the accuracy of the

skin disease diagnostic application compared to human

dermatologists.

Giavina-Bianchi et

al. (17)

Does not present data on this aspect. Data was obtained for a teledermatology project, meaning it utilized

data collected by dermatologists.

Francese et al. (37) Does not present data on this aspect. The system was evaluated by dermatologists through a post-test

questionnaire.

Felmingham et al.

(24)

Does not present data on this aspect. The study is led by dermatologists and involves other medical

professionals, including pathologists and nurses.

Sangers et al. (38) Does not present data on this aspect. A set of 239 cases were confirmed through dermatological evaluation

and/or histopathology.

Jahn et al. (39) Does not present data on this aspect. Seven dermatologists participated in the study as evaluators of the

lesions.

Kränke et al. (40) Does not present data on this aspect. The study was conducted by the Department of Dermatology at the

Medical University of Graz, Austria, suggesting the involvement of

dermatologists and other medical professionals in the study’s

execution.
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Artificial intelligence is poised to rapidly reshape many fields, including that of skin 
cancer screening and diagnosis, both as a disruptive and assistive technology. 
Together with the collection and availability of large medical data sets, artificial 
intelligence will become a powerful tool that can be  leveraged by physicians 
in their diagnoses and treatment plans for patients. This comprehensive review 
focuses on current progress toward AI applications for patients, primary care 
providers, dermatologists, and dermatopathologists, explores the diverse 
applications of image and molecular processing for skin cancer, and highlights 
AI’s potential for patient self-screening and improving diagnostic accuracy for 
non-dermatologists. We additionally delve into the challenges and barriers to 
clinical implementation, paths forward for implementation and areas of active 
research.
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Introduction

Artificial intelligence (AI) stands at the forefront of technological innovation and has 
permeated into almost every industry and field. In dermatology, significant progress has been 
made toward the application of AI in skin cancer screening and diagnosis. Notably, a milestone 
that marked the era of modern artificial intelligence in dermatology was the demonstration of 
skin cancer classification abilities by deep learning convolutional neural networks (CNNs), 
which was on par with the performance of board-certified dermatologists (1). This CNN was 
trained on a dataset that was two orders of magnitude greater than those previously utilized. 
The dermatologist-level classification ability has since been experimentally validated by other 
papers (2, 3). Recent progress in the field of AI enables models to not only analyze image data 
but also integrate clinical information, including patient demographics and past medical 
history (4–6). Advancements allow for the simultaneous evaluation and identification of 
multiple lesions from wide-field images (7, 8). Moreover, models can now gain information 
from whole slide images without having to use costly pixel-wise human-made annotations (9). 
Despite these advancements, research has found that AI models lack robustness to simple data 
variations, have proven inadequate in real-world dermatologic practice performance, and that 
barriers remain before achieving clinical readiness (2, 10–14).
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Clinical applications

Artificial intelligence has been employed to predict the most 
common types of skin cancers, melanoma (1) and non-melanoma skin 
cancer (1), through image analysis. In addition, machine learning has 
been used on RNA datasets to develop classifiers that also predict skin 
cancer, as well as the prognosis of skin lesions. Several of these methods 
can be, or have the potential to be, readily deployed by patients, 
primary care practitioners, dermatologists, and dermatopathologists.

Patients

With the rising prevalence of smartphone usage, patients can 
directly screen for and monitor lesions with AI applications. These 
applications can run AI models on patients’ own local devices, which 
ensures the protection of patient data (15). The feasibility of an AI 
model to assist patients’ with self-assessed risk using smartphones has 
been validated with a model that was trained on pictures captured from 
patients’ smartphones, and which exhibited comparable performance 
to general practitioners’ ability to distinguish lower-risk vs. higher-risk 
pigmented lesions (16). Moreover, AI significantly increased the abilities 
of 23 non-medical professionals to correctly determine a diagnosis of 
malignancy from 47.6 to 87.5% without compromising specificity (12). 
In the future, AI models may assist with overseeing and assessing 
changes to lesions as they progress (17) and collaborate with apps that 
allow patients to examine themselves and document moles (18, 19).

Despite progress with these AI models, there is no smartphone 
application that is endorsed on the market in the United States for 
non-professionals to evaluate their lesions as they do not have 
satisfactory performance or generalizability (20). Limitations include 
biases introduced due to the narrow range of lesion types, skin 
pigmentation types, and low number of high-quality curated images 
used in training. Further, inadequate follow-up has been a limitation 
with regards to identifying false negative diagnoses (21). Notably, 
users may not be  adequately protected from the risks of using 
smartphone diagnostic apps by Conformit Europenne (CE) 
certification, which endorsed two apps with flaws (SkinVision and 
TeleSkin’s skinScan app). A prospective trial of SkinVision found low 
sensitivity and specificity for melanoma classification (22). In contrast 
to CE, the US Food and Drug Administration’s (FDA) requirements 
for endorsement are more stringent (21).

Primary care

Artificial intelligence applications can enhance skin cancer 
screening in the primary care setting and streamline referrals to 
dermatologists. Referral data from primary care practitioners to 
teledermatology consultations were used to train a model capable of 
a top-3 accuracy and specificity of 93 and 83%, respectively, given 26 
skin conditions that makeup 80% of encountered primary care cases 
(4). This performance was on par with dermatologists and surpassed 
primary care physicians (PCPs) and nurse practitioners. This type of 
model could assist PCPs in diagnosing patients more accurately and 
broadening their differential diagnoses. In cases in which the top 3 
diagnoses from the model have the same management strategy, 
patients may start treatment while awaiting further workup or 
follow-up with dermatology. Nevertheless, further testing on 

populations with a low prevalence of skin cancer is essential to 
demonstrate efficacy in the broader population (23).

Dermatology

Models have been trained to use electronic health record (EHR) 
data and/or gene sequencing data to predict an individual’s likelihood 
of developing melanoma (24–27) or nonmelanoma skin cancer (27–
31). While AI models could potentially flag patients at high risk of 
skin cancer to be screened, studies are limited by the variability of 
included predictive factors, inconsistent methods of evaluating 
models, and inadequate validation (32). Moreover, EHRs often do not 
include some of the most important risk determinants for skin cancer, 
such as exposure to UV light and the patient’s familial history; the 
omission of such data may result in decreased performance (28).

Artificial intelligence has the potential to supplement 
dermatologists’ diagnostic and treatment capabilities in what is known 
as augmented intelligence (AuI). For diagnosis, AuI might assist 
dermatologists in more effectively managing teledermatology referrals 
(4) and increase the efficacy of in-person visits (33). However, in a 
prospective trial comparing AI to dermatologists in a teledermatology 
setting, dermatologists outperformed the AI (13). Despite AI currently 
underperforming dermatologists, AI could provide a new perspective 
that could still be beneficial as AI and humans exhibit distinct types of 
errors. For instance, models may provide insights into certain images’ 
classification ambiguity, whereas humans are better able to distinguish 
variability in image quality such as blurriness or shadowing (12).

Augmented intelligence can also assist with suggesting clinical 
decisions given inputted images, such as recommending whether a 
lesion warrants excision (34). The integration of AuI into dermatologic 
patient management resulted in a 19.2% reduction in unnecessary 
excisions of benign lesions (35). Although current CNNs’ performance 
has been shown to fall short when compared with using sequential 
dermatoscopic photography in predicting melanoma, AuI may be used 
in the future by dermatologists to evaluate and monitor lesion change 
(36). Of interest, in this study, neither dermatologists nor the CNN had 
satisfactory diagnostic performance levels on baseline images, but both 
dermatologists and CNN had improved performances when follow-up 
images were provided, and the best performance was combining CNN 
and dermatologist assessment together.

Integration of AI into advanced imaging techniques may reduce 
the extent of training necessary to use them (37). One area of 
application is in the detection of the dermal-epidermal junction, 
which is crucial in a non-invasive method of skin cancer diagnosis 
called reflectance confocal microscopy (RCM) imaging (38). 
Furthermore, there are ongoing efforts to analyze RCM images with 
AI (39).

The FDA has not approved any medical devices or algorithms 
based on artificial intelligence in the field of dermatology (40, 41). On 
the other hand, the FotoFinder Moleanalyzer Pro, an AI application 
for dermatology, was approved in the European market. It 
demonstrated performance on par with dermatologists in store-and-
forward dermatology (42) and a prospective diagnostic study (43), 
however, the latter had extensive exclusion criteria, e.g., excluding 
patients of skin type IV and greater. The first randomized controlled 
trial comparing AI skin lesion prediction to dermatologists’ 
assessment reported that AI did not exceed attending dermatologists 
in skin cancer detection (44).
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Dermatopathology

With the growing application of whole slide imaging (WSI) in the 
field of dermatopathology (45), AI can potentially support 
dermatopathologists in several ways, particularly skin cancer recognition. 
Among the AI models trained to detect melanoma from digitized slides 
(5, 46–50), two models were able to match the performance of 
pathologists in an experimental setting. These models were limited in 
that they were only given either a part of (46) or a single (49) hematoxylin 
and eosin (H&E)-stained slide. In contrast, pathologists can utilize 
supplementary data such as immunohistochemistry or relevant patient 
data. However, integrating patient information, such as age, sex, and 
lesion location, into CNN models did not enhance performance (5). One 
limitation to implementing AI in dermatopathology is the unreliable 
prediction that may be made when a model is given an input that differs 
from the training dataset. One potential solution is the use of conformal 
prediction, which has been shown to increase accuracy of prostate biopsy 
diagnosis by flagging unreliable predictions (51).

