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Editorial on the Research Topic
High-throughput sequencing-based investigation of chronic disease
markers and mechanisms, volume II

Introduction

Second-generation (short-read, massively parallel) sequencing and third-generation
(long-read, single-molecule) sequencing technologies have matured rapidly, irreversibly
altering how we interrogate human health and disease. A series of Frontiers in genetics
Research Topics highlight this area (Orlov and Baranova, 2020; Anashkina et al., 2023).
Building on the inaugural 2022 Research Topic (Orlov et al., 2022), this second volume of
“High-throughput Sequencing-based Investigation of Chronic Disease Markers and
Mechanisms” (https://www.frontiersin.org/research-topics/53085/high-throughput-
sequencing-based-investigation-of-chronic-disease-markers-and-mechanisms-volume-ii/
articles) again harnesses deep sequencing technologies, sophisticated analytics, and cross-
scale validation to illuminate biomarkers and mechanisms that underlie a spectrum of
chronic conditions - from inflammatory bowel disease to neuromuscular degeneration and
pandemic infection. Together, the nine articles accepted in this Research Topic exemplify
three converging trends: (i) omics integration across genome, epigenome, transcriptome
and proteome; (ii) fast sequencing applications that translate into clinically actionable
diagnostics; and (iii) mechanistic dissection of how candidate markers shape or signal
pathophysiology.
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Gastrointestinal and metabolic
diseases: decoding tissue-specific
signatures

Crohn’s disease remains clinically heterogeneous and
therapeutically stubborn. Yang et al. performed bulk RNA-seq of
intact bowel walls and revealed two strikingly upregulated
transcripts, PDE1A [OMIM 171890] and SEMA3D [OMIM
609907], associated with smooth muscle cell apoptosis and
autonomic dysregulation, respectively, providing a plausible axis
for the distinctive neuromuscular complications of this disease.

Turning to metabolic syndromes, Yao et al. mined public
expression datasets, intersected them with ER-stress gene sets,
and narrowed 49 differentially expressed genes down to three
diagnostic markers - CLGN [OMIM 601858], ILF2 [OMIM
603181], IMPA1 [OMIM 602064] - that were subsequently
validated in mouse models and patient sera. The study
underscores how in silico LASSO feature selection, when wedded
to wet-lab confirmation, can yield serum-accessible biomarkers for
type 2 diabetes mellitus.

Oncology: multi-omics and precise
mutation discovery

Two cancer-focused articles showcase complementary high-
throughput strategies. Wang et al. isolated a circulating bio-active
peptide (YG-22) generated when adjuvant chemotherapy was
combined with the traditional Chinese Jianpi formula; multi-layer
omics (transcriptome, metabolome, chromatin accessibility,
H3K4me3 ChIP-seq, NF-κB ChIP-seq) revealed that YG-22
reprograms epigenetic states and lysosomal pathways to suppress
colorectal cancer cell viability. This study demonstrates the added
value of peptide therapeutics derived from phytochemical regimens.

At the single-gene end of the spectrum, Zhang et al. applied
targeted next-generation sequencing to four myeloproliferative-
neoplasm cases that were “triple negative” by canonical testing,
unmasking novel driver lesions and arguing for routine targeted
sequencing in ambiguous myeloid diagnoses.

Neuromuscular and
neurodevelopmental research: from
modifiers to toxicants

By pairing bulk and single-nucleus RNA-seq in healthy vastus
lateralis versus tibialis anterior, Nieves-Rodriguez et al.
identified >3,400 genes - including those related to calcium
release and collagen-containing extracellular matrix transcripts -
that may dictate differential vulnerability of muscles in Duchenne
muscular dystrophy, supplying an invaluable reference for stratified
gene-therapy design.

Li et al. then leveraged whole-exome sequencing of 113 patients
with intellectual disability to uncover a novel de novo
SYNGAP1 [OMIM 603384] splice-site variant (c.664-2A>G).
Minigene assays confirmed exon 7 skipping, emphasizing that
modest intronic changes that are detectable by high-depth
sequencing can produce profound neurodevelopmental phenotypes.

Complementing human genetics, Lyu et al. used comparative
transcriptomics in zebrafish embryos to show that extremely small
iron-oxide nanoparticles (ESIONPs) perturb neuro-muscular
development and trigger ferroptosis. Weighted gene co-
expression network analysis (WGCNA) pinpointed stage-specific
hub genes (highly connected nodes in the network), such as
neurodevelopmental regulators and oxidative-stress mediators,
whose dysregulation, together with elevated apoptosis markers,
signals potential health risks of nanoparticle biomedical imaging.

Infection and immunity: from viral
alternative polyadenylation to host
GWAS loci

The interface between host gene regulation and pathogen assault
is another recurring theme. Tan et al. profiled grass-carp cells during
early grass carp reovirus infection and uncovered extensive shifts in
alternative polyadenylation (APA) despite stable DNA methylation
patterns, particularly affecting cytoskeletal and microtubule genes -
an underappreciated layer of post-transcriptional control in fish
viral pathogenesis.

On the human front, Loktionov et al. genotyped 10 GWAS-
significant loci in nearly 800 Russians and confirmed that the
SLC6A20-LZTFL1 rs17713054 risk allele magnifies severe
COVID-19 particularly in obese, low-activity, or low-dietary-fruit
subgroups, with concordant effects on thrombodynamics. Network
analyses further highlighted interactive SNP constellations linking
coagulation and immune genes. Such population-targeted validation
of multi-locus risk underlines the translational scope of sequencing
even after the acute pandemic phase.

Methodological cross-talk and shared
biological threads

The field of gene expression regulation including chronic disease
markers has been covered in a Frontiers in Genetics Research Topic
(Anashkina et al., 2023) based on omics data integration.
Sequencing technologies give background for gene expression
regulation studies at genome scale (Anashkina et al., 2021; Orlov
et al., 2023).

Across the current Research Topic, several common
methodological themes emerge. First, multi-omics integration -
whether combining peptidomics with chromatin readouts, or
pairing methylome and APA maps - magnifies biological signals
and reveals underlying mechanisms. Second, targeted or panel-
based sequencing continues to sharpen genetic diagnosis where
standard assays falter. Third, bioinformatics methods (WGCNA,
LASSO, SNP-SNP interaction models) distill high-dimensional data
into clinically tractable results.

Biologically, six recurrent pathways unite otherwise disparate
studies: ER stress, calcium homeostasis, apoptotic regulation,
extracellular-matrix remodeling, innate immune activation, and
ferroptosis. This convergence reinforces the idea that chronic
diseases, despite tissue specificity, share certain conserved
response architectures that are captured by high-throughput
sequencing.
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Outlook

Together, the nine articles in this volume broaden the map of
chronic-disease markers, bring sequencing into daily clinical
applications, and deepen our grasp of how genetic and epigenetic
patterns drive long-term illness. Looking forward to this Research
Topic development, we may anticipate:

• Single-cell and spatial omics will dissect cell type-restricted
marker function within complex tissues such as muscle, gut,
and tumor microenvironments.

• Long-read platforms will resolve structural and splice
isoform diversity.

• Prospective, multi-center cohorts integrating more data (e.g.,
diet, exercise) with host genetics, as illustrated in the COVID-
19 study, will refine gene-environment risk algorithms.

• In addition, from the current perspective, AI applications will
get a more important role in complex disease studies
(Koshechkin et al., 2022; Zhang et al., 2024).
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Case report: Application of
targeted NGS for the detection of
non-canonical driver variants
in MPN
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Background: JAK2, CALR, and MPL gene mutations are recognized as driver
mutations of myeloproliferative neoplasms (MPNs). MPNs without these
mutations are called triple-negative (TN) MPNs. Recently, novel mutation loci
were continuously discovered using next-generation sequencing (NGS), along
with continued discussion and modification of the traditional TN MPN.

Case presentation: Novel pathogenic mutations were discovered by targeted
NGS in 4 patients who were diagnosed as JAK2 unmutated polycythaemia vera
(PV) or TN MPN. Cases 1, 2, and 3 were of patients with PV, essential
thrombocythemia (ET), and primary myelofibrosis (PMF); NGS detected
JAK2 p.H538_K539delinsQL (uncommon), CALR p.E380Rfs*51 (novel), and MPL
p.W515_Q516del (novel) mutations. Case 4 involved a patient with PMF; JAK2,
CALR, or MPLmutations were not detected by qPCR or NGS, but a novel mutation
SH2B3 p.S337Ffs*3, which is associated with the JAK/STAT signal transduction
pathway, was found by NGS.

Conclusion: NGS, a more multidimensional and comprehensive gene mutation
detection, is required for patients suspected of having MPN to detect non-
canonical driver variants and avoid the misdiagnosis of TN MPN.
SH2B3 p.S337Ffs*3 can drive MPN occurrence, and SH2B3 mutation may also
be a driver mutation of MPN.

KEYWORDS

triple-negative myeloproliferative neoplasm, next-generation sequencing, JAK2, CALR,
MPL, SH2B3

Introduction

Myeloproliferative neoplasms (MPNs) are a group of myeloid tumours characterised
by relatively normal differentiation but uncontrolled proliferation of myeloid
granulocytes, erythroid cells, and/or megakaryocytes. Classic MPNs include
polycythaemia vera (PV, Phenotype MIM number 263300), essential
thrombocythemia (ET), and primary myelofibrosis (PMF, Phenotype MIM number
254450) (Arber et al., 2016). The main mechanism of MPN is mutations in genes
associated with the JAK/STAT signal transduction pathway, driving excessive
proliferation of myeloid cells (Grinfeld et al., 2018). According to the 5th edition of
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the World Health Organization (WHO) Classification of
Haematolymphoid Tumours (Khoury et al., 2022), in addition
to blood cell counts and bone marrow biopsy, one of the major
diagnostic criteria is the existence of JAK2, CALR, and/or MPL
mutations. Approximately 80%–90% of patients with MPN have
these driver gene mutations, while the others are patients with
triple-negative (TN) MPN and a worse prognosis (Passamonti
and Maffioli, 2016; Rumi and Cazzola, 2017).

Currently, there are three commonly used detection methods for
MPN gene mutations: fluorescent quantitative PCR (qPCR)
(Supplementary Material S1), Sanger sequencing (Supplementary
Material S2), and targeted next-generation sequencing (NGS)
(Supplementary Material S3). In qPCR, the hybridization probes
were designed based on the hotspot mutations of JAK2, CALR, and
MPL. qPCR is characterised by its high sensitivity, short detection
time, and fair price. However, qPCR also has defects: it requires
specific primers, so novel and non-hotspot mutations cannot be
detected. Sanger sequencing covers more mutations than qPCR
does, but its sensitivity is relatively low (15%–20%), implying
that the mutation cannot be detected if the variant allele
frequency (VAF) is lower than 15%–20%. More than 98% of
mutations can be detected using the high-throughput and high-

sensitivity approach of targeted NGS. Both known and novel
mutations of MPN are covered with a high sensitivity at a
higher cost.

When applied to MPN patients to detect relevant mutations,
both qPCR and Sanger sequencing have defects such as incomplete
covering loci or low sensitivity. As a result, targeted NGS is especially
important for the diagnosis of triple-negative MPN.

Case description

Case 1 (P1) was of a 30-year-old female patient with PV, who
exhibited increased haemoglobin level 4 years ago and then
underwent bone marrow aspiration and biopsy in a local
hospital. The usual MPN-related gene mutations (Table 1) were
not detected using qPCR and the bone marrow biopsy result at the
initial diagnosis was lost. She was diagnosed with JAK2 unmutated
PV at the same hospital and underwent phlebotomy and oral aspirin
therapy. The patient visited our hospital in October 2020, and her
haemoglobin level was 198.0 g/L. Bone marrow biopsy was
conducted again, and the results confirmed diagnosis of MPN
(Table 2; Figure 1). Targeted NGS revealed the presence of
JAK2 exon12 mutation (p.H538_K539delinsQL) (Figure 2) with a
VAF of 20.9%. This mutation is very rare, and was reported only few
times in the COSMIC database before May 2023. COSMIC is the
catalogue of somatic mutations in cancer, and is the world’s largest
and most comprehensive resource for exploring the impact of
somatic mutations in human cancer (https://cancer.sanger.ac.uk/
cosmic?genome=37). It was omitted from initial diagnosis because
qPCR did not include this locus.

Case 2 (P2) was of a 56-year-old female patient with ET. The
patient presented with dizziness when she first visited the hospital,
after which an increased platelet count was noted. She underwent
routine blood tests regularly, and the platelet count increased
progressively to 812.0 × 10̂9/L. Conditions involving increasing
number of reactive platelets, such as in infection, bleeding, or
tumours, were excluded. The patient then underwent bone
marrow aspiration and biopsy. Aspirated bone marrow films
showed clues of MPN (Table 2; Figure 1). MPN-related gene

TABLE 1 Common MPN driver mutations.

Gene Mutation type

JAK2 p.V617F

p.N542_E543del

p.E543_D544del

p.K539L

CALR p.L367fs*46

p.K385fs*47

MPL p.W515K/A/L/R/S

p.S505N

MPN: myeloproliferative neoplasm. del: delete. fs: frame-shift.

TABLE 2 Bone marrow examinations.

P1-PV P2-ET P3-PMF P4-PMF

Films of bone
marrow

The percentage of erythrocytes increased,
and the central pale area of mature
erythrocytes disappeared

Increased platelets Mature erythrocytes varied in size Mature erythrocytes varied in size

Nucleated and tear-drop
erythrocytes were found

Nucleated erythrocytes were
found

Bone marrow
biopsy

Significant hypercellularity (~90%),
proliferation of erythrocytes, slightly
proliferation of megakaryocytes, MF-1.
MPN to be determined

Hypercellularity (~50%),
hyperlobulated megakaryocytes
were found

Hypocellularity (~30%), and there
were megakaryocytes with atypical
and bare nuclei. MF-3

Hypocellularity (~30%),
megakaryocytes with atypical, bare
nuclei and cloud-like nuclei were
found. MF-2

Flow cytometry No significant abnormalities were found — — —

Karyotype 46, XX — 46, XX —

Next-generation
sequencing

JAK2 p.H538_K539delinsQL CALR p.E380Rfs*51 MPL p.W515_Q516del SH2B3 p.S337Ffs*3

NFE2 p.R284C ASXL1 p.G996Sfs*3

TET2 p.Q622* EZH2 p.C590Y

—: The patient did not accept the test.
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mutations were found to be negative using Sanger sequencing. After
6 months of close monitoring, the platelet count did not decrease.
Therefore, targeted NGS was conducted, and CALR
p.E380Rfs*51 was detected with a VAF of 12.3% (Figure 2).

NFE2 p.R284C with a VAF of 14.9%, and TET2 p.Q622* with a
VAF of 9.6% were also detected. CALR p.E380Rfs*51 is a novel
driver variant; therefore, any relevant report was not retrieved from
the COSMIC. Because of the relatively low sensitivity of Sanger

FIGURE 1
Bone marrow sections of the four patients. Case 1: The red arrow showed erythroblast proliferation, supporting the diagnosis of polycythemia vera.
Case 2: The blue arrow showed hyperlobulated megakaryocyte, supporting the diagnosis of essential thrombocythemia. Case 3 and Case 4: The green
arrow showed megakaryocytes with atypical and bare nucleus, supporting the diagnosis of primary myelofibrosis.

FIGURE 2
Genomic landscape of myeloproliferative neoplasms. (A) Driver gene mutation frequencies. (B–D) MPL, JAK2 and CALR gene structures. The red
dots represent hotspot mutations in COSMIC. The gray arrows represent rare/novel mutations of the cases (MPL p.W515_Q516del, JAK2 p.H538_
K539delinsQL, CALR p.E380Rfs*51).
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sequencing (15%–20%), the mutation was eliminated at initial
diagnosis. Subsequently, the patient was administered interferon
therapy. After 2 months of treatment, the platelet count decreased to
761 × 10̂9/L. The patient then switched to oral hydroxyurea therapy
and maintained a stable platelet count that varied in the range of
560–630 × 10̂9/L.

Case 3 (P3) was of a 36-year-old patient with PMF. She was
admitted to our hospital because of pleomorphic adenoma,
splenomegaly (with a thickness of 6.3 cm), anaemia, increased
leukocyte count, platelet count, and lactate dehydrogenase (LDH)
level (954 U/L). Additionally, the patient had constitutional
symptoms of night sweats and weight loss. She underwent bone
marrow aspiration and biopsy. Peripheral blood films and bone
marrow tissues confirmed the diagnosis of MPN (Table 2; Figure 1).
Common MPN-related mutations were confirmed to be negative
using qPCR. Targeted NGS was performed, and the MPL p.W515_
Q516del (Figure 2) mutation with a VAF of 68.9% was identified.
ASXL1 p.G996Sfs*3 with a VAF of 46.7%, and EZH2 p.C590Y with a
VAF of 48.3% were also identified. MPL p.W515_Q516del is a novel
driver variant, and has not been reported in the COSMIC. qPCR did
not cover this locus; therefore, this mutation was omitted. After
3 months of treatment with JAK2 inhibitor, the platelet count
decreased to normal, constitutional symptoms disappeared, and
the spleen shrank by more than 50%.

Case 4 (P4) was of a 65-year-old patient with PMF who was
diagnosed with triple-negative MPN 3 years ago. He presented to the
hospital with fatigue and dyspnoea lasting 8 months. The patient
exhibited constitutional symptoms including significant weight loss of
7.5 kg in 20 days. After admission to the hospital, anaemia, increased
LDH level (998 U/L), and splenomegaly (with a thickness of 4.7 cm)
were observed. Peripheral blood smears and bone marrow tissues
revealed the diagnosis the MPN (Table 2; Figure 1). Both qPCR and
targeted NGS did not detect JAK2, CALR, or MPL mutations; however,
the SH2B3 p.S337Ffs*3 with a VAF of 37.3%, which is associated with
JAK/STAT signal transduction pathway, was detected by NGS. The
mutation is novel; therefore, any relevant report was not retrieved from
the COSMIC. After receiving stimulus to erythrocytes and support
treatment, the patient voluntarily left the hospital.

Discussion

JAK2 gene is located on chromosome 9p24 and encodes one of the
four non-receptor tyrosine kinases of the Janus kinase (JAK) family
which is involved in the JAK/STAT signal transduction pathway. Its
abnormalities, such as those due to mutations, loss of heterozygosity
(LOH) on the short arm of chromosome 9 (9p LOH), and copy
amplification, are common in haematologic tumours, inducing
consistent activation of the JAK/STAT pathway and eventual
incidence and progression of disease (Kralovics et al., 2005).
JAK2 mutations can be found in approximately 98% of PV, 50%–
60% of ET, and 50%–60% PMF cases. Common JAK2 mutations are
p.V617F (in exon14), whereas a minor number are due to deletion/
insertion in exon12 which is clustered in amino acids 535–547, such as
p.N542_E543del. Mutations in exon12 can be found in approximately
1%–3% of PV patients, and are very rare in ET and PMF patients (Scott
et al., 2007). P1 (a PV patient) possessed JAK2 p.H538_K539delinsQL
mutation, and the incomplete covering sites of qPCR led to the omission.

We then performed pathogenicity prediction analysis using Mutation
taster, a pathogenicity prediction tool; JAK2 p.H538_K539delinsQL is
predicted to be deleterious (Schwarz et al., 2014).

Patients who have typical clinical patterns of PV but lack
JAK2 V617F or JAK2 exon 12 mutations are extremely rare
(Rumi and Cazzola, 2017). Therefore, when facing these patients,
clinicians should perform the differential diagnosis again. If the
diagnosis is confirmed, then NGS should be employed to determine
whether the patient has an unusual JAK2 mutation.

CALR gene is located on chromosome 19p13 and encodes for a
multifunctional calreticulin residing in the endoplasmic reticulum and
nucleus. Calreticulin cooperates with other molecules to maintain
calcium ion homeostasis, and regulate cell proliferation, apoptosis, and
migration. CALR mutations mainly include deletion/insertion in exon9,
with type 1 (p.L367Tfs*46), and type 2 (p.K385Nfs*47) comprising about
84.7%, while other types are relatively rare. The frame-shift mutation of
CALR exon9 conduces a new C-terminal, activating MPL and JAK/
STAT pathways that are vital pathogenic factors of MPN. CALR
mutations can be found in 20%–30% of ET and 30%–40% of PMF
cases, whereas they are rare in PV (Imai et al., 2017;How et al., 2019). The
CALR p.E380Rfs*51 of P2 (a ET patient) is a newly occurring type with a
low VAF value; as a result, it was omitted by Sanger sequencing. This
mutation is predicted to be deleterious using Mutation taster.

Triple-negative ET patients seemed to have better overall survival
than driver gene mutated patients. Tefferi A et al. reported that TN ET
patients displayed lower incidence of thrombosis compared with JAK2-
mutated cases (Tefferi et al., 2014a). In another study, TNETpatients had
significantly lower symptom load, and slightly longer survival than
mutated cases (Santoro et al., 2022). Considering these differences, it
is necessary to apply targeted NGS to detect non-canonical driver
variants.

MPL, which is located on chromosome 1p34, encodes
thrombopoietin receptor protein (TpoR) and participates in the
activation of JAK/STAT signal transduction pathway. MPL
mutations are clustered at exon10; W515 and S505 locus
missense mutations are the most frequent types, and other types
(such as S204, Y591, and R592) are occasionally found. MPL
mutations can result in over-activation of JAK/STAT, promoting
the occurrence of tumours. MPL mutations can be found in
approximately 3%–5% of ET and 5%–10% of PMF cases, while
they are rarely seen in PV (Cabagnols et al., 2016; Milosevic Feenstra
et al., 2016). The MPL p.W515_Q516del mutation of P3 (a PMF
patient) is also a newly occurring mutation type. It was excluded
because qPCR did not cover the locus, either. The analysis by
Mutation taster showed this mutation leads to amino acid
sequence change, whereas it may be benign.

Triple-negative PMF is an aggressive myeloid neoplasm with
significantly worse survival than driver gene mutated cases. A study
examined the long-term disease outcomes in 428 patients with PMF
(Tefferi et al., 2014b). They discovered that TN PMF patients
displayed significantly worse survival (median, 2.3 years),
compared to that of CALR (15.9 years), JAK2 (5.9 years), or MPL
(9.9 years) mutated patients. Leukaemia-free survival (LFS) in PMF
was significantly worse in the presence of triple-negative mutational
status, either. Therefore, it is important to distinguish between real
and pseudo TN PMF. In our study, P3 responded well to the
JAK2 inhibitor, also implying that the patient may not be a real
TN PMF patient.

Frontiers in Genetics frontiersin.org04

Zhang et al. 10.3389/fgene.2023.1198834

11

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1198834


To sum up, targeted NGS should be applied to detect non-canonical
and low burden driver variants in MPN, such as JAK2 p.H538_
K539delinsQL, CALR p.E380Rfs*51, and MPL p.W515_Q516del, to
avoid the misdiagnosis of JAK2 unmutated PV and TN MPN.

SH2B3 is located on chromosome 12q24, encoding the LNK protein
which can inhibit JAK/STAT signal transduction pathway by directly
binding to JAK2 (Tong et al., 2005; Bersenev et al., 2008).
SH2B3 mutations occurred in 5%–7% MPN patients, and the
majority are frame-shift-truncated and non-sense mutations in the
PH and SH2 domains, resulting in loss of function (Lasho et al.,
2010; Maslah et al., 2017). SH2B3 p.S337Ffs*3 of P4 leads to the
early emergence of stop codon, and shortens the length of mRNA
significantly. Consequently, nonsense-mediated mRNA decay occurs,
and LNK protein cannot be synthesized. The mutation is clearly
deleterious. In summary, SH2B3 mutation is able to relieve the
reverse regulating effect of LNK, and over-activate JAK/STAT. As
mentioned above, MPN is characterized by elevated JAK/STAT
activity, thus SH2B3 mutation may also be a driver mutation of MPN.

In summary, P1 was formerly misdiagnosed as JAK2 unmutated
PV, P2 and P3 were formerly misdiagnosed as triple-negative MPN,
but all later detected to contain non-canonical driver mutations by
targeted NGS. P4 did not have JAK2, CALR or MPL mutations, but
was detected to contain a mutation involved in the negative
regulation of JAK/STAT pathway by targeted NGS. All these
cases imply the important role of NGS in detecting MPN-related
mutations. qPCR does not cover the complete loci and the sensitivity
of Sanger sequencing is relatively low, consequently, about 5%–10%
mutations can be eliminated. NGS can detect both canonical and
non-canonical mutations, and the sensitivity of NGS is higher than
that of qPCR and Sanger sequencing. Notably, NGS can detect JAK2,
CALR, and MPL mutations as well as other mutations (such as
SH2B3 and NFE2) that are associated with the JAK/STAT pathway
and haematopoiesis regulation, favouring the discovery of new
driver mutations inMPN (Jeromin et al., 2016; Zoi and Cross, 2017).

Conclusion

NGS, a more multidimensional and comprehensive gene mutation
detection, is required for patients suspected of having MPN to detect
non-canonical driver variants and avoid the misdiagnosis of TN MPN.
SH2B3 p.S337Ffs*3 can drive MPN occurrence, and SH2B3 mutation
may also be a driver mutation of MPN.
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Transcriptomic analysis of paired
healthy human skeletal muscles to
identify modulators of disease
severity in DMD

Shirley Nieves-Rodriguez1,2, Florian Barthélémy2,3,
Jeremy D. Woods4†, Emilie D. Douine2,5, Richard T. Wang1,2,
Deirdre D. Scripture-Adams2,3, Kevin N. Chesmore1,2,
Francesca Galasso1, M. Carrie Miceli2,3 and Stanley F. Nelson1,2,5,6*
1Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles,
Los Angeles, CA, United States, 2Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA,
United States, 3Department of Microbiology, David Geffen School of Medicine and College of Letters and
Sciences, University of California, Los Angeles, Los Angeles, CA, United States, 4Department of Pediatrics,
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5Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los
Angeles, CA, United States, 6Department of Pathology and Laboratory Medicine, David Geffen School of
Medicine, University of California, Los Angeles, Los Angeles, CA, United States

Muscle damage and fibro-fatty replacement of skeletal muscles is a main
pathologic feature of Duchenne muscular dystrophy (DMD) with more
proximal muscles affected earlier and more distal affected later in the disease
course, suggesting that different skeletal muscle groups possess distinctive
characteristics that influence their susceptibility to disease. To explore
transcriptomic factors driving differential gene expression and modulating
DMD skeletal muscle severity, we characterized the transcriptome of vastus
lateralis (VL), a more proximal and susceptible muscle, relative to tibialis
anterior (TA), a more distal and protected muscle, in 15 healthy individuals
using bulk RNA sequencing to identify gene expression differences that may
mediate their relative susceptibility to damage with loss of dystrophin. Matching
single nuclei RNA sequencing data was generated for 3 of the healthy individuals,
to infer cell composition in the bulk RNA sequencing dataset and to improve
mapping of differentially expressed genes to their cell source of expression. A total
of 3,410 differentially expressed genes were identified and mapped to cell type
using single nuclei RNA sequencing of muscle, including long non-coding RNAs
and protein coding genes. There was an enrichment of genes involved in calcium
release from the sarcoplasmic reticulum, particularly in the myofibers and these
myofiber genes were higher in the VL. There was an enrichment of genes in
“Collagen-Containing Extracellular Matrix” expressed by fibroblasts, endothelial,
smoothmuscle and pericytes, withmost genes higher in the TA, as well as genes in
“Regulation Of Apoptotic Process” expressed across all cell types. Previously
reported genetic modifiers were also enriched within the differentially
expressed genes. We also identify 6 genes with differential isoform usage
between the VL and TA. Lastly, we integrate our findings with DMD RNA
sequencing data from the TA, and identify “Collagen-Containing Extracellular
Matrix” and “Negative Regulation Of Apoptotic Process” as differentially expressed
between DMD compared to healthy. Collectively, these findings propose novel
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candidate mechanisms that may mediate differential muscle susceptibility in
muscular dystrophies and provide new insight into potential therapeutic targets.

KEYWORDS

muscle, transcriptomics, DMD, muscle susceptibility, gene expression, single nuclei
RNAseq

1 Introduction

Duchenne muscular dystrophy (DMD) is the most common
progressive muscular dystrophy with childhood onset, and is caused
by loss of function mutations in DMD (Hoffman et al., 1987),
leading to profound weakness and premature death, mainly from
cardiorespiratory failure. DMD encodes dystrophin, which plays a
critical structural role in skeletal and cardiac muscle fibers by linking
the intra-myofiber F-actin of the Z-disk to the extracellular matrix
through binding components of the dystrophin-associated
glycoprotein complex at the muscle membrane (Hoffman et al.,
1987; Way et al., 1992). Absence of dystrophin in skeletal muscle
leads to greater susceptibility to damage from contraction-induced
injury (Petrof et al., 1993), resulting in leakage of calcium into the
myofiber with a plethora of downstream consequences ultimately
leading to myofiber death and replacement with fat and fibrosis.
Fibroblasts, immune cells, and muscle stem cells are expanded,
changing the extracellular matrix (Scripture-Adams et al., 2022). A
large number of other muscular dystrophies have had their genetic
basis decoded and many are components of the dystrophin-
glycoprotein complex (Cohen et al., 2021), including Limb-girdle
muscular dystrophies (LGMDs) with similar patterns of muscle loss
from proximal to more distal.

While DMD is always degenerative and leads to premature
death, variation in disease progression between individuals in DMD
has been used to identify genetic factors correlated with disease
severity or progression. Disease severity is mitigated with residual
dystrophin expression which usually results in slowing of disease
progression (Fanin et al., 1995). However, even in cases of siblings
with DMD who have the same DMD mutation, there can be
discordance in the progression (Pettygrove et al., 2014),
indicating that environmental or other genetic factors may
modify disease severity. Various studies use variability in age at
loss of ambulation (LOA) (Pegoraro et al., 2011; Flanigan et al., 2013;
Bello et al., 2016; Weiss et al., 2018; Spitali et al., 2020) to identify
variants associated with disease progression.

The overall pattern of sequentially affected muscles in DMD is
highly similar across affected individuals and describes a distinctive
pattern of progression with more proximal muscles affected earlier
than more distal muscles (Rooney et al., 2020), suggesting that
constitutive differences in the formation of those muscle groups
encode factors that influence relative myofiber susceptibility to
damage. Therefore, the study of healthy muscle may provide
insights into susceptibility mechanisms in disease. An extreme
example of protected striated muscles in DMD across multiple
species are the extraocular muscles (EOM) (Karpati et al., 1988;
Valentine et al., 1990; Kaminski et al., 1992). However, the
functional requirements of EOM are substantially different from
limb skeletal muscle. EOM have multiple innervated fibers,
compartmentalization of layers with different fiber types,

expression of EOM-specific myosin isoforms (encoded by
MYH13, MYH15), and partial retention of embryonic and
neonatal myosin expression in mature fibers (Porter, 2002).
Differential gene expression studies in mouse (Porter et al., 2001)
and rat (Fischer et al., 2002) highlighted calcium homeostasis,
mitochondrial genes, lipid catabolism, immune processes,
apoptosis, and extracellular matrix.

Here we study healthy muscle tissue from vastus lateralis
(VL) and tibialis anterior (TA), to identify genes that alter
myofiber susceptibility to fibrofatty replacement in DMD
individuals, using paired samples from 15 donors to control
for interindividual and age differences. While TA has a much
more modest degree of protection from disease progression than
EOM, TA is substantially and consistently protected from
ongoing muscle damage in DMD relative to VL from
longitudinal imaging and spectroscopy data of children with
DMD (Rooney et al., 2020). We reasoned that the differential
expression analysis of VL and TA in healthy individuals would
provide insight into protective mechanisms relevant in the
absence of dystrophin. The difference in progression is
substantial. VL progresses faster than TA with an about 8.5-
year longer time for the TA to attain similar levels of damage as
the VL (Rooney et al., 2020). In this transcriptomic study, we
sampled VL and TA at a single timepoint from healthy young
adult volunteers. We report differentially expressed genes and
map differentially expressed genes to specific intra-muscular cell
types using single nuclei analyses.

2 Materials and methods

2.1 Muscle biopsies

Fifteen healthy individuals (age range 18–26 years) with no history
of muscle or other chronic or acute disease were consented on UCLA
protocol IRB#18-001366. Eight ambulatory DMD patients with a
confirmed nonsense DMD mutation were consented on UCLA
protocol IRB#11-001087 (age range 2–7 years). All biopsies were
obtained using a Vacora (Bard) vacuum-assisted core needle from
the VL and TA as previously described (Barthelemy et al., 2020). In
brief, before the biopsies, the participant’s leg was observed via
ultrasound to ensure that the muscle showed no excess fat or blood
vessels nearby. VL sample was obtained from about two-thirds of the
muscle length, and the TA from about one-third of the muscle length.
We chose muscle pieces that had similar muscle appearance without
visible connective tissue to reduce sample variability. Each needle
muscle biopsy core (about 125 mg) was dissected into about 25 mg
pieces and flash frozen in liquid nitrogen within tissue cassettes within
5 min of excision and stored in liquid nitrogen until RNA extraction or
sectioning for histological examination.
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2.2 RNA sequencing

Frozen skeletal muscle (8–25 mg) was homogenized on ice in
500 µL of Trizol for RNA extraction using standard protocols
(Lee et al., 2020). RNA quality was recorded by the RNA
integrity number (RIN) using the Agilent RNA 6000 Nano
chips. Healthy muscle RNA samples with RIN above 7 and
DMD muscle RNA samples with RIN above 4 were used to
prepare cDNA libraries with ribosomal RNA depletion using the
KAPA RiboErase Kit (HMR) (Roche). About 50 million 150-151
bp paired-end RNA sequencing (RNAseq) reads were generated
per RNA sample using Illumina Novaseq 6000 S4. Sequencing
reads were aligned to GRCh38 (Ensembl 105, Gencode v39)
using STAR 2.6.0c (Dobin et al., 2012; Lee et al., 2020). Data
quality control included alignment metrics (ribosomal and
globin RNA, aligned and unmapped reads, sequencing depth),
hierarchical clustering, principal component analysis and
Pearson correlation.

2.3 Single nuclei isolation and RNA
sequencing

Single nuclei were isolated from a subset of 3 paired male
healthy VL and TA frozen muscle and sequenced using the 10X
Genomics platform as described previously (Scripture-Adams
et al., 2022). Six to twelve 40 µM cross sections of frozen muscle
biopsies were collected in a sterile tube to estimate a total of 3 mg
of skeletal muscle, dounced with two cycles of strokes (one with a
loose douncer followed by one with a tight douncer) in 1%
bovine serum albumin (BSA) in phosphate-buffered saline (PBS)
with 100 U/mL of type IV collagenase and 0.5 U/µL RNAse
inhibitor, and stained with 10 μg/mL DAPI. The nuclei were
sorted by fluorescence-activated cell sorting (FACS) to separate
from debris and create a pure nuclear preparation prior to
library preparation. 10X Chromium Single cell 3′ v3 libraries
were prepared and sequenced on Illumina Novaseq 6000 S2 (2 ×
50 bp) (10X Genomics). Single nuclei RNA sequencing
(snRNAseq) reads were aligned to GRCh38 (Ensembl 105,
Gencode v39) using Cell Ranger (10X Genomics). Data was
aggregated for downstream processing and analysis. Initial cell
clustering was performed using k-means within Cell Ranger
(10X Genomics). Nuclear doublets were identified using
DoubletFinder (version 2.0.3) (McGinnis et al., 2019) with a
doublet rate of detection of 15%. Doublets as well as nuclei with
200 or fewer unique molecular identifiers (UMI), were excluded
from downstream analysis. Re-clustering was performed after
data filtering, and clustered nuclei populations were identified
using known cell-type marker genes via Loupe Browser (version
6.0.0) (10X Genomics). Downstream analysis and statistical
testing of differentially expressed genes across cell types was
performed using the R package Seurat (version 4.0.2) (Hao et al.,
2021) and the Wilcoxon statistical test. UMI-normalized average
expression across cell types was obtained from Seurat’s
AverageExpression function, which returns the average
number of transcripts per 10,000 transcripts (TP10K).

2.4 Cell deconvolution using single nuclei
RNA sequencing

Raw bulk RNAseq read counts for were obtained from the STAR
alignment (version 2.6.0c) (Dobin et al., 2012) and batch-corrected
for the two sequencing runs using CombatSeq (sva version 3.38.0)
(Zhang et al., 2020). Differential gene expression analysis across cell
types in the snRNAseq dataset identified statistically significant
(adjusted p-value <0.05) marker genes for each cell type. Highly
specific markers for a specific cell type were defined as those
expressed in less than 10% (for large cell populations) or 1% (for
small cell populations) of the other cell types. A list of 69 cell-specific
genes was obtained after further manual curation. Estimated cell
proportions for each sample were obtained with CIBERSORTx
(Newman et al., 2019) using the average expression of these
69 cell-specific genes. The parameters used for CIBERSORTx
were: Job type = Impute Cell Fractions, Batch correction =
disabled, Disable quantile normalization = true, Run mode =
relative, Permutations = 100.

2.5 Differential gene expression analysis

The R package DESeq2 (version 1.30.1) (Love et al., 2014) was
used to perform differential gene expression analysis using the raw
read counts. The covariates included in the healthy VL versus TA
analysis design were: participant study ID, RIN, and batch. The
covariates included in the DMD versusHealthy analysis design were:
batch, RIN, age, and sex. Multiple testing adjustment was done
within DESeq2 using Benjamini–Hochberg for a false discovery rate
(FDR) of less than 0.05.

Functional enrichment analysis of differentially expressed
genes was performed for all differentially expressed genes
(independent of their direction of highest expression) using
EnrichR (https://maayanlab.cloud/Enrichr/, (Chen et al.,
2013)), with all expressed genes included in the
DESeq2 analysis as background. For the genes differentially
expressed between VL and TA, we tested 4,701 terms from
GO Biological Process 2023, and 408 terms from GO Cellular
Component 2023. For genes differentially expressed between
DMD and healthy, we tested 3,133 terms from GO Biological
Process 2023, and 272 terms from GO Cellular Component 2023.
Significant gene ontology (GO) terms (adjusted p-value <0.05)
for the VL versus TA analysis were further summarized with
ReviGO (http://revigo.irb.hr/, (Supek et al., 2011)) with the
following parameters: dispensability threshold = 0.5, GO
metric = adjusted p-value (lower value is better), remove
obsolete GO terms = yes, species = Whole UniProt database,
similarity measure = SimRel.

ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X enrichment
category within EnrichR (Chen et al., 2013) was used to identify
transcription factors (104 transcription factors tested) that putatively
bind to the differentially expressed genes. Pathway enrichment of
druggable genes higher in the VL was performed using EnrichR
(Chen et al., 2013) KEGG 2021 Human enrichment category
(250 terms tested).
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2.6 Differential isoform usage analysis

The VL and TA raw data was aligned using the Kallisto app
(Kallisto Quantification version 2.0.2, Kallisto 04.46.1) on the
DNAnexus platform pipeline (Bray et al., 2016) to obtain counts
and relative abundance (TPM) for each transcript (Gencode v39,
Ensembl 105).

Differential isoform usage analysis between VL and TA was
performed using the IsoformSwitchAnalyzeR (version 1.12.0) R
package (Vitting-Seerup and Sandelin, 2017). The design matrix
included: sex, sample RIN, and batch. Gencode v39 primary
assembly annotation and transcripts were used to generate the
switch list. Isoforms were prefiltered before testing for differential
isoform usage using the following parameters: gene expression
cutoff = 0.1 and isoform expression cutoff = 0, and genes with
only one isoform were excluded. Isoform switch testing was done
using DEXSeq (version 1.36.0) (Anders et al., 2012) within the
IsoformSwitchAnalyzeR package, and correction for confounding
factors indicated in the design matrix was performed simultaneously
via the limma package (version 3.46.0) (Ritchie et al., 2015). The
isoform switch analysis was limited to: switching genes (genes with
at least one isoform significantly differentially used), genes with
consequence potential (with isoforms differentially used in opposing
directions, i.e., one with increased and one with decreased usage),
and isoforms with at least two isoforms significantly differentially
used (alpha<0.05), and a difference in isoform usage between
muscles of at least 0.01 (1%).

2.7 Immunofluorescence

Skeletal muscle tissue was cross-sectioned at 10 µM thickness
after equilibration at −22°C in a cryostat and then stored at −80°C
until immunofluorescence was performed. Slides were acclimated to
room temperature and sections were circled using a hydrophobic
barrier pen. For actinin-3 staining, sections were fixed with PFA 4%
for 10 min and permeabilized using 0.5% Triton-X for 10 min at
room temperature. Sections were treated with TrueBlack Lipofuscin
Autofluorescence Quencher before blocking with 3% BSA/10% goat
serum in PBS for 1 h at room temperature, and then incubated in
primary antibody in blocking solution overnight at 4°C in a
humidified chamber. For nebulin staining, unfixed samples were
permeabilized with 0.5% Triton-X for 10 min at room temperature.
Samples were blocked with 3% BSA for 1 h at room temperature and
incubated in primary antibody solution in 3% BSA overnight at 4°C
in a humidified chamber. Primary antibodies used were: monoclonal
anti-actinin-3 (Abcam, ab68204, 1.61 μg/mL), monoclonal anti-
myosin skeletal slow (Sigma, m8421, 4.8 μg/mL), mouse anti-
NEB143(3F4) ((Lam et al., 2018), 149 μg/mL), rabbit anti-MYH1
(Sigma, SAB2104768, 5–10 μg/mL), rat anti-MYH2 clone 8F72C8
(EMD Millipore, MABT848, 40 μg/mL). Sections were then
incubated in secondary antibody in PBS for 2 h at room
temperature. For nebulin staining, secondary antibody for rat and
mouse were cross adsorbed to prevent cross-reactivity: Goat anti-
Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, DyLight
550 (Invitrogen, SA5-10173, 1:500), and Cy5 AffiniPure Donkey
Anti-Rat IgG (H + L) (Jackson Laboratories, 712-175-153, 1:300).
Slides were mounted in Antifade Mounting Medium with DAPI

(Vectashield, H-1200-10). Images were obtained using a fluorescent
microscope and processed using ImageJ (Schneider et al., 2012)
(release 1.53c).

3 Results

3.1 Identification of transcriptional
differences between VL and TA

Because of the substantial difference in the rate of
progression/damage of VL and TA in DMD (Figure 1A), we
characterized the intrinsic transcriptomic profiles of paired
healthy VL and TA using RNAseq and snRNAseq to reveal
candidate mechanisms that may underlie this differential
susceptibility to DMD (Figure 1B). VL and TA biopsies were
sampled from each of 15 healthy young adults during the same
procedure. Extraction of RNA from frozen skeletal muscle was
adequate with an average RIN of 8 across all samples (range
7.1–8.7), and an average of 54 million sequencing reads were
obtained per sample (range 45–76 million reads). One sample
that had lower sequencing depth, and two samples that were
outliers by hierarchical clustering and had relatively lower
correlation with the overall dataset were excluded. A total of
27 healthy muscle samples (26 paired VL-TA, 1 unpaired VL)
were used for further analysis. Two-dimensional principal
component analysis (PCA) on the expression of all
22,414 expressed genes among 27 samples demonstrates that
RNAseq data cluster predominantly by muscle type and that
muscles from the same individual do not cluster together
(Figure 1C). This indicates that there is more expression
similarity between unrelated individuals in either the VL or
TA than within an individual, or alternatively stated there are
more intraindividual gene expression differences between VL
and TA than interindividual differences from genetic variation.

Using DESeq2 (Love et al., 2014) with a paired analysis design,
we identified a large set of 3,410 significantly differentially expressed
genes (Supplementary Table S1), or 15.2% of all genes,
demonstrating a substantial number of gene expression
differences between the skeletal muscle groups. When we
randomize participant IDs within muscle groups such that
samples are no longer paired, and test for differential gene
expression, we do not observe as many differentially expressed
genes as we do with a paired analysis (empirical p-value = 0, n =
1,000 permutations). That is, our paired analysis of both muscles
from the same individuals allowed us to identify a larger number of
differentially expressed genes than we would have with an unpaired
design. Themost statistically significant differentially expressed gene
was the transcription factor ZNF385A, and other top differentially
expressed genes (by fold difference or p-value) included MYH1,
COL22A1, the transcription factors BNC2, SIM2 and ZNF273, and
the non-coding RNAs lnc-HLCS-1, lnc-CES1-7, lnc-APOB-2, and
lnc-RORA-1 (Figure 1D). Genes classified as protein coding by the
Ensembl automatic annotation system were more likely to be
differentially expressed, comprising 82% of all differentially
expressed genes, but a substantial number of long noncoding
RNAs (lncRNAs) are differentially expressed between the muscles
(Supplementary Table S1).
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Gene ontology analysis on all differentially expressed genes
revealed an enrichment of 619 biological processes and
85 cellular component categories (Supplementary Table S2A).
After summarization of redundant terms with ReviGO, the
summarized GO term list is comprised of 75 biological processes
and 28 cellular component GO terms (Supplementary Table S2B).
We further focused on GO terms with over 10 genes, such that we
could examine a larger number of genes contributing to the
enrichment, resulting in a list of 58 biological processes and
21 cellular components. For each GO category, we ranked them
by adjusted p-value, and then selected 6 relevant categories (Table 1)
based on their involvement in muscle function and the dystrophic
pathology.

