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Editorial on the Research Topic 


Pests and diseases monitoring and forecasting algorithms, technologies, and applications


In the face of growing challenges in agriculture due to pests and diseases, the need for advanced monitoring and forecasting techniques has become increasingly critical. Climate change, global trade, and the adaptation of pests to traditional control methods have further complicated this landscape. This Research Topic offers a collection of studies highlighting the latest advancements in pest and disease monitoring, focusing on the development and application of innovative algorithms, technologies, and practical solutions to mitigate the impact of these threats on agriculture.

Recent advances in deep learning, such as fast Fourier Convolutional Networks, have shown promise in distinguishing between similar symptoms like wheat yellow rust and nitrogen deficiency using Sentinel-2 time series data (Shi et al.). These techniques underscore the power of modern AI to refine diagnostic accuracy, which is crucial for early intervention and targeted management. Similarly, the spatial ensemble model has been employed to assess the potential risk zones of Pierce’s disease across Europe, integrating multiple data sources to offer more reliable predictions for pest management (Yoon et al.).

Within controlled environments, greenhouse-based pest monitoring has seen significant improvements due to the implementation of deep learning and machine vision (Zhang et al.). Automatic identification systems are now capable of real-time recognition of pests, thanks to the deployment of sophisticated neural networks. The integration of UAV technology with deep learning also extends pest monitoring capabilities to broader agricultural landscapes. For instance, studies on Brandt’s vole detection and counting via UAV-based systems exemplify the ability to efficiently monitor field conditions (Wu et al.), while multispectral imaging from UAVs provides detailed nutritional assessments, such as potassium levels in potato plants (Ma et al.).

Machine learning architectures have also been developed to handle complex diagnostic tasks in challenging environments (Liu et al.). Techniques like the multi-scale double-branch GAN-ResNet for rice pest identification demonstrate the application of advanced algorithms in complex scenarios, including those with variable backgrounds (Hu et al.). Other lightweight deep learning models, such as MS-Net, are designed to be both accurate and efficient, focusing on optimizing computational resources without compromising precision (Quan et al.).

The fusion of multispectral and hyperspectral data has shown great potential in early disease detection across different crop types and ecosystems. The MSGF-GLP method, for example, utilizes visible and hyperspectral data to identify stressed vegetation, enhancing early detection capabilities (Zhou et al.). These approaches highlight the increasing role of spectral data in disease management, offering more nuanced insights into plant health (Huang et al.).

Field-based applications of these technologies have also made considerable strides. Studies on the penetration of fog droplets in fruit tree canopies (Sun et al.) reveal the multifactorial elements affecting pesticide delivery efficiency. These findings are crucial for improving precision agriculture, allowing targeted interventions that minimize pesticide use while maximizing coverage. Lightweight models like the enhanced CNN (Dai et al.) for pepper leaf disease recognition showcase how AI can be applied to specific crops, even in complex agricultural settings. Similarly, research on weed identification in soybean fields using lightweight segmentation models such as DCSAnet demonstrates (Yu et al.) the application of optimized AI architectures in practical field conditions.

The rise of mobile applications powered by AI, such as GranoScan (Dainelli et al.) for in-field wheat threat identification, reflects the growing trend of democratizing technology for farmers. These tools provide accessible and accurate diagnostic capabilities, empowering agricultural stakeholders with real-time data. Likewise, the development of UAV spraying systems (Liu et al.) that account for pest activity patterns, such as thrips during the cotton flowering period, illustrates the synergy between automated technologies and pest behavior research. Additionally, a risk-based regionalization approach has been proposed for the area-wide management of HLB vectors in the Mediterranean Basin (Galvan et al.), offering a strategic perspective to mitigate the spread of disease.

The Research Topic also addresses challenges associated with AI applications in pest monitoring. Issues such as complex environments, small object detection, and the variability of natural conditions continue to test the limits of current technologies. Innovations like the Skip DETR model (Liu et al.), which integrates skip connections for small object detection, and the adaptive filtering fusion method for pest recognition, indicate ongoing efforts to overcome these obstacles (Chen et al.).

In summary, this Research Topic offers a comprehensive overview of current innovations in pest and disease monitoring. The articles included emphasize the growing role of AI, machine learning, and advanced imaging technologies in modern agriculture. Together, these studies not only demonstrate the effectiveness of cutting-edge solutions but also underline the importance of continued collaboration across disciplines to address the evolving challenges in pest and disease management.
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Rice production is crucial to the food security of all human beings, and how rice pests and diseases can be effectively prevented in and timely detected is a hotspot issue in the field of smart agriculture. Deep learning has become the preferred method for rice pest identification due to its excellent performance, especially in the aspect of autonomous learning of image features. However, in the natural environment, the dataset is too small and vulnerable to the complex background, which easily leads to problems such as overfitting, and too difficult to extract the fine features during the process of training. To solve the above problems, a Multi-Scale Dual-branch structural rice pest identification model based on a generative adversarial network and improved ResNet was proposed. Based on the ResNet model, the ConvNeXt residual block was introduced to optimize the calculation ratio of the residual blocks, and the double-branch structure was constructed to extract disease features of different sizes in the input disease images, which it adjusts the size of the convolution kernel of each branch. In the complex natural environment, data pre-processing methods such as random brightness and motion blur, and data enhancement methods such as mirroring, cropping, and scaling were used to allow the dataset of 5,932 rice disease images captured from the natural environment to be expanded to 20,000 by the dataset in this paper. The new model was trained on the new dataset to identify four common rice diseases. The experimental results showed that the recognition accuracy of the new rice pest recognition model, which was proposed for the first time, improved by 2.66% compared with the original ResNet model. Under the same experimental conditions, the new model had the best performance when compared with classical networks such as AlexNet, VGG, DenseNet, ResNet, and Transformer, and its recognition accuracy could be as high as 99.34%. The model has good generalization ability and excellent robustness, which solves the current problems in rice pest identification, such as the data set is too small and easy to lead to overfitting, and the picture background is difficult to extract disease features, and greatly improves the recognition accuracy of the model by using a multi-scale double branch structure. It provides a superior solution for crop pest and disease identification.
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1 Introduction

The world’s total population is projected to exceed 8.5 billion by 2030. The global available arable land area has been shrinking, with the ever-changing climate and dramatic urban expansion. With crop pest and disease problems climbing as a result of climate change, food security has certainly become an urgent issue facing the world today. According to a report on the China Crop Pest and Disease Monitoring website, the vast grain-producing areas in the Yangtze River basin saw a 26.6% year-on-year increase in crop pests and disease occurrence in 2017 (Jiang et al., 2020). In 2020 alone, the cumulative area of major crop pests and diseases in China is as high as 300 million hectares (Dhaka et al., 2021), and pests and diseases not only affect grain production but may also bring economic losses (Hasan et al., 2020).

However, there are still shortcomings in the deep learning-based crop pest recognition methods. Most of the current crop pest data sets are taken under laboratory conditions. However, in practical applications, the training samples in natural environments are images with complex backgrounds, and the models are easily affected by the complex backgrounds during the training process. The deep learning models are prone to learn irrelevant features in complex backgrounds and neglect the extraction of minor diseases in training. (Fan et al., 2021). Moreover, under natural environmental conditions, the crop leaves in the field are often under strong light and swaying motion, which affects the extraction of disease features by the model (Zhang et al., 2019). At the same time, the sample size of the data set taken from the actual scene is too small, which is prone to overfitting during training and can lead to a sharp decrease in recognition accuracy during model validation.

To address the above problems, this study proposes a Multi-Scale Dual-branch structure rice pest recognition model based on Generative Adversarial Network and improved ResNet. Firstly, data pre-processing methods such as random brightness and motion blur are used to simulate the state of crop leaves in complex environments, so that the deep learning model can train such complex sample images in advance of the training process and strengthen the generalization ability and robustness. Then, data enhancement is performed on the acquired 5932 rice pest images to expand the dataset to 20,000 to alleviate the overfitting phenomenon in training. In the model construction, the input images are first enhanced with data using generative adversarial networks. The residual module in ConvNeXt was introduced into the ResNet model to optimize the calculation ratio of the residual blocks in the ResNet model to better extract the minute disease features while avoiding the occurrence of overfitting imagination and improving the recognition accuracy. Secondly, a multi-scale-two- branch structure is constructed to extract disease features at different scales using convolutional kernels at different scales, then perform feature fusion, and finally output the classification results through the Softmax layer to solve the problem of difficult extraction of tiny diseases caused by complex backgrounds. The new model is feasible and advanced in rice pest recognition and provides a reference for realizing rice pest recognition in complex environments.

The objectives of the current study are as follows.

	(1) We propose a method to pre-process and enhance the training dataset. Firstly, the natural complex background is simulated to reduce the effect of strong light and wind on disease image acquisition, which enhances the flexibility of the sensor for crop disease image acquisition. Then the dataset is enhanced using image enhancement to solve the problem of too few rice disease samples, which leads to overfitting.

	(2) The original ResNet model was improved, and the model recognition accuracy was improved by optimizing the residual block calculation ratio and reducing the number of computational parameters.

	(3) A multi-scale dual-branch structure rice pest identification model based on generative adversarial network and improved ResNet was constructed. The number of training samples is increased by the generative adversarial network to alleviate the overfitting phenomenon, and the dual-branch structure is used to reduce the influence of the complex background of the image on the model training and improve the extraction of minor disease features.






2 Literature review

Research on the application of deep learning in the field of crop pest and disease identification continues to grow, and with the continuous development of deep learning. Deep learning can achieve correct identification and timely prevention of crop pests and diseases through feature extraction and classification of disease images, which can greatly save manpower and material resources and is expected to minimize economic losses (Kamilares and Francesc, 2018; Patricio and Rieder, 2018). The process of crop pest and disease identification based on deep learning includes the collection of data sets, the construction of training models, and inference validation (Zhai et al., 2021; Zhou and Wu, 2021). Lu et al. (2021) proposed a citrus yellow dragon disease recognition model based on the Mixup algorithm and convolutional neural network, and the final model achieved 94.29% recognition accuracy through data enhancement and migration learning. Huang et al. (2021) proposed a crop leaf disease recognition model in a complex environment with ResNet as the base model, combined with an inception module to extract disease features at different scales and added attention mechanisms, and the average recognition rate reached 95.62%. Luo et al. (2021) proposed a YOLOv5-C-based method for the identification of wide Buddha’s hand pests and diseases by introducing a multi-scale feature fusion module with a recognition accuracy of 93.61% in a complex background using YOLOv5s as the base model. Yu et al. (2021) proposed a knowledge graph construction method and a graph-based rice pest retrieval algorithm for rice pests and diseases, and the diagnostic algorithm achieved an 86.25% correct rate. Chen et al. (2020) used VGGNet to initialize the weights by pre-training on a large labeled dataset, ImageNet as the research object, and then performed migration learning. The initialized weights from the pre-training were transferred to the target dataset for training, and the experiments showed that the average accuracy for rice disease image recognition under complex background conditions reached 92.00%. Yuan et al. (2021) proposed a method for mushroom recognition based on migration learning combined with the ResNet-v2 network using the feature extraction capability of the Inception module as a way to improve the fine-grained feature extraction of mushroom images, and the accuracy of phenotype recognition of fine-grained mushrooms reached 93.94%. The above deep learning-based crop pest recognition method provides an important reference for current crop pest recognition research.




3 Materials and methods



3.1 Experimental data

This dataset contains a total of four types of rice leaf disease images, including 1584 images of Bacteriablight, 1440 images of Blast, 1600 images of Brownspot, and 1308 images of Tungro, for a total of 5932 images, all taken under natural conditions and saved in JPG format (Sethy et al., 2020), and the images were resized to 224 × 224 pixels. The dataset was divided into training and test sets according to the ratio of 8:2, and training and test were performed under random disruption. Some of the sample images are shown in Figure 1.




Figure 1 | Sample images of rice diseases.



In a realistic scenario, i.e., in a rice farm, the rice leaves are often exposed to strong direct light, and the rice leaves are often interlaced and shaded by each other, and shaken by the wind. Among them, the strong direct light will affect the extraction of disease features by the model, the rice leaves are often interlaced, and the mutually blocked leaves make the disease features more difficult to extract, and the wind-blown and shaking leaves tend to make the pictures blurred. Considering the above practical factors, this paper preprocessed the original data set by image preprocessing methods such as Gaussian noise, random blocking, random brightness, and motion blur (Wu et al., 2019), so that the model learns more disease features in complex environments during the training process to achieve the purpose of simulating actual scenes and improve the accuracy of model validation. Figure 2 shows some image preprocessing samples.




Figure 2 | Sample images of pre-processing.



In the field of crop pest identification, data augmentation methods are mainly applied to small sample datasets or unbalanced datasets of pest and disease category image samples to increase the number of samples or to make the dataset as balanced as possible (Su et al., 2021; Liu et al., 2022). And with deep learning models becoming deeper and deeper and parameters becoming more and more massive, data augmentation methods are particularly important to enable normal training of small datasets and improve accuracy. The data enhancement methods such as mirroring, cropping, scaling, panning, and rotation (Cruz et al., 2017) are used to change the spatial location of pixels in the image and increase the number of samples to avoid overfitting without changing the content of the image through spatial geometric transformation. The rice disease dataset in this study has 4 categories of rice diseases with a total of 5932 sheets, as shown in Table 1. Using the data enhancement method, the samples of each disease category were expanded to 5,000 images, totaling 20,000 images, and the specific data distribution changes are shown in Figures 3, 4.


Table 1 | Rice disease dataset.






Figure 3 | Original dataset distribution.






Figure 4 | Augmented dataset distribution.






3.2 Model construction



3.2.1 Convolutional neural network theory

The components of a convolutional neural network mainly include a convolutional layer, a pooling layer, and a fully connected layer. The convolutional layer computes the convolution of the input image samples through the convolutional kernel to extract the key features in the image, and the output of the convolutional layer is a representation of the input at a certain level in the spatial dimension, also called feature map (Lecun et al., 1998), and the relationship between the input and output of the convolutional layer can be expressed by equation (1).

 

where   denotes the feature map of layer i,   denotes the features of layer i-1, the features of the previous layer are input to the current convolutional layer.   denotes the weight of layer i, which is the learnable parameter, is the bias of layer I and   (•) is the activation function. The pooling layer is designed to alleviate the over-sensitivity of the convolutional layer to position and is divided into maximum pooling, average pooling and global pooling, whose output and input channels are kept consistent. The pooling layer is calculated as shown in equation (2).

 

where   represents the output features of the current pooling layer, down(•) is the downsampling function,   is the feature vector of the previous layer, and s is the pooling window size. After the convolution operation in the convolution layer and the pooling operation in the pooling layer, the output feature vector is input into the fully connected layer to classify the extracted features. In this study, the softmax classifier is used for classification calculation, and the specific formula is shown in equation (3).

 

The softmax function is a mapping between 0 and 1. Since the sum of the output probability values of each category is not equal to 1, the e-exponential operation is utilized for the output probability of each category and then the summation is performed, which finally results in a result between 0 and 1. Since Sigmoid is extremely prone to the gradient disappearance problem, to avoid the gradient disappearance problem, the unsaturated activation function ReLU is used as the activation function in this study for this experiment (Krizhevsky et al., 2012). The function comparison curves of Sigmoid and ReLU are shown in Figure 5.




Figure 5 | Activate function.



Considering that this study is a multiclassification experiment, stochastic gradient descent is used as the optimizer (Lu et al., 2017). The specific mathematical formulation and descent diagram are shown in equation (4).

 

Where. represents the step size,   represents the hypotheses function (hypotheses function), and the initial value of   can be any value, and the parameters are updated by continuously iterating in the direction of gradient descent.




3.2.2 ResNet residual theory

In order to solve the gradient disappearance problem, He et al. (2016) proposed ResNet. Residual Network is proven to handle the vanishing gradient and effective feature learning better. This study uses the residual neural network (ResNet-50) as the base framework. ResNet-50 has 50 layers of CNNs, as well as a MaxPool and a fully connected layer with a softmax layer. resNet builds the network by stacking the remaining connections on top of each other. Even when the architecture becomes more complex, the ResNets model remains as efficient as before, making it a better choice than other architecture models(Praveen et al., 2022). The most important idea of ResNet is that the X output from the previous layer, after the convolution calculation of this layer to get the post  , the X and   will be added to get  . The purpose of this is that when even if the. gradient tends to 0, the item X will still leave 1, cleverly avoiding the gradient during the backpropagation. The residual structure of the core in ResNet is shown in Figure 6.




Figure 6 | ResNet block.



Although the ResNet network is good for avoiding overfitting, there is still room for improvement. At the beginning of the design of the ResNet model, the model mainly consists of four Stages containing different numbers of Bottlenecks, and the ratio of the number of Bottlenecks in the Stages is largely proposed empirically, for example, the ratio of ResNet50 is 3:4:6:3, the ratio of ResNet101 is 3:4:23:3, and the ratio of ResNet152 is 3:8:36:3. It can be seen that there are also more excellent computational ratios of the number of Bottleneck in the Stage, which makes the model performance more excellent.




3.2.3 ConvNeXt residuals module

In 2022, Facebook AI Institute proposed the ConvNeXt convolutional neural network (Liu et al., 2022), which achieved 87.8% accuracy on the ImageNet top-1 dataset, surpassing the previous highest accuracy of 81.3% achieved by the Swin transformer (Liu et al., 2021), the ratio of residual blocks computed in the ConvNeXt network borrows the design ratio of the transformer (1:1:3:1), and the ratio of residual blocks in the ConvNext network is 3:3:9:3, which improves the accuracy of the model from 78.8% to 79.4%. The proposed residual blocks in the ConvNeXt model optimize the ratio of the number of Bottleneck in Stage. In this study, the residual blocks in ConvNext are introduced into ResNet50 as the base model, and the model accuracy of the original ResNet50 is improved on the original basis by optimizing the proportion of the number of residual blocks. The specific model parameters are shown in Table 2. The overall architecture of the model consists of two branches, each branch mainly consists of one stem layer and four Stages, the stem layer consists of a 7×7 convolutional layer and a 3×3 maximum pooling layer to keep the output feature resolution constant. The four Stages, i.e., res2, res3, res4, and res5 in Table 2, each Stage contains different numbers to the Bottleneck with a ratio of 3:3:9:3, where the specific structure of the Bottleneck is shown in Figure 7. This study refers to this structure as MSDB-ResNet.


Table 2 | Model compute parameter.






Figure 7 | Proposed MSDB-ResNet architecture.






3.2.4 Multi-scale double branch structure

The overall process of rice pest identification in this study is shown in Figure 8. Firstly, the false rice pest images are generated using the generative adversarial network, secondly, the rice pest images preprocessed and enhanced with data from this study are fused with the false images generated by the generative adversarial network. Finally, they are input into the classification model and the classification results are output. In this study, the proposed model is referred to as GAN-MSDB-ResNet.




Figure 8 | Overall process of rice disease recognition.



The common sizes of convolutional kernels in the model are 1 × 1, 3 × 3, 5 × 5, and 7 × 7. Due to the different sizes of convolutional kernels, the model is prone to lose small features or easily learn the features of complex backgrounds during training, resulting in poor recognition accuracy (Guo et al., 2019). Based on this problem, this paper proposes a multi-scale dual-branch structure based on improved ResNet, with ResNet-50 as the base architecture, and constructs a dual-branch ResNet model, placing large convolutional kernels and small convolutional kernels in two different branches, respectively, to extract disease features of different sizes and reduce the influence of complex backgrounds. The model framework diagram is shown in Figures 7, 9.




Figure 9 | Stage of architecture.



As shown in Figure 7, the input training sample images are preprocessed and enhanced, and then entered into two different branches, each of which is preceded by a stem layer consisting of a 7×7 convolutional layer, a ReLu activation layer, and a 3×3 maximum pooling layer. The structure of the Bottleneck is shown in Figure 9. The bottleneck consists of a residual block with a 1 × 1 convolution layer and two residual blocks with constant mapping X to avoid the occurrence of overfitting in model training. The bottleneck structure in branch 1 is composed of 1×1 and 3×3 convolutional kernels, and the bottleneck structure in branch 2 is composed of 5×5 convolutional kernels, which can extract features at different scales through different sizes of convolutional kernel operators to avoid the problem of subtle disease features being affected by complex backgrounds, resulting in key diseases not being extracted. The problem of not extracting the key disease features due to the complex background is avoided. After the input image is extracted with features by two network branches of different scales, ReLu activation and global mean pooling are performed, then it is input to concatenation layer for feature fusion, finally, it is input to the fully connected layer, and Softmax layer to output classification results.






4 Test results and analysis



4.1 Experimental environment

The experimental software environment is Windows 10 64-bit system, using Pytorch open source framework for deep learning, and Python is chosen as the programming language. The computer memory is 16 GB, equipped with AMD Ryzen 7 5800H with Radeon Graphics processor, and NVIDIA GeForce RTX 3070 Laptop graphics card to accelerate image processing.




4.2 Experimental parameters

In this study, the model is used SGD optimization algorithm and CrossEntropyLoss loss function. The size of the input image is 224*224, and batch size is 32, the number of training epochs is 20, the initial learning rate learning rate is set to 0.01, and the momentum is set to 0.9 and weight decay is 1e-4.




4.3 Model evaluation index

In this paper, the average recognition accuracy rate is used as the evaluation index of the model.

 

The formula c denotes the number of categories,   denotes the number of category j, and   indicates the number of correct predictions in category j.




4.4 Analysis of data pre-processing and data enhancement test results

In order to verify the performance of the model proposed in this study, several experiments were conducted on the data preprocessing and data enhancement methods, the generative adversarial network data enhancement method, and the model improvement method, respectively. Among them, the data preprocessing and data enhancement methods were compared on the base model ResNet-50 and the MSDB-ResNet model proposed in this study, respectively. The model improvement methods were tested on the original dataset and the dataset after data preprocessing and data enhancement, respectively. The generative adversarial network data enhancement method was tested on the MSDB-ResNet model. Among them, the Precision, Recall, F1-score, and Accuracy of the GAN- MSDB-ResNet model on the test dataset for four different rice pests are shown in Table 3, and the confusion matrix (Trevethan R et al., 2017) is shown in Figure 10. The results of each test and the accuracy curve comparison graphs are shown in Table 4 and Figures 11–16.


Table 3 | Accuracy of different approaches.






Figure 10 | GAN-MSDB-ResNet confusion matrix.




Table 4 | GAN-MSDB-ResNet confusion matrix.






Figure 11 | AugmentData of test comparison.






Figure 12 | Model improvement of test comparison.






Figure 13 | AugmentData and Model improvement.






Figure 14 | GAN and model improvement.






Figure 15 | GAN AugmentData and model improvement.






Figure 16 | All approaches of accuracy curve.



As shown in Figure 11, the accuracy achieved on ResNet-50 for the original dataset was 96.68%, and the accuracy achieved on ResNet-50 for the dataset after data enhancement was 98.26%, an improvement of 1.58%. It can be seen that the model accuracy can be improved by using data preprocessing methods such as Gaussian noise, motion blur, random brightness, random occlusion, and data enhancement methods. As shown in Figure 12, the accuracy achieved by the original dataset on ResNet-50 was 96.68%, and the accuracy achieved by introducing the ConvNet residual module, constructing the two-branch MSDB-ResNet model was 99.06%, which was a 2.38% improvement over the original ResNet-50. It can be seen that the multi-scale dual branch structure based on the improved ResNet has good performance and can significantly improve the model accuracy. As shown in Figure 13, the accuracy of the improved ResNet-based multiscale double branching structure (MSDB-ResNet), is 99.10% with using the data set after data enhancement, which is a significant improvement of 2.42% compared with the accuracy of 96.68% achieved by the original ResNet50 without data enhancement. To further improve the model performance, the model (GAN- MSDB-ResNet) has a model accuracy of 99.15% on the original dataset, an improvement of 2.47%, after introducing generative adversarial networks for data augmentation in the Figure 14. The model accuracy on the augmented dataset was 99.34%, an improvement of 2.66% in the Figure 15. It can be seen that the proposed Multi-Scale Dual-branch structure (GAN-MSDB-ResNet) based on a generative adversarial network and the improved ResNet has excellent performance in improving the accuracy of rice pest identification. Figure 16 shows a composite plot of the model recognition accuracy, and the red curve shows the recognition accuracy of the improved model on the enhanced dataset.




4.5 Analysis of model improvement experimental results

To verify the robustness and generalization ability of the model, GAN-MSDB- ResNet was tested against AlexNet, VGG, DenseNet, ResNet and Transformer using the same enhanced dataset, as shown in Table 5, the training recognition accuracy of GAN-MSDB-ResNet was as high as 99.76%, and the test recognition accuracy was as high as 99.34%, which was the highest among highest recognition accuracy among these networks. Figure 17 shows the comparison of accuracy curves of all models, Figure 18 shows the comparison of loss value curves of all models. It can be seen that the improved multiscale two-branch GAN-MSDB-ResNet model has good performance for pest and disease recognition of crops in a practical environment.


Table 5 | Accuracy and Loss of different networks.






Figure 17 | Accuracy rate curve.



As shown in Table 5, with the same enhanced dataset, the accuracy of the validation set obtained by AlexNet is 95.07%, which is much lower than the recognition accuracy of GAN-MSDB-ResNet proposed in this study by 4.27 percentage points. The accuracy of the validation set achieved by DenseNet-121 and ResNet-18 is 96.53% and 96.25%, respectively, which is also lower than that of 99.34% achieved by GAN-MSDB-ResNet. It can be seen that the recognition accuracy achieved by DenseNet-121 and ResNet-18 containing the same residual connections on the same data set is much lower than that of GAN-MSDB-ResNet. Finally, in comparison experiments with the emerging Transformer recognition model, the accuracy of GAN-MSDB-ResNet on the validation set is higher than the accuracy of the Transformer by 2.23%. It can be seen that the model improvement method has some feasibility.

As shown in Figures 17, 18, the recognition accuracy curve of GAN-MSDB-ResNet is higher than other models, and its model training convergence speed is also higher than AlexNet, VGG, DenseNet, ResNet and Transformer. The above experimental results show that the GAN-MSDB-ResNet rice pest identification model proposed in this study has good robustness and generalization ability under complex background environment.




Figure 18 | Loss curve.



In order to fully demonstrate the feasibility of this study, the experimental results were compared with the latest research methods in this field. As shown in Table 6, Xing and Lee (2020) proposed a BridgeNet-19 deep convolutional neural network for classifying 7 classes of citrus diseases with a maximum classification accuracy of 95.41%. li et al. (2020) proposed an improved GoogLeNet model to identify 10 classes of rice pests in complex backgrounds, and the optimized GoogLeNet model improved by 6.22% over the existing methods with a maximum classification accuracy of 98.91%. Krishnamoorthy and Lvnarasimha (2021) combined migration learning based on the InceptionResNetV2 model to classify three classes of rice leaf diseases with a maximum recognition accuracy of 95.67%. Chen et al. (2020) based on VGGNet, pre-trained on ImageNet after adding the Inception module. The average recognition accuracy of eight types of rice pests and diseases under complex background conditions reached 92.00%. Huang et al. (2021) proposed a MultiScale-SE-ResNet model by adding an attention mechanism based on the residual structure. The average recognition accuracy reached 95. 62% on a dataset of eight crop diseases collected in a complex field environment. By comparing with the latest research methods in this field, the GAN-MSDB-ResNet rice pest identification model proposed in this study with data enhancement through generative adversarial networks achieves 99.34% accuracy for rice pests in four types of complex backgrounds. The experimental results demonstrate the effectiveness of the method to achieve the detection of plant pests and diseases effectively.


Table 6 | Summary comparison of crop pest and disease identification methods.







5 Conclusion

The current study on deep learning-based rice pest and disease identification is critical in crop pest and disease control because they help to identify early rice diseases based on established disease datasets and improve grain yield. The proposed GAN-MSDB-ResNet rice disease recognition model has been proven a higher recognition accuracy. The study has shown that the model can learn complex disease information from images and reduce the interference of complex backgrounds, and the model recognition accuracy is greatly improved. The model has been shown to be more effective, and the model has good performance on rice pest and disease dataset, achieving 99.34% disease recognition verification accuracy on rice disease dataset with data preprocessing and data enhancement, which is 2.66% improvement compared to 96.68% recognition accuracy of ResNet-50. And it is significantly higher than the classical deep learning models such as AlexNet, VGG-16, DenseNet-121, and Transformer. Finally, the method GAN-MSDB-ResNet rice pest recognition model proposed in this study has superior performance when fully compared with the latest methods in the field of crop pest recognition. This study provides a feasible research method and an important reference for solving key problems in rice pest and disease recognition, such as complex background, too small data set, and difficult extraction of pest and disease features.
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Appendix A 

Image dataset is available at: https://data.mendeley.com/datasets/fwcj7stb8r/1.




Appendix B

Models and code are available at: https://github.com/kuihu-hk/Rice-Pest-Identification.
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Research on ecosystem services and residents’ well-being in old revolutionary base areas is an important task for China’s ecological civilization construction and rural revitalization. Taking Jinzhai County, the core area of Dabie Mountains, China, as an example, based on InVEST model, the methods of spatial autocorrelation and coupling coordinated development degree, the spatiotemporal evolution, spatial heterogeneity and coupling association patterns of ecosystem services and multidimensional well-being in the study area from 2005 to 2020 were discussed. The major results are: In the past 15 years, in the core area of the Dabie Mountains, ecosystem services such as food supply, soil retention and water yield showed an upward trend, carbon sequestration and biodiversity maintenance showed a downward trend. The comprehensive index of multidimensional well-being in the core area of Dabie Mountain increased by 27.23% and the spatial difference in multidimensional well-being is gradually narrowing. By the analysis of coupling coordination, the number of units with the type of coupling disharmony between ecosystem services and multidimensional well-being in the study area decreased significantly from 56.85% in 2005 to 26.81% in 2020, respectively. The analysis of geographical detection showed that the habitat quality factor was the dominant controlling factor of coupling coordination spatial difference. By bivariate spatial autocorrelation analysis, in the past 15 years, the number of units with the “high ecology-high well-being” synergy type increased from 5.44% to 13.31%. The results can provide a reference for accurate identification, optimal regulation and synergistic improvement between ecosystem services and relative poverty in the Dabie Mountain area.




Keywords: ecosystem services, multidimensional well-being, coupling coordinated development degree, geographical detector, Dabie Mountain area




1 Introduction

Research on ecosystem services provides a comprehensive practical approach and an important way to address the environmental issues included in global sustainable development (Guerry et al., 2015; Ouyang et al., 2016), and it also provides an important practice field for the research on the core proposition of man-land relationship in geography (Li et al., 2014; Zhao et al., 2018). Ecosystem services are the link between ecosystem and human well-being, boosting the research on the spatial association between ecosystem services and residents’ well-being is conducive to ecosystem management and control, as well as provide an important theoretical basis for the “win-win” decision-making of the coordinated improvement of ecological quality and human well-being (Jim and Chen, 2009; Dai et al., 2016; Zheng et al., 2019). As an important research field about man-land coupled system, the relationship between ecosystem services and human well-being is the hotspot and frontier of current research, and related research has made great progress in methods, ideas and frameworks, however, a unified research model has not yet been formed. Among them, Haines-Young et al. (Haines-Young and Potschin, 2010) proposed a conceptual model of ecosystem cascade linking ecological processes and elements of human well-being, which is helpful to understand the general process from service formation to human well-being. It was also conducive to distinguishing the well-being components of ecosystems (Li et al., 2013; La Nottea et al., 2017). Scholars at home and abroad have carried out a considerable amount of research on this (Fedele et al., 2017; Robert et al., 2017; Benedetto et al., 2019), such as Fedele et al. (Fedele et al., 2017). have optimized the cascade framework and discussed the mediating factors and human regulation mechanism of the ecosystem services transfer process. Li et al. (Li et al., 2014) proposed the research categories and the subject domains of different links in the cascade framework. Based on the conceptual model of the cascade framework, Fu et al. (Fu et al., 2017) established an indicator system for assessing biodiversity and ecosystems in China. Relevant research has important reference value for in-depth discussion of ecosystem final service assessment and human well-being. Currently, research is increasingly moving from single issues such as conceptual description, assessment of ecosystem services and human well-being to comprehensive analysis from the perspective of sustainable development (Huang et al., 2016). Among them, there are ample research results related to ecosystem services and human well-being, and the objects cover the Loess Plateau (Li and Zhou, 2016), natural reserve (Wu et al., 2015), grassland (Han et al., 2018), basin (Xu et al., 2019), ocean (David et al., 2020), arid area and so on (Hu et al., 2022a). In recent years, the relationship between ecosystem services and the livelihood of farmers, the well-being of residents in poverty-stricken areas has attracted widespread attention from the academic community. Relevant research mainly conducts mutual analysis by constructing different service indicators, statistics, and livelihood or well-being indicators of questionnaires. The research methods mainly include matching statistics (Suich et al., 2015), regression analysis (Hu et al., 2018), coupling coordinated degree (Pan et al., 2020) and perception questionnaire (Yang et al., 2019; Marcinkevičiūtė et al., 2022; Xiong et al., 2022), etc. The above research has played a good role in complementing and promoting the understanding of the relationship between ecosystem services and human well-being at different space-time scales, but the impact mechanism, coupling model, ecological process of them still needs to be explored (Zang and Zou, 2016; Zhao, 2017). Strengthening the understanding of the process of ecological services affecting well-being will be beneficial to ecological optimization and management decision-making. According to the development characteristics of the study area, Xu et al. (Xu et al., 2019), based on the perspective of the carbon flow process dominated by human activities, discussed the relationship between ecological services and human well-being as well as the optimization strategies of Manas Basin in Xinjiang.

At present, the spatiotemporal coupling mechanism between ecosystem services which has externalities and scale effects, and multi-level well-being needs to be deepened (Carpenter et al., 2009). For example, Qiao et al. (Qiao et al., 2017) used the Granger causality method to explain the causal relationship between the spillover effects of ecosystem services in the river basin and the well-being of residents. Yang et al. (Yang et al., 2021) discussed the quantitative relationship between ecosystem services and human well-being. Fu et al. (Fu L. et al., 2022) used the SEM method to analyze the relationship between ecosystem services and rural residential well-being in the Xin’an River Basin, China. Qiu et al. (Qiu et al., 2022) established a model based on SEM to study the influential paths of ecosystem services on human well-being in the context of sustainable development goals. Therefore, combining econometric methods with other methods to strengthen the exploration of the coupling coordination characteristics, association patterns, and spatial heterogeneity of ecosystem services and human well-being will contribute to promoting the understanding of the process of synergistic improvement between the two.

In 2020, China achieved a comprehensive victory in the battle against poverty, and the issue of relative poverty governance in the post-poverty era is becoming the focus of tasks. To further consolidate the achievements of poverty alleviation, effectively connect rural revitalization, and help solve the problem of relative poverty with ecological and economic development, it is of great significance for the sustainable development of former revolutionary base areas, areas inhabited by minority nationalities, remote and border areas and poverty-stricken areas. Carrying out theoretical and empirical research on ecosystem services and residents’ well-being also provides a theoretical basis and solutions for the accurate identification, optimization regulation and policy formulation of “ecology-well-being” issues (Huang et al., 2019a). The Dabie Mountain area, as a significant ecological functional area and a former revolutionary base area in China, conducting further research on the correlation between ecosystem services and the well-being of residents aligns with the national objective of promoting ecological civilization and implementing rural revitalization strategies in former revolutionary base areas. Taking Jinzhai County, the former revolutionary base areas in Dabie Mountains, as an example, we carried out research on the spatiotemporal pattern, coupling association, spatial difference characteristics of typical ecosystem services and residents’ well-being, analyzed the evolution of ecosystem services in former revolutionary base areas, and discussed the coupling coordination development degree between ecosystem services and residents’ well-being, revealed the association pattern and spatial heterogeneity of the two by applying a combination of approaches with multisource data. The research results can provide a certain theoretical basis for the “win-win” target policy of the coordinated development of ecosystem services and residents’ well-being in the Dabie Mountain area (Huang et al., 2019a).




2 Materials and methods



2.1 Study area

This study takes Jinzhai County, the core area of the Dabie Mountains, China, as the research region. Jinzhai County, located between 31°06′~ 31°48′N and 115°22′~ 116°11′E, with a total area of 3814 km2, is the largest mountainous county and tourism resource county with the largest area and population in Anhui Province of China. It is located in the hinterland of Dabie Mountains and is the core area of the junction of Hubei, Henan and Anhui, and the western region of Anhui Province, as shown in Figure 1. It is also the second largest “General County” in China and the former revolutionary base area, known as “the cradle of the Chinese Red Army, the hometown of generals”. In December 2019, Jinzhai County became a pilot area for the construction of the national rural governance system. In April 2020, Jinzhai County exited from the poverty county sequence. Jinzhai County is located in the core area of Dabie Mountains whose terrain descends from southwest to northeast. Dabie Mountains run through the whole territory which is characterized by undulating mountains, crisscross rivers and abundant water resources, from southwest to northeast.




Figure 1 | Study area.






2.2 Data source and processing

The used data in this study comprises various multi-source data types, including spatial data, statistics data and questionnaires data. The land use data, which has a spatial resolution of 30 meters in 2005 and 2020, was collected, along with DEM data (SRTM digital elevation data in GRID format with a 30 m spatial resolution); soil data (Chinese soil type distribution map, Chinese soil data set HWSD_China_Subset_v1.1); meteorological data (extracted from the interpolation map based on ArcGIS 10.2 with the meteorological element observation data of 44 meteorological stations in the study area and surrounding areas), and evapotranspiration data in 2005 and 2020. The above data are from the Chinese Academy of Sciences Resource and Environmental Science Data Center (http://www.resdc.cn/) and the Geographic Remote Sensing Ecology Network (http://www.gisrs.cn). The Normalized Difference Vegetation Index (NDVI) data was extracted from remote sensing images of Geospatial Data Cloud (http://www.gscloud.cn/), the slope data was extracted from DEM, the land use degree and human impact index factors were calculated with reference to relevant literature (Zhuang and Liu, 1997; Yang and Liu, 2022), The socio-economic statistics mainly come from the statistical yearbook and the farmer questionnaire survey. The farmers’ data come from interviews and retrospective questionnaire surveys (including village cadres and villagers) in the villages of Jinzhai County in November 2020 and August 2021. 910 questionnaires were distributed, and 856 valid questionnaires were recovered, with an effective recovery rate of 94.07%. The reliability test was conducted based on SPSS19.0. Cronbach’s Alpha coefficients were 0.950 and 0.849, both greater than 0.800. KMO values were 0.940 and 0.920, both greater than 0.800. The significance level of Bartlett’s spherical test was less than 0.001, which shows that the questionnaire design is reasonable, and the data has high validity. This paper used GPS to locate the geospatial location coordinates of each administrative village and import them into ArcGIS 10.2 to generate point shapefiles, then recorded relevant attributes of each administrative village into the point layer. The description of the data is shown in Table 1.


Table 1 | Description of data.






2.3 Ecosystem Services Assessment Methods



2.3.1 Food supply

Food supply service is an imperative service in the agricultural ecosystem, which plays a vital role in human beings’ survival and the region’s development (Funabashi, 2018). Studies have shown that there is a significant linear relationship between yields of crop and livestock products and NDVI. Based on the land use/cover type, referring to relevant literature (Wu et al., 2017), the total yield such as food is allocated according to the ratio of the grid NDVI value to the total cultivated land NDVI value, thereby characterizing the food supply capacity of each grid. In terms of calculation methods, we allocated the output of grain according to the grid unit of cultivated land, the output of meat according to the grid unit of grassland, and the output of aquatic products according to the grid numbers of the water body. The specific methods are as follows: First, using conditional functions in ArcGIS, cultivated land, grassland, and water bodies are extracted from the land use data of the study area; Second, for cultivated land and grassland, we allocated the output based on the ratio of the NDVI value of each grid to the total NDVI value of different land types, and ultimately allocate the output of grain, meat, and milk products to the cultivated land and grassland grid units, respectively. For the allocation of aquatic products, we used an average allocation method based on the total number of water body pixels, that is, the ratio of the output of aquatic products to the total number of water grid cells to evenly allocate the number of aquatic products. The formula is as follows:



where Girefers to the food supply quantity in grid I, Gsum refers to the food supply quantity of the whole area, NDVIi is the normalized difference vegetation index of grid i, while NDVIsum refers to the sum of NDVI values of cultivated land or grassland in the study area.




2.3.2 Soil retention

By referring to relevant literature’s methods (Wang et al., 1995; William and Arnold, 1997; Cai et al., 2000; Manik et al., 2019; Li et al., 2022), the factors such as rainfall, terrain and soil are rasterized, and the grid layer and parameter table are input into the InVEST model. Then the capacity of soil retention in the study was obtained by calculating the potential amount of soil erosion (RKLS) and soil erosion (USLE) layers based on the sediment delivery ratio module in the model. The formula is as follows:







where SR is the quantity of soil retention (t·hm-2·a-1); R is the factor of rainfall erosion (MJ·mm·hm-2·h-1·a-1) calculated by the Wischmeier formula according to the monthly average precipitation and annual average precipitation in the study area. K is the factor of soil erosion(t·hm2·h·hm-2·MJ-1·mm-1); LS is the dimensionless slope length factor; P is the factor of soil and water conservation measures, between 0-1, calculated by the slope index α; C is the factor of vegetation coverage and crop management, between 0-1, calculated by the relationship formula between vegetation coverage and C value.




2.3.3 Water yield

The “water yield” module in InVEST model is used to estimate the water yield. The water yield module in InVEST model is based on the Budyko framework and water balance principle (Sharp et al., 2016). InVEST model has advantages in space expression and visualization compared with other hydrological models (Leh et al., 2013; Gao and Zuo, 2021). The formula is as follows:



where the Y(x)refers to the annual water yield of each grid unit x; AET(x)is the annual actual evapotranspiration(mm) of each grid unit x, while P(x)refers to the annual rainfall (mm) of each grid unit x.




2.3.4 Carbon sequestration

The carbon storage of the ecosystem mainly includes four basic carbon pools: aboveground biomass, underground biomass, soil and dead organic matter. Ecosystem carbon storage is estimated as the storage of carbon currently stored in the landscape based on the average carbon density of carbon pools of different land use types multiplied by the area of each land use type in the area (Zhou et al., 2019; Huang et al., 2023). The carbon sequestration module in the InVEST model was used to assess the spatial distribution of carbon storage in the ecosystem of study areas in this paper. The formula is as follows:



where C_total refers to the total carbon storage, C_above refers to the carbon storage of aboveground biomass, C_below refers to the carbon storage of underground biomass, C_soil refers to the carbon storage of soil carbon pool; C_dead refers to the dead carbon storage of organic matter.




2.3.5 Biodiversity maintenance

InVEST model calculates habitat quality by combining landscape type sensitivity and external threat intensity and evaluates biodiversity service function according to habitat quality (Peng et al., 2018b). This study calculated the habitat quality index based on “Habitat Quality” module in InVEST 3.6.0 to reflect the function of providing biodiversity services (InVEST model assumes that areas with good habitat quality have high biodiversity). The habitat quality index is a dimensionless and comprehensive index to evaluate the suitability of the regional land use types and the degree of habitat degradation. The calculation formulas and model parameter tables refer to literature (Sharp et al., 2016; Chu et al., 2018; Huang et al., 2020; Liu et al., 2022b).




2.3.6 The research framework

The research framework is shown in Figure 2. First, based on the InVEST model and NDVI matching method, we calculated the values of the ecosystem services in 2005 and 2020. Next, based on the Millennium Ecosystem Assessment, six dimensions of parameters were selected to establish a well-being index system. Second, the comprehensive index of ecosystem services (ESSI) and the comprehensive index of residents’ well-being (RWBI) were constructed. Third, the coupling coordination development degree between the ESSI and the RWBI was calculated and analyzed. Finally, some optimization measures for coupling coordination development degree were proposed.




Figure 2 | The research framework of this study.







2.4 Establishment of index system and calculation of comprehensive index



2.4.1 Establishment of comprehensive index system in ecosystem services and multidimensional well-being

Based on the relevant studies (Huang et al., 2019a; Huang et al., 2019b; Huang et al., 2020) and the situation of the study area, five typical ecosystem services, including food supply, soil retention, biodiversity maintenance, water yield and carbon sequestration, were selected to construct an ecological service index system; well-being index system mainly adopts the Millennium Ecosystem Assessment which is constructed by six dimensions of parameters about income (food income, income level), basic living conditions (the means of production, infrastructure), security, (resource security, personal security, from disaster), health (healthy eating, physical health), good social relations (cultural education, family relations, neighborhood relations), choice and action (work freedom, enjoy life) (Millennium Ecosystem Assessment, 2005). Through theoretical analysis and literature review (Suich et al., 2015; Zang and Zou, 2016; Chen and Chang, 2020; Xiong et al., 2022), the multidimensional well-being comprehensive index system of the Dabie Mountain area was established by selecting different dimension parameters combined with the actual situation of the study area, then the weights were determined based on the analytic hierarchy process (Gao et al., 2022). The index design scale of this study is shown in Table 2.


Table 2 | The comprehensive index system of ecosystem services and multidimensional well-being.






2.4.2 Calculation of comprehensive index in ecosystem services and multidimensional well-being

The spatial overly analysis method based on ArcGIS was used to calculate the comprehensive index of ecosystem services at the grid scale. The research data in the study area were standardized, and then the weighted average method was used to calculate the multidimensional well-being comprehensive index. The ecosystem services composite index and multidimensional well-being composite index are calculated using the following formula:





where ESSIi is the comprehensive index of ecosystem services; RWBIi is the comprehensive index multidimensional well-being; WXj and WYj are the weights of each evaluation factor in the evaluation rule layer of ecosystem services and multidimensional well-being; WXijand WYij are the weights of each evaluation factor in the evaluation index layer of ecosystem services and multidimensional well-being; X’ij and Y’ij are the normalized value of each evaluation factor in the evaluation index layer of ecosystem services and multidimensional well-being.





2.5 Coupling coordination and spatial heterogeneity analysis of ecosystem services and multidimensional well-being



2.5.1 Coupling coordination analysis

In order to reflect the general effectiveness of the comprehensive measurement of the research system, it is necessary to build a coupling coordinated development model to compare, analyze and evaluate the advantages and disadvantages in different dimensions (Hu et al., 2022b). This paper introduced the coupling coordinated development degree model with reference to relevant literature (Liao et al., 2020; Maimaiti et al., 2022). The formula is as follows:







where E(X) and R(Y) are the comprehensive index of ecosystem services and multidimensional well-being; K is the adjustment coefficient, and K is greater than or equal to 2 (the value here is 2); C is the coupling coordination degree, whose neighborhood ranges from 0 to 1, the larger C is, the higher coordination level will be; T shows that the comprehensive development index in two systems; α and β respectively represent the weights of E(X) and R(Y) in the evaluation index system, the value of each is 0.5 and the sum is 1; D represents the coupling coordination development degree of coupling coordination between systems, and the neighborhood of the value is 0~1. To facilitate spatial comparison and complete coupling coordination analysis at a unified scale, this paper uses the ArcGIS10.2 fishnet tool to generate 3 km grid units for services and well-being sampling (The average area of rural areas in this study area is about 17 square kilometers. In order to conduct coupling analysis between ecosystem services and residents’ well-being at a smaller unit scale and refer to relevant research literature (Huang et al., 2019a), this paper ultimately selected a 3 kilometer * 3 kilometer grid as the sample unit scale for coupling analysis). To reference relevant literature (Hu et al., 2018; Liao et al., 2020; Maimaiti et al., 2022), this paper divides the coefficient of coordinated development into five grades from low to high, namely 0≤D<0.2 severe disorder, 0.2≤D<0.4 moderate disorder, 0.4≤D<0.06 primary disorder, 0.6≤D<0.8 moderate coordination and 0.8≤D<1 excellent coordination.




2.5.2 Bivariate spatial autocorrelation analysis

This paper adopted a bivariate spatial autocorrelation index to study the spatial association between multiple variables. Compared with the single variable spatial autocorrelation, the bivariate autocorrelation index can reveal the spatial association between different elements (Zheng et al., 2020), the formula is:



where  refers to the global spatial autocorrelation index of the bivariate (evaluation index values of items e and r) of spatial unit p,  refers to the e-th evaluation index value of spatial unit p,  refers to the r-th evaluation index value of spatial unit q;  and σ are the mean and variance of corresponding indicators; Wpq is the spatial connection matrix between spatial units p and q.




2.5.3 Research on spatial heterogeneity by geographical detector

In this paper, the GeoDetector tool was used to carry out the geographical detector of spatial heterogeneity. Its main principle is to detect the influence of independent variables on dependent variables according to the relationship between the variance within each factor layer and the total variance (Wang and Xu, 2017). q statistic, the value with the range [0,1], which means that the independent variable X explains 100×q% of the dependent variable Y, is used to measure the explanatory power of each factor to the spatial differentiation of the dependent variable in the factor detector. The formula (Wang and Xu, 2017) is:



where h=1,…, L is the layer of the variable Y or the factor X; Nh and N are the number of units of layer h and the whole area;  and σ2 are the variances of Y in layer h and the whole area.






3 Results and analysis



3.1 Measurement and spatiotemporal change of the ecosystem services



3.1.1 Spatiotemporal features of ecosystem services

This paper obtained five typical ecosystem services and comprehensive indexes of ecosystem services each year through the calculation of relevant model methods in the core area of Dabie Mountains, including food supply, soil retention, water yield, carbon sequestration and biodiversity maintenance. The analysis showed, during 2005-2020, there was a trend of “three items rise, and two items fall”, in detail, the annual growth rates of food supply, water yield and soil retention services were 2.03%, 8.17% and 6.04%, while the annual decrease rates of carbon sequestration and biodiversity maintenance were 0.04% and 0.03%. It can be seen that in recent 15 years, water yield services showed the largest increase in the area. Generally, the comprehensive index of ecosystem services shows an increasing trend, high-level ecological service areas are mainly distributed in the northeast, and the low-value areas are scattered in the middle and southwest, as shown in Figures 3, 4. In the past 15 years, high-value areas of ecosystem services in the study area showed a trend of developing toward the southeast, while low-value areas have the characteristic of gathering toward the middle. From 2005 to 2020, the statistical descriptive parameters indicated that mean values of comprehensive indexes of ecosystem services are 1.8610 and 1.9361. Thus, the changing trend of ecosystem services in the study area was to increase as a whole, and the spatial difference was more balanced in the recent 15 years.




Figure 3 | The spatial distribution of ecosystem services in the study area in 2005.






Figure 4 | The spatial distribution of ecosystem services in the study area in 2020.



Owing to the fact that the Dabie Mountain area was situated in the national rainfall center in 2020, water yield services increased fastest from 627.13 mm in 2005 to 1395.45 mm in 2020, with a growth of 122.52%. Meanwhile, soil retention services changed from 232.23×104 t in 2005, up to 442.50×104 t in 2020, with a growth of 90.54%; food supply services also showed an upward trend, from 29.25×104 t in 2005, up to 38.17×104 t in 2020, with the growth of 30.51%. The statistical parameters show that the standard deviation of food supply on the grid unit has risen from 0.2343 to 0.2700, which means that the spatial difference of food supply services is expanding, indicating that the planning measures such as farmland consolidation and land centralized renovation project in the core area of Dabie Mountains have played a significant role in the past 15 years. Measures such as industrial-scale operation have optimized the spatial layout of food supply carriers, thus further improving the service of food supply. In the recent 15 years, however, carbon sequestration and biodiversity maintenance showed a weak downward trend, with a decrease of about 0.50%. The analysis indicates that the typical ecosystem services in the core area of Dabie Mountains show complex changing trends during the rapid urbanization in the past 15 years. It is necessary for the local government to enhance comprehensive ecological planning and management of mountains, rivers, forests, fields, lakes and grasses, optimize ecosystem functions, then further enhance biodiversity and carbon sequestration services, and build a sound foundation for ecological progress. All of these will provide a “win-win” ecological foundation and socio-economic development conditions for rural revitalization, habitat quality improvement and relative poverty governance.




3.1.2 Hotspots recognition and spatiotemporal change of ecosystem services

Based on ecological service assessment, the identification of service hotspots in the core area of Dabie Mountains is helpful to understand the strength of service supply capacity in different regions (Dade et al., 2019). Under normal circumstances, the same ecosystem can provide a variety of different supply services, but its supply capacity is considerably different (Lydia et al., 2018). Therefore, the spatial analysis method can be used to identify the grid units whose supply services of a certain type of ecosystem are greater than the average value of such services and define them as the hotspot units of dominant services, which is conducive to the precise spatial identification and control of ecological service hotspot ecological units. In this paper, The calculation of hotspot layers is mainly divided into two processes: the calculation of a single ecosystem service hotspot layer and the superposition of multiple hotspot layers, as follows: (1) based on the ArcGIS 10.2 grid calculator condition function, to calculate the hotspot layer for each ecosystem service, the average value of the ecosystem service layer was calculated, and then the raster cells above the average value were defined as hotspot areas, thus generating five ecosystem service hotspot layers respectively. (2) Based on ArcGIS 10.2 raster overlay tool, the hotspot layers of the five ecosystem services were overlaid, and the spatial hotspot distribution map of the study area was finally generated. All the units that do not exceed the average value were defined as non-hotspots, and those with one service whose value exceeds the average value were defined as Class 1 hotspots, and then 2 to 5 hotspots were defined in turn. The hotspot change map was obtained after calculating the difference between the hotspot distribution maps of the two phases. In this study, the number of hotspots in grid units has the largest change of 5 and the largest increase of 4 among the hotspot difference changes from 2005 to 2020. The spatial hotspot pattern and change distribution are shown in Figure 5.




Figure 5 | The number (A, B) and spatial variation of ecosystem service hotspots (C) in the study area from 2005 to 2020.



Hotspot analysis shows that, in 2005, the proportion of Class 5 hotspots which has 5 hotspots is 0.16%. Successively, Class 4 hotspots account for 14.47%, Class 3 hotspots account for 36.51%, Class 2 hotspots account for 41.52%, and Class 1 hotspots account for 7.17%, non-hotspots accounts for 0.17%. Generally, service areas that have 0 to 2 hotspots account for 48.86%, and Class 3 to 5 hotspot areas account for 51.14%. While in 2020, the proportion of service areas from Class 5 to Class 1 was 0.24%, 14.69%, 33.57%, 45.69% and 5.63% respectively and non-hotspot 0.19%. Generally, services areas that have 0 to 2 hotspots account for 51.50%, Class 3 to 5 hotspots areas account for 48.50%. Contrast analysis shows that the area of high hotspots ecosystem services is shrinking, while low hotspots area is expanding, but the change is not obvious as a whole.

From the perspective of spatial changes in hotspots, the number of hotspots decreased by 5 at most and increased by 4 at most. In terms of change areas, the area that has not changed accounts for 79.20%, the second is that the number of hotspots decreased by one, accounting for 10.02% of the total area, and the number of hotspots increased by one, accounting for 9.57% of the total area, and the area with the other hotspot changes was less than 1%. The grid units with reduced hotspots are mainly distributed in Meishan Town, the northern region of the focus of social and economic development. The units with increased hotspots are mainly scattered in the whole region in space, but mainly in the southern mountains. Therefore, it is necessary to promote ecological governance, restoration, and strengthen the management and optimization of land use and ecosystems in hotspots of human activities in the core area of Dabie Mountains.





3.2 Characteristics of spatial distribution pattern of multidimensional well-being comprehensive index

The multidimensional well-being comprehensive indexes of Jinzhai County in the core area of Dabie Mountain in 2005 and 2020 are respectively obtained according to the formulate (8). Considering the quantitative analysis at a finer scale, this paper carried out spatial interpolation based on the IDW method, used the grid unit with a 3 km amplitude to carry out spatial statistics, and divided the well-being level into five levels, lowest, low, medium, high and highest. The results are shown in Figure 6. The results showed that the maximum, minimum and variance of the multi-dimensional well-being composite index of the Dabie Mountain core area were respectively 0.6488, 0.1187 and 0.0959 in 2005 and 0.6841, 0.3147 and 0.0824 in 2020. The maximum and minimum values showed an upward trend, while the variation of variance decreased from 0.0959 to 0.0824, then the spatial difference in well-being level was equalizing. The results of the county analysis also showed that the multidimensional well-being comprehensive index of Jinzhai County in 2020 was 0.5205, which increased by 27.23% compared with 0.4091 in 2005. The quality of well-being and its spatial balanced development degree are the key to improving residents’ well-being (Wang et al., 2018). The analysis embodied that since the construction of the new countryside, the multi-dimensional comprehensive well-being index of the core area of Dabie Mountains has been on the rise as a whole, while the difference in the well-being of spatial units has been further narrowed, the well-being level of residents in the study area has been greatly improved during the last 15 years.




Figure 6 | The spatial distribution of comprehensive index of multidimensional well-being in 2005 (A) and 2020 (B).






3.3 Geographical detection and optimization of spatial differentiation of coupling coordinated development degree



3.3.1 Coupling coordination characteristics and geographical detection of ecosystem services and multidimensional well-being

The coupling coordinated development degree between the comprehensive index of ecosystem services and multidimensional well-being was calculated based on the coupling coordinated development degree, see formulas (9) ~ (10). The analysis showed that, in the core area of Dabie Mountains, there are 282 discoordinate grid units, accounting for 56.85%, and 214 coordination units, accounting for 43.15% in 2005. In 2020, the total number of discoordinate coupling units was 133, accounting for 26.81%, while the total number of coordination units was 363, accounting for 73.19%, as shown in Table 3. The spatial transfer analysis of coupling coordination development degree showed that, in 2005, 78.32% of the severely discoordinate areas turned to moderate coordination; 75.40% of the moderate discoordination turned into primary; 57.38% of primary discoordination turned to moderate coordination and 7.03% to excellent coordination; 16.34% of moderate coordination turned to excellent coordination, however, 6.94% still degenerated to primary discoordination; 28.60% of excellent coordination degenerated to moderate coordination, as shown in Figure 7. The analysis also indicated that the coupling discoordinate units showed a trend of sharply decreasing, with a drop of 30.04%, instead, the total number of coordination units has increased significantly, which presented a great development trend of the coupling coordination in ecosystem services and residents’ well-being.


Table 3 | Degree of coordination development between ecosystem services and multidimensional well-being.






Figure 7 | The distribution (A, B) and spatial transfer (C) of coupling coordination development degree.



In order to explore the spatial distribution and agglomeration characteristics of the coupling coordination development degree between ecosystem services and multidimensional well-being, this paper analyzed the global and local spatial autocorrelation by using the Geoda. The results indicated that the global spatial autocorrelation index Moran’s I of the coupling coordinated development degree between ecosystem services and multidimensional well-being index was greater than 0. Moran’s I in 2005 was 0.5670, while in 2020 Moran’s I decreased to 0.5511. The significance test showed that the P-value was far less than 0.01, thus the significance test at 1% level has passed, indicating that the coupling coordinated development degree between the ecosystem service index and the multi-dimensional well-being index had a significant feature of a spatial positive association in clustering, then the spatial agglomeration features showed a trend of multi-center distribution development, comparing 2020 with 2005.

In order to further explore the influence of spatial heterogeneity, taking 2020 as an example, factors such as nature, humanity and society were selected to conduct spatial heterogeneity geographic detection by using the GeoDetector. First, six factor layers of elevation (X1), slope (X2), NDVI (X3), habitat quality (X4), land use degree (X5) and human impact index (X6) were discretized and processed into type data based on ArcGIS 10.2. Then, the Geodetector tool was used to analyze the factor detection and interaction detection of the spatial differentiation of coupling coordinated development degree. The factor detector sorted these factors by q value as: habitat quality (X4) (0.2213) > human impact index (X6) (0.1690) > NDVI (X3) (0.1561) > land use degree (X5) (0.1512) >slope (X2) (0.0662) > elevation (X1) (0.0425). The results indicated that ecological quality,

vegetation cover and land use index factors had significant effects on the spatial differences of coupling coordination. Among them, the explanatory power of the habitat quality factor was more than 20%, which was the dominant control factor for the spatial difference of coupling coordination. Factor interaction detection can further evaluate whether the explanatory power of dependent variable Y will increase or decrease when different factors X act together (Wang and Xu, 2017). The analysis showed that a total of 7 groups of factor interaction detection q value reached above 0.6, all of which were nonlinear enhancement interaction types. The q value of the habitat quality (X4) ∩ human impact index (X6) was the highest (0.6489), which was the dominant factor of interaction detection (Table 4).


Table 4 | The interaction detector for spatial differentiation of coupling coordination development.



Geographical detection analysis showed that the spatial differences of coupling coordinated between ecological and well-being in the core of Dabie Mountains, were affected by factors such as ecological environment, human activities and land use. A high-quality ecological environment and high-efficiency land use will further promote the improvement of coupling quality. In practice, the improvement of the ecological quality and land use level should be continuously strengthened. Especially in mountainous areas, the space for construction that is suitable for economic development is limited, thus it is necessary to rationally plan production, living and ecological development space according to local conditions, enhance land output benefits, strengthen habitat protection and ecological governance, and promote comprehensive benefits, so as to promote the synergistic improvement and “win-win” development of ecosystem services and residents’ well-being in the study area.




3.3.2 Spatial coupling model of ecosystem services and multidimensional well-being

Strengthening the bivariate spatial autocorrelation analysis of the comprehensive index of ecosystem services and multidimensional well-being can further reveal the spatial coupling model between the two, which is helpful to explore the spatial agglomeration and mutual matching characteristics of the high value of “platform” and the low value of “depression” of ecological services and residents’ well-being. It also realizes the spatial visualization of the coupling model and has great significance for the collaborative improvement of ecosystem services and residents’ well-being level, the accurate identification of coupling quality, and the optimization regulation of “ecology-well-being”. In this paper, Geoda software was mainly used to analyze the features of the coupling model between the two. The calculation of the bivariate global spatial autocorrelation index showed that Moran’s I in 2005 and 2020 are -0.1768 and 0.0741 (P values are far less than 0.01, and they pass the significance test at 1% level). The research indicated that in 2005, there was a significant negative correlation between the comprehensive index of ecosystem services and multidimensional well-being in the study area, while in 2020, the two showed a positive correlation.

Bivariate local spatial autocorrelation can provide support for further exploration of the coordinated development of ecological environment protection and human-land relationship (Zhang et al., 2018). The spatial distribution of four coupling models of ecosystem services and multidimensional well-being, named “high ecology - high well-being” HH, “high ecology - low well-being” HL, “low ecology - high well-being” LH, “low ecology - low well-being” LL can be reflected by the LISA Figure. Among them, HH and LL mean the high-level synergy and the low-level synergy with a positive correlation of ecosystem services and multidimensional well-being, while HL and LH mean the trade-off relationship between ecosystem services and multidimensional well-being with a negative correlation. As is shown in Figure 8, in 2005, there were 27 grid units in the “platform” area with high HH value, accounting for 5.44% of the total area, 29 grid units in the “depression” area with the LL model, accounting for 5.85% of the total area, while the HL and LH are 62 and 49. In 2020, with a little increase, there were 66 grid units with the HH model, accounting for 13.31% of the total area, 40 grid units with the LL model accounting for 8.06% of the total area, while the model of HL and LH showed a downward trend with the grid units of 45 and 25.




Figure 8 | The coupling model between ecosystem services and multidimensional well-being in 2005 (A) and 2020 (B).






3.3.3 Optimization strategies of ecosystem services and multidimensional well-being

The study showed that the number of synergistic coupling units of “high ecology - high well-being” were few, and most of them were “high ecology - low well-being” and “low ecology - high well-being” trade-off coupling models. During the past 15 years, the HH model area expanded to the central and southeastern areas, while the LL model area evolved from the central to the southwestern rural areas in the study area boundary. The spatial distribution of the LL model area had changed from scattered distribution to a few concentrated contiguous distribution models, forming an obvious “depression” in the core area of Dabie Mountains, while the HH model area further clustered into a “platform” in the core area of Dabie Mountains.

The results embodied that ecosystem services and multidimensional well-being are in large spatial differences in different areas and periods affected by the endowment of ecological resources, geographical location and living environment. Therefore, corresponding optimization strategies should be adopted for different types of areas according to local conditions so as to promote the coordinated improvement of ecological protection and residents’ well-being in the Dabie Mountain area. In consideration of “low ecology - high well-being” areas that mainly involve towns with high economic development and good transportation conditions, but land types there are mainly construction and agricultural, and the ecological environment is fragile. Therefore, in practice, the hotspots of human economic activities should enhance ecosystem service function through landscape pattern optimization, further strengthen ecological governance and restoration, improve ecological quality, and increase regional ecological service supply. While the “high ecology - low well-being” areas are covered with abundant vegetation resources and excellent ecological environment, mainly involving towns that have poor economic development level, traffic conditions, and infrastructure, it is imperative to intensify policy support and infrastructure investment, improve the residents’ production and living environment, establish diversified ecological compensation mechanism, increase the residents’ income, satisfaction, and the overall levels of welfare, etc., so as to achieve the “win-win” goal of ascension together. The “low ecology - low well-being” areas are the areas requiring focus and improvement, the ecological environment in these areas is often fragile, and ecological governance is difficult. Secondly, the construction of infrastructure and basic public service is relatively weak, the village collective economy lacks leading industries, and the income of residents is relatively low. Therefore, it is necessary to further explore the dynamic mechanism for the coordinated development of ecosystem services and residents’ well-being, strengthen the comprehensive ecological governance of land and space planning, establish and improve the alleviation mechanism for poverty. In addition, further identification of stakeholders related to ecosystem services and analysis of the regulatory mechanism of ecosystem services can provide an important basis for the management model of ecosystem service (Geng et al., 2021). To promote the optimization of regional ecosystem functions and the coordinated improvement of residents’ living standards, this is also the focus and difficulty of China’s work in the process of relative poverty monitoring, consolidating the achievements of poverty alleviation and connecting rural revitalization effectively. Finally, the “high ecology - high well-being” areas need to further optimize the function of the ecosystem and enhance resilience against ecological risks, meanwhile, relying on the advantages of rich ecological resources to cultivate ecological industries vigorously is a great way to improve high-quality development of the green economy. To a certain degree, the results can provide a reference for the diagnosis of coupling degree, accurate identification of spatial matching, and improvement of “win-win” strategies formulation synergistically for ecosystem services and the residents’ level of well-being in the Dabie Mountain area.






4 Discussion

Ecosystem services are the base of ecological security assessment and ecosystem regulation (Peng et al., 2018a), the synergistic development of ecosystem services and human well-being, with the complex interrelation, is a goal of ecosystem management (Zheng et al., 2013). Improving ecosystem services is also an effective way to increase human social welfare (Cao et al., 2018). For people in poor areas or vulnerable groups that depend on ecosystems, changes in ecosystem services have a great impact on human well-being (Wang et al., 2013). While the current researches on ecosystem services and multidimensional well-being have limitations such as unclear coupling mechanism, unclear regulation strategy, and lack of strategy design based on the analysis of mechanism. This paper explored the spatial-temporal evolution law and spatial heterogeneity from 2005 to 2020, revealed the coupling features and coupling model of the two quantitatively, and the results also corroborate the conclusion of the previous research on the coupling effect of man-land relationship (Pan et al., 2020; Zheng et al., 2020). For areas of the “low-low” synergistic coupling model and areas of “low ecology - high wellbeing”, as well as “high ecology - low well-being” trade-offs coupling models, we can further explore the stress causes and decoupling mechanism of the discoordination between ecological services and residents’ well-being, so as to provide management decision-making basis for solutions to the problem of regional coupling discoordination (Qiu et al., 2021). As the coupling mechanism between ecosystem services and human well-being is complex, although this study reveals the spatial-temporal difference characteristics of the coupling relationship between ecosystem services and human well-being, the multiscale coupling effect and multidimensional decoupling mechanism of ecosystem services and residents’ well-being in Dabie Mountains still need to be strengthened. Studies on the coupling of ecological processes and well-being show that changes in natural processes will affect the ecosystem services on which local populations depend, and that ecological conservation measures can affect the causal mechanisms of human well-being by altering ecosystem services (Yang et al., 2015). The “pattern-services-well-being” study shows that the correlation and the trade-offs between landscape patterns and ecosystem services have significant scale effects (Bai et al., 2020). The impact of ecosystem services on human well-being varies significantly across space, and the contribution of the same ecosystem service to the well-being of different groups varies significantly, so it is practically relevant to explore the subjective and objective dimensions of integrating human well-being, and to explore group differences in the impact of ecosystem services on human well-being based on multi-group analysis (Liu et al., 2022a). Furthermore, strengthening the sustainability conceptual cascade framework of “pattern-process-services” can help provide insight into the interactions between landscape patterns and ecological processes, as well as the complex linkages between ecological processes and ecosystem services that support human well-being, and is critical to promoting socio-ecological sustainability (Fu B. et al., 2022). As a static “ecology-well-being” assessment and coupling research process in this study, it is necessary to further explore multi-scenario simulation and other research (Chen et al., 2021), provide multi-scheme prediction and comparison for the research on synergistic improvement of ecological services and residents’ well-being, and further provide a theoretical basis for the exploration of the mechanism of overcoming difficulties in Dabie Mountain area and the research on “win-win” approaches of “ecology-well-being”.




5 Conclusion

Based on the InVEST model, the methods of spatial autocorrelation and coupling coordination, this paper discussed the spatiotemporal evolution, spatial heterogeneity and coupling models of ecosystem services and multidimensional well-being in the core area of Dabie Mountain from 2005 to 2020. The major results were shown as follows:

a) During 2005-2020, the analysis showed that there was a trend of “three items rise, and two items fall” in 5 typical ecosystem services, in detail, the annual growth rates of food supply, water yield and soil retention services were 2.03%, 8.17% and 6.04%, while the annual decrease rates of carbon sequestration and biodiversity services were 0.04% and 0.03%. Generally, ecosystem services showed an upward trend. In the past 15 years, the number of hot spots of multiple ecosystem services has increased, accounting for 10.09% of the total area, and the descending areas accounted for 10.71% of the area, the area that has not changed accounts for 79.20%, but little change as a whole.

b) The multidimensional well-being comprehensive index of the core area in Dabie Mountains in 2020 was 0.5205, which increased by 27.23% compared with 0.4091 in 2005, showing a high growth of residents’ well-being. The statistical analysis of spatial units in the study area indicates that in the past 15 years, the minimum and maximum values of the multidimensional comprehensive well-being index both showed an upward trend, and the variance change has decreased from 0.0959 to 0.0824. The results show that since the construction of the new countryside, the overall well-being of residents in the core area of Dabie Mountains has shown an upward trend, and the spatial differences of the well-being level in the study area have been further balanced.

c) During 2005-2020, the proportion of discoordinate coupling units between ecosystem services and residents’ well-being decreased from 56.85% in 2005 to 26.81% in 2020, while the number of coupling coordination units increased from 43.15% to 73.19%. The analysis of geographical detection showed that the habitat quality factor was the dominant controlling factor of coupling coordination spatial difference, meanwhile, the combined effect of habitat quality and human activities enhanced the impact of spatial differences, which was the dominant interaction factor of spatial difference enhancement. The bivariate correlation analysis showed that in the past 15 years, the area of the “high ecology - high well-being” coupling model in the core area of the Dabie Mountains has shown an upward trend, but the proportion was still small, while the proportion of the unbalanced correlation area was large.
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Pierce’s disease (PD) is a serious threat to grape production in Europe. This disease is caused by Xylella fastidiosa and is mediated by insect vectors, suggesting its high potential for spread and necessity for early monitoring. In this study, hence, potential distribution of Pierce’s disease varied with climate change and was spatially evaluated in Europe using ensemble species distribution modeling. Two models of X. fastidiosa and three major insect vectors (Philaenus spumarius, Neophilaenus campestris, and Cicadella viridis) were developed using CLIMEX and MaxEnt. The consensus areas of the disease and insect vectors, along with host distribution, were evaluated using ensemble mapping to identify high-risk areas for the disease. Our predictions showed that the Mediterranean region would be the most vulnerable to Pierce’s disease, and the high-risk area would increase three-fold due to climate change under the influence of N. campestris distribution. This study demonstrated a methodology for species distribution modeling specific to diseases and vectors while providing results that could be used for monitoring Pierce’s disease by simultaneously considering the disease agent, vectors, and host distribution.
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1 Introduction

Pierce’s disease, caused by Xylella fastidiosa, damages various economically important agricultural crops, including grapes, almonds, citrus fruits, coffee, and peaches (Almeida et al., 2005; European Food Safety Authority, 2020). X. fastidiosa was first reported in the USA (Pierce, 1892) and has spread to Europe and Asia (Leu and Su, 1993; Montero-Astua et al., 2008; Amanifar et al., 2014; Denancé et al., 2017), causing Pierce’s disease with symptoms of leaf chlorosis, wilting, and diebacks in infected plants (Almeida et al., 2005). X. fastidiosa has been of particular significance in Europe since its initial discovery in olive trees in southern Italy (Saponari et al., 2013). This disease has severely damaged agricultural crops in European countries, including France, Spain, Portugal, and Germany (EFSA Panel on Plant Health, 2015; Olmo et al., 2017). X. fastidiosa is currently listed on the EPPO A2 list of pests recommended for regulation as a quarantine pest, demonstrating the need for monitoring to suppress damage and disease severity (EPPO, 2019).

X. fastidiosa is transmitted to other hosts through insect vectors that feed on the xylem tissue of plants (Almeida, 2016) and establish persistent and non-circulative infections within the foregut of insects (Purcell and Finlay, 1979; Almeida et al., 2005). These vectors of Pierce’s disease are found in many parts of the world and have spread the disease. In Europe, Philaenus spumarius is a major insect vector widely found in various habitats, including agricultural fields, grasslands, and woodland edges (Cornara et al., 2017). This pest causes significant damage to olive trees in Italy (Cornara et al., 2017). Species from the Aphrophoridae family, including Neophilaenus campestris and Philaenus italosignus, and species from the Cicadellidae family, including Cicadella viridis, are known vectors of X. fastidiosa in Europe (Trkulja et al., 2022). These vectors acquire the bacterium when they feed on infected plants and can spread Pierce’s disease by feeding on host plants. Moreover, because the flight ability of these vectors increases the risk of the spread of X. fastidiosa it is important to control insect vectors to prevent the damage caused by this disease, requiring a method that effectively confines potential areas exposed to insect vector distribution (Lago et al., 2021).

Species Distribution Model (SDM) evaluates the potential distribution and occurrence probability of a species as a function of the estimated relationships among species biology, occurrence areas, and environmental characteristics (Elith and Leathwick, 2009) and has been further applied for the spatial prediction of disease and surveillance of invasive species (Peterson and Vieglais, 2001; Peterson et al., 2003). Owing to its advantages in screening areas exposed to the target species in advance, it has been applied to develop the fundamentals necessary for monitoring and controlling diseases and pests (Bosso et al., 2017; Jung et al., 2019; Byeon et al., 2021; Lee et al., 2022; Song et al., 2022; Yoon et al., 2023). SDM algorithms can generally be classified into mechanistic and correlative models (Kearney et al., 2010; Li and Wang, 2013). Each algorithm differs in the required data, variable format, operational method, and process of obtaining predicted results, meaning that suitable algorithms vary according to the available information, target species, and research purpose. Recently, an ensemble model that uses two or more models has been used to complement the uncertainty of individual models and improve their reliability (Araújo and New, 2007; Kumar et al., 2015; Narouei-Khandan et al., 2020). Hence, its application to evaluate the potential distribution of a species is increasing, which has led to the development of ensemble models for studies with worldwide concerns (Araújo and New, 2007; Mainali et al., 2015). The use of multiple environmental variables, not just climatic factors, improves predictive performance (Matyukhina et al., 2014; Bradie and Leung, 2017; Lee et al., 2021).

Few studies have investigated the characteristics of Pierce’s disease in terms of symptoms, ecology, and vectors (Davis et al., 1978; Anas et al., 2008; Chatterjee et al., 2008; Raffini et al., 2020). However, SDM studies assessing the risk of the disease are relatively limited with two notable studies by using the MaxEnt model (Bosso et al., 2016a), and the CLIMEX model (Hoddle, 2004). These studies showed the notable application of SDM to the disease, but both are simple models only utilizing the disease records and climatic data, suggesting a need for considering additional environmental conditions with a recently advanced modeling technique. In this study, we evaluated the potential risk areas for Pierce’s disease in Europe using a novel ensemble SDM, integrating different algorithms used for the disease and vectors with host distribution due to climate change. CLIMEX, a mechanistic model, was used to predict climatically suitable regions for X. fastidiosa, while MaxEnt, a correlative presence-only model, was used to evaluate potential areas of occurrence for major insect vectors (Raffini et al., 2020). The ensemble model was then spatially constructed by projecting the consensus areas of the disease and insect vectors in addition to the host distribution so that the final outcome could identify high-risk areas vulnerable to Pierce’s disease.




2 Materials and methods



2.1 Acquisition and processing of occurrence data

The occurrence coordinates of X. fastidiosa were obtained from the disease distribution by using Global Biodiversity Information Facility (GBIF, 2022a), Center for Agriculture and Bioscience International (CABI, www.cabi.org), and previous studies (Bosso et al., 2016b; Castillo et al., 2019; Safady et al., 2019). A total of 49 distribution coordinates in Europe were confirmed after cross-checking the above multiple sources, which should minimize occurrence uncertainty.

For insect vectors of Pierce’s disease, P. spumarius, N. campestris, and C. viridis were selected because they are the widely distributed predominant vectors of X. fastidiosa in Europe (Janse and Obradovic, 2010; Elbeaino et al., 2014; Morente et al., 2018). To obtain specific occurrence coordinates, we used GBIF (GBIF, 2022b; GBIF, 2022c; GBIF, 2022d) and CABI, and the occurrence data were carefully determined by cross-checking the two databases. Then, spatial filtering was applied to the occurrence data to minimize the sampling bias by balancing the sampling density (Kramer-Schadt et al., 2013). The spatial filtering buffer was determined based on flying ability, setting 5 and 3 km for P. spumarius and N. campestris, respectively, whereas C. viridis was spatially filtered with a default buffer radius of 10 km (Lago et al., 2021). The spatial rarefying function in the SDM toolbox developed for ArcGIS (version 10.8.1, ESRI, USA) was employed for spatial filtering (Brown, 2014). Finally, 4772, 234, and 993 European occurrence points for P. spumarius, N. campestris, and C. viridis, respectively, were confirmed on the map (Figure 1).




Figure 1 | Occurrence coordinates of (A) Xylella fastidiosa, (B) Philaenus spumarius, (C) Neophilaenus campestris and (D) Cicadella viridis.






2.2 Acquisition and processing of meteorological data

Meteorological data from 1990–2018, including maximum temperature, minimum temperature, precipitation, and elevation, were obtained with a 2.5-minute resolution from WorldClim (https://www.worldclim.org) (Fick and Hijmans, 2017). The meteorological data were then converted into 19 bioclimatic variables to be used as MaxEnt model variables in ASCII format using R software (R Core Team, 2021) (Hijmans et al., 2017). The obtained meteorological data were extracted for the cells assigned to Europe and converted into two separate files, recording locations (loc file) and meteorology (met file), which was the required format for the CLIMEX model (Kriticos et al., 2015).

For future prediction, a 2.5-minute resolution of the Shared Socioeconomic Pathways (SSP) 585 climate change scenario for 2041–2060, generated by the MIROC6 model, was obtained (Fick and Hijmans, 2017). For the MaxEnt model, the scenario was obtained in the form of a bioclimatic variable identically defined to the current bioclimatic variables. In contrast, the monthly average minimum temperature, maximum temperature, and precipitation of SSP 585 were obtained for the CLIMEX model. Then, the same data processing was applied to obtain a format applicable to the CLIMEX model, as was done for the current meteorological data. Consequently, we obtained current and future meteorological data of the same type and time for use with different SDM tools.




2.3 MaxEnt modeling for insect vectors

MaxEnt is a modeling algorithm that we used for the three insects (Raffini et al., 2020). This model evaluates the possibility of occurrence by training environmental variables in the occurrence areas of a species (Phillips et al., 2004; Phillips et al., 2006; Elith et al., 2011). Because the spatial autocorrelation of bioclimatic variables can lead to model overfitting, it is necessary to select model variables that are not correlated. In this study, a variable showing a correlation coefficient > 0.8 for a biologically driven variable was removed (Kumar et al., 2014; Ancillotto et al., 2019; Yoon and Lee, 2021). The selected MaxEnt model variables for insect vectors were 10, 12, and 10 bioclimatic variables for P. spumarius, N. campestris, and C. viridis, respectively (Table 1).


Table 1 | CLIMEX parameter values for Xylella fastidiosa.



Because it is required to determine the model features and regularization multiplier (RM), we used ENMeval in the R package, which compares all possible combinations of model settings to find the RM and the best model features of linear (L), quadratic (Q), product (P), threshold (T), and hinge (H) based on the Akaike information criterion (AIC) (Muscarella et al., 2014). The optimal model features for P. spumarius and C. viridis were RM of 0.5, and LQHPT features, while RM of 0.5 and LQ features were optimal for N. campestris evaluation. The model was then operated with 10,000 random backgrounds using 10-fold cross-validation, and the output was recorded in logistic format and projected onto a map using ArcGIS.

Two widely used metrics were employed to evaluate the reliability of the developed model: the area under the receiver operator curve (AUC) and true skill statistics (TSS) (Fielding and Bell, 1997; Allouche et al., 2006; Merow et al., 2013). In general, AUC < 0.7 is considered a poor performance, 0.7 ≤ AUC < 0.8 is moderate, and AUC ≥ 0.8 is good to excellent performance (Merckx et al., 2011; Peterson et al., 2011). True skill statistics, a more practical metric than the AUC, were calculated using a threshold value that maximized the sum of sensitivity and specificity (Liu et al., 2005). In general, it was considered that a value of TSS < 0.2 indicated a poor performance, 0.2 ≤ TSS < 0.4 was an acceptable performance, 0.4 ≤ TSS <0.6 was a moderate performance, and TSS ≥ 0.6 suggested a good performance (Landis and Koch, 1977; Tobeña et al., 2016).




2.4 CLIMEX modeling for Pierce’s disease

CLIMEX (version 4.0; Hearne Software, Melbourne, Australia) predicts the potential distribution of a species by evaluating the biologically suitable areas in a local climate (Kriticos et al., 2015). CLIMEX uses parameters representing the biological responses of a species to climate to evaluate the possibility of pest invasion based on climatic suitability (Byeon et al., 2018). The outcome is Ecoclimatic Index (EI), a quantitative representation of the climatic suitability of a species in a specific area. The EI value, which comprehensively estimates species growth and inhibition under given climatic conditions, was scaled from 0 to 100 (Kriticos et al., 2015). A species cannot be theoretically established at zero EI, whereas an EI >30 suggests an optimal climate for species inhabitation (Kriticos et al., 2015). In this study, we employed a previously developed CLIMEX model for Pierce’s disease (Hoddle, 2004) (Table 2).


Table 2 | Model performance and variables that contributed to the MaxEnt model.



Because of the characteristics of the CLIMEX model, which determines the parameter sets showing the best fit to the actual distribution data, there is no standard method for evaluating the performance of the CLIMEX model. Therefore, we estimated its accuracy by counting the actual occurrence records included in the simulation, as in previous CLIMEX studies (McConnachie et al., 2011; Saavedra et al., 2015).