Studies have been done to evaluate AI’s ability for diagnosing basal 
cell carcinoma (BCC) using WSI (9, 52, 53). Campanella et al. showed 
the ability of a convolutional neural network to achieve 100% sensitivity 
for detecting BCC, on the test set; importantly, a multiple instance 
learning approach was introduced that obviated the necessity of time-
consuming pixel-level slide annotations to distinguish between areas 
with and without disease (9). Kimeswenger et  al. subsequently 
incorporated an “attention” function to draw attention to areas of digital 
slides that include indications of BCC. Interestingly, CNN pattern 
recognition varied from that of pathologists for BCC diagnosis as tissues 
were flagged based on different image regions (53). These CNNs could 
also be  applied to identify and filter slides for Mohs micrographic 
surgery (52). In the setting of rising caseloads, AI can help to decrease 
pathologists’ workload generated by these commonly diagnosed, low 
risk entities. Duschner et al. applied AI to automated diagnosis of BCCs, 
and demonstrated both sensitivity and specificity of over 98%. Notably, 
the model demonstrated successful generalization to samples from 
other centers with similar sensitivity and specificity (54).

Artificial intelligence has also had some success in predicting 
sentinel lymph node status (55), visceral recurrence, and death (56) 
based on histology of primary melanoma tumors. In the future, AI 
could be utilized to identify mitotic figures, delineate tumor margins, 
and determine the results of immunohistochemistry stains; further, 
AI could recommend more immunostaining or genetic panels that 
could be of use diagnostically (57). While AI predictions have not 
been consistently successful for melanoma (58), AI has been 
demonstrated to identify the mutation given a lung adenocarcinoma 
slide that has been stained with H&E (59–61).

Machine learning applied to RNA profiles

While AI in dermatology is most often associated with using deep 
learning techniques on clinical and histological images, machine 
learning methods have been utilized in developing gene expression 
profile (GEP) classifiers for predicting skin cancer diagnosis and 
prognosis. Generally, simpler machine learning models that require 
tuning of fewer parameters compared to more complex neural nets have 
been employed to analyze GEP. They still, however, share the benefits of 
the ability to use iterative learning optimized to find patterns in complex 
non-linear relationships not possible in traditional statistical and linear 

models, assuming sufficient data is available. Some common models 
include many Kernel methods such as support vector machines (SVM) 
or tree-based models, e.g., Random Forest and XGBoost that have often 
been found to produce the best performance for tabular gene expression 
data. These models also often use some method to feature select (62) to 
both maximize performance and find the most relevant features for the 
classification task. This also allows for a better sense of interpretability 
as with fewer features there is the ability to assess their relevance 
individually. Reproducibility is of great concern and has often been the 
critique of many biomarker and classifier studies, since there is often 
little to no overlap in targets, which understandably can lead to general 
skepticism of the results, especially considering the generally small 
sample sizes employed in many studies. Despite this, there has been a 
push to make use of molecular profiling to assist in different aspects of 
melanoma management.

Currently, the GEPs developed for use in melanoma management 
fall into two categories. First, some GEPs are used as a diagnostic tool 
to help determine the malignancy of a pigmented lesion either pre- or 
post-biopsy. Pre-biopsy there is an epidermal tape sampling test that 
can predict melanoma with 94% sensitivity and 69% specificity (63) 
with an improved sensitivity of 97%, when TERT mutation assessment 
is included (64). There are, however, reported limitations to this test 
as it cannot be used on mucous membranes or acral skin and there is 
the possibility of non-actionable results due to insufficient sample 
collected for testing (65). Post-biopsy GEPs can be used to help with 
diagnostically difficult cases such as Spitz nevi, but have poorer 
performance on Spitz melanomas and pediatric patients (66). Machine 
learning has also been applied with success to miRNA profiles to 
differentiate melanomas from nevi (67).

Second, there are GEPs, derived from biopsy material, that are 
used as prognostic tools to stratify the risk of melanoma recurrence 
or metastasis (68), however subsequent management protocols for 
high risk early-stage disease are not in place (68). Despite optimism 
for prognostic use of prognostic GEP classifiers, the expert consensus 
is that there is currently insufficient evidence to support routine use 
(69). The climate, however, is evolving, with new reports incorporating 
additional clinicopathological data together with patient outcomes 
(70). Overall, there remains a lack of consensus on the use of the GEP 
biopsy and tape sampling tests (71, 72). Further studies are needed, 
such as non-interventional retrospective studies, followed by 
prospective interventional trials, but there remains promise that they 
can become additional tools in providers’ arsenal of available tests.

Barriers to clinical implementation

Image quality

Image quality significantly impacts the prediction performance of 
AI computer vision (73). Several factors can result in subpar images, 
including inadequate focus or lighting, color misrepresentations, 
unfavorable angles or framing, obstructing objects, and poor 
resolution. Moreover, while humans can readily ignore items such as 
blurred focus, scale bars, and surgical markings, these artifacts affect 
AI prediction performance (11, 74, 75).

Obtaining consistently high-quality images in the fast-paced 
environment of a clinic presents many challenges. Barriers such as 
limited time, insufficient training, inadequate imaging equipment, and 
other constraints may hinder the process. Guidelines for skin lesion 
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imaging have been suggested to facilitate the capture of high-quality 
images (76, 77). These guidelines include suggestions for adequate 
lighting, background, field of view, image orientation, and color 
calibration. Additional recommendations are suggested for 
photographing skin of color (78).

A comprehensive, multifaceted solution is necessary to enhance 
image quality. Educating dermatology residents in photography might 
contribute to improving image quality in a clinical setting (79). 
Moreover, a study done in United Kingdom primary care facilities 
showed enhanced photo quality when patients were educated with the 
“4 Key Instructions” (Framing—requesting at least one near and one 
distant image; Flash—educating about the use of flash to enhance 
image sharpness, emphasizing not to use it too closely; Focus—
educating patients to give the camera time to auto-focus; Scale—
asking for a comparison like a ruler or a coin) (73). Among 191 digital 
applications for skin imaging, 57% included one or more strategies to 
enhance quality, but it was rare for applications to have more than one 
(80). An immediate feedback feature for image quality shows promise, 
although it is still in the early stages of development (81).

Algorithmic bias and health equity

There is a risk for indiscriminately implemented AI to potentially 
exacerbate health inequities by incorporating pre-existing and newly 
emerging biases (82) (Table 1). Pre-existing biases include pre-coding 
biases in datasets used to train the model or personal biases 
inadvertently introduced by developers. Emergent biases can 
be introduced by relying on models in new or unexpected contexts and 
not adjusting models for new knowledge and shifting cultural norms.

Artificial intelligence models for early melanoma detection have 
relied on large datasets from individuals with mostly lighter pigmented 
skin. While melanoma is more prevalent among individuals with 
lighter skin, those with darker skin frequently come in with a more 
severe stage of disease and experience lower survival rates. An AI 
model trained on lighter skin tones for melanoma prediction had 
lower performance for lesions on darker skin tones (83). The 
International Skin Imaging Collaboration (ISIC) archive, one of the 
most extensive and widely used databases for individuals in the 
United States, Europe, and Australia, and a prospective diagnostic 
accuracy paper comparing an AI model with other noninvasive 
imaging techniques did not include individuals with Fitzpatrick 
phototype III or higher (43, 84). Efforts to collect lesions from 
individuals of all skin tones should be a priority, and transparency in 
the characteristics of training datasets as well as the quality and range 
of disease labels should be disclosed (85).

AI model validation

It is crucial to carefully validate AI models before applying them in 
real-world settings (Table 1). Computational stress testing is necessary 
to guarantee efficacy in actual clinical scenarios (2). Validation should 
be performed using large amounts of external data as determining 
performance solely on internal data has been shown to often lead to 
overestimation (2, 86). The reason for the lower model performance on 
external validation datasets can arise from training data that is not 
representative of the general population or from leakage of additional 

data, either between the training and testing data or from the future 
drift of data (86). Unfortunately, most models are not open code, 
limiting research into the external validation of these models. On the 
other hand, Han et al. share the use of their models publicly, setting a 
standard that should be followed (7, 12, 87). Along with publicly shared 
models, having publicly shared benchmarks such as the melanoma 
classification benchmark (88) and accessible databases (such as 
DataDerm) is crucial for comprehensive validation (89). Few public 
datasets have representation of all skin types. A rigorous testing of 
outcome metrics with and without the support of an AI model in 
randomized controlled trials would be optimal.

