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Editorial on the Research Topic
Key technologies for hybrid energy system planning and operation

This Research Topic addresses the growing demand for clean and reliable energy in the
face of rising electricity consumption and environmental concerns. Traditional fossil fuels
dominate power generation, but their accelerated use creates pollution problems. Wind and
solar power offer promising renewable alternatives, but their widespread adoption presents
challenges. These sources are highly variable and difficult to control due to their dependence
on weather conditions. Large-scale integration of wind and solar power can destabilize
power grids and threaten their safe operation.

The research presented here explores solutions for integrating these renewable sources
effectively. A key approach involves combining wind and solar with controllable power
sources like hydropower, thermal power, and battery storage to create hybrid energy
systems. Accurate prediction of new energy power generation is crucial for such hybrid
systems’ reliable and secure operation.

This collection features nine research articles investigating various aspects of hybrid
energy systems:

• Techniques for controlling wind turbines
• Decision-making methods for markets dominated by hydropower
• Optimization models for regional energy integration
• Short-term wind power prediction models
• Decision-making methods for hydropower-dominated markets

The original research by Y. Wang et al. proposed a flexible torque control method for
wind turbines participating in frequency regulation. It addresses the issue of transient
torque fluctuations during wind speed transitions. The method divides the transition region
between operating speeds into sub-regions. It then employs dynamic deloading and flexible
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torque control within these sub-regions to ensure smooth generator
torque transfer. This is achieved without requiring additional
sensors, making it simple to implement. The effectiveness of the
proposed method is verified through simulations. The study
demonstrates that this method can mitigate transient torque
fluctuations and improve the overall reliability and efficiency of
wind turbine systems.

The original research by Zeng et al. introduced a novel
double-layer optimization model tailored for a regional
integrated energy system (RIES), emphasizing the integration
of concentrating solar power (CSP) stations, carbon emissions
management, and integrated demand response (IDR). The
primary objective is to minimize both annual planning costs
and net pollutant emissions while ensuring optimal system
operation. The model operates on two distinct layers: the
upper layer employs an enhanced NSGA-II algorithm to
configure capacities, focusing on minimizing annual planning
costs and net emissions, while the lower layer utilizes a mixed-
integer linear programming (MILP) solver to minimize annual
operating costs and optimize device output and load curves.
Notably, the model encompasses the entire carbon emissions
process, including capture, utilization, and trading, and
incorporates flexible loads for electricity, heat, cooling, and
gas. Simulation results, compared against conventional
approaches, underscore several key advantages of the proposed
methodology. CSP station integration is found to enhance
coordinated optimization, while the improved NSGA-II
algorithm demonstrates superior convergence over its
conventional counterpart. Furthermore, considering the
entirety of carbon emissions alongside IDR leads to reductions
in annual operating costs and net carbon emissions. Overall, this
innovative approach fosters a more economically viable and
environmentally sustainable RIES.

The original research by Liu et al. presented a pioneering
approach to coordinated scheduling for hydro-wind-solar power
systems, taking into account both peak shaving and navigation
objectives. With the rapid expansion of wind and solar energy,
grid stability faces challenges due to their intermittent nature.
Although hydropower offers flexibility, its conventional operation
might clash with other functionalities like navigation. To tackle these
challenges, the proposed model incorporates uncertainty
quantification via a Gaussian mixture model for wind and solar
power forecasts. This integration enables the model to effectively
manage the inherent variability of these renewable sources.
Additionally, the model utilizes the ε-constraint method to
achieve Pareto optimality, effectively balancing the conflicting
goals of peak shaving and navigation. Key contributions of this
study include the development of a multi-objective hydro-wind-
solar scheduling model that accounts for both peak shaving and
navigation, uncertainty quantification of wind and solar power
forecasts using a Gaussian mixture model, and the
transformation of chance constraints into solvable linear
constraints through error bounds. The model’s effectiveness is
demonstrated through a real-world application on the Jinghong-
Ganlanba cascade hydropower system, with further analysis
conducted on the impact of wind and solar factors on its
performance. This research provides valuable insights for power
grid operators aiming to integrate renewable energy sources while

upholding system reliability and addressing navigation
requirements.

The methods paper by Wu et al. proposed a novel safety check
method for the electricity spot market that optimizes tie-line power
to maximize effective reserve resources within the power system.
This approach aims to ensure the stability of the market and the
safety of regional power grids. The key challenge addressed is the
difficulty of accurately evaluating effective reserves in the current
spot market environment. This is due to factors like limited real-
time data and the impact of new energy sources with fluctuating
power generation. The proposed method tackles this challenge by
incorporating a safety check during the optimization process. This
check considers tie-line equipment limitations, reserve capacity, and
various constraints of the spot market clearing model. The model
itself is linear, facilitating practical implementation in power-
dispatching applications.

Th original research article by Zhong investigated the
application of deep learning for improved power load forecasting
and market price prediction in the face of complex energy systems
and market volatility. Deep learning has emerged as a powerful tool
for time series forecasting, and this research proposes a novel
framework that integrates and optimizes multiple deep learning
models to achieve superior prediction accuracy and reliability. The
proposed framework leverages the strengths of three distinct deep
learning architectures: Artificial Neural Networks (ANNs), Long
Short-Term Memory (LSTM) networks, and transformers. ANNs
provide a versatile foundation for the model, while LSTMs, known
for their proficiency in sequence modeling, generate initial
predictions. The framework further incorporates transformers,
specifically their self-attention mechanism, to capture long-range
dependencies within the data. This combined approach significantly
enhances the overall model performance. The effectiveness of the
proposed framework is evaluated through experiments using various
public datasets. The performance is compared to both traditional
forecasting methods and a single-model deep learning approach.
The results conclusively demonstrate that the integrated framework
surpasses other methods in predicting both power load and
market prices.

The methods article by Wu et al. proposed a novel method for
predicting hydroelectricity generation using a combination of
meteorological similar days and the XGBoost machine learning
model. Accurate prediction of hydroelectricity supply and
demand is crucial for efficient resource management, reliable
power supply, and minimizing the impact of natural disasters.
The proposed method leverages historical meteorological and
runoff data to identify days with weather patterns similar to the
current day. These “similar days” form a dataset used to train an
XGBoost model. The trained model then predicts future runoff
based on the current meteorological data, which can be used to
estimate future hydroelectricity generation. The effectiveness of the
proposed method is evaluated using data from a hydroelectricity
cluster in Yunnan, China. The results demonstrate high prediction
accuracy and stability, highlighting its potential as a valuable tool for
hydroelectricity prediction.

The original article by P. Wang et al. proposed a novel ensemble
model for short-term wind power prediction that addresses the
challenges posed by the high randomness and volatility of wind
power. The model leverages a combination of three techniques:
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Ensemble Empirical Mode Decomposition (EEMD), Gated
Recurrent Unit (GRU), and Markov Chain (MC). Initially, the
EEMD algorithm decomposes historical wind power sequences
into stationary subsequences, reducing the impact of random
fluctuations and noise. Subsequently, the GRU model predicts
each subsequence, and the aggregated predicted values yield
preliminary forecasts. Finally, the MC is employed to refine the
prediction accuracy. Extensive numerical experiments, particularly
on the ZMS wind farm’s spring dataset, demonstrate the superiority
of the proposed EEMD-GRU-MC model over six benchmark
models in terms of various evaluation metrics. Notably, the
model achieves a mean absolute error (MAE) of 1.37 MW, a root
mean square error (RMSE) of 1.97 MW, and a mean absolute
percentage error (MAPE) of 1.76%. Moreover, the model exhibits
high computational efficiency, requiring an average of
approximately 35 min for accurate daily wind power prediction
after 30 iterations. Thus, the ensemble model based on EEMD-
GRU-MC holds promise for short-term wind power forecasting.

The Policy and practice review article by Han et al. proposed a
new scheduling method for large hydropower plants in China’s
evolving electricity market. The method addresses challenges caused
by complex factors like uncertain electricity prices, diverse
settlement rules, and inter-provincial transmission lines. It
incorporates Latin hypercube sampling and K-means clustering
to account for electricity price fluctuations. The study also
establishes a performance measure for priority electricity
considering settlement rules and proposes methods to handle
inter-regional transmission connections and hydraulic coupling
in cascaded hydropower plants. The complex non-linear problem
is then transformed into a solvable mixed-integer linear
programming model using the Big M method.

Cascade hydropower producers face two risks in medium- and
long-term electricity markets: bidding risks during bidding and
operational risks during scheduling due to uncertain water flow
and market prices. The methods article by Lu et al. proposed a new
decision-making method for such producers in a hydropower-
dominated market in Southwest China. The method combines

Joint Information Gap Decision Theory (IGDT) and Prospect
Theory to address these risks. IGDT is used in a robust
optimization model to find the maximum allowable variation in
water flow and market prices while meeting expected revenue
targets. Prospect Theory is then used to consider producer risk
tolerance when developing bidding strategies. To avoid accuracy
Research Topic caused by curve fitting in traditional solvers, the
paper employs a nonlinear programming method combined with an
improved stepwise optimization algorithm. The effectiveness of the
method is verified using a real-world cascade hydropower station
example. The results show that the method can determine the
acceptable range of variation for water flow and market prices
under different revenue targets and can be used to develop
bidding and operation plans that consider producer risk tolerance.
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A safety check method to
maximize the effective reserve by
optimizing the power of the
tie-line in the power market

Yang Wu1, Xingxing Wanyan2*, Xiangyang Su2, Wentao Zou2,
Xinchun Zhu1, Shuangquan Liu1* and Qizhuan Shao1

1Yunnan Power Dispatching and Control Center, Yunnan Power Grid Co., Ltd., Kunming, China, 2Beijing
Tsintergy Technology Co., Ltd., Beijing, China

Toensure the stability of the electricity spotmarket and the safety of the provincial and
regional power systems, a safety checkmethod is proposed tomaximize the effective
reserve resources in the power system by optimizing the power of each tie-line. This
safety check method accurately models the tie-line equipment and the effective
reserve resources and is coupled with each constraint of the electricity spot market
clearing model to form a safety check algorithm to optimize the power of tie-line
power. The model involved in this paper is a linear model, which has a clear
implementation method in practical dispatching applications. Through this
method, the power configuration scheme of each tie-line to meet the electricity
spot market constraints can be obtained, and the safety check results have the
executability of the power market. The rationality and feasibility of the safety check
algorithm results are verified by simulating the provincial-scale electricity spotmarket.
According to the simulation results, this method can release effective reserve
resources and provide more guarantees for the safe operation of the power grid.
In addition, this method can save up to 4.9% of the total operation cost of the power
system and improve the dispatching economyof the power system. Thismethod is of
great significance to ensure the safe operation of the power system and the day-
ahead market and real-time market scheduling in the actual power spot system. In
addition, this method also has great guiding significance for the analysis of the actual
reserve situation of the power market after the event.

KEYWORDS

power market, safety checks, effective reserve, tie-line optimization, power grid
congestion

1 Introduction

With the increase in power consumption load and the large-scale integration of new
energy into the grid, the safety and economic operation of the power system is facing severe
challenges (Li et al., 2020). With the rapid construction of a new power system with new
energy as themain body, the penetration rate of new energy is increasing, which puts forward
new requirements for the adequacy of power system operation (Chen et al., 2022). Large-
scale new energy integration brings a large amount of clean energy to the power grid and
great challenges to the power system reserve (Yang et al., 2020).

With the large-scale construction of provincial and regional electricity spot markets, the
current progress of power market construction in various provinces is different, and regional

OPEN ACCESS

EDITED BY

IMR Fattah,
University of Technology Sydney,
Australia

REVIEWED BY

Dejian Yang,
Northeast Electric Power University,
China
Narottam Das,
Central Queensland University, Australia

*CORRESPONDENCE

Xingxing Wanyan,
wanyan163@foxmail.com

Shuangquan Liu,
Liushuangquan@yn.csg.cn

SPECIALTY SECTION

This article was submitted to Process and
Energy Systems Engineering,
a section of the journal
Frontiers in Energy Research

RECEIVED 09 February 2023
ACCEPTED 29 March 2023
PUBLISHED 17 April 2023

CITATION

Wu Y, Wanyan X, Su X, Zou W, Zhu X, Liu S
and Shao Q (2023), A safety check
method tomaximize the effective reserve
by optimizing the power of the tie-line in
the power market.
Front. Energy Res. 11:1162122.
doi: 10.3389/fenrg.2023.1162122

COPYRIGHT

© 2023 Wu, Wanyan, Su, Zou, Zhu, Liu
and Shao. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Methods
PUBLISHED 17 April 2023
DOI 10.3389/fenrg.2023.1162122

87

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1162122/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1162122/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1162122/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1162122/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1162122&domain=pdf&date_stamp=2023-04-17
mailto:wanyan163@foxmail.com
mailto:wanyan163@foxmail.com
mailto:Liushuangquan@yn.csg.cn
mailto:Liushuangquan@yn.csg.cn
https://doi.org/10.3389/fenrg.2023.1162122
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1162122


grid security verification requires coordination between provincial
markets and regional dispatching (Cai et al., 2022). When there is a
breakthrough in power grid security constraints, the correction
strategy needs to consider the stable operation of the market,
which poses new challenges to the traditional security check mode.

Safety check refers to the process of analyzing the safety and
power balance of the power system from the perspective of power
system operation safety (Bao et al., 2022). The safety check of
electricity spot energy market transactions is carried out
simultaneously with market clearance, and the market clearance
results must strictly meet the national and industry policies and
standard requirements and, at the same time, meet the requirements
of safe and stable operation of the power grid, power balance, and
clean energy consumption.

In addition, China adopts UHVDC (ultra-high-voltage direct
current) transmission technology to transport surplus energy in the
western region to the load center in the central and eastern regions over
long distances, which breaks the reverse distribution of energy resources
and energy consumption in China (Fang et al., 2022), where power is
usually transmitted between regions through multiple inter-provincial
AC/DC channels. At present, the provincial government of the inter-
provincial AC and DC channels usually signs an inter-provincial power
transmission framework agreement to agree on the annual power
transmission scale (Zhou et al., 2022), generally including the annual
power transmission, transmission load, and peak-to-valley ratio, but it is
difficult to stipulate the specific power transmission curve throughout
the year with the inter-provincial power transmission framework
agreement. The daily output curve of the tie-line is determined by
the decomposition mechanism, and the contract power decomposition
curve obtained by different decomposition mechanisms may be
different. Since the framework agreement between the provinces
connected by the transmission tie-line usually needs to be physically
implemented, especially the inter-provincial priority power generation
plan needs to be cleared first according to the decomposition curve to
ensure implementation, the daily output curve of the tie-line
determined by the decomposition mechanism forms the constraint
of the spot market model (Peng et al., 2020); that is, the provincial
electricity spot market usually takes the power of the tie-line as the
boundary data of the spot market clearance.

In the electricity spot market, adjusting the transmission power
of the tie-line needs to consider the safety of the regional
collaborative power grid, the fairness of the market, and the
rationality of the clearing results. In the actual operation of the
power grid, the power replacement of the tie-line occurs from time
to time in real-time scheduling, and the change of the tie-line power
is bound to affect the blocking of the section and line. Therefore,
based on the results of the day-ahead electricity spot market, it is
necessary to optimize the power of the tie-line for the safety check,
which can further ensure the stability of the power market and the
safety of the provincial and regional power systems.

The operation reserve of the power system refers to the
additional active capacity that can be called up at any time to
cope with load forecast errors, unexpected equipment outages, unit
power generation failures, renewable energy power fluctuations,
etc., in the arrangement of power system operation mode and real-
time dispatch operation. In actual grid operation, it is difficult to
evaluate the actual available operational reserve (Duan et al., 2022).
This article refers to this reserve as an effective reserve, which

refers to the spare capacity of the unit that the system can call up in
time. However, the evaluation of effective reserve in the current
stage of research is often localized in the calculation problem of
production applications, such as in the work of Zhang et al. (2020)
and Wenhuan et al. (2022). The literature classifies effective
reserve evaluation as a production application problem and
only a post hoc calculation and deduction method, which
cannot cope with the needs of real-time scheduling in the spot
market environment. It is difficult to accurately calculate the
effective reserve of the system in real-time scheduling, which
brings great security risks to the system. In addition, due to
changes in boundary conditions, the day-ahead clearing results
may not meet the demand for an effective reserve of the system in
the real-time market, especially in the new power system, where
the effect of the new energy forecast is particularly significant. In
the new power system, relevant research on the difficulty of reserve
evaluation caused by the deviation of new energy prediction
includes the probability evaluation method (Chen et al., 2022;
Liu et al., 2023), random optimization (Xu et al., 2023), and robust
optimization (Ran et al., 2022; Wang et al., 2022). The probabilistic
evaluation method and stochastic optimization method are too
dependent on the probabilistic accuracy of boundary data
prediction in the day-ahead electricity spot market and cannot
meet the actual scheduling demand in the day-ahead and real-time
electricity spot market. The solution results of the robust
optimization method are too conservative and cannot be
applied to the actual electricity spot market clearing model.

At present, it is also difficult to assess the effective reserve in the
day-ahead electricity spot market; if the proportion of effective
reserve components in the operating reserve is relatively low, it
will mislead the dispatcher, give the dispatcher the illusion of
sufficient effective reserve, and bring serious hidden dangers to
the safety of the power system.

The factors affecting the effective reserve capacity of the power
system can be divided into the following three levels: first, at the level
of power system power grid security, the power flow limit of the
section or line will affect the effective reserve space provided by the
unit; for example, when the section exceeds the limit in the forward/
reverse direction, the unit with a positive/negative generation shift
distribution factor (GSDF) relationship with the section cannot
provide the corresponding reserve at this time, and the
marketization of power spot may cause transmission congestion
to be more obvious and compress the effective reserve space. Second
is the multi-energy coupling in energy interconnection (Wu et al.,
2019; Hou et al., 2022). At this level, the primary energy supply can
also affect the effective reserve, such as the coal storage limit of the
coal turbine, the natural gas supply limit of the gas engine, the
reservoir capacity limit of the pumped storage unit, the water level
limit of the hydropower unit, and the cascade hydropower limited by
the basin hydraulic limit, which will affect the effective reserve that
the unit can provide. Third, at the time coupling level of the power
system, the constraints of the climbing rate of the unit and the
maximum energy of the unit in a dispatching cycle make the spare
capacity of the unit unable to be called by the system in time and
unable to provide an effective reserve.

Therefore, by optimizing the power of the tie-line in the safety check
link, alleviating the congestion of the power grid, and releasing more
effective reserve in the system, the overall reserve and peak regulation
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capabilities of the system can be guaranteed, and safe, stable, and
economical operation of the power grid can be guaranteed.

The preparation and verification of the tie-line plan is a key link
affecting the scheduling and transaction organization of multi-level
coordination, so it is necessary to reasonably evaluate the
transmission power of inter-provincial channels to ensure the
security of the power grid in the whole region.

From the level of safety check of the power system, it is a very
novel research point to optimize the power of the tie-line to release
effective reserve of the system.

2 Safety check method

The safety check of spot energy market transactions is carried
out simultaneously with market clearance, and the results of
market clearance must strictly meet the national and industry
policies and standards and the requirements of safe and stable
operation of the power grid, power balance, and clean energy
consumption.

The clearing model of the electricity spot market includes the
security-constrained unit commitment (SCUC) and the security-
constrained economic dispatch (SCED). The specific clearing model is
shown in the Supplementary Material’s SCUC model and SCED model
(Fang et al., 2020). Among them, the tie-line planned power is used as a
boundary condition and does not participate in market optimization.

Among them, the security check has been completed
simultaneously in the process of solving SCUC and SCED, the
power grid security check is completed by the power grid
security constraint in the clearing model, and the load balance
check is completed by the system balance constraint in the
clearing model.

The consideration of positive and negative reserves of the system in
the spot market clearance is completed by the system reserve capacity
constraint. However, this constraint is relatively extensive in considering
reserve, and usually, the positive reserve of the system is based on the
proportion of the total system load forecast, or the positive reserve
demand is set according to the maximum capacity of a single unit.

The safety check method proposed in this paper is to modify the
day-ahead electricity spot market clearing model under the
condition that the unit power is determined. For details of the
modification, see the safety check model in Section 3 of this article.

3 Safety check model

The safety check model is a transformation of the SCUC model
(the SCUC model is shown in Supplementary Material), which
mainly includes the following four points:

1. The objective function of the safety check model is to maximize
the effective reserve

2. Model the effective reserve
3. Model the DC tie-line
4. Modify the constraints that affect the effective reserve of the

system

3.1 Objective function: effective reserve
maximization

max∑N
i�1
∑T
t�1
PRi,t. (1)

Here, PRi,t indicates the maximum effective reserve that the unit
i can provide at the time t;N indicates the total number of units; and
T is the total number of periods.

3.2 DC tie-line model

DC tie-line power has the characteristics of controllability,
which can be optimized as a flexible resource to promote the
optimal allocation of resources. For DC tie-lines, its power can
be freely controlled, so it can be optimized by constructing variables
separately, and its sending and receiving ends are used as node loads
and node injections, respectively (Peng et al., 2020).

Although the DC tie-line power can be flexibly adjusted, in
actual operation, it is not possible to make frequent adjustments,
except in emergencies, in which the action of AC filters and
converter transformers is an important limiting factor (Shen
et al., 2020).

Therefore, the tie-line power constraint includes the following
five items.

3.2.1 Limits of tie-line power
The upper and lower limit constraints of tie-line power mean

that the transmission power of the tie-line should be within its
maximum and minimum technical output range, which can be
described as

TLj,t
min ≤TLj,t ≤TLj,t

max, (2)
whereTLj,t is the tie-line j power at the time t.TLj,t min andTLj,t max

are the tie-line jminimum andmaximum power transmission limits
of the time t, respectively. This article simulates the power of the tie-
line sent out, and TLj,t min there will not be less than 0, so in this
article, we set TLj,t min � 0.

3.2.2 Tie-line adjustment time limit
The DC tie-line adjustment limit constraint means that the

number of power changes of the tie-line throughout the day must be
within a certain range, which can be described as

xu
j,t + xd

j,t ≤ 1

∑T
t�1
xu
j,t + xd

j,t ≤NTLj
max

⎧⎪⎪⎨⎪⎪⎩ ,
(3)

where xuj,t and x
d
j,t are 0–1 integer variables. x

u
j,t � 1 indicates the tie-

line j is adjusted up at the time t; xuj,t � 0 indicates the tie-line is not
adjusted up at the time t; xd

j,t � 1 indicates the tie-line is adjusted
down at the time t; and xd

j,t � 0 indicates the tie-line is not adjusted
down at the time t.NTLj max is the maximum number of changes in
the power of the tie-line throughout the day.
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3.2.3 Tie-line adjacent periods cannot be reversed
The power of the tie-line cannot be first up and then down or

first down and then up in adjacent periods, which can be
described as

xu
j,t + xd

j,t+1 ≤ 1

xu
j,t+1 + xd

j,t ≤ 1

⎧⎨⎩ .
(4)

3.2.4 Tie-line power adjustment rate constraints
DC tie-line climbing constraint refers to the up/down

adjustment of DC tie-line power, which must meet the climbing
rate requirements, which can be described as

TLj,t − TLj,t−1 ≤ xu
j,t · ΔTLU

j

TLj,t−1 − TLj,t ≤ xd
j,t · ΔTLD

j

{
,

(5)

where ΔTLUj and ΔTLDj are the tie-line j maximum upward and
downward adjustment rates.

3.2.5 Tie-line channel constraints
Inmedium- and long-term transactions, the planned power of each

tie-line channel has been confirmed, and it is prioritized in the spot
market according to the contract power decomposition curve. This
model focuses on the safety check after the day-ahead electricity spot
market clearing, so it does not change the total power curve of the tie-
line channel, only optimizes the power of the tie-line contained in the
channel, and the total transmission power of each tie-line is consistent
with the total power of the channel, which can be described as

∑
j∈q

TLj,t � TLq,t, (6)

where TLq,t is the planned power of the tie-line channel q during the
time t.

3.3 Effective reserve-related constraints

3.3.1 Coupling constraint between the unit
operating status and effective reserve variables

When the unit is down, it cannot provide any effective reserve,
so effective reserve variables should be a coupling relationship with
the operating state of the unit:

0≤PRi,t ≤ αi,tPi,t
max. (7)

A binary variable αi,t is used to describe whether the unit i is on
at the time t. αi,t � 0 indicates the unit is shut down, and αi,t � 1
indicates the unit is turned on; Pi,t

max is the maximum power limit
of the unit i at the time t.

In addition, the effective reserve variables’ upper limit should be
less than the difference between the maximum adjustable output of
the unit and the actual output of the unit, that is, the following
constraint should be met:

PRi,t ≤Pi,t
max − Pi,t, (8)

where Pi,t indicates the power of the unit i at the time t.
Constraints (7) and (8) can be written together as follows:

0≤PRi,t ≤ αi,tPi,t
max − Pi,t. (9)

3.3.2 Unit climbing constraint coupled with
effective reserve

At the time coupling level, constrained by the climbing rate of
the unit, the effective reserve is the output of the unit that can be
called at the next period, and the climbing constraint of the unit
coupled with the effective reserve is shown as follows:

Pi,t + PRi,t − Pi,t−1 ≤ΔPU
i αi,t−1 + Pi,t

min αi,t − αi,t−1( )
+ Pi,t

max 1 − αi,t( ), (10)
where ΔPU

i is the maximum uphill climbing rate of the unit i and
Pi,t

min is the minimum power limit of the unit i at the time t.

3.3.3 Unit energy constraint coupled with effective
reserve

Due to the limitation of the primary energy supply of thermal
power units and the limitation of the water level and storage
capacity of hydropower units, the effective reserve that can be
provided by the unit is limited, and the following energy
constraint is used:

T0∑T
t�1

Pi,t + PRi,t( )≤Qi
max, (11)

where T0 is the length of a period; if 96 periods are considered per
day, each period is 15 min, T0 � 0.25 (hours); Qi

max is the
maximum energy of the unit i.

To ensure the solution speed of the model, the modeling of
hydropower units is linearized: the water level water consumption
rate curve and the water level reservoir capacity curve of the
hydropower plant are linearized in segments and converted into
electricity constraints after external linearization treatment. The
water level reservoir capacity curve of hydropower plants is the
curve of the relationship between the reservoir level of hydropower
plants and its corresponding reservoir capacity. The water level
water consumption rate curve is the curve of the relationship
between the water head and water level of the hydropower plant
and its corresponding water consumption rate.

3.3.4 Power grid security constraint with effective
reserve coupling

Reserve, that is, subject to power grid security constraints, using
line safety constraints as an example, as shown in the formula (12),
the same applies to section safety constraints:

−Pl
max ≤∑N

i�1
Gl−i Pi,t + PRi,t( ) +∑NT

j�1
Gl−jTLj,t −∑K

k�1
Gl−kDk,t − SL+

l

+ SL−
l ≤Pl

max,

(12)
where Pl

max it is the power transmission limit of the line l;Gl−i is the
GSDF between the node where the unit i is located and the line l;Gl−j
is the GSDF between the node where the tie-line j is located and the
line l; Gl−k is the GSDF between the node k and the line l; K is the
number of nodes in the system;Dk,t is the bus load value for the node

Frontiers in Energy Research frontiersin.org04

Wu et al. 10.3389/fenrg.2023.1162122

1110

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1162122


k at the period t; and SL+l 、 SL−l are the positive and negative flow
relaxation variables of the line l.

The coupling of the slack variable and the effective reserve
variable of power grid security constraint has the constraint relation
of formula (13). When the line crosses the limit, the unit with the
corresponding positive sensitivity cannot provide the corresponding
reserve. When the line crosses the limit, the unit with the
corresponding positive GSDF cannot provide the corresponding
reserve. When the line reverses the limit, the unit with the
corresponding negative GSDF cannot provide the corresponding
reserve:

SL+
l > 0&Gl−i > 00PRi � 0

SL−
l > 0&Gl−i < 00PRi � 0

{
.

(13)

3.3.4.1 Constraint linearization
To facilitate the implementation of model engineering and ensure

the speed of model solving, the formula is linearized as follows:

SL+
l + SL−

l > −H 1 − τ l( )
PRi ≤H 1 − τ l( ){

,
(14)

where τl is a 0–1 integer variable. When τl � 1, it represents that the
line crosses the limit. When τl � 0, it means that the line has not
exceeded the limit. Since no single machine capacity in the market
currently exceeds 2,000 MW, H can be set to 2000.

4 Case analysis

This paper simulates the provincial-scale power grid data of tie-
line power sent out of the province, and the generator sets are mainly
composed of clean energy.

4.1 Boundary data analysis

In the boundary data, the proportion of each type of unit by
capacity is shown in Table 1.

In this case, only thermal-type and hydropower-type units can
provide reserve capacity, while wind-type and photovoltaic-type
units do not provide reserve capacity.

In the case simulation in this paper, the number of nodes is
1,641, the number of branches is 2,081, and the number of tie-lines is
21, of which the power of the tie-line is all the sending power, and
the power grid nodes on the 21 tie-lines are seven. In this paper, for
the convenience of description, the power grid nodes of the tie-line
are the same, called a tie-line group.

The total power of the tie-line at each period is shown in
Figure 1. In the period 13–24, the minimum power of the tie-line
is 4,552.5 MW, and in the period 77–81, the maximum power of the
tie-line is 8,290 MW.

The power curve of seven tie-line groups at each period is shown
in Figure 2. The power of TielineChannel_3 and TielineChannel_

FIGURE 1
Total power curve of the whole system tie-line.

FIGURE 2
Power curve of seven tie-line groups.

FIGURE 3
Net load and bus load of the whole system.

TABLE 1 The proportion of capacity of each type of unit.

Unit type Number of units Capacity/
MW

Percentage/
%

Thermal 34 13,600 26

Hydropower 88 27,672 54

Wind power 91 8,105 16

Photovoltaic 51 2,208 4
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4 for 96 periods in the whole day is the same, and no power
adjustment occurs. The power of other tie-line groups is not
adjusted for 96 periods in the whole day.

The net load and bus load for each period are shown in Figure 3.
In this figure, the bus load of the system represents the total load of
the whole grid, and the net load of the system represents the total
load of the whole grid minus the load of the tie-line. The net load of
the system and the total bus load have the same variation trend. The
20 period (4:45) is the load valley, and the 80 period (19:45) is the
load peak.

The reserve demand value is about 8.5% of the maximum net
load, that is, 3,000 MW.

The solver used to solve this model is CPLEX 12.8.0. The
computer processor for the solution environment is Intel(R)
Core(TM) i7-8565U CPU @ 1.80 GHz 1.99 GHz, the memory
space is 16GB, and the operating system is Windows 10.

After simulation of all types of unit quotation, the results of
solving the SCUC model (Fang et al., 2020) are as follows: the
MIPGap value converges to 0.00997%, the objective function value is
495,417,627, and the solution time is 3,299 s.

In the SCUC clearing results, no lines have crossed the limit, and
the safety constraints are met; 20 lines reach the boundary, and
117 lines are heavy load. Reaching the boundary means that the line
power flow is equal to the line capacity. Heavy load means that the
current flow of the line reaches more than 80% of the line capacity
but does not reach the boundary.

The reserve and effective reserve pairs of the system are shown
in Figure 4. PosRsv represents the reserve that can be provided by
the system at each period, ValidPosRsv represents the effective
reserve that can be provided by the system at each period, and
MinPosRsv represents the positive reserve demand value of each
period of the system. As shown in the figure, the effective reserve
that the unit can provide during the 80 period and its vicinity is 0.
The system load is maximum during this period. Although the
system can provide positive and reserve values much higher than
the reserve requirement of 3,000 MW, the effective reserve at 29,
30, 32, 72, 78, 79, 80, 81,82, 83, and 84 periods are 0. It shows that
although the positive reserve constraint is met in the results of
day-ahead electricity spot market clearing, the effective reserve is

very low, and if the dispatcher sees that the positive reserve
capacity that the system can provide is much higher than the
capacity demand of 3,000 MW, but the actual effective reserve is
very low, it brings great safety risks to the power system
dispatching operation.

The system marginal price is shown in Figure 5. Average LMP
represents the average locational marginal price (LMP) in each
period of the system, and SMP represents the system marginal price
(SMP), that is, the price of energy.

When the whole power grid is not blocked, the LMP of all nodes
in the whole power grid is the same, which is the marginal cost of the
marginal generator set. When the power grid is blocked, the LMP of
the nodes of the whole power grid is different. Figure 5 mainly
illustrates the existence of the congestion situation, so the average
LMP and SMP of the results of day-ahead electricity spot market
clearing are inconsistent.

4.2 Results of safety checks

After the safety check of the tie-line power optimization, it has a
positive impact on the power grid congestion situation. A total of
16 lines reached the boundary, 115 lines were overloaded, no line
exceeded the limit, and the safety constraint was met. The line
congestion was alleviated to a certain extent.

After the safety check of the tie-line power optimization, the
impact on the effective reserve is shown in Figure 6. ValidPosRsv_
befor represents the effective reserve of day-ahead electricity spot
market clearing, ValidPosRsv_after represents the effective reserve
that can be provided by the system after optimizing the tie-line
power, andMinPosRsv represents the positive reserve demand value
for each period in the system. As shown in Figure 6, the effective
reserve value of the system is significantly improved after the
optimization of the tie-line power, and the minimum positive
reserve demand value of the system is met for most of the
period. In the original model, the effective reserve at 29, 30, 32,
72, 78, 79, 80, 81, 82, 83, and 84 periods are 0. After the optimization
of the power of the tie-line power, the effective reserve in these
periods is significantly improved. Among them, the effective reserve

FIGURE 4
Comparison diagram of system positive reserve, effective
positive reserve, and positive reserve demand.

FIGURE 5
Comparison diagram of average LMP and SMP.

Frontiers in Energy Research frontiersin.org06

Wu et al. 10.3389/fenrg.2023.1162122

1312

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1162122


value in the load peak 80 period (3,553.7 MW) is greater than the
minimum positive reserve demand value (3,000 MW).

In summary, after the safety check optimizing the tie-line power,
the system power grid congestion situation is alleviated, and the
effective reserve is significantly released.

Compared with Figures 2, 7, it can be seen that after
optimization the power of the tie-line changes more frequently
with periods. However, this change has a positive impact on the
safety of the whole system operation.

4.3 Safety check and clearance model
iteration

After the safety check of tie-line power optimization, a new tie-line
power curve is obtained, which is used as new boundary data, and the
original SCED model (Fang et al., 2020) is optimized under the
condition of fixed unit start and stop. The clearing results are as
follows: the objective function value is 471,042,162, which is 4.9%

lower than the total cost of the output curve of the original tie-line
power. This shows that the safety check method to optimize the power
of the tie-line has a positive impact on the economy of the whole system
operation. System power grid congestion: 31 lines reach the boundary,
and 132 lines are overloaded. The power grid congestion is worse than
the original tie-line power. By comparing the results of the actual day-
ahead electricity spot market clearing optimization model, it is found
that although the power grid congestion situation is slightly aggravated,
there is no line exceeding the limit. Themost important thing is that the
economy of the operation cost is objectively improved.

The effective reserve situation of the system is shown in Figure 8,
where ValidPosRsv represents the effective reserve of day-ahead
electricity spot market clearing, ValidPosRsv_OptTieline represents
the effective reserve that the system can provide after optimizing the
tie-line, MinPosRsv represents the positive reserve demand of each
period of the system, and ValidPosRsv_reNewTieline represents the
effective reserve that the units can provide after the SCED model
clears when the new tie-line power replaces the tie-line power of the
original boundary data. It can be seen from Figure 8 that after the
iteration of the optimized tie-line power and the SCED model, the
effective reserve for most of the period has been significantly
improved. Although the effective reserve did not exceed the
positive reserve requirement value of 3,000 MW for many
periods, there was no period when the effective reserve was 0.

Figure 9 is a comparison chart of positive reserve and effective
positive reserve in the SCEDmodel clearing results as a boundary, and it
can be seen from Figures 4, 9 that the effective reserve has been
significantly released. In Figure 9, there are not only all periods that
can provide effective reserves but also periods 83 and 87 that provide the
lowest effective reserve, and the lowest effective reserve value is 450MW.

The average LMP and SMP are shown in Figure 10. The average
LMP and SMPof the results of day-ahead electricity spotmarket clearing
are inconsistently illustrating the existence of the congestion situation.