3.2 Cell type differences in VL and TA

Fiber type composition varies between skeletal muscles in mice
(Terry et al., 2018) and humans (Abbassi-Daloii et al., 2023). In
humans, VL has a larger portion of fast myofibers than TA
(Edgerton et al., 1975; Jakobsson et al., 1991), whereas in mouse,
the TA is composed entirely of fast myofibers (Hämäläinen and
Pette, 1993; Scripture-Adams et al., 2022). In DMD, the differential
disease susceptibility between different skeletal muscles has been
partly attributed to the higher proportion of fast fibers, which are
more susceptible to damage in the disease course than slow fibers
(Webster et al., 1988). These differences in cell composition may
contribute to the differential disease susceptibility and be reflected in

FIGURE 1
Healthy VL and TA transcriptomes are highly different. (A) Representation of the differential progression of vastus lateralis (VL) and tibialis anterior
(TA) in DMD. The color scale indicates the progression from early stages of DMD where muscle fat fraction is minimal (illustrated in red), to late stages
where muscle fibers are completely replaced by fat (illustrated in yellow). (B) Workflow for the identification of candidate mechanisms mediating
differential muscle susceptibility to DMD. (C) The first two principal components (PC1 and PC2) are shown for batch-corrected normalized RNAseq
data expression of all expressed genes (n = 22,414) across the 27 muscle samples. (D) Volcano plot for all 22,414 genes tested for differential expression.
Dashed lines depict a fold change of 2 and a p-value of 0.05. For each muscle, the top 5 differentially expressed genes by fold difference and the top
5 genes by p-value are labeled.
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the observed transcriptomic differences. To assess the contribution
of cell composition to gene expression, we performed snRNAseq of
nuclei dissociated from a small subset of the healthy individuals.
After excluding doublets and nuclei with less than 200 UMI, the VL
and TA dataset consists of 14,887 single nuclei (5,151 VL and
9,736 TA) with a median of 386 genes and 568 UMI per nucleus,
and with a total of 25,248 genes detected within all of the nuclei.

Clustering analysis resulted in the identification of 8 known major
cell types (Figure 2A) with distinct transcriptomes (refer to
Supplementary Table S2C for a list of positive marker genes). We
compared the proportion of each major cell type within VL and TA.
Consistent with previous reports, the three VL samples had a higher
proportion of fast fibers compared to TA (paired t-test p = 4.25E-02,
average fold difference 1.82) (Figure 2C). The 3 TA samples had
1.29 times as many slow fibers, although this difference was not
statistically significant in our snRNAseq dataset (paired t-test p =
2.52E-01) (Figure 2C). Performing snRNAseq on a subset of samples
allows us to infer cell composition in bulk RNAseq. By integrating bulk
RNAseq and snRNAseq, we can explore the transcriptomic profile of our
large dataset taking into consideration if the gene is specifically expressed
in just 1 cell type, and thus map the differential expression of some genes

to cell type. The snRNAseq dataset was also used to infer the percentage
of all major cell types across our larger bulk RNAseq dataset. For this, we
used CIBERSORTx (Newman et al., 2019) to deconvolute the bulk
RNAseq data with 69marker genes that we identified and define as being
uniquely expressed within only one of the 8 major cell types (Figure 2B).
Overall, the percentage of cell types inferred by CIBERSORTx agreed
with those observed by snRNAseq in the six samples with both data types
(Pearson correlation= 0.81), andwe can infer frombulkRNAseq that TA
has a larger portion of slow fibers than VL (paired t-test p = 3.69E-05,
average fold difference 1.54) and VL has a higher portion of fast fibers
(paired t-test p = 1.93E-04, average fold difference 2.07) (Figure 2C). We
also observed a slight but significant increase in the percentage of
endothelial (paired t-test p = 4.40E-03, average fold difference 1.16),
pericytes (paired t-test p = 7.22E-03, average fold difference 1.14), and
immune (paired t-test p = 3.63E-03, average fold difference 1.16) cells in
TA compared to VL. The higher percentage of endothelial cells and
pericytes in the TA is suggestive of a higher capillarity density compared
to theVL. Similar differences in capillarity density across legmuscles have
been reported previously, with a higher density in the lower leg
gastrocnemius lateralis compared to the upper leg semitendinosus
muscle (Abbassi-Daloii et al., 2023).

TABLE 1 Differentially expressed genes are enriched within regulation of calcium, extracellular matrix and regulation of apoptosis. Significant gene ontology (GO)
terms enriched among all 3,410 differentially expressed genes (independent of the muscle where they are highest expressed) are shown. EnrichR significant GO
terms for biological process (BP) and cellular component (CC) were summarized using ReviGO. Selectedmost relevant and significant terms with over 10 genes are
shown. The top 15 genes by average fold difference between VL and TA are shown.

GO GO term Count Adjusted
p-value

Odds
ratio

Top 15 genes by average fold difference

BP Cytoplasmic Translation 71 9.77E-36 18.28 RPS15A, RPL21, RPL35, RPL9, RPL39, RPL6, RPL29, RPS3A,
RPL7, RPL27, RPLP0, MRPS12, RPS18, RPS13, RPS15

Muscle Contraction 48 7.56E-15 6.92 MYH1, RYR2, MYL6B, MYH11, MYH6, TPM1, MYH2, MYLK,
MYLK2, MYH3, MYH4, TPM4, OXTR, MYL1, TPM3

Regulation Of Cell Migration 121 2.46E-14 2.75 TBX5, EPPK1, TNC, FGF9, CCR1, NKD1, PLXNA4, SERPINE1,
NTRK3, SH3RF2, STC1, SFRP1, TPM1, TWIST2, PAK1

Regulation Of Cell Adhesion 45 3.97E-07 3.41 TNC, DACT2, PLXNA4, TPM1, PLXNB1, ADAM22, DLL1, SRC,
PDE3B, MYADM, EPHA4, EPHA2, TGFBI, PPP3CA, TGM2

Regulation Of Apoptotic Process 139 4.96E-06 1.76 EGR3, COMP, ACTN3, EGR1, SH3RF2, ANGPTL4, FRZB,
GATA6, SFRP1, MLLT11, ACTN1, TENT5B, GADD45G, MPO,
SMAD6

Regulation Of Release Of Sequestered Calcium
Ion Into Cytosol By Sarcoplasmic Reticulum

13 9.98E-05 9.05 RYR2, CASQ1, CASQ2, SLC8A1, GSTO1, ANK2, CACNA1C,
DMD, CALM2, CALM1, TRDN, PDE4D, ATP1A2

CC Focal Adhesion 156 7.17E-33 4.1 CNN1, ACTN3, TNC, CSRP1, ACTN1, SLC9A1, SPRY4, FLNA,
MCAM, BCAR3, ITGA5, THY1, LAYN, CD9, SRC

Large Ribosomal Subunit 41 3.52E-24 28.79 RPL21, RPL35, RPL9, RPL39, RPL6, RPL29, RPL7, RPL27,
RPLP0, RPL38, RPL37A, RPL7A, RPL4, RPL14, RPL24

Actin Cytoskeleton 105 8.76E-17 3.18 CNN1, ACTN3, SORBS2, TPM1, ACTN1, PAK1, FLNA, MYLK,
ABLIM1, CD274, MYL2, CNN2, TPM4, MYADM, MYLK3

Collagen-Containing Extracellular Matrix 88 2.10E-09 2.43 ACAN, COMP, TNC, LEFTY2, COL28A1, COL21A1, CCN2,
SERPINE1, COLQ, ANGPTL4, INHBE, SLPI, SFRP1, SERPINB8,
NCAM1

Sarcoplasmic Reticulum 25 3.30E-09 7.76 RYR2, ATP2A1, SLN, THBS1, ATP2A2, DMPK, CASQ1,
ATP2A3, STRIT1, JPH1, CASQ2, JSRP1, ITPR1, S100A1, ITPR3

Sarcolemma 21 6.01E-05 4.04 RYR2, ATP1A1, CAV2, SLC8A1, CACNG1, ANK2, SLC2A5,
DMD, CAV3, SGCB, SYNC, CAV1, POPDC3, RYR1, DYSF

Italic values are the gene names (gene symbols).
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3.3 Mapping of differentially expressed
genes to specific cell types within skeletal
muscles

We next sought to identify the cellular source of differentially
expressed genes identified by bulk RNAseq by interrogating their
relative expression across the 8 major cell types identified in healthy
human muscle. Out of 3,410 differentially expressed genes observed
within the bulk RNAseq data, 3,221 (94.4%) were also observed in

our snRNAseq dataset (Figure 2D). Hierarchical clustering of their
expression shows that the differentially expressed genes are typically
not expressed in all cell types, but rather the vast majority are
observed to have much higher expression in 1 cell type.

475 (14.75%) and 327 (10.15%) of the differentially expressed
genes have the highest average expression in the fast and slow
myofibers, respectively. Considering that the VL has a higher
proportion of fast myofibers than TA, we expected to observe
many genes that are higher in VL from the bulk RNA analysis to

FIGURE 2
Identification of cell composition differences and cell source of differential gene expression. (A) t-SNE projection of 14,887 nuclear transcriptomes
from 3 TA and 3 VL paired healthy muscles. (B) Heatmap of expression of 69 cell-specific marker genes of the major cell types identified. (C) Percentage
of cell types from snRNAseq (top) and percentage of cell types inferred by CIBERSORTx (bottom) for paired VL and TA samples using the 69 specific
markers in (B). Paired t-test, *: p ≤ 0.05, **: p≤0.01, ***: p < 0.001,****: p < 0.0001. (D)Heatmap of expression of 3,221 genes differentially expressed
between VL and TA in the main cell types identified in (A).
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be higher because they are expressed in fast fibers, and those higher
in TA to be highest expressed in slow fibers. In line with this, we
observed that differentially expressed genes that are higher in VL are
more often expressed highest in fast fibers (445 genes, or 80.0% of
the 556 genes higher in VL with highest expression in the myofibers)
and conversely, differentially expressed genes that are higher in TA
are most often restricted in their expression in slow fibers (216 or
87.8% of the 246 genes higher in TA with highest expression in the
myofibers). However, there are exceptions to this expected pattern of
expression based on the higher proportion of fast fibers in VL
compared to TA (Supplementary Figure S1), and these may indicate
shifts in metabolic phenotype within each muscle type. For instance,
111 of 1,559 genes higher in VL are most highly expressed in slow

fibers (Supplementary Figure S1A) and 30 of 1,851 genes higher in
TA have highest expression in fast fibers (Supplementary Figure
S1B). Interesting exceptions include CAMK2A (encoding CaMKIIα)
which is among the genes higher in the VL with higher expression in
slow fibers than fast fibers. Conversely, IRX3, encoding iroquois
homeobox 3, which has been linked to body weight
(Gholamalizadeh et al., 2019), has ten-fold higher expression in
fast fibers compared to slow fibers, but is higher in the TA muscles.

Remarkably, the remaining 75.1% of the differentially expressed
genes have highest expression in other muscle resident cell types that
are not the myofibers. Despite satellite cells, endothelial, smooth
muscle and fibroblasts accounting for 6.60%, 7.01%, 0.69% and
3.17% of total cell population in both VL and TA, the percentage of

FIGURE 3
Cell type expression of genes within enriched gene ontology categories. Heatmap of expression of genes that are both differentially expressed and
identified within select gene ontology categories shown in Table 1: (A) Regulation Of Release Of Sequestered Calcium Ion Into Cytosol By Sarcoplasmic
Reticulum, (B) Collagen-Containing Extracellular Matrix, and (C) Regulation Of Apoptotic Process. For B and C, only select genes with a fold difference
above 1.3 and average TPM in the muscle where it has highest expression above 5 are named. All data are present within Supplementary Tables
S2A, B.
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differentially expressed genes with highest expression in these cell
types were 15.71%, 14.96%, 10.87% and 8.20%, respectively,
demonstrating differences in virtually all cells between skeletal
muscle groups. Pericytes accounted for 17.57% and immune cells
for 15.79% of all cells but had fewer genes that were detected as
differentially expressed, 9.87% and 15.49%, respectively.

To determine which cell types have the highest expression of
the differentially expressed genes within functional categories, we
mapped cell expression using the single nuclei data
(Supplementary Table S1). Eight of 13 (61.54%) genes in
“Regulation Of Release Of Sequestered Calcium Ion Into
Cytosol By Sarcoplasmic Reticulum” (Figure 3A) were higher
in the VL, and these have highest expression predominantly in
fast fibers (5 genes, 38.46%). These include CALM1 and CASQ1,
encoding calmodulin 1 and calsequestrin 1, respectively. Only
PDE4D has highest expression in slow fibers, which we infer is
differentially expressed independent of the differences in fiber
type composition.

Among the genes in “Collagen-Containing Extracellular
Matrix”, 78 of 88 (88.64%) genes have highest expression in the
TA. Genes in this category have mapped highest expression in
fibroblasts (26 genes, 29.55%), smooth muscle (14 genes, 15.91%),
endothelial (13 genes, 14.77%) and pericytes (13 genes, 14.77%)
(Figure 3B). “Collagen-Containing Extracellular Matrix” genes
include metalloproteinase-2 (MMP2) which is responsible for
remodeling the muscle extracellular matrix, a process important
for proper satellite cell migration and differentiation (Chen and Li,
2009), along with tissue inhibitors of metalloproteinases, such as
TIMP1 and TIMP3. Only 2 of the genes higher in TA (2.56%) have
highest expression in myofibers, specifically in slow fibers
(Figure 3B).

Genes in “Regulation Of Apoptotic Process” are more
broadly expressed across all cell types (Figure 3C), suggesting
that differential regulation of cell death is a characteristic of all
cells in the VL and TA due to muscle origin. 22 genes have
highest expression in the myofibers, including the heat shock
protein CRYAB higher in the TA, mapping to the slow fibers and
also annotated in the biological process category “Negative
Regulation of Apoptotic Process”, which is also enriched
among the differentially expressed genes (Supplementary
Table S2A). Among genes with higher expression in other
muscle resident cells, the widely studied anti-apoptotic BCL-
xL/BCL2L1, higher in the TA, was highest expressed in
endothelial cells. Despite not being annotated in “Regulation
Of Apoptotic Process”, Hzf (encoded by ZNF385A) has been
linked to negative regulation of apoptosis. In conditions of
DNA-damaging stress, Hzf induction and binding to
p53 modulates p53-mediated transcription such that the
expression of pro-arrest p53 target genes is preferentially
activated over pro-apoptotic p53 target genes (Das et al.,
2007). ZNF385A is the most statistically significant gene with
a 4.2X higher expression in TA (p = 1.76E-102) (Figure 1D), and
has the highest expression in pericytes (average expression
0.31 TP10K) and similar levels of expression in fast and slow
fibers (average expression 0.03 TP10K in both fiber types). These
data suggest that the VL and TA have differential regulation of
apoptotic signaling, with a potentially superior negative
regulation in the TA that may be protective in DMD.

3.4 Search for transcription factors that may
underlie the differential gene expression

Using the ENCODE_and_ChEA_Consensus_TFs_from_ChIP-
X enrichment category within EnrichR (Chen et al., 2013), we
identified 45 transcription factor genes that are reported to bind
to multiple differentially expressed genes between VL and TA, and
these may thus regulate the differentially expressed genes
(Supplementary Table S2D). Because some transcription factors
can act as both positive and negative regulators of expression, we
searched for transcription factors that bind upstream of all
differentially expressed genes, independently of the muscle in
which they are highest expressed. Among these 45 transcription
factors, 38 were expressed in the VL/TA bulk RNAseq dataset, and
11 were differentially expressed. The top 6 by p-value are: TP63, AR,
GATA2, KLF4, SMC3, and SMAD4 (Supplementary Table S2D). For
each transcription factor, the putative target genes are listed in
Supplementary Table S2D. These genes are further categorized in
“Regulation Of Release Of Sequestered Calcium Ion Into Cytosol By
Sarcoplasmic Reticulum”, “Collagen-Containing Extracellular
Matrix”, and “Regulation Of Apoptotic Process” by the muscle in
which they are highest expressed and listed in descending fold
difference between the muscles (Supplementary Table S2D).

The 11 differentially expressed transcription factors were
detected by snRNAseq (Supplementary Figure S2). The
transcription factors higher in TA (ZMIZ1, FOSL2, GATA2,
KLF4 and EGR1) are mainly expressed in non-myolineage cell
types, and mainly in fibroblasts and endothelial cells, consistent
with a potential role regulating the extracellular matrix gene
expression in non-myolineage cells. Among the differentially
expressed genes in “Collagen-Containing Extracellular Matrix”
and higher in TA, the metalloprotease MMP2 is a target of
GATA2 (Supplementary Table S2D). The transcription factors
higher in VL are expressed in myolineage and non-myolineage
cell types. TP63 is restricted to the myofibers, and highest in fast
fibers, whereas AR is highest expressed from satellite cells. Among
the differentially expressed genes in “Regulation Of Release Of
Sequestered Calcium Ion Into Cytosol By Sarcoplasmic
Reticulum” is the TP63 target ATP1A2 (Supplementary Table
S2D), highest expressed in fast fibers (Supplementary Table S1),
and the AR target CALM1 (Supplementary Table S2D) with highest
expression in endothelial and fast fibers (Supplementary Table S1).

3.5 Genes that are previously reported as
DMD biomarkers and genetic modifiers are
enriched among genes differentially
expressed between healthy VL and TA

To explore potential relationships between our differential gene
expression and reported mechanisms of DMD pathology that can be
mapped to individual genes, we analyzed the differential expression
of previously reported human serum/blood DMD biomarkers
(Hathout et al., 2014; Parolo et al., 2018; Spitali et al., 2018; Al-
Khalili Szigyarto, 2020; Grounds et al., 2020; Alonso-Jiménez et al.,
2021; Wagner et al., 2021; Lee-Gannon et al., 2022; Wu et al., 2022),
and of genes modifying the phenotype of DMD in humans
(Pegoraro et al., 2011; Flanigan et al., 2013; Bello et al., 2016;
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Hogarth et al., 2017; Li et al., 2018; Weiss et al., 2018; Spitali et al.,
2020; Flanigan et al., 2023) or the mdx mouse (Deconinck et al.,
1997; Wagner et al., 2002; Han et al., 2011; Morales et al., 2013; de
Zélicourt et al., 2022), also known as genetic modifiers, across the VL
and TA and identified the predominant cell type in which they were
expressed.

Among 88 DMD biomarkers expressed in healthy muscle, 41
(46.59%) were differentially expressed between VL and TA
(Supplementary Figure S3A), a significant enrichment of this set
of genes among differentially expressed genes (only 13 expected,
p-value < 1E0-5, χ2 test). Of this set of differentially expressed
biomarkers, 20 of 41 (48.78%) have highest expression in the
myofibers, with 10 of these being more expressed in the slow and
10 in the fast fibers. Among these myofiber-derived biomarkers,
13 have the highest expression in VL, and 9 of these (69.2%) have
highest expression in the fast fibers (ALDOA, CAMK2B, ENO3,
GAPDH, LDHA, MSTN, MYL1, PYGM, TNNI2). The remaining
4 biomarkers higher in VL have either highest expression in the slow
fibers (CAMK2A, ACTA1) or are similarly expressed in fast and slow
fibers (CKM, TTN).

We also culled from the literature 18 genes described as genetic
modifiers based on either a human genetic variant association with a
DMD phenotype (SPP1, ACTN3, THBS1, LTBP4, HLA-A, DYNLT5,
CD40, NCALD, ETAA1, ADAMTS19, MAN1A1, GALNTL6,
PARD6G) or an mdx phenotype modified by concomitant
deletion of another gene (MSTN, DYSF, CCN2, UTRN, CD38)
(Deconinck et al., 1997; Wagner et al., 2002; Han et al., 2011;
Pegoraro et al., 2011; Flanigan et al., 2013; Morales et al., 2013;
Bello et al., 2016; Hogarth et al., 2017; Li et al., 2018; Weiss et al.,
2018; Spitali et al., 2020; de Zélicourt et al., 2022; Flanigan et al.,
2023). All were observable within the RNAseq and snRNAseq
datasets, except SPP1 (encoding osteopontin), which has a
median TPM of 0.01 across VL and TA RNAseq and was not
detected in snRNAseq of healthy VL and TA in any cell type. Thus,
SPP1 was below the limits of detection, and it was excluded from the
differential gene expression analysis. 11 of 17 (64.7%) remaining
DMD genetic modifiers were differentially expressed between VL
and TA (Supplementary Figure S3B). This is a larger number than
expected from a random sampling of all genes (only 3 expected,
p-value < 1E0-5, χ2 test). Of these 11 genetic modifiers with
differential expression detected, DYSF, MSTN, ACTN3, NCALD,
ADAMTS19 and CD38 were higher in the VL, and HLA-A, UTRN,
LTBP4, CCN2/CTGF, and THBS1 were higher in the TA
(Supplementary Figure S3B). This indirectly supports the
relevance of genetic variants indeed contributing to differential
disease progression across individuals. Most of the genetic
modifiers (10 of 17) had expression mainly within a non-
myofiber cell type, consistent with the known role of non-
myofiber lineage cells in orchestrating muscle remodeling during
regeneration and fibrosis (Mann et al., 2011).

LTBP4 is most expressed in fibroblasts (Supplementary Figure
S3B), consistent with prior reports on its ameliorative effect through
a reduction in TGF-β signaling in fibroblasts with the IAAM
haplotype (Flanigan et al., 2013). In addition to fibroblasts,
LTBP4 also shows high expression in satellite cells, suggesting the
potential of a modifying effect acting uponmuscle stem cells that has
not been studied previously. DYNLT5 (also known as TCTEX1D1)
has a median TPM of 0.6 in the bulk RNAseq dataset, and it was not

detected in fast or slow fibers by snRNAseq but was rather expressed
in endothelial cells. This suggests its modifying mechanism is not
due to direct expression within myofibers, or that it could be
upregulated in a cell type other than endothelial cells in DMD to
exert its modifying mechanism. NCALD, encoding the calcium-
sensing neurocalcin delta, is most expressed in smooth muscle
(7.11 TP10K), and has lower expression in fast (1.90 TP10K) and
slow (0.42 TP10K) fibers. Its proposed mechanism is via regulation
of a surrogate cGMP pathway that compensates for the defective
nitric oxide-induced cGMP production in DMD, with lower
expression of NCALD being protective (Flanigan et al., 2023).
Consistent with this proposed mechanism, NCALD is not only
higher in the VL in bulk RNAseq, but also in the VL fast (2.51X,
p = 2.11E-76) and VL slow (1.11X, p = 3.01E-02) fibers compared to
the TA fast and slow fibers, respectively. HLA-A is expressed higher
in the VL, and class I MHC expression on myofibers may influence
immune mediated mechanisms of myofiber damage in dystrophic
muscle.

Only four reported genetic modifiers, DYSF, ADAMTS19,
MSTN, and ACTN3 are observed to have the highest expression
in myofibers (Supplementary Figure S3C). The expression pattern of
DYSF, MSTN and ACTN3 is consistent with their described
modifying mechanisms (Wagner et al., 2002; Vincent et al., 2007;
Han et al., 2011).DYSF has similar expression in fast and slow fibers,
with a slight 1.2X higher expression in fast fibers. Although the
proposed modifying mechanism of ADAMTS19 is through
extracellular matrix (ECM) remodeling and TGF-β signaling
(Flanigan et al., 2023), its highest expression in healthy muscle
was not in fibroblasts (0.12 TP10K) or vasculature cells that typically
produce ECM, but rather in the fast (1.58 TP10K) and slow
(1.07 TP10K) fibers. A 13.2X higher expression of ADAMTS19 in
the fast fibers compared to fibroblasts suggests a modifying role in
the myofibers that needs further exploration. At the single cell level,
ADAMTS19 is 1.55X higher in the VL slow fibers compared to the
TA slow fibers (p = 1.18E-14), which further contributes to its higher
expression in the VL.MSTN is expressed in both fast and slow fibers,
with highest expression in fast fibers (4.4X compared to slow fibers),
a pattern of expression that contributes to it being higher in VL by
bulk RNAseq, as VL has a higher proportion of fast fibers. ACTN3 is
highly specific to fast fibers (13.3X higher in fast fibers), although not
absent in slow fibers. In addition, at the single cell level, ACTN3
expression is 1.43X higher in the VL fast fibers compared to the TA
fast fibers (p = 2.17E-11), indicating that the higher expression of
ACTN3 in VL is influenced by both a higher proportion of fast fibers
and by a VL-specific upregulation within the fast fibers.

The well-studied null allele of ACTN3 (rs1815739, NM_
001104.4:c.1729C>T, NP_001095.2:p.Arg577Ter/p.R577X) is a
common allele found in the population with a frequency of the
X allele of 0.36 (dbSNP). Actinin-3 loss was associated with a
reduced DMD severity as measured by a longer 10-min walk test
(Hogarth et al., 2017), and this was attributed to a switch to a more
protective oxidative metabolism without a shift in fiber type
distribution (MacArthur et al., 2008). To further investigate the
effects of ACTN3 expression across muscles, we genotyped
rs1815739 in the 15 individuals. We identified 3 null
homozygotes (XX), and 3 reference homozygotes (RR), and
9 heterozygotes (RX) among the 15 individuals. The expression
of ACTN3 was significantly differentially expressed dependent on
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genotype (Kruskal–Wallis p = 7.73E-04), with the RR group showing
highest expression, indicating nonsense-mediated decay of the X
allele (Figure 4A). XX homozygotes have no ACTN3 mRNA
expression for both VL and TA muscles (Figure 4A). The

expression of ACTN3 RR and RX mRNA was consistently higher
in the VL compared to TA, although only statistically significant in
the RX genotype (Wilcoxon p = 9.9E-04). For both the VL and TA,
the mean level of ACTN3 mRNA in RX heterozygotes was

FIGURE 4
ACTN3 genotype correlates with the proportion of slow fibers and with the expression of actinin-3 in slow fibers. (A) ACTN3 TPM by genotype at the
rs1815739 polymorphism locus (NM_001104.4:c.1729C>T, NP_001095.2:p.Arg577Ter/p.R577X) for all 27 samples in the bulk RNAseq dataset (RR n = 2,
RX = n = 9, XX n = 3). Percentage of all counted fibers that are actinin-3 positive (B) and type I (slow) (C). Percentage of all type I fibers that are actinin-3
positive (D). Wilcoxon test, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. (E) Representative images of actinin-3 and myosin-7 staining.
Magnification = 20X. Asterisks indicate actinin-3 positive type I fibers. The bars in the box plots indicate 1.5* IQR, which is the interquartile range, or the
distance between the first and third quartiles.
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substantially lower than the expected 50% of the RR genotype
mRNA level, suggesting that the X allele reduces the expression
of the R allele through unknown mechanisms.

To validate the RNA findings and assess whether the ACTN3
genotype groups have differences in fiber type composition, we
performed immunofluorescent staining for 3 RR, 2 RX and 2 XX
individuals’VL and TA. For each sample and muscle, 3 10 µM tissue
sections were stained (total of 42 sections), and fibers were counted
across the entire sections. An average of 204 fibers were counted per
sample (range 25–758, total 8,577) (Supplementary Figure S4).
Observed differences in mRNA expression were consistent with
antibody staining for actinin-3. As expected, ACTN3 XX
homozygotes showed no detectable protein (Figures 4B,E). The
percentage of actinin-3 positive fibers was consistently higher in
the VL for both RR and RX genotypes (Figure 4B). The percentage of
type I slow fibers (positive for myosin-7) was consistently higher in
the TA across genotype groups (Figure 4C), as expected (Edgerton
et al., 1975; Jakobsson et al., 1991). There was a higher percentage of
type I slow fibers in the RX and XX groups compared to the RR
group across both muscles, although only the XX group reached
statistical significance (Figure 4C). There was also a higher
percentage of type I fibers in the XX compared to RX
group. These findings are supported by observed similar relative
expression of the myosin heavy chain genes at the RNA level
(Supplementary Figure S5). Interestingly, we also identified slow
fibers with low expression of actinin-3 (Figure 4D) in the RR and RX
genotypes but not in the XX genotypes, reflective of a low level of
expression of actinin-3 in some slow myofibers. This low level of
expression is only apparent because of the true null staining revealed
in the XX genotype individuals.

3.6 Identification of druggable targets within
differentially expressed genes

We place the list of differentially expressed genes into context as
potential for disease modification because their RNA or protein
products are targeted or ‘druggable’ with existing drugs
documented in the DrugBank database (Wishart et al., 2018).
535 of 3,410 (15.7%) differentially expressed genes are reported
targets of 1,812 known drugs (Supplementary Table S1). The
protein product of 197 genes higher in the VL are targeted by
984 drugs, and thus may constitute a set of known drugs that may
be explored to induce a shift of a VL-like susceptible state towards a
TA-like protected state in DMD. Druggable genes expressed higher
in VL are enriched in 158 pathways (Supplementary Table S2E).
Among the top 5 most significant pathways is calcium signaling
pathway, with 22 genes higher in VL that include calmodulin
(CALM1, CALM2), calmodulin-dependent kinases (CAMK2A,
CAMK2B, CAMK2G), calsequestrin (CASQ1), ryanodine receptor
(RYR1), and the dihydropyridine receptor alpha 1S subunit
(CACNA1S). These 8 genes alone are reported to be targeted by
71 drugs and may suggest ways to therapeutically regulate
intracellular and sarcoplasmic reticulum (SR) calcium
concentration in myofibers. CD38 (1.7X higher in VL) is highest
expressed in the pericytes (1.83 TP10K), but also is expressed in fast
(1.28 TP10K) and slow (0.48 TP10K) fibers. Its higher expression in
VL is also observed at the single cell level, with 1.24X higher

expression in VL fast fibers compared to TA fast fibers (p =
4.71E-04). CD38 encodes a NAD+ glycohydrolase that produces
regulators of Ca2+ signaling, and deletion of CD38 or treatment
with CD38 inhibitors restored the mdx heart, diaphragm and limb
function, reduced fibrosis and inflammation, and reduced the cycles
of degeneration and regeneration (de Zélicourt et al., 2022). DMD
myotubes treated with a monoclonal antibody against CD38
(Isatuximab) reduced the frequency of spontaneous Ca2+ waves
(de Zélicourt et al., 2022).

3.7 Identification of isoforms with
differential abundance between VL and TA

Because extensive alternative splicing is observed in developing
and mature muscle (Brinegar et al., 2017; Nakka et al., 2018),
including in genes encoding sarcomere structural (Donner et al.,
2004; Bowman et al., 2007; Lam et al., 2018; Savarese et al., 2018),
and excitation-contraction coupling proteins (Nakka et al., 2018),
we hypothesized that the VL and TA transcriptomes are also
differentially influenced by alternative splicing leading to
significant shifts in the usage of specific isoforms (isoform
switch). To identify isoform switching events between VL and
TA, we utilized IsoformSwitchAnalyzeR (Vitting-Seerup and
Sandelin, 2017), which uses the abundance (TPM) and count
data obtained from Kallisto transcript alignment. Prefiltering of
the annotated transcripts resulted in 130,664 transcripts to be
considered for isoform switch analysis. Further filtering of
transcripts for switching genes with at least two significantly
switching isoforms and with at least two isoforms preferentially
used in opposed directions (higher in one muscle, lower in the other)
resulted in 47 transcripts. Among these, 12 transcripts have a
significant isoform switch (isoform switch q-value <0.05)
between VL and TA, and these are located within 6 genes (gene
switch q-value <0.05) (Supplementary Table S2F). Two of the
6 genes with isoform switching, NPR3 and TNNT1, were
differentially expressed between VL and TA, whereas the
remaining 4 (NEB, ABCC6P2, ENSG00000288071 and MAD1L1)
did not have differential expression at the gene expression level
(Figure 5A; Supplementary Table S1). NEB is highly and similarly
expressed in slow (217.6 TP10K) and fast (185.4 TP10K) myofibers
(Supplementary Table S1). ENSG00000288071 and TNNT1 are more
highly expressed in the slow fibers (6.8X and 16.4X higher
expression in the slow compared to fast fibers), and ABCC6P2 in
the fast fibers (0.009 TP10K in fast and not detected in slow fibers)
(Supplementary Table S1). NPR3 and MAD1L1 are expressed
highest in the smooth muscle cells (Supplementary Table S1).
Four of 6 genes with isoform switch are protein coding (NEB,
NPR3, TNNT1 and MAD1L1), whereas ENSG00000288071 is a
long non-coding RNA, and ABCC6P2 is a transcribed
unprocessed pseudogene (Supplementary Table S1).

To assess potential functional consequences of the isoform
switches, we examined the biotype of each isoform in the
switching (Figure 5B). The NEB, TNNT1 and NPR3 isoform
switches are among protein coding transcripts, and that of
ENSG00000288071 is among long noncoding RNAs (lncRNA).
The remaining 2 genes (ABCC6P2 and MAD1L1) are switching
between isoforms of different biotypes (Figure 5B). ABCC6P2-202,
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FIGURE 5
NEB-207 is upregulated in the TA across all fiber types. (A) Venn diagram showing the overlap of differentially expressed genes and genes with
differential isoform abundance (isoform switch) between VL and TA. (B) For each muscle, the Ensembl transcript biotype of each preferentially used
isoform is shown for each isoform switch event. (C)Diagram of the alternative usage of exons 143 and 144 inNEB. The resulting isoform name is indicated
for each exon usage, and corresponding transcript IDs are in parenthesis. (D) Isoform fraction (usage) of expressed NEB isoforms obtained from
IsoformSwitchAnalyzeR. (E) Expression of the NEB-202 and NEB-207 isoforms obtained from the Kallisto alignment. TPM = Transcripts per million. (F)
Quantification of the overall mean immunofluorescence signal intensity of nebulin exon 143 (NEB E143) in 5 20X images for each VL and TA among
3 healthy individuals. Wilcoxon test p = 1.29E-08; ****: p≤0.0001). (G) Representative images of immunofluorescence staining of paired VL and TA
sections.
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preferentially used in TA, is a processed transcript, whereas
ABCC6P2-201, preferentially used in VL, is a transcribed
unprocessed pseudogene. MAD1L1-213, with preferential usage
in TA, is protein coding, whereas MAD1L1-216, preferentially
used in VL, is a processed transcript, which means that it does
not have an open reading frame (a start codon followed by an in-
frame stop codon (Kute et al., 2022)).

The MAD1L1 isoform switch comprises MAD1L1-213 and
MAD1L1-216 with the former used more in TA (absolute
difference isoform fraction = 0.073) and the latter in VL
(absolute difference isoform fraction = 0.043) (Supplementary
Table S2F). MAD1L1 has a relatively low expression in muscle.
The top 3 isoforms expressed in both VL and TA have an average
TPM ranging from 0.80 to 1.65. MAD1L1 encodes for the mitotic
arrest deficient-like protein 1 (also known as MAD1). In mdx,
Mad1l1 is most expressed in late activated satellite cells, myoblasts
and myocytes (Scripture-Adams et al., 2022) (data not shown),
suggesting a potential role in muscle regeneration in wild-type
muscle and in DMD, although which isoform is most important is
unknown. The MAD1L1 isoform switch involves a switch from a
protein coding isoform in TA to a processed transcript that has no
open reading frame in VL, suggesting a potential mechanism of
reducing its protein expression in the VL via alternative splicing,
an event that cannot be detected by gene expression analysis.

The gene with the most striking isoform switch is NEB. This
switch comprises the mutually exclusive exon splicing event that
occurs between exons 143 and 144 of NEB, which has been
previously described (Donner et al., 2004; Lam et al., 2018).
Exons 143 (E143, included in NEB-207) and 144 (E144, included
in NEB-202) are mutually exclusive exons (Figure 5C), such that in
the same transcript, only one of either exon is included. NEB-207
has a higher usage in TA, a 0.505 isoform fraction difference
compared to VL (Supplementary Table S2F; Figure 5D). NEB-
202 has a higher usage in VL, with a 0.443 isoform fraction
difference compared to TA (Supplementary Table S2; Figure 5D).
This difference in isoform usage is readily observed at the isoform
expression level (Figure 5E). NEB-207 has higher expression in TA,
with an average TPM of 850, compared to an average TPM of 66 in
VL. NEB-202 is more broadly expressed across both muscles but has
a preferential expression in the VL with an average TPM of 1,357,
compared to an average TPM of 641 in TA. We confirmed this
differential alternative splicing event in the RNA by semi-
quantitative reverse transcription polymerase chain reaction (RT-
PCR) using exon junction-specific primers (data not shown).

Previous reports sought to determine whether the expression
of nebulin exon 143 presents a fiber type-specific pattern in adult
human quadriceps (Lam et al., 2018). In this previous study,
E143 was found expressed more often in fast fibers compared to
slow fibers (Lam et al., 2018), although a distinction between type
IIa and type IIx fast fibers was not explored. Consequently, it was
concluded that fast fibers usually express E143, and that slow
fibers may express either E143 or E144. However, because we
observe that the VL mainly includes E144 and not E143, and
because VL has in average 1.82 more fast fibers than TA
(Figure 2C), we reasoned that the differential pattern of
expression of E143 between VL and TA is not solely
dependent on fast fiber type. Thus, we assessed the protein
expression of E143 across VL and TA in relation to type IIa

and IIx fast myosin. We examined overall E143 protein intensity
among VL and TA in 3 healthy individuals. We found low to no
E143 myofiber intracellular protein expression in the VL among
either fiber type (Figure 5G). Consistent with this observation,
overall E143 protein intensity was statistically higher in the TA
compared to the VL (Wilcoxon test p = 1.29E-08, 95% CI = 2.70-
7.04, average fold difference = 5.77) (Figure 5F). These findings
suggest that although nebulin including exon 143 is more often
expressed in the fast fibers (Lam et al., 2018), and E143 is more
consistently observed in the fast type IIx than in the slow type I
(data not shown), a fast fiber type is not the sole determinant of
its expression in human skeletal muscle. That is, that the
association between fast myosin and exon 143 of nebulin, as
described previously (Lam et al., 2018) is also muscle-type
specific, and might be regulated by specific differentially
expressed splicing factors, or their combinations.

To identify potential splicing factors underlying the alternative
splicing observed between VL and TA, we looked for splicing factors
that are differentially expressed between the muscles. Out of
66 expressed splicing factors obtained from the SpliceAid-F
database (Giulietti et al., 2013), 18 (27.3%) were differentially
expressed between VL and TA (Supplementary Table S1). Only
one splicing factor, NOVA2, is higher in TA, and the remaining
17 are higher in VL, with ESRP2 and CELF2 being the most
differentially expressed.

3.8 Comparison of VL versus TA differentially
expressed genes with DMD versus healthy
muscle differentially expressed genes

To assess whether the differentially expressed genes between
healthy muscles differentially susceptible to lack of dystrophin are
also changed in expression in the context of DMD, we generated
bulk RNAseq data of the TA from 8 young ambulatory DMD
patients (mean age 4.5 years). An average of 60 million paired
end sequencing reads were generated per sample (range
43–72 million reads). To our knowledge, this is the second and
largest reported bulk RNAseq dataset of DMD muscle (an existing
dataset can be found in SRA ID PRJNA734152), and the first of the
TA muscle.

Using DESeq2 (Love et al., 2014), we performed differential
gene expression analysis between DMD (n = 8) and healthy TA
(n = 13). 868 of 17,183 analyzed genes were differentially
expressed between DMD and healthy (Supplementary Table
S3; Figure 6A). 272 of these genes were also differentially
expressed between VL and TA (Figure 6B). Among these
overlapping genes, 67 were downregulated in DMD and higher
in the less susceptible TA or upregulated in DMD and higher in
the more affected VL (Figure 6B). Next, we assessed functional
enrichment in the genes dysregulated in DMD using EnrichR.
49 biological processes and 11 cellular component categories
were enriched among genes dysregulated in DMD (adjusted
p-value <0.05) (Supplementary Table S2G). Among these,
31 categories were also enriched among genes differentially
expressed between VL and TA. “Collagen-Containing
Extracellular Matrix” was the most significant shared term and
also the most significant term among all enriched in DMD versus
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Healthy (Supplementary Table S2G). The categories with over
30 gene members include “Collagen-Containing Extracellular
Matrix” and “Negative Regulation of Apoptotic Process”,

supporting the involvement of these gene sets in both the
differential susceptibility between VL and TA, and the
dystrophic pathology (Figure 6C).

FIGURE 6
Extracellular matrix and regulation of apoptosis are also dysregulated in DMD. (A) Volcano plot for all 17,183 genes tested for differential expression
between DMD and healthy TA. Dashed lines depict a fold change of 2 and a p-value of 0.05. For each up and downregulated genes, the top 5 differentially
expressed genes by fold change and the top 5 genes by p-value are labeled. (B) Overlap of the differentially expressed genes between VL and TA and
between DMD and Healthy. The 67 genes are those downregulated in DMD and higher in TA or upregulated in DMD and higher in VL. (C) 7 of
9 functional categories with over 30 genes that are shared between the two analyses (sorted by ascending p-value). “Nervous System Development”
(which had only VEGFA in the 67-gene list, and “Cell-Substrate Junction” (which has the same 37 genes as “Focal Adhesion”, and a larger p-value) were
excluded. (D) Single cell expression of the 67 overlapping genes. The overlapping GO terms from (C) in which each gene member is categorized among
these 7 categories are indicated. “Druggable” indicates which genes have existing drugs documented on DrugBank. “Direction” indicates the direction of
expression in both the VL versus TA and DMD versus Healthy differential gene expression analyses.
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To identify candidate susceptibility factors that are also
dysregulated in DMD, we further explored the 67 overlapping
genes. All except one gene (SBK3) were detected in the healthy
muscle snRNAseq (Figure 6D). 13 of these 67 genes are druggable
(Figure 6D). Among the overlapping protein coding genes, the
3 most dysregulated genes in DMD (by fold change) are NR4A3,
APOB and MYOC, and the 3 most differentially expressed in VL
compared to TA are APOB, SBK3 and NR4A3, highlighting the
relevance of these genes in DMD and consequently, the differential
susceptibility of VL and TA (Supplementary Table S3).

Among genes in “Collagen-Containing Extracellular Matrix”
are MYOC and CILP (Figure 6D). MYOC, encoding myocilin, is
most expressed in fibroblasts (Figure 6D; Supplementary Table
S1) and is downregulated 47.5X in DMD (Supplementary Table
S3), despite the expansion of fibroblasts within dystrophic muscle
(Scripture-Adams et al., 2022), suggesting a downregulation in
dystrophic fibroblasts. Myocilin has been widely studied in
glaucoma as a secreted protein in the trabecular meshwork
(Resch and Fautsch, 2009). Myocilin was also found to be
induced during C2C12 myoblast differentiation via regulation
of the TGF-β pathway (Zhang et al., 2021), and to interact with
the dystrophin-glycoprotein complex via syntrophin (Joe et al.,
2012). In the Human Protein Atlas (Uhlén et al., 2015), MYOC is
highest expressed in fibroblasts in skeletal muscle, and not in
myocytes, consistent with our observations. The overexpression
of MYOC increases muscle mass (Joe et al., 2012), and
downregulation of myocilin is observed in cancer cachexia,
with its loss inducing muscle fiber atrophy and an increase in
fibrotic and fatty tissue (Judge et al., 2020). Because its expression
is highest in fibroblasts, and it is found within “Collagen-
Containing Extracellular Matrix”, we hypothesize that its main
role in human skeletal muscle is in the fibroblasts, and not the
myolineage, and that its downregulation promotes fibrosis. These
data, along with the 1.77X higher expression of MYOC in the TA
(Supplementary Table S1), support myocilin as a protective
factor for the TA.

Conversely, CILP, encoding the cartilage intermediate layer
protein 1 (CILP-1), is upregulated 4.3X in DMD (Supplementary
Table S3), and is 1.27X higher in the more susceptible VL. CILP also
has highest expression in the fibroblasts in our dataset (Figure 6D;
Supplementary Table S1) and in the Human Protein Atlas (Uhlén
et al., 2015), but its role is not well understood. Upregulation of
CILP-1 occurs upon cardiac injury in fibrotic regions, and there is a
decrease in serum of patients with heart failure (Park et al., 2020). Its
anti-fibrotic effect in pressure-overload cardiac remodeling (Zhang
et al., 2018) suggests that CILP-1 is regulated in relation to processes
that involve cardiac fibrosis. Because of its upregulation in DMD and
higher expression in VL, and its restricted expression in the
fibroblasts, we hypothesize that CILP-1 is pro-fibrotic in skeletal
muscle, and a susceptibility factor for the VL.

Among other overlapping genes is SLC19A2, which is the
most statistically significantly dysregulated gene in DMD
compared to healthy TA (p = 1.59E-10), and which is
downregulated 41.77X in DMD (Supplementary Table S3).
SLC19A2 encodes the thiamine (vitamin B1) transporter 1
(THT1), which has highest expression in skeletal muscle
(GTEx), specifically in slow fibers (Figure 6A; Supplementary
Table S1). Thiamine supplementation has been shown to

improve muscle strength in myotonic dystrophy type 1
(Costantini et al., 2016). In mdx, supplementation with the
thiamine precursor benfotiamine ameliorated the dystrophic
pathology and increased grip strength (Woodman et al., 2018),
supporting a protective role for the TA compared to VL in DMD,
and potentially also in the slow fibers compared to fast fibers.
Lastly, KIF21A, highest expressed in slow fibers, is downregulated
2.91X in DMD (Supplementary Table S3), and is 1.20X higher in
the TA (Supplementary Table S1). Heterozygous mutations in
KIF21A cause autosomal dominant congenital fibrosis of
extraocular muscles (EOM) (Yamada et al., 2003). The
downregulation of KIF21A in DMD skeletal muscle, reduced
function leading to pathologic fibrosis in EOM, and its higher
expression in the TA suggest a protective role of higher KIF21A
expression within myofibers that leads to some protection from
damage in DMD. KIF21A encodes a kinesin, involved in cargo
transport between the Golgi apparatus and the endoplasmic
reticulum (Hirokawa and Noda, 2008), but its role in skeletal
myofibers is not established.