Though CNNs routinely and autonomously identify image 
features pertinent for classification, this ability can lead to the 
incorporation of unintended biases. An example of possible bias is the 
use of ink markings (75) or scale bars (74) in melanoma identification. 
It is important to assess whether and how changes to inputted images 
can affect the prediction output. Changes to test include image quality, 
rotation, brightness/contrast adjustments, adversarial noise, and the 
presence of artifacts, such as those aforementioned (2, 10, 74, 75, 90, 
91). Testing for robustness given such uncertainties can assist users in 
understanding the model’s scope and reasons for error (92).

The path to clinical implementation

Given the rapid pace of advancements in AI in the medical field, 
the American Academy of Dermatology (AAD) issued a position 
statement regarding how to integrate augmented intelligence into 
dermatologic clinical settings (93). The AAD underscored the 
importance of high-quality validated models, open transparency to 
patients and providers, and efforts to actively engage stakeholders.

For AI to be broadly accepted in dermatology, studies need to 
demonstrate a significant improvement in health outcomes. The first 
randomized controlled trial of an AI’s ability to augment clinicians’ 
diagnostic accuracy on skin lesions highlighted the potential for AI to 
augment non-dermatologists diagnostic performance in a real-world 
setting, but not that of dermatology residents in training, and found 

TABLE 1 Challenges in AI in dermatology.

Challenges Summary

Model validation Many models fail to have a true external validation set so can 

fail to be representative of the general population. In 

addition, standardized benchmarks that can be used across 

models are not readily available due to limitations with few 

public datasets that serve as good benchmarks.

Quality of data Model performance can be limited by quality of data, which 

can be affected at initial collection through user error 

creating data artifacts or with intrinsic deficiencies of the 

source limiting diversity and creating class imbalances that 

are not accounted for by the model.

Algorithmic bias 

and health equity

Models can contain biases based on the selection of data used 

to train that can affect generalizability to different 

demographics both racial and socioeconomic.

Implementation 

and user 

confidence

Acceptance of AI can be limited not only by governmental 

agencies such as FDA approving use, but also at the clinician and 

patient level where mistrust or uncertainty can dissuade use.
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superior performance by experienced dermatologists—who use 
patient metadata as well as images—compared to the AI model (44). 
It also noted that if the model’s top  3 diagnoses were incorrect, 
trainees’ diagnostic accuracy fell after consulting the AI model, 
highlighting a pitfall of using current AI models.

Increasing access to dermatological care

AI offers hope for increasing health equity through increasing 
access, and democratizing skin screenings. Access to dermatologists 
is a problem, especially in rural areas, where it may take longer for a 
patient to obtain a biopsy of suspected melanoma (94). As of 2018, 
69% of counties in the United  States do not have access to 
dermatologists (95). Further exacerbating the issue, many dermatology 
clinics closed during the COVID-19 pandemic (96). AI-augmented 
teledermatology may be able to enhance accessibility by streamlining 
referrals and reducing waiting times, and it could help increase the 
accessibility in areas with a scarcity of dermatopathologists. AI may 
also help dermatologists more accurately diagnose skin disease in 
patients whose skin is not well-represented in the local population (97).

Human-computer collaboration

Clinicians are indispensable to synthesizing relevant context and 
offering patient counseling and subsequent care. Furthermore, given 
the enhanced accuracy of diagnosis when integrating AI into decision-
making, the future of dermatology will likely entail human-computer 
collaboration (98). Embedding Collective Human Intelligence (CoHI) 
or even swarm intelligence (CoHI with interaction between 
participating humans) as checkpoints within an AI model may help 
overcome the limited ability of AI to contextualize and generalize (99).

When interacting with AI, potential cognitive errors and biases 
may be exacerbated, especially when there is discordance in diagnosis 
between clinicians and AI (100). The use of AI introduces a new kind 
of bias called automation bias, in which humans tend to 
unquestioningly trust automated decisions from AI (100). When 
physicians used AI decision support for reading chest X-rays, 
experienced physicians rated diagnostic advice as lower quality when 
they thought the advice was generated by AI, but not physicians with 
less experience (101). Though rated as less trustworthy, inaccurate 
advice by AI still led to decreased diagnostic accuracy (101). It will 
be important for AI developers and medical educators, the latter when 
teaching AI applications, to take such human factors into account.

Areas of active research

There are several areas of active computational research that are 
anticipated to aid in bringing validated image analysis models to 
clinical use (Table 2).

Federated learning

A problem with training models for clinical use to detect skin 
cancer or other disorders is the limitation in sharing clinical images 

due to privacy concerns and the inherent limitations in collecting 
sufficient images of rare skin cancer types and disorders and of 
different skin pigmentation. The current approach for multi-
institution model training necessitates the forwarding of patient data 
to a centralized location, termed collective data sharing (102). 
Alternatively, federated learning uses a decentralized training system 
in which a shared global model learns collaboratively while keeping 
data locally. Each device’s data comes with its own inherent bias and 
different properties due to demographic variations. Instead of sending 
data to a central server, the model itself travels to each device, learns 
from the locally-stored data, and then updates the global model with 
this newly acquired training. By not sharing the training data across 
devices, federated learning enables the preservation of privacy of 
sensitive data (103). In a study across 10 institutions, the performance 
from federated learning was shown to better than that of a single 
institution model and shown to be comparable to that of collective 
data sharing (102). Moreover, the federated learning approach would 
be  a method to virtually aggregate data on rare skin cancers or 
disorders from different centers, such as Merkel cell cancer, or data 
from patients with rarer subtypes of skin cancers, such as mucosal or 
acral melanoma. An analogy of federated learning is a team of 
dermatologists who visit multiple clinics to learn and share knowledge, 
rather than asking patients to visit a single central hospital to see the 
team. A model trained with federated learning can offer more accurate 
diagnoses on rare skin cancer types and disorders, including lesions 
found on differing skin pigmentations, and still maintain 
patient privacy.

Deploying federated learning faces several challenges. Ensuring 
fairness across different demographic groups and data security while 
optimizing the overall performance of the global model is 
computationally complicated. Establishing computational 
infrastructure capable of seamless communication, such as 
transmission of a model, may require additional IT assistance. These 
obstacles pose a barrier to the practical implementation of federated 
learning (104).

Uncertainty estimation

Whereas many studies on the applications of skin cancer 
classification models have reported high accuracy, these models 
rarely concurrently report uncertainty estimates for the predictions 
and when assessed, models have been found to be overconfident (2). 
As a result, medical practitioners may hesitate to incorporate these 
models into their diagnostic workflow. Uncertainty estimation 
provides a meaningful confidence level, with regards to when to 
trust a model prediction. To safely deploy a computer-aided 
diagnostic system in a clinical setting, it is crucial to incorporate not 
only a model’s prediction but also a confidence score. Clinicians are 
then equipped to decide whether to trust the prediction or 
alternatively disregard the AI prediction and rely on provider 
assessment (94).

Multimodal learning

Most skin disease diagnosis models are trained only on one data 
modality: clinical or histological images or RNA sequence data. 
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However, medical data is inherently multimodal by nature, and 
dermatologists use patient information in addition to clinical images 
to make a diagnosis. Metadata from patients, such as age, ethnicity, 
and anatomic location of lesion, can also be useful to enhance skin 
cancer classification models. Multimodal learning is a technique 
where a single model learns from multiple types of data 
simultaneously (105). One skin disease classifier that integrated up to 
six clinical images and 45 demographic items and medical history to 
classify 26 skin conditions as the primary prediction outperformed 
six primary care physicians and six nurse practitioners (4). Another 
study showed that a model integrating dermatoscopic and 
macroscopic images with three patient metadata variables 

outperformed models with just one image modality for binary and 
multiclass classification setting (106, 107).

Incremental learning

Current skin disease diagnostic models are static, wherein data 
distribution is already known and the target skin diseases are pre-set. 
However, in the clinical setting, as the database size grows over time, 
with the accumulation of new images, a shift in data distribution can 
occur, for example after the inclusion of new skin disease classes, or 
with improved or new devices. Changes or differences in image 

TABLE 2 Future advances in AI.

Method Description

Uses decentralized training where a global model is trained on locally-stored data 

and then updated while preserving the privacy of local data.

To calculate an uncertainty estimate for model predictions so model confidence can 

be interpreted by end user.

Allows the use of multiple types of data to train a combined model to take advantage 

of unique differences in data.

Enables a model to continue learning on a new stream of data.