For the power grid with heavy congestion, the reserve deduction
method (Zhang et al., 2020; Wenhuan et al., 2022) will lead to clearing
failure. However, the method provided in this paper will not only affect
the normal clearing process but also improve the effective reserve
resources, which not only ensures the safety of the power grid but also
improves the economy of power system dispatching. For the new power
system with a high proportion of new energy, compared with the

FIGURE 6
Comparison diagram of the effective positive reserve before and
after optimizing the power of the tie-line.

FIGURE 7
Power curve of seven tie-line groups after optimizing the power
of the tie-line.

FIGURE 8
Comparison diagram of the effective positive reserve.
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probabilistic evaluation method (Chen et al., 2022; Liu et al., 2023) and
random optimization (Xu et al., 2023), the method provided in this
paper has better real-time performance and certainty, can meet the
actual power scheduling requirements, and can be directly applied to
the engineering algorithm of power spot market clearing.

5 Summary

In this paper, a safety check method is proposed to optimize the
power of each tie-line to maximize the effective reserve resources in the
power system. Through the simulation analysis of the provincial-scale
power system, by optimizing the power of 21 tie-lines, it is proved that
the use of this safety check method has a significant effect on the
effective reserve resources of the system, and the optimized tie-line
power as a new boundary brings positive impact on the operation safety
and system economy of the whole system. However, from the
perspective of regional safety check, the effect of changes in the
power of the transmission tie-line in the province on other
provinces or regions requires the regional dispatching agency to re-
evaluate from the regional safety check level.

This safety check method is deeply coupled with the day-ahead
electricity spot market clearing model and takes into account all
constraints of the electricity spot market. This security check
method has high clearance efficiency and is of great significance in
connecting the real day-ahead electricity spot market with the real-time
electricity spot market. This security check method has a clear
implementation path, which is convenient for engineering applications.

The safety check optimization results are reasonable and reliable
and have extremely high practical significance. The safety check
optimization results of the tie-line power are executable for power
dispatching and can provide a reasonable and reliable dispatching
scheme for real-time dispatching staff to cope with the sudden
increase in reserve demand.

This safety checkmethod is also of great guiding significance for the
post-event analysis of the real reserve situation of the power market. In
addition, this method is of positive significance to improve the difficulty
of effective reserve assessment of the electricity spot market.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Author contributions

YW: contributing to the core ideas of the article; XW: article writing,
model conception, and algorithm development; XS: providing effective
reserve model ideas; WZ: providing tie-line model ideas; XZ: core idea
discussion, validation, and revision; SL: providing the core issues and
power spot clearing process modification suggestions; and QS:
providing data, data processing, related works.

Conflict of interest

YW, XZ, SL, and QS were employed by the company Yunnan
Power Grid Co., Ltd.

XW, XS, and WZ were employed by the company Beijing
Tsintergy Technology Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenrg.2023.1162122/
full#supplementary-material

FIGURE 9
Comparison diagram of system positive reserve, effective
positive reserve, and positive reserve demand.

FIGURE 10
Comparison diagram of average LMP and SMP.
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The rapid growth of wind and solar energy sources in recent years has brought
challenges to power systems. One challenge is surging wind and solar electric
generation, understanding how to consume such generation is important.
Achieving the complementarity of hydropower and renewable energies such as
wind and solar power by utilizing the flexible regulation performance of
hydropower is helpful to provide firm power to help renewable energy
consumption. However, the multi-energy complementary operation mode will
change the traditional hydropower operation mode, causing challenges to the
comprehensive utilization of hydropower. In this paper, a multi-objective optimal
scheduling model is built by considering coordinated hydro-wind-solar system
peak shaving and downstream navigation. First, the Gaussian mixture model is
adopted to quantify the uncertainty of wind and solar power. Then, a hydro-wind-
solar coordinated model was built to obtain the standard deviation of the residual
load and the standard deviation of the downstream water level. Finally, the ε-
constraint method is used to solve for the Pareto optimality. The results
demonstrate the following: 1) The proposed model can effectively determine
hydropower output schemes that can coordinate wind and solar power output to
reconcile peak shaving and navigation; 2) The downstream hydropower stations’
reverse regulation of the upstream hydropower station is a positive factor in
reconciling conflicts; and 3) Reasonable planning of wind power and solar power
is helpful for hydro-wind solar power complement operation.

KEYWORDS

hydro-wind-solar, generation scheduling, multi-objective, peak shaving, navigation

1 Introduction

With the explosive growth of wind and solar power sources, grid-integrated variable
renewable energy (VRE) has become a key part of achieving the “Carbon Peaking and
Carbon Neutrality Goals” in China (Department of Resource Conservation and
Environmental Protection, 2021). However, the inherent intermittent and random
characteristics of wind and solar power seriously challenge the safety and reliability
operation of power systems (Albadi and El-Saadany, 2010; Shivashankar et al., 2016;
Jabir et al., 2017; Asiaban et al., 2021). Using flexible power sources to mitigate
renewable intermittency is a key solution (Shivashankar et al., 2016). Hydropower is a
flexible power source that has developed technology, a large scale, and a low cost. Thus,
hydropower that complements VREs is important to support the wide-ranging integration of
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VREs such as wind and solar. However, hydropower that operates in
unison with reservoirs usually serves multiple purposes. It not only
needs to meet the demand for electricity generation, but also serves
navigation, flood control, irrigation, ecological protection, and other
comprehensive utilization tasks. Using hydropower to complement
VREs will significantly change the operation mode of hydropower,
and directly affect the power output, water level, and discharge flow
of the reservoir. This may conflict with comprehensive utilization
tasks (Jian et al., 2012; Shang et al., 2017). Therefore, exploring a
reasonable operation method that considers the hydro-wind-solar
complementation mode and comprehensive hydropower utilization
is very significant for multi-energy complementation and the large-
scale consumption of wind and solar.

Research on the operation of hybrid hydro-wind-solar systems,
include studies (Zhu et al., 2018; Hu et al., 2021) that have evaluated
the complementarity and united operation reliability of hydro-
wind-solar power; moreover, various models suitable for different
needs are established. In the literature (Liu et al., 2019a), a united
operation strategy of hydro-wind-solar power, which can effectively
suppress the intermittency of wind and solar output, is proposed by
considering the natural complementarity of wind and solar power.
The literature (Xie et al., 2021) shows that the introduction of
spinning reserve and regulating reserve in the model can effectively
deal with intermittent wind and solar power and improve the
practical application ability of the hybrid hydro-wind-solar
system. The literature (Jin et al., 2022) shows that properly
developed wind and solar power can effectively utilize
complementarity and reducing hydropower output fluctuations
on multiple time scales. The literature (Wang et al., 2019b)
simplifies the system by dividing the subsystems that can be
coordinated to operate, and obtains the long-term scheduling
scheme of the hydro-wind-solar power complementary system
based on the whole basin. The literature (Chen et al., 2019)
predicts wind and solar output through environmental conditions
such as wind speed, radiation intensity, and temperature. On this
basis, a hydro-wind-solar short-term complementary model that
minimizes residual load fluctuations and maximizes VRE output is
established.

However, with the rapid growth of integrated VREs, problems
such as the risk of power output curtailment and the safe operation
of high-proportion clean energy systems have become increasingly
evident (Ding et al., 2016; Cheng et al., 2017; Luo et al., 2018), and
scholars are constantly looking for solutions. The literature (Zhang
et al., 2018) aimed to minimize the amount of curtailed wind and
solar power and to maximize the stored energy in cascade
hydropower stations and then established a short-term optimal
scheduling model of hydro-wind-solar power. The literature (Liu
et al., 2020) controlled the amount of curtailed wind and solar power
by quantifying the uncertainty. The literature (Li et al., 2018)
established an expansion planning method for a large-scale
hybrid wind-solar multi-objective transmission network, which
effectively reduced the amount of abandoned wind and solar
energy in the power grid. The literature (Xi’an Jiaotong
University et al., 2019) proposed a system for testing the
reliability of large-scale renewable electricity integration and
long-distance transmission. The literature (Ming et al., 2019)
established a water-solar complementary long-term optimization
model for large-scale solar power participation, and deduced a

scheduling scenario that is superior to traditional rules in terms
of energy production and power supply reliability.

Research on multi-energy complementarity with hydropower
mostly regards hydropower stations as power production units.
However, hydropower stations with reservoirs can also provide
multiple benefits, such as ecological protection, irrigation, and
navigation. Moreover, existing studies have shown that the
participation of hydropower in peak regulation has adverse
effects on the comprehensive benefits of reservoirs (Pérez-Díaz
and Wilhelmi, 2010; Wan et al., 2020; Halleraker et al., 2022).
Therefore, the reasonable operation of hydropower stations must
also consider the conflict between different tasks. The literature (Li
et al., 2020) used non-dominated sorting genetic algorithm to find
the hydropower station scheduling scenario that considered the
ecological needs of fish and hydropower generation. The literature
(Niu et al., 2016) established a dual-objective model that takes both
peak shaving and navigation under the background of demand
conflict. The literature (Liu et al., 2019b) established multi-objective
optimal dispatching model that considers the power generation of
hydropower stations, power generation stability and ecological
requirements of downstream rivers. The literature (Wang et al.,
2019a) proposes a hydropower station dispatching plan that meets
the requirements of hydropower compensation for wind power
generation and daily water storage targets during the reservoir
storage period.

It can be seen from the above studies that most of the studies
regard hydro-wind-solar multi-energy complementary and
hydropower multi-objective optimal scheduling as two
independent research directions at present. For the power grid
companies or power dispatching departments, in the context of
the increasing demand for renewable energy consumption, when
developing power generation plans for hydropower stations with
navigational requirements, they need to consider not only the
demand for renewable energy consumption and peak regulation
of the power grid, but also the navigational requirements of the
hydropower stations. For this situation, the main contributions of
this paper are as follows:

(1) This paper proposed a hydro-wind-solar coordinated operation
model. In which, two objectives, peak shaving and navigation,
are considered.

(2) The model uses Gaussian mixture model to estimate the forecast
output error considering the uncertainty of wind and solar
output. Using the upper and lower limits of the forecast output
error, the chance constraints are transformed into linear
constraints that are easy to solve.

(3) The real-world applications are applied to illustrate the
effectiveness and applicability of the proposed model, and
the influence of wind and solar output on the model is
analyzed from the aspects of uncertainty and installed capacity.

The rest of this paper is structured as follows. In Section 2, the
analysis method of wind-solar uncertainty and the composition of
the multi-objective hydro-wind-solar collaborative scheduling
model are described. In Section 3, the Gaussian mixture model,
which is used to address uncertainty, and the ε-constraint method,
which is used to solve the dual-objective model, are introduced. In
Section 4, the model is applied to the Jinghong-Ganlanba cascade
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hydropower system that complements wind and solar power. In
Section 5, the influence of wind and solar factors on the model
results are analyzed. The main conclusions of the model analysis are
given in Section 6.

2 Methodology

2.1 Uncertainty analysis of wind and solar
power

It is challenging to forecast the power generation of wind and
solar power due to the inherent intermittency, which is affected
by environmental factors such as wind speed and light intensity.
The literatures (Lingfors and Widén, 2016; Gholami et al., 2017)
shows that the wind and solar output will tend to smooth out with
the increase in the cluster scale of wind and solar stations. In this
paper, since power stations in the same area usually send power
via the same transmission channels, all wind stations in the same
area are combined into a virtual wind power plant (VWP) and all
solar power stations are combined into a virtual solar power
plant (VSP).

PAW
t � ∑NW

i�1
PW
i,t (1)

PAS
t � ∑NS

j�1
PS
j,t (2)

whereNW is the number of wind power stations.NS is the number
of solar power stations. t is the period number, t � 1, 2, ..., T. T is the
number of time periods. i is the wind power station number,
i � 1, 2, ..., NW. j is the solar power station number,
j � 1, 2, ..., NS. Moreover, PAW

t is the output of the virtual wind
plant in period t, MW; PAS

t is the output of the virtual solar power
plant in period t, MW; PW

i,t is the output of wind power stations i in
period t, MW; and PS

j,t is the output of solar power station i in
period t, MW.

The forecast output error of the wind power plant and solar
power plant is converted into the output error coefficient.

εAWt � PAW,a
t − PAW,f

t

PAW,f
t

(3)

εASt � PAS,a
t − PAS,f

t

PAS,f
t

(4)

where εAWt and εASt are the forecast output error coefficients of the
wind power and solar power at time t, respectively; PAW,a

t and PAS,a
t

are the actual output of wind power and solar power at time t,
respectively; and PAW,f

t and PAS,f
t are the forecast output of wind

power and solar power at time t, respectively.
Describing the uncertainty of wind and solar output reasonably

is important for building a hybrid hydro-wind-solar complementary
model. The Gaussian mixture model (GMM) is a kind of non-
parametric estimation method. Compared with the parameter
estimation method, it can theoretically describe any distribution.
Compared with the kernel density estimationmethod, the GMM can
avoid the bandwidth setting effect on the accuracy of the results.
Therefore, in this paper, the GMM is adopted to describe the output

uncertainty of wind and solar power. Given a random variable x, the
expression for the Gaussian distribution is:

f x丨μ, σ( ) � 1����
2σ2π

√ e−
x−μ( )2
2σ2 (5)

The essence of the GMM is a simple linear combination of
multiple Gaussian distributions, and its expression can be
described as:

p x( ) � ∑N
n�1

ωnφ x丨μn, σn( ) (6)

where p(x) is the probability distribution of x. ωn is the weight
coefficient, ∑N

n�1ωn � 1. Using the maximum likelihood estimation
method, the parameters ωn, μn, and σn can be determined.

2.2 Objective

With large-scale integration, the intermittent wind and solar
power and the anti-peaking characteristics of wind power will
challenge the peak shaving of the system. To meet the peak
shaving requirements and balance the influence of wind and
solar uncertainty, the flexible adjustment of hydropower output
will cause frequent changes in downstream outflows and water level,
which will directly affect navigation. Therefore, in this paper, peak
shaving is considered the target of the hybrid hydro-wind-solar
hybrid system:

minF x( ) � f1 x( ), f2 x( )[ ]T (7)

f1(x) represents the peak shaving target. Under certain
conditions of incoming water, the goal of the hydro-wind-
solar coordinate peak-shaving operation is to minimize the
fluctuation of the residual load so that the residual load can
be as smooth as possible. Therefore, the mathematical expression
of the peak shaving target can be set to minimize the residual load
variance:

f1 x( ) � min
∑T

t�1 Rt − �R( )2
T

{ } (8)

Rt � Ct − Pt (9)
�R � ∑T

t�1Rt

T
(10)

Pt � ∑M
m�1

PH
m,t + PAW,f

t + PAS,f
t (11)

PH
m,t � g Hm,t, qm,t( ) (12)

where Rt is the residual load in the t period, MW. Ct is the
original load of the grid. �R is the average residual load. Pt is the
sum of the output of the hybrid hydro-wind-solar system at
Period t. PAW,f

t is the predicted output of the virtual wind plant at
period t., MW. PAS,f

t is the predicted output of the virtual solar
power plant at period t. PH

m,t is the output of the m hydropower
station at period t. m is the serial number of hydropower station,
m � 1, 2, . . . , M. Hm,t is the water head of hydropower station m
at period t. qm,t is the power generation flow of hydropower
stationm at period t. g(·) is the output calculation function of the
hydropower station.
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f2(x) is the navigation target. The goal of navigation focuses on
the elevation and variation in the downstream water level.
Therefore, the minimum of the downstream water level change
variance is taken as the objective function:

f2 x( ) � min
∑T

t�1 Zdown,t − �Zdown( )2
T

{ } (13)

where Zdown,t is the downstream water level of the downstream
hydropower station m at period t, m. �Zdown is the mean value of
the downstream water level of the downstream hydropower
station.

2.3 Constraints

2.3.1 System constraints
a) Constraints of hydro-wind-solar complementarity
Since wind and solar power are uncertain and difficult to

forecast accurately, chance constraints are introduced to use
hydropower flexibility to complement wind and solar power
output uncertainty.

Pr ∑M
m�1

PH,max
m,t − σ*Ct + PAW,a

t + PAW,a
t ≥Pt

⎧⎨⎩ ⎫⎬⎭ ≥ ϑ1 (14)

Pr ∑M
m�1

PH,min
m,t + σ*Ct + PAW,a

t + PAW,a
t ≤Pt

⎧⎨⎩ ⎫⎬⎭ ≥ ϑ2 (15)

Eqs 14, 15 represent positive and negative output complement
constraints, respectively. In these equations, Pr ·{ } represents the
probability, and PH,max

m,t is the upper output limit of hydropower
station m at period t. PH,min

m,t is the lower output of hydropower
station m at period t. ϑ1 and ϑ2 are confidence levels.

b) Hybrid system reserve capacity requirements are satisfied
with hydropower and can be expressed as a percentage of the power
demand:

∑M
m�1

PH,max
m,t − PH

m,t( )≥ σ × Ct (16)

∑M
m�1

PH
m,t ≥ σ × Ct (17)

where σ is the reserve capacity percentage factor.

2.3.2 Hydropower constraints
a) Mass balance constraints:

Vm,t+1 � Vm,t + Sm−1,t−τm + Qm,t − Sm,t( ) ×Δt (18)
Sm,t � qm,t + dm,t (19)

where Vm,t is the storage of hydropower station m at period t. Qm,t,
Sm,t, qm,t, and dm,t are the natural incremental inflow, total
discharge, turbine discharge and spillage of hydropower station
m at period t respectively. τm is the water transportation time
from reservoir m − 1 to m. Δt is the time period duration.

b) Simultaneous regulation constraints:
For all hydropower stations in the same cascade hydropower

system, the output in each period usually has the same trend of
change.

PH
m,t+1 − PH

m,t( ) PH
j,t+1 − PH

j,t( )≥ 0 (20)

c) Reservoir storage constraints:

V−m,t ≤Vm,t ≤V+m,t (21)
where V−m,t and V+m,t are the lower and upper storage bounds of
hydropower station m at period t, respectively.

d) Total discharge constraints:

S−m,t ≤ Sm,t ≤ S+m,t (22)
where S−m,t and S+m,t are the lower and upper bounds of the total
discharge of hydropower station m at period t.

e) Turbine discharge constraints:

q−m,t ≤ qm,t ≤ q+m,t (23)
where q−m,t and q+m,t are the lower and upper bounds of the turbine
discharge of hydropower station m at period t.

f) Initial storage and expected final storage and constraints:

Vm,T ≥Vm,end (24)
Vm,0 � Vm,beg (25)

where Vm,end is the initial storage volume of hydropower station m.
Vm,beg is the initial storage volume of hydropower station m.

g) Navigation constraints:

Zdown
m,t − Zdown

m,t+1
∣∣∣∣ ∣∣∣∣≤ω1, t � 1, 2, . . . , T − 1 (26)

max
1≤ t≤T

Zdown
m,t{ } − min

1≤ t≤T
Zdown

m,t{ }≤ω2 (27)
Zdown

m,t ≥Z
down

m
(28)

where Zdown
m,t is the downstream water level of the hydropower

station at period t, m. Zdown
m is the minimum downstream water

level of the downstream hydropower station specified by the
navigation requirements, m; ω1 and ω2 are fixed values selected
according to the downstream waterway standard.

h) Water level-storage capacity function:

Zup
m,t � fZV

m Vm,t( ) (29)
where fZV

m (·) represents the water level-storage capacity calculation
function. Zup

m,t is the water level of hydropower stationm at period t.
i) Downstream water level-discharge function:

Zdown
m,t � fZS

m Sm,t( ) (30)

where fZS
m (·) represents the downstream water level-discharge

function.

3 Solution method

3.1 Hydro-wind-solar complementary
constraint processing

In this paper, the GMM is used to analyze the distribution of
output error coefficients of wind power and solar power plants. The
Gaussian mixture model (GMM) is a kind of non-parametric
estimation method, it can theoretically describe any distribution.
Literature (Pöthkow and Hege, 2013) compared the extract
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uncertainty contour line effects of the non-parametric models with
Gaussian, and observed that Non-parametric models have good
feasibility for various data sets. Therefore, it has widely used in
uncertainty description for diverse applications (Potter et al., 2009;
Mihai and Westermann, 2014), and compactly model relatively
complex distributions (Liu et al., 2012).With the historical
forecast and actual output coefficient data of the solar and wind
power plant, the deviation value between the actual and the
forecasted output coefficient can be calculated. The GMM is used
to fit the deviation value data of the output coefficient, and the
probability density function (PDF) p(x) of the output error
coefficient x is obtained as shown in Figure 1.

From the PDF graph of the output errors of the solar power
plant and the wind power plant, the output coefficient deviation
value can be obtained given the confidence interval [0.05, 0.95].
ρAW,min
t , ρAW,max

t , ρAS,min
t , and ρAS,max

t correspond to the endpoints
of the confidence interval [0.05, 0.95] at each moment, and the
upper/lower limit of the wind and solar output at each moment can
be calculated:

PAW,min
t � 1 + ρAW,min

t( )*PAW,f
t (31)

PAW,max
t � 1 + ρAW,max

t( )*PAW,f
t (32)

PAS,min
t � 1 + ρAS,min

t( )*PAS,f
t (33)

PAS,max
t � 1 + ρAS,max

t( )*PAS,f
t (34)

where PAW,min
t , PAW,max

t , PAS,min
t , and PAS,max

t are the lower limit of
the wind power output range, the upper limit of the wind power
output range, the lower limit of the solar output range and the upper
limit of the solar output range during period t, respectively.

Confidence in chance constraints (14) and (15) represents the
probability that the power gird can consume all the wind and solar
power, and whether the constraints are established is affected by the
wind and solar forecast error. The chance constraint (14) means that
when the hydropower is at its maximum value, the probability that
the actual output of the hydro-wind-solar system is greater than the
forecast output should be greater than the confidence. If the actual

output of the wind and solar power is too small, the constraint may
be destroyed. Therefore, the minimum output PAW,min

t of wind
power and the minimum output PAS,min

t of solar power within the
confidence level ϑ1 can be found through the CDF of wind and solar
power forecast error. The opportunity constraint (14) can be
transformed into that when the sum of wind power and solar
power output is PAW,min

t + PAS,min
t , the output of the hydro-wind-

solar system meets the requirements:

∑M
m�1

PH,max
m − σ × Ct + PAW,min

t + PAS,min
t ≥Pt (35)

The chance constraint (15) means that when the hydropower is
at the minimum value, the probability that the actual output of the
hydro-wind-solar system is less than the forecast output should be
greater than the confidence. If the actual output of scenery is too
large, the constraint may be destroyed. Similarly, the opportunity
constraint (15) can be transformed into that when the sum of wind
power and photovoltaic output is PAW,max

t + PAS,max
t , the output of

the hydro-wind-solar system meets the requirements:

∑M
m�1

PH,min
m + σ × Ct + PAW,max

t + PAS,max
t ≤Pt (36)

3.2 ε − constraint method

The ε − constraint method simplifies the problem by retaining
only one primary objective function and transforming the remaining
objective functions into constraints (Mavrotas, 2009; De Santis et al.,
2022); moreover, this method has been widely used in the solution of
multi-objective models (Biswas et al., 2018; Fathipour and Saidi-
Mehrabad, 2018). Compared with the weighted method, the ε −
constraint method has a smaller search range and better
performance in efficiently finding the Pareto front solution.
Regarding the dual-objective optimization problem of finding the
minimum value, its mathematical description is as follows:

FIGURE 1
The PDF of the wind power plant output forecast error (A) and solar power plant output forecast error (B) of a typical period.
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min f1 x( ), f2 x( )( )
s.t. Ax≤ b{ (37)

where A is a matrix of appropriate dimensions; and b is a column
vector of appropriate dimensions.

For the dual objective, if Objective f1(x) can be regarded as the
primary objective function, then Objective f2(x) is transformed
into the constraints of f1(x). The specific operation steps are as
follows:

Take f1(x) as the objective function, find its minimum value
f1

min under the original constraints, and find the value of f2(x) at
this time, which is regarded as the feasible maximum value f2

min of
f2(x). The solution model required for this step is:

minf1 x( )
s.t. Ax≤ b{ (38)

Take f2(x) as the objective function, and find the minimum
value f2

min of f2(x) under the original constraints. The range of
f2(x) is [f2

min, f2
max]. The solution model required for this step is:

minf2 x( )
s.t. Ax≤ b{ (39)

Take K points εk(k ∈ 1, 2, . . . ,K) in [f2
min, f2

max], and generate
K new constraints: f2(x)≤ εk.

Take f1(x) as the objective function and add the new
constraints to the constraints. After the calculation is performed,
K result arrays (f11, f21)、(f12, f22) . . . (f1k, f2k) can be
obtained, that is, the approximate Pareto maximum excellent
Frontier. The solution model required for this step is:

minf1 x( )
s.t. Ax≤ b
f2 x( )≤ εk

⎧⎪⎨⎪⎩ (40a)

4 Case study

4.1 Background information

Yunnan Province is located in southwest China. In this region,
with sufficient rainfall occurs, and several large rivers travels
through, can be found. Yunnan province is endowed with
abundant hydropower resources. In late 2022, the hydropower
installed capacity in this region surged to 78.02 GW. This value
is close to the hydropower installed capacity of Canada, which is the
world’s third largest hydropower capacity. In addition, Yunnan
Province is rich in renewable energy. In late 2022, wind power
and solar power has surged to 8.83 and 4.17 GW respectively.
However, there is very large potential for expanding wind and
solar power resources, since the developed capacity accounts for
only 5% of the developable capacity. According to the “New Energy
Construction Plan of Yunnan Province in 2022” issued by Yunnan
Province, Yunnan will accelerate the development of wind and solar
power in the next few years. Since wind and solar power generation
is depend on the weather, Yunnan is facing challenges of broad-scale
renewable energy consumption and power grid peak shaving
brought by the broad-scale integration of VREs. Therefore, using
the flexibility of hydropower to achieve the multi-energy

complementation of hydro-wind-solar power is one of the best
ways for Yunnan to achieve large-scale consumption of VREs.

As shown in Figure 2, the Jinghong hydropower station and the
Ganlanba hydropower station are both located in Jinghong City,
Xishuangbanna Prefecture, Yunnan Province. They are the last two
hydropower stations in the Lancang/Mekong River before flow out
of China. Due to Jinghong’s rated flow and the restriction of
downstream channel conditions, Jinghong’s adjustment of power
generation flow will cause large fluctuations in downstream water
level and flow, which will adversely affect navigation. To solve this
problem, the main development task of the yet-to-be-constructed
Ganlanba hydropower station is to provide reverse regulation for the
Jinghong hydropower station to meet the downstream navigation
requirements. Therefore, the Jinghong-Ganlanba cascade
hydropwer station must undertake complex comprehensive
utilization tasks. Considering Yunnan’s ever-increasing renewable
energy construction plan, this cascade system will also undertake the
severe task of VRES complementarity. Therefore, it is required to
find a reasonable operation mode considering the conflicting
objectives of generation and navigation. In this paper, the
Jinghong-Ganlanba cascade hydropower stations are taken as the
background. The load curve, interval runoff, initial and final water
levels, and other conditions involved in the calculation process refer
to the actual operating data of the power grid and power station, as
shown in Supplementary Table S1.

In this paper, a non-linear model is built, where a quadratic
polynomial fitting function is used to express the water level-storage
function and tail water level-discharge function. The model was
solved using Lingo18.0.

According to Section 2.1, all wind power plants in the same
region are considered as one wind power plant with the installed
capacity of 208.5 MW and a solar power plant with the installed
capacity of 300 MW. Figure 3 illustrates the typical wind and solar
power daily output during the dry season (January, February, and
March) of the lower reaches of the Lancang River, which were
chosen to evaluate the scheduling situation of cascade hydropower
stations under difficult conditions.

4.2 Analysis of the results

Since Ganlanba has not been constructed, three cases are
considered to analyze the impact of the construction of the
Ganlanba on the overall results and the impact of the navigation
requirements on the separate operation of the Jinghong hydropower
station: 1) Case 1: only the Jinghong hydropower plant is considered
in the hybrid hydro-wind-solar complement operation model, but
does not take navigation constraints into account; 2) Case 2: only the
Jinghong hydropower plant is considered and takes navigation
constraints into account and 3) Case 3: both Jinghong and
Ganlanba are considered, and navigational constraints are also
taken into account.

Figure 4 and Supplementary Table S2 show the distribution and
range of the Pareto front for the three cases which reflect the conflict
between the two objective functions. The rectangular area in Figure 4
marks solutions at the turning part of the Pareto front, which are
hydropower output processes that can better meet the requirements
of peak shaving and navigation at the same time. Under the
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experimental conditions, the Pareto front turning of the cascade
solution is more obvious, indicating that it can moderate the conflict
more effectively. Because the navigation constraints limit the output
of Jinghong, the range of feasible solutions is reduced, and even
some solutions with good peak-shaving effects turn into infeasible
solutions.

Figure 5 illustrate the differences of solutions on the Pareto front for
Case1 and show the changes in the output and water abandonment
under Case1, respectively, by selecting different downstream water level
variance limits (f2 = 1.4, 1.0, 0.6, 0.2, 0.01, 0.0001). When the target

requirements for f2 tighten, Jinghong’s discharge adjustment ability is
restricted, which result in Jinghong abandoning water for peak shaving.
For Case1, the peak shaving and navigation task requirements cannot
be achieved at the same time.

In the Pareto front of Case 1, three scenarios of f2 � 1, f2 � 0.5,
and f2 � 0.01 are selected as the solution that prefers a better peak
shaving effect, the neutral case, and the solution that prefers a better
navigation effect, respectively. These three points can effectively
compare the gaps in peak regulation and navigation between these
cases, as shown in Supplementary Table S3.

FIGURE 2
Schematic diagram of the hydropower station locations.

FIGURE 3
The typical time output coefficient of solar and wind power plant.
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FIGURE 4
Comparison of the Pareto front in different cases.

FIGURE 5
Comparison of (A) Jinghong's output and (B) abandoned water without navigation constraint.
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Supplementary Table S3 summarizes the eigenvalues of each
case. It is obvious that under the same f2, Case 3’s peak shaving
impact is superior based on the peak-to-valley difference of the
residual load. Since the target f1 tends to reduce the hydropower
output at the load valley, the hydroelectric plant can only supply

reserve capacity at the load valley leaving a constant minimum load
at 6178.285 MW. Figure 6 show the output and water abandonment
of Case 3 under three f2 conditions. From Figure 5, 6, it can be
concluded that: 1) in Figure 6, the output of Ganlanba slightly
changes under different f2 conditions, which indicates that

FIGURE 6
Cascade (A) hydropower station output and (B) abandoned water flow under different downstream water level variance targets.

FIGURE 7
Comparison of the downstream water level (navigation) when f2 = 0.01.
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Ganlanba has a weak adjustment ability and is mainly responsible
for navigation tasks. Therefore, Figure 5, 6 show that with the
addition of Ganlanba, Jinghong’s adjustment capacity can be
unleashed, and a better result can be obtained. 2) Figure 5, 6 also
show that Ganlanba’s participation can significantly reduce the
abandoned water for peak shaving, which may successfully
address conflicting objectives of peak shaving and navigation.

Figure 7 shows the downstream water levels before and after
the addition of Ganlanba and displays the affected navigation due
to Ganlanba’s involvement. When the downstream water level
variance is set to 0.01, the corresponding solution of Case 3 is
located at the turning point of the Pareto front. In Figure 7, the
Pareto front of Case 2 also has a corresponding solution, which
can be compared. Without Ganlanba, the navigable water level is
maintained at 537 m for 1/3 of the time, which indicates that the
downstream channel barely meets the navigation requirements.
For Case 3, the Ganlanba’s addition lowers the expense of
maintaining navigation, and it maintains the navigation
target’s ideal value between 529.45 m and 529.78 m. The safety
of downstream navigation has been further assured compared to
the minimum water level requirement of 525 m downstream of
the Ganlanba.

In conclusion, the Ganlanba hydropower plant can successfully
reduce the tension between peak shaving and navigation, address the
issue of water abandonment for peak shaving, and raise the level of
safety for downstream navigation.

5 Impact analysis of the wind and solar
output

Due to the randomness and uncontrollability of the wind and
solar output, in actual operation, the real output of wind and solar
power usually deviates from the predicted value. In this section, to
analyze the influence of wind and solar power uncertainty on
scheduling, 1) the residual load under various wind and solar
output conditions is compared to analyze the influence of with/
without considering hydro-wind-solar complementary constraints
on the calculation results of the dual-objective model. 2) The
hydropower output under various wind and solar capacity
scenarios is evaluated to examine the impact of wind and solar
power scale on the calculations of the dual-objective model.
Therefore, 1,000 wind and solar output scenarios were generated
by using the Monte Carlo method. Among the seven cases selected
in Section 4.2, Case 3 (f2 � 0.01) works best. Thus, f2 � 0.01 in the
cascade system is taken as an example.

5.1 Influence of the wind and solar
uncertainty on the peak shaving effect

Literature (Shen et al., 2021) proposes that the load
fluctuation coefficient can be used to evaluate the peak
shaving effect, and the revised index mainly reflects the overall
smoothness of the load curve, which is better than the
visualization effect of the residual load mean square error.
Therefore, in this paper, this index is used to reflect the peak
shaving effect in different scenarios:

α �

���������������
1
T
∑T

t�1 Rr,t − Rr( )2
√

Rr

(40b)

where, Rr,t is the residual load of the scenario at the period t; and Rr

is the average residual load of the scenario r, with r � 1, 2, . . . , 1000.
In Case 3, the actual operation of the cascade is simulated

under two conditions: one condition with complementary
constraints for the solar and wind output (Eqs 33, 34) and the
other condition without such constraints. When there is no
hydro-wind-solar complement constraint, the residual load in
each scenario is:

Rr,t � Ct − ∑M
m�1

PH
m,t − Pr,t (41)

Pr,t � PAW
r,t + PAS

r,t (42)
where, Rr,t is the residual load of the r th scenario at period twithout
hydro-wind-solar complement constraints; PH

m,t is the output of
hydropower station m at period t; Pr,t is the wind and solar power
output of the scenario r at period t; PAW

r,t , PAS
r,t represent the wind and

solar power output of scenario r at period t respectively.
When considering the hydro-wind-solar complementary

constraint, here are the residual loads for each scenario:

Rr,t �
Rt, Pr,t <Pr,t

max and Pr,t >Pr,t
min

Rt + Pr,r − Pr,t
max( ), Pr,t >Pr,t

max

Rt + Pr,t − Pr,t
min( ), Pr,t <Pr,t

min

⎧⎪⎨⎪⎩ (43)

Pt
max � PAW,max

t + PAS,max
t (44)

Pt
min � PAW,min

t + PAS,min
t (45)

where Pt
max is the upper limit of the range for the sum output of

wind and solar; and Pt
min is the lower limit of the range for the sum

output of wind and solar.
Through Eqs 40–45, the residual load under 1,000 simulation

scenarios was carried out, and the distribution of the load
fluctuation coefficients is shown in Figure 8. It is obvious that
considering hydro-wind-solar complementarity can effectively
control the residual load fluctuation in real operation where
actual wind and solar power deviate from the forecast value. In
summary, hydro-wind-solar complement operation can effectively
reduce the adverse impact of wind and solar uncertainty on the
peak shaving results.

5.2 Influence of the wind and solar
uncertainty on the navigation

Under the condition of fixed hydropower output and without
providing wind and solar reserve capacity, the navigation effect will
not be affected by VRE when actual wind and solar output deviate
from the forecast value. In the case of hydro-wind-solar complement
operation, the part of the output deviation between the upper and
lower limits of the reserve capacity needs to be absorbed by changing
the hydropower output. Due to the small adjustment capacity of
Ganlanba, in this situation, Jinghong is required to undertake the
adjustment tasks. Since the navigation is determined by the
discharge of Ganlanba, the picture A of Figure 9 shows the
maximum and minimum water levels of the Ganlanba reservoir
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and the upper limit and lower limit water levels of the Ganlanba
reservoir under 1,000 scenarios. In all scenarios, Ganlanba
reservoir’s water level will not exceed its limit, which means that
when wind and solar forecast errors cause the upper reservoir
outflow to change, Ganlanba has sufficient adjustment capacity to

address it. The picture B of Figure 9 shows the downstream water
level variance of Ganlanba Reservoir under 1,000 scenarios. The
mean square deviations of the downstream water level in most
scenarios are smaller than the predicted situation, and a few are
slightly larger than the predicted situation. However, the difference

FIGURE 8
Comparison of the residual load fluctuation coefficient under different scenarios.