Among the 67 overlapping genes, APOE is found in “Negative
Regulation of Apoptotic Process” and is upregulated in DMD and
higher in the VL. APOE is a highly specific satellite cell marker in
healthy muscle (Figure 2B), suggesting that a potential differential
regulation of apoptotic signaling (Figure 3C) may alter the
regenerative capabilities of VL and TA.

Cell type specificity of the 67 genes differentially expressed
between VL and TA and also dysregulated in DMD (Figure 6D)
was examined within previously published single cell and nuclei
RNAseq datasets from the mouse TA (scMuscle) (McKellar et al.,
2021) and soleus (myoatlas) (Petrany et al., 2020). Using these
datasets, the cell type specificity of 17 protein coding genes was
confirmed. These includeMYOC and CILP, highest expressed in the
fibroblasts in both scMuscle (Supplementary Figure S6A) and
myoatlas (Supplementary Figure S6B) in mouse.

We note PDK4 as the most dysregulated gene within “Negative
Regulation of Apoptotic Process”, and the most dysregulated protein
coding gene among all 868 genes differentially expressed between
DMD and healthy TA in our transcriptome-wide analysis. PDK4,
encoding pyruvate dehydrogenase kinase 4, is downregulated
1,453X in DMD and only superseded by the unprocessed
pseudogene OR7E29P, which is downregulated 11,396X
(Figure 6A; Supplementary Table S3). Downregulation of PDK4
in DMD has been previously reported in the slow (type I) fibers
(1.74X, p = 2.78E-04), and upregulation in the fast type IIa and IIx
(Scripture-Adams et al., 2022). PDK4 is also downregulated in mdx
quadriceps and TA compared to age-matched controls (Matsakas
et al., 2013). PDK4 is downregulated in DMD, but higher in themore
susceptible VL (1.98X, Supplementary Table S1). Interestingly,
PDK4 is a druggable gene, with tretinoin (a vitamin A derivative)
being a known upregulator (Supplementary Table S1).

Lastly, among the 17 known DMD genetic modifiers included in
our DMD versus Healthy comparison, none were significantly
dysregulated in DMD compared to Healthy TA (Supplementary
Table S3), but some trended toward a significant upregulation after
multiple testing correction (p < 0.30), including (by ascending
p-value): LTBP4 (4.47X, p = 5.37E-02), MAN1A1 (4.01X, p =
6.21E-02), THBS1 (24.89X, p = 9.76E-02), PARD6G (3.50X,
1.54E-01), SPP1 (139X, p = 2.80E-01), and NCALD (2.39X, p =
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2.97E-02). Interestingly, all 6 genes have variants that have been
identified to modulate the disease progression in DMD patients
(versus in mdx double knockouts), supporting their relevance in
human pathology.

4 Discussion

Our goal in this study was to analyze two different healthy limb
muscles with more similar functional roles (VL and TA), which have
a consistently observed difference in disease progression, that is
more modest in degree than the greater protection from damage of
EOM compared to limb muscles in the absence of dystrophin.
Because of published longitudinal imaging data (Rooney et al.,
2020), we could select comparable muscles amenable to biopsy in
healthy adults (Barthelemy et al., 2020). The protection of TA
relative to VL is less striking than that of EOM compared to
limb but is still substantial with an estimated shift in equivalent
damage of 8.5 years in humans (Rooney et al., 2020). VL and TA
demonstrate a substantial difference in their susceptibility to lack of
dystrophin, and our transcriptomic study of paired samples from the
same healthy individuals identifies a large portion of the
transcriptome as altered, with 3,410 differentially expressed
genes. There is inherent biological variability within each large
muscle, and there is some potential variability added to
transcriptomic comparisons due to the small sample analyzed,
which may not be representative of the whole muscle. The
relatively small sampling by biopsy can introduce variability from
sampling different parts of each muscle. This could result in a
reduction in the number of differentially expressed genes, but should
not lead to false expression differences between muscle groups. We
try to limit variation by sampling the same relative location of VL
and TA, which indeed resulted in highly significant differential gene
expression detection. Because the transcriptomic differences
between muscles in this study greatly exceeded those driven by
genetic variation, we note that future studies may not require a
paired design approach that was used here to maximize discovery
and control for interindividual differences.

Our study particularly highlights calcium homeostasis, ECM,
and regulation of apoptosis, and provides a dataset for exploration to
investigate potential protective mechanisms of myofibers to loss of
dystrophin in skeletal muscle. By studying muscles that have a
substantial difference in their rate of disease progression in DMD,
we sought to identify mechanisms of myofiber protection,
complement genetic modifier studies and reveal novel therapeutic
targets. There is some overlap between prior gene expression work
comparing EOM to limb muscles and this study comparing TA to
VL, including enrichment of genes with functions related to
sarcomere structure, calcium homeostasis, muscle development,
metabolic and immune processes, vasculature development,
regulation of cell death and extracellular matrix, and thus
supports that these pathways are relevant to how muscles are
differentially susceptible to damage with lack of dystrophin.
Comparison with genes dysregulated in DMD skeletal muscle
compared to healthy further highlights the potential role of ECM
and negative regulation of apoptosis in the differential susceptibility
of VL and TA in DMD. We note that the mean age of our DMD
cohort (4.5 years) is younger than the healthy cohort (21.2 years),

and we attempted to reduce the effect of age on the identified gene
expression differences. However, age could also be contributing to
gene expression differences reported here.

Recently, a relatively higher regenerative capacity of EOM
muscle stem cells was identified and attributed to upregulation of
thyroid-stimulating hormone receptor (TSHR) signaling through
upregulation of adenylate cyclase activity in EOM relative to limb
muscle (Taglietti et al., 2023). Although TSHR is not differentially
expressed between VL and TA in our study, “Adenylate Cyclase-
Activating G Protein-Coupled Receptor Signaling Pathway” trended
toward significance among the biological process GO terms (p =
9.92E-02), with 16 of the 17 genes higher in the TA (data not
shown), suggesting a protective role in the TA and consistent with
the proposed therapeutic relevance of upregulation of adenylate
cyclase in DMD, where adenylate cyclase activation stimulates
TSHR signaling, reduces muscle stem cell senescence and
improves their proliferation (Taglietti et al., 2023).

Of note, only 24.9% of the differentially expressed genes were
highest expressed in the myofibers, indicating that many of non-
myofiber cells are likely to play an important role in protecting
myofibers from death. A caution of our work is that the healthy
muscles are sampled without active degeneration/regeneration or
induced muscle damage, which is a chronic state in DMD, and thus
our data does not necessarily reveal mechanisms that may be only
induced with muscle injury.

ECM deposition is an important component of the muscle
structure and function (Loreti and Sacco, 2022), and there is an
enrichment of differentially expressed genes that encode “Collagen-
Containing Extracellular Matrix”. ECM remodeling is necessary to
properly activate muscle stem cells during regeneration, and the
dysregulation of ECM proteins has been associated with
regeneration defects in muscle diseases (Loreti and Sacco, 2022).
In addition, the ECM stiffness, which varies depending on ECM
composition, can modulate satellite cell activity and myofiber-
generated force during contraction, and undergoes changes with
age (Sinha et al., 2020). Thus, observed differences in ECM gene
expression in VL and TA may contribute to their differential
progression in DMD and cause differences in the fibrotic
response within each muscle type. We highlight MYOC as a
potentially protective anti-fibrotic, and CILP as a potentially
damaging pro-fibrotic gene in DMD.

Myofiber death in DMD has been mainly attributed to necrosis
(Bencze, 2023). However, a higher rate of apoptotic nuclei in DMD
compared to healthy muscle has been repeatedly observed (Tews
and Goebel, 1997; Sandri et al., 1998; Serdaroglu et al., 2002),
particularly before necrosis initiates (Tidball et al., 1995). In
addition, p53 is one of the most highly induced transcription
factors in mdx (Dogra et al., 2008), and its inhibition reduced
exercise-induced necrosis in the dystrophic mouse (Waters et al.,
2010), suggesting an important role in the mdx pathology. We
identify an enrichment of “Regulation Of Apoptotic Process” genes
that are differentially expressed, and a 4.2 fold increase in ZNF385A
in TA (p-value = 1.76E-102), which is a reported modulator of
p53 that reduces pro-apoptotic signaling (Das et al., 2007). This
relatively higher expression of ZNF385A is also observed in gracilis
(Abbassi-Daloii et al., 2023) and EOM (Porter et al., 2001; Terry et
al., 2018) which are protected in DMD compared to the VL. Because
of the potential impact of ZNF385A to suppress apoptosis, ZNF385A
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may protect the TA via modulation of p53 signaling towards an anti-
apoptotic state. Further studies need to be conducted on 1) what are
the direct or indirect targets of ZNF385A in human muscle, 2)
whether up or downregulating the expression of ZNF385A has an
effect on the apoptotic rate in myotubes and muscle stem cells
exposed to an apoptotic-inducing condition, and 3) whether
inducing its expression in dystrophic myotubes protects
myofibers and other resident muscle cells from death.

DMD modifier genes were more likely to be differentially
expressed between VL and TA, supporting a functional role for
several modifiers from this orthogonal transcriptomic study.
Identifying novel genetic modifiers of DMD remains a challenge,
as studies are limited due to sample size, and thus under-powered to
detect genome-wide significance. Thus, augmenting with other data
types is relevant to increasing confidence in observed genetic
modifiers.

The higher expression of the genetic modifier LTBP4 in TA and
its restriction to fibroblasts is consistent with a role in slowing
disease progression, as it binds TGF-β and thus reduces TGF-β
signaling (Flanigan et al., 2013), a major driver of fibrosis. LTBP4
also had high expression in satellite cells, an unexpected finding.
Although TGF-β signaling is known to modulate the muscle stem
cell function, the specific role of LTBP4 in satellite cells has not been
elucidated. If LTBP4 participates in regulation of satellite cell
function, it may create differences in the muscle-specific
regenerative ability that needs further exploration, particularly in
the context of the protective IAAM haplotype.

Actinin-3 null allele has been previously reported to be
protective in DMD via a shift to a more oxidative metabolism
(Hogarth et al., 2017) characteristic of slow fibers, which are more
protected from loss in DMD. Various studies have examined
whether there is an associated change in fiber type composition
in the ACTN3 null genotype, with some finding no evidence for a
fiber type shift (MacArthur et al., 2008; Broos et al., 2016), and
others finding significant differences in the fiber type composition
across genotype groups (Vincent et al., 2007). The discrepancies
could be due to different sampling methods, such as the number of
fibers counted. The higher proportion of slow fibers in XX
individuals may be protective because slow fibers are protected
for longer in DMD (Webster et al., 1988). We detected
previously unreported expression of actinin-3 in slow fibers at
low levels, particularly in the RR and RX groups. The presence of
actinin-3 in slow fibers in the VL may render VL slow fibers more
susceptible to damage by increasing glycolytic and reducing
oxidative metabolism.

Differential mutual exclusion of exons 143 and 144 of NEB, as
we observed here, has been observed for another pair of human
muscles, and gastrocnemius (GN) preferentially includes exon
144 and TA exon 143 (Donner et al., 2004; Lam et al., 2018), the
latter being consistent with this study. Similar to the difference in
progression between the VL and TA in DMD where the TA is
delayed by about 8.5 years, the TA is delayed by 3.4 years relative
to GN (Rooney et al., 2020). Because the more affected VL and
GN preferentially include E144 and not E143, we hypothesize
that E143 included nebulin could plausibly confer different
sarcomere properties that result in protection of the muscle
membrane to contraction-induced injury in the absence of
dystrophin.

Nebulin has various roles in skeletal muscle. Although the most
commonly known role is thin filament length regulation and
stabilization, it also has been recently found to have roles in
modulating contractile force, calcium handling, and the actin-
myosin interaction (Chu et al., 2016). Mutations in NEB are the
most common cause of autosomal-recessive nemaline myopathy,
characterized by Z-disk and thin filament proteins aggregated into
nemaline bodies, Z-disk disorganization and consequently, early-
onset muscle weakness that mainly affect proximal muscles
(Lehtokari et al., 2014). Homozygous intronic mutations in
intron 144, which created an alternative donor (5’) splice site in
exon 144 and a decrease in NEB expression, were found causal in a
case of a 6-year-old boy with general muscle weakness and nemaline
bodies consistent with nemaline myopathy (Laflamme et al., 2021).
Exons 143 and 144 encode the super repeat region 21 (S21) of
nebulin (Lam et al., 2018) and how they differ functionally has not
been extensively studied. The only reported difference is in their
charge, hydrophobicity and the predicted presence of a protein
kinase C phosphorylation site in the E144 but not in the E143
(Donner et al., 2004). The central super repeat region, which has
22 super repeats in total, has been proposed to interact with KLHL40
(Garg et al., 2014). KLHL40 is located in the sarcomere I and A
bands, where it binds to nebulin (Garg et al., 2014). Similar to
mutations in the NEB exon 143-144 region, KLHL40 deficiency is
associated with nemaline myopathy (Garg et al., 2014). These data
indicate that the S21 repeat region is critical for proper sarcomere
organization, and consequently, muscle function. Nebulin
S21 isoforms with different charge and hydrophobicity can
potentially modulate the sarcomere organization, structure, and
stability and lead to a different susceptibility of the dystrophin-
glycoprotein-sarcomere link to damage in the absence of dystrophin.

Previous reports on isoform switching across leg muscles
identified 200 switching isoforms among 79 genes (Abbassi-
Daloii et al., 2023). However, we did not identify any of these
isoforms switch events between VL and TA. These findings could be
partially attributed to the different skeletal muscles studied, RNA
quality and the sequencing library type. In our study, we utilized
ribosomal depletion before cDNA synthesis. However, poly(A)
libraries can be 3’ end biased (Shi et al., 2021) and this can affect
isoform quantification.

This study further provides insights into transcriptomic
signatures of differentially affected muscle groups, at both the
gene and isoform level, and constitutes the first study, to our
knowledge, to augment transcriptomic data from different
healthy human skeletal muscles using single nuclei
transcriptomics to unravel the complexity of tissue heterogeneity
and its contribution to intrinsic transcriptomic signatures. To our
knowledge, this study also generated the second and largest reported
DMD bulk RNAseq dataset, from young ambulatory patients with
the same type of DMD mutation (nonsense mutation). An existing
dataset of 5 DMDmuscle RNAseq (sequenced muscle not specified)
can be found in the Sequence Read Archive (SRA) database
(PRJNA734152), and RNAseq for four different muscles
(1 biceps, 1 quadriceps, 1 gastrocnemius, 1 tibialis anterior) can
be found in PRJNA342787. In addition, this is the first throughput
dataset of the DMD TA. Although various other datasets of human
DMD muscle microarray are found in the Gene Expression
Omnibus (GEO) database (GSE3307, GSE109178, GSE6011,
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GSE1004, GSE38417, GSE13608), GSE6011 is the microarray
dataset at the earliest stage reported, and it corresponds to the
quadriceps (at times used to refer to the VL) at less than 2-year of
age. Considering that our DMD TA dataset is from muscle at
2–7 years of age, and that the TA is protected for 8.5 years
compared to the VL (Rooney et al., 2020), we estimate that the
herein generated TA dataset is the DMD whole muscle
transcriptome at the earliest stage of the disease reported to date.
Furthermore, the healthy snRNAseq and bulk RNAseq datasets
provide useful resources for identification of muscle disease genes
through transcriptomics, which require healthy reference materials
(Lee et al., 2020). In addition, the snRNAseq dataset could be used to
identify splicing factors co-expressed in single cells predominantly
expressing different isoforms, and various methods have been
developed to overcome the challenges of isoform quantification
caused by 3’ bias, low sequencing depth and dropout (Huang
and Sanguinetti, 2017; Song et al., 2017; Hu et al., 2020; Pan
et al., 2021). Establishing a single nuclei atlas of healthy human
muscles will allow for a better understanding of muscle-specific
responses to lack of dystrophin in particular cell types, how genetic
modifiers may influence these, whether there is a preferential
responsiveness of specific muscle groups to therapeutic
approaches and what the cellular underlying mechanisms are,
and how to mimic these intrinsic mechanisms to improve the
effectiveness of current therapeutics.
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roles in enteric smooth muscle
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Background: Inflammatory bowel disease (IBD) is a complex and multifactorial
inflammatory condition, comprising Crohn’s disease (CD) and ulcerative colitis
(UC). While numerous studies have explored the immune response in IBD through
transcriptional profiling of the enteric mucosa, the subtle distinctions in the
pathogenesis of Crohn’s disease and ulcerative colitis remain insufficiently
understood.

Methods: The intact bowel wall specimens from IBD surgical patientswere divided
based on their inflammatory status into inflamed Crohn’s disease (iCD), inflamed
ulcerative colitis (iUC) and non-inflamed (niBD) groups for RNA sequencing.
Differential mRNA GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of
Genes and Genomes), and GSEA (Gene Set Enrichment Analysis) bioinformatic
analyses were performed with a focus on the enteric autonomic nervous system
(ANS) and smooth muscle cell (SMC). The transcriptome results were validated by
quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC).

Results: A total of 2099 differentially expressed genes were identified from the
comparison between iCD and iUC. Regulation of SMC apoptosis and proliferation
were significantly enriched in iCD, but not in iUC. The involved gene PDE1A in iCD
was 4-fold and 1.5-fold upregulated at qPCR and IHC compared to that in iUC.
Moreover, only iCD was significantly associated with the gene sets of ANS
abnormality. The involved gene SEMA3D in iCD was upregulated 8- and 5-fold
at qPCR and IHC levels compared to iUC.

Conclusion: These findings suggest that PDE1A and SEMA3D may serve as
potential markers implicated in enteric smooth muscle apoptosis, proliferative
disorders, and dysautonomia specifically in Crohn’s disease.
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1 Introduction

Inflammatory bowel disease (IBD) is a chronic idiopathic
inflammatory disorder characterized by relapsing and remitting
symptoms. The two most common forms of IBD are Crohn’s
disease (CD) and ulcerative colitis (UC) (Assadsangabi et al.,
2019). Morphologically, UC primarily affects the rectum and
colon, exhibiting superficial inflammation confined to the
mucosal and submucosal layers, often accompanied by cryptitis
and crypt abscesses. In contrast, CD is characterized by a non-
continuous and transmural pattern of inflammation, presenting
additional complications such as thickened submucosa and
muscularis propria, intestinal fibrosis, strictures, fissuring
ulceration, non-caseating granulomas, abscesses, and fistulas
(Abraham and Cho, 2009). A notable feature of CD is the
presence of fibrostenosis, which contributes to therapeutic
challenges and the need for surgical resection. However, a recent
histological grading scheme study discovered that smooth muscle
hyperplasia/hypertrophy, rather than fibrosis, is the primary change
associated with the “fibrostenosis” phenotype in CD.
Neuromuscular hyperplasia/hypertrophy was also identified as a
significant change (Chen et al., 2017).

Although morphological and histological differences exist
between CD and UC, a comprehensive whole-genome gene
expression meta-analysis (Granlund et al., 2013) based on
11 available datasets (Wu et al., 2007; Galamb et al., 2008a;
Ahrens et al., 2008; Galamb et al., 2008b; Carey et al., 2008;
Kugathasan et al., 2008; Noble et al., 2008; Arijs et al., 2009; Olsen
et al., 2009; Bjerrum et al., 2010; van Beelen Granlund et al., 2013)
did not unveil any significant differences between CD and UC.
Interestingly, gene expression in the inflamed mucosa from both
UC and CD was remarkably similar. The patterns of
antimicrobial peptide (AMP) and T-helper cell-related gene
expression were also comparable, except for the higher
expression of IL23A observed in UC compared to CD.
Another study conducted by the IBD-CHARACTER
consortium, which included 323 subjects, found that a
comparison of inflamed UC and inflamed CD identified
204 highly differentially expressed upregulated transcripts and
58 downregulated transcripts (Consortium, 2021). These two
gene expression signatures were highly correlated, suggesting
that inflammation might mask underlying biological differences
among the diagnostic groups. Furthermore, when comparing
inflamed biopsies from UC and CD on a biological pathway
level, the normalized enrichment scores were remarkably similar,
irrespective of diagnosis or whether healthy or symptomatic
controls were used in the comparison. However,
mitochondria-associated pathways exhibited negative
normalized enrichment scores in inflamed UC compared to
inflamed CD (Vatn et al., 2022).

Despite these findings, previous studies (Wu et al., 2007; Galamb
et al., 2008a; Ahrens et al., 2008; Galamb et al., 2008b; Carey et al.,
2008; Kugathasan et al., 2008; Noble et al., 2008; Arijs et al., 2009;
Olsen et al., 2009; Bjerrum et al., 2010; van Beelen Granlund et al.,

2013; Vatn et al., 2022) encountered limitations due to the
challenges of obtaining surgical resection specimens. Instead,
mucosa-submucosa (SM) specimens from colonoscopy pinch
biopsies were commonly used. However, these specimens lack the
layers of muscularis propria (MP) and subserosal adventitia (SS),
making it difficult to fully elucidate the underlying disease-inducing
mechanisms in IBD. Consequently, subtle differences between CD
and UC might have been unintentionally overlooked.

Therefore, the present study aims to utilize intact bowel wall
specimens obtained during surgical resection. Through RNA-seq,
bioinformatics analysis, and validation using quantitative
polymerase chain reaction (qPCR) and immunohistochemistry
(IHC), we aim to explore the subtle differences between CD and
UC, with a primary focus on smooth muscle cells (SMCs) and the
enteric autonomic nervous system (ANS).

2 Materials and methods

2.1 Specimen collection

All the intact bowel wall specimens were collected from the
Biobank of West China Hospital (WCH), Sichuan province,
China. The study was approved (No. 20221470) and
supervised by the WCH Ethics Committee. Patients who
received bowel resection after being diagnosed with IBD were
recruited. Informed consent was obtained from all patients in the
study prior to the medical history and collection of specimens.
For the inflamed CD (iCD) and inflamed UC (iUC) groups,
specimens from the most inflamed segment within the colon
were selected. For the non-inflamed (niBD) group,
specimens from the uninvolved non-inflamed (niCD/niUC)
segment within the colon were selected. The postoperative
pathological diagnosis was confirmed by a team of
pathologists using the guidelines on the pathological diagnosis
of IBD (Shen and Weber, 2017).

2.2 RNA extraction and library preparation

Total RNA was extracted using TRIzol reagent (Cat.# 15596018,
Thermo Fisher Scientific, United States of America) according to the
manufacturer’s protocol. RNA purity and quantification were
evaluated on the NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific). RNA integrity was evaluated using the Agilent
2100 Bioanalyzer (Agilent Technologies, United States of America).
The specimens with RNA integrity number (RIN) ≥7 were subjected
to the subsequent analysis. The libraries were constructed using
TruSeq Stranded Total RNA with Ribo-Zero Gold (Cat.# RS-
122–2301, Illumina, United States of America) according to the
manufacturer’s instructions and sequenced on the Illumina HiSeq X
Ten platform; 150-bp paired-end reads were generated. The
sequencing and analyses were performed by OE Biotech Co., Ltd.
(Shanghai, China).
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2.3 Bioinformatics analysis

Raw reads for each specimen were generated in FASTQ format
and processed using the Trimmomatic software (Bolger et al., 2014).
Subsequently, clean reads were obtained by removing the adapter
and ploy-N or low-quality sequences from raw data. Then, the clean
reads for each specimen were mapped to the human genome
(GRCh38) using HISAT2(Kim et al., 2015). For mRNAs, FPKM
(fragments per kilobase of exon model per million mapped
fragments) (Roberts et al., 2011) of each gene was calculated
using Cufflinks (Trapnell et al., 2010), and the read counts of
each gene were obtained by HTSeq-count (Anders et al., 2015).
Differential expression analysis was performed using DESeq (2012)
R package (Anders et al., 2012). p-value <0.05 was set as the
threshold for a significantly differential expression. The
differential mRNA GO (Ashburner et al., 2000, 2021) and KEGG
(Kanehisa et al., 2010; Kanehisa et al., 2017) enrichments were
analyzed based on selected differential transcripts with
p-values <0.05 and fold-change (FC) > 1.5 based on the
hypergeometric distribution test. Also, gene set expression
analysis (GSEA) of molecular pathways affected by differentially
expressed genes (DEGs) was performed by GSEA R (v1.2) with
weighted enrichment statistic and Signal2Noise for gene ranking
(Mootha et al., 2003; Subramanian et al., 2005).

The data of gene sets analyzed on GSEA are summarized in
Supplementary Tables S1 and S2.

2.4 Quantitative polymerase chain reaction
(qPCR)

Quantification was performed with a two-step reaction: reverse
transcription and PCR. Each 10-μL reaction of reverse transcription
consisted of 0.5 μg RNA, 2 μL of 5× TransScript All-in-one

SuperMix for qPCR, and 0.5 μL of gDNA Remover. The
reactions were performed on a GeneAmp® PCR System 9700
(Applied Biosystems, United States of America) at 42°C for
15 min and 85°C for 5 s. The 10-μL RT reaction mix was then
diluted in 90 μL nuclease-free water and held at −20°C. Real-time
PCR was performed on LightCycler® 480 II Real-time PCR
Instrument (Roche, Swiss) in a 10-μL PCR reaction mixture in a
384-well optical plate (Roche, Swiss), consisting of 1 μL of cDNA,
5 μL of 2× PerfectStartTM Green qPCR SuperMix, 0.2 μL of 10 µM
forward primer, 0.2 μL of 10 µM reverse primer, and 3.6 μL of
nuclease-free water. The reactions were incubated at 94°C for
30 s, followed by 45 cycles of 94°C for 5 s, and 60°C for 30 s.
Each sample was assessed in triplicate. Finally, melting curve
analysis was performed to validate the specific qPCR product.
The expression levels of mRNAs were normalized to GAPDH.
The primer sequences were designed in the laboratory and
synthesized by TsingKe Biotech (Beijing, China), based on the
mRNA sequences obtained from the NCBI database (Table 1).

2.5 Immunohistochemistry (IHC)

The expression of SEMA3D and PDE1A was assessed by IHC
using formalin-fixed paraffin-embedded (FFPE) tissue. The staining
antibodies were as follows: SEMA3D (dilution 1/50; Cat.# NBP1-
85517, NOVUS, Centennial, United States of America) and PDE1A
(dilution 1/200; Cat.# 12442-2-AP, Proteintech, Wuhan, China)
(Supplementary Table S3). Antibody detection and visualization
were performed using DAB (3,3′-diaminobenzidine) as the
chromogenic substrate. The images were captured under
BA400 Digital microscope (Motic, China). The percentage of
DAB-positive tissue in each image was calculated using the Halo
data analysis system (Halo 101-WL-HALO-1, Indica labs,
United States of America).

TABLE 1 Primer sequences.

Num Gene symbol Direction Primer sequences Product length (bp) Tm (°C)

1 SEMA3D Forward GTTCATCAGAAGGACTGGATT 89 60

Reverse TAGAAAGATGTGGTCTTTGGC

2 SLC18A2 Forward GATTTCCATGGCTCATGACA 89 60

Reverse TTCTTTGGCAGGTGGACT

3 PDE1A Forward AAGCAAGTGGAGAGCATAG 85 60

Reverse ACAGGAATCTTGAAACGGT

4 TACR1 Forward GAGAAATAGGAGTTGCAGGC 84 60

Reverse AAGAAATTCCACCGGTCAC

5 SPHK1 Forward ACCATTATGCTGGCTATGAG 96 60

Reverse GCAGGTTCATGGGTGACA

6 ADRA1A Forward GTGAACATTTCCAAGGCCA 81 60

Reverse CACTAGGATGTTACCCAGC

7 GAPDH Forward CCTCACAGTTGCCATGTAGA 69 60

Reverse TGGTACATGACAAGGTGCG
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2.6 Statistical analysis

Contingency data were assessed for significant differences using
chi-square or Fisher’s exact test. The data were expressed as means ±
standard deviation (SD). The comparison between the two groups
was assessed using the Holm-Šídák test. The multiple comparisons
were evaluated using Fisher’s LSD (least significant difference) test.
p-value <0.05 indicated a statistically significant difference. The
statistical analyses were performed using GraphPad Prism9
(GraphPad Software, United States of America).

3 Results

3.1 Demographic characteristics

The demographic and clinical information of the individual
patient are summarized in Supplementary Table S4, and the
grouping design is provided in Supplementary Table S5.

Both CD and UC specimens were divided based on
inflammatory status into inflamed (iCD and iUC) and non-
inflamed (niBD: niCD + niUC) groups.The total number of
specimens primarily included 6 iCD, 6 iUC, and 6 niBD for
RNA extraction and quality control. Since bacteria RNA
contamination was detected in iCD4, iUC6 and niBD6
(Supplementary Figure S1), these 3 samples were excluded, the
final total number of 15 specimens including 5 iCDs (iCD1,
iCD2, iCD3, iCD5 and iCD6), 5 iUCs(iUC1, iUC2, iUC3,
iUC4 and iUC5), and 5 niBDs (niBD1, niBD2, niBD3, niBD4,
niBD5)were used for the subsequent bioinformatics analysis.

Overall, patients with UC had greater left colon (descending
colon or rectal) involvement (p = 0.0152). Patients with CD
tended to have a young onset age (iCD vs. iUC, 28.83 ± 9.06 vs.
64 ± 7.80 years old, p < 0.0001) and ileal involvement (p = 0.0152)
and required the postoperative biological therapy. Importantly,
unlike iUC, iCD had a higher depth score of inflammatory
infiltration (iCD vs. iUC, 3.67 ± 0.52 vs. 2.00 ± 1.10, p =
0.0071) (Table 2).

TABLE 2 Demographic characteristics.

iCD (n = 6) iUC (n = 6) niBD (n = 6) p-value

Patient characteristics

Age (years) 28.83 ± 9.06 64.00 ± 7.80 42.67 ± 18.69 0.0009*

Gender 6M 0F 5M 1F 5M 1F 0.5698

Smoker 1/6 3/6 2/6 0.4724

Alcohol 0/6 4/6 2/6 0.0498*

Preoperative treatment history

5-ASA 4/6 6/6 4/6 0.2765

Steroids 3/6 4/6 3/6 0.7985

Immunomodulation 2/6 2/6 2/6 0.9999

Anti-TNF 2/6 0/6 0/6 0.1054

Non-anti-TNF biologic treatment NA NA NA NA

Location involvement

Ileum 5/6 0/6 NA 0.0152*

Cecum 3/6 0/6 NA 0.1818

Ascending colon 3/6 5/6 NA 0.5455

Transverse colon 3/6 6/6 NA 0.1818

Descending colon 1/6 6/6 NA 0.0152*

Sigmoid 2/6 5/6 NA 0.2424

Rectal 0/6 5/6 NA 0.0152*

Phenotypes

Depth score of inflammatory infiltration※ 3.67 ± 0.52 2.00 ± 1.10 NA 0.0071*

Acute inflammation 2/6 4/6 NA 0.5671

Chronic inflammation 6/6 5/6 NA 0.9999

Ulcers 2/6 5/6 NA 0.2424

Penetrate/fistula 2/6 0/6 NA 0.4545

Stricturing 4/6 0/6 NA 0.0606

Periganglitis 2/6 0/6 NA 0.4545

Postoperative outcomes

Biologic use 3/6 0/6 1/6 0.1054

Median time to first resection (months) 54.33 ± 45.86 53.08 ± 54.42 53.00 ± 45.29 0.9986

Median time from first resection to second resection (months) NA NA NA NA

※Depth score of inflammatory infiltration. Mucosa: Score 1; muscularis mucosa (MM): Score 2; submucosa (SM): Score 3; muscularis propria (MP): Score 4; subserosal adventitia (SS): Score 5.

Frontiers in Genetics frontiersin.org04

Yang et al. 10.3389/fgene.2023.1194882

39

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1194882


3.2 Transcriptome profiling distinguished
the differences between iCD and iUC

Based on principal component analysis (PCA) of mRNA
expressions, the results showed that approximately 44.48% and
16.51% of the variability in gene expression data were captured
by the first and second principal components (PC1 and PC2),
respectively (Figure 1A). This indicated that the non-inflamed
specimens (niBD) formed a distinct cluster separate from the
inflamed specimens (iCD and iUC). Furthermore, on PC1 and
PC2, there was clear separation between iCD and iUC,
accounting for 47.07% and 24.58% of the variability, respectively
(Figure 1B). These findings suggest significant heterogeneity
between iCD and iUC.

RNA transcript differential expression analysis of iCD, iUC,
and niBD was performed after high-throughput RNA
sequencing. The genes with fold-change (FC) > 1.5 and
adjusted p-value <0.05 were considered differentially expressed
genes (DEGs) with statistical significance. A total of 1250 and
1545 DEGs were identified from either iCD or iUC specimens
compared to the niBD group (Figures 1C, D). Then, 2099 DEGs
were identified when iCD was compared to iUC specimens
(Figures 1C, D). To stratify the iCD, iUC, and niBD

specimens, the expression profiles of DE mRNA (FC > 1.5)
were compared through unsupervised hierarchical clustering.
Compared to the niBD group, the heat map of these DE
mRNAs showed intra-group similarity in the iCD or the iUC
group (Figures 1E, F). Notably, the comparison of the iCD vs.
iUC revealed a tight intra-group cluster and distinguished iCD
from iUC (Figure 1G), indicating an underlying difference
between iCD and iUC.

3.3 CD revealed dysregulation of enteric
SMC apoptosis and proliferation

To identify disrupted biological processes and pathways in IBD
patients, gene enrichment analysis was conducted to obtain
overrepresented gene ontology (GO) terms of biological processes
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
from dysregulated genes. When GO terms were used, the two SMC-
related terms, “regulation of SMC apoptotic process” and
“regulation of SMC proliferation” were highly enriched in iCD
but not in iUC (Figure 2A). Among the identified genes such as
AGTR1, PDE1A, RBM10, SIRT1, BMP4, NPPC, NR4A3, PRKDC,
TACR1, TCF7L2, XRCC5, and XRCC6, volcano plots revealed that

FIGURE 1
PCA and differential expression analysis of transcriptomic profiling. (A,B) Principal Component Analysis (PCA) plot displaying mRNA transcriptomic
data. Each point represents a specific specimen, while each color represents a different group. Numbers along the perimeter indicate principal
components (PC1-PC2), and numbers in parentheses represent the percentage variance accounted for by each PC. (C) Venn diagram illustrating the
overlaps between differentially expressed mRNAs identified in iCD vs. niBD, iUC vs. niBD, and iCD vs. iUC comparisons. The criteria for differential
expression were log2 fold change (log2FC) greater than absolute value of 0.58 and an adjusted p-value less than 0.05. (D) Bar graph showing the number
of dysregulated mRNAs. Upregulated mRNAs are depicted in red, while downregulated mRNAs are shown in blue. The criteria for dysregulation were
log2FC greater than absolute value of 0.58 and an adjusted p-value less than 0.05. (E–G)Heatmap representing differentially expressedmRNAs identified
throughwhole transcriptomic analysis of IBD specimens. Each row corresponds to onemRNA, and each column represents a specimen. Upregulated and
downregulated mRNAs are highlighted in red and blue, respectively. The dendrograms on top of the heatmap display hierarchical clustering correlation
between the specimens.
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PDE1A and TACR1 are the only two significantly upregulated
mRNAs (log2FC >|0.58| and adjusted p-value <0.05) (Figures
2B–E). Similarly, “positive regulation of SMC contraction” was
highly enriched in iUC but not in iCD; the genes involved
(Figures 2F, G) were ADA, ADRA1A, CHRM3, CTTN, EDN1,

EDN2, F2R, FERMT1, FERMT2, ITGA2, MYOCD, NMU,
NPNT, NPY2R, PROK2, PTAFR, PTGS1, PTGS2, RHOA,
SLC36A4, SPHK1, SRF, STIM1, and TBXA2R. These altered
biological processes were overrepresented in direct comparison
between the iCD and iUC groups (Figure 2A), which alludes to

FIGURE 2
Pathway analysis of dysregulated mRNAs reveals dysregulated enteric smooth muscle cell apoptosis and proliferation in CD. (A) Selected Gene
Ontology (GO) biological processes that exhibit significant enrichment among dysregulated mRNAs(log2FC >|0.58| and adjusted p-value <0.05). The
enrichment score for each dysregulated gene annotated to the corresponding GO term is indicated. p-values greater than 0.05 are labeled in grey. (B–G)
Volcano plots depicting dysregulated mRNAs. Pink and blue dots represent upregulated and downregulated mRNAs, respectively (log2FC >|0.58|
and adjusted p-value <0.05). Non-significant mRNAs are displayed in grey. Dysregulated mRNAs associated with selected processes are labeled in dark
red or blue. (H) Selected KEGG signaling pathways significantly enriched among dysregulated mRNAs (log2FC >|0.58| and adjusted p-value <0.05). The
enrichment score for each dysregulated gene annotated to the corresponding KEGGpathway is presented. p-values greater than 0.05 are labeled in grey.
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SMC phenotypic and subtle functional divergence between CD and
UC. Notably, in extracellular matrix (ECM)- or immune-related
terms, CD and UC presented similar enrichment patterns, except
slight differences in biological processes of ECM, ECM disassembly,
and proteinaceous ECM (Figure 2A).

When KEGG pathways were used, the pathways of bacterial
invasion of epithelial cells, B or T cell receptor signaling, Th1/2/
17 cell differentiation, natural killer cell-mediated cytotoxicity, TNF
signaling, and IL-17 signaling did not show significant differences in
iCD or iUC (Figure 2H). Interestingly, the activation of complement
and coagulation cascades and cytokine-cytokine receptor
interaction was observed significantly in iUC, whereas activation
of systemic lupus erythematosus was predominant in iCD
(Figure 2H). These activations were overrepresented in the direct
comparison between the iCD and iUC groups (Figure 2H). Similar
to the data obtained by the enrichment analysis of GO terms, ECM-
receptor interaction pathway was activated in both iCD and iUC,
albeit with slight differences (Figure 2H). In the pathways of protein/
fat digestion and absorption, iCD and iUC presented similar
activation but with slight variances; however, vitamin/
carbohydrate digestion and absorption pathways were only
activated in iUC (Figure 2H), suggesting that varying degrees of
gastrointestinal mucosa injury have a differential impact on
digestion and absorption between CD and UC. Moreover, the
activation of “alcoholism” was enriched in iCD, not iUC
(Figure 2H).

3.4 CD exhibited abnormalities in the
enteric ANS

The enteric nervous system (ENS) is a part of the ANS located in
the digestive tract and innervating SMC with a marked influence on
gastrointestinal function. Herein, we explored the ENS deviance in
iCD and iUC using GSEA to identify the genes associated with
abnormality of the autonomic nervous system and aganglionic
megacolon. As a result, only iCD was significantly associated
with the gene sets related to abnormality of the autonomic
nervous system (Figures 3A, B) and aganglionic megacolon
(Figures 3D, E), indicating that CD may involve pathogenic
activity resembling ENS abnormalities or gangliopathy. Notably,
SEMA3D emerged as the top-ranking gene among the top 20 core
enrichment genes in both ANS abnormality (Figure 3C) and
aganglionic megacolon (Figure 3F) gene sets.

3.5 Validating dysregulated genes SEMA3D
and PDE1A: Implications for SMC and ANS
dysfunction in CD

We conducted validation of dysregulated key genes involved in
smooth muscle cell (SMC) apoptosis and proliferation, as well as
abnormalities in the autonomic nervous system (ANS), using
quantitative polymerase chain reaction (qPCR). The results

FIGURE 3
GSEA analysis shows activation of abnormality of the autonomic nervous system (ANS) and aganglionic megacolon in iCD. (A,B) Gene Set
Enrichment Analysis (GSEA) of abnormality of the autonomic nervous system-related gene sets in iCD and iUC specimens vs. niBD. (C) Top 20 core
enrichment genes associated with abnormality of the autonomic nervous system. (D,E)GSEA of aganglionicmegacolon-related gene sets in iCD and iUC
specimens vs. niBD. (F) Top 20 core enrichment genes associated with aganglionic megacolon.

Frontiers in Genetics frontiersin.org07

Yang et al. 10.3389/fgene.2023.1194882

42

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1194882


confirmed that SEMA3D (iUC vs. iCD, p = 0.0309) and SLC18A2
(iUC vs. iCD, p = 0.0087), which were identified as core enrichment
genes for ANS abnormality, were upregulated by 8-fold and 5-fold
respectively in iCD (Figure 4). Additionally, the core enrichment
gene PDE1A, implicated in SMC apoptosis and proliferation,
exhibited a 4-fold upregulation in iCD (iUC vs. iCD, p = 0.0144)
(Figure 4). Conversely, SPHK1 was upregulated in iUC for positive
regulation of SMC contraction (niBD vs. iUC, p = 0.0030) (Figure 4).

The dysregulation of key DEGs at the protein levels detected in
iCD and iUC (already confirmed at the mRNA level by RNAseq and
real-time qPCR) was assessed by immunohistochemistry (IHC)
staining. The clinical information of specimen sections is
provided in Supplementary Table S6.

In total, we subjected 15 specimens from iCD, 7 specimens from
iUC, and 4 non-inflammatory specimens from niBD (2 niCD
+2 niUC) to IHC staining. PDE1A, associated with SMC
apoptosis and proliferation, and SEMA3D, associated with ANS
abnormality were selected for IHC staining. Consistent with the data
presented in Table 2, CD patients tended to have a early onset age
(Figure 5A), histologically higher depth score of inflammatory
infiltration (Figure 5C), and perigangalionitis (iCD vs. iUC, p =
0.0167) (Figure 5D) (Supplementary Figure S2). The IHC data
demonstrated that SEMA3D protein levels were upregulated in
muscularis propria (iUC vs. iCD, p = 0.0178) (Figures 6A, B)
and mucosal layer (iUC vs. iCD, p = 0.0023) of iCD (Figures 6A,

C), and displayed significant aggregation around the ganglia in iCD
(Figure 6A). Additionally, the protein level of PDE1A was
significantly increased in muscularis propria (iUC vs. iCD, p =
0.0128) (Figures 6A, B) and mucosa (iUC vs. iCD, p = 0.0243) layers
of iCD (Figures 6A, C).

Overall, these findings validated the mRNA data obtained in this
study and suggest the role of SEMA3D and PDE1A as key genes
involved in the dysregulation of SMC apoptosis and proliferation, as
well as in orchestrating the abnormality of the enteric ANS,
particularly in the pathogenesis of CD.

4 Discussion

This study revealed a widespread distinguishable dysregulation
of mRNA expression between CD and UC in the colon
inflammatory region. The regulation of SMC apoptosis and
proliferation was significantly enriched in iCD, rather than in
iUC. The involved PDE1A gene was upregulated 4-fold and 1.5-
fold in iCD, as assessed by qPCR and IHC, respectively. Moreover,
iCD was significantly associated with gene sets of ANS abnormality,
while SEMA3D gene was upregulated 8-fold and 5-fold, respectively,
compared to iUC.

In previous studies, the phenomenon of smooth muscle
hyperplasia/hypertrophy in CD has been described briefly

FIGURE 4
Validation by real-time qPCR of genes overactivated or downregulated in colon specimens of iCD (n = 5) and iUC (n = 5) compared to those from
niBD (n = 5). Graphs display interleaved box and whisker plots representing the range from minimum to maximum values. For RNA sequence values
expressed in FPKM and qPCR values expressed in 2−ΔΔCt, statistical analysis was performed using Fisher’s Least Significant Difference (LSD)
test.Nonsignificant p-values (>0.05) are denoted. Asterisks (*) indicate statistical significance levels: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤
0.0001.
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(Suekane et al., 2010; Flynn et al., 2011; Scirocco et al., 2013). A
recent novel histological grading scheme study demonstrated that
muscularization, including hypertrophy of the MP and smooth
muscle hyperplasia of the SM, is the most prevalent histological
change in CD (Chen et al., 2017), accompanied by neuronal
hypertrophy in both myenteric (Auerbach’s) plexuses and
submucosal (Meissner’s) plexuses (Chen et al., 2017).

In this study, CD was significantly associated with the biological
processes of SMC apoptosis and proliferation regulation. Both
mRNA and protein levels of PDE1A involved in enteric SMC
apoptosis/proliferation balance increased significantly in iCD.
Cyclic nucleotide phosphodiesterases (PDEs) are critical in the
homeostasis of cyclic nucleotides that regulate SMC growth by
hydrolyzing cAMP or cGMP. Previous findings (Nagel et al.,
2006) suggested that cytoplasmic PDE1A is associated with the
“contractile” phenotype, whereas nuclear PDE1A is associated with
the “synthetic” phenotype. Decreasing the levels of nuclear PDE1A
via RNA interference or pharmacological inhibition significantly
attenuated SMC growth by reducing proliferation via G1 arrest,
induced apoptosis, elevated intracellular cGMP level, and altered
gene expression, which was consistent with growth arrest and
apoptosis (Nagel et al., 2006). Conversely, cytoplasmic PDE1A
regulates myosin light chain phosphorylation with little effect on
apoptosis (Nagel et al., 2006). In another study (Rajagopal et al.,
2015), PDE1A expression was induced and accompanied by an
increase in PDE1A activity in muscle cells isolated from muscle

strips cultured with IL-1 β (interleukin-1 beta) or TNF- α (tumor
necrosis factor alpha) or obtained from the colon of TNBS (2,4,6-
trinitrobenzene sulfonic acid)-treated mice. Also, nitric oxide-
induced muscle relaxation was inhibited in longitudinal muscle
cells. This inhibition was completely reversed by the combination
of both 1400 W dihydrochloride and vinpocetine (a PDE1 inhibitor)
(Rajagopal et al., 2015). The inhibition of smooth muscle relaxation
during inflammation reflected the combined effects of decreased
sGC activity via S-nitrosylation and increased cGMP hydrolysis via
PDE1 expression, thereby indicating that PDE1A might be a novel
target for relieving altered pathogenesis of enteric smooth muscle in
CD (Rajagopal et al., 2015).