Model is used to train compressed representations of data so new instances can 

be recreated.

Model uses text based prompt to generate a response based on language based 

learning.
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acquisition tools, such as mobile phone cameras, also can shift dataset 
distribution by changing the quality of images captured. This results 
in the need to adapt models to new images while not degrading model 
performance on the pre-existing data. Incremental learning enables a 
model to continue learning the attributions of new data while 
preserving learned features from the data acquired before; successful 
incremental learning strategies on dermatology images have been 
recently reported (97, 108, 109).

Generative adversarial networks modeling

The ability to synthesize new data that closely resembles real skin 
lesion images can augment training on rare skin diseases and create 
a diverse and balanced dataset (110). While the potential to fill the 
data gaps is promising, models’ performance does not show 
significant improvement when trained on synthesized data (111). The 
stylized images should be used cautiously, so as to not degrade the 
quality or reliability of the dataset and model by adding unintentional 
bias, and also ensure alignment with real-world conditions for 
clinical application (111, 112).

Emerging new model architectures—vision 
transformers

Vision transformer has emerged as an advanced model 
architecture, challenging the traditional dominance of convolutional 
neural networks (CNNs). CNNs have been the default choice for in 
both medical imaging and natural image tasks (113, 114). However, 
inspired by the success of Transformer in natural language processing 
(NLP), researchers have increasingly utilized ViTs or hybrid models 
of CNN and ViT and demonstrated promising results across various 
medical imaging tasks (115, 116). Concurrently, a resurgence of CNN 
is occurring with advanced CNN architectures such as ConveNeXt, 
showcasing competitive performance alongside Transformers in 
natural image task (117). These ongoing explorations and adaptations 
of ViTs address the challenges and uncertainties in deciding on 
model architecture.

Applications of large language model

Large language model is a type of natural language processing 
model that is trained to “understand” and generate human-like text, 
and has potential applications in enhancing clinical decision-making 
and overall patient care. For example, ChatGPT-style LLMs designed 
only for clinical diagnosis can accelerate clinical diagnoses by helping 
patients better understand their medical conditions and communicate 
with doctors remotely (118). Another application of LLM in clinic is 
AI-enabled digital scribes that can record and summarize patients visit 
information for treatment plans and billing purposes, eliminating the 
workload due to medical charting (119, 120). While there are positive 
aspects of LLM utilization for clinical care, there are also concerns such 
as the need for continued oversight of such models. It is essential to 
recognize that LLMs and doctors can complement each other, with 
LLM providing efficiency in processing large amounts of information 

while doctors offer interpretation of the data, emotional intelligence 
and compassion to patients, thus improving patient care (121). 
However, caution should be used when utilizing LLM for medical 
advice. A recent study demonstrated that 4 LLM provided erroneous 
race-based responses to queries designed to detect race-based medical 
misapprehensions (122). To address this, testing of LLMs is critical 
before clinical implementation, and human feedback can help to 
correct errors.

Self-supervised learning

Self-supervised learning offers a promising approach to enhance 
the robustness and generalizability of models by enabling them to 
learn meaningful representations from unlabeled data. Traditionally, 
the efficacy of training deep learning models has relied on access to 
large-scale labeled datasets (123). However, in the medical field, 
acquiring such data is costly and requires specialized expertise. As a 
result, the scarcity of annotated data poses a significant obstacle to the 
development of robust models for various clinical settings. SSL 
addresses this challenge by developing a versatile model capable of 
efficiently adapting to new data distributions with a reduced number 
of labeled data during fine-tuning, while ensuring strong performance 
(124). Thus, SSL is a promising method to bridge the gap between AI 
research in the medical field and its clinical implementation.

Conclusion

Artificial intelligence currently is able to augment 
non-dermatologists’ performance in a synergistic fashion and performs 
at the level of experienced dermatologists in a randomized controlled 
trial assessing skin malignancies. This achievement opens the door to 
aiding primary care physicians’ discriminative triaging of patients to 
dermatologists and likely will decrease referrals for benign lesions, 
thereby freeing up dermatology practices to address true malignancies 
in a timely manner. Similarly, the potential for patients to self-refer for 
lesions concerning for malignancy may be possible in the near future, 
with models that can assess regional anatomic sites for lesions with 
concerning features. Through the implementation of AI, access to 
dermatologic care may become more democratic and accessible to the 
general population, including underserved subpopulations.

Limitations in performance include misdiagnosis by the model 
when assessing out of distribution diagnoses, leading clinicians astray; a 
solution might be for models to provide confidence estimates together 
with diagnostic predictions. A formidable problem in training models is 
the large number of diagnoses in dermatology, including numerous low 
incidence but aggressive malignancies (such a Merkel cell carcinoma, 
microcytic adnexal carcinoma, dermatofibrosarcoma tuberans, and 
angiosarcoma), or low incidence chronic malignancies such as cutaneous 
T cell lymphoma with potential for aggressive progression; one solution 
is federated training through the collaboration of multiple academic 
centers, some of which have specialty clinics focused on these diagnoses; 
or the formation of a central shared databank. In the future, models likely 
will be  utilized to aid experienced dermatologists and 
dermatopathologists, as well as primary care providers and patients, 
particularly after training on multimodal datasets.
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Sciences, University of Exeter Medical School, Exeter, United Kingdom

Introduction: An artificial intelligence as a medical device (AIaMD), built on 
convolutional neural networks, has demonstrated high sensitivity for melanoma. 
To be  of clinical value, it needs to safely reduce referral rates. The primary 
objective of this study was to demonstrate that the AIaMD had a higher rate of 
correctly classifying lesions that did not need to be referred for biopsy or urgent 
face-to-face dermatologist review, compared to teledermatology standard of 
care (SoC), while achieving the same sensitivity to detect malignancy. Secondary 
endpoints included the sensitivity, specificity, positive and negative predictive 
values, and number needed to biopsy to identify one case of melanoma or 
squamous cell carcinoma (SCC) by both the AIaMD and SoC.

Methods: This prospective, single-centre, single-arm, masked, non-inferiority, 
adaptive, group sequential design trial recruited patients referred to a 
teledermatology cancer pathway (clinicaltrials.gov NCT04123678). Additional 
dermoscopic images of each suspicious lesion were taken using a smartphone 
with a dermoscopic lens attachment. The images were assessed independently 
by a consultant dermatologist and the AIaMD. The outputs were compared with 
the final histological or clinical diagnosis.

Results: A total of 700 patients with 867 lesions were recruited, of which 622 
participants with 789 lesions were included in the per-protocol (PP) population. 
In total, 63.3% of PP participants were female; 89.0% identified as white, and the 
median age was 51 (range 18–95); and all Fitzpatrick skin types were represented 
including 25/622 (4.0%) type IV-VI skin. A total of 67 malignant lesions were 
identified, including 8 diagnosed as melanoma. The AIaMD sensitivity was set 
at 91 and 92.5%, to match the literature-defined clinician sensitivity (91.46%) 
as closely as possible. In both settings, the AIaMD identified had a significantly 
higher rate of identifying lesions that did not need a biopsy or urgent referral 
compared to SoC (p-value  =  0.001) with comparable sensitivity for skin cancer.

Discussion: The AIaMD identified significantly more lesions that did not need to 
be referred for biopsy or urgent face-to-face dermatologist review, compared to 
teledermatologists. This has the potential to reduce the burden of unnecessary 
referrals when used as part of a teledermatology service.
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Introduction

The global burden of skin cancer is growing, but healthcare 
systems lack the necessary capacity, especially in the aftermath of 
the COVID-19 pandemic. Skin cancers, primarily melanoma, 
squamous cell carcinoma (SCC), and basal cell carcinoma (BCC), 
are the most common cancers worldwide. In the United  States, 
9,500 people are diagnosed daily with annual treatment costs of 
$8.1bn (1). Skin cancer accounts for half of all cancers diagnosed in 
England and Wales and is increasing by 8% annually (2). However, 
of over 500,000 urgent referrals made to UK Secondary Care in 
2019/20, only 6.5% resulted in a skin cancer diagnosis. Moreover, 
25% of melanoma are found in non-urgent dermatology referrals 
(3) and diagnostic delays of 2 weeks or more can lead to a 20% 
decrease in 5-year survival rates (4). With approximately one in 
four UK Consultant Dermatologist posts unfilled (2), the situation 
is unsustainable.

A novel AI as a medical device (AIaMD), built on 
convolutional neural networks, has previously demonstrated high 
sensitivity for melanoma, similar to the level of skin cancer 
specialists (5). Trained using machine learning to recognise the 
most common malignant, premalignant, and benign skin lesions, 
the AIaMD analyses a dermoscopic image of a skin lesion and 
returns a suspected diagnosis of melanoma, SCC, BCC, Bowen’s 
disease/intraepidermal carcinoma (IEC), actinic keratosis (AK), 
atypical nevus (AN), or benign (labels of individual benign 
conditions are possible, but as the patient management is often 
the same, they are grouped into one output), along with a 
corresponding referral recommendation. The AIaMD applies a 
risk-based hierarchy so that the most serious potential diagnosis 
is returned. For example, if the AIaMD identifies a lesion as 
potentially either a BCC or melanoma, it will return a 
classification of melanoma.