FIGURE 9
(A) Water level extremum and (B) downstream water level variance of the Ganlanba reservoir.
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is small and negligible. This demonstrates that Ganlanba can
maintain navigational conditions despite VREs’ forecast errors.

That is, wind and solar uncertainties have little effect on
navigation.

5.3 The influence of the expanding wind
power and solar power scale on hydro-
wind-solar complementarity

In this section, different wind and solar power installed capacity
scales are selected to explore their impact on the simulation results.
There shows four wind and solar power scales. Scenario 1 elects solar
power scales of 300 MW and wind power scales of 208.5 MW, which
are the wind and solar installed capacity in 2020. Referring to the
“List of New Energy Projects in the 14th Five-Year Plan of Yunnan
Province,” Xishuangbanna will add 1.43 GW of solar power during

the “14th Five-Year Plan” period. However, no wind power projects
are planned. Scenario 2 sets the estimated installed capacity of solar
and wind power in 2025 as 1730 and 208.5 MW. Scenario 3 sets the
projected installed solar and wind capacity in 2030 as 3160 and
208.5 MW, and the growth rate is consistent with that in Scenario 2.
Scenario 4 doubles the wind-power capacity installed based on
Scenario 3, and sets the estimated installed capacity of solar and
wind power as 3160 and 417 MW.

Figure 10 shows the residual load curves of each scenario, and
Figure 11 shows the hydropower output gap between Scenario 1 and
Scenario 2, 3 and 4, in which a negative value indicates that
hydropower output will decrease as solar/wind power output
increases, while a positive value indicates the opposite. As shown
in these two figures, for Scenario 2 and 3, when solar power output
increases, the residual load reduce from 8:30 to 20:00, and
hydropower will reduce output during the load saddle periods
and uses the saved water to increase the output during the load

FIGURE 10
Residual load of scenarios.

FIGURE 11
Hydropower output difference between scenarios 2,3,4 and 1.

Frontiers in Energy Research frontiersin.org12

Liu et al. 10.3389/fenrg.2023.1193415

2827

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1193415


peak periods. This is because solar power is mainly generated during
the daytime which is the load saddle, and hydropower adapts to
achieve hydro-solar complementarity and improve the peak shaving
effect. The simulation results of Scenarios 2 and 3 in Supplementary
Table S4 also prove that increasing the output of solar power has a
positive effect on the peak shaving of the model.

As shown in Table 4, the peak-to-valley difference of the
residual load increases from Scenario 3 to Scenario 4. This is
because hydropower has reached the best peak shaving
performance in Scenario 3. When the wind power capacity is
increased from Scenario 3 to Scenario 4, the hydropower output
changes little with the change of reserve capacity, as shown in
Figure 11, and helps little in further peak shaving. Therefore, with
the increase in wind power capacity, although both the residual
peak load and valley load decrease, as the anti-peak characteristic
of wind power shows in Figure 3., the peak-valley difference will
increase.

Figure 11 shows that the hydropower output changes little,
which means that the outflow of hydropower changes little. From
Scenario 1 to Scenario 4, the increase in wind power and solar power
scale will not have a large negative impact on navigation.

In summary, during the dry season, the increase in the scale of
solar power output has a positive impact on the peak shaving of the
hydro-wind-solar complementarity system; in contrast, wind power
tends to have a negative impact on peak shaving.

6 Conclusion

Grid-connected VRE can be effectively solved by a coordinated
development of hydro-wind-solar. However, there are conflicting
relationships among the multiple tasks undertaken by hydropower
stations. To ease the contradiction between multi-energy
complementarity and comprehensive utilization tasks of
hydropower stations, a hydro-wind-solar coordination scheduling
model that takes both peak shaving and navigation objectives into
account is established in this study. Conclusions can be drawn
through the verification and analysis of an actual case study:

1) A Pareto front that considers the objectives of peak shaving and
navigation is developed by applying the model to Jinghong-
Ganlanba cascade hydropower station dispatching. The case
study results show that there is an obvious turning point in
the Pareto front of the cascade hydropower station, where the
solution has a better effect of reconciling contradictions, which
means that the conflict between the complement operation with
VRE and comprehensive utilization can be reconciled or relieved
with an appropriate method.

2) Hydropower station cooperation is very important for achieving
multiple objectives. The case studies show that only Jinghong is
unable to cope with task conflicts, and it is prone to the problem
of water abandonment for peak shaving. The addition of
Ganlanba not only eases task conflicts and Jionghong’s peak
shaving ability but also helps reduce water abandonment.

3) Reasonable planning of wind power and solar power is important
to make full use of hydro-wind-solar power complementary
ability. The case study shows that, within the range of

hydropower that can offer enough complement reserve
capacity for wind and solar power, an increase in the solar
power capacity has a positive impact on peak shaving, while
an increase in wind power has a negative impact. To reconcile the
needs of peak regulation and navigation, the development of
wind and solar power within the range of complementary reserve
capacity offered by hydropower is very important.
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The operational range of a wind turbine is typically divided into two regions based
on wind speed: below and above the rated wind speed. The turbine switches
between these two regions depending on the prevailing wind speed; however,
during the transition, the generatormay undergo transient shocks in torque, which
can negatively impact both themechanical load of the turbine and the reliability of
the power system. This article presents a flexible torque control method for wind
turbines, specifically designed to handle the transition between wind speed
regions when the turbine is participating in frequency regulation. First, the
anomalies in generator torque caused by traditional torque control methods
during frequency response scenarios are analyzed. Next, two
methods—dynamic deloading and flexible torque control—are developed to
address these issues. The developed methods set transition regions based on
generator speed, which helps to reduce the impact of transient changes in
generator torque. Importantly, the addition of transition regions does not
require additional feedback, making the controller easy to implement. The
response characteristics of the proposed methods are then analyzed under
different deloading factors and wind speeds using model linearization.
Simulation studies are presented to verify the effectiveness of the proposed
methods. Overall, this study demonstrates the potential value of flexible torque
control methods for wind turbines, which can help tomitigate the negative impact
of torque shocks and improve the reliability and efficiency of wind power systems.

KEYWORDS

flexible torque control, frequency response, wind turbine control, deloading control,
frequency regulation

1 Introduction

With the increasing integration of wind energy, the frequency stability of power systems
has been falling (Wang et al., 2023; Xue et al., 2022). However, the participation of wind
turbines in frequency response through overspeed control can significantly improve
frequency stability (Xiong et al., 2022a; Yang et al., 2022). Due to the randomness of
wind speed and system frequency, and the increase in complexity of the control system with
the introduction of the frequency control loop, the control system plays a significant role in
wind energy conversion systems (Boyle et al., 2021; Xiong et al., 2023). In terms of wind
turbine control without consideration of frequency response, the control system includes
constant power control above the rated wind speed, power tracking control below the rated
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wind speed, and regional switching control under the prevailing
wind speed (Suna et al., 2020; Xiong et al., 2022b). However, the
introduction of a frequency response control loop makes the
traditional switching control inapplicable, which causes abnormal
fluctuations of generator torque and increases mechanical load. In
addition, this causes abnormal output power fluctuations and
damages the frequency stability of the system (Wang et al.,
2020). Therefore, flexible torque control of wind turbines
requires investigation, considering frequency response under
wind speeds that cross the regions of operation.

Whether the wind speed is above or below the rated wind speed,
the wind turbine control and corresponding frequency response
methods proposed by scholars can allow for stable operation of the
wind turbine. When the wind speed is lower than the rated wind
speed, a control approach has been proposed to provide an emulated
inertial response when the wind turbine is operating at the
maximum power point. The proposed method mitigates the
antagonistic interaction between maximum power point tracking
(MPPT) control and inertia control (Bastiani and Vasques de
Oliveira, 2021). An inertial power-based perturb and observe
method has been proposed for MPPT control of wind turbines.
The dynamical performance is increased by accurately identifying
the maximum power point with high performance, either in the
transient or in the steady state (Karabacak, 2019). A robust finite-
time controller based on the Lyapunov function has been proposed
to improve the transient performance of wind turbine speed-
tracking and the robustness of the controlled system
(Shotorbania et al., 2019). Finally, sliding mode control has been
proposed to control MPPT, with aerodynamic torque being
observed to mitigate the vibrations of the wind turbine (Pan and
Shao, 2020).

When the wind speed is above the rated wind speed, a gain
scheduled pitch controller has been designed by solving linear
matrix inequalities and is used for stability control of the wind
turbine (Bundi et al., 2020). An application of neural network-based
model predictive control is presented to offer a stable response to
frequency changes and significantly enhance the capability of
reference tracking of the wind turbine (Kayedpour et al., 2022).
In addition, the two-degree-of-freedom robust individual pitch
controller is proposed to reduce loads in the above-rated region
(Tang et al., 2022).

When the wind speed is around the rated wind speed (prevailing
wind speed), the current model of switching control does not
consider the frequency response of the system. The stability
criteria for the switching operation of wind turbines are analyzed
using second-order linear systems under the non-linear control
framework (Palejiya et al., 2015). A bumpless transfer scheme
has been presented to reduce the associated power fluctuation
and fatigue loading (Chen et al., 2016). A method has been
proposed to protect the wind turbine against the impulses and
intense oscillations involved in switching between the different
regions (Ali and Moradi, 2020). A method for adaptive envelope
protection control of wind turbines under varying operational
conditions has been proposed by Sahin and Yavrucuk (2022). A
linear parameter-varying anti-windup controller has also been
proposed to improve the transition between low- and high-wind
speed operations (Inthamoussou et al., 2014). Additionally, it has
been proposed that the dynamic switching transient be driven by

predefined wind speed crossing events in order to mitigate step
generator torque fluctuation (Xing et al., 2019). It can be noted that
these recently proposed switching control methods focus only on a
model of wind turbine control that does not participate in and is not
applicable to frequency response.

To enable the application of switching control to frequency
response, this article proposes a flexible torque control method for
wind speed crossing regions. First, the phenomenon in which the
traditional method for frequency regulation causes transient shocks
to generator torque in the wind speed crossing region is analyzed.
Next, the region around the prevailing wind speed is divided into
transition regions of operation. Dynamic deloading and flexible
torque control methods are proposed to allow flexible generator
torque transfer at wind speeds around the prevailing wind speed.
Finally, the dynamic characteristics of the proposed method are
analyzed through linearization of the model and the effectiveness of
the proposed method is verified by simulation.

The main contribution of this article is the proposal of a control
scheme that provides flexible switching control under the wind
crossing region, which is suitable for frequency regulation. Unlike
conventional switching control methods, under this approach,
generator torque is unaffected by the wind speed crossing region
and frequency response. Wind turbines can provide stable generator
and power output, which mitigates wind turbine vibration and
improves frequency stability.

The remainder of this paper is organized into five sections.
Section 2 provides an overview of conventional frequency regulation
methods and discusses the abnormal torque fluctuation caused by
the conventional method. Section 3 presents the proposed dynamic
deloading and flexible torque control scheme, which overcomes the
problems associated with conventional frequency control when
applied under the wind speed crossing region. The results of the
case studies are presented and analyzed in Section 4. Finally, Section
5 presents the conclusions drawn from the findings and identifies
avenues for future research.

2 Problem description

In this section, the dynamic model of wind turbines is first
described, the traditional torque and pitch control methods are
introduced, and the frequency response method based on traditional
torque control is also introduced. Finally, the problem is introduced,
namely, that the frequency response of wind turbines under the
conventional control method causes transient shocks to generator
torque.

2.1 Dynamic modeling and control of wind
turbines

The mechanical energy captured by the wind turbine is
evaluated by Eq. 1. The rotor and generator are defined as in Eqs
2, 3.

Pmec � 0.5ρπR2v3CP ωr, v, θ( ), (1)
_ωr � 1

Jr
Ta − ηgTg( ), (2)
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ωg � ηgωr, (3)

where Pmec is the mechanical power (W), ρ is the air density (kg/m3),
v is the wind speed (m/s), R is the length of the blade (m), ωr is the
rotor speed (rad/s), ωg is the generator speed (rad/s), Cp is the power
coefficient, θ is the pitch angle (deg), Ta is the rotor torque (Nm), Tg

is the generator torque (Nm), and ηg is the gearbox ratio.
To ensure that the wind turbine runs stably and to maximize

the power output, many control methods have been proposed.
Torque control (short for generator torque control of the wind
turbine) can be divided into two regions according to wind speed,
as shown in Figure 1. This torque control method is well-used
and has been reported on by many scholars (Grunnet et al., 2010;
Zhao et al., 2015; Zhao et al., 2017; Zhang et al., 2018; Wang et al.,
2021; Wang et al., 2022). Region 1 is defined as the region where
wind speed is below the rated wind speed, referred to as the
partial-load region. In this region, the most commonly used
control method in engineering is the look-up table method,
employed to ensure that the wind turbine runs stably while
processing MPPT. For simplification for the purpose of this
study, the look-up table method can be simplified to Eq. 4.
Region 2 is that the region where wind speed is above the
rated wind speed, referred to as the full-load region. In this
region, the main objective of torque control is maintaining a
constant output power. The control method is expressed in Eq. 5.
Furthermore, to limit the capture of wind energy in region 2,
pitch control is activated, as determined by Eq. 6.

Tg1 � koptω
2
g , (4)

Tg2 � Prated

ωg
, (5)

θref � max
180
π

kp + ki
s( ) ωg − ωgN( )

ka1θref + ka2
, 0⎛⎝ ⎞⎠, (6)

where kopt is the generator control factor; Prated is the rated power
(W); Trated is the rated generator torque (Nm); θref is the reference
pitch angle (deg); kp and ki are the proportional and integral gains of

the PI controller, respectively; ωgN is the rated generator speed (rad/
s); and ka1 and ka2 are gain coefficients related to the pitch angle.

It is worth noting that transition between the torque control
regions is mainly judged based on the generator speed, but is also
related to the captured power and pitch angle. The switching
generator speed is set to speed ωs3 instead of the rated speed, as
shown in Figure 1, which can enable advanced integration of the
pitch angle to maximize the operational stability of the wind turbine.
It can be seen that torque control is divided into two regions: Eqs 4,
5. In the conversion between regions, judgment of the generator
speed is significant, and the set speed ωs3 is usually slightly lower
than the rated speed. Figure 2 depicts the speed and torque of the
generator during the transition between various operating regions of
the wind turbine if the set speed ωs3 is the rated rotational speed, and
in the absence of frequency response. It can be seen that when the
generator speed crosses the set point, the generator torque crosses
between different operating regions. Since the problem of transition
in generator torque crossing is considered in the design of the
traditional control method, the actual output generator torque
shown in Figure 2 is smooth.

FIGURE 1
Generator torque control under different regions [ωs1, ωs2, and
ωs3 are the set generator speed (rad/s)].

FIGURE 2
Generator speed and torque during the transitions between
various operating regions.

FIGURE 3
Mechanical power at different rotor speeds at zero-pitch angles.
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2.2 Frequency response method based on
speed control

Adjustment of wind turbine speed can change the power captured.
Figure 3 shows the mechanical power captured at different rotor speeds
at a zero pitch angle. It can be seen that the wind turbine attains
maximum power (Popt) only when the rotor reaches a specific speed
(ωopt). In order to retain the capacity for frequency response, the wind
turbine does not operate at the optimal power point A but rather at a
suboptimal power point B or C through deloading control. In addition,
reducing the generator speed under the same output power would
increase the generator torque, which is not conducive to reducing the
fatigue load. Thus, point B is the optimal choice for deloading control,
that is, overspeed control.

The frequency response method, which utilizes overspeed
control, is presented in block diagram form in Figure 4.

Frequency response methods based on different methods of
torque control are shown in Eqs 7, 8.

Tg1 ωg,Δf( ) � kopt 1 − γ( )ωg − kFRΔf( )2, (7)

Tg2 ωg,Δf( ) � Prated

1 + γ( )ωg + kFRΔf
, (8)

where γ is the deloading factor, kFR is the frequency response gain
(p.u.), kOPT is the torque control gain (p.u.), and Δf is the frequency
deviation of the power system (p.u.).

2.3 Transient shocks to generator torque
caused by conventional methods

Generator torque under ideal deloading control can be simplified as
shown in Figure 5A. Overspeed control (deloading torque) can reduce

FIGURE 4
Block diagram ffor the frequency response method based on overspeed control.

FIGURE 5
Generator torque under deloading control. (A) Ideal torque under deloading control. (B) Actual torque under fixed deloading control.
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generator torque at the same speed. However, since the deloading factor
is fixed under conventional control methods, generator torque
undergoes shocks under region switching, as shown in Figure 5B.
Moreover, generator torque cannot be transitioned smoothly between
regions 1 and 2, which causes significant transient shocks and a
significant increase in mechanical load.

Generator torque can be smoothed by regulating the deloading
factor, which can be represented by the process from the dotted line to
the solid line in Figure 6A. However, the generator torque participating
in the frequency response is related not only to the generator speed but
also to system frequency deviation. Figure 6A shows the generator
torque when the wind turbine participates in frequency response by
employing deloading control. If system frequency deviation were
introduced into the torque control loop, generator torque would fall
within the solid line of deloading torque and the yellow area. Since the
system frequency is random to the wind turbine, the feedback of
frequency deviation causes generator torque to vary irregularly
within a specific range (the yellow-shaded parts of the two regions).
There exist alternative techniques for regulating the frequency of a wind
turbine, such as controlling the rotor speed to release kinetic energy,

without requiring deloading. If a wind turbine is not subjected to de-
rating control, its deloading factor can be deemed to be zero. Even in the
absence of de-rating control, transient oscillations in generator torque
may occur in the yellow region illustrated in Figure 6B, owing to
frequency response dynamics.

The frequency response can cause frequent switching of
generator torque between points A and B, resulting in
unavoidable transient shocks to the generator torque fluctuations
in the crossing region, as depicted in Figure 7. Due to the shift in the
optimal operating point caused by overspeed control and frequency
response, the generator torque values in regions 1 and 2 under the
set speed are unequal, leading to abnormal fluctuations of generator
torque in the crossing region. Connections between the generator,
gearbox, and spindle can increase the drive train load due to
transient fluctuation of the generator torque. The drive train
dynamic equation is shown in Eqs 9–11.

Ts � K

s
+ B( ) ωr − ωg

ηg
⎛⎝ ⎞⎠, (9)

Jg _ωg � 1
ηg
Ts − Tg, (10)

Jr _ωr � Ta − Ts, (11)
where Ts is the shaft torque (Nm), Jg is the generator mass (kg·m2), Jr
is the rotor mass (kg·m2), K is the shaft spring constant (Nm/rad), B
is the shaft viscous friction (Nm·s/rad), and Ta is the rotor
torque (Nm).

In summary, the current frequency response method has two
main problems: transient shocks to generator torque caused by a
fixed deloading factor, and transient shocks to generator torque
caused by frequency regulation.

3 Proposed flexible torque

Dynamic deloading and flexible generator torque control
methods are proposed here to address the challenges described in

FIGURE 6
Generator torque when the wind turbine participates in frequency response by employing deloading control: (A)with deloading control; (B)without
deloading control.

FIGURE 7
Transient shocks to generator torque fluctuations.
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the previous section. The response characteristics of the control
scheme are also analyzed.

3.1 Proposed dynamic deloading method

Under a fixed deloading factor, generator torque cannot smoothly
cross the set speed, resulting in step fluctuation in generator torque.
However, when the deloading factor is not fixed, generator torque at the
set speed can be equalized by adjusting the deloading factor. In other
words, when frequency deviation is not considered, Eqs 7, 8 can be
equalized to obtain the deloading factor of region 1. The deloading
factor for region 1 is calculated by Eq. 12.

γ1 � 1 −
���������

Prated

kopt 1+γ2( )ωgN

√
ωgN

(12)

where γ1 and γ2 are the deloading factors of regions 1 and 2,
respectively. The determination of γ2 is typically left to the
discretion of the user. When setting the value of γ2, careful
consideration is given to achieving a balance between the available
spare capacity and the capacity for frequency adjustment in the wind
turbine. In practice, it is common for γ2 to be set at either 5% or 10%.

3.2 Proposed method for flexible torque
control

The introduction of frequency deviation to torque control systems
has led to transient shocks to generator torque. Therefore, it is necessary
to set the generator torque transition region so that the torque
undergoes a smooth transition between different regions. The torque
transition region is referred to as the 1 1

2 region (transition region).
The process of torque crossing between regions 1 and 2 can be

divided into two scenarios: region 1 to region 2, and region 2 to region 1.
Figure 8 shows the generator torque crossing process from different
points. When the torque shifts from point A to point B, two scenarios
exist for torque increase and decrease (A0

1 to B1
2 and A0

1 to B2
2,

respectively). Irrespective of whether the torque applied to the
generator is increased or decreased, the speed of the generator will
correspondingly increase. This relationship allows for the determination
of torque traversal based on the observed speed. The gradient of the
torque change can be used to represent the change rate. Thus, the shift
in generator torque from region 1 to region 2 can be calculated by the
speed increase shown in Eq. 13. When the torque shifts from point B to
point A, no matter how the torque changes, the speed is reduced.
Therefore, gradients can exist in either case that represent the change in
torque. Equation 13 can be used to calculate generator torque in the shift
from region 2 to region 1.

Tg1 1
2
ωg ,Δf( ) �

Tg1 ωg ,Δf( ) − Tg2 ωg ,Δf( )
ωgc − ωgN

ωg − ωgc( ) + Tg1 ωg ,Δf( ) Δωg > 0,

Tg2 ωg,Δf( ) − Tg1 ωg ,Δf( )
ωgN − ωgc

ωg − ωgN( ) + Tg2 ωg,Δf( ) Δωg < 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where Tg1 1
2
is the generator torque of the transition region and ωgc is

the transition speed of the transition region.When wind turbines are
operated without frequency regulation, the transition area should
generally be neither too large nor too small. An excessively large
transition area can reduce the frequency regulation capability of the
wind turbine, while a transition area that is too small cannot achieve
the desired effect of flexible torque control. To determine the
appropriate control parameters in this study, with reference to
previous research on transitional control without frequency
response, a value for ωgc of 121.7 rad/s was selected (Wang et al.,
2020; Wang et al., 2021; Wang et al., 2022; Wang et al., 2023).

The control block diagram is shown in Figure 9. Generator speed
governs the torque control, as follows:

• If the generator speed is less than the transition speed, the
torque control system adopts the control method shown
in Eq. 7.

• If the speed is within the crossing area (between the transition
speed and the rated speed), the torque control system adopts
the control method shown in Eq. 13.

FIGURE 8
Generator torque crossing between different points: (A) point A to point B; (B) point B to point A.
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• If the speed exceeds the rated speed, the torque control system
adopts the control method shown in Eq. 8.

Note that the proposed flexible torque method only needs to
detect the generator speed, which makes the method relatively easy
to apply in engineering practice.

3.3 Dynamic analysis

A closed-loop control block diagram, as presented in
Figure 10, was constructed to examine the response
characteristics of the proposed method under different wind
speeds and deloading factors For this purpose, error transfer
functions were derived to analyze the response characteristics.
The error transfer function for torque fluctuation and frequency
fluctuation can be seen in Eq. 14; the error transfer function for
torque fluctuation and wind speed fluctuation can be seen in
Eq. 15.

ΔTg

Δf � k1 Jrs − k3( )
Jrs − k3 + k2η2g

(14)

ΔTg

Δv � k2k4ηg
Jrs − k3 + k2η2g

(15)

where k1 � zTg

zΔf, k2 � zTg

zωg
, k3 � zTa

zωr
, and k4 � zTa

zv .
The Bode diagram for Eq. 14 is shown in Figure 11A, in which

the fluctuation of generator torque in the transition region is affected
by wind speed. The impact mechanism is as follows: as the wind
speed increases, torque fluctuations increase, and as the deloading
factor increases, torque fluctuations increase. The Bode diagram for
Eq. 15 is shown in Figure 11B, in which it can be seen that torque
fluctuations increase with increased wind speed, while torque
fluctuations decrease with an increase in deloading factor.

4 Case study

Different operating conditions were used as case studies to further
illustrate the shortcomings of current control methods and to verify the
effectiveness of the proposed method. Wind speed was generated using
TurbSim (Kelley and Jonkman, 2006). The damage equivalent load was
used to evaluate the fatigue loading of the wind turbine, which was
calculated using the MCrunch package (Buhl, 2008).

4.1 Turbulent wind speed

The proposed flexible torque control system was first validated
under turbulent wind speed conditions. In this scenario, the wind
turbine only performs deloading control and does not participate in the
frequency response. The average wind speed, as shown, was 10.68 m/s.
The deloading factor γ2 was 0.13. Figure 12 shows the generator speed,
torque, and power output under different methods. FTC represents the
proposed flexible torque control method and CON the conventional
torque control method. Figure 12A shows the generator speed for each
of the different methods; it can be seen that generator speed under the
proposed FTC method is almost the same as that under the traditional
method. Furthermore, under overspeed control, the generator speed of
the wind turbine increases relative to that under MPPT. Based on the
generator torque patterns shown in Figure 12B, it can be seen that
generator speed under the traditional method fluctuates abnormally at
certain moments, for the reason given in the above analysis. The
proposed FTC method can avoid transient shocks, which greatly
reduces the mechanical load of the wind turbine. Compared to
generator torque under MPPT, generator torque under derating
control is reduced.

The output power of the different methods is shown in Figure 12C.
It can be seen that power output fluctuates abnormally under the
traditional method (CON), which is not conducive to the frequency
stability of the power system. The proposed method can produce
smoother power output, which is beneficial to the stability of the
power system. Furthermore, due to the implementation of deloading
control, a portion of power (between 20 and 50 s) is reserved. Thus, the
shaded region in Figure 12D displays the frequency response power that
can be achieved. Wind turbines with sufficient power reserve can
contribute to the frequency response of the system from 20 to 50 s.
In the period from 50 to 80 s, wind turbines typically respond to
frequency through the kinetic energy of the rotor due to insufficient
wind speed.

In summary, the proposed method can provide the wind turbine
with stable mechanical dynamics and power output under deloading
control.

FIGURE 9
Control block diagram based on flexible torque control.

FIGURE 10
Closed-loop control block diagram.
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4.2 Participation in frequency regulation

In this scenario, the wind turbine engages in frequency response
through dynamic deloading control. Generator speeds under the
different methods are shown in Figure 13A. Similarly to the
scenario with no participation in the frequency response, the
differences in generator speed under the different methods are
insignificant. Generator torque under the different methods is

shown in Figure 13B. It can be seen that generator torque under the
traditional method fluctuates abnormally at 35 s. Generator torque
under the proposed method is smooth, which is beneficial for the
mitigation of fatigue load and the stability of the power system. The
output power of the different methods is shown in Figure 13C. It can be
seen that output power fluctuates abnormally under the traditional
method. If the frequency response is enacted according to the
traditional method, system frequency may be negatively affected by

FIGURE 11
Bode diagrams for (A) ΔTg/Δf and (B) ΔTg/Δv.

FIGURE 12
Operational states of the wind turbine under the different methods. In this scenario, the wind turbine only performs deloading control and does not
participate in the frequency response. (A) Generator speed; (B) generator torque; (C) power output; (D) available frequency response power.
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the shock to power output in the transition region. The proposed
method can smooth the output power and increase the power
participating in the frequency response, which can significantly
improve frequency stability and the profitability of the wind farm.
The system frequency deviation under each of the different methods is
shown in Figure 13D. It can be seen that frequency deviation under the
conventional method shifts suddenly at 35 s due to transient shocks to
generator torque. Under the proposed FTC scheme, saltation of
frequency deviation caused by transient shocks can be avoided.

4.3 Performance under random system load

In this study, the long-term dynamics of the power system and
mechanical load of wind turbines were analyzed to explain how the

proposed FTC can reduce mechanical load and improve power
system stability. The simulation used an average wind speed of
11.4 m/s, turbulence strength of 0.1, and random fluctuations in
system load every 20 s, with an amplitude not exceeding 4% over a
period of 600 s.

Figure 14A illustrates generator torque under various methods
under random load conditions. The traditional approach results in
frequent torque transients due to wind speed changes near the rated
wind speed, leading to significant torque fluctuations, as evident in
the local amplification diagram (360–400 s and 510–550 s). In
contrast, the proposed FTC method effectively curbs abnormal
torque fluctuations.

Figure 14B presents system frequency under different methods
under random loads. The proposed FTC method successfully
prevents abnormal frequency fluctuations caused by torque
fluctuations and reduces the maximum frequency deviation to
some extent, as evident in the locally enlarged images (180–200 s
and 320–350 s). The drive train, which is directly connected to the
generator, is the component most affected by transient fluctuations
in generator torque.

As depicted in Figure 14C, abnormal generator torque
fluctuations result in shaft torque abnormalities and increase
twisting in the drive train, leading to gearbox damage. The local
amplification diagrams (180–190 s and 316–328 s) clearly indicate

FIGURE 13
Operational states of the wind turbine under different methods under frequency regulation. (A) Generator speed; (B) generator torque; (C) power
output; (D) frequency deviation.

TABLE 1 Comparison of fatigue load under the different methods under
random system load.

DEL (MNm)

CON 1.50

FTC 1.44

Percentage −4%

Frontiers in Energy Research frontiersin.org09

Wang et al. 10.3389/fenrg.2023.1181996

3938

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1181996


these abnormalities, which aggravate fatigue load of the drive train
and reduce the service life of the wind turbine. Table 1 displays the
damage equivalent load (DEL) of the drive train torque under
random load conditions for the different methods. DEL was 4%
lower under the proposed FTC than under traditional methods. In
summary, the proposed FTC method is advantageous in reducing
mechanical load and improving power system stability, thereby
enhancing the performance and durability of the wind turbine.

4.4 Performance under different frequency
response methods

To illustrate the generality of the proposed FTC, we compared the
generator torque under different frequency response methods. A rotor
speed controlmethod used in previousworkwas adoptedly, and primary
frequency regulation, based on droop and inertia control, in turn based
on power scheduling, was then tested (Wu et al., 2018). The initial

FIGURE 14
System frequency and wind turbine mechanical load for different methods under random load. (A) Generator torque; (B) frequency deviation; (C)
shaft torque.

FIGURE 15
Generator torque of the wind turbine under frequency response with and without FTC. (A) Generator torque under droop control; (B) generator
torque under inertia control.
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fluctuation time of system load was 2 s. Figure 15 shows the generator
torque with and without FTC under droop control and inertia control.
As shown from3 to 8 s, it is clear that the proposed FTC can significantly
reduce the fluctuation of generator torque. The above-described results
show that the proposed method can be applied to different frequency
response methods to reduce abnormal crossing of generator torque.

5 Conclusions and discussion

This paper has proposed a dynamic derating and flexible torque
control method for frequency response in wind turbines within the
wind speed crossing region. First, the abnormal torque ride-through
phenomenon caused by fixed derating and traditional torque control
methods under derating control were analyzed. Next, dynamic
deloading and flexible torque control methods were proposed. The
effectiveness of the proposed method was verified for turbulent wind
with an average velocity near the rated wind speed. The results showed
that the proposed method enables the system to avoid abnormal torque
fluctuation and allows the wind turbine to operate with greater stability.
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Optimal configuration and
operation of the regional
integrated energy system
considering carbon emission and
integrated demand response

Xianqiang Zeng1, Jin Wang1, Yun Zhou2* and Hengjie Li1,2

1School of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China,
2Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao
Tong University, Shanghai, China

Under the “carbon peaking and carbon neutrality” development strategy, in order to
suppress load fluctuations and promote renewable energy consumptions in the
regional integrated energy system involving concentrating solar power stations, a
double-layer optimization model based on the improved non-dominated sorting
genetic algorithm-II (NSGA-II) and mixed integer linear programming (MILP) is
proposed. The upper layer completes the capacity configuration process based on
multiple objectives to minimize the annual planning cost and the net emission of
pollutants. The lower layer is designed to minimize the annual operating cost and
optimize the output of the devices and the load curves through the participation of the
integrateddemand responseprocess forflexible loads and thewholeprocessof carbon
emission including carbon capture, carbon utilization, and carbon trading mechanisms
to obtain the best operating plan. The final results indicate that the participation of
concentrating solar power stations can improve the level of coordinated optimization,
and the improvedNSGA-II is stronger than the conventional one in convergence ability.
Besides, considering the whole process of carbon emission and integrated demand
response is capableof decreasing the annual operating cost andnet carbonemission to
improve the economy and environmental protection of the system significantly.

KEYWORDS

regional integrated energy system, concentrating solar power station, NSGA-II, thewhole
process of carbon emission, integrated demand response

1 Introduction

In recent years, environmental problems have become more serious, so the exploration
of clean energy will become an inevitable trend in the future development (Fan et al., 2021).
The regional integrated energy system (RIES) breaks the barrier between energy planning
and operation, and its internal multi-energy coupling equipment can realize energy gradient
utilization (Chen et al., 2022; Wang B. et al., 2022), which plays a huge part in realizing the
goal of promoting economic and environmental benefits.

In the field of RIES low-carbon operation, relevant studies mostly focus on the regulatory
means and economicmechanisms such as carbon capture, carbon storage, and carbon trading. In
the work of Dong et al. (2022), a carbon capture model combined with power-to-gas and gas-
fired units was installed, which effectively minimized the carbon cost of the total system through
the improved energy hub formulation. In the work of Zhang D. et al. (2021), a carbon storage
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device with pollutant treatments and carbon capture systems (CCSs)
was regarded as the structure of an evolutionary IES, which significantly
improved renewable energy penetration under different specifications.
In the work of Yan et al. (2023), a seasonal-stepped carbon trading
mechanism was introduced, and the impacts of economics on optimal
dispatch are also considered comprehensively. However, few studies
have been conducted on cost-effective carbon utilization processes
compared with costly carbon storage processes.

Research on the participation of flexible loads in integrated demand
response (IDR) is generally classified into price type, incentive type, and
substitution type according to their guiding modes. Yang et al. (2020)
divided the IDR into price-based and alternative parts with the process
of rolling optimization and finally showed that the aforementioned
method can restrain the fluctuation of the loads. Wang et al. (2021) put
forward an uncertain model of the demand response through the
energy coupling matrices to investigate the impact of price incentives
under different scenarios in the RIES to realize the improvement in the
load profile. Shao et al. (2019) promoted the IDR to smart buildings and
then developed a real-time exchange market with the feasible region
method to adjust energy consumption behaviors. Zhang et al. (2022)
proposed a multi-objective model considering two-dimensional
demand responses with spatiotemporal coupling characteristics to
obtain the control strategy among different benefit weights.
However, most research on IDR focuses on electricity and heat at
present, while cool energy and gas energy are rarely considered.

In addition, with the steady development of concentrating solar power
(CSP) in renewable energy, photothermal power generation has gradually
attracted wide attention for its advantages of good controllability and high
adjustability. Zhao et al. (2019) analyzed the influences of wind power
uncertainty on optimal dispatch and put forward a stochastic model for
the combination of the CSP stations and wind farms according to the
simulation results. In the work of ZhangG. et al. (2021), CSP stations were
introduced as cogenerated units and amulti-dispatchmethod for the RIES

was proposed. The results show that the participation of CSP stations can
reduce operating costs. On the premise of considering operating cost, Jiang
et al. (2020) built an exchange model between CSP stations and energy
markets to participate in DR programs, which significantly improved the
energy operating efficiency through the price elasticity matrix of the
electrical and the heat loads. However, the existing literature has
generally ignored the potential of CSP stations operating in
conjunction with the aforementioned CCS.

In view of the problems mentioned previously, the main
contributions of this paper are shown as follows:

1) An energy hub (EH) with the participation of the CSP station
and the whole process of carbon emission including carbon
capture, carbon utilization, and carbon trading is established by
considering the power-to-gas equipment.

2) The analysis includes flexible loads such as electricity, heat,
cooling, and gas and successively elaborates them for the
uncontrollable loads, transferable loads, curtailable loads, and
fungible loads, which are refined to reflect the IDR.

3) A double-layer optimizationmodel of improvedNSGA-II andMILP
is constructed. The upper layer takes the annual planning cost and
net pollutant discharge as the target for device selection and capacity
configuration through the improved NSGA-II, while the lower layer
regards the annual operating cost as the target to optimize the output
of each device through the Cplex solver.