Previously, 9 patients with both Hirschsprung disease (HSCR,
also called congenital aganglionic megacolon) and IBD were
described, suggesting an association between the two conditions
(Sherman et al., 1989). HSCR is a neurocristopathy caused by a
failure of the ENS progenitors derived from neural crest cells
(NCCs) to migrate, proliferate, differentiate, or survive on and
within the gastrointestinal tract, resulting in aganglionosis in the
colon. This association has been confirmed in a few case reports and
small case series (Levin et al., 2012; Kim and Kim, 2017). A recent
population-based cohort study showed that individuals with HSCR
had a 5-fold higher risk for IBD than those without HSCR (Löf
Granström et al., 2018). Also, a follow-up study (Granström et al.,
2021) found that the extent of aganglionosis is related to the risk of
IBD. This theory was also proposed in a meta-analysis (Nakamura

FIGURE 5
Baseline information of specimen sections prepared with non-inflamed and inflamed colon from CD and UC patients. (A) Comparison of disease
onset ages between CD andUC patients. (B)Gender distribution in CD andUC patients. (C) Variation in depth scores of inflammatory infiltration observed
in CD and UC patients. (D) Proportion of CD patients exhibiting periganglionitis.

Frontiers in Genetics frontiersin.org09

Yang et al. 10.3389/fgene.2023.1194882

44

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1194882


et al., 2018), including 14 studies encompassing a total of 66 patients
with HSCR associated with IBD; moreover, the distribution of IBD is
in 72.3% of CD patients. Another population-based cohort study
(Bernstein et al., 2021) showed that individuals diagnosed with
HSCR resulted in a 12-fold increased risk of subsequently diagnosed
IBD. Interestingly, IBD can emerge in >2% of patients with HSCR
and is more frequently classified as CD rather than UC (Bernstein
et al., 2021).

In the present study, CD was significantly associated with gene
sets of abnormality of ANS and aganglionic megacolon, indicating
that the abnormality of ANS/ENS, such as gangliopathy may show
pathogenic activity in CD similar to that in HSCR. Both the mRNA
and protein levels of SEMA3D involved in the abnormality of ANS
and aganglionic megacolon increased significantly in iCD. SEMA3D
encodes a member of the semaphorin III family of secreted signaling
proteins involved in axon guidance during neuronal development
and is one of the three signaling pathways of HSCR pathogenesis
(Luzón-Toro et al., 2013; Jiang et al., 2015; Kapoor et al., 2015); the
other two are RET and EDNRB signaling pathways (Amiel et al.,
2008; Tilghman et al., 2019).

SEMA3D has been implicated in the development of HSCR
and contributes to risk in European (Luzón-Toro et al., 2013; Jiang

et al., 2015; Kapoor et al., 2015) and Asian ancestries (Wang et al.,
2011; Li et al., 2017; Gunadi et al., 2020). In a previous study
(Luzón-Toro et al., 2013), the E198K-SEMA3D, A131T-SEMA3A,
and S598G-SEMA3A mutations presented an increased protein
level in the smooth muscle layer of ganglionic segments. Moreover,
A131T-SEMA3A also maintained high protein levels in the
aganglionic muscle layers. The coincident upregulation of
SEMA3A expression in aganglionic colons was detected in
Chinese patients of HSCR: the circular muscle layer, the
submucosa, and the longitudinal muscles layer (Wang et al.,
2011). These findings indicated that the SEMA3 variants
increase the SEMA3 proteins levels in the HSCR colon tissue,
thus supporting the functional implication of SEMA3s as a
signaling molecule to influence the phenotype of HSCR patient.
Thus, SEMA3D involvement of ANS/ENS abnormality may be a
common pathogenesis mechanism in CD and HSCR.

However, it is important to acknowledge several limitations in
our study. Firstly, future investigations should consider using a
larger sample size to enhance the statistical power of our analysis.
While the presence of variation in clinical and demographic
characteristics may have constrained our analysis, it is worth
noting that the observed alterations in RNA expression most

FIGURE 6
Abundant expression of SEMA3D and PDE1A proteins in layers of muscularis propria and mucosa in inflamed CD specimens. (A)
Immunohistochemistry (IHC) images showing representative colon specimens from patients with CD and UC, including non-inflammatory and
inflammatory samples. Staining demonstrates expression of SEMA3D and PDE1A at a magnification of ×20. The scale bar corresponds to 40 μm. (B,C)
Graphs presenting the quantification of staining (percentage of DAB-positive tissue) in niBD, iUC, and iCD cohorts (niBD, n = 4; iUC, n = 7; iCD, n =
15). Statistical analysis was performed using Fisher’s LSD test. Nonsignificant p-values (>0.05) are denoted. Asterisks (*) indicate statistical significance
levels: *p ≤ 0.05, **p ≤ 0.01.
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likely arise from the underlying disease pathophysiology. This
inference is supported by the fact that most of the variations in
the clinical and demographic characteristics of the specimens were
not statistically significant, except for onset age, lesion location, and
inflammatory infiltration depth, which have traditionally been
considered disease phenotypic features. To evaluate the potential
influence of colonic location on RNA expression levels, we
compared the expressions of PDE1A, SEMA3D, and
SLC18A2 between non-inflamed whole-wall cecum tissues (n =
6) and non-inflamed whole-wall transverse (n = 6) and
descending (n = 6) colonic tissues, as depicted in Supplementary
Figure S3. Our analysis did not reveal any significant differences in
RNA expressions among the different colonic locations. Therefore, it
could be cautiously inferred that the disparities in PDE1A,
SEMA3D, and SLC18A2 expression levels among iCD, iUC, and
niBD may reflect the inflammation status or disease phenotypic
features rather than the anatomical location. Secondly, it is
important to note that our study samples consisted exclusively of
individuals of Chinese ethnicity. Consequently, future investigations
should aim to explore the genetic backgrounds of different ethnic
groups to obtain a more comprehensive understanding. Thirdly,
although our transcriptome profile suggests abnormalities in enteric
autonomic nervous system (ANS) and dysregulation of enteric
smooth muscle cell (SMC) apoptosis/proliferation in the inflamed
colon of CD, further research is necessary to determine whether
these biological processes are secondary to the “inflammation-
smooth muscle hyperplasia axis,” analogous to chronic asthma,
or if they involve independent pathways.

Conclusively, this study highlights the presence of ANS
abnormality and dysregulation of SMC apoptosis/proliferation in
the pathogenesis of CD. The identified genes, including SEMA3D
and PDE1A, may serve as potential diagnostic biomarkers for
differentiating between CD and UC, as well as therapeutic targets
for restoring enteric dysautonomia and SMC proliferative disorders
in CD. Future diagnostic and therapeutic strategies could be
designed based on the dysregulation of enteric SMC apoptosis
and proliferation, as well as enteric dysautonomia.
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Background: Intellectual disability (ID) is defined by cognitive and social
adaptation defects. Variants in the SYNGAP1 gene, which encodes the
brain-specific cytoplasmic protein SYNGAP1, are commonly associated with
ID. The aim of this study was to identify novel SYNGAP1 gene variants in
Chinese individuals with ID and evaluate the pathogenicity of the detected
variants.

Methods: Whole exome sequencing (WES) was performed on 113 patients
diagnosed with ID. In the study, two de novo variants in SYNGAP1 were
identified. Sanger sequencing was used to confirm these variants. Minigene
assays were used to verify whether the de novo intronic variant in SYNGAP1
influenced the normal splicing of mRNA.

Results: Two de novo heterozygous pathogenic variants in SYNGAP1, c.333del
and c.664-2A>G, were identified in two ID patients separately. The c.333del
variant has been reported previously as a de novo finding in a child with ID,
while the c.664-2A>G variant was novel de novo intronic variant, which has not
been reported in the literature. Functional studies showed that c.664-2A>G could
cause aberrant splicing, resulting in exon 7 skipping and a 16bp deletion within
exon 7.

Conclusion: We identified two de novo pathogenic heterozygous variants in
SYNGAP1 in two patients with ID, among which the c.664-2A>G variant was a
novel de novo pathogenic variant. Our findings further enrich the variant
spectrum of the SYNGAP1 gene and provide a research basis for the genetic
diagnosis of ID.

KEYWORDS

SYNGAP1, whole exome sequencing (WES), intellectual disability, minigene, variant

Introduction

Intellectual disability (ID) is characterized by cognitive and social adaptation defects,
which typically occur before the age of 18 (Chelly et al., 2006). ID is the most common severe
disability in children, affecting approximately 1%–3% of the population (Goldenberg and
Saugier-Veber, 2010). ID is classified as either a syndromic or non-syndromic (NSID) form.
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The majority of ID patients have the NSID form of the disease,
which is mainly characterized by the lack of relevant morphological,
radiological, and metabolic features (Hane et al., 1996). ID patients
often need lifelong rehabilitation support treatment, causing
substantial psychological and economic burdens for families and
society. Determining the genetic andmolecular basis of ID remains a
significant challenge in neuroscience.

The SYNGAP1 gene encodes the brain-specific RAS GTPase-
activating protein SYNGAP1, which is an important component
of the N-methyl-D-aspartate receptor (NMDA) complex and
plays a pivotal role in neuronal synaptic development,
structure, and plasticity (Clement et al., 2012). De novo
variants of SYNGAP1 are a common cause of NSID, autism
spectrum disorders (ASD), and epilepsy (Berryer et al., 2013;
Mignot et al., 2016). De novo nonsense variants in SYNGAP1
cause haploinsufficiency, resulting in a neurodevelopmental
disorder known as intellectual developmental disorder (OMIM
#612621), with phenotypes including ID, motor disorders, and
epilepsy. The effects of these variants demonstrate the
importance of SYNGAP1 in developing the nervous system
and brain (Agarwal et al., 2019). Currently, approximately
0.7%–1% of ID cases are caused by SYNGAP1 variants
(Mignot et al., 2016).

In this study, we identified two de novo heterozygous
pathogenic variants in the SYNGAP1, c. 333del and c.664-
2A>G, in two patients with ID, among which the c.664-2A>G
variant was a novel de novo pathogenic variant. The patients
exhibited generalized developmental delay, motor retardation,
hypotonia, and severe language impairment. To assess the
impact of c.664-2A>G variant on splicing, we performed a
minigene splicing assay. We found that the c.664-2A>G
variant causes aberrant splicing, which would result in
impaired function of the SYNGAP1 protein and consequently
contribute to the occurrence of ID.

Methods and materials

Subjects

Two female patients from unrelated families were diagnosed
with intellectual developmental disorder from a clinical cohort
of 113 cases with ID from between January 2019 and January
2023 at Qilu Hospital of Shandong University. All the patients
were diagnosed by experienced experts of the hospital according
to the DSM-5 criteria. Among these patients with ID, 25 cases
were combined with epilepsy and 49 cases were combined with
other structural anomalies. The age of the children ranged from
12 months to 18 years, with a median age of 8 years. The
etiology of these patients was unknown. All of these patients
underwent karyotyping and chromosome microarray (CMA)
analysis, and these results were inconclusive, following these
samples were processed for WES. We collected peripheral blood
and clinical information from their families. The families
accepted the inheritance consultation and signed the
informed consent form before the genetic test. This study
was authorized by the Ethics Committee of Qilu Hospital of
Shandong University.

DNA extraction and whole exome
sequencing (WES)

The genomic DNA for sequencing was obtained from peripheral
blood. The extraction steps were conducted according to the
instructions of the DNA extraction kit (Tiangen Biotech). WES was
performed on the DNA from the affected individual and sequenced on
NovaSeq 6000 platforms (Illumina) with 150 bp paired-end reads.
Reads data were aligned with the GRCh37/hg19 human reference
sequence. The single-nucleotide variants (SNVs) and other variants
were called with the Genome Analysis Toolkit (GATK). The variants
were annotated using Annovar software. During the annotation, several
public databases such as Clinvar, gnomAD, PubMed, HGMD, dbNSFP,
etc., were used. Variants with allele frequencies higher than 1% in any
public databases (ExACBrowser and gnomAD)were excluded.Denovo
variants were analyzed from sequencing data by DeNovoGear software
(Ramu et al., 2013). The candidate variants were confirmed in the
patients with ID by Sanger sequencing.

Minigene assay

The SYNGAP1 c.664-2A>G variant is located at the splice-
acceptor site of exon 7. We obtained the SYNGAP1 fragment
[intron6 (192bp)-Exon7 (99bp)-intron7 (547bp)] with restriction
sites (KpnI and BamHI) from human genomic DNA by nested PCR
amplification and then cloned it into a pcMINI plasmid using
nucleic acid endonuclease and DNA ligase. The pcMINI vector
contain ExonA-IntronA-multiple cloning site-IntronB-ExonB
(Bioeagle Biotech Company). Exon A and Exon B simulate exon
6 and exon 8, respectively. The pcMINI-SYNGAP1-MUT (c.664-
2A>G) plasmids were produced using a QuikChange Lightning Site-
Directed Mutagenesis Kit (Agilent) with pcMINI-SYNGAP1-WT
(wild-type) plasmid as the template. Both WT and mutant plasmids
contained the whole sequence of exon 7 and a portion of the
upstream and downstream intron sequences. The recombinant
plasmids were transiently transfected into HEK293T and HeLa
cells according to the transfection reagent instructions. After the
transfected cells were cultured for 48 h, total RNA was extracted
with Trizol (TaKaRa), and cDNA was acquired with HifairTM 1st
Strand cDNA Synthesis SuperMix (TEASEN). The RT-PCR
products was analyzed by electrophoresis on 2% agarose gels
containing ethidium bromide and visualized by exposure to
ultraviolet light. Each DNA band was purified by DNA Gel
Exctration Kit (SIMGEN). Direct sequencing of purified RT-PCR
products was performed with the Big Dye Terminator Cycler
Sequencing Ready Reaction Kit (Applied Biosystems) on the
ABI3730xl Genetic Analyzer (Applied Biosystems). Primers used
for minigene assay of SYNGAP1 were as follows: SYNGAP1-F1: 5′-
AACTCCTGGGCTCAAGTGAC-3′; SYNGAP1-R1: 5′-TGGGTA
AAGCTTGGCCAGAT-3′; SYNGAP1-F2:5′-AGCACTTTGGGAGG
CTGAAT-3′; SYNGAP1-R2: 5′-GAGGTTGCAGTGAGCCAA
GA-3′; MINI-SYNGAP1-KpnI-F: 5′-GGTAGGTACCCTGGGGAG
GGCCAAAGGACA-3′; MINI-SYNGAP1-BamHI-R: 5′-TAGTGG
ATCCGAGAATAGCTGACAGAACTG-3′; SYNGAP1-c.664-2A>G-F:
5′-TCCACACTCCTTTCTGGGTAACAACTTCATC-3′; SYNGAP1-
c.664-2A>G-R: 5′-GATGAAGTTGTTACCCAGAAAGGAGTGTGG
A -3′.
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Results

De novo heterozygous variants were
identified

Two de novo heterozygous pathogenic variants in SYNGAP1,
NM_006772.3: c. 333del and c.664-2A>G, were identified in two ID
patients separately, as detailed in Table 1. The c.333del variant has
been reported previously as a de novo finding in a child with ID
(Carvill et al., 2013). The c.333del variant is predicted to cause loss of
normal protein function either through protein truncation or
nonsense-mediated mRNA decay. Conversely, the c.664-2A>G
variant was a novel de novo intronic variant identified in a child
with ID, which has not been reported in the literature and databases
(ClinVar, DVD, PubMed, HGMD, etc.) (Figure 1).

Clinical characteristics of the NSID affected
individual

Both patients in their respective families, carrying de novo
variants in SYNGAP1, exhibit delays in intellectual and motor
developmental. These two patients had impaired speaking ability
and were speech disabled, along with symptoms such as hypotonia,
muscle flaccidity, and a wide-based/unsteady gait. Notably, they
didn’t exhibit feeding difficulty, autism spectrum disorder (ASD),
epilepsy, or microcephaly. We conducted a comprehensive
assessment for ASD on these two patients, which included
psychological tests, clinical examinations, and consideration of
their family medical history. We utilized standardized assessment
tools such as the Autism Diagnostic Observation Schedule (ADOS)
for ASD evaluation and found no symptoms of ASD in these
patients. Additionally, we conducted initial psychological tests on
both patients to assess cognitive functioning and identify any
coexisting conditions, and the results indicate that both of these
patients don’t exhibit symptoms of autism. Both patients had
normal electroencephalograms (EEGs) and normal karyotypes
(Table 1). There is no family history related to developmental
disorders. The two patients are girls and are the only children in
their respective families. One patient is 5 years old and the other is
7 years old, and their parents are healthy. They have experienced an
overall delay in developmental milestones. For example, the patient
which carrying the c.664-2A>G variant was independently sitting
and walking later than children of the same age. She didn’t achieve
independent walking until the age of 3 years, and her gait was
extensive and unstable. At the age of 7, her intelligence quotient (IQ)
was measured at 55 on the Tanaka-Binet IQ Scale V. Furthermore,
she exhibits delayed language development and only uses short and
simple sentences with limited vocabulary.

Expression of SYNGAP1mRNA in transfected
cells with recombinant plasmids

The c.333del variant has been reported previously as a de novo
finding, so we did not perform functional experiments on it. We
performed in vitro experiments on the novel de novo splicing variant
in SYNGAP gene. To investigate the influence of the c.664-2A>GTA
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variant on splicing, we conducted a minigene splicing assay. The
pcMINI-SYNGAP1-WT and pcMINI-SYNGAP1-MUT (c.664-
2A>G) plasmids were transiently transfected into 293T and HeLa
cells (Figure 2A). The total RNA was extracted and reverse-
transcribed into cDNA after transfection over 48 h. The cDNA
was amplified by PCR and analyzed by agarose gel electrophoresis.
Agarose gel electrophoresis showed that the mutant-type (MUT)
had two bands, all bands were smaller than the WT band, and their
migrations were relatively faster (Figure 2B). DNA sequencing
results showed that the WT minigene (pcMINI-SYNGAP1-WT)

transcribed normal mRNA composed of exon 7 (Figure 2C, band a),
while the c.664-2A>G mutant minigene caused abnormal splicing,
resulting in exon 7 skipping (Figures 2C, D, band b) and a 16 bp
deletion within exon 7 (Figures 2C, D, band c), which reveals that
this variant may be a crucial mechanism for the pathogenesis of ID.
Exon 7 skipping could result in the loss of 33 amino acids (c.664_
762del p.Val222_Lys254del), and the deletion of 16bp in exon
7 could result in a frameshift of amino acids at position 222 and
a premature stop codon (c.664_679del p.Val222Glufs*24). The
aberrant splicing is predicted to abolish the pleckstrin homology

FIGURE 1
Two de novo variants of SYNGAP1 were identified in two patients with ID. (A) Families pedigree and genotype are shown. The probands with ID
underwent WES. Filled symbols represent affected individuals. (B) Sanger sequencing chromatograms of the SYNGAP1 variants in these families. (C)
Localization of the SYNGAP1: c. 333del and c.664-2A>G variant found in the study. The amino acid (aa) positions are referenced to RefSeq number NM_
006772.3 (isoform-1: 1343 aa). Various predicted SYNGAP1 domains are showed: PH, pleckstrin homology domain (amino acid positions 150–251),
C2 domain (amino acid positions 263–362), Ras-GAP (amino acid positions 392–729), SH3 (amino acid positions 785–815), coiled coil (CC; amino acid
positions 1189–1262).
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(PH, pos. 150–251aa) and C-terminal domains, suggesting that it
would prevent the SYNGAP1 protein from performing its normal
functions. SYNGAP1 c.664-2A>G may damage cognitive and social
adaptation development by impairing maturation of dendritic spine
synapses in neurons (Figure 3).

Discussion

In this study, we identified two de novo heterozygous pathogenic
variants in SYNGAP1 among 113 patients with ID. The c.333del
variant has been previously reported as a de novo finding in a child
with ID (Carvill et al., 2013), while the other splicing variant c.664-
2A>G has not been reported in any literature or databases. The
c.333del variant is predicted to cause loss of normal protein function
either through protein truncation or nonsense-mediated mRNA
decay. The phenotypes of the ID patient, which carrying the c.664-
2A>G variant, are similar to the previously published truncating
variant in SYNGAP1. Although the intronic variants may have more
deleterious effects than the exonic variants, they are underexplored
(Kallel-Bouattour et al., 2017). To further evaluate the deleterious
effects of the intronic variant c.664-2A>G, we conducted a minigene
assay to investigate its impact on mRNA splicing. The minigene
experiment results showed that the intronic variant c.664-2A>G

causes aberrant splicing of SYNGAP1. The c.664-2A>G variant
would result in exon 7 skipping and partial exon 7 deletion, which
would abolish critical functional domains and impair the function of
the SYNGAP1 protein.

There is a potential acceptor site located 16 bp upstream of exon
7 in SYNGAP1. After c.664-2A>G variant, this site is activated for
splicing. The c.664-2A>G variant disrupts the original acceptor site,
potentially leading to the recognition of the alternative splicing site that
causes a 16 bp deletion on upstream of exon 7. Alternatively, the
disruption of the original acceptor site might result in direct skipping of
exon 7 during splicing, resulting in the overall deletion of exon 7, much
like how a gene in a database might have multiple normal transcripts.

SYNGAP1 is an important gene that is necessary for neuronal
development, and its dysfunction is associated with ID (Jeyabalan and
Clement, 2016). SYNGAP1 is located on human chromosome 6,
contains 19 exons, and generates approximately a 6 kb transcript,
which encodes a brain-specific synaptic Ras GTP-ase activating
protein. The impairment of SYNGAP1 function may make patients
with ID susceptible to seizures by increasing the recruitment of AMPA
receptors at postsynaptic glutamatergic synapses, which leads to
increased transmission of excitatory synapses (Hamdan et al., 2009).
In large-scale studies, almost all SYNGAP1 variants associated with
NSID, ASD, and epilepsy are loss-of-function and lead to
SYNGAP1 haploinsufficiency, resulting in intellectual developmental

FIGURE 2
The effect of the c.664-2A>G variant on splicing was assessed through aminigene assay. (A)Construction of the pcMINI-SYNGAP1-WT/MUT vector,
which contain exon 7 and flanking intronic sequences of WT or mutant type (c.664-2A>G) of the SYNGAP1 gene. (B)Minigene assay performed in 293T
and Hela cells transfected with the pcMINI-SYNGAP1-WT/MUT vector. The PCR products were isolated by gel electrophoresis. The SYNGAP1 splicing
products of wild-type (band a) and variant type (band b and c) are shown. (C, D) Schematic diagram ofminigene construction and sanger sequencing
of PCR products.
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disorder (Hamdan et al., 2011; Berryer et al., 2013; Carvill et al., 2013;
Fieremans et al., 2016).In our study, as well as previous observations,
suggest that the SYNGAP1 c.664-2A>G variant would cause IDmainly
through a mechanism of haploinsufficiency.

NSID poses a challenge for clinicians because of the absence of
specific clinical features to guide them toward an etiological diagnosis.
The identification of novel variants in known pathogenic genes or
novel ID genes suggests that molecular diagnostic approaches are
becoming increasingly significant in unraveling the underlying causes
of this condition. In the present study, the two patients presented with
comprehensive developmental delays, particularly motor milestones
and language development, and exhibited behavioral disorders.
We identified pathogenic variants in SYNGAP1 in both of these
patients by WES. Based on clinical and genetic features, the patients
were diagnosed with intellectual developmental disorder. De novo
SYNGAP1 variants were initially reported to cause ID, accounting
for approximately 0.62% of all the patients in the Deciphering
Developmental Disorders (DDD) study (Hamdan et al., 2011;
Wright et al., 2015). Six patients with SYNGAP1 variants exhibited
moderate to-severe ID due to severe language impairment (Hamdan
et al., 2011). Studies involving rodent models with the deletion of
the SYNGAP1 allele showed abnormal formation and maturation
of dendritic spines in neurons, altered excitatory-inhibitory (E/I)
balance, and changed the critical period of development,
suggesting that heterozygous variants also have the potential to
disrupt brain function in humans and lead to ID through the
mechanism of haploinsufficiency (Rumbaugh et al., 2006; Guo
et al., 2009; Muhia et al., 2010).

In conclusion, we identified two de novo pathogenic
heterozygous variants in SYNGAP1, c. 333del and c.664-2A>G,
among which the c.664-2A>G variant was a novel de novo
pathogenic variant. Based on previous findings from others and
our research, nonsense variants in SYNGAP1 remain the most
common variant type leading to ID. This study further enriched
the variant landscape of SYNGAP1 in ID and provided a basis for the
clinical diagnosis and genetic counseling of ID.
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FIGURE 3
A graphical summary of the mechanism of dendritic spine loss caused by the SYNGAP1 c.664-2A>G variant. The SYNGAP1 c.664-2A>G variant
causing aberrant splicing and dendritic spine loss.
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Integrative transcriptome analysis 
reveals alternative polyadenylation 
potentially contributes to GCRV 
early infection
Sheng Tan 1*†, Jie Zhang 2,3†, Yonglin Peng 1†, Wenfei Du 1, 
Jingxuan Yan 4 and Qin Fang 2*
1 Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai, Center for Systems 
Biomedicine, Shanghai Jiao Tong University, Shanghai, China, 2 State Key Laboratory of Virology, Wuhan 
Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 3 Institute of Hydrobiology, Chinese 
Academy of Sciences, Wuhan, China, 4 Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao 
Tong University, Shanghai, China

Introduction: Grass carp reovirus (GCRV), a member of the Aquareovirus genus 
in the Reoviridae family, is considered to be the most pathogenic aquareovirus. 
Productive viral infection requires extensive interactions between viruses and 
host cells. However, the molecular mechanisms underlying GCRV early infection 
remains elusive.

Methods: In this study we performed transcriptome and DNA methylome analyses 
with Ctenopharyngodon idellus kidney (CIK) cells infected with GCRV at 0, 4, and 
8 h post infection (hpi), respectively.

Results: We found that at early infection stage the differentially expressed genes 
related to defense response and immune response in CIK cells are activated. 
Although DNA methylation pattern of CIK cells 8 hpi is similar to mock-infected 
cells, we identified a considerable number of genes that selectively utilize alternative 
polyadenylation sites. Particularly, we found that biological processes of cytoskeleton 
organization and regulation of microtubule polymerization are statistically enriched 
in the genes with altered 3’UTRs.

Discussion: Our results suggest that alternative polyadenylation potentially 
contributes to GCRV early infection.

KEYWORDS

grass carp reovirus, Aquareovirus genus, Ctenopharyngodon idellus, DNA methylation, 
alternative polyadenylation

Introduction

Aquareoviruses are nonenveloped viruses and classified within the family Reoviridae, a 
family of double-stranded RNA virus composed of aquareoviruses, mammalian reoviruses 
(MRV), and the other 13 genera. Aquareoviruses cause infection in aquatic organisms including 
bony fish, shellfish, and crustacean worldwide (Lupianni et  al., 1995). Although most 
aquareoviruses are isolated from seemingly healthy fish and do not give rise to high mortalities, 
grass carp reovirus (GCRV) is recognized to be  most pathogenic among the isolated 
aquareoviruses (Rangel et al., 1999). GCRV can cause serious hemorrhagic disease in aquatic 
organisms. Our previous studies have shown that GCRV can induce cell–cell fusion and produce 
characteristic cytopathic effect (CPE) consisting of large syncytia within infected cultures (Fang 
et  al., 1989; Ke et  al., 1990), and it has been extensively used to understand aquareovirus 
molecular and structural biology. Seven structural (VP1–VP7) and six nonstructural proteins 
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(NS12, NS16, NS26, NS31, NS38, and NS80) of GCRV have been well 
identified (Guo et al., 2013; Yan et al., 2015). Comparative proteomic 
analysis of lysine acetylation in fish Ctenopharyngodon idellus kidney 
(CIK) cells reveals the proteome-wide changes in host cell acetylome 
with GCRV infection (Guo et  al., 2017). MRV can cause chronic 
infection. It has been revealed that there is a close molecular 
evolutionary relationship between aquareoviruses and mammalian 
orthoreoviruses. In addition to morphological similarity, GCRV and 
MRV share high amino acid conservation. A better knowledge of the 
interaction during early infection stage between GCRV and host cells 
will help the understanding molecular pathogenesis of the 
aquareovirus and other members in the family Reoviridae.

Accumulating evidence has demonstrated that epigenetics is 
actively involved in host-virus interaction. Epigenetic trait is defined 
as a stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence (Berger et al., 
2009). These chromosomal changes include methylation of cytosine 
in CpG dinucleotides (often referred to as DNA methylation) and 
other posttranslational covalent modifications to histones, such as 
methylation, acetylation, and ubiquitylation. The epigenetic 
modifications are associated with structural organization of chromatin 
and transcriptional activities of the affected genes. As intracellular 
parasites, viruses develop various ways of remodeling epigenetic 
alterations to facilitate their infection and replication. Through 
inducing DNA methylation changes in host cells viruses epigenetically 
manipulate host functions upon virus infection. For instance, Epstein–
Barr virus (EBV) infection activates cellular DNA methyltransferases 
and results in aberrant DNA methylation in host cells (Tsai et al., 2006; 
Hino et al., 2009). HIV infection can also trigger the differential DNA 
methylation at cis-regulatory regions of host genomic DNA and 
inhibit the function of T cells (Pion et al., 2013; Youngblood et al., 
2013). Nevertheless, the influence on cellular DNA methylation 
during GCRV infection remains to be further characterized.

In addition to epigenetic modifications, formation of stress granules 
is also actively involved in the interaction between viruses and host cells. 
It has been recognized that the innate immune response of host cells is 
triggered by upon virus infection to prevent pathogen invasion, partially 
through stress granules. Some components of stress granules have been 
identified, such as T-cell-restricted intracellular antigen 1 (TIA-1), 
TIA-1-related protein (TIAR), Ras GTPase-activating protein-binding 
proteins (G3BPs)and poly(A)-binding proteins (PABPs). PABPs are a 
family of RNA recognition motif (RRM)-containing proteins that bind 
poly(A) tail and regulate translation and stability of mRNA. The 
previous report has demonstrated that alternative polyadenylation 
(APA) plays an important role in the antiviral innate immune response 
(Jia et al., 2017). However, it remains unclear whether APA of host cells 
is involved in GCRV infection. Thus, in this study we  carried out 
integrative analyses of transcriptome, DNA methylome and APA in 
GCRV-infected CIK cells for understanding the molecular events in 
GCRV early infection.

Materials and methods

Cells, virus and infection assays

CIK cells, purchased from the China Center for Type Culture 
Collection (CCTCC, 4201FIS-CCTCC00086), were grown in 

minimum essential medium (MEM; Gibco-BRL) supplemented 
with 10% fetal bovine serum (FBS), 100 mg/mL penicillin, and 
100 mg/mL streptomycin at 28°C. Grass carp reovirus (strain 
GCRV-873), previously isolated and stored in the author’s 
laboratory, was propagated in CIK cells with Eagle’s MEM 
supplemented with 2% FBS (MEM-2) as previously described (Fang 
et al., 1989).

Viral infection, cytopathic effect 
observation and plaque assay

The infection assays were carried out as we described previously 
(Zhang et al., 2019). Briefly, the 80% confluent CIK cells in T-25 flask 
(Corning Inc., Corning, NY, United States) with a concentration of 
2 × 106 cells/ml were inoculated with GCRV at a multiplicity of 
infection (MOI) of 1 in serum-free MEM medium at 28°C for 1 h 
following the method as previously reported (Guo et al., 2017). For 
comparison, the mock-infected cells were treated with same amount 
of medium in the same conditions. Upon adsorption, cells were 
washed with phosphate-buffered saline (PBS) to remove 
non-adsorbed virions. The infected cells were maintained in MEM-2 
at 28°C and harvested at 0 (mock), 4 and 8 h post infection, 
respectively. When initial cytopathic effects were observed, the 
infected cells and mock-infected cells were prepared and harvested 
for further transcriptome analyses. Three rounds of independent 
experiments were performed. For MOI determination, plaque assays 
were done according to our previously described method (Yan et al., 
2015; Zhang et al., 2018).

RNA isolation, RNA-seq library 
construction and deep sequencing

CIK Cells were infected by GCRV for 0, 4 and 8 h, respectively. 
Total RNA was extracted with Trizol reagent (Invitrogen, 
United States), which was further treated with RNase-free DNase 
to remove genomic DNA. mRNA was purified with poly(dT) oligo-
attached magnetic beads and broken down into 200 ~ 400 bp 
fragments. A strand-specific RNA-seq library was constructed with 
NEBNext Ultra Directional RNA Library Prep Kit (NEB, New 
England, United  States). Briefly, the fragmented mRNA was 
reversely transcribed into cDNA with random primers and then the 
second-strand cDNA was generated. The resulting double-strand 
DNA fragments were purified with AMPure beads (Beckman 
Coulter, Brea, CA, United  States) and ligated with Illumina 
adapters. The ligation products were purified by agarose gel 
electrophoresis to remove adapter dimmers, which were 
subsequently subjected to HiSeq X sequencing (Illumina, San 
Diego, CA, United  States). The raw sequencing data could 
be  obtained in the EMBL database1 under accession number 
E-MTAB-13002.2

1 http://www.ebi.ac.uk/arrayexpress/

2 https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13002
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MeDIP-seq library construction and deep 
sequencing

Genomic DNA of CIK cells was extracted using GenElute™ 
Mammalian Genomic DNA Miniprep Kit (Sigma, United States). 
DNA was randomly sheared into fragments of 200 ~ 500 bp and 
used for library preparation with NEBNext® Ultra™ II DNA 
Library Prep Kit for Illumina (NEB), the resulting libraries were 
purified with 1 × Agencourt AMPure XP beads (Beckman 
Coulter). The immunoprecipitation procedure was basically 
performed according to a previous MeDIP protocol (Taiwo et al., 
2012). Briefly, the library DNA was denatured at 95°C for 10 min 
and immediately placed into an ice for 10 min, 1/10 volume of 
denatured product was set aside as Input. The Protein A + G 
magnetic beads (Millipore, United States) were incubated with 
5-Methylcytosine (5-mC) monoclonal antibody (Epigentek) at 
4°C for 2 h and the library was incubated with antibody-bead 
complexes at 4°C overnight with a slight rotation. The dynabead-
antibody-methylated DNA complexes were washed three times, 
followed by proteinase K (Thermo scientific) treatment for 3 h at 
55°C. The immunoprecipitated DNA was extracted by phenol/
chloroform/isoamylalcohol, followed by ethanol precipitation, 
and resuspended in EB buffer (10 mM Tris–HCl pH 8.0). The 
enriched methylated DNA and Input DNA were amplified using 
Q5 High-Fidelity DNA Polymerase (NEB), and subject to Illumina 
sequencing platforms. The raw sequencing data could be obtained 
in the EMBL database (see Footnote 1) under accession number 
E-MTAB-13003.3

Bioinformatics analysis

The raw reads with low quality and the adapter sequences of 
RNA-seq and MeDIP-seq data were removed using Cutadapt v4.1 
(Kechin et al., 2017). For RNA-seq data, clean reads were mapped 
to the grass carp reference genome (Wang et al., 2015) using Hisat 
v2.2.1 (Kim et al., 2019). The Subread toolkits was used to quantify 
read counts for genes (Liao et al., 2014), and reads per kilobase of 
transcript per million mapped reads (RPKM) were calculated as 
expression levels. Differential expression analysis was performed 
using the edgeR package in R platform v3.6.3 (Robinson et  al., 
2010). Those genes with an value of p < 0.05 and fold change >1.5 
were regarded as differentially expressed genes (DEGs). For 
MeDIP-seq data, clean reads were mapped to the grass carp 
reference genome using Bowtie v2.4.5 (Langmead and Salzberg, 
2012). PCR duplicate reads were removed with Picard v2.27.4.4 
DNA methylation peaks were called with MACS2 with deduplicated 
alignments (Zhang et al., 2008) and the differentially methylated 
regions (DMRs) were identified with DiffBind and DESeq2 
packages (Anders and Huber, 2010). Functional enrichment 
analysis was performed with DAVID.5

3 https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13003

4 https://github.com/broadinstitute/picard

5 https://david.ncifcrf.gov/home.jsp

Analysis of APA with RNA-seq data

The APAs were identified by using DaPars algorithm (Masamha 
et al., 2014) based on RNA-seq data. Briefly, the observed sequence 
coverage was represented as a linear combination of annotated 
3’UTRs. For each transcript with annotated proximal adenylation 
site (PAS), a regression model was used to infer the end point of 
alternative novel PAS within this 3’ UTR at single nucleotide 
resolution, by minimizing the deviation between the observed read 
coverage and the expected read coverage based on a two-PAS model 
in both mock-infected and GCRV-infected samples simultaneously. 
A percentage dPAS usage index (PDUI) was utilized to define 
shortening (negative index) or lengthening (positive index) of 
3’UTR and thus capable of quantifying the degree of difference in 
3’UTR usage between mock-infected and GCRV-infected CIK cells. 
The greater PDUI means that the more distal PAS of a given 
transcript is used and vice versa.

Results

Grass carp reovirus infection-induced 
cytopathic effects at early stage

To characterize the interaction of GCRV and host cells for 
integrative analyses of transcriptome in GCRV-infected CIK cells, 
we firstly carefully examined the cytopathic effects induced by 
GCRV infection at early stage. In both mock-infected cells and 
GCRV-infected cells at 4 h, we did not observe obvious CPE. As 
infection progressed, we detected an initial characteristic CPE on 
the monolayers of CIK cells at 8 h post infection (hpi) by 
comparing to mock-infected cell (Figure 1), which suggests that 
efficient infection was obtained, and the harvested infected cell 
lysates were suitable for follow-up transcriptome related  
assays.

Transcription program associated with 
grass carp reovirus early infection

To detect the molecular events at the GCRV early infection, 
we performed RNA-seq analysis of CIK cells 0, 4 h and 8 hpi. Totally 
we generated 197.5 millions raw sequencing reads in the groups of 
mock, 4 and 8 hpi. Among these reads 94.7% are mappable and are 
used for downstream analysis.

Totally we identified 15,255 expressed genes in three groups. 
We then used gene set enrichment analysis (GSEA) to compare the 
transcriptome data between CIK cells 8 hpi and the MOCK-infected 
cells. We found that several gene sets were significantly enriched in 
cells 8 hpi comparing with the MOCK, such as defense response to 
virus, immune response, and cholesterol metabolic process 
(Figure  2A). Comparing with MOCK, we  identified 675 
differentially expressed genes in CIK cells 8 hpi (Figure 2B). Gene 
ontology (GO) analysis indicates that the biological processes of 
defense response to virus, cholesterol metabolic process (Figure 2C) 
and mitogen-activated protein kinase (MAPK) signaling pathway 
(Figure  2D) are significantly enriched in these differentially 
expressed genes.
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DNA methylation pattern in grass carp 
reovirus early infected Ctenopharyngodon 
idellus kidney cells

It has been reported that DNA methylation contributes to 
resistance to GCRV infection (Shang et al., 2017). Here, we asked 

whether DNA methylation is involved in GCRV early infection. To 
address this issue, we performed MeDIP-seq analysis with MOCK 
and CIK cells 8 hpi. We totally generated 232 million sequence reads, 
and 96% are mappable. The data sets of biological replicates are 
highly correlated (Supplementary Figure). Among 9,426 identified 
methylation sites 37.7% are located in intergenic regions, 32% in 
exons, 21% in introns and only 9.3% in promoter regions 
(Figure  3A). We  examined DNA methylation signal around 
transcription starting site (TSS) and found the obviously enriched 
methylation signal at TSS regions both in MOCK and 8 hpi groups 
(Figure 3B). It is well recognized that DNA methylation is negatively 
associated with gene expression. We then examined the correlation 
between methylated genomic regions and transcription levels. 
We observed that the methylated regions at promoters, exons and 
introns are weakly and negatively correlated with transcription 
(Figure  3C). Compared with the MOCK, we  found the DNA 
methylation of CIK cells 8 hpi is very similar to MOCK (Figure 3D), 
suggesting that DNA methylation pattern is less functionally 
involved in early GCRV infection.

Alternative polyadenylation profile in grass 
carp reovirus early infected 
Ctenopharyngodon idellus kidney cells

Since DNA methylation is less involved in GCRV early infection, 
we next investigated other mechanisms. Alternative polyadenylation 
(APA) modulates gene expression and has been reported to 
be  involved in antiviral response. We  then examined the APA 
patterns between MOCK and 8 hpi group. Comparing with the 
MOCK, we  identified 404 genes with the APA-derived altered 
3’UTRs, including 201 genes with lengthened 3’UTRs and 203 genes 

FIGURE 1

Grass carp reovirus (GCRV)-induced cytopathic effect in CIK cells at 
different time points. CIK cells were mock-infected (Left panel) or 
infected with GCRV(Right panel), and the images were taken at 0, 4 
and 8 hpi, respectively. Red arrow shows the representative CPE. Sale 
bar: 200  μm.

FIGURE 2

Transcriptional programs in GCRV-infected CIK. (A) Enrichment plot for defense- and immune-related genes. (B) Volcano plot of statistically significant 
differentially expressed genes in early infection. (C, D). GO (C) and KEGG pathway (D) analyses of differentially expressed genes.
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with shortened 3’UTRs (Figure 4A). When examining the 3’UTR 
alterations and transcription levels, we  observed that the overall 
transcription levels of the genes with shortened 3’UTRs is higher 
than the those with lengthened 3’UTRs (Figure 4B). Through GO 
analysis with the genes containing altered 3’UTRs we  found the 
biological processes of cytoskeleton organization and regulation of 
microtubule polymerization are statistically enriched (Figure 4C). In 
particular, we  observed that Camsap1b, a gene involved in 
microtubule formation and stability, preferentially utilized the 
proximal poly(A) sites in GRCV-infected CIK cells when comparing 
MOCK (Figure  4D). These observations suggest that alternative 
poly(A) usage is potentially involved in the early infection of 
CIK cells.

Discussion

Viral infections involve intensive interactions between viruses 
and host cells. As obligate intracellular parasites, viruses 
misappropriate host cellular machinery to allow their replication; 
while host cells also orchestrate the transcriptional programs to 
repress viral infection. For example, in our previous studies we found 
that aquareovirus NS38 (the GCRV nonstructural protein expressed 
in host cells as early as 3 h post infection) interacts with host 
translation initiation factor eIF3A for virus replication (Shao et al., 
2013; Zhang et al., 2019). Meanwhile, host innate immune response 
would be activated after virus infection. Consist with the reported 
studies (Chen et al., 2012; Shi et al., 2014; Wan and Su, 2015; Dang 

et al., 2016; Xu et al., 2016; Chen et al., 2018), we observed that the 
host genes related to defense response to virus and immune response 
are differentially expressed in CIK cells 8 hpi (Figures 2A,C). In 
addition to these immune-related genes, we  found the genes 
involved in cholesterol metabolic process and cholesterol 
biosynthetic process are also activated (Figure 2C), supporting our 
previous report that cellular membrane cholesterol is required for 
GCRV productive infection (Zhang et  al., 2018). Activation of 
MAPK signaling pathway has been reported to be required for cell 
entry of avian reovirus (Huang et al., 2011). Interestingly, in this 
study we  found that this pathway is most significantly enriched 
among all identified cellular signaling pathways (Figure  2D), 
suggesting MAPK signaling pathway is involved in GCRV infection.

DNA methylation has been reported to control the resistance and 
susceptibility to GCRV infection in CIK cells (Shang et al., 2017). In 
this study we examined the DNA methylome of CIK cells 8 hpi and 
found that the DNA methylation pattern of infected cells is very 
similar to the MOCK (Figure 3D). The statistically enriched biological 
processes of differentially methylated genes do not include defense 
response to virus or immune response (data not shown). These 
findings indicate that DNA methylation is less functionally involved 
in early GCRV infection.

Alternative polyadenylation functionally contributes to antiviral 
immune response (Jia et al., 2017). Some poly(A) binding proteins  
are the components of stress granules, the membrane-less 
ribonucleoprotein (RNP)-based cellular compartments in the 
cytoplasm triggering antiviral immune response. Moreover, alternative 
polyadenylation is involved in chronically infected disease (Su et al., 

FIGURE 3

DNA methylome in early GCRV infection. (A) Genomic distribution of methylated regions in CIK cells. (B) DNA methylated signal around TSS regions. 
(C) Correlation between transcriptional signal and methylated regions. (D) DNA methylation heatmaps of MOCK and two biological replicates of 8 hpi 
group.