The AIaMD is the key component of the Skin Analytics’ 
medical device deep ensemble for the recognition of malignancy 
(DERM), which is intended for use in the screening, triage, and 
assessment of skin lesions suspicious for skin cancer. DERM is 
deployed in the United Kingdom National Health Service (NHS) 
to support skin cancer diagnosis pathways that have assessed over 
81,000 patients since 2020. After a period of use as a Class I device 
for clinical decision support, during which time this study was 
conducted, DERM received UKCA Class IIa approval in April 
2022, allowing it to be used for autonomous decision-making, to 
further optimise the urgent referral pathways. To be of clinical 
value, the AIaMD needs to achieve a high specificity for 
premalignant and benign lesions as well as a high sensitivity for 
skin cancer. This study compared the rate and accuracy of the 
AIaMD and teledermatology in identifying premalignant and 
benign lesions that do not require biopsy or urgent referral while 
maintaining a high sensitivity for malignancy.

Materials and methods

Study design

This prospective, single-centre, single-arm, masked, 
non-inferiority design trial (the “Impact study”), with an adaptive 
group sequential design, was conducted at Chelsea and Westminster 
NHS Foundation Trust between February 2020 and August 2021. 
Chelsea and Westminster, which serves a population of 620,000 that 
has a demographic profile comparable with the London average (6), 
established an urgent skin cancer teledermatology service in 2017 (7) 
where patients with suspicious skin lesions can be  referred from 
primary care.

The primary objective of this study was to demonstrate that 
the AIaMD had a higher rate of correctly classifying premalignant 
and benign lesions as not needing to be  referred for biopsy or 
urgent face-to-face review compared to teledermatology standard 
of care (SoC) while achieving the same sensitivity to detect 
malignancy. Secondary endpoints included the sensitivity, 
specificity, positive and negative predictive values, number needed 
to biopsy for malignancy, and number needed to refer for 
premalignancy (IEC and AK) of the AIaMD and SoC. These 
performance data were used to conduct a simple cost impact 
assessment, based on the assumptions that teledermatology 
reviews cost £115.44 and require 10 min of specialist time per case 
on average; face-to-face assessments cost £163.41 and require 
15 min per case; and biopsies cost £257.43 and require on average 
32.5 min per lesion (based on a 50:50 split of excision biopsies 
which are booked for 45 min and incisional/punch biopsies which 
are booked for 20 min) (8, 9). This will be used to inform future 
health economic assessments. Surveys were conducted on patients’ 
perspectives on AIaMD use in their care and are reported in 
another publication (10). The study was registered on clinicaltrials.
gov (NCT04123678) and was approved by the West Midlands-
Edgbaston Research Ethics Committee and UK Health Research 
Authority on 23 December 2019.

Participants

Patients aged 18 or over with at least one suspicious lesion being 
photographed as part of SoC were invited to consent to the study in a 
consecutive series. Patients who returned to the teledermatology 
service with the same or different lesions were able to re-consent to 
the study. To be eligible for inclusion in the study, lesions needed to 
be less than 15 mm in diameter (so as to fit within the dermatoscope 
lens); in an anatomical location suitable for photography (avoiding 
genital, hair-bearing, mucosal sites, and subungual sites), have no 
previous trauma including biopsy or excision; and have no visible 
scarring or tattooing.

98

https://doi.org/10.3389/fmed.2024.1302363
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://clinicaltrials.gov
http://clinicaltrials.gov


Marsden et al. 10.3389/fmed.2024.1302363

Frontiers in Medicine 03 frontiersin.org

Procedures

In the teledermatology service, digital single-lens reflex (DSLR) 
and dermatoscope images of each suspicious lesion are taken by 
medical photographers. These images are reviewed remotely, alongside 
the primary care referral letter and patient-reported medical history, 
by consultant dermatologists who record a suspected diagnosis, and 
triage the lesion(s) for surgery, further assessment, or discharge.

Patients who consented to the study had an additional 
macroscopic and dermoscopic image of each lesion taken, using an 
iPhone XR smartphone and DermLite DL1 basic dermoscopic lens 
attachment, by a healthcare assistant (HCA). The suspected diagnosis 
and management decision recorded by the teledermatologist, and any 
subsequent patient review by skin cancer specialists, were collected, 
along with relevant medical history, patients’ levels of concern, 
healthcare resource utilisation data (number of appointments, time 
required to take images), and histopathology results where biopsies 
were undertaken. The iPhone XR dermoscopic images were used for 
AIaMD assessment, while the teledermatology review was conducted 
utilising DSLR images in accordance with the established SoC at 
Chelsea and Westminster. Patients completed all study-related 
activities in one visit, but the AIaMD image analysis occurred outside 
of the study, so clinicians were blinded to its output, and patient care 
was unaffected. Dermoscopic images were first quality-checked using 
an AI tool that assesses whether an image is dermoscopic, blurry, or 
dark, and rejected images were excluded from the AIaMD assessment.

Statistics and analysis

Based on the reported prevalence of and dermatologist sensitivity 
for melanoma, SCC, and BCC (5, 11, 12), it was estimated that 
dermatologists would correctly identify 91.46% of skin cancers. The 
AIaMD settings were optimised to match this as closely as possible 
with the aim of achieving a difference of <0.2%. The closest AIaMD 
settings that could be  achieved were 91% (AIaMD-A) and 92.5% 
(AIaMD-B). As both options were > 0.2% of the estimated 
dermatologist sensitivity, both settings were used for the primary 
endpoint. For the secondary endpoints, AIaMD-A was used as it was 
closer to the estimated clinical sensitivity.

The expected specificity of the AIaMD to identify malignancies 
was 54%, and the expected prevalence rates for MM, SCC, and BCC 
were 4.12, 5.16, and 21.39%, respectively. To demonstrate that the 
specificity of the AIaMD was not inferior to the specificity of SoC, 
using a 1% non-inferiority margin and with 99% power, a sample size 
of 634 lesions was needed. Assuming 1.2 lesions per patient and 
allowing for a 10% dropout rate, the sample size required was 
estimated to be 581 patients.

An interim analysis was conducted when the first third of data 
had been collected, to allow data-driven sample size reassessments. 
The primary endpoint was analysed using a one-sided, 2-proportion 
Z-test, with an overall alpha of 0.05. The final analysis was performed 
by combining the p-values from both phases of the study, using the 
procedure described by Lehmacher and Wassmer. The p-values of the 
test statistic from both phases of the study were therefore combined 
using specific predefined weights set as 0.577 and 0.82 for phases 1 and 
2, respectively (13). The one-sided significance level was adjusted to 
0.0246 for the final analysis based on the O’Brien-Fleming approach 

(14). Statistical estimates of accuracy are reported with 95% confidence 
intervals (CIs). Statistical analysis was conducted using R language 
version 4.1.3 (The R Project for Statistical Computing).

The suspected diagnosis and management outcome from the 
AIaMD and teledermatology were compared with a histologically 
confirmed diagnosis, where obtained, and failing that, consultant 
dermatologist diagnosis and management with a second opinion 
where available. Only histopathological diagnosis was accepted for 
melanoma, SCC, or BCC diagnosis, with a second review for 
melanoma. Final opinions on clinical diagnosis were provided by 
authors MN and LT, both consultant dermatologists, who also checked 
histopathology reports of all biopsied lesions and confirmed that no 
cases of rare skin cancer were identified. Patients and lesions that did 
not meet the inclusion criteria were excluded from the intention-to-
treat population (ITT), as were those lesions without a final diagnosis 
available. Lesions with no AIaMD result available (missing 
dermoscopic images, and/or where these failed the image quality 
assessment) were excluded from the per-protocol (PP) population. 
The specificity of AIaMD was defined as the percentage of lesions 
diagnosed as IEC, AK, AN, or benign that were labelled as IEC, AK, 
AN, or benign by the AIaMD. The specificity of dermatologists was 
defined as the percentage of lesions diagnosed as IEC, AK, AN, or 
benign that the teledermatologist referred for a routine dermatologist 
appointment or discharged.

The COVID-19 pandemic began after the study had commenced 
recruitment and led to the reassessment, often downgrading, of 
patient management decisions. This was captured; however, the 
primary analysis is based on the original patient management 
decisions by the dermatologists. For the secondary analysis, diagnostic 
accuracy indices (sensitivity, specificity, predictive values) were 
calculated by evaluating the performance on lesions grouped as 
malignant vs. premalignant/benign. For instance, an SCC labelled as 
a melanoma would count as a true positive in the sensitivity 
calculation for both the AIaMD and clinical (SoC) diagnosis.