This paper is organized as follows. In Section 2, the basic
structure and the operating principle of the RIES are introduced.
Section 3 is focused on the expression of the proposed CSP
station, the whole process of carbon emission, and the IDR. In
Section 4, a double-layer model considering the solving methods
is developed to realize the optimized process. Case studies are
conducted in Section 5, in which the proposed model is simulated

FIGURE 1
Structure diagram of the RIES.
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under different scenarios. At last, the conclusions are given in
Section 6.

2 Basic structure of the RIES

This paper focuses on the RIES shown in Figure 1. The system
includes the wind turbine (WT), photovoltaic (PV), CSP station, electric
boiler (EB), electric chiller (EC), waste heat boiler (WHB), absorption
chiller (AC), gas turbine (GT), gas boiler (GB), carbon capture system
(CCS), power to gas (P2G), and storage battery (SB). The energy input
sources of the RIES are electricity and natural gas, and the loads include
electricity, heat, cooling, and gas. The CSP station can be regarded as
cogenerated equipment. Similarly, GT consumes natural gas to generate
heat, which can be recovered by WHB. For the CCS, the CO2 captured
is mainly from coal-fired plants in the power grid and gas-fired units
(GT and GB) in the RIES. The power consumption of P2G can be
supplied by abandoned wind and light, thus realizing the absorptive
process of renewable energy. The entered electricity and natural gas of
the EH can be purchased from power grid companies and natural gas
companies, respectively, and then reasonably distributed to various
energy conversion equipment and user-side loads.

3 The whole process of carbon
emission and integrated demand
response in the RIES

3.1 Conventional device model of the RIES

The conventional devices of the RIES mainly include gas-fired
units, EB, EC, AC, and WHB. The models are shown as follows:

PGT
t � PGT,e

t + PGT,h
t ,

PGT,e
t � ηGT,eHgQGT

t ,
PGT,h
t � ηGT,hHgQGT

t ,
PGB,h
t � ηGB,hHgQGB

t ,
PEB,h
t � ηEB,hP

e,EB
t ,

PEC,c
t � ηEC,cP

e,EC
t ,

PAC,c
t � ηAC,cP

h,AC
t ,

PWHB,h
t � ηWHB,hP

GT,h
t ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where PGT
t , PGT,e

t , and PGT,h
t are the total output, electrical output, and

thermal output of GT at time t, respectively; PGB,h
t , PEB,h

t , PEC,c
t , PAC,c

t ,
and PWHB,h

t are the output of GB, EB, EC, AC, and WHB at time t,
respectively; QGT

t and QGB
t are the amount of natural gas consumed by

GT and GB at time t, respectively; Pe,EB
t , Pe,EC

t , and Ph,AC
t are the input

power of EB, EC, and AC at time t, respectively; ηGT,e and ηGT,h are the
electrical efficiency and thermal efficiency of GT, respectively; ηGB,h,
ηEB,h, ηEC,c, ηAC,c, and ηWHB,h are the corresponding energy conversion
efficiency of GB, EB, EC, AC, and WHB, respectively; and Hg is the
calorific value of the natural gas.

3.2 CSP thermoelectric conversion model

As an emerging form of power generation in recent years, the
CSP station is mainly divided into tower type, trough type, disk type,
and linear Fresnel type, among which the tower type has been widely
used in engineering practice for its advantages of strong economy
and good performance (Gorman et al., 2021). In this paper, the heat
storage tank and EB are aggregated to model the internal and
external energy transfer relationships of the tower-type CSP
station. The typical structure is shown in Figure 2.

The heat energy collected by the heat collector in the optical field
can be stored in the heat storage tank through the heat transfer

FIGURE 2
EB–CSP framework.
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mediums, and it can also be used to generate electricity through the
heat cycle. The expression of photothermal conversion of the heat
collector is shown as follows:

PSF,h
t � ηs−hSSFDt , (2)

wherePSF,h
t is the thermal power obtained by the heat collector at time t;

ηs−h is the photothermal conversion efficiency; SSF is the area of the
heliostat field; andDt is the direct solar radiation index (DNI) at time t.

The heat storage tank can store the converted heat energy and
can also release the heat energy to meet the generation demand or
directly supply the heat to the load side. The model of the heat
storage tank is shown in the following formula:

SHQ
t � SHQ

t−1 1 − ρh( ) + ηHQ
chaP

TS,c
t − PTS,f

t

ηHQ
dis

, (3)

where SHQ
t and SHQ

t−1 are the thermal storage of the heat storage tank at
time t and time t − 1, respectively; ρh is the energy self-loss coefficient;
ηHQ
cha and η

HQ
dis are the charging and releasing efficiency of the heat storage

tank, respectively; and PTS,c
t and PTS,f

t are the charging and releasing
power of the heat storage tank at time t, respectively.

To keep the CSP station in stable operation after the
participation of EB, its internal heat cycle must meet the
following relations:

PSF,h
t + PTS,f

t + PEB,in
t � PSF,r

t + PTS,c
t + PTS,ef

t + PHL
t + Pabn,h

t ,
PEB,in
t � PEB,h

t − PEB,load
t ,

{ (4)

where PSF,r
t and PTS,ef

t are the thermal power directly generated by the
heat collector and the heat storage tank at time t, respectively; PEB,in

t and
PEB,load
t are the thermal power provided by EB to the heat storage tank

and the heat load side, respectively; and PHL
t and Pabn,h

t are the thermal
power provided to the heat load side and heat energy loss at time t,
respectively.

The generation power of the CSP station mainly comes
from the heating power of the heat collector and the heat
storage tank:

PCSP,e
t � PSF,d

t + PTS,df
t ,

PSF,d
t � ηdP

SF,r
t ,

PTS,df
t � 1 − ηf( )ηdPTS,ef

t ,

⎧⎪⎨⎪⎩ (5)

where PSF,d
t and PTS,df

t are the heat of the collector and the storage
tank that provides for power generation, respectively; ηd and ηf are
the thermoelectric conversion efficiency of the heat collector and
released loss rate of the heat storage tank, respectively.

The heat energy provided to the load side is expressed as follows:

PHL
t � ηh PTS,f

t − PTS,ef
t( ), (6)

where ηh is the heat transfer efficiency of the heat storage tank.

3.3 The whole process of carbon emission
including P2G collaborative operation

3.3.1 Operating characteristics of P2G
In this paper, P2G can absorb the power of abandoned wind and

light, which is used to generate natural gas. The energy consumption
of P2G is shown in the following equation:

PP2G
t � PWA

t + PVA
t , (7)

where PWA
t and PVA

t are the power of abandoned wind and light at
time t, respectively.

The amount of CO2 consumed in P2G can be formulated as
follows:

QCO2 ,P2G
t � αCO2ηP2GP

P2G
t , (8)

where αCO2 is the CO2 consumption per unit of power; ηP2G is the
conversion efficiency of P2G.

The natural gas produced by P2G can be calculated as follows:

QP2G,CH4
t � 3.6ηP2GP

P2G
t

Hg
. (9)

3.3.2 Principles of carbon capture and carbon
utilization

The CCS mainly includes the absorption tower, regeneration tower,
compressor, andother structural units. The absorber uses a specific solution
to absorb CO2 from the flue gas and transfers it to the regenerator, where it
is heated and separated. Then, CO2 is compressed in the compressor for
transporting. Therefore, the energy consumption of carbon capture and gas
treatment generated by the three links mentioned previously are the main
sources of the total energy consumption in the CCS (Yan et al., 2017),
whose expression is shown as follows:

PCCS
t � PCAP

t + PDEAL
t ,

PCAP
t � PCCS,r

t + PCCS,f
t ,

PDEAL
t � λDEAL QCS

t + QST
t( ),

⎧⎪⎨⎪⎩ (10)

wherePCAP
t andPDEAL

t are carbon capture energy consumption and gas
treatment energy consumption of the CCS, respectively; PCCS,r

t and
PCCS,f
t are the operating energy consumption and fixed energy

consumption of carbon capture, respectively; λDEAL is the unit
energy consumption coefficient of flue gas treatment; and QCS

t and
QST

t are the flue gas treatment provided by carbon source units and the
flue gas storage tank at time t, respectively. The operating energy
consumption and fixed energy consumption of carbon capture are,
respectively, satisfied.

PCCS,r
t � λCO2E

CO2
t ,

PCCS,f
t � 0.1λCO2E

CO2
t ,

{ (11)

where λCO2 is the operating energy consumption coefficient of unit
CO2 treated by the CCS; ECO2

t is CO2 that is captured.
The capacity of the flue gas storage tank is shown as follows:

QDEAL
t � QDEAL

t−1 + QIN
t − QST

t , (12)
where QDEAL

t and QDEAL
t−1 are the capacities of the flue gas storage

tank at time t and t − 1, respectively.
In this paper, a combined operation strategy of wind

power–photovoltaic–CSP–carbon capture based on the
participation of the CCS and new energy units is proposed.
The output of new energy units is partly used for carbon
capture, partly used for flue gas treatment, and the rest is
transported to the power grid. The energy consumption
process of the carbon capture is presented in Figure 3 in the
following section, and the energy consumption process of the flue
gas treatment is similarly omitted.
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The expression of joint operation is shown as follows:

PCAP
t � PWC

t + PVC
t + PCC

t ,
PDEAL
t � PWD

t + PVD
t + PCD

t ,
PW
t � PWN

t + PWC
t + PWD

t + PWA
t ,

PV
t � PVN

t + PVC
t + PVD

t + PVA
t ,

PCSP,e
t � PCN

t + PCC
t + PCD

t ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(13)

where PW
t and PV

t are the predicted output power of WT and PV at
time t, respectively; PWC

t , PVC
t , and PCC

t are the energy consumption
of carbon capture provided by WT, PV, and CSP station at time t,
respectively; PWD

t , PVD
t , and PCD

t are the energy consumption of flue
gas treatment provided by WT, PV, and CSP station at time t,
respectively; and PWN

t , PVN
t , and PCN

t are the net output of power
generation (on-grid power) provided byWT, PV, and CSP station at
time t, respectively.

Carbon utilization refers to sending captured CO2 into P2G to
participate in the synthesis of CH4 as its raw material. This process
can decrease the carbon storage cost and increase the operating
flexibility of P2G. The carbon utilization process satisfies the
following relations:

QCO2 ,P2G
t � 1 − ηCO2

( )ECO2
t − QFC

t , (14)

where ηCO2
is the heat loss rate of CO2; QFC

t is the stored CO2 at
time t.

3.3.3 Carbon trading mechanism
The carbon trading mechanism regards the carbon emission

as a commodity and controls it through the trading of carbon
emission rights between producers and markets. If the actual
carbon emission is lower than the allocated, the surplus quotas
can be sold to carbon trading markets. Otherwise, the
corresponding quotas need to be purchased additionally
(Wang X. et al., 2022).

1) Quota models of carbon emission

Carbon emission quota is the amount of emission allowance
allocated by the regulatory authorities to each carbon source within
the RIES, which varies according to the type of equipment (Chen et al.,
2021). In this paper, there are two main carbon sources, namely, coal-
fired power plants in the power grid (superior purchasing power) and
gas-fired units of the system (GT and GB). Then, the quota models of
carbon emission can be expressed as follows:

ERIES
q � EGRID

q + EGT
q + EGB

q ,

EGRID
q � μe∑T

t�1P
GRID
t ,

EGT
q � μg∑T

t�1P
GT
t ,

EGB
q � μg∑T

t�1P
GB,h
t ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(15)

where EGRID
q , EGT

q , and EGB
q are carbon emission quotas of power

purchase, GT, and GB, respectively; μe and μg are the baseline
credits for carbon emission per unit of power consumption and
per unit of gas consumption for coal-fired and gas-fired units,
respectively; PGRID

t is the purchased power at time t; and T is the
operating cycle, which values as 24h.

2) Practical models of carbon emission

Since the CCS can absorb CO2, the actual model of carbon
emission after considering it can be expressed as follows:

ERIES
a � EGRID

a + EGT
a + EGB

a − ECO2
a ,

EGRID
a � δe∑T

t�1P
GRID
t ,

EGT
a � δg∑T

t�1P
GT
t ,

EGB
a � δg∑T

t�1P
GB,h
t ,

ECO2
a � ∑T

t�1E
CO2
t ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

FIGURE 3
Flow chart of carbon capture energy.
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where EGRID
a , EGT

a , and EGB
a are the practical carbon emission of power

purchase, GT, and GB, respectively; ECO2
a is the total amount of CO2 that

is captured; and δe and δg are the carbon emission intensity of coal-fired
units and gas-fired units, respectively.

3) Ladder-type carbon trading

After getting the quotas of carbon emission and the practical
model through the process previously, the transaction volume of
carbon emission rights that participate in trading markets can be
formulated as follows:

ERIES
r � ERIES

a − ERIES
q . (17)

Compared with the traditional carbon trading mechanism, the
ladder-type carbon trading mechanism has more strict controls over
carbon emissions. The principle is dividing carbon emissions into
multiple intervals through the stepped pricing method. With the
increase in carbon emissions, the transaction cost within the
corresponding interval will increase (Zhang et al., 2016; Fu et al.,
2022; Li et al., 2022). Accordingly, the cost of ladder-type carbon
trading can be expressed as follows:

FCO2 �

BCO2E
RIES
r ERIES

r ≤ l,
BCO2 ERIES

r 1 + γCO2
( ) − lγCO2

[ ] l ≤ERIES
r ≤ 2l,

BCO2 ERIES
r 1 + 2γCO2

( ) − 3lγCO2
[ ] 2l ≤ ERIES

r ≤ 3l

BCO2 ERIES
r 1 + 3γCO2

( ) − 6lγCO2
[ ] 3l ≤ERIES

r ≤ 4l,
BCO2 ERIES

r 1 + 4γCO2
( ) − 10lγCO2

[ ] ERIES
r ≥ 4l,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
, (18)

where BCO2 is the benchmark price of the carbon trading; γCO2
is the

growth rate of the carbon tax price; and l is the interval length of carbon
emission.

3.4 Integrated demand response of flexible
loads considering compensation cost

IDR refers to the process in which users reasonably adjust
energy-use modes and participate in energy interaction
according to different energy prices or incentive mechanisms
to optimize the load curves (Shao et al., 2021). Therefore, it is
necessary to classify the loads first in the analysis of such
problems. In addition to uncontrollable loads (invariable
loads) in previous studies, the loads are divided into variable
loads such as transferable loads, curtailable loads, and fungible
loads in this paper. In addition, compared to conventional
studies that only consider electrical and heat loads, this paper
incorporates all types of loads involving electricity, heat, cooling,
and gas into the IDR. Then, according to the characteristics of
the variable loads mentioned previously, the process of IDR
involved in this paper is able to divide it into the price type and
the substitutable type.

3.4.1 Price-based demand response
Since different types of loads have variant sensitivities to the

same price signal, this paper divides the loads involved in the price-
based demand response into curtailable loads (CLs) and transferable
loads (TLs) and then builds the models of them in turn.

1) Properties and modeling for CL

CL uses the price-demand elasticity matrix to describe its
characteristics. In allusion to the t line and the j column element
et,j in the price-based elastic matrix E(t, j), the elastic coefficient of
the load at time t to energy price at time j is defined as follows:

et,j �
ΔLi

L,t/Li
L,t

Δκj/κ0j , (19)

where ΔLiL,t and LiL,t are the variable amount and initial amount of
the load for class i participating in the price-based demand response
at time t, respectively; Δκj and κ0j are the variable amounts of energy
prices and initial energy prices at time j after the IDR, respectively.

Then, the CL variation of class i at time t after the IDR can be
presented as follows:

ΔLi
CL,t � Li0

CL,t ∑T

j�1E
i
CL t, j( ) κj − κ0j

κ0j
[ ], (20)

where Li0CL,t is the amount of initial CL for class i at time t; Ei
CL(t, j) is

the price-demand elastic matrix of CL for class i; and κj is the
corresponding load energy price of class i at time j.

2) Properties and modeling for TL

TL can realize flexible controls of working hours and power at
different periods under the total load unchanged premise according to
the energy prices of users’ own demand response. Taking time-sharing
energy prices and incentive measures as signals, users can be guided to
transfer the peak loads to the normal or trough period (Azzam et al.,
2023). Similarly, after expressing the characteristics of IDR in the price-
demand elasticity matrix, the TL variation in class i at time t can be
formulated as follows:

ΔLi
TL,t � Li0

TL,t ∑T

j�1E
i
TL t, j( ) κj − κ0j

κ0j
[ ], (21)

where Li0TL,t is the amount of initial TL for class i at time t; Ei
TL(t, j) is

the price-demand elastic matrix of TL for class i.

3.4.2 Substitution-type demand response
For a certain type of the heat load that can be directly supplied byheat

or electricity (electricity to heat), the electrical energy can be consumed in
periods of low electricity prices, while the heat energy can be directly
consumed in periods of high electricity prices to meet different needs so
as to realize the mutual substitution between the electrical and heat
energy. The fungible load (FL) model can be expressed as follows:

ΔLe
FL,t � εe,h · ΔLh

FL,t ,

εe,h � νeϕe

νhϕh

,

⎧⎪⎪⎨⎪⎪⎩ (22)

where ΔLeFL,t and ΔLhFL,t are the fungible electricity load and heat load,
respectively; εe,h is the electric-heating substitution coefficient, which
varies with the time; ]e and ]h are the unit calorific values of electrical
energy and heat energy, respectively; and ϕe and ϕh are the energy
utilization rates of electricity and heat, respectively.

Through the IDR process mentioned previously, the following
conditions of load balance can be obtained as follows:
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LDR
e � Le + ΔLe

CL,t + ΔLe
TL,t + ΔLe

FL,t ,
LDR
h � Lh + ΔLh

CL,t + ΔLh
TL,t + ΔLh

FL,t ,
LDR
c � Lc + ΔLc

CL,t + ΔLc
TL,t ,

LDR
g � Lg + ΔLg

CL,t + ΔLg
TL,t ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (23)

where Le, Lh, and Lc are the initial loads of electricity, heat, and
cooling, respectively; Lg is the amount of natural gas required by the
initial gas load; LDRe , LDRh , and LDRc are the loads of electricity, heat, and
cooling after participating in the IDR, respectively; and LDRg is the
amount of natural gas required by the gas load after participating in the
IDR. Then, the load compensation cost can be calculated as follows:

Fcut � ∑T

t�1 cecut · ΔLe
CL,t + chcut · ΔLh

CL,t + cccut · ΔLc
CL,t + cgcut · ΔLg

CL,t( ),
Ftrans � ∑T

t�1 cetrans · ΔLe
TL,t + chtrans · ΔLh

TL,t + cctrans · ΔLc
TL,t + cgtrans · ΔLg

TL,t( ),
Fsub � ∑T

t�1 cesub · ΔLe
FL,t + chsub · ΔLh

FL,t( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(24)

where Fcut, Ftrans, and Fsub are the compensation costs that can be
reduced, transferred, and replaced, respectively; cecut, c

h
cut, c

c
cut, and c

g
cut are

the compensation prices of electrical, heat, cool, and gas loads that can be
reduced per unit of power, respectively; cetrans, c

h
trans, c

c
trans, and cgtrans are

the compensation prices of electrical, heat, cool, and gas loads that can be
transferred per unit of power, respectively; and cesub and chsub are the
compensation prices of electrical and heat load that can be replaced per
unit of power, respectively.

4 Double-layer optimization model of
the RIES

Based on the RIES with the participation of CSP stations as
shown in Figure 1, this paper establishes a double-layer optimization
model that considers the whole process of carbon emission and the
IDR to demonstrate the innovations. The upper layer randomly
generates the planned capacities of the devices and transmits them to
the lower layer. The lower layer constrains the output of the devices
and transmits the results back to the upper layer. Finally, the upper
layer revises the capacity configuration of each device again. The
iterative process between the upper layer and the lower layer leads to
the most optimal configuration and the lowest annual operating cost
of the RIES.

4.1 Models of upper programming

The upper model aims at minimizing the annual planning cost
and the annual net pollutant emission of the RIES, and the decision
variables are the installed capacities of different devices. The
mathematical formulas are shown as follows:

min Fpc � Finv + Frc

min Eenv � 365 ∑
s∈ sum,win,tra{ }

θs ESO2
r + ENOx

r + ERIES
r( )

⎧⎪⎨⎪⎩ (25)

where Fpc and Eenv are the annual planning cost and the annual net
emission of various pollutants during the operating life of the RIES,
respectively; Finv and Frc are the annual investment cost and the
annual operating cost, respectively; and ESO2

r and ENOx
r are the net

emissions of SO2 and NOx, respectively.
The annual operating cost Frc is introduced separately as the

objective function of the lower model, while other variables can be
expressed as follows:

Finv � ∑
k

ckS k
max

ESO2
r � ξSe∑

T

t�1
PGRID
t

ENOx
r � ξNe ∑

T

t�1
PGRID
t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(26)

where k indicates different types of the devices; ck is the installed
investment cost of per unit capacity for device k; S k

max is the installed
capacity of device k; and ξSe and ξ

N
e are the SO2 and the NOx emission

intensity of coal-fired units in the power grid, respectively.

4.2 Models of lower operating

The lower layer intends to minimize the annual operating cost of
the RIES, and the decision variable is the output of each device. The
mathematical model is expressed in the following equation:

min Frc � 365∑N

m�1
m

1 + r( )m ·∑
s∈ sum,win,tra{ } θs

Fe + Fgas + Foc + FCO2 + Fdr + Ffc( ),
Fe � ∑T

t�1C
GRID
t PGRID

t ,

Fgas � ∑T

t�1C
GAS
t QGAS

t ,

Foc � ckDP∑T

t�1P
k
t ,

Fdr � Fcut + Ftrans + Fsub,

Ffc � ∑T

t�1kfcQ
FC
t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

This paper adopts the ladder-type carbon trading method, and
the corresponding cost FCO2 is shown in Eq. 18.

Here, N is the planning year; r is the discounted rate; and θs is
the proportion of season s in the year, and three typical seasons
involving summer (sum), winter (win), and transitional season (tra)
are considered in this paper; Fe, Fgas, Foc, Fdr, and Ff c are the costs of
electrical purchase, gas purchase, operation or maintenance for each
device, IDR compensation, and carbon storage in the RIES,
respectively; CGRID

t and CGAS
t are the unit price of electrical

purchase and gas purchase at time t, respectively; QGAS
t is the

flow of gas purchase at time t; ckDP is the unit maintenance cost
of device k; Pk

t is the output of device k at time t; and kf c is the unit
carbon storage price.
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4.3 Constraint conditions

4.3.1 Constraints of the CSP station

0≤ μTS,c
t + μTS,ft ≤ 1,

μTS,ct · 0.1S HQ
max ≤P

TS,c
t ≤ μTS,ct · S HQ

max ,
μTS,ft · 0.1S HQ

max ≤PTS,f
t ≤ μTS,f

t · S HQ
max ,

PTS,c
t · PTS,f

t � 0,
0.1S HQ

max ≤ SHQ
t ≤ S HQ

max ,
SHQ
0 � SHQ

24 ,
0≤PCSP,e

t ≤P CSP,e
max ,

PCSP,e
t − PCSP,e

t−1
∣∣∣∣ ∣∣∣∣≤ΔPCSP,e,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

where μTS,ct and μTS,ft are variables of 0 − 1, which represent the
charging and releasing state of the heat storage tank at time t,
respectively; S HQ

max is the capacity of the heat storage tank; SHQ
0 and

SHQ
24 are the starting and ending values of heat storage during the day,
respectively; and P CSP,e

max and ΔPCSP,e are the upper power limit and
the climbing rate of the CSP station, respectively.

4.3.2 Constraints of the CCS

E CO2
min ≤ECO2

t ≤E CO2
max ,

Q DEAL
min ≤QDEAL

t ≤Q DEAL
max ,

0≤QCS
t ≤Q CS

max ,
0≤QST

t ≤Q ST
max ,

0≤QIN
t ≤Q IN

max ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(29)

whereE CO2
max andE

CO2
min are the upper and lower limits of CO2 captured by

the CCS, respectively;Q DEAL
max andQ DEAL

min are the upper and lower limits
of the storage in the flue gas storage tank, respectively; Q CS

max and Q ST
max

are the upper limits of the flue gas treatment provided by the carbon
source unit and flue gas storage tank, respectively; andQ IN

max is the upper
limit of the flue gas that flows into the flue gas storage tank.

4.3.3 Constraints of P2G

0≤PP2G
t ≤P P2G

max , (30)
where P P2G

max is the maximum energy consumption of P2G.

4.3.4 Constraints of new energy units and
purchasing energy

0≤PWN
t ≤PW

t ,
0≤PVN

t ≤PV
t ,

0≤PCN
t ≤PCSP,e

t ,
0≤PGRID

t ≤P GRID
max ,

0≤QGAS
t ≤Q GAS

max ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(31)

where P GRID
max andQ GAS

max are the maximum purchased power and gas,
respectively.

4.3.5 Constraints of electrical energy storage
devices

0≤ μcha
t + μdist ≤ 1,

μchat · 0.1S e
max ≤P

cha
t ≤ μcha

t · S e
max ,

μdis
t · 0.1S e

max ≤Pdis
t ≤ μdis

t · S e
max ,

Pcha
t · Pdis

t � 0,

Set � Set−1 + ηchae Pcha
t − Pdis

t

ηdise

( )Δt,

0.1S e
max ≤ S

e
t ≤ S e

max ,

Se0 � Se24,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where μchat and μdist are variables of 0 − 1, which represent the
charging and releasing state of the storage battery at time t,
respectively; S e

max is the capacity of the storage battery; Pcha
t and

Pdis
t refer to the charging and releasing power of the storage battery,

respectively; Set and Set−1 are the charge capacities of the storage
battery at time t and time t − 1, respectively; ηchae and ηdise are the
charging and releasing efficiency of the storage battery, respectively;
Δt is the unit operating period, which values as 1; and Se0 and S

e
24 are

the starting and ending values of the storage battery during the day,
respectively.

4.3.6 Constraints of other devices

0≤Pk
t ≤ S k

max ,
Pk
t − Pk

t−1
∣∣∣∣ ∣∣∣∣≤ΔPk,

{ (33)

where S k
max and ΔPk are the capacity and climbing rate of device k,

respectively.

4.3.7 Constraints of integrated demand response
1) Curtailable loads:

Li
CL,min ≤ΔLi

CL,t ≤ L
i
CL,max , (34)

where LiCL,max and LiCL,min are the upper and lower limits of the
actual reduction for CL i at time t, respectively.

2) Transferable loads:

∑T

t�1ΔL
i
TL,t � 0,

Li
TL,min ≤ΔL

i
TL,t ≤ Li

TL,max ,

⎧⎨⎩ (35)

where LiTL,max and LiTL,min are the upper and lower limits of the
actual transfer for TL i at time t, respectively.
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3) Fungible loads:

0≤ΔLi
FL,t ≤ L

i
FL,max , (36)

where LiFL,max is the maximum substitution power of FL i at time t.

4.3.8 Balance of the loads
1) Load balancing before participating in IDR:

PGRID
t + PWN

t + PVN
t + PCN

t + PGT,e
t + Pcha

t − Pe,EB
t − Pe,EC

t − Pdis
t � Le,

PEB,load
t + PGB,h

t + PWHB,h
t + PHL

t − Ph,AC
t � Lh,

PEC,c
t + PAC,c

t � Lc,
QGAS

t + QP2G,CH4
t − QGT

t − QGB
t � Lg.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(37)

2) Load balancing after participating in IDR:

PGRID
t + PWN

t + PVN
t + PCN

t + PGT,e
t + Pcha

t − Pe,EB
t − Pe,EC

t − Pdis
t � LDR

e ,
PEB,load
t + PGB,h

t + PWHB,h
t + PHL

t − Ph,AC
t � LDR

h ,
PEC,c
t + PAC,c

t � LDR
c ,

QGAS
t + QP2G,CH4

t − QGT
t − QGB

t � LDR
g .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(38)

4.4 Model solving

For the double-layer optimization model constructed
previously, the improved NSGA-II is employed for the upper
layer. As for the lower layer, nonlinear problems are transformed
into linear problems according to the MILP method, and then,
the Cplex solver is called for the corresponding calculation.

4.4.1 Multi-objective problems of the upper layer
solved by the improved NSGA-II

This paper uses the NSGA-II for capacity configuration with
different research objects and proposes an improved NSGA-II to
compare with the conventional NSGA-II. The NSGA-II treats
each sub-objective in a high-dimensional multi-objective
optimization problem equally without introducing weights,
which can avoid the influence of local optimal solutions on
capacity configuration. The conventional NSGA-II is mainly
composed of selection, crossover, mutation, and non-
dominated sorting, among which the mutation process is
usually realized by simulated binary mutation operators
(SBMO) that leads to low population diversity and search
efficiency. Therefore, this paper perfected the mutation
process of the conventional algorithm by using adaptive
mixed mutation operators. The main principle is to mix the
simulated binary mutation operator and the normal distributed
mutation operator (NDMO) in an adaptive way to determine the
proportion of the two operators in different periods within the
algorithm. The model is shown as follows:

z1,j � kGens − kGen
2 · kGens 1 + β( )p1,j + 1 − β( )p2,j[ ] + kGen

2 · kGens
1 + N 0, 1( )| |( )p1,j + 1 − N 0, 1( )| |( )p2,j[ ], λ≤ 0.5,

z1,j � kGens − kGen
2 · kGens 1 + β( )p1,j + 1 − β( )p2,j[ ] + kGen

2 · kGens
1 − N 0, 1( )| |( )p1,j + 1 − N 0, 1( )| |( )p2,j[ ], λ> 0.5,

z2,j � kGens − kGen
2 · kGens 1 − β( )p1,j + 1 + β( )p2,j[ ] + kGen

2 · kGens

1 + N 0, 1( )| |( )p1,j + 1 − N 0, 1( )| |( )p2,j[ ], λ≤ 0.5,

z2,j � kGens − kGen
2 · kGens 1 − β( )p1,j + 1 + β( )p2,j[ ] + kGen

2 · kGens

1 − N 0, 1( )| |( )p1,j + 1 − N 0, 1( )| |( )p2,j[ ], λ> 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

where z1,j and z2,j are the percentages of SBMO and NDMO,
respectively; kGen and kGens are the number of the current
population iterations and the maximum population iterations,
respectively; β and |N(0, 1)| are random variables of simulated
binary and normal distribution, respectively; p1,j and p2,j are the
mutation probabilities of SBMO and NDMO, respectively; and λ is
the period of mutation.

As can be known from the formula mentioned previously, in the
early stages of the algorithm, the proportion of SBMO should be
higher to expand the search limit. In addition, in the later stages of
the algorithm, the proportion of NDMO should be higher to
promote search accuracy. By matching the search range and the
search accuracy, the accuracy of the calculations can be significantly
improved.

4.4.2 Transformation and solution of the lower
nonlinear model

There are some nonlinear terms in the lower layer that
needed to be transformed. For instance, the nonlinear terms
in the ladder-type carbon trading model are solved by
introducing segmenting points and auxiliary variables. As for
nonlinear terms within the constraints, the Big-M method is
used to deal with them, and then, the original nonlinear
constraints are equitably transformed into mixed integer
linear constraints by introducing several 0–1 variables. After
the aforementioned process, the nonlinear problems of the lower
layer are transformed into linear problems, which can be solved
by the Cplex solver. The specific MILP process is shown as
follows:

1) Big-M method for nonlinear constraint problems
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The method is introduced by taking two subproblems of the
storage battery cannot charge or release at the same moment and the
charging or releasing power constraint as examples. The conversion
methods of other nonlinear constraints are similar and will not be
described here.

The general mathematical expression that the storage battery
cannot charge or release at the same moment can be written as
follows:

0≤Pcha
t ⊥ Pdis

t ≥ 0, (40)
where “0≤ a ⊥ b≥ 0”means a≥ 0, b≥ 0 and ab � 0.

By using the Big-M method and introducing 0 − 1 variables, the
aforementioned equation can be equivalently transformed into

0≤Pcha
t ≤M · μt ,

0≤Pdis
t ≤M · 1 − μt( ),{ (41)

where μt is the binary variable of 0 − 1; M is a large constant.
The general expression of charging or releasing power constraint

can be presented as follows:

0≤Pcha
t ≤P maxμchat ,

0≤Pdis
t ≤P maxμdist ,

μcha
t + μdis

t ≤ 1,
μcha
t ∈ 0, 1{ }, μdis

t ∈ 0, 1{ },

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (42)

where Pmax is the maximum charging and releasing power of the
storage battery.

According to the Big-M method, the aforementioned equation
can be equivalently transformed into

0≤Pcha
t ≤P max ,

0≤Pcha
t ≤ μcha

t M,
0≤Pdis

t ≤P max ,
0≤Pdis

t ≤ μdist M,
μchat + μdis

t ≤ 1,
μchat ∈ 0, 1{ }, μdis

t ∈ 0, 1{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(43)

2) Linearization of the ladder-type carbon trading

The model of ladder-type carbon trading is detailed in Eq. 18
previously, and the concrete implementation of its linearization is
shown as follows.

The aforementioned formula is a piecewise function of five
sections, so six piecewise points w1, w2,/, w6, six continuous
auxiliary variables u1, u2,/, u6, and five binary auxiliary
variables v1, v2,/, v5 are added to satisfy the following expression:

u1 + u2 +/ + u6 � 1,
v1 + v2 +/ + v5 � 1,
u1 ≥ 0, u2 ≥ 0,/, u6 ≥ 0,
u1 ≤ v1, u2 ≤ v1 + v2, u3 ≤ v2 + v3,
u4 ≤ v3 + v4, u5 ≤ v4 + v5, u6 ≤ v5.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(44)

Then, the aforementioned equations can be transformed into the
following linear expression:

ERIES
r � ∑6

n�1unwn,

FCO2 � ∑6

n�1unFCO2 wn( ).
⎧⎪⎨⎪⎩ (45)

Taking all the previous factors into consideration, the problems
of MILP that are covered in this paper can be finally converted as
follows:

min cx

s.t. Ax
≥
�
≤

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ � b,

x min ≤ xp ≤ x max p ∈ I,
xq ∈ 0, 1{ } q ∈ J,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(46)

where cx is the objective function, which stands for the annual
operating cost of the RIES; A and b are the coefficient matrix and its
corresponding value of subfunctions, respectively; xp is the
continuous variable, which represents the upper and lower limits
of constraint conditions; and xq is the integer variable, which values
as 0 or 1.

4.4.3 Solving procedure
Combined with the double-layer model, the solving procedure

in this paper can be described as follows:

1) We input the efficiency and the unit cost of each device, as well as
the related load data, forecast output power of WT and PV, time-
of-use electrical price and gas price, etc.

2) We initialize the improved NSGA-II. The basic parameters of the
algorithm in the upper programming model should be reasonably
set. In this paper, the population number is 50, and the maximum
number of iterations is 500. Then initial values are assigned to the
decision variables and the number of iterations to generate a
random initial population and start the iteration process.

3) Based on the two optimization objectives of each population, the
fitness (objective function value) can be calculated, respectively,
and the corresponding capacity configuration of the device is
substituted into the lower operating model as the constraint
condition of running for each device.

4) The MILP method transforms the nonlinear model into a linear
one in the lower layer, and the Cplex solver is called to calculate
for it. Then, the lower layer returns the calculation results of the
whole carbon emission process and the output power of the
devices under IDR to the upper layer as the constraints.

5) According to the constraints returned by the lower model, the
upper model completes the non-dominated sorting process and
calculates the crowding degree of the objective functions.

6) The adaptive mixed mutation operators are used to complete the
mutation process of the NSGA-II and combine it with the
crossover process to merge the populations. Then, the non-
dominated sorting process and the calculation of the
crowding degree are performed again to decrease the error.

7) The elite retention strategy is introduced to generate new
populations and update their positions through the
tournament selection mechanism after the competitive process
is completed.

8) We determine whether the termination condition is just satisfied.
If the current number of iterations does not reach the maximum
one, we skip back to step (3) to continue iterating to continuously
improve the accuracy of the calculation. Otherwise, the
configuration capacity and the planned operation scheme of
each device can be output.
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The specific solving process is presented in Figure 4.

5 Example analysis

5.1 Comparative analysis under different
cases

For further study impacts of the whole carbon emission process
and the IDR on the operation and capacity configuration in the
system, this paper makes some improvements on the example
shown in the work of Wei et al. (2022) and Zeng et al. (2023),
and the following four cases are built for comparative analysis:

Case I: The whole process of carbon emission and the IDR
involving flexible loads are not considered.