60

https://doi.org/10.3389/fmicb.2023.1269164
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tan et al. 10.3389/fmicb.2023.1269164

Frontiers in Microbiology 06 frontiersin.org

2001). Previously, we  have performed extensive alternative 
polyadenylation analysis to understand its functional relevance in 
tumorigenesis (Lai et al., 2015; Tan et al., 2018, 2021). In this study 
we identified a considerable number of genes that selectively utilize 
alternative poly(A) sites in GCRV-infected CIK cells (Figures 4A,B). 
Among the genes with altered 3’UTRs we identified the biological 
processes of cytoskeleton organization, regulation of microtubule 
polymerization (Figures  4C,D). Interestingly, our recent study 
reported that microtubules are required for productive GCRV 
infection (Zhang et  al., 2020), which is similar to MRV infection 
(Mainou et  al., 2013).These observations suggest that alternative 
polyadenylation is potentially involved in GCRV early infection. 
Taken together, our study provides evidence of molecular events 
during early infection of dsRNA viruses for understanding 
their pathogenesis.
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FIGURE 4

Alternative polyadenylation analysis in GCRV-infected CIK cells. (A) MA-plot depicted 3’UTRs of transcripts demarcated by DaPars-defined APA sites. 
The 3’UTRs were significantly shortened (blue) or lengthened (red) in CIK cells 8 hpi when compared the MOCK (value of p  <  0.05). (B) Violin plot 
showing transcription level change of genes with altered 3′ UTR in GCRV-infected CIK cells vs. MOCK comparison. (C) GO items of biological 
processes enriched in genes with altered 3’UTR. (D) Genomic view of APA site usage preference at Camsap1b 3’UTR in IGV browser, showing the 
transcriptional density shifting to the proximal APA upon GCRV infection.
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revealed neurodevelopmental
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Iron oxide nanoparticles are a type of nanomaterial composed of iron oxide
(Fe3O4 or Fe2O3) and have a wide range of applications in magnetic resonance
imaging. Compared to iron oxide nanoparticles, extremely small iron oxide
nanoparticles (ESIONPs) (~3 nm in diameter) can improve the imaging
performance due to a smaller size. However, there are currently no reports
on the potential toxic effects of ESIONPs on the human body. In this study, we
applied ESIONPs to a zebrafish model and performed weighted gene co-
expression network analysis (WGCNA) on differentially expressed genes (DEGs)
in zebrafish embryos of 48 hpf, 72 hpf, 96 hpf, and 120 hpf using RNA-seq
technology. The key hub genes related to neurotoxicity and ferroptosis were
identified, and further experiments also demonstrated that ESIONPs impaired the
neuronal and muscle development of zebrafish, and induced ferroptosis, leading
to oxidative stress, cell apoptosis, and inflammatory response. Here, for the first
time, we analyzed the potential toxic effects of ESIONPs through WGCNA. Our
studies indicate that ESIONPs might have neurotoxicity and could induce
ferroptosis, while abnormal accumulation of iron ions might increase the risk
of early degenerative neurological diseases.

KEYWORDS

high-throughput sequencing, RNA-seq, WGCNA, nervous system, neurotoxicity,
ferroptosis, ESIONPs

Introduction

Iron oxide nanoparticles, including magnetite (Fe3O4), hematite (α-Fe2O3), and
maghemite (γ-Fe2O3) NPs as well as modified products, have been widely used in drug
carriers and imaging (Lee et al., 2015). For better absorption and imaging, extremely small
iron oxide nanoparticles (<5 nm in diameter) (ESIONPs) have been synthesized and
modified. ESIONPs have shown the great application values in magnetic resonance
imaging (MRI) due to their unique properties, such as switchable contrast signals and
high biocompatibility (Kim et al., 2011; Shen et al., 2017; Cao et al., 2020). In addition,
ESIONPs are also used as highly sensitive probes for detecting tumors and other lesions
(Groult et al., 2021; Mishra et al., 2022; Zhang et al., 2022). As a component of
nanotechnology, the application of ESIONPs in different fields is rapidly increasing,
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and understanding their potential cytotoxicity and mechanism is
crucial for the safety of their application (Mohammadinejad
et al., 2019).

Related studies have shown that upon ingestion, iron oxide
nanoparticles can impact various organs and tissues in the human
body. For example, Fe3O4 nanoparticles reduced neuronal activity,
triggered oxidative stress, and might be related to the development
of neurodegenerative diseases (Wu et al., 2013); ultra-small
superparamagnetic iron oxide NPs accumulated in the lower
digestive tract and induced cellular autophagy (Schütz et al.,
2014). In addition, the spleen is the main organ responsible for
clearing iron oxide nanoparticles from the systemic circulation. The
proteomic analysis results showed that iron oxide nanoparticles
could promote autophagy and lysosomal activation of splenic
macrophages through the AKT/mTOR/TFEB signaling pathway
(Han et al., 2022). Moreover, iron oxide nanoparticles detected in
the environment also increased the risk of early neurodegenerative
diseases among urban residents (Calderón-Garcidueñas et al., 2022).
Compared with iron oxide nanoparticles, the potential toxic effects
of ESIONPs with higher adsorption capacity and accumulation on
the human body still need to be systematically investigated and
summarized (Kim et al., 2011).

Zebrafish has a high degree of genetic homology with humans
and is widely used to detect the toxicity of nanomaterials (Yang et al.,
2018; Qiu et al., 2019). Previous studies showed that iron oxide
nanoparticles could penetrate the chorion and act directly on the
zebrafish embryos, leading to death, malformation, developmental
delay, hatching failure, oxidative stress, and the alteration of redox
homeostasis (Pitt et al., 2018; Chemello et al., 2019; Pereira et al.,
2020; Thirumurthi et al., 2022). The accumulation of iron oxide
nanoparticles in zebrafish larvae also caused the obvious
cardiotoxicity, characterized by slowed heart rate, pericardial
edema, and cardiac hemorrhage (Pereira et al., 2020). Therefore,
zebrafish is suitable as a model animal to detect the toxicity
of ESIONPs.

In this study, for the first time, we dynamically analyzed the
toxicity of ESIONPs (~3 nm in diameter) at multiple embryonic
development stages by weighted gene co-expression network
analysis (WGCNA). The purpose is to explore the impact of
ESIONPs on gene expression at different stages of embryonic
development, identify the central regulatory genes and related
mechanisms affected. It will help evaluate the safety of ESIONPs
application, as well as provide valuable insights for the research
of other NPs.

Materials and methods

Zebrafish husbandry and embryo collection

Zebrafish (Danio rerio) was raised according to standard
protocols. The following zebrafish lines were used: AB wild-type
(wt) strain, and transgenic Tg(eef1a1l1:EGFP) expressing enhanced
green fluorescent protein (GFP) in neuron cells. Zebrafish embryos
were obtained by natural spawning, collected within 30 min after
fertilization, and cultured at 28.5°C (Tian et al., 2019). To evaluate
the toxicity of ESIONPs, a dose–response analysis was carried out to
determine the median lethal dose (LC50). The zebrafish embryos at

4 h post-fertilization (hpf) were distributed in 6-well plates (30 for
each group), and exposed to ESIONPs suspensions at different
concentrations (0 mg/L, 10 mg/L, 20 mg/L, 30 mg/L, 40 mg/L,
60 mg/L, 80 mg/L, and 100 mg/L). The medium was changed
every 24 h. The survival rate was determined every day by
counting the embryos that survived. The exposed embryos were
collected at indicated stages for different analysis. Embryos from
each group were observed and photographed taken an
SMZ25 stereomicroscope with a DS-Ri2 digital camera (Nikon,
Japan). All experimental procedures on zebrafish were approved
by the Institutional Animal Care and Use Committee of Northwest
University and carried out in accordance with the approved
guidelines (NWU-AWC-20190103Z).

RNA library preparation and sequencing

Embryos in 40 mg/L ESIONP-exposed group and control
group at 48 hpf, 72 hpf, 96hpf, and 120 hpf were collected and
used for total RNA extraction. mRNA was isolated using the
NEBNext PolyA mRNA Magnetic Isolation Module (New
England Biolabs, Ipswich, MA, United States). Libraries were
prepared with the NEB Next Ultra Directional RNA Library
Prep Kit (New England Biolabs, United States), and subjected
to Illumina sequencing with paired end 2 × 150 as the sequencing
mode. The clean reads were mapped to reference genome (D. rerio:
NCBI_GRCz11). Gene expression levels were estimated using
FPKM (fragments per kilobase of exon per million fragments
mapped) by StringTie v1.3.4d (Pertea et al., 2015). Differential
expressed genes (DEG) were measured using R package, edgeR
v3.24.2 (Robinson et al., 2010). The false discovery rate (FDR) was
used to calculate the adjusted p-value in multiple testing in order to
evaluate the significance of the differences. Here, only gene with an
adjusted q-value < 0.05 and |log2FC| ≥ 1 were used for subsequent
analysis. The raw sequence data reported in this paper have been
deposited in the Genome Sequence Archive (Chen et al., 2021) in
National Genomics Data Center (CNCB-NGDC Members and
Partners, 2024), China National Center for Bioinformation/Beijing
Institute of Genomics, Chinese Academy of Sciences (GSA:
CRA016266) that are publicly accessible at https://ngdc.cncb.ac.
cn/gsa.

Weighted gene co-expression network
analysis (WGCNA)

A weighted gene co-expression network analysis was performed
using the WCGNA package in R (Langfelder and Horvath, 2008).
Samples were clustered by hclust to filter outliers (h > 15). In order to
construct scale-free network, the optimal soft-thresholding power β
was defined by picking Soft Threshold function (β = 6, R2 ≥ 0.8).
Based on pairwise correlations between genes, genes with similar
expression patterns were clustered into a group through a TOM
clustering tree according to the dynamic tree cut method, and
similar groups were combined into one module. The key hub
genes, which were the node of co-expression network, were
defined based on the connectivity by the CytoHubba plugin in
Cytoscape v3.9.1.
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Enrichment analysis

Gene ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were carried on DEGs (Gene
Ontology Consortium, 2021; Kanehisa et al., 2023). Enrichment
analysis was performed using the R package “clusterProfiler”
(Wu et al., 2021). GO terms and KEGG analysis with corrected
p-value < 0.05 were considered to be significantly enriched
(Wang et al., 2021).

Real-time quantitative PCR (qRT-
PCR) analysis

Total RNA was isolated from zebrafish embryos in each group
using TRIzol™ reagent (Ambion, United States). The cDNA was
synthesized using the SuperScriptIII (Invitrogen, United States),
according to the manufacturer’s protocol. qPCR was conducted
using SYBR FAST Universal qPCR kit (KAPA, Germany) and ViiA
7 Real-Time PCR System (ABI, United States), as described
previously (Wang et al., 2021). Primer sequences were shown in
Supplementary Table S1.

Analysis of skeletal muscle structure by
birefringence

Zebrafish embryos at 96 hpf were anesthetized with tricaine
(0.04%) and embedded in 5% methylcellulose to score the skeletal
muscle lesions. Birefringence was imaged under SMZ25 stereo
microscope equipped with a DS-Ri2 digital camera (Nikon,
Japan), as previously described (Lu et al., 2021). For
quantification analysis, 10 somites between the levels of somite
5 to 15 were imaged per embryo.

Tracking of swimming behavior

For locomotion tracking, single zebrafish larvae (treated with or
without ESIONP) developed to 120 hpf was placed in individual
wells of 24-well cell culture plate containing approximately 500 µL
embryo medium. Swimming behavior was monitored at room
temperature using a DanioVision system and EthoVision XT
11.5 locomotion tracking software (Noldus Information,
Netherlands), according previously described (Lu et al., 2021).

Oxidative stress detection

The oxidative stress and damage caused by ESIONP was
detected by measuring ROS production in zebrafish embryo
(Zhu et al., 2022). Briefly, embryos at 72 hpf treated with or
without ESIONPs were stained with an oxidation-sensitive
fluorescent probe dye, dichloro-dihydro-fluorescein diacetate
(DCFH-DA) (Beyotime, China) at a final concentration of
20 μg/mL. Stained embryos were incubated at 28°C for 1 h and
then washed with PBS. The photos were taken under a
fluorescence microscope with a DS-Ri2 digital camera (Nikon,

Japan). The fluorescence intensity of embryos was quantified
using ImageJ software (NIH, United States).

Apoptosis analysis

To detect apoptotic cells in zebrafish embryos, acridine orange
(AO), a fluorescent dye was used. Zebrafish larvae developed to
96 hpf were incubated with 10 μg/mL AO staining solution
(Beyotime, China) at 28.5°C for 30 min in the dark, and rinsed
with PBS (Zhu et al., 2022). The zebrafish embryos were observed
and recorded under a fluorescence microscope with a DS-Ri2 digital
camera (Nikon, Japan). The intensity of the fluorescence signal was
measured and analyzed using ImageJ software (NIH, United States).

Statistical analysis

Each experiment was repeated at least three times. All data were
presented as the mean ± SD. Student’s t-test was applied for
comparisons among different groups. p-value < 0.05 was
considered significant.

Result

Construction of the stage-specific gene co-
expression networks via WGCNA

To assess the toxicity of ESIONPs, zebrafish embryos were exposed
to different concentrations of ESIONPs (0, 10, 20, 30, 40, 60, 80, and
100 mg/L), the survival rate was counted at 24, 48, 72, 96, and 120 hpf
(Supplementary Figure S1A). The LC50 of ESIONPs was determined at
72 hpf (Supplementary Figure S1B). The degrees of malformations are
defined in 4 classes, including dorsal bending, shortened body length,
yolk sac swelling, cardiac edema, smaller eyes, and head (Supplementary
Figure S1C). A concentration of 40 mg/L was chosen for subsequent
experiments, to ensure the maximum survival rate of embryos while
including diverse morphological abnormalities.

In order to explore the mechanism of toxicity of ESIONPs on
zebrafish embryonic development, the DEGs of the control groups and
the ESIONPs-exposed groups at 48 hpf, 72 hpf, 96 hpf, 120 hpf were
analyzed by RNA-Seq. To determine the relationship between
replicates, the samples were clustered using Principal Component
Analysis (PCA) and correlation analysis. The PCA showed high
repeatability in duplicate samples (Figure 1A), and the Pearson
correlation coefficient for each group of replicates also indicated a
high repeatability (|r| ≥ 0.8 for all) (Figure 1B). A total of
32,057 transcripts from 16 samples were fused to construct the co-
expression network which was constructed by R packages of WGCNA.
Firstly, samples were clustered by hclust (h > 5,500), no outlier samples
were found in the hierarchical clustering (Figure 1C). In order to build a
network with scale-free distribution and preserve the information of
DEGs asmuch as possible, we found the best soft-thresholding powers β
(β = 6). The connectivity between genes in the network is relatively high
(β = 6, R2 = 0.813), indicating that the network was scale-free
(Figure 1D). Genes were divided into 22 modules (Figure 1E;
Supplementary Table S2). In order to study the mechanism of
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FIGURE 1
Stage-Specific Gene Co-Expression Networks via WGCNA. (A) PCA analysis of all RNA sequencing samples. (B) Pearson correlation co-efficient
analysis of all RNA sequencing samples. (C) Hierarchical clustering information of all RNA sequencing samples. (D) The determination of soft threshold
power, when β = 6, the scale-free network fitting. (E) Based on the hierarchical clustering and adjacency dissimilarity, a gene clustering tree diagram of
22 modules was obtained. (F) Module-sample relationship, where the horizontal axis represents the samples and the vertical axis represents the
modules. The numbers in each grid represent the correlation between the modules and the samples.
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toxicity of ESIONPs at each development stages, the module with the
highest correlation of changes was selected at each stage. The yellow
module (|R2| = 0.62), magenta module (|R2| = 0.3765), lightgreen
module (|R2| = 0.725), and brown module (|R2| = 0.6) showed the
highest correlation of changes at 48 hpf, 72 hpf, 96 hpf, and 120 hpf,
which were used for further research (Figure 1F).

Functional annotations of key modules to
each development stages

Genes in key modules were screened out according to the
eigengene-based connectivity (kME) values (|kME| > 0.9). There
were 61 hub genes in the yellow module, 128 hub genes in the

FIGURE 2
Networks of genes in different modules. (A) The key hub genes were shown in YellowModule (ncapd2, smarcc1a, kif15). (B) The key hub genes were
shown in Magenta Module (hunk, pbx1a, zc2hc1a, lypd6, sich211-235e15.1). (C) The key hub genes were shown in Lightgreen Module (irg1l, sich211-
153b23.5, noxo1a, sich211-153b23.3, zgc:100868). (D) The key hub genes were shown in Magenta Module (chrna6, slc4a10a, slc6a11b). (E,F) Gene
expression of the key hub genes in 4 modules by RNA-seq (E) and qRT-PCR (F). Value are normalized to Control group, and represent mean ± SE
from three independent experiments, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 (Student’s t-test).
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magenta module, 54 hub genes in the lightgreen module, and
1,157 hub genes in the brown module (Supplementary Table S3).

In the enrichment analysis of the GO pathways, we presented
top 10 GO annotations (Supplementary Figures S2A–D;
Supplementary Tables S4–S7). The important terms of
enrichment in the yellow module (48 hpf) were related to neuron
system and muscle development (Supplementary Figure S2A). The
terms of related neuron development also mainly were enriched in
the magenta module (72 hpf) (Supplementary Figure S2B). The
terms of inflammatory were enriched in the lightgreen module
(96 hpf, mainly including inflammatory response and chemotaxis
of immunocyte (Supplementary Figure S2C). The terms of neuronal
signal transmission were enriched in the brown module (120 hpf),
including (Supplementary Figure S2D).

In enrichment analysis of KEGG pathways (Supplementary
Figures S2E–H; Supplementary Tables S4–S7), yellow module
genes (48 hpf) were mainly enriched in embryonic development
key signaling pathways, including notch signaling pathway, wnt
signaling pathway, hedgehog signaling pathway (Supplementary
Figure S2E). The terms of hormone secretion and metabolism
were enriched in the magenta module (72 hpf), including pentose
phosphate pathway, ubiquitin mediated proteolysis, protein
processing in endoplasmic reticulum, GnRH signaling pathway,
Endocytosis (Supplementary Figure S2F). Lightgreen module
genes (96 hpf) were enriched in metabolism pathways
(Biosynthesis of nucleotide sugars, arachidonic acid metabolism,
amino sugar and nucleotide sugar metabolism, glycerophospholipid
metabolism), necroptosis, C-type lectin receptor signaling pathway,
and ferroptosis (Supplementary Figure S2G). Brown module genes
(120 hpf) were enriched in pathways related to neuronal signal
transmission such as calcium signaling pathway, neuroactive ligand-
receptor interaction, cell adhesion molecules, and oxidative
phosphorylation (Supplementary Figure S2H).

The enrichment analysis of modules corresponding to each stage of
embryonic development by GO and KEGG indicated that ESIONPs
might mainly be toxic to the nervous system development, neural
conduction, and motor system of zebrafish, and might induce
inflammation and ferroptosis in zebrafish embryos.

Hub genes identified in each module
by WGCNA

To investigate the mechanism of toxicity of ESIONPs on
zebrafish embryos, we next filtered out the hub genes affected by
ESIONPs. Networks were constructed to explore relationships
among hub genes, which were used as nodes of the scale-free
network and had the highest correlation. The top hub genes as
the most important nodes in each module were identified and
highlighted (Figure 2). There were 3 hub genes in the yellow
module: kif15, ncapd2, smarcc1a (Figure 2A), 5 hub genes in the
magenta module: zc2hc1a, hunk, pbx1a, lypd6, si:ch211-235e15.1
(Figure 2B), 5 hub genes in the lightgreen module: irg1l, si:ch211-
153b23.3, si:ch211-153b23.5, zgc:100868, noxo1a (Figure 2C), and
3 hub genes in the brown module: chrna6, slc4a10a, slc6a11b
(Figure 2D). Although some hub genes (si:ch211-235e15.1, si:
ch211-153b23.3, si:ch211-153b23.5, zgc:100868) of the magenta
and lightgreen modules remain unannotated, the other hub genes

of each module could reflect the toxicity of ESIONPs to embryos.
For example, genes involved in neuron development (kif15, ncapd2,
smarcc1a, hunk, pbx1a, lypd6), neurotransmission (chrna6, slc4a10a,
slc6a11b), immune system regulation (irg1l), and oxygen stress
(noxo1a). For each module, two hub genes were selected for
validation by qRT-PCR (Figure 2F), which exhibited similar
expression trends to the RNA-Seq profiles (Figure 2E). The
WGCNA analysis indicated that ESIONPs might have
neurotoxicity, which could damage neuron development, nerve
conduction, and synaptic transmission. In addition, ESIONPs
might also cause ferroptosis in zebrafish embryos.

ESIONPs resulted in neurotoxicity in
zebrafish embryos

In Tg (eef1a1l1:EGFP) transgenic zebrafish embryos, ESIONPs-
exposed embryos exhibited significant abnormal development in the
nervous system at 72 hpf (Figure 3A), compared with the control
embryos. Furthermore, the expression of neuron developmental
markers (pax2a, neurog1, axin2) was significantly downregulated in
ESIONPs-exposed embryos (Figure 3B). The analysis of the movement
track at 120 hpf showed that the movement ability of the ESIONPs-
exposed group was significantly weakened (Supplementary Figure
S3A), and the expression of the neuromuscular junction and
synapse markers (lrp4, musk, mpz) was also downregulated in
ESIONPs-exposed embryos (Supplementary Figure S3B). Moreover,
the muscle polarization of zebrafish larvae exposed to ESIONPs was
significantly reduced (Figure 3C), and the expression of musclemarkers
(acta2, ttn, lpin1) was also downregulated (Figure 3D). These results
showed that ESIONPs not only impaired neuron development, synaptic
signal transmission, and neuromuscular junction signal transmission,
but also reduced muscle development.

Ferroptosis induced by ESIONPs could lead
to oxidative stress, cell apoptosis and
inflammatory response in zebrafish embryos

Next, we determined whether ferroptosis occurred by detecting
oxidative stress and apoptosis in zebrafish embryos (Dixon et al., 2012).
The oxidative stress was significantly increased in the ESIONPs-
exposed embryos (Figure 3E), and the expression of oxidative stress
markers (cybb, nox1, rac2) was significantly upregulated in ESIONPs-
exposed embryos (Figure 3G). The ESIONPs-exposed embryos also
displayed significant cell apoptosis (Figure 3F), and the expression of
apoptotic markers (jnk1, bcl2a, tp53) was significantly upregulated
(Figure 3H). In addition, the expression of inflammatory markers
(il1b, il6, tnfa) was also increased significantly (Supplementary
Figure S3C). These results revealed that ESIONPs could induce
ferroptosis, resulting in oxidative stress, cell apoptosis, and
inflammatory response in zebrafish embryos.

Discussion

Iron oxide nanoparticles typically consist of a core of magnetic
iron oxide surrounded by a stable coating. Fe3O4, Fe2O3, and FeO
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FIGURE 3
The neurotoxicity and Ferroptosis identified in zebrafish embryos. (A) Neuron system fluorescence signals of control group and ESIONPs-exposed
group in transgenic zebrafish Tg (eef1a1l1:EGFP). (B) Polarized light intensity of control group and ESIONPs-exposed group of zebrafish muscles. (C) The
expression of neuron-developmental markers (pax2a, neurog1, and axin2) at different developmental stages of zebrafish. (D) The expression of muscle
markers (acta2, ttn, lpin1) at different developmental stages of zebrafish. (E) ROS generation in zebrafish embryos was detected with fluorescent
probe DCFH-DA staining. (F) The prevalence of apoptosis in zebrafish embryos was detected with fluorescent dye AO staining; red arrows indicate the
apoptotic cells. (G) The expression of oxidative stress biomarkers (cybb, nox1, rac2) at different developmental stages of zebrafish. (H) The expression of
apoptosis biomarkers (jnk1, bcl2a, tp53) at different developmental stages of zebrafish. The fluorescence intensity and polarized light intensity was
quantified for individual zebrafish using ImageJ analysis. Scale bar, 200 μm. Value are normalized to Control group, and represent mean ± SE from three
independent experiments, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 (Student’s t-test).
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nanoparticles containing iron ions of different valences all belong to
iron oxide nanoparticles (Laurent et al., 2008). However, the iron
ions released from iron oxide nanoparticles are toxic. The iron ions
released from iron oxide nanoparticles and can lead to iron
accumulation, oxidative stress and protein aggregation in the
neural cells (Yarjanli et al., 2017). It is reported that iron
overload may decrease the AChE activity in the brains and livers
of zebrafish, which are highly susceptible to iron exposure (Sant
Anna et al., 2011). Iron overload zebrafish also exhibit dysregulation
in metal homeostasis and decreased neurophysiological
performance (Hassan and Kwong, 2020). In this study, after
exposure to ESIONPs, the neuron development of zebrafish
embryos was significantly disrupted, the motor ability mediated
by nerve impulses was also reduced, and ferroptosis might be
induced. These phenotypes were similar to organ damage caused
by iron ions released from iron oxide nanoparticles. Therefore, we
assumed that the neurotoxicity of ESIONPs is mainly caused by the
release of iron ions into the environment.

The release and accumulation of ESIONPs in the environment
significantly endanger water ecosystems, aquatic organisms, and human
health. The small size and high surface activity of NPs allow them to
persist in aquatic environments, evade conventional water treatments,
and accumulate in aquatic organisms, posing risks to the entire
ecosystems (Auffan et al., 2009). ESIONPs can disrupt cellular
processes, induce oxidative stress, damage structural integrity, and
thus affect the health and reproduction of organisms. In humans,
ESIONPs might enter the human body through inhalation or skin
contact during water-related activities, arising certain risks to respiratory
and other organ systems (Mahmoudi et al., 2011). Our results also
showed that ESIONPs had significant neurotoxic effects, which might
affect neurological function and lead to degenerative changes or
behavioral abnormalities. Therefore, it is imperative that future efforts
should focus on reducing the toxicity of ESIONPs while preserving their
advanced imaging capabilities to improve their biosafety.

Because of the obvious toxicity of iron oxide nanoparticles, which
is caused by the release of iron ions, synthetic and coating strategies
have been continuously modified to reduce this toxicity. Iron oxide
nanoparticles synthesized by Pouteria caimito fruit can significantly
reduce cytotoxicity (Veeramani et al., 2022), and Ag also can reduce
the toxicity of Fe3O4 in iron oxide nanoparticles synthesizing (Qi
et al., 2022). The neurotoxicity of iron oxide nanoparticles in clinical
application also can be reduced by Quercetin in conjugated form as
supplementation (Bardestani et al., 2021). Recently, an iron
nanoparticle (3 nm in diameter) modified with polyethylene glycol-
ethoxy-benzyl ligand on the surface (MnFe2O4-EOB-PEG) was
reported that it can substantially reduce the risk of potential
neurotoxicity in rabbits, pigs and macaques (Zhang et al., 2023).
Thus, employing synthesis methods with low biological toxicity and
various coating techniques for iron oxide nanoparticles might be
effective ways to reduce their toxicity.

Transcriptome analysis is the main technology used for toxicity
investigation (Teeguarden et al., 2014; Zheng et al., 2018; Arsiwala
et al., 2022). However, studies on the toxicity of ESIONPs often focus
on a single stage, neglecting the dynamics of embryonic
development. The toxicity analysis of a single stage results in
many potential or critical factors caused by ESIONPs being
concealed. To avoid this problem, this study used WGCNA for
toxicity analysis at different stages of embryonic development,

which reflected the dynamic impact of ESIONPs on the
development of zebrafish embryos. Here, key hub genes in
yellow, magenta, lightgreen, and brown modules corresponding
to the developmental stages of 48 hpf, 72 hpf, 96 hpf, and
120 hpf were identified. Meanwhile, the expression trends of
these hub genes were consistent with the neural development,
neural signal transformation, and ferroptosis. Hence, dynamic
and continuous analysis of the toxicity of nanoparticles during
embryonic development could comprehensively identify key hub
genes or novel biomarkers.

Iron is considered an important target for neurodegenerative
diseases, and ferroptosis is a type of iron dependent cell death (Yan
et al., 2021; Li et al., 2023). An increasing number of studies have
confirmed that ferroptosis is associated with the pathological changes of
neurological diseases such as Alzheimer’s disease, Parkinson’s disease,
and Huntington’s disease, mainly manifesting as neuronal cell death,
neuronal loss, and synaptic damage (Li et al., 2022). In this study,
ESIONPs caused oxidative stress and cell apoptosis in the neuronal
system, ultimately leading to movement disorders, similar to human
neurological disorders induced by ferroptosis. It suggested that the use
of ESIONPs might induce ferroptosis in the human brain, leading to
neuronal damage and death, and increasing the probability of
neurological disease occurrence and development.

In this study, through WGCNA analysis, we revealed that
exposure to ESIONPs could lead to neurodevelopmental
abnormalities and ferroptosis. Since ESIONPs can enter the
circulatory system and may have an impact on various body
organs. Therefore, a comprehensive evaluation of the safe dosage,
in vivo distribution, and potential toxicity to other organs is still
needed to ensure its safety in clinical applications.

Scope statement

With the increasing use of iron oxide nanoparticles as contrast
agents in clinical practice, extremely small iron oxide nanoparticles
(<5 nm in diameter) (ESIONPs) have been synthesizing and
modified for better absorption and imaging. However, the
toxicity of IONPs might lead to chronic neurological and motor
system diseases, so research on the toxicity of ESIONPs is urgent.
Here, we used zebrafish as a model animal to explore the potential
toxicity of ESIONPs on embryonic development. By performing
RNA-Seq on control and ESIONPs-exposed embryos at 48 hpf,
72 hpf, 96 hpf, and 120 hpf, WGCNA analysis revealed different
module corresponding to each embryonic development stage, and
key biomarkers were identified in each module. The expression
trends of these key biomarkers were further validated by qRT-PCR.
Moreover, exposure to ESIONPs might disrupt the neuronal and
muscle development of zebrafish, and induced ferroptosis, leading to
oxidative stress, cell apoptosis, and inflammatory response in
zebrafish larvae. The toxicity study of ESIONPs herein provides
certain suggestions for the potential clinical application of ESIONPs.
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Objective: The aim of this studywas to replicate associations of GWAS-significant
loci with severe COVID-19 in the population of Central Russia, to investigate
associations of the SNPs with thromboinflammation parameters, to analyze
gene-gene and gene-environmental interactions.

Materials and Methods: DNA samples from 798 unrelated Caucasian subjects
from Central Russia (199 hospitalized COVID-19 patients and 599 controls with a
mild or asymptomatic course of COVID-19) were genotyped using probe-based
polymerase chain reaction for 10 GWAS-significant SNPs: rs143334143 CCHCR1,
rs111837807 CCHCR1, rs17078346 SLC6A20-LLZTFL1, rs17713054 SLC6A20-
LLZTFL1, rs7949972 ELF5, rs61882275 ELF5, rs12585036 ATP11A,
rs67579710 THBS3, THBS3-AS1, rs12610495 DPP9, rs9636867 IFNAR2.

Results: SNP rs17713054 SLC6A20-LZTFL1 was associated with increased risk of
severe COVID-19 in the entire group (risk allele A, OR = 1.78, 95% CI = 1.22–2.6,
p = 0.003), obese individuals (OR = 2.31, 95% CI = 1.52–3.5, p = 0.0002, (pbonf =
0.0004)), patients with low fruit and vegetable intake (OR = 1.72, 95% CI =
1.15–2.58, p = 0.01, (pbonf = 0.02)), low physical activity (OR = 1.93, 95% CI =
1.26–2.94, p = 0.0035, (pbonf = 0.007)), and nonsmokers (OR = 1.65, 95% CI =
1.11–2.46, p = 0.02). This SNP correlated with increased BMI (p = 0.006) and
worsened thrombodynamic parameters (maximum optical density of the formed
clot, D (p = 0.02), delayed appearance of spontaneous clots, Tsp (p = 0.02), clot
size 30 min after coagulation activation, CS (p = 0.036)). SNP
rs17078346 SLC6A20-LZTFL1 was linked with increased BMI (p = 0.01) and
severe COVID-19 in obese individuals (risk allele C, OR = 1.72, 95% CI =
1.15–2.58, p = 0.01, (pbonf = 0.02)). SNP rs12610495 DPP9 was associated
with increased BMI (p = 0.01), severe COVID-19 in obese patients (risk allele
G, OR = 1.48, 95% CI = 1.09–2.01, p = 0.01, (pbonf = 0.02)), and worsened
thrombodynamic parameters (time to the start of clot growth, Tlag (p= 0.01)). For
rs7949972 ELF5, a protective effect against severe COVID-19 was observed in
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non-obese patients (effect allele T, OR = 0.67, 95% CI = 0.47–0.95, p = 0.02,
(pbonf = 0.04)), improving thrombodynamic parameters (CS (p = 0.02), stationary
spatial clot growth rates, Vst (p = 0.02)). Finally, rs12585036 ATP11A exhibited a
protective effect against severe COVID-19 in males (protective allele A, OR = 0.51,
95% CI = 0.32–0.83, p = 0.004). SNPs rs67579710 THBS3, THBS3-AS1,
rs17713054 SLC6A20-LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2—were
involved in two or more of the most significant G×G interactions (pperm ≤ 0.01).
The pairwise combination rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-
LZTFL1 was a priority in determining susceptibility to severe COVID-19 (it was
included in four of the top five most significant SNP-SNP interaction models).

Conclusion:Overall, this study represents a comprehensivemolecular-genetic and
bioinformatics analysis of the involvement of GWAS-significant loci in the
molecular mechanisms of severe COVID-19, gene-gene and gene-
environmental interactions, and provides evidence of their relationship with
thromboinflammation parameters in patients hospitalized in intensive care units.

KEYWORDS

chronic diseases, genotyping, COVID-19, GWAS, thromboinflammation syndrome,
rs17713054, rs17078346, rs12610495

1 Introduction

The emergence of coronavirus disease 2019 (COVID-19) at the close
of 2019 brought forth an array of symptoms and outcomes stemming
from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2). Globally, the case fatality rate of COVID-19 ranges from 1% to 17%.
Various factors, like the size of the population tested, demographic
characteristics, ethnicity, the effectiveness of healthcare systems, and
virus variants can affect the rates of mortality from COVID-19 (https://
coronavirus.jhu.edu/data/mortality (accessed 18 March 2024)).
However, the most common cause of death from COVID-19 is
severe disease, manifested by immune dysregulation and the onset of
a cytokine storm (CS) (Kim et al., 2021), characterized by a rapid surge in
proinflammatory cytokines and other markers of inflammation. This
hyperinflammation leads to coagulopathies, oxidative stress, organ
failure, and ultimately, mortality (Silva et al., 2023). Hypercoagulation
and micro-clot formation are critical factors in the molecular
pathogenesis of COVID-19, contributing significantly to its
complications and adverse outcomes (Pretorius et al., 2020).
Furthermore, we are becoming increasingly aware of COVID-19
long-term consequences on various organ systems, including the
pulmonary, cardiovascular, hematologic, renal, central nervous
system, gastrointestinal, and psychosocial manifestations (Joshee et al.
, 2022; Ma et al., 2022). This growing comprehension underscores the
imperative to delve deeper into the understanding of COVID-19.

Understanding why some individuals experience asymptomatic
or mild courses while others face intensive care unit (ICU)
admissions with severe organ failure and mortality remains a
critical challenge and the subject of much research worldwide
(Carvalho et al., 2023; Collins et al., 2023).

To date, it is known that lifestyle factors such as fruit and
vegetable consumption and physical activity significantly influence
the severity of COVID-19 (Yedjou et al., 2021; Tadbir Vajargah
et al., 2022; Tavakol et al., 2023). However, host genetic factors play
no less a significant role, as evidenced by findings from molecular-
genetic studies. Genes such as SLC6A20, LZTFL1, IFNAR2, DPP9,
CCHCR1, ELF5, ATP11A and THBS3 have been identified as

potentially contributing to severe COVID-19 and hospitalization
in genome-wide association studies (Severe Covid-19 GWAS Group
et al., 2020; Lee et al., 2021; Horowitz et al., 2022; Kousathanas et al.,
2022; Pairo-Castineira et al., 2021). Many of the genetic variants
identified by GWAS have been replicated in different populations
around the world, demonstrating their high predictive value for the
risk of severe COVID-19 (Rescenko et al., 2021; Garg et al., 2024).

Despite the wealth of genetic data, there is a significant lack of
researchworldwide on the relationship between genetic variants and the
severity of thromboinflammatory syndrome in COVID-19 patients, as
well as intergenic interactions, interactions between genetic variants and
environmental factors that could either mitigate or exacerbate the
impact of genetic variants on the severity of the disease.

Therefore, the aim of this pilot study was to i) investigate the
association between common single nucleotide polymorphisms
identified by GWAS and the risk of severe COVID-19 in a
Russian population; ii) investigate the most significant gene-gene
interactions associated with severe COVID-19; iii) evaluate the joint
influence of polymorphisms and environmental risk factors on
disease susceptibility; and iv) find out how COVID-19 GWAS
loci influence the features of the clinical manifestations of the
disease, including thrombodynamic parameters.

2 Materials and methods

2.1 Study design

The study’s fundamental structure, along with the materials and
tools employed, are outlined in Figure 1.

2.2 Study participants

The study included 798 unrelated individuals from Central
Russia, comprising 199 hospitalized COVID-19 patients and
599 patients of the control group. The Ethical Review Committee
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of Kursk State Medical University approved the study protocol
(protocol №1 from 11 January 2022), and all participants
provided written informed consent. The patients were enrolled in
the study during the COVID-19 pandemic from 2020 to 2022 at the
intensive care units (ICU) of Kursk Regional Hospital №6 and
Kursk Regional Tuberculosis Dispensary. All patients had a PCR-
confirmed diagnosis of COVID-19. The control group consisted of
healthy volunteers from Biobank of Research Institute for Genetic
and Molecular Epidemiology (Bushueva O. et al., 2015; OYu et al.,
2015) who had mild or asymptomatic COVID-19 and did not need
ICU admission (Bushueva, 2020; Kobzeva et al., 2022; Belykh et al.,
2023). Supplementary Table S1 provides the baseline and clinical
characteristics of the study cohort.

In accordance with WHO guidelines (Amine et al., 2003), low fruit
and vegetable consumption was defined as consuming less than 400 g
per day. Adequate consumption of fresh vegetables and fruits was
defined as consuming 400 g or more, equivalent to 3-4 servings per day,
excluding starchy tubers like potatoes. Insufficient physical activity was
characterized by engaging in less than 180min per week of moderate to
vigorous physical activities. This encompassed various forms of exercise,
including leisure activities such as walking and running as well as fitness
club exercises like treadmill running, aerobics, or resistance training.
Obesity is assessed using the Body Mass Index (BMI), a measurement
based on a person’s height and weight. A BMI of 30 or higher is
generally considered indicative of obesity.

2.3 Selection of genes and polymorphisms

For this study, we selected SNPs from the largest GWAS meta-
analysis of severe COVID-19 (top 20 SNPs with p-level of significance
of ≤1 × 10−20) (Pairo-Castineira et al., 2023). Then, SNPs with a minor
allele frequency<0.05 were excluded from the analysis, as well as loci for
which was unable to design probes for TaqMan-based-PCR (low CG
composition, presence of GC clamps, runs of identical nucleotides). In
total, 10 SNPs were included in the genotyping: rs143334143 CCHCR1
(chr6:31153649 (GRCh38)), rs111837807 CCHCR1 (chr6:31153455
(GRCh38)), rs17078346 SLC6A20-LZTFL1(chr3:45804256
(GRCh38)), rs17713054 SLC6A20-LZTFL1 (chr3:45818159
(GRCh38)), rs7949972 ELF5 (chr11:34480495 (GRCh38)),
rs61882275 ELF5 (chr11:34482745 (GRCh38)), rs12585036 ATP11A
(chr13:112881427 (GRCh38)), rs67579710 THBS3, THBS3-AS1 (chr1:
155203736 (GRCh38)), rs12610495 DPP9 (chr19:4717660 (GRCh38)),
rs9636867 IFNAR2 (chr21:33639 (GRCh38)).

2.4 Genetic analysis

The Laboratory of Genomic Research at the Research Institute
for Genetic and Molecular Epidemiology of Kursk State Medical
University (Kursk, Russia) performed genotyping. Up to 5 mL of
venous blood from each participant was collected from a cubital

FIGURE 1
Materials and methods of the study.
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vein, put into EDTA-coated tubes, and kept at −20 C until it was
processed. Defrosted blood samples were used to extract genomic
DNA using the standard methods of phenol/chloroform extraction
and ethanol precipitation. The purity, quality, and concentration of
the extracted DNA samples were assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States).

Genotyping of the SNPs was performed using allele-specific
probe-based polymerase chain reaction (PCR) according to the
protocols designed in the Laboratory of Genomic Research at the
Research Institute for Genetic andMolecular Epidemiology of Kursk
State Medical University. The Primer3 software was used for primer
design (Koressaar and Remm, 2007). A real-time PCR procedure
was performed in a 25 µL reaction solution containing 1.5 units of
Hot Start Taq DNA polymerase (Biolabmix, Novosibirsk, Russia),
approximately 10 ng of DNA, and the following concentrations of
reagents: 0.25 μM of each primer; 0.1 μM of each probe; 250 μM of
each dNTP; 3 mM MgCl2 for rs7949972, 3.5 mM MgCl2 for
rs61882275, 2 mM MgCl2 for rs12610495, and 2.5 mM MgCl2
for the remining SNPs; 1xPCR buffer (67 mM Tris-HCl, pH 8.8,
16.6 mM (NH4)2SO4, 0.01% Tween-20). The PCR procedure
comprised an initial denaturation for 10 min at 95°C, followed by
39 cycles of 92 °C for 30 s and 57 °C, 59 °C, 60 °C, 61 °C, 62 °C, 63 °C,
65 °C, 66 °C for 1 min (for rs12610495 DPP9, rs17078346 SLC6A20-
LZTFL1, rs17713054 SLC6A20-LZTFL1, rs111837807 CCHCR1,
rs9636867 IFNAR2, rs143334143 CCHCR1 and rs7949972 ELF5,
rs12585036 ATP11A and rs61882275 ELF5, rs67579710 THBS3,
THBS3-AS1, respectively). 10% of the DNA samples were
genotyped twice, blinded to the case-control status, in order to
assure quality control. Over 99% of the data were concordant. Due to
the Hardy-Weinberg equilibrium deviation in the control group for
SNP rs12610495 DPP9, all locus samples underwent re-genotyping.
The results were entirely consistent (100%) with the
initial genotypes.

2.5 Thrombodynamics analysis

The analysis utilized venous blood samples obtained from the
peripheral veins of patients upon admission to the ICU, prior to the
initiation of drug therapy or any other manipulations. Blood collection
involved vacuum tubes containing sodium citrate 3.2%, with a
maximum interval of 45 min between collection and centrifugation.

To isolate platelet-free plasma for the thrombodynamics test, a
“soft” double centrifugation method was used: samples underwent
initial centrifugation at 1,600 g for 15 min, followed by an additional
20 min at 1,600 g. Platelet-free plasma (120 µL) was used for the test
within 3 h.

The thrombodynamics test was performed using the laboratory
diagnostic system “Thrombodynamics Recorder TD-2". Blood
plasma was introduced into specialized cuvettes, into which an
“activator-insert” containing lipids and tissue factor protein was
added. This factor initiated the clotting process, simulating damage
to the blood vessel wall. Coagulation is initiated on the surface of an
activator fixed in space and extends into a thin layer of non-stirred
plasma. The growth of the fibrin clot was recorded by the device in
sequential photography mode with a digital camera using the dark
field method for 30 min.

Based on the obtained images, the Thrombodynamics Recorder
TD-2 software calculated the quantitative parameters of the spatial
dynamics of fibrin clot growth and spontaneous thrombus
formation, including: time to the start of clot growth (Tlag),
initial Vi) and stationary (Vst) spatial clot growth rates (the
slopes of the clot size curve vs time for the segments of 2–6 min
and 15–25min from the clot growth start for Vi and V, respectively),
the clot size at 30 min after coagulation activation (CS), the
maximum optical density of the formed clot (D), characterizing
its quality, and the time of appearance of spontaneous clots in the
sample (Tsp). This latter characteristic has substantial clinical value
because spontaneous clots (i.e., those that do not grow from the
activator surface) may only be observed in cases of serious
hypercoagulable states.

2.6 Statistical and bioinformatic analysis

The STATISTICA software (v13.3, United States) was utilized
for statistical processing. The normality of the distribution for
quantitative data was assessed using the Shapiro-Wilk’s test.
Given that the majority of quantitative parameters exhibited
deviations from normal distribution, they were presented as the
median (Me) along with the first and third quartiles [Q1 and Q3].
The Kruskal–Wallis test was used to compare quantitative variables
among three independent groups. Following that, groups were
contrasted pairwise using the Mann–Whitney test. To compare
quantitative variables among two independent groups, the Mann-
Whitney test was also performed. For categorical variables,
differences in statistical significance were evaluated using
Pearson’s chi-squared test with Yates’s correction for continuity.

The compliance of genotype distributions with Hardy-Weinberg
equilibrium was evaluated using Fisher’s exact test. The study
groups’ genotype frequencies and their associations with disease
risk were analyzed using the SNPStats software (https://www.
snpstats.net/start.htm (accessed on 18 February 2024)). The
additive model was considered for the genotype association
analysis. Associations within the entire group of COVID-19
patients/controls were adjusted for age and gender. Given the
potentially significant modifying influence of environmental risk
factors on the association of genetic markers with disease (Bushueva
et al., 2016; Polonikov et al., 2017), associations were analyzed based
on the presence or absence of the risk factor. When information
about the environmental risk factor was unavailable in the control
group (for fruit/vegetable intake, physical activity levels), the patient
group was compared to the overall control group. In such cases, the
Bonferroni correction was applied to account for multiple
comparisons.