Real-world settings

For comparative purposes, a post-hoc analysis was conducted 
using the same version of the AIaMD with threshold settings that were 
used in live deployments at the time of the study analysis. These 
targeted a higher sensitivity of >95% for melanoma and SCC 
and > 90% for BCC (AIaMD-RWS). Accuracy metrics including 
sensitivity and specificity were calculated using these settings, and the 
results are presented to provide more insight as to the impact of 
AIaMD if it had been a real-world deployment.

Results

Patient and lesion populations

A total of 688 participants (12 re-consented so 700 attendances) 
presenting with 867 lesions (average 1.3 lesions per patient) were 
recruited; 662 participants with 834 lesions were included in the 
intention-to-treat (ITT) population; and 622 participants with 789 
lesions were included in the per-protocol (PP) population (Figure 1). 
In the PP population, 63.3% of participants were female; 89.0% 
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identified as white, and the median age was 51 (range 18–95); and all 
Fitzpatrick skin types were represented including 25/622 (4.0%) type 
IV-VI skin (Table 1).

Most lesions were located on the face and scalp (25%), back 
(18.6%), arms (13.2%), and legs (19%) and had a history of change in 
the previous 3 months (86.3%). Lesions averaged 6.3 mm (range 
0.5–15 mm) in diameter, and patients were most often (68.1%) a little 
concerned about their lesions (Table 2).

Sixty-seven malignant lesions were identified in the PP 
population: 8 melanoma, 13 SCCs, and 46 BCCs. Most melanomas 
were superficial spreading (N = 4) and < 1 mm thick (N = 7). Most 
SCCs were well or moderately differentiated (N = 9), while most BCCs 
were nodular (N = 22) (Table 3). Three additional lesions diagnosed as 
melanoma and four lesions diagnosed as SCCs had been included in 
the study but were ineligible because no images were available (1x 
melanoma, 1x SCC), the lesion was located on a scar (1x melanoma), 
or the lesions were larger than the dermoscopic lens (1x melanoma, 
3x SCC).

Primary outcome

The interim analysis of phase 1 included 199 lesions (21 malignant 
and 178 premalignant or benign). AIaMD-A correctly identified 
77.5% of the premalignant and benign lesions (138/178, 95% CI 70.6–
83.3%) as lesion types that did not need a biopsy or urgent face-to-face 
assessment and AIaMD-B identified 74.7% (133/178, 95% CI 67.6–
80.8%) compared to 73.6% (131/178, 95% CI 66.4–79.8%) by SoC. The 
interim analysis of the primary endpoint confirmed the non-futility 
of the study; however, the required sample size increased to 700 
patients, to achieve a statistical power of 95%. In phase 2, there were 
590 lesions (46 malignant and 544 premalignant or benign). AIaMD-A 
correctly identified 85.1% of the premalignant and benign lesions (463 
out of 544, 95% CI 81.8–87.9%) as lesions types that did not need a 
biopsy or urgent face-to-face assessment, and AIaMD-B identified 
81.6% (444 out of 544, 95% CI 78.8–84.7%), compared to 71.3% by 
SoC (388 out of 544, 95% CI 67.3–75.1%). After weighing the two 
phases across the whole study as described in the Statistics and 

FIGURE 1

CONSORT flow diagram of study participants and lesions included in analyses.

100

https://doi.org/10.3389/fmed.2024.1302363
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Marsden et al. 10.3389/fmed.2024.1302363

Frontiers in Medicine 05 frontiersin.org

Analysis methods, AIaMD-A and AIaMD-B had a significantly higher 
rate of correctly identifying premalignant and benign lesions as lesions 
that did not need a biopsy or urgent face-to-face assessment compared 
to SoC (p-value<0.0246).

Secondary outcomes

The sensitivity, positive and negative predictive values, and false 
negative and positive rates, of the teledermatologists and AIaMD to 
identify malignant lesions, were calculated (Table 4).

Of the 8 histology-diagnosed melanomas, seven were sent for 
urgent biopsy and one was referred to BCC/Mohs clinic by the 
teledermatologist. Seven were labelled as melanoma by both SoC and 
AIaMD, while the other melanoma was thought to be a traumatised 
angioma by SoC and was classified as benign by AIaMD. Of the 13 
histology-confirmed SCCs, all 13 were sent to urgent biopsy or urgent 
face-to-face dermatologist appointment by SoC, 9 with a suspected 
diagnosis of SCC; and 12 were labelled SCC and 1 was labelled BCC 
by AIaMD. Of the 46 histology-confirmed BCCs, 43 were sent for 
biopsy or were referred to BCC/Mohs clinic by the teledermatologist, 
while 2 lesions were referred to routine face-to-face dermatology; 38 

had suspected diagnoses from teledermatology of melanoma or BCC, 
while the remaining 8 lesions were referred with a suspected 
premalignant or benign diagnosis; and 31 were labelled as BCC, 11 as 
melanoma or SCC, and 4 as premalignant or benign by the AIaMD 
(Figure 2).

In total, 216 lesions were referred directly from teledermatology 
SoC to urgent or non-urgent biopsy. The number needed to biopsy 
(NNB) for SoC to diagnose one malignancy was 4.2 (216/51, 95% CI 
3.3–5.5). If all lesions classified as malignant by the AIaMD were 
biopsied, the NNB was 3 (182/61, 95% CI 2.4–3.7) (Table 4).

A total of 268 lesions were referred from teledermatology SoC to 
biopsy or urgent face-to-face assessment. The number needed to refer 
(NNR) for SoC to diagnose one case of IEC or AK was 8.6 (268/31, 
95% CI 6.2–12.3). If all lesions classified as malignant or premalignant 
by the AIaMD were referred, the NNR for IEC and AK was 4.5 
(249/55, 95% CI 3.6–5.8) (Table 4).

SoC required 688 teledermatology patient reviews, 221 face-to-
face assessments, and up to 299 lesion biopsies (240 biopsies were 
conducted with the missing biopsies mainly due to delays from 
ongoing pressures following the COVID-19 pandemic meaning 
histopathology reports were not available within the study data 
collection window). If lesions had been triaged in accordance with 
the AIaMD output, 454 patient reviews would not have been 
required on the skin cancer pathway, 141 face-to-face assessments 
would have been avoided, and 124 fewer lesions would have been 
biopsied. This equates to cost savings of £52,409.76  in 
teledermatology reviews, £23,040.81 in face-to-face assessments, and 
£31,921.32 in biopsies. In terms of specialist time, this would save 
76 h in teledermatology reviews, 35 h of face-to-face appointments, 
and 67 h of biopsies. In total, this amounts to a cost impact of 
£107,371.89 and 178 specialist h saved. Extrapolated to per 1,000 
patients entering the pathway, this would scale to £156,063.79 and 
259 specialist hours saved.

Out of 867 lesions included in the study, 843 (97.2%) had 
dermoscopic images successfully captured, and 24 lesions could 
not be imaged dermoscopically using the iPhone X. In total, 837 
dermoscopic images (99.3% of those captured) passed the  
image quality check, and it took the HCA an average of 1 min to 
capture the study images. No adverse events were reported in 
the study.

Post-hoc analysis of real-world settings

The sensitivity, positive and negative predictive values, and false 
negative and positive rates, of the AIaMD-RWS, were also calculated 
(Table 5).

Of the eight histology-diagnosed melanoma, the RWS-AIaMD 
correctly identified all eight as melanoma. Of the 13 histology-
confirmed SCCs, 11 were correctly labelled as SCC by the 
RWS-AIaMD, with the remaining 2 classified as melanoma. Of 
the 46 histology-confirmed BCCs, 21 were labelled as BCC by the 
RWS-AIaMD, 21 as melanoma or SCC, and 4 as benign (Figure 3).

If all lesions classified as malignant by the AIaMD-RWS were 
biopsied, the NNB was 4.1 (256/63, 95% CI 3.3–5.1). If all lesions 
classified as malignant or premalignant by the AIaMD were 
referred, the NNR for IEC and AK was 5.2 (300/58, 95% CI 
4.1–6.6).

TABLE 1 Breakdown of the per-protocol patient population by age 
group, sex, ethnic group, Fitzpatrick skin type, and past personal history 
of skin cancer.