Case II: The whole process of carbon emission is not considered,
and the IDR involving flexible loads is considered.

Case III: The whole process of carbon emission is considered,
and the IDR involving flexible loads is not considered.

Case IV: The whole process of carbon emission and the IDR
involving flexible loads are both considered.

According to the four cases constructed previously, the outcome
is enumerated in Table 1.

As shown in Table 1, compared with case I, the costs of carbon
trading and annual operating in case III are reduced by 81.61% and
2.84%, respectively. This is because case III considers the whole process

of carbon emission and sends the captured CO2 into P2G for carbon
utilization, which effectively reduces the net emission of CO2.Moreover,
introducing the ladder-type carbon trading mechanism makes the
initial carbon quotas offset part of the carbon trading cost, thus
reducing the annual operating cost. In addition, compared with case
I, the cost of purchasing electricity and gas in case II is reduced by
73.43% and 16.47%, respectively. This is because the process of IDR can
significantly cut down the peak-time flexible loads and scale up the
valley-time flexible loads, especially the change in the electrical load,
which allows the energy purchasingmethod to bemore economical and
selective. Compared with case III, the cost of carbon storage in case IV is
lower. This is because the electrical load is decreased during peak
periods after considering the IDR, which leads to the output power
reduction of new energy units. In addition, the reduced part is converted
to abandoned wind and light, which increases the amount of CO2

consumed by P2G. Compared with case II, the compensatory cost of
IDR in case IV is slightly lower. This is because the peak-to-valley
differences of the electrical load are reduced by increasing the on-grid
power of new energy units under the combined operation demand,
which decreases the compensatory cost of IDR. In addition, the annual
operating cost, electricity and gas purchasing cost, device operation and
maintenance cost, and carbon trading cost in case IV are all smaller than
those in case III, because considering the IDR in the whole process of
carbon emission can transfer parts of flexible loads in high-price periods
to low-price periods and lower their energy consumption. Moreover,
the response process of the mutual substitution involving electricity,

FIGURE 4
Flow chart of solving the double-layer optimization model based on the improved NSGA-II and MILP method.
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heat, and other energy sources also significantly reduces the energy
purchasing cost, thus making the operating modes more reasonable,
and the economy and the environmental protection tend to be more
coordinated in the system.

In addition, compared to case IV, cases I, II, and III have the
lowest cost for their respective parts, but the other costs are at a
higher level and the overall performance is poor. Case IV has
generally lower costs for each subcomponent and has the best

overall performance with annual operating cost improvement
rates of 3.25%, 2.37%, and 0.42%.

Meanwhile, in an effort to validate the availability and the
superiority of the algorithm that is proposed in this paper,
quantitative analysis is added on the basis of qualitative analysis
to compare the improved NSGA-II with the conventional one.
Assuming that the number of populations is 50, the maximum
number of iterations is 500, and running each standard test function

TABLE 1 Cost results of comparative cases within the year (unit: ten thousand Yuan/year).

Case Annual
operating cost

Electrical
purchasing

Gas
purchasing

Device operation and
maintenance cost

Carbon
trading cost

Carbon
storage cost

IDR
compensatory

Cost Cost Cost

I 1371.31 310.57 685.34 247.80 127.60 0 0

II 1359.05 82.51 572.44 256.37 141.63 0 306.10

III 1332.35 267.21 679.84 253.59 23.46 108.25 0

IV 1326.79 107.94 587.56 248.74 23.20 87.26 272.09

TABLE 2 Relevant parameters of test functions and the calculation results.

Test function Dimension Search range Global optimal
value

Calculation result Conventional
NSGA-II

Improved
NSGA-II

Sphere 30 [−30,30] 0 SD 990.3178 0.7183

AF 3196.4603 26.5767

OV 1663.2302 25.4100

WV 5203.9448 27.9232

Rastrigrin 30 [−1.28,1.28] 0 SD 0.0140 0.0006

AF 0.0533 0.0013

OV 0.0334 0.0002

WV 0.0820 0.0026

FIGURE 5
Average convergence curve of the test. (A) Results of the function Sphere, and (B) results of the function Rastrigrin.
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30 times, the relevant parameters of test functions (Tao et al., 2019)
and the final results including the standard deviation (SD), average
fitness (AF), optimal value (OV), worst value (WV), and
convergence curve can be obtained as shown in Table 2 and Figure 5.

As is shown in Table 2, both the conventional algorithm and
improved NSGA-II can complete the search process, but the
improved NSGA-II exhibits higher search accuracy and more
divergent data, which indicates the better population diversity. In
addition, as shown in Figure 5, the improved NSGA-II is superior to
the conventional one in terms of convergence speed, convergence
accuracy, global search ability, and optimized stability.

Table 3 shows the configuration of each device obtained by the two
algorithms in case IV. As shown in Table 3, capacity configuration
results under the improved NSGA-II are generally lower than those

under the conventional one, especially for new energy units and storage
batteries. This shows that the improved NSGA-II is able to reduce the
annual investment cost effectively and then further decrease the annual
planning cost of the system, which can diminish approximately
4.03 million Yuan. In addition, the net emission of pollutants is also
cut down so that environmental protection can be improved. Main
parameters of various types of the devices are listed in Table 4 below.

5.2 Analysis of optimized comparison

This paper takes a typical day in winter to analyze the operating
results of the entire RIES. The operating period is 24 h, and the unit
operating period is 1 h. The output forecast of renewable energy on a

TABLE 3 Configuration results of different algorithms.

Capacity Conventional NSGA-II Improved NSGA-II

WT/kW 4,998 3857

PV/kW 2,416 1,586

CSP/kW 1805 1,282

EB/kW 624 515

EC/kW 301 426

GT/kW 1,650 1,449

GB/kW 562 601

AC/kW 298 283

P2G/kW 473 354

WHB/kW 957 938

SB/kW 800 445

Annual planning cost/(¥) 35,890,772 31,853,419

Annual net pollutant emission/(kg) 3,417,055 2,943,648

TABLE 4 Main parameters of various types of the devices.

Variable Value Variable Value Variable Value /(¥(kW)−1) Variable Value /(¥(kW)−1)
ηGT,e 0.50 ηP2G 0.60 cWT 1000 cWT

DP 0.10

ηGT,h 0.45 ηchae
0.95 cPV 1000 cPVDP 0.10

ηGB,h 0.95 ηdise
0.90 cCSP 1500 cCSPDP 0.38

ηEB,h 0.80 λDEAL 0.513 cEB 3500 cEBDP 0.10

ηEC,c 0.80 λCO2 0.269 cEC 3000 cECDP 0.02

ηAC,c 0.80 μe/(kg · (kW · h)−1) 0.76 cGT 2000 cGTDP 0.13

ηWHB,h 0.60 μg/(kg · (kW · h)−1) 0.52 cGB 2500 cGBDP 0.008

ρh 0.03 δe/(kg · (kW · h)−1) 15.96 cAC 1500 cACDP 0.10

ηd 0.45 δg/(kg · (kW · h)−1) 15.45 cP2G 5000 cP2GDP 0.075

ηf 0.03 ξSe /(kg · (kW · h)−1) 0.0648 cWHB 1000 cWHB
DP 0.20

ηh 0.60 ξNe /(kg · (kW · h)−1) 0.0288 cSB 800 cSBDP 0.20
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typical winter day is shown in Figure 6. In addition, the
corresponding time-of-use price curves are shown in Figure 7.

The situation of carbon emission in different cases is shown in
Figure 8, and the flexible load curves such as electricity, heat, cooling,
and gas under the IDR as well as their detailed composition in case
IV are presented in Figure 9.

As shown in Figure 8, compared with case I and case II, net
carbon emissions in case III and case IV are significantly diminished
after considering the whole process of carbon emission. Compared
with case III, case IV has lower carbon emission and higher carbon
capture, which can reduce carbon trading costs to enhance
environmental benefits. This is because the IDR of peak cutting
and valley filling can reduce some of the purchased power and make
the output of new energy units and GTs increase slightly; as a result,
the energy consumption of the CCS also increases.

As presented in Figure 9, compared with case III, the CLs, TLs,
and FLs of each period in case IV are dynamically changed after
considering the IDR, and themaximum peak-to-valley differences of
each flexible load are reduced by 36.32%, 35.75%, 26.31%, and
11.42%, thus smoothing the load curves and realizing the process
of peak cutting and valley filling. For instance, according to the
electrical load in Figure 9A, the variation of CL is reflected in peak
periods; the variation of TL is larger in peak and valley periods and
smaller in normal periods; and the variation of FL is positive in
valley periods and negative in peak and normal periods, which can
better reflect the peak and valley characteristics of electricity prices.
In addition, the peak-to-valley differences of the flexible electrical
load curve in Figure 9A are effectively reduced to make the cost of
power purchase continuously decrease. In addition, it is easily
known from Figure 9A that the CL of electricity is reflected in
peak periods (10:00–11:00 and 17:00–20:00) when the electrical load
and price are high, and the reduced load would be converted into
incentive subsidies to users. The TL of electricity is shifted from the
high-electricity-price periods (10:00–11:00 and 17:00–20:00) to the
low-electricity-price periods (23:00–08:00 and 12:00–16:00), which

realizes the process of transferring electrical load from peak periods
to the valley called peak cutting and valley filling to promote the
economy of using the electricity. The FL of electricity converts part
of the electrical load into heat load in high electricity price periods to
alleviate the mismatch and imbalance between the electrical load
demand and the supply capacity. In addition, during the periods of
low electricity prices, part of the heat load is transformed into the
electrical load for central heating.

The analysis method of the flexible heat load shown in Figure 9B
is similar to that of the electrical load. As for the flexible cool and gas
loads shown in Figures 9C, D, the system smoothes their load curves
by cutting or transferring to realize the process of stabilizing the load
fluctuation, which makes the output of the corresponding device
more reasonable and perfect.

The aforementioned analysis shows that the IDR under case IV
can achieve peak cutting and valley filling to improve economic
benefits. Meanwhile, the peak-to-valley differences of each load are
reduced by 430.41, 70.60, 33.22 kW, and 29.08 m3 compared with
case III, which makes the whole system more flexible in terms of
energy purchase so that the environmental benefits are significantly
increased.

5.3 Analysis of operating results

Figure 10 shows the optimized operation scheme of storage
devices involving the storage battery and heat storage tank of
the CSP station. Since the energy storage devices can be used as
a part of the flexible load, they have abilities to participate in the
whole peak-cutting and valley-filling process. For the storage
battery, during the valley period of electrical consumption from
23: 00 to 07: 00, the electrical load and price are both lower, so
the storage battery charges at this time to cope with the
subsequent peak load. During the peak periods of 10: 00–11:
00 and 17: 00–20: 00, the electrical load and price are both
higher, so the storage battery discharges to relieve the
pressure in the grid. For the CSP heat storage tank, the main

FIGURE 6
Output forecast of renewable energy on a typical winter day in
the RIES.

FIGURE 7
Time-of-use price curves.
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thermal source is the heat-conducting medium of the heat
absorber in the optical field, so it will be affected by the
operation mode of the CSP station in most periods. For

example, from 09: 00 to 12: 00, the heat storage tank can
provide thermal energy to the load side. In addition, during
the period of 13: 00–16: 00, the light is abundant so that the heat
storage tank collects heat from the optical field to meet the
demand of thermal use in the evening (17: 00–20: 00). During
the period of 23: 00–08: 00, the partial output of the electric
boiler will flow into the CSP heat storage tank to realize the heat
storage backup process.

The input of the two energy storage equipment makes the
operation of the system more reasonable, and the maximum
variation range of power storage and heat storage can reach
770 and 911 kW, respectively, which enables the flexibility of
energy storage increase significantly to reduce the cost of energy
purchase.

Figure 11 shows the optimized operation results of the four
energy sources on the typical winter day, which are analyzed as
follows:

1) Balance of electricity

As shown in Figure 11A, during the period of 23: 00–05: 00, the
electrical demand is mainly satisfied through WT and GT to reduce the
costs of electricity generation and device operation. Since the electrical

FIGURE 8
Net emission and capture volume of CO2.

FIGURE 9
Detailed composition of flexible loads. (A) Electrical load, (B) heat load, (C) cool load, and (D) gas load.
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FIGURE 10
Charge/discharge power and the capacity of storage devices. (A) Storage battery and (B) CSP heat storage tank.

FIGURE 11
Optimal balance scheduling results on a typical winter day. (A) Electrical load, (B) heat load, (C) cool load, and (D) gas load.
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price in this period is at the trough value, the flexible heat load will be
converted into electrical load through the IDR, and the system will
purchase a small amount of electricity for the storage battery. During the
periods of 06: 00–09: 00 and 12: 00–16: 00, the electricity is afforded by
WT, PV, CSP station, andGT in priority, and the insufficient part will be
supplemented through electrical purchase. During the periods of 10:
00–11: 00 and 17: 00–22: 00, the electrical demands of users are relatively
larger. At this time, except for the output of new energy units and GTs,
the electrical shortage can be provided by storage battery and electrical
purchase, in turn, to maintain the balance. In addition, the participation
of flexible electrical load in IDR during this period can further reduce
and transfer the peak electricity consumption, thus significantly
decreasing the power impact of electrical devices on the grid and
their required configuration capacities.

2) Balance of heat

As shown in Figure 11B, during the period of 22: 00–08: 00, the
heat is mainly afforded by GB and WHB while the demand is larger
than at any other time, so the total amount and the peak value of
heat energy can be reduced by cutting and transferring part of the
flexible heat load. In addition, due to the low electricity price at this
time, a small amount of the heat that is output by EB will be
transported to the load side as well as the residual output of EB will
flow into the heat storage tank of the CSP station to meet the lower
capacity limit. During the period of 09: 00–21: 00, the heat is mainly
provided by WHB, and part of the flexible electrical load will be
converted into heat load through the IDR. During the period from
09: 00 to 12: 00, as the light gradually increases, the heat storage tank
of the CSP station releases the heat to the load side, which reduces
the output of GB to 0. During the period from 13: 00 to 16: 00, WHB
takes most of the heat load, and the heat storage tank of the CSP
station uses this period to charge as the reserve for the next period.
During the period from 17: 00 to 21: 00, the gas prices are high so
that the output of GB is decreased, and at the same time, the output
of electrical generation in the CSP station is continuously reduced; as
a result, the heat storage tank of the CSP station releases the heat to
the load side. If the demand cannot be satisfied, EB will provide part
of the required heat.

3) Balance of cooling

As shown in Figure 11C, the output of EC completes the supply
of cool load in the valley and normal time of electrical price, such as
the periods of 21: 00–09: 00 and 12: 00–16: 00. During the periods of
high electricity price such as 10: 00–11: 00 and 17: 00–19: 00, the
output of EC is less than before and AC bears all the cool load, which
is helpful for peak cutting and valley filling. Since there is little
demand for cool energy in winter, the cool mode of the system is
relatively flexible. As a result, the flexible cooling load only needs to
be partially reduced and transferred at the peak.

4) Balance of gas

As shown in Figure 11D, the gas load and the consumption of gas-
fired units are satisfied through gas purchase during the periods of 22:
00–08: 00 and 13: 00–16: 00. During the period from 22: 00 to 05: 00,
although the gas price is at the trough value, the consumption of gas is

generally small, and as a result, the gas purchase is still relatively small.
During the period from 06: 00 to 08: 00, the gas purchase is growing and
GT becomes the main source of gas consumption and continuously
increases its output to satisfy the demands of electricity and heat. During
the period from 13: 00 to 16: 00, the consumption of the gas-fired units is
maintained within a certain range due to the influence of the climbing
rate. At this time, the gas load fluctuates slightly but the amplitude is
small; therefore, the corresponding gas purchase is basically at a stable
level. During the periods of 09: 00–12: 00 and 17: 00–21: 00, constraints
on carbon capture and flue gas treatment make regulating abilities of the
system decline, which leads to the abandonment of wind and light. At
this time, P2Gmakes efforts to absorb the abandoned power of wind and
light, which can synthesize natural gas to alleviate the imbalance between
gas purchase and gas demands. Moreover, due to the high gas price in
this period, the flexible gas load will be reduced and transferred
accordingly.

6 Conclusion

In this paper, an operating model of RIES that considers the whole
process of carbon emission and IDR is constructed.Meanwhile, a double-
layer optimal configuration method based on the improved NSGA-II
and MILP is proposed with the participation of the CSP station. The
following conclusions can be drawn by setting up four cases:

1) The proposed double-layer optimal configuration model can
reasonably optimize the capacities and the output of the
devices to obtain the optimal operation scheme. Meanwhile,
the participation of the CSP station can improve the coordinated
optimization abilities of the RIES.

2) Compared to not considering carbon emissions, introducing the
whole process of carbon emission can significantly reduce the net
carbon emission, in which the combined operation strategy of
wind power–photovoltaic–CSP–carbon capture can coordinate
the output of each device and suppress the fluctuation of
renewable energy, the process of carbon utilization decreases
the storage cost and promotes P2G to absorb the abandoned
power of wind and light, and the ladder-type carbon trading
mechanism can strictly control the cost of carbon emission to
enhance the economy and environmental protection.

3) Compared to not considering IDR, classifying flexible loads
including electricity, heat, cooling, and gas into curtailable,
transferable, or fungible loads for participating in the IDR can
effectively smooth the load curves, reduce the peak-to-valley
differences, and realize multi-energy complementarities.
Meanwhile, the compensatory mechanism of the IDR can
rationally adjust the energy consumption strategies to
optimize the energy structure and improve energy efficiency.

4) Compared with the conventional NSGA-II, the improved NSGA-II
can obtain the optimal non-dominated solution sets in the upper
layer, and its capacity configuration and operation scheme have
lower annual planning cost and net pollutant discharge. Meanwhile,
the optimized accuracy of the improved NSGA-II is higher, and the
convergent speed and ability reach the optimal level.

At present, this paper mainly studies the day-ahead
configuration and operation of the single-region RIES. In the
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follow-up work, the whole process of carbon emission and IDR will
be further extended to the energy network with multi-RIES
interconnection by considering the effects of source-load
uncertainty on capacity configuration and the step-by-step
refinement of time scales to realize the decoupling, coordinated
optimization, and stable operation of different energies.
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Mid-term scheduling and trading
decisions for cascade hydropower
stations considering multiple
variable uncertainties

Jia Lu*, Yaxin Liu, Hui Cao, Yang Xu, Haoyu Ma, Zheng Zhang,
Tao Wang and Yuqi Yang

Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co. Ltd.,
Yichang Hubei, China

Cascade hydropower producers face two stages of risk when participating in
medium and long-term market transactions: transaction risk during the bidding
stage; and the operational risk during the scheduling and operation stage due to
the uncertainty of runoff and market-clearing prices. Therefore, how to measure
the above risks andmake corresponding decisions has become an urgent problem
for producers.This paper combines the real market structure and rules of a certain
hydropower dominated market in Southwest China, and establishes a mid-term
operation and trading decision-making method based on the Joint Information
Gap Decision Theory (IGDT) and Prospect Theory. To address the main
uncertainty variables that producers face in participating in transactions, this
paper obtains the maximum fluctuation range of variables that satisfy the
expected revenue in a robust model based on IGDT. Then, using Prospect
Theory, a bidding strategy model that takes into account the psychological
factors of producers is constructed within this range.To solve the nonlinear
programming problem and address the accuracy issues caused by curve fitting
during the solution process, a nonlinear programming combined with an
improved stepwise optimization hybrid algorithm is employed.Using actual data
from a hydropower grid in southwest China participating in the market as an
example. The results indicate that the method provides the fluctuation range of
runoff and market prices under different expected return targets, and can
formulate reasonable bidding decisions and operation plans based on
producers different risk preferences within this range.

KEYWORDS

power market, information gap decision theory, prospect theory, robust optimization,
cascade hydropower stations, risk decision

1 Introduction

As the new round of power market reform gradually enters deep water area, China’s
provinces and cities have established well-regulated and well-structured medium- and long-
term power markets (Cheng et al., 2018; Liu et al., 2019; Yao et al., 2020).Because medium-
and long-term transactions have relatively low risks and stable returns, they have become a
“ballast stone” for market participants to avoid risks (Li et al., 2022). At the same time, they
also plays a role in anchoring the spot market prices. For cascade hydropower producers, the
medium and long-term market can effectively mitigate operational risks caused by
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hydrological uncertainty, especially for long-term operation and
transaction plans with large errors. Hydropower producers can
adjust long-term plans and make trading strategies through mid-
term optimization scheduling based on more accurate forecasting
results. However, when participating in monthly medium- and long-
term markets, there will inevitably be errors in the predicted values
of runoff and prices which may lead to insufficient generation
output, failure to fulfill contracts, or high bidding prices that
result in failed clearing. Therefore, how to formulate
corresponding operation plans and bidding strategies has become
an urgent practical demand for cascade hydropower producers.

In the market, the traditional dispatching method has been
significantly impacted as well (Li et al., 2012). Unlike other power
generation, when participating in the market, hydropower
producers needs to consider not only the transaction risks caused
by market structure, rules, and bidding strategies, but also the
operation risks caused by uneven and uncertain distribution of
runoff. In addition, when participating in the market every
month, producers usually take two approaches to pursue higher
profits: increasing power generation and bidding higher prices.
However, there are inevitable errors in their predicted runoff and
prices, which may lead to insufficient generation output that cannot
be fulfilled or high bidding prices that result in failed clearing.
Therefore, when participating in mid-to-long-term trading,
producers face a two-stage risk that needs to be considered: 1)
transactional risk in the mid-to-long-termmarket bidding stage; and
2) operational risk in the mid-term dispatch stage due to the
uncertainty of market-clearing electricity prices and the
randomness of daily runoff. How to jointly consider the above
risks and make reasonable decisions in the corresponding stages has
become the main practical and theoretical challenge currently faced
by hydropower producers in China.

At present, there has been some research on the above issues. In
response to the risk decision-making issue during the bidding stage, a
methodology to design an optimal bidding strategy for a generator
according to his or her degree of risk aversion is established (Rodriguez
and Anders, 2004).Based on the coordinated interaction between units
output and market clearing prices, the benefit/risk/emission
comprehensive generation optimization model with objectives of
maximal profit and minimal bidding risk and emissions is
established (Peng et al., 2012).The uncertainty model of market price
is considered based on the concept of weighted average squared error
using a variance–covariancematrix. IGDT is used to develop the bidding
strategy of a generation company (Za et al., 2013). Introducing
evolutionary game theory into the bidding strategy of thermal power
units, a thermal power peak shaving biddingmodel based on the bidding
mechanism of the auxiliary service market of Northeast China Power
Grid was established (Lu et al., 2021).A robust optimization approach is
proposed to obtain the optimal bidding strategy of retailer, which should
be submitted to pool market (Nojavan et al., 2015a).A hybrid approach
based on IGDT and modified particle swarm optimization (MPSO) is
used to develop the optimal bidding strategy (Nojavan et al.,
2015b).Proposes a bilevel stochastic optimization model to obtain the
optimal bidding strategy for a strategic wind power producer in the
short-term market (Dai and Qiao, 2015).

However, from the perspective of usage scenarios, current
research still has some shortcomings, mainly manifested in the
following three aspects: 1) Most research focuses on thermal and

wind power, which is not applicable to risk decision-making
problems for cascaded hydropower stations with close water-
electricity connections. 2) When using scenario analysis to
handle uncertainty, a sufficient number of scenarios are usually
required to make the description more accurate and comprehensive,
which can lead to low solution efficiency and overly conservative
results. 3) Current research mostly considers decision-making risks
in the bidding stage or performance risks in the operational stage
separately, while in practical use, these two types of risks need to be
coupled together. 4) Most studies use solvers to improve
computational efficiency, but this approach requires fitting some
curves, resulting in a decrease in computational accuracy.

In order to solve the above problems, this paper introduces the
power market structure and rules of a certain hydropower
dominated market in Southwest China. The trading varieties in
this market are divided into three time categories: annual, monthly,
and daily. The annual trading is bilateral, and the monthly trading is
carried out in the order of bilateral, matchmaking, and listing.
Considering the risks in the bidding stage and the dispatching
operation stage, a method for cascade hydropower producers is
proposed by combining the IGDT and prospect theory. Firstly,
considering the risk in the medium-term operation stage, the IGDT
is used in conjunction with a robust optimization model to solve for
the maximum deviation range of runoff and clearing prices from the
predicted values when satisfying the producer’s predetermined
revenue. Then, considering the trading decision risks in market
bidding stage based on the fluctuation range of uncertain variables,
the prospect theory is used to analyze and study the bidding strategy
of producer’s in the market from the perspective of limited
rationality and establish a corresponding bidding decision model.
Considering the precision problem caused by curve fitting due to the
use of optimization solvers for solving nonlinear programming
problems, this paper chooses to use a nonlinear programming
and improved stepwise optimization hybrid algorithm to solve
the problem. Finally, a cascade hydropower station is used as an
example to verify that the method provided in this paper provides
the fluctuation range of runoff and clearing prices under different
expected revenue targets, and develops reasonable bidding decision-
making and operation plans based on different risk tolerance levels
within this range.

2 Introduction to prospect theory

Prospect theory (Tversky, 1979; Amos Tversky and Kahneman,
2016) is a method that takes into account the subjective feelings of
decision-makers, where they exhibit risk aversion when facing gains
and risk-seeking behavior when facing losses, and are more sensitive
to losses than gains. In practice, decision-makers face a highly
complex and dynamic electricity market, and the many
uncertainties and risks associated with it make it difficult for
decision-makers to meet the assumption of a “perfectly rational
person". This means that their information is limited, and their
predictions of the market are always subject to some level of error. In
addition, limited insight into the essence of the problem makes it
difficult for decision-makers to maintain consistent risk preferences,
highlighting the characteristic of changing risk preferences.
Therefore, in contrast to assuming decision-makers are perfectly
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rational using the mean-variance or value-at-risk/conditional value-
at-risk methods, prospect theory assumes that decision-makers are
boundedly rational, meaning their information is limited and risk
preferences can change with different objective factors, and typically
uses prospect value as a basis for decision-making. Prospect value is
determined by both the value function and decision weights, and the
calculation formula is as follows:

V � ∑K
k�1

ω(prok)] xk( ) (1)

Where V represents prospect value; k represents a certain event
and K represents all possible events; (prok) is the probability weight
function; v (xk) is the value function; prok is the probability of event k
occurring; and xk is the index value of event k. In prospect theory, the
decision-making process of a decision-maker is influenced by two
subjective factors: their subjective value perception of the benefits
obtained from the decision and their subjective perception of the
probability of achieving those benefits.

The value function is a subjective representation of value formed
by the decision-maker, and commonly used forms of the value
function include the following:

v xk( ) � xa x≥ 0
−λ −xk( )b x< 0

{ (2)

Where the parameters a and b represent the concavity and
convexity of the power functions for gains and losses, respectively,
reflecting the decision-maker’s sensitivity to gains and losses.
Generally, a and b are greater than 1. The parameter λ reflects
the decision-maker’s aversion to losses, and is generally greater
than 1.

The probability weight function represents the decision-maker’s
subjective judgment of the probability p of an event occurring, and
commonly used forms of the probability weight function include the
following:

ω prok( )+ � prokθ

prokθ + 1 − prok( )θ[ ] 1
/θ

(3)

ω prok( )− � prokδ

prokδ + 1 − prok( )δ[ ] 1
/δ

(4)

Where (prok)
+ and (prok)

- represent the probability weight
functions when the decision-maker perceives gains and losses,
respectively. θ is the coefficient of the attitude towards risk for
gains, and σ is the coefficient of the attitude towards risk for losses.

3 The risk decision model based on the
joint information gap decision theory
and prospect theory

When market participants evaluate a decision as a gain or a loss,
they usually consider the change in wealth rather than the total
wealth. The carrier of subjective value is the change in wealth, not
the final state of wealth. Therefore, when evaluating market risks for
a cascaded hydropower producer, expected gains must be set in
advance. Next, different bidding decisions and operating plans are

evaluated based on the electricity sales revenue. Finally, the optimal
decision is chosen based on the decision-maker’s attitude
towards risk.

3.1 Medium and long term market income
model of cascade hydropower producers

Themarket share of each power producer studied in this paper is
relatively small, and their bidding method has no impact on the
transaction results, indicating that they can be considered price
takers. Transactions in the market are settled according to pay-as-
bid (PAB), which is a payment based on the offer (Federico and
Rahman, 2001; Kahn et al., 2001). When participating in market,
corresponding application decisions and operation plans will be
formulated based on the predicted runoff and the clearing price. As
the decision-makers of cascade hydropower stations are limited
rational price takers who cannot obtain unbiased estimates of
uncertain variables. Therefore, the bidding based on the
predicted clearing price may lead to excessively high bids due to
prediction error, which will eventually lead to bidding failure. In this
case, the settlement is based on the on grid price. At the same time,
due to the strong volatility of natural runoff, there are often errors in
the prediction results, resulting in the transaction contracts in the
medium-term dispatching operation stage can not be completed or
overfulfilled, so it is necessary to consider the assessment of the
default part. Therefore, the revenue for a hydropower producer is
shown as follows:

B1,i � e1,i × p1 (5)
B2,i � e2,i × p2, e1,i ≥ 0 (6)
e2,i � ei − e1,i, ei ≥ e1,i (7)

B3,i � e3,i × p3 (8)
e3,i � e1,i − e1, ei < e1,i (9)

Where B1,i and e1,i represent the medium- and long-termmarket
revenue and settlement electricity quantity, respectively, for station i;
p1 is the settlement electricity price for the mid-to-long-term
market. B2,i and e2,i represent the excess power generation
revenue and excess electricity quantity, respectively, for station i
when the bid is successful; p2 is the settlement electricity price for
excess electricity quantity. B3,i and e3,i represent the default loss and
default power quantity, respectively, ei is the power generation of
station i; p3 is the default electricity price used for assessment.

3.2 Medium term optimal operation model
of cascade hydropower producers

3.2.1 Objective function of optimal scheduling in
operation stage

Considering that the generation cost of cascaded hydropower
stations mainly consists of fixed costs and does not affect model
optimization, this paper will ignore it. With a monthly scheduling
cycle and 1 day as a time period, the optimization goal for a producer
in the market is to maximize total revenue, as shown in the following
formula.
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maxB0 � maxB+β + B− 1 − β( ) (10)

B+ � ∑N
i�1

B1,i + B2,i( ) (11)

B− � ∑N
i�1

B1,i − B3,i( ) (12)

Where, B0 refers to the total revenue of the producer; N is the
number of cascaded hydropower stations. B+ and B− correspond to
the total revenue of the producer when overcompleted and in
contract breach, respectively. β is a binary variable where β =
1 represents overgeneration and β = 0 represents an uncompleted
contract.

According to formulas (5) to (10), the generation revenue of a
producer mainly depends on the total electricity generation of the
current month. This is calculated as follows:

ei � ∑T
j�1
ηi × Qi,j × Hi,j ×Δtj (13)

Hi,j � Zi,j−1 + Zi,j

2
− Zd

i,j −Hd
i,j (14)

Where: ei is the total power generation of station i for the
period j; T is the total number of time periods; Qi,j, Hi,j, Zi,j, Z

d
i,j,

and Hd
i,j represent the average power generation, average

discharge, water head, decision-making reservoir water level,
downstream tail water level, and head loss of station i on the jth
day, respectively; ηi is the output coefficient of station i; and Δtj
is the time step length.

3.2.2 Objective function
To avoid repetition, this article follows the conventional hydro

constraints of the hydropower station as shown in reference (Lu
et al., 2021). This paper only demonstrates the relevant market-
based power constraints, which are shown below:

e1,i + e2,i − e3,i � ei (15)
e2,i × e3,i � 0 (16)

ei − βM≤ e1,i ≤ 1 − β( )M + ei (17)
Where M is a sufficiently large constant.

3.3 Robust optimization modeling and
solution based on IGDT

3.3.1 Objective function
To mitigate the impacts of uncertain runoff and prices

during the bidding and operation stages of cascaded
hydropower producers, this paper adopts the IGDT (Wright,
2004) robust model for modeling. The model calculates the
maximum deviation range between the predicted values of
runoff and clearing prices for the mid-term operation stage to
achieve expected revenue. To avoid repetition with Section 3.2,
only unique content is presented below:

�α � max
α,ei,t

i � 1, 2, ..., N (18)
s.t. B*≥Bc � 1 − σ( )B0 (19)

B* � { min
ei ,p1 ,p2 ,p3

B+β + B− 1 − β( )
ei � ∑T

j�1
ηi × Qi,j × Hi,j ×Δtj,

s.t. 1 − α( ) × �qi,j ≤ qi,j ≤ 1 + α( ) × �qi,j,
1 − α( ) × �p1 ≤p1 ≤ 1 + α( )�p,
1 − α( ) × �p2 ≤p2,

p3 ≤ 1 + α( ) × �p3}

(20)

Where ‾α represents the maximum fluctuation range of runoff
and prices compared to the predicted values. In order to better
describe the basic idea of IGDT and its applicability in solving the
problem at hand, it is assumed that the predicted errors for both
prices and runoff are the same. B* represents the optimal selling
revenue of the producers in the robust model, while Bc represents the
expected selling revenue. σ represents the risk tolerance level, which
is the degree of deviation between the expected revenue target Bc and
the actual revenue B0.‾pi represents the predicted values of various
prices, while ‾qi,j represents the predicted values of runoff. α

represents the fluctuation range of runoff and prices compared to
the predicted values.

3.3.2 Model solving method
According to the established model, the goal of the lower

layer of the model is to calculate the market revenue of the
producers based on the maximum revenue model when the
uncertain variable fluctuates within [1-α,1+α]. The goal of the
upper layer of the model is to solve for the maximum deviation
range of the uncertain variable α and obtain the corresponding
power bidding strategy e1,i when the market revenue meets the
model’s predetermined target. This paper analyzes the market
participation goals of the producers and performs an equivalent
transformation on the two-layer model constructed according to
literature (Moradi-Dalvand et al., 2015). The transformation
steps and solving process are outlined in literature (Li et al.,
2021). In order to use the Lingo or Gurobi solver to solve the
problem of maximum monthly power generation, literature (Li
et al., 2021) performed corresponding fitting on the relationship
curves between the storage capacity-water level and the runoff
rate-downstream water level of the cascade reservoir. However,
since these curves are not smooth and regular, the curve fitting
inevitably led to calculation results that deviate from the actual
operating conditions.

In order to solve the calculation error problem caused by fitting,
this article adopts a nonlinear programming and improved stepwise
optimization hybrid algorithm for solution. Firstly, the initial
scheduling process of a cascade hydropower station, which
satisfies the constraints related to water level, flow rate, and
reservoir capacity, is obtained using nonlinear optimization. And
then, building upon the initial scheduling process, a stepwise
optimization algorithm is employed, which converts the multi-
stage optimization problem into several two-stage optimization
subproblems. In each successive two-stage optimization
subproblem, a combination set is formed by drawing random
values for the variable values of each power station within their
respective ranges. The combination that yields the optimal objective
function value is then used to replace the original variable values.
And last, this process is repeated sequentially for all subproblems,
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completing one iteration. The process is iterated iteratively until the
termination condition is met, resulting in the maximum power
generation of the cascade hydropower producer for the current
month under operational constraints.

The objective function of the two-stage optimization
subproblem is defined as:

maxE′ � ∑N
i�1
∑T
t�1

Pi,t ×Δtt − γi,1 max 0, Qi,j
min − Qi,j( )[

− γi,2 0, Qi,j − Qi,j
min( ) − γi,3 0, Qi,j − Qi,j

min
∣∣∣∣∣∣∣∣ ∣∣∣∣ − ΔQi,j( )

−γi,4 0, Pi,j
min − Pi,j( )] (21)

Where E’ is the objective function value of the subproblem. γi,1,
γi,2,γi,3 and γi,4 are the penalty coefficients for station i violating the
minimum discharge constraint, maximum discharge constraint,
discharge ramp constraint, and minimum power output
constraint, respectively.

When generating the water level combination set, if there is no
reserved storage capacity constraint for the cascade hydropower
stations, the water level combination is generated by randomly
selecting n mutually exclusive random numbers within each
power station’s water level range. The Cartesian product is then
used to generate the cascade hydropower station’s water level
combination set. If there is a reserved storage capacity constraint
for the cascade hydropower stations, the water level combination set
is composed of combinations that satisfy the storage capacity
constraint.