2.5 Distribution of host of X. fastidiosa

Pierce’s disease affects more than 300 plant species, including grapes, citrus fruits, coffee, olives, almonds, blueberries, and other herbaceous plants (Stancanelli et al., 2015). To consider the distribution of host plants, we obtained a geodatabase of land cover maps in Europe using the Copernicus Land Monitoring Service (CLC, https://land.copernicus.eu/) (Büttner, 2014). Among the 44 classified areas in the land cover, areas planted with vineyards, fruit trees, berry plantations, and olive groves that were particularly damaged by Pierce’s disease, were extracted and projected onto the map (Figure 2).




Figure 2 | Distribution area of host of Xylella fastidiosa.






2.6 Ensemble mapping of the potential distributions of Pierce’s disease and insect vector

The current and future potential distributions of insect vectors and the climatic suitability for Pierce’s disease predicted using MaxEnt and CLIMEX, respectively, were overlaid using ArcGIS (Byeon et al., 2021; Lee et al., 2021). The prediction of insect vectors was converted into binary maps by establishing a common threshold value (the 10th percentile training presence logistic threshold in MaxEnt) to classify presence or absence. The binary map of each insect vector was then superimposed on a scale of cells (the minimum projection unit under a given resolution) to find the consensus areas for all three insect vectors in Europe. The CLIMEX result of Pierce’s disease was also converted into a binary map divided into suitable regions with EI ≥1 and unsuitable regions with EI<1. The two binary maps were overlapped to define consensus areas showing the potential distributions of both the disease and insect vectors. The regions that were potentially the most vulnerable to Pierce’s disease were identified by overlapping the host distribution map with the disease vector map.





3 Results



3.1 Evaluating potential distribution of Pierce’s disease using CLIMEX

The existing CLIMEX model includes all occurrence coordinates of X. fastidiosa in Europe within the prediction region, suggesting that the model is reliable (Hoddle, 2004). When applying a threshold level of EI > 1, X. fastidiosa was predicted to be distributed in the southern regions of Europe under the current climate, with an estimated area of 1,948,597 km2 (Figure 3A). However, it is predicted to increase to 3,137,960 km2, reaching Hungary, England, Belgium, and Germany, in future based on climate change.




Figure 3 | Potential risk area under the current climate of (A) Xylella fastidiosa, (B) Philaenus spumarius, (C) Neophilaenus campestris and (D) Cicadella viridis.






3.2 Evaluating the potential distribution of insect vectors of Pierce’s disease using MaxEnt

The developed MaxEnt models for insect vectors showed AUC values of 79, 0.94, and 0.90, and TSS values of 0.84, 0.89, and 0.91 for P. spumarius, N. campestris, and C. viridis, respectively, suggesting the model performance was sufficient.

When applying the 10th percentile training presence logistic threshold under the current climate, the potential distribution areas of P. spumarius were estimated to be 2,333,408 km2 including France, Germany, Belgium, the Netherlands, the United Kingdom, some neighboring countries, and the northern area of Turkey (Figure 3B). The largest potential distribution areas were observed for N. campestris at 3,460,361 km2, reaching northern Europe (Denmark, Sweden, Norway, and Finland) (Figure 3C). The potential distribution area of C. viridis was estimated to be 1,854,718 km2, covering France, the United Kingdom, Finland, and eastern Russia (Figure 3D). With climate change, the potential distribution areas of the three insect vectors tended to shift southward, but their sizes decreased drastically (Figures 4A–D). The potential distribution area of P. spumarius was observed only in small spots in Italy, Croatia, Albania, Greece, and Georgia, totaling 26,487 km2, which is a 98% decrease from the area under the current climate. N. campestris is expected to move southward to Spain, Italy, Greece, and Turkey. However, the area decreased to 1,895,461 km2, equivalent to 55% of the current area. The potential distribution area of C. viridis shrank to 14,358 km2, which is approximately 99% less than the potential area under the current climate and showed small spots in Italy, Greece, and Georgia.




Figure 4 | Potential risk area under the future climate (2041–2060) of (A) Xylella fastidiosa, (B) Philaenus spumarius, (C) Neophilaenus campestris and (D) Cicadella viridis.



Bioclimatic variables related to climatic variation contributed to the model performance, suggesting that these pests are sensitive to climatic conditions (Table 1). Temperature seasonality showed the highest contribution (65.6%) to the model for P. spumarius, followed by precipitation in the warmest quarter (9%) and annual mean temperature (7.4%). For N. campestris, the minimum temperature of the coldest month showed the highest contribution (36.3%), followed by isothermality (17.4%) and temperature seasonality (17.2%). Isothermality contributed the most (39.3%) to the model of C. viridis, followed by annual temperature range (16.8%) and precipitation of the warmest quarter (10.7%).




3.3 Evaluating the potential risk areas of Pierce’s disease damage by using ensemble mapping

High-risk areas where Pierce’s disease could be mediated by insect vectors were derived by extracting the consensus areas for Pierce’s disease and insect vectors under current and future climates (Figure 5). The present high-risk areas, which is estimated to be 849,062 km2, were in southern Europe, such as Spain and Italy, as well as in eastern France. Based on climate change, risky areas could expand to 1,731,618 km2, covering most regions of southern Europe, such as Portugal, Spain, Italy, Greece, and Turkey. This is because the consensus areas increased as the potential area for Pierce’s disease moved southward, although the potential distribution area of the vectors decreased. 




Figure 5 | Ensemble mapping to illustrate high risk areas of Pierce’s disease mediated by insect vectors under the (A) current and (B) future climate (2041–2060).



Three maps projecting the disease, insect vectors, and hosts were constructed to identify the most threatened host area (Figure 5). Because of the southward expansion of potential areas of Pierce’s disease, the host distribution region was estimated to be affected more than three-fold due to climate change: 121,637 km2 in the future from 36,082 km2 under the current climate of 149,286 km2 of host distribution.





4 Discussion

This study used dual-species distribution modeling of mechanistic and correlative algorithms for an ensemble spatial analysis of the potential distribution of Pierce’s disease. Ensemble models have recently been used to build reliable models by combining the characteristics of different algorithms in cases with many uncertainties, such as in species distribution modeling (Stohlgren et al., 2010). The decision on which type of algorithm to apply to each species should be based on the characteristics of the target species, the amount of available data, and the purpose of the prediction (Yoon et al., 2023). Previously, it was shown that SDM was applicable for evaluating risk areas exposed to X. fastidiosa distribution according to climate change (Bosso et al., 2016a). However, the model was developed using the limited coordinates and outdated climatic variables. Because the correlative SDM highly depends on occurrence coordinates, the limited number of X. fastidiosa occurrence records might increase uncertainty of a modeling result. In addition, the correlative SDM is trained by values assigned to variables at occurrence coordinates, meaning the variables that can reflect the current conditions can increase the model reliability. Thus, it is necessary to compensate these drawbacks by employing additional conditions and updated variable information. This attempted to decrease model uncertainty with the ensemble modeling of the disease and insect vectors as the disease spread is constrained by habitats of them, and to increase model reliability with the updated climatic variables recorded by 2018. This study focused on identifying areas exposed to the risk of Pierce’s disease mediated by insect vectors. Thus, we aimed to construct a model that incorporates the habitats of actual vectors with biologically possible regions of disease occurrence, along with the availability of occurrence data. The climate is an important factor affecting the outbreak of Pierce’s disease, as the viability of Pierce’s disease varies with weather conditions, in addition to the breed or age of the infected host (Feil and Purcell, 2001). Tropical, subtropical, and Mediterranean climates favor the survival and development of Pierce’s disease, implying that the probability of the disease occurring is high under favorable climatic conditions through vector mediation (Purcell, 1997). For this reason, the CLIMEX model might be more suitable because it constructs a physiological niche by analyzing the suitability within a given climate based on the biological characteristics of a species, compared with a machine learning-based model that finds a realized niche that is environmentally similar to the occurrence area (Kriticos et al., 2015). In contrast, the MaxEnt model was used for insect vectors because a relatively sufficient number of occurrence coordinates was available, which is the most important requirement in developing a reliable machine learning-based model (Phillips et al., 2004; Elith et al., 2011). Moreover, vectors are affected by other factors such as host and topology; thus, a model incorporating different variables other than climate would be suitable. We believe that ensemble models, which combine different models depending on data availability and the main targets of prediction, can increase the reliability of predictions, as opposed to simply applying the same algorithm to two or more species or applying different algorithms to one species.

The climate is a dominant factor affecting the distribution of insect species (Björkman and Niemelä, 2015). In our analysis, some areas shared the potential distribution of all three insect vectors, indicating a common climatic factor that confined their habitats. Isothermality (Bio3) contributed significantly to the MaxEnt model of the three insect vectors, which quantified the ratio of the annual maximum and minimum temperature differences to the monthly average daily temperature difference (O’donnell and Ignizio, 2012). All insect vectors were highly likely to occur at approximately 30% or higher, suggesting that small seasonal differences favored their occurrence of the insect vectors. The three species used in this study are mainly distributed in the southern and western regions of Europe, where the isothermality is high enough to aid the spread of X. fastidiosa. The annual temperature range in Europe is between approximately 15 and 25°C, and this range is included within the maximum and minimum temperatures (5–28°C) observed in the actual outbreak area of Pierce’s disease. This indicates that favorable conditions for the disease and vectors are consistent (Yoon and Lee, 2023). Interestingly, N. campestris was the only one of three vectors that could potentially mediate Pierce’s disease under climate change, while the habitats of two other species in Europe were predicted to decrease significantly. This may be due to the differences in the dominant factors that contributed the most to the model. In the model of N. campestris, the minimum temperature of the coldest month (Bio6) showed the highest contribution. It was found that the probability of occurrence was high in areas where Bio6 was 0 or more, and the occurrence area appeared to move to the Mediterranean coast where Bio6 was above 0 due to climate change. N. campestris overwinters as eggs and develops into larvae in spring; therefore, warm temperatures due to global warming may lead to the early hatching and development of the pest (Elbeaino et al., 2014). This is consistent with a previous SDM study which showed that the lowest temperature in the coldest month was a main explanatory variable for X. fastidiosa distribution (Raffini et al., 2020). This suggests that winter climate not only serves as an important model variable for predicting the spread of diseases mediated by insect vectors but also indicates its significance as a factor in forecasting disease outbreaks necessary for implementing control measures. In contrast, temperature seasonality (Bio4), a major variable of P. saltuarius, decreased with climate change, leading to an unsuitable environment for pest occurrence, whereas C. viridis was expected to decrease because of a decrease in isothermality (Bio3) due to climate change.

Among the hosts affected by Pierce’s disease, vineyards and olive groves play a significant role in Europe, a major wine-producing country (Bisson et al., 2002). The optimal temperature for growing grapes is 25–32°C, and they are largely cultivated near the Mediterranean coast (Hochberg et al., 2015; Gutiérrez-Gamboa et al., 2021). Temperatures below 12°C and above 34°C limited the growth and survival of X. fastidiosa, which is similar to the optimal temperature for growing grapes (Feil and Purcell, 2001). Growth Index (GI) is an indicator of population growth potential during the favorable season in the CLIMEX model, showing high values in the spring and fall seasons by avoiding hot and dry environments that can delay symptoms (Feil and Purcell, 2001). Although there are differences depending on the vector biology, adult emergence occurs between April and June or between July and October (Bodino et al., 2019). This is similar to the peak GI period, worsening the spread of Pierce’s disease; consequently, it is necessary to pay particular attention during this period. Pierce’s disease eventually occurs in an environment where both the host and vector are available. Unfortunately, the favorable climate and time for growing hosts are consistent with the requirements for disease and vector development. From this point of view, countries along the Mediterranean coast and western France are at high risk of Pierce’s disease occurrence regardless of climate change, whereas southern Spain is projected to become the most at-risk region for the disease due to climate change. Consequently, intensive pest and disease control before disease outbreaks outbreak is necessary for these countries (Janse and Obradovic, 2010; Raffini et al., 2020; Morelli et al., 2021).




5 Conclusion

This study applied different algorithms for disease and insect vectors and predicted the potential occurrence areas of Pierce’s disease that vary with climate change using an ensemble modeling approach by spatially relating the model results with the host distribution. The main occurrence areas in Europe were predicted to be near the Mediterranean coast. However, it could expand southward, mediated by insect vectors due to climate change, causing severe damage due to consistency between areas of disease occurrence and host cultivation. Therefore, it is possible to effectively identify high-risk areas for the potential occurrence of the disease in advance and to implement intensive monitoring and control to suppress the spread of the disease and minimize the potential damage that may increase due to climate change. From the perspective of SDM, this study is significant because it predicts Pierce’s disease and it methodologically proposes an ensemble model by integrating individual models of disease and vectors with the host as a model variable. Although this model does not consider changes in host distribution owing to climate change, integrating a model that considers host changes can further enhance its reliability.
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Pepper leaf disease identification based on convolutional neural networks (CNNs) is one of the interesting research areas. However, most existing CNN-based pepper leaf disease detection models are suboptimal in terms of accuracy and computing performance. In particular, it is challenging to apply CNNs on embedded portable devices due to a large amount of computation and memory consumption for leaf disease recognition in large fields. Therefore, this paper introduces an enhanced lightweight model based on GoogLeNet architecture. The initial step involves compressing the Inception structure to reduce model parameters, leading to a remarkable enhancement in recognition speed. Furthermore, the network incorporates the spatial pyramid pooling structure to seamlessly integrate local and global features. Subsequently, the proposed improved model has been trained on the real dataset of 9183 images, containing 6 types of pepper diseases. The cross-validation results show that the model accuracy is 97.87%, which is 6% higher than that of GoogLeNet based on Inception-V1 and Inception-V3. The memory requirement of the model is only 10.3 MB, which is reduced by 52.31%-86.69%, comparing to GoogLeNet. We have also compared the model with the existing CNN-based models including AlexNet, ResNet-50 and MobileNet-V2. The result shows that the average inference time of the proposed model decreases by 61.49%, 41.78% and 23.81%, respectively. The results show that the proposed enhanced model can significantly improve performance in terms of accuracy and computing efficiency, which has potential to improve productivity in the pepper farming industry.




Keywords: deep convolutional neural networks, crop disease recognition, GoogLeNet, real-time recognition, lightweight neural networks




1 Introduction

Pepper is almost an indispensable crop in life and is closely related to human obesity rate cardiovascular disease (Spence, 2019). With the rapid growth of the global population, the demand for peppers has been growing. Diseases such as pepper powdery mildew, pepper anthracnose, and pepper white spot disease are the main factors affecting the yield and quality of pepper (Gu et al., 2021). Pepper leaf diseases are usually the most direct manifestation of early crop growth problems. Accurate and rapid recognition of pepper leaf diseases is essential for promptly identifying growth issues and enabling accurate prevention and control measures. The conventional approach based on visual inspection and human experience for recognizing pepper leaves is subjective and time-consuming and costly. Therefore, there is a pressing need to develop a precise, fast, and convenient approach for detecting pepper leaf diseases.

In order to solve the problem mentioned above, classical machine learning methods like K nearest neighbor (KNN) (Xie et al., 2017), support vector machine (SVM) (D.Pujari et al., 2016), random forest (RF) (Gold et al., 2020), Naive Bayes (NB) (Mondal et al., 2017), artificial neural networks (ANN) (Wang et al., 2018) have been widely used in the field of crop leaf disease recognition. Despite existing works are encouraging, there are still limitations such as suboptimal performance (inaccuracy, computing efficiency) and lack of generalization capability. Moreover, the process becomes more complicated when dealing with huge leaf diseases dataset and many type of diseases, making the formal deployment and application of the models more difficult.

With the development of artificial intelligence theory, deep learning has been proposed to solve complex vision tasks. In the field of agriculture, different deep learning algorithms like Convolutional Neural Networks (CNNs), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM) have been investigated for the recognition of the symptoms of major diseases that affect crops. In particular CNN, as one of the most promising techniques, has been successfully used in crop leaf disease recognition (Saleem et al., 2019). A variety of convolutional neural network models are closely integrated with recognizing crop leaf diseases (Ak et al., 2019; Klompenburg et al., 2020; Abade et al., 2021). After the deep learning model is built, it often needs to be transplanted into an external system. Therefore, while considering the recognition accuracy, the complexity of training should be as much as possible to make the model more lightweight (Mccool et al., 2017). However, achieving a high recognition rate often requires increasing the depth of the network, leading to the challenge of training complexity. Additionally, various activation functions, optimizers, and regularization methods have diverse effects on model training. Therefore, how to balance the network depth and training complexity and how to choose the appropriate activation function and optimizer for the network model has always been a difficult problem. It is worth noting that GoogLeNet has been widely used in different domains including crop diseases (Li et al., 2020; Yang et al., 2023). Unfortunately, it has some disadvanatges, for instance, GoogLeNet has complex network architecture and large model size. Therefore, to address these challenges, built on GoogLeNet architecture, this work has proposed a new deep convolution neural network model, i.e., an enhanced lightweight GoogLeNet (GoogLeNet-EL) model for accurate and efficient detection of multiple pepper diseases. The main contributions of this work include the following aspects:

	(1) From the model perspective, an enhanced lightweight CNN model is proposed to accurately recognize pepper leaf diseases. Different from the existing GoogLeNet, we have introduced a spatial pyramid pooling (SPP) structure to enhance the model's learning ability of image features at different scales. In addition, we have also introduced a compressing method to optimize the network depth and width of the Inception module, leading to increased computing efficiency. The integration of compression and SPP greatly improves the model performance in terms of both accuracy and computing.

	(2) From the data perspective, in order to meet the training data requirements for deep learning, we have collected a total of 9183 images to evaluate the performance of the proposed model, containing 6 types of pepper leaf diseases including pepper scab, pepper powdery mildew, pepper anthracnose, pepper white spot disease, pepper blight, and pepper botrytis cinerea.

	(3) From the practical application of the model perspective, the proposed model has significant advantages in recognition accuracy and computing performance of pepper leaf diseases on a limited computing platform, which is beneficial to the further deployment in pepper plant in large fields. The improved performance can improve efficiency and reduce cost input.



The remainder of the paper is organized as follows. Section 2 introduces the existing related work. Section 3 describes the dataset acquisition, preprocessing, and collation regarding pepper leaf diseases, and then introduces the methodology required to accomplish this task of pepper leaf disease recognition along with related concepts and the proposed approach. Section 4 conducts the experimentations designed to investigate the factors that affect the performance of the proposed approach and the comparison test with other methods. Finally, the conclusion is presented in Section 5.




2 Related work



2.1 CNNs on crop diseases detection

As for the recognition of pepper leaf diseases, accuracy is the central performance of the convolution neural network model. Many previous works on disease recognition of other crops have proven that these CNN-based methods could achieve high recognition precision (Abade et al., 2021). Table 1 displays crop diseases recognition based on CNNs by some recent literature since 2018, and the crucial fields such as the CNN model used, the best accuracy, and the study object are included it.


Table 1 | Crop diseases recognition based on CNNs.



From Table 1, it can be easily observed that that these CNN-based methods have shown favorable recognition results in the field of different crops diseases detection. Thus, it is significant to investigate pepper leaf disease recognition based on their feature extraction method by training all kinds of convolution kernels.

In recent years, some researchers have focused on pepper leaf disease recognition by employing deep learning algorithms. Wu et al. (2020) investigated an integrated neural network based on CNN for automatic detection and severity assessment of pepper bacterial spot disease, yielding the best overall accuracy of 95.34%. Then, some deep learning models were presented to diagnose image-based hot pepper disease and pests using deep features based on transfer learning (Yin et al., 2020; Gu et al., 2021). Mathew and Mahesh (2022) used YOLOv5 to detect the bacterial spot disease in bell pepper plant from the symptoms which can be seen on the leaves taken from the farm. In addition, Mahesh and Mathew (2023) focused on the bacterial spot disease detected on the image of the bell pepper plant by using YOLOv3 and showed a mean average precision of 90%. Mustafa et al. (2023) proposed a five-layered CNN model for automatic detection of pepper bell plant disease utilizing leaf images, predicting the plant leaf as healthy or bacterial with 99.99% accuracy. Although the promising progress has been achieved, it is still challenging in large pepper planting fields. On the one hand, much research has been carried out in the lab and the dataset has been collected from benchmark dataset. There is only limited data set of pepper leaf diseases for real-time detection. On the other hand, compared with different crop diseases, pepper diseases recognition is much more difficult due to large intra-class similarity and small inter-class variance in pathological symptoms (Wu et al., 2020).




2.2 Model lightweight

In addition, CNN-based models tend to require relatively high computational resources. This poses a challenge for their practical implementation in agricultural production settings with limited resources. Therefore, it becomes essential to consider other performance indicators, such as memory requirements, training time, and recognition time, to ensure feasibility and efficiency in such contexts. There have been growing concerns about lightweight CNN models for crop diseases detection. Thakur et al. (2023) proposed a VGG-ICNN model with seven convolution layers by reducing the CNN model size to identify crop disease and it outperformed most of CNN models. Haque et al. (2022) presented a lightweight CNN architecture with two modified Inception modules to identify the severity stages of maydis leaf blight disease of maize. To reduce the parameters and computations of the existing pest detection methods, Cheng et al. (2022) addressed a lightweight crop pest detection method by simplifying YOLOv3. Bhujel et al. (2022) presented a lightweight attention-based CNN model to detect tomato leaf disease and it reduced network parameters and complexity compared to the standard ResNet50 model. By compressing the AlexNet structure, Xie et al. (2021) proposed the CarrotNet to reduce the model training time to half of the original, which can meet the defect identification of crops. Kamal et al. (2019) introduced the separable convolution to the model, which made the training parameters of the model 29 times less than that of VGG and 6 times less than that of MobileNet. Aiming at the problem of too many AlexNet parameters, Zhang et al. (2019) combined the dilated convolution and global pooling to identify 6 common cucumber diseases and achieved good results. In summary, the aforementioned lightweight models have shown promising performance. As the complexity of network structures has hindered their practical implementation in agricultural production, such as pepper planting in large fields, there is a pressing need to explore suitable lightweight structures based on CNN models.




2.3 Crop disease dataset

At present, the identification dataset of crop diseases mainly depends on public datasets such as Plant Village dataset, Plant disease recognition dataset, New Plant Diseases Dataset, and CVPR 2020-FGVG7. There is only limited pepper leaf disease data in these datasets. To better and more effectively identify pepper leaf disease, different classes of diseases should be added to public dataset. In addition, it is different from the pepper leaf disease detection dataset in real-time. The image information of pepper leaf for actual scenes is often complex and redundant, which could result in the problem that CNN deployed under general calculated performance is used for the low accuracy and slow recognition speed of pepper leaf diseases. The principal means is to improve the existing network structure. Although the accuracy has reached a reasonable level, few studies can weigh the accuracy of model recognition and model parameters (Kim et al., 2016). Therefore, to identify pepper leaf diseases, using pepper leaf disease dataset from real-world scenes and develop a network model structure with high recognition accuracy that facilitates easy model training and deployment is important, which can serve as a valuable reference for pepper production and planting enterprises and contributes to the sustainable development of the agricultural industry.





3 Materials and methods



3.1 The overview of the proposed method

As shown in Figure 1, a general overview of the improved CNN model based on GoogLeNet for pepper leaf disease recognition is described as follows. The first step is to use the current situation of pepper planting on the farm to build a dataset on six common diseases of pepper leaves. The next step is the introduction of methods to improve the model by investigating the GoogLeNet model, activation function, batch normalization layer, spatial pyramid pooling layer, and optimizer. The content is explained in detail in this section. Finally, our dataset is used for the improved model for training and experiment. The experiment is divided into two parts. The first test is a necessity test, which mainly examines the necessity of our proposed improvement aspects. The second test is the comparison with other models. The experimental test and result analysis are introduced in subsequent sections.




Figure 1 | The overview process of the improved model.






3.2 Dataset description

The dataset has an important influence on the accuracy of the approaches that implement the recognition of pepper leaf diseases. In this section, the investigated dataset was composed of RGB images. It was employed to train and test the models studied from two aspects: dataset source and dataset preprocessing. In the experiments, we used a total of 9183 images which contained 5669 original pepper leaf disease images and 3514 preprocessed pepper leaf disease images with various image augmentation.



3.2.1 Dataset source

The data on pepper leaf diseases used in this paper is collected from Xijiang Agro-ecological Park, Yangzhou City, Jiangsu Province. Since the diseases are affected by seasonality, our dataset collection focuses on four different quarters in 2020, using a handheld camera to examine the diseased pepper leaves. We captured 5669 original pepper leaf disease images with annotation from agronomists. There are 6 classes of diseases, including pepper scab, pepper powdery mildew, pepper anthracnose, pepper white spot disease, pepper blight, and pepper botrytis cinerea. Some example images of pepper leaf diseases are shown in Figure 2.




Figure 2 | Related images of pepper leaf disease. (A) Pepper scab, (B) Pepper powdery mildew, (C) Pepper anthracnose, (D) Pepper white spot disease, (E) Pepper blight, (F) Pepper botrytis cinerea.






3.2.2 Dataset preprocessing

Data augmentation is an essential means of balancing the number of samples and expanding the amount of data in deep learning technology. Overfitting can be effectively avoided through data augmentation, and the model's generalization ability can be improved. Common data enhancement methods include random rotation, random cropping, color enhancement, and noise addition. Through the above data enhancement operation, 3514 augmentation images of pepper leaf disease are obtained. The detailed list of the dataset is shown in Table 2. An example of pepper image enhancement can be seen in Figure 3.


Table 2 | The detailed list of the dataset.






Figure 3 | Image enhancement. (A) Original image, (B) 90-degree rotation, (C) Random crop, (D) Color enhancement, (E) Salt and pepper noise, (F) Gaussian noise.







3.3 The proposed GoogLeNet-EL model for recognition of pepper diseases



3.3.1 GoogLeNet

GoogLeNet is a new structure of deep learning proposed by Christian Szegedy in 2014 (Szegedy et al., 2015), which combines the multi-scale idea and dimension reduction layers. GoogLeNet is a classical convolutional neural network, as shown in Figure 4. The original network of GoogLeNet consists mainly of three convolutional layers, nine Inception modules, and other components. The Inception module is the core component of GoogLeNet, including Inception-V1, Inception-V2, Inception-V3, and Inception-V4. Where, Inception-V1 is the basic module that other versions of the module use to improve network performance. Inception-V2 introduces Batch Normalization (BN) algorithm to reduce internal covariate shift. Compared with Inception-V2, Inception-V3 mainly introduces the idea of factorization in addition to BN algorithm. It can greatly reduce the amount of computation and further increase the depth of the network. When the network is deeper and wider, Inception-V4 is proposed to make it have a more unified inception structure. In recent years, GoogLeNet has been proven to perform well in many fields like scene recognition, medicine, and human pose estimation. In this study, from the perspective of basic model architecture construction and rapid feature recognition, we selected Inception-V1 and Inception-V3 used in this study.




Figure 4 | GoogLeNet structure.



Inception-V1 is a 22-layer network model, which is used to control arithmetic power under the existing datasets. The original structure of Inception-V1 includes a 1×1 convolution, a 3×3 convolution, a 5×5 convolution, and a 3×3 max pooling. Convolutions stacked in various ways increase the depth and width of the network. It extracts image features from multiple scales. However, the number of parameters is still large. To solve the problem of a large number of calculations, the complete structure of Inception-V1 is presented by adding three 1×1 convolutions. The structure can effectively reduce the number of feature channels and calculations. Thus, in our experiments, it is considered as the base model architecture and modified to generate a new network.

Inception-V3 is created by further optimizing the accuracy and calculation of Inception-V1. In terms of computational power, since the computational cost of a 5×5 convolution is 2.78 times of a 3×3 convolution, two 3×3 convolutions kernels are used instead of a 5×5 convolutions kernel. On this basis, the convolution kernel of n×n is decomposed into two convolution kernels, 1×n and n×1. When equivalent results are obtained, the calculation speed is greatly improved. The depth and width of the network are also increased, which is conducive to improving accuracy. Therefore, the idea regarding the factorization into small convolutions of Inception-V3 is used for the proposed deep convolutional neural network.




3.3.2 Proposed GoogLeNet-EL

As mentioned earlier, GoogLeNet has shown competitive performance in dealing with image recognition and classification problems. Specifically, the use of the Inception module in GoogLeNet can reduce the number of parameters. Due to the large volume of the model and the great computational complexity, a valid lightweight network architecture is necessary. In the section, building on and extending on GoogLeNet with Inception-V3 as main neural unit, we have proposed the enhanced lightweight GoogLeNet-EL model. A compressing method is proposed to optimize the network depth and width of the Inception module, leading to increased computing efficiency. In addition, we have introduced a spatial pyramid pooling (SPP) to efficiently extract features at varies scales in the pooling layer. Furthermore, we have also optimized other components of GoogLeNet structure. Hence, an improved GoogLeNet structure diagram is proposed in Figure 5 and the specific parameters are shown in Table 3. We compressed its model structure and only retained 4 Inception modules.




Figure 5 | GoogLeNet-EL structure.




Table 3 | Parameters of the improved GoogLeNet-EL model.





3.3.2.1 Improved Inception module

As shown in Figure 6A, a classical Inception module, i.e., Inception V1 was employed as the base module, which is comprised of 4 parallel layers. It can effectively reduce the number of feature channels and calculations. Despite competitive advantages, Inception V1 can be optimized to reduce the number of parameters. Based on the idea of factorization of Inception V3 (Szegedy et al., 2016), the convolution kernel of 5×5 is decomposed into two 3×3 convolution kernels. In addition, depth-wise separable convolution proposed by Chen et al. (2022) can reduce the computational complexity and compress the model size. It decomposes a depth-wise convolution and a 1×1 point-wise convolution, where the former can perform the filtering operation for each channel of the input feature map, and the later can carry out the combining operation. Owning to the lightweight advantage of depth-wise separable convolution, it can reduce the model size and improve the calculation speed without affecting the efficiency of feature extraction. Therefore, motivated by the above promising performance, we improved the architecture of the base module without a significant increase in parallel layers. In the second layer of Inception-V1, the 3×3 convolution was decomposed into two convolution kernels, 1×3 and 3×1; In the third layer of Inception-V1, the 5×5 convolution was replaced with two 3×3 convolution kernels, then one 3×3 convolution along with the original 1×1 convolution were substituted with 3×3 depth-wise and 1×1 point-wise convolutions, respectively; at last, the other 3×3 convolution is transformed with 1×3 and 3×1 convolutions. An improved Inception module is created in terms of Inception-V1, as shown in Figure 6B.




Figure 6 | The structures of the Inception module and optimized Inception module. (A) a classical Inception module. (B) an improved Inveption module.






3.3.2.2 The spatial pyramid pooling layer

The input of CNN is fixed, but due to its nature, shooting angle, and other reasons, the size of our target image does not match the size of the fixed input. Taking the Pepper botrytis cinerea image (see Figure 7) as an example, the size of the target image we cut out is smaller than the actual size required by the network. The common method to deal with the problem is to crop and stretch the original image. However, the operation method could lead to the imbalance of the original scale of the target image size, resulting in image distortion. It can affect the accuracy of network training. Fortunately, spatial pyramid pooling (SPP) can effectively solve the problem (He et al., 2015).




Figure 7 | Cropping of pepper leaf disease image.



In order to better extract the feature of pepper leaf diseases, the SPP layer is added after the Inception4 module in our proposed model. There is no need to normalize the input of the GoogLeNet-EL model, saving much work. In this way, the original image features can be better preserved. The structure of SPP is shown in Figure 8. After Inception4, the average pooling of 4×4, 2×2, and 1×1 is used to divide the feature set into 16, 4, and 1 blocks. Finally, a 21-dimensional feature vector with a fixed size is obtained by fusing with features. Specifically, a feature multi-scale fusion technology is employed to effectively fuse features from different levels of the network. According to the network structure of GoogLeNet with Inception-V3, it has the ability to extract lower-level features (like edges and colors) and higher-level features (like deformity and necrosis). The feature information is first performed in terms of convolution operations with kernels of different on the input layer, which generates feature maps of different scales. Then, by using up-sampling and down-sampling operations, the scale of the feature maps is adjusted to be consistent. The final feature map can be obtained by effectively fusing these features and it has the richer and more comprehensive pepper leaf disease feature information. Therefore, any input can be converted into a feature vector with a fixed size, removing the limitation of input size for images of different scales.




Figure 8 | The network structure with SPP.






3.3.2.3 Other components optimizing the network structure of the proposed model

(1) Activation function selection. The non-linear output of the activation function enables CNN to distinguish the types of features effectively. ReLu, as a representative of the activation function, is widely used in convolutional neural networks due to its simple and efficient processing method. Its mathematical expression is as follows

 

It is noted that ReLu itself is flawed, as shown in Figure 8. Although the processing mode that the output is set to zero whether the input variable x< 0 improves the calculation speed to a certain extent, it could lead to the failure to learn from some network features. When the backpropagation is carried out, the weights and bias function may not be updated, thus affecting the recognition accuracy of the model. In addition, the output of the ReLu is negative. It means that the saw-tooth problem caused by parameters and new directions occurs, which affects the training process.

In order to deal with the above problem, we introduce one of its variants, LeakyReLu (see Figure 9). Different from ReLu, a small negative gradient is employed in LeakyReLu. In this way, LeakyReLu solves the problem of gradient disappearance and keeps learning network features. Moreover, the small negative gradient gives the activation function the option of negative numbers. This degree of differentiation is very important for the training of the model. Some studies show that LeakyReLu could replace ReLu as an activation function, and its performance is better than ReLu (Hichri et al., 2019; Wei et al., 2019). Therefore, we take LeakyReLu as the activation function of the network, and its mathematical expression is as follows




Figure 9 | Activation function. (A) ReLu (B) LeakyRelu.



 

(2) DropOut and Batch Normalization. DropOut can solve the overfitting problem of GoogLeNet. It works by randomly discarding neurons with a certain probability. The probability value is usually set to 0.4 or 0.5, which is usually added to the last layers of the network. In forward propagation, every neuron disappears with a certain probability, which avoids the over-fitting of the model to a certain extent, thus improving the training speed. However, this method of discarding neurons with the standard probability is inconsistent with the response mechanism of the neural network, which has a negative impact on model training.

Batch normalization (BN) can accelerate deep network training by reducing internal covariate shift (Ioffe and Szegedy, 2015). When the data based on BN is used for the in-depth calculation in the network, the data distribution of each input is very stable, thus accelerating the convergence speed of the model. Hence the BN method is adopted in the improved model, which is introduced between each convolution and the activation function. In addition, since the mean and variance of each batch output are different, it brings random noise to the convolutional neural network, which has a regularization effect to a certain extent. BN has better performance than DropOut, which can be discarded (Garbin et al., 2020).

(3) Optimizer selection. The optimizer in CNN is mainly used to calculate the gradient in each round of training. It updates the parameters to minimize the loss. Therefore, it is essential to choose the right optimizer for the GoogLeNet-EL model. Commonly used optimizing approaches can be classified into three types in the optimizer: gradient descent algorithm, momentum algorithm, and adaptive learning rate optimization algorithm. In particular, stochastic gradient descent with momentum (SGDM) and Adam are two popular algorithms.

On the one hand, SGDM tends to generate better results in terms of fine-tuning parameters. However, the convergence speed is time-consuming when the gradient of SGDM is flat. Usually, SGDM can optimize the model to the extreme before the model goes live or the results are released. On the other hand, Adam has advantages for sparse data, and the convergence speed is fast. Adam combines the advantages of the momentum algorithm and the gradient L2 norm-based algorithm. It makes adaptive adjustments from the two angles of gradient mean and gradient square, such that the update of the gradient is not affected by gradient changes. In the experimental process of the model design, Adam can be used for rapid experimental optimization to verify the effect of the new model quickly. Many works using Adam as the optimizer of CNN have been proven to have good results (Bera and Shrivastava, 2020; Chang et al., 2020). Therefore, to improve the training speed of the GoogLeNet-EL, we choose Adam as the optimizer.







4 Experimental evaluation



4.1 Experimental platform and related hyperparameter settings

The experiments were carried out on a Windows desktop with a memory of 16GB, Intel(R) Core (TM) i7-9750H CPU @GHz, and NVIDIA GeForce GTX 1650. To avoid the impact of other parameters on the model performance test, we first trained GoogLeNet-EL at learning rates of 0.01, 0.001, and 0.0001. After 100 epochs, the final accuracies are 63.68%, 97.87%, and 94.72%, respectively. Thus, the learning rate of 0.001 is used uniformly in the follow-up test. Other related hyperparameters are set as follows: after 100 iterations, the accuracy and loss of model training are compared, and BatchSize is set to 220. The regularization coefficient L2 is set to 0.0001. Every 5 iterations are validated on the validation set, and a single GPU is used for training.




4.2 Performance metrics

The confusion matrix is used to evaluate the recognition performance of the model. The evaluation indexes include accuracy, recall, and F1 score. To further test the transplantation ability of the model in the real scene, average testing time is introduced to investigate the portability and applicability of different models. The relevant expressions are as follows

 

 

 



Where TP is the number of positive samples predicted as positive samples, FP is the number of negative samples predicted as positive samples, and FN is the number of positive samples predicted as negative samples.




4.3 Experimental goals

To evaluate the performance of the proposed model, we have conducted a series of experiments as follows:

Experiment 1: ablation study on Inception module. We carried out ablation experiments on different inception modules. Performance tests of models with Inception-V1, Inception-V3, and our improved Inception were compared, including the accuracy, loss, training time, and memory requirements.

Experiment 2: ablation study on different components optimizing network structure of the proposed model. We focused on how different components optimize network structure of the proposed GoogLeNet-EL model. Based on the structure of the proposed GoogLeNet-EL, we have performed separately ablation studies on spatial pyramid pooling, activation function selection, DropOut, batch normalization, and optimizer selection to validate the effectiveness of our improved model. Here, besides the improved Inception module, the GoogLeNet-EL structure is mainly composed of LeakyReLu function, batch normalization, spatial pyramid pooling, and Adam optimizer.

Experiment 3: comparison between the proposed method with the current advanced methods. To further verify the effectiveness of the proposed approach, a comparative experiment was carried out with the other state-of-the-arts, namely AlexNet, ResNet-50, and MobileNet-V2. Based on the transfer learning (Kaya et al., 2019; Yin et al., 2020; Zhuang et al., 2021), we have considered AlexNet, ResNet-50, and MobileNet-V2 for the comparative analysis. These models were trained and injected with the weights pre-trained in the training set. In particular, in the existing network structures of Alexnet, Resnet-50 and MobileNet-V2, the original parameter weights of the models were retained and applied to the identification of pepper diseases. We have unified the dataset 224×224 to match the input dimensions of the corresponding network. To guarantee a fair compassion, the parameter settings of all the networks were kept the same. The performance indicators like average testing accuracy, average testing time, and memory requirements were used to measure the performance of the models.

Experiment 4: the recognition effect of the proposed model in the actual scene. We collected different pepper leaf diseases as the test set for the model test. The images of six different leaf diseases are 171, 170, 171, 171, 165, and 170, respectively. The 1018 pepper leaf disease images in the test set were tested by GoogLeNet-EL, AlexNet, ResNet-50, and MobileNet-V2, respectively.




4.4 Results analysis and discussion

Experiment 1: Table 4 shows the experimental results of the performance indicators on the training set and validation set for the necessity test, including the accuracy, loss, training time and memory requirements. Figure 10 is a comparison graph of the training results of GoogLeNet-EL, Inception-V1, and Inception-V3.


Table 4 | Experimental results of different models test.






Figure 10 | A comparison graph of the training results of the GoogLeNet-EL, Inception-V1, and Inception-V3.



As shown in Table 4 and Figure 10, properly simplifying the original GoogLeNet architecture can reduce the memory requirements of model training. For instance, Table 4 shows that the memory requirement of GoogLeNet-EL is only 10.3MB, which has obvious advantages over Inception-V1 and V2 in the experiment. Due to model simplification, the calculation complexity of GoogLeNet-EL is reduced. The training time is only 644 seconds, which is significantly shorter than Inception-V1 and V2. As shown in Figure 10, in terms of the convergence of the accuracy curve and loss curve, within 100 iterations, the accuracy curve of GoogLeNet-EL does not fluctuate as much as that of Inception V1 and V3. Moreover, the loss curve of GoogLeNet-EL is closer to 0.

From the ablation experiment, we can observe that our improved Inception module has performed better than Inception V1 and Inception V3 regarding model size and recognition accuracy in Experiment 1. On one hand, on the basis of Inception V1, the idea of factorization of Inception V3 has been introduced to the proposed Inception module, the computational complexity has been reduced; on the other hand, the lightweight advantage of depth-wise separable convolution has been applied to the model, which can reduce the model size and improve the calculation speed without affecting the efficiency of feature extraction.

Experiment 2: Table 5 shows the ablation experimental results of different components optimizing network structure of the proposed model. Figure 11 is a comparison graph of the necessity test curve of the GoogLeNet-EL related improvement aspects. From the ablation experiments on four components of the model structure, we can observe the following results.

	a) In the ablation experiment of ReLu vs LeakyRelu, we have investigated the impact of the activation function on model training in the GoogLeNet-EL by using ReLu and LeakyRelu, respectively. Using LeakyRelu as the activation function in terms of image convergence, Figure 11 shows that the training accuracy curve of GoogLeNet-EL converges around 10 iterations and stabilizes at around 95%. In comparison, the training accuracy curve of ReLu as the activation function slowly converges around 15 iterations and stabilizes at around 90%. According to Table 5, through using LeakyRelu instead of ReLu, the accuracy and memory requirement of the model are improved by 1.01% and 0.3MB respectively. This indicates that it is effective to employ LeakyReLu as the activation function in the proposed model.

	b) In the ablation experiment of DropOut, we have investigated the impact of DropOut on our proposed model. The DropOut value is set to 0.4. After using DropOut in the batch normalization layer of GoogLeNet-EL, it is seen that the accuracy curve fluctuates greatly, and there is a convergence trend within 100 iterations in Figure 11. Moreover, as shown in Table 5, the accuracy of the network training is significantly decreased, and the training time is also increased. After removing DropOut in the batch normalization layer of GoogLeNet-EL, we can observe that the accuracy and memory requirement of the model are improved by 17.96% and 0.2MB respectively. It indicates that the component DropOut could be removed.

	c) In the ablation experiment of SPP, we have investigated the impact of SPP on our proposed model. As shown in Figure 11, after removing SPP, the training accuracy of 96.78% is lower than that of GoogLeNet-EL. The reason is that the loss of features of the target image is caused by the partially stretched image. It is proved that the introduction of SPP can bring a certain improvement to the progress of network training. In addition, SPP re-aggregates features of different dimensions into a uniform size, increasing training speed to a certain extent. It can be seen from the comparison of training time in Table 5.

	d) In the ablation experiment of SGDM vs Adam, we have investigated the impact of SGDM and Adam on our proposed model, respectively. On the one hand, we selected SGDM as the optimizer in the GoogLeNet-EL. It can be seen from Table 5 that the final loss value of SGDM after 100 iterations is 0.47, which is still at a relatively high level and is greatly influenced by the learning rate and other parameters. The training curve is shown in Figure 11. The accuracy curve is stable at 50 iterations by using SGDM. As the increase of iteration times, there is still an upward trend, but this upward trend is accompanied by an increase in training time and a great deal of fine-tuning work. On the other hand, we selected Adam as the optimizer in the GoogLeNet-EL. It can be seen that the Adam algorithm could speed up the model training and improve the convergence of model training. Therefore, it is suitable to choose Adam as the optimizer for the recognition of crop leaf diseases in our proposed model.




Table 5 | Experimental results of different components on model performance.






Figure 11 | A comparison graph of the necessity test of GoogLeNet-EL related improvement aspects.



In the ablation experiment, the GoogLeNet-EL structure, which is mainly composed of LeakyReLu function, batch normalization, spatial pyramid pooling, and Adam optimizer, has performed better to recognize pepper leaf disease. It can be explained from the following perspectives: (1) In terms of activation function, compared to ReLu, the convergence rate of LeakyRelu as an activation function is faster, and the accuracy, memory requirements and training time are improved, which proves that the use of LeakyReLu as an activation function is necessary.(2) In terms of BN layer, due to the random loss of some neurons by using DropOut, the training time is greatly improved compared with InceptionV1 and V3 and the model convergence speed is accelerated, unfortunately, the training accuracy is greatly decreased. Hence, DropOut was removed in our model.(3) As for SPP, after the removal of SPP from the improved model, due to the stretching and scaling of some images, the features of the target insect pest image were lost, and the training accuracy is 96.78%, which is lower than the proposed model. However, after the adoption of SPP, there is no need to carry out size unification operation on the original image, saving some unnecessary image preprocessing time. Thus, it can improve the accuracy of the proposed model. (4) As for optimizer, Adam optimizer has obvious advantages in terms of training accuracy and loss, and the convergence effect is obviously better than that of SGDM optimizer. Thus, Adam was used instead of SGDM in our model.

Experiment 3: Figure 12 shows the training accuracy and loss curve compared with other models. Table 6 shows the detailed data of the experimental result.




Figure 12 | Comparison of test results with other models.




Table 6 | Comparison of experimental data results with other models.



It can be seen from Figure 12 that the accuracy and loss curve of GoogLeNet-EL have significantly better convergence after 100 iterations, compared with AlexNet and ResNet-50. We can also observe that the validation accuracy of MobileNet-V2 and GoogLeNet-EL is the same. According to Table 6, we can observe that the proposed method has reached the accuracy of 97.87% and the memory requirement of 10.3MB. It is much better than what AlexNet, ResNet-50, and MobileNet-V2 could reach. In particular, the accuracy of GoogLeNet-EL is superior to that of MobileNet-V2. The memory requirement of GoogLeNet-EL is slightly inferior to the memory requirements of MobileNet-V2, but there is no significant difference between them. To summarize, it can be seen that the GoogLeNet-EL model has shown a competitive performance and obtained a superior result relative to the other state-of-the-arts. It indicates that the GoogLeNet-EL model has shown an excellent capability to recognize pepper leaf disease.

Experiment 4: Figure 13 shows the confusion matrix of different models on the test set obtained from the final test. There are great similarities among six different types of pepper leaf diseases, so there is a phenomenon of misjudgment. According to the performance evaluation results of different models shown in Table 7, the accuracy, recall, and F1 value of GoogLeNet-EL reach about 99%, which has obvious advantages over other networks. The average testing time is 19.33ms, which is 6.04ms faster than the lightweight network MobileNet-v2; it is conducive to the further deployment of the model.




Figure 13 | Confusion matrix for different models on test set. (a) Pepper scab, (b) Pepper powdery mildew, (c) Pepper anthracnose, (d) Pepper white spot disease, (e) Pepper blight, (f) Pepper botrytis cinerea. (A) GoogLeNet-EL, (B) AlexNet, (C) ResNet-50, (D) MobileNet-V2.




Table 7 | Test evaluation performance of different models on the test set.



In addition, due to the limited data set, a cross-validation was adopted to verify the accuracy of pepper disease recognition model. In the cross-validation experiment, the pepper disease data set was randomly divided into five equal portions, where any four equal parts were used for the training set and the remaining one equal portion was used for test set. Also, the stable performance of the model was investigated under 100 iterations, and the training and testing results of the model were recorded. Under five experimental tests, the training accuracy of the model is 97.36%±1.93% and the testing accuracy of the model is 97.18%±1.93%. It demonstrates that the model has perfect accuracy and can avoid the overfitting problem.

Despite the outstanding performance demonstrated in the task of pepper leaf disease detection, there are certain limitations for further research and improvement. It was noticed that the proposed model primarily focuses on the disease areas in pepper leaf images, given its primary task of disease detection. Practical applications of the model are crucial for farmers. To make the model practically applicable for farmers, it becomes crucial to ensure its compatibility with diverse hardware platforms and software environments. Future work will explore adapting the model for use on a mobile APP. Additionally, based on the detection results, farmers expressed a desire to receive decision-making strategies to guide pesticide spraying. Hence, after identifying pepper leaf diseases, there is a plan to conduct a quantitative analysis of severity to establish a pesticide spraying model.

Moreover, the current model is mainly used for pepper disease diagnosis. We will include more diseases and crops in our future works





5 Conclusion

This paper has designed a convolution neural network model (GoogLeNet-EL) with high accuracy and easy transplantation for pepper leaf disease identification. Through compressing the network depth and width of the Inception module, the memory requirement of the proposed model is greatly reduced by 52.31% and 86.69% by comparing with the GoogLeNet based on Inception-V1 and Inception-V3, respectively. Experiments show that the selected LeakyReLu activation function, batch normalization algorithm, and SGDM optimizer have the best effect on the GoogLeNet-EL model and the best model fitting effect. To improve the accuracy of the model, the introduction of spatial pyramid pooling can effectively enhance the feature learning ability of the model so that the recognition accuracy of the model is 97.87%, which is more than 6% higher than that of GoogLeNet. In the real scene, we compared the proposed model with the existing mainstream models such as AlexNet, ResNet-50, and MobileNet-V2. The results show that the average testing time of the proposed model decreases by 61.49%, 41.78%, and 23.81%, respectively. In addition, the accuracy, recall, and F1 value of the model are about 99%, significantly higher than those network models. It demonstrates that the enhanced lightweight model has significant advantages in recognition accuracy and computing performance of pepper leaf diseases on a limited computing platform, which is beneficial to the further deployment in pepper plant in large fields.
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Object detection has a wide range of applications in forestry pest control. However, forest pest detection faces the challenges of a lack of datasets and low accuracy of small target detection. DETR is an end-to-end object detection model based on the transformer, which has the advantages of simple structure and easy migration. However, the object query initialization of DETR is random, and random initialization will cause the model convergence to be slow and unstable. At the same time, the correlation between different network layers is not strong, resulting in DETR is not very ideal in small object training, optimization, and performance. In order to alleviate these problems, we propose Skip DETR, which improves the feature fusion between different network layers through skip connection and the introduction of spatial pyramid pooling layers so as to improve the detection results of small objects. We performed experiments on Forestry Pest Datasets, and the experimental results showed significant AP improvements in our method. When the value of IoU is 0.5, our method is 7.7% higher than the baseline and 6.1% higher than the detection result of small objects. Experimental results show that the application of skip connection and spatial pyramid pooling layer in the detection framework can effectively improve the effect of small-sample obiect detection.
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1 Introduction

Object detection is one of the more important branches in the field of computer vision Zaidi et al. (2022), and it has been widely used in agricultural pest detection, crop condition detection, crop yield prediction, and other fields. In recent years, with the vigorous development of deep convolutional neural networks, the accuracy and performance of object detection tasks have been greatly improved. The identification and detection of forest pests provide a strong guarantee for crop yield growth and the agricultural economy Ngugi et al. (2021). However, compared with tasks such as autonomous driving and intelligent monitoring, forestry pest detection still has the following challenges: (1) There are fewer publicly available datasets for forest pests; (2) The detection targets are mostly small targets Huang et al. (2022).

At present, there are few studies on forest pest detection, and forestry pest datasets are relatively lacking. Most of the proposed solutions rely on traditional CNN structures, such as ResNet, GoogleNet, VGG, etc. The root cause of this problem is the lack of a large enough dataset of forestry pests to train specific CNN structures Ngugi et al. (2021). These traditional architectures have high computational requirements for pest identification tasks and require high-resolution image features in processing small target images, which will bring high computational complexity. Therefore, Carion et al. (2020) proposed an end-to-end object detection model (DETR) based on Transformers and achieved competitive results. The main hurdle in forestry pest datasets is that the only large, freely available datasets are the PlantVillage dataset and the Plant Disease Symptom Image Database (PDDB). The recently published forestry pest dataset solves the above problems well. The dataset contains 7163 images and 31 species of forestry pests Liu et al. (2022a).

Current mainstream non-end-to-end object detection frameworks include one-stage and two-stage detectors. They may face a huge amount of computation, which can greatly improve model training time and performance Sun et al. (2021a). The DETR architecture Carion et al. (2020), as an end-to-end object detection framework, has a simple structure and does not require specialized libraries. This means faster setup of deployments or downstream tasks on other computers. At the same time, experiments show that DETR also has high performance when migrating to other tasks, such as panoramic segmentation.

However, DETR, a method that uses object queries matching, usually requires high costs when performing intensive detection. There are many ways to improve DETR, such as the way Deformable DETR uses Deformable’s structure and Multi-Scale Zhu et al. (2020). It greatly reduces the training cost of the model while improving the performance of the model. At the same time, due to the lack of image priori and multi-scale fusion mechanisms of DETR Liu et al. (2022b), although recent DETR-based models have achieved significant performance, DETR lacks multi-scale features compared to classical object detection models, which are critical for small object detection.

As a classical method to improve the structure of deep neural networks, skip connection He et al. (2016) has been applied in classical network structures such as U-Net, ResNet, and DenseNet, which plays a role in improving the accuracy of image segmentation and improving the utilization rate of feature information in each layer of the network. Therefore, this paper introduces skip connection and spatial pyramid pooling layers He et al. (2015) to enhance the extraction and fusion of image features by the model and enhance the model’s learning of small object objects. First, we link the backbone network output and encoder output with skip connection. Then, in the DETR decoder input, 100 randomly initialized object queries are included, but random initialization also makes image feature learning slow Chen et al. (2022). So we use a three-layer spatial pyramid pooling layer to transform the output of the backbone network into features of the same size as the object queries, and finally perform skip connection to improve the initialization process of the object queries.

With our improved method, we have improved the accuracy of small target detection. At the same time, compared with the initial DETR model, our model has achieved competitive results. On Forestry Pest Datasets, at IoU=0.5 and IoU=0.75, our method achieves an absolute gain of 7.7% AP and 6.0% AP on the DETR baseline. For small object detection results, our method achieves a gain of 6.1% AP over the DETR baseline.

The contribution of this work are summarized as follows:

	1) We propose a model called Skip DETR, which uses skip connection to enhance the extraction of features of small sample images by the DETR model.

	2) We introduce the spatial pyramid pooling layer, improve the object queries initialization method, and make the model converge faster.

	3) We conduct extensive experiments on forestry pest datasets. Experimental results show that the application of skip connection and spatial pyramid pooling layer in the detection framework can effectively improve the effect of small-sample object detection.






2 Related works

In this section, we will introduce the relevant solutions for insufficient multi-scale feature fusion and the research status of small target detection, identify and review existing forest pest datasets and related detection methods.



2.1 A solution to insufficient multi-scale feature fusion

The DETR architecture, as an end-to-end object detection framework, has a simple structure and does not require specialized libraries. However, the DETR model does not contain FPN, resulting in high computational complexity and insufficient feature fusion when processing high-resolution image features. However, DETR requires high-resolution image features when processing small target images, which brings high computational complexity. Therefore, it is not suitable to introduce FPN inside the DETR model, which ultimately leads to insufficient feature fusion. Without reintroducing multiscale feature fusion in the encoder, the accuracy of DETR cannot be further improved. Therefore, six Transformer encoder layers are included in the DETR encoder, which are stacked on top of the backbone network to improve the feature representation of its model.

At present, many improved models of DETR are trying to solve this problem. Deformable DETR combines DCN sparse sampling capabilities with transformer global relationship modeling capabilities by using the Deformable Attention module Zhu et al. (2020). Sun et al. (2021b) solved the cross-attention problem in DETR by proposing two schemes, TSP-FCOS and TSP-RCNN. The ViT-FRCNN model improves the structure of DETR by replacing the transformer with the backbone portion of FasterRCNN Beal et al. (2020). Since the introduction of FPN is not suitable inside DETR, the work in this paper is mainly to add skip connections and SPP networks outside DETR to enhance the fusion of its multi-scale features.




2.2 Public datasets of forest pests and pest object detection

The identification and detection of pests and diseases provide a strong guarantee for crop yield growth and agricultural economy in forestry pest control. Current forestry pest datasets can provide a wide variety of training samples for target detectors. Sun et al. (2018), as well as Hong et al. (2021), used pheromone traps to collect datasets that created forestry pests, but the datasets they created were only able to handle specific species of forestry pests. Chen et al. (2019) also created a dataset of forestry pests, but their main purpose was to study the classification of pests. Baidu has also published a dataset of forestry pests, but it was collected in a lab-built environment. Therefore, finding a public and suitable forestry pest dataset is difficult. However, the forestry pest dataset recently published by Liu et al. (2022a), which contains 31 pests and more than 7,000 images, lays a good foundation for the training of target detectors in this field.

Early pest and disease object detection was largely based on machine learning techniques. Le-Qing and Zhen (2012) tested 10 pests on a dataset of 579 samples using local average color features and SVMs.

Zhang et al. (2013) proposed a field pest identification system, and the dataset they used included about 270 training samples. Ebrahimi et al. (2017) used an SVM method with differential kernel functions for parasite classification and thrips detection. These early pest detection methods have yielded good results. However, their detection performance depends on the performance of the manual feature extractor and the chosen classifier.

With the development of image technology, convolutional neural networks have achieved obvious advantages in complex object detection, segmentation and classification by virtue of their strong image feature learning ability. Selvaraj et al. (2019) constructed an AI-based banana pest detection system based on deep convolutional neural network (DCNN). Liu and Wang (2020) constructed a tomato pest dataset and improved the YOLOV3 model to detect tomato pests and diseases based on this dataset. Zhu et al. (2021) improved the YOLOV3 model for the detection of black rot in grape leaves using super-resolution image enhancement.

In summary, although convolutional neural network (CNN)-based pest detection can improve the performance of pest detection, it has the advantage of avoiding the early limitations of the model. However, the fly in the ointment is that the vast majority of object detection architectures have manually designed components that have an impact on the performance of the model. Recently, the end-to-end object detection model (DETR) based on Transformers proposed by Carion et al. (2020) can avoid the above problems well and achieve competitive results.




2.3 Status of small target detection

Small target detection plays an important role in forestry pest detection, crop status detection, crop yield prediction and other scenarios Du et al. (2022). Small target detection has the characteristics of small coverage image area, few effective features for object detection, and commonly used object detectors are insensitive to small targets. At present, for small target detection, MR-CNN adopts multi-scale feature fusion Gidaris and Komodakis (2015), ContextNet uses context information to improve R-CNN Han et al. (2020), JCS-Net adopts image super-resolution and other methods Pang et al. (2019), which has been improved in the detection results of small targets.

However, most studies did not work on forest pest datasets, and there are still some gaps in the detection of small targets in the field of forest pest identification.





3 Framework of Skip DETR model

In this section, we will introduce the model structure of Skip DETR and elaborate on the structure of the improved components and how they provide gain to the model.



3.1 The structure of Skip DETR

Skip DETR is an improved end-to-end object detection framework based on DETR, which mainly includes three parts: backbone, transformer-based encoder-decoder structure, and sequence prediction architecture. At the same time, we add a spatial pyramid pooling layer and a deep separable convolutional layer outside the DETR model, and enhance the fusion of contextual feature information through skip connections.

When the image is input to the model, it will first be processed by the CNN to obtain the feature matrix of the current image. Then the feature matrix will be straightened and added to the position encoding, and passed into the encoder to learn the global information of the image, and the straightened feature matrix will be further extracted by deep separable convolutional layers. The results of the subsequent deep separable convolutional layer processing will be residually connected to the Encoder output on the one hand, and a three-layer spatial pyramid pooling layer and connected to the object query as the input of the Decoder on the other hand. Finally, it is decoded by Decoder and passed to FFN for image prediction. We will show the structure of our Skip DETR in Figure 1.




Figure 1 | The structure of Skip DETR. Our work is mainly carried out outside the DETR model. We introduce a deep separable convolutional layer and a spatial pyramid pooling layer, and skip connection with the encoder output and object queries.






3.2 Applying skip connections between different layers of DETR

The basic idea of skip connection is to express the output as a linear superposition of a nonlinear transformation of the input and output He et al. (2016). After the skip connection, the amount of information describing the characteristics of the image increases, but the feature dimension describing the image does not change. Because the amount of information increases in each dimension, it is beneficial for the final image prediction.

When we use a non-linear change function to describe the input and output of a network, that is, the input is x and the output is F(x), F usually includes operations such as convolution and activation. When we add an input to the output of a function, although we can still use G(x) to describe the relationship between input and output, G(x) can be explicitly split into linear overlays of F(x) and X.

Srivastava et al. (2015) proposed the residual structure for the first time, which is derived from the control gate idea of LSTM. The initial residual formula is shown in formula 1.



However, because Formula 1 is too complex, He et al. (2016) simplified the formula, which is shown in formula 2.



Inspired by the residual structure, this paper applies the residual structure to the DETR network. On the one hand, we link the backbone network output with the encoder output to enhance the learning of small objects by fusing image features. In order to reduce the number of model parameters and operation costs,

we introduce a depthwise separable convolutional layer after the output of the backbone network. We set the convolution kernel size to 1, the stride to 1, the depthwise part group to 256, and the pointwise part group to 1. We will show the structure of this part of the component in Figure 2.




Figure 2 | Depthwise Separable Convolution and residual structure diagram. Depthwise Separable Convolution is divided into two parts: Depthwise Convolution and Pointwise Convolution. We set the relevant parameters according to the input image features. It is worth noting that the convolution kernel size of both parts is 1×1.



On the other hand, the decoder input of DETR contains 100 randomly initialized object queries, but random initialization also makes the model converge slowly. So we want to link the backbone network output with the object query to speed up the convergence of the model by improving the initialization of the object query. However, since the backbone network output feature map size is variable, it is not possible to unify the output feature map size using a common convolution layer. This paper solves this problem by introducing a spatial pyramid pooling layer, which will be described in the next section.




3.3 Add a spatial pyramid pooling layer

The essence of the pooling layer of the spatial pyramid is the multi-layer maximum pooling layer, which generates a fixed-size output for feature maps (n × n) of different sizes (α × α). The spatial pyramid pooling layer automatically adjusts the size of the sliding window win and the step size str according to different input sizes, using Equation 3 and Equation 4. In this paper, the output results of deeply separable convolutional layers are processed by spatial pyramid pooling layers and residually connected with object queries in the DETR model. This component changes the initial state of the object queries, providing the model with a priori information that can learn the key features of the image, thereby shortening the convergence process of the model. We will show the structure of this component in Figure 3.




Figure 3 | Spatial pyramid pooling layer structure diagram. We design a three-layer spatial pyramid pooling layer, decompose the feature map into 2×2, 4×4, 8×8 sizes, and at the same time stitch the output of the second layer twice when unfolding and stitching. Finally, we connect the output with the object queries.







Many CNN models have certain requirements on the size of the input image Long et al. (2015), but the feature extraction network (such as convolution layer, activation function layer, pooling layer) part of the model head has no requirements on the input image, which can be simply understood as the feature extraction network knowledge reduces the image by a fixed multiple. However, the full connection layer at the end of the model has strict requirements on the input dimension. Therefore, limiting the image size of the input CNN model is to meet the requirements of the full connection layer.

In the decoder input of the DETR, 100 randomly initialized object queries are included, and the size of each object query is 100 × 256. However, the size of the feature map output by the backbone network cannot be guaranteed to be the same as the size of object query. Therefore, we first pass the output of the backbone network through a Depthwise Separable Convolutional layer (the convolutional layer is described in Section 3.1), and then pass through a three-layer spatial pyramid pooling layer, so that the final output can meet the skip connection condition with the object query.

In the process of using the pooling layer of the spatial pyramid, we also hope to integrate the outputs of different pooling layers. Therefore, we integrate the output of the second pooling layer with the output of the third pooling layer, hoping to further enhance the model’s ability to extract features.





4 Experiment

We show that in the quantitative assessment of Forestry Pest Datasets, our improved DETR has achieved competitive results compared with the baseline of the DETR. Then we carried out a detailed ablation study and gave qualitative results.



4.1 Parameters of model training

The experiments used in this paper is Python 3.9, Torch 1.11, CUDA 11.4. Other hardware information used in the experiment is shown in Table 1. The main parameters of the Skip DETR model are shown in Table 2. DETR requires about 500 epochs on the COCO dataset to converge, considering the detection accuracy and training time on the Forestry Pest dataset, we choose 300 epochs. At the same time, in order to ensure the consistency of the training cycle of the control experiment, we designed the same epoch for other experiments. If there is no special declaration, all other parameters are consistent with the DETR.


Table 1 | Configuration of experimental environment.




Table 2 | Model parameter settings of Skip DETR.






4.2 Dataset

At present, there are many datasets related to the Forestry Pest identification task (such as Hong et al. (2021); Chen et al. (2019); Sun et al. (2018)), but they have problems such as few pest species, being unable to apply to the actual scene, and the data set is not open to the public. However, the recently published Forestry Pest dataset has solved the above problems well Liu et al. (2022a). The dataset contains 7163 images and 31 forest pests. The dataset is derived from Liu et al. (2022a), and the types and quantities of forest pests in the dataset are shown in Table 3.


Table 3 | Details of the types and quantities of forest pests in the dataset.



Therefore, we use the dataset of Liu et al. (2022a) for training. In order to ensure the training results, the Forestry Pest dataset is randomly divided according to the following proportion: (Train: Val=9:1): Test=9:1. That is, 5801 training images, 645 verification images and 717 test images for target detection tasks are included after division.




4.3 Evaluation metrics

In this paper, we use mAP and AR as experimental evaluation indicators, which are widely used in the field of object detection. We will give the calculation method of mAP and AR.







where TP for positive samples is predicted as positive class, FP is negative samples are predicted as positive class, and FN is positive samples are predicted as negative class. AP is the average accuracy, which is simply the average of the Precision value on the PR curve, and mAPα represents the AP measurement at different IoU thresholds.

In the COCO dataset, objects with a pixel area less than 32 × 32 are regarded as small objects, pixel faces and objects larger than 96 × 96 are regarded as large objects, and pixel faces and objects between 32 × 32 and 96 × 96 are regarded as medium objects.




4.4 Experimental results

Skip DETR is an improvement based on the DETR model and is mainly designed for small target detection.

We try to improve the performance improvement of DETR on small target detection with our method. The average accuracy of the Skip DETR model at different IoU Rezatofighi et al. (2019) thresholds, the results are shown in Table 4.


Table 4 | The average accuracy of the Skip DETR model at different IoU thresholds.



From the experimental results in Table 4, it can be seen that after training with 300 epochs, the Skip DETR model has better accuracy than the DETR model on the forest pest dataset. When IoU=0.5, The 200th epoch result of Skip DETR is even higher than the 300th epoch result of the DETR model. At the same time, the results on other evaluation indicators are also due to the DETR model. This shows that the improvement method we use helps to improve the accuracy of the model.

Another drawback of DETR is its poor performance in detecting small objects. To verify whether our model helps improve the accuracy of small object detection, we compare the detection accuracy of Skip DETR and DETR at different scales. The results are shown in Table 5.


Table 5 | The detection accuracy of Skip DETR and DETR at different scales.



As can be seen from the results in Table 4, our model is a significant improvement in the detection of small objects. After 300 epochs, compared with DETR, the accuracy of skip DETR in small object detection is improved by 6.1% AP, the medium object detection accuracy is improved by 11.3% AP, and the detection accuracy of large objects is improved by 8.8% AP.

Recall is often used to assess detector coverage of all objects to be inspected Buckland and Gey (1994).Therefore, we compared the recall of Skip DETR and DETR at different training stages and scales in Table 6. We selected 100 subjects to test the average recall, and the final result showed that Skip DETR can predict positive samples more accurately.


Table 6 | The recall of Skip DETR and DETR at different training stages and scales.



Our improved DETR model has obtained good results, especially greatly improved APS, APMand APL.

Finally, we used the original DETR model and the improved DETR model to measure GFLOPS Goldberg (1991) and params. Through experiments we find that the improvement method proposed in this paper is completely negligible in terms of consumption of computing resources.

During model training, training loss Ru et al. (2020), box loss, and classification error rate Kim (2009) are common metrics to measure model performance. In Figure 4 we show the comparison results of the Skip DETR and DETR models on the above evaluation indicators. From Figure 4, it can be seen that the loss error of Skip DETR in the initial training phase is lower than that of the DETR model. As training progresses, Skip DETR’s loss and classification error rate decreases faster than DETR. This indicates the effectiveness of adding skip connection and spatial pyramid pooling layers. In addition, the training process of Skip DETR is smoother, which is easier to train than the DETR model.




Figure 4 | Comparison of common model evaluation indicators. (A) Training loss comparison; (B) Box loss comparison; (C) Class error comparison.



Furthermore, in Table 7, we compare our Skip DETR with several different object detection models on Forestry Pest Datasets. We report the detection results of each model at different IoU thresholds and scales. For fair comparison, we used the same model parameters and trained the same epochs. We show that Skip DETR outperforms DETR and achieves competitive results compared with other object detection models and improved models based on DETR.


Table 7 | Ablation study for each part of the contribution to DETR.






4.5 Ablation experiments

In this section, we conducted several ablation experiments to help us understand the contribution of each improved method to the final performance. As shown in Table 8, both improvement methods improve the performance of DETR.


Table 8 | Ablation study for each part of the contribution to DETR.



It is worth noting that we first introduced the spatial pyramid pooling layer on the basis of DETR, and we found that although it provides performance improvement for DETR in the recognition of small objects, it will reduce the performance of other indicators. Therefore, we introduced the skip connection on the basis of the first improvement, and experimented with the skip connection and the spatial pyramid pooling layer as a whole module, and finally obtained the performance improvement on all indicators while the number of model parameters remained basically unchanged.

In general, in the field of forestry pest detection and small target detection, Skip DETR adds skip connections and spatial pyramid pooling layer so that our model can make full use of the image information in the feature map at various scales, and making the model more sensitive to small targets. At the same time, the spatial pyramid pooling layer can change the initialization mode of object queries, making the convergence of Skip DETR models faster and easier to train. Without changing the number of model parameters too much, Skip DETR has achieved competitive results on multiple evaluation indicators. And compared to several other different object detection models, Skip DETR also achieves better results.





5 Conclusion

In this work, we propose a model called Skip DETR, which uses skip connection to enhance the extraction of image features from small samples by the DETR model. At the same time, we introduce the spatial pyramid pooling layer, improve the object query initialization method, and make the model converge faster. Finally, we conduct extensive experiments on forestry pest datasets. Experimental results show that the application of skip connection and spatial pyramid pooling layer in the detection framework can effectively improve the effect of small-sample object detection.

Although Skip DETR achieved good results, our study still faced the problem of small data pools. At the same time, in order to improve the detection accuracy, we will continue to improve the Skip DETR model.
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Plant potassium content (PKC) is a crucial indicator of crop potassium nutrient status and is vital in making informed fertilization decisions in the field. This study aims to enhance the accuracy of PKC estimation during key potato growth stages by using vegetation indices (VIs) and spatial structure features derived from UAV-based multispectral sensors. Specifically, the fraction of vegetation coverage (FVC), gray-level co-occurrence matrix texture, and multispectral VIs were extracted from multispectral images acquired at the potato tuber formation, tuber growth, and starch accumulation stages. Linear regression and stepwise multiple linear regression analyses were conducted to investigate how VIs, both individually and in combination with spatial structure features, affect potato PKC estimation. The findings lead to the following conclusions: (1) Estimating potato PKC using multispectral VIs is feasible but necessitates further enhancements in accuracy. (2) Augmenting VIs with either the FVC or texture features makes potato PKC estimation more accurate than when using single VIs. (3) Finally, integrating VIs with both the FVC and texture features improves the accuracy of potato PKC estimation, resulting in notable R2 values of 0.63, 0.84, and 0.80 for the three fertility periods, respectively, with corresponding root mean square errors of 0.44%, 0.29%, and 0.25%. Overall, these results highlight the potential of integrating canopy spectral information and spatial-structure information obtained from multispectral sensors mounted on unmanned aerial vehicles for monitoring crop growth and assessing potassium nutrient status. These findings thus have significant implications for agricultural management.
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1 Introduction

Potatoes are a significant crop with versatile uses as both a food and a vegetable. Renowned for their cold resistance, hardiness, and adaptability to various soil conditions, potatoes are extensively cultivated in China (Lu, 2015). Potatoes are a potassium-demanding crop, and the potassium content in potatoes directly influences photosynthesis efficiency and the synthesis and transport of photosynthetic products, ultimately impacting tuber development and quality (He et al., 2014; Zhang et al., 2021). Potassium deficiency in potatoes is associated with stunted plant growth, small and prematurely withering leaves, diminished photosynthetic capacity, reduced tuber size, poor quality, and low yields (Li, 2019). Conversely, excessive potassium levels can also disrupt the normal development of potatoes (Hou et al., 2013). Therefore, the efficient and accurate estimation of plant potassium content (PKC) in potatoes is of paramount importance for monitoring their growth and development and for making informed fertilizer decisions in the field. Conventional approaches for assessing PKC entail destructive sampling in the field followed by laboratory chemical analysis. However, these methods are time-consuming, labor-intensive, prone to lagging results, and reliant on the representativeness of the samples. Consequently, they primarily apply to small-scale farming plots and are challenging to extrapolate to larger areas. In contrast, remote-sensing systems exploit various sensors to capture crop canopy reflectance information from a distance, enabling non-destructive monitoring of crop growth (Battude et al., 2016; Xu et al., 2019). Valuable insights regarding crop health and nutritional status can be extracted by analyzing and processing the acquired canopy reflectance information.

Remote-sensing platforms, including ground-based hyperspectral sensors, satellite platforms, and unmanned aerial vehicles (UAVs), play a critical role in estimating crop PKC. Ground-based hyperspectral sensors are limited for providing large-scale crop-growth images and offer a limited monitoring range. Moreover, the detrimental impact on crops and the substantial consumption of human and material resources associated with this data-acquisition method hinder its application in monitoring the physical and chemical parameters of crops (Jimenez-Sierra et al., 2020). Conversely, satellite-based remote-sensing platforms face challenges in providing crop canopy images with adequate temporal and spatial resolution due to constraints, such as weather conditions (e.g., clouds, fog, and water vapor), specific revisit cycles, and large detection areas. As a result, satellite remote-sensing technology cannot satisfy the demand for real-time growth monitoring of field crops and high-accuracy estimation of crop phenotypes (He et al., 2021). In recent years, the UAV remote-sensing platform has emerged as a promising tool, boasting exceptional mobility and spatial resolution to deliver extensive, high-frequency, and precise field growth information. UAV remote-sensing technology has found widespread application in crop growth monitoring, disease surveillance, and yield estimation, offering valuable scientific and technical support for field decision management (Tao et al., 2019; Jiang et al., 2021; Lu et al., 2023).

Remote-sensing platforms based on UAVs can carry hyperspectral, multispectral, and RGB sensors (Yuan et al., 2017; Jin et al., 2018). Several studies have demonstrated the potential of UAV-based remote sensing platforms for monitoring the potassium nutrient status of crops. For instance, Lu et al. (Lu et al., 2021) developed a partial least squares model using UAV hyperspectral reflectance to estimate potassium accumulation in rice plants. Thomson et al. (Thomson et al., 2018) estimated the potassium content of forest leaves by using a partial least-squares regression model based on UAV hyperspectral reflectance. Similarly, Severtson et al. (Severtson et al., 2016) identified potassium-deficient oilseed rape using UAV-acquired multispectral and hyperspectral reflectance. Lu et al. (Lu et al., 2020) further enhanced estimation accuracy by introducing dual- and triple-band spectral indices derived from UAV hyperspectral reflectance for estimating potassium content in rice leaves. Although hyperspectral sensors provide richer spectral information, their application in agricultural production is limited by their high cost and complex data processing. Although multispectral bands are not as numerous as hyperspectral sensors, multispectral sensors contain Red and near-infraRed bands that are sensitive to vegetation, and in addition, multispectral sensors are less expensive compared to hyperspectral sensors, making them widely used in precision agriculture. Moreover, previous studies primarily relied on spectral information and vegetation indices (VIs) to estimate crop potassium content, which can be hindered by saturation in areas with dense crop canopies and the limited ability of canopy spectra to capture lower-organ information in vertically growing crops. Consequently, using canopy spectral information alone often results in inaccurate estimates of the potassium nutrient status of crops during the late stages of growth. To accurately monitor crop physicochemical parameters at single or multiple fertility stages, spectral information combined with textural details and morphological parameters such as percent cover (FVC) has been proposed to estimate crop physicochemical parameters. The FVC reflects the nutrient status of crop growth conditions to some extent and has been associated with nitrogen nutrient status in wheat, maize, rice, and potatoes (Ren, 2012; Chu, 2013; Shi et al., 2020; Fu et al., 2021; Fan et al., 2022). However, no study has yet demonstrated that morphological parameters are suitable for monitoring crop potassium nutrient status.

Texture analysis, which quantifies pixel variations within an analysis window through a grayscale distribution, has been widely used for nitrogen and biomass estimation. Combining texture information with spectral information has shown promise for significantly improving the accuracy of estimating rice canopy nitrogen content (Zheng et al., 2020). Similarly, Wang et al. (Wang et al., 2022) increased the accuracy of estimating rice aboveground biomass by incorporating canopy reflectance and UAV RGB image texture features into regression models. Additionally, Liu et al. (Liu et al., 2022a) estimated the aboveground biomass of potatoes by integrating canopy reflectance, texture information, and potato plant height derived from UAV RGB images using multiple stepwise regression and extreme machine-learning modeling. Potato growth and development differ from that of wheat, maize, and rice, with vigorous growth of stems and leaves in the early stages, followed by the transfer underground of aboveground dry matter during the late growth stages when aboveground foliage begins to deteriorate. Thus, combining VIs and the FVC, which reflect crop growth conditions, becomes crucial for estimating PKC and provides novel insights (Yue et al., 2019; Yue et al., 2021). Therefore, this study explores the performance of multispectral VIs and combinations thereof with spatial structure features for estimating potato PKC. Linear regression and stepwise multiple linear regression (SMLR) models were developed using spectral features extracted from multispectral images, FVC, and texture features. This research thus strives to develop a method for monitoring the potassium nutrient status of crops by using multispectral sensors and thereby to offer valuable insights into crop management and fertilization.

The present study has the following research objectives: (1) to assess the capacity of multispectral VIs for estimating potato PKC, (2) to examine the potential enhancement in accuracy for estimating potato PKC by integrating multispectral VIs with FVC and texture features based on the gray-level co-occurrence matrix (GLCM), and (3) to determine the optimal combination of image features to accurately estimate potato PKC. These objectives are crucial for advancing our understanding of the relationship between multispectral VIs and potato PKC estimation. Furthermore, investigating the potential synergy of combining multispectral VIs with FVC and texture features can provide valuable insights into improving the accuracy of PKC estimates. Ultimately, identifying the most effective combination of image features will contribute to developing robust and precise methods for monitoring and managing the potassium nutrient status of potato crops.




2 Materials and methods



2.1 Experimental design

The field experiment was conducted in 2019 at the National Precision Agriculture Research and Demonstration Base situated in Xiaotangshan Town, Changping District, Beijing, China. The study site is characterized by an average altitude of 36 m and a warm temperate continental semi-humid and semi-arid monsoon climate, exhibiting simultaneous rainfall and high temperatures during the same season. Potato seed tubers were sown on 28 March 2019 and harvested on 9 July 2019. Two early-maturing potato varieties, Zhongshu 5 (Z1) and Zhongshu 3 (Z2), were selected as the subjects of this study. The experiment comprised three distinct experimental zones: dense (P zone), nitrogen fertilizer (N zone), and potassium fertilizer (K zone), with each zone having three replications, as depicted in Figure 1. The experiment involved a total of 48 plots, each measuring 5 m × 6.5 m. Within the P zone, three different planting density levels were implemented: T1 (60 000 plants/hm2), T2 (72 000 plants/hm2), and T3 (84 000 plants/hm2). The N zone used four nitrogen fertilizer levels: N0 (0 kg/hm2), N1 (244.65 kg/hm2), N2 (489.15 kg/hm2), and N3 (733.5 kg/hm2). Two types of potash fertilizers were used in Area K: K0 (0 kg/hm2) and K2 (1941 kg/hm2). Notably, the planting density and nitrogen-test areas were consistently treated with the K1 level of potash fertilizer, both N and K plots were treated under T1 density. This comprehensive and meticulously designed experimental setup allows the study to investigate how planting density, nitrogen fertilizer level, and potash fertilizer level affect the PKC of the potato plants. Incorporating multiple treatments and replications ensures that robust and reliable data are generated, facilitating subsequent modeling and analysis.




Figure 1 | Schematic diagram of the location of the field.






2.2 Acquisition and preprocessing of UAV multispectral images

UAV flight operations were conducted on April 20, May 28, June 10, and June 20, 2019, to obtain digital images. To mitigate the influence of uneven illumination on crop canopy reflectance, this experiment meticulously selected clear and cloudless weather conditions during the crucial stages of potato tuber formation stage (S1), tuber growth stage (S2), and starch accumulation stage (S3). Multispectral images were acquired between 12:00 and 14:00, when the ambient light intensity is stable. Prior to the flight, the spectral reflectance calibration plate associated with the multispectral sensor was used to calibrate the brightness of individual elements within the multispectral images, ensuring accurate radiometric calibration. This study used an eight-rotor UAV equipped with a Parrot Sequoia 4-channel multispectral camera. The Parrot Sequoia camera comprises a light sensor and a multispectral sensor, enabling the acquisition of one high-resolution 16-megapixel RGB image along with four 1.2-megapixel single-band images. The UAV was operated at a flight altitude of 20 m, and both the heading overlap and side overlap were set at 80% to ensure comprehensive coverage and minimize information gaps. Table 1 presents the built-in waveband parameters of the multispectral camera used in this study, facilitating the capture of specific spectral information relevant to the analysis of potato growth and potassium nutrient status. The rigorous control of environmental conditions and the use of a well-calibrated multispectral camera mounted on the UAV allow high-quality data to be collected, thereby ensuring the accuracy and reliability of subsequent image analysis and extracted information.


Table 1 | Parametrization of multispectral sensor.



After the acquisition of UAV data and multispectral images during each reproductive period, a series of preprocessing steps were undertaken. Initially, the multispectral images obtained from the UAV were carefully screened to eliminate images with abnormal attitudes or imaging issues. The remaining high-quality multispectral images were then imported into the DJI SmartMap software, where single-band and band-combination images were generated and saved in the TIF format. Next, by using the ArcGIS software, the experimental plots were delineated and numbered based on the predefined divisions. This spatial referencing enables accurate association of the multispectral data with specific plot locations. Subsequently, the average spectral reflectance for each plot was computed for each band using ENVI5.3 software. This process involved analyzing the multispectral data for each plot and calculating the corresponding spectral reflectance across the relevant bands. Additionally, VIs were derived from the spectral reflectance data, contributing to further analysis and interpretation of the crop’s physiological state. These steps eliminated data inconsistencies and facilitated the extraction of meaningful information from the multispectral images, enabling subsequent analysis and interpretation of the potato crop’s growth and potassium nutrient status.




2.3 Acquisition of ground data

Once the UAV data were collected, meticulous ground-data collection complemented the remote sensing observations. The primary focus of the ground data was to determine the potato PKC through a combined approach involving field sampling and laboratory chemical analysis. Within each experimental plot, three representative plants were carefully chosen during key developmental stages: potato tuber formation, tuber growth, and starch accumulation, following which the selected plants were collected and transported to the laboratory for further analysis. The collected plants underwent meticulous processing in the laboratory, including separating stems and leaves and thoroughly rinsing them with water. The plants were subsequently heated in a 105°C oven for 30 minutes. The temperature was then adjusted to 80°C, and the plants were dried for a minimum of 48 hours until a constant mass was achieved. Once the mass reached a steady state, the plants were weighed to determine the dry weight of each organ. Advanced laboratory techniques were employed to measure each organ’s potassium content, notably an inductively coupled plasma emission spectrometer (iCAP6300). This state-of-the-art instrument allowed for precise quantification of potassium levels in the plant samples. Finally, the PKC was calculated using

 

where CLK is the leaf potassium content (%), CSK is the aboveground stem potassium content (%), MLD is the leaf dry weight (g), and MSD is the aboveground stem dry weight (g).