N %

Total number of 

patients
622 100

Age group

Mean 51.5

Standard deviation 19.6

Minimum 18

Maximum 95

Sex
Female 394 63.3

Male 228 36.7

Ethnic group

White 555 89.2

Asian 14 2.3

Black 8 1.3

Other 10 1.6

Mixed 22 3.5

Unknown 13 2.1

Fitzpatrick skin type

I 203 32.6

II 301 48.4

III 93 15

IV 12 1.9

V-VI 13 2.1

Past personal history 

of skin cancer

None 490 78.8

Melanoma 24 3.9

SCC 10 1.6

BCC 44 7.1

Other 43 6.9

Unknown 11 1.8
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Discussion

This study demonstrates a high specificity for skin cancer of the 
AIaMD with a significantly lower rate of premalignant and benign 
lesion referral for biopsy or urgent face-to-face dermatologist review 
compared to SoC. AIaMD, therefore, shows potential to improve 
healthcare resource utilisation (HRU), which will be the subject of 
further health economic analyses utilising the data from this study. 
Assuming premalignant or benign AIaMD outputs meant that no 
further patient management on the urgent suspected cancer pathway 
was required, there could have been savings of >£100,000 and > 150 h 
of specialist time. There are, however, many other costs and benefits, 
as well as the potential need to expedite treatment for non-cancerous 
dermatological conditions, that should be  considered when 
conducting health economic modelling.

While the high specificity of the AIaMD has the potential to 
improve HRU, this does raise the key question of the possible risk of 

a trade-off in sensitivity. The study-specific settings used by the 
AIaMD were determined to match an expected sensitivity by 
clinicians of 91.46%, which had been determined by a review of the 
literature on clinician sensitivity for skin cancer detection (5, 11, 12). 
The sensitivity achieved by teledermatologists in this study was 
higher than expected and higher than the sensitivity of the AIaMD 
to identify malignancies, either when used with the study-specific 
settings or the settings optimised for live deployment. This may 
be  because the study was carried out at a centre with a well-
established teledermatology service and experienced teledermoscopy 
clinicians, which is unlikely to be representative of UK dermatology 
more widely, as many centres have yet to implement urgent cancer 
teledermatology pathways. It is also important to note that the 
malignant lesions that the AIaMD missed were mostly BCC lesions. 
One lesion diagnosed as melanoma was classified as benign by the 
AIaMD with the study-specific settings but correctly identified when 
the live-deployment settings (AIaMD-RWS) were used, which also 
had a benign suspected clinical diagnosis by teledermatology, 
indicating the lesion was difficult to diagnose without a biopsy and 
that the AIaMD-RWS would have expedited treatment for the 
melanoma over and above SoC.

Furthermore, patient management being determined by 
teledermatology means that there was a risk of validation bias towards 
the outcome that validates the teledermatologist management plan 
(15). There were 25 lesions discharged by teledermatology but 
classified as malignant by the AIaMD (35 with RWS-AIaMD) that 
were not followed up, due to the length of time between patient 
recruitment into the study and image analysis by the AIaMD. This 
means there may have been malignant lesions that the AIaMD 
identified but the teledermatologist discharged. Of the patients who 
presented at the teledermatology service, and consented to the study, 
twice, three had a different clinical diagnosis at the second assessment, 
and two patients (four lesions) were subsequently biopsied. In all but 
one of the lesions reviewed twice, the AIaMD output was benign for 
the first assessment and only changed for the four lesions subsequently 
biopsied, indicating that the AIaMD was picking up similar features 
in the second assessment that prompted the clinicians to refer for a 
biopsy. Though beyond the scope of this study, the potential of 
malignant lesions missed by SoC, but identified by the AIaMD, should 
be considered for future research, as should the impact of changes in 
a lesion on the AIaMD classification.

This study builds on previous studies, which found that the 
AIaMD component of DERM can detect melanoma and 
non-melanoma skin cancer with accuracy comparable to specialists 
(5, 16–18), by looking at its accuracy to detect premalignant or benign 
lesions. The Melanoma Image Analysis Algorithm (MIAA) study 
evaluated the AIaMD on lesions that dermatologists referred for 
biopsy or were obviously benign (5), missing out those that GPs were 
concerned about but a dermatologist could diagnose and manage 
without a biopsy. While the non-melanoma skin cancer (NMSC) 
study included suspicious skin lesions that were not referred for a 
biopsy, the lesions were all assessed by a dermatologist prior to 
inclusion in the study, again missing lesions that look suspicious to a 
non-skin cancer specialist, but which a dermatologist is less concerned 
about (17, 18). The lesion population in this study was primarily based 
on lesions that had not first been evaluated by a dermatologist and is 
therefore more representative of the population that the AIaMD may 
be used on in primary care.

TABLE 2 Breakdown of per-protocol lesions by size in millimetres, body 
location, patient concern, and history of change.

N %

Lesion size (mm)

Mean 6.3

Standard deviation 3

Minimum 0.5

Maximum 15

Lesion location

Face and scalp 197 25

Neck 34 4.3

Right arm 48 6.1

Left arm 56 7.1

Right palm 3 0.4

Left palm 1 0.1

Anterior chest 94 11.9

Abdomen 54 6.8

Posterior chest 3 0.4

Back 147 18.6

External genitals 1 0.1

Right leg 72 9.1

Right sole 0 0

Left leg 78 9.9

Left sole 1 0.1

Patient concern

Not concerned 94 11.9

A little concerned 537 68.1

Very concerned 144 18.3

Unknown 14 1.8

Lesion change

None 108 13.7

Changed colour 53 6.7

More symptomatic 408 51.7

New lesion 8 1

Grown a bit 212 26.9

Grown a lot 0 0
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This study was conducted in a single site in North West London 
with a younger and more ethnically diverse population than the UK 
overall (6). The incidence of melanoma in the region is half of the 
national rate of (14 vs. 28 per 100,000) (19). There is a growing body 
of evidence that shows a drop in AI performance between research 
and real-world environments (20, 21). This means caution is needed 

in extrapolating these results, particularly the NPV, PPV, and NNB, 
into other settings in which the patient population, incidence and risk 
of skin cancer, and physician experience are different. The AIaMD has, 
however, been safely deployed in real-world pathways by incorporating 
clinical reviews of its outputs. Indeed, real-world evidence of AIaMD 
performance continues to be collated showing strong performance 

TABLE 3 Breakdown of lesion diagnosis from histology or clinical diagnosis in the per-protocol population, including subtypes of malignant lesions, 
Breslow thickness of melanoma, and staging of squamous cell carcinoma and basal cell carcinoma.

Clinical diagnosis Histopathology

Total number of lesions 789 240

Malignant

(Suspect) melanoma 26 8

Subtype

In situ 2

Lentigo maligna 2

Superficial spreading 4

Nodular 0

Breslow thickness

In situ 4

<1.0 mm 3

1.01–2.0 mm 1

>2.0 mm 0

(Suspect) squamous cell carcinoma 41 13

Subtype

Well differentiated 4

Moderately differentiated 5

Poorly differentiated 0

Unknown 4

Stage

T1 6

T2 1

T3 0

T4 1

Unknown 5

(Suspect) basal cell carcinoma 51 46

Stage

Tis 1

T1 20

Unknown 25

Subtype

Superficial 6

Nodular 21

Infiltrative 6

Micronodular 1

Unknown 12

Premalignant or benign

IEC/SCC in situ 21 7

Actinic keratosis 35 25

Atypical/dysplastic nevus 29 10

Seborrheic keratosis 168 26

Dermatofibroma 16 3

Vascular lesion 13 4

Lentigo 14 3

Benign melanocytic Nevus 259 39

Other (Benign)/unknown 116 56
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and impact (22–26). There is an ongoing study to optimise how it is 
integrated into clinical pathways and workflows, as well as to evaluate 
the real-world impact with respect to health economics (27, 28).

The Get-It-Right-First-Time (GIRFT) dermatology workforce 
recommendations include the uptake of digital technologies to achieve 
more efficient NHS HRU (29). Implementing AIaMD services could 
allow trusts and dermatologists to dedicate more time to meeting skin 
cancer targets; individual cancer patients; addressing the post-pandemic 
backlog; patients with other severe skin diseases requiring systemic/
biologic medication; and teaching/research. Moreover, this could reduce 
clinician burnout and increase the recruitment/retention of dermatologists 
with a greater capacity for trainees to see cases in addition to skin cancer 
referrals. Most importantly, this offers the opportunity to reduce reliance 
on insourcing and waitlist initiatives, which are short-term solutions to 
deep-seated and long-term dermatology capacity issues.

The UK Faster Diagnosis Standard (FDS) is currently being 
implemented, with a target of communicating to patients referred on 
cancer pathways their diagnosis within 28 days (30). As of June 2023, 
approximately one in every five NHS trusts was not able to meet this 

target for skin cancer referrals (31). The immediacy of AIaMD outputs 
allows for quicker communication of premalignant and benign lesion 
classifications as well as the potential for greater surgical capacity to 
ensure more timely biopsies.

In the US, the American Academy of Dermatology supports skin 
cancer screenings at community events (32). An action in the FDS is to 
‘consider linking the development of Community Locality Image Centres 
to Community Diagnostic Centres, to provide high-quality images for 
teledermatology and teledermoscopy activity’ (30). Given almost all 
lesions in this study were photographed by an HCA within 1 min, both 
settings could use the AIaMD to provide faster access to care in more 
remote locations, furthering the potential HRU benefits from fewer 
patients being unnecessarily referred for specialist assessment.