Si,jmin ≤ Si,j ≤ Si,jmax

∑
i∈Ω

Si,j ≤Aj
max − Aj

Zi,j � fi Si,j( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (22)

The specific implementation method is as follows:
①Sort the power stations in Ωj from upstream to downstream

in ascending order and represent them as i1, i2, ..., iK, whereK = |Ωj |
is the number of power stations in the set.

②For each power station i1, randomly select nK numbers within
the following reservoir storage range:

Si1 ,j
min ≤ Si1 ,j≤min Si1 ,j

max, Aj
max − Aj − ∑

k∈ i2 ,...,iK{ }
Sk,j
min⎡⎢⎢⎣ ⎤⎥⎥⎦ (23)

③For each reservoir storage level Si1 ,j
* of power station

i1, randomly select one number within the following reservoir
storage range of power station i2 and associate it with Si1 ,j

*.

Si2 ,j
min ≤ Si2 ,j≤min Si2 ,j

max, Aj
max − Aj − Si1 ,j

* − ∑
k∈ i3 ,...,iK{ }

Sk,j
min⎡⎢⎢⎣ ⎤⎥⎥⎦ (24)

④Similarly, until the Kth power station is reached, there will be
nK combinations of reservoir storage levels. Based on the
relationship between reservoir storage and water level, the
combinations of reservoir storage levels are converted to
combinations of water levels.

⑤For the N-K power stations without reservoir capacity
constraints, randomly select n different water level combinations
from their respective water level ranges and use the Cartesian
product with the water level combination set in step ④ to

generate the water level combination set for the cascaded
hydropower stations.

The problem-solving process is shown in Figure 1.

3.4 Decision making model of mid long term
market bidding based on prospect theory

3.4.1 Modeling
The Prospect theory suggests that a decision-maker’s decision

depends on the difference between the outcome and the expected
value, rather than the outcome itself, based on different reference
points. Based on this fundamental idea, Bc = (1-σ)*B0 in 3.3 is used as
the expected revenue during the bidding phase. Therefore, the
psychological perception revenue deviation ΔB between the
revenue of selling electricity from cascade hydropower producers
and Bc is:

ΔB � B xk( ) − Bc (25)

B xk( ) �
∑N
i�1
B1,i, e1,i > 0

∑N
i�1
ei × p4, e1,i � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(26)

where B (xk) is the revenue function of producers for proposal k
during the bidding phase, considering both successful and failed
bidding scenarios; p4 is the on-grid electricity price of power station
i, which is set to a uniform value for convenience of calculation in
this paper.

The value function reflects the subjective value perception of the
decision-maker of the producers towards the revenue deviation ΔB.
When the electricity sales revenue exceeds its expected revenue, that
is, ΔB>0, according to the characteristics of the value function, the
decision-maker is psychologically “gain-oriented” and tends to
avoid risks. Conversely, they have risk-seeking characteristics.
Therefore, combined with formulas 25 and 26, the value function
is modified as follows:

v xk( )s �
∑N
i�1
B1,i − Bc

⎛⎝ ⎞⎠a

,ΔB≥ 0, e1,i > 0

−λ Bc −∑N
i�1
B1,i

⎛⎝ ⎞⎠b

,ΔB≤ 0, e1,i > 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(27)

v xk( )s �
∑N
i�1
ei × p4 − Bc

⎛⎝ ⎞⎠a

,ΔB≥ 0, e1,i � 0

−λ Bc −∑N
i�1
ei × p4

⎛⎝ ⎞⎠b

,ΔB≤ 0, e1,i � 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(28)

where v (xk)s is the value function when scheme k is successfully
declared, and v (xk)d is the value function when scheme k is
unsuccessfully declared.

As the market adopts the PAB settlement method in this
paper, the higher the bidding prices of decision-makers for the
producers, the greater the revenue obtained when the bid is
successfully submitted. However, at the same time, the higher
the bidding prices, the greater the risk of bid failure faced by
them. Therefore, when bidding, decision-makers need to fully
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consider the risk of their decision-making programs and modify
formulas 3 and 4 based on the successful bidding probability, as
shown below:

ω prok( )s � F p max( ) − F pk( )[ ]θ
F p max( ) − F pk( )[ ]θ + 1 − F p max( ) + F pk( )[ ]θ{ }1/θ

(29)
ω prok( )d � F pk( ) − F p min( )[ ]σ

F pk( ) − F p min( )[ ]σ + 1 − F pk( ) + F p min( )[ ]σ{ }1/σ
(30)

where ω(prok)s is the probability weight for scheme k when it is
successfully cleared, and ω(prok)d is the probability weight for
scheme k when it is unsuccessfully cleared; pmax and pmin are the
maximum and minimum predicted clearing prices, respectively; pk
is the bidding price for the kth scheme; F (pmax), F (pmin) and F(p)
represent the probabilities corresponding to pmax, pmin and pk under
a certain distribution, respectively; F (pmax)- F (pk) and F (pk)- F
(pmin) represent the probabilities of successful and failed bidding,
respectively.

Based on the analysis of the value function and probability
weight function for producers during successful and failed
bidding as described above, the bidding decision-making
model is as follows:

maxVk � v xk( )sω prok( )s + v xk( )dω prok( )d (31)
where Vk is the comprehensive prospect value under the kth
proposal; v (xk)s and v (xk)d are the value functions for the kth
scheme when the bid is successful and unsuccessful,
respectively.

3.4.2 Model solving method
The calculation process of the bidding decision-making model

for the producers in the market based on prospect theory during the
bidding stage is shown in Supplementary Appendix Figure A1.
According to the objective function in Section 3.4.1, the
optimization process is as follows:

①Using the expected revenue Bc obtained in Section 3.3 and the
range of market clearing prices and daily discharge changes from [1-
α,1+α] that satisfy the expected revenue as the reference point and
the range of bidding prices for the prospect theory model.

②Select a representative daily flow process and use the
maximum power output model to calculate the power output of
the cascade hydropower station. Then, starting from pk = pmin,
increase the bidding price by a fixed step, and calculate the revenue
of the cascade hydropower station under various bidding decisions
according to formulas (25) to (26).

③Calculate the value function v (xk)s and v (xk)d for each
scheme when the bid is successful and unsuccessful based on the
predetermined revenue Bc and formulas (27) and (28). Then, using
formulas (29) and (30), calculate the probability weights ω(prok)s and
ω(prok)d for each proposal when the bid is successful and
unsuccessful. Finally, obtain the prospect value Vk for each scheme.

④Calculate the prospect value Vk for all scheme, and find the
scheme with the maximum Vk. This scheme is the optimal bidding
strategy for the producers.

4 Example analysis

The research background and examples of this paper are shown in
reference (Li et al., 2021). Based on actual operation data, the historical

FIGURE 1
Flow chart of the model solution.
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average is used as the predicted value. The predicted market clearing
price is 0.2553 yuan/kWh, the excess completion price is 0.19358 yuan/
kWh, and the default assessment price is 0.2734 yuan/kWh. The on-grid
price of 0.2 yuan/kWh is a constant. The basic information of each

power station and the predicted storage level are shown in Appendices
A1-A2. For the uncertainty of runoff, this paper only considers the
leading hydropower station A. The interval runoff of downstream
stations with weak regulation performance is calculated using the

FIGURE 2
Display of calculation results of two algorithms. (A) Operating Process of Station A, (B) Operating Process of Station B, (C) Operating Process of
Station C, (D) Operating Process of Station D.
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multi-year average runoff value. The reason is that the generation of
cascade hydropower stations in the dry season is mainly affected by the
generation flowof upstream leading stationwhich is not at the same level
as that of the interval runoff.

4.1 Accuracy verification of solving
algorithm

When the inflow forecast deviation α = At 0.151, the calculation
results of the two algorithms are shown in Figure 2. The results of the
hybrid algorithm are 14.417 billion kW hours, and the results of the
solver are 14.325 billion kW hours.From the operation process of the
cascade hydropower stations, the hybrid solution algorithm has a
smoother process, and there are significant fluctuations in the output
of the b and c stations in the solver’s calculation results. Overall, the
results of the hybrid algorithm are better than those of the solver.To
verify the improvement in solving accuracy of the nonlinear
programming and improved stepwise optimization hybrid algorithm
used in this article.The generation results of the two algorithms are
rechecked based on the method of controlling the water level process,
and then the operating water level process is rechecked based on the
method of controlling the outflow flow. If the difference between the
recheck results and the original calculation results is smaller, it indicates
that the corresponding algorithm has higher solution
accuracy.According to the method of controlling water level, the
review result of the hybrid algorithm is 14.42 billion kW hours, and
the review result of the solver is 13.52 billion kW hours. From the results
of the generation review, the calculation accuracy of the hybrid algorithm
is higher. Due to the linear function of the water balance equation of the
reservoir, it is only necessary to convert the water level into water volume
in advance to perform linear calculations in the solution. Therefore, there
is no deviation in the results of both algorithms when rechecking the
water level process using the method of controlling the outflow. Overall,
the hybrid algorithm has higher solving accuracy.

4.2 Risk analysis of cascade hydropower
stations in operation stage

Based on the research in reference (Li et al., 2021), the predicted
clearing price and runoff are substituted into the maximum revenue

model to solve the problem of maximizing the revenue of producers
participating in markets. The revenue B0 at this time is
3349.02 million yuan. The model established in this paper
assumes that the actual runoff and clearing price in the future
will fluctuate around the predicted values, with a fluctuation range of
α. According to the different expected revenue targets or risk
tolerance σ of producers, the curve of robust model objective
‾α(Bc) varying with risk tolerance or preference degree σ can be
obtained, as shown in Figure 3. The calculation results are shown in
Supplementary Appendix Table A3. The robust region refers to the
maximum fluctuation range of price and runoff that satisfies the
robust solution when the minimum expected revenue is met.

As can be seen from the model proposed in this paper, with the
increase of the risk tolerance of producers, the maximum fluctuation
range of uncertain variables also increases. That is, when the
expected revenue is lower, the greater the fluctuation range of
runoff and market price, the better the robustness of the power
distribution strategy obtained, which is more resistant to larger
runoff fluctuations. It is worth noting that no feasible solution can be
obtained when σ< 0.25. Analysis of the reasons shows that the end
water level of station C is 581.98 m, which is higher than the initial
water level of 575.27 m. However, σ< 0.25 represents that the actual
forecast inflow is significantly lower than the predicted value. In the
current situation of low inflow, it is impossible to meet the initial and
final water level requirements of station C.

After obtaining the maximum fluctuation range of clearing price
and runoff, in order to facilitate producers formulating
corresponding medium-term operation plans based on
predetermined revenue, this paper draws the medium-term water
level operation and output range of cascade hydropower stations
when the robust region is [1-α,1+α].The specific results are shown in
Figure 4. Figures 4A–D depict the operating water level range of
stations A, B, and C when the runoff and market clearing price
fluctuate by α = 0.151 around the predicted value. That is, when
operating within this water level range, as long as the predicted error
of electricity price and runoff does not exceed 15.1%, the marketized
revenue of stations will not be lower than the expected revenue.
Therefore, decision-makers can formulate corresponding operation
and output plans within this range according to their own risk
preferences, optimize medium-term dispatch plans, and avoid risks.

4.3 Risk analysis of cascade hydropower
station bidding decision in bidding stage

Using the calculation results from the previous section, when
1-σ = 0.75, the expected revenue of the station is Bc =
2511.86 million yuan. The maximum fluctuation range of the
actual values of runoff and clearing price relative to the predicted
values is α = 0.151.That is, when the actual daily runoff and
clearing price fluctuate by no more than 15.1% around the
predicted values, the station’s revenue can be guaranteed to
be at least Bc = 2511.86 million yuan in the worst case. Based on
Kahneman and Tversky’s experimental measurements, the risk
preference coefficient a is set to 0.88, the risk aversion coefficient
b is set to 0.88, the risk attitude coefficients θ and θ are set to
0.61 and 0.67, respectively, and the sensitivity coefficient λ is set
to 1.25. Different scenarios are then analyzed and solved.

FIGURE 3
Variation curve of the robust region with the risk tolerance factor
1-σ.
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4.3.1 Model solving method
With a fixed expected revenue of Bc = 2511.86 million yuan and

a clearing price ranging from 0.2168 to 0.2939, due to the limited
data and potential fitting errors, it is assumed that the market

clearing price follows a normal distribution of N (0.2553,0.016).
The daily runoff is set to (1-α)*qi,t, and the generation output of the
station is 11.59 billion kW hours. The bidding price is fixed at a step
size of 0.005 yuan/kWh, and the prospect value of different bidding

FIGURE 4
Operation range of cascade hydropower stations meeting the predetermined revenue. (A)Operating Process of Station (A) (B)Operating Process of
Station (B) (C) Operating Process of Station (C) (D) Operating Process of Station (D).
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strategies is calculated. Then, by varying the mean and variance of
the market clearing price, the prospect value is calculated and
plotted as shown in Figure 3.

From Figure 5A, it can be seen that the variance represents
the degree of fluctuation in predicted market clearing price. The
smaller the variance, the smaller the price fluctuation, leading to
a more concentrated price distribution and a higher probability
of falling within the given [1-α,1+α] interval. Conversely, the
larger the variance, the greater the price fluctuation, leading to a
more dispersed price distribution and a lower probability of
falling within the given interval.When the variance is 0.016, the
price distribution is mostly concentrated within the interval
specified by the IGDT robust model. To avoid losses from
quoting too high and not being able to successfully cleared,
the optimal bidding price for the decision-makers is
0.2368 yuan/kWh. When the variance is 0.064 and 0.144, the
proportion of price distribution within the interval specified by
the IGDT robust model is relatively small and dispersed. At this

time, the optimal bidding prices for the decision-makers are
0.2568 yuan/kWh and 0.2618 yuan/kWh, slightly higher than
the prices when the variance is 0.016.

As can be seen from Figure 5B, the mean has a greater impact on
the bidding strategy than the variance.The mean represents the
central location of the predicted market clearing price and affects the
probability of a successful cleared. Within the price interval specified
by the IGDT robust model, if the mean is closer to the lower bound,
the optimal bidding price to ensure a successful cleared will also
decrease. For example, when the mean is 0.22 yuan/kWh, the
optimal bidding price for the decision-makers is 0.2168 yuan/
kWh, and the prospect is negative, representing that this bidding
strategy cannot meet the expected revenue of the decision-making,
and its psychology is “loss”. When the mean is larger, the optimal
bidding price also increases. For example, when the mean is
0.2553 yuan/kWh and 0.28 yuan/kWh, the optimal bidding price
is 0.2368 yuan/kWh and 0.2568 yuan/kWh, respectively, and the
model results are consistent with the facts.

FIGURE 5
Optimal bidding price under different parameters with fixed expected return. (A) Influence of variance on optimal decision. (B) Influence of mean
value on optimal decision.
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4.3.2 Impact of bidding volume change on bidding
strategy

When the daily runoff varies within [(1-α)*qi,t, (1+α)*qi,t], the
generation output of the cascade hydropower station changes within
[9.96878, 15.36877] billion kW hours, while other parameters
remain unchanged. The optimal bidding price for the decision-
maker is calculated under different generation outputs, as shown in
Figure 6.

As shown in Figure 4, the expected revenue of the station is
Bc = 2511.86 million RMB. According to the transaction
settlement rules, when the power generation company fails to
bid, the settlement price shall be 0.2 yuan/kWh.The producers
needs to ensure at least 12.5 billion kW hours of electricity to
meet its own expected revenue, even if the bidding
fails.Therefore, when the generation output is less than
12.5 billion kW hours, that is, the sales revenue is less than the
expected revenue, the decision-maker is “loss-averse” in terms of
psychology. When facing a “loss-averse” situation, decision-
maker often have a strong risk appetite and will choose
higher-risk prices for bidding. As the generation output
increases, the revenue increase from only relying on the on-
grid tariff settlement, that is, the “loss” from failed bidding
decreases, and the risk appetite of decision-maker weakens, so
they will choose relatively lower-risk prices for clear. When the
generation output is in the range of 12.5–12.6 billion kW hours,
the optimal bidding price will increase slightly, that is, as the
decision-maker transitions from “loss” to “gain” in terms of
psychology, the comprehensive prospect value of slightly
increasing the bidding price is greater than that only relying
on the on-grid tariff settlement. When the generation output is
greater than 12.5 billion kW hours, that is, the sales revenue is
greater than the expected revenue, the decision-maker is “gain-
seeking” in terms of psychology, and has a strong risk aversion
tendency. They will choose lower-risk prices for bidding.
However, after the generation output increases to a certain
degree, the optimal bidding price of decision-maker remains
unchanged. The model in this paper reflects the characteristic
of decision-maker being loss-averse and gain-seeking in terms of
risk appetite when facing different psychological expectations,
which makes the decision results more in line with the
psychological desires of decision-maker.

5 Conclusion

Based on IGDT and prospect theory, this paper proposes a
mid-term optimization scheduling and trading decision-making
method for cascade hydropower producers in the power market
that jointly considers the bidding stages and the dispatching and
operation risks. The optimization scheduling model for the
dispatching stage is conceptually clear, operationally simple,
and the results are intuitive, enabling the calculation of the
maximum deviation range of daily runoff and market clearing
prices from the predicted values when satisfying the decision-
maker’s predetermined revenue. From the perspective of limited
rationality, the model considers the decision-maker’s risk
appetite for different revenue reference points in bidding
stages, which is more in line with the facts, and obtains the
optimal bidding strategy within a given range of clearing price
changes. In order to solve the calculation error problem caused
by fitting, this article adopts a nonlinear programming and
improved stepwise optimization hybrid algorithm for
solution. The research indicates that:

①When analyzing the risks of cascade hydropower
producers in the power market environment, it is not
sufficient to solely rely on the total revenue of each scenario.
Instead, evaluations need to be conducted based on their
psychological reference points. Therefore, the degree of risk
preference held by operators is a key factor in determining
both bidding and operating strategies. Furthermore, an
operator’s risk appetite can vary depending on their changing
psychological expectations.

②This method provides robust models that can withstand
fluctuations in daily runoff and market clearing prices for mid-
term scheduling and operation plans that meet different expected
revenue targets for producers. Then, using prospect theory, the
optimal bidding strategy in the long-term and medium-term
markets within a given range of expected revenue and electricity
price changes is obtained. Risk-averse and risk-seeking entities can
evaluate different plans and adopt corresponding strategies to
ensure expected revenue targets.

③The IGDT method requires little information about
uncertain factors and does not require obtaining the
probability distribution of uncertain parameters, making it

FIGURE 6
Influence of expected return on generation in IGDT robust model.
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suitable for dealing with risk decision-making problems with
severe uncertainty. The robustness of the model is reflected in
the maximum deviation range of the uncertain variables from
the predicted values when ensuring that the expected target is
not worse than a certain minimum preset result. Prospect theory
takes into account the decision-maker’s psychology, making
electricity price bidding decisions more in line with the actual
decision-maker’s behavioral patterns.
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Market bidding method for the
inter-provincial delivery of
cascaded hydroelectric plants in
day-ahead markets considering
settlement rules
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Chinese electricity market reform poses huge challenges to hydropower
operations and electricity trading. This study proposes a scheduling method
coupling priority electricity and day-ahead trading for large hydropower plants.
The study focuses on complex factors such as tariff uncertainty, different types of
electricity settlement rules, and inter-provincial electricity transmission links. Spot
market tariff scenarios are determined through the Latin hypercube and the
K-means methods. A performance formulation of priority electricity deviation
considering settlement assessment rules is established. A transmission description
for different sub-plants and a triangular linear interpolation method based on
binary independent branching mode are proposed to solve inter-regional
transmission connections and hydraulic coupling in cascaded hydropower
plants, respectively. Finally, the Big M method is employed to equivalently
transform the complex non-linear problem into a mixed-integer linear
programming (MILP) model. The method is verified with the day-ahead
operation of four large hydropower plants downstream of the Jinsha River in
China as a case study. Settlement assessment rules, inter-regional power
transmission, and price uncertainty are analyzed in three different cases. Three
conclusions are obtained: 1) the priority electricity performance rate and the price
are positively correlated, which is useful to guide hydropower plants to actively
participate in the market. 2) Introducing the prediction error of electricity price in
themodel can help avoidmarket decision risk and improve the expected return by
approximately 1.2%. 3) Considering the settlement penalty rule is helpful for power
generation enterprises to improve power allocation and thus seek higher revenue
compared to traditional methods without considering it.

KEYWORDS

electricity market, mixed-integer linear programming, electricity decomposition, day-
ahead market, settlement rules

1 Introduction

In March 2015, China issued “Several Opinions on Further Deepening the Reform of
the Electricity System,” kicking off the reform of China’s electricity (Chen et al., 2022;
Cheng et al., 2023). The aim is to restore the commodity attributes of electric energy,
establish a fully competitive, open, and orderly Chinese electricity market, and enable
the market to play a decisive role in power resource allocation. There are significant
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advantages for hydropower to participate in the electricity
market. Hydropower exhibits high regulation capacity (Pérez-
Díaz et al., 2010; Gómez-Navarro and Ribó-Pérez, 2018; Shen
et al., 2022) with low operating costs (Cheng et al., 2018;
Rodríguez-Sarasty et al., 2021). At the same time, hydropower
faces unprecedented challenges. In long-term operation,
hydropower generation is strongly dependent on the water
stored in the reservoir and inflow uncertainty in the future. In
short-term generation scheduling, the electricity price in the day-
ahead (Golmohamadi et al., 2021; Lago et al., 2021; Tschora et al.,
2022) market is another important factor that is influenced by the
load and nodal blockage in each receiving province. Currently,
hydropower simultaneously faces long-term trading and short-
term spot markets (Cai et al., 2020; Jia et al., 2022). The former
involves both priority electricity and market trading, and the
latter has to meet complex hydraulic connections and
constraints, as well as market limitations (Guo et al., 2021).
Such a complex situation inevitably poses severe challenges to
hydropower scheduling, the decomposition of priority electricity,
and the participation in the electricity market. Specifically, large
hydropower plants with inter-provincial power transmission
tasks must consider the multiple different markets, which
further lead to additional complexities in market bidding and
operations.

In the central dispatch mode, hydropower plants usually
consider the results of medium- and long-term priority
electricity decomposition, runoff forecast information, unit
operating restrictions, transmission channel blockage, and
other conditions to make day-ahead generation schedules
(Avesani et al., 2022; Jiang et al., 2023; Zhang et al., 2023).
However, in the electricity market environment with priority
electricity and market trading, hydropower plants need to deal
with three major day-ahead production tasks: 1) decomposing
power curves of priority electricity for multiple power grids; 2)
making day-ahead markets for declaration; and 3) determining
day-ahead generation schedules for each hydropower unit.

As is known, the spot market price is affected by complex supply
and demand relationships, bringing significant uncertainty to short-
term trading decisions (Tang and Zhang, 2020; Guo et al., 2021; Wu
et al., 2022). There have been many studies about hydropower
operations and bidding in the electricity market. We summarize
four main categories.

The first is market design and mechanism optimization (Fang
et al., 2017; Shen et al., 2018; Stančin et al., 2020; Xinhong et al.,
2020). These studies focused on the design and mechanism of
hydropower marketing in order to facilitate effective supply and
demand matching and optimize price discovery and transaction
efficiency, for example, a trading decision-making method that
uses the electricity market to promote established clean energy
accommodation. Making full use of load difference, peak-to-
valley difference, and time difference, a joint optimization model
of clean energy purchasing–selling–transmission is established to
promote clean energy accommodation. The second is cross-
regional and inter-national hydropower trading (Lu et al.,
2021). For instance, Lu et al. (2021) analyzed the types and
channels of trans-provincial and trans-regional power
transactions and then analyzed the mechanism of resource
optimization allocation of trans-provincial and trans-regional

power transactions. The third is cross-energy scheduling and
trading (Merkert et al., 2015; Xiao et al., 2015; Wang and Huang,
2018). These studies focused on the collaborative scheduling and
trading of hydropower with other energy sources (such as wind,
solar, and storage) to optimize the overall utilization of renewable
energy and the stability of the power system. This requires
consideration of complementarities between different energy
sources, coordinated dispatch, and market trading. For
example, Wang and Huang (2018) studied the interactions
among interconnected autonomous microgrids and developed
a joint energy trading and scheduling strategy. The last aspect is
uncertainty and risk management (Yuan et al., 2016; Carvajal
et al., 2017; Kebede et al., 2022; Xu et al., 2022). These studies
focused on investigating how to effectively deal with
uncertainties and risks in hydropower dispatch (Kebede et al.,
2022), such as water source changes, market price fluctuations,
and external environmental changes. This may involve aspects
such as uncertainty modeling, risk assessment, and risk
management strategies. In particular, Carvajal et al. (2017)
presented a method to assess the sensitivity of hydropower
generation to uncertain water resource availability driven by
future climate change.

Few of the aforementioned studies considered power defaults
and hydropower flexibility in market trading, and even fewer
studies involved both the complex actual operation constraints of
hydropower units and power decomposition requirements for
multiple power grids. In this paper, we propose a scheduling
method coupling priority electricity and day-ahead trading for
large hydropower plants, considering complex factors such as
electricity price uncertainty, different types of power settlement
rules, and inter-provincial power transmission connections. In
this method, the spot market electricity price scenarios are
determined using Latin hypercube sampling (Zhang et al.,
2020; Bulut et al., 2021; Karolczuk and Kurek, 2022) and
K-means clustering. A performance formulation of priority
electricity deviation considering settlement assessment rules is
established. A transmission description for different sub-plants
and a triangular linear interpolation method based on binary
independent branching mode are proposed to solve inter-
regional transmission connections and hydraulic coupling in
cascaded hydropower plants, respectively. Finally, the Big M
method (Ding et al., 2014; Zhang et al., 2021) is employed to
equivalently transform the complex non-linear problem into a
mixed-integer linear programming (MILP) model (Krien et al.,
2020; Zhao et al., 2021; Cao et al., 2022).

The remainder of the paper is organized as follows: the objective
function and constraints are described in Section 2. Section 3
describes the tariff uncertainty approach and the associated
linearization strategy. Section 4 shows the results of the
demonstration calculation. Finally, Section 5 providesthe conclusion.

2 Mathematical models

2.1 Objective function

Taking into account the basic benefits of the medium- and
long-term decomposition of planned electricity to day, the
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negative deviation penalty of the actual decomposition of day-
ahead, and the day-ahead market time-of-use tariff settlement
benefits, the model objective function is divided into the following
three components:

maxF � f1 − f2 + f3, (1)

f1 � ∑I
i�1

∑
k∈Ki

∑T
t�1
Rp
i,k · Ep

i,k,t. (2)

Negative deviation penalty rule for planned electricity.
Negative deviation power is penalized by planned electricity
price.

f2 � ∑I
i�1

∑
k∈Ki

∑T
t�1

1 + α( ) · Rp
i,k · max Ep

i,k,t − pr
i,k,t · Δt, 0( ), (3)

f3 � ∑I
i�1

∑
k∈Ki

∑T
t�1
Rm
i,k,t · max pr

i,k,t · Δt − Ep
i,k,t, 0( ). (4)

Here, f1 is the contract electricity revenue; f2 is the planned
electricity negative deviation penalty; f3 is the day-ahead market
revenue; α is the penalty coefficient of planned electricity; Rp

i,k is the
planned electricity of power station i in province k; Rm

i,k,t is the
market price of power station i in province k at time t; Ep

i,k,t is the
planned electricity of power station i in province k at time t; and pr

i,k,t

is the output of power station i in province k at time t;

2.2 Constraints

2.2.1 Hydroelectric power plant-related
constraints
(1) Water balance constraint

vi,t � vi,t−1 + QINi,t + ∑
i′∈DUPi

ui′,t − ui,t
⎛⎝ ⎞⎠, (5)

where vi,t is the reservoir capacity of power station i at time t, in
billions; QINi,t is the interval inflow of power station i at time t;
DUPi is the set of upstream power stations with hydraulic
connection of power station i; and ui,t is the outflow of power
station i at time t.

(2) Water level–reservoir capacity relationship and upper and lower
limits of the water level

vi,t � fzvi zi,t( ), (6)
Zmin i,t ≤ zi,t ≤Zmax i,t , (7)

where fzvi is the relationship between the water level and
reservoir capacity of power station i and Zmin i,t and Zmax i,t

are the upper and lower limits of the water level of power station
i at time t, respectively.

(3) Flow balance and upper and lower limit constraints

ui,t � qi,t + si,t, (8)
Umin i ≤ ui,t ≤Umax i , (9)
Qmin i ≤ qi,t ≤Qmax i , (10)

where ui,t is the outgoing flow of power station i at time t; qi,t is
the generation flow of power station i at time t; si,t is the disposal
flow of power station i at time t; Umin i and Umax i are the
minimum and maximum outgoing flows of power station i,
respectively; and Qmin i and Qmax i are the minimum and
maximum generation flows of power station i, respectively.

(4) The relationship between the flow rate and the tailwater level

zdi,t � fzdui ui,t( ), (11)
where zdi,t is the tailwater level of power station i at time t and

fzdui is the tailwater level–discharge flow relationship of power
station i.

2.2.2 Unit-related constraints
(1) Power generation characteristic curve relationship of the unit

pei,e,t � fphqi,e qei,e,t, hei,e,t( ), (12)
where fphqi,e is the output characteristic relationship of unit e

power station i; pei,e,t is the output of unit e power station i at time t;
qei,e,t is the generation flow of unit e power station i at time t; and
hei,e,t is the head of unit e power station i at time t.

(2) Unit stable output operation area

oci,e,t · Pi,e
≤pei,e,t ≤ oci,e,t · �Pi,e, (13)

where oci,e,t is the start–stop status of unit e power station i at
time t, with 0 for off and 1 for on; �Pi,e is the upper limit of stable
operation output of unit e power station i; and P

i,e
is the lower limit

of stable operation output of unit e power station i.

(3) Stable flow constraint of the unit

oci,e,t · Qi,e
≤ qei,e,t ≤ oci,e,t · �Qi,e, (14)

where �Qi,e is the upper limit of the quoted flow rate for the stable
operation of unit e power station i and Q

i,e
is the lower limit of the

quoted flow rate for the stable operation of unit e power station i.

(4) Head calculation constraint

hei,e,t � zi,t + zi,t−1( )
2

− zdi,t − hli,e,t, (15)

where hli,e,t is head loss of unit e power station i at time t.

(5) Start/stop-related constraints

Although hydro units can be adjusted quickly, frequent start-ups
and shutdowns still have a negative impact on the unit’s service life
and operating costs. To avoid frequent start-ups and shutdowns of
hydro units, online and offline hourly constraints are introduced.

oi,e,t + ∑t+αi,e−1

η�t+1
ci,e,η ≤ 1,

ci,e,t + ∑t+αi,e−1

η�t+1
oi,e,η ≤ 1,

oi,e,t − ci,e,t � oci,e,t − oci,e,t−1,
oi,e,t + ci,e,t ≤ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)
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where oi,e,t indicates whether unit e power station i performs
start-up action at time t, where 0 represents no and 1 represents
yes; ci,e,t indicates whether unit e power station i performs
shutdown action at time t, where 0 represents no and
1 represents yes.

(6) Correlation between power station and unit output

pi,t � ∑
e∈ei

pei,e,t. (17)

(7) Correlation between power station and unit generation flow

qi,t � ∑
e∈ei

qei,e,t. (18)

Here, pei,e,t is the output of unit e power station i at time t and
qei,e,t is the generation flow of unit e power station i at time t.

2.2.3 Market power decomposition constraints

∑
k∈Ki

pr
i,k,t � pi,t, (19)

PRi,k + RC( ) · ∑
k*∈Ki

∑T
t�1
max pr

i,k*,t − Ep
i,k*,t, 0( ),

≥max pr
i,k,t − Ep

i,k,t, 0( )≥ ,

PRi,k − RC( ) · ∑
k*∈Ki

∑T
t�1
max pr

i,k*,t − Ep
i,k*,t, 0( ),

(20)

where PRi,k is the proportional requirement of power delivery of
power station i in province k and RC is the floatable proportional
limit of marketed power (set at 0.2 in this paper)

3 Model processing strategy

3.1 Uncertainty description method of the
price

Since electricity prices are affected by multiple complex factors
such as grid blockage (Golmohamadi et al., 2021), market transactions
(Tschora et al., 2022), and weather conditions (Lago et al., 2021),
coupled with limitations in spot electricity price forecasting
technology, there are bound to be certain deviations between the
predicted and actual values of spotmarket electricity prices. Therefore,
the uncertainty of the next day’s spot market electricity price should
be fully considered when formulating short-term dispatching plans. In
general, the forecast error distribution law of the electricity price is a
finite skewed distribution at both ends, but generally the
corresponding normal and skewed distributions do not differ
much. Therefore, this model describes the electricity price
uncertainty as follows (Figure 1):

(1) Assume that the forecast error Rd
1 , R

d
2 , ..., R

d
T{ } of the spot tariff

for each time period follows a normal distribution with a mean
of μ � 0 and a mean squared deviation of 0.2 · �Rd

t , where �Rd
t is

the forecast tariff for time period t.

(2) The Latin hypercube sampling (LHS) method is used to
generate multiple tariff simulation scenarios. The core
technique of this method is to first stratify the probability
distribution of the samples and then randomly select samples
from each stratum in turn. The cumulative probability
distribution function F(Rd

t ) is calculated for each time period
based on the mean and mean squared deviation assumed in (1),
and F(Rd

t ) is divided intoN non-overlapping subintervals, each
with a spacing of 1/N. An integer i is randomly selected from the
set 1, 2...N{ }, representing the interval where the cumulative
probability distribution lies. Subsequently, a random number in
a range of [0, 1] is generated, which is denoted as r
corresponding to the interval i. The cumulative probability
function for P*

t is P*
t � (1/N)r + (i − 1)/N. Finally, the

inverse function of the cumulative probability distribution
function F−1(Rd

t ) is substituted by P*
t to obtain the

corresponding tariff data sampling value.
(3) In order to fully reflect the stochastic variation characteristics of

the spot market clearing price, the LHS method in (2) is used to
generate many electricity price scenarios. If all scenarios are
considered in the model, it will significantly affect the
computational efficiency, but if very few scenarios are
considered, the computational accuracy will be lower.
Therefore, in order to balance solution accuracy and
efficiency, the K-means clustering algorithm based on the
initial clustering centers and contour coefficients is used
(Cheng et al., 2023) to reduce the number of scenarios as
much as possible while maintaining the important features of
the tariff scenarios.

3.2 Power station–substation difference
regional outbound relationship processing

The Jinxia terraced power station contains various differential
cases of outgoing transmission of sub-plants: (1) the power
stations in the left and right banks represented by the
Wudongde power station have the same outgoing and retained
provinces. (2) The left and right bank outgoing provinces
represented by Baihetan are different, but the retained
provinces are the same. (3) In the case of Xiluodu, the power
plants in both the left and right banks are different in terms of
outgoing and retained provinces.

First, the aforementioned three cases require refinedmodeling of
the outgoing power and the output of the corresponding substations,
given K = 1, 2, 3, 4, 5, 6, and 7 corresponding to the provinces
Guangdong, Guangxi, Jiangsu, Zhejiang, Shanghai, Sichuan, and
Yunnan.

Case (1): No further refinement modeling is required because
the sub-plant feeder areas are the same. Case (2): The following
additional refinement modeling constraints are required.

➢ The output of the left bank unit is greater than or equal to the
outgoing output to Jiangsu.

∑
e∈EBHT L

pei,e,t ≥pr
2,3,t. (21)
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➢ The output of the right bank unit is greater than or equal to the
outgoing output to Zhejiang.

∑
e∈EBHT R

pe2,e,t ≥pc2,4,t. (22)

Case (3): The following additional refinement modeling
constraints are required.

➢ The output of the left bank unit is equal to outgoing output for
Zhejiang and the retained output for Sichuan.

∑
e∈EXLD L

pe3,e,t � pc3,4,t + pc3,6,t. (23)

➢ The output of the right bank unit is equal to the outgoing
output for Guangxi and the retained output for Yunnan.

∑
e∈EXLD R

pe3,e,t � pc3,2,t + pc3,7,t. (24)

3.3 Target linearization processing

Since Eq. 3 contains the max function, resulting in a non-linearly
constrained objective, it needs to be linearized to transform themixed-
integer non-linear programming (MINLP)model into aMILPmodel.
Then, a sophisticated and efficient optimization solver is used to solve
the MILP model in order to obtain the optimal solution efficiently.