The MB-MDR analysis tested two-, three-, and four-level
genotype combinations (G×G) and genotype-environment
combinations with the including of smoking as an environmental
risk factor (G×E). Smoking was analyzed as an environmental risk
factor in the analysis of G×E interactions (due to the high
pathogenetic significance of this environmental factor in the
development of severe COVID-19, as well as the lack of data
about other environmental factors like physical activity levels and
levels of fruit and vegetable intake in control group). Since SNPs
located in the same genes are in linkage disequilibrium, and linkage
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groups included no more than two SNPs, one of the SNPs was
included in the MB-MDR analysis. For each model, the empirical
p-value (pperm) was estimated using a permutation test. Permutation
testing was employed to improve the validity of the results obtained
(Calle et al., 2010). Because the default call to MB-MDR is designed
to simultaneously test all possible interactions of a given order, we
used 1,000 permutations to obtain accurate p-values. Models with
pperm < 0.01 were considered as statistically significant. All
calculations were adjusted for gender and age. Statistical analysis
was carried out using the R software environment. Models (on
average 3-4models of each level) with the highestWald statistics and
the lowest p-level of significance were included in the study.
Additionally, using the MB-MDR method, individual
combinations of genotypes associated with the studied
phenotypes were established (p < 0.05). Calculations were
performed in the MB-MDR program for the R software
environment (Version 3.6.3) (Ivanova, 2024).

Additionally, the most significant G×G and G×E models
were analyzed using the MDR method (the analysis included
genes that appeared in the 2 or more best models of 2-, 3- and 4-
locus G×G models in the analysis of intergenic interactions/
smoking and genes included in 2 or more best models of 2-, 3-
and 4-locus G×E models in the analysis of gene-environment
interactions with the including of smoking as an environmental
risk factor). The analysis was implemented in the MDR program
(v.3.0.2) (http://sourceforge.net/projects/mdr (accessed on
25 February 2024)). The MDR method was used to assess the
mechanisms of interactions (synergy, antagonism, additive
interactions (independent effects)) and the strength of
interactions (the contribution of individual genes/
environmental factors as the purpose of the study, to the
entropy of a trait and the contribution of interactions,
calculated as a percentage). The results of the MDR analysis
were visualized as a graph.

We conducted a mediation analysis using the “statsmodels”
package for Python to assess whether rs17713054, identified as a
genetic risk factor in overall group in our study, influences SARS-
CoV-2 directly or indirectly through other clinical conditions such
as essential hypertension (EH), coronary artery disease (CAD),
cerebrovascular accident (CVA) in anamnesis, chronic
obstructive pulmonary disease (COPD), and diabetes mellitus
type 2 (T2D).

The functional effects of SNPs were examined using
bioinformatics resources, the methodologies and functionalities of
which were comprehensively described in our prior research
(Kobzeva et al., 2023; Shilenok et al., 2023; Stetskaya et al., 2024):

• The bioinformatic tool GTExportal (http://www.gtexportal.
org/ (accessed on 28 February 2024)) was used to analyze the
link of SNPs with expression quantitative trait loci (eQTLs) in
lungs, whole blood, blood vessels, and adipose tissue
(Consortium, 2020).

• For additional examination of binding SNPs to expression
quantitative trait loci (eQTL) in peripheral blood, the
eQTLGen resource available at https://www.eqtlgen.org/
(accessed on 28 February 2024) was employed (Võsa et al., 2018).

• HaploReg (v4.2), a bioinformatics tool available at https://pubs.
broadinstitute.org/mammals/haploreg/haploreg.php (accessed

on 28 February 2024), was utilized to assess the associations
between GWAS SNPs and specific histone modifications
marking promoters and enhancers. These modifications
included acetylation of lysine residues at positions 27 and
9 of the histone H3 protein, as well as mono-methylation at
position 4 (H3K4me1) and tri-methylation at position 4
(H3K4me3) of the histone H3 protein. Additionally, the tool
was applied to investigate the positioning of SNPs in DNase
hypersensitive regions (Ward and Kellis, 2012).

• The atSNP Function Prediction online tool (http://atsnp.
biostat.wisc.edu/search (accessed on 29 February 2024)) was
used to evaluate the impact of SNPs on the gene affinity to
transcription factors (TFs) depending on the carriage of the
reference/alternative alleles (Shin et al., 2019). TFs were
included based on the degree of influence of SNPs on the
interaction of TFs with DNA calculated on the basis of a
positional weight matrix.

• Using the Gene Ontology online tool (http://geneontology.
org/ (accessed on 29 February 2024)), it was feasible to analyze
the joint involvement of TFs linked to the reference/SNP
alleles in overrepresented biological processes directly
related to the pathogenesis of severe COVID-19
(Consortium, 2019). Biological functions controlled by
transcription factors associated with SNPs were used as
functional groups.

• The Lung Disease Knowledge Portal (LKP) (https://cd.
hugeamp.org/ (accessed on 29 February 2024)), which
combines and analyzes the results of genetic associations of
the largest consortiums for the study of lung diseases, was used
for bioinformatics analysis of associations of SNPs with
COVID-19 and intermediate phenotypes (such as FEV1,
FEV1 to FVC ratio, etc.).

3 Results

3.1 Genetic correlates between GWAS-
significant loci and the risk of severe
COVID-19

The genotype frequencies of SNPs within the study cohorts are
detailed in Supplementary Table S2. Because associations of genetic
markers with disease can lead to deviations from equilibrium, we
relied on the results of Hardy-Weinberg equilibrium analysis in the
control group. Within the control group, all studied SNPs exhibited
genotype frequencies consistent with Hardy-Weinberg equilibrium
(p > 0.05), except for rs12610495 DPP9 (Supplementary Table S2).
However, due to the fact that repeated genotyping of
rs12610495 showed 100% reproducibility of the primary results,
this SNP was included in the statistical analysis.

The analysis of the entire group (Table 1) revealed an association
between rs17713054 SLC6A20-LZTFL1 and the increased risk of
severe COVID-19 course, regardless of sex and age: risk allele A,
OR = 1.78, 95% CI = 1.22–2.6, p = 0.003. Sex-stratified analysis
(Supplementary Table S3) showed that rs17713054 SLC6A20-
LZTFL1 elevates the risk of severe COVID-19 both in males
(OR = 1.91, 95% CI = 1.12–3.26, p = 0.02) and females (OR =
1.63, 95% CI = 1.03–2.58, p = 0.04); additionally, we found that
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rs12585036 ATP11A lowers the risk of severe COVID-19 in males
(protective allele T; OR = 0.51, 95% CI = 0.32–0.83, p = 0.004).

Mediation analysis revealed that the indirect effect of
rs17713054 through T2D, CVA, and EH was insignificant,
accounting for 0%, 2.79%, and 5.48% respectively, in the
sequential analysis of these conditions. Adding these variables to
the logistic regression model did not render the influence of
rs17713054 on SARS-CoV-2 statistically insignificant.

Conversely, adding COPD or CAD to the model rendered the
influence of rs17713054 on SARS-CoV-2 insignificant (with the
model including COPD showing a weaker effect and the significance
level remaining within the statistical trend, p < 0.1). Mediation
analysis for these variables showed that the contribution of
rs17713054 to SARS-CoV-2, mediated through COPD and CAD,
was 18.57% and 71.54% respectively. This suggests that the influence
of rs17713054 on SARS-CoV-2 is likely mediated through other
clinical conditions, primarily through CAD
(Supplementary Table S4).

3.2 Gene-gene interactions associated with
severe COVID-19

Using the MB-MDR method, five most significant models of
intergenic interactions associated with the severe course of COVID-
19 were established: one two-locus model, three three-locus and one
four-locus models (pperm ≤ 0.001) (Table 2). In total, the best models of
G×G interactions included eight polymorphic loci, four of
which—rs67579710 THBS3, THBS3-AS1, rs17713054 SLC6A20-
LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2—were involved in 2 or

more of the most significant G×G interactions. We analyzed the
interactions of these genetic variants using the MDRmethod (Figure 2).

The MDR method, firstly, showed that the genetic variants
included in the best G×G models are characterized by antagonism/
additive (independent) effects. Secondly, the mono-effects of SNPs are
comparable to the effects of gene-gene interactions in terms of their
contribution to the entropy of COVID-19, with the exception of
rs17713054, which showed the most prominent mono-effect (1.15%).
Thirdly, combinations of genotypes of GWAS-significant SNPs
associated with severe COVID-19 are listed in Supplementary
Table S4. The combinations with the most pronounced
associations with severe COVID-19 are as follows:
rs67579710 THBS3, THBS3-AS1 G/G×rs17713054 SLC6A20-
LZTFL1 A/G (Beta = 0.15378, p = 0.0001); rs67579710 THBS3,
THBS3-AS1 G/G×rs17713054 SLC6A20-LZTFL1
A/G×rs143334143 CCHCR1 G/G (Beta = 0.16359, p =
0.0002 rs7949972 ELF5 T/C×rs67579710 THBS3, THBS3-AS1
G/G×rs12610495 DPP9 G/A) (Beta = 0.11149, p = 0.01);
rs9636867 IFNAR2 G/G×rs67579710 THBS3, THBS3-AS1
G/G×rs17713054 SLC6A20-LZTFL1 A/G (Beta = 0.215831, p =
0.0003); rs7949972 ELF5 T/C×rs9636867 IFNAR2
G/G×rs67579710 THBS3, THBS3-AS1 G/G×rs17713054 SLC6A20-
LZTFL1 A/G (Beta = 0.278009, p = 0.002) (Supplementary Table S5).

3.3 Environmental-associated correlates of
GWAS SNPs

GWAS SNPs were assessed for their potential contribution to
COVID-19 severity in combination with environmental risk factors

TABLE 1 Results of the analysis of associations between GWAS SNPs and severe COVID-19 risk in the entire group.

Genetic variant Effect allele Other allele N OR [95% CI]1 p2

rs143334143
CCHCR1

A G 752 1.07 [0.72–1.59] 0.74

rs111837807
CCHCR1

C T 751 0.98 [0.64–1.50] 0.94

rs17713054
SLC6A20-LZTFL1

A G 753 1.78 [1.22–2.60] 0.003

rs17078346
SLC6A20-LZTFL1

C A 754 1.41 [0.99–2.02] 0.059

rs12585036
ATP11A

T C 749 0.87 [0.65–1.18] 0.37

rs12610495
DPP9

G A 749 1.03 [0.79–1.34] 0.82

rs7949972
ELF5

T C 743 0.92 [0.71–1.21] 0.56

rs61882275
ELF5

A G 751 1.17 [0.91–1.51] 0.21

rs67579710
THBS3, THBS3-AS1

A G 749 0.65 [0.41–1.05] 0.072

rs9636867
IFNAR2

G A 751 0.85 [0.65–1.11] 0.24

All calculations were performed relative to the minor alleles (Effect allele) with adjustment for sex, age; 1 - odds ratio and 95% confidence interval; 2– p-value; statistically significant differences

are marked in bold.
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such as smoking, fresh fruit and vegetable consumption, and
physical activity level (Supplementary Table S5). SNP
rs17713054 SLC6A20-LZTFL1 was associated with an increased
risk of severe COVID-19 risk among nonsmokers (risk allele A;
OR = 1.65, 95% CI = 1.11–2.46, p = 0.02), patients with low fruit and
vegetable intake (OR = 1.72, 95% CI = 1.15–2.58, p = 0.01, pbonf =
0.02), and patients with low levels of physical activity (OR = 1.93,
95% CI = 1.26–2.94, p = 0.0035, pbonf = 0.007)
(Supplementary Table S6).

Using the MB-MDR approach, the eight most significant
models of gene-environment interactions associated with

severe COVID-19 were identified: two two-level model, two
three-order models, and four four-level models (pperm ≤ 0.01)
(Table 3). In total, the best G×E models included smoking in
interaction with seven loci, five of which—rs7949972 ELF5,
rs17713054 SLC6A20-LZTFL1, rs9636867 IFNAR2,
rs12585036_ATP11A, rs12610495_DPP9—were involved in
two or more of the most significant G×E interactions. In the
next step, we analyzed the interactions between these genetic
variants and smoking using the multivariate dimensionality
reduction (MDR) method (Figure 3).

Firstly, MDR revealed that smoking as an environmental risk
factor has the least mono-effect (0.04% contribution to the entropy of
severe COVID-19). Secondly, the mono-effects of SNPs/smoking
(0.04%–1.15%) are comparable to the effects of gene-environment
interactions (0.01%–0.53%). Thirdly, rs17713054 has the maximum
mono-effect among the SNPs involved in the most significant gene-
environment interactions. (1.15% contribution to entropy). Fourthly,
smoking is characterized by multidirectional effects in interaction
with SNPs included in the best G×E models: pronounced synergism
in interaction with rs12610495, moderate synergism in interaction
with rs9636867, additive (independent) effects in interaction with
rs17713054, rs12585036, rs7949972. Fifth, the interactions between
the genetic variants included in the most significant G×E models are
antagonistic/independent (additive effects), with the exception of the
interactions between rs7949972 and rs12610495, which exhibit
pronounced synergism in interaction with each other. Sixthly, the
list of models of gene-environment interactions between GWAS
SNPs’ genotypes and smoking is presented in Supplementary
Table S6. The following gene-smoking interactions show the
strongest correlation with severe COVID-19: non-smokers ×
rs17713054 SLC6A20-LZTFL1 G/G (Beta = 0.06466, p = 0.031);
smokers × rs9636867 IFNAR2 A/A (Beta = 0.179684, p = 0.049);
non-smokers ×rs67579710 THBS3, THBS3-AS1
G/G×rs17713054 SLC6A20-LZTFL1 A/G (Beta = 0.162513, p =
6.77 × 10−5); non-smokers ×rs7949972 ELF5
T/C×rs9636867 IFNAR2 G/G×rs17713054 SLC6A20-LZTFL1 A/G
(Beta = 0.3137824, p = 0.002); smokers ×rs9636867 IFNAR2

TABLE 2 Gene-gene interactions associated with severe COVID-19 (MB-MDR modeling).

Gene-gene interaction models NH beta H WH NL beta L WL Wmax pperm

The best two-locus models of intergenic interactions (for models with Pmin. < 0.001, 1,000 permutations)

rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-LZTFL1 1 0.1538 15.21 1 −0.05222 2.886 15.21 0.002

The best three-locus models of intergenic interactions (for models with Pmin. < 1 × 10−4, 1,000 permutations)

rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-
LZTFL1× rs143334143 CCHCR1

2 0.1673 17.60 1 −0.05878 4.001 17.60 0.005

rs7949972 ELF5 × rs67579710 THBS3, THBS3-AS1 ×
rs12610495 DPP9

3 0.1370 19.41 2 −0.08620 6.019 19.41 0.008

rs9636867 IFNAR2 × rs67579710 THBS3, THBS3-AS1 ×
rs17713054 SLC6A20-LZTFL1

2 0.2242 18.84 1 −0.05784 3.391 18.84 0.018

The best four-locus models of gene-gene interactions (for models with Pmin. < 1 × 10−5, 1,000 permutations)

rs7949972 ELF5 × rs9636867 IFNAR2 × rs67579710 THBS3,
THBS3-AS1 × rs17713054 SLC6A20-LZTFL1

4 0.1990 24.34 2 −0.11414 7.205 24.34 0.046

Note: NH, is the number of interacting high-risk genotypes; beta H—regression coefficient for high-risk interactions identified at the second stage of analysis; WH, Wald statistics for high-risk

interactions; NL, number of interacting low-risk genotypes; beta L—regression coefficient for low-risk interactions identified at the second stage of analysis; WL, Wald statistics for low-risk

interactions; pperm—permutational significance levels for models (all models are adjusted for gender and age); Loci included in 2 or more best G×G models are indicated in bold.

FIGURE 2
Graph reflecting the structure and strength of the most
significant G×G interactions of GWAS-significant loci associated with
severe COVID-19. (Note: the color of the lines reflects the nature of
the interaction: red and orange lines mean pronounced and
moderate synergism, brown means additive effect of genes
(independent effects); % reflects the strength and direction of the
phenotypic effect of gene interaction (% entropy)).
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A/A×rs12585036 ATP11A C/C×rs17713054 SLC6A20-LZTFL1 G/G
(Beta = 0.648395, p = 0.0003); smokers ×rs9636867 IFNAR2
A/A×rs12610495 DPP9 G/A×rs17713054 SLC6A20-LZTFL1 G/G

(Beta = 0.485735, p = 0.003); non-smokers ×rs7949972 ELF5
C/C ×rs12610495 DPP9 A/A×rs12585036 ATP11A C/T (Beta =
0.157332, p = 0.01) (Supplementary Table S7).

TABLE 3 Gene-environmental interactions, associated with severe COVID-19 (MB-MDR modeling).

Gene-gene interaction models NH beta H WH NL beta L WL Wmax pperm

The best two-order models of gene-smoking interactions (for G×E models with Pmin. < 0.005, 1,000 permutations)

SMOKE × rs17713054 SLC6A20-LZTFL1 2 0.10911 8.737 1 −0.06466 4.696 8.737 0.02

SMOKE × rs9636867 IFNAR2 2 0.11407 7.307 1 −0.08059 3.742 7.307 0.048

The best three-order models of gene-smoking interactions (for G×E models with Pmin. < 0.005, 1,000 permutations)

SMOKE × rs67579710 THBS3, THBS3-AS1 ×
rs17713054 SLC6A20-LZTFL1

2 0.17901 14.892 2 −0.06870 5.292 14.892 0.009

SMOKE × rs9636867 IFNAR2 × rs12585036 ATP11A 2 0.19410 13.116 0 NA NA 13.116 0.045

The best four-order models of gene-smoking interactions (for G×E models with Pmin. < 1 × 10−5, 1,000 permutations)

SMOKE × rs7949972 ELF5 × rs9636867 IFNAR2 ×
rs17713054 SLC6A20-LZTFL1

4 0.3663 25.92 2 −0.12671 8.166 25.92 0.018

SMOKE × rs9636867 IFNAR2 × rs12585036 ATP11A ×
rs17713054 SLC6A20-LZTFL1

6 0.2709 27.16 1 −0.12411 4.163 27.16 0.024

SMOKE × rs9636867 IFNAR2 × rs12610495 DPP9 ×
rs17713054 SLC6A20-LZTFL1

5 0.2858 25.01 2 −0.13819 8.247 25.01 0.039

SMOKE × rs7949972 ELF5 × rs12610495 DPP9 ×
rs12585036 ATP11A

7 0.2118 27.69 2 −0.14928 7.334 27.69 0.045

Note: NH, is the number of high-risk interactions; beta H—regression coefficient for high-risk interactions identified at the second stage of analysis; WH, Wald statistics for high-risk

interactions; NL, number of interacting low-risk interactions; beta L—regression coefficient for low-risk interactions identified at the second stage of analysis; WL, Wald statistics for low-risk

interactions; pperm—permutational significance levels for models (all models are adjusted for gender, age); Loci included in 2 or more best G× E models are indicated in bold.

FIGURE 3
Graph reflecting the structure and power of the most significant G×E interactions of GWAS loci associated with severe COVID-19. (Note: The color
of the lines reflects the nature of the interaction: red means strong synergism, brown means additive (independent) effects, and % reflects the strength
and direction of the phenotypic effect of gene-environmental interaction (% of entropy)).
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3.4Obesity-depended associations of GWAS
SNPs with severe COVID-19

Considering the potential impact of BMI, particularly obesity,
on the severity of COVID-19, we carried out an analysis of
associations of GWAS SNPs with severe COVID-19 in groups of
patients stratified by BMI. Among patients with a BMI less than 30
(non-obese patients), the rs7949972 ELF5 variant was associated
with a reduced risk of severe COVID-19 (protective allele T, OR =
0.67, 95% CI = 0.47–0.95, p = 0.02, pbonf = 0.04) (Table 4). However,
in patients with obesity (BMI ≥30), increased risk of severe COVID-
19 was observed for the rs17713054 SLC6A20-LZTFL1 (risk allele A,
OR = 2.31, 95% CI = 1.52–3.5, p = 0.0002, pbonf = 0.0004),
rs12610495 DPP9 (risk allele G, OR = 1.48, 95% CI = 1.09–2.01,
p = 0.01, pbonf = 0.02), and rs17078346 SLC6A20-LZTFL1 (risk allele
C, OR = 1.72, 95% CI = 1.15–2.58, p = 0.01, pbonf = 0.02) (Table 4).

3.5 Relationship between GWAS- significant
loci and the clinical characteristics of severe
COVID-19 patients

The results of the associations between GWAS SNPs and clinical
characteristics of severe COVID-19 patients are presented in
Figure 4 and Supplementary Table S8.

Upon the analysis of clinical characteristics among hospitalized
COVID-19 patients, it was observed that rs17713054 SLC6A20-
LZTFL1 (p = 0.006), rs12610495 DPP9 (p = 0.01), and
rs17078346 SLC6A20-LZTFL1 (p = 0.01) were found to be linked
with increased BMI (Supplementary Table S7; Figures 4A–C).

Additionally, rs12610495 DPP9 correlated with a reduction in the
duration of oxygen therapy (Figure 4D). The maximum optical
density of the formed clot (D) was associated with
rs17713054 SLC6A20-LZTFL1 (p = 0.02) (Figure 4E). SNP
rs12585036 ATP11A (p = 0.006) increased the count of platelets
(Figure 4F). Meanwhile, SNP rs7949972 ELF5 (p = 0.02) reduced in
stationary spatial clot growth rates (Vst, μm/minutes) (Figure 4G),
rs12610495 DPP9 (p = 0.01) increased the time to the start of clot
growth (Tlag, minutes) (Figure 4H), while rs17713054 SLC6A20-
LZTFL1 (p = 0.036) and rs7949972 ELF5 (p = 0.02) decreased the
clot size at 30 min post-coagulation activation (CS, μm) (Figure 4I, J
respectively). Notably, the time of appearance of spontaneous clots
(Tsp) was extended in the overall patient group with
rs17713054 SLC6A20-LZTFL1 (p = 0.0036) (Figure 4K). Given
the strong correlation between rs17713054 SLC6A20-LZTFL1,
rs12610495 DPP9, and rs17078346 SLC6A20-LZTFL1 with BMI,
we conducted a comparison of clinical characteristics between two
patient groups based on BMI status. In patients with a BMI ≥30, SNP
rs17713054 SLC6A20-LZTFL1 (Figure 4L) was associated with an
elevation in Tsp (p = 0.02), while among patients without obesity
(BMI <30) rs61882275 ELF5 (p = 0.003) was found to increase
Tsp (Figure 4M).

3.6 Functional annotation of severe COVID-
19-related SNPs

3.6.1 QTL-effects
The results of the cis-eQTL analysis (Table 5) shed light on the

impact of specific genetic variants on gene expression. According to

TABLE 4 Results of the analysis of associations between GWAS SNPs and severe COVID-19 in obese and non-obese patients.

Genetic variant Effect allele Other allele N OR [95% CI]1 p2 (pbonf) N OR [95% CI]1 p2 (pbonf)

BMI <30 BMI ≥30

rs143334143
CCHCR1

A G 657 0.82 [0.48–1.38] 0.44 (0.88) 658 1.12 [0.70–1.80] 0.63 (1.26)

rs111837807
CCHCR1

C T 656 0.65 [0.36–1.18] 0.14 (0.28) 657 1.09 [0.67–1.78] 0.73 (1.46)

rs17713054
SLC6A20-LZTFL1

A G 657 1.14 [0.69–1.88] 0.61 (1.22) 659 2.31 [1.52–3.50] 0.0002 (0.0004)

rs17078346
SLC6A20-LZTFL1

C A 657 1.02 [0.64–1.63] 0.93 (1.86) 660 1.72 [1.15–2.58] 0.01 (0.02)

rs12585036
ATP11A

T C 654 0.80 [0.55–1.16] 0.23 (0.46) 656 0.85 [0.60–1.22] 0.38 (0.76)

rs12610495
DPP9

G A 655 0.85 [0.61–1.19] 0.34 (0.68) 656 1.48 [1.09–2.01] 0.01 (0.02)

rs7949972
ELF5

T C 647 0.67 [0.47–0.95] 0.02 (0.04) 650 1.13 [0.82–1.55] 0.46 (0.92)

rs61882275
ELF5

A G 656 0.91 [0.66–1.26] 0.56 (1.12) 657 1.40 [1.02–1.91] 0.036 (0.072)

rs67579710
THBS3, THBS3-AS1

A G 653 0.79 [0.44–1.42] 0.42 (0.84) 657 0.75 [0.42–1.35] 0.33 (0.66)

rs9636867
IFNAR2

G A 655 0.82 [0.59–1.16] 0.26 (0.52) 657 1.02 [0.74–1.42] 0.91 (1.82)

All calculations were performed relative to the minor alleles (Effect allele); 1 - odds ratio and 95% confidence interval; 2– p-value; statistically significant differences are marked in bold.
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the eQTLGen Browser, rs17713054 SLC6A20-LZTFL1 and
rs17078346 SLC6A20-LZTFL1 were associated with a decrease in
the expression of FLT1P1, CCR3, CCR1, SACM1L, CCR5, CCR2,
RP11-24F11.2, and CXCR6, while these two SNPs were linked to an
increase in the expression of CCR9 in blood. Moreover, data from
the GTEx Portal indicated that rs17713054 SLC6A20-LZTFL1 was
associated with reduced expression levels of CXCR6 in tibial artery
and adipose tissues (subcutaneous), alongside an elevation in the
expression of LZTFL1 in adipose tissue (subcutaneous).

Additionally, rs12585036 ATP11A was correlated with
decreased expression levels of ATP11A in the blood and aorta, as
well as RP11-88E10.5 in coronary arteries. rs12610495 DPP9 showed
associations with reduced expression of DPP9 in blood, lung, and
arteries (tibial artery and aorta), while it was linked to an increase in
the expression levels of TNFAIP8L1 in blood. Notably,
rs7949972 ELF5 demonstrated a decrease in expression levels of
CAT in whole blood and artery (tibial), while ABTB2 expression was
reduced solely in whole blood by the influence of this SNP.

Furthermore, ELF5 expression was found to be decreased in the
lungs, indicating the effects of rs7949972.

3.6.2 Histone modifications
Using the bioinformatics tool HaploReg (v4.2), we analyzed

histonemodifications associated with SNPs identified in our study as
linked to an increased risk of severe COVID-19 (Table 6).

SNP rs17713054 SLC6A20-LZTFL1 is situated in a DNA-
binding region associated with histone H3 monomethylation at
the fourth lysine residue (H3K4me1) in lung, aorta, and adipose
tissue. Moreover, this SNP has further influence on H3K27ac,
which marks enhancers, particularly in lung tissues and
the aorta.

Similarly, rs12610495 DPP9 is located in a DNA-binding region
associated with H3K4me1 in both the lungs and blood. In lung
tissue, it also binds to H3K4me3. Additionally, the impact of these
histone modifications is further enhanced by the presence
of H3K27ac.

FIGURE 4
Associations of GWAS loci and clinical characteristics of severe COVID-19 patients. (A) BMI values for rs17713054 SLC6A20-LZTFL1 in the entire
group (p = 0.006), (B) BMI values for rs12610495 DPP9 in the entire group (p = 0.01), (C) BMI values for rs17078346 SLC6A20-LZTFL1 in the entire
group (p = 0.01), (D) oxygen therapy days for rs12610495 DPP9 in the entire group (p = 0.02), (E) maximum optical density of the formed clot (D)
values for rs17713054 SLC6A20-LZTFL1 in the entire group (p = 0.02), (F) platelets count for rs12585036 ATP11A in the entire group (p = 0.006),
(G) stationary spatial clot growth rates (Vst, μm/minutes) values for rs7949972 ELF5 in the group of patients with BMI <30 (p = 0.02), (H) time to the
start of clot growth (Tlag, minutes) for rs12610495 DPP9 in the group of patients with BMI <30 (p = 0.01), (I) clot size at 30 min post-coagulation
activation (CS, μm) values for rs17713054 SLC6A20-LZTFL1 in the group of patients with BMI <30 (p = 0.036), (J) clot size at 30 min post-coagulation
activation (CS, μm) values for rs7949972 ELF5 in the group of patients with BMI <30 (p = 0.02), (K) time of appearance of spontaneous clots (Tsp)
values for rs17713054 SLC6A20-LZTFL1 in the entire group of patients (p = 0.036), (L)—Tsp values for rs17713054 SLC6A20-LZTFL1 in the group of
patients with BMI<30 (p = 0.02), (M)—Tsp values for rs61882275 ELF5 in the group of patients with BMI <30 (p = 0.003).
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Finally, rs7949972 ELF5 falls within a region of DNA binding to
H3K4me1 exclusively in lung tissue.

3.6.3 Analysis of transcription factors
The risk allele A of rs17713054 SLC6A20-LZTFL1 is associated

with the generation of DNA binding sites for 48 transcription factors
(TFs) (Supplementary Table S9). These TFs are involved in four
overrepresented biological processes: integrated stress response
signaling (GO:0140467; FDR = 1.48 × 10−12), positive regulation
by host of viral transcription (GO:0043923; FDR = 4.68 × 10−2), fat
cell differentiation (GO:0045444; FDR = 3.45 × 10−4), transforming
growth factor beta receptor signaling pathway (GO:0007179; FDR =

4.94 × 10−2). The protective allele G of rs17713054 SLC6A20-
LZTFL1 creates binding sites for 24 TFs, jointly involved in
response to hypoxia (GO:0001666; FDR = 2.8 × 10−2).

The protective allele T rs12585036 ATP11A generates DNA
binding sites for 104 TFs (Supplementary Table S10) involved in
response to (GO:1990785; FDR = 8.08 × 10−3), response to
testosterone (GO:0033574; FDR = 4.09 × 10−11), androgen
receptor signaling pathway (GO:0030521; FDR = 8.49 × 10−3),
canonical Wnt signaling pathway (GO:0060070; FDR = 3.54 × 10−3).

As for the risk allele C rs17078346 SLC6A20-LZTFL1, it creates
DNA binding regions for 31 TFs (Supplementary Table S11), that
are involved in three overrepresented biological processes: epithelial

TABLE 5 Association of SNPs with cis-eQTL-Mediated Expression Profiles of GWAS Genes.

eQTLGen Browser data GTEx Portal data

SNP Effect
allele

Gene
expressed

Z-score p-value Gene
expressed

p-value Effect
(NES)

Tissue

rs17713054
SLC6A20-
LZTFL1

A CXCR6 ↓(−13.9294) 4.20 × 10−44 CXCR6 1.7 × 10−7 ↓(-0.42) Artery - Tibial

FLT1P1 ↓(−15.1094) 1.40 × 10−51

CCR3 ↓(−14.3393) 1.24 × 10−46

CCR9 ↑(5.1055) 3.30 × 10−7 CXCR6 6.7 × 10−5 ↓(-0.30) Adipose -
Subcutaneous

CCR1 ↓(−7.4173) 1.19 × 10−13

SACM1L ↓(−5.7667) 8.08 × 10−9 LZTFL1 1.0 × 10−4 ↑(0.21) Adipose -
Subcutaneous

CCR5 ↓(−5.206) 1.93 × 10−7

CCR2 ↓(−4.9694) 6.71 × 10−7 CCR9 1.6 × 10−4 ↑(0.33) Whole Blood

RP11-24F11.2 ↓(−4.6342) 3.58 × 10−6

rs17078346
SLC6A20-
LZTFL1

S CCR3 ↓(−13.0025) 1.18 × 10−38 -

FLT1P1 ↓(−12.847) 8.94 × 10−38

CXCR6 ↓(−11.6247) 3.08 × 10−31

CCR1 ↓(−6.5185) 7.10 × 10−11

CCR5 ↓(−5.5666) 2.59 × 10−8

SACM1L ↓(−5.4113) 6.25 × 10−8

CCR2 ↓(−5.3267) 9.99 × 10−8

CCR9 ↑(5.0282) 4.95 × 10−7

RP11-24F11.2 ↓(−4.5892) 4.44 × 10−6

rs12585036
ATP11A

T ATP11A ↓(−7.9284) 2.22 × 10−15 ATP11A 7.3 × 10−8 ↓(−0.18) Artery - Aorta

RP11-88E10.5 2.2 × 10−6 ↓(−0.34) Artery - Coronary

rs12610495
DPP9

G DPP9 ↓(−14.4364) 3.05 × 10−47 DPP9 4.50 × 10−9 ↓(−0.18) Lung

TNFAIP8L1 ↑(7.6938) 1.43 × 10−14 DPP9 8.90 × 10−8 ↓(−0.15) Artery - Tibial

DPP9 4.1 × 10−6 ↓(−0.17) Artery - Aorta

rs7949972
ELF5

T CAT ↓(−56.0274) 3.27 × 10−310 ELF5 2.50 × 10−15 ↓(−0.23) Lung

CAT 3.20 × 10−14 ↓(−0.25) Whole Blood

ABTB2 ↓(-15.164) 6.12 × 10−52 CAT 4.3 × 10−6 ↓(−0.15) Artery - Tibial

ABTB2 0.00007 ↓(−0.17) Whole Blood
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tube branching involved in lung morphogenesis (GO:0060441;
FDR = 7.59 × 10−4), Notch signaling pathway (GO:0007219;
FDR = 1.29 × 10−3).

Protective allele A rs12610495 DPP9 is associated with the
generation of DNA binding sites for 39 TFs (Supplementary
Table S12). These TFs jointly participate in positive regulation of
regulation of cytokine production (GO:0001817; FDR = 0.0475).

Finally, risk allele C rs7949972 ELF5 creates DNA binding sites
for 32 TFs (Supplementary Table S13), that are jointly involved in
the following overrepresented biological processes: positive
regulation of CD8-positive, alpha-beta T cell differentiation (GO:
0043378; FDR = 0.00247), negative regulation of CD4-positive,
alpha-beta T cell differentiation (GO:0043371; FDR = 0.0301),
defense response to virus (GO:0051607; FDR = 0.00177), positive
regulation of interferon-alpha production (GO:0032727; FDR =
0.0413), positive regulation of interferon-beta production (GO:
0032728; 0.00251).

3.6.4 Bioinformatic analysis of the associations of
GWAS SNPs with COVID-19-related phenotypes

According to the bioinformatic resource Lung Disease
Knowledge Portal, the GWAS SNPs rs17713054, rs12585036,
rs17078436, rs12610495 are linked to the higher risk of
hospitalization of COVID-19 patients and to the severe
respiratory confirmed COVID-19. Additionally, rs12585036 is
associated with a reduction in lung capacity parameters such as
forced vital capacity (FVC), forced expired volume in 1 s (FEV1),
FEV1 to FVC ratio, peak expiratory flow. Conversely, rs7949972 is
associated with a lower risk of hospitalization in COVID-19 patients
while increasing the lung capacity parameters (Table 7).

4 Discussion

In the present study, we replicated associations of the
rs17713054 SLC6A20-LZTFL1, rs17078346 SLC6A20-LZTFL1,
rs12610495 DPP9 and rs7949972 ELF5 with severe COVID-19
within the Caucasian population of Central Russia. For the first
time in the world, we assessed the impact of COVID-19 GWAS loci
on a wide range of clinical manifestations of the disease, primarily on

thrombodynamic parameters, identified the most significant
intergenic interactions, and also assessed how environmental risk
factors and obesity modify associations of GWAS loci with the risk
of severe COVID-19; conducted a comprehensive functional
annotation of severe COVID-19-associated SNPs to analyse their
involvement in the molecular mechanisms of the disease.

Figure 5 summarizes the principal molecular mechanisms
underlying the involvement of GWAS SNPs to severe COVID-19.

First of all, we identified that both studied polymorphic variants
located in the SLC6A20-LZTFL1 region are associated with COVID-
19: rs17713054 SLC6A20-LZTFL1 (risk allele A) increases the risk of
severe COVID-19 regardless of sex and age; however, this risk can be
modified by smoking status, intake of fresh fruit and vegetables, and
higher levels of physical activity. Moreover, rs17713054 (risk allele
A) was found to be associated with an increase in body mass index
and worsening thrombodynamic parameters, including an increase
in the maximum optical density of the formed clot (D), delayed
appearance of spontaneous clots (Tsp), and larger clot size 30 min
after coagulation activation (CS). It is noteworthy that
rs17713054 showed an association with severe COVID-19 in a
large number of replication studies conducted around the world
(Roberts et al., 2020; Downes et al., 2021; Roozbehani et al., 2023;
Udomsinprasert et al., 2023). However, the possible influence of
rs17713054 on both the development of COVID-19 and the
development of coronary artery disease is a topic of active
discussion in the literature (Wang et al., 2023). According to our
mediation analysis, the contribution of rs17713054 to SARS-CoV-
2 susceptibility may be mediated through comorbid disease in severe
COVID-19 patients, to a lesser extent by chronic obstructive
pulmonary disease, and to a greater extent by coronary
artery disease.

SNP rs17078346 SLC6A20-LZTFL1 (risk allele C) also was
associated with the increased the risk of severe COVID-19 in our
study, exclusively in obese patients. Possible molecular mechanisms
of the involvement of these genetic variants in the risk of developing
severe COVID-19 may be associated with their regulation of the
LZTFL1 gene (Leucine Zipper Transcription Factor Like 1), which
regulates protein trafficking to the ciliary membrane, the violation of
which may play an important role in weakened airway viral
clearance in a patient with COVID-19 (Robinot et al., 2021).

TABLE 6 The impact of GWAS SNPs on histone tags in various tissues.

SNP (Ref/Alt allele) Tissues
Marks

Lung Vessels—aorta Blood Adipose tissue

rs17713054 (G/A)
SLC6A20-LZTFL1

H3K4me1 Enh Enh - Enh

H3K4me3 - - - -

H3K27ac Enh Enh - -

rs12610495 (A/G)
DPP9

H3K4me1 Enh - Enh -

H3K4me3 Pro - - -

H3K27ac Enh - - -

rs7949972 (C/T)
ELF5

H3K4me1 Enh - - -

H3K4me1—mono-methylation at the fourth lysine residue of the histone H3 protein; H3K4me3—tri-methylation at the fourth lysine residue of the histone H3 protein; H3K9ac—the

acetylation at the ninth lysine residues of the histone H3 protein; H3K27ac—acetylation of the lysine residues at N-terminal position 27 of the histone H3 protein; effect alleles are marked in

bold. Enh—histone modification in the enhancer region; Pro—histone modification at the promoter region.
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Moreover, LZTFL1 regulates the transition of epithelial cells to
mesenchymal cells (https://www.genecards.org/cgi-bin/carddisp.
pl?gene=LZTFL1), thereby participating in the regulation of the

viral response pathway associated with epithelial-mesenchymal
transition (Downes et al., 2021), an important regulator of the
innate immune response.

TABLE 7 Results of aggregated bioinformatic analyzes of associations between GWAS SNPs and the risk of severe COVID-19 course.

No SNP Phenotype p-value Beta (OR) Sample size

1 rs17713054
SLC6A20-LZTFL1 (G/A)

Very severe respiratory confirmed COVID-19 vs. population 1.15 × 10−80 OR▲1.8111 7,252

2 Hospitalized COVID-19 vs. population 1.09 × 10−51 OR▲1.8134 908,494

3 Hospitalized vs. non-hospitalized COVID-19 2.04 × 10−28 OR▲1.3555 10,216

4 COVID-19 vs. population 4.80 × 10−26 OR▲1.3121 1,299,010

5 Very severe respiratory confirmed vs. non-hospitalized COVID-19 1.43 × 10−5 OR▲2.8766 957

6 COVID-19 vs. no COVID-19 3.12 × 10−5 OR▲1.1324 127,879

7 rs12585036
ATP11A (C/T)

Idiopathic pulmonary fibrosis 2.36 × 10−16 OR▼0.9994 57,913

8 FEV1 to FVC ratio 1.97 × 10−6 Beta▼-0.0141 793,368

9 Very severe respiratory confirmed COVID-19 vs. population 8.12 × 10−6 OR▲1.1025 7,376

10 Forced expired volume in 1 s (FEV1) 8.26 × 10−6 Beta▼-0.0128 793,442

11 Peak expiratory flow 5.68 × 10−4 Beta▼-0.0105 690,530

12 Hospitalized vs. non-hospitalized COVID-19 0.002 OR▲1.0604 10,013

13 Hospitalized COVID-19 vs. population 0.004 OR▲1.0604 908,494

14 Forced vital capacity (FVC) 0.025 Beta▼-0.0063 792,938

15 Airway wall area in COPD 0.029 Beta▼-0.0334 12,031

16 rs17078346
SLC6A20-LZTFL1 (A/C)

Very severe respiratory confirmed COVID-19 vs. population 2.96 × 10−39 OR▲1.5011 5,855

17 Hospitalized COVID-19 vs. population 1.08 × 10−18 OR▲1.4711 898,438

18 Hospitalized vs. non-hospitalized COVID-19 1.01 × 10−16 OR▲1.2208 10,256

19 COVID-19 vs. population 3.57 × 10−9 OR▲1.1637 1,288,650

20 COVID-19 vs. no COVID-19 8.72 × 10−5 OR▲1.1040 127,879

21 Very severe respiratory confirmed vs. non-hospitalized COVID-19 2.42 × 10−4 OR▲2.2105 957

22 rs12610495
DPP9 (A/G)

Very severe respiratory confirmed COVID-19 vs. population 1.64 × 10−15 OR▲1.2015 5,642

23 Idiopathic pulmonary fibrosis 4.11 × 10−15 OR▲1.0003 58,925

24 Hospitalized COVID-19 vs. population 4.84 × 10−8 OR▲1.1914 895,822

25 Hospitalized vs. non-hospitalized COVID-19 1.73 × 10−5 OR▲1.0769 9,939

26 COVID-19 vs. population 1.64 × 10−4 OR▲1.0704 1,274,140

27 COVID-19 vs. no COVID-19 0.0025 OR▲1.0603 101,592

28 rs7949972
ELF5 (C/T)

Very severe respiratory confirmed COVID-19 vs. population 6.47 × 10−7 OR▼0.9079 7,225

29 FEV1 to FVC ratio 3.9 × 10−6 Beta▼-0.0112 808,254

30 Hospitalized vs. non-hospitalized COVID-19 7.01 × 10−5 OR▼0.9392 10,256

31 Hospitalized COVID-19 vs. population 0.0021 OR▼0.9254 905,878

32 Forced vital capacity (FVC) 0.0034 Beta▲0.0071 807,822

33 COVID-19 vs. population 0.022 OR▼0.9642 1,289,590

34 Emphysema in COPD (percentage low attenuation area −950 HU) 0.024 Beta▲0.0375 12,031

35 Emphysema in COPD (15th percentile HU) 0.048 Beta▼-0.0245 12,031

data obtained using the bioinformatic resource Lung Disease Knowledge Portal https://lung.hugeamp.org/

Effect alleles are marked in bold.
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Our bioinformatic analysis revealed that allele A
rs17713054 SLC6A20-LZTFL1 and allele C rs17078346 SLC6A20-
LZTFL1 influence the expression of other genes through cis-eQTL-
effects: these SNPs are associated with a decrease in the expression of
FLT1P1 in blood, potentially resulting in dysregulation of vascular
endothelial growth factor receptor 1 (VEGFR1) expression (Ye et al.,
2015). Numerous studies have demonstrated a correlation between
elevated VEGFR1 levels and COVID-19 severity, as well as the ICU
admission of COVID-19 patients (Krock et al., 2011; Ackermann
et al., 2020; Nagashima et al., 2020; Pine et al., 2020; Miggiolaro et al.,
2023; Pius-Sadowska et al., 2023). In addition, we noted eQTL effects
of rs17713054 and rs17078346 on the expression levels of
chemokine receptors (CCR1, CCR2, CCR3, CCR5, CCR9, and
CXCR6). Previous studies have implicated these chemokine
receptors in virus infections and COVID-19 pathogenesis,
suggesting their role in lung infiltration by monocytes and
macrophages during viral infection, contributing to the
hyperinflammation observed in severe COVID-19 cases
(Coperchini et al., 2020; Khalil et al., 2021; Mahmoodi et al.,
2024). Among other genes with altered expression levels caused
by rs17713054 and rs17078346 is SACM1L, which was previously
identified as a putative causal gene for COVID-19 severity (Wu et al.,
2021). SACM1L mediates lipid transfer between closely opposed ER
and endosomal membranes with several other lipid transfer proteins
(Reinisch and Prinz, 2021). It was found that SACM1L concentrated
at the viral factories in infected cells, contrasting its typical
distribution in uninfected cells, where it is primarily found in the
ER and Golgi apparatus (García-Dorival et al., 2023) (Figure 5).

TFs binding to the risk allele A rs17713054 are associated with
positive regulation by host of viral transcription (GO:0043923),

integrated stress response signaling (GO:0140467), the
transforming growth factor beta receptor signaling pathway (GO:
0007179), and fat cell differentiation (GO:0045444), while also
resulting in a loss of function in response to hypoxia (GO:
0001666). These findings provide insights into the association of
rs17713054 with severe COVID-19 and obesity, a known risk factor
for severe COVID-19 progression. Risk allele C
rs17078346 SLC6A20-LZTFL1 affects DNA binding to TFs jointly
involved in epithelial tube branching involved in lung
morphogenesis (GO:0060441), and the Notch signaling pathway
(GO:0007219) (Figure 5). These findings suggest its potential role in
COVID-19 severity by regulating immune response, and apoptosis.