Combining meticulous field sampling and precise laboratory analyses, this comprehensive ground data collection process allows for accurate estimation and understanding of the potato crop’s potassium nutrient status. It provides essential validation and calibration data for the UAV-based remote-sensing observations, thereby enhancing the reliability and accuracy of the study.




2.4 Extraction of image features



2.4.1 Selection of spectral index

To construct a robust estimation model for potato PKC, nine multispectral VIs were carefully selected for each fertility period. These VIs were chosen based on an extensive analysis of previous research findings and their proven efficacy in monitoring crop potassium nutrient status, they were correlated with potato PKC at a 0.01 significant correlation level. The selected VIs, along with their respective definitions and formulas, are presented in Table 2.


Table 2 | Vegetation indices used in this study.






2.4.2 Extraction of spatial structure features

In this study, two spatial structure features, namely, FVC and the GLCM-based texture features, were used to characterize the spatial patterns of the potato crop. These features were derived from the UAV-acquired multispectral images and were crucial in assessing the potato’s growth stages (Li et al., 2004). To extract the FVC, the multispectral images corresponding to each fertility stage were processed using image element dichotomy. Initially, the normalized difference Vegetation Index (NDVI) was computed for each fertility stage by employing ENVI 5.3 software. The NDVI values were then quantified, and subsequently, the FVC was calculated according to Equation 2, as shown below:

 

Where NDVISoil and NDVIVeg represent NDVI values with a cumulative percentage of 5% and 95%, respectively.

Texture Feature Extraction: In this study comprehensive set of eight texture features derived from the GLCM was extracted from the multispectral images. These features, namely contrast (CON), second-order moments (SEC), variance (VAR), mean (MEA), correlation (COR), dissimilarity (DIS), homogeneity (HOM), and entropy (ENT), provide valuable insights into the spatial arrangement and variation of pixel intensities within the potato crop (Roujean and Breon, 1995). To obtain the texture features, GLCM calculations were performed in four directions (0°, 45°, 90°, and 135°) using a 3×3 window size for each spectral band. Each texture feature was computed individually from the GLCM matrices, capturing different aspects of the spatial patterns in the multispectral images. Furthermore, two spectral indices, namely the NDVI and the differential vegetation index (DVI), were used in this study. The NDVI is less affected by canopy spectral properties and directional effects, whereas the background signal is less affected by the DVI. Combining the advantages of both indices, the renormalized differential vegetation index (RDVI) has been widely used for estimating various physicochemical parameters of crops (Roujean and Breon, 1995; He et al., 2019). To enhance the performance of texture features for estimating potato PKC, the texture features were combined based on the RDVI. This integration allows us to leverage the benefits of RDVI and optimize the texture features’ predictive capability for accurately estimating the PKC. The RDTI is given as:Red

 

where T1 and T2 stand for the extracted randomized texture features for each fertility period from the multispectral images in the r, g, b, Red, and Nir bands.





2.5 Model building and validation

A total of 48 datasets were acquired at different stages of potato development, including the potato tuber formation, tuber growth, and starch accumulation stages. From these datasets, 32 were selected from replicates 1 and 3 for model development, and the remaining 16 datasets from replicate 2 were reserved for independent validation, ensuring the reliability and robustness of the experimental findings. A linear regression analysis determined the relationship between multispectral VIs and potato PKC. The SMLR model was also applied to investigate the potential enhancement in PKC estimation accuracy by integrating multispectral VIs with the RDTI and FVC. To evaluate the performance of the models, the coefficient of determination (R2) and the root mean square error (RMSE) were used as indicators of model stability and accuracy. R2 represents the fraction of the variance in potato PKC that the model can explain, and the RMSE measures the average deviation between the predicted and actual PKC. These evaluation metrics allow for a comprehensive assessment of the model’s performance, ensuring the validity and precision of the estimated potato PKC.





3 Results



3.1 Potassium nutrient variations and correlation analysis of potatoes under different experimental treatments

As shown in Figure 2, for all experimental treatments, potato PKC decreases first and then increases with the reproductive stage, while the highest PKC content was found in all other treatments during tuber formation and continued to decline until starch accumulation, where the lowest PKC was found during tuber growth.




Figure 2 | PKC as a function of growth period for potatoes under different experimental treatments.



Note: S1, S2, and S3 are the tuber formation stage, tuber growth stage, and starch accumulation periods stage, respectively; the same below.

Table 3 shows the results of the GLCM-based correlation analysis of texture features extracted in different directions with potato PKC. The absolute value of the correlation coefficient during the tuber formation period was 0.81 for Green_Cor in the 90° direction. The absolute values of the correlation coefficients at 0°, 45°, and 135° do not differ significantly from those at 90° at the same significance level of 0.80, 0.79, and 0.74, respectively. The largest absolute value of the correlation coefficient for the tuber growth stage was Nir_Var, with equal magnitude in all four directions, at 0.82. The largest absolute value of the correlation coefficient for the starch accumulation stage is Green_MEAN, with an equal magnitude of 0.80 in all four directions. The best-performing textural characteristics in the three reproductive stages do not differ significantly from those of potato PKC. Thus, the different orientations of the three fertility periods negligibly affect the Mean and Var texture traits in the Green, Red, Reg, and Nir bands.


Table 3 | Correlation analysis between GLCM texture and potato PKC in different directions.



The multispectral VIs and the RDTI composed of texture features based on GLCM with different orientations were correlated with potato PKC at each fertility stage of potato growth, and the results are shown in Figure 3. The correlation between the VIs constructed from the original band reflectance and PKC reach a significant 0.01 correlation level in all three growth stages, with the absolute values of correlation ranging from 0.46 to 0.78, respectively, with the GNDVI being the highest. As shown in Figure 3B, the correlation between the RDTI and potato PKC based on texture features of different orientations of GLCM does not vary significantly, and the correlation with multispectral VIS is comparable, indicating that the RDTI based on texture features of different orientations of GLCM is feasible for estimating potato PKC.




Figure 3 | Correlation analysis: (A) is the correlation between multispectral VIs and potato PKC, and (B) is the correlation between RDTI and potato PKC composed of texture features based on different orientations of GLCM.






3.2 Multispectral VIs for estimating potato PKC

In this study, based on multispectral images to extract the canopy reflectance of potatoes at three reproductive stages, nine VIs were calculated and linear regression modeling was used to estimate potato PKC. Table 4 shows the estimated results. The R2 range is 0.40–0.56 and the RMSE range is 0.47%–0.56% for tuber formation, 0.56–0.68 and 0.43%–0.50% for tuber growth, and 0.42–0.51 and 0.40%–0.42% for starch accumulation, respectively. The scatter plots of actual and predicted potato PKC values modeled by GNDVI have R2 = 0.56, 0.68, and 0.51 and the RMSEs are 0.47%, 0.43%, and 0.40%, respectively. R2 is greater than 0.50, indicating that GNDVI could reflect the potato PKC status to some extent. GNDVI estimation potato PKC modeling and validation results are shown in Figure 4. Each VI model estimates potato PKC with the highest R2 at the tuber growth stage.




Figure 4 | Predicted PKC plotted versus measured PKC to show effect of GNDVI modeling and verification.




Table 4 | Multispectral VIS modeling estimation of potato PKC in three growth stages.






3.3 Multispectral VIs combined with spatial structure features to estimate potato PKC

To test whether the multispectral VIs fusing the spatial structure features of multispectral images can improve the accuracy of estimating potato PKC, this study extracts the FVC of potato S1–S3 based on multispectral image NDVI using image element dichotomy and also calculates the RDTI based on GLCM extracting texture features in the 0°, 45°, 90°, and 135° directions.



3.3.1 Multispectral VIs combined with FVC for estimation of potato PKC

Figure 5 illustrates a pattern in potato FVC, where it initially increases and then decreases as the growth stages progresses. Based on the multispectral VIs used in this study, the optimal VIs were selected and combined with FVC to estimate potato PKC using SMLR modeling, and the results are shown in Figure 6. The modeling R2 for the three fertility periods is 0.58, 0.79, and 0.64, and the RMSE is 0.47%, 0.34%, and 0.35%, respectively. The R2 of the validation set was 0.68, 0.76, and 0.69, and the RMSEs were 0.48%, 0.36%, and 0.37%, respectively. The modeled and validated R2 of potato PKC increased in all three growth stages compared with that of GNDVI only, with the most significant increase in the starch accumulation stage and the decrease in the RMSEs of tuber growth and starch accumulation stages. The SMLR model performs best at the tuber growth stage (Table 5).




Figure 5 | FVC extraction results.






Figure 6 | GNDVI combined with FVC to estimate potato PKC.




Table 5 | Estimation of potato PKC modeling and verification analysis with different model parameters in three growth periods.






3.3.2 Multispectral VIs combined with texture features for estimating potato PKC

Since the correlation between RDTI and potato PKC based on the texture feature combinations extracted from GLCM with different orientations was not significant in relation to the fertility stage and was comparable to the correlation with multispectral VIS, in this study, we chose the texture feature combinations in the 45° orientation to screen out the RDTI with the highest absolute value of correlation coefficient with potato PKC and GNDVI to estimate potato PKC, and each fertility stage was used to the single texture features used to construct the optimal RDTI were different for each fertility stage, including Green-Mean and Blue-Mean for S1 stage, Red_Con and Reg_Var for S2 stage, and Red-Mean and Green-Dis for S3 stage, and the results of the estimation are shown in Figure 7. The modeled R2 for the three fertility periods is 0.62, 0.75, and 0.55, and the RMSE is 0.44%, 0.37%, and 0.39%, respectively. The SMLR model performed best in the tuber growth stage (Table 5).




3.3.3 Multispectral VIs combined with FVC and texture features for estimating potato PKC

Based on the optimal VIs selected in this study, the extracted FVC and RDTI were used to estimate potato PKC using SMLR modeling. Figure 8 shows the results of the fusion modeling of GNDVI, FVC, and RDTI to estimate potato PKC. The modeling R2 is 0.63, 0.84, and 0.80, respectively, and the RMSE is 0.44%, 0.29%, and 0.25%, respectively. The validation R2 is 0.78, 0.86, and 0.80, and the RMSE is 0.36%, 0.30%, and 0.35%, respectively. The modeling and validation R2 values are greater than those estimated from GNDVI, GNDVI combined with FVC, and GNDVI combined with RDTI for potato PKC over the three growth stages, whereas the RMSE was lower than those estimated using GNDVI, GNDVI combined with FVC, and GNDVI combined with RDTI. GNDVI was combined with RDTI to estimate the RMSE of potato PKC, and the SMLR model has the highest accuracy in the tuber growth phase (Table 5).






4 Discussion



4.1 Effect of different experimental treatments on PKC and canopy structure of potato

The experimental design used in this study encompasses various gradients of potassium fertilizer dosage, plant density, and nitrogen fertilizer dosage, enabling an investigation of their effects on the growth and development of potato plants. The findings reveal distinct patterns in potato PKC across the growth stages advance, consistent with the research conducted by Liu Keli et al. (Liu et al., 2003). During the tuber formation stage, potato plants are in an early developmental phase, and applying fertilizer contributes to a higher PKC. This is attributed to the fact that the plants were not yet fully developed, so the nutrients supplied through fertilization had a pronounced impact on PKC during this stage. As the potato plants progress to the late tuber formation and early tuber growth stages, rapid growth occurs primarily through stem and leaf expansion, whose dilution affects the PKC. Consequently, the PKC gradually decreases during this phase. However, during the late tuber growth period, the aboveground growth of potato plants, including stems and leaves, reaches its peak, and the rate of growth begins to slow. At this stage, the potato plants transition from pure nutrient-driven growth to a combination of nutrient assimilation, reproductive growth, and material accumulation. This phase represents the peak of potato growth and development. Importantly, nutrients relocate from aboveground parts to the underground tubers, resulting in the lowest PKC levels during the tuber growth period (Liu et al., 2022a).

This study used a selection of nine multispectral VIs relevant to potato PKC and analyzed their correlation with PKC at three crucial growth stages. As depicted in Figure 3, all VIs correlate significantly with PKC at a significance level of 0.01, which reflects the suitability of the selected multispectral VIs for estimating PKC in potatoes. The correlation between multispectral VIs and PKC initially increases, followed by a decrease from the tuber formation stage to the starch accumulation stage. The results of potato PKC estimation using multispectral VI modeling (Table 4) reveal that the most accurate PKC estimation occurs during the tuber growth stage. This result is attributed to the inherent mechanisms governing potato growth, development, and fertilization. During the tuber formation and tuber growth stages, potato plants undergo vigorous growth, and the extracted canopy spectra are less influenced by soil interference, allowing the VIs to more accurately reflect the PKC. However, in the late growth period, as potato plants start to senesce and yellow, the extracted canopy spectra become more susceptible to soil background effects, leading to a less accurate representation of PKC. Additionally, spectral saturation during this stage reduces the VI sensitivity to PKC, lowering the estimation accuracy. Orientation does not affect the correlation between the MEAN and RDTI constructed based on GLCM texture and potato PKC under a 3×3 window. Generally, the MEAN texture feature correlates better with potato PKC, and the constructed RDTI correlates more strongly compared with individual texture features. This result is explained by the smallest window size being the best to capture canopy texture variations at different potato growth stages. Furthermore, the smaller window size avoids exaggerating differences within the window or excessively smoothing texture variations (Zheng et al., 2019). The MEAN texture feature, which represents the average of target and background moving windows, contributes to image smoothing and reduces interference from the soil background (Zheng et al., 2019). By combining the advantages of normalized VIs and difference VIs, RDTI effectively mitigates the effects of soil background, solar altitude angle, and azimuth while enhancing the correlation with potato PKC by smoothing the canopy structure (Haboudane et al., 2004; Eckert, 2012).




4.2 VIs combined with spatial structural features to estimate potato PKC

The transition in canopy structure from simple to complex during the potato tuber formation and starch accumulation stages corresponds to changes in the FVC with fertility. Morphological parameters have been widely used for monitoring the physicochemical parameters of crops (Bendig et al., 2015; Stevens et al., 2020). However, the relationship between morphological parameters and potato PKC at different growth stages remains unclear. From tuber formation to the initial stage of tuber growth, potato growth is primarily characterized by stem and leaf development, which gradually reaches completion. Consequently, the FVC gradually increases, reaching a saturation point after which it no longer changes significantly (Wan et al., 2020; Qiao et al., 2022). During the late tuber growth and starch accumulation stages, the FVC decreases due to the gradual transfer of nutrients from aboveground to below-ground parts of the plant. Additionally, aboveground stems and leaves begin to wither and yellow. These observations suggest that the FVC may be associated with potato PKC. To investigate whether the FVC can enhance the accuracy of estimating potato PKC, we extracted the FVC at three different potato growth stages using the image dichotomy method. The best-performing VIs were then fused to model potato PKC. The highest model accuracy was observed during the tuber growth stage. This result can be attributed to the close correspondence between potato growth and nutritional status during this stage, leading to more accurate extracted FVC values. Conversely, the starch accumulation stage is characterized by reproductive growth, with potassium continuously being transferred to the tuber. As a result, the accuracy of the extracted FVC values diminishes during this stage.

The changes in potato canopy structure, which are influenced by fertility variations, also result in variations in the extracted GLCM textures. Specifically, Green_Con, Red_Con, Reg_Con, and Nir_Con correlate to various extents with potato PKC and fertility, suggesting their association with canopy structure. Previous studies on wheat and maize have shown a monotonic increase in texture characteristics throughout the reproductive period (Yue et al., 2018; Zhu et al., 2021). However, in the case of potato canopy texture, an increasing trend followed by a decreasing trend occurs (Liu et al., 2022b), which implies that potato canopy texture characteristics correlate with potato PKC. Comparing Figures 4, 7 shows that integrating VIs with RDTI in the modeling and validation stages increases R2 and decreases RMSE across all three fertility periods. The highest model accuracy occurs during the tuber growth period. Furthermore, comparing Figures 6, 7 reveals that, during the tuber formation stage, the accuracy of VIs combined with RDTI is superior to that of VIs combined with the FVC. Conversely, the accuracy of VIs combined with FVC is greater than that of VIs combined with RDTI during the tuber growth stage. This discrepancy is attributed to the influence of soil background on the accuracy of FVC extraction during the tuber formation stage. However, RDTI effectively mitigates the interference caused by the soil background. The tuber growth period represents the peak of potato growth and development, where the canopy structure is less affected by the soil background. Consequently, the extracted FVC more accurately reflects the potassium nutrient status of the potato.




Figure 7 | GNDVI combined with RDTI estimation of potato PKC.



The statistical analysis conducted in this study demonstrates that integrating multispectral VIs with FVC or texture features enhances the accuracy of potato PKC estimates compared with using multispectral VIs alone. This finding underscores the significance of incorporating FVC and texture features for accurate potato PKC estimation. The results presented in Figure 8 indicate that the combination of multispectral VIs with FVC and texture features further improves the accuracy of potato PKC estimation. Multispectral VIs contribute valuable spectral information about the potato canopy, while FVC provides essential structural information. Additionally, texture features offer high-frequency information pertaining to the canopy. Integrating these diverse sets of information provides a more comprehensive understanding of potato PKC variation. This fusion approach facilitates the capture of complementary details regarding potato PKC and enables a more comprehensive assessment of its variations.




Figure 8 | GNDVI combined with FVC and texture features for estimating potato PKC.






4.3 Strengths and weaknesses of this study

This study shows that the fusion of multispectral VIs with morphological parameters and texture features enhances the accuracy of potato PKC estimation. This finding is consistent with previous research, which found that the fusion of spectral VIs with morphological parameters and texture features improves the accuracy of estimating biomass (Yue et al., 2018; Zheng et al., 2019), the leaf area index (Li et al., 2019), and nitrogen (Zheng et al., 2020; Fan et al., 2022). The SMLR model, which combines the strengths of spectral features, morphological parameters, and texture features, proves advantageous in improving potato PKC estimation accuracy. Moreover, this model is particularly suitable for agricultural managers with limited budgets who seek to utilize multispectral sensors. Note that multispectral sensors may not be ideal for extracting morphological parameters and texture features due to their lower spatial resolution. In this study, only one crop and one potato location were examined over a single year. Therefore, validating the model across different locations, crops, and years is essential. Although the UAV platform used in this study is suitable for small-scale operations, it is susceptible to flight instability caused by wind and flight velocity. Additionally, its limited endurance creates difficulties for large-scale monitoring of crop physicochemical parameters. However, with the rapid advancement of UAV technology, commercial fixed-wing UAVs now offer longer flight durations (e.g., X-1 Chimera, 4). As a result, the method proposed herein for monitoring the potassium nutrient status in crops provides valuable insights and reference value for future applications.





5 Conclusion

This study proposes a method for monitoring potato PKC at critical growth stages using UAV-based multispectral sensors. The study focuses on extracting canopy spectral features, FVC, and GLCM texture features from multispectral images of potatoes during critical fertility periods. The study aimed to explore how combining VIs with FVC, VIs with GLCM texture features, and the fusion of VIs, FVC, and GLCM texture features affect the accuracy of potato PKC estimation when using the SMLR model. The results lead to the following conclusions: (1) The accuracy of estimating potato PKC using VIs extracted from multispectral images alone was moderate. Among the VIs tested, the GNDVI performed the best, with modeling R2 = 0.56, 0.68, and 0.51 and RMSE = 0.43%, 0.43%, and 0.40% for the three fertility periods of potato tuber formation, tuber growth, and starch accumulation, respectively. (2) Combining GNDVI with FVC during the three fertility periods improved potato PKC estimation accuracy. The modeling R2 values are 0.58, 0.79, and 0.64, and the corresponding RMSE values are 0.47%, 0.34%, and 0.35% for the three fertility periods of potato tuber formation, tuber growth, and starch accumulation, respectively. (3) The RDTI, composed of two random textures, correlates with potato PKC more than with single texture features. Combining GNDVI with RDTI also enhanced the accuracy of estimating potato PKC. The modeling R2 values for the three fertility periods are 0.62, 0.75, and 0.55 and the corresponding RMSE values are 0.44%, 0.37%, and 0.39%, respectively. (4) The fusion of GNDVI, FVC, and RDTI further improves the accuracy of the SMLR model for estimating potato PKC. The resulting R2 values for the three fertility periods are 0.63, 0.84, and 0.80 and the corresponding RMSE values are 0.44%, 0.29%, and 0.25%, respectively. Overall, this study provides valuable insights into using UAV-based multispectral sensors for monitoring the potassium nutrient status of crops. These findings contribute to reducing agricultural production costs and enhancing precision agricultural management practices. Further research is needed to validate the proposed method for different locations, crops, and years to ensure its applicability in diverse agricultural settings.
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Monitoring and understanding pest population dynamics is essential to greenhouse management for effectively preventing infestations and crop diseases. Image-based pest recognition approaches demonstrate the potential for real-time pest monitoring. However, the pest detection models are challenged by the tiny pest scale and complex image background. Therefore, high-quality image datasets and reliable pest detection models are required. In this study, we developed a trapping system with yellow sticky paper and LED light for automatic pest image collection, and proposed an improved YOLOv5 model with copy-pasting data augmentation for pest recognition. We evaluated the system in cherry tomato and strawberry greenhouses during 40 days of continuous monitoring. Six diverse pests, including tobacco whiteflies, leaf miners, aphids, fruit flies, thrips, and houseflies, are observed in the experiment. The results indicated that the proposed improved YOLOv5 model obtained an average recognition accuracy of 96% and demonstrated superiority in identification of nearby pests over the original YOLOv5 model. Furthermore, the two greenhouses show different pest numbers and populations dynamics, where the number of pests in the cherry tomato greenhouse was approximately 1.7 times that in the strawberry greenhouse. The developed time-series pest-monitoring system could provide insights for pest control and further applied to other greenhouses.
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1 Introduction

Monitoring pest population dynamics are essential to greenhouse management for effectively predicting the potential distribution of pests and preventing infestations and crop diseases (Deng et al., 2018; Capinha et al., 2021; Preti et al., 2021). Therefore, monitoring the time series of pest numbers in greenhouse is important to support human pest control decisions (Wen et al., n.d). However, automatic identification of pest populations in greenhouses is challenging due to the small size of pests. The current manual pest detection and counting approaches are labor intensive, time-consuming, and unreliable (Xie et al., 2018). Developing a fast and reliable automatic pest identification and counting approach may reduce the workload and improve timely pest control (Rustia et al., 2021b).

Image-based automatic pest monitoring systems can replace laborious manual identification and improve reliability, thus proving to be a powerful tool with real-time pest information to facilitate agricultural management (Sun et al., 2017; Rustia et al., 2020; Wang et al., 2020a). Deep learning has shown the potential of image processing with end-to-end feature extraction patterns for automatic pest identification and counting (Liu and Wang, 2020; Liu and Wang, 2021). To build an accurate deep learning model for automatic pest identification, high-quality and large-scale image datasets are indispensable (Li and Chao, 2021; Li et al., 2021b).

Current pest image datasets are mainly acquired from the internet, crop surface, pest-trapping containers, or sticky boards (Table 1). Pest datasets collected from the internet typically contain a large number of samples and various categories. A previous study reported an IP 102 dataset containing 75,000 images of 102 pest species collected from agricultural and insect-science websites; the dataset was evaluated using machine learning models including support vector machine, K Nearest Neighbors, and deep learning methods like Faster R-CNN, and FPN (Wu et al., 2019). Another website-based dataset for crop pest recognition comprises 46,567 images from 41 classes (Wang et al., 2022). However, online datasets have limited practical pest-monitoring applications because many pest categories are not representative of greenhouse crop production and show low-level harm to common crops (Wang et al., 2021).


Table 1 | Current pest image collection approaches and pest detection models.



Field investigations have mainly focused on pest images collected from crop fields with specific illumination conditions, crops, or pest types. A current study developed of an AgriPest dataset including 14 common pests of wheat, rice, corn, and rape (Wang et al., 2021). The filed collected datasets usually demonstrated different pest distribution density, light reflection variability, crop surface backgrounds, and pest types (Xie et al., 2018; Du et al., 2022). However, pest detection models demonstrate high precision in the present datasets, but are not replicable in a greenhouse setting due to large variations in pest type, environmental conditions, and unclear image collection owing to the pest movement. This limits the application of powerful deep learning technology for pest control in specific domains such as greenhouses.

Pest images collected with trapping devices are less affected by the environmental conditions and plant types. Trapping containers adopt pheromones, toxic gas, or a lamp to attract pests, and collect the image from its baseplate (Li et al., 2021b). Capturing pest images by light trapping have been widely used for automatic monitoring of pests (Wang et al., 2021). However, the trapping containers designed based on the pest phototaxis typically use a concentrated light source, thus pests are attracted near the light source with overlapping, which is not applicable to long-term monitoring. A vibration plate and a moving conveyor belt could be adopted to disperse the pests and avoid overlapping (Yao et al., 2020). The trapping containers usually used for detecting large size pests, but not effective for tiny pests of high-density in the greenhouse.

A Sticky board with color tropism can collect clear pest images by attracting flying pests, which are widely used as trapping devices (Ding and Taylor, 2016; Sütő, 2021). It reduces pest overlapping and limb mutilation, and could be applied to pests of different sizes. Current studies reported automatic methods for detecting insect pests using sticky paper traps and achieved high counting accuracies (Li et al., 2021a; Rustia et al., 2021a). The trapping board-based systems, however, have low trapping efficiency at night, and thus could not accurately monitoring pest number changes over 24 hours. In addition, changes in light during the day and night cause significant variations in the images in the trapping board, which reduce the accuracy and reliability of pest detection. Therefore, it is essential to develop a trapping system with a uniform light source and a high trapping efficiency.

Considering the diversity of pests, automatic pest-recognition models are required. Deep learning, with the advantage of an end-to-end learning strategy, is the current state-of-the-art object detection approach. Recently, deep-learning-based pest detection models are developed for multiclass pest detection and classification, and achieved high performances (Liu et al., 2019; Wang et al., 2020b). However, most models are primarily designed for large-scale pest detection in field crops, which may not be directly applicable to the detection of small pests in greenhouses due to the limited number of pixels in their images; therefore, it is necessary to develop small object detection models for greenhouse pests. The YOLOv5 model was developed for high inference and at three different scales, enabling it to effectively tackle the challenges associated with small-object detection in images. (Zhan et al., 2022; Zhao et al., 2022). The mosaic data augmentation adopted in the YOLOv5 model enriches the dataset by random scaling, cutting, and arranging the original input (Zhao et al., 2022). Further, it improves the accuracy of small target identification, especially when the number of large or medium targets is higher.

To address the challenge of automatic pest detection and counting in greenhouses, a comprehensive experiment on pest image recognition was conducted in two greenhouses, a cherry tomato and a strawberry greenhouse. The objectives of this study were as follows: 1) design an automatic pest identification system with an LED lamp and insect-trapping board to trap pests and automatically capture images with a uniform background to improve the insect trapping efficiency; 2) develop an improved YOLOv5 model with copy-pasting data augmentation to effectively identify small-sized pests and improve recognition accuracy of unbalanced distributed pest images; and 3) Monitoring the pest population dynamics in two greenhouses and compare their changing patterns.




2 Methods



2.1 Experimental design

We developed an automatic pest image collection system in this study. An improved YOLOv5 model was proposed for detecting small-sized pests, and its performance was compared with that of the original YOLOv5 model. Pest images were collected during the spring and summer for 43 days in two greenhouses (Figure 1). We examined two greenhouses in Nanjing, China. The first one is a “Hongxi” cherry tomato glass greenhouse situated in Xuanwu District, and the second one is a “Hongyan” strawberry multi-span greenhouse located in Pukou District. For the first three days, we placed 10 insect traps in the greenhouses and collected 10 images of each greenhouse to train a pest detection model. After the first three days, we used one insect trap to collect images and monitor the pest populations daily. Images were collected regularly at 16:00. Thus, we utilized 20 original images and applied data augmentation techniques to expand the training dataset to train the pest detection model and 80 images to monitor pest populations. Twenty training images were preprocessed using a data augmentation approach, which is discussed in Section 2. Data for the first dataset was collected from June 6, 2020 to July 18, 2020 from a greenhouse for cherry tomato plants from the seedling stage to the flowering and fruit setting stages. The main pests were tobacco whiteflies, leaf miners, aphids, and fruit flies. Data for the second dataset was collected from March 1, 2021 to April 12, 2021 from a greenhouse for strawberry plants during the flowering and fruit-setting stages.




Figure 1 | Experimental design of pest image collection, pest detection model and pest population monitoring.






2.2 Data collection system

An automatic pest identification and monitoring system with an LED insect trapping lamp and yellow sticky paper are established to attract pests and collect images in greenhouses. The system consists of a pest trapping device, a power supply unit, an image collecting unit, a pest data processing unit, and a visual interface (Figure 2A).




Figure 2 | Automatic pest identification and monitoring system with LED trap lamp, sticky paper and image acquisition system. (A) Pest monitoring system, (B) Pest trapping device, (C) Image collecting unit, (D) Visualization interface.



The pest-trapping device consisted of a stainless-steel plate, an aluminum profile frame, a yellow insect-trapping plate, and LED lamps (Figure 2B). The size of the yellow insect-trapping board was 20 × 25 cm, with a wavelength of 575 nm ± 10 nm. The wavelength of the LED insect-trapping lamp was 365 nm, and its voltage was 12 V. Two LED light strings were fixed on both sides of the frame, with one string consisting of 10 lamp beads. A storage battery with an output voltage of 12 V was used to provide 24-h power supply for the device. By adjusting the incident angle of the trapping device, the LED lamp could simultaneously trap the insects and provide light, making the trapping board images clear and conducive to the process. The pest-image collecting device consisted of an industrial camera and a cantilever bracket (Figure 2C). A Sony IMX226 camera with 3280*2464 resolution was installed in a cantilever and aimed at a piece of sticky paper at an appropriate distance to capture clear images. The visualization interface shows pest images and their location, types, and numbers (Figure 2D). The visualization interface presented dynamic changes in pest numbers within a week. Computation and visualization were conducted using Python on a Windows PC (Intel® Core™ i7-7500U) with a RAM of 8 Gb.




2.3 Benchmark YOLOv5 model

The benchmark model adopted in this study was YOLOv5 (Figure 3), which was released in 2020 for object detection. The YOLOv5 model consists of backbone, neck, and head modules that connect the procedure for predicting bounding boxes with class labels in an end-to-end differentiable network (Ultralytics, 2020). The YOLOv5 model has demonstrated excellent performance in small object detection in previous studies (Mathew and Mahesh, 2022; Zhan et al., 2022); thus, it was selected for identification of small-sized pests in this study.




Figure 3 | Structure of the YOLOv5 model for pest detection.





2.3.1 Mosaic data augmentation

Mosaic data augmentation was adopted in the YOLOv5 model, which enriches the dataset by stitching together four images, thereby introducing novel object locations, partial occlusion, and variations in surrounding pixels for the model to learn from. The model could simultaneously process four images in the batch normalization layer, which decreased the GPU memory usage by using a relatively small mini-batch. The workflow of mosaic data augmentation was as follows: 1) random selection of four images from the original training dataset; 2) random rotation, scaling, flipping, and adjustment of the brightness and chromaticity of the four selected images; and 3) combining the images and box layout stitching into new images (Figure 4A) (Huang et al., 2022). The augmented images were enriched with various backgrounds, as shown in Figure 4B.




Figure 4 | Mosaic data augmentation adopted in the YOLOv5 model. (A) Workflow of mosaic data augmentation, and (B) Pest image after mosaic data augmentation.






2.3.2 Backbone

The backbone module extracted features from the input image and transmitted them to the neck module (Figure 4). The backbone includes the focus, CBL, Cross Stage Partial (CSP), and Spatial Pyramid Pooling (SPP) modules. The focus structure transformed the original 608×608×1 images into 304×304×32 feature maps using slicing and convolution operations, which increased the computational complexity, but retained the original features. The CBL comprises one convolutional layer, one batch normalization layer, and one Leaky ReLU layer. CSP1 was used in the backbone network, and CSP2 was used in the neck network. The SPP network outputs a feature map of fixed size with multiscale feature fusion through the 1×1, 1×5, 9×9, and 13×13 max pooling.




2.3.3 Neck

The neck module generates a feature pyramid based on a path aggregation network (PANet) (Liu et al., 2018). This enables the model to detect pests of different sizes by shortening the information path between low-level spatial features and high-level semantic features through bottom-up path augmentation. Adaptive feature pooling directly propagates the effective information at each level to subsequent subnetworks (Liu et al., 2018).




2.3.4 Head module

The head module provides detection boxes, pest categories, coordinates of the detected pests, and confidence values. The loss function in the head module includes classification loss and bounding box regression loss. The YOLOv5 model uses the complete intersection over union (CIoU) loss (Zheng et al., 2020), which improves the regression accuracy and convergence speed by considering the distance between the detection frame and target box, overlapping area, aspect ratio, and other aspects.





2.4 Improved YOLOv5 model

The mosaic data augmentation approach shows limitations on the proposed datasets where small targets comprise more than 80% of total pests. Mosaic data augmentation improves the accuracy of small target identification only if there are more large and medium targets than small targets. For example, in Figure 5A, the size of the raw image was 3280 × 2464 pixels. The images were resized to 608 × 608 pixels before being fed into the YOLOv5 network. Thus, the output feature sizes were 19 × 19, 38 × 38, and 76 × 76 pixels. The largest feature map (76 × 76) corresponded to the smallest anchor box for small target detection. Its receptive field was 8 × 8 when back-propagated to an input image of 608 × 608 pixels. When the 8 × 8 receptive field corresponded to the raw image, it was approximately 43 × 32 (Figure 5A). Therefore, insects smaller than 43 × 32 pixels in the raw image were not recognized in the YOLOv5 model. Therefore, the mosaic data augmentation approach reduces the recognition precision for tiny pests. To improve the pest identification performance of the proposed pest images collected from greenhouses, an improved YOLOv5 model adopting a copy-pasting data augmentation approach to virtually increase the number of pests is developed.




Figure 5 | (A, B) Receptive field before and after copy-pasting data augmentation.





2.4.1 Improved data augmentation approach

A copy-pasting augmentation approach was developed for data augmentation to improve the identification accuracy for small objects (Figure 5B). A raw image of 3280 × 2464 pixels was cropped by setting the overlapping area. The image was horizontally cropped into six pieces, each with 600 pixels, and the overlap length was set to 64 pixels. The image was also vertically cropped into 5 pieces, each piece of size 600 pixels, and the overlap length was set to 134 pixels. Therefore, the raw images were divided into thirty smaller images with 600 × 600 pixels. Setting the overlapping area could improve the detection accuracies for pests on the segmentation lines. Finally, to reduce the number of overlapping detection boxes, a non-maximum suppression (NMS) operation was performed on the entire image.




2.4.2 Improved head module

The YOLOv5 model generated candidate anchor boxes with various sizes and shapes, but these windows supposedly to contain one object, so it is necessary to filter out the ones. NMS is adopted to remove redundant boxes when their overlaps exceed a threshold. The intersection over union (IoU) loss is commonly used in NMS, but it demonstrates poor performances for the nonoverlapping boxes. The improved distance IoU (DIoU) considers the overlap area and distance between the central points of two bounding boxes when suppressing redundant boxes, making the model more robust to occlusion objects (Zheng et al., 2020). (Figure 6).




Figure 6 | Intersection over union (IoU) and distance IoU losses and three application scenarios. (Blue and red colors represent the target box and predicted box, respectively.).









Where   is the ground truth, and   is the predicted box, The   is the distance between the center points of two   boxes,   and   represent the center points of the anchor frame and target frame respectively, the   is the distance between the two center points, and c is the diagonal distance of the smallest rectangle covering two boxes.

In the improved YOLOv5 model, DIoU was deployed in the NMS and applied to the head module to remove redundant bounding boxes and improve the detection accuracy of occluded pests (Figure 6). The DIoU-NMS approach is more robust than the original NMS used in the YOLOv5 model for removing redundant boxes. Therefore, the DIoU-NMS method adopted in the improved YOLOv5 model improved the detection accuracy of occluded pests. The DIoU-NMS was defined as follows:



where S is the confidence level of category  ,   is the threshold of the NMS,   is the box with the highest confidence level, and IOU is the intersection ratio of the anchor and target frames (Zheng et al., 2020).

All training and processes were implemented on a Python library torch 1.9.0 framework in the Pycharm platform with Python 3.6. The computations were performed on a Windows workstation with an Nvidia GeForce 940MX graphics card (NVIDIA Corporation, Santa Clara, California, United States).





2.5 Performance metrics

The model performance is evaluated by precision, recall, F1-score, and accuracy, which are shown in Eqs. (5) to (8).







Where the   (true positive) represents the number of correct positive predictions,   (false positive) represents the number of incorrect positive predictions, and   (false negative) represents the number of incorrect negative predictions.

The mean average precision (mAP) is adopted for evaluating the object detection performance. It is calculated by taking the average of the AP scores across all classes. The AP value is obtained by calculating the area under the precision-recall curve, which measures the trade-off between precision and recall at different confidence thresholds.




2.6 Pest dataset preparation

The datasets collected from the two greenhouses included six types of pests: tobacco whiteflies, leaf miners, aphids, fruit flies, thrips, and houseflies (Figure 7). Houseflies had the largest length of 5–8 mm while thrips were the smallest, with a length of 0.5–2 mm. Tobacco whiteflies were the highest in number but were difficult to detect by the human eye because of their white color. The lengths of the leaf miners, aphids, and fruit flies were 4–6 mm, 2.2 mm, and 1.5–4 mm, respectively. The number distribution of different types of pests are unbalanced, which brings challenge for the pest detection.




Figure 7 | Images of pests collected in the (A) cherry tomato greenhouse and (B) strawberry greenhouse.



We collected 20 images with size of 3280 × 2464 pixels in the two greenhouses to train the YOLOv5 model. However, after data preprocessing with mosaic data augmentation, 450 images of size 600 × 600 pixels were acquired to train the insect pest detection model. Of the 450 training images, 200 were randomly selected for copy-pasting data augmentation. In total, 1,024 tobacco whiteflies, 857 thrips, 1,092 winged aphids, 941 leaf miners, 873 fruit flies, and 1,013 houseflies were included in the training set (Table 2).


Table 2 | Pest dataset description.



The test set contained 328 images of 12,014 pests, including 5,832 tobacco whiteflies, 2,928 thrips, 1,001 winged aphids, 460 leaf miners, 890 fruit flies, and 267 houseflies (Table 2). The test set was used to monitor the pest population dynamics over a long period; therefore, the number of pests in the test set was larger than that in the training set.





3 Results and discussion



3.1 Pest detection results

The improved YOLOv5 model obtained higher accuracy than the original YOLOv5 model by adopting copy-pasting data augmentation (Table 3). The precision-recall graph, depicted in Figure 8, compares the performance of YOLOv5 and the improved YOLOv5 models. The overall pest-detection precision improved from 64% to 96% by using the improved YOLOv5 model. The improved YOLOv5 model obtained the highest detection precision of 99% on leaf miners and fruit flies, followed by aphids and houseflies, with a precision of 98%. Thrips are very difficult to identify because of their small size. The improved YOLOv5 model obtains a precision of 83% for thrips, which is still higher than that of the YOLOv5 model (80%). The improved model achieved an F1 score of 0.99 for detecting aphids, leaf miners, fruit flies, and houseflies, and a score of 0.98 for detecting whiteflies. However, it exhibited a lower F1 score of 0.91 for detecting thrips. The primary reason for the low detection accuracy of thrips may be the varying size of trips during different growth stage. Image resolution may be another factor that some pests are confused with dust. Furthermore, the improved YOLOv5 model required more time for image processing because it adopts a copy-pasting operation and feeds the input images into the network in different batches, the recognition speed of the improved YOLOv5 model was lower than that of the original YOLOv5 model.


Table 3 | The pest detection accuracies and average detection time of the models.






Figure 8 | Precision-recall graph obtained on the (A) YOLOv5 model and (B) improved YOLOv5 model.



A confusion matrix of the detection accuracies is shown in Figure 9. The improved YOLOv5 model demonstrated the best performance for leaf miners and fruit flies, with a 99% detection accuracy. 1% of leaf miners were incorrectly recognized as thrips and 1% of fruit flies were incorrectly detected as fruit flies and aphids. The model showed 98% accuracy for aphids and houseflies, while 2% of the aphids were incorrectly recognized as thrips, 1% of houseflies were incorrectly recognized as thrips, and 1% of houseflies were incorrectly identified as leaf miners. Among tobacco whiteflies, 97% were correctly detected, and 3% were missed. The model obtained the lowest detection accuracy for thrips at 83% accuracy, with 1% being incorrectly recognized as aphids. Missed-detected pests were recognized as background.




Figure 9 | Confusion matrix of ground truth and predicted pests using the improved YOLOv5 model.



The recognition performance of the improved YOLOv5 model is illustrated in Figure 10. The improved YOLOv5 model demonstrated high classification accuracies for both cherry tomato and strawberry greenhouses. However, the model could not recognize tobacco whiteflies that were too light in color, and some tiny thrips were incorrectly recognized as small dust particles. Houseflies and leaf miners are similar in color and shape; therefore, they are sometimes misidentified. Precision, recall and mAP after training the improved YOLOv5 model are shown in Figure 11.




Figure 10 | Results of pest detection for the two greenhouses using the improved YOLOv5 model. (A) Cherry tomato greenhouse, (B) Strawberry greenhouse.






Figure 11 | Plot of precision, recall and mAP after training the improved YOLOv5 model.






3.2 Recognition performance on adjacent pests

The improved YOLOv5 model demonstrated better identification accuracy for nearby insects and could distinguish between two adjacent whitefly insects (Figure 12). For example, the original YOLOv5 model recognized two tobacco whiteflies as one pest in the black circle, whereas the improved YOLOv5 model could distinguish two adjacent whiteflies. DIoU-NMS computes the overlapping area of pests and the central point distance between two pest boxes when suppressing redundant boxes.




Figure 12 | Pest recognition performance on two adjacent tobacco whiteflies using (A) YOLOv5 and (B) improved YOLOv5 models.






3.3 Real-time pest population dynamics in the cherry tomato and strawberry greenhouses

The improved YOLOv5 model obtained reliable prediction results; the predicted number of pests showed similar trends to the manual counting results. The cherry tomato greenhouse had a total of 7619 pests after 40 days of continuous monitoring as compared to 4395 pests in the strawberry greenhouse.

The dynamic trends in the two greenhouses demonstrated different patterns at different growth stages of cherry tomatoes and strawberries (Figure 13). The number of pests in the cherry tomato greenhouse increased sharply from 37 to 325 from June 9th to 10th. Thereafter, the number of total pests decreased to 92 on June 28th, and rose rapidly in late June and early July. The number of pests was at its highest from 214 to 419, from July 1st to July 18th, although there were fluctuations. The strawberry greenhouse had a low density of pests from March 4th to March 19th, and showed two peaks on March 23rd and April 3rd. Changes in pest numbers may be related to environmental temperature, humidity, and the growth stages of greenhouse crops (Aiello et al., 2018). Understanding pest outbreaks may help identify periods of risk in greenhouses and provide decision-making support for managers.




Figure 13 | Pest population dynamics in the (A) cherry tomato greenhouse and (B) strawberry greenhouse during the 40 days of monitoring.



Pest diversity and frequency varied between the two greenhouses (Figure 14). The main pest observed in the cherry tomato greenhouse was the tobacco whitefly, whereas thrips were the most prevalent pest in the strawberry greenhouse. The number of tobacco whiteflies in the cherry tomato greenhouse was approximately 2.5 times the total number of leaf miners, fruit flies, and aphids. In the strawberry greenhouse, 87% of the pests comprised thrips, fruit flies, tobacco whiteflies, and houseflies. In the cherry tomato greenhouse, the dynamic changes in tobacco whitefly, fruit fly, and aphid showed patterns similar to the overall trend of pest numbers, which decreased in June and increased in July. The population trend of leaf miners showed the opposite pattern, increasing in June and decreasing in July. In the strawberry greenhouse, the numbers of thrips and fruit flies showed the same trend of increasing in late March and early April. The numbers of tobacco whiteflies and houseflies fluctuated and showed a small increase at the same time. The dynamic trend in pest numbers provides insights into pest control during certain periods throughout the year, which is of vital importance for greenhouse management.




Figure 14 | Changes in individual pest numbers in the (A) cherry tomato greenhouse and (B) strawberry greenhouse during the 40 days of monitoring.



Obtaining the dynamic changes in pest occurrence will help us to further build pest prediction models based on time series and understand the patterns of greenhouse pest occurrence, thus assisting agricultural pest control decisions (Chen et al., 2022). The present study monitored pest populations in two greenhouses for 40 days, which provided the change in number of pests at different times. This study provides insights for pest management at different plant growth stages.





4 Conclusions

This study proposed a pest detection and long-term pest number monitoring system for cherry tomato and strawberry greenhouses. To obtain high-quality images, we designed a sticky board trap that combines yellow sticky paper and LED pest-trap lamps to achieve all-weather pest-trapping effects. The LED lamp can also be used as a light supplement to increase the brightness of the trap board image and alleviate the problem of uneven illumination, thereby improving image quality. The pest image capturing system with LED traps provided clearer images compared to that adopted sticky paper only. The system was applied to cherry tomato and strawberry greenhouses, and the improved YOLOv5 model obtained an overall pest detection precision of 96% during the 40 days of monitoring. The model achieved the highest F1 score of 0.99 for the detection of four types of pests, while the lowest F1 score of 0.91 was obtained for thrips. This system provides important decision-support information for the management of pests and diseases in greenhouses. The pest-monitoring system developed in this study can be applied to other types of greenhouses for pest image collection and for building pest-detection models for a large number of common pests. The system can also be used for pest population dynamics and status prediction, considering future changes in climate and weather conditions.
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Introduction

Accurate and timely detection of plant stress is essential for yield protection, allowing better-targeted intervention strategies. Recent advances in remote sensing and deep learning have shown great potential for rapid non-invasive detection of plant stress in a fully automated and reproducible manner.  However, the existing models always face several challenges: 1) computational inefficiency and the misclassifications between the different stresses with similar symptoms; and 2) the poor interpretability of the host-stress interaction.





Methods

In this work, we propose a novel fast Fourier Convolutional Neural Network (FFDNN) for accurate and explainable detection of two plant stresses with similar symptoms (i.e. Wheat Yellow Rust And Nitrogen Deficiency). Specifically, unlike the existing CNN models, the main components of the proposed model include: 1) a fast Fourier convolutional block, a newly fast Fourier transformation kernel as the basic perception unit, to substitute the traditional convolutional kernel to capture both local and global responses to plant stress in various time-scale and improve computing efficiency with reduced learning parameters in Fourier domain; 2) Capsule Feature Encoder to encapsulate the extracted features into a series of vector features to represent part-to-whole relationship with the hierarchical structure of the host-stress interactions of the specific stress. In addition, in order to alleviate over-fitting, a photochemical vegetation indices-based filter is placed as pre-processing operator to remove the non-photochemical noises from the input Sentinel-2 time series.





Results and discussion

The proposed model has been evaluated with ground truth data under both controlled and natural conditions. The results demonstrate that the high-level vector features interpret the influence of the host-stress interaction/response and the proposed model achieves competitive advantages in the detection and discrimination of yellow rust and nitrogen deficiency on Sentinel-2 time series in terms of classification accuracy, robustness, and generalization.





Keywords: deep learning, time-series analysis, precision agriculture, Sentinel-2, plant protection, winter wheat




1 Introduction

The plant stress caused by unfavorable environmental conditions (e.g., a lack of nutrients, insufficient water, disease, or insect damage), if left untreated, will lead to irreversible damage and decreases in plant production. Early accurate detection of plant stress is essential to be able to respond with appropriate interventions to reverse stress and minimize yield loss. Recent advances in remote sensing with enhanced spatial, temporal, and spectral capacities, combined with deep learning, have offered unprecedented possibilities for rapid noninvasive stress detection in a fully automated and reproducible manner (Ji et al., 2018; Wang et al., 2020). Currently, the deep learning models have been proven effective in remote sensing time series analysis of plant stresses (Golhani et al., 2018; Abdur Rehman et al., 2019). One-dimensional convolutional neural network (1D-CNN) and 2D-CNN with convolutions were applied either in the spectral domain or in the spatial domain (Kussul et al., 2017; Scarpa et al., 2018). In addition, 3D-CNNs were also used across spectral and spatial dimensions (Li et al., 2017; Hamida et al., 2018). These models do not consider temporal information. Meanwhile, temporal 1D-CNNs were proposed to handle the temporal dimension for general time series classification (Wang et al., 2017) and recurrent neural network (RNN)-based models to extract features from multi-temporal observation by leveraging the sequential properties of multispectral data and combination of RNN (Kamilaris and Prenafeta-Boldú, 2018) and 2D-CNNs where convolutions were applied in both temporal and spatial dimensions (Zhong et al., 2019). These preliminary works highlight the importance of temporal information that can improve the classification accuracy performance. Although the existing works are encouraging, they suffer several limitations: 1) over-fitting and uncertainty caused by noisy data involved in the remote sensing time series; 2) computing inefficiency and inaccuracy caused by the convolutional operations that are applied to all layers, particularly with the increase of size of images and the kernel. In particular, for the classification of multi-plant stresses, similar symptoms always lead to confusion during classification, as most of the local features are extracted from the neighbor time steps. Therefore, a more effective denoise operator and larger receptive fields for the extraction of the global biological responses at various timescales are highly desired.

One solution is to prefilter the photochemical information from satellite time series and change the domain through Fourier transform to model the part-to-whole relationship between the photochemical features and specific plant stress in the frequency domain. This is because the convolution operation in the spatial domain is the same as the point-by-point multiplication in the Fourier domain. According to the Fourier theory, Fourier transform provides an effective perception operation with a nonlocal receptive field. Unlike existing CNNs where a large-sized kernel is used to extract local features, Fourier transforms with a small-sized kernel can capture global information. Therefore, the Fourier kernel has great potential in replacing the traditional convolutional kernel in remote sensing time series analysis without any additional effort (Yi et al., 2023). For example, Chen et al. (2023) designed a Fourier domain structural relationship analysis framework to exploit both modality-independent local and nonlocal structural relationships for unsupervised change detection. However, the existing Fourier operators can only be sparsely inserted into the deep learning network pipeline due to their expensive computational cost. Therefore, the fast Fourier transform (FFT) is an effective way to extract the global feature responses from satellite image time series (Nguyen et al., 2020). For example, Awujoola et al. (2022) proposed a multi-stream fast Fourier convolutional neural network (MS-FFCNN) by utilizing the FFT instead of the traditional convolution; it lowers the computing cost of image convolution in CNNs, which lowers the overall computational cost. Lingyun et al. (2022) designed a spectral deep network combining fast Fourier convolution (FFC) and classifier by extending the receptive field. Their results demonstrated that the features around the object provide the explainable information for small object detection.

Although the effectiveness of Fourier-based convolution has been proven by many studies, few studies have done in the multiple plant stress detection from remote sensing data. In this work, we have proposed a novel fast Fourier convolutional deep neural network (FFCDNN) for accurate and early efficient detection of plant stress with an initial focus on wheat yellow rust (Puccinia striiformis) and nitrogen deficiency. The proposed model significantly reduces the computing cost with improved accuracy and interpretability. Specifically, a new FFT kernel is proposed as the basic perception unit of the network to extract the stress-associated biological dynamics with various timescales; and then the extracted biological dynamics are encapsulated into a series of high-level featured vectors representing the host–stress interactions specific to different stresses; finally, a nonlinear activation function is designed to achieve the final decision of the classification. The proposed model has been evaluated with ground truth data under both the controlled and natural conditions.

The rest of this work is organized as follows. The Related Work section introduces related works on existing methods of multiple plant disease classification. The Proposed Fast Fourier Convolutional Deep Neural Network section details the proposed approach. The Materials and Experiments section presents the material and experiment details. The Results and Discussion section illustrates the experimental evaluation results. Finally, the Conclusion section concludes the work.




2 The related work



2.1 Plant photochemical information filter from satellite images

The newly launched satellite sensors (e.g., Sentinel-2 and WorldView-3) provide the promising Earth observation (EO) dataset for improved plant photochemical estimation (Xie et al., 2018) wherein leaf chlorophyll content (LCC), canopy chlorophyll content (CCC), and leaf area index (LAI) are the most popular remotely retrievable indicators for detecting and discriminating plant stresses (Haboudane et al., 2004; Elarab et al., 2015). Among these indicators, the LCC time series is a key biochemical dynamics for the stress-associated foliar component changes without (or partly) the effects from soil background and canopy structure. Estimating LCC requires remote sensing indicators that are sensitive to the LCC but, at the same time, are insensitive to LAI and background effects (Elarab et al., 2015). On the other hand, the LAI is one of the critical biophysics-specific proxies used in characterizing the canopy architecture variations that respond to the apparent symptom caused by specific stress (Li et al., 2018). By contrast, CCC is determined by the LAI and LCC, expressed per unit leaf area, which retains multicollinearity with them and hard to be used in separating the stress-induced biochemical changes from the biophysical impacts. Therefore, the LCC and LAI are regarded as a pair of independent variables for filtering the biochemical information between the different plant stresses (Zhang et al., 2012; Shi et al., 2017a).

Regarding the filter methods, by using the reflectance in red-edge regions, there are two methods used in LAI and LCC estimation for minimizing the saturation effect and soil background-associated noises: 1) the vegetation index method (Haboudane et al., 2002; Li et al., 2018); 2) the radiative transfer models (RTMs) (Darvishzadeh et al., ????; Sehgal et al., 2016). For example, Clevers and Gitelson (2013) tested and compared the performance of the red-edge chlorophyll index (CIred-edge) and green chlorophyll index (CIgreen) on the Sentinel-2 bands, and their results indicated that the setting of Sentinel-2 bands is well positioned for deriving these indices on LCC estimation. Punalekar et al. (2018) developed a PROSAIL-based model to estimate LAI and biomass on the Sentinel-2 bands, and the yielded LAI values are in agreement with the ground truth LAI measurements. However, the simple use of the remotely estimated LAI and LCC cannot easily represent the nonlinear host–stress interactions of plant stresses.




2.2 Plant stress detection methods

Currently, there are two types of methods widely used in extracting the interpretable agent features for plant stresses from satellite imagery, including the biological methods and the deep learning-based methods.



2.2.1 Biological methods

Studies have shown that biological models can be used to map within-field crop stress variability (Ryu et al., 2020; Zhou et al., 2021a). This is possible because the infestation of crop stresses often leads plants to close their stomata, decreasing canopy stomatal conductance and transpiration, which in turn raises foliar biophysical and biochemical variations (Tan et al., 2019). However, plant stress involves complicated biophysical and biochemical responses, which demands the stress-specific biological index. For instance, LAI is a direct indicator of plant canopy structure features (Ihuoma and Madramootoo, 2019). Stressed plants will lead to fluctuations on plant LAI time series with different patterns, which will raise the higher radiations of a stressed crop (Ballester et al., 2019). Jiang et al. (2020) proposed two LAI-derived soil water stress functions in order to quantify the effect of soil water stress on the processes of leaf expansion and leaf senescence caused by the stresses. Their results showed that the LAI-based model is sensitive to the stress-derived leaf expansion. Zhu et al. (2021) developed a vegetation index-derived model from the observed hyperspectral data of winter wheat to detect plant salinity, and the results show that the salt-sensitive blue, red-edge, and near-infrared wavebands have great performances on the detection of plant salinity stress.

Unlike the LAI, the photochemical associated indices directly account for leaf physiological changes such as photosynthetic pigment changes (Gerhards et al., 2019). Photochemical reflectance is the dominant factor determining leaf reflectance in the visible wavelength (400 nm–700 nm), with chlorophyll considered the most relevant photochemical index for crop stress diagnosis (Zhou et al., 2021b). Under prolonged infestations, LCC often decreases, leading to a reduction in green reflection and an increase in blue and red reflections. The spectral radiation characteristics between the red and near-infrared regions are sensitive to LCC and CCC. The ratio of red and near-infrared has shown a strong sensitivity to the crop stress-associated chlorophyll content changes (Ryu et al., 2020). Cao et al. (2019) compared the feasibility of the LCC, net photosynthesis rate, and maximum efficiency of the photosystem on the detection of crop heat stress, and their findings suggest that the maximum efficiency of the photosystem was the most sensitive remote sensing agent to heat stress and had the ability to indicate the start and end of the stress at the slight level or the early stage. Shivers et al. (2019) used the visible-shortwave infrared (VSWIR) spectra to model the non-photosynthetic vegetation and soil background from the airborne visible/infrared imaging spectrometer (AVIRIS), and their findings revealed that the increase in temperature residuals is highly consistent with the infestation of crop stresses.




2.2.2 Machine/deep learning-based methods

Although many studies have been focusing on crop stress detection using biological characteristics, most of the applications require self-adjusted algorithms to improve the robustness and generalization of the model for complicated nature conditions. Among the crop stress detection techniques, machine learning and deep learning have played a key role. For machine learning approaches, supervised models have been proven effective in data mining from the training dataset (Kaneda et al., 2017). The data flow in the machine learning models includes feature extraction, data assimilation, optimal decision boundary searching, and classifiers for stress diagnosis, whereas supervised learning deals with classification issues by representing the labeled samples. Such models aim to find the optimal model parameters to predict the unlabeled samples (Harrington, 2012).

Deep learning has many neural layers that transform the sensitive information from input to output (i.e., healthy or stressed). The most applied perception neural unit is the convolutional neural unit in crop stress detection (Fuentes et al., 2017; Krishnaswamy Rangarajan and Purushothaman, 2020). Generally, the convolutional neural unit consists of dozens of layers that process the input information with convolution kernel. In the area of crop stress detection, deep learning contributed significantly to the analysis of plant stress high-level features (Jin et al., 2018). In crop stress image classification, the multisource images are usually used as input to extract the stress dynamics during their development, and a diagnostic decision is used as output (e.g., healthy or diseased) (An et al., 2019; Cruz et al., 2019). Barbedo (2019) developed a convolutional deep learning model to classify individual lesions and spots on plant leaves. This model has been successfully used in the identification of multiple diseases; the accuracy obtained in this model was 12% higher than that of traditional models. Lin et al. (2019) applied a convolutional kernel-based U-Net to segment powdery mildew-infected cucumber leaves. The proposed binary cross-entropy loss function is used to magnify the loss of the powdery mildew-stressed pixels, and the average accuracy for the powdery mildew detection reaches 96.08%.





2.3 Interpretability of deep learning-based models

Although the deep learning models have been successfully applied for vegetation stress-monitoring applications, most of the existing deep learning-based approaches have difficulty in explaining plant biophysical and biochemical characteristics due to their black box representations of the features extracted from intermediate layers (Shi et al., 2021). Thus, the interpretability of deep models has become one of the most active research topics in the remote sensing-based crop stress diagnosis, which can enhance and improve the robustness and accuracy of models in the vegetation-monitoring applications from the biological perspective of target entities (Brahimi et al., 2019; Too et al., 2019).

Recently, the model interpretability used to disclose the intrinsic learning logic for detection and discrimination of plant stresses has received growing attention (Lillesand et al., 2015). In other words, the interpretability that illustrates the performance of the model on characterizing the specific host–stress interaction guarantees the generalization ability of the model for practice usages. Among the existing models, visualization of the feature representation is the most direct method for improving model interpretability. For example, Behmann et al. (2014) proposed an unsupervised model for early detection of the drought stress in barley wherein the intermediate features produced by this model highly related with the sensitive spectral bands for drought stress. Another way to improve the interpretability of deep learning models is to construct the network architecture that can bring the network an explicit semantic meaning. For example, Shi et al. (2021) developed a biologically interpretable two-stage deep neural network (BIT-DNN) for the detection and classification of yellow rust from the hyperspectral imagery. Their findings demonstrate that the BIT-DNN showed great advantages in terms of accuracy and interpretability.




2.4 Fast Fourier transform

Traditional receptive fields act only on the central region to extract localized features related to the target of interest.  This limits the necessity of large convolutional kernel on global feature extraction. Recently, there is an increasing interest in applying Fourier transform to deep neural networks to capture global features. As mentioned in the Introduction section, Fourier transform provides an effective perception operation with nonlocal receptive fields. Unlike existing CNNs where a large-sized kernel is used to extract local features, Fourier transform with a small-sized kernel is able to capture global information. For example, Rippel et al. (2015) proposed a Fourier transformation pooling layer that performs like principle component extraction by constructing the representation in the frequency domain. Chi et al. (2019) proposed to integrate the Fourier transforms into a series of convolution layers in the frequency domain.

FFT-based deep learning models use the time-frequency analysis methods to extract the low-frequency host–stress interaction by limiting the high-frequency noises in the frequency domain space (Jakubauskas et al., 2002; Behmann et al., 2014; Ashourloo et al., 2016; Mahlein et al., 2017). FFT is a useful harmonic analysis tool, which has been widely used in reconstruction of vegetation index time series (Roy and Yan, 2020), curve smoothing (Bradley et al., 2007; Shao et al., 2016), and ecological and phenological applications (Jakubauskas, 2002; Sakamoto et al., 2005; Jong et al., 2011). FFT maps the satellite time series signals into superimposed sequences of cosines waves (terms) with variant frequencies, each component term accounting for a percentage of the total variance in the original time series data (Jakubauskas et al., 2002). This process facilitates the recognition of subtle patterns of interest from the complex background noises, which degrade the spectral information required to capture vegetation properties (Huang et al., 2018; Shanmugapriya et al., 2019). For example, El Jarroudi et al. (2017) used the FFT method to characterize temporal patterns of the fungal disease on winter wheat between the observation sites and then achieved the fungal disease monitoring and forecasting at the regional level. Our work advances the abovementioned research front via designing a novel fast Fourier convolutional operation unit that simultaneously uses spatial and temporal information for achieving global feature extraction during the learning process.





3 The proposed fast fourier convolutional deep neural network

To address the challenge of the misclassification of the different plant stresses with similar symptoms, we propose a novel FFC operator to efficiently implement nonlocal receptive fields and fuse the extracted biological information with various timescales in the frequency domain, and then, a new deep learning architecture is developed to retrieve the host–stress interaction and achieve a high-accuracy classification. In this section, we describe the main framework of the proposed FFCDNN in the context of multiple plant stress discrimination from the agent-based biological dynamics.



3.1 The network architecture of the proposed FFCDNN

Figure 1 depicts the main framework of the proposed FFCDNN for multiple crop stress discrimination in the context of Sentinel-2-derived biological agents (i.e., V ILAI and V ILCC). To be specific, a branch structure is designed to respectively prefilter the biochemical dynamics represented by V ILAI and V ILCC time series. For each of the branches, the Fourier kernel is set as the same size as the input size of VILAI and V ILCC time domain (time series) patches, with a size of k × k × K(1); then, the Fourier kernel is pont-wised multiplied by the input biological agent patches. After the Fourier convolution is performed, the ReLU function is implemented to calculate the V ILAI and V ILCC time series magnitude in the frequency domain containing stress-associated biological responses, and the activation feature map, with a size of k × k × K(2), is conducted with Fourier pool layer to highlight the most important stress information and downsampling the feature map.




Figure 1 | The workflow of the FFCDNN, Fast Fourier Convolutional Deep Neural Network framework for the discrimination of multiple plant stresses from Sentinel-2 time series.



Subsequently, the V ILAI and V ILCC feature maps are sent to the hierarchical structure of the class capsule blocks in order to build the part-to-whole relationship and to generate the hierarchical vector features for representing the high-level stress–pathogen interaction. Finally, a decoder is employed to predict the classes based on the length and direction of the hierarchical vector features in the feature space. The detailed information for the model blocks is described below:



3.1.1 Plant photochemical information filter

In this study, an agent-based photochemical information prefilter is set as the preprocessing operator for the input satellite time series. Based on the benchmark study of the existing vegetation agent models for LAI and LCC estimation shown in Appendix A, we use the weighted difference vegetation index (WDVI)-derived LAI, defined as V ILAI, and transformed chlorophyll absorption in the reflectance index/optimized soil-adjusted vegetation index (TCARI/OSAVI)-derived LCC, defined as V ILCC, as the optimal plant photochemical information prefilter on Sentinel-2 bands. And then, the V ILAI and V ILCC time series will be used as the biological agents of the plant canopy structure and plant biochemical state in the follow analysis.




3.1.2 Fast Fourier convolutional layer

The input biological agent (i.e., V ILAI or V ILCC) dynamics extracted from the Sentinel-2 time series can be viewed as sample patch k × k pixel vectors. Each of the pixels represents a class with K(1) time series channels. Then, the 3D patches with a size of k × k × K(1) are extracted as the input of the past Fourier convolution layer.

The FFC is used to decompose the biological agent time series into a series of frequency components with various timescales based on the FFT. Mathematically, FFT decomposes the original time series signal f(t) to the frequency domain by the linear combination of trigonometric functions as follows:

 

where   is the frequency,   is the Fourier coefficient with frequency  , and i is the unit of the imaginary number. It is customary to use a discrete form as follows:

 

where x = 0,1,2,…N – 1 and N is the length of the time series.

Among the frequency-domain components of the biological agents of V ILAI and V ILCC dynamics, the low-frequency components always indicate the soil background or phenological characteristics of the ground entities. The high-frequency region generally represents environmental noises, such as land cover variations or illumination inconsistency. Therefore, considering that the infestation and development of yellow rust and nitrogen deficiency are continuous biological processes on the proxies of V ILAI and V ILCC, we hypothesize that the medium-frequency region represents the yellow rust- and nitrogen deficiency-associated V ILAI and V ILCC fluctuations. Thus, the yellow rust- and nitrogen deficiency-associated responses can be characterized from the background and environmental noises by an optimized activation function. In this study, the ReLU activation function is implemented to calculate the V ILAI and V ILCC time series magnitude in the medium-frequency region, and the activation feature map, with a size of k × k × K(2), is conducted with Fourier pool layer to extract the sensitive V ILAI and V ILCC response in the frequency domain and output the FFC features.




3.1.3 Capsule feature encoder

Considering the host–stress interaction of the plant stresses is a complex biological process. Therefore, modeling the part-to-whole relationship is the most significant evidence for detection and discrimination of plant stresses. We develop a capsule feature encoder to rearrange the extracted V ILAI and V ILCC FFC features, which are the scalar features, into the joint capsule vector features. These joint vector features represent the hierarchical structure of the V ILAI and V ILCC responses to the specific plant stress. It is noteworthy that the extracted V ILAI and V ILCC scalar FFC features themselves respectively represent the biophysical and biochemical response to the plant stress development. Therefore, the joint vector features have great performance to characterize the intrinsic entanglement of host–stress interactions. In order to optimize the learning process between the FFC scalar features and the capsule vector features, and dynamic routing algorithm is introduced as shown in Figure 2.




Figure 2 | The dynamic routing optimization between the FFC scalar features and the capsule vector features.



Specifically, the V ILAI and V ILCC FFC features,  , are firstly normalized by using the normalization weights  . This step smooths the feature values and makes them obey a normal distribution. In addition, this normalization operation is helpful for retraining the vanishing gradients in the back-propagation progress. After that, the normalized FFC features,  , are rearranged that into K3 capsule features with the coupling coefficients of c. Here, c is a series of trainable parameters that encodes the part–whole relationships between the FFC scalar features and the capsule vector features. The translation and orientation of the capsule vector feature represent the class-specific hierarchical structure characteristics in terms of V ILAI and V ILCC responses in the frequency domain, while its length represents the degree a capsule is corresponding to a class. To measure the length of the output vector as a probability value, a nonlinear squash function is used as follows:

 

where   is the scaled vector of  . This function compresses the short vector features to zero and enlarges the long vector features to a value close to 1. The final output is denoted as  .

Finally, the K3 capsule features will be weightily combined into Z class capsules, and the final outputs are the class-wised biologically composed feature =  . In this study, Z is 3 because of the three interested classes (i.e., healthy wheat, yellow rust, and nitrogen deficiency).




3.1.4 Classifier

Based on the characteristics of the class-capsule feature vectors, a classifier is defined to achieve the final detection and discrimination. This classifier is composed of two layers: an activation layer and a classification layer.

Specifically, the active function is defined as follows:

 

where Vh is the class-capsule feature corresponding to class   indicates the operator of 1-norm. In fact, the orientation of the   represents the instantiation parameters of the biological responses for the class h, and the length represents the membership that the feature belongs to class h. And then, an argmax function is used to achieve the final classification by seeking the largest length of  . The argmax function is defined as follows:








4 Materials and experiments

In this study, we use nitrogen deficiency and the yellow rust as the study cases for model testing and evaluation. In order to comprehensively test and evaluate the classification accuracy, robustness, and generalization of the proposed model, we collected two types of the data: 1) the high-quality labeled dataset under the controlled field conditions; 2) the ground survey dataset under the natural field conditions. The former is used for training and optimizing the proposed model, and the latter is used for testing and evaluating the generalization and transferability of the well-trained model in the actual application cases. The detailed information is described as follows:



4.1 Study sites

To avoid the fungus contamination on the other groups, we respectively carried out two independent experiments under similar environmental conditions by recording continuous in-situ observations of: a) yellow rust infestation from 20 April to 25 May 2017 at the Scientific Research and Experimental Station of Chinese Academy of Agricultural Science (39°30′40″N, 116°36′20″E) in Langfang, Hebei province, and b) nitrogen deficiency at the National Experiment Station for Precision Agriculture (40°10′6″N, 116°26′3″E) in Changping District, Beijing, China. The measurement strategies focused on eight key wheat growth stages (i.e., jointing stage, flag leaf stage, heading stage, flowering stage, early grain-filling stage, mid grain-filling stage, late grain-filling stage, and harvest stage). The detailed observation dates and the canopy photographs were listed in Table 1. The same experiments were repeated from 18 April to 31 May 2018.


Table 1 | The state of vegetation at each measurement date.



For the yellow rust experiment, we used the wheat cultivar ‘Mingxian 169’ due to its susceptibility to yellow rust infestation. There was a control group and two infected groups of yellow rust (two replicates of inoculated treatment). Each field group occupied 220 m2 of field campaigns in which there were eight planting rows. For the control group, a total of eight plots (one plot in each row) with an area of 1 m2 were symmetrically selected in the field for hyperspectral observations and biophysical measurements. For the disease groups, the concentration levels of 5 mg 100–1mL–1 and 9 mg 100–1mL–1 spore solution were implemented to generate a gradient in infestation levels; eight plots were applied for sampling in each replicate. All treatments applied 200 kg ha–1 nitrogen and 450 m3 ha–1 water at the beginning of planting.

For the nitrogen deficiency experiment in Changping, the popular wheat cultivars ‘Jingdong 18’ and ‘Lunxuan 167’ were selected. There were two replicate field groups with the same nitrogen treatment applied. Each field group occupied 600 m2 of field campaigns in which three fertilization levels were used in 21 planting rows of field land (seven rows per treatment) at the beginning of planting, 0 kg ha–1 nitrogen (deficiency group), 100 kg ha–1 nitrogen (deficiency group), and 200 kg ha–1 nitrogen (control group). Similarly to Langfang, all treatments received 450 m3 ha–1 water at planting.




4.2 The simulation of Sentinel-2 bands

The simulated Sentinel-2 bands are regarded as the pure spectral signatures without the effects of atmosphere conditions. For this purpose, the reflectance and transmittances of the sampling plots were firstly collected using an ASD FieldSpec spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA). In each plot, 10 scans were taken at 1.2 m above the wheat canopy. The spectroradiometer was fitted with a 25° field-of-view bare fiber-optic cable and operated in the 350-nm–2,500-nm spectral region. The sampling interval was 1.4 nm between 350 nm and 1,050 nm and 2 nm between 1,050 nm and 2,500 nm. A white spectral reference panel (99% reflectance) was acquired once every 10 measurements to minimize the effect of possible differences in illumination. Only the bands in the range of 400 nm–1,000 nm were adopted in this study in order to match the visible-red edge-near infrared bands of Sentinel-2 and avoid bands below 400 nm and above 1,000 nm that were affected by noises (Shi et al., 2017b). In order to keep radiance consistence, the sampling was conducted at the same period of time between 11:00 and 13:30 local time under a cloud-free sky.

Subsequently, we integrated the field canopy hyperspectral data with the sensor’s relative spectral response (RSR) function to simulate the multispectral bands of Sentinel-2. The formula is given as follows:



where Rsentinel–2 is the simulated multispectral channel of Sentinel-2 sensor; λstart and λend represent the beginning and ending reflectance wavelength of Sentinel-2’s corresponding channel, respectively; Rground is the ground truth canopy hyperspectral data; and RSR is the relative spectral response of Sentinel-2 sensor (https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/). Both the Rground and RSR are the functions of wavelength.




4.3 Collection of ground truth plant parameters

The plant LAI and LCC were synchronously measured on the same place where the canopy spectral measurements were made. The LCC was measured by the Dualex Scientific sensor (FORCE-A, Inc., Orsay, France), a handheld leaf-clip sensor designed to nondestructively evaluate the content of chlorophyll and epidermal flavonols. The LCC values were collected with the default unit, which were used preferentially because of the strong relationship between their digital readings and real foliar chlorophyll. Considering the canopy structure-derived multiple scattering process, the first three leaves from the top are regarded as the most effective one with maximum photosynthetic absorption rate, which not only represent the average growth state of the whole plant but also contribute most to the canopy reflected radiation measured by our observations. Therefore, for each sampling plot, the first, second, and third wheat leaves, from the top of 10 randomly selected plants (30 leaves for each plot), were chosen for LCC measurements. For the LAI acquisition, the LAI-2200 Plant canopy analyzer (Li-Cor Biosciences Inc., Lincoln, NE, USA) was used in each 1 m × 1 m subplot.




4.4 Assessment of ground truth plant stress severity

In this study, the disease index (DI) was used to measure the severity of yellow rust, and the fertilization level was used to measure the severity of nitrogen deficiency. Specifically, the DI was calculated using the method mentioned in Zhang et al. (2012). It is noted that because slight stress (DI< 20) generates an invisible influence on wheat yield and does not trigger enough spectral responses on the top-of-canopy (TOC) reflections of the 10 m × 10 m Sentinel-2 pixels, the samples with DI< 20 were labeled as “healthy wheat”; otherwise, they were labeled as “yellow rust.” In order to guarantee the uniformed bias in each observation, all leaves were manually inspected by the same specially assigned investigators according to the National Rules for the Investigation and Forecasting of Plant Diseases (GB/T 15795-1995). For nitrogen deficiency, three fertilization levels (i.e., 0 kg ha–1, 100 kg ha–1, and 200 kg ha–1) were controlled in our experiments; here, we labeled the fertilization level of 200 kg ha–1 as “healthy wheat”; otherwise, they were labeled as “nitrogen deficiency.” The distribution of the collected DI of yellow rust and the fertilization levels of nitrogen deficiency is shown in Figure 3.




Figure 3 | The distribution of the (A) collected disease index (DI) of Yellow Rust and (B) fertilization levels of Nitrogen Deficiency.






4.5 The ground survey dataset under natural field conditions

In order to evaluate the generalization and transferability of the proposed model in actual applications under natural conditions, we collected the actual Sentinel-2 time series and the ground truth data in two different sites, one is located in the Ningqiang county (37°35′51″N, 118°35′19″E), Shaanxi province, 2018, and another one is located in Shunyi district (41°20′41″N, 116°24′8″E), Beijing, 2016. In Ningqiang county, a total of nine cloud-free Sentinel-2 images and 55 ground truth plots were collected. In Shunyi district, a total of six cloud-free Sentinel-2 images and 32 ground truth plots were collected. All of the collected Sentinel-2 images were atmospherically corrected using the SEN2COR procedure, converting top-of-atmosphere (TOA) reflectance into TOC reflectance. TOC products were the result of a resampling procedure with a constant ground resampling distance of 10 m for visible and near-infrared bands (B2, B3, B4, and B8) and 20 m for red-edge bands (B5, B6, B7). The spatial resolution of the red-edge bands (B5, B6, B7) was homogenized to 10 m using nearest neighbor resampling. Such process was conducted in the ESA SNAP 6.0 software. The basic principle of the nearest neighbor resampling was described in the study by Roy and Yan (2020). The overview of the sampling plots and Sentinel-2 collection is shown in Figure 4.




Figure 4 | False-color maps of the experimental sites of Ningqiang county, Shaanxi (bottom left), and Shunyi district, Beijing (top right). Overview of the Sentinel-2 imagery used.



In both surveys, LAI and LCC values were measured by the same approaches used in the experiments under controlled field conditions. Each sample was collected in an area of approximately 10 m × 10 m (corresponding to the spatial resolution of Sentinel-2 bands), of which the center coordinates were recorded using a GPS with differential correction (accuracy in the order of 2–5 m). The sketch of the sampled site setting is shown in Figure 5.




Figure 5 | The measurement sketch of the synchronously ground LAI and LCC truth data collection.



DIs of yellow rust were measured by the same method used in the experiments under controlled field conditions. In each plot, a plot was labeled as “yellow rust” when DI > 20. On the other hand, nitrogen deficiency in each plot was investigated by requesting the history of fertilizer application to the local farmers, and a plot was labeled as “nitrogen deficiency” when the history of fertilizer application was < 150 kg/ha. The statistical distribution of the labeled classes was shown in Figure 6.




Figure 6 | The distribution of the labeled classes in (A) Ningqiang and (B) Shunyi.







5 Results and discussion

In this section, the proposed model is tested and evaluated in three different aspects, including the model performance on detecting and discriminating the yellow rust and nitrogen deficiency, computing efficiency and robustness, and the interpretability assessment.

Firstly, to test the performance of the proposed FFCDNN on detection and discrimination of yellow rust and nitrogen deficiency, three representative methods, including BIT-DNN (Shi et al., 2021), which represents the state-of-the-art interpretable learning model, AlexNet (Lv et al., 2020), which represents the advanced deep learning model on remote sensing objective detection, and support vector machine (SVM), which represents the typical machine learning method. Specifically, for CapsNet, the network architecture is proposed in Shi et al. (2021). For AlexNet, the network architecture and hyperparameter setting is referred to Han et al. (2017). For the configuration of the SVM classifier, the radial basis function (RBF) kernel is used in the SVM classification frame, and a grid-based approach proposed by Rumpf et al. (2010) is used to specify the parameter C and.

Regarding the model assessments, six evaluation metrics, including F1 score, average accuracy, producer’s accuracy, user’s accuracy, Kappa value, and computing time, are employed in this study to evaluate the classification accuracy and robustness. The definitions of these matrices are formulated in Mahlein et al. (2017) and Lv et al. (2020).

Secondly, for the interpretability assessment of the model, a post-hoc analysis is used to expose the learning process and feature representations of the data life in the proposed model. Specifically, a canonical discriminant analysis is first used to measure the intra-class distance and the separability in each learning stage of the model. The definition of the canonical discriminant analysis is described in our previous study (Shi et al., 2017a). And then, the coefficients of determination (R2) between the generated biologically composed features and the ground-measured severity of yellow rust and nitrogen deficiency are calculated based on univariate correlation analysis.



5.1 Model test on detection and discrimination of the yellow rust and nitrogen deficiency



5.1.1 Experiment 1: model testing on the simulated Sentinel-2 bands under controlled field conditions

The first experiment is to evaluate the performance of the proposed model on the detection and discrimination of yellow rust and nitrogen under controlled conditions. For model testing and validation, 5-fold cross-validation is employed. The comparison of the classifications of the proposed FFCDNN, BIT-DNN, AlexNet, and SVM is shown in Table 2. Our results show that for the model testing process, the proposed FFCDNN achieves >90% classification accuracy that was consistent with the performance of the baseline models. Nevertheless, for the model evaluation process, the proposed method achieves the best performance with 92.12% overall accuracy, 6.51% higher than the second best model (i.e., BIT-DNN). These findings suggest that the proposed model has great robustness and generalization for the plant stress detection and classification. In addition, it is of note that the misclassification mainly occurs between healthy wheat and nitrogen deficiency. In terms of computing efficiency, although the computing time of the proposed model is not the best among the baseline, it is highly improved from the convolution-based deep learning model.


Table 2 | The assessment of the proposed model and the baseline models in terms of producer’s accuracy (PA), user’s accuracy (UA), F1 score (F1), overall accuracy (OA), Kappa, and computing time (CT).






5.1.2 Experiment 2: model applications on the actual Sentinel-2 images under natural field conditions

The second experiment aims to further evaluate the robustness and transferability of the proposed model on the actual Sentinel-2 images under natural field conditions. For this purpose, the pretrained models in the last section are directly used in the pixel-wise classification of yellow rust and nitrogen deficiency on the actual Sentinel-2 time series in Ningqiang and Shunyi, and the ground truth samples are used as validation. The accuracy assessments of the pretrained SVM, CNN, and FFCDNN are listed in Table 3. In the comparison of the classification results in Table 2, it is clear that the proposed FFCDNN achieves the best and the most robust classification for the multiple plant stresses; the overall accuracy (i.e., 91.14% for Ningqiang and 91.63% for Shunyi) is consistent with the model evaluation results under controlled conditions (Table 2). In addition, the computing efficiency is highest among the deep learning-based baseline models. Overall, these results suggest that the proposed FFCDNN provides a more stable and robust performance than the baseline models for rapid noninvasive detection of plant stress in a fully automated and reproducible manner.


Table 3 | The accuracy assessment of the pretrained models on actual Sentinel-2 time series in terms of producer’s accuracy (PA), user’s accuracy (UA), F1 score (F1), overall accuracy (OA), Kappa, and computing time (CT).



For the demonstration purpose, the FFCDNN-based classification maps of the yellow rust and nitrogen deficiency in Ningqiang and Shunyi are respectively illustrated in Figures 7 and 8. The spatial distributions of yellow rust and nitrogen deficiency in Ningqiang and Shunyi are consistent with our field survey. Specifically, for the Ningqiang case, yellow rust is mainly located around the river where ideal moisture is provided for the infestation and development of yellow rust (see the zoomed in window in Figure 7), and nitrogen deficiency is distributed around the edge of the county where the high transportation cast results in poor fertilization management. For the Shunyi case, nitrogen deficiency mainly occurs in the edge of the field patches (see the zoomed in window in Figure 8), and yellow rust slightly occurs in the west of the study area. These monitoring results are double-checked through telephone interviews with the local plant protection department.




Figure 7 | The occurrence monitoring and mapping of yellow rust in Ningqiang county, Shaanxi province (the zoomed in window shows the classification in the subregion).






Figure 8 | The detection and discrimination of yellow rust and nitrogen deficiency in Shunyi district, Beijing (the zoomed in window shows the classification in the subregion).







5.2 The interpretability assessment of the model

Interpretability is one of the important matrices that measure bias and provide an explainable reason for prediction decisions from a model. In this study, the interpretability assessment mainly focuses on the data life in the proposed FFCDNN model and the representations of the intermediate features.



5.2.1 The data life in the proposed FFCDNN model

In this study, two significant modules are proposed to characterize the yellow rust- and nitrogen deficiency-associated information from the Sentinel-2 time series, thus, 1) the FFC feature extraction and 2) the capsule feature generation. In order to evaluate the effects of each module on the inter-class separability, we conduct a canonical discriminate analysis to measure the clusters of the intermediate features. In the canonical discriminate analysis, the first two canonical discriminant functions are employed to establish the projective scatter plots. In addition, we gradually add the modules into the FFCDNN framework and compare their effects on classification accuracy. The visualization of the comparison is illustrated in Figure 9.