Variables 0–1, auxiliary variables bi (i represents whether there is a
positive deviation in the power plant plan power), oi, and xi, and
infinity value constant M are introduced, where max(Ep

i,k,t − pr
i,k,t, 0)

in Eq. 3 and max(pr
i,k,t − Ep

i,k,t, 0) in Eq. 5 are transformed into the
following mathematical expression:

max Ep
i,k,t − pr

i,k,t, 0( ) � xi,k,t + 1 − bi,k,t( ) · pr
i,k,t, (25)

max pr
i,k,t − Ep

i,k,t, 0( ) � bi,k,t · pr
i,k,t − oi,k,t. (26)

3.4 Description of the flow curve under the
tailwater level considering the top support
of the return water

The backwater is a complex hydraulic connection between
coupled reservoirs (Figure 2). Under normal conditions, there
exists a stable relationship curve between the tailwater level and
outflow. However, when the upstream and downstream dam sites
of the reservoirs are closer, a high downstream reservoir level
produces backwater. Furthermore, the stabilized water level–flow
relationship curve will be disrupted, which is known as the
backwater effect (Zhao et al., 2019). The requirements for
short-term scheduling refinement of hydropower are
becoming more stringent due to the gradual increase in the
capacity of wind power and photovoltaic power. Addressing
the influence of downstream backwater in the model and
realizing an efficient solution is one of the key points and
difficulties in current reservoir scheduling.

The example shows that if the optimal scheduling model is
not constructed by taking into account the complex hydraulic
coupling relationship between power stations, there will be
deviations between the calculation results and the actual
operation process, which does not meet the requirements of
accuracy and practicality of hydropower scheduling.
Therefore, this paper constructs the relationship between the
upstream reservoir level, tailwater level, and downstream flow
based on the triangular linear interpolation method in binary
independent branching mode, as described in Cheng et al. (2022).

4 Example analysis

4.1 Calculation parameters

This paper takes Wudongde, Baihetan, Xiluodu, and
Xiangjiaba (hereinafter referred to as Wu–Bai–Xi–Xiangba),

FIGURE 1
Uncertainty description method of the price.
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the four mega power stations that have been put into operation in
the lower Jinsha River gradient, as the research objects. The
installed capacities are 10,200 MW, 16,000 MW, 12,600 MW, and
6,000 MW, respectively. Seven provinces (cities), namely,
Guangdong, Guangxi, Jiangsu, Zhejiang, Shanghai, Sichuan,
and Yunnan, are included in the grid at the receiving end of
the gradient.

4.2 Analysis of penalty rules

As we can see from the aforementioned table (Table 1),
according to the planned electricity price penalty (Figure 3),
the planned electricity compliance rate decreases with the
planned electricity price. According to the market price
penalty (Figure 4), the planned electricity compliance rate
does not change with the planned price. When the planned
price is close to or much larger than the mean market price,
the compliance rate of the punishment rule according to the
planned electricity price is much larger than that according to the
market price. In this case, the planned electricity price is higher
than the market price during most periods. The punishment rule
according to the planned electricity price can cause generators to

suffer large revenue losses. According to the punishment rule
based on the market price, power plants can seek higher revenue
by defaulting on planned electricity during the period of low
market price and participating in the day-ahead market during
the high market price. Considering the policy specificity of
planned power, grid companies use planned tariffs for
compliance deviation penalties in order to ensure the
compliance rate of planned power.

From another perspective, if the planned power price is
appropriately reduced, the willingness of hydropower plants to
contract planned power will be weakened at the same time, so
this paper tries to explore the correlation between planned
power pricing and market performance, as shown in Figure 5.

4.3 Scheduling result analysis

The model proposed in this paper can obtain the short-term
dispatching scheme of cascade hydropower stations under the
corresponding electricity price scenario. Figure 6 respectively,
shows the changes in water level and output of each power station
during the scheduling period, and their water levels and output
meet the operation constraints and are within a reasonable range.

TABLE 1 Effect of punishment rules on the compliance rate.

Punishment rule Planned electricity price Mean market price Compliance rate (%)

According to the planned electricity price 0.30 0.258 100

0.25 0.258 96.23

0.20 0.258 33.84

According to the market price 0.30 0.258 74.50

0.25 0.258 74.50

0.20 0.258 74.50

FIGURE 2
Description of backwater.
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FIGURE 3
Penalized negative deviations with planned electricity prices.
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It can be seen that the variation in the upstream water level is
greater than that in the downstream water level, and the
downstream power station can maintain stable high-head

power generation as far as possible through the adjustment of
upstream discharge flow so as to increase the overall power
generation and benefits.

FIGURE 4
Penalized negative deviations with market electricity prices.
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Further analysis of the overall output of cascade power
stations shows that the electricity price is higher in the peak
period and lower in the trough period. Under the guidance of the
market price before the day, cascade hydropower stations give
play to the spatial–temporal coupling characteristics and
maximize the total revenue of the cascade hydropower station
during the operation period through the spatial cooperation
between its upstream and downstream and the coordination
between different periods. It is consistent with the experience
of hydropower optimal dispatching and the profit-seeking rule in

the market environment and verifies the rationality of the
dispatching results.

4.4 Analysis of the stable unit operation

As shown in Figure 7, power stations such as Baihetan
and Xiluodu with different regions of the left and right bank
sending provinces ( refer Section 3.2 Power station–substation
difference regional outbound relationship processing) can be

FIGURE 6
Power generation and level.

FIGURE 5
Relationship between the compliance rate and planned electricity price.
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considered in the process of unit load distribution of the
complex provinces of the sub-bank sending demand, at the
peak of the two provinces, to increase the power allocation in
a timely manner while taking into account the safe and stable
operation of the unit (Table 2; Figure 8), to ensure the
practicality of the power plan.

4.5 Analysis of market price uncertainty

Using the methodology described in Section 4, five typical
electricity price scenarios were generated based on the
uncertainty of the forecast electricity price error (Figure 9).
Two regional grids, the National Grid (NG) and the Southern
Grid (SG), are included in the electricity price scenario. In this
section, the planned electricity price is set to 0.3¥.

The aforementioned table shows the mean and maximum
prices in different regions for different scenarios (Table 3).

Overall, the average price in the SG region is higher than that
in the NG region. Within the same region, the mean price for
different scenarios does not vary much, but the maximum price
difference accounts for approximately 4% of the mean price.
Maximum tariffs are very important for market-based electricity
allocation.

In order to facilitate the comparison between multiple scenarios
of tariff uncertainty and single tariff scenarios, this subsection adopts
“Plan Electricity Negative Deviation Penalty Rule II” and conducts a
comparative analysis according to the principles of the plan tariff
penalty.

The main difference between a single scenario and multiple
scenarios (Figure 10) is observed in the seventh, 11th, and 16th
time periods. The seventh and 11th time periods show a
significant decrease in market decision power in the 11th time
period with the single scenario. There was a significant increase
in market decision power in the seventh time period compared
with the single scenario, which is mainly due to the fact that

FIGURE 7
Hydroelectric power plant power outflow map.

TABLE 2 Unit stabilization parameters.

Hydropower
station

Unit Minimum power-on
time/h

Minimum power-off
time/h

Capacity up limit for
stable operation

Capacity down limit for
stable operation

Wudongde #1~#12 4 4 170 850

Baihetan #1~#16 4 4 200 1000

Xiluodu #1~#18 4 4 154 770

Xiangjiaba #1~#8 4 4 160 800
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only one scenario of price scenario 1 is considered in the
single-scenario mode. The price in the seventh time period is
lower than the tariff in the 11th time period in tariff scenario 1,
while the other scenarios are the opposite. Therefore, in order to take
into account the possibility of multiple tariffs and improve the
expected revenue of the power plant, the power output in the
seventh period is increased and the power output in the 11th
and 16th periods is reduced in the multi-scenario decision to
avoid the revenue risk. Using the decision results from scenario
1 to find the possible expected revenue for all price scenarios, there is
a 3% reduction in revenue compared to the present expected return
maximization model. It shows that expectation modeling is very
important for risk aversion.

5 Conclusion

Currently, in the stage of market reform where planned
electricity and marketed electricity coexist, hydropower taking
on the task of delivering power to multiple-recipient provinces
plays a decisive role. In the current market background, how to
take into account the planned electricity and the cross-provincial
market revenue is an important problem that cascade
hydropower plants face. In this paper, taking the Jinsha River
cascade hydropower plants as a relying project, we propose a day-
ahead planned electricity compliance strategy and market
electricity decision-making methods considering complex
settlement rules and many end-user provinces. Finally, the

FIGURE 8
Unit output distribution.
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expected revenue maximization model, considering the price
uncertainty, is developed. The following conclusions were
obtained:

(1) Hydropower plants have a much larger planned power compliance
rate for the planned electricity compliance penalty rule based on the
planned electricity price than based on the market price.

FIGURE 9
Multi-scenario electricity prices.

FIGURE 10
Comparison between single scenario and multiple scenarios.

TABLE 3 Multi-scenario electricity prices.

Area SG SG SG SG SG NG NG NG NG NG

Scenario 1 2 3 4 5 1 2 3 4 5

Mean price/¥ 0.258 0.257 0.256 0.256 0.259 0.243 0.244 0.246 0.242 0.244

Maximum price/¥ 0.300 0.298 0.309 0.301 0.308 0.300 0.304 0.310 0.302 0.302
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(2) The model proposed in this paper hedges the market decision
risk by taking into account the tariff forecast error.

(3) While taking into account the demand for power delivery from
complex provinces, the model can obtain an operation plan that
meets the safe and stable operation of the units.
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Introduction: Power load forecasting and market price analysis have become
crucial in the context of complex power energy systems and volatile market
prices. Deep learning technology has gained significant attention in time series
forecasting, and this article aims to enhance the accuracy and reliability of power
load and market price predictions by integrating and optimizing deep learning
models.

Methods:We propose a deep learning framework that combines artificial neural
networks (ANNs), long short-term memory (LSTM), and transformer models
to address key challenges in electricity load forecasting and market price
prediction. We leverage ANNs for their versatility and use LSTM networks for
sequence modeling to generate initial predictions. Additionally, we introduce
transformer technology and utilize its self-attention mechanism to capture
long-distance dependencies within the data, further enhancing the model’s
performance.

Results: In our experiments, we validate the proposed framework using multiple
public datasets. We compare ourmethodwith traditional forecasting approaches
and a single-model approach. The results demonstrate that our approach
outperforms other methods in predicting power load and market prices. This
increased accuracy and reliability in forecasting can be of significant value to
decision-makers in the energy sector.

Discussion: The integration of deep learning models, including ANN, LSTM,
and transformer, offers a powerful solution for addressing the challenges in
power load and market price prediction. The ability to capture long-distance
dependencies using the transformer's self-attention mechanism improves
forecasting accuracy. This research contributes to the field of energy and finance
by providing a more reliable framework for decision-makers to make informed
choices in a complex and dynamic environment.
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electricity, new energy forecasting technology, deep learning, hybrid energy system,
multi-source data, market price
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1 Introduction

In today’s world, the supply and demand relationship of
electric energy and market price fluctuations have increasingly
become key issues in the field of global energy. As one of the
infrastructures of modern society, electricity directly affects the
country’s development, industrial production, and people’s lives.
However, the continuous increase in energy consumption leads to
the increased complexity of the power system. How to ensure the
stability of power supply and the rationality of market prices has
become an urgent challenge that needs to be solved (Mujeeb et al.,
2019). Electric power loadforecasting andmarket price analysis have
become critical in the field of energy and finance. Electric power
load forecasting can help power system operators rationally plan
energy supply and effectively allocate resources, thereby improving
the efficiency and reliability of the power system, while market price
fluctuations directly affects the investment decisions and returns of
energy market participants. Accurately predicting price changes in

the electricity market can help investors gain greater returns in the
market.

The main objective of this study is to conduct electricity load
forecasting and market price analysis to solve key issues in the
energy and financial sectors. Electricity load forecasting is an
important task related to balancing power supply and demand, while
market price analysis is of strategic importance to energy market
participants, including suppliers and investors. We selected these
two as study subjects because they play an integral role in modern
society.

The importance of power load forecasting is self-evident. As the
complexity of power systems continues to increase, energy suppliers
and power networkmanagers need to accurately predict power loads
in order to rationally allocate resources and adjust power generation
plans. This is a regression problem because our goal is to predict
continuous electrical load values in order to better meet demand,
reduce waste, and improve energy efficiency.Therefore, our research
methods and metrics are matched to the regression problem to
ensure that we can provide accurate electricity load forecasts.

FIGURE 1
Overall flow chart of the model.
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Market price analysis is equally important. With the continuous
development of new energy technologies, the energy market has
become more complex and price fluctuations have become more
frequent. Investors need to understand market price trends and
fluctuations in order to develop smart investment strategies. This is
also a regression problem since our goal is to predict continuous
market price fluctuations to help decision-makers make more
informed financial decisions. Our research methods and metrics are
aligned with this goal to ensure reliability in market price forecasts.

Deep learning technology has great potential in solving
these problems. We selected to integrate artificial neural
networks (ANNs), long short-term memory (LSTM) networks,
and transformer models because their respective advantages
can complement each other to improve prediction accuracy
(Dabbaghjamanesh et al., 2020). ANN is versatile, LSTM is good
at sequence modeling, and the transformer introduces a self-
attention mechanism that can capture long-distance dependencies.
This integrated approach is expected to provide more accurate

and reliable solutions for power load forecasting and market price
analysis.

As the complexity of power systems continues to increase,
and market prices fluctuate, researchers and practitioners seek
more accurate, stable, and efficient forecasting methods. Previous
solutions usually relied on traditional time series analysis methods,
such as autoregressive integrated moving average (ARIMA) and
generalized autoregressive conditional heteroskedasticity (GARCH)
models (Yousaf et al., 2021). These methods can model power loads
and market prices to a certain extent but encounter difficulty
in dealing with nonlinear, non-stationary, and multi-source data.
Furthermore, these methods often require manual engineering of
features and fail to fully exploit the information of the original data
(Alipour et al., 2020). The development of deep learning technology
has aroused widespread interest, and significant progress has been
made in the field of time series forecasting. Deep learning models,
such as ANN, LSTM and transformer, have been widely used
in power load forecasting and market price analysis (Rafi et al.,

FIGURE 2
Flow chart of the ANN model.
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2021). They can extract automatic features, handle nonlinear
relationships, and handle the fusion of multi-source data, thereby
improving prediction accuracy. However, despite the excellent
performance of these deep learning models in improving prediction
performance, there are still some challenges. For example, model
training requires large amounts of data and requires careful tuning
of hyperparameters (Tan et al., 2020). Furthermore, they may be
sensitive to noise, thus requiring more powerful regularization
and generalization techniques to improve stability. These problems
prompt us to study more efficient and stable integrated optimization
methods, combining ANN, LSTM, and transformer tomake full use
of their advantages and solve the limitations of traditional methods
and single models.

Therefore, this research aims to integrate and optimize deep
learning technologies, such as ANN, LSTM, and transformer, to
improve the accuracy of power load and market price prediction.
Specifically, we propose a comprehensive framework based on
the ANN–LSTM–-transformer method, which combines their
respective advantages to effectively capture the spatiotemporal
changes in power load and market price. In experiments, we
validate our method using multiple public datasets and compare
its performance with other traditional methods (Deng et al.,
2019). Our comprehensive approach is expected to provide more
accurate and stable prediction results in the field of power
energy, thereby supporting decision-makers tomakemore informed
decisions and promoting the sustainable development of the energy
industry.

In addition to ANN, LSTM, and transformer, there are other
commonly used models in the fields of power load forecasting
and deep learning, including but not limited to the following five
models:

Autoregressive integral moving average: ARIMA is a time series
analysis model that combines the concepts of autoregressive (AR)
and moving average (MA), as well as differential operation (I), and
is suitable for stationary or differential stationary time series data
(Benvenuto et al., 2020). This model has been used for many years
and is one of the classic time series forecasting methods. In power
energy forecasting, the ARIMA model can be used to model long-
term trends and seasonal patterns of power load data to perform
load forecasting (Fan et al., 2021). In terms of market price analysis,
the ARIMA model can be used to predict the changing trend of
electricity market prices.

Convolutional neural network: The convolutional neural
network (CNN) is a deep learning model mainly used for image
recognition and processing. It captures local patterns and features in
images using convolutional layers, then reduces the dimensionality
of data through pooling layers, and finally classifies or predicts
through fully connected layers (Bhatt et al., 2021). CNN initially
achieved great success in the field of computer vision, such as
winning the ImageNet competition (Li et al., 2020). Subsequently,
people began to apply CNN to other fields, including time series data
processing. In power energy forecasting, one-dimensional CNN
can be used to capture local patterns in power load data, such as
changing trends in certain specific time periods.

Gated recurrent unit:The gated recurrent unit (GRU) is a variant
of the recurrent neural network (RNN), designed to solve the long-
term dependency problem of RNN (Cheon et al., 2020). It contains
update gates and reset gates, which allow the network to selectively
update and forget information to better capture key features in the
sequence (Daniels et al., 2020). It is an improvement over traditional
RNN, attempting to solve the vanishing and exploding gradient
problems, and has fewer parameters than LSTM, so it is easier to

FIGURE 3
Flow chart of the LSTM model.
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train in some cases. In power energy forecasting, GRU can be used
to model the time dependence in power load data to perform load
forecasting.

Recurrent neural network: RNN is a neural network specially
used to process sequence data. It was first introduced in the 1980s;
however, its application has been restricted to a certain extent due
to its limitations in dealing with long-term dependency problems
such as vanishing gradient and exploding problems (Xiao and
Zhoum, 2020). However, with the emergence of variants such as the
LSTM network and GRU, the development of RNN has been greatly
promoted (Dhruv and Naskar, 2020). These variants successfully
solve the long-term dependency problem by introducing a gating
mechanism, thereby enabling RNN to better capture patterns and
information in sequence data. RNN is often used to capture
the temporal patterns and sequence dependencies of power load
data.

Temporal convolutional network: The temporal convolutional
network (TCN) is a deep learning model specially designed for
processing sequence data. It is based on convolution operations,
but it is designed to pay more attention to the time dependence
in sequence data. By expanding the convolution operation
and introducing residual connections to effectively capture
long-term dependencies (Arumugham et al., 2023), it captures
sequence patterns at different scales by stacking one-dimensional
convolutional layers while focusing on the importance of different
time steps through an attention mechanism. TCN aims to overcome
the long-term dependency problem in traditional RNNs and
provide better performance (Fan et al., 2023). In power energy
forecasting, TCN can be used to simultaneously capture power
load patterns at different time scales, thereby improving forecasting
accuracy.

However, although CNN models perform well in the field of
image processing, they may fail to adequately capture temporal
dependencies, especially for long-term dependencies, when
processing sequential data. The GRU model is improved over
traditional RNNs, but it may still be limited in processing more
complex sequence patterns. Although RNN is a natural choice for
sequence data, it is difficult to capture longer time dependencies

due to its short-term memory issues. Although the TCN model
overcomes some limitations of traditional RNNs, it may still require
a large number of computing resources when processing extremely
long sequences. The ARIMA model may not perform well when
dealing with nonlinear and non-stationary data, and it may be
difficult to accurately predict some complex market price change
patterns.

In view of the shortcomings of the aforementioned
model, this paper proposes a deep learning framework,
ANN–LSTM–transformer, for use in power energy forecasting and
market price analysis problems, capable of feature extraction and
modeling of data at different levels. ANN is used to capture overall
patterns, LSTM is used to handle time series dependencies, and
transformer can handle both long-term and global dependencies.
By combining multiple deep learning techniques, it can effectively
capture long-term dependencies, seasonal patterns, and complex
trends in power load and market price data, thus showing unique
advantages in the fields of power energy forecasting and market
price analysis.

The main contributions of this study are as follows:

• This study pioneers the integration of ANN, LSTM, and
transformer models into a unified framework, yielding
a multi-faceted prediction approach. By concurrently
capturing overarching patterns, time-based dependencies,
and spatiotemporal correlations in power load and market
price data, this integration enhances feature representation and
modeling capabilities, thus bolstering forecasting accuracy.
• The LSTM and transformer models in the framework of

this paper focus on capturing long-term dependencies and
spatiotemporal associations in sequence data, respectively.
The transformer’s self-attention mechanism enables the model
to more effectively handle the relationship between patterns
and features at different time scales, thereby improving the
performance of power load forecasting and market price
analysis.This capability for integrated spatiotemporal modeling
is rare in traditional models.

FIGURE 4
Flow chart of the transformer model.
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• TheANN–LSTM–transformer framework can capture complex
trends and multiple patterns in power load and market price
data. This framework is not only suitable for processing a
single trend but also can better cope with different seasonal,
cyclical, and nonlinear patterns, making the forecast results
more accurate and comprehensive.

2 Methodology

2.1 Overview of our network

Our proposed ANN–LSTM–transformer-based model aims to
solve the problems of electricity load forecasting and market price
analysis. First, we chose to use ANN as part of our model due
to its broad versatility and ability to handle various types of data.
ANN can effectively capture nonlinear relationships in input data,
which is crucial for complex time series data such as electricity load
and market prices. Second, we adopted the LSTM model because
it performs well when processing sequence data. The long short-
term memory unit of LSTM can capture short-term and long-
term dependencies in data, which is very helpful for time series
modeling of electricity load and market prices. Most importantly,
we introduced the transformer model. The transformer model
has achieved significant success in the fields of natural language
processing and time series, and its self-attention mechanism can
effectively capture long-distance dependencies in sequence data. In
the experiment, we first collected historical power load and market
price data as well as related influencing factors, such as seasonality
and holidays, and performed data cleaning, preprocessing, and
outlier processing to ensure the accuracy and quality of the data.
These processed data were fed into the feature extraction and
modeling stages of the model. At this stage, ANN was used to
capture the overall pattern, LSTM was used to handle time series
dependencies, and transformer was used to focus on long-distance
dependencies and spatiotemporal relationships. By integrating these
models, the capabilities of feature representation and modeling
were enhanced. Finally, by optimizing the model, the prediction
of future power load and market price was realized. The model
adaptively captures the importance of different features, thereby
improving the accuracy of electricity load forecasting and market
price analysis. Through verification in practical applications, it
can provide more precise support for energy management and
decision-making, thereby promoting the efficient utilization of
power resources.

The operation process of the RCNN–GAN model is shown in
Figure 1.

Algorithm 1 represents the operation process of the
ANN–LSTM–transformer model.

2.2 ANN model

ANN is a network structure composed of neuron layers,
which is used to simulate the information processing method
of the human brain (Hoang et al., 2021). Each neuron receives
input from the neurons of the previous layer, weights it through
weights and activation functions, and finally generates an output

Algorithm 1. Training ANN–LSTM–transformer.

(Otchere et al., 2021). The role of ANN in power load forecasting
and market analysis was to extract features and patterns from
multi-dimensional time series data and gradually extract high-level
abstract features through multiple hidden layers for prediction and
analysis (Khan et al., 2020). In the overall model, ANN played the
role of a feature extractor in the overall framework, which gradually
extracted abstract features of time series data through layer-
by-layer forward propagation. These characteristics can include
seasonal changes, cyclical patterns, and other complex nonlinear
relationships.

The operation process of the ANN model is shown in Figure 2.

y = f(
n

∑
i=1

wixi + b). (1)

Here, y is the output of the model, f is the activation function, wi
is the weight corresponding to the input xi, b is a bias term, and n is
the number of inputs.

2.3 LSTM model

LSTM is a special type of RNN specially designed to handle
long-term dependencies in time series data (Smagulova and James,
2019). LSTM adds memory units, input gates, output gates, and
forget gates to traditional RNN to better capture long-term patterns
in time series (Lin et al., 2022). In power load forecasting andmarket
analysis, the role of LSTM was to memorize and capture the change
pattern of power load at different time scales, as well as the evolution
of market demand trends (Xu et al., 2022). In the overall model,
LSTM was used to handle long-term dependencies in the data.
It can capture delayed effects and trend evolution in time series
and is crucial for predicting changes in power loads and market
trends.

The operation process of the LSTM model is shown in Figure 3.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) . (2)
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Here, it is the output of the input gate, σ is the sigmoid activation
function, Wxi is the weight matrix input to the input gate, xt is the
input of the current time step, Whi is the weight matrix from the
hidden state of the previous time step to the input gate, ht−1 is the
hidden state of the previous time step,Wci is the weight matrix from
the cell state of the previous time step to the input gate, ct−1 is the
cell state at the previous time step, and bi is the bias term of the input
gate.

2.4 Transformer model

Transformer is a neural network architecture based on
the self-attention mechanism, which is especially suitable for
processing sequence data, without the need to process data
sequentially like traditional RNN or LSTM (Karpov et al., 2019).
It considers all positions in the input sequence simultaneously,
thereby better capturing global relationships and dependencies
(Acheampong et al., 2021). The transformer consists of an encoder
and a decoder. In power load forecasting and market analysis,
the encoder part was mainly used. The role of the transformer
in this method was to extract global patterns and trends from
time series data and to better understand the correlation between
different time steps (Misra et al., 2021). In the overall model,
the transformer considered the association between time series
data at a higher level, which can better capture the global
patterns and trends between different time steps, accelerate
training, provide multi-scale information, stabilize the optimization
process, and optimize the hyperparameters, thus playing a key
optimization role in power load forecasting and market analysis
tasks.

The operation process of the transformer model is shown in
Figure 4.

Attention (Q,K,V) = softmax(QKT

√dk
)V. (3)

Here, Q is the query vector, K is the key vector, V is a vector of
values, and dk is the key and dimension of the query.

MultiHead (Q,K,V) = Concat(head1,…,headh)WOheadi
= Attention(QWQi,KWKi,VWVi) . (4)

Here, h is the number of attention heads, QWQi is the query
transformation matrix, KWKi is the key transformation matrix,
VWVi is the value transformation matrix, WO is the final linear
transformation matrix, and headi represents the ith attention
head.

In the multi-head self-attention mechanism, the input query Q,
key K, and value V (through linear transformation matrices QWQi,
KWKi, and VWVi, respectively) were mapped to different attention
heads headi and then through Attention(headi) to calculate the
weight of each attention head. Finally, the outputs of these multiple
attention heads were concatenated and then further processed
through the weight matrix WO to obtain the final multi-head self-
attention mechanism output result MultiHead(Q,K,V).
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FIGURE 5
Compare the MAE, MAPE, RMSE and MSE performance index visualization results of different models under different datasets.

3 Experiment

3.1 Experimental environment

• Hardware environment: The hardware environment used in
the experiments consists of a high-performance computing
server equipped with an AMD Ryzen Threadripper 3990X
with 3.70 GHz CPU and 1 TB RAM, along with six
NVIDIA GeForce RTX 3090 24 GB GPUs. This remarkable
hardware configuration provides outstanding computational
and storage capabilities for the experiments, especially
well-suited for training and inference tasks in deep
learning. It effectively accelerates the model training
process, ensuring efficient experimentation and rapid
convergence.
• Software environment

In this study, we utilized Python and PyTorch to implement
our research work. Python, serving as the primary programming
language, provided us with a flexible development environment.
PyTorch, as the main deep learning framework, offered
powerful tools for model construction and training. Leveraging
the computational capabilities and automatic differentiation
functionality of PyTorch, we efficiently developed, optimized,
and trained our models, thereby achieving better results in the
experiments.

3.2 Experimental datasets

Our research used four datasets: UCI Electric Load dataset,
NYISO Electric Market dataset, ENTSO-E Electric Load dataset,
and Kaggle Energy dataset. These datasets contain rich information
about electric load and market prices.

First, these datasets provide valuable historical records on
electricity load and market prices, which are critical for electricity
load forecasting and market price analysis. Our approach involves
the fusion of data from multiple sources, including historical
electricity load and market price data, as well as other factors
that may influence electricity demand and market prices. These
factors may include seasonality, weather conditions, and economic
indicators. Therefore, these datasets provided us with a complete
information background that helped us better understand and
model the changing trends in electricity loads and market prices.
Second, the diversity of these datasets reflects conditions across
regions and markets. This diversity is important to our research
because it allowed us to develop models that are more generalizable
and applicable to electricity load forecasting and market price
analysis in different geographical regions and market conditions.
Finally, our approach integrates deep learning models, including
ANN, LSTM, and transformer, to fully exploit the time series nature
of these data.Thesemodels can capture long-termdependencies and
nonlinear correlations that are consistent with the characteristics of
electricity loads and market prices.
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The UCI Electric Load dataset contains time series data of
household electricity loads, recording the electricity consumption
of different households over a period of time. Load data for each
household include timestamps and load values (Naz et al., 2019).
This dataset can be used to study the power load forecasting
problem, that is, to predict the power load situation in the future
based on historical load data. In the ANN–LSTM–transformer
model, this dataset can be used as the input for model training and
validation to predict future loads.

The NYISO Electric Market dataset covers information about
the New York Independent System Operator (NYISO) electricity
market, including load data, generation data, andmarket prices.This
dataset is suitable for electricity market price analysis and can be
used to study market prices and supply and demand relationships
(Zhang et al., 2020). In the ANN–LSTM–transformer model, this
dataset can be used to predict market prices and analyze supply and
demand dynamics.

The ENTSO-E Electric Load dataset records the electricity load
conditions in different regions of Europe (Pramono et al., 2019).
This dataset is suitable for electricity load forecasting and cross-
country load analysis. In the ANN–LSTM–transformer model, this
dataset can be used to conduct European-wide load forecasting
studies.

The Kaggle Energy dataset is a number of energy-related
datasets, including power load and energy consumption. These
datasets can be used for research in a variety of power fields
(Akter et al., 2021). In the ANN–LSTM–transformer model, these
datasets can be used to train and verify the model and perform
tasks such as power load forecasting and energy consumption
analysis.

3.3 Experimental setup and details

This study uses the ANN–LSTM model integrated with the
transformer mechanism to study the problems of power load
forecasting and market price analysis. The experimental setup and
details are as follows:

Step 1: Data preparation and preprocessing

• The UCI Electric Load dataset and NYISO Electric Market
dataset are used as experimental datasets.
• Time series processing is performed on the data to ensure

correct correspondence between timestamps and load/price
values.
• Seasonal decomposition of load data is performed to remove

seasonal effects.
• Thedata are normalized, and the feature values are scaled in the

range of 0–1.

Step 2: Model construction

• The ANN–LSTM model that integrates the transformer
mechanism is constructed, and the ANN and LSTM modules
are integrated with the transformer module.
• The input to the model includes historical load data and

market price data, which are used to predict future loads and
prices.

Frontiers in Energy Research 09 frontiersin.org9594

https://doi.org/10.3389/fenrg.2023.1292204
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhong 10.3389/fenrg.2023.1292204

FIGURE 6
Compare the Parameter, Flop, Inference time and Training time performance index visualization results of different models under different datasets.

• Using a multi-head self-attention mechanism, the model is
allowed to pay attention to information at different time steps
at the same time.
• Residual connections and layer normalization are introduced in

themodel to improve the stability and convergence speed of the
model.

Step 3: Experimental parameter setting

• Learning rate: We set an appropriate learning rate to control
the update speed of model parameters. Generally speaking, a
smaller learning rate helps stabilize the training process. In our
experiments, the learning rate was set to 0.001.
• Batch size: We chose an appropriate batch size to balance

training speed and memory consumption. In our experiments,
the batch size was set to 32.
• Number of iterations (epochs): We conduct multiple rounds of

training to ensure that the model fully learns the data. In each
round of training, we performed 100 iterations.
• Hidden layer size: We set the hidden layer size of ANN

and LSTM to control the complexity of the model. In our
experiments, we chose a hidden layer size of 128 dimensions.
• Transformer layers and heads: For the transformer module, we

set the number of layers and heads. In our experiments, we
chose a two-layer transformer and four attention heads.
• Dropout rate: In order to prevent overfitting, we introduce a

dropout layer. We set an appropriate dropout rate to reduce

model complexity. In our experiments, the dropout rate was set
to 0.2.
• Optimizer: We used the Adam optimizer to train the model to

speed up the convergence process.

Step 4: Ablation experiment

• Model A: Only ANN and LSTM modules are used, excluding
transformer.
• Model B: The ANN–LSTM model that incorporates the

transformer module is used.

Step 5: Comparative experiment

• Model C: A baseline model, using only a single LSTM module,
is used.
• Model D: An LSTM–transformer model fused with the

transformer module is used.
• Model E: Other classical methods, such as ARIMA and

SARIMA, are adopted.

Step 6: Experimental process

• Each model is trained using the training set, and
hyperparameter tuning is performed using the validation
set.
• The test set is used to evaluatemodel performance and calculate

metrics such as RMSE and MAPE.
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• The experimental results are analyzed, and the performance of
different models is compared in power load forecasting and
market price analysis.

Step 7: Result analysis

• The prediction accuracy and analysis capabilities of different
models are compared, and the superiority of the ANN–LSTM
model integrated with the transformer mechanism is
observed.
• The results of the ablation experiment are analyzed, and the role

of transformer in the model is explored.
• Comparing the model fused with transformer and other

classical methods, how to achieve better results in power load
forecasting and market price analysis is discussed.

3.4 Experimental results and analysis

During the experiment, we collected data from the UCI Electric
Load dataset, NYISO Electric Market dataset, ENTSO-E Electric
Load dataset, and Kaggle Energy dataset. Through experiments, we
obtained the following results.

Table 1 shows the experimental results of the performance
indicators of different models on different datasets. This paper uses
the performance indicators, mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean square error (RMSE),
and mean square error (MSE), to evaluate the model performance
in electric load forecasting. Next, we provided a detailed analysis of
the data in tables and charts. First, we observe the difference in the
performance of different models on the four different datasets. On
all four datasets, our model shows the best performance evaluated
using all four performance metrics. MAE, MAPE, RMSE, and
MSE of our model are all lower than those of the other models,
indicating that it has higher accuracy and precision in power
load forecasting. Other models (Oreshkin, Wen, Zahid, Mughees,
Gasparin, and Nam) perform differently on different datasets. Some
models perform well on some datasets and poorly on others. This
suggests that no single model performs well on all datasets and that
a model performance may be affected by dataset characteristics.
Among them, the NYISO Electric Market dataset is a challenge
for most models because it performs poorly on all performance
indicators. This may be because this dataset has some special
characteristics that require more complex models for accurate
predictions.

Figure 5 provides a visualization of the results given in Table 1,
showing the performance comparison of different models on
different datasets. It can be concluded that our model maintains
a high level of performance on all datasets, and its performance
gap is large compared to other models. This further emphasizes its
superiority in power load forecasting. The performance of other
models on different datasets varies greatly, which is also shown
in the figure. Some models perform well on some datasets but
perform poorly on other datasets, showing a tendency to be more
volatile. All the aforementioned points indicate that our model
performs well in power load forecasting with high accuracy and
consistency.

Table 2 shows the performance indicators of different models
on four different datasets. These performance indicators include
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FIGURE 7
Visualized results of MAE, MAPE, RMSE, and MSE performance indicators of ANN-LSTM-transformer module ablation experiment under different
datasets.

the number of model parameters, floating-point operations (flops),
inference time, and training time, and mainly verify the efficiency
of the model. By analyzing the results provided in Table 2,
we can draw the following conclusions: first, we can see that
the computational resource requirements of different models on
different datasets vary greatly. Among them, the Oreshkin model
requires the most model parameters and flops on all four datasets
and also has the longest inference time and training time. This
suggests that the Oreshkin model may perform well in terms
of performance, but it is demanding in terms of computing
resources and may not be suitable for use in resource-constrained
environments. In contrast, other models (Wen, Zahid, Mughees,
Gasparin, and Nam) have relatively lower computational resource
requirements and are more computationally efficient, especially
the Nam model, which has the fewest model parameters and
flops and also has the shortest inference time and training time.
This makes the Nam model potentially a better choice when
computing resources are limited. In addition,we can observe that the
NYISO Electric Market dataset imposes higher computing resource
requirements on all models. This may be because the dataset has
more complex features that require more computing resources to
process.

Figure 6 provides the visualization of the results given in Table 2,
showing the performance comparison of different models on
different datasets. The chart shows the consistency of the Oreshkin
model in terms of performance, but it also shows its shortcomings

in computing resources. Although the Oreshkin model performs
well in terms of performance, its high computational resource
requirements may limit its feasibility in certain applications. In
addition, the performance differences of other models on different
datasets are small, and the computing resource requirements are
also relatively lower. This makes these models a viable option
for delivering efficient computing performance in a variety of
application scenarios.