A recent UK government report highlighting several projects 
evaluating AI within healthcare stated that there are currently no 
standardised methods for the real-world evaluation of AI. Independent 
evaluations of the DERM service are ongoing, but a description of a 
real-world deployment of DERM at University Hospitals Birmingham 
is noted to have ‘helped 40% of patients avoid the need for a hospital 

TABLE 4 Comparison of the accuracy of the standard of care (SoC) and artificial intelligence (AIaMD) for skin cancer detection in the per-protocol 
population.

Sensitivity (%, 
95 CI)

Specificity (%, 
95 CI)

PPV (%, 
95 CI)

NPV (%, 
95 CI)

FNR (%, 
95 CI)

FPR (%, 
95 CI)

NNB (N, 
95% CI)

NNR (N, 
95% CI)

SoC 97.0, 88.7–99.5 71.9, 68.4–75.1
24.2, 19.3–

29.9

99.6, 98.5–

99.9
3.0, 0.5–11.3

28.1, 24.9–

31.6
4.2 (3.3–5.5) 8.6 (6.2–12.3)

AIaMD 91.0, 80.9–96.3 83.2, 80.3–85.9
33.5, 26.8–

40.9

99.0, 97.7–

99.6
9.0, 3.7–19.1

16.8, 14.1–

19.7
3 (2.4–3.7) 4.5 (3.6–5.8)

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; FNR, false negative rate; FPR, false positive rate; NNB, number needed to biopsy to confirm a diagnosis 
of skin cancer; NNR, number needed to refer to confirm a diagnosis of IEC or AK; IEC, intraepidermal carcinoma (Bowen’s disease); AK, actinic keratosis.

FIGURE 2

Standard of care management (A) and diagnosis (B) and artificial intelligence (AIaMD) classification of lesions compared to final diagnosis by 
histopathology or clinical diagnosis, in the per-protocol population. Standard of care management (SoC Mx): UB, urgent biopsy; NUB, non-urgent 
biopsy; UF2F, urgent face-to-face appointment; Mohs, BCC/Mohs clinic; OS, other specialty; RF2F, routine face-to-face appointment; D, discharge. 
Standard of care diagnosis (SoC Dx)/AIaMD label: MM, melanoma; SCC, squamous cell carcinoma; BCC, basal cell carcinoma; IEC, intraepidermal 
carcinoma; AK, actinic keratosis; AN, atypical nevus.
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appointment’ (33). There are also examples in other therapy areas 
where AI might increase the speed of diagnosis [e.g., lung cancer (34) 
and heart failure (35)], but data in this regard are limited and an 
assessment of their impact on HRU is not yet available.

The COVID-19 pandemic impacted the study: Recruitment was 
suspended during national lockdowns; 48 patients had their 
management changed, usually downgraded; and follow-up 
appointments and non-urgent biopsies were delayed, including some 
biopsies that occurred more than 3 months after AIaMD assessment 
(no malignancies were identified in these). Indeed, the final diagnoses 
of 40 lesions could not be  confirmed by biopsy or face-to-face 
assessment within the timeframe of the study. For these, LT conducted 
a second teledermatology assessment to provide a final diagnosis. 
Furthermore, elderly and immunosuppressed patients, who are at 
high risk of both COVID-19 and skin cancer, were encouraged to 
isolate during the pandemic and may have delayed seeking medical 
care during this time, which might account for the lower-than-
expected incidence of malignancy in the study.

Connectivity issues led to some initial image-capture 
difficulties, but very few lesions had no images captured or failed 
image quality assessment, indicating an improvement in the 
image-capture process used in the MIAA study (5). This is likely 
to be  due to the accessibility of capturing images using 
smartphones rather than a DSLR camera, emphasised by the 
images being captured in a minute on average. Technological 
deployment issues do remain a challenge that must be addressed 
for successful real-world deployment of the AIaMD.

There were no rare skin cancers identified in this study. This is not 
unexpected given the low incidence of rare skin cancers (3.1 per 
100,000, 95% CI 3.0–3.2, in the UK in 2018–2020) and even lower 
incidence of specific rare skin cancers (e.g., 0.62, 95% CI 0.58–0.66 for 
Merkel cell carcinoma in the UK in 2018–2020) as opposed to skin 
cancer as a whole (387 per 100,000, 95% CI 386–388) (36). A few cases 
of rare skin cancers have been included in other studies of AIaMD (18, 

26); however, additional data are needed to demonstrate the 
performance of the AIaMD.

The study was also reflective of the low incidence of skin cancers 
in higher Fitzpatrick skin types across a large population; however, it 
was not large enough to identify any malignant lesions in patients with 
darker skin, nor, therefore, to demonstrate the performance of the 
AIaMD in these patients. This is again to be expected given that less 
than 0.5% of skin cancers diagnosed in the UK are in Black and Asian 
patients (37). These cases often present late or are missed in the 
conventional care setting, making it difficult to demonstrate the 
performance of a novel product in patient groups with a low incidence 
of skin cancer through classical clinical studies. Efforts are ongoing to 
improve datasets in these under-represented patient groups, including 
surveillance of deployments and international collaborations.

AI systems can suffer from overfitting, hindering generalisability 
(38). The AIaMD algorithm has been trained on dermoscopic images 
of skin lesions from multiple sources. Biases may exist in these 
datasets, reducing AIaMD performance in different populations; 
however, the accuracy of the AIaMD observed is similar to previous 
reports (5, 16–18), demonstrating limited overfitting and good 
generalisability across novel datasets. Only one smartphone and 
dermatoscope combination was used, which is different from previous 
studies (5, 16–18), so no direct comparison of AIaMD performance 
on images captured by different devices can be made. This is controlled 
in real-world deployments of AIaMD too, however, whereby specific 
combinations of smartphones and dermatoscopes are qualified for 
usage with AIaMD, which is a mechanism of standardising the input 
to support consistent performance.

Finally, while the MIAA, NMSC, and impact studies show the 
performance of this particular AIaMD, these results cannot 
be generalised to the potential impact of other AI-based skin cancer 
detection tools. Indeed, a study of 25 freely downloadable AI apps 
found an average sensitivity of <30% for melanoma (39); a multicentre 
trial across Australia and Austria of a mobile phone-based AI found 

TABLE 5 Comparison of the accuracy of the standard of care (SoC) and artificial intelligence with real-world setting (AIaMD-RWS) for skin cancer 
detection in the per-protocol population.

Sensitivity (%, 
95 CI)

Specificity (%, 
95 CI)

PPV (%, 
95 CI)

NPV (%, 
95 CI)

FNR (%, 
95 CI)

FPR (%, 
95 CI)

NNB (N, 
95% CI)

NNR (N, 
95% CI)

SoC 97.0, 88.7–99.5 71.9, 68.4–75.1
24.2, 19.3–

29.9

99.6, 98.5–

99.9
3.0, 0.5–11.3

28.1, 24.9–

31.6
4.2 (3.3–5.5) 8.6 (6.2–12.3)

AIaMD-RWS 94, 84.7–98.1 73.3, 69.9–76.4
24.6, 19.6–

30.4
99.2, 98–99.8 6, 1.9–15.3

26.7, 23.6–

30.1
4.1 (3.3–5.1) 5.2 (4.1–6.6)

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; FNR, false negative rate; FPR, false positive rate; NNB, number needed to biopsy to confirm a diagnosis 
of skin cancer; NNR, number needed to refer to confirm a diagnosis of IEC or AK; IEC, intraepidermal carcinoma (Bowen’s disease); AK, actinic keratosis.

FIGURE 3

Artificial intelligence with real-world setting (AIaMD-RWS) classification of lesions compared to final diagnosis by histopathology or clinical diagnosis, 
in the per-protocol population. AIaMD-RWS: MM, melanoma; SCC, squamous cell carcinoma; BCC, basal cell carcinoma; IEC, intraepidermal 
carcinoma; AK, actinic keratosis; AN, atypical nevus.
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its performance was significantly inferior to specialists in a real-world 
scenario (40); and an AI system studied in Canada identified 6 out of 
10 melanoma included in the study (41). Importantly, the AIaMD 
evaluated here is a component of the first and, at the time of writing, 
only AI-based skin cancer detection product that is a Class IIa UKCA 
Medical Device. This is crucial not only as a verification of safety from 
the Medicines and Healthcare products Regulatory Agency (MHRA) 
but also for all of the systems in place to monitor and improve the 
technology. This certification opens up further opportunities for 
AIaMD to triage patients with skin lesions to the most appropriate 
next step with the aim of improved access and early diagnosis for all 
patients with suspected skin cancer.
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