Figure 9 | The visualization of the comparison for showing the effects of each module in FFCDNN on the canonical discriminate analysis and overall accuracy. Each column is a model with the modules on the top. Red highlights the main difference of the current model with the previous one.





5.2.1.1 The base model without the characterized modules

The base model architecture without the characterized modules is similar to a multilayer perception (MLP), thus, the V ILAI and V ILCC time series produced by the biological feature retrieval layer L(1) will directly input into the classifier L(5). The inter-class separability of the time series features is shown in the second column of Figure 9, and the overall accuracy achieved by the base model is approximately 51.7%.




5.2.1.2 Adding the FFC layer

In the FFCDNN, the FFC feature extraction is the most important step to extract the yellow rust- and nitrogen deficiency-associated V ILAI and V ILCC frequency-domain features from the background noises. The canonical discriminate analysis indicates that by comparison with the time series features, the extracted frequency-domain features reveal the greater clusters between the different classes (the third column of Figure 9), and the overall accuracy reaches approximately 79.2%.




5.2.1.3 Adding the capsule feature encoder

The capsule feature encoder is the most intelligent part of the proposed FFCDNN, which encapsulates the extracted scalar biological features into the vector features with the explicit biological representation of the target classes. The evident clusters and class edges can be figured out in the canonical projected scatter plot (the fourth column of Figure 9), and the final overall accuracy reaches 92.8%.





5.2.2 The representations of the intermediate features

The primary contribution of this study is to model the part-to-whole relationship between the Sentinel-2-derived biological agents (i.e., V ILAI and V ILCC) and the specific stresses by encapsulating the scalar FFC features into the low-level class-associated vector structures. The philosophy behind the biologically composed features is that the vector features provide a hierarchical structure to represent the entanglement of the V ILAI and V ILCC fluctuations associated with yellow rust and nitrogen deficiency and provide evidence for the detection and discrimination of yellow rust and nitrogen deficiency.

The coefficients of determination (R2) between the components of the generated biologically composed features and the ground-measured severity of yellow rust and nitrogen deficiency are calculated based on univariate correlation analysis (Figure 10). It is noted that according to Nyquist theorem, the maximum frequency component after FFT is 26 HZ; thus, the dimensionality of the generated biologically composed features will be less than 52. Our results illustrate that for yellow rust, both the V ILAI and V ILCC frequency features located in the low-frequency regions (2-4 HZ) highly relate with the severity levels of yellow rust, which means that the host–pathogen interaction of yellow rust may induce chronic impacts on the V ILAI and V ILCC fluctuation. These findings are in agreement with the biophysical and pathological characteristics of yellow rust that were reported in our previous study (Shi et al., 2018). For nitrogen deficiency, the associated V ILAI fluctuations are mainly located in the frequency regions of 5 15 Hz, and the associated V ILCC fluctuations are mainly located in the frequency regions of 6 13 Hz. This means that the nitrogen deficiency may give rise to more acute V ILAI and V ILCC responses than that of yellow rust on the Sentinel-2 time series. For instance, as reported in Behmann et al. (2014), the occurrence of nitrogen deficiency in green plants is associated with poor photosynthesis rates and further leads to abnormal LAI and LCC (i.e., reduced growth and chlorotic leaves). In conclusion, the proposed FFCDNN is able to capture periodic patterns and frequencies in the data directly during the learning process, making it more specialized for crop stress detection. In addition, by integrating FFTs into the model, FFCDNN can be more computationally efficient in scenarios where capturing frequency information is crucial for good performance.




Figure 10 | The coefficients of determination (R2) between the components of the generated biologically composed features and the ground-measured severity of (A) yellow rust and (B) nitrogen deficiency.








6 Conclusion

The proposed FFCDNN model differs from existing approaches in the detection and discrimination of multiple plant stresses in the following three aspects: 1) Our model primarily considers plant biochemical information specific to the stresses. 2) The proposed FFC kernel represents the first attempt to use the FFT-based kernel in a deep neural network for biological dynamic extraction from the Sentinel-2 time series. 3) The well-designed capsule feature encoder demonstrates excellent performance in modeling the part-to-whole relationship between the extracted biological dynamics and the host–stress interaction. These three characteristics improve the interpretability of our model for decision-making, akin to human experts.

However, two challenges persist in the practical use of the proposed implementation. Firstly, the performance of our model is inherently limited by the accurate extraction of the biochemical prefilter. The Sentinel-2-based V ILAI and V ILCC estimations struggle to represent the real LAI and LCC values accurately, leading to the underestimation of the biological dynamics of specific stresses. Secondly, errors from the gap conditions and the co-registration of Sentinel-2 imagery introduce uncertainty in the modeling processes. These are the primary reasons for the performance decline in the practical application of the FFCDNN. Future research will investigate whether integrating information provided by multisource satellites into the FFCDNN framework could compensate for the LAI and LCC estimations and gap-related error, thereby further improving accuracies in detecting and discriminating yellow rust and nitrogen deficiency.

In conclusion, modeling the biochemical progress of specific plant stress is a key factor that influences the effectiveness of deep learning applications in the remote sensing detection and discrimination of multiple plant stresses. In this study, we proposed the FFCDNN model to analyze the stress-associated V ILAI and V ILCC biological responses from Sentinel-2 time series to achieve multiple plant classifications at the regional level. Comparisons with state-of-the-art models reveal that the proposed FFCDNN exhibits competitive performance in terms of classification accuracy, robustness, and generalization ability.
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The rapid development of image processing technology and the improvement of computing power in recent years have made deep learning one of the main methods for plant disease identification. Currently, many neural network models have shown better performance in plant disease identification. Typically, the performance improvement of the model needs to be achieved by increasing the depth of the network. However, this also increases the computational complexity, memory requirements, and training time, which will be detrimental to the deployment of the model on mobile devices. To address this problem, a novel lightweight convolutional neural network has been proposed for plant disease detection. Skip connections are introduced into the conventional MobileNetV3 network to enrich the input features of the deep network, and the feature fusion weight parameters in the skip connections are optimized using an improved whale optimization algorithm to achieve higher classification accuracy. In addition, the bias loss substitutes the conventional cross-entropy loss to reduce the interference caused by redundant data during the learning process. The proposed model is pre-trained on the plant classification task dataset instead of using the classical ImageNet for pre-training, which further enhances the performance and robustness of the model. The constructed network achieved high performance with fewer parameters, reaching an accuracy of 99.8% on the PlantVillage dataset. Encouragingly, it also achieved a prediction accuracy of 97.8% on an apple leaf disease dataset with a complex outdoor background. The experimental results show that compared with existing advanced plant disease diagnosis models, the proposed model has fewer parameters, higher recognition accuracy, and lower complexity.




Keywords: deep learning, plant disease recognition, convolutional neural network (CNN), transfer learning, lightweight networks




1 Introduction

As the population grows, the demand for food will increase dramatically, and it is particularly important to minimize food losses due to pests and diseases, which not only reduce food production but also affect biodiversity, food prices and human health, while trying to increase yields (Ristaino et al., 2021; Sileshi and Gebeyehu, 2021). Early prevention and control of plant diseases can recover some of the agricultural economic losses and improve the yield and quality of agricultural production and food safety (Savary et al., 2019; Gold, 2021). Thus, the diagnosis and control of crop diseases are crucial for food production. The traditional method of diagnosing plant pests and diseases is the visual observation by plant protection specialists or people with experience in planting. However, this approach relies heavily on experience and subjective cognition and is prone to bias, which can lead to misdiagnosis. (Bai et al., 2018; Barbedo, 2018). Moreover, in some underdeveloped or remote areas, there is often a shortage of experts. Therefore, one kind of portable, fast, and accurate plant disease automatic identification system is significant for the timely diagnosis of crop diseases.

Currently, the automatic diagnosis of plant diseases primarily relies on computer vision (CV) techniques. The predominant methods in this field can be categorized into two groups: machine learning-based approaches and deep learning-based approaches (Saeed et al., 2021; Uguz and Uysal, 2021). The widely used machine learning methods are the Bayesian model (BM), k-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), random forest tree (RF), etc. (Liakos et al., 2018; Chen et al., 2020). Within deep learning-based methods, many outstanding architectures such as ResNet, Inception, and DenseNet have achieved excellent results in image classification tasks. (Szegedy et al., 2015; He et al., 2016; Huang et al., 2017). Machine learning has made significant progress in the field of plant disease and pest recognition. However, it has a high degree of subjectivity, heavily relies on manual feature selection, is time-consuming, and has low efficiency (Li et al., 2021; Albattah et al., 2022b). In comparison, using deep learning methods is simpler and more efficient.

Recent studies demonstrated the effectiveness and feasibility of deep learning in plant disease classification tasks (Abbas et al., 2021; Deng et al., 2021; Elaraby et al., 2022). The end-to-end training approach avoids the drawbacks of manual feature extraction. Although there are many advanced deep CNN models for crop disease diagnosis, it is still difficult to promote this method on a large scale. The key reason is that complex models lead to high computational costs, making it difficult to deploy on simple mobile devices. In the agricultural field, using complex laboratory equipment with GPUs restricted the application and promotion of artificial intelligence, as growers cannot undertake the additional costs brought by complex equipment (Karthik et al., 2020; Chen et al., 2022a; Hassan and Maji, 2022). Therefore, lightweight models with fewer parameters, faster training speeds, and higher accuracy are a more promising research trend (Atila et al., 2021), which can further promote the popularization of automatic crop disease diagnosis methods. To address the aforementioned challenges, this paper proposes an improved MobileNetV3, which has low parameter count, high accuracy, and short training cycles. Specifically, we added two skip connections after the first bneck layer of the original feature extraction network. The low-level features extracted by the first bneck layer are used to compensate for the 7th and 11th bneck layers, thereby enriching the input features of the higher layers. Moreover, to achieve better results, different weights are assigned to the input feature maps of the skip connection parts, and the improved whale optimization algorithm is used to automatically adjust the weight parameters. Compared to manual hyperparameter tuning, the automatic optimization algorithm saves a significant amount of time and results in better model performance. The improved whale optimization algorithm enhances the search capability for global optimal parameters and convergence speed. Secondly, the Bias loss replaces the standard cross-entropy loss function. The Bias loss function can reduce the errors caused by redundant features during the model learning process. Another reason for the superior performance of the method proposed in this paper is the abandonment of the traditional ImageNet pre-training dataset. The constructed network is pre-trained on a large-scale plant classification task dataset. Transfer learning on similar objects further enhances the performance of the model. We refer to the re-formed lightweight network as MS-Net, which is mainly used for crop disease recognition. Experimental results demonstrate the effectiveness and feasibility of the proposed method. Compared to other SOTA models in the research field, MS-Net achieves the highest accuracy with lower parameter count, computational complexity, and memory size. The main contributions of this study are as follows.

	We propose a new lightweight network, MS-Net. This network uses MobileNetV3 as the feature extraction network, embeds skip connections into the network, and adjusts the loss function, thereby improving the model’s accuracy and convergence speed.

	The improved WOA (Whale Optimization Algorithm) is used to optimize the weight parameters in the skip connections.

	Bias loss replaces the traditional cross-entropy loss, and this loss function can optimize the errors during the feature learning process, thereby enhancing the performance of the lightweight model.

	The proposed model is pre-trained on a plant classification task dataset, which, compared to pre-training on ImageNet, can further improve the accuracy of crop disease recognition tasks.



The rest of this paper is organized as follows: The “Related Work” section introduces and summarizes recent work related to this research; the “Materials and Methods” section describes the materials used in the experiments, relevant concepts, and the proposed method, as well as summarizes the experimental procedure; the “Experimental Results and Discussion” section includes the experimental setup and results, and evaluates and compares the experimental results with other current advanced methods; finally, the “Conclusion” section summarizes this research and proposes future research directions.




2 Related work

In this section, various recent works related to this study are described, and relevant methods based on machine learning and deep learning for plant disease detection are summarized. Due to the limitations of machine learning methods and the flexibility of convolutional neural networks, deep learning approaches are more common in research.

Machine learning methods have fewer parameters, shorter training cycles, and do not require a large amount of training data, making them easier to deploy in practice (Albattah et al., 2022a). However, the challenges lie in complex data preprocessing and accurate manual feature extraction processes. Sharif et al. (2018) proposed a method for automatic detection and classification of citrus diseases based on optimized weighted segmentation and feature selection. The contrast of input images is enhanced using Top-hat filters and Gaussian functions, and the weighted segmentation method using chi-square distance and threshold functions is employed to extract the enhanced lesion points. The results show that the preprocessing method further improves the accuracy of lesion segmentation. Manually extracted features still contain many noisy features, Tan Nhat et al. (2020) used Adaptive Particle-Grey Wolf metaheuristic (APGWO) to screen extracted mango leaf pathology features and combined them with artificial neural networks (ANN) to detect early mango leaf diseases. Common types of features include texture features, geometric features, statistical features, etc., and multiple features can be used in combination. Pantazi et al. (2019) used the GrabCut algorithm to segment sample images and extracted histogram features of the segmented samples using Local Binary Patterns (LBP). Li et al. (2020) employed the Gray-Level Co-occurrence Matrix (GLCM) to extract texture features from multispectral images and constructed a Binary Logistic Regression (BLR) model for cotton root rot disease classification. Experiments showed that the spectral model is suitable for more severely infected cotton fields, while the spectral-texture model is more suitable for low or moderately infected cotton fields. Different classifiers can also be combined to further improve classification accuracy, Sahu and Pandey (2023) proposed a novel hybrid Random Forest Multi-Class Support Vector Machine (HRF-MCSVM) method for plant leaf disease detection. Experimental results on PlantVillage showed that this method performs better than popular standalone classifiers.

A series of deep learning methods, represented by convolutional neural networks, have attracted widespread attention from researchers. However, their inherent dependence on high-cost computational resources limits their development space. Fortunately, in recent years, many scholars have noticed such issues and started to study the application of lightweight networks in plant disease recognition. Nandhini and Ashokkumar (2022) used the improved Henry’s Law Constant Gas Solubility Optimization algorithm to optimize the hyperparameters of the pre-trained DenseNet-121, achieving a classification accuracy of 98.7% for various plant disease classification tasks on PlantVillage. Amin et al. (2022) utilized pre-trained EfficientNetB0 and DenseNet-121 to extract deep features from corn plant images. By extracting and fusing deep features from different CNNs to generate more complex feature sets, the limitations of single lightweight CNNs in feature extraction are compensated, thereby improving classification accuracy. Zhao et al. (2022) proposed a CNN that combines Inception, residual structures, and embedded attention mechanisms, and conducted training and testing on three plant disease image datasets in PlantVillage. With a model size of 19.1 MB, they achieved a classification accuracy of 99.55%. Chen et al. (2022b) proposed an improved ResNet-18 method for disease recognition in peanut leaf datasets and PlantVillage datasets. Channel attention mechanisms were inserted into the model to enhance feature extraction capabilities, and channel pruning techniques were used to remove unimportant channels to reduce model parameters and complexity. Compared to the baseline model, the compressed model’s parameter count was reduced by 57.85%. Wang et al. (2021) formed a trilinear convolutional neural network consisting of VGG-16, InceptionV3, and ResNeXt-101 through weight sharing methods and compared the effects of no sharing, partial sharing, and complete sharing on model performance. The weight sharing mechanism can reduce the parameter count of the fused network and improve network performance. In the PlantVillage dataset test, the fully shared method based on ResNeXt-101 achieved the highest accuracy of 99.7% with 361.24M parameters. Notably, the fully shared method based on InceptionV3 had a 0.1% lower accuracy than the former but had only 91.13M parameters, seemingly having more competitive potential. Moreover, lightweight models have limited feature extraction capabilities, and in cases with fewer data samples, the network’s few-shot learning ability is more challenging. Liu and Zhang (2023) proposed an improved InceptionV3 network for few-shot learning in the plant disease diagnosis domain, achieving a prediction accuracy of 99.45% with a total of 120 training samples in four apple disease categories.

The existing research achievements of machine learning and deep learning in plant disease detection and classification are shown in Table 1. Although the aforementioned studies tend to favor relatively lightweight network models, it is still difficult to achieve an ideal balance between accuracy and size. These studies generally use complex networks or fused networks to achieve higher accuracy and employ network compression techniques to reduce the model’s parameter count(Wang et al., 2021; Zhao et al., 2022; Zhu et al., 2022). However, network compression is a highly challenging task, making it difficult to effectively balance accuracy and latency(Hinton et al., 2015; Garg et al., 2023).


Table 1 | Research related to machine learning and deep learning in plant disease identification.






3 Materials and methods



3.1 Dataset and pre-processing

Three datasets were selected for the experiment: the PlantVillage (PV) (Hughes and Salathe, 2015), the Plant Pathology 2020 - FGVC7 (Thapa et al., 2020) apple leaf dataset, and Pl@ntNet-300K (Garcin et al., 2021). The PV dataset is popular in the plant disease classification task. It consists of healthy and diseased images of 14 crops with 38 different categories and 54,305 images. The dataset was captured in a controlled environment where the images were stripped of complex backgrounds, and only the individual leaves were retained. Therefore, the apple leaf dataset from the Plant Pathology 2020-FGVC7 Kaggle competition was used to further evaluate the model’s performance in a realistic field environment. This dataset consists of 3651 high-quality images of symptoms of multiple apple leaf diseases and contains four states of apple black star disease, cedar apple rust, multiple diseases, and healthy leaves. All images were taken in outdoor environments containing complex background conditions; each image has multiple leaves. According to the official description, this dataset has 1821 labeled images for training and testing, and the remaining unlabeled images are used to evaluate the participants’ performance. Therefore, only the 1821 annotated images from the FGVC7 Apple Leaf dataset were used as the experimental dataset in this work. The proposed model is pre-trained on Pl@ntNet-300K, a plant species dataset built from the Pl@ntNet citizen observatory database, which consists of 306,146 plant images covering 1,081 species, but excluding plant diseases.

A portion of the PV dataset and the FGVC7 apple leaf dataset are shown in Figure 1, and the dataset was expanded using preprocessing techniques such as horizontal flipping, rotating, cropping, and resizing to prevent the model from over-fitting during training. In practical training, the image size of the apple leaf dataset is cropped to 512×512, while the PV dataset is cropped to 224×224.




Figure 1 | Example images of PlantVillage dataset and Plant Pathology 2020 - FGVC7 apple leaf disease dataset.






3.2 Lightweight model

Existing lightweight models include EfficientNet, ShuffleNet, MobileNet, Xception, DenseNet, etc. On the ImageNet classification task, EfficientNet-B1 achieved 78.8% accuracy with 7.8M parameters, EfficientNet-B3 achieved 81.1% accuracy with 12M parameters (Tan and Le, 2019), MobileNet with 4.2M parameters 70.6% accuracy (Howard et al., 2017), and Xception achieved 79% accuracy with 22M number of parameters (Chollet, 2017). These deep learning models have fewer parameters and excellent performance, making them more suitable for deployment on mobile devices.

MobileNet with more balanced performance is a lightweight model designed by the Google team for mobile or embedded application scenarios, where the number of parameters and computations are reduced not only by the shallow network structure, but more importantly by using a depth-separable convolutional structure to replace the traditional standard convolutional structure.

Since some of the convolution kernels for deep convolution in MobileNetV1 may be empty after training, the Inverted Residuals structure is proposed in MobileNetV2 to solve this problem. Sandler et al., 2018 realized that when using the ReLU function, more information is lost when the dimensionality of the input features is relatively low, while more information is retained when the dimensionality of the input features is high, so the expansion layer is added to boost the input features before deep convolution. After the deep convolution is completed, a 1×1 convolution kernel is used to reduce the dimensionality of the output features. In addition, linear bottleneck have been proposed in MobileNetV2 to replace some of the ReLU with linear activation functions (Sandler et al., 2018). MobileNetV3 improves upon MobileNetV2 by renaming the basic network unit bottleneck to bneck, incorporating the squeeze-and-excite (SE) attention mechanism, utilizing Network Architecture Search (NAS) to optimize the model structure, and redesigning the time-consuming structure. In the ImageNet classification task, MobileNetV3-Large 1.0 achieved a Top-1 accuracy of 75.2% with 5.4 million parameters (Howard et al., 2019).




3.3 Transfer learning

Deep learning requires massive amounts of sample data to train the model, which can lead to limited model performance improvement and overfitting if the labeled dataset used to train the model is poor. However, collecting massive, labeled datasets is challenging, and manually labeling samples is time consuming and costly. Using transfer learning can solve these problems by retraining the pre-trained model from a large dataset on a small target dataset, which not only reduces the training time but also enhances the performance of the model (Chen et al., 2020; Jiang et al., 2021; Krishnamoorthy et al., 2021). In addition, Lee et al. (2020) indicated that models for plant disease classification could improve the network’s performance and reduce the effects of overfitting if they are pre-trained using plant datasets, but this approach may not apply to simpler, shallower networks. In this work, comparison experiments were conducted using pre-trained models on ImageNet and pre-trained models on Pl@ntNet-300K to verify the effectiveness of this method for the lightweight model proposed in this study. The architecture of the transfer learning workflow is shown in Figure 2.




Figure 2 | Flow chart of transfer learning of the proposed method.






3.4 Whale optimization algorithm

The Whale Optimization Algorithm (WOA) is a meta-heuristic optimization algorithm that finds the optimal solution by mimicking the spiral bubble net feeding of humpback whale populations in nature. The algorithm includes three types of predation behaviors of humpback whale populations: encircling prey, bubble netting to enclose prey, and randomly searching for prey. By continuously updating the position of the whale population in space through these three behaviors to achieve the search for the globally optimal solution (Mirjalili and Lewis, 2016), the algorithm has fewer parameters and is more capable of searching for the optimal global solution.

In searching for prey, the whale needs to assume the current best search agent (prey) first since the location of the prey is not known a priori, and the other search agents (whales) will update their locations to the best search agent. This behavior can be expressed as Eq. (2).

 

 

Where,   is the current number of iterations,   and   are the coefficient vectors,   is the current position of the best search agent,   is the position of the present agent,   is the updated position, and   will be updated after each iteration if there is a position closer to the optimal solution.   and   are calculated using Eq. (3) and Eq. (4).

 

 

Where,   decreases linearly from 2 to 0 during the iteration and   is a random vector in  .

In addition, whale populations also employ the bubble-net strategy to surround prey, consisting of constrictive encirclement and spiral swimming around the prey. The mathematical modeling equation for the constrictive encirclement behavior follows Eq. (2) for the prey encirclement process, but the value of   in this process is limited to  . The position search between the whale and the prey is updated using a spiral path while swimming around the prey. This can be expressed as Eq. (5).

 

Where, the distance between the whale and the prey is denoted by  ,   is a constant that defines the shape of the spiral, and   is a random number in the range  . The whale has two behaviors in the process of enclosing the prey, contraction and encirclement and spiral swimming around the prey. Assuming that the probabilities of these two behaviors are equal, this process can be represented by Eq. (6).

 

When the range of   does not belong to   during the contraction envelope, the humpback whale will search for its prey randomly. The current whale will choose a random whale in the whale population to approach to update its position, which will enhance the algorithm’s global search ability. The mathematical expression of this behavior can be represented by Eq. (7) and Eq. (8).

 

 

Where,   is the location of the random whale.

To further enhance the global search capability of the algorithm, the Lévy flight strategy is used to update the position of an individual whale again after it has updated its position, and the mathematical expression can be represented as Eq. (9).

 

Where,   takes values in the range  ,   in this work, each component of   and   follows the normal distribution as described in Eq. (10) and Eq. (11).

 

 

Where,   denotes the component of   and   denotes the component of  . The process of the whale optimization algorithm is demonstrated in Figure 3.




Figure 3 | Flowchart of the Whale Optimization Algorithm.



Two skip blocks, s1 and s2, are embedded in the proposed network architecture as shown in Figure 4. To achieve better fusion, different weights are assigned to the input feature maps of each jump connection and the weight parameters are automatically adjusted using the whale optimization algorithm.




Figure 4 | The proposed MS-Net architecture.



The mathematical expressions for the input features of the bneck7 and bneck11 network base units are as follows.

 

 

Where,   denotes the input features,   denotes the output features,   denotes the weight parameters of different feature maps and satisfies  ,  .




3.5 Proposed approach

Considering the superior performance of MobileNetV3 with the inclusion of the SE attention mechanism and optimized with NAS, MobileNetV3-Small is used as the feature extraction network in this work. The small version of the feature extraction network consists of 11 bnecks, which has fewer parameters compared to the large version, but the performance is also degraded. In this paper, the classical MobileNetV3-Small is modified by adding two skip blocks of different sizes after the first bneck to pass the extracted low-level features to the 7th and 11th bneck, enriching their input feature information and thus improving the classification performance of the model. Abrahamyan et al. (2021) proposed skip block to enhance the performance of compact CNNs. To achieve skip connectivity in the network, adaptive average pooling operation and convolution operation are used in the skip block to reduce the spatial size of feature information and retain key features (Ahmed et al., 2022). In addition, to achieve better feature fusion, different weights are assigned to the input feature maps of the skip connected parts, and the whale optimization algorithm is used to search for globally optimal parameters. The newly generated network model is called MS-Net, and the network structure is shown in Figure 4.

Abrahamyan et al. (2021) note that in compact CNNs, the limited number of parameters always makes it unlikely for the model to obtain rich features, and some irrelevant and redundant data may negatively affect the optimization process of the model and affect the final performance. There is no way to avoid this effect in the standard cross-entropy loss function, which gives equal weight to all data, and the standard cross-entropy loss is mathematically defined by Eq. (14).

 

Where,   represents the number of samples, and   represents the number of categories.   represents the probability that sample   belongs to category  .   is a one-hot encoding; if sample   belongs to category  , then the value of   is 1, otherwise, it is 0.

Abrahamyan et al. (2021) proposed bias loss to mitigate this negative consequence. The variance is applied to measure the feature diversity contained in the sample data and to weight each data point to prevent samples with poor feature diversity from influencing the optimization process. The mathematical representation of bias loss is given by Eq. (15)-Eq. (18).

 

 

 

 

Where,   and   are adjustable contribution parameters, which can generally be set to   and  . The variable   represents the proportional variance of the output characteristics of the ith data point in the batch. The   denotes the output of the convolutional layer, while   stands for the batch size. Additionally,  , where   corresponds to the number of input channels, and   and   represent the tensor width and height, respectively.

In this paper, bias loss is used to replace the conventional cross-entropy loss to minimize the impact of redundant data in the samples on MS-Net performance. Based on the transfer learning approach, the proposed network model was first pre-trained on the plant species dataset Pl@ntNet-300K, and then the completed pre-trained model was fine-tuned on the PlantVillage dataset and the FGVC7 apple leaf dataset.





4 Results and discussion



4.1 Experimental setup

To fully evaluate the model’s performance, experiments were conducted on the PlantVillage and the FGVC7 Apple leaf datasets, and the following quality metrics: Accuracy, Precision, Recall, F1-score (F1), and confusion matrix were used. Where Accuracy is the percentage of correctly predicted samples out of the total samples, Precision is the probability of being genuinely positive out of all samples predicted to be positive, and Recall is the probability of being predicted to be positive out of the genuinely positive samples, and F1-score is a combined measure of Accuracy and Recall. The mathematical definitions of these metrics as Eq. (19)-Eq. (22).

 

 

 

 

Where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respectively.

The experimental platform used in this research: the hardware environment was Intel(R) Xeon(R) Silver 4314 CPU 2.40GH, 64G RAM, NVIDIA GeForce RTX 3090 GPU; the software environment was Ubuntu 20.04 system, Python3.9, and PyTorch1.11.0.




4.2 Experiments on the FGVC7

To evaluate the performance of the ImageNet pre-trained model and the Pl@ntNet-300K pre-trained model on the FGVC7 apple leaf dataset with a realistic field background, two pre-training schemes of MobileNetV3 Small were used for ablation experiments. To approximate the 1,000 classes found in the ImageNet dataset, a random selection of classes was excluded from the Pl@ntNet-300K dataset, resulting in a total of 966 classes. These classes were then divided into training and validation sets in a 4:1 ratio. The pre-trained model was run for 15 epochs on the FGVC7 apple leaf dataset, Figure 5 depicts the training performance of MobileNetV3 utilizing the two pre-training methods on the apple leaf dataset with a realistic field background, and Table 2 summarizes the performance of the models with different pre-training approaches on the test set.




Figure 5 | Performance of MobileNetv3 on FGVC7 apple leaf disease dataset using different pre-training methods. (A) ImageNet and (B) Pl@ntNet-300K.




Table 2 | Recognition results under two pre-training methods.



The experimental results show that for classifying multiple apple leaf diseases with a realistic background in the field, the accuracy of the model pre-trained using ImageNet is 94.47% on the test set, while the pre-trained model on Pl@ntNet-300K achieves an accuracy of 96.13%. The model pre-trained with Pl@ntNet-300K outperforms the model pre-trained with ImageNet, improving the accuracy by 1.66%. Figure 5 also illustrates that the model pre-trained with Pl@ntNet-300K has better data convergence and fit during the training process compared to the model pre-trained with ImageNet. The reason for the better pre-training results on the plant classification task dataset may be that utilizing datasets within similar domains can provide richer feature information for the compact CNN during pre-training compared to the more broadly generalized ImageNet dataset, allowing the model to learn more features about similar target tasks. Consequently, the proposed MS-Net will be pre-trained on Pl@ntNet-300K and then fine-tuned on the FGVC7 apple leaf dataset. To further evaluate the performance of the proposed method on the FGVC7 apple leaf dataset, MobileNetV2, MobileNetV3, EfficientNet-B3, Xception, and DenseNet-121 are used to perform comparative experiments on the FGVC7 apple leaf dataset. All networks were obtained pre-trained weights from ImageNet and trained for 15 epochs. Figure 6 depicts the performance of the proposed method compared to other lightweight models. Table 3 summarizes the test accuracy, F1 score, parameter count, FLOPs, memory size, and training time for all models. Table 4 s shows the prediction results of the models on the test set, and Figure 7 presents the confusion matrix of the models on the test set.




Figure 6 | Parameters and test accuracy of identification models for apple disease identification.




Table 3 | Experimental results of the proposed method and existing models on the Apple dataset.




Table 4 | The recognition results of different apple diseases.






Figure 7 | Confusion matrix of different apple diseases. (A) number of classes and (B) probabilities of classes.



From Figure 6, it can be observed that the proposed method has superior performance. Meanwhile, as shown in Table 3, after 15 epochs, the method proposed in this paper achieves the best accuracy with fewer parameters, FLOPs, and memory size. Compared to the unimproved original MobileNetV3 network, the method proposed in this paper slightly increases network complexity but achieves a significant improvement in accuracy, with almost the same training time and no significant increase in memory size. In addition, most baseline models have relatively large FLOPs, and the baseline models chosen in this study are popular lightweight networks. The reason for this phenomenon is that the dataset size is relatively large. The original pixel size of the apple leaf dataset is 2048×1365. To preserve image features as much as possible, we resize it to 512×512, but this still brings a considerable amount of computational overhead. It is worth noting that even though all models have significant complexity differences, there is no noticeable difference in the time consumed by all models when training for only 15 epochs. If the training cycles are increased, the differences in the time consumed by the models will be further magnified. As can be seen from Table 4 and Figure 7, the classification results of the “multiple” class have a significant impact on the quality indicators of the model. Analysing the dataset reveals that this phenomenon is caused by the uneven distribution of categories in the FGVC7 apple leaf dataset. Among the 1821 images, there are only 91 in the “multiple” class. The limited number of training samples and the presence of multiple disease features always constrain the performance improvement of the model. If the amount of data for this class is increased or some advanced data augmentation methods (such as Generative Adversarial Networks) are used to expand the multi-disease category dataset, the overall performance of the model can be further improved.




4.3 Experiments on the PlantVillage

To test the performance of the proposed method under different disease conditions in different crops and to compare it with other state-of-the-art methods, the proposed method is verified in this work on the publicly available PlantVillage dataset. Ablation experiments were performed using ImageNet and Pl@ntNet-300K pre-trained MobileNetV3 Small to verify whether transfer learning in similar domains is effective on the PlantVillage dataset. The two pre-trained models were trained for 30 epochs each, and Figure 8 depicts the performance of the two models on the PlantVillage dataset.




Figure 8 | Performance of MobileNetv3 on PlantVillage dataset using different pre-training methods. (A) ImageNet and (B) Pl@ntNet-300K.



Figure 8 demonstrates that the performance difference between MobileNetV3 pre-trained with ImageNet and Pl@ntNet-300K is minimal. The pre-trained networks using these two methods achieve 99.65% and 99.76% classification accuracy on the test set, respectively. The transfer learning method using similar domains on the FGVC7 Apple Leaf dataset exhibited significant performance gains, the reason for which is attributed to the fact that the two datasets are too different. As shown in Figure 1, the PlantVillage dataset was captured under controlled conditions without complex backgrounds and multiple leaves, and the images contained only individual plant leaves, so the models achieved similar performance in both pre-training conditions. Comparison of the aforementioned work leads to the conclusion that transfer learning on similar domain datasets enhances the robustness of the model and can further improve the performance of plant disease diagnostic models.

To evaluate the performance of the method proposed in this paper on PlantVillage, we also conducted comparative experiments with the other five lightweight models mentioned earlier, which obtained pre-trained weights from ImageNet. All networks were trained for 30 epochs, and the performance of each network is shown in Figure 9. Table 5 summarizes the accuracy, parameter count, F1 score, FLOPs, memory size, and training time of all models on the PlantVillage dataset.




Figure 9 | Parameters and test accuracy of multiple disease identification models.




Table 5 | Experimental results of the proposed method and existing models on the PlantVillage dataset.



From Figure 9 and Table 5, the method proposed in this paper performs better when considering both performance and parameter count. After 30 epochs of training, the proposed method achieves the best accuracy of 99.80%. It can be observed that MobileNetV3, with the smallest parameter count, has the shortest training time. Comparing MobileNetV2 and the proposed method, it can be concluded that the impact of small changes in parameter count on training time is almost negligible. However, DenseNet-121, which also has a relatively low parameter count, takes the longest training time. The reason is that this network has a larger number of FLOPs, resulting in a high computational load. In the design of compact CNNs, not only the parameter count of the network should be considered, but also the computational complexity of the network should be given attention. Interestingly, Xception, which has more parameters and FLOPs, has a shorter training time than DenseNet-121. The reason is that DenseNet-121 uses standard convolution, while Xception uses depthwise separable convolution, which reduces the number of multiplications and additions required, thus shortening the training time. Furthermore, it can be seen that the difference in test accuracy between the method proposed in this paper and other lightweight baseline models is not significant, and almost all models achieve excellent test accuracy on the PV dataset. As we mentioned earlier, the PV dataset was created in a laboratory environment, with each sample image having a complex background removed and centered in the frame, which also results in a high similarity in the distribution of samples within the same class in the dataset. This is precisely why we want to test our method on the apple dataset, which has a more complex outdoor background and stronger random distribution. Combined with Table 3, our method has stronger robustness and achieves the best prediction accuracy in field tests. In the proposed method, due to the addition of skip connections, the higher layers of the network obtain richer features with a smaller increase in network parameters. Using the bias function instead of the traditional cross-entropy loss function further reduces the impact of redundant features on compact networks during the learning process.

Table 6 summarizes the existing research results on the PlantVillage dataset. Compared to other current advanced methods, the proposed method achieves the highest accuracy of 0.998 and performs equally well in other evaluation metrics characterizing lightweight models. Among them, the performance of CACPNET is closest to our method. CACPNET further reduces the model’s complexity and memory size based on channel pruning (Chen et al., 2022b). Channel pruning is a highly challenging task that requires calculating the weights of each channel and sorting them, as well as a certain degree of manual adjustment to achieve the desired performance. Moreover, CACPNET has the longest training cycles among all methods. Other methods are trained for about 30 epochs, while CACPNET requires 200 epochs of training. Our method can be simply understood as expanding based on a small model, with easy operations and the ability to easily generalize to other smaller lightweight models. In addition, the T-CNN model achieves similar classification accuracy with a much larger parameter count. The reason is that integrating multiple models can indeed easily improve classification accuracy, but at the same time, it also increases the overall parameter count of the model (Wang et al., 2021). It is worth noting that although the accuracy of the L-CSMS model is not as high as other methods, the resource consumption of this network is extremely low, making it a more viable option in extreme situations (Xiang et al., 2021).


Table 6 | Comparison with other current state-of-the-art methods in the literature.







5 Conclusion

The research on lightweight models with fewer parameters, lower complexity, and higher accuracy can further promote the popularization of automatic crop disease diagnosis methods. This study proposes a novel lightweight convolutional neural network for plant disease recognition, which has low parameter count and high accuracy. This is achieved by embedding skip blocks in the front end of the feature extraction network and optimizing the weight parameters in the skip connections using the improved whale algorithm. Bias loss replaces the traditional cross-entropy loss, reducing the negative impact of redundant data in limited features on the model learning process. At the same time, pre-training the proposed model on a plant species dataset further enhances the model’s performance and robustness. Experimental results show that, compared to the traditional transfer learning method, the proposed pre-training method improves the prediction accuracy on the apple leaf dataset by 1.6%. Compared to the original model, the prediction accuracy of the proposed method is increased by only 3.32% and 0.15% on the FGVC7 apple leaf dataset and PlantVillage dataset, respectively. The method proposed in this paper has strong robustness and achieves better performance on the apple leaf dataset with complex outdoor backgrounds, reaching the highest test accuracy with lower resource requirements. Compared to recent advanced techniques, the method proposed in this paper has lower parameter count, FLOPs, memory size, and higher recognition accuracy. Our research is beneficial for plant disease diagnosis in resource-constrained scenarios, low-resource, high-accuracy models can reduce the cost of hardware equipment and promote the development of automatic crop disease diagnosis solutions in the agricultural field. It should be noted that our method still has some shortcomings. Compared to other advanced methods, the FLOPs performance of the model is not outstanding. For the future research, we plan to analyse the training efficiency of the model, reduce the computational resources of the network, and develop a portable handheld device for plant disease diagnosis, deploying the proposed model on the device for practical applications in automatic plant disease diagnosis scenarios.
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Accurate recognition of pest categories is crucial for effective pest control. Due to issues such as the large variation in pest appearance, low data quality, and complex real-world environments, pest recognition poses challenges in practical applications. At present, many models have made great efforts on the real scene dataset IP102, but the highest recognition accuracy is only 75%. To improve pest recognition in practice, this paper proposes a multi-image fusion recognition method. Considering that farmers have easy access to data, the method performs fusion recognition on multiple images of the same pest instead of the conventional single image. Specifically, the method first uses convolutional neural network (CNN) to extract feature maps from these images. Then, an effective feature localization module (EFLM) captures the feature maps outputted by all blocks of the last convolutional stage of the CNN, marks the regions with large activation values as pest locations, and then integrates and crops them to obtain the localized features. Next, the adaptive filtering fusion module (AFFM) learns gate masks and selection masks for these features to eliminate interference from useless information, and uses the attention mechanism to select beneficial features for fusion. Finally, the classifier categorizes the fused features and the soft voting (SV) module integrates these results to obtain the final pest category. The principle of the model is activation value localization, feature filtering and fusion, and voting integration. The experimental results indicate that the proposed method can train high-performance feature extractors and classifiers, achieving recognition accuracy of 73.9%, 99.8%, and 99.7% on IP102, D0, and ETP, respectively, surpassing most single models. The results also show that thanks to the positive role of each module, the accuracy of multi-image fusion recognition reaches the state-of-the-art level of 96.1%, 100%, and 100% on IP102, D0, and ETP using 5, 2, and 2 images, respectively, which meets the requirements of practical applications. Additionally, we have developed a web application that applies our research findings in practice to assist farmers in reliable pest identification and drive the advancement of smart agriculture.




Keywords: pest recognition, multiple images, feature localization, feature filtering and fusion, smart agriculture




1 Introduction

Pests pose one of the biggest threats to crop safety due to their extensive spread and rapid evolution. Effective pest control requires fast and accurate recognition of pest categories. Usually, agricultural practitioners identify pests by examining the surface of the crop, but which requires a high level of expertise and effort. With the help of computer vision technology, early researchers relied on carefully designed image processing programs to extract shallow features, and then trained machine learning classifiers for pest recognition. However, these models suffer from poor generalization and low accuracy (Liu and Wang, 2021). In recent years, deep learning technology has received extensive and profound research because of its simple modeling process, ability to extract deep features, and good recognition performance.

Although recent studies have achieved high pest recognition accuracy, most of them were conducted in laboratories with high-quality data, clear targets, few categories, and small datasets. However, the complex outdoor environment, different perspectives, and varying degrees of color and light changes will seriously affect their recognition performance in practice.

IP102 is the most widely studied large-scale pest dataset with images that match real-world scenarios (Wu et al., 2019). However, due to issues with the pests themselves and the quality of the IP102, pest recognition presents significant challenges in practical applications (Kong et al., 2022), as outlined below:

	Pests go through multiple growth stages throughout their lives, which have different external characteristics, leading to large intra-class differences, as shown in Figure 1A.

	Different pests may be similar at the same growth stage, which leads to small inter-class differences, as shown in Figure 1B.

	Some pests have similar appearances to their backgrounds, and some images from the Internet contain irrelevant elements, as shown in Figure 1C.

	Some images do not contain pests and only provide scenes of pest activity, as shown in Figure 1D.

	The images have various resolutions, and some are even blurry. Moreover, there are label errors in some images, as shown in Figure 1E.






Figure 1 | Issues with pests and data quality. (A) Large intra-class differences. From the horizontal view, rice leaf roller and rice leaf caterpillar have different appearances in larva, pupa and adult stages. (B) Small inter-class differences. From the vertical view, rice leaf roller and rice leaf caterpillar have similar appearances at the same stage. (C) Interference. (D) No pest. (E) Error label.



Due to these practical issues, researchers have spent a lot of effort on recognition models based on a single image, but currently they can only achieve an accuracy of about 75% at best (Wang et al., 2023), with little improvement. It appears that the accuracy has reached a ceiling. However, in actual production, farmers may require close to 100% credibility to prevent incorrect pest control. This poses a great challenge for researchers. We consider the fact that pest infestation usually breaks out regionally and it is easy for farmers to obtain multiple images of the same pest category. To increase recognition credibility, we increase the amount of information input to the model and design information processing algorithms, thus proposing a fusion recognition method that integrates information from multiple images.

We propose the effective feature localization module (EFLM) and the adaptive filtering fusion module (AFFM) to improve pest recognition. To learn the accurate location of pests in complex background, in EFLM, we aggregate feature maps in the channel dimension to obtain the activation map, and then divide the feature location with a threshold that gradually increases to the average value of the activation map over the training epoch. The location information from multiple layers is lastly fused to construct the final location. To filter out incorrect and useless features, AFFM uses gate masks and selection masks to adaptively select optimal features from multiple images and then performs attention fusion. The experimental results show that the proposed method significantly improves the accuracy of identifying complex pest data and is suitable for practical scenarios. The main contributions of this paper are as follows:

	1) The proposed EFLM helps the network quickly extract target features from complex backgrounds.

	2) The proposed AFFM allows the network to automatically mine optimal features while suppressing incorrect and useless features, enhancing feature representation.

	3) The proposed multi-image fusion recognition method significantly improves the accuracy of pest recognition, meeting practical application requirements.






2 Related research



2.1 Pest recognition based on CNN

Convolutional neural network (CNN) has shown outstanding performance as feature extractors in image recognition and have rapidly expanded to pest recognition applications. Ahmad Loti et al. (2021) compared traditional feature-based approaches with deep-learning feature-based approaches for extracting pest features from chili leaf images. The results proved that deep learning feature-based approaches performed better than traditional feature-based approaches. Cheng et al. (2017) used a deep residual convolutional neural network to recognize ten types of pests in 550 images. The study achieved an impressive accuracy of 98.67%, outperforming both support vector machine (SVM) and back propagation (BP) neural network significantly. In this paper, our research focus is not on the improvement of feature extractors, but on the localization and filtering fusion of extracted features. In fact, we can use any type of feature extractor, but CNN is the most commonly used.




2.2 Methods for improving pest recognition

To improve the recognition accuracy despite the limited size of pest datasets, a widely used and effective method is to apply transfer learning (Sharma et al., 2022). Transfer learning fine-tunes a CNN model that has been pre-trained on ImageNet (Deng et al., 2009) on a pest dataset to improve the model’s robustness. For example, Huang et al. (2022) first fine-tuned ResNet-50 to extract features and then used discriminant analysis to classify eight types of tomato pest images. The results demonstrated that transfer learning can reduce training time and improve recognition accuracy. Li et al. (2020) collected 5,629 images of ten common crop pests, used GrabCut and watershed algorithms to remove complex backgrounds, and then fine-tuned the GoogLeNet model to achieve a maximum accuracy of 98.91%.

In addition, researchers have proposed various methods to improve pest recognition accuracy from different perspectives. To enhance feature representation, Ullah et al. (2022) designed deeper CNN and achieved 100% accuracy on Deng pest dataset (Deng et al., 2018), surpassing SqueezeNet and GoogLeNet models. Liang et al. (2022) enhanced feature extraction by introducing depthwise separable convolution and squeeze-and-excitation (SE) module (Hu et al., 2018), achieving 93.66% accuracy on a dataset of 1,426 images containing nine rice pests and diseases. Wei et al. (2022) fused multi-scale features of images to achieve 98.2% recognition accuracy for 12 crop pests. To address imbalanced distribution of pest data, Yang et al. (2021) proposed a convolutional rebalancing network to extract more comprehensive features, achieving an accuracy of 97.58% on a dataset containing 18,391 images of rice diseases and pests. Furthermore, Hu et al. (2023) increased the number of samples using generative adversarial network (GAN), optimized the residual blocks using ConvNeXt in ResNet, and constructed a multi-scale dualbranch structure to extract features of different scales, achieving a recognition accuracy of 99.34% on a dataset containing four rice diseases and pests, surpassing classic CNN and transformer networks.

Although these methods have demonstrated impressive performance, it should be noted that their success is based on small datasets with high data quality. Therefore, it is difficult to maintain high performance in complex and constantly changing real-world environments.




2.3 Pest recognition on IP102

IP102 is a typical large-scale pest dataset with poor data quality, which is representative of real scene recognition. Based on transfer learning, five CNN models (VGG19, ResNet-50, EfficientNetB5, DenseNet-121, InceptionV3) were tested on IP102. The highest recognition accuracy achieved was only 71.98% for DenseNet-121 (Mohsin et al., 2022). Pest recognition on IP102 is challenging, but significant for smart agriculture. To take advantage of multi-model ensemble learning to improve recognition, Nanni et al. (2022) integrated six high-performance CNNs (EfficientNetB0, ResNet-50, GoogleNet, ShuffleNet, MobileNetV2, and DenseNet-201) and improved the Adam algorithm, obtaining an accuracy of 74.11%. Ensemble learning is effective but computationally demanding. As a general method, the key to improving performance still depends on the feature extraction ability of each model. Therefore, based on the new architecture vision transformer (ViT), Liu et al. (2022) proposed a latent semantic mask autoencoder to learn more discriminative feature representations, achieving the accuracy of 74.69%. Wang et al. (2023) further extended ViT to fine-grained recognition. They built an attention aggregating transformer with an information entropy selector to capture subtle differences between images, resulting in the highest accuracy of 75%. However, this method comes with a very high computational cost. By combining the above techniques, Xia et al. (2023) used multi-branch and multi-scale learning networks to extract fine-grained features and proposed a DNVT model combining DenseNet-201 and an improved ViT to enhance feature extraction. Finally, they achieved a maximum accuracy of 74.2% using ensemble learning. On the other hand, considering the main issues with IP102, Feng et al. (2022) designed a coarse-to-fine CNN to recursively filter complex backgrounds. They addressed occlusion problems by randomly deleting discrimination regions. Furthermore, they used a decoupling learning strategy to address class imbalance. Finally, their model recognition accuracy reached 74.61%.

Although pest recognition on IP102 has made great progress in the past few years, the state-of-the-art accuracy is only close to 75%. In this paper, we propose a multi-image fusion recognition method to improve the recognition accuracy of IP102.





3 Materials and methods



3.1 Datasets

The IP102 dataset contains a total of 75,222 images in 102 categories from 8 crops: rice, corn, wheat, beet, alfalfa, vitis, citrus, and mango (Wu et al., 2019) (see Figure 1). The training set has 45,095 images, the validation set has 7,508 images, and the test set has 22,169 images. To further demonstrate the effectiveness of our proposed method, we also conducted experiments on two high-quality small-scale pest datasets: D0 (Xie et al., 2018) and eight tomato pest (ETP) (Huang et al., 2022). Both datasets have higher image quality and only one growth stage for each category of pest, as illustrated in Figure 2. The D0 dataset contains 4,508 images of 40 common crop pest categories. The ETP dataset contains 609 original images of eight common tomato pests, which are increased to 4,263 images using image augmentation. Similar to Nanni et al. (2022), we used 70% of each class for training and the remaining 30% for testing.




Figure 2 | Image samples from D0 (Xie et al., 2018) and from ETP (Huang et al., 2022). (A) D0. (B) ETP.






3.2 Overview of the proposed method

The overall architecture of the multi-image fusion recognition method is shown in Figure 3, which consists of two branches: a general branch and an improving branch. The improving branch contains the EFLM and AFFM modules, which are used for feature localization and filtering fusion of multiple image features, respectively. The input of the model is multiple pest images of the same class.




Figure 3 | Overview of the proposed method.



The general branch uses a classic CNN as the backbone network to extract image features. Unlike conventional methods, the obtained feature embeddings are subjected to dropout processing to eliminate overfitting problems caused by excessive input information. The processed embeddings are then fed into the fully-connected (FC) layer, and the output results are optimized by the loss function to promote feature localization in the EFLM module.

In the improving branch, the EFLM module is used to locate fine features based on the activated feature maps in CNN. Then, the processed feature embeddings are sent to the AFFM module, where the features are filtered by gate masks and selection masks and then fused through multi-head self-attention network. Here, each image selects the most useful image-level features. Then, the fused embeddings are sent to the same FC layer as the general branch for classification. To obtain more accurate result, a soft voting strategy is adopted to integrate all outputs at the end.




3.3 Effective feature localization module

The proposed EFLM module is shown in Figure 4, which is inspired by SCDA (Wei et al., 2017). To use deep features, we focus on all blocks in the last convolutional stage, whose output feature maps have the same height h and width w. The activated region of the feature map on the channel can indicate the semantically meaningful part of the target or some background noise. To eliminate noise and obtain accurate feature location, we first aggregate the feature maps in the channel dimension to obtain the activation map A ∈ ℝhxw.




Figure 4 | EFLM module.



 

where c represents the number of channels in the feature maps, and Fn represents the feature map of the n-th channel.

Then, we calculate the overall average value Ā of all positions in the activation map as a threshold to divide the regions with higher activation values, where the target is more likely to be located.

 

Next, we consider that the model is more easily disturbed during the early stages of training and may not activate the correct feature locations. Therefore, we multiply the threshold by a parameter λ that linearly increases from 0 to 1 with the training epoch to gradually discover the feature locations. Specifically, the feature mask map M used for partitioning is represented as follows:

 

During the training and validation phases,  , where Epoch represents the current training epoch and Epochs represents the total number of training epochs. In the testing phase, λ takes the median value of 0.5. We have conducted multiple experiments and found that this setting can achieve the best results. In the mask map, M(i, j) = 1 represents that the channel at position (i, j) should be retained, while M(i, j) = 0 represents that the channel at position (i, j) should be removed.

Inspired by multi-layer integration to improve performance (Wei et al., 2017), we calculate the feature mask maps for all the block outputs of the last convolutional stage by equations (1), (2), (3). Taking ResNet-50 as an example, we aggregate the feature mask maps Mconv_5a, Mconv_5b and Mconv_5c, and retain their intersection to obtain an aggregated mask map Mf as follows:

 

Then, we take the bounding box that contains the area of   as the final determined feature location. If all positions in Mf are 0, the bounding box is the box of the whole feature map. Finally, we use the bounding box to crop the feature maps and upsample them to the original size to obtain the localized features.




3.4 Adaptive filtering fusion module

The proposed AFFM is shown in Figure 5. The input of the module is the feature embedding matrix X ∈ ℝn×d obtained by processing the multiple localized features, where n is the number of input images and d is the dimension of the embedding. The main framework of the module is a multi-head self-attention network. For the i-th head, the query matrix Qi, key matrix Ki, and value matrix Vi are obtained by linear transformation, respectively:




Figure 5 | AFFM module.



 

where   and   represent the query parameter matrix, key parameter matrix, and value parameter matrix of the i-th head, respectively. h is the number of heads. dk and dv are the dimensions of them, both of which are set to d in this paper.

Considering the noisy background in pest images, we introduce a gating mechanism to filter out useless information. Specifically, we use the non-linear mapping function of the sigmoid function to adjust the information transmission of the query matrix and key matrix. We first linearly map the query matrix Qi and key matrix Ki of the i-th head to a joint space and concatenate them to obtain a fusion matrix  :

 

where   and   are learnable mapping matrices, and   and   are bias vectors. Next, we apply two FC layers followed by sigmoid function to obtain the query mask   and key mask  , respectively:

 

where σ(·) is sigmoid function, and   and   are the learnable FC layer parameters.

To further remove image interference such as label errors and no features, we designed a selection mask to force discard image embeddings with attention scores smaller than probability p, which can be represented as a value mask  :

 

In summary, in the calculation of self-attention within each head, the i-th head output hi ∈ Rn×(d/h) is represented as follows:

 

Finally, after aggregating all the heads and applying batch normalization (BN), we obtain the enhanced feature embeddings, which can be represented as:

 

The AFFM module enhances the feature selection ability of attention, resulting in more discriminative features. Specifically, the gate mask and selection mask suppress the transmission of irrelevant information in the image, improving the quality of the features. The multi-head self-attention network further filters and fuses the features to extract the most beneficial features for recognizing each image. This process can be adaptively adjusted through learnable parameters.




3.5 Soft voting

To achieve more accurate recognition by merging multiple results, the soft voting (SV) strategy is used in practical applications to determine a category for these images. Specifically, given the feature embedding matrix X ∈ ℝn×d after fusion of n images, a FC layer and a softmax layer are used to obtain the probability matrix p ∈ ℝn×m, where m is the total number of categories. SV calculates the average of the predicted probabilities for n images:

 

where Pj denotes the probability of being predicted as category j after soft voting. SV takes the category with the highest probability as the final result.




3.6 Loss function

The general branch and the improving branch share a FC layer, and both use the predicted category and true category to calculate the cross-entropy loss:

 

 

where t is the ground truth label of the input image, Pɡ and Pi represent the classification probabilities output by the general branch and the improving branch, respectively. The two losses are jointly optimized during training and mutually promote each other. The overall loss is defined as the sum of them:

 





4 Experiments and discussion



4.1 Experimental settings

We use ResNet-50 as the backbone network and load the parameters pre-trained on ImageNet. Stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay of 1e-4 is used as the optimizer. We set the batch size to 16, and each image in the batch selects 4 more images from its own category as positive samples, i.e., the number Nt of training samples per group is 5. The initial learning rate is set to 0.001 and is decayed by 0.1 after 10 epochs, under the condition of a total of 20 epochs. All experiments are conducted on an RTX 3090 GPU. The threshold probability p for selecting masks is set to  .

We use Accuracy and weighted F1-score as evaluation metrics, which are denoted as Acc and F1, respectively. Acc calculates the proportion of correctly classified images to the total number of images, while F1 combines Precision (P) and Recall (R) to prevent individual classes from affecting Acc and causing poor evaluation when the data is imbalanced. A higher F1 indicates a more robust model. The formulas for calculating these metrics are as follows:

 

 

 

 

where TP, FP, TN, and FN stand for true positive, false positive, true negative, and false negative, respectively.




4.2 Performance comparison

We conducted experiments on three pest datasets and compared our results with the current state-of-the-art methods. For methods that were not tested on the corresponding dataset, we reproduced them based on the best configuration in our environment and marked them with an *. Methods without a mark use the results from the original paper. To maintain objectivity, we listed the backbone of all models.



4.2.1 Comparison on IP102

We compared our method with the 12 latest methods, as shown in Table 1. Our general branch achieved 73.9% accuracy with only trained CNN and FC layers, outperforming most CNN-based methods. This is because we trained a robust feature extractor and classifier by selecting optimal features from low-quality data. Pre-trained CNN based on transfer learning is the basis of many methods, including ours, and the reason for their low performance may be mainly due to the lack of information interaction. MMAL (Zhang et al., 2021) is a fine-grained recognition method that has some improvement compared to the baseline, but its performance is limited due to small pests and low image resolution. BCL (Zhu et al., 2022) uses an advanced supervised contrastive learning strategy to balance samples, but it is limited by the number of samples in each batch, and the feature extraction performance is relatively weak. Although PCNet (Zheng et al., 2023) is a lightweight framework, it also adds a complex coordinate attention mechanism and feature fusion process, and its accuracy is not as good as our trained general CNN. Among CNN-based methods, only MS-ALN+DL (Feng et al., 2022) exceeded our general branch. Although it solves the problems of localization, occlusion, and class imbalance, the model is extremely complex and the obtained accuracy is still not enough for application.


Table 1 | Performance comparison on IP102 dataset.



Compared with transformer-based and ensemble-based methods, most of them exceeded the accuracy of our general branch. This is mainly because they use more advanced and complex feature extractors and other special processing techniques to improve feature representation ability, which also makes their models complex and computationally expensive.

The biggest feature of our method lies in its practical applications, not just in performance comparison. The improving branch can achieve recognition results far beyond other complex models. This is primarily achieved by leveraging a trained efficient CNN, multiple image information, feature localization, filtering fusion, and voting. For example, when inputting 5 images to be recognized at the same time, our method achieved 96.1% accuracy. Although additional information is introduced, considering the significant improvement in accuracy and the low cost of image acquisition in practical applications, our method has great practical significance.




4.2.2 Comparison on D0 and ETP

Our method not only has excellent performance on low-quality dataset IP102 but also has a positive effect on normal datasets. Tables 2 and 3 respectively show the comparison results of the D0 dataset and ETP dataset with other state-of-the-art methods. Due to the high image quality, all models achieved high accuracy on the two datasets. Our method trained a high-performance feature extractor and classifier through strategic fusion of multiple information. As a result, on the general branch, using the same feature extractor and classifier, our method outperformed the pre-trained CNN in terms of performance. However, the general branch’s performance was inferior to that of the model ensemble-based methods, primarily because they leverage the advantages of multiple feature extractors to obtain better feature representations. However, this approach requires significant computational resources and storage space. MMAL (Zhang et al., 2021) performs well in classifying images of pests with multiple stages. However, its improvement in recognition is not significant for dataset D0, which contains only single-stage images. For ACEDSNET (Li et al., 2021), a lightweight model constructed by researchers, its low accuracy may be due to its inability to effectively extract important features. The performance of ResNet-50 + DA (Huang et al., 2022) is weaker than our experiment’s pre-trained ResNet-50. We discovered that a possible reason is that they used a smaller learning rate, resulting in insufficient training of the network. It is worth mentioning that on these two datasets, using the improving branch with only two input images can achieve almost 100% accuracy, surpassing other methods, and its simplicity and efficiency make it suitable for practical applications.


Table 2 | Performance comparison on D0 dataset.




Table 3 | Performance comparison on ETP dataset.







4.3 Ablation study

We conducted ablation studies on IP102 to analyze the impact of the methods used in our model on classification. Each group is trained with 5 positive samples during training. During testing, the general branch uses single image, while the improving branch uses 5 images of the same category per group by default to improve recognition.



4.3.1 Module ablation

To verify the effectiveness of our proposed framework, we conducted ablation studies on the main modules, and the results are shown in Table 4.


Table 4 | Module ablation.



In the improving branch, we use the full module as the baseline, and remove each major module separately for training and testing, as shown in No.1-4. As a comparison, we also listed the test results of the fully trained network in the general branch, as shown in No.5. Comparing No.1 and No.5, the improving branch can achieve recognition accuracy far higher than the general branch, mainly because the improving branch can merge multiple image information and eliminate the adverse effects of bad information during separate image classification. Comparing No.1 and No.2, it can be found that the accuracy decreases by 1.1% without the EFLM module, indicating that EFLM is useful as it can locate features and remove some noisy information. Comparing No.1 and No.3, it can be found that the accuracy decreases the most by 5.2% without the AFFM module, which indicates that the filtering and fusion of information has a great impact on the model, as it can filter out useless information adaptively and fuse useful information to achieve more accurate classification. Comparing No.1 and No.4, it can be found that the soft voting method can increase the recognition accuracy by 1.9%. As the last step in determining recognition results, it can avoid misclassifying images without obvious features.

To ablate multiple image information, we fine-tuned the model on a pre-trained ResNet-50 and applied a hard voting strategy to the same number of image classification results, as shown in No.6-7. Hard voting takes the most majority of the voted categories as the final result, in line with human subjective consciousness. Comparing No.1 and No.7, it can be found that our multi-image fusion recognition method can achieve higher accuracy. Furthermore, comparing No.6 and No.7 also shows that introducing multiple image information can bring simpler and more practical accuracy improvements.




4.3.2 The impact of the number of training positive samples and the number of test images

The number of training samples in each group mainly determines the quality of CNN and FC after training. We trained the model with the number of positive samples ranging from 1 to 6 and tested it with a single image input to the general branch, drawing a curve graph as shown in Figure 6.




Figure 6 | The impact of the number of training samples in each group on the performance of CNN and FC after training.



According to the results, when the number of training images is 1, the AFFM does not work due to the lack of image interaction, resulting in lower performance of the trained model. When the number of images is greater than 1, the performance of the trained model improves as the number of images increases, reaching its maximum value when the number of images is 4 or 5. However, the performance no longer increases or even decreases thereafter. This could be due to the fact that when there are too many training images, a few low-quality images are filtered out, and more normal images tend to participate equally in the fusion process, leading to a decrease in the optimal feature selection effect.

The number of additional images introduced during testing determines the recognition performance of the improving branch in practical applications. Therefore, we used the network trained with 5 positive samples as the basis and conducted experiments by changing the number of test images from 1 to 6, as shown in Figure 7.




Figure 7 | The impact of the number of test images on the accuracy of the improving branch.



From Figure 7, it can be seen that the accuracy of the improving branch increases as the number of test images increases, demonstrating the effectiveness of EFLM, AFFM, and SV in extracting and fusing multiple image information. Specifically, for the high-quality datasets D0 and ETP, the accuracy reached 99.9% and 99.8%, respectively, when tested with a single image. When the number of test images increased by one more, the accuracy remained at the peak of 100%. However, for the low-quality dataset IP102, the increase in accuracy gradually slowed down as the number of test images increased. The accuracy reached 96.1% when there were 5 test images, and the increase in accuracy became minimal thereafter, indicating that the role of multiple image information was no longer significant.




4.3.3 The impact of integrated localization and gradual localization

To test the impact of the number of integrated localization layers on accuracy, we used ResNet-50 as an example to conduct experiments on the last one block output, the integration of the last two block outputs, and the integration of all three block outputs of its last stage. All other modules were configured as “Full.” The results are presented in Table 5.


Table 5 | The impact of integrated localization on accuracy.



As shown in Table 5, the accuracy gradually increases as the number of integrated localization layers increases, demonstrating the effectiveness of multi-layer integrated localization. The small improvement in accuracy is mainly due to the fact that the fusion of information from 5 images enhanced recognition. We believe that integrated localization will play a greater role in fusing information from fewer images and in more complex image recognition tasks, relative to the small computational cost.

In the EFLM module, we linearly increase the activation map average value from 0 to the original value as the training progresses to gradually discover the feature location. The experiments show that without gradual localization, we achieved an accuracy of 95.7%, which is lower than 96.1% with gradual localization, demonstrating the effectiveness of gradual localization.




4.3.4 The impact of information filtering

To test the impact of the information filtering in the AFFM module on accuracy, we conducted four separate experiments by combining the query and key masks as one set and the value mask as another set. The results are shown in Table 6.


Table 6 | The impact of information filtering on accuracy.



Although using 5 images in the improving branch helped to enhance recognition and narrow the accuracy gap, we can also draw the following conclusions from the table. Firstly, the query and key masks played a crucial role in information filtering. Secondly, filtering information with a separate value mask had a negative effect on the results, but when combined with the query and key masks, the best experimental results were obtained. This is mainly because the value mask is a forced filtering method, which removes features that the query and key masks consider to be useless. However, when there are no query and key masks, direct forced filtering can cause useful information to be erroneously removed. In summary, due to the background of the pest itself and the issues of the dataset, the images contain significant interference, making adaptive information filtering necessary.





4.4 Visualization

Grad-CAM (Selvaraju et al., 2017) is a feature visualization method that uses gradients to compute the attention regions of the network in the feature maps. We applied Grad-CAM to compare pre-trained ResNet-50 with our general branch and improving branch, both trained with 5 positive samples. Figure 8 shows the visualization results, where the labels of the original images are all rice leaf rollers.




Figure 8 | Visualization results. (A) Pretained ResNet-50. (B) General branch. (C) Improving branch.



The results show that the pre-trained ResNet-50 network can only roughly focus on the target and even incorrectly locate it. However, with the enhancement of multiple positive samples, our model has better discriminative ability, and the general branch can accurately focus on the target. The attention performance of the improving branch is affected by the quality and quantity of the test images. With the help of additional information, the improving branch can more accurately focus on the target, which to some extent promotes subsequent feature localization and fusion, thereby achieving more accurate recognition accuracy.




4.5 Application deployment

To apply our research results practically, we built a web application called “Smart Agriculture,” which can run on personal computers and mobile phones, as shown in Figure 9. The application includes multiple common crops for users to choose from. On the left side of the page, users can upload pest images for identification without restrictions to improve identification credibility. On the right side of the page, the identification results are displayed, including the pest type, probability, and a link to learn more about the identified pest. Below the page, the identification history can be displayed and exported to Excel for users to review repeatedly.




Figure 9 | Web application.



We deployed the model trained with 5 positive samples on a cloud server to receive requests from the web application. Regardless of how many images need to be identified, the model can give very high identification credibility. As shown in Figure 7, the more images users input, the higher accuracy they will get. The time taken by the model is related to the number of input images and the configuration of the cloud server. In general, results will be displayed within two seconds. However, when it comes to achieving highly accurate recognition results, the time spent is negligible.




4.6 Discussion

We achieved very high recognition accuracy by the improving branch, but the main reason for the improvement is the introduction of additional images. Our method only makes the most of this information as much as possible. Comparing No.6 and No.7 in Table 4, it can be observed that with the input of 5 images, the basic hard voting fusion recognition method can achieve an accuracy of 88.7%, which is a significant improvement of 16.7% compared to 72.0% for single image recognition. Through the fusion process of EFLM, AFFM, and SV, we achieved an accuracy of 96.1% in the improving branch, which is only 7.4% higher than the basic hard voting method. This may be the true improvement ability of our proposed method. Additionally, the input requirement of multiple images also brings inconvenience to pest recognition. On the one hand, during model training, the dataset is required to have as rich pest images as possible to increase the feature richness of input images, thereby improving the fusion ability of the network. On the other hand, according to Figure 7, reliable recognition results can only be obtained by inputting as many images as possible in practical applications. Although farmers can easily capture photos, this increases their inconvenience and the computational consumption.

Therefore, looking ahead to the future, we will optimize the fusion recognition method to achieve high recognition accuracy with fewer input images. Firstly, when extracting features from each image, we will consider feature fusion within each image to fuse multi-scale information, thus improving model robustness. Secondly, we will optimize the feature localization process of EFLM and the filter fusion mechanism of AFFM by introducing more advanced processing methods to improve localization accuracy and fusion efficiency. Finally, we will also explore efficient solutions from the perspective of addressing the challenges in recognition for more accurate pest identification.





5 Conclusion

To improve the performance of pest recognition in complex real-world scenarios, we proposed a multiimage fusion recognition method in this paper. In our method, CNN is used as the backbone network to extract features, EFLM effectively locates feature regions, AFFM adaptively filters and fuses features, and SV integrates multiple image recognition results to further improve recognition. To validate the effectiveness of our method, we conducted experiments not only on the low-quality pest dataset IP102 but also on the high-quality pest datasets D0 and ETP. The results demonstrate that our method can extract features to train high-performance networks and achieve much higher accuracy than the current state-of-the-art methods by inputting multiple images.

Moreover, we developed a web system to facilitate users with recognition needs to recognize pests in various crops and provide extreme recognition accuracy according to the amount of uploaded information, which meets the practical application requirements. In the future, we aim to more accurately locate targets and make better use of feature information to achieve higher accuracy with fewer images in practice.
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Pest and disease damage to forests cannot be underestimated, so it is essential to detect diseased trees in time and take measures to stop their spread. The detection of discoloration standing trees is one of the important means to effectively control the spread of pests and diseases. In the visible wavelength range, early infected trees do not show significant color changes, which poses a challenge for early detection and is only suitable for monitoring middle and late discolor trees. The spectral resolution of hyperspectral restricts the improvement of its spatial resolution, and there are phenomena of different spectral of the same and foreign objects in the same spectrum, which affect the detection results. In this paper, the method of hyperspectral and CCD image fusion is used to achieve high-precision detection of discoloration standing trees. This paper proposes an improved algorithm MSGF-GLP, which uses multi-scale detail boosting and MTF filter to refine high-resolution data. By combining guided filtering with hyperspectral images, the spatial detail difference is enhanced, and the injection gain is interpolated into the difference of each band, so as to obtain high-resolution and high-quality hyperspectral images. This research is based on hyperspectral and CCD data obtained from LiCHy, Chinese Academy of Forestry, Maoershan Experimental Forest Farm, Shangzhi City, Heilongjiang Province. The evaluation framework is used to compare with the other five fusion algorithms to verify the good effect of the proposed method, which can effectively preserve the canopy spectrum and improve the spatial details. The fusion results of forestry remote sensing data were analyzed using the vegetation Normalized Difference Water Index and Plant Senescence Reflectance Index. The fused results can be used to distinguish the difference between discoloration trees and healthy trees by the multispectral vegetation index. The research results can provide good technical support for the practical application of forest remote sensing data fusion, and lay the foundation for promoting the scientific, automatic and intelligent forestry control.
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1 Introduction

Forests play a vital role in terrestrial ecosystems, not only promoting the carbon cycle but also mitigating global climate change (Li et al., 2018). As the main regulators of water, energy, and carbon cycles (Ellison et al., 2017), The forests play an indispensable role. Therefore, the problem of forest health has been widely concerned by ecologists around the world (Dash et al., 2017). Simultaneously, recent advancements in technology have facilitated the assessment of forest health (Estrada et al., 2023). Pests and diseases can cause great damage to forest ecosystems. The health of trees is infested by harmful pests, usually manifested as changes in canopy condition (Stone and Mohammed, 2017). Therefore, the state of the forest canopy is an indispensable indicator in forest health assessment systems. The trees detected with abnormal colors in the forest is an essential way to realize the detection of forest pests and diseases. Meanwhile, Monitoring the discoloring trees infected by pests and diseases is an essential means to control the spread of epidemics (Ren et al., 2022). However, the severity of its impact on pests and disease infection for forest canopy can only be determined by biological physiological sampling in the field until now, which its relies on human participation, and the time cost is high in practical applications (Hall et al., 2016). How to quickly and effectively detect forest pests and diseases in the early stages has become a key problem in forest health detection.

In recent years, with the rapid development of remote sensing satellites and air-to-ground observation technology, it can obtain multi-sensor and resolution data in the same area (Luo et al., 2022). Among them, high-resolution CCD and hyperspectral images have garnered significant attention in recent years.

Hyperspectral remote sensing images have been proposed due to the advantages of a continuous spectrum, multi-band, etc., which can obtain the spectral profile of the features while acquiring spatial data, rich spectral information, and the ability to describe the spectral characteristics of the ground cover in detail (Liao et al., 2015). The properties of ground cover can be distinguished according to different spectral characteristics. Forest diseases and pests can be detected by analyzing vegetation reflectance changes (Luo et al., 2022). However, its spatial resolution is relatively low and identification accuracy is poor. At present, hyperspectral remote sensing images have been widely used in forest vegetation type recognition (Shen and Cao, 2017), forest carbon storage estimation (Qin et al., 2021), and fire monitoring (Matheson and Dennison, 2012).

High-resolution CCD data provides more and accurate detailed texture features of forest trees as well as spatial detail information due to its higher spatial resolution, which provides higher accuracy in the identification of forest pests and diseases in the middle and late stages (Eugenio et al., 2022). The primary obstacle to utilizing this image for early-stage monitoring of forest pests and diseases lies in the scarcity of spectral information. Only trees with significant discoloration characteristics can be identified.

Through the above analysis, it can be found that the fusion scheme of high-resolution CCD and hyperspectral data can enrich the data source information, and the image obtained after fusion can have rich spectral information and high-resolution detail information, which will greatly improve the effectiveness of image data, which provide the possibility of monitoring forest pests and diseases in an early stage.

These methods have been used in the field of hyperspectral fusion (Yokoya et al., 2017). They can be mainly classified into imaging model-based, Bayesian (Wei et al., 2015), panchromatic sharpening (Loncan et al., 2015), and depth net-work-based methods. The imaging model-based methods mainly include hybrid image element decomposition as well as tensor decomposition methods. For example, The coupled non-negative matrix decomposition (CNMF) (Lanaras et al., 2015) has the advantages of clear mathematical principles and efficient program execution, but there are certain spectral distortions, and the fusion results are easily affected by matrix initialization. Bayesian fusion-based methods such as Maximum A Posteriori Probability Estimation-Stochastic Mixture Model (MAP-SMM) (Eismann and Hardie, 2005), The method is derived strictly according to mathematical theory and has the ability of prior constraints. HySure method, it gives better results in preserving edges while being able to smooth noise in homogeneous regions. The methods based on matrix factorization and Bayesian have a strong dependence on the spatial-spectral degradation model, and the degradation relationship of the spatial-spectral degradation model is not necessarily applicable to the actual situation, which affects the fusion performance of matrix factorization method and Bayesian method in practical applications, and there is spatial-spectral distortion in some practical situations. Component substitution, and multi-resolution analysis are used in panchromatic sharpening methods. Component substitution approaches are commonly used with the principal component analysis (PCA) algorithm, GS (Gram Schmidt), The advantage lies in the high-fidelity spatial details exhibited by the final fused result. However, a limitation of the component replacement method is its inability to capture local differences between images, leading to significant spectral distortions (Thomas et al., 2008). The main multi-resolution analysis (MRA) methods are Generalized Laplace Pyramid (Aiazzi et al., 2006) (GLP) and others. Multi-resolution analysis methods have the advantage of preserving spectral characteristics and can effectively solve practical problems, but there is still the problem of loss of spatial details.

Therefore, based on the GLP algorithm, this paper uses the multi-scale detail boosting to enhance the details of the high-resolution data, and combines the MTF filter to down-sample and interpolate the high-resolution data, and obtains the high-resolution detail image by processing the completed image and the detail enhanced high-resolution data. Guided filtering is used to obtain the spatial detail difference between the enhanced high-resolution image and each band, and the injection gain is generated. The corresponding difference is inserted into each band of the interpolated hyperspectral image to obtain the high-resolution detail-enhanced hyperspectral image.

The main innovative work of this aper is as follows:

(I) MSGF-GLP(Multi Scale Guided Filter - Generalized Laplace Pyramid): A new method for the fusion of high-resolution CCD and hyperspectral images is proposed, which uses a multi-scale detail boosting combined with MTF filters based on the GLP algorithm and introduces guided filtering techniques. It is verified through fusion experiments that the method has the advantage of maintaining spectral as well as spatial characteristics in image fusion.

(II) The proposed fusion of high-resolution CCD with hyperspectral images for detecting forest discolored standing trees can improve visualization/feature recognition performance and can be used for early forest pest and disease detection and health monitoring.

(III) The fused images are proposed to apply NDWI and PSRI vegetation indices to form data with enhanced information for monitoring discolored standing trees. It is a new solution for the early detection of discolored trees, and this method enhances the ability to monitor potential threats promptly and has practical applications in the early control of forest pests and diseases.

The rest of the paper is organized as follows: in Section II, the study area, image data, preprocessing steps, and an introduction to the improved algorithm are presented, and in Section III, the results of the fusion algorithm and the performance of the algorithm are analyzed. In section IV discusses that in the subsequent research, the data collected by the ground base station can be combined to detect and analyze the tree crown characteristics through multi-source data fusion, so that the collected canopy abnormal spectrum is more accurate, the abnormal spectral feature extraction is more real and reliable, and the application ability of the fusion algorithm in pest and disease, forest control and other aspects can be improved. The conclusions are presented in Section V.




2 Materials and methods



2.1 Airborne data

The data set used in this study is from the LiCHy airborne observation system of The Chinese Academy of Forestry (CAF), which has multiple data acquisition capabilities. It includes simultaneous acquisition of Hyperspectral images, LiDAR data, and CCD images.

Hyperspectral images were collected using the AISA Eagle II (Spectral Imaging Ltd., Oulu, Finland) hyperspectral sensor for the LiCHy system. It is a push broom imaging system that covers the VNIR spectral range from 400 nm to 1000 nm. A medium-format airborne digital camera system (DigiCAM-60) was selected as the CCD sensor with a spatial resolution of 0.2 m. The Table 1 shows the equipment parameters of the adopted hyperspectral data with high resolution CCD data (Pang et al., 2016).


Table 1 | The sensor parameters of the LiCHy system (Pang et al., 2016).



The data used in this study contained hyperspectral data, as well as CCD images. The coverage area is the Maoershan Experimental Forestry Field (127°36′E, 45°21′N) in Maoershan Town, Shangzhi City, Heilongjiang Province. The feature types are mainly man-made buildings and vegetation. The forest farm has a total area of 26,496 hectares, with an average forest coverage rate of 95% and a total forest stock of 3.5 million m³. Due to the discrete distribution of forest pests and diseases at varying degrees and diverse terrain conditions, there is a high risk of infection in this area. To effectively control the spread of forest pests and diseases and minimize losses, it is crucial to identify discolored standing trees within this forest region promptly. Therefore, the Maoershan experimental sample site has been identified as one of the most suitable areas for acquiring image data on discolored standing trees. Typical surface features such as roofs and soil exhibit high reflectance in visible and near-infrared bands while being associated with low biomass levels. Healthy green trees display higher near-infrared reflectance but lower red-band reflectance. As chlorophyll content decreases, red band reflectance increases while near-infrared reflectance decreases accordingly. These distinct spectral differences between visible-near-infrared bands enable the detection of discolored standing trees, providing a solid theoretical foundation for our study. Additionally, the selected sample site exhibits evident abnormal discoloration in wood specimens along with accurate ground features within the experimental area that facilitate precise data registration and enhance experiment accuracy. The study area is shown in Figure 1.




Figure 1 | Study area location map. (A) Location of Heilongjiang Province in the map of China. (B) high-resolution CCD data of the study area. (C) Location of the study area in the map of Heilongjiang Province. (D) Hyperspectral images of the study area.






2.2 Image preprocessing

Given that the quality of airborne remote sensing images is influenced by various factors, including terrain conditions, flight status, and weather conditions, it becomes imperative to preprocess the acquired remote sensing data prior to data fusion. This preprocessing consists of two aspects: hyperspectral data and high-resolution CCD data.

The preprocessing of the hyperspectral data consists mainly of radiometric calibration, geometrical corrections, and atmospheric corrections. The raw AESA-Eagle hyperspectral data were judiciously resolved and calibrated using the CaligeoPRO software. Simultaneously, in combination with the calibration files of the AISA Eagle II sensor, the images were calibrated for the radiometry presented in this paper. The energy received by the sensor is not completely reflected from the ground due to atmospheric absorption and scattering of electromagnetic waves during propagation. In this paper, Using the ATCOR4 software and apply the MODTRAN model to remove atmospheric perturbations and obtain true reflectivity. High-resolution CCD data was pre-processed, including image cropping and accurate registration with hyperspectral images, to ensure the quality and effectiveness of data fusion.




2.3 MSGF-GLP fusion method

The fused data is designed to have both high spatial resolution as well as high spectral resolution, the effect of which is shown in Figure 2.




Figure 2 | Schematic representation of the fusion result.



Due to the indistinct details in the original image, a multi-scale detail boosting (MSDB) (Kim et al., 2015) was applied to process the high-resolution CCD data image, comprehensively enhancing its details. The processing procedure is shown in Figure 3 as follows:




Figure 3 | Algorithm block diagram.



	

For the original image  , three images  ,   and   with different fine scales obtained by different Gaussian filters, respectively. Where  ,   and.   are Gaussian kernel functions, and their standard deviations are taken as =1,   =2 and   =4, respectively. Then, the filtered images  ,   and   were used to generate three detailed images  ,   and   with different levels of fineness. Finally, the three detail images are merged to generate the final detail-boosting image. During this process,  ,  , and     are chosen to be 0.5, 0.5, and 0.25, respectively, to enhance detail while suppressing saturation. Finally, the original image   is added to the overall detail image   to obtain the image   after detail enhancement.

	

Where   represents the Gaussian filter matching the hyperspectral band MTF,   represents the convolution down-sampling, and the image after filtering is performed with   times of convolution down-sampling,   is the down-sampling factor, which is 8 in this paper.   is the interpolator, which convolutional upsample the image and interpolates it to finally obtain the image  .

Upsampling: The proportion of a low-resolution   image that is upsampled to a CCD image. The resulting image is denoted by  . Each band of the original hyperspectral image is interpolated in turn for each band of the image. Where   is the low-resolution hyperspectral image and   is the   band of the interpolated hyperspectral image.   is the  th band of the low-resolution image. The spectral data pixels of the original hyperspectral image pixels are transferred to the corresponding sub-pixels in the same way. Bicubic interpolation was used to upsampling the hyperspectral images.

	

Guided filter (He et al., 2013) is a kind of low-pass filter. The structure transfer property of the filter can transfer the structural details of the guided image to the input image and can eliminate the edge occlusion effect due to upsampling of the image to the maximum extent. While preserving the spectral feature information of the input image, the spatial details and texture structure of the pilot image are transferred to the output image to obtain a hyperspectral image with enhanced spatial details, which can effectively improve the quality of hyperspectral image fusion.

For the input image  , the guided image   is used as the guided filter, and the output image   is obtained after filtering. For the pixel at position  , the filtered output is a weighted average, and the guided filter is expressed by the following formula:

	

  is the filter kernel associated only with the guided image I.

For an input image  , the output image is   after filtering using the bootstrap image   of the bootstrap filter. The bootstrap filter assumes that the output image and the bootstrap image   satisfy a linear relationship.

	

where   and   denote the value of the   th pixel in the guide image and the output image, respectively.   is a local window of size (2r+1) × (2r-1) with coefficients   and   as its linear coefficients, which are considered to be constant within  . the radius of   is r. Minimization of the serial port   by the cost function.

	

where   is an adjustable regularization parameter and   and   can be found by a linear regression equation.

	

where and are the mean and variance of the corresponding bootstrap image in  , respectively, is the number of all pixel points contained in  , and is the mean value of image   in  .

In this paper,   stands for guided filtering processing,   and   represent the guiding image and the input image respectively, and the parameter   and the orthogonalization parameter   represent the radius and blur degree of the filtering window, respectively. The parameters are set to   =20 and   =10-6.