The correlation between rs17713054 SLC6A20-LZTFL1 and
obesity is supported by previous research indicating that LZTFL1
may regulate leptin signaling, and participate in the LepRb signaling
pathway in the hypothalamus, which controls energy homeostasis
(Wei et al., 2018). Elevated levels of circulating leptin are generally
attributed to the development of leptin resistance (Zieba et al., 2020),
a hallmark of obesity, which is already recognized as a risk factor for
severe COVID-19 (Rebello et al., 2020; Maurya et al., 2021). Notably,
Lztfl1 knockout mice exhibit hyperphagia, leptin resistance, and
obesity (Tomlinson, 2024). Moreover, polyphenolic compounds
found in fruits and vegetables, along with regular exercise, have
been shown to enhance sensitivity to leptin (Aragonès et al., 2016;
Fedewa et al., 2018). Based on these findings, we hypothesize that
individuals carrying the allele A of rs17713054 SLC6A20-LZTFL1,
who consume higher levels of fruit and vegetables and engage in
more physical activity, may experience reduced inflammation by
lowering serum leptin levels, potentially leading to a less severe
course of COVID-19. Additionally, the manifestation of the risk

FIGURE 5
Overview of the results of an integrated bioinformatics investigation of severe COVID-19-associated SNPs.
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effects of rs17713054 SLC6A20-LZTFL1 in patients with low levels of
physical activity may be explained by the significant suppression of
Slc6A20 expression observed in mouse models following exercise
(Walz et al., 2021). Considering that SLC6A20 expression is
positively associated with infiltrating neutrophils and immune-
related signatures (Acar, 2023), the downregulation of this gene
through exercise may further contribute to the mitigation of
COVID-19 severity. The presence of the rs17713054 SLC6A20-
LZTFL1 association in patients with low consumption of fresh
vegetables and fruits—one of the main environmental risk factors
for oxidative stress—may be associated with the effect of reactive
oxygen species on the expression level of the SLC6A20 and LZTFL1
genes. In particular, it was found that hydrogen peroxide, along with
plant extracts, may affect the expression of SLC6A20 mRNA and
LZTFL1 mRNA (Briedé et al., 2010; Tomé-Carneiro et al., 2013).

The association of rs17713054 SLC6A20-LZTFL1 with severe
COVID-19 in non-smoking individuals can be explained; on the one
hand, smoking itself is a known risk factor for severe COVID-19 due
to its upregulation of ACE-2 expression in the lungs, the host
receptor for SARS-CoV-2, making smokers more susceptible to
the disease (Reddy et al., 2021). This increased susceptibility to
COVID-19 in smokers may exceed the effect of rs17713054, leading
to the observed association specifically in non-smokers. On the other
hand, previous research has shown that smoking affects the
expression of genes located near rs17713054, the level of
SLC6A20 mRNA, and the decreased expression of LZTFL1
(Xiong et al., 2021). Another study showed that benzopyrene,
one of the main components of cigarette smoke, increases
methylation of the LZTFL1 gene promoter and exon SLC6A20
(Jiang et al., 2017) and also reduces the expression of SLC6A20
mRNA (Qiu et al., 2011; Kreuzer et al., 2020). Considering that
increased methylation is a significant regulatory mechanism for
decreased gene expression, this finding can be interpreted as further
evidence that smoking influences the decreased expression of
LZTFL1 and SLC6A20.

Furthermore, our study showed that rs12610495 DPP9 (risk
allele G) is associated with a higher risk of severe COVID-19 in
patients with obesity and also affects BMI in patients with severe
COVID-19. Additionally, a significant association was found
between rs12610495 and thrombodynamic parameters, in
particular with prolongation of the time to the start of clot
growth (Tlag). Several studies have already pointed to
rs12610495 DPP9 as a risk polymorphic variant for severe
COVID-19 (Degenhardt et al., 2022; Horowitz et al., 2022;
Thibord et al., 2022; Pairo-Castineira et al., 2023). DPP9 plays a
diverse role in immune regulation: it participates in the activation of
inflammasomes (Okondo et al., 2018), its inhibition induces pro-
caspase-1-dependent monocyte and macrophage pyroptosis
(Okondo et al., 2017). Knockdown of Dpp9 significantly impairs
preadipocytes differentiation (Han et al., 2015), supporting our
findings that rs12610495 DPP9 associates with BMI. This SNP
has a high regulatory potential in lung tissue, being marked by
the enhancer tags H3K4me1 and H3K27ac as well as by the
promoter tag H3K4me3. The risk allele G rs12610495 DPP9
disrupts the regulation of cytokine production (GO:0001817),
potentially leading to dysregulated production of
proinflammatory cytokines. This dysregulation may cause
excessive immune cell infiltration in pulmonary tissues, leading

to tissue damage (Nagashima et al., 2020). In blood,
rs12610495 DPP9 alters the expression through cis-eQTL effects
of TNFAIP8L1, a member of the TNFAIP family, which plays a
modulating role in immune response (Li et al., 2018; Hua et al.,
2021). Additionally, Pahl et al. reported that TNFAIP8L1 levels were
significantly downregulated in monocytes from COVID-19 patients
compared to healthy controls (Pahl et al., 2022) (Figure 5).

We determined that rs7949972 ELF5 (effect allele T) had a
protective effect only in COVID-19 patients with a BMI <30. In this
subgroup, we observed that the protective allele T reduces the clot
size at 30min after coagulation activation (CS) and stationary spatial
clot growth rates (Vst). ELF5, a member of the erythroblast
transformation-specific (Ets) transcription factor family, has been
extensively studied in breast cancer contexts (Chakrabarti et al.,
2012; Kalyuga et al., 2012). However, recent research has highlighted
its role in COVID-19, revealing that key host factors for SARS-CoV-
2 (Ace2 and Tmprss4) are upregulated in Elf5-overexpressing
AT2 cells (Pietzner et al., 2022). ELF5, through cis-eQTL effects,
also regulates the expression of CAT, an antioxidant enzyme, in
whole blood and in the tibial artery. Levels of catalase, along with
other markers of oxidative stress, were found to be elevated in
COVID-19 patients (Martín-Fernández et al., 2021). Oxidative
stress may not only pose a risk for severe COVID-19 but also
contribute to the development of atherosclerosis (Sorokin et al.,
2015; Sorokin et al., 2016)and atherosclerosis-associated
cardiovascular diseases (Vialykh et al., 2012; Bushueva OY. et al.,
2015; Bushueva et al., 2021), exacerbating patient prognosis
(Hessami et al., 2021). Upon analyzing the impact of the risk
allele C rs7949972 ELF5 on TFs binding sites, we hypothesize
that this allele may result in a more severe COVID-19 course.
This could be due to its positive regulation of CD8-positive,
alpha-beta T cell differentiation (GO:0043378), and negative
regulation of CD4-positive, alpha-beta T cell differentiation (GO:
0043371), as well as its involvement in the defense response to
viruses (GO:0051607) (Figure 5). These processes may contribute to
excessive inflammation and worsen the course of COVID-19.
Additionally, data from the Lung Knowledge Portal indicates that
protective allele T rs7949972 correlates with an increase in
parameters such as forced vital capacity (FVC), forced expired
volume in 1 s (FEV1), FEV1 to FVC ratio, and peak expiratory flow.

Finally, allele T rs12585036 ATP11A exhibited a protective effect
against severe COVID-19, but exclusively in men. The ATPase
phospholipid transporting 11A (ATP11A) gene encodes a
membrane ATPase responsible for translocating
phosphatidylserine (PtdSer) (Segawa et al., 2021). Phagocytosis
associated with PtdSer translocation could serve as an early event
linked to viral infections (Takizawa et al., 1993; Banki et al., 1998).
Moreover, PtdSer has been implicated as a potential mechanism or
participant in inflammation and coagulation abnormalities in
COVID-19 patients (Argañaraz et al., 2020; Wang et al., 2022).
We hypothesize that the protective effect of the T allele of
rs12585036 ATP11A regarding the risk of severe COVID-19
specifically in men is due to the fact that female sex hormones,
in particular estradiol, lead to increased expression of ATP11A
(Logan et al., 2010; Vydra et al., 2019). Considering the fact that
the protective T allele is associated with a decrease in ATP11A
expression through cis-eQTL effects, it can be assumed that the
influence of female sex hormones can neutralize this effect by
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increasing the level of ATP11A. Moreover, bioinformatics analysis
revealed that the protective T allele rs12585036 creates DNA binding
sites for TFs involved in overrepresented biological processes related
to male sex hormone metabolism (response to testosterone (GO:
0033574) and androgen receptor signaling pathway (GO:0030521))
and regulation of canonical Wnt signaling pathway (GO:0060070;
FDR = 3.54 × 10−3), which has been shown to inhibit the replication
of SARS-CoV-2 in vitro, and reduce viral load, inflammation and
clinical symptoms in a mouse model of COVID-19 (Xu et al., 2024).
This finding suggests a potential explanation for why SNP
rs12585036 ATP11A protects against COVID-19 in men.

5 Study limitations

Firstly, our study was limited in its scope, as we were unable to
investigate other genes implicated in the progression of severe COVID-
19. Secondly, we lacked data on the vaccination status of the control
group, as well as laboratory parameters, including venous blood for
thrombodynamics testing, which could only be obtained during
hospitalization. This limitation prevented us from conducting a
formal comparative analysis of laboratory parameters, incl.
thrombodynamic parameters between control group patients and
patients with severe COVID-19. Additionally, the effectiveness of
different types of vaccines remains controversial, adding further
complexity to the analysis of data and the role of vaccination in
protecting against severe COVID-19. Thirdly, essential
environmental factors such as vegetable intake and physical activity
levels were not available for the control group, preventing their
inclusion in the MB-MDR analysis of gene-environmental interactions.
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Introduction: Endoplasmic reticulum stress (ERS) is a prominent etiological
factor in the pathogenesis of diabetes. Nevertheless, the mechanisms through
which ERS contributes to the development of diabetes remain elusive.

Methods: Transcriptional expression profiles from the Gene Expression Omnibus
(GEO) datasets were analyzed and compared to obtain the differentially expressed
genes (DEGs) in T2DM. Following the intersectionwith ERS associated genes, the ERS
related T2DM DEGs were identified. Receiver operating characteristic (ROC) and
Least Absolute Shrinkage and SelectionOperator (LASSO) analysiswere performed to
screen out the ERS related biomarker genes and validate their diagnostic values.
Gene expression level was detected by qPCR and Elisa assays in diabetic mice and
patient serum samples.

Results: By analyzing the transcriptional expression profiles of the GEO datasets, 49
T2DM-related DEGs were screened out in diabetic islets. RTN1, CLGN, PCSK1, IAPP,
ILF2, IMPA1, CCDC47, and PTGES3 were identified as ERS-related DEGs in T2DM,
which were revealed to be involved in protein folding, membrane composition, and
metabolism regulation. ROC and LASSO analysis further screened out CLGN, ILF2,
and IMPA1 as biomarker genes with high value and reliability for diagnostic purposes.
These three genes were then demonstrated to be targeted by the transcription
factors and miRNAs, including CEBPA, CEBPB, miR-197-5p, miR-6133, and others.
Among these miRNAs, the expression of miR-197-5p, miR-320c, miR-1296-3P and
miR-6133 was down-regulated, while that of miR-4462, miR-4476-5P and miR-
7851-3P was up-regulated in diabetic samples. Small molecular drugs, including
D002994, D001564, and others, were predicted to target these genes potentially.
qPCR and Elisa analysis both validated the same expression alteration trend of the
ERS-related biomarker genes in diabetic mice and T2DM patients.

Discussion: These findings will offer innovative perspectives for clinical diagnosis
and treatment strategies for T2DM.

KEYWORDS

type 2 diabetes mellitus, biomarker gene, endoplasmic reticulum stress, bioinformatical
analysis, experimental validation, diagnosis

OPEN ACCESS

EDITED BY

Yuriy L. Orlov,
I.M.Sechenov First Moscow State Medical
University, Russia

REVIEWED BY

Rocío Salceda,
National Autonomous University of Mexico,
Mexico
Shuyin Bao,
Inner Mongolia University for Nationalities,
China

*CORRESPONDENCE

Xiaoyu Liu,
lxy2002sk@ntu.edu.cn

Xuchu Duan,
dxd2002sk@ntu.edu.cn

Yuqing Chen,
yuqingchen0312@163.com

RECEIVED 06 June 2024
ACCEPTED 18 October 2024
PUBLISHED 01 November 2024

CITATION

Yao L, Xu J, Zhang X, Tang Z, Chen Y, Liu X and
Duan X (2024) Bioinformatical analysis and
experimental validation of endoplasmic
reticulum stress-related biomarker genes in
type 2 diabetes mellitus.
Front. Genet. 15:1445033.
doi: 10.3389/fgene.2024.1445033

COPYRIGHT

© 2024 Yao, Xu, Zhang, Tang, Chen, Liu and
Duan. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 01 November 2024
DOI 10.3389/fgene.2024.1445033

93

https://www.frontiersin.org/articles/10.3389/fgene.2024.1445033/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1445033/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1445033/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1445033/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1445033/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1445033&domain=pdf&date_stamp=2024-11-01
mailto:lxy2002sk@ntu.edu.cn
mailto:lxy2002sk@ntu.edu.cn
mailto:dxd2002sk@ntu.edu.cn
mailto:dxd2002sk@ntu.edu.cn
mailto:yuqingchen0312@163.com

mailto:yuqingchen0312@163.com

https://doi.org/10.3389/fgene.2024.1445033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1445033


Introduction

Type 2 diabetes mellitus (T2DM) is presently recognized as the
third most severe chronic ailment globally, following cancer and
cardiovascular disease, posing a significant threat to human
wellbeing (Chen et al., 2012). The pathogenesis of T2DM
encompasses intricate mechanisms, including immune
dysfunction (Geerlings and Hoepelman, 1999), oxidative stress
(Darenskaya et al., 2021), mitochondrial dysfunction (Wada and
Nakatsuka, 2016), glucose toxicity (Robertson and Harmon, 2006)
and endoplasmic reticulum stress (ERS) (Lee and Lee, 2022). The
complexities of diabetic complications, such as diabetic neuropathy
and nephropathy, pose challenges in the development of efficacious
medications. However, due to the limited understanding of the
pathogenesis, clinically, there are no reliable biomarkers for early
detection of diabetes, and treatment continues to be challenging.

The endoplasmic reticulum (ER), one of the most extensive
organelles within cells, possesses a vast membrane structure and
serves as the site for initial protein synthesis and folding. The
disruption of internal environmental stability in the endoplasmic
reticulum, caused by the stimulation of factors such as ion storage
and lipid synthesis, can lead to protein misfolding, referred to as ERS
(Cnop et al., 2017). Excessive ERS can impede cellular function,
resulting in aberrant protein synthesis and degradation, cellular
oxidation, apoptosis, inflammatory responses, and the onset of
various diseases (Zhang et al., 2022). ERS plays a pivotal role in
the pathogenesis and progression of numerous disorders, including
diabetes, Alzheimer’s disease, Parkinson’s disease, and other related
conditions (Ghemrawi and Khair, 2020).

Previous studies have been conducted to explore the interplay
between ER stress and diabetes and its complications. A prior study
has elucidated the involvement of the IP3R1-GRP75-
VDAC1 complex in mediating ER stress and mitochondrial
oxidative stress and its significant role in atrial remodeling in
diabetes (Yuan et al., 2022). Additionally, it has been reported
that in diabetic mice, ER stress and autophagy play a regulatory
role in neuronal survival and death, with the ER stress pathway
potentially contributing to diabetes-induced neurotoxicity and
cognitive impairment (Kong et al., 2018). These findings
suggested the vital roles of ERS in the occurrence and
progression of diabetes and its complications.

T2DM is primarily caused by decreased pancreatic β cells and
insulin secretion (Eizirik et al., 2020; Sun et al., 2023). ERS has been
considered a critical contributing factor to unfolded protein
response (UPR) and the dysfunction of β cells, which is essential
factor T2DM pathogenesis (Yong et al., 2021; Sak et al., 2024; Zhang
et al., 2023). To explore the critical ERS-related biomarker genes in
T2DM, we investigated the association between ERS-related genes
and the differentially expressed genes (DEGs) in islets of T2DM
patients through bioinformatical analysis. The GEO dataset
GSE25724 was employed for Gene Set Enrichment Analysis
(GSEA) and for identifying DEGs in T2DM. Following the
intersection with the ERS-related genes, T2DM-associated ERS-
DEGs were obtained. Three critical biomarker genes were further
screened and validated by Receiver Operating Characteristic (ROC)
and Least Absolute Shrinkage and Selection Operator (LASSO)
analysis. Ultimately, the relative expression levels of the critical
biomarker genes were determined using qPCR on constructed

T2DM mice and T2DM patients. The findings will help to
further understand the pathogenesis and provide novel insights
into the clinical diagnosis and treatments of T2DM.

Materials and methods

Data collection

The dataset GSE25724, which contains the transcriptional
expression profiles of normal and diabetic tissue samples, was
obtained from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/) and used for the analysis of
DEGs in T2DM. The expression profile analysis was conducted on
the GPL96 platform, and the sequencing was performed using
Affymetrix Human Genome U133A Array technology. The subjects
included seven healthy human islet tissue samples and six islet tissue
samples from patients with type II diabetes. GSE118139 and GSE20966,
which contain two control islet tissue samples and two diabetic samples,
ten control islet samples, and ten diabetic samples, respectively, were
used for LASSO analysis to validate and select the biomarker genes.
GSE15932, GSE15653, GSE166467, GSE55650, and GSE20966 were
used to validate the expression levels of the biomarker genes.
GSE15932 contains peripheral blood samples of eight patients with
T2DM and eight healthy controls. The GSE15653 dataset consisted of
13 obese (9 with T2DM) and five control subjects from human surgical
liver biopsies. GSE166467 comprised the mRNA expression data for
both proliferating myoblasts and differentiated myotubes from
13 T2DM patients and 13 controls. GSE55650 consisted of the
muscle biopsies from 6 T2DM patients and six controls.

The human genes related to ERS were collected by combining
the genes from the GeneCards database (GeneCards; https://www.
genecards.org/) (970 protein genes) and a list from the literature
(26 protein genes) (Shen et al., 2022). After the intersection,
973 ERS-related protein genes were obtained and used for the
subsequent analysis.

Screening of differentially expressed ERS-
related genes

Based on the expression data provided by the dataset GSE25724,
DEGs between normal and diabetic islet samples were analyzed.
Firstly, batch effects were excluded by principal component
analysis (PCA). The “limma” package of R software was used to
identify the DEGs in diabetes. With the absolute value | log2 FC |>2,
the genes with significant expression differences were selected after
calibration for p < 0.05. The heatmap and volcano plots of the DEGs
were generated using the “heatmap” and “ggplot2″ packages of R
software. The intersection of the ERS-related genes and the DEGs
from GSE25724 is considered the ERS-related DEGs in diabetes.

Protein-protein interaction
networks analysis

The Protein-Protein Interaction (PPI) network analysis was
conducted using the Search Tool (STRING) database. A
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composite score of >0.4 was considered statistically significant. The
analysis results were visualized using Cytoscape software (version
3.8.1). The Spearman correlation of candidate genes was analyzed
using R software’s “coreplot” package.

Functional enrichment analysis

GO and KEGG pathway enrichment analysis was conducted
using the “GO plot” package of R software to predict the potential
molecular functions of the biomarker genes. The GO settings
include molecular function (MF), biological process (BP), and
cellular composition (CC). GSEA analysis was conducted using
the Xiantao Academic Analysis Platform (https://www.xiantaozi.
com) to find the pathways to enrich the DEGs.

Validation of the ERS-related DEGs

Receiver operating characteristic (ROC) curves were performed
using the “pROC” package to evaluate the reliability of the ERS-
related DEGs. Subsequently, the genes selected by ROC were further
screened by Least Absolute Shrinkage and Selection Operator
(LASSO) Cox analysis using the datasets GSE25724, GSE118139,
and GSE20966 to give out the critical biomarker genes. The
biomarker genes for predicting were then analyzed in the
validation sets, including GSE118139, GSE15932, GSE15653,
GSE166467, GSE20966, and GSE55650.

Prediction of transcription factors
and microRNAs

The transcription factors regulating the biomarker genes were
predicted by the “hTFtarget” database (http://bioinfo.life.hust.edu.
cn/hTFtarget#!/). The gene transcription factor network diagram
was generated by “Cytoscape.” MiRNAs targeting the biomarker
genes were predicted in miRWalk (http://mirwalk.umm.uni-
heidelberg.de/) and miRTarBase (https://mirtarbase.cuhk.edu.cn/
~miRTarBase/miRTarBase_2022/php/index.php), by setting the
conditions for “number_of_pairings>15, binding_region_
length>20 and longest_consecutive_pairings>10”.

Drug analysis of the biomarker genes

Potential drugs with CAS numbers interacting with the
biomarker genes were predicted by the CTD online tool (https://
ctdbase.org/). The drugs were screened using the website’s scores.
The top 20 drugs for each biomarker gene were collected.

Construction of diabetic mouse model

Forty 6-week-old wild-type B6 male mice (weighing about
18–20 g) were randomly divided into the control group and the
model group. The model group was fed a high-fat diet (45% fat
content) for 6 weeks and treated by intraperitoneal injection of
30 mg/kg streptozotocin once. The type 2 diabetic mice were
constructed when the Fasting blood glucose was higher than
7.8 mmol/L, and the random blood glucose was higher than
16.7 mmol/L. All animal protocols were approved by the
Committee of Nantong University (SYXK (SU) 2017-0046) and
the Administration Committee of Experimental Animals, Jiangsu
Province, China.

Human samples collection

For qPCR detection of the biomarker genes, eight blood samples
were collected from the Department of Endocrinology, Affiliated
Hospital of Nantong University, containing 4 T2DM samples and
four non-related control samples. For qPCR detection of the
miRNAs and Elisa detection of the biomarker genes, another
12 blood samples (6 T2DM and six non-related control samples)

TABLE 1 The qPCR primers of the ERS-related biomarker genes.

Genes Forward (5′-3′) Reverse (5′-3′)

CLGN-mouse AGTGGTAATGTCTGAGCAA AGGAGTTTGTAGTGATGTTTG

CLGN-human TATATGACCCACATTTACCTAGT AACCCATTATCCTTGTATTCAAA

IMPA1-mouse AGAATTGGAATCGGACAGA CAAGTTTAGATCAGTGGATAGC

IMPA1-human TTGCCTGTAATCTTTCCAAC TCTAAGAAGTCCTGTTACTCAA

ILF2-mouse TGGCTTCTATAACCTCAGTAG GCTTTCACCCCACATTTAG

ILF2-human GTAGGGCTCTTGGTCTTT AGGTTCCAGGAGTTTGTC

TABLE 2 The specific qPCR primers of the miRNAs predicted to target the
ERS-related biomarker genes.

Genes Forward (5′-3′)

miR-197–5p CGCGGGTAGAGAGGGCAGT

miR-6133 CGCGTGAGGGAGGAGGT

miR-7851–3p CGGAGTGGGGCTTCGACC

miR-1296–3p CGGAGTGGGGCTTCGACC

miR-320c CGCGAAAAGCTGGGTTGA

miR-4776–5p CGGTGGACCAGGATGGCA

miR-4462 GTGACACGGAGGGTGGCT

MiR-16–5p (reference) CGCGTAGCAGCACGTAAATA
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were collected from the same hospital department. The case
information of all the samples is listed in (Supplementary Table.
1, 2). After overnight fasting, 5 mL venous blood samples were
collected and centrifuged at 3,000 g for 10 min, followed by serum
separation and storage at −80°C. The study and experiments were
approved by the Administration Committee of Nantong University
Affiliated Hospital (2018-K016), Jiangsu Province, China. All
volunteers involved in this study provided written consent for
publication.

RNA extraction and qPCR analysis

For detecting the expression of the critical ERS-related DEGs,
the total RNA of diabetic and normal islet tissues of mice and human
serum plasma samples was isolated with Trizol (Invitrogen) and
stored at −80°C. The cDNA was synthesized using the Transcriptor
First Strand cDNA Synthesis Kit (Roche) according to the
manufacturer’s instructions and stored at −20°C. The qPCR
reaction was performed in triplicates using the FastStart
Universal SYBR Green Master Mix (Roche Applied Science) on a
real-time PCR detection system (StepOneTM Real-Time PCR
Systems). The primers of the critical ERS-related DEGs and
reference gene (18S) for qPCR were designed by Beacon Designer
eight and the sequences are listed below (Table 1):

For miRNA expression analysis, all small RNAs were extracted
from serum plasma by using mirVana™ miRNA isolation kit
(ThermoFisher). The reverse transcription and qPCR reaction
were performed using miRNA first Strand cDNA Synthesis Kit
(by stem-loop) and miRNA Universal SYBR qPCR Master Mix

(Vazyme), respectively. While the reverse universal primer is
provided by the Universal SYBR qPCR Master Mix, the specific
forward primers for miRNAs’ qPCR detection were designed
according to the manufacturer’s instruction and listed below
(Table 2):

Statistical analysis

R software (version 3.6.2) was utilized for statistical analysis.
Student’s t-test was used to evaluate the significance of variance. A
p-value of <0.05 was considered statistically significant. The
overview of the workflow is shown in Figure 1.

Results

Identification of ERS-related DEGs
in diabetes

From the dataset, GSE25724 yielded 12,548 genes found to be
diabetes-related protein genes. In order to investigate the pathways
associated with diabetes, Gene Set Enrichment Analysis (GSEA) was
conducted on these 12,548 genes. The findings revealed a significant
enrichment of the “Unfolded Protein Response” (UPR) pathway,
which demonstrated a close correlation with T2DM, thereby
suggesting the crucial involvement of ERS in the development of
T2DM (Figure 2). Principal Component Analysis (PCA) was
employed to validate the reproducibility and reliability of the
data obtained from GSE25724 (Figure 3A). Subsequently, the

FIGURE 1
Flow chart of methodologies applied in the study.
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gene expression profiles of normal and diabetic islet tissues in
GSE25724 were analyzed for selecting the DEGs related to ERS,
with the screening criteria of |logFC| >2 and p < 0.05. As a result,
49 protein genes were identified as T2DM-associated DEGs, which
were visualized in a volcano plot (Figure 3B). After intersection with
the 973 ERS related genes, 8 ERS-related DEGs (RTN1, CLGN,
PCSK1, IAPP, ILF2, IMPA1, CCDC47, and PTGES3) were screened
out as T2DM related ERS-DEGs, which were indicated to be
downregulated in diabetic samples (Figures 3C–E).

Functional enrichment and PPI
network analysis

In order to gain further insight into the functions and pathways
associated with the eight genes selected above, GO and KEGG
enrichment analyses were conducted. The findings revealed that
these genes are primarily involved in protein folding, the ubiquitin-
dependent ERAD pathway, and cellular carbohydrate biosynthetic
metabolism. The protein products of the genes are primarily
localized on the rough endoplasmic reticulum, the intrinsic
component of the endoplasmic reticulum membrane, and the
integral component of the endoplasmic reticulum membrane.
These proteins are involved in protein folding chaperones,

unfolded protein binding, and RNA-directed DNA polymerase
activity (Figures 4A, B).

PPI network analysis was conducted using the online tools
“GeneMANIA” and “Cytoscape” software to investigate the
interaction between the eight candidate genes and other protein
genes. The results revealed strong associations between the genes.
For example, CAPRIN and PCSK1 were co-expressed, and RELA
was co-expressed with CCDC47 and PTGES3 (Figure 4C).

Screening and validation of the biomarker
genes for T2DM

To evaluate the predictive and diagnostic value of the ERS-
related genes in T2DM, the Receiver Operating Characteristic
(ROC) curves were employed to assess the diagnostic efficacy of
the eight genes selected above. The findings revealed that six genes
(CCDC47, CLGN, ILF 2, IMPA 1, PTGES3, RTN 1) exhibited an
area under the curves (AUC) exceeding 0.9, indicating a substantial
diagnostic value (Figure 5A).

To further observe and evaluate the correlation of these six
genes with T2DM, LASSO regression analysis was executed based
on the gene expression databases GSE25724, GSE118139, and
GSE20966, wherein CLGN, ILF2 and IMPA1 were identified as

FIGURE 2
GSEA enrichment analysis for T2DM-related pathways.
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FIGURE 3
Identification of the ERS-related DEGs in T2DM. (A), PCA analysis of the gene expression data from GSE25724. (B), the volcano plot showing the
DEGs in T2DM. (C), the Venn diagram showing the intersection between the DEGs in T2DM and the ERS-related genes. (D, E), the heatmap and box plots
showing the eight relative expression levels of ERS-related DEGs in T2DM.
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FIGURE 4
GO, KEGG, and PPI analysis of the ERS-related DEGs in T2DM. (A), the chord diagram of GO analysis on the ERS-related DEGs. GO: 0006457 =
protein folding, GO: 0034637 = cellular carbohydrate biosynthetic process, GO: 0030433 = ubiquitin-dependent ERAD pathway, GO: 0005791 = rough
endoplasmic reticulum, GO: 0030176 = integral component of endoplasmic reticulummembrane, GO: 0031227 = intrinsic component of endoplasmic
reticulummembrane, GO: 0034774 = secretory granule lumen, GO: 0044183 = protein folding chaperone, GO: 0051082: unfolded protein binding,
hsa00562 = inositol phosphate metabolism, hsa00590 = arachidonic acid metabolism, hsa04950 = maturity onset diabetes of the young, p. adjust
value < 0.05. (B), GO enrichment map with ERS-related DEGs, p. adjust value < 0.05. (C), PPI network analysis of the ERS-related DEGs.
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critical biomarker genes for T2DM and therefore used for
subsequent analysis (Figures 5B, C). In addition, the
expression levels of these three genes were examined in other

validation datasets. As a result, IMPA1 was found to be
significantly downregulated in the diabetes group in databases
GSE15932, GSE15653, and GSE166467. CLGN and ILF2 were

FIGURE 5
Identification and validation of the biomarker genes for diagnosis. (A), ROC analysis shows the six critical genes with AUC values higher than 0.9. (B,
C), LASSO analysis screened out the three biomarker genes.
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significantly downregulated in the diabetic group in
GSE20966 and GSE55650, respectively (Figure 6).

Transcription factor analysis

To further elucidate the upstream regulators of the biomarker
genes, a transcription factor network analysis was performed to
investigate the transcription factors regulating the biomarker genes
with significant diagnostic potential. The findings revealed that
multiple transcription factors potentially regulate most of these
genes. For instance, CLGN was predicted to be targeted by
FOXA1, FOXA2, CEBPA, CEBPB, and others. E2F1, CDK9,
MAZ, KLF1, and others can target IMPA1. ILF2 might be
targeted by MAX, KLF5, KLF4, JUND, and so on (Figure 7). The
same transcription factors, such as HDAC1, HDAC2, CEBPA, and
CEBPB could also regulate different biomarker genes.

miRNA analysis

To understand the potential roles of miRNAs involved in
regulating these three biomarker genes, miRWalk and
miRTarBase were utilized for microRNA prediction. Numerous
miRNAs were predicted to be potential upstream regulators of

the biomarker genes. Among them, hsa-miR-197–5p, hsa-miR-
6133, hsa-miR-7851–3p, hsa-miR-1296–3p, hsa-miR-320c, hsa-
miR-4776–5p and hsa-miR-4462 were predicted to
simultaneously target two of the biomarker genes (Figure 8A).
We then performed qPCR analysis to detect the relative
expression levels of these miRNAs in serum samples, which were
revealed to be all significantly changed in diabetic patients. Among
them, the expression of miR-197–5p, miR-320c, miR-1296–3P and
miR-6133 was downregulated, while that of miR-4462, miR-
4476–5P and miR-7851–3P was upregulated in diabetic
samples (Figure 8B).

Drug identification and selection

To identify personalized medicines for diabetes, the CTD
website was utilized to predict small molecular drugs. Based on
the website’s scores, the top 20 drugs for each gene were selected and
presented herein. Interestingly, D019813 (1, 2-Dimethylhydrazine)
was predicted to target all three biomarker genes. At the same time,
several other drugs, such as D002994 (Clofibrate), D001564
(Benzo(a)pyrene), C016403 (2, 4-dinitrotoluene), D016604
(Aflatoxin B1), D000082 (acetaminophen), D003471(Cuprizone),
C006780 (bisphenol A), D016572 (Cyclosporine), D019327 (Copper
Sulfate) and D003300 (Copper), exhibited the potential to target two

FIGURE 6
Validation of the biomarker genes in other datasets. “*” represents p < 0.05, “**” represents p < 0.01.
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biomarker genes simultaneously. The result suggests that these
drugs may serve as effective multi-target medications for
T2DM (Figure 9).

Experimental validation of the expression of
the ERS-related biomarker genes

In order to provide additional evidence for the differential
expression of the ERS-related biomarker genes in diabetes, we
conducted qPCR analysis on the islet tissues of healthy and
diabetic mice. The results demonstrated a significant decrease in
the transcriptional expression of all three genes in the diabetic
samples compared to the control samples (Figure 10A). In

addition, to determine whether these biomarker genes can be
used for clinical detection, we also performed the qPCR and Elisa
analysis on human serum samples of T2DM patients and non-
related individuals. The results revealed the same changing trend of
gene expression in diabetes, although the alteration of the serum
protein level of ILF2 was not significant (Figures 10A, B). The
experimental findings aligned with the results obtained from the
bioinformatical analysis.

Discussion

T2DM is a metabolic syndrome characterized by insulin
resistance, relative insulin deficiency, and impaired glucose

FIGURE 7
Transcription factors analysis of the biomarker genes. The TFs were used as nodes in an interconnected regulatory network. Red ellipses represent
the biomarker genes, and blue rectangles represent the TFs.
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tolerance (Artasensi et al., 2020). The occurrence of ERS is
implicated in regulating diverse physiological processes
(Jayasooriya et al., 2018), such as inflammation (Zhang et al.,

2020), tumor development (Cubillos-Ruiz et al., 2017), anti-viral
response (Ong et al., 2018), and lipid metabolism (Zhao et al., 2020).
ERS induced by elevated levels of glucose, fat, and cytokine

FIGURE 8
miRNA analysis of the biomarker genes. (A), the miRNAs are predicted to target the biomarker genes. MiRNAs are represented by green hexagons.
(B), qPCR detection of the expression levels of the miRNAs simultaneously targeting two of the biomarker genes.
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stimulation has been observed to contribute to insulin resistance and
the deterioration of islet β-cell function in T2DM (Vallée et al., 2020;
Yilmaz, 2017; Deng et al., 2022; Chen et al., 2018). Although
numerous studies have demonstrated the association between
ERS and T2DM, few studies have been done to explore the
utility of the ERS-related biomarker genes for T2DM diagnosis.

In this study, T2DM-associated genes and ERS-associated genes
were extracted from the GEO and GeneCards databases,
respectively. GSEA analysis of the T2DM-associated genes
revealed the enrichment of the diabetic proteins in the pathway
of UPR. UPR is crucial in coordinating protein synthesis, folding,
and degradation to maintain protein stability, which is vital for cell
survival and activity. Prior research has indicated that sustained
activation of the UPR plays a role in mitigating ERS-induced
disruptions in glucose regulation, chronic inflammation, and the
advancement of T2DM (Herrema et al., 2022; Keestra-Gounder
et al., 2016; Ma et al., 2014). After the intersection of the two groups
of genes, we identified eight ERS-DEGs associated with T2DM,
which were all downregulated in the patient samples. These proteins
are functionally involved in various biological processes, including
cell carbohydrate synthesis, protein folding, inositol phosphatase
metabolism, etc. Dysfunctions in the metabolic response to inositol
phosphatase have been linked to insulin resistance and the
development of long-term microvascular complications in
individuals with diabetes (Croze and Soulage, 2013). The

concurrent administration of phosphoinositol and inositol has
been shown to safeguard hepatocyte integrity and enhance its
antioxidant capacity in individuals with T2DM (Foster et al., 2017).

Utilizing ROC and LASSO analysis on the eight ERS-DEGs, three
critical genes were subsequently screened out as valuable predictors of
the disease, including CLGN, ILF2, and IMPA1. CLGN, known as ER
chaperone calmegin, is a highly expressed ER-associated gene in
aldosterone-producing adenomas, but its role in diabetes remains
unclear (Itcho et al., 2020). ILF2, known as nuclear factor 45 (NF45), is
crucial in regulating RNA stability and inflammatory response (Yin
et al., 2022). The formation of a complex between ILF2 and S6K
protein influences insulin levels and consequently contributes to the
progression of metabolic diseases (Das et al., 2018; Pavan et al., 2016).
IMPA1 is an enzyme responsible for inositol synthesis; deficiency in
IMPA1 leads to a decline in inositol and mitochondrial fission,
ultimately leading to the development of diabetes and
mitochondrial diseases (Hsu et al., 2021). Recently, a case-control
study demonstrated that in gestational diabetes, higher maternal
glycemia is associated with decreased protein and mRNA
expression levels of IMPA1 (Pillai et al., 2021). In addition, these
three genes were further validated in other separated datasets
comprising the data from different organs or tissues, including
liver, muscle, and peripheral blood of T2DM patients, exhibiting a
consistent alteration in expression, thereby suggesting their potential
diagnostic value for clinical use.

FIGURE 9
Drug analysis of the biomarker genes. Red ellipses represent the biomarker genes, and yellow diamonds represent the drug IDs.
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Our transcription factor analysis identified several crucial
transcription factors closely associated with diabetes. Among
them, CEBPA and CEBPB are adipogenic transcription factors
that not only impact adipogenesis but also influence the
occurrence of diabetes (Oh et al., 2013; Wicks et al., 2015).
HDAC1 and HDAC2, known as histone deacetylases, are
widely recognized for their essential role in regulating DNA
structure and gene activity, and they also contribute to the
development of diabetic complications (Hou et al., 2018;
Zheng et al., 2022; Draney et al., 2018; Li et al., 2022).
Additionally, FOXA1 has been demonstrated to play
significant roles in maintaining glucose homeostasis and
promoting α-cell differentiation (Heddad Masson et al., 2014).
In the context of miRNA analysis, it is noteworthy that a few
miRNAs exhibit potential targeting capabilities towards two
biomarker genes. Our experimental analysis further revealed
significant expression alteration of these miRNAs in patient
serum samples, suggesting their potential value in diagnosis
for T2DM. Among these miRNAs, miR-6133 and miR-320c
have been reported to be downregulated in urinary exosomes

of T2DM patients in the previous study (Delić et al., 2016),
consistent with our results.

Recently, several drugs or biomolecules have been shown to
have potential in treating diabetes and its complications via
modulating ERS, such as Ghrelin, Rosuvastatin, Selenium
Nanodots (SENDs) and Astragalus polysaccharide (Li et al.,
2024; Zhao et al., 2023; Huang et al., 2023; Chen et al., 2023).
Our study also predicted the drugs having the potential to target the
three biomarker genes. Among the top 20 drugs targeting over two
genes, cyclosporine has been used for treating T2DM and related
complications for a long time (Mahon et al., 1993; Wang et al.,
2020). Copper and copper sulfate have been shown to potentially
ameliorate diabetes and its complications in animal models
(Sitasawad et al., 2001; Sakurai, 2012). However, bisphenol A is
a risk factor associated with the occurrence and development of
T2DM (Provvisiero et al., 2016). In addition, 1,2-
Dimethylhydrazine, Benzo(a)pyrene, and Aflatoxin B1 have been
reported to be inducers for cancers including diabetic colon cancer,
lung cancer, and hepatocellular carcinoma, suggesting their
potentially detrimental effects in application (Terai et al., 2006;

FIGURE 10
Expression analysis of the biomarker genes in mice and patient serum samples. (A), qPCR analysis of the relative expression levels of the biomarker
genes in diabetic mice and patient serum samples. (B), Elisa analysis of the serum protein levels of the biomarker genes in diabetic and non-related
patient samples.
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Kasala et al., 2015; Cao et al., 2022). The results of the drug analysis
indicate that the targeted drugs, which were screened based on the
critical diabetic ERS-related DEGs, exhibit significant therapeutic
relevance for diabetes treatment. However, it is important to note
that certain drugs also present substantial risks, particularly in
terms of side effects that may induce carcinogenesis. Therefore,
comprehensive evaluation and rigorous testing are imperative
during the drug development process.

To further confirm the expression of the biomarker genes, we
conducted qPCR experiments using constructed diabetic mice and
human serum samples. The results demonstrated a significant
decrease in their expression in both diabetic islets and human
serum, aligning with the computational analysis. Moreover, the
results suggested that these biomarker genes have immense
potential in fundamental research and clinical application in
T2DM pathogenesis and diagnosis. Comparing with the recent
studies which also conducted the bioinformatical analysis of ERS-
related biomarkers in T2DM and diabetes nephropathy (Su et al.,
2023; Liang et al., 2023), our research has provided more evidence
with animal models and clinical samples for the biomarker genes.

There are some limitations of this study. For example, the
limited sample size of the T2DM database and the lack of
clinical validation. In addition, the mechanism of the critical
biomarker genes in regulating T2DM remains unclear. We will
continue to delve deeper into the subsequent research about
our findings.

Conclusion

Using bioinformatical methods, the identification and screening
of ERS-related genes in diabetes were conducted. Subsequently,
three critical biomarker genes were identified and validated
through bioinformatical analysis and experimental detection,
establishing their utility as biomarkers for T2DM diagnosis.
These findings contribute to a deeper comprehension of the
interplay between ERS and the onset and progression of diabetes
while also offering potential targets for future diagnostic and
therapeutic interventions.
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Introduction: Colorectal cancer (CRC) is a prevalent malignancy worldwide,
often treated with chemotherapy despite its limitations, including adverse
effects and resistance. The traditional Chinese medicine (TCM) Jianpi formula
has been demonstrated to improve efficacy of chemotherapy, however the
underlying mechanisms still need to be explored. In this study, we aim to
screen bioactive peptides derived from the blood of CRC patients through
peptidomics and explore the molecular mechanisms of the candidate
peptides in the inhibition of CRC using multi-omics analysis.

Methods: In this study, we recruited 10 patients with CRC who had received
either adjuvant chemotherapy or adjuvant chemotherapy combined with the
traditional Chinese medicine Jianpi formula after surgery. We collected plasma
samples at 2 cycles of adjuvant therapy and performed peptidomic analysis on
these samples. The differentially bioactive peptides were screened using a model
of HCT116 cells in vitro. To investigate the molecular mechanism underlying YG-
22’s inhibition of the colorectal cancer cell line HCT116, we performed a multi-
omics analysis, including transcriptome, metabolome, chromatin accessibility,
H3K4Me3 histone methylation, and NF-κB binding site analyses.

Results: Differential peptides were identified in plasma samples from patients
treated with adjuvant chemotherapy combined with the Jianpi formula. Among
these peptides, YG-22 exhibited the strongest cytotoxic effect on HCT116 cells,
reducing cell viability in a dose- and time-dependent manner. Transcriptome
analysis highlighted that YG-22 treatment in CRC modulates key pathways
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associated with lysosome-mediated degradation and apoptosis. Metabolomic
profiling further indicated disruptions in tumor-supportive metabolic pathways.
Chromatin accessibility and histone modification analyses suggested that YG-22
induces epigenetic reprogramming. Additionally, treatment with YG-22 resulted in
significant changes in NF-κB binding and pathway activation.

Conclusions: This study demonstrates that combining chemotherapy with TCM
Jianpi formula enriches the molecular landscape and generates bioactive peptides
with strong antitumor activity. Furthermore, this study also lays the foundation for
further development of peptide-based therapies and highlights the value of
combining traditional and modern therapeutic strategies for CRC management.

KEYWORDS

colorectal cancer, bioactive peptide, YG-22, Jianpi formula, multi-omics

Introduction

Colorectal cancer (CRC) ranks as the third most prevalent
malignancy globally and is a leading cause of cancer-related
deaths (Xi and Xu, 2021; Morgan et al., 2023; Siegel et al., 2023).
Its significant incidence and mortality rates pose a major burden on
healthcare systems worldwide (Xi and Xu, 2021; Alsakarneh et al.,
2024; Klimeck et al., 2023). While advancements in surgery,
chemotherapy, and radiotherapy have markedly improved patient
outcomes, these conventional therapies are often accompanied by
severe limitations (Morris et al., 2023; Feria and Times, 2024). High
recurrence rates, drug resistance, and debilitating side effects—such
as myelosuppression and gastrointestinal toxicity—frequently
compromise their effectiveness (Adebayo et al., 2023; Al Bitar
et al., 2023). Compounding these challenges is the alarming rise
in CRC cases among younger populations, further underscoring the
urgent need for novel therapeutic approaches that are both
efficacious and less toxic (Constantinou and Constantinou, 2024).

Chemotherapy, a cornerstone of CRC treatment, continues to
play a critical role in disease management (Morris et al., 2023).
However, its efficacy remains limited, and its adverse effects
significantly impact patients’ quality of life. In recent years,
complementary and alternative medicine, particularly traditional
Chinese medicine (TCM), has garnered attention as an adjunctive
strategy in CRC therapy (Jiang et al., 2023; Wu et al., 2024; Lin et al.,
2023; Chen et al., 2018; Chen et al., 2019; McCulloch et al., 2016).
The Jianpi formula, a TCM approach rooted in holistic principles,
has shown potential in addressing some of the limitations associated
with chemotherapy (Zhou et al., 2019). Evidence suggests that the
Jianpi formula exhibits antitumor properties, including the
inhibition of tumor proliferation, induction of apoptosis, and
modulation of the tumor microenvironment (He et al., 2025;
Peng et al., 2018). Furthermore, it has been reported to mitigate
chemotherapy-induced complications, such as neutropenia, while
enhancing patients’ immune responses and overall quality of life
(Zhou et al., 2019).

Despite these promising outcomes, the precise molecular
mechanisms underlying the synergistic effects of chemotherapy
and the Jianpi formula remain largely unexplored. This gap in
knowledge has hindered the broader clinical adoption of this
integrative therapeutic approach. Recent advancements in high-
throughput technologies, such as peptidomics (Wang et al., 2012)
andmulti-omics analyses (Zhao et al., 2024), provide an opportunity

to investigate these mechanisms in greater depth. Bioactive peptides,
which are short amino acid sequences with regulatory functions,
have been identified as critical players in various biological
processes, including cancer progression and treatment response
(Quintal-Bojórquez and Segura-Campos, 2021; Cui et al., 2019;
Zhang et al., 2023). By screening bioactive peptides derived from
the blood of CRC patients, researchers can uncover key molecular
pathways influenced by these peptides. However, limited research
has explored whether combining the Jianpi formula with
chemotherapy alters the peptide profile in the peripheral blood of
CRC patients and whether these peptides contribute to enhancing
chemotherapy efficacy.