	

	

Multiresolution methods obtain spatial details by decomposing high spatial resolution CCD images at multiple scales. The upsampling hyperspectral bands will be incorporated through injection. proportionally to the CCD image size. After subsampling the CCD image using the MTF filter, the interpolation calculation is performed, and then the detail image is calculated by subtracting the obtained low-resolution CCD image from the original CCD image. Guided filtering is performed on the detail image and the hyperspectral to transfer the structural details to the hyperspectral to obtain the filtered result. The hyperspectral filtered detail image is calculated by subtracting it from the original CCD image. Finally, these detailed images are added to the original hyperspectral bands to obtain high-resolution hyperspectral images.

	

	

for l = 1,2,…, where   HSI represents the  th band of the fused image.




2.4 Comparison experiment

MAP-SMM (Hardie et al., 2004) uses maximum a posteriori estimation method and random mixture model to improve the spatial resolution of hyperspectral images with the assistance of high-resolution CCD images-Sharpening Spectral. The method enhances CCD images with a high spatial resolution by sharpening them. In the experiment, hyper-spectral data was used as input for low spatial resolution, while CCD served as input for high spatial resolution. Resampling was set to cubic convolution. CNMF (Yokoya et al., 2012) estimates endmembers and high-resolution abundance maps by alternating unmixing hyperspectral and high-resolution CCD images via nonnegative matrix factorization NMF (Lee and Seung, 1999). The hyperspectral data is initialized by unmixing the hyperspectral images using VCA(Nascimento and Dias, 2005). The final high-resolution hyperspectral data are obtained by the product of spectral features and high-resolution abundance maps. HySure (Simoes et al., 2015) to formulate the fusion problem as a convex set minimization problem involving two quadratic terms and an edge-preserving term.

In the method requiring PSF, a Gaussian filter with an FWHM of GSD was used based on the FWHM provided in the data (Yokoya et al., 2017). HySure used the PSF estimation method described in(Simoes et al., 2015). The non-negative least squares method was used for estimation in the method requiring SRF (Finlayson and Hordley, 1998).

Six fusion methods are used in the experiments, including CNMF, HySure, MAP-SMM, PC-Spectral sharpening, GLP, and the improved algorithm proposed in this paper. The fusion experiment involves preprocessing high-resolution CCD data and hyperspectral data to obtain enhanced high-resolution CCD images and corrected hyperspectral data, which serve as inputs for the algorithm. Simultaneously, experimental parameters are set, and ultimately the fusion results of each algorithm are obtained. The results are evaluated using qualitative and quantitative indicators.




2.5 Quality evaluation

The evaluation of the effects of hyperspectral fusion images is a crucial step in fusion processing, encompassing two primary aspects: qualitative assessment and quantitative analysis (Dong et al., 2022). Qualitative evaluation needs to be combined with quantitative evaluation for a more accurate and reasonable assessment of the results of hyperspectral remote sensing fusion images.



2.5.1 Qualitative evaluation

The qualitative assessment of remote sensing fusion data is conducted through direct visual inspection by the reader to discern its strengths and limitations. Visual interpretation can be used to assess the quality of fusion, but it is greatly affected by the individual knowledge of the observer, which is subjective and incomplete. However, it can provide an intuitive visual sense of the spatial resolution and sharpness of the image.

The qualitative evaluation mainly includes detecting whether there is ghost and distortion in the image, whether the fusion results are effectively preserved and enhanced in the spatial detail expression, the colour brightness and texture features of the ground objects, and whether the sharpness of the image after fusion is improved.




2.5.2 Quantitative evaluation

The quantitative evaluation index of the fusion image can only represent the quality evaluation results of the fusion image in one aspect. The advantages and dis-advantages of various fusion algorithms can be found by comparing and analysing the changes in the image before and after fusion with some technical indexes. Therefore, in this study, (Spectral Angle Mapping)SAM (Alparone et al., 2007),which is used to assess the degree of spectral distortion during fusion. (Error Relative Global Adimensionnelle de Synthesse)ERGAS (Du et al., 2007),which is used to measure the global spectral quality of fused images. (Correlation Coefficient)CC (van der Meer, 2006) is reflects the degree of correlation between the fused image and the reference image. Entropy is an evaluation index of how much information the image contains. (Root Mean Square Error) RMSE is the proximity between the fused result image and the reference image, and other indicators were used to compare the images before and after fusion. The reference data are the resampled raw hyperspectral data.




2.5.3 PSRI, NDWI vegetation index and canopy spectral

In addition to the above qualitative and quantitative evaluations, this paper selects PSRI, NDWI vegetation index, and tree canopy spectral curves to analyse the fused results from the spectral level. To a certain extent, they can reflect the difference between the original hyperspectral data and the fusion results and present the spectral fidelity more intuitively.

The vegetation index is defined as a dimensionless index, commonly a ratio, linear or nonlinear combination of spectral reflectance of two or more bands and is considered a sign of the relative abundance and activity of green vegetation in terms of radiance and is a comprehensive representation of chlorophyll content and green biomass of green vegetation, which is intended to diagnose the vegetation growth status and green vegetation vigour, enhances a particular attribute or characteristic of the vegetation (Munnaf et al., 2020).

The spectral reflectance changes of vegetation in the visible-NIR band after being stressed by pests and diseases are a direct feature of remote sensing of pests and diseases (Sankaran and Ehsani, 2011). Such spectral responses caused by pests and diseases are widely used in remote sensing monitoring and early stress diagnosis (Prabhakar et al., 2011). When vegetation leaves are infected, it will be accompanied by changes in chlorophyll and carotenoid content and affect the canopy water content.

Therefore, two planting indices selected in this paper: PSRI (Merzlyak et al., 1999) and NDWI (Gao, 1996), are selected to synthesize the results of fusion, as indicators to reasonably evaluate the fusion results from the spectral level as well as in practical applications.

NDWI is a normalized water index, which is used to study the water content of vegetation, and it can effectively extract the water content of the vegetation canopy and can have a more obvious response when the vegetation canopy is under water stress.

	

GREEN is the green band and NIR is the near-infrared band. In this paper, the GREEN wavelength was selected as 525 nm and the NIR wavelength was 956 nm.

PSRI is the plant senescence reflectance index, which is detected using the ratio of carotenoids to chlorophyll. It can be used for vegetation health monitoring, plant physiological stress ability detection, etc.

	

The canopy spectral curves can reflect the physiological properties of the features (Li et al., 2015), and comparing the canopy curves before and after fusion allows for a reasonable assessment of the actual performance of the fusion algorithm and a comparison of the changes in the actual spectra.






3 Results and evaluation



3.1 Qualitative evaluation



3.1.1 Spatial detail evaluation

The following is the spatial detail evaluation after the fusion is completed. As the Figure 4 shows the original CCD image, the false colour image of the original hyperspectral data (R:666 nm; G:525 nm; B:434 nm). For the overall fusion results, there are certain colour as well as brightness differences between different fusion algorithms compared to the original data. However, the spatial texture as well as the detailed features are somewhat preserved in each fusion algorithm when compared to the local magnification.




Figure 4 | Fusion results: (A) CCD image (B) HSI data (C) HySure result (D) MAP-SMM result (E) CNMF result (F) PC Spectral sharpening result (G) GLP result (H) Proposed result.



The fusion result of HySure exhibits higher brightness than the original CCD im-age, and the feature display effect has been moderately enhanced. The fusion results from PC Spectral Sharpening are relatively fewer sharp than the initial CCD data, with lighter color tones in the vegetation parts, deviating from the other results in terms of color fidelity. Nevertheless, spatial detail information is partially preserved. The proposed algorithm preserves spatial details while enhancing the sharpness of edges in the fused image.

The MAP-SMM algorithm preserves the texture properties of tree crowns for the description of color-changing tree crowns. Although there are some differences with the original data, the HySure algorithm is able to better preserve the optical texture and features of the canopy, and the spatial features perform nicely, making the edges of the canopy and additional surrounding trees distinctly visible. In contrast, the CNMF algorithm does not perform as well in terms of detail, but can still distinguish the edge features of the discolored standing tree. The results of PC-Spectral Sharpening fusion show that the color description of the canopy of color-changing trees is not clear enough and does not effectively distinguish normal trees from their boundaries. At the same time, the spatial details are insufficient. The GLP algorithm improves the de-tailed information of tree crowns to some extent. Overall, the proposed algorithm effectively preserves and characterizes the complex and diverse details of the tree and its surroundings, and accurately distinguishes normal from abnormal conditions.

In summary, the spatial resolution of the above six algorithms is effectively im-proved compared with the original hyperspectral data, and the algorithm proposed in this paper, while improving the spatial details, can portray the abnormal canopy of discolored trees.




3.1.2 Spectral level evaluation

In order to be able to compare the fusion results of each method more obviously from the visual effect, the following Figure 5 gives the difference plots between the fused hyperspectral data of each method and the reference hyperspectral with high spatial resolution in turn.




Figure 5 | Error plot of the fusion result: (A): HySure result (B) CNMF result (C): MAP-SMM result (D): PC Spectral Sharpening result (E): GLP result (F): Proposed result (G): Reference result.



The results of the fusion error maps show that the algorithms in this paper show a low degree of spectral distortion and loss of spatial details in most of the image regions. the results of MAP-SMM are better, while CNMF, HySure, PC-Spectral Sharpening, and other algorithms show different degrees of spectral distortion and loss of spatial details. HySure can improve the spatial HySure can improve the ability of spatial de-tail expression, but there are some differences with the original data at the spectral level.

The following Figure 6 shows the spectral curves of the tree canopy before and after fusion for each algorithm.




Figure 6 | Spectral curves of trees: (A): discoloured trees (B): normal trees.



Based on the spectral curve of the fusion result, the following result can be obtained.

The fusion results of the MAP-SMM algorithm have good spectral fidelity, small differences between them and the original data, and similar trends in the spectral curves, which can preserve their valid spectral information. In the visible band, the normal tree canopy spectral curves differ slightly from the raw data. The fusion results of the HySure algorithm can have a high degree of overlap with the original hyper-spectral data in the NIR band, and the trends of the spectral curves are similar. The CNMF algorithm has some differences in the trends of its spectral curves with the original hyperspectral data in the visible band, and the spectral curves fluctuate in the NIR band. the PC Spectral Sharpening has more significant spectral differences from the original data in the spectral curves of vegetation, and there is a certain degree of spectral distortion with the same visual presentation results, but it is able to retain the trend of the spectral curves in the visible as well as near-infrared bands to some extent. The differences between the GLP algorithm and the raw data in the canopy spectral curves are smaller, the trends are similar, and there is some degree of overlap in the spectral curves.

The canopy spectral curve of this algorithm is slightly different from the original data and has a high degree of overlap with the original super-spectral data, which effectively preserves the spectral information.

The aforementioned algorithms can all enhance spatial resolution to some extent, while preserving their spectral information to varying degrees. According to the spectral curve results, the proposed algorithm can effectively preserve the canopy spectral information in terms of spectral fidelity. The overall trend of the spectra can be preserved and the difference between the pre- and post-fusion spectra is relatively small.





3.2 Quantitative evaluation

The purpose of hyperspectral image fusion is to combine the spatial information contained in high spatial resolution images with hyperspectral data to improve the spatial information in the final fusion result. The reference data are the raw hyperspectral data after resampling, and the strengths and weaknesses of the various fusion algorithms are evaluated and validated according to the specific metrics in Table 2.


Table 2 | Fusion results.



The statistical metrics in the table were compared with the original hyperspectral data to quantitatively evaluate the results, and the fusion results were evaluated with quantitative metrics, including SAM, RMSE, ERGAS, CC, Entropy, and Q.

It can be seen from the table that the algorithm proposed in this paper performs well in the indicators SAM, CC, and Entropy. In general, the MAP-SMM algorithm has better performance, but it is not as good as the method proposed in this paper in the expression of spatial information. From the spectral index level analysis, the difference between CNMF and MSGF-GLP in terms of the spectral information available in the fusion result and the reference image sampled on the simulation of the original data is not significant, and the spectral characteristics of the original data are effectively preserved. The fusion results of MAP-SMM and HySure have some spectral differences compared with the reference image, but the difference is small. The difference between PC Spectral sharpening and the reference image is the largest, and the spectral distortion is more significant when combined with the qualitative evaluation result map. From the perspective of spectral loss, MAP-SMM has the least spectral loss and has a better ability to retain spectral in-formation. MSGF-GLP has less spectral distortion, which can effectively retain the spectral information in hyperspectral data and reduce the information loss in fusion. The CNMF also has less spectral distortion. The fusion results of HySure and GLP indicate some spectral loss. The PC Spectral sharpening method has more serious spectral loss than other algorithms.

Image information entropy is used to represent the increased degree of information of the fused image, and to measure the richness between the fusion result and the original image. When the information of high-resolution data is fused to hyperspectral data, the information from six algorithms is improved compared with the original data. Among them, the fusion result entropy of the algorithm proposed in this paper is the highest, indicating that the amount of information increases more, and the level of detail expression is more abundant. Followed by HySure, MAP-SMM, CNMF, and GLP, it shows that the fusion algorithm can improve the information of the original image data. The PC Spectral Sharpening algorithm improves the amount of information the least, and its spatial information expression and detail description have a certain lack compared with other algorithms. The correlation coefficient of the proposed algorithm is the largest, followed by CNMF and MAP-SMM algorithms, indicating that the fusion result can better retain its Spectral characteristics. The correlation coefficient of HySure and PC Spectral Sharpening with the original image is relatively low, which indicates that there is a certain difference between the original hyperspectral data and the HySure and PC spectral sharpening.




3.3 NDWI and PSRI vegetation index

The fusion results were analyzed and evaluated at the spectral level. The selected vegetation indices make the comparison of the results clearer at the spectral level.

Sapes, Gerard, et al. (Sapes et al., 2022) demonstrated that multispectral indices associated with physiological decline were able to detect differences between healthy and diseased trees. In the original high-resolution data, it was not possible to detect the wilted trees using true-color images from which their specific infected status could be determined. Therefore, this paper selects two different vegetation indices and extracts the spectral curves of the features for a comprehensive analysis and comparison of the fusion results.

Figure 7 shows the high-resolution data and raw hyperspectral data for the experiments on marked trees according to NDWI and PSRI vegetation indices. The experimental results show that the raw hyperspectral data using the vegetation indices cannot distinguish well the differences among the variegated standing trees.




Figure 7 | (A) Raw hyperspectral data (B) Raw CCD data (C) NDWI result (D) PSRI result.



Below Figure 8 shows the fusion results obtained by choosing the vegetative index NDWI, which is based on the original hyperspectral data, effectively preserving the spectral information and improving the level of spatial detail expression. The MAP-SMM algorithm improves the spatial information capability and effectively preserves the spectral information of the tree canopy as well as the spatial detail expression with good spectral fidelity. The HySure algorithm is able to optimally preserve the shape features of the canopy and can clearly distinguish between discoloured standing trees and healthy trees, but there is a spectral distortion in the parts around the canopy. The CNMF algorithm can portray the general contour shape of the canopy and retain certain spectral information. The PC spectral sharpening algorithm fails to portray well the difference between the discoloured standing trees and the healthy trees, which will have some spectral loss at the edges of their canopy. The GLP results are able to retain the spectral information in the tree canopy and lack some spatial details in the characterization of the canopy profiles. The algorithm presented in this paper characterizes the tree canopy at the level of spectral analysis, clearly distinguishes between standing trees with discoloration and healthy trees and can efficiently preserve spectral components with less spectral distortion.




Figure 8 | NDWI results. (A) HySure result; (B) CNMF result (C) MAP-SMM result (D) PC Spectral Sharpening result. (E) GLP result (F) Proposed result.



Figure 9 below shows the fusion results obtained by choosing the vegetation index PSRI. The results of the MAP-SMM algorithm retain the spectral information in the original data and can be combined with the information in the original high-resolution CCD data for a considerably sharper result in the detailed characterization of the canopy level. The fusion results of the HySure algorithm can effectively preserve the spectral information in the tree canopy and can resolve the spectral differences with the tree canopy, improving the spatial detail expression, but there are some spectral distortions around the tree canopy and the shaded parts. The figure shows that the PC spectral sharpening algorithm is less able to preserve the spectral information compared to the other algorithms, while the spatial information is considerably improved. However, it fails to better preserve its spatial expression in the carving of canopy details. The GLP algorithm is able to reflect the approximate details of the tree canopy, and the spectral information is preserved to some extent. The proposed algorithm preserves the spectral information while enhancing the spatial details, and the spectral distortion around the tree canopy is minor.




Figure 9 | PSRI results. (A) HySure result; (B) CNMF result (C) MAP-SMM result (D) PC Spectral Sharpening result. (E) GLP result (F) Proposed result.



In summary, the vegetation index can effectively analyse the fusion results from spectral preservation and spatial detail enhancement. The proposed algorithm effectively preserves spectral information while enhancing spatial details and is able to preserve canopy information of variegated standing tree canopies. Among the different algorithms, MAP-SMM works best for canopy detail feature carving, but with some spectral distortion, followed by HySure, CNMF, and GLP algorithms, with PC Spectral Sharpening being the least effective. All six algorithms described above are capable of reconstructing the spatial and spectral information of the canopy of variegated standing trees, which can be distinctly distinguished from other healthy vegetation, based on raw hyperspectral data.





4 Discussion

Each year, losses in forest resources and direct or indirect economic losses due to forest diseases and pests are extremely severe. With the rise of remote sensing monitoring technologies, rapid and high-scale monitoring of forest diseases and pests has become possible. CCD images obtained by remote sensing surveillance techniques can clearly show spatial information of decorated trees infected with diseases and pests. However, in order to enable early monitoring of diseases and pests, it is necessary to use hyperspectral images to analyse the changes in their internal chemical properties and thus detect the occurrence of diseases and pests in the early stages of tree infection. With the development of forest pest monitoring technologies, traditional detection methods have struggled to meet the demands of detection resolution and identification accuracy. Therefore, in this paper, we propose an image fusion algorithm based on Airborne data that not only preserves the spectral information of the original image but also effectively improves the spatial resolution of the detection results, which has certain advantages for early detection and recognition of forested trees.



4.1 Characteristics of forest pest and disease data



4.1.1 CCD data characteristics

CCD data is a type of image data that can accurately and intuitively show the occurrence and development of forest pests and diseases. Pixel-scale colour analysis can detect anomalous colour changes, such as brown, yellow, reddish-brown, grey, and other colours in CCD image data when trees are affected by pests and diseases. In contrast to hyperspectral techniques, CCD data detection is faster, high-resolution image data acquisition is less difficult, and it is more widely used in forest pest monitoring. How-ever, when significant changes in crown colour are detected, the tree is already in the middle or late stages of pest and disease and can only be managed by cutting and crushing. Therefore, this paper combines hyperspectral data analysis to enable early detection of discoloration in trees.




4.1.2 Spectral data characterization

Hyperspectral data is a class of data that can be multi-band, express spatial and spectral information, and capture the continuum of the target. Hyperspectral data can detect minor changes in the tree spectrum during discoloration, when there are colour abnormalities in the canopy caused by an infestation of trees with pests and diseases. In contrast to CCD data, hyperspectral data can reflect the characteristics of each epoch from the spectral curve, which is widely used in the field of early monitoring of forest pests and diseases. However, the spatial resolution of the hyperspectral images is not as excellent as that of the CCD images, and it is difficult to distinguish tree crowns with similar colours, contours, and additional textures in the raw hyperspectral data. Therefore, this paper combines CCD data analysis to enable early monitoring of tree discoloration.




4.1.3 Fusing algorithm data features

The fused data can preserve the spatial detail texture information of the CCD data, better preserve the coronal edge characterization, and preserve the spectral information of the hyperspectral data.

These fused data can be used not only to analyse the spectral characteristics of the canopy but also to determine the internal stage and extent of the disease. In addition, the fusion results additionally improve the spatial resolution of the images, enabling the detection of anomalous canopies with higher contrast and more pronounced effects, clearer canopy textures and contours more appropriate for the true onset of the disease, and the discrimination of anomalous canopies with similar colours. In this way, the fused data have both strong spatial and extreme spectral resolution. Serve as a valid reference for further research.





4.2 Performance analysis of fusion algorithms

Multisource data fusion algorithms are increasingly used in remote sensing monitoring due to technological developments. Fusion analysis of multi-source data can integrate the features and strengths of different types of data and compensate for the shortcomings of individual data. Moreover, the fusion algorithm does not severely increase the computational cost and can considerably increase the detection efficiency and effectiveness. In this paper, we compare the improved fusion algorithm with alternative algorithms and obtain better experimental results.

Therefore, the fusion algorithm combines CCD data and hyperspectral data to detect standing trees with different colors in the experimental region, which preserves the data characteristics of standing trees and improves the resolution of the detection results.




4.3 Selection of evaluation indicators

The construction of a fusion quality evaluation system is an important problem in image fusion. At present, most of them are judged by qualitative and quantitative indicators (Pei et al., 2012).

In this paper, airborne remote sensing images are used as the subject of study and the spectral fidelity and spatial resolution between images can be evaluated using selected fusion algorithm metrics. For the application level of forest remote sensing, models for the corresponding evaluation schemes are constructed and designed through the physiological features of different objects. For each evaluation scheme, reasonable weights are assigned according to the requirements of the actual application and the relevant data sources, and finally, a comprehensive evaluation result is obtained. Evaluation metrics can include both application level and comprehensive analysis of the fusion results from a fusion perspective. In this paper, we conduct an analysis and evaluation of experimental results utilizing PSRI and NDWI vegetation metrics to enhance the visual representation of fusion outcomes and assess the applicability of fusion algorithms.




4.4 Quantitative and qualitative evaluation

Based on qualitative analysis, it is evident that each algorithm is able to enhance the texture features of the original hyperspectral data to some extent by integrating the results of the canopy detail images. However, the algorithm in this paper excels in de-tailed description and edge preservation.

As can be seen from the error plots of the fusion results, each algorithm has some error with respect to the reference image sampled on the original hyperspectral, and the difference between the proposed algorithm and the reference image is minor. According to the analysis of the quantitative results, the proposed algorithm performs nicely on SAM, CC, and Entropy metrics, and can also perform at a strong level on other quantitative metrics. All fusion algorithms can improve the spectral and spatial resolution of the raw data. The proposed algorithm can effectively distinguish between discolored and normal trees at the spectral level and preserve the canopy details and spectral features of the tree canopy. From the spectral curve level analysis, the fusion algorithm is able to better preserve the trends of the spectral curve and still have certain spectral features within a particular band after fusion compared to the original data. Using a single hyperspectral data for detection, there will be exotic objects with the same spectrum and the same object with a different spectrum, and tree crowns with similar texture profiles will be difficult to distinguish. The use of single CCD data to detect discolored standing trees makes it impossible to determine whether the trees are infested with pests and diseases and at what stage of infection. The final fusion results using a specific vegetation index can extract tree crowns with better results than those obtained from a single data source. Our experimental results show that the fusion algorithm has some adaptability for the detection of standing trees in forest discussions and has promising applications.




4.5 Prospects

In this paper, we use a fusion algorithm to fuse CCD data and hyperspectral data to analyze the occurrence and development of forest pests and diseases. Environmental factors such as illumination and topography can have some influence on the acquisition of image information during data acquisition, and the effect of data acquisition directly affects the results computed by the fusion algorithm. Therefore, in the subsequent research, the data collected by the ground base station can be combined to detect and analyze the tree crown characteristics by multi-source data fusion so that the abnormal spectrum of the collected crown can be more accurate, the abnormal spectral characteristics can be extracted more real and reliable, and the application ability of the fusion algorithm in the aspects of pest and disease and forest control can be im-proved. In addition, there is a lack of a well-defined vegetation index suitable for assessing the extent of early pest and disease damage. An appropriate vegetation index can be designed based on the spectral wavelength of a particular object, and the fusion result can be effectively distinguished from the spectral fidelity, which can be used as an essential evaluation metric for the fusion result of forest remote sensing. At the same time, the results of the vegetation index are also affected by light and other relevant factors, and the influence of environmental factors should be considered in the future and differentiated according to the actual situation.





5 Conclusions

It has been shown that the proposed fusion algorithm can be used to perform fusion experiments using onboard remote sensing data in the experimental sample area, and the fusion results verify the effectiveness of the proposed method, which has some application value. Comparison and evaluation of the proposed algorithm with five additional fusion algorithms through various evaluation metrics show that the pro-posed algorithm introduces guided filtering based on multi-resolution analysis and improves the spatial detail features while preserving the canopy spectrum. The fusion results in a large spatial resolution as well as a large spectral resolution. The research results can provide good technical support for the practical application of forest remote sensing data fusion, and lay the foundation for promoting the scientific, automatic and intelligent forestry control.

The limitation of this study lies in the lack of comprehensive analysis of experimental results using multi-source data. In the future, effective integration of advantages from all parties, improved efficiency in data utilization, and promotion of result analysis can be achieved through cross-scale fusion of air and earth observation data. Additionally, the qualitative evaluation method adopted in this study has certain limitations that moderately affect result accuracy. Therefore, it is necessary to consider extracting abnormal spectral characteristics and designing corresponding vegetation indices and evaluation criteria for different tree species and infection stages to achieve varying levels of detection. This will help enhance monitoring capabilities and address practical application challenges.
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Huanglongbing (HLB) is one of the most devastating citrus diseases worldwide. It is associated with the non-culture bacteria Candidatus Liberibacter spp., which can be transmitted by grafting and/or the psyllid vectors Diaphorina citri (ACP) and Trioza erytreae (AfCP). Although HLB has not been reported in the Mediterranean Basin to date, both vectors are present, and thus represent a serious threat to the citrus industry in this region. Resistant citrus cultivars or effective therapeutic treatments are not currently available for HLB. Nevertheless, area-wide pest management via coordinated management efforts over large areas has been implemented in Brazil, China and the USA for HLB control. This study proposes an open access flexible methodology to address area-wide management of both HLB vectors in the Mediterranean Basin. Based on a risk-based approach which considers climatic information and other variables that may influence vector introduction and spread, such as conventional, organic, abandoned and residential citrus areas as well as transportation corridors, an area-wide management division in pest management areas (PMAs) is proposed. The size and location of these PMAs were estimated by means of a hierarchical clustering algorithm with spatial constraints whose performance was assessed under different configuration scenarios. This proposal may assist policymakers and the citrus industry of the citrus-growing areas of the Mediterranean Basin in risk management planning in the case of the spread of HLB vectors or a possible introduction of the disease. Additionally, it may be a valuable resource to inform opinion dynamic models, enabling the identification of pivotal factors for the success of control measures.
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1 Introduction

Citrus huanglongbing (HLB), or citrus greening, is considered the most devastating bacterial disease of citrus worldwide (Bové, 2006; McCollum and Baldwin, 2016; Jeger et al., 2023). The disease affects citrus trees, causing an overall decline which eventually leads to their death (Hendrichs et al., 2021). HLB is mainly associated with the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas), Ca. L. africanus (CLaf) and Ca. L. americanus (CLam). The CLas species is the most aggressive form of HLB and is widespread in Asia, North America, South America and Africa (Bové, 2006; Gasparoto et al., 2022). CLaf is only present in Africa, while CLam, initially identified in Brazil, is diminishing and being taken over by CLas (Teixeira et al., 2005; Gasparoto et al., 2012; Wang, 2020). HLB-associated Ca. Liberibacter spp. (CLs) can be transmitted by graft propagation (Bové, 2006), but their natural spread is primarily mediated by two psyllid vectors: the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), and the African citrus psyllid (AfCP), Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae), native to the Asian and African continents, respectively (Teixeira et al., 2005; Bové, 2006; da Graça et al., 2016; Alquézar et al., 2022).

The pathosystem of HLB involves the pathogen, the plant host and the psyllid vector, interacting in an environmental background that affects the biology of each component and its interactions (Stelinski, 2019). The three species of the genus Ca. Liberibacter associated with HLB have a persistent propagative relationship with these psyllid vectors (Carmo-Sousa et al., 2020). As these bacterial pathogens are confined to the phloem, acquisition happens when these psyllid vectors feed on the phloem sap of infected citrus plants, with inoculation occurring via salivation after invading the salivary glands. After acquisition, depending on the psyllid species, transmission can occur within 7-12 days (Canale et al., 2017). Infected adult and/or nymph vectors transmit the bacterium when feeding on healthy flushes, while emerging nymphs acquire it when feeding of them (da Graça et al., 2016; Shimwela et al., 2016). Once the psyllid vector becomes inoculative (able to inoculate plants), it retains this ability for weeks or its whole life, characterizing the transmission as persistent. The HLB-associated bacteria then develop in the tree phloem vascular system, and symptoms take at least four months to appear depending on the tree’s age (Coletta-Filho et al., 2010). The unpredictable lag period between the acquisition of the pathogen and transmission by the psyllid vectors, and for the development of visual symptoms, make HLB eradication by the visual detection of HLB-symptomatic trees problematic.

The CLas-ACP combination is widespread in Asia and America whereas CLaf-AfCP is the most prevalent in Africa (Alquézar et al., 2022). CLas is more heat tolerant than CLaf and can develop under relatively low humidity and high temperature conditions. Similarly, ACP is able to adapt to these same climatic conditions. Transmission of CLas is closely linked to insect development, where acquisition must occur with a higher efficiency during the nymphal stage (Inoue et al., 2009; Coletta-Filho et al., 2014). Thus, temperature ranges influence transmission rate and disease spread. For instance, in the USA, lower temperatures in California have been suggested to slow down the life cycle of ACP resulting in lower infection rates, whereas the higher temperature range in Florida is more favorable for ACP mating and continued disease progression (McRoberts et al., 2021; Igwe et al., 2022; Hosseinzadeh and Heck, 2023). Conversely, both CLaf and AfCP are sensitive to hot and dry conditions, and are thus restricted to areas with relatively cool and humid environments (Catling, 1969; Liu and Tsai, 2000; Bové, 2006; Dala-Paula et al., 2019). Both ACP and AfCP can transmit CLas and CLaf under experimental conditions (Reynaud et al., 2022), but more research is needed to better understand the epidemiological implications of the CLas/AfCP and CLaf/ACP combinations.

Nowadays, HLB is widespread in some of the major citrus producing areas worldwide, such as Argentina, Brazil, China, India, Mexico, South Africa and the USA, among others. No therapeutic treatments or citrus cultivars resistant to HLB are currently available. A three-pronged strategy (TPS), consisting of (i) planting of certified healthy citrus material; (ii) removal of inoculum sources-infected trees; and (iii) application of insecticide treatments to control psyllid populations, has been proposed to be key to managing citrus HLB (Bassanezi and Gottwald, 2009; Bové, 2012). Experiences in both Brazil and the USA have highlighted the futility to control HLB without removing infected trees (Alquézar et al., 2022). Consequently, the task of controlling psyllid vectors goes beyond managing current HLB outbreaks; it encompasses the critical mission of preventing future infections. By diminishing the population of infected trees and thereby reducing the reservoir of the bacterium, vector control becomes an essential part of the long-term management of this disease. In essence, vector control is a cornerstone of HLB management because it directly addresses the mode of disease transmission.

Nevertheless, effective control of vector populations can only be achieved through area-wide pest management (Gottwald et al., 2007; Bassanezi et al., 2013). This strategy consists in implementing pest management over extensive areas as a group rather than on individual orchards (Klassen, 2008). It therefore needs the coordination and teamwork of the whole industry including growers, advisers and governmental authorities, among others. This type of management is particularly effective for migratory pest species such as some insect vectors (Dalal et al., 2017; Drmić et al., 2017; Singerman et al., 2017; García-Figuera et al., 2022; International Atomic Energy Agency (IAEA), 2022). Successful cases of area-wide pest management consist of time-coordinated pesticide sprays or other means of control applied simultaneously in an extensive area (Bassanezi et al., 2013; Navarro-Llopis et al., 2014; García-Figuera et al., 2021b; International Atomic Energy Agency (IAEA), 2022).

Area-wide pest management has been attempted for CLas/ACP in Brazil, China, Mexico, Argentina, California, Florida and Texas with different aims (Bassanezi et al., 2013; McCollum and Baldwin, 2016; Singerman et al., 2017; McRoberts et al., 2019; García-Figuera et al., 2021b; Hendrichs et al., 2021; Yuan et al., 2021; Alquézar et al., 2022; García-Figuera et al., 2022). In areas where both the vector and the disease are widespread, area-wide management aims to reduce disease intensity and sustain fruit production by combining vector management with the elimination of affected trees and replanting with healthy ones from certified nurseries (Bassanezi et al., 2013; Singerman et al., 2017; García-Figuera et al., 2021b; Alquézar et al., 2022). However, in areas where the vector is widespread but the disease is still geographically restricted, the aim of area-wide management is to limit the spread of the disease to neighboring areas (Grafton-Cardwell and García-Figuera, 2018; García-Figuera et al., 2021b; Yuan et al., 2021; Alquézar et al., 2022).

Citrus-growing areas in Australia, New Zealand and the Mediterranean Basin countries are currently free of HLB (da Graça et al., 2016; McCollum and Baldwin, 2016; European and Mediterranean Plant Protection Organization (EPPO), 2022a; European and Mediterranean Plant Protection Organization (EPPO), 2022b; European and Mediterranean Plant Protection Organization (EPPO), 2022c; García-Figuera et al., 2022). However, in the European Union (EU), T. erytreae is currently spreading in the Iberian Peninsula and getting closer to the commercial citrus-growing areas of Spain and Portugal (Arenas-Arenas et al., 2019; Benhadi-Marín et al., 2020), and D. citri has recently been reported in Israel (European and Mediterranean Plant Protection Organization (EPPO), 2022) and Cyprus (European and Mediterranean Plant Protection Organization (EPPO), 2023). As indicated by Bové (2006), the introduction of the vector usually precedes subsequent outbreaks of HLB. In fact, during recent years the time lag between vector introduction and HLB outbreaks has been progressively reduced (Alquézar et al., 2022).

The HLB-associated CLs and their psyllid vectors ACP and AfCP have quarantine status in most countries of the Mediterranean Basin, including the EU, where CLs causing HLB are also included in the list of priority pests (European Union (EU), 2019a; European Union (EU), 2019b; Food and Agriculture Organization of the United Nations (FAO), 2022). These EU priority pests are the ones with the highest potential socioeconomic impact. They are subjected to additional mandatory phytosanitary measures including annual surveys, contingency and action plans, simulation exercises, and public information (European Union (EU), 2016; Aragón et al., 2022). Despite the phytosanitary regulations, over the last few years several interceptions of ACP at the EU borders have been reported. Furthermore, irregular imports of propagating plant material constitute another high-risk entry pathway (EFSA PLH Panel et al., 2021). This fact, together with the presence of AfCP in the Iberian Peninsula and ACP in Israel and Cyprus, represents a serious threat to the citrus-growing areas in the Mediterranean Basin (Gutierrez and Ponti, 2013).

The Mediterranean Basin accounts for around 12% of the world’s citrus-growing areas (McCollum and Baldwin, 2016; Siverio et al., 2017; Food and Agriculture Organization of the United Nations (FAO), 2020). Citrus in the Mediterranean are cultivated mainly in coastal areas, forming a virtually continuous belt along the basin. Spain has the largest citrus-growing area in the Mediterranean Basin, with ∼23% of the total surface area (Food and Agriculture Organization of the United Nations (FAO), 2020). In Spain, commercial citrus crops cover nearly 300,000 ha with a production of ∼6.6 million tonnes, making it the main producer in the EU and the sixth in the world (Siverio et al., 2017; Food an Agriculture Organization of the United Nations (FAO), 2020). With a 25% share, Spain is the world’s leading exporter of fresh citrus, with nearly 60% of the production destined to foreign markets. The main citrus region in Spain is the Valencian Autonomous Community, with 54% of the total Spanish citrus-growing area, followed by Andalusia (28%) and the Region of Murcia (13%) (Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2019; Food and Agriculture Organization of the United Nations (FAO), 2020; Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2022). Furthermore, citrus in Spain also has an important sociocultural component and ornamental citrus are widely planted in residential areas (Duarte et al., 2016; Arenas-Arenas et al., 2018; Torregrosa et al., 2019).

The Spanish National Plant Protection Organization (NPPO) developed contingency plans for HLB and its vectors (Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2021a; Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2021b; Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2023a). These contingency plans were recently evaluated in a simulation exercise (Aragón et al., 2022) and have been translated to a specific regulation to address the control and eradication of the AfCP and to prevent the introduction of the ACP and CLs (Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2023b). Nevertheless, how to organize citrus growers in order to coordinate vector control through area-wide management is not specifically addressed in this contingency plan. The particularities of the citrus industry in the Mediterranean Basin, with small orchards (<1 ha on average in Spain) often managed independently by individual growers (Reig-Martínez and Picazo-Tadeo, 2004; Fernández-Zamudio et al., 2005; Morell-Monzó et al., 2021), increases their exposure to primary infections, namely those coming from neighboring areas (Bassanezi et al., 2013; Alquézar et al., 2022). The different characteristics of the citrus industry in the Mediterranean Basin limit the extrapolation of the area-wide management programs designed for other citrus-growing areas, thereby making the implementation of area-wide management a challenge. Moreover, area-wide management has not been attempted for AfCP control elsewhere, despite being the vector currently spreading in the Iberian Peninsula.

Considering that ACP and AfCP are now present in the Mediterranean Basin and to prepare for its potential spread to the main citrus-growing areas in the region, the objectives of this study are:

	To define an area-wide management framework for ACP and AfCP in the citrus-growing areas in the Mediterranean Basin. To this end, data from the Valencian Autonomous Community, Spain, and a series of risks potentially associated with the establishment and spread of ACP/AfCP were considered (Flores-Sánchez et al., 2017; McRoberts et al., 2019).

	To optimize the size and location of area-wide management areas. For this purpose, the methodology developed by Gottwald et al (2014a; 2014b). was tailored by adapting a regionalization algorithm and assessing its performance under different configurations of risk homogeneity and spatial aggregation. The methods were implemented in R language (R Core Team, 2021) and, following open science principles, all the underlying code and data necessary to run the tool are made available. This will allow the approach to be updated as new information becomes available, so that end users can adapt it to different epidemiological settings.



In addition, this proposal could provide valuable support to policy makers and the citrus industry in planning for risk management in the event of the spread of HLB vectors or the potential introduction of the disease into citrus-growing regions in the Mediterranean Basin. It can also be used by modelers to improve surveillance and management programs. By integrating epidemiological models with opinion dynamics models that incorporate the principles of area-wide management, it will be possible to determine how best to maximize the potential effectiveness of voluntary HLB control campaigns (Gottwald et al., 2014a; Milne et al., 2020).




2 Materials and methods

The Valencian Autonomous Community (ES52 NUTS level 2 EU territorial unit for statistics) was selected as the study area. This region consists of three provinces: Alicante (ES521 NUTS 3), Castellón (ES522 NUTS 3) and Valencia (ES523 NUTS 3). The study area is the region with the largest extension dedicated to citrus in Spain, with characteristics similar to those of other citrus-growing areas in the Mediterranean Basin. Of the three provinces, Valencia has the biggest area devoted to citrus.

The resulting area-wide management zones in our study were defined as Pest Management Areas (PMAs). To facilitate regionalization of the PMAs, the study area was gridded into 24,048 cells of 1 km2 using the European Environment Agency (EEA) reference grid downloaded from its official website. This grid is in the ETRS89 Lambert Azimuthal Equal Area (LAEA) projection coordinate reference system (ETRS89/ETRS-LAEA (EPSG:3035)) with a coding system identifying each grid cell with a unique ID (Peifer, 2011).

The original 24,048-cell grid was filtered to identify cells with commercial citrus coverage using a georeferenced dataset from the Spanish Agricultural Plots Geographic Information System (SIGPAC). The SIGPAC dataset provided comprehensive information on the size and shape of commercial citrus orchards and was intersected with the reference grid of the study area. Finally, 7,021 of the original 24,048 cells were identified as cells with commercial citrus coverage. Thus, the grid of the study area was defined by 7,021 cells of 1 km2.

Based on previous studies in other citrus areas (Díaz-Padilla et al., 2014; Gottwald et al., 2014a; Gottwald et al., 2014b), the study area was characterized through different risk factors than can affect the introduction and spread of HLB vectors and, consequently, the disease epidemiology (see Supplementary Material A for further details). For this purpose, different georeferenced datasets were exploited to extract data on climatic variables, commercial citrus orchards, population census data and the network of the main transportation corridors. The extracted data were transformed to the ETRS89/ETRS-LAEA (EPSG:3035) reference system using R software version 3.6.0, https://www.R-project.org and aggregated at the cell level into the grid of the study area.



2.1 Climatic variables

Hourly data at 2 m for air temperature (K) and dew point temperature (K) at a spatial resolution of 0.1° x 0.1° (∼ 9 km x 9 km) were retrieved from ERA5-Land dataset from 2009 to 2018 in raster format through the Climate Data User (CDS) user interface.

As in Galvañ et al. (2022), relative humidity (RH) as a percentage was calculated according to Wallace and Hobbs (2006) using air and dew point temperatures as follows:

 

with es(Td) and es(T) denoting actual and saturation vapor pressures in hPa, respectively; with Td as the dew point temperature and T as the air temperature both in °C and for es(Td) ≤ es(T). Actual and saturation vapor pressure were estimated following Bolton (1980) as:

 

 

Daily maximum, minimum, mean temperature and minimum relative humidity were computed from the hourly variables using the function ‘apply. daily()’ from the R package rts (Babak, 2023) and were extracted to the 1 km2 grid of the study area by means of the function ‘extract()’ from the R package raster (Hijmans, 2022). A total of 326 cells were excluded because ERA5-Land does not provide climatic data for land areas adjacent to the coast line (Pelosi et al., 2020) and so the final grid of the study area was defined by 6,695 cells.




2.2 Commercial, abandoned and organic citrus

Georeferenced data of organic and abandoned orchards were not available. Thus, the total surface area of organic and abandoned citrus orchards in the study area was obtained from official statistics (Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2019; Ministerio de Agricultura, Pesca y Alimentación (MAPA), 2020). Based on these data, a total of 42.68 km2 of citrus under organic production and 103.81 km2 of abandoned citrus were randomly assigned to the commercial citrus orchards extracted from the SIGPAC and were first used to filter the grid of the study area. This was done using the function ‘sample()’ from the R package base (R Core Team, 2021). The number of organic/abandoned orchards was determined by dividing the total number of hectares of organic/abandoned by the average commercial orchard size. Consequently, each individual orchard was categorized as in-production, distinguishing between conventional vs. organic management, or abandoned, that is, unmanaged.

In order to characterize each of the cells comprising the study area’s grid in terms of the total surface area under commercial production, including conventional, organic, and unmanaged citrus areas, the the ‘st_intersection()’ function from the R package sf was employed (Pebesma et al., 2023). Through this function, the study area grid was intersected with the georeferenced orchard database, and the total area for each type of orchard was computed by aggregating the surfaces of each orchard intersected by a cell.




2.3 Residential citrus

Two sources of data were exploited for residential citrus and subsequently combined: i) daily minimum temperatures, and ii) population census data (see Section 2.1 for further details).

To account for the detrimental effect of cold conditions in citrus growth, daily minimum temperatures in January were averaged for each year from 2009 to 2018. Based on Davies and Albrigo (1999) and Bijzet (2006), a temperature threshold of 2.5°C was chosen to draw an isotherm defining those parts of the study area in which the growth of citrus is not limited by cold temperatures T ≥ 2.5°C.

Population census data at country level (ES NUTS 1) were extracted from the GEOSTAT population grid, which provides data on population density as the number of inhabitants per 1 km2 cell at the EEA reference grid (EUROSTAT, 2016). The ratio between the residential citrus coverage and the number of inhabitants was estimated based on the census of citrus trees for the city of Seville (Cabanillas, 2020), in Andalusia, and its population (Instituto Nacional de Estadística (INE), 2020). This city was chosen for having the most complete and updated census on residential citrus trees in Spain. The number of residential citrus trees in Seville was transformed to residential citrus area, assuming a coverage area of 20 m2 per tree. The estimated residential citrus area was divided by the total number of inhabitants, resulting in a ratio of 1.33·10−6 km2 of residential citrus area per inhabitant.

This ratio was applied to the number of inhabitants in each 1 km2 cell, but considering only those cells defined by the isotherm as suitable for citrus growth. Finally, only those cells classified as “suitable” within the grid of the study area were taken into account. As a result, the information of the residential citrus area was integrated into the study area cells, along with the information of the total citrus area in conventional and organic production and the “abandoned” citrus area.




2.4 Transportation corridors

The road transport network at country level (ES NUTS 1) was downloaded from the National Geographic Information Centre (CNIG) of Spain (Centro Nacional de Información Geográfica (CNIG), 2021). The main transportation corridors were extracted from this dataset choosing only motorways and highways in the study area, as they are considered the primary routes for the transport of citrus fruit and planting materials.




2.5 Pest management areas (PMAs)



2.5.1 Risk factors

CLIMATIC SUITABILITY. The risk factor associated with climatic suitability was calculated separately for ACP and AfCP. As with most insects, the psyllid vectors of HLB are strongly influenced by climatic conditions, particularly temperature and relative humidity. Two risk components related to the potential number of generations (Rpng) and the number of favorable days for development (Rnfd) were considered for both vectors (see Supplementary Material A for further details). To estimate these two risk components, daily data of temperature and relative humidity for the period 2009-2018 were used (see Section 2.1).

The potential number of generations per year Rpng,i for each cell i was calculated based on the average cumulative degree-days for the 10-year period (2009-2018) and dividing by the degree-days (DD) required for an egg of ACP/AfCP to become an adult above a developmental threshold temperature (Tl) as follows:

 

where   denotes the daily mean temperature for day j of year k within cell i with j = 1,2,…,365, k = 1,2,…,10 and   denoting the total number of days and years considered, respectively.

For ACP, Tl = 10.45°C and DD = 249.88°C were the values selected according to Liu and Tsai (2000). For AfCP, Tl = 10°C and DD = 270.00°C based on the work of Catling (1973) and Aidoo et al. (2022).

The number of favorable days Rnfd,i for each cell i was calculated considering only those days allowing the development of all the stages of the insect. For ACP, “a favorable day” (FDacp) was defined considering that this insect species is able to develop with mean temperatures (Tmean) between 10°C, as a lower threshold (Tl), and 33°C, as an upper threshold (Tu) (Liu and Tsai, 2000):

 

According to Aidoo et al. (2022), a “favorable day” for AfCP (FDafcp) was defined considering that it is able to develop at mean temperatures (Tmean) between 10°C, as Tl, and 27°C, as Tu and also including a saturation deficit (SD) ≤ 32.1 mmHg (Catling, 1969; Catling, 1972). This insect species is particularly sensitive to the effects of high temperature and low relative humidity, which are combined in the SD index.

 

SD in hPa was estimated following Murray (1967) as,

 

where RHmin and saturation vapor pressure (es) were estimated from hourly RH following equations 1 and 2, respectively, but considering maximum daily temperature (Tmax). To convert SD from hPa to mmHg, the estimates were multiplied by 0.7501.

Thus, the Rn f d,i for each cell i was computed as:

 

where   is an indicator variable of a “favorable day” for day j of year k within cell i with j = 1,2,…,365, k = 1,2,…,10 and nyear denoting the total number of years.

The psyllids ACP and AfCP lay eggs on leaf flushes and their immature stages feed on tender foliar tissues but not on mature leaves (Annecke and Cilliers, 1963; Moran and Buchan, 1975; van den Berg and Deacon, 1988; Hall, 2020; Monzó and Vanaclocha, 2023). Therefore, daily climate variables were filtered considering only the days from 15 February to 30 April, June and October, assuming that under Mediterranean conditions these are the three major leaf flushing periods (Garcia-Marí et al., 2002) (See Supplementary Material A for further details).

Figures SA1, SA2 (Supplementary Material A) describe the potential number of generations and the favorable days estimated for the study area.

COMMERCIAL CITRUS AREA. The risk factor associated with the commercial citrus area for each cell i, Rcom,i, was calculated as:

 

where CCAi denotes the commercial citrus area in km2 for each cell i.

ABANDONED/ORGANIC ORCHARDS. The risk factors associated with abandoned and organic orchards for each cell i, Rabn(org),i, were computed considering the presence of abandoned or organic orchards within a cell i and/or in its j neighboring cells. The baseline risk associated for each cell i, R0abn(org),i, was computed as:

 

where CCAi and A(O)CAi denote the commercial and abandoned/organic citrus area in km2 for each cell i, respectively; Fabn(org) is an amplification coefficient that increases the risk in those cells i in which abandoned/organic citrus orchards are present. The values for this coefficient were set based on the study by Martini et al. (2016). In this work, the overwintering abundance of adult ACP was evaluated in commercial citrus orchards under conventional or organic management as well as those that have been abandoned. The amplification coefficient was then calculated based on the average abundance of adults in organic (3) and abandoned orchards (19) relative to that in commercial orchards (0.50) as Fabn = 38 = 19/0.50 and Forg = 6 = 3/0.50. In the absence of this type of information for AfCP, the same values of ACP were used.

The Rabn(org),i for each cell i was calculated as:

 

where cell i and each cell j were considered neighbors if the distance between their centroids did not exceed 1,500 m based on van den Berg and Deacon (1988) and Lewis-Rosenblum et al. (2015) (see Supplementary Material A for further details). Thus, the maximum number of neighbor cells j per cell i was 8.

RESIDENTIAL CITRUS. The risk factor associated with the proximity of residential citrus (Rres,i) for each cell i was calculated following the same approach used for Rabn(org),i. The presence of residential citrus within a cell i and/or the proximity of cells with residential citrus was considered using the same criterion of proximity between cells and, thus, the baseline risk associated R0res,i for each cell was computed as:

 

where CCAi and RCAi denote the area (%) covered by commercial and residential citrus for each cell i, respectively. Due to the lack of information, Freswas set as 6, assuming that the presence/proximity of residential citrus would affect the introduction and spread of ACP and AfCP in a similar way to the presence/proximity to organic orchards.

The Rres,i for each cell i was calculated as:

 

TRANSPORTATION CORRIDORS. The spread of ACP and AfCP can be influenced by human activities, such as the transportation of infested plants and fruits. Trucks transporting citrus fruit from orchards to packing houses have been identified as a means of HLB-vector spread (Halbert et al., 2010). In our case, the motorways and highways within the study area were considered the main transportation corridors for commercial citrus fruit and planting material. The risk factor of transportation corridors, Rtra,i, was estimated considering the presence of this type of roads within a cell i and/or their close proximity. As in the other risk factors, the criterion of proximity between cells was also established considering a maximum distance between centroid cells di,j ≤ 1,500 m. The associated baseline risk R0tra,i for each cell was computed as:

 

where CCAi denotes the area (%) covered by commercial citrus and Itra,i is an indicator variable that was set as equal to 1, Itra,i = 1, if a transportation corridor was present in the cell i; otherwise, it was set as equal to 0. Due to the lack of information and for the sake of simplicity, the corresponding amplification coefficient was set at 6, Ftra = 6, considering that the presence/proximity of a cell i to a transportation corridor would affect the introduction and spread of ACP and AfCP in a similar manner.

The Rtra,i for each cell i was calculated as:

 

RISK FACTOR NORMALIZATION. The values of the risk factors were scaled from 0 to 1 using the min-max normalization. For each risk factor, its minimum value was transformed into 0 and its maximum value into 1 and, thus, every other value was transformed into a decimal between 0 and 1 as follows:

 

Here, R,i is the risk value associated with a cell i, and min(R) and max(R) are the minimum and maximum values of the risk factor R, respectively, which define the range of this risk factor R within the study area.

OVERALL RISK. To compute the overall risk, ORi, for each cell i, two approaches were followed. In the absence of information on the relative importance of each risk factor, the first one consisted in averaging them:

 

When information is available from epidemiological studies or expert consultancy, a second approach may be used, assigning a weight (wm) to each of the m-th normalized individual risks and calculating a weighted average such as follows:

 

with w1 = w2 = w3 = 0.07, w4 = 0.43, w5 = 0.21, w6 = 0.11 and w7 = 0.04. In our case, those values were set considering a higher weight for the risks associated to abandoned and organic orchards. The two above-mentioned approaches were estimated for both ACP and AfCP. Consequently, OR1 and OR2 were separately determined for ACP and AfCP, respectively. The variations in these estimates are due to the differences in the biology of these two isnect vectors, which affect the calculation of Rpng and Rnfd, as justified above in the section CLIMATIC SUITABILITY. The overall risk factors were also scaled from 0 to 1 following min-max normalization as described above.




2.5.2 PMAs size and location: regionalization algorithm

The Ward-like hierarchical clustering algorithm from the R package ClustGeo (Chavent et al., 2021) was used to set the size and location of the PMAs. This algorithm makes it possible to include spatial constraints optimizing the convex combination of two dissimilarity matrices D0 and D1 and a mixing parameter α ∈ [0,1], Dα= (1 − α)D0 + αD1. The D0 matrix captures the dissimilarities in the “feature space” (i.e., estimated from the overall risk) whereas the D1 gives the dissimilarities in the “constraint space” (i.e., estimated from the distance between observations). The parameter α quantifies the relative importance of D0 as compared to D1 in the clustering procedure. Specifically, when α = 0, the spatial dissimilarities are not taken into account and when α = 1, the overall risk distances are not considered and PMAs are estimated considering only the spatial distances (Chavent et al., 2018; Camêlo Aguiar et al., 2020). In this respect, the package ClustGeo also includes a functionality to address the choice of the parameter α.

Risk factors were calculated for the Valencian Autonomous Community (ES52 NUTS level 2), but the proposed methodology for PMA delineation was evaluated in the two most representative counties (Intitut Valencià d’ Estadística (IVE), 2022) within the study area in terms of commercial citrus areas. These two counties, “Camp de Túria” and “Ribera Alta”, are located in the province of Valencia (ES523 NUTS 3). A county (i.e., a comarca in Spanish) is a territorial division legally defined by each autonomous community in Spain (NUTS 2 regions) that groups together several municipalities [LAUs, (EUROSTAT, 2021)] within NUTS 3 regions with the aim of providing common public services. PMAs were set at county level owing to the smallholding structure of citrus in the study areas as well as the potential role of agricultural cooperatives to coordinate programs for pest control (Fernández-Zamudio et al., 2005; Meliá-Martí, 2021), which operate mainly at county level.

The methodology was evaluated separately for the two overall risks described above and both insect vectors, resulting in 4 scenarios. In particular, PMAs regionalization for ACP and AfCP management was developed on the two overall risks computed (OR1: OR1,apc and OR1,afcp and OR2: OR2,apc and OR2,afcp). The algorithm was run independently for both counties under the following conditions:

	D0 matrix was computed from the Euclidean distance between the n cells performed for the overall risk variable.

	D1 matrix was computed from the shortest Euclidean distance in geographical space between the n cell centroids.

	The choice of the maximum number K of PMAs (i.e., clusters) was defined assuming an optimum PMA size of 25 cells, i.e., by dividing the total number of cells within a county by 25. Those counties with fewer than 25 cells of citrus were not considered in the regionalization process.



The performance of the regionalization method was evaluated by a sensitivity analysis defined on the basis on three values of the mixing parameter: α = 0.1, α = 0.9 and the optimal value suggested by Clustgeo that balances the loss of risk homogeneity and the gain in spatial aggregation. The choice of α = 0.1 underscored the significance of risk distances, whereas α = 0.9 highlighted the importance of spatial distances in the regionalization procedure. The exploration of various α values was aimed to provide a thorough evaluation of how this parameter influences clustering outcomes. Despite the package ClustGeo includes a functionality to address the choice of the parameter α, it was proposed to explore these two extreme values, α = 0.1 and α = 0.9, against the proposed “optimal value” to indentify the value that makes the most practical sense.

Several internal validation measures were calculated to quantify compactness and/or separation (Leskovec et al., 2014; Kassambara, 2017). Compactness measures how close the objects are within the same PMA, estimated by the complete diameter as the distance between the two most remote cells within the same PMA and summarized by its maximum value. Separation measures how well separated a PMA is from the others, estimated by means of the complete linkage distance as the distance between the most remote cells belonging to two different PMAs and summarized by its minimum value. The Dunn index (D) (Dunn, 1973; Dunn, 1974) was estimated from the max(complete.diameter) and the min(complete.linkage.distance) as follows:

 

Thus, those values of α resulting in compact and well-separated PMAs will have a higher value of the Dunn index. The above-mentioned internal validation measures were computed using the R package clv (Nieweglowski, 2020). Compactness and separation were also evaluated visually by comparing overall risk distribution between PMAs using boxplots. Additionally, the normalized proportion of pseudo-inertia (Chavent et al., 2018) was computed for each α value to quantify the loss of risk homogeneity and spatial aggregation in relation to the reference configurations α = 0 (i.e., no spatial information used to define PMAs and risk homogeneity is assumed to be 1 (100%)) and α = 1 (i.e., only spatial information used to define PMAs and spatial aggregation is assumed to be 1 (100%)), respectively.






3 Results



3.1 Description of study area

The study area was mapped onto a grid of 6,695 cells in accordance with the EEA reference grid, of which 3,550 (53.02%) are in the province of Valencia, 1,835 (27.41%) are in the province of Alicante and the remaining 1,310 (19.57%) are located in the province of Castellón. The study area has a total of 1,635.53 km2 of commercial citrus, with the largest area in Valencia, with 943.95 km2, followed by Castellón and Alicante, with 354.10 and 337.82 km2, respectively (Figure 1; Table 1). “El Camp de Túria” and “La Ribera Alta” counties, both in the province of Valencia, were chosen for the evaluation of the regionalization methodology to delineate the size and location of PMAs (see section 3.3). These two counties (Figure 1B) represent 44.54% of the total citrus area (i.e., commercial and residential) in the province and 25.70% of that in the study area.




Figure 1 | Commercial citrus density per km2 within the Valencian Autonomous Community (A) (ES52 NUTS 2) and disaggregated at province level (NUTS 3): Castellón (B), Valencia (C) and Alicante (D). The continuous red line shows the boundaries of “El Camp de Túria” (top) and “La Ribera Alta” counties (bottom) within the province of Valencia (C). Together, the two counties represent the largest portion of the commercial citrus-growing area.




Table 1 | Number of EEA reference grid cells, commercial citrus-growing area: conventional, organic and abandoned areas, and residential citrus area in the Valencian Autonomous Community (ES52 NUTS level 2) and disaggregated at province level (NUTS level 3).



Of the 1,635.53 km2 (100%) of commercial citrus-growing area, 1,495.27 km2 (91.42%) are under conventional management, 40.71 km2 (2.49%) are organic and the remaining 99.56 km2 (6.09%) are unmanaged (i.e., abandoned). Of the 354.10 km2 (100%) of commercial citrus-growing area in the province of Castellón, 324.59 km2 (91.67%), 8.62 km2 (2.43%) and 20.98 km2 (5.90%) are conventional, organic and abandoned, respectively. The 943.95 km2 of commercial citrus-growing area in the province of Valencia are distributed into 862.94 km2 (91.42%) under conventional management, 23.47 km2 (2.49%) are organic and 57.55 km2 (6.10%) are abandoned. Of the 337.48 km2 of commercial citrus-growing area in Alicante, 307.74 km2 (91.19%) are under conventional management, 8.62 km2 (2.55%) are organic and 21.12 km2 (6.26%) are abandoned. A total of 2.95 km2 of residential citrus were estimated for the whole study area, with 0.49 km2 (16.43%) in the province of Castellón, 1.84 km2 (62.49%) in the province of Valencia and 0.62 km2 (21.08%) in the province of Alicante (Table 1).




3.2 Overall risk

The seven risk factors were summarized by two overall risk factors, OR1 and OR2, for ACP and AfCP in the study area (Figures 1, 2). In general, OR2 presented lower values than OR1 for both vectors, as observed in Figures 2B ,D, F and 3B, D, F, where a greater predominance of cooler colors is observed in relation to Figures 2A, C, E and 3A, C, E. Figure 4 describes the range of the four distributions capturing OR1 and OR2 for both ACP and AfCP and shows the same trend as that noted above.




Figure 2 | Overall risk 1 (OR1,acp) (A, C, E) and 2 (OR2,acp) (B, D, F) for Diaphorina citri in the Valencian Autonomous Community disaggregated at province level (NUTS 3): Castellón (A, B), Valencia (C, D) and Alicante (E, F).






Figure 3 | Overall risk 1 (OR1,afcp) (A, C, E) and 2 (OR2,afcp) (B, D, F) for Trioza erytreae within the Valencian Autonomous Community (ES52 NUTS 2) disaggregated at province level (NUTS 3): Castellón (A, B), Valencia (C, D) and Alicante (E, F).






Figure 4 | Individual (per cell) and overall distribution of the OR1,acp (A), OR1,afcp (B) and the OR2,acp (C), OR2,afcp (D) within the Valencian Autonomous Community (ES52 NUTS 2) disaggregated at province level (NUTS 3): Castellón, Valencia and Alicante for Diaphorina citri (acp) (A, C) and Trioza erytreae (afcp) (B, D). Box-and-whisker plots for (A–D) red dots represent the mean value; central line represents the median value; box limits represent the first (Q1) and the third (Q3) quantiles; upper whisker represents min(max(x),Q3 + 1.5IQR); lower whisker represents max(min(x),Q1 − 1.5IQR); IQR = Q3 − Q1; outliers are represented by dots.



The distributions associated with OR1 (Figures 4A, B) have a smaller interquartile range,  , than those associated with OR2 (Figures 4C, D) for both insect vectors (Figures 4A, C for ACP and Figures 4B, D for AfCP). Hence, the differences between cells for OR1 risk are smaller than for OR2 risk. The median values (Mdn.) for OR1 are higher than those corresponding to OR2. However, for both overall risks, the differences between the distributions for ACP and AfCP are minor. Specifically, for ACP:   and   (Figures 4A, C), whereas for AfCP:   and   (Figures 4B, D). Likewise, the means of the distributions (M.) for ACP are   and   (Figures 4A, C), whereas for AfCP   and   (Figures 4B, D).

The overall risk factor trends described above for the study region are also reproduced at province level, when comparing between the two overall risk factors, OR1 vs. OR2, as well as between the two insect vectors, ACP and AfCP. The province of Alicante showed the smallest differences between cells in terms of overall risk values, with an IQR lower than the other two provinces. The province of Valencia, which has the largest percentage of the citrus area and therefore the highest number of cells (Table 1), presents a trend similar to that of the whole study area (Figure 4).




3.3 PMAs



3.3.1 Diaphorina citri

The geographical representation of the sensitivity analysis addressed in the PMA regionalization methodology for ACP on the two overall risks computed (OR1,acp and OR2,acp) for “El Camp de Túria” and “La Ribera Alta” counties are shown in Figures 5, 6 and Figures 7, 8, respectively. Additionally, the internal evaluation measures used to assess the performance of the different values of the α parameter are shown in Table 2.




Figure 5 | Spatial (A, C, E) and overall distribution (B, D, F) of the delimited PMAs for OR1,acp (A, C, E) in “El Camp de Túria” county with α of 0.1 (A, B), 0.3 (C, D) and 0.9 (E, F). In box-and-whisker plots red line represents the mean value of OR1,acp in “El Camp de Túria” county; n quantifies the size of each Pest Management area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; upper whisker represents  ; lower whisker represents  ;  ; outliers are represented by dots.






Figure 6 | Spatial (A, C, E) and overall distribution (B, D, F) of the delimited PMAs for OR2,acp (A, C, E) in “El Camp de Túria” county with α of 0.1 (A, B), 0.3 (C, D) and 0.9 (E, F). In box-and-whisker plots red line represents the mean value of OR2,acp in “El Camp de Túria” county; n quantifies the size of each Pest Management Area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; upper whisker represents min(max(x),Q+ 1.5IQR); lower whisker represents max(min(x),Q1− 1.5IQR);  ; outliers are represented by dots.






Figure 7 | Spatial (A, C, E) and overall distribution (B, D, F) of the delimited PMAs for OR1,acp (A, C, E) in “La Ribera Alta” county with α of 0.1 (A, B), 0.4 (C, D) and 0.9 (E, F). In box-and-whisker plots red line represents the mean value of OR1,acp in “El Camp de Túria” county; n quantifies the size of each Pest Management Area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; upper whisker represents  ; lower whisker represents  ;  ; outliers are represented by dots.






Figure 8 | Spatial (A, C, E) and overall distribution (B, D, F) of the delimited PMAs for OR2,acp (A, C, E) in “La Ribera Alta” county with α of 0.1 (A, B), 0.4 (C, D) and 0.9 (E, F). In box-and-whisker plots red line represents the mean value of OR2,acp in “El Camp de Túria” county; n quantifies the size of each Pest Management Area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; upper whisker represents  ; lower whisker represents  ;  ; outliers are represented by dots.




Table 2 | Performance of the regionalization algorithm for the definition of the Pest Management Areas (PMAs) for Diaphorina citri (ACP) under the three different specifications of the mixing parameter α for OR1,acp and OR2,acp in terms of compactness, separation, the Dunn index and the loss of risk homogeneity (1-Q0norm(α)) and increase in spatial aggregation (1-Q1norm(α)) in relation to the reference configurations α = 0 and α = 1, respectively.



In “El Camp de Túria” county, the number of PMAs was estimated at 25 for both overall risks (OR1,acp and OR2,acp), according to the restriction on the maximum PMA size (25 cells) imposed in the initial conditions of the algorithm. The value for the α parameter that optimized the trade-off between the loss of risk homogeneity and the gain in spatial aggregation was estimated at α = 0.2 and α = 0.3 under OR1,acp and OR2,acp. As observed in Figures 5A, C, E and 6A, C, E, higher α values are related to a greater increase in the spatial aggregation of PMAs, which is interesting from a practical point of view of the coordinated management of ACP. Nevertheless, they are also the highest α values that report the lowest intra-PMA homogeneity as well as the lowest inter-PMAs differences in terms of risk, as shown in Figures 5B, D, F and 6B, D, F. Box-and-whisker plots for each PMA belonging to the α = 0.9 present wider distributions and overlap one another (Figures 5F, 6F). The internal validation measures that were estimated supported the graphic results (Table 2). Configurations associated with lower α values show higher intra-PMAs compactness and PMA separation, and therefore have lower values of the max(complete.diameter) and min(complete.linkage.distance), respectively. However, the configurations α = 0.2 (for OR1,acp) and α = 0.1 (for OR2,acp) are the ones that maximize the Dunn index, with the best trade-off between compactness and separation. Regarding the loss of risk homogeneity, the α = 0.9 configuration resulted in a loss of 25% and 24.1% for OR1,acp and OR2,acp, respectively, in relation to the α = 0 configuration (i.e., 100% risk homogeneity). Thus, they maintain a 75% and 75.9% of risk homogeneity in overall terms. The loss of spatial aggregation for the α = 0.9 configuration is 0.2% and 0.6% for OR1,acp and OR2,acp in relation to the configuration of α = 1 (i.e., 100% spatial aggregation).

In “La Ribera Alta” county, the number of PMAs was estimated at 31 for both overall risks (OR1,acp and OR2,acp), according to the restriction on the maximum PMA size (25 cells) imposed in the initial conditions of the algorithm. The value for the α parameter that optimized the trade-off between the loss of risk homogeneity and the gain in spatial aggregation was estimated at α = 0.4 for both risks. The influence of the α parameter in the performance of the algorithm observed in “El Camp de Túria” was also observed in “La Ribera Alta”. As in “El Camp de Túria”, higher α values increased the spatial aggregation of PMAs in “La Ribera Alta” (Figures 7A, C, E and 8A, C, E) but also reduced the intra/inter-PMA risk homogeneity (Figures 7B, D, F and 8B, D, F). Box-and-whisker plots for each PMA with α = 0.1 showed the narrowest distributions and lowest overlap (Figures 7B, 8B). The values of the internal validation measures were in line with the graphical results (Table 2). Higher intra-PMAs compactness and PMA separation values were obtained with α = 0.9, although α = 0.4 (for OR1,acp) and α = 0.1 (for OR2,acp) resulted in the best trade-off between compactness and separation with the highest values of the Dunn index (D = 0.432 for OR1,acp and D = 0.483 for OR2,acp). In relation to risk homogeneity, α = 0.9 resulted in the greatest loss but without exceeding 11% (10.9% for OR1,acp and 11% for OR2,acp), while resulting in a spatial aggregation of 99.8 (100-0.2)% for both overall risks.

Further description of the individual and overall distribution of the commercial citrus area (km2) and number of cells in PMAs in “El Camp de Túria” and “La Ribera Alta” for OR1,acp and OR2,acp are described in Supplementary Figures SB1, SB2, respectively.




3.3.2 Trioza erytreae

Figures 9, 10 and Figures 11, 12 show a graphical overview of the results obtained for AfCP on the two overall risks computed (OR1,afcp and OR2,afcp) for “El Camp de Túria” and “La Ribera Alta” counties. The internal evaluation measures used to assess the performance of the different choices of the α parameter are displayed in Table 3.




Figure 9 | Spatial (A, C, E) and overall distribution (B, D, F) of the delimited PMAs for OR1,afcp (A, C, E) in “El Camp de Túria” county with α of 0.1 (A, B), 0.3 (C, D) and 0.9 (E, F). In box-and-whisker plots red line represents the mean value of OR1,afcp in “El Camp de Túria” county; n quantifies the size of each Pest Management Area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; upper whisker represents  ; lower whisker represents  ;  ; outliers are represented by dots.






Figure 10 | Spatial (A, C, E) and overall distribution (B, D, F) of the delimited PMAs for OR2,afcp (A, C, E) in “El Camp de Túria” county with α of 0.1 (A, B), 0.3 (C, D) and 0.9 (E, F).In box-and-whisker plots red line represents the mean value of OR2,afcp in “El Camp de Túria” county; n quantifies the size of each Pest Management Area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; upper whisker represents  ; lower whisker represents  ;  ; outliers are represented by dots.






Figure 11 | Spatial (A, C, E) and overall distribution (B, D, F) of the delimited PMAs for OR1,afcp (A, C, E) in “La Ribera Alta” county with α of 0.1 (A, B), 0.4 (C, D) and 0.9 (E, F). In box-and-whisker plots red line represents the mean value of OR1,afcp in “El Camp de Túria” county; n quantifies the size of each Pest Management Area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; quantiles; upper whisker represents  ; lower whisker represents  ;  ; outliers are represented by dots.






Figure 12 | Spatial (A, C, E) and overall distribution (B,D,F) of the delimited PMAs for OR2,afcp (A, C, E) in “La Ribera Alta” county with α of 0.1 (A, B), 0.4 (C, D) and 0.9 (E, F). In box-and-whisker plots red line represents the mean value of OR2,afcp in “El Camp de Túria” county; n quantifies the size of each Pest Management Area in terms of the number of 1 km2 cells; central line represents the median value; box limits represent the first (Q1) and third (Q3) quantiles; upper whisker represents  ; lower whisker represents  ;  ; outliers are represented by dots.




Table 3 | Performance of the regionalization algorithm for the definition of the Pest Management Areas (PMAs) for Trioza erytreae (AfCP) under the three different specifications of the mixing parameter α for OR1,afcp and OR2,afcp in terms of compactness, separation, the Dunn index and the loss of risk homogeneity (1-Q0 norm(α)) and increase in spatial aggregation (1-Q1 norm(α)) in relation to the reference configurations α = 0 and α = 1, respectively.



In “El Camp de Túria” county the number of PMAs was estimated at 25 for both overall risks (OR1,afcp and OR2,afcp), according to the restriction on the maximum PMA size (25 cells) imposed in the initial conditions of the algorithm. The value that optimized the trade-off between the loss of risk homogeneity and the gain in spatial aggregation was α = 0.2 for OR1,afcp and α = 0.3 for OR2,afcp. Figures 9, 10 show that higher α values increased the spatial aggregation of PMAs (Figures 9E, 10E) but resulted in less compact and more separated PMAs in terms of risk homogeneity (Figures 9F, 10F). Box-and-whisker plots for each PMA with α = 0.9 resulted in wider distributions and a higher overlap (Figures 9F, 10F). Lower α values resulted in higher intra-PMAs compactness and PMA separation, with lower values of max(complete.diameter) and min(complete.linkage.distance) (Table 3). Nevertheless, the highest values of the Dunn index were obtained with α = 0.2 for OR1,afcp and α = 0.3 for OR2,afcp. In relation to risk homogeneity, α = 0.9 resulted in the greatest loss but not exceeding 27.6% (27.6% for OR1,afcp and 20.4% for OR2,afcp) in comparison to α = 0, while it had a spatial aggregation of 99.9 (100-0.1)% and 99.3 (100-0.7)%, in comparison to the configuration of α = 1, for OR1,afcp and OR2,afcp, respectively.

In “La Ribera Alta” county, the number of PMAs was estimated at 31 for both overall risks (OR1,afcp and OR2,afcp), according to the restriction on the maximum PMA size (25 cells) imposed in the initial conditions of the algorithm. Values of α = 0.3 for OR1,afcp and α = 0.4 for OR2,afcp resulted in the best trade-off between the loss of risk homogeneity and the gain in spatial aggregation. Figures 11, 12 show that higher α values increased spatial aggregation but reduced the intra/inter-PMAs compactness and separation in terms of risk homogeneity. Box-and-whisker plots for each PMA with α = 0.1 showed the narrowest distributions with the lowest overlap (Figures 11B, 12B). Higher intra-PMAs compactness and PMA separation values were obtained with α = 0.9, although α = 0.1 showed the best trade-off between compactness and separation with the highest value of the Dunn index (D = 0.617 for OR1,afcp and D = 0.504 for OR2,afcp) (Table 3). In relation to risk homogeneity, α = 0.9 resulted in the highest reduction, 11.7% for OR1,afcp and 11.1% for OR2,afcp but resulted in a spatial aggregation of 99.8 (100-0.2)% for both risks.

Further description of the individual and overall distribution of the commercial citrus area (km2) and number of cells in PMAs in “El Camp de Túria” and “La Ribera Alta” for OR1,afcp and OR2,afcp are described in Supplementary Figures SB3 and SB4, respectively.






4 Discussion

This study presents a risk-based approach to defining management areas for HLB vectors. The rationale of this approach is based on the regionalization of citrus-growing areas into Pest Management Areas (PMAs) that share a similar overall risk to the introduction and spread of insect vectors but considering spatial constraints to make it feasible from the viewpoint of implementation. The size and location of PMAs were estimated using the Ward-like hierarchical algorithm developed by Chavent et al. (2018). This spatial aggregation algorithm provides relevant elements for the grouping of areas under similar risk and allows the incorporation of geographical information to address the clustering process, which in the context of vector-borne plant diseases is a fundamental point to support the operational implementation (Bassanezi et al., 2013; Yuan et al., 2021). The Valencian Autonomous Community (ES52 NUTS 2), Spain, was selected as the study area because it is the largest citrus-growing region in Europe and is representative of others in the Mediterranean Basin. Specifically, PMAs were designed and optimized for “La Ribera Alta” and “El Camp de Túria” counties.

To date, several proposals for area-wide management of HLB have been developed, framed in different epidemiological settings  (Bové, 2006; Manjunath et al., 2010; Kumagai et al., 2013; Flores-Sánchez et al., 2017; Badaracco et al., 2021; García-Figuera et al., 2021a). In general, the rationale behind these approaches considers regional risk factors, estimated based on epidemiological variables such as cultivar susceptibility, host density, and vector presence and abundance (Gottwald et al., 2014a; Flores-Sánchez et al., 2017). Some of them also incorporate other factors related to human factors, such as the availability of infrastructure, human and economic resources in the citrus-producing regions, as in Mexico (Flores-Sánchez et al., 2017), or the social willingness to participate, as in California (McRoberts et al., 2019; García-Figuera et al., 2022). Nevertheless, although previous research has shown improved HLB control with the area-wide strategy (Bassanezi et al., 2013; García-Figuera et al., 2021a), the standard settings for determining the size and location of area-wide management have not been established (Flores-Sánchez et al., 2017).

Also, different recommendations have been suggested concerning the area-wide size to manage HLB. Using empirical data, Bové (2012) proposed an area size of 500 ha in Brazil, whereas sizes in California range from 4,000 to 20,000 ha (Flores-Sánchez et al., 2017). Nonetheless, the farming systems in Brazil and California are usually composed of large orchards. This contrasts with the citrus-growing areas in the Mediterranean Basin like Spain, where farms are smaller and divided up into orchards of <1 ha often managed independently by individual growers (Fernández-Zamudio et al., 2006). Thus, PMAs aggregation will probably be more challenging from an extension point of view.

To implement our proposal, the study area was characterized by several risk factors at a grid resolution of 1 km2 using data on climatic suitability, conventional, organic, abandoned and residential citrus areas, and  transportation corridors. These risk factors have been associated with the introduction and spread of ACP, and in consequence with HLB epidemiology (Halbert et al., 2010; Richards et al., 2013; Gottwald et al., 2014a; Martini et al., 2015; Bayles et al., 2017; Flores-Sánchez et al., 2017). Our proposal considers the same approach for AfCP. While there have been extensive studies of ACP and AfCP in other regions, there is limited knowledge about both vectors’ biology, spread capacity and host range in the Mediterranean Basin. Likewise, the Valencian Autonomous Community remains free from HLB and from both ACP and AfCP and so it is uncertain how the vectors and the disease will behave.

The risk factors included in our study do not consider the wind effects (i.e., direction and speed) although previous studies on ACP spread dynamics and area-wide management often consider this factor to predict vector distribution in an invading scenario from an entry point. Antolínez et al. (2022) indicated that ACP adults are likely to spread across the prevailing wind direction and that wind speeds higher than 48 km/h are able to dislodge adults from citrus leaves and trigger passive long-distance spread events. Moreover, some studies have hypothesized that severe meteorological wind-related episodes, such as hurricanes in Florida, greatly influenced the major long-distance spread of ACP in Florida (Johnston et al., 2019; Monzó and Vanaclocha, 2023). Nevertheless, the availability of accurate wind data at large scales on a regional resolution is scarce given that wind observations vary on small space and time scales due to the fact that wind is affected by the local terrain, vegetation and buildings. Furthermore, recent studies have shown that other factors, such as orchard layout, have a stronger influence on HLB incidence and spread than wind (Benhadi-Marín et al., 2021; Primiano et al., 2023). Other risk factors integrated in previous studies, such as packing houses and nurseries (Gottwald et al., 2014a; Flores-Sánchez et al., 2017), were not included either. The relevance of these factors in the vector distribution also remains unclear. Similarly, host data (variable and cultivar) was not included because of the lack of available data on cultivar preference and susceptibility.

Nevertheless, the proposed regionalization methodology for estimating the size and location of PMAs ensures sufficient flexibility to update the default risk factors considered or to add new ones as more information about the insect vectors/disease become available or as the epidemiological setting evolves. Similarly, although in our study two options have been proposed for estimating the overall risk, i) averaging its influence, and 2) giving greater importance to the risk posed by the presence of abandoned and organic orchards than to the rest of the risks, other criteria can be accommodated. In the same way, further refinements may be implemented for the risk factor normalization in the presence of extreme values.

The approach proposed in our study for defining the size and location of PMAs makes use of a hierarchical clustering algorithm that allows the introduction of spatial constraints (Chavent et al., 2018). This kind of clustering methodology is usually called regionalization. The term regionalization was defined by Guo (2008) as the process of aggregating a set of spatial entities into a reduced number of regions in a way that a predefined objective function is optimized. Spatial contiguity and homogeneity are the basic criteria underpinning regionalization. Spatial contiguity requires that spatial connectivity or spatial tightness should be met. Beyond the ClustGeo (Chavent et al., 2018), there are several important regionalization algorithms such as SKATER (Assunção et al., 2006) or REDCAP (Guo, 2008). However, ClustGeo was chosen because it enables the definition of the spatial relationship between the units intended for grouping through the assessment of similarity between geographical coordinates, without the necessity for these units to satisfy explicit spatial connectivity requirements, as, for instance, demanded by SKATER (Assunção et al., 2006). This functionality offered by ClustGeo was the decisive factor that led us to opt for this algorithm, given the specific spatial arrangement characteristics of our study area concerning the units to be grouped.

These regionalization techniques are used in several disciplines, including sociology, economics, urban planning, politics and health to identify areas with similar characteristics and to get useful information to support policy-making (Camêlo Aguiar et al., 2020; Guo et al., 2022). However, to our knowledge, this is the first time that this methodology has been used in plant health to group areas with a similar level of risk of vector introduction and spread in order to address a coordinated management and, additionally, on an open-source implementation. The greatest potential of this algorithm in the frame of area-wide management is that it makes it possible to consider the spatial attributes of the units to be clustered and to modulate the importance of spatial aggregation versus the “risk” in the design of the solutions. This importance of spatial aggregation is defined in the implementation offered (i.e., the R package ClustGeo) through the setting of the α parameter. Specifically, when α = 0 the spatial dissimilarities are not taken into account and when α = 1 the “non-spatial attributes” distances are not considered and only the spatial distances are taken into account (Chavent et al., 2018; Camêlo Aguiar et al., 2020).

The Clustgeo algorithm presents a marked variability in the design of the results depending on the setting of parameter k (i.e., maximum number of clusters or PMAs allowed) and depending on the value of parameter α. Specifically, the choice of the maximum number of PMAs (i.e., clusters) was defined assuming a maximum PMA size of 25 cells based on expert criteria, but this parameter can be adjusted by the end user or optimized based on different criteria. Furthermore, a sensitivity analysis was performed to evaluate the effect of three different values of α. For this purpose, in addition to the graphical results, several internal validation measures were computed to quantify compactness and/or separation as well as the trade-off between the loss of risk homogeneity and the loss of spatial aggregation (Leskovec et al., 2014; Kassambara, 2017). For α = 0.9 under the four configurations evaluated (OR1,acp, OR2,acp, OR1,afcp, OR2,afcp), the results obtained in both counties, “La Ribera Alta” and “El Camp de Túria”, showed the greatest spatial aggregation in the design of the location of PMAs, which is fundamental for their implementation from a practical point of view. Furthermore, with α = 0.9 the solutions also supported at least 72.4% homogeneity in terms of overall risk.

In sum, this PMAs design proposal, addressing two overall risk estimates for both ACP and AfCP, offers a comprehensible, accessible and adaptable approach both to estimating the risk factors associated with the introduction and spread of the two HLB vectors and to establishing their corresponding management areas (PMAs). Although it was implemented at NUTS2 level due to administrative reasons, this framework can be upscaled at country and even at Mediterranean Basin levels to implement a standard management and minimize the possible migration of vectors among areas. Thus, the development of this PMAs design proposal means having a preventive tool at the service of the citrus industry. Its use can be extended beyond the coordination of vector/disease management, for instance, to the field of epidemiological surveillance as well as to the context of education and awareness-raising.

Nevertheless, future work would be needed to verify the citrus data at orchard level and its classification as conventional, organic, abandoned, residential, etc. Indeed, the locations of organic and abandoned citrus orchards were randomly allocated to reach the total area reported by Ministerio de Agricultura, Pesca y Alimentación (MAPA) (2019; 2020). The isotherm for citrus growth and population census data were used to estimate the residential citrus areas. Thus, it would also be necessary to update the default risk factors considered, and to add new ones when more information about the insect vectors/disease become available after an eventual introduction in the study area. Additionally, social willingness toward the adoption of PMAs should be properly addressed. Previous experiences from regions with the presence of disease and vector have demonstrated that the only successful action to control the spread of HLB is to control the vector on a large spatial scale (Singerman et al., 2017; Milne et al., 2018; Alquézar et al., 2022). Area-wide programs in countries with the presence of HLB typically rely on voluntary adoption (García-Figuera et al., 2021a; García-Figuera et al., 2022). To achieve voluntary adoption, in our case, the advantages of the coordinated treatments should be effectively communicated and make stakeholders trust the risk manager to keep them motivated and involved in the program (Klassen, 2008; Singerman et al., 2017; McRoberts et al., 2019; Monzó and Stansly, 2020; García-Figuera et al., 2021b; Pavone, 2022).
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Weeds can compete with crops for sunlight, water, space and various nutrients, which can affect the growth of crops.In recent years, people have started to use self-driving agricultural equipment, robots, etc. for weeding work and use of drones for weed identification and spraying of weeds with herbicides, and the effectiveness of these mobile weeding devices is largely limited by the superiority of weed detection capability. To improve the weed detection capability of mobile weed control devices, this paper proposes a lightweight weed segmentation network model DCSAnet that can be better applied to mobile weed control devices. The whole network model uses an encoder-decoder structure and the DCA module as the main feature extraction module. The main body of the DCA module is based on the reverse residual structure of MobileNetV3, effectively combines asymmetric convolution and depthwise separable convolution, and uses a channel shuffle strategy to increase the randomness of feature extraction. In the decoding stage, feature fusion utilizes the high-dimensional feature map to guide the aggregation of low-dimensional feature maps to reduce feature loss during fusion and increase the accuracy of the model. To validate the performance of this network model on the weed segmentation task, we collected a soybean field weed dataset containing a large number of weeds and crops and used this dataset to conduct an experimental study of DCSAnet. The results showed that our proposed DCSAnet achieves an MIoU of 85.95% with a model parameter number of 0.57 M and the highest segmentation accuracy in comparison with other lightweight networks, which demonstrates the effectiveness of the model for the weed segmentation task.
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1 Introduction

Soybean belongs to the legume family, its production is second only to rice, wheat and corn, and it is one of the most important cash crops in the world (Gebregziabher et al., 2022; Huang et al., 2022). Soybean contains approximately 40% protein and 20% oil and is an important source of nutritious food for humans and a major source of feed for livestock. The healthy growth of the soybean plant plays a very important role in the yield of soybeans(Saito et al., 2021). Soybean plants are relatively small and susceptible to weeds (Soltani et al., 2022), Some studies have shown that the number of seeds contained in seed pods in a soybean field is negatively correlated with weed density (Naseri and Nazer Kakhki, 2022). Therefore, weed control is a key task in soybean cultivation, as yield and quality are affected by pests, diseases, and weeds throughout the growth cycle of soybean, with global soybean production losses approaching 30% annually(Khan et al., 2021).

Weed control using herbicides is currently the most common form of weed control (Zou et al., 2021b) and is widely used in soybean field weeding work, if herbicides are used at the right stage of soybean growth, they can suppress the weed population and thus increase the 100-grain weight of soybeans (Kakhki et al., 2022). However, the excessive use of chemical herbicides not only causes herbicides to be wasted but also leads to environmental contamination, including soil contamination and groundwater contamination (Dai et al., 2019). To reduce the misuse of chemical herbicides, we use precision agriculture, which can be defined as the technology applied to improve the efficiency of pesticide use and to protect the environment by implementing accurate management and distributing the exact dose of pesticide input in the right place. Weed detection and location technology is essential if we want to achieve this goal (Bah et al., 2019). If accurate detection of weeds can be achieved, not only can herbicide abuse be reduced, but appropriate herbicides can also be selected for different types of weeds. Some studies have used deep learning algorithms to detect weeds and display the results by drawing bounding boxes or pixel-level classification to develop a weed recognition system with good experimental results in effectively identifying the weeds (Tang et al., 2020; Wu et al., 2021). In soybean fields, there are mainly grass weeds, such as Matang and dogwood, and broadleaf weeds, such as ashwagandha, spicebush, iron amaranth, reverse amaranth, and concave-headed amaranth, which are very different from one another; if different herbicides are used for different families of weeds, better weed control results will be achieved (dos Santos Ferreira et al., 2017).

Many researchers have used traditional machine learning methods for weed identification work. Traditional machine learning-based algorithms use feature descriptors to extract object features from sensory data and use machine learning-based classifiers for classification, detection, or segmentation. Machine algorithms includes supervised learning algorithms, such as the k-nearest neighbor algorithm and logistic regression; and unsupervised learning algorithms, such as clustering and principal component analysis (PCA) (Kapach et al., 2012). Detection of weed work using machine learning algorithms (Random Forest (RF), Support Vector Machines (SVM) and k-nearest neighbor (KNN)) on drone images collected from chilli fields in Australia can yield high accuracy rates, with weed detection accuracies of 96%, 94%, and 63% for RF, SVM, and KNN, respectively (Islam et al., 2021), respectively. In weed detection in tobacco fields,an SVM classifier based on texture, shape and color with classification accuracy up to 96% and achieved a detection speed of 6 FPS (Tufail et al., 2021). However, traditional machine learning methods are unable to extract features autonomously, but require manually designed extracted features (including color information, location information, texture information, etc.), which limits the popularization and application of traditional machine learning in the field of weed recognition (Espejo-Garcia et al., 2020).

In recent years, deep learning-based detection methods have become the dominant approach in the field of weed identification(Espejo-Garcia et al., 2020; Liu and Bruch, 2020; Wu et al., 2021; Subeesh et al., 2022; Weng et al., 2022; (Peng et al., 2022). Deep learning does not require the human setting of what features are available and how to extract them. It automatically learns from the provided data to obtain the desired features (Fuentes-Pacheco et al., 2019), which can be used in a wide range of applications in agriculture. In weed recognition work, there are problems such as different weed sizes and shapes, weeds and crops obscuring one another, and too-dense recognition targets. To better cope with these problems, many studies have used semantic segmentation algorithms in deep learning for weed recognition. A semantic segmentation algorithm based on deep learning can achieve the segmentation of objects with irregular contours and densely distributed objects due to its feature of classifying objects pixel by pixel to identify weeds (Quan et al., 2021). Currently, many semantic segmentation models have been applied to weed recognition tasks; some commonly used ones include SegNet (Badrinarayanan et al., 2017), U-Net (Ronneberger et al., 2015), and DeepLab (Chen et al., 2014; Chen et al., 2017; Sandler et al., 2018) series models. K Zou et al. (Zou et al., 2021a) proposed a simplified U-Net model using weights pretrained on a classical dataset and fine-tuning the training method in two stages, which achieved a cross-merge ratio (IoU) of 92.91%. Z Wu et al. (Wu et al., 2021) conducted segmentation experiments on the degree of wilting of abnormal leaves of hydroponic lettuce using multiple DeepLabV3+ networks that used different feature extraction backbones. Comparing the results, they showed that the highest accuracy of the results was achieved when using ResNet101 as the backbone with an mIoU of 0.8326%, and the fastest recognition speed was achieved when using ResNet50 as the backbone. The recognition speed was only 154.0 ms per image. All of the above algorithmic models have good performance in terms of accuracy; however, they usually have high computational cost and long inference time due to their large number of network parameters or the need for large floating-point operations per second, or both. Currently, mobile and embedded devices are widely used with limited storage space and processor performance; thus, the number of parameters and computations prevent further application of these network models to mobile end devices (Tang et al., 2020; Lan et al., 2021; Weng et al., 2022).

To overcome the abovementioned drawbacks and to better apply detection algorithm models to mobile devices, many lightweight segmentation algorithms have been proposed in recent years and applied in the field of agriculture. Lan et al. (Lan et al., 2021) added two lightweight feature extraction backbones, MobileNetV2 (Sandler et al., 2018) and BiSeNetV2 (Yu et al., 2021), to the U-Net model and showed that the network parameters, model size, and computational effort of both were substantially reduced, with the three metrics of MobileNetV2 U-Net being reduced by 89.12%, 86.16% and 92.6%, the inference speed being increased by 2.77 times, and the recognition accuracy being 78.77%, which meets the accuracy and parametric size requirements for mobile networks. Zhou et al. (Zhou et al., 2020) developed an Android application called KiwiDetector for field kiwi detection using a single shot multibox detector (SSD) with two lightweight backbones, MobileNetV2 and InceptionV3 (Szegedy et al., 2016), with model sizes of 17.5 M and 24.1 M, respectively, and recognition accuracies of 90.8% and 72.8%, respectively. The results show that deep learning algorithms using lightweight networks can be embedded easily in mobile devices and can achieve high detection accuracy.

In this study, to further investigate the lightweight problem of the soybean field weed recognition model, reduce the memory requirement of mobile devices such as UAVs and improve the detection accuracy, an improved lightweight model DCSAnet is proposed and applied to the soybean field weed recognition task. We conducted an experimental study of segmentation using DCSAnet and other classical segmentation models on a self-acquired soybean field image dataset. The goal of this experiment is to classify the target pixels into soybean, graminoid weeds, broadleaf weeds and background, and select the most suitable lightweight segmentation model by comparing the segmentation results.




2 Materials and methods



2.1 Data acquisition and preprocessing



2.1.1 Image acquisition

The soybean weed dataset used in this experiment was collected from a soybean ex-perimental field at Jilin Agricultural University in Changchun, Jilin Province, China, be-tween 9:00 and 15:00 on June 10 and 16,2021. The device used was a Huawei mate30 cell phone, with a shoot-ing angle perpendicular to the ground, a distance of 60 cm from the ground, a resolution of 3000×4000 pixels, and JPG format images. A total of 119 larger original images were acquired, the data image mainly contains soybean crops, graminoid weeds such as Digitaria san-guinalis (L.) Scop and Setaria viridis (L.) Beauv and broadleaf weeds such as Chenopodi-um glaucum L,Acalypha australis L,and Amaranthus retroflexus L, as well as back-ground consisting of soil, stones, and dead plants. The distribution of weeds and crops in the dataset used in this experiment is complex, containing a large number of weeds and crops shading each other, which makes identification difficult.




2.1.2 Image preprocessing

The length and width of the image is higher than 2000 pixels, because of the images are large, direct recognition would increase the burden on the network model; therefore, the first 520 images of 512×512 pixels were obtained by random cropping, then, some unclear images were eliminated, resulting in 482 images. Examples of some soybean field weed images are shown in Figure 1.




Figure 1 | Examples of images of selected datasets.



We used the labeling tool LabelMe to label different categories of pixels in the image (Russell et al., 2008), and classified the image pixels into four categories including soybean, graminoid weeds, broadleaf weed, and background,Labeling results are shown in Figure 2. To enhance the robustness and generalization of the model, we expanded the dataset by using random rotation, flipping, adding Gaussian noise, and increasing contrast. The expanded dataset has 2410 images, which are randomly divided into training, validation, and test sets in the ratio of 6:3:1.




Figure 2 | (A) The original image; (B) labeled image.







2.2 Model structure

Our proposed model DCSAnet aims to improve the integrated capability of weed identification for mobile devices in agricultural production,such as UAVs and unmanned weeding equipment. This requires a trade-off between detection accuracy and the number of model parameters; the model structure is shown in Figure 3. To reduce the number of model parameters and improve the detection speed, we design a backbone network with only 12 layers for feature extraction in the coding layer and generate three feature maps of different sizes. The coding stage consists of a 3×3 convolution with a step size of 2 and three stages. The 3×3 convolution can initially extract the features and reduce the feature map from the original size to reduce the number of parameters in process of feature extraction, and then the subsequent three stages complete the feature extraction work. The first two stagesboth consisting of a DCA-B and a DCA-A, which can realize downsampling and preliminary feature extraction, and these two stages generate shallow feature maps feat1 and feat2 with more spatial information.




Figure 3 | DCSAnet model structure diagram.



The main role of the third stage is to obtain deep feature maps containing a large amount of semantic information. To achieve this goal, we use more feature extraction modules in this stage and use the channel attention mechanism to enhance the weights of important feature channels and finally generate a feature map feat3 with size 1/32 of the original map and containing more semantic information, our proposed model improves the utilization of spatial information without increasing the number of parameters.

In the decoding stage, to better fuse feature maps at different scales, we borrowed from U-Net’s decoding approach by using deep feature maps for upsampling in steps and fusing feature maps at different scales in the process to compensate for the loss of spatial information in the encoding process (Ronneberger et al., 2015; Cao et al., 2020). However, directly stitches the two feature maps along the channel dimension ignores the correlation of relevant location information between different feature maps, which will lead to the lack of utilization of information between different layers. To better use different dimensional feature maps (Yu et al., 2021), we borrowed the idea of guided aggregation to use the high-dimensional feature map containing more semantic information to guide the feature construction of the low-dimensional feature map in the fusion operation of different dimensional feature maps. The specific implementation is to first extract the features of the high-dimensional feature map using a 3×3 convolution with 2 steps and a batch normalization operation, fuse them with the upper layer feature map by an elementwise multiplication operation, and then use the fused feature map to join the fusion operation of feature maps of different dimensions. Our Method achieve effective communication between feature maps, reduced missing information in the feature map fusion process.



2.2.1 Depthwise channel shuffle asymmetric module

Inspired by the linear bottlenecks in MobileNetV3 and the channel shuffle in ShuffleNet, we combined the advantages of both and designed the feature extraction modules DCA-A and DCA-B. The structure of both modules is shown in Figure 4. Between them, DCA-A is used for in-stage feature extraction, and DCA-B is used for feature extraction and to implement the downsampling function. The feature extraction of the modules mimics the inverted residuals structure in MobileNetV3. The specific process is to first use a 1×1 convolution to extend the dimensionality in the head of each module and extend the number of channels of the feature map to 4 times the input because the higher the number of channels, the better the feature extraction will be.




Figure 4 | The structure diagram of DCA-A module and DCA-B module, (A) shows the structure of DCA-A module and (B) shows the structure of DCA-B module.



Using convolution kernels with different scales can extract more multiscale features, but it will increase the amount of computation. To extract multiscale features without increasing the computation, we next perform channel splitting of the feature maps, splitting them into two feature maps x1 and x2 with half the number of channels in channel order, and use asymmetric depth-separable convolution with different convolution kernel sizes for feature extraction. Two convolution kernels with different feeling fields can extract features of different scales, and the channel of each branch has only half of the original feature dimension, so there is no increase in computational effort.

Ordinary 2D convolution uses convolution kernels of equal length and width and computes both the channel and space of the feature map at the same time, which increases the number of parameters of the model and the size of the occupied memory. To achieve a lightweight model, we use a depth-separable strategy and 1D convolution kernels. The specific process is to use asymmetric depth-separable convolution kernels of size N × 1 and 1 × N in two channels consecutively. Instead of the 2D depth-separable convolution with N×N convolution kernels, feature extraction is performed to further reduce the number of parameters. After feature extraction, the two feature maps extracting different perceptual field information are then stitched together and downscaled by a 1×1 convolution for the purpose of compressing and integrating dimensional features and accelerating the overall computation speed.

In the feature extraction module DCA-A, we perform a channel-by-channel elementwise addition of the input feature map and the reduced-dimensional feature map to achieve residual connectivity, which can serve the purpose of preventing network degradation (Zhuang et al., 2021). To prevent the problem that different branches can only train on a fixed half of the channels due to channel splitting, we use a channel shuffling operation to disrupt the order of the channels after residual connection to achieve information interaction between different branches and realize a complete feature extraction process.

In the DCA-B module, we use an asymmetric depth-separable convolution with a step stride of 2 to halve the size of the resulting feature map after feature extraction; make maximum pooling to halve the size of the input feature map before residual concatenation; and then use Concat to stitch the input feature map with the resultant feature map by channel direction to halve the size of the feature map and double the number of channels. Then, the channel shuffling operation disrupts the order of channels to achieve downsampling.




2.2.2 Depthwise separable convolution and asymmetric convolution

The convolution operation can automatically extract features from the input feature map through the weight learning function. The traditional convolution has a convolution kernel of equal length and width and the same depth as the input feature map. The computational process is to use C2 convolution kernels of size   to slide through the input feature map   along the height and width directions to generate an output feature map of size  . The computational volume of the standard convolution is as follows:

	

In the deep separable convolution, the convolution operation is divided into deep and pointwise convolutions of (1 × 1) size (Howard et al., 2017). Deep convolution is performed using C1 2D convolution kernels of size  , each of which operates on one channel of the input feature map separately. The final results are stacked together to generate a feature map of size  . Then, point-by-point convolution is performed by C2   convolution kernels to generate an output feature map of size  . The computational volume of the depth-separable convolution is as follows:

	

The computational effort of the deep separable convolution compared to the normal convolution is as follows:

	

Asymmetric convolution replaces the standard convolution by using two consecutive convolutions: (N × 1) and (1 × N) (Wang et al., 2019; Hu and Gong, 2021), which results in a significant reduction in computational effort by sacrificing a certain amount of accuracy. The computational effort of asymmetric convolution compared to ordinary convolution is as follows:

	




2.2.3 Channel shuffling

To reduce the number of parameters for the convolution operation, many model algorithms group the input feature maps by channel such that smaller convolution kernels can be used for sparse computation to reduce the number of operations; however, grouped convolution can lead to the inability of the channels in different groups to interact with features, which can lead to a weakened feature extraction capability of the convolution operation. If the channel random mixing operation is added after the grouped convolution, the original channel order can be disrupted such that the channels contained in the group are different for each grouping to achieve channel feature interactions for the whole channel (Ma et al., 2018; Zhang et al., 2018; Zhuang et al., 2021). The implementation process of the channel shuffling operation is shown in Figure 5.




Figure 5 | Implementation process of channel shuffling operation.



The specific operation of channel shuffling divides the input feature map into g groups in the order of channel dimensions, with n channels in each group. The total number of channels is  , and then the transpose operation is used to become  . The result is then spread back to N dimensionsto disrupt the channels and avoid the situation that the group convolution cannot learn the full channel features.





2.3 Model training

The server environment used for this experiment is Windows 10, Python version 3.8.13, PyTorch version 1.7.1, and CUDA version 11.3. The experiment is run on a GPU with an NVIDIA Quadro RTX 8000 dedicated graphics card and 48 GB of graphics memory.

In the dataset used in this experiment, the pixel share of soybean leaves is higher than the share of other species of weeds, which can lead to positive and negative sample imbalance problems. To better reduce the impact of category imbalance on the results, this experiment uses a cross-entropy loss function to measure the loss between classes, which is calculated as follows:

	

where M is the number of categories; y_ic is the sign function, equal to 1 if the true category of sample i is equal to c and 0 otherwise; and p_ic is the predicted probability that the observed sample i belongs to category c.

When performing network training, the size of the learning rate will have an impact on the convergence speed and final accuracy of the model (Chai et al., 2020; Zhuang et al., 2021); a smaller learning rate will lead to slow convergence, while a larger learning rate will lead to difficult convergence of the final result. To adjust the learning rate adaptively, we used the Adam optimizer to adjust the learning rate so that the learning rate can follow the frequency change of the parameters. The Adam initial learning rate of the optimizer is 0.001, the batch size is 4, and the number of iterations of the model is 400.




2.4 Evaluation indicators

To achieve a lightweight soybean field weed segmentation model, the goal of this experiment is to balance the detection accuracy and model size to achieve a high detection accuracy with a small number of model parameters; therefore, the mean intersection-to-merge ratio (MIoU), the number of model parameters (Params), and the number of billion floating point operations per second (GFLOPS) are used to evaluate the model accuracy and size.

	

where TP is pixel detection as positive and true label as positive, FN is pixel detection as negative but true label as positive, FP is pixel detection as positive but true label as negative, and TN is pixel detection as inverse and true label as inverse, k is the number of categories.





3 Results and discussion



3.1 Ablation experiments

In this section, we conduct ablation experiments on the encoding part and the decoding part of the DCSAnet model separately verifying the validity of each part of our model.



3.1.1 Encoding section

Our encoding part mainly borrows ideas from MobileNetv3; therefore, we use the U-Net model with the backbone of MobileNetv3 as the original model and compare it with the model using different improvement points. To verify the effect of using different sizes of asymmetric convolution in our feature extraction module DCA-A on the experimental results, we compare the experimental results when the feature extraction module uses asymmetric convolution with convolution kernel sizes of 5×1, 7×1, and 9×1 and the results without the channel blending operation. Our results are shown in Table 1.


Table 1 | Experimental results under different improvement points in Encoding stage.



MobileNet3-U-Net, used as a benchmark comparison, obtained 83.89% MIoU with a model size of 2.434 M. In contrast, our DCSA achieved 84.63%, 84.86% and 84.79% MIoU with asymmetric convolutional kernel sizes of 5×1, 7×1 and 9×1, respectively, and the number of parameters decreased considerably. Subsequently, we also compare the experimental results of the DCSA model with an asymmetric convolutional kernel size of 7 × 1 after removing the channel shuffle operation. The MIoU decreases by 0.15% after removing the channel shuffle, which shows that the optimal experimental results can be obtained using an asymmetric convolutional kernel of size 7 × 1 and channel shuffle.




3.1.2 Decoding section

In the decoding section, we compare the effects of using different feature map fusion methods on the experimental results. We use the output feature map of an encoder with a convolutional kernel size of 7 × 1 as the input to the decoding operation and use different decoding strategies. The results are shown in Table 2.


Table 2 | Experimental results under different improvement points in decoding stage.



First, we used the strategy of gradually upsampling the highest-dimensional feature map in U-Net and gradually fusing other feature maps in the process; the results are shown in DCSA-0. At this point, the MIoU is 84.86%. Next, we compared the experimental results after using feat3 or feat2 to perform guided aggregation on feat1 before fusing with up2, to form DCSA- feat2-1 and DCSA- feat3-1, respectively. The results were improved by 0.42% and 0.36%, respectively, showing that using only a high-dimensional feature map to a low-dimensional feature map for guided aggregation has limited improvement on the experimental results. Next, we compared the experimental results of REDCSA- feat2-1 and REDCSA- feat3-1 by adding feat1 before performing guided aggregation as residuals to the fusion of feat1 with up2 after bootstrap aggregation, at which point the results were improved by 0.76% and 0.9%, respectively, where using feat3 to feat1 for guided aggregation and adding residuals can obtain the best results. For this result, we believe that although the guided aggregation operation can reduce the feature fusion effect in the fusion stage, it may also bring about the loss of feature information, while the best feature fusion effect can be achieved after using the residual connection.





3.2 Comparison of DCSAnet with other methods

To verify the effectiveness of DCSAnet on the soybean weed detection task, we compared it with several lightweight classical semantic segmentation models of similar parametric size, including the original U-Net model with VGG (Simonyan and Zisserman, 2014) as the backbone, the U-Net model with MobileNetV3 replaced by the backbone network, the backbone network with the recently proposed ViT transformer’s segmentation model MobileNetViT (Mehta and Rastegari, 2021), CGNet (Wu et al., 2020), and LEDNet (Wang et al., 2019). All models are consistent with the experimental environment and experimental parameters.

First, the loss curves of the different models are shown in Figure 6. The training losses in the figure show that the training results of all models eventually converge, which shows that all models can be used for field weed detection work. The test set losses in the figure show that MobileNet3-U-Net and DCSANet fluctuate the least in this process and both reach the smallest losses among these models, but DCSANet has a faster initial drop and converges faster, thus reaching the training requirements faster.




Figure 6 | Loss variation plots (A) loss plots for the training set; (B) loss plots for the test set.



Then, we analyzed the accuracy and model size of different models. As shown in Table 3, the FLOPS of our model is 18.06 G, and the MIoU is 85.95%; that is, we improved the MIoU by 2.06% with only a 1.59 G increase in the gigabit floating point per second of the model and kept the size of the model basically the same, which can be adapted to mobile devices. Optimal results in terms of memory and computation size of the mobile device are achieved in comparison with other classical algorithms and the newly proposed lightweight transformer segmentation model. Thus, it can be seen that our newly proposed DCSANet model is well suited for field weed detection work.In Figure 7, we show the segmentation result plots of different models for the soybean field weed dataset. From the result plots, we can see that different models mainly differ when segmenting the boundaries of different pixels or when recognizing the overlapping of pixel categories. Both CGNet and LEDNet have the condition that the adjacent category pixels cannot be classified properly in the result plots, while MobileNetViT-Unet and VGG-Unet have the condition that the edge contours are not clear. In contrast, our proposed DCSANet can achieve both accurate detection of edge contours and reduce the cases of different types of pixels being misidentified, which indicates that our proposed model enhances the recognition accuracy of interclasses with the addition of multiscale asymmetric convolution and improves the recognition of contours at boundaries due to the enhancement of its decoding part. In summary, the DCSANet model can be well adapted to the work of weed detection in the field while keeping the model lightweight.


Table 3 | Comparison of segmentation results of different models.






Figure 7 | Segmentation results of different models on soybean field weed dataset Figure.







4 Discussion

Many semantic segmentation algorithms have been proposed in recent years, in which algorithms with larger parameters can make good use of spatial information and make the segmentation boundaries clearer, but are not applicable to be deployed on mobile devices such as UAVs, While lightweight algorithms can meet the requirements of model deployment well, but the recognition error rate is high when weeds overlap with crops,to address this problem, we propose a novel lightweight segmentation model DCSANet,which uses an encoder-decoder structure and a DCA module with asymmetric convolution and channel shuffling on the inverted residuals structure of the MobileNetv3 model as the feature extraction backbone of the encoder part. The encoding section is divided into three layers, the goal of the first two stages is to extract feature maps containing a large amount of spatial information. To retain as much original spatial information as possible, we use only two feature extraction modules in both stages,in the third layers, we use 2 DCA-B and 6 DCA-A modules in this stage; the feature map in this stage has been downsampled several times. Therefore, the feature map has deeper feature dimensions and contains a large amount of semantic informationIn each stage of decoding, we designed a feature fusion module and borrowed the idea of guided aggregation to use high-dimensional feature maps to guide the reconstruction of low-dimensional feature maps to obtain better decoding results and to meet the accuracy requirements in field weed segmentation work, improved segmentation accuracy at target contour junctions and in areas of dense weed distribution.

We collected a soybean field weed dataset and experimentally validated our proposed DCSANet for segmentation, and the results showed that our MIou improved 2.06% over the benchmark model MobileNetv3-U-Net. The model volume was only 0.57 M, and the computational volume was only 18.06 G, which indicates that our model can readily meet the memory and computational volume requirements and achieves the best results in comparison with other classical lightweight segmentation models and recently proposed novel segmentation models, which suggests a new approach for field weed identification work. We will continue to explore how to better reduce the model size and improve the detection accuracy in the future to better contribute to further applications of smart agriculture.




5 Conclusions

In order to solve the problem of lightweighting the weed identification model in soybean fields so that it meets the work requirements of lightweight equipment, in this paper, we have mainly carried out the following work:

	(1) A dataset of weed images from soybean fields was collected and preprocessed to simulate different real-world conditions.

	(2) We propose a new lightweight segmentation model DCSAnet,the model volume was only 0.57 M, and the computational volume was only 18.06 G, which indicates that our model can readily meet the memory and computational volume requirements needs of Weed detection work.

	(3) A MIoU of 85.95% was achieved on a self-collected soybean field weed dataset using DCSAnet,and achieves the best results in comparison with other classical lightweight segmentation models and recently proposed novel segmentation models,



In this paper, we have investigated the detection work of weeds in soybean fields and proposed a weed segmentation model, and in the future we will investigate the detection work of weeds in fields of other crops to increase the applicability area of the model to better contribute to further applications of smart agriculture.
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Introduction

In precision agriculture, accurately diagnosing apple frog-eye leaf spot disease is critical for effective disease management. Traditional methods, predominantly relying on labor-intensive and subjective visual evaluations, are often inefficient and unreliable.





Methods

To tackle these challenges in complex orchard environments, we develop a specialized deep learning architecture. This architecture consists of a two-stage multi-network model. The first stage features an enhanced Pyramid Scene Parsing Network (L-DPNet) with deformable convolutions for improved apple leaf segmentation. The second stage utilizes an improved U-Net (D-UNet), optimized with bilinear upsampling and batch normalization, for precise disease spot segmentation.





Results

Our model sets new benchmarks in performance, achieving a mean Intersection over Union (mIoU) of 91.27% for segmentation of both apple leaves and disease spots, and a mean Pixel Accuracy (mPA) of 94.32%. It also excels in classifying disease severity across five levels, achieving an overall precision of 94.81%.





Discussion

This approach represents a significant advancement in automated disease quantification, enhancing disease management in precision agriculture through data-driven decision-making.





Keywords: apple disease, severity estimation, deep learning, frog eye leaf spot, two-stage method




1 Introduction

Leaves are critical factors in the process of sunlight interception and its subsequent conversion into biochemical energy, essential for plant growth and health (Sala et al., 2015). Diseases affecting apple tree leaves, such as the apple frog-eye leaf spot caused by fungi of the genus Cercospora, can have a detrimental impact on both the yield and quality of apple crops (Venkatasubbaiah et al., 1991; Abbasi et al., 2019). Accurate assessment of disease severity is therefore imperative for effective disease management (Liu et al., 2022). Bock et al. (2010) have shown automated disease diagnosis through computer vision technologies can maintain consistency with traditional human observations while offering significant advantages in efficiency.Additionally, automated disease diagnosis can be optimized over time with more training data. While, manual visual assessment or measurement of the percentage of leaf area affected in orchards still relies heavily on human labor, characterized by low efficiency (Bock et al., 2010). Automated disease diagnosis through computer vision technologies not only maintains consistency with traditional human observations but also offers significant advantages in efficiency Bock et al. (2022). Moreover, it is important to emphasize the role of accurate disease severity estimation in determining the right amount of pesticide. Automated systems contribute to this accuracy, especially in early disease stages, and thus can significantly reduce pesticide usage Patil et al. (2011).

In recent years, significant strides have been made in the development of deep learning-based algorithms for automatic segmentation and recognition of leaf diseases. Initial efforts, such as the semantic segmentation model by Lin et al. (2019) and the traditional threshold segmentation methods by Esgario et al. (2020), focused on controlled environments with simple backgrounds. These models have shown high accuracy rates, such as 96.08% in the case of Lin et al. (2019) and 84.13% for Esgario et al. (2020). However, their performance is often compromised when applied to real-world agricultural settings due to the complexity of natural backgrounds and the diversity of disease symptoms (Thakur et al., 2022; Wang et al., 2022b). In response to these challenges, recent research has pivoted toward models that can adapt to the complexities of field images. One promising approach is the use of multi-stage models, which significantly enhance disease recognition by first segmenting leaves and then refining the identification of disease spots within those segmented areas Wang et al. (2021). Despite these advancements, certain issues persist, particularly in handling intricate image contexts. For instance, while Liu et al. (2022) and Zhu et al. (2023) excel in leaf segmentation, they struggle with detecting smaller lesions. Similarly, Tassis et al. (2021) introduced instance segmentation to improve background handling but at the expense of increased model complexity.

To address these limitations, this paper introduces a novel two-stage approach for estimating disease severity in complex environments. In the first stage of our approach, we introduce L-DPNet, a leaf segmentation model that incorporates deformable convolutions into the PSPNet architecture. These deformable kernels adapt dynamically to various leaf shapes and occlusions, enlarging the receptive field to capture more contextual information. Through end-to-end learning, the model adjusts to leaf shape variations without manual intervention. As a result, L-DPNet not only addresses the shortcomings of existing methods but also enhances segmentation accuracy, setting a precise foundation for disease diagnosis. In the second stage of our approach, we employ D-UNet, an enhanced U-Net architecture tailored for disease segmentation. Building on the strengths of traditional U-Net models, D-UNet incorporates several key improvements. A batch normalization layer is integrated to mitigate overfitting, particularly on complex lesion patterns, ensuring robust generalization. To refine segmentation quality, especially for small, dense spots, bilinear upsampling replaces transposed convolution, eliminating checkerboard artifacts. Additionally, the model addresses the class imbalance between diseased and healthy pixels by incorporating Focal loss into the objective function. This focuses the training on hard-to-classify examples, thereby boosting the model’s performance on the under-represented diseased class.

The main contributions of this paper are as follows:

	1. We introduce a two-stage approach for comprehensive disease analysis in apple leaves, starting with L-DPNet for leaf segmentation. L-DPNet is a specialized model that enhances the existing PSPNet by incorporating deformable convolutions and optimizing pyramid pooling layers for computational efficiency. This first stage sets the foundation for the subsequent disease spot segmentation.

	2. Alongside L-DPNet, We present D-UNet, an optimized U-Net architecture for disease spot segmentation. It builds on the VGG16 architecture and includes batch normalization and bilinear interpolation to improve segmentation quality and mitigate overfitting.

	3. We integrate L-DPNet and D-UNet into a unified framework, achieving 98.90% accuracy in leaf segmentation, 99.89% in lesion segmentation, and 94.81% in disease severity classification. This provides a robust tool for apple leaf disease diagnosis and treatment.



The rest of this paper is arranged as follows: Section 2 introduces Materials and Methods, including Data collection/Datasets pre-processing and Deep-Learning Algorithms. Section 3 introduces Experiment and result analysis, many experiments were carried out.Finally, some conclusions are drawn in Section 4.




2 Materials and methods



2.1 Data collection and pre-processing

The apple leaf image dataset used in this study is sourced from the public dataset Plant Pathology 2021, which supplements the Plant Pathology 2020 dataset (Thapa et al., 2020), originally provided by the 2020 Kaggle Plant Pathology competition.It contains RGB images of 4 types of diseases and healthy leaves of apple, with a total of 23,000 images. The dataset can be downloaded from the Kaggle website 1,2.The images in the dataset were captured using professional cameras with varying focal lengths, at a resolution of 4,000 ×2,672 pixels. Each image focuses on a single leaf but also contains complicating background elements, such as grass, healthy leaves, trunks, fruit, and variations in light exposure. These complex background elements helped train the model to handle real-world environmental variables, thereby improving its performance. Figure 1 displays several examples of such images. We specifically focused on the apple frog-eye leaf spot disease, selecting 1,372 images with complex backgrounds. These images are randomly divided into training, validation and test sets at a ratio of 8:1:1, with 1,096, 138 and 138 images in each set.




Figure 1 | Representative image of apple leaves in a complex environment: (A) Green grass on the ground; (B) Tree trunk; (C) Shadow; (D) Healthy leaves; (E) Apple fruit; (F) Obstruction.



For deep learning, it is crucial that the image dataset be manually annotated before training the model (Zou et al., 2021).Since the original dataset only provides image-level category labels, while our research goal is to estimate the severity of the disease on the leaves based on the results of image semantic segmentation, specifically pixel-level classification of images, the labels provided in the original dataset are not suitable for our task. Therefore, we manually label using the pixel-level segmentation tool LabelMe (Kurtser et al., 2016).The image annotation results match the annotation content, as shown in Supplementary Figure 1.The annotation files are in JSON format and can be converted into PNG (portable network graphics) image files for training purposes. The labeling results for the leaves and lesions are illustrated in Figure 2.




Figure 2 | Leaf and disease labels in the dataset: (A) Original images; (B) Leaf labels; (C) Disease spot labels.



To enrich the background information of the detected object, the Mosaic image augmentation method was applied (Bochkovskiy et al., 2020; Chen et al., 2022; Xing and Chen, 2022). This label-preserving method, with strong generalization capabilities, randomly selects four images and performs random cropping and collaging, thereby enriching the background of the detected objects. The annotation files for the corresponding collaged images can be obtained by modifying their ground truth metadata. These spliced images were then fed into the model for learning. The effect of mosaic data augmentation is shown in Figure 3. After data augmentation, a total of 2,192 target images are obtained for model training. The specific dataset information is shown in Table 1.




Figure 3 | Mosaic method for data augmentation: (A) Enhanced rgb image; (B) Enhanced mask image.




Table 1 | Dataset information.






2.2 Diagnosing the severity of the disease

Disease severity classification serves as one of the bases for developing prevention, control, and treatment strategies. Currently, no unified classification standard exists for the severity of apple frog-eye leaf spot disease. According to the literature, one common method is to calculate the ratio of the diseased area to the total leaf area on the same leaf. This method forms the basis for accurately estimating the severity of crop diseases in a given region (Bock et al., 2010). Therefore, this study adopts this method, using the ratio of the diseased area to the total leaf area on the same leaf as the basis for disease severity classification. The calculation Formula 1 is presented as follows:

 

where SLeaf represents the segmented leaf area calculated as the sum of leaf pixel counts, SDisease represents the segmented disease spot area calculated as the sum of disease spot pixel counts, and L represents the ratio of the disease spot area (SDisease) to the total leaf area (SLeaf).

Based on the reference of relevant disease grading standards and suggestions from plant protection experts (Liu et al., 2022), the severity of apple frog eye leaf spot disease is divided into five levels from level 1 to level 5 as shown in Table 2. The severity of the disease is determined based on the degree of damage to apple leaves, using the proportion of apple frog eye leaf spot disease damage to the total leaf area. Level 1 refers to damage below 0.95%; Level 2 refers to 0.95%-1.50% damage; Level 3 refers to 1.50%-2.15% damage; Level 4 refers to 2.15%-3.00% damage; Level 5 refers to damage equal to or greater than 3.00%. The complete severity estimation process and workflow are shown in Supplementary Figure 2.


Table 2 | Criteria for disease severity classification based on the ratio of diseased area to leaf area.






2.3 Methods

Different semantic segmentation models possess distinct network architectures, which can influence the segmentation accuracy of leaves and disease spots. Utilizing the same segmentation model for both stages might compromise the model’s feature extraction capability due to the differing segmentation objectives (Wang et al., 2022a). Therefore, a more suitable semantic segmentation model is chosen for each stage, tailored to the specific features to be extracted. Liu et al. (2022) segmented apple tree leaves in complex backgrounds using various deep learning algorithms. Their experimental results showed that the PSPNet model excelled in leaf segmentation, while the UNet model was superior for predicting disease areas. However, there were still some errors in handling occlusions and small spots, leading to incomplete and inaccurate segmentation. Further improvements in accuracy are needed. Moreover, current research on identification and diagnosis of apple frog-eye leaf spot disease remains insufficient, without application to semantic segmentation and severity assessment. Building on their work, this study aims to improve the PSPNet model by incorporating deformable convolutions to segment apple leaves under challenging field conditions. This addresses issues such as low segmentation accuracy arising from factors like occlusion, capture level, and lighting conditions. The segmented results are subsequently fed into D-UNet network for disease spot detection. The severity of apple frog-eye leaf spot disease is then assessed based on the ratio of the segmented leaf area to the disease spot area. The network architecture is depicted in Figure 4.




Figure 4 | L-DPNet+D-UNet network model architecture. (A) Input image. (B) Backbone. (C) Output leaf image. (D) Output disease image.





2.3.1 Leaf segmentation based on L-DPNet

The dataset for apple frog-eye leaf spot disease presents several challenges, including varied image acquisition environments, diverse leaf colors and shapes, non-uniform backgrounds, and inconsistent lighting conditions. The PSPNet network, which uses a pyramid pooling module to capture local features at multiple scales, offers a foundation for tackling these issues (Zhao et al., 2017). PSPNet, short for Pyramid Scene Parsing Network, is a convolutional neural network architecture designed for semantic segmentation. The goal of PSPNet is to address scene parsing challenges in semantic segmentation tasks. In complex scene images, the same object may appear at different scales and spatial locations. To correctly segment these objects, the model needs to understand the global contextual information in the image. The pyramid pooling module in PSPNet can capture global contextual information at different scales of the image, enabling both local and global receptive fields to extract multi-scale features for more accurate scene parsing and semantic segmentation. Building on this foundation, this study introduces key improvements tailored to the specific characteristics of apple leaves in various environmental settings. These improvements enhance both shallow and deep feature extraction capabilities of the core pyramid pooling module. As a result, we develop an improved model, referred to as L-DPNet, which is subsequently employed for accurate leaf segmentation.

Improvement 1: The task of segmenting target leaves from the background in this study is essentially a binary classification problem. In the original PSPNet network, the multi-scale pyramid pooling layer introduces computational redundancies, as demonstrated in Figure 5A. To streamline this, we made an improvement to the model’s architecture (as illustrated in Figure 5B). Specifically, the number of pyramid pooling layers was reduced from four to two, with retained pooling kernel sizes of 1×1 and 6×6.




Figure 5 | Comparison of multi-scale convolutional layers between PSPNet and our proposed method: (A) PSPNet (pyramid pooling structure); (B) Our optimized structure.



The 1 × 1 pooling represents the coarsest level of global pooling, integrating global spatial information to generate a single feature map. The 6 × 6 pooling divides the feature map into 6 × 6 sub-regions, where each sub-region undergoes pooling. This allows the model to capture both local and global information. To maintain channel consistency during the subsequent upsampling process, the input feature map first undergoes compression through two different scale pooling layers. This is followed by a 1 × 1 convolution to halve the number of channels. The feature map is then upsampled back to its original dimensions using bilinear interpolation, ensuring that it matches the size of the initial input feature map. The final output feature map is obtained by concatenating these two processed feature maps.

Improvement 2: In segmenting leaves affected by apple frog-eye leaf spot disease against a complex background, traditional convolution units sample the input feature map at fixed locations, maintaining a uniform receptive field size across the same convolution layer. Given the complex backgrounds and potential occlusions of target leaves, an adaptive method is required to prevent issues like incomplete leaf segmentation and low accuracy. Typically, the implementation of 2D convolution comprises two steps: 1) sampling the input feature map xusing a regular grid R; 2) multiplying the sampled values by the corresponding weights w and then summing. For each position p0 on the output feature map y, we have the calculation Formula 2:

 

where x(p0 + pn) enumerates different positions on the input feature map, w (pn) denotes the weight values of the convolution kernel, and y (p0) enumerates different positions on the output feature map. Deformable convolution networks address this by allowing each convolution operator to have a learnable offset, adaptively learned from the data (Dai et al., 2017). An offset {Δpn| n = 1,…,N} is added to the regular grid R, where N = |R|. Here, Δp nrepresents the learnable offset at each standard convolution sampling position. Given a position p n in R, the position on the grid becomes p0 + pn+ Δpn, and each output image position is represented as p0. The convolution expression is Formula 3:

 

After learning, the obtained offsets Δpn are typically decimals. The pixel values at the sampling positions x (p0 + pn+ Δpn) are then bilinearly interpolated. For notational convenience, let p = p0 + pn+ Δpn, which corresponds to the nearest pixel point. The equations for interpolation are Formula 4:

 

where qi enumerates all integer spatial positions in the feature map x, specifically the four surrounding integer points of p. The bilinear interpolation kernel function wi (qi,p) is obtained by multiplying the kernel functions in the XY directions. It can be defined using the function ɡ (a,b) = max(0,1 − |a − b|).

In Figure 6, a comparison between standard and deformable convolution for leaf sampling is presented. The receptive field of standard convolution maintains a fixed rectangular shape, in contrast to the polygonal shape exhibited by the deformable convolution’s receptive field. This adaptability in the shape of the receptive field allows the network to better capture the irregular features of leaves. The introduction of deformable convolution enhances the L-DPNet model’s ability to adapt to the unique features of apple leaves in complex natural environments. Given that the shape and structure of apple leaves are often irregular, traditional fixed-shape receptive fields might not adequately capture these details. Moreover, deformable convolution enables the network to adjust the shape of the receptive field adaptively at each position, thus improving the capture of the leaves’ irregular features.




Figure 6 | Comparison of receptive field distribution between traditional and deformable convolutions on leaves: (A) Traditional convolutions; (B) Deformable convolution.



The decoding phase of the L-DPNet comprises two layers - a 1x1 pooling layer and a DPNet layer as shown in Figure 7. After obtaining the 6x6 pooled representation, we incorporate a deformable convolution layer, then element-wise add the resulting features to the convolved feature map to obtain the corresponding feature map. The deformable convolution layer aims to learn more complex features. Essentially, it is a PSPNet model enhanced with deformable convolution.




Figure 7 | Configuration of deformable convolutions in our L-DPNet model(DP Module).






2.3.2 Segmentation of lesions based on improved U-Net

Due to the inherent structural constraints and limited semantic richness of apple frog eye leaf spot disease, both high-level semantic information and low-level features are crucial for accurate segmentation (Liu et al., 2020). U-Net is a fully convolutional network architecture for medical image segmentation consisting of an encoder and decoder in a u-shaped structure (Long et al., 2015). By fusing shallow and deep feature maps, it combines low-level features such as points, lines, and edge contours with high-level semantics. The shallow feature maps tend to represent basic building units and contain more spatial information, while the deep feature maps encode more semantic information with less spatial resolution. This architecture is especially suitable for segmenting small targets and effectively concatenates high-level semantics with low-level features (Anwar et al., 2018; Liu et al., 2020).

Furthermore, when dealing with limited data, U-Net can achieve satisfactory performance when trained end-to-end after data augmentation (Ronneberger et al., 2015). Therefore, the convolutional neural network employed in the second stage of this study for lesion segmentation is primarily based on U-Net.

To leverage pre-trained models and accelerate training, this study integrates the U-Net architecture with the VGG16 network model (Simonyan and Zisserman, 2014). The VGG16 network itself is a classification network with 16 layers, including 13 convolutional layers, 5 max pooling layers, and 3 fully connected layers. Specifically, the detailed structure, image size, and convolution kernel size are shown in Supplementary Table 1. In the Encoder section, the D-UNet model uses the 13 convolutional layers and 4 max pooling layers of VGG16, discarding the 5th max pooling layer and 3 fully connected layers to complete the downsampling feature extraction of the DUNet network. To prevent overfitting, we introduce a batch normalization layer BN (Batch Normalization) before each activation layer ReLU. Through the Encoder part, five preliminary valid feature layers can be obtained, as shown in Figure 4. The Decoder part of D-UNet utilizes the five preliminary valid feature layers obtained from the backbone to perform bilinear interpolation upsampling instead of the transpose convolution upsampling used in the original network, and then feature fusion to obtain a final valid feature layer that integrates all features.

The segmentation of lesion regions is essentially a binary classification problem for each pixel. However, the number of pixels in the lesion region is smaller than that in the non-diseased region. This imbalance can lead to lower accuracy for the class with fewer samples, reducing the overall recognition accuracy for the disease region. To mitigate this issue, the D-UNet model employed in this study uses a Focal loss function FL(pt) (Lin et al., 2017), which is defined as Formula 5:

 

where pt represents the probability (confidence) of the predicted class by the model. γ is used to adjust the problem of imbalanced samples between difficult and easy classes, and in this study,γ is set to 2 to lower the loss of easy samples by a power function. Multiplying with  makes the model more focused on difficult samples.






3 Experiment and result analysis



3.1 Model training

The hardware platform for the experiments comprises an Intel Core i9-9900X CPU and an NVIDIA GeForce RTX 2080 Ti GPU. The software environment includes a 64-bit Ubuntu 20 system with the PyTorch deep learning framework. Table 3 lists specific modeling parameters such as batch size for training and validation, base learning rate, and the maximum number of iterations, which are set based on the GPU’s capacity and the dimensions of the sample images.


Table 3 | Modeling parameters for L-DPNet and D-UNet.



The original images have dimensions of 4,000×2,672, necessitating scaling or cropping to fit the model’s input size. This step reduces computational complexity and ensures compatibility with the model’s input layer. While downscaling image size does result in some loss of detail, preprocessing and model training strategies are employed to maintain the accuracy of results, even with smaller input images.




3.2 Evaluation metrics

To test the performance of the model used in this study, Precision (%), Recall (%), Mean Intersection over Union (mIoU, %), and average Pixel Accuracy (mPA, %) were selected as the indicators Wang et al. (2020c).



3.2.1 Precision and recall

Our model has two segmentation stages. In both stages, true positives (TP) are pixels correctly identified as the target, false positives (FP) are incorrectly identified pixels, and false negatives (FN) are missed target pixels. In stage one, TP are leaf pixels, FP are background pixels incorrectly marked as leaf, and FN are leaf pixels missed. In stage two, TP are diseased spots correctly identified, FP are healthy leaves incorrectly marked diseased, and FN are missed diseased spots. We evaluate our model’s performance using Precision and Recall as  Formulas 6 and 7:

 

 

Precision assesses the accuracy in classifying pixels, indicating the likelihood that pixels identified as leaf tissue (first stage) or diseased spots (second stage) are accurately classified, which in turn reduces false positives. Recall measures the model’s capability to detect all relevant pixels, reflecting the probability of correctly identifying all leaf pixels (first stage) and diseased spots (second stage), which helps in minimizing false negatives.




3.2.2 mIoU and mPA

mIoU is a standard metric used to evaluate the performance of image segmentation. It represents the ratio of the intersection area between the input label mask and the prediction result mask to their union area. A larger value of mIoU indicates better segmentation. mPA measures the average Pixel Accuracy across all categories, where a larger value signifies better classification performance by the model. For ease of explanation, let’s assume that the dataset contains k + 1 categories. Here, pij denotes the number of pixels where category i is predicted as category j. pii represents the number of pixels correctly predicted, while pij and pji stand for the numbers of false-negative and false-positive pixels, respectively mIoU and mPA as  Formulas 8 and 9:

 

 

In the first stage of our model, mIoU measures accuracy in distinguishing leaf versus non-leaf areas; higher values indicate more precise leaf segmentation. mPA assesses success in classifying pixels as leaf or background, with higher values signifying greater accuracy. In the second stage, mIoU is key for assessing precision in differentiating diseased spots versus healthy tissue; higher values reflect more accurate identification of diseased regions. mPA evaluates the effectiveness in classifying pixels as diseased or healthy, where higher values show improved detection of disease spots.





3.3 Experiment and analysis



3.3.1 Experimental analysis for leaf segmentation

To evaluate the impact of the number of pyramid pooling layers and pooling kernel size on apple leaf segmentation, we employ ResNet50 as the backbone network and consider both the number of pooling layers and kernel sizes as variable parameters. We design 11 distinct experimental settings, as outlined in Table 4. The first experimental scheme employs the original 4-scale pyramid pooling layers of PSPNet, consisting of [1 × 1,2 × 2,3 × 3,6 × 6]. Experiments 2-7 feature combinations of any two sizes from these four scales, while Experiments 8-11 incorporate combinations of any three sizes. By evaluating the segmentation performance across these configurations, we gain insights into the sensitivity of PSPNet to different pyramid pooling setups. This analysis aids in optimizing the network architecture specifically for the task of apple leaf segmentation. Our results suggest that both the presence and sizes of pooling layers substantially affect model performance on the apple leaf disease dataset. Optimal performance can be observed with pooling kernel sizes of [1 × 1,6 × 6].


Table 4 | The pyramid pooling layer ablation experiment.



In Table 5, we conduct ablation studies on the deformable convolution layer. Specifically, we design 3 experiments that add the deformable convolution after the 1x1 pooling layer, after the 6x6 pooling layer, and after both 1x1 and 6x6 pooling layers, respectively. By comparing segmentation performance, we can validate the effectiveness of adding deformable convolutions to different levels of the feature pyramid, as well as investigate if concurrent deformation modeling on multiple levels can achieve complementary benefits. This ablation study provides insights on how to best incorporate deformable convolutions into the network architecture for enhanced modeling capability. Based on the data in Tables 4, 5, we conclude that for the apple frog eye leaf spot dataset, excessive pyramid pooling layers are not advantageous. Best results were achieved with 1×1 and 6×6 kernel sizes and by incorporating deformable convolutions alongside the 6x6 pooling layer. This streamlined model structure eliminated redundancy and improved recognition performance, especially for occluded leaves. Compared to the original PSPNet, our modified model demonstrates improvements across all metrics, achieving scores of 97.74%, 98.82%, 98.90% and 98.82%, thereby confirming the benefits of integrating deformable convolutions.


Table 5 | Ablation experiment of deformable convolution layer.



The change in training loss with iteration is depicted in Figure 8. This figure aims to compare the segmentation performance between the improved model, L-DPNet, and the original model, PSPNet. The graph reveals significant fluctuations in training loss during the early stages (0 to 75 iterations), followed by a gradual convergence. PSPNet shows higher loss and slower convergence, stabilizing after approximately 125 iterations. In contrast, L-DPNet demonstrates a more rapid decrease in loss during the 0 to 75 iteration range, with relative stability achieved between 75 to 200 iterations, indicating convergence.




Figure 8 | Convergence comparison between PSPNet and our proposed L-DPNet.



In summary, the model’s performance has been optimized effectively through judicious adjustments to the pyramid pooling layers and the introduction of deformable convolutions. This has not only improved the accuracy of apple leaf recognition but has also significantly enhanced various evaluation metrics. These results strongly support the model’s utility for apple leaf disease segmentation tasks.




3.3.2 Experimental analysis for disease segmentation

In the second stage of our work, we introduce a modified U-Net architecture, which we refer to as D-UNet, to handle the greater complexity in shape and size of disease spots compared to the apple leaves segmented in the first stage. In D-UNet, we incorporated batch normalization layers before each activation layer to mitigate overfitting. We also opted for bilinear interpolation over transposed convolutions for upsampling tasks in the decoder section. For D-UNet, we conduct four ablation studies: original UNet, replacing transpose convolution with bilinear interpolation only, using normalization layers only, and finally combining normalization with bilinear interpolation upsampling. Through comparing segmentation performance, we can validate the individual contribution of bilinear upsampling and normalization, as well as the combined effects when both enhancements are incorporated together. This systematic ablation study provides insights on the optimal configuration to improve upon the original UNet architecture.

The ablation study results for these D-UNet modifications are presented in Table 6. The results indicate that the introduction of batch normalization layers led to a 0.07% increase in mIoU, a 0.17% increase in mPA, a 1.34% increase in precision, and a 0.17% increase in recall. These enhancements are particularly beneficial for our task of segmenting apple frog eye leaf spots, where high pixel-level accuracy on unseen images is crucial.Furthermore, in D-UNet, the use of bilinear interpolation for upsampling in the decoder yielded more consistent and artifact-free results compared to transposed convolutions. This improvement was reflected in significant enhancements in all evaluation metrics: mIoU increased by 1.32%, mPA by 2.59%, precision by 1.35%, and recall by 2.59%.


Table 6 | D-UNet model ablation experiment.






3.3.3 Experimental analysis for L-DPNet+D-UNet architecture

To validate the effectiveness of the proposed improvements in segmenting apple leaves and frog eye spots, we include comparisons with other state-of-the-art algorithms in our analysis to provide comprehensive evaluation (PUNet (Liu et al., 2022) and LD-DeepLabv3+ (Zhu et al., 2023)).

Both of these methods are specifically designed for disease severity estimation. PUNet employs PSPNet for leaf area extraction and U-Net for disease spot segmentation. LD-DeepLabv3+ uses an enhanced version of DeepLabv3+ to segment both the leaf and disease areas. Moreover, We included SOLOv2 (Wang et al., 2020b) and YOLACT (Bolya et al., 2019) to validate the effectiveness of one-stage instance segmentation methods in leaf and disease segmentation.SOLOv2 is an improved version of the original SOLO (Wang et al., 2020a) method. It is a one-stage instance segmentation approach that eliminates the need for anchor boxes and is known for its efficiency and accuracy. YOLACT is another one-stage instance segmentation method. It employs a mask coefficients to refine segmentation boundaries. To keep our comparison upto-date, we have included the latest version of the YOLO object detection algorithm, YOLOv8 (Jocher et al., 2023), which is known for its speed and accuracy. Although YOLO series methods are originally designed for object detection, we adapted it for our segmentation task. Specifically, we retained YOLOv8’s backbone, data augmentation, and training strategies, but replaced its detection head with YOLACT’s mask prediction head to better suit our segmentation needs.

As illustrated in Table 7, our approach surpasses competing methods across nearly all evaluation metrics, demonstrating its efficacy in segmenting both background and object classes, such as leaves and diseases. In general, two-stage algorithms like PUNet and LD-DeepLabv3+ achieve superior mIOU and mPA scores when compared to one-stage counterparts like SOLOv2 and YOLACT. Although YOLOv8 excels over SOLOv2 and YOLACT in several aspects, it doesn’t quite match the performance of two-stage models. This enhanced precision in two-stage methods likely arises from their step-by-step procedure: initially identifying the leaf area and subsequently focusing on disease spot segmentation.


Table 7 | Performance of apple leaf and frog eye spot segmentation under different model architectures.






3.3.4 Experimental analysis for the estimation of disease severity levels

The severity predicted by the trained model was compared with manually labeled severity levels for 138 images in the test set to calculate the model’s classification accuracy. The results are presented in Table 8, which lists the number of datasets used for testing and validating severity levels, the number of correctly classified images, and the accuracy ratio derived from these two values.


Table 8 | Performance for disease severity classification.



The average Precision for all levels and for levels 1-3 are 94.81% and 96.90%, respectively. Although the combined L-DPNet+D-UNet architecture achieved high classification accuracy in estimating the severity of apple frog-eye leaf spot disease, we can observe a tendency for Level 1 samples to be misclassified as Level 2, as shown in Figure 9. A likely reason for this is the similarity in the areas of lesions for Levels 1 and 2, which can lead to misdiagnosis. Generally, misclassified samples are confused with labels that are adjacent in severity, which is mainly due to segmentation errors but remains within an acceptable margin of error.




Figure 9 | Confusion matrix for classification of apple frog eye leaf spot severity.



However, the accuracy for classifying severity Levels 4 and 5 is lower than that for Levels 1-3. This discrepancy is attributed to the higher proportion of Levels 1-3 in the dataset used for training, thereby limiting the model’s proficiency in recognizing Levels 4 and 5. The performance of the proposed model could be enhanced by incorporating datasets that cover a broader range of apple frog-eye leaf spot disease severity levels. Additionally, leveraging prior knowledge from fields like plant protection, along with advanced computer vision techniques, could contribute to a more effective severity assessment process.




3.3.5 Visual Evaluation of L-DPNet and D-UNet models

Visualization of segmentation results: We have expanded our analysis to include a more nuanced evaluation of the segmentation results, focusing on both leaves and lesions. Considering that we have conducted comparisons with representative two-stage and one-stage methods, Figures 10, 11 respectively display the visual results of leaf and disease spot segmentation using two-stage methods. Meanwhile, Figure 12 presents the comparative results with one-stage segmentation methods. Specifically, we discuss the performance of different methods under five distinct scenarios:




Figure 10 | Visual results of leaf segmentation using two-stage methods. This figure compares the predictions made by PUNet, LD-DeepLabV3+, and our approach, L-DPNet+D-UNet, for apple leaves. Areas marked with blue boxes indicate false positives, while areas marked with yellow boxes indicate false negatives.






Figure 11 | Visual results of disease spot segmentation using two-stage methods. This figure compares the disease spot predictions made by PUNet, LD-DeepLabV3+, and our approach, L-DPNet+D-UNet. Areas marked with blue boxes indicate false positives, while areas marked with yellow boxes indicate false negatives.






Figure 12 | Visual comparison between our two-stage method and one-stage methods, using different color masks for different instances. This figure compares the predictions made by YOLACT,SOLOv2,YOLOv8 and our approach, L-DPNet+D-UNet, for apple leaves and disease spots. Areas marked with blue boxes indicate false positives, while areas marked with yellow boxes indicate false negatives.



As shown in Level 1, 4 and 5 of Figure 10, when leaf overlap exists, both PUNet and LD-DeepLabv3+ exhibit recognition errors to some extent. In Level 1 and Level 5, the leaf edges are over-segmented, while in Level 4, the overlapping leaf edges are under-segmented. In contrast, our proposed model can accurately segment the leaf edges, laying the foundation for subsequent lesion segmentation. In Level 3 of Figure 10, the shadow areas formed by illumination lead to under-segmentation of leaves in PUNet and LD-DeepLabv3+ which fail to identify the shadowed regions. Comparatively, our improved model can better restore the complete leaf shapes when dealing with illumination variations. When natural edge defects (Figure 10 Level 2) caused by leaf curling exist, PUNet wrongly recognizes the missing edges as complete leaf regions. As for edge defects resulting from lesions (Figure 10 Level 2), LD-DeepLabv3+ cannot effectively identify such edges. Our model can effectively distinguish between these two edge cases and produce superior segmentation. On leaves with mild diseases, tiny lesion spots often appear (Figure 11 Level 1). PUNet can identify small spots but fails to fully segment them, which will affect the final severity assessment. LD-DeepLabv3+, on the other hand, directly misses some lesions (Figure 11 Level 4). In contrast, our D-UNet can not only accurately locate the spots, but also segment them precisely. When dense spots occur (Figure 12 Level 4), PUNet will erroneously group adjacent spots into a single large one, and also fails to segment small spots. LD-DeepLabv3+ causes spot merging. Our model achieves finer segmentation of dense disease spots, which further improves the accuracy of severity estimation.

Additionally, owing to the capability of two-stage methods to accurately localize objects with varying scales, such as leaves and disease spots, our proposed two-stage method results in fewer false positives for both leaf (Figure 12 Level 1) and disease spot areas (Figure 12 Level 5), as well as fewer false negatives for leaf (Figure 12 Level 2) and disease spot regions (Figure 12 Level 4).

Visualization of feature maps: To elucidate the differences in leaf segmentation capabilities between the original PSPNet and the improved L-DPNet, we visualized the feature maps of both models. The results are displayed in Supplementary Figure 3. In the feature map of the original PSPNet, as seen in Supplementary Figure 3A, the extracted features appear relatively blurry, providing only a rough localization of the leaves and limited detail. In contrast, the feature map of L-DPNet, shown in Supplementary Figure 3B, demonstrates significant improvements. By incorporating deformable convolution kernels that adaptively adjust their shape and size, L-DPNet is better attuned to the leaves’ shape and structure. This results in feature maps with clearer leaf edges and enhanced detail, effectively differentiating the apple leaves from the background.






4 Conclusion

In this study, we introduced a two-stage approach using L-DPNet and D-UNet for automated apple disease severity assessment. The first stage employs L-DPNet, achieving a leaf segmentation accuracy of 98.30%. This model is particularly effective in separating apple leaves from complex natural backgrounds, setting the foundation for subsequent disease spot segmentation. The second stage utilizes D-UNet, which builds upon the VGG16 architecture and includes batch normalization and bilinear interpolation to achieve a lesion segmentation accuracy of 84.77%. Finally, our models contribute to an overall severity classification accuracy of 94.81% across five severity levels. Compared to individual models, our collaborative framework demonstrates stronger adaptability to complex backgrounds and accurate identification of fine details. Segmentation-based severity computation enables more delicate and continuous disease quantification, guiding precision treatment. The proposed framework has the potential to be integrated into orchard inspection robots or intelligent monitoring systems for early disease detection and treatment. Our upcoming research will focus on optimizing the computational efficiency of the model without compromising its accuracy. We also aim to extend the model’s capabilities to include dynamic monitoring of leaf areas and the recognition of multiple diseases on the same leaf.
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Rodents are essential to the balance of the grassland ecosystem, but their population outbreak can cause major economic and ecological damage. Rodent monitoring is crucial for its scientific management, but traditional methods heavily depend on manual labor and are difficult to be carried out on a large scale. In this study, we used UAS to collect high–resolution RGB images of steppes in Inner Mongolia, China in the spring, and used various object detection algorithms to identify the holes of Brandt’s vole (Lasiopodomys brandtii). Optimizing the model by adjusting evaluation metrics, specifically, replacing classification strategy metrics such as precision, recall, and F1 score with regression strategy-related metrics FPPI, MR, and MAPE to determine the optimal threshold parameters for IOU and confidence. Then, we mapped the distribution of vole holes in the study area using position data derived from the optimized model. Results showed that the best resolution of UAS acquisition was 0.4 cm pixel–1, and the improved labeling method improved the detection accuracy of the model. The FCOS model had the highest comprehensive evaluation, and an R2 of 0.9106, RMSE of 5.5909, and MAPE of 8.27%. The final accuracy of vole hole counting in the stitched orthophoto was 90.20%. Our work has demonstrated that UAS was able to accurately estimate the population of grassland rodents at an appropriate resolution. Given that the population distribution we focus on is important for a wide variety of species, our work illustrates a general remote sensing approach for mapping and monitoring rodent damage across broad landscapes for studies of grassland ecological balance, vegetation conservation, and land management.




Keywords: pest rodent monitoring, vole hole detection, unmanned aerial vehicles, deep learning, threshold optimization




1 Introduction

Small mammals, particularly burrowing rodents, are known as “ecosystem engineers” due to their positive impacts on grassland ecosystems, such as increasing plant diversity, providing shelter to other small creatures from insects to birds, and serving as the food of predators (Li et al., 2023). Nevertheless, because of their rapid reproductive capacity, the population of some species of small rodents can quickly grow and become a biohazard (Singleton et al., 1999). In Inner Mongolia, grasslands cover an area of 54.4 million hectares, the largest ecological function area with the highest biodiversity in northern China. Rodent damage is one of the most significant biohazards in grasslands, resulting in losses of over 200 million tons per year (Liu, 2022).

Brandt’s vole (Lasiopodomys brandtii) is a small herbivore rodent species inhabiting Inner Mongolia’s steppes. Its population density experiences dynamic fluctuations annually, with the maximum density reported to be 1,384 voles per hectare and the burrow area damaging approximately 5,616 hectares of grassland (Liu and Sun, 1993). The soil produced by the burrow digging of these voles forms a lot of heterogeneous vegetation patches, resulting in a 65.7% decrease in the yield of high–quality forage (Su et al., 2013). As such, Brandt’s vole is considered to be one of the main pest rodent species, and is thus controlled every year. Monitoring the population size of this species is essential for its scientific management. However, traditional methods are labor–intensive, such as using visual observation or traps to count voles, or using plugging and opening to count active holes, all of which are time–consuming due to the limitation of quadrat to small scales with 0.25 ~ 1 hectare (Du et al., 2022). Therefore, an efficient and accurate technology for pest rodent monitoring is urgent.

By combining rodent density data with satellite remote sensing, it is possible to predict the potential area damaged by rodent pests on a large scale. Spectral indices, such as normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), extracted from satellite images are strongly correlated with the abundance of rodents in farmland (Andreo et al., 2019; Chidodo et al., 2020; Dong et al., 2023). However, the low resolution of satellite images makes it difficult to accurately monitor rodent damage. Unmanned aircraft system (UAS) near–ground remote sensing technology can be used to take images with a flexible resolution on a relatively large scale, which can improve the evaluation of pest occurrence or damage. Michez et al. (2016) used UAS to assess cornfield damage by wild pigs (Sus scrofa), showing that the UAS is more comprehensive than traditional ground assessment. Yi (2017) used UAS to study the broken landscape of the Qinghai–Tibet Plateau, including the platuea pika (Ochotona curzoniae) and the platuea zokor (Eospalax fontanierii). Tang et al. (2019) used UAS images to study the pikas’ hole landscape pattern and its influence on the surrounding vegetation coverage. They found that the pikas’ holes have a concentrated distribution pattern, and the pikas’ holes can affect the surrounding vegetation influence within 20 cm. Additionally, it was suggested that the pika outbreak may be caused by grassland degradation, providing an ecological basis for pika management. Zhang et al. (2021) investigated the relationship between pika’s holes and alpine meadow bare patches using UAS. They found a variety of short–term relationships between bare patch change and pika interference and suggested that long–term monitoring research with unmanned aerial vehicle technology is necessary. These studies demonstrate that unmanned aerial vehicles are becoming an essential technology tool in grassland ecological monitoring.

For a large number of images generated by UAS, manual visual interpretation remains labor-intensive and time-consuming. Traditional remote sensing-based object detection approaches combine manual features and shallow machine learning models, generally divided into three main steps: (i) selecting regions of interest (ROI); (ii) extracting local features; (iii) applying supervised classifiers to these features. Common methods include maximum likelihood classification (Wen et al., 2018), object-oriented classification (Sun et al., 2019), and support vector machine (SVM) (Heydari et al., 2020). These methods are limited by various backgrounds in the given dataset and are prone to overfitting with limited robustness (Gu et al., 2016). The emerging development of deep neural networks, especially convolutional neural networks (CNNs), has brought significant paradigm shifts and significantly improved the generalization and robustness of automatic learning and feature extraction using annotated training data (Al-Najjar et al., 2019). It more comprehensively describes the differences between various types of objects. The CNN-based object detection algorithm includes anchor-free and anchor-based models. Anchor-based models include Faster R-CNN (Ren et al., 2015), RetinaNet (Lin et al., 2017), SSD (Liu et al., 2016), YOLO (Redmon and Farhadi, 2018), etc. These models need to adjust the hyperparameter settings of the anchor during the training procedure better to match the size of the objects in the dataset. The anchor-free model is more convenient without such a process, and the representative models include CenterNet (Zhou et al., 2019), FCOS (Tian et al., 2019; Tian et al., 2022), etc.

In recent years, the combination of deep learning algorithms and UAS has been widely used for field monitoring, especially for grassland ecological monitoring. This combination has been used to detect wildlife (Kellenberger et al., 2018; Peng et al., 2020) and livestock population surveys (Soares et al., 2021; Wang et al., 2023b). Additionally, it can be used to survey rodents in grassland such as yellow stepped vole (Eolagurus luteus; Sun et al., 2019), great gerbil (Rhombomys opimus; Cui et al., 2020), plateau pika (Ochotona curzoniae; Zhou et al., 2021), the Levant vole (Microtus guentheri; Ezzy et al., 2021), Brandt’s vole (Du et al., 2022). By identifying the rodent holes, researchers can estimate the density of rodents. Furthermore, an overall assessment of rodent infestation can be conducted by taking into account above–ground biomass, grass coverage, and other indicators (Hua et al., 2022).

Previous studies have examined a variety of algorithms for recognizing rodent holes in various settings, yet there has been no emphasis on techniques for practical application, such as methods for determining resolution, manual annotation instructions, means of optimizing model parameters, and the design of survey outcomes. In this study, we examined the use of UAS and DL to detect Brandt’s vole holes in the steppe of Inner Mongolia. We explored the effects of different flight heights, manual labeling manners, eight deep learning models, parameter optimization, and model inference methods on the accuracy of vole hole identification. Our finding provides a technological basis for further developing grassland rodent monitoring methods based on UAS and DL.




2 Materials and methods



2.1 Overview of the study area

The study area is located in the steppe region of Xilingol grassland (118°118’ E, 45°38’ N). It is a high plain terrain with a northern temperate continental climate, an average altitude of 850 m, an average annual temperature of 1.6°C, and an average annual precipitation of 300 mm. The four seasons are distinct in this region. The semi–degraded grassland is dominated by Stipa krylovii, Leymus chinensis, and Artemisia frigida, and the main rodent species is Brandt’s vole (Figure 1).




Figure 1 | Study area and monitoring sites. (A) the position of Inner Mongalia (grey region) and East Ujimqin Banner (red region) in China, respectively; (B) the study site in East Ujimqin Banner (red point); (C) the burrow area of Brandt’s vole; (D) Brandt’s vole; (E) vole hole; (F) the study area SA1; (G) the study area SA2.






2.2 Image acquisition

This study was performed in an area concentrated on Brandt’s vole. Image acquisition was conducted using the DJI M300 RTK (SZ DJI Technology Co., Ltd., Shenzhen, China) equipped with a P1 camera (effective pixel 45 million, 35mm, f2.8), resulting in 8192*5460 pixel images. Prior to commencing formal image acquisition, a 20*30 = 600 m2 area (named SA0) was chosen and white lime markers were placed at the four corner points, in order to determine the optimal image resolution for manual visual interpretation. The number of vole holes in the area was manually counted and was recorded as Ground Truth (GT). UAS images of SA0 were obtained from six different flight heights: 10 m, 20 m, 30 m, 50 m, 80 m, and 100 m, resulting in a total of 21 images that constituted a Database. The SA0 area in the images acquired at different flight heights was first segmented in the image processing. The number of vole holes was visually counted, and the result was recorded as Image Truth (IT). Finally, the optimal flight height and corresponding image resolution were calculated by analyzing the relationship between GT and IT. Subsequently, formal image acquisition of the vole holes was conducted based on these findings.

Two different study areas, SA1 and SA2 (Figures 1F, G), were selected for image acquisition. The flight route was designed in an S–shape pattern, with a flight height of 30 m, an equidistant photography mode, and a speed of 2 m/s. The overlap rates of waypoints and routes were set to 80% and 70%, respectively. The data gathered from SA1 were named as Data–SA1, consisting of 343 original images, and were used to build and validate a deep learning model. Data–SA2, made up of 234 original images, was acquired from SA2 for testing the application method. An orthophoto image of SA2, measuring 37202*36924 pixels, was created using Agisoft Metashape software (Agisoft LCC., St. Petersburg, Russia). A summary of the data is provided in Table 1.


Table 1 | Image acquisition data information.






2.3 Dataset construction

Due to the large size of the original images in Data–SA1, manual labeling and model training were not feasible. To address this, we divided each original image into 25 sub–images of 1708*1160 in size, resulting in a total of 8575 sub–images. To ensure the accuracy of the truth labels, a rodent pest specialist manually identified the location of vole holes in each sub–image and labeled them using Labelme 4.5.10 (https://github.com/wkentaro/labelme) software. After removing images without vole holes, 6894 valid images were left with 24564 vole holes marked. The training, validation, and test sets were divided in a 5:2:3 ratio, resulting in 3447, 1379, and 2068 images, respectively. Supplementary Figure 1 illustrates the image segmentation and manual visual interpretation labeling process.




2.4 Deep learning algorithm

Traditional anchor-based detection models often perform poorly with small targets due to low match rates between the small targets and anchor boxes. The FCOS (Tian et al., 2019; Tian et al., 2022) model adopts an anchor-free design, allowing direct object localization and classification on feature maps, effectively solving the problem of small object detection. Additionally, FCOS excels in reducing false positives, thanks to its unique center-ness scoring mechanism. This mechanism evaluates the closeness of each predicted box’s center to the actual target center, effectively distinguishing real targets from background noise. This is crucial in distinguishing positive and negative samples, especially in small target detection tasks. The detection of vole holes in our dataset is a standard small target detection task, making this anchor-free algorithm more suitable. To determine the most effective approach for investigating vole holes, we compared several deep learning algorithms, including Faster–rcnn (Ren et al., 2015), SSD (Liu et al., 2016), and five YOLO series algorithms (Redmon and Farhadi, 2018; Bochkovskiy et al., 2020; Ge et al., 2021; Zhu et al., 2021; Wang et al., 2023a). Figure 2 shows the structure of the FCOS network. The Backbone module generates P3, P4, and P5 from the C3, C4, and C5 outputs. P6 is produced from a 3×3 kernel convolutional layer with a stride of 2. Based on P6, P7 is created using a 3×3 kernel convolutional layer with a stride of 2. Finally, the network utilizes a shared Head detector for P3 to P7, containing Classification, Regression, and Center–ness.




Figure 2 | The structure of the FCOS network.



For the Classification, n score parameters are predicted at each position of the predicted feature map, with the number of categories being 1. For the Regression, four distance parameters are predicted at each position in the predicted feature map, which are the distances to the left, top, right, and bottom of the object (1, t, r, and b, respectively). For the Center–ness, one parameter is predicted at each position of the predicted feature map, which reflects the distance of the point from the object center, with its value domain being between 0 and 1. The closer to the object center, the higher the center–ness value. The loss function is composed of classification loss, location loss, and center–ness loss. The equation (Equation 1) is as follows:

 

where   is focal loss as in (Lin et al., 2017) and   is the GIOU loss (Tian et al., 2020).   denotes the number of positive samples and   being 1 in this paper is the balance weight for  .   represents the predicted scores of each   at the feature map;  represents the true label of each   at the feature map;   is equal to 1 when the point   is matched to a positive sample and 0 otherwise;   indicates the information of predicted bounding box of   at the feature map, while the   indicates the true information;   indicates the predicted center–ness of   at the feature map, and the   indicates the true center–ness.

All models were trained on Ubuntu 20.04.1 LTS with Python 3.7, PyTorch 1.7.1, and CUDA 11.0. The server was equipped with a GPU–A100, a CPU–AMD EPYC 7742, and 512 GB of RAM. The hyperparameters for all models are listed in Supplementary Table 1. Additionally, Mosaic data augmentation (Bochkovskiy et al., 2020) was used during model training.




2.5 Evaluation indicators

To understand the practical application of UAS and deep learning algorithms in the survey of vole holes, we evaluated four perspectives: unmanned aerial vehicle flight heights, model accuracy, model optimization, and the verification of regional vole hole numbers. The evaluation methods used were as follows.



2.5.1 Resolution evaluation

The goal of resolution evaluation is to identify the ideal image resolution for regional surveys of Brandt’s vole holes. Based on the GT and IT in the same area, using True Positive (TP), False Positive (FP), False Negative (FN), Precision, Recall, and F1 score to evaluate the performance of manual visual interpretation. The Precision, Recall, and F1 score are calculated based on TP, FP, and FN. The equations are as follows:

 

 

 




2.5.2 Model accuracy evaluation

In the model evaluation, we use Precision, Recall, and F1 score to measure the performance of each model. However, in contrast to the previous approach, the definitions of TP, FP, and FN are based on the concept of intersection over union (IoU). This is the ratio between the overlapping area of the detection bounding box and labeling bounding box and the formed area of two bounding boxes. The selection of the threshold can determine these three indexes, and the threshold is usually set to 0.5. The equations are given in Equations 2–4.

The mean Average Precision (mAP) is utilized to evaluate the model, which is equal to the area under the Precision–Recall Curve (PRC). PRC is formed by plotting the precision versus the recall for various confidence levels of the network prediction. It shows the influence of the confidence level on the correlation between recall and precision. The AP calculation is as follows (Equation 5):

 

where   is the IoU threshold for which precision and recall are determined, and dRecall is the differential of the recall. To calculate the mAP, the average of the APs for each class of the object detection task is taken. Science there was only one class in this study, the AP and mAP were the same.




2.5.3 Model optimization evaluation

Evaluating model accuracy can help choose the best model, but it may not necessarily provide the optimal performance due to certain limitations such as the IoU threshold and confidence threshold. The task of counting vole holes falls under counting regression, whereas the aforementioned indexes are geared towards classification. To further transform the task of counting vole holes towards a counting regression task, we conducted a thorough analysis to identify the optimal IoU threshold and confidence threshold, as well as utilizing more effective evaluation indexes. Specifically, we adopted miss rate (MR) and false positives per image (FPPI) to calculate the average false detection rate of each image. The equations are as follows (Equations 6, 7):

 

 

where N is the number of pictures, the FP is the number of false vole holes detected.

To evaluate detectors, we plot the MR against the FPPI (using log–log plots) by varying the threshold on detection confidence. This is more suitable than PRC for our tasks, as there is typically an upper limit on the allowable FPPI rate regardless of object density (Dollar et al., 2012). To summarize detector performance, the log–average miss rate (LAMR) is computed by averaging the MR at nine FPPI rates that are evenly spaced in log space in the range 10–2 to 100 (for curves that end before reaching a given FPPI rate, the minimum MR achieved is used).

When selecting a confidence threshold, it is typical to use the F1 score as an evaluation metric. However, the F1 score does not provide a clear indication of how many errors are present in the task. False and missed detections are both negative outcomes that often occur together at a certain confidence level. To ensure the accuracy of the final count, the sum of false and missed detections must be minimized. Thus, the mean absolute percentage error (MAPE) is therefore chosen as the final evaluation metric, and the optimal confidence threshold can be calculated by minimizing the MAPE. The equation is as follows:

 

where   is the number of model estimate results,   is the number of ground truth result; and   is the total number of images.




2.5.4 Verification of the number of regional vole holes

Data–SA2 was selected to validate the regional survey of optimal model for vole holes. To measure the accuracy of the optimized model estimation, the determination coefficient (R2), root mean square error (RMSE), and MAPE (Equation 8) were utilized. The equations are as follows (Equations 9–11):

 

 

 

where   is the model measurement results,   is the mean of the model measurement,   is the manual measurement results (IT); and   is the total number of measurements;   is the result of model estimation, and   is the manual survey result.






3 Results



3.1 Flight height

A suitable flight height was identified by contrasting the differences between GT and IT at distinctive flight heights. Supplementary Figure 2 shows a clear comparison between vole holes and distractors in high resolution and low resolution. As the flight height increases, Table 2 reveals a decrease in the number of manual visual interpretations, a reduction in TP, an increase in FP, and a higher probability of missing detection. Even though accuracy values remain the same, recall values are significantly lower. According to the F1 score results, manual visual interpretation performs best when the flight height is not higher than 30 m. To maximize the survey area, a flight height of 30 m is recommended for achieving an F1 score of 0.98 and an image resolution of 0.4 cm/pixel.


Table 2 | Manual visual interpretation results at different flight heights.






3.2 Model performance

To select the best model, eight object detection algorithms were evaluated. The model was constructed using a simultaneous training and validation model, and a pre–trained mode was used for faster convergence. The backbone network weights, which extract generic basis features, were kept the same for the first 50 steps, and the optimization weights were adjusted globally afterwards. The training and validation results are illustrated in Supplementary Figure 3 and Figure 3. After 60 epochs, most models reached their peak mAP values and had stabilized, showing successful model training.




Figure 3 | Validation mAP curves for the different models.



The performance of each model in recognition of vole holes was good (Supplementary Figure 4), but the confidence level and position of the detection box varied, which could affect the subsequent vole hole counting results. According to the comprehensive evaluation indexes of the different models (Table 3), FCOS had the highest mAP of 95.19%. Faster–rcnn model had the highest Recall value of 95.91%, but its Precision value was only 69.07%, resulting in a higher Recall at the expense of precision compared to other models. The F1 score was used to evaluate model performance by combining both Precision and Recall. FCOS and YOLOX performed the best, and their F1 score values were both above 0.89. Additionally, the model’s size and speed were evaluated. SSD had the highest Frame Per Second (FPS) at 161.08, while Faster–rcnn had the slowest speed with an FPS of 25.71.


Table 3 | Comprehensive performance of the different models.






3.3 Model optimization

In the model training stage, the objective factors affecting the FP and FN are complex environment (e.g., light, occlusion), similars (e.g., feces) and the model structure. Data augmentation and improved model algorithms are often used to reduce the impact of these factors. In the model inference stage, parameters such as IoU threshold and confidence threshold have a certain impact on the prediction accuracy (Figure 4), and these parameters can be artificially adjusted to optimize the prediction results. The aims of this study are to examine the regression performance of the number of vole holes by transforming the object detection task into an estimate regression task performance. To do so, two issues must be addressed: setting the threshold (i.e. the IoU) for determining when the object box and prediction box overlap enough to be considered a positive sample, and selecting the confidence threshold for considering a sample as positive.




Figure 4 | The detection results of different IoU threshold and confidence threshold.





3.3.1 IoU threshold

The MR–FPPI curve is a useful tool for the performance of a detector based on the IoU threshold. Figure 5A shows the MR–FPPI curves for IoU values below 0.5, with FCOS having the best performance and a LAMR value of 19.11%. Figure 5B illustrates the LAMR performance of all models at 7 IoU thresholds, including 0.05, 0.20, 0.35, 0.50, 0.65, 0.80, and 0.90. Each model has an inflection point above which the LAMR value increases rapidly, while the value tends to level off otherwise. As the LAMR value decreases, the detector performance improves, and as the IoU threshold increases, the detection box becomes more accurate. Therefore, the inflection point indicates the optimal IoU threshold for each model. Consequently, the best IoU threshold for Faster–rcnn and YOLOv4 was 0.50, while for the other models, it was 0.65.




Figure 5 | The MR–FPPI curves for the different models (A) and LAMR values change at different IoU thresholds (B).