In this study, we aim to identify and characterize bioactive
peptides in CRC patients’ blood using peptidomics, and to explore
their biological functions in inhibiting CRC. By integrating multi-
omics approaches, including transcriptomics, proteomics, and
metabolomics, we seek to elucidate the molecular mechanisms
through which candidate peptides exert their effects.

Materials and methods

Patient enrollment, grouping, treatment,
and blood sample collection

This study enrolled 10 colorectal cancer (CRC) patients, divided
into two treatment groups: chemotherapy alone (n = 5) and
chemotherapy combined with Jianpi formula (n = 5).
Chemotherapy was performed as standard postoperative adjuvant
therapy. The composition of Jianpi formula including Huangqi
(Astragalus membranaceus, 30 g), Dangshen (Codonopsis
pilosula,12 g), Chao-baizhu (Atractylodes macrocephala, 12 g),
Fuling (Poria cocos, 12 g), Zhi-gancao (Glycyrrhiza uralensis
Fisch, 6 g), Banxia (Pinellia ternate, 6 g), Tianlong (Gekko
japonicus, 6 g), Hongteng (Caulis sargentodoxae, 30 g), Tengligen
(Actinidia arguta, 30 g), Sheng-muli (Ostreae Concha, 30 g). The
formula was decocted into a solution and taken orally twice a day.
The extract from the Jianpi formula has been shown to induce
apoptosis in HCT116 cells, prevent HCT116 cell invasion, and
inhibit HCT116 cell viability in vitro (data not shown). Patients’
clinical characteristics, including gender, age (54–79 years), and
histopathological subtypes such as ulcerative adenocarcinoma,
moderate-differentiated adenocarcinoma, poor-differentiated
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adenocarcinoma, and tubular adenocarcinoma, are listed in Table 1.
Blood samples were collected after two cycles of therapy and were
processed to isolate plasma, then stored at −80°C for
peptidome analysis.

Polypeptide extraction

Polypeptides were extracted following a rigorous multi-step
protocol. The protein samples extracted from plasma were lysed
using a buffer containing 8 M urea and a 1× protein inhibitor
cocktail (Roche Ltd., Basel, Switzerland). Mechanical disruption was
performed through three intervals of 400 s each, followed by
incubation on ice for 30 min. High-speed centrifugation at
15,000 rpm for 15 min at 4°C was used to collect the
supernatant. Filtration with 3 kDa ultrafiltration spin columns
(Millipore, Billerica) removed high-molecular-weight proteins,
retaining peptides in the 0–3 kDa range. For peptides in the
3–10 kDa range, enzymatic hydrolysis was conducted by drying
the samples, redissolving them in 100 μL of 100 mM TEAB, and
incubating overnight with trypsin (Promega, Madison, WI) at 37°C.
Peptides were desalted using C18 Zip Tips (MonoSpin C18, GL),
dried under vacuum, and stored at −80°C for mass
spectrometry analysis.

Nano-HPLC-MS/MS analysis and
bioinformatic analysis

Re-dissolved peptides were analyzed using a Thermo Scientific™
Orbitrap Fusion Lumos mass spectrometer coupled to an EASY-
nanoLC 1,200 system. A 3 μL sample was loaded onto a 25 cm
analytical column (75 μm inner diameter, 1.9 μm resin, Dr. Maisch)
and separated using a 130-min gradient. Buffer B (80% acetonitrile
with 0.1% formic acid) was increased from 4% to 50% over 120 min,
followed by an increase to 95% for the final 9 min. The column flow
rate was maintained at 250 nL/min, and the temperature was set at
55°C. The mass spectrometer operated in data-dependent
acquisition (DDA) mode, alternating between MS and MS/MS
scans. Full-scan spectra were acquired at a resolution of

120,000 with an m/z range of 350–1,500, an AGC target of 8 ×
105, and a maximum injection time of 50 ms. Precursor ions were
fragmented using higher-energy collision dissociation (HCD) with
normalized collision energies of 25, 30, and 35. MS/MS spectra were
acquired at a resolution of 30,000 with an AGC target of 1 × 105 and
amaximum injection time of 54ms. A dynamic exclusion window of
30 s was applied to prevent repeated ion selection, ensuring
comprehensive peptide profiling. Numbers of peptides unique
peptides, and proteins were identified. Then, the distribution of
proteins based on the number of peptides was calculated. Lastly,
protein sequence coverage distribution, KEGG pathway enrichment,
pearson correlation, and heatmap of differential peptides
were analyzed.

Candidate peptides screening and cell
viability evaluation

After comparing the differential expressed peptides between two
treatment groups: chemotherapy alone (n = 5) and chemotherapy
combined with Jianpi formula (n = 5). Six candidate peptides were
finally screened out, including YP-16 (YGRKKRRQRRR-GPSVP),
YP-17 (YGRKKRRQRRR-OLTSGP), YG-22 (YGRKKRRQRRR-
DGSPGKDGVRG), YM-22 (YGRKKRRQRRR-LGEAFDGARDM),
YP-23 (YGRKKRRQRRR-MEPLGRQLTSGP), and YD-28
(YGRKKRRQRRR-EDPQGDAAOKTDTSHHD). And then, the
candidate peptides were synthesized based on their amino acid
sequences to evaluate their effects on HCT116 cell viability.
Briefly, a total of 1,500 cells per well were seeded in 96-well
plates and incubated overnight in a culture medium under
appropriate conditions. Following incubation, the cells were
treated with indicated peptides (5 mg/mL) at the desired
concentrations for 24 h. Cell viability was then assessed using the
CCK-8 assay (Dojindo, Japan), following the manufacturer’s
instructions. After adding the CCK-8 reagent and incubating for
the recommended time, absorbance was measured at 450 nm using a
spectrophotometric plate reader (Bio-Tek, United States).
Furthermore, HCT116 cells were treated with varying
concentrations of YG-22 (0, 2, 4, 6, 8, and 10 mg/mL) for either
24 or 48 h to determine the IC50 values. After the incubation with

TABLE 1 Clinical information of the colorectal cancer patients who received chemotherapy or chemotherapy plus Jianpi formula.

Groups Patients Gender Age Types of pathology Time of blood collection

Chemotherapy Patient 1 Female 79 Ulcerative adenocarcinoma 2 cycles of therapy

Patient 2 Male 74 Moderate-differentiated adenocarcinoma 2 cycles of therapy

Patient 3 Female 54 Poor-differentiated adenocarcinoma 2 cycles of therapy

Patient 4 Male 75 Moderate-differentiated adenocarcinoma 2 cycles of therapy

Patient 5 Female 68 Moderate-differentiated adenocarcinoma 2 cycles of therapy

Chemotherapy + Jianpi formula Patient 6 Female 71 Tubular adenocarcinoma 2 cycles of therapy

Patient 7 Male 74 Ulcerative adenocarcinoma 2 cycles of therapy

Patient 8 Female 67 Poor-differentiated adenocarcinoma 2 cycles of therapy

Patient 9 Female 60 Poor-differentiated adenocarcinoma 2 cycles of therapy

Patient 10 Male 71 Poor-differentiated adenocarcinoma 2 cycles of therapy
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FIGURE 1
Peptidome analysis of plasma samples from colorectal cancer patients treated with chemotherapy or chemotherapy combined with the Jianpi
formula. (A) Total number of identified peptides, unique peptides, and proteins. The bar chart summarizes the overall counts of peptides and proteins
detected in the plasma samples. (B) Distribution of proteins based on the number of peptides identified. The histogram shows the frequency of proteins
identified with varying numbers of peptides. (C) Protein sequence coverage distribution across the identified peptides. The pie chart illustrates the
proportion of proteins categorized by sequence coverage percentages. (D) Protein sequence coverage distribution across the identified peptides. The pie
chart illustrates the proportion of proteins categorized by sequence coverage percentages. (E) KEGG pathway analysis of proteins corresponding to the

(Continued )
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YG-22 (IC50 concentration) for 48 h, the HCT116 cells were
collected for subsequent analyses, including RNA sequencing
(RNA-seq) to evaluate gene expression profiles, liquid
chromatography-mass spectrometry (LC-MS) for metabolite
analysis, assay for transposase-accessible chromatin using
sequencing (ATAC-seq) to assess chromatin accessibility, and
chromatin immunoprecipitation sequencing (ChIP-seq) to study
the H3K4Me3 profiling and NF-κB protein-DNA interactions.

Transcriptome analysis

For transcriptome analysis, treated and control HCT116 cells
(1 × 105) are collected, and total RNA is extracted using RNA
isolation kit (Qiagen, Germany) following the manufacturer’s
instructions. Total RNA samples were prepared with an initial
concentration of at least 20 ng/μL and a total quantity of at least
2 μg, ensuring an A260/A280 ratio between 1.9 and 2.1 for quality
control. mRNA was isolated using oligo-dT beads to capture polyA-
tailed transcripts, followed by thermal fragmentation into
200–300 bp fragments. Reverse transcription was performed
using a strand synthesis master mix to generate cDNA. Library
preparation involved end-repair, A-tailing, and ligation of
sequencing adapters, followed by PCR amplification and size
selection for fragments of 300–400 bp, including adapter
sequences. The prepared libraries underwent high-throughput
sequencing on the Illumina NovaSeq 6,000 platform, producing
comprehensive transcriptomic data for downstream bioinformatics
analysis. Differential gene expression analysis is performed using
DESeq2 or edgeR, identifying significantly up- or downregulated
genes based on fold changes and adjusted P-values. Functional
enrichment analysis, including GO and KEGG pathway analysis,
is conducted to interpret biological implications, and results are
visualized with heatmaps, volcano plots, and pathway diagrams.

Metabolomics analysis

For metabolomics analysis, treated and control HCT116 cells
(1 × 105) are collected, washed with cold PBS, and lysed using 80%
methanol to extract metabolites. The lysates are centrifuged at
12,000–15,000 × g at 4°C, and the supernatants are stored
at −80°C. Metabolite profiling is performed using liquid
chromatography-mass spectrometry (LC-MS) with a reverse-
phase LC column and gradient elution, followed by high-
resolution mass spectrometry in positive and/or negative ion
modes. Data preprocessing involves peak detection, alignment,
normalization, and filtering using software such as XCMS or
Compound Discoverer. Metabolites are identified by matching
m/z values, retention times, and fragmentation patterns to

databases like HMDB or METLIN, with MS/MS used for
structural confirmation. Statistical analyses, including PCA, PLS-
DA, and univariate tests, are conducted to identify significantly
altered metabolites, with pathway mapping performed using tools
like MetaboAnalyst or KEGG Mapper. The results are visualized
with heatmaps, volcano plots, and pathway diagrams, providing
insights into metabolic changes induced by treatment.

Chromatin accessibility analysis

For chromatin accessibility analysis using ATAC-seq, the
process begins by lysing live HCT116 cells (5 × 105) to isolate
nuclei using a lysis buffer containing RSB, NP-40, Tween-20, and
digitonin, followed by centrifugation to remove supernatant. The
isolated nuclei are treated with a transposase mix containing
Tn5 transposase at 37°C for 30 min to fragment accessible
chromatin regions and insert sequencing adapters. The DNA is
then purified using MinElute kits (Qiagen, Germany) and subjected
to PCR amplification to optimize library quality, with purified
libraries dissolved in 10 mM Tris buffer. Following library
preparation, high-throughput sequencing is conducted using the
Illumina NovaSeq 6,000 platform. Data processing involves quality
control with FastQC, adapter trimming using Trimmomatic,
genome alignment with Bowtie2, and peak calling with MACS2.
Peaks are annotated using ChIPseeker and enriched motifs
identified using HOMER. Differential analysis of peaks between
samples is performed using DiffBind, and functional enrichment
analysis is carried out to link chromatin accessibility changes to
biological pathways. Results are visualized through heatmaps,
volcano plots, and motif enrichment diagrams, providing insights
into chromatin structure and regulatory dynamics.

ChIP-seq analysis for H3K4Me3 profiling and
NF-κB protein-DNA interactions

ChIP-seq analysis for H3K4Me3 profiling and NF-κB protein-
DNA interactions was conducted using a combination of chromatin
immunoprecipitation and high-throughput sequencing. HCT116 cells
(5 × 106) were fixed with 1% formaldehyde to crosslink proteins and
DNA, followed by quenching with glycine and lysis to isolate
chromatin. The chromatin was sonicated to fragment DNA, and
immunoprecipitation was performed using specific antibodies for
H3K4Me3 and NF-κB, coupled with Protein A + G magnetic beads.
The immunoprecipitated complexes were reverse crosslinked, and
DNA was purified. High-throughput sequencing libraries were
prepared through end repair, A-tailing, adapter ligation, and PCR
amplification, targeting fragment sizes of 100–300 bp. Sequencing
was performed on the Illumina NovaSeq 6,000 platform.

FIGURE 1 (Continued)

identified peptides. The bar chart categorizes proteins into pathways related to metabolism, genetic information processing, environmental
information processing, cellular processes, organismal systems, and human diseases. The numbers on the bars represent the count of proteins associated
with each category. (F) Pearson correlation heatmap comparing plasma sample data from colorectal cancer patients in the chemotherapy group and the
chemotherapy plus Jianpi formula group. The heatmap illustrates the correlation coefficients between samples. (G)Heatmap of differential peptides
comparing plasma sample data from colorectal cancer patients in the chemotherapy group and the chemotherapy plus Jianpi formula group. The
heatmap illustrates the foldchange between samples.
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FIGURE 2
Evaluation of candidate peptide effects on HCT116 cell viability and transcriptome analysis of YG-22 treatment. (A) Amino acid sequences of the
candidate differential peptides. The table lists the sequences for peptides YP-16, YP-17, YG-22, YM-22, YP-23, and YD-28. (B) Assessment of cell viability
after treatment with candidate peptides (5 mg/mL) for 24 h. Data are presented as mean ± SEM (n = 3). **P < 0.01 indicates statistically significant
differences compared to the control. (C) Dose-response curve showing the viability of HCT116 cells treated with YG-22 at various concentrations
(2, 4, 6, 8, and 10mg/mL) for 24 h. IC50 for 24 h = 7.572mg/mL. Data are presented asmean ± SD (n= 3). (D)Dose-response curve showing the viability of
HCT116 cells treated with YG-22 at various concentrations for 48 h. IC50 for 48 h = 1.769mg/mL. Data are presented asmean ± SD (n = 3). (E) Schematic

(Continued )
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Bioinformatics analysis included quality control using FastQC,
adapter trimming with fastp, and alignment of clean reads to the
human reference genome (hg38) using Bowtie2. Peak calling was
conducted with MACS2 to identify binding sites and histone
modifications, followed by annotation using ChIPseeker. Motif
analysis, using MEME and HOMER, identified enriched motifs
within peak regions, particularly for NF-κB binding. Functional
enrichment analysis was carried out with KEGG pathways to link
identified peaks to pathways. Visualization tools, such as heatmaps
and Circos plots, were used to highlight binding site distribution and
signal enrichment across the genome, providing insights into
chromatin modifications and transcription factor interactions
under experimental conditions.

Statistical analysis

There were at least three biological replicates, excluding ATAC-
seq and ChIP-seq analysis, for each group. Cell viability evaluation
data were reported as means ± SEM. Student’s t-test (two-tailed) or
one-way ANOVA with Bonferroni’s multiple comparison test were
used. P-values of <0.05, or 0.01, or 0.001 were deemed significant.

Results

Clinical information of colorectal cancer
patients enrolled in this study

The baseline clinical characteristics of colorectal cancer patients
enrolled in this study are presented in Table 1. Patients were divided
into two groups based on their treatment: chemotherapy alone (n =
5) and chemotherapy combined with Jianpi formula (n = 5). In the
chemotherapy group, patients included a 79-year-old female with
ulcerative adenocarcinoma, a 74-year-old male with moderate-
differentiated adenocarcinoma, a 54-year-old female with poor-
differentiated adenocarcinoma, a 75-year-old male with
moderate-differentiated adenocarcinoma, and a 68-year-old
female with moderate-differentiated adenocarcinoma. Similarly,
in the chemotherapy plus Jianpi formula group, patients included
a 71-year-old female with tubular adenocarcinoma, a 74-year-old
male with ulcerative adenocarcinoma, a 67-year-old female with
poor-differentiated adenocarcinoma, a 60-year-old female with
poor-differentiated adenocarcinoma, and a 71-year-old male with
poor-differentiated adenocarcinoma. Blood samples were collected
from all patients following 2 cycles of therapy, ensuring consistent
timing for peptidome analysis.

Peptidome and lnc-peptidome analysis in
colorectal cancer patients

The peptidome analysis conducted on plasma samples from
colorectal cancer patients who had received conventional
chemotherapy alone and combination chemotherapy highlighted
significant differences in the protein and peptide profiles between
peptidome and long non coding-peptidome (lnc-peptidome). A total
of 2,918 peptides, 2,531 unique peptides and 214 proteins were
identified in peptidome, while the lnc-peptidome exhibited a
remarkable increase, identifying 5,115 peptides, 4,908 unique
peptides and 383 proteins (Figure 1A; Supplementary Figure 1A).
The distribution of these proteins based on their identified peptides
showed that themajority of proteins were linked to a limited number of
peptides; however, a considerable proportion difference between
peptides and lnc-peptides (Figure 1B; Supplementary Figure 1B).
Additionally, sequence coverage analysis revealed that while many
proteins enriched in <20% coverage in peptides, while with a higher
proportion showing greater than 30% coverage in lnc-peptides
(Figure 1C; Supplementary Figure 1C). Notably, peptide length
distribution illustrated a significant difference, with the peptides
presenting a higher frequency of peptide lengths between 7 and
12 amino acids compared to a more uniform distribution in the
lnc-peptides (Figure 1D; Supplementary Figure 1D).

The KEGG pathway analysis for peptides and lnc-peptides
demonstrated similar enrichment patterns, with additional
pathways linked to development and cellular response represented
predominantly in the lnc-peptidome (Figure 1E; Supplementary
Figure 1E). The heatmaps further illustrated varying expression
levels of differentially expressed peptides and lnc-peptides between
the treatment groups, highlighting distinct clustering patterns that
suggest a functional divergence in Jianpi formula treatments (Figures
1F, G; Supplementary Figures 1F, G). These comprehensive analyses
indicate that the incorporation of the Jianpi formula markedly
enriches the molecular landscape in plasma samples, underscoring
its potential role in enhancing therapeutic efficacy in colorectal cancer.

Evaluation of candidate peptide effects on
HCT116 cell viability and transcriptome
analysis of YG-22 treatment

Among these differential peptides induced by Jianpi formula, we
further screened 6 candidate peptides for cytotoxicity evaluation
(Figure 2A). The analysis of candidate peptides revealed significant
effects on HCT116 cell viability. The peptides, including YP-16, YP-
17, YG-22, YM-22, YP-23, and YD-28, were tested at a

FIGURE 2 (Continued)

of multi-omics analysis performed on HCT116 cells treated with YG-22 (1.769 mg/mL) for 48 h. The analysis includes RNA-seq, LC-MS, ATAC-seq,
andChIP-seq targetingH3K4Me3 andNF-κB. (F) Pearson correlation heatmap comparing RNA-seq data from control (C1-C3) and YG-22-treated (T1-T3)
samples. The heatmap illustrates high correlation within groups. (G) Principal Component Analysis (PCA) of RNA-seq data showing clear clustering
between control and treated groups based on gene expression profiles. (H) Heatmap of differentially expressed genes (DEGs) between control and
YG-22-treated groups. Red indicates upregulated genes, while blue indicates downregulated genes. (I)Heatmap of differentially expressed genes (DEGs)
between control and YG-22-treated groups. Red indicates upregulated genes, while blue indicates downregulated genes. (J) KEGG pathway enrichment
analysis of DEGs. Bar plots show significantly enriched pathways, with P-values represented by bar color intensity. (K) Gene Set Enrichment Analysis
(GSEA) highlighting enriched pathways affected by YG-22 treatment. The plot shows pathway enrichment scores and ranks. (L) Heatmap of enriched
differentially expressed genes involved in key pathways. Red and blue indicate higher and lower expression levels, respectively, across samples.
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FIGURE 3
Metabolomics analysis of HCT116 cells treated with YG-22. (A) Total number of upregulated and downregulated metabolites identified in negative
ion (NEG) and positive ion (POS) models. The bar chart shows the counts of significantly altered metabolites between treated (T) and control (C) groups.
(B) Correlation matrix of metabolites detected in control and YG-22-treated samples based on the NEG mode. The heatmap displays correlation
coefficients between samples, with red and green indicating positive and negative correlations, respectively. (C) Radar plot visualizing the
distribution of specificmetabolites detected in theNEGmode. The plot highlights the relative abundance of keymetabolites across samples. (D)Heatmap
of differentially expressed metabolites identified through NEG mode analysis. The heatmap shows hierarchical clustering and fold change in metabolite
expression levels between control (C1-C3) and YG-22-treated (T1-T3) samples. (E) Volcano plot highlighting significant differential metabolites between
control and YG-22-treated samples in NEGmode. Red dots indicate upregulated metabolites, blue dots represent downregulated metabolites, and gray
dots denote non-significant changes. (F) KEGG pathway analysis of differentially expressed metabolites, categorizing them into metabolic pathways and
biological processes. The dot plot represents pathway enrichment, with dot size indicating the number of metabolites involved and color denoting the
P-value significance.
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FIGURE 4
Chromatin accessibility analysis of HCT116 cells treated with YG-22. (A) Gene body coverage analysis across different samples. The heatmaps
represent the chromatin accessibility signals distributed along gene bodies [from transcription start site (TSS) to transcription end site (TES)]. (B)
Distribution of chromatin accessibility peaks across genomic regions in control samples. The pie chart highlights the proportion of peaks associated with
various genomic features, including promoters, introns, and intergenic regions. (C) Distribution of chromatin accessibility peaks across genomic
regions in YG-22-treated samples. The pie chart shows the peak distribution percentages across different genomic regions. (D) KEGG pathway analysis of
promoter-associated chromatin accessibility peaks in control samples. The bar chart shows enriched pathways, with the length of the bars reflecting the

(Continued )
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concentration of 5 mg/mL for 24 h. Results indicated that YP-17,
YG-22, YM-22 and YD-28 notably reduced cell viability, achieving
statistical significance compared to the control (P < 0.01)
(Figure 2B). Considering that YG-22 derived from collagen type I
alpha 1 protein showed the best inhibitory effect on CRC cells, we
then evaluated IC50 at 24 h and 48 h respectively. The dose-response
curves displayed a clear relationship between YG-22 concentration
and cell viability, with the 24-h IC50 determined to be 7.572 mg/mL
(Figure 2C) and a reduced IC50 of 1.769 mg/mL observed at 48 h
(Figure 2D). These findings suggest that YG-22 exerts a dose- and
time-dependent cytotoxic effect on HCT116 cells.

To further understand the molecular mechanisms impacted by
YG-22 treatment, a comprehensive multi-omics analysis was
conducted, including transcriptome, metabolomics, chromatin
accessibility profiling, H3K4me3 profiling and NF-κB binding
profiling (Figure 2E). The transcriptome results generated a
Pearson correlation heatmap, indicating a relative high degree of
correlation between control and YG-22-treated groups (Figure 2F).
Further Principal Component Analysis (PCA) revealed distinct
clustering between the treated and control groups based on gene
expression profiles (Figure 2G). Differentially expressed genes
(DEGs) were identified, with illustrating 236 upregulated and
252 downregulated genes in response to YG-22 treatment
(Figures 2H, I). KEGG pathway enrichment analysis highlighted
significant pathways impacted by YG-22, including lysosome,
adherens junction, and endocytosis pathways (Figure 2J). Gene
Set Enrichment Analysis (GSEA) further supported these
findings, identifying enriched pathways critical for cellular
responses to YG-22 treatment (Figure 2K). A heatmap
summarizing the enriched DEGs indicated distinct expression
patterns across samples, providing insights into the key biological
processes modulated by YG-22 (Figure 2L). These results
underscore the potential therapeutic mechanisms of YG-22 in
colorectal cancer treatment.

Metabolomics analysis of HCT116 cells
treated with YG-22

The metabolomics analysis of HCT116 cells treated with YG-22
highlighted significant alterations in metabolite profiles, showcasing
distinct differences between the control and YG-22-treated groups.
In the negative ion (NEG) mode, a total of 121 metabolites were
upregulated, while 127 were downregulated, indicating notable
metabolic shifts due to YG-22 treatment (Figure 3A). Correlation
analyses demonstrated strong relationships among some
metabolites, with a radar plot emphasizing the relative abundance

of key metabolites across samples (Figure 3B). Heatmap
representations illustrated hierarchical clustering of differentially
expressed metabolites, reinforcing the distinctions between control
and treated (Figure 3D). The volcano plot further elucidated these
differences, with red dots denoting upregulated and blue dots
marking downregulated metabolites, providing a clear visual of
significant changes (Figure 3E). KEGG pathway analysis
categorized these metabolites into various metabolic pathways,
revealing important involvement in processes such as nucleotide
and purine metabolism (Figure 3F).

In addition, the positive ion (POS)mode analysis complemented
the findings from the NEGmode, providing further insights into the
metabolic changes associated with YG-22 treatment. Similar
correlation patterns were observed, reinforcing the relationships
among metabolites in the control and YG-22-treated groups
(Supplementary Figure 2A). The radar plots for selected
metabolites in POS mode illustrated variations in abundance
(Supplementary Figure 2B), while heatmap and volcano plot
analyses confirmed the differential expression of metabolites, with
69 upregulated and 70 downregulated components visually
represented significantly (Supplementary Figures 2C, D). The
KEGG pathway analysis for this mode also highlighted a range of
metabolic pathways impacted by YG-22 treatment, including ABC
transporters and cAMP signaling pathways (Supplementary
Figure 2E). Collectively, these analyses underscore the extensive
metabolic reprogramming induced by YG-22 in HCT116 cells,
highlighting critical biological processes that may contribute to
its therapeutic efficacy in colorectal cancer.

Chromatin accessibility analysis of
HCT116 cells treated with YG-22

To further observe the effect of YG-22 on chromatin status of
HCT116 cells, we performed chromatin accessibility analysis.
Chromatin accessibility analysis of HCT116 cells treated with
YG-22 revealed significant differences in the chromatin landscape
between control and YG-22-treated samples. Gene body coverage
analysis, represented in heatmaps, indicated varied chromatin
accessibility signals enriched around the transcription start site
(TSS) (Figure 4A). The distribution of chromatin accessibility
peaks was assessed through pie charts, highlighting the
proportion of peaks associated with genomic features. In control
samples, the analysis showed peaks primarily located within
promoter, distal intergenic and intron (Figure 4B), while YG-22-
treated samples displayed a slightly altered distribution of peaks
across various regions (Figure 4C). KEGG pathway analysis

FIGURE 4 (Continued)

number of peaks associated with each pathway and the color indicating the P-value significance. (E) KEGGpathway analysis of promoter-associated
chromatin accessibility peaks in YG-22-treated samples. The enriched pathways and their significance are represented as in (D). (F) Heatmap showing
differential chromatin accessibility peaks between control and YG-22-treated samples. Clustering highlights distinct patterns of chromatin accessibility
for upregulated and downregulated peaks. (G) Average read density (RPKM) of upregulated and downregulated peaks in control and YG-22-treated
samples. Line plots show changes in chromatin accessibility signal density for each condition. (H) Volcano plot illustrating significant differential
chromatin accessibility peaks between control and YG-22-treated samples. Red dots indicate upregulated peaks, blue dots represent downregulated
peaks, and gray dots correspond to non-significant peaks. (I) KEGG pathway enrichment analysis for differentially accessible chromatin regions. The
bubble plot represents enriched pathways, where bubble size reflects the number of peaks associated with each pathway and color indicates statistical
significance (P-value).
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FIGURE 5
H3K4me3 profiling analysis of HCT116 cells treated with YG-22. (A)Circular plot visualizing the genome-wide distribution of H3K4me3 peaks across
different samples (C1, C2, T1, T2). The plot highlights peak density within various genomic regions for each condition. (B) Distribution of H3K4me3 peaks
across different chromatin regions in control samples. The pie chart represents the proportion of peaks located in promoters, introns, intergenic regions,
and other genomic features. (C) Distribution of H3K4me3 peaks across different chromatin regions in YG-22-treated samples. The pie chart shows
the genomic localization of peaks after treatment, indicating changes in distribution patterns. (D) KEGG pathway analysis of promoter-associated
H3K4me3 peaks in control samples. The bubble plot highlights enriched pathways, with bubble size representing the number of peaks and color

(Continued )
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demonstrated that numerous pathways were enriched in both
groups, with differences in the number of accessible chromatin
peaks associated with specific pathways, such as the ubiquitin-
mediated proteolysis pathway and focal adhesion pathway
(Figures 4D, E).

Differential chromatin accessibility between control and YG-22-
treated samples was further elucidated using heatmap
representations, which highlighted distinct patterns of
upregulated and downregulated peaks (Figure 4F). The average
read density (RPKM) analysis, indicated in line plots, illustrated
changes in chromatin accessibility levels for both upregulated and
downregulated peaks across conditions (Figure 4G). A volcano plot
provided a visual summary of significant differential chromatin
peaks, with 78 upregulated peaks and 1,697 downregulated peaks
(Figure 4H). The KEGG pathway enrichment analysis for
differentially accessible chromatin regions revealed that the
pathways, including growth hormone synthesis, secretion and
action pathway, proteoglycans in cancer pathway, were enriched
significantly (Figure 4I). Supplementary analyses further clarified
these findings, showcasing gene body coverage, Pearson correlation
comparisons, and circular plots visualizing peak distributions across
the genome (Supplementary Figure 3). This collective data
underscores the extensive reconfiguration of chromatin
accessibility induced by YG-22 in HCT116 cells, shedding light
on potential regulatory mechanisms involved in its
therapeutic effects.

H3K4me3 profiling analysis of HCT116 cells
treated with YG-22

Furthermore, we performed ChIP-seq to analyze the
H3K4Me3 profiling after YG-22 treatment upon HCT116 cells.
The genome-wide distribution of H3K4me3 peaks was illustrated
using a circular plot, showing peak density across various genomic
regions for both control and treatment samples (Figure 5A). In
control samples, 86.3% of H3K4me3 peaks were located in promoter
regions, while 5.2% were found in introns and 7.1% in intergenic
regions (Figure 5B). Upon treatment with YG-22, there was a slight
change, with promoter-associated peaks increasing to 87.8%,
intronic peaks decreasing to 4.5%, and intergenic peaks
decreasing to 6.3% (Figure 5C). KEGG pathway analysis
highlighted significant pathways associated with these peaks,
revealing that pathways related to endocytosis and ubiquitin
mediated proteolysis were enriched both in control and
treatment (Figures 5D, E). Differential analysis indicated distinct
clustering of upregulated and downregulated
H3K4me3 modifications (Figure 5F). The average read density

(RPKM) analysis, indicated in line plots, illustrated changes in
H3K4me3 modification levels for both upregulated and
downregulated peaks across conditions (Figure 5G). Volcano plot
provided a visual summary of significant differential chromatin
peaks, with 97 upregulated peaks and 385 downregulated peaks
(Figure 5H). The KEGG pathway enrichment analysis for
differentially H3K4me3 modification revealed that the pathways,
including ferroptosis, biosynthesis of amino acids, parathyroid
hormone synthesis, secretion, were enriched
significantly (Figure 5I).

Supplementary analyses provided further insights into the
consistency and significance of the H3K4me3 modifications. A
heatmap analysis of ChIP quality confirmed the reliability of the
ChIP-seq data (Supplementary Figures 4A, B). The average read
density (RPKM) line plots indicated an increase in signal intensity at
treatment samples (Supplementary Figure 4C). Additionally,
combined circular peak distribution plots showed similar results
as Figure 5A (Supplementary Figure 4D). TSS analyses further
emphasized these findings, revealing that the signal density
surrounding TSS regions (Supplementary Figure 4E). Collectively,
these results underscore the pivotal role of H3K4me3 in modulating
gene expression and illustrate the therapeutic potential of YG-22 in
colorectal cancer through these alterations in chromatin
modification.

ChIP-seq analysis of NF-κB binding in
HCT116 cells treated with YG-22

Finally, ChIP-seq analysis was conducted to investigate the
genome-wide distribution. After treated with YG-22 in
HCT116 cells for 48 h, enrichment of NF-κB binding peaks was
collected. A circular plot revealed the NF-κB binding distribution
across chromosomes, highlighting changes between control and
treated groups (Figure 6A). In the control group, NF-κB peaks
were predominantly located in distal intergenic regions (28.9%) and
promoters (39.0%) (Figure 6B), while treatment with YG-22 led to a
shift, with 38.4% of peaks observed in distal intergenic regions and a
reduced percentage in promoter regions (Figure 6C). KEGG
pathway analysis demonstrated significant enrichment of
pathways such as “NF-kappa B signaling,” “TNF signaling,” and
“Necroptosis” in the control group, with treatment further
enhancing pathways like “MAPK signaling” and “C-type lectin
receptor signaling” (Figures 6D, E). Heatmap analysis displayed
clustering patterns of upregulated and downregulated peaks,
reflecting differential NF-κB binding between the two groups
(Figure 6F). The average read density (RPKM) plots illustrated
the chromatin signal intensities near these peaks, highlighting

FIGURE 5 (Continued)

indicating the P-value. (E) KEGG pathway analysis of promoter-associated H3K4me3 peaks in YG-22-treated samples. Enrichment analysis reveals
pathways significantly associatedwith treatment-related changes in H3K4me3marks. (F)Heatmap showing differential H3K4me3 peaks between control
and YG-22-treated samples. The clustering patterns illustrate upregulated and downregulated H3K4me3 peaks across genomic regions. (G) Average read
density (RPKM) of upregulated and downregulated H3K4me3 peaks in control and YG-22-treated samples. Line plots display chromatin signal
intensities near the differential peaks. (H) Average read density (RPKM) of upregulated and downregulated H3K4me3 peaks in control and YG-22-treated
samples. Line plots display chromatin signal intensities near the differential peaks. (I) KEGG pathway enrichment analysis of differentially accessible
promoter-associated H3K4me3 peaks. Bubble size reflects the number of peaks associated with each pathway, and color represents the statistical
significance (P-value).
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FIGURE 6
ChIP-seq analysis of NF-κB profiling in HCT116 cells treated with YG-22. (A) Circular plot visualizing genome-wide distribution of NF-κB peaks
across different groups (control and treatment). The plot highlights the density of NF-κB binding across chromosomes. (B)Distribution of NF-κB peaks in
various chromatin regions in control samples. The pie chart illustrates the percentage of peaks in promoters, introns, intergenic regions, and other
genomic features. (C)Distribution of NF-κB peaks in various chromatin regions in YG-22-treated samples. The pie chart represents the proportion of
peaks localized to distinct genomic regions after treatment. (D) KEGG pathway analysis of promoter-associated NF-κB peaks in control samples. The
bubble plot shows enriched pathways, with bubble size indicating the number of peaks and color denoting statistical significance (P-value). (E) KEGG

(Continued )
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significant differences between control and treated samples
(Figure 6G). Finally, the volcano plot identified 26 upregulated
and 36 downregulated NF-κB peaks, providing a comprehensive
view of the impact of YG-22 on NF-κB activity (Figure 6H). These
findings indicate that YG-22 treatment induces significant changes
in NF-κB binding and pathway activation, emphasizing its potential
as a modulator of NF-κB signaling.

Collectively, these data examined the peptide alterations of
chemotherapy combined with the Jianpi formula in colorectal
cancer patients, revealing significant changes in the peptidome
and lnc-peptidome profiles, and screening the candidate bioactive
peptide YG-22. Furthermore, YG-22 treatment in HCT116 cells
demonstrated dose-dependent cytotoxicity, altered gene expression,
metabolic reprogramming, chromatin accessibility, and significant
modifications in histone and NF-κB binding, highlighting its
potential as a therapeutic agent in colorectal cancer.

Discussion

This study aimed to identify differential bioactive peptides in
patients treated with chemotherapy alone and those receiving
chemotherapy combined with traditional TCM-Jianpi formula.
By screening these peptides, we sought to investigate their
potential therapeutic effects, using in vitro model to evaluate
cytotoxicity in HCT116 cells. The most effective peptide was then
subjected to multi-omics analyses to explore its underlying
mechanisms of action.

Human plasma is a vital resource in clinical and biological
research, serving as a reservoir for proteins secreted by various
organs. It provides insights into a patient’s physiological and
pathological states and may contain biomarkers for disease
detection and treatment response (Geyer et al., 2017; Xu et al.,
2019). Plasma peptidomes has been used for screening novelty
bioactive peptides or biomarker (Xu et al., 2019; Taguchi et al.,
2021; Lu et al., 2022). In the present study, the results revealed a
significant enhancement in the diversity and complexity of the plasma
peptidome in patients treated with the combination therapy compared
to chemotherapy alone. This suggests that the Jianpi formula not only
complements chemotherapy but may also contribute to regulating key
molecular pathways involved in tumor suppression, such as apoptosis
and immune modulation. Among the candidate peptides identified,
YG-22 exhibited the most potent cytotoxic effect, with clear dose- and
time-dependent reductions in HCT116 cell viability. These findings
underscore the therapeutic potential of differential peptides derived
from the combined treatment approach.

Multi-omics technologies, which include transcriptomics (gene
expression analysis), metabolomics (metabolic profiling), and

epigenomics (chromatin and histone modification analysis),
provide a comprehensive understanding of drug mechanisms
(Zhao et al., 2024; Lou et al., 2022). The transcriptome primarily
focuses on alterations in gene expression resulting from drug
intervention, whereas metabolomics examines the impact of drug
intervention on metabolites (Cui and Paules, 2010; Wilmes et al.,
2013; Astarita et al., 2023; Lu et al., 2019). Chromatin accessibility
analysis primarily examines the impact of drug action on chromatin
accessibility and its potential influence on gene expression (Zhang
et al., 2020), whereas the H3K4Me3 profiling analysis focuses on
histone modifications in regions associated with active or inactive
gene expression (Igolkina et al., 2019; Karlić et al., 2010). NF-κB
binding can be analyzed using ChIP-seq by identifying the specific
DNA regions where NF-κB transcription factors interact with the
genome, providing insights into its regulatory roles in gene
expression under various conditions (Mulero et al., 2019). Here,
our multi-omics analysis provided valuable insights into the
mechanisms of action of YG-22 in inhibiting CRC.
Transcriptomic data revealed distinct gene expression changes,
with enrichment in pathways related to lysosome-mediated
degradation, cell adhesion, and apoptosis—processes pivotal in
tumor progression and metastasis. Metabolomic profiling
highlighted significant metabolic reprogramming in YG-22-
treated cells, including disruptions in pathways essential for cell
survival and proliferation. Furthermore, epigenomic analyses
demonstrated notable alterations in chromatin accessibility and
histone modifications, suggesting that YG-22 induces epigenetic
reprogramming, which may enhance its antitumor effects.

These findings collectively suggest that combining TCM-Jianpi
formula with chemotherapy may augment therapeutic outcomes by
enriching the molecular and cellular responses to treatment. The
Jianpi formula appears to amplify the generation of bioactive
peptides, such as YG-22, which exhibit strong antitumor activity
and target multiple pathways critical for cancer progression. This
integrated approach provides a promising avenue for improving
treatment efficacy. However, while this study offers valuable
insights, the precise mechanisms by which the Jianpi formula
enhances peptide generation and therapeutic efficacy require
further investigation. Additionally, the clinical applicability and
safety of the identified peptides require validation in larger
clinical trials. Future studies should focus on exploring the
molecular interactions of YG-22, validating its efficacy in animal
models, and assessing the broader clinical implications of TCM-
based combination therapies for CRC.

In conclusion, this study demonstrates the potential of TCM-
Jianpi formula-derived bioactive peptides to improve colorectal
cancer treatment outcomes. The identification and functional
characterization of differential bioactive peptides (such as YG-22)

FIGURE 6 (Continued)

pathway analysis of promoter-associated NF-κB peaks in YG-22-treated samples. Pathway enrichment is represented similarly to panel D,
highlighting pathways associated with treatment-induced changes. (F) Heatmap analysis showing differential NF-κB peaks between control and YG-22-
treated samples. The heatmap emphasizes the clustering patterns of upregulated and downregulated peaks. (G) Average read density (RPKM) of
upregulated and downregulated NF-κB peaks in control and YG-22-treated samples. Line plots display chromatin signal intensities near the
differential peaks. (H) Volcano plot highlighting significant differential NF-κB peaks between control and treated samples. Red dots represent upregulated
peaks, blue dots indicate downregulated peaks, and gray dots correspond to non-significant changes.
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provide a foundation for developing innovative, peptide-based
therapeutic strategies.
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SUPPLEMENTARY FIGURE 1
Lnc-peptidome analysis of plasma samples from colorectal cancer patients
treated with chemotherapy or chemotherapy combined with the Jianpi
formula. (A) Total number of identified peptides, unique peptides, and
proteins. The bar chart presents the overall counts of peptides and proteins
detected in the plasma samples. (B) Distribution of proteins based on the
number of peptides identified. The histogram illustrates the frequency of
proteins with varying numbers of peptides detected. (C) Protein sequence
coverage distribution across the identified peptides. The pie chart shows the
proportion of proteins categorized by sequence coverage percentages. (D)
Distribution of peptides by length. The bar chart highlights the number of
peptides grouped according to their length in amino acids. (E) KEGG
pathway analysis of proteins corresponding to the identified lnc-peptides.
The bar chart categorizes these proteins into pathways related to
metabolism, genetic and environmental information processing, cellular
processes, organismal systems, and human diseases. The numbers indicate
the count of proteins associated with each category. (F) Pearson correlation
heatmap comparing plasma sample data from colorectal cancer patients in
the chemotherapy group and the chemotherapy plus Jianpi formula
group. The heatmap displays correlation coefficients between samples. (G)
Heatmap of differentially expressed peptides between the two treatment
groups. The heatmap emphasizes clustering patterns and relative
expression levels of peptides, with red and blue indicating upregulated and
downregulated peptides, respectively.

SUPPLEMENTARY FIGURE 2
Metabolomics analysis of HCT116 cells treated with YG-22 based on positive
ion (POS) analysis. (A)Correlation analysis ofmetabolites detected in control
and YG-22-treated samples based on POS mode. The heatmap shows
pairwise correlation coefficients, with red indicating positive correlations and
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green indicating negative correlations. (B) Radar plot displaying the
distribution of selected metabolites detected in POS mode. The plot
highlights the relative abundance of key metabolites across samples. (C)
Heatmap of differentially expressed metabolites identified through POS
mode analysis. Hierarchical clustering shows differences in metabolite
expression levels between control (C1- C3) and treated (T1-T3) groups. (D)
Volcano plot illustrating significant differential metabolites between control
and YG-22-treated samples in POS mode. Red dots indicate upregulated
metabolites, blue dots indicate downregulated metabolites, and gray dots
represent metabolites with non-significant changes. (E) KEGG pathway
analysis of differentially expressed metabolites, categorized by metabolic
pathways and biological processes. The bubble plot represents pathway
enrichment, where dot size reflects the number of involvedmetabolites and
color indicates the level of statistical significance (P-value).

SUPPLEMENTARY FIGURE 3
Differences in chromatin accessibility across different samples. (A) Average
read density (RPKM) analysis for gene body coverage across different
samples (C1, C2, T1, and T2). Line plots show the chromatin accessibility
signal along gene bodies, from transcription start site (TSS) to transcription
end site (TES). (B) Pearson correlation analysis comparing chromatin
accessibility between control (C1 and C2) and treatment (T1 and T2)
samples. Scatter plots illustrate pairwise correlations, with Pearson
correlation coefficients indicated for each comparison. (C) TSS analysis of
chromatin accessibility across different samples. Combined line plots and
heatmaps depict the density of chromatin accessibility signals near the TSS

regions, emphasizing differences between control and treated samples. (D)
Circular plot visualizing chromatin accessibility peak distribution across the
genome for all samples (C1, C2, T1, and T2). The plot highlights genomic
regions with significant chromatin accessibility changes. (E) Heatmap
analysis of chromatin accessibility peaks across different samples. The
upper panel shows the average read density (RPKM) near peaks, while the
lower panel illustrates heatmaps of peak signals, emphasizing differential
chromatin accessibility clustering patterns.

SUPPLEMENTARY FIGURE 4
Differences in H3K4Me3 profiling across different samples. (A) Heatmap
analysis of ChIP quality for both immunoprecipitated (IP) and input samples.
The heatmap displays pairwise correlation coefficients among samples,
emphasizing the quality and consistency of ChIP-seq data. (B) Pearson
correlation analysis comparing H3K4Me3 profiling between control and
treatment samples for both IP and input datasets. The scatter plots
represent pairwise correlations, with Pearson correlation coefficients noted.
(C) Average read density (RPKM) for IP and input samples. Line plots depict
the signal intensity distribution near peak centers, comparing control and
treated samples. (D)Circular plot visualizing the genome-wide distribution of
H3K4Me3 peaks across control and treatment groups. The plot highlights
differences in peak density between groups. (E) Transcription start site (TSS)
analysis for different samples. Combined line plots and heatmaps show
H3K4Me3 signal density near TSS regions, illustrating differences in
chromatin accessibility between control and treated samples for both IP
and input datasets.
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