3.3.2 Confidence threshold

As shown in Figure 6, using the FCOS model as an example, the gray dashed line and the red solid line represent its confidence performance at the 0.5 standard level and when the highest F1 score or the lowest MAPE value. These two indicators do not correspond to the same confidence level. However, MAPE is more consistent with counting regression, so it is used instead of F1 score. Table 4 reveals that all models have better values of F1 score and MAPE at their best confidence level than the 0.5 level. The best confidence levels obtained for both F1 and MAPE metrics were also different for all models. In particular, FCOS achieves the best result with a confidence threshold of 0.62 and an MAPE of 0.1777.




Figure 6 | Performance of the FCOS model at different confidence thresholds. (A) the F1 score indicator, and (B) the MAPE indicator.




Table 4 | Performance of the different models at different confidence thresholds.







3.4 Model inference

We chose the FCOS model as the best model for further exploring the quantity of vole holes. The validation data was the original images from Data–SA2 and the model was evaluated using an IoU threshold of 0.5 and a confidence threshold of 0.5 before optimization, and an IoU threshold of 0.65 and a confidence threshold of 0.62 after optimization. The model was compared to GT and the results are shown in Figure 7. Before optimization, the R2 was 0.6552, the RMSE was 12.6173, and the MAPE was 21.42%. The high false detection rate led to an unsatisfactory result. After optimization, the performance of the model was greatly improved with an R2 of 0.9106, RMSE of 5.5909, and MAPE of 8.27%. The threshold parameters were adjusted using the new assessment indexes to balance the number of false detections and the number of missed detections. Thus, the optimized model can be used as an effective method to detect the number of Brand’s vole holes. The accuracy of vole hole counting of the stitched orthophoto was 90.20% (Figure 8).




Figure 7 | Validation of the model counting results. (A) is the model detection result before optimization, and (B) is after optimization.






Figure 8 | Results of region vole holes counting.







4 Discussion



4.1 Comparison of different labeling methods

During object labeling, it is typical to draw a rectangular box to mark the object boundary (Label–1, Supplementary Figure 5A). However, the cow dung (Supplementary Figure 5B) in UAS images is similar to the vole holes, making it difficult to simply label the vole hole boundary due to the presence of distractors. We found the vole trails always exist around the holes, which isa distinct feature of vole–damaged vegetation. Hence, we enlarged the box range for labeling (Label–2, Supplementary Figure 5C).

To assess the effectiveness of the proposed labeling technique, 1125 sub–images were randomly chosen from Data–SA1 and labeled using both Label–1 and Label–2 methods. These images were then divided into training, validation, and test set in a 5:2:3 ratio. The results (Figure 9A) demonstrate that the mAP values of all models trained with Label–2 are higher than those of Label–1. However, this pattern is not obvious when the confidence threshold is set to 0.5 (Figure 9B). Nevertheless, when the confidence threshold is optimized, the F1 score and LAMR values of the models follow the aforementioned pattern (Figures 9C, D). Therefore, the improved Label–2 labeling method offers clear advantages over the traditional Label–1 method.




Figure 9 | Comparison of the results of different models using two labeling methods. (A) mAP, (B) F1 score–0.5, (C) F1 score–best, and (D) LAMR.






4.2 The challenge of repeat counting

When a hole is located at the edge of a sub–image segmentation (Figure 10A) during model inference, it may be misidentified as two separate holes, resulting in a decrease in the confidence of both holes. This can lead to an inaccurate counting result, regardless of whether the confidence is higher or lower than the threshold we set. To address this issue, we designed an overlapping area between adjacent sub–images (Figure 10B) to form a situation of multiple detections for one hole. We then used a redundancy removal algorithm, Non–Maximum Suppression (NMS), to eliminate redundant detection boxes. NMS is commonly used to eliminate redundant data by setting an IoU threshold. However, the IoU threshold in overlapping areas can be either small or large, making it difficult to select the right threshold, especially for two vole holes that are close together. To address this challenge, we improved the NMS by introducing the intersection over a smaller (IoS) metric, which is the ratio of the intersection to the smaller bounding box (Supplementary Figure 6, Equation 12). This approach ensures that the IoS values of the repeated bounding boxes are close to 1, while the IoS values of the two close vole holes’ bounding boxes remain small. The IoS threshold can also be easily chosen (the IoS threshold in this study was 0.5). This method with overlapping area processing decreased the error rate by 1.03% (Table 5). The width (or height) of the overlapping area was usually 2–3 times the size of the vole hole bounding box. Too much overlapping would increase the calculation amount and reduce efficiency, while too little overlapping would not work.




Figure 10 | Repeat counting problem, (A) no overlapping area, (B) with overlapping area.




Table 5 | Effect of overlapping area on repeat counting.



 




4.3 Image resolution and model optimization

Despite the varying required image resolution among different rodent species (Cui et al., 2020; Ezzy et al., 2021; Zhou et al., 2021; Du et al., 2022), there has been no research on the method of determining the UAV flight altitude or image resolution. This study uses manual visual interpretation as a benchmark and conventional classification evaluation indexes for resolution evaluation. This approach can determine the best image resolution which balances the accuracy and efficiency. Previous studies have mainly concentrated on refining model structure, while disregarding model application techniques. Even though model accuracy can be improved, incorrect application can lead to more accuracy loss. Therefore, this study transforms the object detection results into regression count results to optimize the application stage of model through more suitable evaluation metrics, thus allowing the full utilization of the capabilities of a mature model.





5 Conclusion

In this study, Brand’s vole hole counting was used as an example to explore the complete technical route of rodent hole counting, which promoted the application of UAS and DL in grassland rodent damage monitoring. We determined the optimal image resolution suitable for UAS monitoring, improved the conventional vole hole labeling method, selected the FCOS algorithm with anchor-free design as the rodent hole detection model, and adopted the regression strategy for the first time to optimize the model inference process. The results showed that the image resolution is most suitable when the flight altitude is 30 m and the mAP of FCOS model reached 95.19%. Compared with the GT, the accuracy of the optimized model could reach 90.20%. The above results indicate that our method is an effective and efficient method for detecting rodent holes in grassland. However, due to the constant seasonal and inter-species changes in the morphology of vole holes and their surrounding vegetation, it is currently difficult to develop a universal extraction algorithm. The development of large-scale grassland ecological monitoring model will be an important research topic in the future. Nonetheless, the ever–changing morphology of rodent holes and the surrounding vegetation across seasonal and inter–species, make it difficult to develop a universal extraction algorithm at present. It is expected that the development of large models for grassland ecological monitoring will be a key research topic in the near future.
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Capitalizing on the widespread adoption of smartphones among farmers and the application of artificial intelligence in computer vision, a variety of mobile applications have recently emerged in the agricultural domain. This paper introduces GranoScan, a freely available mobile app accessible on major online platforms, specifically designed for the real-time detection and identification of over 80 threats affecting wheat in the Mediterranean region. Developed through a co-design methodology involving direct collaboration with Italian farmers, this participatory approach resulted in an app featuring: (i) a graphical interface optimized for diverse in-field lighting conditions, (ii) a user-friendly interface allowing swift selection from a predefined menu, (iii) operability even in low or no connectivity, (iv) a straightforward operational guide, and (v) the ability to specify an area of interest in the photo for targeted threat identification. Underpinning GranoScan is a deep learning architecture named efficient minimal adaptive ensembling that was used to obtain accurate and robust artificial intelligence models. The method is based on an ensembling strategy that uses as core models two instances of the EfficientNet-b0 architecture, selected through the weighted F1-score. In this phase a very good precision is reached with peaks of 100% for pests, as well as in leaf damage and root disease tasks, and in some classes of spike and stem disease tasks. For weeds in the post-germination phase, the precision values range between 80% and 100%, while 100% is reached in all the classes for pre-flowering weeds, except one. Regarding recognition accuracy towards end-users in-field photos, GranoScan achieved good performances, with a mean accuracy of 77% and 95% for leaf diseases and for spike, stem and root diseases, respectively. Pests gained an accuracy of up to 94%, while for weeds the app shows a great ability (100% accuracy) in recognizing whether the target weed is a dicot or monocot and 60% accuracy for distinguishing species in both the post-germination and pre-flowering stage. Our precision and accuracy results conform to or outperform those of other studies deploying artificial intelligence models on mobile devices, confirming that GranoScan is a valuable tool also in challenging outdoor conditions.




Keywords: deep learning, in-field recognition, disease, pest, weed, winter cereals, free mobile app, co-design thinking




1 Introduction

From cell to farm level, scientific advances have always led to a better understanding of how various components of the agricultural system interact (Jung et al., 2021). This is particularly true in the current challenging period, including the global pandemic, supply chain breakdowns, drought-driven by climate change, and war, where precision agriculture needs to face increasing pressure for resource availability in combination with the projected increase in food demand by more than 70% by 2050 (World Bank Group, 2023). For agricultural optimization, emerging technologies, such as big data analysis, the internet of things (IoT), geospatial technologies and artificial intelligence (AI), are promising tools aimed at enhancing crop production and reducing inputs (Sishodia et al., 2020). AI proposes important contributions to knowledge pattern classification as well as model identification that might solve issues in the agricultural domain (Lezoche et al., 2020). Computer vision has been utilized to provide accurate, site-specific information about crops and their environments (Lu and Young, 2020).

The history of computer vision applied to the agri-food chain started in the mid-1980s, mainly with seed and fruit sorting (Berlage et al., 1984; Rehkugler and Throop, 1986) and plant identification (Guyer et al., 1986). However, the explosion of agricultural computer vision took place at the beginning of the 2010s, with more than 2000 research papers published per year (Web of Science, 2023), thanks to reduced equipment costs and increased computational power (Patrício and Rieder, 2018). In the 2010s, highly cited papers reported several applications of computer vision for in-field plant identification (Grinblat et al., 2016; Hamuda et al., 2016; Jin et al., 2017; Tenhunen et al., 2019), plant phenotyping (Fahlgren et al., 2015; Ubbens and Stavness, 2017; Virlet et al., 2017; Ghosal et al., 2018), fruit counting and quantity and quality evaluation (Cubero et al., 2011; Rahnemoonfar and Sheppard, 2017; Ponce et al., 2019; Yu et al., 2019). Since 2020, the previous agricultural themes have been developed through many herbaceous and tree crops considering robotics (Fu et al., 2020; Wu et al., 2020), advanced deep learning (DL) techniques (da Costa et al., 2020; Santos et al., 2020; Miragaia et al., 2021), and various real environments (Fonteijn et al., 2021; Borraz-Martínez et al., 2022). Other new aspects are addressed such as crop type mapping (Nowakowski et al., 2021), soil organic matter prediction (Taneja et al., 2021), nutrient content/demand determination (Iatrou et al., 2021; Ahsan et al., 2022) or abiotic stress monitoring (Azimi et al., 2021; Zermas et al., 2021; Kumar et al., 2022). In addition, researchers paid particular attention to the pivotal and challenging issue of in-field localization and recognition of pests (Høye et al., 2021; Wang et al., 2021), diseases (Su et al., 2020; Nagaraju et al., 2022) and weeds (de Castro et al., 2018; Gallo et al., 2023). Regarding wheat crop, the most recent scientific works deal with spike segmentation and counting (David et al., 2020; Ma et al., 2020; Misra et al., 2022), leaf (Bao et al., 2021) and spike (Su et al., 2020) disease identification and post-harvest grain quality monitoring (AgaAzizi et al., 2021; He et al., 2021; Zhao et al., 2022).

Applications of the computer vision system in agriculture are promising in unraveling different problems (Patrício and Rieder, 2018). They raise productivity, by automating laborious tasks in a non-destructive way, improve quality and ultimately increase the profitability of farmers and other stakeholders (Meshram et al., 2021). Nevertheless, open issues still remain to be solved. Considering that computer vision systems leverage AI and especially machine learning (ML), the availability of high-quality data for training these architectures plays a crucial role. In this sense, the preparation of agricultural image datasets is strenuous because of the efforts and costs required for image acquisition, categorization and annotation. Most of the currently published datasets have several limitations, such as the small number of samples and image collection in a non-field environment, without addressing the complexity of open fields (Wang et al., 2021). In addition, although sharing saves significant resources and enables benchmarking of image analysis and machine learning algorithms (Lobet, 2017), the datasets publicly available are few (Orka et al., 2023). As a case study, Lu and Young (Lu and Young, 2020) in their survey retrieved 5870 search records, but only 34 datasets complied with the inclusion criteria of public availability (no need for a request to the authors) and image collection in field or quasi-field conditions. Besides, despite there being many general and open-source software libraries and toolkits, such as OpenCV (OpenCV, 2023), TensorFlow (TensorFlow, 2023), PyTorch (PyTorch, 2023), scikit-learn (Scikit-learn, 2023), open-source and end-to-end platforms that develop computer vision systems for the agricultural domain are not so numerous. In brief, we report three examples: AirSurf, an automated and open-source analytic platform to measure yield-related phenotypes from ultra-large aerial imagery (Bauer et al., 2019); CoFly, a modular platform incorporating custom-developed AI and information and communication technologies (ICT) for unmanned aerial vehicle (UAV) applications in precision agriculture (Raptis et al., 2023); and Fiware, a general framework of open-source platform components for developing and integrating also smart farming solutions (Fiware, 2023).

Mobile devices and especially smartphones are an extremely popular source of communication for farmers (Raj et al., 2021). In the last decade, a variety of applications (mobile apps) have been developed according to farmers’ needs (Mendes et al., 2020). Their added value consists of locating all the different information in one place that farmers can directly and intuitively access (Patel and Patel, 2016). The photographic record through the embedded smartphone camera and the interpretation or processing of images is the focus of most of the currently existing applications (Mendes et al., 2020). In particular, agricultural apps deploy computer vision systems to support decision-making at the crop system level, for protection and diagnosis, nutrition and irrigation, canopy management and harvest.

Analyzing technical gaps associated with the development of accurate, reliable and easy-to-use mobile apps for crop diagnosis, the availability of high-quality data for training deep learning architectures remains an actual bottleneck. This is mainly due both to the lack of in-field data and the efforts (time and labor) required to acquire and pre-process images, i.e. reshaping, resizing, categorization, annotation. In addition, due to legal restrictions, data transfer speeds and network issues, the app’s functioning sometimes may be slowed down (Kirk et al., 2011). Regarding issues in using the apps, poor lighting when reading information on small screens, especially in bright field conditions and apps providing too many recommendations with a lack of site-specific information were reported (Thar et al., 2021). Free mobile apps available in digital stores are poorly documented, as the vast majority of apps do not have a supporting peer-reviewed publication. The lack of a solid scientific basis could undermine the reliability of the app, mainly in terms of performance. Other issues in agricultural mobile app development concern social gaps, mostly represented by trust, comfort and affordances in adopting this technology by end users (farmers). The development of a digital tool requires early and ongoing interactions with targeted users to clarify app goals and features, ensure the reliability of scientific input and optimize farmer experience (Inwood and Dale, 2019). Also, training would be beneficial to effectively understand and properly use this type of app. As stated by Thar et al. (Thar et al., 2021), farmers are optimistic about agricultural mobile apps with over 70% of the respondents in their survey willing to use them. The gap arises between the positive attitude toward agricultural mobile apps and the negative usage level of most farmers: this is the real challenge to be tackled.

Regarding crop abiotic and biotic stress recognition and diagnosis, many mobile tools have been implemented so far. They are dedicated both to a set of crops - Leaf Analysis (Petrellis, 2019); E-agree (Reddy et al., 2015); the smart system proposed by Chen et al. (Chen et al., 2020) - and a specific crop. For example, e-RICE categorizes the symptoms to make an accurate diagnosis of common rice diseases and problems (Morco et al., 2017); the TobaccoApp detects any damage on tobacco leaf caused by fungi (Valdez-Morones et al., 2019); AuToDiDAC detects, separates and assesses the diseases in cacao black pod rot (Tan et al., 2018). Nevertheless, free apps available in online stores and supported by a research paper are quite rare. Among those, it is worth mentioning: ApeX−Vigne, which monitors vine water status using crowdsourcing data (Pichon et al., 2021); Plantix, which detects, through deep learning algorithms, diseases, pests, and nutritional deficiencies in 30 crop types (Tibbetts, 2018); BioLeaf, which measures in situ foliar damage caused by insects (MaChado et al., 2016); PlantifyAI, for diagnosing 26 diseases across 14 crop species by offering also control methods (Shrimali, 2021); and PlantVillage Nuru, which leverages a crowdsensing platform for plant disease diagnosis in developing countries (Coletta et al., 2022). Within this group, no mobile applications are specifically dedicated to wheat crop.

Within this framework, the current paper presents GranoScan, a free mobile app dedicated to field users. The most common diseases, pests and weeds affecting wheat both in pre and post-tillering were selected. An automatic system based on open AI architectures and fed with images from various sources was then developed to localize and recognize the biotic agents. After cloud processing, the results are instantly visualized and categorized on the smartphone screen, allowing farmers and technicians to manage wheat rightly and timely. In addition, the mobile app provides a disease risk assessment tool and an alert system for the user community. The design and implementation of GranoScan aim to ensure a foolproof detection system and, at the same time, a user-friendly experience.

The main contributions of the current study are highlighted hereafter:

	develop a deep learning architecture for recognizing threats affecting wheat, which leverages images directly acquired in the field with the smartphone camera;

	release a simple-to-use and free smart tool dedicated to farmers and field technicians, implemented through a co-design process together with these stakeholders;

	create a user community capable of promoting good agricultural practices through the use of the GranoScan app.



The paper is structured as follows: Section 2 showcases the app co-design workflow, the selection of threats and the underpinning deep learning architecture. Section 3 and Section 4 describe and discuss, respectively, the results of the co-design process, the app graphic features and the app performances in recognizing wheat abiotic and biotic stresses, also towards users’ real use. Finally, Section 5 summarizes the usefulness of GranoScan, underlining farmer engagement, and gives previews of the app’s future developments.




2 Materials and methods



2.1 Mobile application co-design (workflow and app design)

Involving potential users in the design of a digital solution is a necessity (Kenny and Regan, 2021). Co-designing activities with farmers for the implementation of a mobile app in agriculture can help ensure that the app meets the needs of its intended users and is effective in providing the expected solutions. Despite restrictions due to the COVID-19 pandemic preventing live meetings, we were able to identify over 40 farmers from different Italian regions who were interested in our project and willing to participate in the design process. Once the group of interested farmers had been identified, we planned monthly online meetings to discuss the app’s purpose and functionality. During these meetings, farmers provided feedback on the features they would like to see in the app and how they would like to use it. This feedback was used to create the first prototype of the app, which was tested and refined through ongoing discussions and feedback from the farmers. This group of farmers was further involved in the app’s prototype promotion, which ensured that a group of over 100 beta testers consisted of farmers. The participatory approach allowed farmers to contribute their knowledge and skills to ensure that the app meets their needs and is user-friendly. Several topics and needs emerged from the discussions: the graphics of the app in terms of colors, icons, and text size to ensure simple use in the field with different light conditions; the request for an easy user-application iteration with a quick selection from a pre-set menu; the possibility of using it even in conditions of poor connectivity or total absence of connection; the ability to handle unknown cases; a quick and simple guide to operating correctly; the option to indicate an area of interest on the photo for which to request recognition; a dedicated section where the results can be consulted at any time; to be informed of any plant diseases found in fields close to their own. Additionally, the 40 farmers, together with technicians, researchers and project partners, were involved in the selection of diseases, pests and weeds.




2.2 Disease, pest and weed selection and image retrieval

As for the app functions and graphics, the stakeholders were requested to contribute to the list of the main biotic agents affecting wheat in the Mediterranean environment. Starting from a scientific literature survey, an intense consultation activity involving farmers, technicians and researchers was carried out, allowing the selection of the target diseases, pests and weeds.

Diseases are represented by those caused by a single fungus or a species complex (Supplementary Table S1). The detected diseases affect all the organs of wheat (root, leaf, stem, spike). Regarding pests (Supplementary Table S2), the focus is mainly on insects but slugs and mites are also included. Insects are recognized in different life cycle stages (egg, larvae, adult). Weeds encompass both monocot and dicot and a species belonging to Tracheophytes, i.e. the common horsetail (Equisetum arvense) (Supplementary Table S3). Weeds are recognized both in the seedling stage (“Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie” (BBCH) scale, stages 10–19) (Meier, 2018) and from nine true leaves onwards. For seven of the most widespread and hard-to-control species, a phenotyping activity was conducted to create an in-house imagery dataset. The selection was made by considering (i) bottom-up information and specific requests by farmers and technicians, (ii) weeds susceptibility <50% to commercial formulations for chemical control as reported at least twice by field technicians, and (iii) hard to control species considering other methods (agronomical, mechanical, etc.). This way, the training of the developed AI architecture can be boosted with low-cost and high-resolution images (see section 2.2.1). In addition to those biotic agents, frost damage on spikes and cereal leaf beetle (Oulema melanopus) damage on leaves are also encompassed.

Raw images for training the implemented AI architecture were retrieved from different sources, that is stakeholders of the wheat supply chain and research activities. In the first case, farmers and technicians engaged during co-design anonymously shared raw images taken in the field through a dedicated web application (even during the COVID-19 pandemic). In the second case, researchers carried out field scouting and phenotyping activity.



2.2.1 Weed phenotyping

Phenotyping was conducted both on monocots and dicots (Supplementary Table S3), selected through the overall list of weeds recognized by GranoScan. Considering the agronomic relevance of these seven weeds, the phenotyping activity was necessary to enhance the number of images, completing those retrieved from the in-field acquisition. Weed seeds were sown in April and November 2021 in 36 black plastic pots for each species and placed in a growth chamber with optimal microclimatic and agronomic conditions. For image shooting into the open air, a Canon EOS 700D hand-held camera was used. The acquisition was facilitated by using a white panel as a background and performed with homogeneous light conditions (full sunlight/full shade), avoiding mixed situations that could hinder the automatic recognition system. As also suggested by other studies (Wang et al., 2021), photo capture timing, target distances and light conditions did not have a fixed pattern but were deliberately programmed to vary in such a way as to mimic field conditions that a user may experience. The images were acquired until the pre-flowering stage but focus was placed especially on the post-emergence targets (BBCH 10–19) because early identification of weeds allows the control to be more effective. The final phenotyping dataset includes 10810 images and is publicly shared in an open-access repository (Dainelli et al., 2023).





2.3 Image dataset processing

The dataset has been divided into nine parts, as in Table 1. Each part contains images suited for a specific identification and classification task. For instance, the “Leaf disease” task refers to identifying in the image possible areas interested by disease, e.g. parts of the leaves on which the signs of Septoria are visible. The total number of images is 67302. This number is given by the number of original images retrieved from different sources (31335, number of real images, Table 1) supplemented by additional images obtained by a data augmentation procedure for leaf disease, leaf damage, spike disease, spike damage, stem disease and root disease tasks (Table 1). In this procedure, random rotations, and changes in tone and intensity were applied to obtain variants of the original images, increasing the size of the dataset, excluding pests and weeds tasks, by approximately a factor of 6. Indeed, note that the number is not divisible by 6, since augmented images were used only in the training and validation phases and not in the testing one. Moreover, the augmented images were re-checked manually and visually inspected to remove those in which the transformation had led to underexposed and overexposed images or produced a crop excluding the area of interest.


Table 1 | The GranoScan dataset.



The datasets were then annotated and conditioned in a task-specific fashion. In particular, in tasks related to pests, weeds and root diseases, for which a deep learning model based on image classification is used, all the images have been cropped to produce square images and then resized to 512x512 pixels. Images were then divided into subfolders corresponding to the classes reported in Table 1.

In all the other tasks, where an object detection model is used, the images were first annotated by manually drawing a set of rectangular areas in which particular diseases or damages are visible (Figure 1). Each rectangle is labeled with the classes reported in Table 1 for a total of 58101 annotations before data augmentation. To this end, the annotation tool LabelImg (Tzutalin, 2015) was used. Afterward, all the images were resized to 256x256 pixels for leaf, spike and stem diseases.




Figure 1 | Examples of images manually annotated for object detection tasks: leaf disease – (A) septoria; (B) powdery mildew; (C) yellow rust; leaf damage – (D) damage from cereal leaf beetle; spike disease - (E) Fusarium head blight; and stem disease – (F) black rust.






2.4 Deep learning architecture

To obtain a classification system for the images we collected, we opted to use an original method that we studied and implemented. More in detail, to get accurate and robust AI models, we used a deep learning architecture named efficient minimal adaptive ensembling that we already tested (Bruno et al., 2022) by setting the new state-of-the-art with an accuracy of 100% on the Plantvillage public dataset. The method is based on an ensembling strategy that uses as core models two instances of the EfficientNet-b0 architecture. More precisely, the EfficientNet family (Tan and Le, 2019) consists of 8 instances, numbered from EfficientNet-b0 to EfficientNet-b7, that have an increasing complexity and number of parameters. All the members of the EfficientNet family have been designed to have efficiency as a target and have been obtained by using a structured method to generate a compound scaling of the network’s depth, width and resolution. According to previous works and experimental evidence (Bruno et al., 2023), the b0 variant of the EfficientNet family fits better with the need for the GranoScan app to provide results with high accuracy and low latency. In addition, instead of using one single instance of trained EfficientNet-b0, we have adopted the ensembling technique, which aims to transform a number of weak models (in the present case, each one represented by a single EfficinetNet-b0) into a strong classifier named “ensemble” model. Ensembling is performed by an innovative strategy of performing bagging at the deep feature level. Namely, only the convolutional layers of each trained weak model are kept, while the final decisional layers are neglected; in this way, each weak model is turned into an extractor of deep features. The deep features of each weak model are then concatenated and fed to a trainable final decision layer (Bruno et al., 2023), to which we refer for more details on the ensembling construction).

The proposed method encompasses eight main design choices: (i) first, data stratification was introduced to cope with unbalanced data and allow improved performances; (ii) transfer learning was used for providing a faster convergence, specifically instances of EfficientNet-b0 networks pre-trained on the ImageNet task were used as initial models; (iii) cross-entropy loss was employed, given the multiclass nature of all the addressed problems and class-imbalance issues; such loss is a natural choice since it exponentially penalizes differences between predicted and true values, expressed as the probability of the class to which they belong; (iv) Adabelief optimizer was selected for faster convergence and better generalization, also (v) making use of regularization to improve robustness to noises; (vi) the weighted F1-score, which takes into account misclassification and unbalanced data, was employed; (vii) ensembling was performed using the minimum number of weak classifiers (that is, two) in a such a way as to improve overall classification performances (as demonstrated experimentally) while limiting complexity; (viii) the resulting ensemble was fine-tuned only, reducing the ensemble training complexity.

The training and validation process for the ensemble model involved dividing each dataset into training, testing, and validation sets with an 80–10-10 ratio. Specifically, we began with end-to-end training of multiple models, using EfficientNet-b0 as the base architecture and leveraging transfer learning. Each model was produced from a training run with various combinations of hyperparameters, such as seed, regularization, interpolation, and learning rate. From the models generated in this way, we selected the two with the highest F1 scores across the test, validation, and training sets to act as the weak models for the ensemble. The original decision layers of these weak models were removed, and a new decision layer was added, using the concatenated outputs of the two weak models as input. This new decision layer was trained and validated on the same training, validation, and test sets while keeping the convolutional layers from the original weak models frozen. Lastly, a fine-tuning process was applied to the entire ensemble model to achieve optimal results.

The ensembling is performed using a linear combination layer that takes as input the concatenation of the features processed by the weak models and returns the linear mapping into the output space. During the fine-tuning, the parameters of the weak models are frozen and the linear layer only is trained. In this way, the resulting ensemble is efficient because the computational costs are very close to the cost of a single model (because only a small fraction of the parameters are updated and, since the weak models are independent, it is possible to parallelize their training) and adaptive (because the layer performing the ensemble is trained on the real data and it is not a mere aggregation function, as commonly used).

For the sake of the reproducibility of the results, further considerations about the architecture and its training are collected. The kernel sizes of the weak models are the standard blocks in the EfficientNet-b0 as reported in the original paper (Tan and Le, 2019). As a rule of thumb, Stride 2 was used for depth convolutional blocks, while Stride 1 was selected for all the other ones. As an activation function borrowed from the EfficientNet family, SiLU (i.e. Sigmoid Linear Unit) was preferred over ReLU (i.e. Rectified Linear Unit). This activation function is a particular case obtained by setting β = 1 in the Swish activation function (Hendrycks and Gimpel, 2016). SiLU inherits two good properties from its more general variant: it is smooth and less sensitive to the vanishing gradients problem with respect to ReLU. In the training procedures, the maximum number of epochs was set to 100. An early stopping mechanism was used and assigned to 10 epochs without improvements (i.e. in technical jargon, the patience was set to 10). Generally, after 18–20 epochs, the models reached their best performance. The learning rate was set to 0.0005 and was not changed during training.




2.5 App security and interaction with the deep learning model

Security-related issues are of pivotal importance to guarantee data protection and user privacy. In GranoScan, the authorization filter has been implemented following OAuth2.0-like specifications to guarantee a high-level security standard. All data are transmitted and received in an encrypted way and the resources accessibility is managed by a temporary access token generated by the system and it can be regenerated through a refresh token. To minimize the throughput of requests for tokens management, refresh and access tokens are stored in a specific private area of the mobile app until the time expires.

Regarding the development and deployment of the app, GranoScan follows AgroSat (AgroSat, 2023) APIs specifications and implements Flutter technologies to ease GranoScan porting on Android and iOS devices. The GranoScan app is released and maintained on Google and Apple app stores.

The deep learning model runs on a dedicated server that is not reachable by the mobile app directly. Interactions between the mobile app and deep learning server are managed by AgroSat APIs that receive data and requests by the mobile app, apply pre-processing activities, send data to the deep learning server, wait for results, store and send them back to GranoScan. Figure 2 shows the internal architecture of the proposed solution, highlighting data flows among the GranoScan mobile app, AgroSat server and AI server.




Figure 2 | GranoScan internal architecture and data flows.







3 Results



3.1 GranoScan co-design

The co-development process began in December 2019, with an initial exploration of the information needs and challenges faced by farmers in identifying insects, weeds and diseases, as well as evaluating farmers’ readiness to use phone-based digital tools. Among 40 participants, 80% identified the experience constraint (lack of references/knowledge) as the major constraint in the wheat threats recognition and reporting as clear examples of what usually happens in the recognition of weeds in post-germination and the experience that took place in previous years when the spikelets were damaged by late frost. The remaining 20% identified the major constraint in the timeliness of recognition and then receiving technical support. Among the 40 participants, a mismatch between the expected skills in using smartphone-based tools and the real ones clearly emerged, even just in the use of the camera and its settings. That said, the application was designed considering the following requests:

	- to have a simple layout in terms of color, text and icons with the adoption of colors that can make use of the app simple in the disparate light conditions that can be encountered in the field (Figures 3–6) to provide, step-by-step, a brief guide to how the app works, which can be viewed or skipped;

	- to provide a simplified menu to select the target (disease, weed, insect, damage, plant stage and plant organ) to photograph and make available the possibility of choosing the “I am not sure “ case where the user is not able to select the target to photograph (Figure 3);

	- to optimize the use of the camera automatically and make camera parameter adjustment options available;

	- after taking the photo, give the possibility to draw or not an area of interest to pay attention to for recognition (Figure 4A); otherwise, the central area of the image is selected (Figure 4B);

	- to provide a summary of what was selected, and the photo taken before sending it for recognition (Figure 4C);

	- to receive notification of the result as soon as it is available (Figure 5A), as well as always have all the results available in a dedicated tab (Figure 5B);

	- to show the recognition results in decreasing order of accuracy (with a minimum threshold of 40%) for the image classification models and up to a maximum of 3 results (top 3);

	- to show all the recognition results in decreasing order of accuracy (with a minimum threshold of 30%) for the image object detection models;

	- to turn recognition results on the photo on or off (Figure 5C);

	- to have the possibility to delete images from the results tab.






Figure 3 | User-side walkthrough menu for wheat threat selection. In the example, a weed in the pre-flowering stage is selected through the following steps; (A) type of threat; (B) weed growth stage; and (C) summary of the selection choices before photo acquisition. Panel A: Seleziona stress = Select threat; Malattie = Disease; Danni = Damage; Insetti = Pests; Infestante = Weeds; Non sono sicuro = I am not sure. Panel (B):Seleziona l’Età della Pianta = Select plant stage; Post Germinazione = Post-germination; Pianta Sviluppata = Developed plant; Panel (C): Imposta i dati per il riconoscimento = Set the data for recognition; Infestante = Weeds; Pianta Sviluppata = Developed plant; Scatta una foto = Take a picture. For all panels: Foto = Photo; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk.






Figure 4 | Mobile app photo acquisition steps: (A) brief guide for acquiring photos through users’ smartphone; (B) possibility of drawing an area of interest; (C) summary data – GPS coordinates, type of threat, plant organ – before sending the photo to the recognition system. Panel (A): Seleziona Area = Select Area; Inserisci un’area di interesse opzionale = Select an optional area of interest; Trascina gli angoli per definire l’area di interesse = Drag the corners to define the area of interest; Inizia = Start; Non mostrare più questo tutorial = Don’t show this tutorial again. Panel (B): Foto = Photo; Elimina Hot Area = Delete Hot Area; Riepilogo Dati = Data summary; Invia Foto = Send Photo; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk. Panel (C): Stress = Threat; Malattie = Disease; Organo Pianta = Plant organ; Invia Foto = Send Photo; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk.






Figure 5 | GranoScan recognition results: (A) notification of successful threat recognition; (B) list of all results; (C) detailed results (species and probability) of the target threat (in the example, weed in the pre-flowering stage). Panel (A): Foto Inviata = Phot Sent; Aggiungi Foto = Add Photo; Torna all’inzio = Go back to the menu; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk. Panel (B): Risultati = Results; Elaborazione completata senza problemi = Photo analyzed without any issues; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk. Panel (C): Risultati = Results; Foglia larga = Dicot; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk.






Figure 6 | GranoScan alert tabs: (A) frequency setting of incoming notifications; (B) anonymous notifications of disease recognition in nearby fields (< 5 km), reporting date and time, type of threat and distance. Panel (A): Allerte = Alerts; Imposta la modalità di ricezione delle notifiche = Set notification mode; Modalità Ricezione Notifiche = Notification receiving mode; Personalizzate = Customized; Numero notifiche = Notification number; Salva = Save; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk. Panel (B): Allerte = Alerts; Impostazioni = Settings; Ruggine gialla = Puccinia s.; Oidio = Blumeria; Septoria = Septoria; Risultati = Results; Foglia larga = Dicot; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk.



Furthermore, the exact previous percentages also emerged in indicating as fundamental: (i) the application must always be ready and running while working in the field (80% of the farmers), (ii) be informed in advance of the risk of disease to schedule field visit (20% of the farmers). In this regard, the application was designed with the possibility of working offline (without network coverage), enabling all menus, taking a photo (max 5 offline) and leaving everything in the buffer until the smartphone is hooked up to the net again to send the photo and receive the model output. At the same time, both to meet secondary needs and to create a community always updated, the possibility of receiving an anonymous notification relating to disease recognitions near one’s field (within 5 km) has been implemented (Figures 6A, B).




3.2 Deep learning results

In this section, the results regarding the performances of the deep learning architecture are reported. Figure 7 shows confusion matrices for leaf disease, spike disease, stem disease, root disease, spike damage and leaf damage, respectively (panels A-F). Overall, a very good precision is reached in this phase, with peaks of 100% in leaf damage and root disease tasks and in some classes of spike and stem disease tasks. A precision of 99% is gained in the leaf disease task in every class excluding Puccinia g. (95%) and Septoria (94%). In the first case, the algorithm wrongly identifies as Puccinia g. leaves affected by Puccinia r. and Septoria; in the latter, Blumeria g., Puccinia r. and Puccinia g. are confused with Septoria. The spike disease task presents the most inhomogeneous results among the object detection models. Indeed, alongside precision percentages that nearly achieve (99% and 98% for Blumeria and Puccinia g., respectively) or reach the maximum (100% Stagonospora), there is a small portion of diseased spikes (5%) misrecognized as healthy. Fusarium head blight class has a weak performance, with a precision of 40%. The algorithm misclassifies as Fusarium all the other classes of the task: 20% of the analyzed regions of interest are actually healthy spikes, 20% are Blumeria, 10% Puccinia and 10% Stagonospora. For spike damages, a precision of 96% is reached in recognizing the negative impact of frost on wheat spikes, while the algorithm mistook mostly Puccinia g. for Blumeria g. (81% precision) in the stem disease tasks.




Figure 7 | Confusion matrices of the deep learning architecture results for object detection models: (A) leaf disease, (B) spike disease, (C) stem disease, (D) root disease, (E) spike damage and (F) leaf damage.



As for disease and damage tasks, pests and weeds, for the latter in both the post-germination and the pre-flowering stages, show very high precision values of the models (Figures 8–10). In particular, most of the classes in the pest task report a precision of 100% and only three a slightly lower value (99%) (Figures 8A, B). For weeds in the post-germination phase, the trend in the precision values is similar to that observed for pests but there are two classes not reaching the top value. Sinapis arvensis is misclassified as Brassica rapa (96%). In addition, Raphanus raphanistrum is wrongly recognized by the models as Lamium purpureum (80%) (Figures 9A, B). Instead, a precision value of 100% in all the classes for pre-flowering weeds is gained, except in one case (96% precision) (Figures 10A, B).




Figure 8 | Confusion matrices of the deep learning architecture results for image classification models: (A, B) pests. The figure is split into two different panels to increase readability.






Figure 9 | Confusion matrices of the deep learning architecture results for image classification models: (A, B) post-germination weeds. The figure is split into two different panels to increase readability.






Figure 10 | Confusion matrices of the deep learning architecture results for image classification models: (A, B) pre-flowering weeds. The figure is split into two different panels to increase readability.






Figure 11 | Confusion matrices of GranoScan in-field performances: (A) leaf disease and (B) spike, stem and root disease. For leaf disease classification the macro-average precision is 0.574 while the macro-average recall is 0.567. For spike-stem-root classification, the macro-average precision is 0.8 while the macro-average recall is 0.75.






3.3 GranoScan performances towards users’ real use

This section reports the performance of the mobile app in detecting and recognizing wheat threats directly in the field. Images were acquired by GranoScan users in the 2022 growing season (photos from March to July). In Figure 11A, classification results for leaf diseases are shown. Blumeria, Puccinia s. and Septoria are perfectly recognized by the system (100% precision and recall). This is due both to the high number of images used in the deep learning architecture development phase for these diseases and the good amount of target objects provided by the users (equal to 114). Regarding Puccinia r., on one side the system shows a precision of 40%, inasmuch as it recognizes Puccinia g. and other threats as Puccinia r.; on the other, in some cases, Puccinia r. is not detected and is confused with other threats affecting wheat (recall 44.4%). Among leaf diseases, Puccinia g. has the worst performance: the system is not able to recognize it when actually present on the wheat leaf. Indeed, it is misclassified as Puccinia r. and other threats; in addition, other threats are wrongly classified as Puccinia g. Considering the lower occurrence of this disease with respect to other wheat rusts and the unfavorable climatic conditions for the fungus growth in spring 2022 in the Italian area, a limited number of users’ photos (9) were collected with initial disease symptoms. This could explain such a result in recognizing Puccinia g. In some cases, the AI tool classifies small, flat and non-dusty dark spots caused by other fungi or physiological deficiencies (e.g. micro-nutrients), which are not encompassed in the GranoScan wheat threat list, as brown (Puccinia r.) or black rust (Puccinia g.). Overall, for the leaf disease classification task, the macro-average precision is 0.574 while the macro-average recall is 0.567; the mean accuracy of the system results of about 77%.

Spike, stem and root diseases have been grouped and classification results are reported in Figure 11B. For these three tasks, the images acquired by GranoScan thanks to the users’ field activity make it possible to obtain a fairly limited number of recognition responses (44). Nevertheless, the overall accuracy of the AI tool is high, yielding a value of 95%. Root rot, Fusarium head blight and stem powdery mildew are correctly classified by the system. Only Puccinia g. on the stem doesn’t reach the top accuracy but still reports a good precision value (75%). In particular, in two cases, other threats affecting wheat are misclassified as stem black rust. For spike-stem-root classification, the macro-average precision is 0.8 while the macro-average recall is 0.75.

Regarding the pest classification task, the app returns the top 3 results (see section 3.1). The top 1 classification result has an overall accuracy of 80% while the top 3 reaches a value of 94%, i.e. the first response of the system is always correct in 80% of cases and the right recognition result is provided by the top 3 in 94% of cases, respectively (data not shown).

For weeds, GranoScan shows a great ability (100% accuracy) in recognizing whether the target weed is a dicot or monocot in both the post-germination and pre-flowering stages while it gains an accuracy of 60% for distinguishing species. The latter performance is negatively affected by some users’ photos capturing weeds which are not encompassed in the GranoScan wheat threat list and therefore not classified by the proposed models (data not shown).





4 Discussion

GranoScan (GranoScan, 2023) is the first free mobile app dedicated to the in-field detection and recognition of over 80 threats (diseases, pests, weeds, biotic/abiotic damages) affecting wheat. GranoScan, available in the main online stores, is aimed at all users of the wheat supply chain to provide support in the localization and recognition of the main threats directly in the field. Potential users are represented by agronomists, consultants and elevators, but the app is mainly addressed to farmers. Embracing the idea that there is a need to involve the potential users of the tool under design in the design processes (Barcellini et al., 2022), we adopted a co-design approach involving a group of farmers. Co-design is a process to rapidly develop technologies better matched to user needs (McCampbell et al., 2022) and seeks to build and maintain a shared conception of the design problem to allow collaboration (Gardien et al., 2014). By involving heterogeneous stakeholders in the collective exploration of solutions to a common problem, we sought to overcome the linear model reported by Berthet et al (Berthet et al., 2018). consisting of scientific and technical knowledge produced in research organizations, further development of technologies carried out through public and private technical institutes that disseminate innovation to farmers, being the end-users. As recommended by Eastwood et al. (Eastwood et al., 2022), we engaged with farmers early in the problem definition stage and the development of the app’s initial prototype. Then, we evolved the co-design process into a second phase involving ICT experts to further develop prototype concepts; finally, we re-engaged farmers in testing. This workflow allows to tackle some of the main barriers constraining ICT adoption by farmers, such as inadequate computer skills, unawareness of the potential of ICT solutions to contribute to the farm business and access to broadband in rural areas (Wims and Byrne, 2015).

In the first phase, we held monthly meetings to discuss the app’s purpose and functionality and to gather feedback on the app’s features and use. Farmers expressed ideas on what a profitable mobile app would look like and mentioned design features such as simplicity, user-friendliness, offline options, tutorial boxes and data security measures (e.g. log-in procedure). Careful development of the application interface in terms of visual aesthetics is important (Mendes et al., 2020), as it is usually the first characteristic that a user notices when downloading an application and in turn could affect the functionality and usability of the app (Siddiqua et al., 2022). We discussed with farmers app graphic features, such as colors, icons and text size, also evaluating their appropriateness to the different light conditions that can occur in the field. Also buttons, icons and menus on the screen were designed to ensure an easy user navigation between components and an intuitive interaction between components, with a quick selection from a pre-set menu. To ensure the usability of GranoScan also with poor connectivity or no connection conditions affecting rural areas in some cases, the app allows up to 5 photos to be taken, which are automatically transmitted as soon as the network is available again. Once the photo upload is complete, the implemented synchronization system allows new shots both online and offline. Farmers also expressed the need to be informed of any plant diseases found in fields close to their own. For this purpose, an alert system was developed exploiting the smartphone push notifications that remind users of the app feature and improve the app’s usage frequency. Finally, farmers were involved in the early stages of GranoScan implementation starting from the aesthetics and functionality to the technical content regarding crop protection. In this sense, they represented a source of advice and a term of comparison for selecting the most widespread and threatening diseases, pests and weeds affecting wheat in the Italian area.

In the second phase of the co-design process, after the first prototype release, the farmers involved were asked to test the app respecting their real working conditions (early prototype testing) (Prost, 2021) and provide further feedback to adjust and refine the design. When the final prototype was completed, the first group of farmers was involved in the prototype promotion towards a bigger group of farmers (peer-to-peer activity). The task was designed this way since farmers represent a category of practitioners who prefer peer-to-peer learning and are experiential learners (Sewell et al., 2017). We followed and embraced this co-design approach because it is crucial to design new technologies jointly with farmers in a participatory manner rather than imposing them and expecting end users to adopt and adapt (Kenny and Regan, 2021).

Regarding the performances of AI tool model development, the results show a very positive trend with high levels of precision. The proposed AI models are, therefore, certainly a key component and a central contribution of the paper; yet, their innovative points rely not only on the introduction of an innovative deep learning approach capable of addressing plant science problems but mainly on the effective training of such models and their integration in an operative service thanks to the proposed mobile app for in-field identification of wheat threats. It should be noted that a few classification tasks could be improved, as for Blumeria g. among the stem diseases. In this case, the dimmed light conditions of images acquired in the lower part of the stem and the similarity of symptoms (black spot) between Puccinia g. and Blumeria g. in the later growth stages could represent the main reasons for this misclassification. In addition, Fusarium head blight in the spike disease task shows the lower precision of the dataset. This could be mainly due to many dataset images with the co-occurrence of a high number of spikes and varied coloring of spike and fungal bodies shifting from wheat flowering, post-flowering till harvest stage. For the weed classification task, only two species (Brassica rapa and Lamium purpureum) don’t reach the top value of precision in the post-emergence stage. The misclassification could be explained by the similarity of the seedlings (in the case of Brassica rapa vs. Sinapis arvensis both species belong to the Brassicaceae family), and above all by the small dimensions (often < 2 cm) of the target objects in the images, where plant details are hard to distinguish.

Regarding recognition accuracy towards end-users’ in-field photos, GranoScan achieved very good performances, overall. Our results conform to or outperform those of other studies deploying AI models on mobile devices. It is worth noting that there is a lack of scientific works dealing with this topic that validate their results through an external image dataset, as is done in this study (see section 3.3). So, the comparison of the results is somewhat hindered. For leaf diseases, recognition performances are excellent (100% accuracy for powdery mildew, Septoria and yellow rust), except for brown rust (44.4% accuracy). Johannes et al. (Johannes et al., 2017). reported accuracy values for septoria and rusts (calculated for yellow and brown rust together) of 79% and 81%, respectively while Picon et al. (Picon et al., 2019). (which extended the previous work) improved model performance by gaining an accuracy of 96% for Septoria and 98% for rusts. In both studies, the results were validated under real conditions, in different study sites. Performing a disease and non-disease classification for wheat yellow rust, Tang et al. (Tang et al., 2023). achieved accuracies ranging from 79% to 86% by independently validating the system on a published dataset from Germany. Therefore, considering the mean accuracy for the two classes of yellow and brown rust (76%), our results are in line with the cited papers, outperforming Septoria while gaining slightly lower results for rusts. On the other hand, the system is not able to correctly classify images from users framing black rust. This could be due to the limited amount of original training images (120 for leaf black rust). As for other classes, data augmentation, which provides a promising means to address the insufficiency of collected images, is used here to algorithmically expand the scale of the dataset. However, it seems that the main reason for such a performance could also be the limited number of images from users (only 9) during 2022. In this sense, a new deep learning approach dealing with small sample-size datasets, such as that presented by Liu and Zhang (Liu and Zhang, 2023), is demonstrating effectiveness and feasibility in disease classification tasks. Diseases affecting other wheat organs have excellent classification performances; only black rust on the stem presents a slightly lower value.

The system gains very good performances also in recognizing pests (80 and 94% top 1 and top 3 accuracies, respectively), with slightly lower results with respect to Karar et al. (Karar et al., 2021). This study presents a classification accuracy of 98.9% on five groups of pests (aphids, Cicadellidae, flax budworm, flea beetles and red spider) but without validating the AI model through an external dataset. Regarding weed recognition, GranoScan obtains excellent results (100% accuracy) in distinguishing if a weed is a monocot or a dicot, while it reaches an accuracy of 60% in species classification. In the first case, our results outperform other studies (Teimouri et al., 2022) while in the second present a slightly lower value (e.g. 77% for Madsen et al. (Madsen et al., 2020) gained by processing the images with a workstation and without evaluating the AI tool through an external dataset). These performances in weed recognition are mainly due to the high number of training images for target species. It is worth noting that the most essential building block for an AI model is the underlying data used to train it (Sharma et al., 2020). In addition, enabling computer vision for precision agriculture requires vast (e.g. tens of thousands of images) and specialized datasets, especially collected under a realistic environment, to account for a wide range of field conditions (Lu and Young, 2020). In this sense, the AI model for weed classification task in GranoScan benefits from an in-house image dataset built through a long phenotyping activity. In the framework of precision agriculture, interest in the early management of weeds, knowing if they are dicots or monocots, makes our results very valuable for final users. Identifying whether the target plant is a grass or broadleaf weed provides crucial information for management strategies, such as active ingredients for chemical control. Thus, pushing the recognition down to the species detail may not be so determining (Dainelli et al., 2023).

Looking at the few unsatisfactory performances of GranoScan, we are conscious that troubleshooting is not straightforward. Indeed, most AI models for automatic diseases, pests and weeds recognition suffer from reduced performance when applied to real environment images previously unseen (Sharma et al., 2020). The main reasons are: (i) many discriminative details and features of crop threats are small, blurred, hidden and lacking in details, making the targets hard to distinguish from the background; (ii) the diversity and complexity of scenes in the field cause a variety of challenges, including dense or sparse distribution, illumination variations and occlusion (Patrício and Rieder, 2018; Wang et al., 2021).

Briefly comparing GranoScan on recognition features towards other diagnostic apps, which are supported by scientific articles and listed in the Introduction section, these are the main outcomes. ApeX−Vigne (Pichon et al., 2021) monitors water status using crowdsourcing data but is dedicated to grapevine and hence is not suitable for a proper comparison. BioLeaf (MaChado et al., 2016) measures only foliar damage caused by insects, estimating the percentage of foliar surface disrupted (% defoliation); it encompasses neither insect species recognition nor other categories of threats. PlantVillage Nuru (Coletta et al., 2022), leveraging a crowdsensing platform, performs disease diagnosis in developing countries for several plant species; in the crop list, there is wheat but currently diseases affecting this crop are not recognized and the app works only in survey mode for images acquisition. PlantifyAI (Shrimali, 2021) is developed for diagnosing diseases across several crop species, including wheat, and offers also control methods; unfortunately, the diagnosis tool for disease recognition is available only by paying a weekly/annual fee. Plantix (Tibbetts, 2018) detects diseases, pests, and nutritional deficiencies in 30 crops, including wheat; the app is well organized and the graphic interface is user-friendly. The app has also an alert tool for pests and diseases. However, by testing the app on wheat diseases, the recognition results are not always in accordance with the target and, in complex images (i.e. occluded and with dense vegetation), often the output results as “unknown disease detected”. Besides, no weed recognition is provided. In this framework, to continuously optimize the proposed app, future work will be dedicated to comparing GranoScan with other agricultural apps not included in the current research.

GranoScan was officially released in spring 2022, so our results take into account only one growing season (image data from users of the 2023 wheat growing season are not included in this study). We are confident in better future performances since AI model updates are scheduled and a growing amount of in-field images is expected. In this sense, after a supervision process conducted by crop science researchers for all the incoming images, the new photos will enrich the training dataset. This way, the expanding dataset thanks to user activity and the self-learning techniques on which the app is based will allow GranoScan to gain continuously improving results.

GranoScan is an evolving tool and future improvements will include the AI model update (also switching from label to pixel classification to optimize the recognition of critical diseases, such as Puccinia r.), the enrichment of training image dataset drawing also from external sources, translating the app interface into other languages to allow its use in the entire Mediterranean area and, following the co-design approach, the extension of the recognition task to new wheat threats thanks to user feedback. Besides, the already ongoing data trade-off services, such as the geolocation of acquired images, between the web platform AgroSat (AgroSat, 2023) and GranoScan will be boosted.




5 Conclusions

This research presents the development and first results of GranoScan, a mobile app for localization and in-field recognition of the main threats affecting wheat based on an ensembling strategy that uses two instances of the EfficientNet-b0 architecture as core models. It is one of the first mobile apps available for free in the main online stores created within a research project. GranoScan is addressed to field users, particularly farmers, which contributed to the app implementation through a co-design approach.

The idea and the development of GranoScan stand from the necessity to give to the wheat chain stakeholders (mainly farmers and technicians) a digital tool free, easy to use and always accessible. To the best of our knowledge, a mobile app specifically dedicated to the recognition of wheat abiotic and biotic stresses, supported by a public scientific activity and co-designed together with end users, is lacking. GranoScan is based on a large dataset (almost 70000 images) due to the need for robust training and validation of AI models, especially when the tool is dedicated to outdoor recognition activity. In this sense, every time threat identification is a challenge considering changes in light, climate conditions and phenotypic expressions of wheat varieties that can affect how a threat arises. Tackling these issues, the study contributes to generating a new deep learning architecture gaining recognition performances equal to or better than other similar mobile applications. To fill the gap between the positive attitude toward a new agricultural app and the negative usage level as experienced by other studies, an original co-design approach was used throughout the implementation process of the app, from the collection of user needs to the choice of operative solutions and system debugging. As one of the major contributions of the study, the research activity managed to establish successfully a trained user community, able to promote and spread the GranoScan app among other farmers.

Within this framework, the usefulness of GranoScan can be summarized as follows:

	- to improve user skills in recognizing uncommon threats affecting wheat;

	- to facilitate the user in requesting technical advice in the field, through support on threat recognition;

	- to allow the in-field geolocation of threats, to facilitate new inspections and/or verify the effectiveness of phytosanitary treatments;

	- to promote tools (risk model and early warning) that allow a timely management plan to ensure economic and environmental sustainability;

	- to create a community of farmers always updated about the threat pressure near their fields.



Two crucial factors emerge from this study that can support future development of agricultural apps: (i) the importance of adopting a user-centered design to enhance the capacity of all farmers to participate in, contribute to, and benefit from agricultural innovation development; (ii) the engagement of farmers from the initial stages of tool implementation turns out to be a win-win solution. The first element proved to be a guarantee of achievement of an app that is simple and effortless to use, accessible to and understood by all farmers; the second one unleashed farmers in involving other farmers and this increased the source of information (photos) used for training our AI models. Indeed, one of the biggest challenges in solving agricultural problems using artificial intelligence approaches is the lack of available large datasets from field conditions. As potential expansions, more wheat threats will be included in GranoScan functionalities as well as the translation of the app in multilanguage to assist farmers in the whole Mediterranean area further.
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Over the years, thrips have transitioned from a minor nuisance to a major problem, significantly impacting the yield and quality of cotton. Unmanned aerial vehicles (UAVs) for plant protection have emerged as an effective alternative to traditional pesticide spraying equipment. UAVs offer advantages such as avoiding crop damage and enhancing pesticide deposition on the plants and have become the primary choice for pesticide application in cotton fields. In this study, a 2-year field experiment found that the thrips population in a cotton field in Xinjiang, China, exhibited gradual growth during the early flowering phase, peaking in late July. The thrips population gradually shifted from the lower canopy to the upper canopy as the cotton flowers opened layer by layer. From 09:00 to 11:00 (GMT+8) and 19:00 to 21:00 (GMT+8), thrips mainly flew outside the flowers, while from 17:00 to 19:00 (GMT+8), they mostly inhabited the inner whorls of flowers. The insecticides 10% cyantraniliprole oil dispersion and 10% spinetoram suspension concentrate, sprayed by UAV, had the best control effect on thrips, with 80.51% and 79.22% control effect after 7 days of spraying, respectively. The optimal spraying time for 10% cyantraniliprole oil dispersion was 19:00 (GMT+8), and the control effect on thrips reached 91.16% at 7 days of spraying. During the cotton flowering period, thrips inhabited flowers in the evening and flew outside during the day. The best control effect on thrips was achieved with UAV-sprayed 10% cyantraniliprole oil dispersion at 19:00 (GMT+8).
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1 Introduction

Cotton is grown in more than 75 countries across the globe and is a significant source of fiber, oil, and several other products (Shahrajabian et al., 2020; Singh et al., 2023). Xinjiang is an important cotton production base in China and the world. In 2022, the planting area and cotton yield in Xinjiang accounted for 83.22% and 90.18% of the total in China, respectively (National Bureau of Statistics, 2022). While the cotton area and yield in Xinjiang are gradually increasing, diseases, pests, and weeds are also a constant threat to the safe production of cotton in the region. More than 300 pests harm cotton, with over 30 commonly occurring pests (Lu, 2021). In recent years, the occurrence of thrips (Thrips tabaci Lindeman and Frankliniella intonsa Trybom) in cotton fields has been increasing year by year, gradually evolving from a minor pest to a major pest in Xinjiang (Pan et al., 2018). Thrips damage the cotton epidermal tissue by sucking plant sap and cause “headless cotton” and “multi-headed cotton” during the cotton seedling stage, affecting the normal growth of cotton. Severe injury can even result in seedling death. In the later stages of cotton growth, thrips can harm cotton bolls, causing them to stiffen or crack, directly affecting the cotton yield (Chappell et al., 2020; Reitz et al., 2020; Wang, 2020). In 2020, the area under thrips attacks in Xinjiang was 215.4 ha, an increase of 57.2 ha compared with 2019, and the damage during the flowering and boll stage was much more severe than that during the seedling stage (Yan et al., 2021). In addition, the high-density farming method used in Xinjiang causes mechanical damage to cotton when pesticides are sprayed with a boom sprayer during the middle and later stages of cotton growth, significantly impacting cotton growth and production (Meng et al., 2019).

The use of pesticides remains the main method of controlling thrips. Organophosphorus, carbamate, pyrethroid, and neonicotinoid insecticides are the main insecticides used to control thrips. Different types of insecticides have different mechanisms of action, and their effectiveness in controlling thrips also varies to some extent. Due to the unreasonable application of pesticides, the resistance of thrips to insecticides has also developed rapidly (Huseth et al., 2016). Utilizing the predatory function of natural enemies has also become an important measure for controlling thrips. Hippodamia variegata, Orius strigicollis, Erigonidium graminicolum, Propylea japonica, and Coccinella septempunctata are important natural enemies of thrips (Deligeorgidis et al, 2010; Dang et al., 2023).

Unmanned aerial vehicles (UAVs) are used to spray pesticides on various crops, including wheat, rice, corn, fruit trees, tea, and cotton. This method can improve the deposition of pesticides on target crops, prevent mechanical damage to crops sprayed by boom sprayers, and considerably increase operating efficiency (Zhang et al., 2020). Thrips’ short developmental time, robust reproductive potential, frequent outbreaks, and extreme generation overlap make thrips prevention and management challenging. Chen et al. (2016) discovered that lotus thrips (Scirtothrips dorsalis Hood) could be successfully controlled by spraying avermectin using UAVs. Yuan et al. (2017) found that UAV spraying had better control effects on cowpea (Vigna unguiculata L.) thrips [Megalurothrips usitatus (Bagnall)] than manual spraying at a lower dosage. Lin et al. (2020) found that spraying insecticides using UAVs could achieve a control effect of 83.5% on sugarcane thrips; the thrips control effect was above 83.16% at the recommended dosage, and the required dosage was 25% less than that required for manual spraying (Liu et al., 2023). Fang et al. conducted field experiments to study the droplet density, coverage rate, deposition amount, droplet uniformity, and control effect on cotton thrips in the cotton canopy after spraying 25% thiamethoxam water-dispersible granules via UAV and identified the optimal parameters for using a UAV to control thrips during flowering in cotton fields (Fang et al., 2023).

In order to further improve the effectiveness of UAV spraying insecticides to control thrips, we conducted a 2-year experiment and conducted a detailed investigation of the daytime activity patterns of thrips. Based on thrips activity patterns, we further carried out screening of insecticides and timing of pesticide spraying and established a technical system for cotton field UAV spraying insecticides to control thrips. The aim of this study was to provide a scientific basis for effectively controlling thrips in cotton fields.




2 Materials and methods



2.1 Materials

Overall, nine formulations of different pesticides were collected from various companies to investigate their potential against cotton thrips. These included the following: 10% imidacloprid wettable powder (WP) (Guangdong Dafeng Plant Protection Technology Co., Ltd., Zhuhai, China), applied at 600 g/hm2; 600 g/L imidacloprid suspension concentrate (SC) (Shenzhen Noposion International Investment Co., Ltd., Shenzhen, China), applied at 100 mL/hm2; 70% imidacloprid water-dispersible granules (WG) (Shaanxi Huarong Kaiwei Biological Co., Ltd., Xi’an, China), applied at 85.7 g/hm2; 20% imidacloprid soluble concentrate (SL) (Shenzhen Noposion International Investment Co., Ltd., Shenzhen, China), applied at 300 mL/hm2; 25% thiamethoxam WG [Syngenta (Suzhou) Crop Protection Co., Ltd., Suzhou, China], applied at 225 g/hm2; 25 g/L deltamethrin emulsifiable concentrate (EC) (Jiangsu Huifeng Biological Agriculture Co., Ltd., Yancheng, China), applied at 600 mL/hm2; 1% emamectin benzoate micro-emulsion (ME) [Adama Huifeng (Jiangsu) Co., Ltd., Yancheng, China], applied at 360 mL/hm2; 10% spinetoram SC (Corteva Agriscience, Wilmington, DE, USA), applied at 600 mL/hm2; 10% cyantraniliprole oil dispersion (OD) (FMC, Philadelphia, PA, USA), applied at 600 mL/hm2; and Beidatong (Hebei Mingshun Agric. Technology Co., Ltd., Shijiazhuang, China), applied at 450 g/hm2.

The UAV (Dajiang T30) was supplied by Shenzhen Dajiang Innovation Technology Co., Ltd. (Shenzhen, China). The volume of the tank was 40 L, and the tank had dimensions of 2,858 mm × 2,685 mm × 790 mm (length × width × height) (arm deployment, paddle deployment), six rotors, and 16 SX11001VS nozzles. The operation parameters of the T30 UAV were input using the intelligent handheld terminal, and carrier phase difference technology was used for accurate flight positioning.




2.2 Field plots

This study was conducted at Beiquan town, Xinjiang Production and Construction Crops (44°20′7″N, 85°59′41″E), Shihezi, China, during 2022 and 2023. The field had been continuously planted with cotton for many years, and the ‘Huiyuan 720’ cotton variety was used in this research during both 2022 and 2023. The conventional wide and narrow row cotton sowing mode was adopted, with six rows of one film and 66 + 10 cm spacing. Drip irrigation with one film and two tubes was used throughout the entire growth period. The planting density of cotton was approximately 180,000 plants/hm2 and 185,000 plants/hm2 for 2022 and 2023, respectively.




2.3 Method



2.3.1 Investigation of the population dynamics and activity rhythm of thrips during the cotton flowering period

In 2022, a thrips population dynamics survey was conducted during the cotton flowering period (July 1 to August 2). Surveying was performed every 2 days, with a fixed survey time from 17:00 to 19:00 (GMT+8). The number of thrips was investigated by five-point sampling, with 10 cotton flowers randomly selected from the survey area (100 m × 80 m). The thrips in the flowers were knocked down onto yellow sticky card traps, and the total number of thrips at each instar on the card traps was counted. In 2023, a repeated investigation was conducted during the peak period of thrips occurrence (July 23 to August 2).

On July 15, 2022, a survey was conducted on the activity rhythm of thrips during the cotton flowering period (with an average of over 1,000 thrips per 50 cotton plants). Surveying was performed every 2 days. In the survey area (20 m × 50 m), yellow sticky card traps (fixed in a 1.2-m-long plastic tube and placed at five points in the survey area) were used to investigate the number of active thrips outside the flowers (Figures 1, 2). The number of thrips in the cotton flowers was investigated by five-point sampling, with 50 cotton flowers randomly selected from the same survey area, and surveying was repeated three times. Each survey was conducted every 2 h from 09:00 to 21:00 (GMT+8) and repeated three times. In 2023, a repeated investigation was conducted during the peak period of thrips occurrence (July 23 to August 2).




Figure 1 | Investigation of the activity rhythm of thrips during the cotton flowering period.






Figure 2 | Experimental layout diagram.






2.3.2 Selection of insecticides and spraying timing for controlling thrips

On July 18, 2022, from 17:00 to 19:00 (GMT+8), a screening experiment was conducted to control thrips during cotton flowering. During the test, the route spacing of the T30 UAV was 5 m, the flight speed was 2 m/s, and the flight height was 2 m (from the top of the cotton canopy). The average wind speed during spraying was 1.7 m/s, the relative humidity was 53.2%, and the ambient temperature was 30.1°C–34.2°C (Kestrel 5500, Nielsen-Kellerman, Boothwyn, PA, USA). During the experiment, cotton was in its peak flowering period, with an average plant height of 1.12 m. This study first screened the formulation of imidacloprid, the main insecticide used to control thrips in cotton fields in Xinjiang. Due to the rapid development of resistance to neonicotinoid insecticides in thrips, screening was also conducted for new insecticides to control thrips. There were 10 treatments, with three replicates for each treatment (20 m × 50 m) (Table 1; Figure 2). The insect population was investigated before spraying, and the number of residual insects was investigated on 1 day, 3 days, and 7 days after spraying. The values of the control effect were then calculated according to Equations 1, 2:


Table 1 | Selection of spraying timing for thrips control (2022).



 

 

On July 25, 2022, and August 2, 2023, a screening experiment was conducted regarding the spraying timing for thrips control during the cotton flowering period. The pesticide was sprayed every 2 h from 09:00 to 21:00 (GMT+8). The 10% cyantraniliprole OD, which had the best control effect on thrips, was selected as the test insecticide at a dosage of 600 mL/hm2 and added to Beidatong at a dosage of 300 mL/hm2. The UAV spraying parameters were the same as before. The meteorological information for each application time is shown in Table 1. On August 2, 2023, with 10% cyantraniliprole OD as the test insecticide, a UAV was used at 19:00 (GMT+8), when thrips were the most likely to inhabit flowers, to further verify the impact of spraying time on the thrips control effect (Table 1).





2.4 Data statistics and processing

Data were compared across different application rates using analysis of variance (ANOVA). The confidence interval was set to 95% and p < 0.05, and 99% and p < 0.01 were chosen to indicate a significant difference between the two groups. SPSS 18.0 was used for data processing and analysis, and the figures were designed using SigmaPlot 12.5 and Origin 2021.





3 Results



3.1 Thrips population dynamics during the cotton flowering period

The results of the investigation on the population dynamics of thrips during cotton flowering in 2022 are shown in Figure 3. The population of thrips within cotton flowers was consistent with the cotton flowering period. In the initial stage of cotton flowering (July 1–15), fewer flowers were present, and the number of thrips inside the flowers increased slowly (affected by rainfall on July 11, the number of thrips decreased compared with the previous survey). During the peak flowering period of cotton (after July 15), the number of thrips in the flowers reached 549 (in 50 flowers). Afterward, under continuous high temperatures (above 30°C), the number of thrips in cotton flowers rapidly increased and reached the peak on July 29, with an average of 2,977 (in 50 flowers). At the end of the cotton flowering period, the flowers decayed and fell, and the number of thrips in the flowers rapidly decreased. The average number of thrips surveyed on July 31 and August 2 was 2013 and 1198 (in 50 flowers), respectively. Overall, the thrips population during cotton flowering in Xinjiang showed an exponential growth trend. The number of thrips in 2023 was significantly lower than that in 2022, but the population dynamics were consistent with those in 2022.




Figure 3 | Thrips population dynamics during the cotton flowering period.



This study also investigated the distribution of intra-floral thrips in different cotton canopies. The results indicated that the distribution of thrips in the cotton canopy was closely related to the flowering pattern of cotton flowers (Figure 4). At the beginning of cotton flowering, the number of fruit branches in cotton plants ranges from 10 to 13, with approximately two to three buds on each branch. Cotton flowers gradually bloom from the first fruit branch at the bottom of the plant, with flowers opening progressively from the lower canopy to the upper canopy. The flowering time of cotton flowers is approximately 5 days, with the lower canopy flowers blooming first, while the middle and upper canopies remain in bud. At this time, thrips were mainly distributed in the lower canopy in this study. At the peak flowering stage, the flowers in the middle and upper canopy were in full bloom, but at this time, the flowers in the lower canopy had withered and bolled, and the distribution of the thrips population had shifted from the lower canopy to the upper canopy.




Figure 4 | Cotton flowers bloom successively from the lower canopy to the upper canopy. The photographs from left to right show the same cotton plant on July 7 (A), July 9 (B), July 11 (C), July 13 (D), July 15 (E), July 17 (F), and July 19, 200 (G).






3.2 Diurnal activity patterns of thrips during the cotton flowering period

The diurnal activity patterns of thrips in the flowers during the cotton flowering period are shown in Figure 5. According to the 2022 survey data, relatively few thrips inhabited or fed on flowers from 09:00 to 11:00 (GMT+8), and the average number of thrips was 631 (in 50 flowers). There was no significant change in the number of thrips in the flowers at 11:00–13:00 (GMT+8) compared with the previous period. At 13:00–15:00 (GMT+8) and 15:00–17:00 (GMT+8), the number of thrips in the flowers gradually increased to an average of 849 and 945, respectively (in 50 flowers). At 17:00–19:00 (GMT+8), the number of thrips in cotton flowers reached its maximum, with an average of 1,255 (in 50 flowers). At 19:00–21:00, the number of thrips in the flowers significantly decreased again, reaching an average of 640 (in 50 flowers) (Figure 5A). Although the number of thrips in each survey increased compared with the previous survey, the trend of changes in different periods was consistent. The results of the 2023 survey data were similar to those of 2022 (Figure 5B). Overall, there were relatively few thrips in the flowers at 09:00–13:00 (GMT+8), and the number of thrips significantly increased at 13:00–17:00 (GMT+8), reached the peak when the flowers bloomed at 17:00–19:00 (GMT+8), and rapidly decreased after the cotton flowers closed at 19:00 (GMT+8).




Figure 5 | Diurnal activity patterns of thrips in flowers during the cotton flowering period in 2022 (A) and 2023 (B).



The trend of changes in the number of flying thrips was opposite to the number of thrips in flowers during the cotton flowering period (Figure 6). At 09:00–11:00 (GMT+8) and 19:00–21:00 (GMT+8), the number of thrips was 349 and 345, respectively. At 11:00–13:00 (GMT+8), 13:00–15:00 (GMT+8), and 15:00–17:00 (GMT+8), the number of thrips gradually decreased to 173, 89, and 45, respectively. There was no significant change in the number of thrips at 17:00–19:00 (GMT+8) and 15:00–17:00 (GMT+8) (Figure 6A). In the seven surveys conducted in 2022, the trend of changes in the number of flying thrips during different periods was also consistent. The results of the 2023 survey were similar to those of 2022 (Figure 6B). Overall, thrips mainly flew outside the flowers at 09:00–13:00 (GMT+8), and their flight activity gradually weakened at 13:00–15:00 (GMT+8). There was almost no flight activity among thrips at 15:00–19:00 (GMT+8). The thrips flight activity revived at 19:00–21:00 (GMT+8). This pattern is closely linked to the blooming and closing of cotton flowers.




Figure 6 | Diurnal activity patterns of thrips outside of flowers during the cotton flowering period in 2022 (A) and 2023 (B).






3.3 Selection of insecticides for controlling thrips

Imidacloprid is the main insecticide used to control thrips in the cotton fields in Xinjiang, but the imidacloprid formulations on the market are relatively complex, which significantly affects the control effect after spraying via UAV. The control effects of different imidacloprid formulations on thrips during the cotton flowering period are shown in Figure 7. After 1 day of spraying (DOS), the 600 g/L imidacloprid SC and 20% imidacloprid SL showed better control effects at 37.21% and 36.88%, respectively, which were significantly higher than the control effects of 10% imidacloprid WP (28.63%). After 3 DOS, 70% imidacloprid WG had the best control effect, reaching 57.74%. This pesticide was followed by 600 g/L imidacloprid SC, with a control effect of 55.86%. The 10% imidacloprid WP and 20% imidacloprid SL had poor control effects at 49.23% and 46.53%, respectively. After 7 DOS, the highest to lowest control effects were 10% imidacloprid WP, 20% imidacloprid SL, 600 g/L imidacloprid SC, and 70% imidacloprid WG at 72.10%, 68.09%, 66.88%, and 60.22%, respectively. The above research results indicated that the formulations had an impact on the effective duration of imidacloprid against thrips.




Figure 7 | Effects of different imidacloprid formulations on the control of thrips in 2022. WP, 10% imidacloprid wettable powder; SC, 600 g/L imidacloprid suspension concentrate; WG, 70% imidacloprid water-dispersible granules; SL, 20% imidacloprid soluble concentrate.



However, thrips have rapidly developed resistance to imidacloprid, making it necessary to screen new highly effective insecticides against thrips (Huseth et al., 2016). Thiamethoxam, deltamethrin, emamectin benzoate, spinetoram, and cyantraniliprole can all be used for the control of thrips, but the differences in their control effects on thrips during the cotton flowering period are not clear. The control effects of the above five insecticides on thrips during the cotton flowering period were studied when sprayed by UAV (Figure 8). At 1 DOS, the control effects of the five insecticides on thrips all exceeded 50%, but there was no significant difference between them. At 3 DOS, the control effects of 1% emamectin benzoate ME, 10% spinetoram SC, and 10% cyantraniliprole OD on thrips were 71.00%, 70.51%, and 71.02%, respectively, significantly higher than those of 25% thiamethoxam WG and 25 g/L deltamethrin EC (62.64% and 62.98%, respectively). At 7 DOS, the 10% cyantraniliprole OD and 10% spinetoram SC had the best control effect on thrips, with 80.51% and 79.22%, respectively.




Figure 8 | Control efficacy of five insecticides applied by unmanned aerial vehicle (UAV) spraying on thrips in a cotton field in 2022.






3.4 Selection of spraying timing for thrips control

After clarifying the activity patterns of thrips, 10% cyantraniliprole OD was selected as the test insecticide, and the effect of spraying timing on the thrips control effect was investigated (Figure 9). As shown in Figure 9A, after 1 DOS, the control effects on thrips when sprayed by UAV at 09:00 (GMT+8) and 21:00 (GMT+8) were 49.25% and 51.48%, respectively, significantly lower than the control effects of other treatments. After 3 DOS, the control effects on thrips sprayed by UAV at 19:00 and 13:00 were better at 73.14% and 70.70%, respectively, significantly higher than the control effects of other treatments. The control effects on thrips sprayed by UAV at 09:00 (GMT+8) and 21:00 (GMT+8) were the worst at 56.05% and 59.16%, respectively, significantly lower than the control effects of other treatments. After 7 DOS, the highest control effect on thrips was achieved when spraying was conducted at 19:00 (GMT+8) (81.51%), which was significantly better than the other spraying times. The control effects of spraying at 09:00 (GMT+8) and 21:00 (GMT+8) were 64.26% and 61.73%, respectively, significantly lower than the control effects of other spraying times. The results of the diurnal activity patterns of thrips indicated that at 19:00 (GMT+8), thrips mainly inhabited cotton flowers. At this time, thrips did not fly, and insecticides could directly come into contact with thrips. In 2023, 10% cyantraniliprole OD was sprayed via UAV at 19:00 (GMT+8), when the highest number of thrips were found in the flowers, and the control effect on thrips reached 91.16% after 7 DOS, showing an excellent control effect (Figure 9B).




Figure 9 | Control efficacy of 10% cyantraniliprole oil dispersion (OD) sprayed by unmanned aerial vehicle (UAV) on thrips in cotton fields in 2022 (A) and 2023 (B).







4 Discussion



4.1 The daytime activity pattern of thrips

The spatial distribution of insect populations includes the following two aspects: the horizontal spatial distribution and the vertical spatial distribution. Insect migration and flight are often related to feeding and reproduction. During the cotton flowering period, the population of thrips gradually shifts from the lower canopy to the upper canopy as the cotton flowers bloom layer by layer from the bottom branches to the top of the plant. Previous studies showed that the daytime activities of thrips during the flowering periods of other field crops also exhibited certain patterns. Cho et al. (2000) found that during the flowering period of tomatoes, the number of Frankliniella occidentalis (Pergande) in the morning was significantly higher than that in the afternoon. Yan et al. (2017) found that the peak activity periods of M. usitatus (Bagnall) in a cowpea field in Hainan were from 08:00 to 10:00 (GMT+8) and 20:00 to 06:00 of the next day (GMT+8), they were almost inactive. Liang et al. (2010) found that during the flowering period of cucumbers in greenhouses, the number of flying F. occidentalis (Pergande) was the highest at 08:00–10:00 (GMT+8), slightly increased at 14:00–16:00 (GMT+8), and dropped to a very low level at 18:00 (GMT+8). Aliakbarpour and Salmah Md Rawi (2020) found that yellow sticky card traps captured the most thrips at 08:00–10:00 (GMT+8) and 14:00–16:00 (GMT+8) in a mango orchard in Malaysia, which represent the peak periods of thrips flight activity. The present study found that the thrips flew frequently at 09:00–11:00 (GMT+8) and 19:00–21:00 (GMT+8) every day, while they did not fly at 17:00–19:00 (GMT+8).

Obtaining a full understanding of the activity habits of insects has important reference value for developing effective pest management strategies. Thrips are flower-dwelling species that are often attracted to the aroma and color of flowers. Cotton flowers bloom in the morning and evening, luring thrips to feed. During this time, thrips are active and exhibit flight activities. The relative humidity in the field also has an impact on the flight of thrips. Liang (2010) found that there were very few flying thrips when the relative humidity of the environment was below 30% and above 90%, and the number of flying adult thrips was the highest when the relative humidity was 70%. Previous studies have also found that thunderstorms can cause thrips to fly in advance, possibly due to rapid changes in the atmospheric potential, temperature, or light, but there is no experimental evidence to confirm this possibility (Kirk, 2004). Terry and Gardner (1990) discovered in the Amazon that male F. occidentalis (Pergande) infesting cotton and alfalfa fields flock together on the surface of flowers or white plastic cups before a storm arrives. The present investigation showed that on cloudy and rainy days, the number of thrips inhabiting the flowers decreased, and the number of flights outside the flowers increased.




4.2 UAV spraying technology for controlling thrips

Thiamethoxam, deltamethrin, emamectin benzoate, spinetoram, and cyantraniliprole target the nicotinic acetylcholine receptors, sodium ionomer channel, glutamate-gated chloride ion channel, nicotinic acetylcholine receptors, and ryanodine receptor, respectively. These five insecticides have different mechanisms, and their control effects on thrips vary to some extent. This work found that 10% cyantraniliprole OD and 10% spinetoram SC displayed good control effects on thrips during the flowering period in cotton fields. The timing of pesticide spraying is closely related to the weather, crop growth status, and insect habits and significantly impacts the effectiveness of pest control (Meng et al., 2023). This study investigated the effect of the spraying time on the thrips control effect in cotton fields based on the daytime activity patterns of thrips. The results showed that spraying timing had a significant impact on the thrips control effect during the flowering period. The best time to conduct UAV spraying for the control of thrips during the cotton flowering period was 19:00 (GMT+8), followed by 11:00 (GMT+8). Spraying at 09:00 (GMT+8) and 21:00 (GMT+8) had the worst control effects. Thrips flew frequently in the morning and evening, and their contact probability with insecticide was reduced, resulting in poor efficacy. At 19:00 (GMT+8), thrips mainly inhabited the cotton flowers, and the probability of contact between insecticide and thrips increased, increasing the effectiveness of the insecticide. Although there were many thrips in cotton flowers at 13:00–17:00 (GMT+8), the loss and evaporation of UAV spraying were serious due to the high temperature and sunlight, which affected the contact between insecticide and thrips. Therefore, using UAVs to spray insecticides to control thrips during the cotton flowering period at 19:00 (GMT+8) in Xinjiang is recommended.

Mastering the activity patterns of pests, especially the inactive time of flying insects, is of great significance for their efficient control. In this study, a 2-year survey was conducted to clarify the activity patterns of thrips during the flowering period of cotton in Xinjiang. Using UAVs to spray pesticides during the inactive flight time of thrips can achieve efficient control of thrips. This study provides insights into thrips management during the flowering period in cotton fields.





5 Conclusion

Research conducted over two consecutive years revealed that the thrips population in cotton fields increased slowly during the early flowering stage and peaked at the end of July. As the cotton blossoms open layer by layer from the bottom to the top of the plant, the thrips population steadily moves from the lower canopy to the upper canopy. Thrips primarily flew outside the flowers between 09:00 and 11:00 (GMT+8) and 19:00 and 21:00 (GMT+8), and they primarily resided inside the blooms between 17:00 and 19:00 (GMT+8). The 10% spinetoram SC and 10% cyantraniliprole OD sprayed by the UAV had the best effects on thrips with control effects of 80.51% and 79.22% at 7 DOS, respectively. The best time to spray 10% cyantraniliprole OD on UAVs to control thrips was 19:00 (GMT+8), and at 7 DOS, the control impact on thrips was 91.16%. Thrips spend the night inside the blossoms and spend the day flying outdoors during the cotton blossoming season. When 10% cyantraniliprole OD was sprayed by the UAV at 19:00 (GMT+8) in Xinjiang, it showed the best control effect on thrips. The findings of this study provide a reference basis for developing more effective thrips control strategies in the cotton-growing region of Xinjiang. However, in this study, we mainly considered factors such as the activity pattern of thrips and the timing of pesticide spraying. In the future, we should combine meteorological conditions to carry out prediction and prediction of thrips, use remote sensing technology to identify and diagnose the harm of thrips, and establish a prescription map for the prevention and control of thrips, achieving precise control of cotton thrips.
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This study examines the impact of canopy density, side wind speed, nozzle tilt angle, and droplet size on droplet penetration during plant protection spraying operations. Experiments conducted in citrus orchards evaluated how side wind speed and nozzle tilt angle influence droplet penetration across various canopy densities. A Phase Doppler Analyzer (PDA) was used to assess droplet size variations under different nozzle tilt angles and side wind speeds, yielding a multiple linear regression equation (R2 = 0.866) that links nozzle tilt angle and side wind speed with droplet size. Results showed that droplet size decreases with increasing nozzle tilt angle at a constant crosswind speed. Further experiments investigated the effects of droplet size and canopy leaf area density on droplet penetration, involving three canopy leaf area densities, four wind speeds, and six nozzle tilt angles. Droplet deposition and canopy coverage were measured under various spraying parameters, with conventional operations (0° nozzle tilt and orthogonal wind speeds) serving as controls. The study found that adjusting nozzle tilt angle and wind speed enhances droplet penetration in different canopy structures. Optimal parameters varied with leaf area density (LAD): an 18° tilt angle and 3 m/s wind speed for a LAD of 5.94 m3/m3, a 45° tilt angle and 2 m/s wind speed for a LAD of 8.47 m2/m3, and a 36° tilt angle and 3 m/s wind speed for a LAD of 11.12 m2/m3. At 1 m/s, droplet deposition followed a downward parabolic trend with changes in nozzle tilt angle, whereas at 2 m/s, deposition followed an upward parabolic trend. At a side wind speed of 3 m/s, droplet deposition remained unchanged with nozzle tilt angle but decreased with increasing canopy density. Nonlinear regression analysis indicated that leaf area density had a greater impact on deposition differences than droplet size, with droplet penetration decreasing as leaf area density increased. This study provides a reference for enhancing fog droplet penetration techniques in plant protection operations, offering practical guidelines for optimizing spraying conditions and improving pesticide use efficiency in different canopy structures.
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1 Introduction

Effective plant protection spraying is essential for maintaining crop health and maximizing crop yields. The key challenge in this area is to ensure adequate droplet penetration and deposition within the crop canopy. Droplet size is a key factor affecting droplet deposition, penetration, and drift in aerial spraying operations. Smaller droplets are more likely to drift, while larger droplets may not penetrate the canopy effectively. Huynh (Huynh and Nguyen, 2024) and colleagues conducted a comprehensive analysis of the dynamic behavior of droplets in agricultural spraying through modeling and simulation. Their findings revealed that factors such as speed, direction, and evaporation rate significantly influence the efficacy of spraying. By employing precise modeling and simulation techniques, it is possible to predict the behavior of droplets under varying spraying conditions. This allows for the optimization of spray parameters, thereby enhancing the overall spraying effects. Kalyani et al (Kalyani et al., 2023)demonstrated that droplet drift is predominantly influenced by several factors. These include the operational parameters of the spraying equipment, such as nozzle type and spray pressure, environmental conditions like wind speed, temperature, and humidity, and the physical properties of the droplets themselves, such as particle size and density. The importance of optimizing droplet size parameters to improve spraying efficiency and reduce pesticide drift was highlighted in a study by (Chen et al., 2020). It was shown that selecting the appropriate droplet size can significantly improve deposition characteristics and minimize off-target movement, thereby enhancing the overall effectiveness of crop protection. Developing accurate models to predict droplet penetration can help optimize spray parameters. Studies have shown that droplet deposition and penetration depend on the pressure, volume and forward speed of the sprayer, but that these combinations also vary as a function of leaf density (Failla and Romano, 2020; Failla et al., 2020). Duga et al. (Duga et al., 2015) proposed a quadratic exponential regression model based on wind speed, optical porosity, and depth of collection point for predicting droplet penetration. The model provided valuable insights for tuning spray parameters for better penetration in fruit tree canopies, where canopy structure and leaf area density significantly affect droplet behavior. Jomantas et al. (Jomantas et al., 2023) investigated the effect of wind speed on droplet drift and established that an increase in wind speed results in greater droplet drift. Consequently, during spraying operations, it is advisable to select periods with lower wind speeds to minimize droplet drift and enhance penetration effects. Furthermore, research indicates that smaller droplet sizes are more susceptible to wind drift, which can adversely affect penetration effects. Therefore, selecting appropriate nozzles and adjusting spray pressures to control droplet size is a crucial strategy for improving penetration effects. Canopy structure and leaf area density of the crop have a significant effect on droplet penetration. Ru (Ru et al., 2023) pointed out that optical porosity of fruit trees is a key parameter characterizing canopy openness, which is essential for understanding droplet penetration behavior. By measuring optical porosity, the distribution and deposition of droplets in the canopy can be better predicted. Sprinkling parameters such as nozzle type, flow rate, and air volume have significant effects on droplet penetration and deposition. Studies by Cerruto et al. (Cerruto et al., 2021) and Chen et al. (Chen et al., 2023) shown that choosing the right nozzle and adjusting the flow rate can significantly improve droplet penetration in crop canopies. According to Li (Li et al., 2023) it was further shown that air-assisted spraying system could improve droplet penetration and deposition in dense canopies by increasing the droplet kinetic energy.

In addition, a study by Law (Law, 2001) explored the effects of different spraying techniques on droplet penetration. The results showed that the electrostatic spraying technique can significantly improve droplet adhesion and penetration on the crop surface. Electrostatic spraying improves spraying efficiency by electrically charging the droplets so that they are more easily attracted to the crop by the electric field. Shi et al. (Shi et al., 2022) also pointed out that environmental conditions such as wind speed, humidity, and temperature have important effects on droplet penetration and deposition. High wind speed may lead to droplet drift, while high humidity and suitable temperature help droplet attachment and penetration on the crop surface. Therefore, environmental conditions need to be considered comprehensively to optimize the spraying effect in actual spraying operations. For conventional boom sprayers, which are widely used in field crops, the penetration effect can only be improved by changing parameters such as spray pressure, spray flow rate, and nozzle type, but this will also have an impact on the spraying effect (Sun et al., 2021). The droplet deposition effect can be effectively improved by changing the nozzle tilt angle (Zhu et al., 2004; Ferguson et al., 2016; Legleiter and Johnson, 2016); but in the current research on adjusting the nozzle tilt angle, the nozzle tilt angle and deposition amount of vertical spray were mostly analyzed. In contrast, there are fewer studies exploring the effects of different side winds and different nozzle tilt angles on the effect of droplet penetration in the horizontal spraying method, which is common in plant protection operations for fruit trees.

This paper investigates the influence of various parameters, including canopy density, sidewind speed, nozzle tilt angle, and droplet size, on the penetration effect of fog droplets in plant protection spraying operations. The study decomposes these factors into two parts for experimental analysis: firstly, the impact of the nozzle tilt angle and sidewind speed on fog droplet size; secondly, the influence of fog droplet size and canopy leaf area density on spray penetration. The objective is to identify optimal spraying conditions that enhance the distribution and deposition of fog droplets within tree canopies and to establish related rules. The research focuses on the sidewind speed and nozzle tilt angle (with the direction of the sidewind perpendicular to the nozzle direction), examining their effects on the variation in fog droplet size under different leaf area density canopies. Adjustable constant speed wind in the experimental wind field simulates varying sidewinds to affect fog droplet size. By modifying the tilt angle of the fog droplet nozzle, the study explores the relationship between fog droplet size and deposition differences under orthogonal sidewind and nozzle tilt angle. Multivariate nonlinear regression analysis technology, combined with spraying experiments, systematically evaluates the effects of sidewind speed and nozzle tilt angle on fog droplet penetration. This research provides a reference for optimizing the operating parameters of pesticide application equipment, achieving precise pesticide application, and enhancing the prevention and control of fruit tree diseases and pests.




2 Materials and methods



2.1 Test materials

The system used for the spray test consists primarily of two components, as illustrated in Figure 1A: the spray device and the droplet information acquisition system. The physical representation of the spraying device is labeled as 1 in Figure 1A, and its corresponding structure is shown in Figure 1B. The spraying device includes a water tank, a diaphragm pump (DP-160, flow rate 7L/min, pressure 0.3Mpa), a spray nozzle (JJXP type, solid conical, rated pressure 0.3Mpa), and an anemometer (WindMaster Pro, measuring three-dimensional wind speed and direction from 0 to 65 m/s).




Figure 1 | (A) Test site. (B) Structure of the spraying device.



The droplet information acquisition system, labeled as 2 in Figure 1A, consists of three layers of capillary line groups (with intervals of 30-35 cm between the front and back capillary lines and 30 cm between the top and bottom layers), a test tree, and water-sensitive paper (76 x 26 mm) used to collect fog droplet information, part of which is shown in Figure 2. The test tree specifications are 180 cm in height, 150 cm in crown width, and leaf area densities of 5.94, 8.47, and 11.12 m²/m³, with a tree spacing of 150 cm arranged in a north-south direction. The study primarily investigated the effect of canopy density on fog droplet penetration under different side wind speeds, using manual methods to measure canopy leaf area density as a reference value.




Figure 2 | (A) Sample point scan image. (B) Processed images.



According to Sun et al. (Sun and Liu, 2019), the branching coefficient case of the canopy uses the leaf area density ρ, which refers to the sum of leaf areas per unit volume, as shown in Equation 1:

 

Where S is the leaf area per unit volume, m2; V is the canopy volume containing that total number of leaves, m3.

Assuming that the number of leaves in the area volume V is  , The surface area of each leaf is   ( i = 1, 2, ..., n l ), Sort the leaves by number, and the difference between the leaf area of each leaf and that of the first leaf is denoted as   ( i = 1, 2, ..., n l — 1), Then the leaf area within the volume of the region V can be expressed as shown in Equation 2:

 

Assuming that  , i.e., the change of each leaf area within the regional volume V is relatively small, the leaf area within the regional volume V is simplified as  , which can be obtained by substituting it into Equation 3:

 

Where ρ is the leaf area density in the region, m2/m3.

Measurements were conducted using 30* 30 *30cm square sample frames, as shown in Figure 3. Different areas of the canopy were randomly selected for measurement. The number of leaves within each sample frame was counted and recorded. A certain number of leaves were then randomly selected from each sample frame, and their areas were calculated using image processing and other methods. The mean leaf area from the samples was used to determine the overall mean leaf area within each sample frame. This value was then used to calculate the leaf area bulk density of the sample frame, which represents the leaf area bulk density of that specific canopy partition, also referred to as the thinning density of the canopy.




Figure 3 | (A) The measurement of average leaf area; (B) The measurement of canopy density data.






2.2 Experimental design and methods

To investigate the effects of canopy density, side wind speed, nozzle tilt angle, and droplet particle size on droplet penetration inside the canopy, the experiment was divided into two parts. In part one, Phase Doppler Anemometry (PDA, Dantec Dynamics A/S, Denmark) was used to study the variation patterns of droplet size under different wind speed levels and nozzle tilt angle parameters orthogonal to the spray nozzle (Durdina et al., 2012). In part two, water-sensitive paper collected droplet deposition data under various spray parameters, and DepositScan imaging software analyzed droplet deposition coverage on each layer of the target, as well as differences in droplet deposition at each canopy leaf area density.



2.2.1 Droplet size distribution test

The spray nozzle was fixed to the spray frame and mounted on a universal spray head. The experiment was designed with four wind speed levels (0, 1, 2, and 3 m/s) and seven nozzle tilt angles (0°, 9°, 18°, 27°, 36°, 45°) for droplet size measurement. An aluminum frame with dimensions of 2.5 * 0.7 * 1.6 m was placed underneath the nozzle. The distance between the spray nozzle and the laser transmitter was adjusted to 1 m, which is the typical distance between a sprayer and fruit trees during plant protection spraying operations. The Phase Doppler Anemometry (PDA) system performed single-point measurements, with the spraying center axis 1 m from the spray nozzle as the origin. Measurement points were spaced at 5 cm intervals on the horizontal plane. The device structure is shown in Figure 4, and the sampling scene is shown in Figure 5. Each plane was divided by the radius formed by straight lines connecting the measurement points to the origin, with a spacing of 5 cm, totaling six sampling points labeled A to F from inside to outside.




Figure 4 | Schematic diagram of particle size distribution measurement device.






Figure 5 | Particle size distribution measurement site.



The PDA used laser light at wavelengths of 514.5 nm (green) and 488 nm (blue), with a focal length of 800 mm between the transmitting and receiving probes and a scattering angle of 67°. The sampling condition required either reaching a data volume of 100 at the measurement point or a measurement time of 10 seconds. If either condition was met, the system automatically moved to the next measurement point.

According to Xue (Xue et al., 2022) and others, the droplet size distribution or droplet mean diameter is usually used to evaluate the atomization quality and characteristics. It is sufficient to use the mean droplet diameter for general studies, and although the volume median diameter or the number median diameter are characteristic diameters, they do not fully reflect the atomization quality. Sauter Mean Diameter (SMD, D32) characterizes the mass and surface area of the droplet population and can reflect the basic characteristics of similar systems.

It is defined as (Equation 4):



Where   is the diameter of the ith droplet, μm; N is the number of droplets.

The results of the Doppler tester measurements on the JJXP nozzle will summarize its droplet solt mean diameter and droplet velocity distribution law for this nozzle under different nozzle tilt angles and crosswind wind speeds.




2.2.2 Droplet deposition difference test

To explore the effect of spray nozzle tilt angle on the penetration of fog droplets in canopies with different leaf area densities under varying crosswind speeds, the experimental conditions were set as follows: the nozzle height was 20 cm from the ground, the spray pressure was 0.3 MPa, wind speeds were 0, 1, 2, and 3 m/s, and nozzle tilt angles were 0°, 9°, 18°, 27°, 36°, and 45°. The control conditions were no wind (0 m/s) and a nozzle tilt angle of 0°.

The experimental setup, shown in Figure 6A, had the nozzle fixed with its initial direction perpendicular to the test tree, and the wind direction orthogonal to the spray direction. The anemometer was positioned 50 cm from the nozzle in the X direction, and the test tree was 100 cm from the spraying device. Water was used instead of pesticide in the experiment. The tree canopy was divided into three layers, with four fog volume collection points (Ai, Bi, Ci, Di) in each layer.




Figure 6 | (A) Structure of droplet penetration test; (B) Schematic diagram of the location of measurement points; (C) Sampling point layout.



The measurement of droplet deposition involved the following steps: First, as shown in Figure 6C, the canopy was divided into three layers from front to back along the spray direction. Each layer was fixed to neighboring citrus trees on the left and right sides of the test tree with thin lines connected in a straight line through the canopy. Four measurement points (Ai, Bi, Ci, and Di) were uniformly arranged on the plane formed by the two thin lines. Water-sensitive paper was fixed at the measurement points with paper clips, and the collection surface was perpendicular to the spray direction. The position of the water-sensitive paper and thin lines was adjusted to avoid shading. The spraying operation was then carried out for one second. After drying, the water-sensitive paper was collected, and the experiments were repeated three times, with the average value taken. The experiment was repeated with varying wind speeds and spray nozzle tilt angles for multiple measurements. Finally, droplet deposition was analyzed using DepositScan software, and the differences in droplet deposition in each canopy layer were calculated using Equations 5, 6.

Droplet penetration distribution was evaluated using the difference in droplet penetration deposition (Wang, 2002), where penetration deposition indicates the deposition of droplets in the depth direction of the canopy, and droplet deposition in each vertical plane was indicated by the mean droplet deposition, and the confidence interval for the mean deposition was calculated to reflect the degree of variability of the sampling points in that vertical plane. In the test analysis, the change in deposition value was used to represent the change in deposition in the test group compared to the control group. The formula for calculating the average deposition is (Equation 5):

 

where i is the fog droplet distribution layer position, in this experiment, a total of three layers were set up (as shown in Figure 6B), that is, i = 0, 1, 2, i is 0 means in the outermost layer; j is the position of each fog droplet capture point on the capture surface of each layer, according to the order from top to bottom from left to right in order numbered from 1 to 4, with a total of 4 capture points, j = 0~4; qij is the amount of fog droplet deposition on the water-sensitive paper on the capture point, which was analyzed by the DepositScan software scanned and analyzed.

The formula for the difference in deposition is (Equation 6):

 

Where, v is the wind speed value, v=0, 1, 2, 3; n - nozzle tilt angle, n=0, 9, 18, 27, 36, 45. i is the droplet distribution stratum, i=1, 2; Qi is the average volume of fog per unit of vertical surface within the canopy corresponding to stratum i, μL/cm²; Q0 is the average volume of fog per unit of vertical surface at the edge of the canopy just before entering the canopy, μL/cm;

The confidence interval is calculated as (Equation 7):

 

where CI is the confidence interval;   is the sample mean;  is the t-value of the t-distribution, which corresponds to the chosen confidence level and degrees of freedom; the 95% confidence level was chosen in the paper; s is the sample standard deviation; and n is the sample size.






3 Experimental results and analysis

The experiment was conducted using the controlled variable method, with the spray test site on the sixth floor overhead of the North Building of the College of Engineering, South China Agricultural University, Guangdong Province, China, in May 2024, and the field test site at the base of Great Orange Orchard Pingtan, Pingtan Town, Huidong County, Huizhou City, Guangdong Province, China, in June 2024, with an average ambient temperature of 29°C and an average ambient humidity of 56% at the time of the test.



3.1 Spray test results and analysis



3.1.1 Spraying test results and analysis

Multiple nonlinear regression was performed with wind speed and tilt angle as independent variables and mean particle size of fog droplets as dependent variable, and the regression equation is shown in Equation 8.

 

Where P is the average particle size of the droplets, μm; v is the side wind speed, m/s; n is the nozzle tilt angle, °.

The fitting results are shown in Figure 7 and Table 1. The R² value of the regression model is 0.8662, indicating a good fit and correlation. The coefficient of wind speed (v) is less than that of the tilt angle (n), suggesting that the tilt angle has a greater effect on the average droplet size than wind speed. The interaction term (vn) in the model describes the combined effect of wind speed and nozzle tilt angle, with positive coefficients indicating that increasing the tilt angle enhances the average droplet size as wind speed increases. The minimum tilt angles of 45°, 36°, and 27° were calculated for the average droplet size under wind speeds of 1, 2, and 3 m/s, respectively.




Figure 7 | Mean droplet diameter for different parameters.




Table 1 | The values of the fitted parameters.



As shown in Figure 7, the droplet size distribution under three different wind speeds generally decreases with increasing tilt angle. The maximum droplet size at 1 m/s occurs at a 9° tilt angle, at 2 m/s at an 18° tilt angle, and at 3 m/s at an 18° tilt angle. The highest recorded droplet size was at a wind speed of 2 m/s and a tilt angle of 18°. Three groups of test droplet sizes closely matched the control group, with a maximum variation of 23%, indicating that changing the nozzle tilt angle under different wind speeds affects the droplet size to varying degrees.

At a tilt angle of 0° and a wind speed of 0 m/s, the droplets did not undergo secondary fragmentation, resulting in larger and more stable droplets that were less prone to drift. However, droplets with a larger average diameter were more easily blocked by leaves and had difficulty penetrating denser canopies. At a tilt angle of 9°, droplet size decreased with increasing wind speed. For tilt angles greater than 9°, droplet size increased with wind speed. The decrease in droplet size may be due to several factors: 1) Side winds increase the frequency and intensity of collisions between droplets, causing them to break into smaller particles. 2) As the nozzle tilt angle increases, the spray path of the droplets becomes more complex and dispersed. 3) A larger tilt angle extends the droplets’ flight path, making them more susceptible to wind speed and fragmentation. The reason for the increase in droplet particle size may be: 1) According to Wang et al. (Wang et al., 2024) Under low-pressure spraying conditions, the increase in wind speed will make the fine droplets able to merge and aggregate more effectively under the action of wind, which will make the average particle size of the droplets larger and the droplet spectral width smaller accordingly.




3.1.2 Distribution of droplet penetration deposits

Figure 8 compares the deposition volume at different canopy leaf area densities and wind speeds for each inclination angle. The deposition volume is averaged across all deposition data for each layer, with 95% confidence intervals represented as error bars. It is observed that the amount of fog droplets deposited in layer 0 is significantly larger than in layers 1 and 2. The data show that fog droplets are attenuated by nearly 30% after the first canopy layer and by nearly 75% after the second layer. This significant attenuation is due to shading by branches and leaves, as well as gravitational effects, causing most fog droplets to be deposited on the canopy surface.




Figure 8 | Average deposition on each layer for different parameters.



At a low wind speed (1 m/s), the deposition in the outermost layer (layer 0) increases and then decreases with the nozzle tilt angle, exhibiting a peak value. This suggests an optimal nozzle tilt angle that maximizes deposition in the outer layers of the canopy. The deposition in the middle (layer 1) and inner (layer 2) layers also fluctuates with changes in the nozzle tilt angle, but the pattern is less pronounced than in the outer layer. Observing the droplet deposition distribution in layer 0 shows that deposition in layers 1 and 2 increases and then decreases with increasing tilt angle, while deposition in layer 3 exhibits a fluctuating trend. The maximum deposition values for layers 1 and 2 occur at 18° and 27° inclination angles, respectively.

The observed distribution patterns can be explained as follows: At a wind speed of 1 m/s, droplet drift is minimal, allowing most droplets to be captured by the target, and the tilt angle has less impact. At 2 m/s, droplet drift is more pronounced, and changes in the tilt angle help compensate for this drift, significantly affecting droplet deposition. At a wind speed of 3 m/s and tilt angles greater than 30°, the initial direction of the droplets in the nozzle becomes crucial in determining their interaction with the wind velocity.

When the wind speed was 3 m/s and the tilt angle exceeded 30°, the angle between the initial direction of the spray nozzle droplets and the wind field velocity significantly impacted droplet fragmentation. Larger droplets fragmented into smaller ones, increasing droplet drift, and the drift effect outweighed the compensatory effect (Sun et al., 2021), resulting in decreased droplet deposition. Observations of droplet distribution within the canopy showed that the deposition amount generally increased and then decreased, with most deposition concentrated between 18° and 36°, peaking at 27° and lowest at 45°. This pattern suggests that changes in spray tilt angle reduced the initial droplet velocity at 0°, thereby decreasing the droplet penetration distance. Consequently, most droplets lacked sufficient velocity to reach the second layer.

The error bars indicate greater variability in deposition on the outside of the canopy and under conditions with smaller tilt angles. This variability may be due to the inhomogeneity of droplet deposition influenced by side winds or inherent measurement errors, as shown in Figure 8. Lower variability in deposition volume within the inner canopy and under conditions with larger tilt angles may be attributed to the overall lower deposition volume inside the canopy.

In summary, the average deposition amount of each layer in the test group was larger than the droplet deposition amount in the control group, indicating that wind speed significantly affected the deposition amount of fog droplets (Wang et al., 2016), and when there was a side wind or the tilt angle was shifted, on the one hand, the fog droplets were subjected to air resistance in the horizontal direction, which changed the trajectory of the fog droplets, and some of them produced drifting away from the target (Zhang et al., 2017). On the other hand, in the horizontal direction, the initial motion direction of the fog droplets is opposite to the direction of the crosswind, resulting in the intensification of the mutual motion of the fog droplet group, and more phenomena such as polymerization, splitting, and secondary splitting occur (Shen et al., 2022), and more large droplets break up into small droplets, which makes it difficult for small droplets to reach the target mark under the action of the air resistance and other factors.

The deposition amount under the same wind speed and different tilt angles was compared with that at a 0° tilt angle to analyze the effect of changing the nozzle tilt angle on droplet deposition under the same side wind. Figure 8 shows the changes in deposition volume on each vertical surface under different parameters. It is evident that, in most cases, the deposition volume at a 0° tilt angle is smaller than at other tilt angles for the same wind speed. Figure 8 also shows that there are almost no droplets inside the canopy at 0° when the wind speeds are 2 m/s and 3 m/s, whereas droplets are captured at other tilt angles. This indicates that adjusting the tilt angle can improve droplet deposition inside the canopy.

The size relationship of the data in the horizontal view generally follows the pattern P0 > P1 > P2, indicating that the impact of changing the tilt angle on deposition decreases with the depth of the canopy. The deeper the canopy, the smaller the change in deposition amount. In summary, compared with the control group, changing the tilt angle can effectively increase overall canopy deposition, particularly in the outermost layer, and enhance deposition within the inner canopy, thereby improving droplet penetration.

The differences in deposition amounts for various canopies were summarized as the overall change in deposition under different conditions. The average change in deposition under different lateral winds at the same tilt angle represented the difference in deposition at that angle. The differences in deposition amounts at tilt angles of 9°, 18°, 27°, 36°, and 45° were calculated to be 40.98%, 40.19%, 40.87%, 42.76%, and 39.72%, respectively. This indicates that under the same wind speed, proper adjustment of the nozzle tilt angle in the opposite direction of the side wind can effectively increase droplet deposition in the canopy. This is likely because, at a 0° tilt angle, the side wind alters the droplet trajectory, causing most droplets to miss the target, whereas adjusting the nozzle tilt angle compensates for droplet drift (Sun et al., 2021).

Multiple nonlinear regression was performed with droplet particle size and canopy leaf area density as independent variables and difference in deposition as dependent variable, and the regression equation is shown in Equation 9.

 

where P is the difference in droplet deposition, %; D is the average droplet particle size, μm; and S is the canopy leaf area density, m2/m3.

The fitting results are shown in Figure 9 and Table 2. The R² value of this regression model is 0.9047, indicating a good fit and strong correlation. The coefficient of droplet particle size (D) is smaller than that of canopy leaf area density (S), suggesting that canopy leaf area density has a greater impact on deposition differences than droplet particle size. The interaction term (DS) describes the combined effect of wind speed and sprinkler tilt angle, with negative coefficients indicating that as the average droplet particle size increases, the increase in canopy leaf area density reduces deposition differences. The distribution patterns of horizontal droplet deposition differences were calculated for leaf area densities of 5.94, 8.47, and 11.12 m²/m³.




Figure 9 | Multivariate nonlinear surface fitting graph.




Table 2 | The values of the fitted parameters.



At a tilt angle of 0°, fog droplets drifted under the influence of the side wind, preventing most droplets from reaching the target and reducing penetration effectiveness as wind speed increased. As shown in Figure 9, the variation in fog droplet deposition amounts under different wind speeds shows a similar trend. At a crosswind speed of 1 m/s, the deposition difference with increasing nozzle tilt angle exhibits a downward-opening parabolic trend. The maximum deposition difference occurs at different tilt angles for varying canopy densities: at a leaf area density of 5.94 m²/m³, the maximum deposition difference occurs at a 9° tilt angle (0.436); at 8.47 m²/m³, it occurs at an 18° tilt angle (0.46); and at 11.12 m²/m³, it occurs at a 36° tilt angle (0.34).

The reason for the increase in the effect of fog droplet penetration could be: 1) Higher canopy leaf area density creates a more complex network of obstacles. Increasing the nozzle tilt angle can alter the droplet movement path, increasing the contact angle with leaves, which helps droplets penetrate better by reducing surface layer contact (Ma et al., 2022). 2) At higher tilt angles, the spray becomes more parallel to the leaf surface, reducing direct impact and rebound, thereby enhancing penetration into the leaf surface and canopy gaps. 3) In high-density canopies, vertical spray tends to accumulate on upper leaf surfaces, forming a “surface barrier” that hinders subsequent droplet penetration. A larger nozzle tilt angle helps droplets slide over surface leaves, reducing surface accumulation and promoting more uniform spray distribution and deeper penetration.

At a side wind speed of 2 m/s, the difference in the amount of deposited droplets showed an upward parabolic trend with increasing nozzle tilt angle. As shown in Figure 10, the minimum deposition difference occurred at a tilt angle of 18°for canopy leaf area densities of 5.94, 8.47, and 11.12 m²/m³, with differences of 0.36, 0.40, and 0.28, respectively. The initial decrease and subsequent increase in droplet deposition volume can be attributed to 1) As side wind speed increases, droplets gain a larger initial velocity, allowing them to penetrate surface leaves more effectively and achieve better penetration. 2) As the nozzle tilt angle increases, the spray direction forms a larger angle with the side wind, resulting in a reverse force that weakens droplet kinetic energy and destabilizes the spray path, reducing penetration effectiveness. 3) At an optimal tilt angle, the side wind and the spray’s initial kinetic energy balance, allowing droplets to enter the canopy along an optimal path, bypassing surface foliage for maximum penetration.




Figure 10 | Deposition variation of fog droplets for different parameters.



At a side wind speed of 3 m/s, the difference in droplet deposition remained stable with increasing nozzle tilt angle. The deposition difference was constant at 0.43 for a canopy leaf area density of 5.94 m²/m³, 0.47 for 8.47 m²/m³, and 0.35 for 11.12 m²/m³. This stability may result from the saturation of wind speed effects on droplet penetration, stabilizing droplet kinetic energy and movement paths. Canopy density significantly impacts penetration: in low-density canopies, droplets penetrate more effectively; in medium-density canopies, moderate leaf distribution optimizes droplet capture and side wind effects; in high-density canopies, dense foliage blocks droplets, reducing penetration.

In summary, adjusting wind speed and nozzle tilt angle improves droplet penetration in the canopy. Appropriate nozzle tilt angle compensates for droplet drift at different wind speeds, enhancing deposition and penetration, although overall deposition decreases compared to windless vertical spraying. For lower canopy leaf area density (5.94 m²/m³), optimal parameters are a 9° tilt angle and 1 m/s wind speed. For medium canopy leaf area density (8.47 m²/m³), the optimal parameters are an 18° tilt angle and 2 m/s wind speed. For high canopy leaf area density (11.12 m²/m³), the optimal parameters are a 36° tilt angle and 3 m/s wind speed. In practical operations, wind speed and direction vary, and different spray volumes are required for different plant positions (Zhu et al., 2002), necessitating careful selection of the spray nozzle tilt angle.






4 Discussion

This paper investigated the average droplet size and spray penetration of horizontal spray under the influence of side winds with varying nozzle inclination angles, focusing on the differences in deposition under different parameters. The following conclusions were obtained:

	(1) Under three different wind speeds, the droplet size distribution generally decreases with increasing tilt angle. The maximum droplet size occurred at a 9° tilt angle with a wind speed of 1 m/s, at an 18° tilt angle with a wind speed of 2 m/s, and at an 18° tilt angle with a wind speed of 3 m/s. The highest overall droplet size was observed at a wind speed of 2 m/s and an 18° tilt angle.

	(2) The optimal parameters for improving penetration were found to be an 18° tilt angle and a 3 m/s wind speed for a leaf area density of 5.94 m²/m³, a 45° tilt angle and a 2 m/s wind speed for a leaf area density of 8.47 m²/m³, and a 36° tilt angle and a 3 m/s wind speed for a leaf area density of 11.12 m²/m³. Different canopy densities require different optimal parameters, following a certain pattern between nozzle tilt angle and side wind speed.

	(3) The amount of droplet deposition on and within the canopy is influenced by side winds. Adjusting the nozzle tilt angle opposite to the wind direction, based on canopy leaf area density, can effectively increase average droplet deposition both inside and outside the canopy. At a wind speed of 1 m/s, the droplet deposition difference followed a downward parabolic trend with increasing tilt angle, reaching maximum values at tilt angles of 9°, 18°, and 36°for different canopy densities. At a wind speed of 2 m/s, the deposition difference followed an upward parabolic trend with increasing tilt angle, reaching a minimum at an 18° tilt angle as canopy density increased. At a wind speed of 3 m/s, the deposition difference did not change with tilt angle but decreased with increasing canopy density.



The novel contributions of this paper encompass the following: The study showed that pesticide penetration in the canopy can be significantly improved by adjusting the nozzle tilt angle and considering side wind speed. This finding has important implications for global agricultural practices, such as integrating droplet prediction models into spraying systems to create “digital twin” for real-time adjustment of optimal parameters, enhancing pesticide use efficiency and crop protection. In resource-limited environments, reducing pesticide use not only lowers agricultural production costs but also minimizes environmental impact, promoting sustainable agricultural development.

Despite the progress made in understanding the effects of side wind speed and nozzle tilt angle on droplet penetration in citrus tree spraying and proposing optimized parameters, limitations remain, particularly regarding the long-term effects. Future research should include long-term field trials to investigate the sustained effects of optimized spray parameters in agricultural production and in-depth studies on the combined effects of wind direction changes, leaf density, air humidity, and tractor speed on spray penetration and efficiency. Further optimization of integrated technology is necessary to provide a comprehensive theoretical and practical basis, especially in the context of global environmental challenges and resource constraints, to promote more efficient and environmentally friendly agricultural production.
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Diseases Pre Recall Accuracy
Bacterialblight 1.00 0.99 1.00 0.994
‘ Blast 0.99 0.99 0.99 0.995
‘ Brownspot 0.99 0.99 0.99 0.993

Tungro 1.00 0.99 0.99 0.992
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AlexNet 0.1587 0.1489 95.10% 95.07%
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Transformer 0.0291 0.0857 99.27% 97.11%

GAN-MSDB-ResNet 0.0143 0.0301 99.76% 99.34%
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ResNet-50 96.68% 98.26%
MSDB-ResNet 99.06% 99.10%

GAN-MSDB-ResNet 99.15% 99.34%
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“Q, norm(c:) denotes the normalized proportion of pseudo-inertias explained by the spatial aggregation.
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N cells (1 km Commercial* Conventional* Organic* Abandoned* = Residential*

Castellon (ES522 NUTS 3) 1,310 (19.57%) 354,10 (100%) 32459 (91.67%) 8.62 (243%) 20.89 (5.90%) 0.49 (16.43%)
Valencia (ES523 NUTS 3) 3,550 (53.02%) 943.95 (100%) 862.94 (91.42%) 2347 (249%) 57.55 (6.10%) 1.84 (62.49%)
Alicante (ES521 NUTS 3) 1,835 (27.41%) 337.48 (100%) 307.74 (91.19%) 8.62 (2.55%) 2111 (6.26%) 0.62 (21.08%)
Valencian A.C. (NUTS 2) 6,695 (100%) 1,635.53 (100%) 1,495.27 (91.42%) | s (249%) 99.55 (6.09%) 2.95 (100%)
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Leaf disease

Leaf damage

Spike
disease

Spike
damage

Stem disease
Root disease

Pests

Post-
germination
weeds

Pre-
flowering
weeds

6: healthy, Blumeria graminis f. sp. tritici, Puccinia recondita f. sp. tritici, Puccinia striiformis f. sp. tritici, Puccinia
graminis f. sp. tritici, Septoria tritici

2: healthy, damaged by Oulema melanopus

5: healthy, Fusarium graminearum, Blumeria graminis f. sp. tritici, Puccinia graminis f. sp. tritici,
Stagonospora nodorum

2: healthy, damaged by frost

3: healthy, Blumeria graminis f. sp. tritici, Puccinia graminis f.sp.tritici,
2: healthy, root rot (Gaeumannomyces graminis, Fusarium spp., Bipolaris sorokiniana)

36: Oulema melanopus (larvae, adult), Haplodiplosis marginata (larvae, adult), Mayetiola destructor (larvae,
adult), Contarina tritici (larvae, adult), Sitodiplosis mosellana (larvae, adult), Eurygaster maura (egg, adult), Aelia
rostrata (egg, adult), Sitobion avenae (larvae, adult), Rhopalosiphum padi (larvae, adult), Agriotes (larvae, adult),
Chlorops pumilionis (larvae, adult), Oscinella frit (larvae, adult), Delia coarctata (larvae, adult), Dermaptera
(adult), Myriapoda (adult), Carabidae-Chrysomelidae-Curculionidae (adult), Noctua (adult), Arachnida (adult),
Arion-Deroceras-Limax (adult), Coccinella (egg, larvae, pupa and adult)

36: Alopecurus myosuroides, Anthemis arvensis, Apera spica-venti, Avena sterilis, Bifora radians, Brassica rapa
subs. oleifera, Capsella bursa-pastoris, Centaurea cyanus, Cerastium holosteoides, Cirsium arvense, Convolvulus
arvensis, Convolvulus sepium, Equisetum arvense, Fallopia convolvulus, Fumaria officinalis, Galeopsis tetrahit,
Galium aparine, Geranium molle, Lamium purpureum, Lolium spp., Matricaria chamomilla, Oxalis spp., Papaver
rhoeas, Phalaris spp., Poa annua, Poa trivialis, Polygonum aviculare, Polygonum persicaria, Ranunculus arvensis,
Raphanus raphanistrum, Sinapis arvensis, Stellaria media, Veronica hederifolia, Veronica persica, Vicia spp.,
Viola spp.

36: same species as post-germination weeds
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Methods MAPE

Non-overlapping area 0.8804 6.5661 9.31

Overlapping area 0.9106 5.5909 8.27
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Threshold = 0.5 Optimized Confidence Threshold

Models F1 score F1 score Threshold Threshold
Faster-rcnn 0.8031 0.5518 0.8666 091 0.2181 0.96
SSD ‘ 0.8407 0.2532 0.8477 0.38 0.2422 0.55
FCOS 0.8879 0.2427 0.8942 0.57 0.1777 0.62
YOLOv3 ‘ 0.8185 02653 08312 034 0.2604 047
YOLOV4 07086 0366 07635 032 03124 038
YOLOVS 0.8597 02386 0.8604 047 0.2268 0.58
YOLOX 0.8898 02111 0.8900 051 0.2010 0.62
YOLOv7 0.8751 0.2313 0.8759 0.52 0.2147 0.59
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Models Recall F1 score Latency/s EPS

Faster-rcnn 9229 69.07 95.91 0.80 0.0389 2571 2828 M
SSD 89.67 85.85 82.37 0.84 0.0062 161.08 2375 M
FCOS 95.19 84.70 93.28 0.89 0.0200 50.12 32.12M
YOLOV3 89.05 87.25 77.07 082 00175 57.27 6152 M
YOLOV4 80.81 86.33 60.09 071 00261 3838 63.94 M
YOLOv5 92.98 86.24 85.70 0.86 0.0161 62.29 7.06 M

YOLOX 94.56 88.19 89.79 0.89 0.0173 57.94 8.94 M

YOLOv7 93.52 8591 89.16 0.88 0.0199 50.36 3719 M
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Flight Resolution

Height (m) Hleaae ratio (cm/pixel)
10 55 55 54 1 0 ‘ 0.98 0.98 0.98 0.1
20 55 55 54 1 0 ‘ 0.98 0.98 098 03
30 55 53 53 | 2 0 ‘ 1.00 0.96 098 04
50 55 54 51 4 3 ‘ 0.94 093 0.94 0.6
80 55 49 46 9 3 ‘ 0.94 0.84 0.88 1.0
100 85 36 ‘ 36 19 0 ‘ 1.00 0.65 0.79 1.3
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Data type  Database Data—SA1l DEIERIYAVA
Date
L. 2022-04-07 2022-04-10 2022-04-13

of acquisition
Weather Cloudy Cloudy Sunny
Flight 10-20-30-50- 30 30
height (m) 80-100

. Single . .
Flight mode point sasipling Route planning Route planning
Number 21 343 234
of images
Validation IT&GT T Gr
data

i . e Application

Task Flight height test | Model building

method test
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Reference Me Dataset Accuracy
Sharif et al. (2018) M-SVM Citrus Diseases 95.8%
Image Gallery
Dataset
Tan Nhat et al. ANN mango leaves 85.45%
(2020)
Pantazi et al. SVM 46 plant-condition 95%
(2019) combinations
Li et al. (2020) RF, BLR Sentinel-2 imagery 92.95%
Sahu and Pandey HRF-MCSVM PlantVillage 98.9%
(2023)
Elaraby et al. AlexNet Multiple leaf 98.83%
(2022)
Deng et al. (2021) Ensemble Model | rice diseases 91%
Nandhini and DenseNet-121 PlantVillage 98.7%
Ashokkumar
(2022)
Amin et al. (2022) EfficientNetB0, corn plant leaves 98.56%
DenseNet-121
Abbas et al. (2021) | C-GAN, PlantVillage 97.11%

DensNet-121

Zhao et al. (2022) RIC-Net PlantVillage 99.55%
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Model FLOPs (G) Param (M)  MioU (%
DCSA-0 17.00 045 84.86
DCSA- feat2-1 18.26 0.60 85.28
DCSA- feat3-1 1817 055 8522
REDCSA- feat2-1 17.98 062 85.62
REDCSA- feat3-1 18.06 057 85.95
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Model kernel size FLOPs (G) Param (M) MioU (%)

MobileNet3-Unet — —_— 16.67 2434 83.89
DCSA ‘ 5x1 y 16.97 0.530 84.63
DCSA 7x1 v 17.00 0.534 84.86
DCSA 7x1 s 17.00 0.454 84.71
DCSA ‘ 9x1 y 17.12 0.467 84.79

v shows that the models in the horizontal columns contain Channel Shuffle structures.
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1. Laser generator 2. Laser transmitter 3. Nozzle 4. Signal receiver 5. Doppler signal analyzer 6.Computer
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1. The spray apparatus 2. The fog droplet data collection 1. Water reservoir 2. Diaphragm pump 3. Battery 4. Manometer 5. Ball valve 6.
system

Spray nozzle 7. Bracket and pulley 8. Anemometer
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Spraying time
09:00
11:00
13:00
15:00
17:00
19:00
21:00

CK

Wind speed
0.3
07
13
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09

0.4

/s)
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Class Precisiol Recall Fl-score
healthy 0.963 1.000 0981
‘ multiple 1.000 0.667 0.800 9
‘ rust 1.000 1.000 1.000 62
scab 0.967 0.983 0975 59
|
weighted avg 0.979 0978 0977 182

I
accuracy 0.978 182
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Method Test Accuracy ( F1-score (%) Parameters (M) GFLOPs Size(MB) Time
MobileNetV2 93.92 9277 22 250 8.74 00:07:45
MobileNetV3 94.48 9373 15 504 5.93 00:07:44
| EfficientNet-B3 94.48 9378 107 802 413 00:07:51
‘ Xception 95.58 94.40 208 386.3 79.6 00:07:53

DenseNet-121 95.03 94.10 6.9 236.8 27.1 00:08:00

Proposed method 97.80 97.65 25 128 9.80 00:07:48
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ImageNet

Pl@ntNet-300K

Class Precision Recall
healthy 0.909 0.980 0943 52
multiple 1.000 0333 0.500 9
rust 0.968 0.984 0976 62
‘ scab 0.950 0.966 0958 59
weighted avg 0.947 0.945 0.937 182
‘ accuracy 0.945 182
healthy 0.962 0.980 0971 52
‘ multiple 0.800 0.444 0571 9
rust 0.984 0.984 0.984 62
‘ scab » 0952 1.000 0975 59
weighted avg 0.958 0.961 0.957 182
accuracy 0.961 182
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Model FLOPs (G) Param (M)  MlioU (%)

VGG-Unet ‘ 45173 24,89 84.80
MobileNetv3-Unet ‘ 1667 0593 83.19
MobilenetViT-Unet ‘ 3849 1.288 85.37

CGNet ‘ 711 0.492 77.66
LEDNet ‘ 1264 2315 82.68
DCSANet ‘ 18.06 057 85.95
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Please select the image to identify

. - o
Pest Category rice leaf roller

Probability 98.3%
+ More see more about rice leaf roller
Show 8 images only, you can keep adding.
In this system, you can add as many images as possible to get more accurate results.
2 Export to Excel
images time crop crop category result

2023-05-09 18:01:18 Rice Food crops
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terature Model GFLOPs Accuracy (%)
Mohanty et al. (2016) GoogleNet 5.0 - = 99.35
Wang et al. (2021) T-CNN 911 = = 99.60
Xiang et al. (2021) L-CSMS 0.79 0.12 = 97.90
Thakur et al. (2022) VGG-ICNN 6 457 232 99.16
Chen et al. (2022b) CACPNET 47 1.267 18.0 99.70
This study MS-Net 25 247 9.93 99.80

The bold values means that they have achieved the best performance metric results.
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Xception
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Different components description
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Memory requirement (MB)
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2 Batch normalization
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Test ID CNN Model Accuracy (%)

ss (%) Memory requirements (MB) Training time (s)
1 GoogLeNet model (Inception-V1) 91.87 0.21 21.6 1571
2 GoogLeNet model (Inception-V3) 91.23 0.34 774 1646

3 Improved model (GoogLeNet-EL) 97.87 0.07 103 644
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Layer name (Convolutional kernel size, number of

convolutional kernels/step size)

Input layer 224x224x3
Convolutional layer(7x7, 64/2) 112x112x64
MaxPooling(3x3, /2) 56x56x64
Convolutional layer(1x1, 64/1) 56x56x64
Convolutional layer(3x3, 192/1) 56x56x192
MaxPooling(3x3, /2) 28x28x192
Inceptionl I 28x28x480
MaxPooling(3x3, /2) 14x14x480
Inception2 14x14x512
Inception3 14x14x832
MaxPooling(3x3, /2) 7x7x832
Inceptiond 7x7x1024
SPP layer 7x7x1024
Fully connected layer 1x1x1024
Output layer 6
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Training set and validation set (piece)

i ?sggign?rlngaegfs Preprocessed images (3514 images)
1 Pepper scab 1023 1546
2 Pepper powdery mildew 898 1537
‘ 3 Pepper anthracnose 733 1539
!
4 Pepper white spot disease 992 1540
5 pepper blight 1021 1488

6 Pepper botrytis cinerea 1002 1533
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Literatut

CNN models

Best accuracy

Study object

Zhang et al. (2018) AlexNet - GoogLeNet model 97.28% tomato leaf disease
Hu et al. (2019) CNN model 92.5% tea leaf diseases

‘ Li et al. (2019) VGG model 98.33% crop diseases

‘ Singh et al. (2019) multi-layer CNN model 98% mango leaf diseases
Chen et al. (2020) VGGNet model 91.83% rice disease
Ji et al. (2020) BR-CNNs model 85.28% crop leaf diseases
‘Waheed et al. (2020) DenseNet model 98.06% corn leaf disease
Chen et al. (2021) MobileNet-V2 model 99.13% crop diseases

‘ Gao et al. (2021) ResNet model 98.54% cucumber disease
Li et al. (2022) CNN model 94.22% apple disease

‘ Liu et al. (2022) CNN model 97.54% buckwheat diseases

‘ ‘Wang (2022) AlexNet model 96.26% fragrant pear diseases

‘ Yang et al. (2023) GoogLeNet model 99.58% rice leaf diseases
Yang and Liu (2023) CNN model 96.24% rice disease

‘ Yu et al. (2023) RNN model 99.54% soybean leaf diseases






OPS/images/fpls.2023.1276728/fpls-14-1276728-g006.jpg
Test Accuracy
Parameters

98

Test Accuracy (%)
X 3

\O
)

94

2.2
93 =
MobileNetV2 MobileNetV3 EfficientNet-B3  Xception

Network

DenseNet-121

Parameters (M)





OPS/images/fpls.2023.1282212/M18.jpg
as)





OPS/images/fpls.2023.1256935/fpls-14-1256935-g012.jpg
1.001

20 41 45 15 25 26 22 61 11 32 10 28 33 20 15 4 48 20 41 26 2 7T 33 W 19 14 11 19 2B W 1

i B
0.751 + =) | L
= ! ‘*
) . =
0.50 :b* ‘ﬁ $$ *- *
" *¢ ‘7 " + . * L
o | ﬁ* & -

0.00+

1.00{

|42 22 38 13 19 27 33 18 17 22 3 26 15 34 42 30 27 23 6 12 38 41 20 16 26 2 23 25 %4 AN 6

TR
S r** ﬁ—ﬁ

025?*

o.uoy;

-
—T
-
]
"
-
—-
-
1

1.00

26 26 42 24 22 20 20 23 18 18 17 43 23 31 31 20 22 27 15 15 33 16 25 22 M4 9 I 32 26 W 12

W,

075 . } *

050 |
N Py L
AT [

0.00

1
i
—.—

12345678 910111213141516171819202122232425262728293031
PMAs

12345867 8 91011121314151617 181920212223 24 252627 282930 31





OPS/images/fpls.2024.1290845/fpls-15-1290845-g007.jpg
Estimated value

B

120 120

100{ R%=10.6552 1004 R%=0.9106 &

RMSE =12.6173 E RMSE = 5.5909 4
<
«0] MAPE=21.42% S s MAPE=827%
L
-8
=
g
60 Z 60 4

3]
=
|53
N

40 4 £ 40

@ Estimated value 3 Optimized estimation value
20 4 Linear Fit 20 Linear Fit
95% Confidence Band 95% Confidence Band
95% Prediction Band 95% Prediction Band
0 T T T T T 0 T T T T —
0 20 40 60 80 100 120 0 20 40 60 80 100
Ground truth Ground truth

120





OPS/images/fpls.2023.1230886/M6.jpg
_Leiting Chns fox o8 Sumppan an the Thiing o

Average testing time = ——-"S.LIC O 3_SMUP £ 07 e NG S,
R e ta] It A skiian oy (DR tetig 4es

*100% ©





OPS/images/fpls.2023.1276728/fpls-14-1276728-g005.jpg
Accuracy

0.95 4

0.90 4

0.85

0.80 4

0.75 4

0.704

Training Accuracy
Validation Accuracy

Accuracy

0.95 4

0.90 4

0.85+

0.80

0.75 4

0.70 4

9 12






OPS/images/fpls.2023.1282212/M17.jpg
P 7
TP+ FN an





OPS/images/fpls.2023.1256935/fpls-14-1256935-g011.jpg
1.007

18 2427 32 28 9 62 1258 % 22 W 3 20 13 27 35 47 2 25 26 13 3 21 15 16 25 13 13 15 &

A | B
0.75¢ + &

—
+
+
Iy

0501 t B .’.

02s™ T

0.001

1.00

2234 25 15 14 16 3 20 37 24 30 24 24 13 28 25 39 2 21 I 35 20 15 49 27 15 25 2 26 7 15

1.00

N | + *- , - |
el s e

-

0.25

0.00

12345678 910111213141516171819202122232425262728293031
PMAs

PMAs

1234567 8 91011121314151617 18 1920212223 24 2526 27 2829 30 31





OPS/images/fpls.2024.1290845/fpls-15-1290845-g006.jpg
Fl-score

threhold = 0.5
F1-score = 0.89%¢

threhold = 0.5
F1-score = 0.8873

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MAPE

threhold = 0.6
MAPE =0,

threhold = 0.5

T T T T T T T T

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
score threhold






OPS/images/fpls.2023.1230886/M5.jpg
o STRCESN K S
Procicion + Recall

)





OPS/images/fpls.2023.1276728/fpls-14-1276728-g004.jpg
Image_size:3

output

Conv BN hswish

| AT 1

—_—————ee— e - —

BN RelLU
BN RelLU

|
|
|
" Srgl i_’blo @_'bli' |4
|
|
|

- 0000000000000 ] - 00000 |
input MS-Net Avg Pool and FC Output

—_——— -





OPS/images/fpls.2023.1282212/M16.jpg
L
L 16)





OPS/images/fpls.2023.1256935/fpls-14-1256935-g010.jpg
El Camp de Tiria. ORz,qfcp

12345678 9101112131415

D

1= 20n= 120= 250= 31 = 120= 25 1= 22 =7 = 3211= 22n= 28n= 20 1= 47 n= 38n= 181=21n= 17 n= 10n= 44 1= 25 1= 28n= 23 1= 331= 42n= 13|

g
e

1= 11 0= 24 1= 23n=3211= 361= 28 1= 24 1= 44 n= 231=20n= 18n= 30 n= 34 n=28n=39n= 19n=21 n=3 n= 23 n=20n=22n=28 1= 131= 180=25|

Tiate ol T
™

123456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25
PMAs

' IH N "H

1617 18 192021222324 25





OPS/images/fpls.2024.1290845/fpls-15-1290845-g005.jpg
2
i
= 50.94% YOLOv4
35.91% YOLOV3
35.42% SSD
28.28% Faster-rcnn
27.57% YOLOV5
25.42% YOLOV7
21.10% YOLOX
19.11% FCOS
B
20.78
g
E 0.56
Q
&
2 034
80
Q
—
0.12 - ' s s . j

0.05 0.20 0.35 0.50 0.65 0.80 0.95
ToU threshold





OPS/images/fpls.2023.1230886/M4.jpg
ecall = ——— (4)
Recall = ——— @





OPS/images/fpls.2023.1276728/fpls-14-1276728-g003.jpg
Initialize the relevant parameters

Update the position
of current whale
using Eq.(5

Update the position
of current whale
using Eq.(8

Update the position
of current whale
using Eq.(2

Update the position of
current whale using Eq.(9)

Calculate fitness values and
update population positions

Stopping condition met

End and return the globally
optimal parameters

I





OPS/images/fpls.2023.1282212/M15.jpg
TP+1N
e e @3)





OPS/images/fpls.2023.1256935/fpls-14-1256935-g009.jpg
El Camp de Turia. OR1,afcp

1.007 B

1= 16 1= 261= 16 = 220= 25 1= 28 1= 16n1= 26 1= 181= 41 = 37 0= 28n1=24 1= 281= 31 = 20n= 120= 18= 38 = 25 1= 30n=40n=381= 14 n=5

a=0.1

0.75¢ *

050-4. = g I_ e '?
- _* *

0.251 qIIF +. i

0.001

1.007 D

1=20 0 231= 577= 251= 26 1= 15 1 120= 46 1 40n= 18 1= 39 1= 19n1= 26 1= 200= 16 1= 121 34n= 27 1= 181= 21 e 261= 33 n= 331m 180= 12

0.00!
1.00 F
LM P TR S P e o 0 T S N 1 e S S S g e e
0.75 !
Eﬂ I# L
0.50 ‘ il ] ‘ ]
| ' EH
Ih I T ‘ IL
0.25 *l
0.00

123 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
PMAs

PMAs

NN '"E NI EER N

1234567 8 910111213141516171819202122232425






OPS/images/fpls.2024.1290845/fpls-15-1290845-g004.jpg
S
=
=
=
=
=
@»n
@
=
=
-
=
=
—

IoU threshold 0.5

IoU threshold 0.8

Confidence threshold 0.2

Confidence threshold 0.5

Ground Truth
Ture Positive
False Positive

False Negative

Confidence threshold 0.8






OPS/images/fpls.2023.1230886/M3.jpg
Precision = 6

TPeFP





OPS/images/fpls.2023.1276728/fpls-14-1276728-g002.jpg
Plant species
dataset

Plant disease
dataset

Convolution
layer

Convolution
layer

Global
pooling
layer

Connection
layer

Global
pooling
layer

Connection
layer

Softmax
classifier

Softmax
classifier

Plant species
label

Plant disease
label






OPS/images/fpls.2023.1282212/M14.jpg
Lyotat = Lgeneral + Limproving





OPS/images/fpls.2023.1256935/fpls-14-1256935-g008.jpg
| |
1.00 20 41 45 15 25 26 23 34 11 32 35 10 20 33 15 48 28 20 31 16 28 32 7 33 32 19 15 19 24 14 1

A - B

P . ] ‘ e |

025/ o > s}
* -* [
0.001
1.00 42 18 18 23 13 27 33 54 14 17 22 36 24 15 42 30 27 23 6 12 38 41 20 16 26 32 23 25 M4 21 6
Cc
075
050
W71
“H i 48
0.00
1.001 26 38 32 22 20 34 23 24 18 19 17 23 31 31 20 22 27 34 15 15 33 18 26 22 M © 37 32 26 30 12
E i F
| | 1
0.75
1, |
L 0 I
0.50 * ‘ - * (L
Ll || ® %
| ] '
] "R f
' i . i
0.251 + - l** *
0.001

12345678 910111213141516171819202122232425262728293031
PMAs

PMAs

1234567 8 91011121314151617 1819202122 23 24 25 26 27 28 29 30 31





OPS/images/fpls.2024.1290845/fpls-15-1290845-g003.jpg
1.0

0.8

0.2

0.0

——FCOS
- = =YOLOX

= = =YOLOV7
—— Faster-renn
= = =YOLOvS
——YOLOV3
—SSD

- - -YOLOv4

75

100
Epoch

125

150 175 200





OPS/images/fpls.2023.1276728/fpls-14-1276728-g001.jpg
Cherry Powdery mildew Grape Black rot Potato Late blight Tomato Leat Mold

PlantVillage

Multiple diseases

FGVC7-Apple leaf





OPS/images/fpls.2023.1282212/M13.jpg
Limproving = = log Pi(t) (13)





OPS/images/fpls.2023.1256935/fpls-14-1256935-g007.jpg
1.00-

T8 4127 3 28 9 48 12 27 33 15 47 21 29 21 15 2 49 29 40 15 18 13 26 28 21 2 B 16 13 13

A ! B

1.001

T 45 15 2 22 23 M 32 14 26 30 24 13 32 34 27 37 38 26 42 18 12 7 3 2 28 4 9 7 1 6

; A L
T e -*
ool g ¥ : ‘
w i o

3

1.00]
Bu BB EDO BN RO DB U ON B R KBTS DD R

- Sl
AL |'F"**+;
Bt i I

0.00]

12345678 910111213141516171819202122232425262728293031
PMAs

PMAs

12345678 91011121314151617 18 192021222324 252627282930 31





OPS/images/fpls.2024.1290845/fpls-15-1290845-g002.jpg
ResNet50 Backbone

5x5x256

Conv2d P7 —

— 10%x10%256
onv
P6
20%20%256
Conv2d P 5

20x20%x2048 20x20%256
Conva2d
ki,s1 k3,s1
40x40x1024 40x40x%256 Upsample
Corvad Convad 40%x40%256
onv onv
ki,s1 @ k3,s1 P4
80x80x512 80x80%256 Upsample
P E—— 80x80%256
onv onv
k1,s1 @ k3,s1 P3 _
160%160%256 Head
FPN x/
------------------------------
320x320%64 | k- kernel size E k3,51,p1 k3,51,p1,c1 hxwx1
i s - stride i .
' p - padding i Conv2d Regression
ip i k3,s1,p1,c4 ReLU hxwx4

¢ - class number Conv2d+GN+RelLU
"""""""""""""""""" k3,s1,p1

Center-ness

Conv2d
k3,s1,p1,cl

640x640x3






OPS/images/fpls.2023.1282212/M12.jpg
(12)






OPS/images/fpls.2023.1256935/fpls-14-1256935-g006.jpg
El Camp de Turia. ORz,acp

1.001

1= 520= 211= 181= 231 3201= 30 1= 320= 1701=26 =8 =8 =21 1= 351= 34 = 34 1= 41n1= 1 1= 161= 34 n= 25 1= 27n= 33 n= 191= 13n=23

0.75: ** | ﬁ
050-** | | + gw + |

-$+ ' 1 ‘
0.25: + * i : + -

=

D

1.00
E F
1 147 T4 230 2= 1= 281 24 1= 21 1= 301= Z51= 201= 20 1= 3 1= 34 1= 281= 181= 21 1= 37 18 1= 231= 331 220 290= 18 25
0.756 ‘
B ; 1
S E e o050 : [
s N i) .
B |- L |
T [l | ] '
| 025 * ! ! b
. . ‘ |
[ — ) 0.00
[ 10 15km

123 456 7 8 910111213 14151617 18 19 20 21 22 23 24 25
PMAs

PMAs,

12345678 910111213141516171819202122232425





OPS/images/fpls.2024.1290845/fpls-15-1290845-g001.jpg
114°E 116°E 118°E 120°E
1 1 1

47°N
I

46°N
I

45°N
T

NolV7

No.9¥

NoG17

45°38.760'N

45°38.730'N

45°38.700'N

A
0 10
[ S—
+

+ + +

45°38.808'N

45°38.772'N

45°38.736'N

1181 1‘ 850 1181 1‘ .880°E 118°1 1‘ 910°E 118°1 ‘i 940t 118°1 1I .892°E 1181 ’i 928 1181 ’; 964'E HS"IZ‘.OOO’E





OPS/images/fpls.2023.1256935/fpls-14-1256935-g005.jpg
El Camp de Turia. OR1,acp

1.00{ B

1= 381= 25n= 17n= 45 25n= 18n= 16 =6 n= 18 221= 26n= 25n= 18n= 35n= 37 n= 12n= 121 19n= 230= 27 1= 37n= 40n= 361= 190= 17

0.757 +

oL, Py

a=0.1

0.001

1.00 D

1= 19n= 27 1= 37 1= 25n1= 32n= 151= 26 1= 35 = n= 18n= 49n= 34 n= 20n= 15n= 120 19n= 41 n= 28n= 17 n= 26 1= 33n= 33 0= 14= 18n= 12

.
MR SO T TNt
*l "7 w‘ N Eﬁ.‘. 1 .

1.00 F

1= 130 12n= 21 n=36 = 281= 15 1= 29 1= 2211=27 n= 35n1= 18n= 32 0= 23 1= 40n= 281= 121n1= 17 1= 221n= 27 1= 30n= 141=21 1= 190= 33 n= 41

0.75

o] ! f*ﬁﬁ -*ﬁ Lk +[
' +E |

" B '

0.25

0.00

123 456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25
PMAs

PMAs

- . _ -7 . V?!- -

1234567 8 910111213141516171819202122232425






OPS/images/fpls.2024.1290845/crossmark.jpg
©

2

i

|





OPS/images/fpls.2023.1289497/table8.jpg
Disease Number Correct Precision

Classification of dataset Grading (%)
Level 1 38 37 97.37
Level 2 30 29 96.67
Level 3 7 30 29 96.67
Level 4 30 28 93.33
Level 5 10 9 90.00

Total 138 132 94.81
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Accuracy(% 0ss (%) Memory requirement (MB) Average testing time
29.92 235 61 ‘ 50.20
‘ ResNet-50 81.99 0.58 256 33.20
‘ MobileNet-V2 96.68 0.08 823 25.37

Proposed method 97.87 0.07 10.3 19.33
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VA Ninggiang

UA(%) F1(%) OA(%)
Health 90.96 94.18 92.54
FFCDNN YR 90.76 92,94 91.84 91.14 0.847 554.8
NS 88.32 89.68 88.99
Health 86.66 89.24 87.93
BIT-DNN YR 82.97 80.96 81.95 82.66 0.801 799.6
NS 77.88 7825 78.06
Health 83.59 7954 8151
AlexNet YR 81.54 79.12 80.31 80.04 0.786 11944
NS 80.38 76.05 78.16
Health 65.32 59.93 6251
SVM YR 7146 70.79 7112 62.62 0.689 2174
NS 56.2 52 54.02 ‘
Model Class PA(%) Shunyi ‘ Kappa CT(s)
UAGE) FLG%) oa
Health 95.88 9234 94.08
FFCDNN YR 89.44 85.99 87.68 91.63 0.855 4838
NS 94.28 91.86 93.05
Health 86.19 88.82 87.49
BIT-DNN YR 84.37 82.12 8323 84.37 0.817 679.6
NS 80.73 83.96 8231
Health 81.93 83.06 8249
AlexNet YR 816 80.88 81.24 8147 0.759 10954
NS 80.25 81.09 80.67
Health 77.07 74.17 7559
SVM YR 76.99 72.61 74.74 7267 0.707 1738

NS 68.51 66.65 67.57
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PA(%) Testing dataset Kappa CT(s)
UA(%) F1(%) OA(%)

Health 97.74 97.34 97.54

FFCDNN YR 95.15 9621 95.68 95.13 0.891 2774
Ns 9198 9235 92.16
Health 9272 9425 93.48

BIT-DNN YR 9351 93.55 93.53 9207 0.881 2998
NS 88.86 89.54 89.2
Health 90.61 91.25 90.93

AlexNet YR 94.39 9321 93.8 9096 0.846 4972
Ns 87.62 88.65 88.13
Health 9332 87.91 90.53

SVM YR 9431 92.34 93.31 %05 0.824 108.7
NS 9051 84.58 87.44

Model Class PA(%) ‘ Evaluation dataset Kappa CT(s)

uA) F19) OAG%)

Health 96.58 9697 96.77

FECDNN YR 9329 93.49 93.39 93.62 0.866 2219
NS 9051 90.86 90.68
Health 84,01 9417 88.8

BIT-DNN YR 8527 9245 8871 87.11 0.832 2398
NS 82.55 8422 83.38
Health 88.85 8646 87.64

AlexNet YR 82.02 2253 82.27 84.38 0.764 3977
‘ Ns 84.48 8194 83.19
Health 80.85 80.81 80.83

SVM YR 82.83 8411 83.47 79.64 0.695 86.9
‘ NS 75.51 73.74 74.61
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Location Type Day after treatment (DAT)
(year)

Langfang 2017 7(Apr.20) 14(Apr.27) 23(May.6) 27(May.10)

34(May.17) 37(May.20)

Langfang 14(Apr.25)

2018
-

34(May.15) 37(May.18) 41(May.22, 49(May.30)

otang shan 2017 23(May.2)

otang shan 2018 23(May.5)

/R, yellow rust; ND, nitrogen deficien
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ds class loU(%) PA(%) Precision(%) Recall(’%) mloU(%) mPA(%) mPrecisiol mRecall(%)

Background | 9789 98.96 99.02 98.96

Liar 9245 9478 95.02 9478 89.44 9243 9265 9243
PUNet Disease 77.98 83.56 §3.90 83.56
Background | 9755 97.89 98.78 97.89

ot 91.58 9401 94.82 9401 88.94 91.70 9246 9166
LD-DeepLabv3+ Disease 77.69 83.20 83.77 83.09
Background | 9712 9735 97.78 9752

i 91.05 9347 93.30 9347 88.35 91.08 9133 9114
SOLOV2 Disease 76.89 8243 82.90 8243
Background | 9693 97.06 97.28 97.06

A 90.10 9290 92.92 9290 87.87 90.71 90.98 9071
YOLACT Discase 76.59 82.18 8275 82.18
Background | 9719 9752 97.98 9735

s 91.26 93.58 93.49 9358 88.60 91.40 9171 9138
YOLOVS Digedse 77.34 83.00 83.67 8320
Background | 9881 98.98 99.50 98.98

il 9.67 | 9866 98.30 98.66 91.27 94.32 94.19 9432
Ours Discase 78.33 85.32 84.77 85.32

Best values are in bold.
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Experiment Settin Normalized layer  Bilinear interpolati mloU(%) mPA(% Recall(%)
Experiment Setting 1 88.90 9147 97.20 9147
Experiment Setting 2 v 89.86 92.37 98.20 92.37
Experiment Setting 3 v 88.97 91.64 98.54 91.64
Experiment Setting 4 v 4 90.29 94.23 99.89 94.23

Best values are in bold.
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1x1 6x6 mloU(%) mPA(%)

Experiment Set

Setting 1 4 95.12 98.26 97.55
Setting 2 v 97.74 98.82 98.90 98.82
Setting 3 v v 94.09 96.37 97.55 96.37

Best values are in bold.
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Experiment settings =~ The number of pools = Pool core size  mlo mPA (%)  Precision (%) Recall (%)

Setting 1 4 [1x1, 2x2, 3x3, 6x6] 94.57 97.10 97.59 97.10
Setting 2 2 [1x1,2x2] 92.04 95.44 95.13 95.44
Setting 3 2 [1x1,3x3] 93.39 96.49 96.36 96.49
Setting 4 2 [1x1,6x6] 94.64 97.19 97.61 97.19
Setting 5 2 [2x2,3x3] 93.58 96.41 97.01 96.41
Setting 6 2 1 [2x2,6x6] 93.42 96.60 96.98 96.60
Setting 7 ‘ 2 [3x3,6x6] 93.31 96.43 96.82 96.43
Setting 8 3 [1x1,2x2,3x3] 93.60 96.77 96.83 96.77
Setting 9 3 [1x1,2x2,6x6] 93.54 96.60 97.32 96.60
Setting 10 3 [2x2,3x3,6x6] 92.19 95.53 96.12 95.53
Setting 11 3 [1x1,3x3,6x6] 93.98 96.85 97.34 96.85

Best values are in bold.
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Title 1 SAM ERGAS CcC RMSE Entropy
Reference 0 0 1 0 1 11.9569
CNMF 1.746 2353 0.849 00721 0.8477 14.6223
PC Spectral Sharpening 6763 3532 0.836 00769 0.8268 11.9977
HySure 5344 3786 0.799 00974 0.7782 14.9207
MAP-SMM 2852 1548 0922 05359 0.9205 14.7519
GLP 2529 3326 0862 02485 07631 14.5832
Proposed 1.632 2828 0944 0.1495 0.8641 15.0819
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Modeling Parameters L-DPNet Model D-

UNet Model
Input size 473x473 512x512
Training number of epochs 200 200
Base learning rate 0.0001 0.0001
Image input batch size 16 4
Gamma 0.1 0.96

Number of classes 2 2
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CCD: DigiCAM

Frame size 8956x6708 Pixel size 6 pm
40.30

Imaging sensor size mmx53.78 Bit depth 16bits
mm

FOV 56.2° Focal length 50mm

Ground resolution

@1000 m altitude 012m

Hyperspectral: AISA Eagle Il

Spectral range 400-970 nm Spatial pixels 1024

Focal length 18.1 mm Spectral resolution 33 nm
FOV 37.7° IFOV 0.037°
3 160
Maximum bands 488 Frame rate
frames/s

View zenith angle
range of
Bit depth 12bits | 5-55°
multi-angular
module (MAM)

Ground resolution
(cross-track)
0.68m
@1000 m altitude, nadir
view






OPS/images/fpls.2023.1289497/table2.jpg
Disease Ratio L of disease area to total leaf area

severity level

Level 1 0%<=L< 0.95%

Level 2 0.95%<= L< 1.50%
Level 3 1.50%<= L< 2.15%
Level 4 2.15%<= L< 3.00%

Level 5 L >=3.00%
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Training Validation Total
Original Aug Test Original Augmented
Level 1 238 476 36 38 312 550
Level 2 241 482 35 30 306 547
Level 3 219 1438 33 30 282 501
Level 4 196 392 25 30 251 447
Level 5 202 404 9 10 21 423
Total 1096 2192 138 138 1372 2468
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parameters numerical value

a 2.25E-4 + 2.20E-5
b -0.01.16E-2 + 1.11E-3
c -6.47E-4 + 1.72E-4
d 9.67E-2 + 9.38E-3
e 3.13E-1 + 4.02E-2
f -1.06E1 + 1.02

R? 0.905
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parameters numerical value

a -2.37E-3 + 7.48E-3
b -4.83B-1+ 1.74

c 421E-1 + 9.26E-2
d -1.07 + 3.99E-1
e -8.71 + 591

f 232,52 £2.92

R? 0.866
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Model AP APsq AP, APs APy

DETR 57.5 733 62.4 12 12.8 64.3 ‘
UP-DETR 59.1 763 63.8 6.3 18.5 65.4 ‘
YOLOV3 51.0 81.8 56.5 72 223 54.8 ‘

Skip DETR (ours) 65.8 82.1 70.8 7.6 225 73.3 ‘
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Model Epo APs APy

‘ DETR 100 07 88 59.4 ‘

‘ Ours 100 10 123 63.1 ‘

‘ DETR 200 12 1238 64.3 ‘

‘ Ours 200 76 25 733 ‘
300 60 211 731 ‘
300 121 324 819 ‘
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Model GFLOPS #params Epo APs,
‘ DETR 5.13 36.7M 100 523 67.7
‘ Ours 5.14 36.8M 100 56.1 744
‘ DETR 513 36.7M 200 57.5 733
‘ Ours 5.14 36.8M 200 65.8 82.1

513 36.7M 300 65.7 79.1

5.14 36.8M 300 74.1 86.8
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Class index

0 Drosicha contrahens (female) 218
1 Drosicha contrahens (male) 210
2 Chalcophora japonica 158
3 Anoplophora chinensis 426
4 Psacothea hilaris(Pascoe) 218
5 Apriona germari(Hope) 342
6 Monochamus alternatus 184
7 Plagiodera versicolora(Laicharting) 306
8 Latoia consocia(Walker) 290
9 Hyphantria cunea 303
10 Cnidocampa flavescens(Walker) 290
11 Cnidocampa flavescens(Walker) (pupa) 176
12 Erthesina full 280
13 Erthesina fullo (nymph) 156
14 Erthesina fullo (nymph2) 192
15 Spilarctia subcarnea(Walker) 188
16 Psilogramma menephron 218
17 Sericinus montela 364
18 Sericinus montela (larvae) 200
19 Clostera anachoreta 294
20 Micromelalopha troglodyta(Graeser) 238
21 Latoia consocia(Walker) (larvae) 204
22 Plagiodera versicolora(Laicharting) (larvae) 196
23 Plagiodera versicolora(Laicharting) (ovum) 134
24 Spilarctia subcarnea(Walker) (larvae) 186
25 Spilarctia subcarnea(Walker) (larvae 2) 164
26 Psilogramma menephron (larvae) 208
27 Cerambycidae (larvae) 196
28 Micromelalopha troglodyta(Graeser) 226
(larvae)
29 Hyphantria cunea (larvae) 224
30 Hyphantria cunea (pupa) 174
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Batch size 1

Epoch 300

Learn rate 0.00001






OPS/images/fpls.2023.1276728/im24.jpg





OPS/images/fpls.2023.1280445/fpls-14-1280445-g005.jpg





OPS/images/fpls.2023.1256935/im33.jpg
min(max(x), Qy + 1.5IQR)





OPS/images/fpls.2023.1219474/table1.jpg
Hardware

CPU Silver 4110
Memory 64GB
GPU Quadro P2000 5GB

Hard disk 2.5TB
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Methods Acc
Last one block output 95.8
Integration of the last two block outputs 95.9

Integration of all three block outputs 96.1
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Method Acc

1 Full 96.1
2 w/o EFLM 95.0
Improving branch

8 w/o AFFM 90.9

wlo SV 94.2
5 General branch Trained ResNet-50 739
6 Pre-tained ResNet-50 72.0

| No

7 w/i Multiple images & Hard voting 88.7
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Meth Backbone Acc F1
ACEDSNet (Li et al.,, 2021) | MobileNet %8 | -
ResNet-50 + DA (Huang et al., 2022) ResNet-50 97.1 96.1
Pre-trained DenseNet-169* (Huang et al., DenseNet-169 99.2 99.2
2017)

Pre-trained ResNet-50* (He et al., 2016) ResNet-50 99.7 99.7
Ours (general branch) ResNet-50 99.7 99.7
Ours (improving branch) ‘ ResNet-50 100 ‘ 100

The bolded lines are the results obtained by our method, to emphasize.
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Methods Backbone Acc | FL
Pre-trained ResNet-50* (He ResNet-50 99.4 99.4
et al, 2016)
Pre-trained DenseNet-169* DenseNet-169 99.6 99.6
(Huang et al.,, 2017)
MMAL* (Zhang et al., 2021) ResNet-50 99.8 99.8
Ours (general branch) ResNet-50 99.8 99.8
CNNs Ensemble + Exp + EfficientNetB0 + ResNet- 99.8 99.7
ExpLR (Nanni et al., 2022) 50

+ GoogleNet + ShuffleNet

+

MobileNetV2 + DenseNet-

201
MMALNet + DNVT + ResNet-50 + DenseNet-201 99.9 99.9
ResNet-50 + Ensemble (Xia + Transformer
et al,, 2023)
Ours (improving branch) ResNet-50 100 100

The bolded lines are the results obtained by our method, to emphasize.
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Metho Backbone Acc | F1
Pre-trained ResNet-50* (He ResNet-50 72.0 71.5
etal,, 2016)
Pre-trained DenseNet-169* DenseNet-169 72.8 72.5
(Huang et al., 2017)
MMAL* (Zhang et al., 2021) ResNet-50 73.1 72.8
BCL* (Zhu et al,, 2022) ResNet-50 73.1 72.8
ViT (Dosovitskiy et al., 2020) Transformer 73.4 72.7
PCNet (Zheng et al,, 2023) EfficientNetV2 73.7 -
Ours (general branch) ResNet-50 73.9 73.6
CNNs Ensemble + Exp + EfficientNetBO + ResNet- 74.1 73.0
ExpLR (Nanni et al., 2022) 50

+ GoogleNet + ShuffleNet

+

MobileNetV2 + DenseNet-

201
MMALNet + DNVT + ResNet-50 + DenseNet-201 | 74.2 67.8
ResNet-50 + Ensemble (Xia + Transformer
et al,, 2023)
MS-ALN + DL (Feng et al., ResNet-50 74.6 67.8
2022)
FRCF + LSMAE (Liu et al,, Transformer 74.7 74.4
2022)
AA-Trans (Wang et al,, 2023) Transformer 75.0 -
Ours (improving branch) ResNet-50 96.1 95.9

The bolded lines are the results obtained by our method, to emphasize.
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ST S2 S3

RMSE (%) RMSE (%) RMSE(%)
Vis Calibration 0.56 047 068 043 051 0.40
Validation 053 058 074 039 058 042
VIs+FVC Calibration 058 047 079 034 064 035
Validation 0.68 048 076 036 069 037
VIs+RDTI Calibration 0.62 044 075 037 055 039
Validation 077 054 0381 037 071 024
VIs+FVC+RDTI Calibration 0.63 044 084 029 0.80 025
Validation 078 036 086 030 080 035
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S1_GLCM S2_GLCM S3_GLCM

45° 90° 45° 90° 45° 90°

Green_Mean —-0.75 -0.75 =075 -0.76 —0.78 —-0.78 -0.78 -0.78 -0.80 -0.80 —0.80 -0.80
Green _Var -0.63 -0.63 ‘ -0.63 -0.64 -0.68 -0.68 -0.68 -0.68 ‘ -0.34 -0.34 -0.34 -0.34
Green _Hom 0.68 0.63 ‘ -0.33 0.71 0.46 0.32 0.04 0.31 ‘ 0.21 0.11 ‘ 0.11 0.20
Green _Con -0.62 -0.59 | -0.38 -0.65 -0.61 -0.64 -0.54 -0.66 -0.30 -0.29 -033 -0.38
Green _Dis -0.64 -0.60 ‘ -0.13 -0.67 -0.56 -0.52 -0.27 -0.53 -0.22 -0.17 -0.18 -0.27
Green _Ent -0.07 -0.21 -0.16 —-0.26 —-0.10 —=0.13 0.02 =0.12 -0.16 —-0.16 —=0.16 -0.18
Green _Sec 0.11 0.22 0.16 0.29 0.06 0.09 -0.07 0.08 0.17 0.16 0.15 0.18
Green _Cor -0.80 -0.79 -0.81 -0.74 -0.48 -049 -0.52 -0.38 -0.30 -045 0.15 0.12
Red_MEAN —-0.67 -0.67 -0.67 -0.67 -0.74 -0.74 -0.74 —0.74 -0.56 —-0.56 —-0.56 -0.56
Red _Var -0.57 -0.57 -0.57 -0.58 -0.59 -0.59 -0.59 -0.60 -0.49 -049 -049 -0.49
Red _Hom 0.62 0.59 0.50 0.63 0.76 0.75 0.69 0.74 0.57 0.53 051 0.58
Red _Con —-0.57 -0.57 -0.54 -0.59 —0.63 —0.60 -0.55 —-0.60 -0.53 -0.44 —0.46 -0.56
Red _Dis —-0.60 -0.59 -0.11 —0.62 —-0.69 —-0.67 -0.61 —-0.67 -0.55 —0.48 —0.48 -0.57
Red _Ent 049 -0.51 -0.51 -0.54 -0.78 -0.79 -0.78 -0.79 -0.56 -0.54 -0.55 -0.57
Red _Sec 0.44 0.46 0.42 0.49 0.79 0.80 0.79 0.80 0.55 0.54 054 0.56
Red _Cor -0.76 -0.78 -0.77 -0.66 -0.73 -0.54 -0.71 -0.70 -0.07 -0.23 -0.34 0.13
Reg_ Mean 0.70 0.70 0.70 0.70 0.62 0.62 0.62 0.62 0.48 0.48 0.48 048
Reg _Var 0.54 0.54 0.54 0.54 0.68 0.68 0.68 0.67 0.48 0.48 0.48 0.48
Reg _Hom -0.32 -0.41 | -0.67 —0.40 -0.59 —-0.60 -0.62 -0.61 -0.44 —0.44 —0.48 —-0.47
Reg _Con 052 0.54 0.60 0.54 0.66 0.69 0.69 0.66 047 0.48 0.50 0.49
Reg _Dis 0.49 051 0.63 051 0.64 0.66 0.66 0.64 047 0.47 0.50 0.49
Reg _Ent 0.64 0.63 0.63 0.63 0.57 057 057 0.56 0.44 0.44 042 043
Reg _Sec -0.63 -0.63 -0.63 —0.63 —0.56 —-0.56 -0.56 —0.55 -043 —-0.43 -041 -0.42
Reg _Cor -0.74 -0.66 -0.69 -0.73 -0.25 =032 -0.28 -0.11 0.03 0.02 0.01 -0.18
Nir_ Mean 0.70 0.70 : 0.70 0.70 0.77 077 0.77 077 0.60 0.60 0.60 0.59
Nir _Var 0.63 0.63 0.63 0.62 0.82 0.82 0.82 0.82 0.63 0.63 ‘ 0.63 0.63
Nir _Hom 0.56 028 | -0.79 043 -0.68 -0.68 -0.68 -0.68 -0.49 -0.52 -0.55 -0.52
Nir _Con 0.48 071 ‘ 0.83 0.55 0.81 0.81 0.80 0.81 0.61 0.63 0.65 0.63
Nir _Dis 0.30 0.64 0.83 0.39 0.78 0.78 0.76 0.77 0.57 0.61 0.62 0.60
Nir _Ent 0.62 0.57 ‘ 0.59 0.54 0.61 0.60 0.61 0.60 0.44 0.43 0.40 0.42
Nir _Sec -0.55 -0.50 -0.52 -0.49 -0.60 -0.59 -0.59 -0.58 -0.41 -0.39 -0.36 -0.38
Nir _Cor -0.59 -0.72 -0.80 -0.57 -0.12 -0.04 -0.23 -0.02 0.20 0.06 0.01 0.06

Green_Mean is the mean texture feature of Green, and others analogously.
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Vis
Green

Red

Reg
NIR
NDVI
SAVI
GNDVI
RDVI
OSAVI
MSR
DVI
RVI

NLI

Formula

Green band reflectance

Red band reflectance

Reg band reflectance

Nir band reflectance

NDVI = (Nir - Red)/(Nir + Red)

SAVI = 1.5%(Nir — Red))/(Nir + Red)+ 0.5)
GNDVI = (Nir — Green)/(Nir + Green)
RDVI = (Nir - Red)/(Nir + Red)"?
OSAVI = 1.16x(Nir — Red)/(Nir + Red + 0.16)
MSR = (Nit/Red — 1)/(Nir/Red + 1)

DVI = Nir — Red

RVI = Nir/Red

NLI = (Nir® - Red)/(Nir® + Red)

(Carlson and Ripley, 1997)
(Huete et al., 1992)

(Buschmann and Nagel, 1993)
(Broge and Leblanc, 2001)
(Rondeaux et al., 1996)

(Sims and Gamon, 2002)
(Richardson and Wiegand, 1977)
(Schlerf et al., 2005)

(Pu et al,, 2008)
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Central wavelength (nm)

Bandwidth (nm)

Green 550 40
Red 660 40
Reg 735 10
Nir 790 40
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A Detection results with YOLO v5 model B Detection results with improved YOLO v5 model
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YOLOV5 Improved YOLOvV5

model model
Average detection time (s/ 0.83 7.53
image)
Overall pest detection 65 96

precision (%)

Tobacco whitefly detection 92 97
precision (%)

Thrips detection precision 80 83
(%)

Aphid detection precision 56 98
(%)

Leaf miner detection 41 99

precision (%)

Fruit fly detection precision 88 99
(%)
Housefly detection precision 30 98

(%)
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# # # # winged # leaf # fruit # total

images tobacco thrips aphids miners flies i pests
whiteflies
Training 450 1,024 ‘ 857 1,092 941 873 1,013 5,800
set

Test set 80 5,832 ‘ 2,928 1,001 460 890 267 12,014
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Image collection

Pest identification model

# Pest

Application sce-
narios

Year

References

approach

Internet-based

Crop surface

Trapping containers

Sticky boards

“/” means data not available.

species

CaffeNet 9 Paddy 2018 (Alfarisy et al.,
2018)
SVM, KNN, AlexNet, GoogleNet, VGGNet, ResNet 102 / 2019 (Wu et al.,
2019)
EffcientNetB0, ResNet50, GoogleNet, ShuffleNet, 122 / 2022 (Nanni et al.,
MobileNetv2, DenseNet201 2022)
Unsupervised feature learning 40 Corn, soybean, wheat, 2018 (Xie et al.,
and canola 2018)
SSD512, RetinaNet, FCOS, Faster R-CNN, FPN, Cascade 14 Wheat, rice, corn, and 2021 (Wang et al.,
R-CNN rape 2021)
SNIPER, ClusDet, DMNet, DCTDet, DCTDet + 1 Wheat 2022 (Du et al,, 2022)
YOLOV3, etc.
RetinaNet 6 Pine forests 2018 (Sun et al,,
2018)
ResNet 5 Paddy 2020 (Yao et al,,
2020)
YOLOVS 2 Paddy and vineyard 2023 | (Teixeira etal,
2023)
Faster RCNN, SSD, YOLOv3, and Cascade R-CNN 24 Field crops 2020 (Wang et al.,
2020b)
CNN 4 Tomato and lisianthus 2020 (Rustia et al.,
greenhouse 2021a)
Faster R-CNN, TPest-RCNN 2 Green pepper greenhouse 2021 (Li et al., 2021a)
YOLOvVS 4 Witloof chicory 2023 (Kalfas et al.,
2023)
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