Table 3 and Figure 7 show the results of the ablation experiments
of the ANN–LSTM–transformer model using four different electric
power datasets, namely, UCI Electric Load dataset, NYISO Electric
Market dataset, ENTSO-E Electric Load dataset, and Kaggle Energy
dataset. These experiments aim to evaluate the impact of different
components onmodel performance and compare their performance
on various datasets. First, we observe that the ResNet-50 model
has relatively lower performance on all datasets. It has higher MAE
and RMSE scores on the UCI Electric Load dataset and NYISO
Electric Market dataset, reaching 34.72 and 42.23, and 39.10 and
31.91, respectively. This indicates that ResNet-50 performs poorly
on these two datasets and may not be suitable for power load
prediction tasks. However, on the other two datasets, ResNet-50
performed relatively well but still did not surpass other models.
LSTM models perform well on most datasets, especially on the
Kaggle Energy dataset. The MAE and RMSE scores on this dataset
are 30.03 and 7.88, respectively, which are far better than those
of other models. However, the LSTM model performed relatively
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poorly on the NYISO Electric Market dataset, with an MAE of
42.70. This shows the sensitivity of the LSTM model to different
datasets.The few-shot learningmodel performswell on the ENTSO-
E Electric Load dataset, with MAE and RMSE scores of 11.65
and 8.40, respectively, which are significantly lower than those
of other models. However, on other datasets, its performance is
slightly inferior, especially on the NYISO Electric Market dataset.
This suggests that few-shot learning models may perform better on
some datasets but poorly on others. Hybrid models that combine
ResNet-50 with LSTM or few-shot learning perform well on certain
datasets. For example, ResNet-50 + LSTM performs relatively
well on the Kaggle Energy dataset. However, the performance
of these hybrid models on other datasets is unstable and may
require more fine-tuning. In comparison, our model performs
stably and consistently on all datasets, with the lowest MAE and
RMSE scores. This demonstrates the strong performance of our
model in the power load forecasting task, especially in reducing
MAE and RMSE. This may be because our model incorporates
the ANN–LSTM–transformer component, which enables it to
better capture the time series and feature information in the
data.

Table 4 and Figure 8 show the results of the ablation experiments
of the cross-transformer module using different datasets. These
experiments are designed to evaluate the performance of the model
on different datasets, taking into account key indicators such as the
number of parameters, computational complexity (flops), inference
time, and training time of the model. Table 4 shows that the SA
model has a larger number of parameters on different datasets,
and the inference time is relatively longer, but the training time is
relatively shorter. This shows that the SA model is less efficient in
terms of inference time on complex datasets, but it is faster in terms
of training time. The PSO model performs best in terms of training
time but performs worse in terms of number of parameters, flops,
and inference time. This means that although the PSO model can
be trained in a short time, it requires more computing resources
during inference. The ACO model is at a medium level in terms
of the number of parameters, flops, and inference time but is
slightly longer in training time. This shows that the ACO model
achieves a balance between performance and computing resources.
Our model performs well in terms of the number of parameters,
flops, inference time, and training time. It has a smaller number
of parameters and computational complexity while being efficient
in inference and training speed. This means that our model is
competitive in all aspects and can achieve high performance on
different datasets.

Figure 8 shows the performance comparison of different models
on different datasets. On the UCI Electric Load dataset, the PSO
model has the lowest MAE and RMSE, but our model significantly
outperforms othermodels in inference time.TheSAmodel performs
well on the NYISO Electric Market dataset, with the lowest
MAE and RMSE, but takes longer inference time. Our model
strikes a balance between performance and inference time. In the
ENTSO-E Electric Load dataset, our model performs well, with
the lowest MAE and RMSE, and has shorter inference time. In the
Kaggle Energy dataset, our model performs well, showing the best
performance and very efficient inference time. Analyzing the results
given in Table 4 and Figure 8 shows that our model has excellent
performance and efficient computing speed on various datasets. It
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FIGURE 8
Visualized results of Parameter, Flop, Inference time and Training time performance indicators of ANN-LSTM-Transformer module ablation experiment
under different datasets.

can achieve low MAE and RMSE scores on different datasets while
having a relatively lower number of parameters and computational
complexity.

Figure 9 shows the simulation results of this experiment. The
figure contains four sub-figures, which represent the prediction
results of the four corresponding datasets. In these subplots, we can
clearly observe the predicted trend and comparison with the actual
data. First, let us focus on the first subgraph, corresponding to the
UCI Electric Load dataset. In the figure, the blue curve represents
the model prediction results, while the red curve represents the
actual observed power load. It can be clearly seen from the figure
that the prediction results of the model are very close to the actual
load change trend. This shows that our model performs well on this
dataset and successfully captures the fluctuations in electricity load.
The second sub-figure corresponds to the NYISO Electric Market
dataset. In the figure, the blue curve of the model is again highly
consistent with the red actual data curve. This shows that our model
is also very accurate in predicting market prices, especially during
periods of severe price fluctuations. Next, the third and fourth

sub-figures correspond to the ENTSO-E Electric Load dataset and
Kaggle Energy dataset, respectively. Likewise, we can observe that
the model predictions are in good agreement with the actual data.
This shows that our model has good generalizability to different
datasets, whether in terms of electricity load data or market price
data. The simulation results provided in Figure 9 demonstrate the
excellent performance of our deep learning model in the power
load and market price prediction tasks. Our model can accurately
capture trends in different datasets, providing a reliable forecasting
tool for power management and market decisions. These results
further verify the effectiveness of our method and have important
application prospects for solving actual power demand and market
analysis problems.

4 Discussion and conclusion

In this study, we delve into a method of integrating the
ANN–LSTM model with the transformer mechanism to solve the
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FIGURE 9
Experimental simulation results of the UCI Electric Load dataset, NYISO Electric Market dataset, ENTSO-E Electric Load dataset, and Kaggle Energy
dataset.

problems of power load forecasting and market price analysis. Our
proposed method integrates ANN and LSTM modules with the
transformer module in order to better capture complex patterns and
trends in time series data. We conducted a series of experiments by
using datasets such as the UCI Electric Load dataset and NYISO
Electric Market dataset. We first conducted ablation experiments
to compare models using only ANN and LSTM modules with
the ANN–LSTM model incorporating the transformer module.
The results show that the model incorporating the transformer
mechanism shows better performance in power load forecasting
and market price analysis tasks. Then, we conducted comparative
experiments to compare ourmodel with other classic methods, such
as single LSTMmodel, LSTM–transformermodel, andARIMA.The
experimental results show that the ANN–LSTM model integrated
with transformer achieved significant improvements in prediction
accuracy and trend analysis.

Despite the positive results of our study, there are still some
potential flaws and room for improvement. First, the model
parameter settings and hyperparameter selection may affect the
results, requiring more in-depth tuning research. Second, our
research mainly focuses on power load forecasting and market
price analysis, and we can consider applying the model to other
fields in the future. In future research, we can further optimize

the structure and parameters of the model to improve prediction
accuracy and stability. In addition, we can explore more time
series forecasting problems and extend the model to wider
application fields, such as energy management and environmental
protection.

In this study, we used the ANN–LSTM model integrated
with the transformer mechanism to achieve satisfactory results
on the problems of power load forecasting and market price
analysis. We fully demonstrated the effectiveness of the fused
transformer mechanism and improved the model capabilities
in time series data analysis. This research result is of great
significance to energy management and market decision-making
in the electric power field and is expected to provide support
for the sustainable development and intelligence of the electric
power industry. Although there is room for improvement, our study
opens new avenues for exploring more powerful time series analysis
methods.
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An ensemble model for
short-term wind power
prediction based
on EEMD-GRU-MC
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As a kind of clean and renewable energy, wind power is of great significance for
alleviating energy crisis and environmental pollution. However, the strong
randomness and large volatility of wind power bring great challenges to the
dispatching and safe operation of the power grid. Hence, accurate and reliable
short-term prediction of wind power is crucial for the power grid dispatching
department arranging reasonable day-ahead generation schedules. Targeting the
problem of low model prediction accuracy caused by the strong intermittency
and large volatility of wind power, this paper develops a novel ensemble model
for short-term wind power prediction which integrates the ensemble empirical
mode decomposition (EEMD) algorithm, the gated recurrent unit (GRU) model
and the Markov chain (MC) technique. Firstly, the EEMD algorithm is used to
decompose the historical wind power sequence into a group of relatively
stationary subsequences to reduce the influence of random fluctuation
components and noise. Then, the GRU model is employed to predict each
subsequence, and the predicted values of each subsequence are aggregated
to get the preliminary prediction results. Finally, to further enhance the prediction
accuracy, the MC is used to modified the prediction results. A large number of
numerical examples indicates that the proposed EEMD-GRU-MC model
outperforms the six benchmark models (i.e., LSTM, GRU, EMD-LSTM, EMD-
GRU, EEMD-LSTM and EEMD-GRU) in terms of multiple evaluation indicators.
Taking the spring dataset of the ZMS wind farm, for example, the MAE, RMSE and
MAPE of the EEMD-GRU-MC model is 1.37 MW, 1.97 MW, and from 1.76%,
respectively. Moreover, the mean prediction error of the developed model in
all scenarios is less than or close to 2%. After 30 iterations, the proposed model
uses an average of about 35 min to accurately predict the wind power of the next
day, proving its high computation efficiency. It can be concluded that the
ensemble model based on EEMD-GRU-MC is a promising prospect for short-
term wind power prediction.

KEYWORDS

ensemble empirical mode decomposition, gated recurrent unit, Markov chain,
short-term wind power prediction, ensemble forecasting models
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1 Introduction

In order to cope with the global energy crisis and climate change,
renewable energy has become the focus of the development of
countries around the world. As an important part of renewable
energy, wind power has developed rapidly in recent years due to its
low cost andmature technology (Chen et al., 2017; Yuan et al., 2022).
According to statistics from the International Energy Agency, wind
electricity generation reached 1,870 TWh in 2021 and it remains the
leading non-hydro renewable technology. To achieve the goal of net-
zero emissions by 2050, which is to generate around 7,900 TWh of
wind power by 2030, it will be necessary to increase average annual
electricity generation to almost 250 GW (International Energy
Agency, 2021). However, with the increasing penetration of wind
power into the power grids, the randomness, volatility and
intermittency of wind power bring great challenges to the safe
and stable operation of the power grids (Shafiullah et al., 2013;
Dai et al., 2019). Accurate and reliable wind power forecasting is an
effective way to cope with this problem and has therefore become
quite a hot topic of research (Tascikaraoglu and Uzunoglu, 2014;
Wang et al., 2021).

According to the length of the foresight period, wind power
forecasting can be divided into: ultra-short-term forecasting (0–4 h)
for real-time load balancing, short-term forecasting (4–72 h) for unit
commitment and flexibility reserve, and medium and long-term
forecasting (several days, weeks or months) for unit maintenance
scheduling and generation capacity evaluation. This study only
focuses on the short-term wind power prediction. In recent years,
many short-termwind power forecastingmethods have been proposed.
These can be summarized into three categories: physical methods,
statistical methods, and ensemble forecasting models.

Based on the meteorological conditions of the underlying
surface of the wind farms and the output curve of the fans, the
physical prediction methods can establish the mapping relationship
between wind power output and meteorological information using
micro-meteorology to realize the wind power prediction. Numerical
weather prediction (NWP) is the most commonly used physical
method. Charabi et al. (2011) evaluated the performance of NWP
model data for wind energy applications in Oman and demonstrated
that NWP data has better accuracy than satellite data compared to
ground measurements. Liu et al. (2022) proposed a novel NWP-
enhanced wind power prediction method based on rank ensemble
and probabilistic fluctuation awareness. Prósper et al. (2019) focused
on production prediction and validation of actual onshore wind
farms using high horizontal and vertical resolution Weather
Research and Prediction (WRF) model simulations. Ye et al.
(2017) proposed a short-term wind power prediction model
based on physical methods and spatial correlations to
characterize the uncertainty and dependency structure of
turbine’s output in wind farms. However, physical methods rely
on very precise meteorological and geographic data, which are
sometimes difficult to obtain. In addition, the physical methods
usually need significant computational time, making their
application to short-term wind power forecasting difficult.

The statistical methods do not usually consider the complex
physical mechanism of wind power generation, and only construct a
statistical model based on the historical operational data of wind
farms in order to achieve future wind power prediction. Compared

with physical methods, the statistical methods have simpler
calculation and can directly predict wind power by mapping the
relationship between historical wind power data and the prediction
target. Statistical models can be further divided into time series
models, other machine learning models and deep learning models:
1) The typical time series models include the autoregressive moving
average model (ARMA) (Torres et al., 2005), the autoregressive
integrated moving average model (ARIMA) (Chen et al., 2010;
Barbosa et al., 2017), the exponential smoothing method
(Cadenas et al., 2010), and the generalized autoregressive
conditional heteroscedasticity (GARCH) model (Jeon and Taylor,
2016). Nevertheless, time series models only analyze the potential
relationship of time series variables, whichmakes it difficult for them
to mine the nonlinear relationship between data, hence the
prediction accuracy of this kind of model is poor. 2) Machine
learning models can adaptively learn to make decisions and
predict future data based on given historical data (Liu et al.,
2019). Commonly used machine learning models, such as
support vector machine (SVM) (Liu et al., 2017; Abedinia et al.,
2022), random forest (RF) (Lahouar and Slama, 2017; Shi et al.,
2018), and Bayesian additive regression tree (BART) (Chen et al.,
2018), are widely used in wind power output prediction, wind speed
prediction and other fields. However, the effect of SVM is closely
related to the selection of kernel function and its parameters, which
is strongly dependent on the user’s experience. RF is prone to
overfitting, and the BART method requires a long computation
time. 3) With the rapid development of deep learning, artificial
intelligence (AI) technology has also been applied to wind power
prediction. The AI models, back-propagation (BP) neural network
(Zhang et al., 2018), artificial neural network (ANN) (Carolin and
Fernandez, 2008), convolution neural network (CNN) (Wang et al,
2017a; Afrasiabi et al., 2019) and recursive neural network (RNN)
(Li et al., 2019) have been the focus of previous research on
prediction models. These models have higher prediction accuracy
than other machine learning models but have the same problem
with difficulty in model training. Hence improved RNN and CNN
models, such as long short-term memory (LSTM) (Zhang et al.,
2019a; Zhang et al, 2019b; Wu et al., 2019), GRU (Ding et al., 2019;
Chen et al., 2022), and temporal convolutional network (TCN) (Gan
et al., 2021; He et al., 2022) have been widely used in wind power
prediction. In recent years, the generative adversarial network
(GAN) has attracted a lot of attention (Yuan et al., 2021; Zhou
et al., 2021; Xia et al., 2022). Its generative model maps noise
variables to multi-layer perceptron networks to make the
generated data as close as possible to the distribution of training
samples. In general, the AI models can better mine the hidden
feature information of the wind power series, improve the overall
prediction accuracy, and have strong learning ability and robustness.

Due to the high randomness and volatility of wind power, the
prediction abilities of a single model often do not meet actual needs.
In recent years, ensemble forecasting models which combine the
advantages of multiple single models have become a popular
direction for wind power prediction research. Current research
on ensemble forecasting models can be summarized in four
categories. 1) Ensemble forecasting models based on multi-model
weighting. In these models, multiple single models, such as SVM and
RNN (Yu et al., 2018), extreme learning machine (ELM), Elman
neural network (ENN) and LSTM (Abedinia and Bagheri, 2022),

Frontiers in Energy Research frontiersin.org02

Wang et al. 10.3389/fenrg.2023.1252067

105104

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1252067


least square SVM (LSSVM) and radial basis function neural network
(RBFNN) (Shi et al., 2013), outlier robust ELM (ORELM), ENN, and
bidirectional LSTM (BiLSTM) (Chen and Liu, 2020), are used to
predict wind power series, and the prediction results are weighted to
improve the prediction accuracy. 2) Ensemble forecasting models
based on data preprocessing. To cope with the non-stationary wind
power sequence, these methods use signal decomposition and
denoising algorithms to decompose the original wind power data
into multiple stationary subsequences, and use the prediction model
to predict each subsequence separately. Commonly used mode
decomposition algorithms include empirical mode decomposition
(EMD) (Amjady and Abedinia, 2017; Abedinia et al., 2020),
variational mode decomposition (VMD) (Yin et al., 2019; Duan
et al., 2021), singular value decomposition (Wang et al., 2020),
ensemble empirical mode decomposition (EEMD) (Wang et al,
2017b), wavelet transform (WT) (Zucatelli et al., 2021; Khazaei
et al., 2022), and complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) (Lu et al., 2020) Ensemble
forecasting models based on optimization techniques. In order to
improve the prediction accuracy, the parameters of the forecasting
model are optimized by using optimization techniques. These
models include the Multilayer Perceptron (MLP) neural network
optimized by Non-dominated Sorting Genetic Algorithm II (NSGA-
ӀӀ) (Khazaei et al., 2022), SVMoptimized by cuckoo search algorithm
(SVM-CSA) (Li et al., 2021), ENN optimized by multi-objective grey
wolf optimization (ENN-MOGWO) (Wang et al., 2019a), ELM
optimized by Particle Swarm Optimization (ELM-PSO) (Tian
et al., 2019), Echo State Network optimized by MOGWO (ESN-
MOGWO) (Wang et al., 2019b) Ensemble forecasting models based
on error correction. In order to further reduce the prediction error,
error correction technology has been widely used in wind power
prediction, usually by predicting the error extracted from the initial
prediction result as a secondary prediction. The Markov chain (MC)
model (Zhang et al., 2014; Zhang et al., 2021), the GARCH (Jiang
and Huang, 2017), the temporally local moving window technique
(Yan et al., 2015), and machine learning methods (Liang et al., 2016)
are commonly used to deal with the error component.

Although many advances have been made in wind power
forecasting methods, wind power forecasting remains challenging due
to the high instability of wind power output. Moreover, few prediction
methods combine data decomposition, model prediction, and error
correction techniques to further improve the prediction accuracy. Based
on the above analysis, this research is driven by the following concepts:
The EEMD method is an improved and robust decomposition
technique, and can effectively discover the potential characteristics of
wind power output; The GRU model shows good performance in
extracting temporal correlation hidden features from time series,
hence is making a figure in short-term power prediction of new
energy sources; The MC approach is a very popular error correction
technique because it is easy to understand and implement. Hence in this
paper, following the concept of “data decomposition -model prediction -
error correction”, a novel ensemble forecasting model for short-term
wind power sequences based on EEMD-GRU-MC is developed. The
proposed model consists of three important steps: Firstly, the EEMD
method is employed to decompose the original wind power output
sequence into a set of relatively stationary subsequences and denoise the
data sequence. Secondly, the GRUmodel is used to individually forecast
each subsequence, and the predicted value of each subsequence is

superimposed to obtain the predicted result of the original data.
Finally, to further enhance the prediction accuracy, the MC is
applied to correct the preliminary prediction results. Extensive
numerical experiments are conducted to test the performance of the
proposed forecastingmodel when applied to different wind farms and in
different seasons. This testing indicates that the proposed hybrid model
outperforms the benchmark models in terms of multiple evaluation
indicators. Moreover, the mean prediction error of the developed model
in all scenarios is less than or close to 2%, proving that it is a promising
prospect for short-term wind power prediction.

The rest of this paper is structured as follows: Section 2
introduces the proposed ensemble forecasting method for short-
term wind power sequences. Case studies are presented and
discussed in Section 3. Finally, conclusions are drawn in Section 4.

2 Methodology

2.1 Data decomposition based on EEMD

EMD is a signal preprocessing analysismethod proposed byWu and
Huang (2009), which is widely used in non-stationary and nonlinear
signal processing. It progressively breaks down fluctuations or trends in
different frequencies in the signal, and finally obtains a set of intrinsic
mode functions (IMFs), where each decomposed IMF represents the
characteristic signals of different frequencies in the original signal.
However, mode mixing may occur in EMD signal processing, which
prevents the IMFs from being separated effectively. The EEMDmethod
introduces Gaussian white noise into the original signal and realizes the
automatic distribution of the signal for the appropriate timescale after
several averaging calculations, which effectively solves the mode mixing
problem. Wind power output is easily affected by wind direction, wind
speed and other factors, and presents large random fluctuations, which
result in a large number of outliers in the wind power sequence.
Therefore, the EEMD algorithm is applied to decompose and denoise
the wind power sequence, extract the main trend component in the
sequence, and eliminate the random fluctuation component. The
decomposition of the wind power sequence by EEMD can be
summarized as the following steps:

Step 1: The white noise signal sk,t is added to the original wind
power sequence Pt, and the new power sequence Pk,t is obtained
using Eq. 1:

Pk,t � Pt + sk,t, k � 1, . . . , K (1)

Step 2: The new sequence Pk,t (see Eq. 2) is decomposed into a
series of IMFs using the EMD algorithm (Naik et al., 2018):

Pk,t � ∑M

m�1C
m
k,t + rMk,t (2)

Step 3: Steps (1) and (2) are repeated K times, and white noise with
different amplitude is added each time.

Step 4: Since the mean value of the white noise spectrum is 0, the
mean value of all IMFs calculated for K iterations is the final IMF
obtained by the EEMD method (see Eq. 3):
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Cm
t � ∑K

k�1C
m
k,t/k (3)

Step 5: The original wind power sequence can be reconstructed as
Eq. 4:

Pt � ∑M

m�1C
m
t + rMt (4)

The amplitude of rMt is so small that it can be ignored in wind
power prediction.

2.2 Model prediction based on GRU
neural network

LSTM is an enhanced type of RNN, which effectively solves
the problem of the vanishing collateral gradient of traditional
RNNs. GRU is an improved version of LSTM, simplifying the
number of gating units and improving the computational
efficiency of the model while ensuring the output accuracy.
The GRU neuron is the basic unit of the GRU neural network
(GRUNN) model and its structure is shown in Figure 1. The GRU
neuron includes reset gate rt and update gate zt. The update gate
receives the current state xt and the previously hidden state ht−1.
After receiving the input and the matrix operation, the sigmoid
function σ determines whether the neuron is activated. The reset
gate receives xt and ht−1, and the result determines how much
past information needs to be forgotten. The current memory ht is
a summary of the input and output of the previous hidden layer.
~ht and ht−1 determine the final output ht by dynamic control of
the update gate and transmit ht to the next GRU neuron. The
mathematical model of GRU is shown as Eqs (5–8).

zt � σ Wz · ht−1, xt[ ]( ) (5)
rt � σ Wz · ht−1, xt[ ]( ) (6)

~ht � tanh Wh · rt ⊙ ht−1, xt[ ]( ) (7)
ht � 1 − zt( ) ⊙ ht−1 + ~ht ⊙ zt (8)

Based on the GRU neuron, the time series prediction of GRUNN
is shown in Figure 2.

2.3 Detailed description of error correlation
based on MC

2.3.1 Basic theory of Markov chain
The Markov process is a typical stochastic process proposed by

the famous mathematician Markov, which is applicable to both time
series and interval sequences. The main content of the Markov
process research is the state of a given stochastic process and its
transition law. The MC refers to the Markov process with discrete
time and state, and it can predict the changing trend of each state
according to the initial probability of each state and the transition
probability between each state. Hence the preliminary prediction
results are corrected by MC to make up for the prediction error
caused by the elimination of some components in the data
decomposition process and the corrected wind power output is
therefore closer to the actual value.

Assuming that Xt, t � 1, 2, . . . , T{ } is a random sequence where t
represents any time period, if for any state i0, i1, . . . , it−1 state i and j
satisfy Eq. 9, then Xt, t � 1, 2, . . . , T{ } is a MC. i and j represent the
possible states of the system at present and in future time,
respectively:

p Xt+1 � j
∣∣∣∣Xt � i, Xt−1 � it−1, . . . , X1 � i0{ } � p Xt+1 � j

∣∣∣∣Xt � i{ }
(9)

Supposing there are n states in state space I and, since each state
can turn to itself, each state has n turns. So, the one-step transition
probability from state i to state j can be expressed as Eq. 10:

p 1( )
ij � M 1( )

ij /Mj (10)

The matrix composed of the one-step transition probability set
of all states is called the one-step transition probability matrix, and is
expressed as Eq. 11:

P 1( ) �
p 1( )
11 p 1( )

12

p 1( )
21 p 1( )

22

. . . p 1( )
1n

. . . p 1( )
2n

..

. ..
.

p 1( )
n1 p 1( )

n2

. . . ..
.

. . . p 1( )
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

Accordingly, the matrix composed of the k-step transition
probabilities of all states is called the k-step transition probability
matrix of the system. According to the homogeneity of MC, the
k-step state transition probability matrix is expressed as Eq. 12:

P k( ) �
p k( )
11 p k( )

12

p k( )
21 p k( )

22

. . . p k( )
1n

. . . p k( )
2n

..

. ..
.

p k( )
n1 p k( )

n2

. . . ..
.

. . . p k( )
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � P 1( )( )k (12)

In the process of MC error correction, the classification of states
is very important. In this paper, the mean-standard deviation
classification method, which is simple in theory and widely used,
is employed to divide the state space according to the mean and
standard deviation of the samples. Let the sample sequence be
Xn, n � 1, 2, . . . , N{ }, the sample mean is �x, and the standard
deviation is δ. According to the central limit theorem in
mathematical statistics, the sample sequence can be divided into
five intervals: H1(min Xn,∀n{ }, �x − δ], H2(�x − δ, �x − 0.5δ],

FIGURE 1
Structure of the GRU neuron.
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H3(�x − 0.5δ, �x + 0.5δ], H4(�x + 0.5δ, �x + δ], H5(�x +
δ, max Xn,∀n{ }).

2.3.2 Basic theory of Markov chain
Based on the above analysis, the correction process for wind

power prediction error is as follows:

Step 1: Calculate the historical wind power error sequence using
Eq. 13:

es � ph
s − ppf

s ,∀s � 1, 2, . . . , S (13)
where ph

s denotes the actual historical wind power output value of
sample point s; ppf

s denotes the predicted value of sample point s
obtained by the EEMD-GRU model; S is the total number of
sample points.

Step 2: Calculate the mean and standard deviation of the error
sequence and divide the error sequence into five intervals
H1, H2, H3, H4 and H5 using the mean-standard deviation
classification method.

Step 3: The number of sample points belonging to different
intervals is counted, and then the one-step and k-step transition
probability matrices of each error state are calculated by using Eqs.
11 and (2), respectively.

Step 4: The states of the error sequence 5 days before the forecast
days are taken as the initial states. In the transition matrix P(5), the
row vectors corresponding to each initial state P(5)

i �
(P(5)

i1 , P(5)
i2 ,/, P(5)

i5 ), i � 1, . . . , 5 are taken to form a new
probability matrix (see Eq. 14):

R �
p 5( )
i1 p 5( )

i2

p 5( )
i1 p 5( )

i2

. . . p 5( )
i5

. . . p 5( )
i5

..

. ..
.

p 5( )
i1 p 5( )

i2

. . . ..
.

. . . p 5( )
i5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Step 5: The state corresponding to max Pj � ∑5
i�1
p5
ij, j ∈ [1, 5]⎧⎨⎩ ⎫⎬⎭,

i.e., the state to which the error is most likely to be transferred in the
future, is taken as the state of the modified error. Thus the modified
error ẽk � es + 0.5(Hel +Heu), whereHel andHeu are the lower and
upper bound of the state interval of the error to be modified.

Step 6: Correct the predicted wind power sequence on the forecast
days using Eq. 15:

pf
k � ẽk + ppf

k (15)

2.4 Overall model prediction process

The overall flowchart of the proposed EEMD-GRU-MC model
is depicted in Figure 3, and the main steps are as follows:

Step 1: Use the EEMD method to decompose the historical power
data into K IMF components (subsequences) and one
RES component.

Step 2: Divide each subsequence into a training set and a test set,
and then use the GRU model to predict each component. The
prediction results of each subsequence are aggregated as the
preliminary prediction results of the EEMD-GRU model.

FIGURE 2
Schematic diagram of GRUNN prediction.

FIGURE 3
Flowchart of the proposed forecasting model.
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Step 3: Calculate the prediction error between the historical wind
power and the predicted power, then use the MC to correct the
preliminary prediction results to get the final predicted wind
power sequence.

3 Case studies

3.1 Data description

To verify the effectiveness and practicability of the EEMD-
GRU-MC model, it was applied to the short-term wind power
prediction of two wind farms, ZMS and YMC, which are located in
Yunnan Province, China. For each wind farm, four datasets were
collected to test the forecasting performance of the proposed
model in different seasons. The datasets were collected from
1 February 2021 to 22 March 2021, from 1 June 2021 to 20 July
2021, from 1 September 2021 to 20 October 2021 and from
1 December 2021 to 19 January 2022, representing the wind
power data in spring, summer, autumn and winter, respectively.
Each dataset was recorded for a time period of 15 min. As shown in
Figures 4, 5, there is a total of 50 days, representing 4800 sample
points, included in each dataset. The first 3840 sample points are
used for the training set, the middle 864 are used for the validation
set to avoid modeling over fitting, and the last 96 are used for the
test set. This study focuses on short-term wind power prediction
24 h in advance to assist day-ahead dispatching of power grids
(Alham et al., 2016; Hu et al., 2019; Liu et al., 2021). Therefore,

96 sample points are selected as the test set in this study. The ratio
of training set, verification set and test set is usually 6:2:2. In order
to improve the prediction accuracy of the model, a longer training
set and verification set were selected in this study, which made the
data volume of the whole data set reach 4800. Table 1 lists the
statistical information for the datasets, including the maximum,
minimum, mean, median and standard deviation. It can be
observed that the power variation of each wind farm in all
seasons is close to the installed capacity, showing strong
volatility and non-stationarity. The power output of all wind
farms is larger in spring and winter, but smaller in summer.

The root mean square error (RMSE), mean absolute error
(MAE) and mean absolute percentage error (MAPE) are used as
indexes to evaluate the predictive performance of the forecasting
models (see Eqs 16–18). The smaller the RMSE, MAE and MAPE,
the better the predictive performance of the models:

RMSE �
���������������
∑L

l�1 pa
l − pf

l( )2/L
√

(16)

MAE � (∑L

l�1 p
a
l − pf

l

∣∣∣∣∣ ∣∣∣∣∣)/L (17)
MAPE � (∑L

l�1 p
a
l − pf

l

∣∣∣∣∣ ∣∣∣∣∣/pa
l )/L (18)

Where L is the number of sample points in the test set, which is
96 in this paper; pa

l is the actual wind power value of sample point l;
pf
l is the predicted value.
The EEMD decomposition of the wind power sequence and MC

error correction of the preliminary prediction results were realized

FIGURE 4
Wind power dataset for the ZMS wind farm.
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by Matlab 2020a, and the training and prediction of the GRU model
were realized by Python programming language. All numerical
experiments were conducted on a Dell workstation equipped
with an Intel Xeon Gold processor, with 20 cores and 40 threads,
2.1G main frequency and 64G memory.

3.2 Case 1: short-term wind power
prediction for the ZMS wind farm

Aiming to solve the problem of poormodel robustness caused by
the randomicity and intermittent nature of wind power, the EEMD

algorithm was introduced to decompose wind power data into a set
of subsequences. Due to space limitations, Supplementary Figure S1
only displays the EEMD decomposition results of the spring dataset.
It can be seen that EEMD decomposes the wind power sequence into
seven IMF subsequences and one residual subsequence with
different frequency characteristics, which facilitates the analysis of
the hidden information in the data and overcomes the shortcomings
of the original wind power sequence with its high volatility and non-
stationarity.

In order to verify the superiority, reliability and stability of the
proposed model, six other forecasting models based on LSTM, GRU,
EMD-LSTM, EMD-GRU, EEMD-LSTM and EEMD-GRU were

FIGURE 5
Wind power dataset for the YMS wind farm.

TABLE 1 Statistical information of the datasets used in this study.

Wind farm Dataset Maximum Minimum Range Mean Median Std.

ZMS Spring 145.2 0 145.2 101.4 114.4 37.2

Summer 147.6 0 147.6 66.8 61.9 41.9

Autumn 131.8 0 131.8 29.4 21.4 27.9

Winter 143.3 0 143.3 68.5 67.3 38.7

YMS Spring 83.0 0.1 82.9 53.7 58.5 20.9

Summer 81.8 0 81.8 18.9 11.5 19.7

Autumn 88.6 0 88.6 22.6 20.8 17.4

Winter 98.5 0 98.5 48.5 51.7 21.6

Frontiers in Energy Research frontiersin.org07

Wang et al. 10.3389/fenrg.2023.1252067

110109

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1252067


constructed as comparison models. It should be mentioned that the
LSTM and GRU methods are adopted by (Duan et al., 2021; Chen
et al., 2022), respectively. The prediction results of the seven models
in different seasons are shown in Figure 6, and regression analysis of
the prediction results for the ZMS wind farm using different models
is presented in Figure 7. For further quantitative comparison, the
evaluation indicators of various prediction models, including MAE,
RMSE and MAPE are listed in Table 2. The detailed analyses are
summarized as follows: (1) The predicted wind power curves of all
models are generally consistent with the trend of the actual power
curve. However, it is clear that the predicted wind power curve
obtained by the proposed EEMD-GRU-MC model is very close to
the actual power curve, and has the smallest RMSE,MAE andMAPE
among the seven models for all seasons. In addition, the correlation
between the observed data and the predicted data generated by the
proposed model is greater than that of comparison models.
Therefore, the proposed model connecting EEMD and MC to the
GRU model has the ability to capture the dynamic characteristics of
wind power output data series. (2) The LSTM has the largest
prediction error and the prediction effect of EEMD-LSTM is also
inferior to that of EEMD-GRU for different seasons, which proves
that GRU has more advantages in predicting short-term wind power
time series data compared to LSTM. (3) EEMD-LSTM and EEMD-
GRU models are superior to LSTM and GRU respectively in various
performance evaluation indexes. Taking the summer dataset with

the strongest stochastic wind power volatility as an example, the
MAE, RSME and MAPE of the EEMD-GRU model are 1.90 MW,
3.36 MW and 1.58%, which decreased by 69.3%, 48.7% and 71.2%
compared with the GRU model. Similar results also appear in the
comparison of the EEMD-LSTM and LSTM model, whose MAE,
RMSE and MAPE decreased by 77.9%, 47.3% and 79.2%,
respectively. This proves that EEMD can separate the noise
information from the complex wind power data and facilitate the
prediction model to extract the hidden information in the data. (4)
Compared with EMD-LSTM and EMD-GRU, EEMD-LSTM and
EEMD-GRU have better predictive performance, showing EEMD
technique is more helpful for improving the prediction accuracy
than EMD technique. (5) The prediction accuracy of the EEMD-
GRU model can be further improved after MC error correlation.
Taking the spring dataset, for example, after MC correction, the
MAE, RMSE and MAPE of the EEMD-GRU model decreased from
1.87 MW to 1.37 MW, from 2.37 MW to 1.97 MW, and from 2.18%
to 1.76%, respectively.

3.3 Case 2: Short-term wind power
prediction of the YMS wind farm

In order to verify its robustness, the proposed model was applied
to the short-term power prediction of the YMS wind farm, whose

FIGURE 6
Short-term wind power forecasting results for the ZMS wind farm.
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FIGURE 7
(A) Spring Regression analysis of prediction results for the ZMS wind farm using different models. (B) Summer Regression analysis of prediction
results for the ZMS wind farm using different models. (C) Autumn Regression analysis of prediction results for the ZMS wind farm using different models.
(D) Winter Regression analysis of prediction results for the ZMS wind farm using different models.
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output characteristics are quite different from those of ZMS. The
experiments were also conducted using six comparison models as
mentioned in Section 3.1. The forecasting results from these
models and regression analysis are shown in Figures 8, 9, while
the evaluation indicators of the forecasting results are illustrated in
Table 3. It can be found that the LSTM and GRU based models
without data preprocessing fail to obtain satisfactory forecasting
results. Especially in spring and summer, the MAPE values of both
models exceed 10%. The proposed EEMD-GRU-MC model
achieves the smallest MAE, RMSE and MAPE among the
models for the four seasons, and the forecasted wind power
curves closely match the trend of the actual power curves.
Except for in spring, the MAPE values of the predicted results
of the developed model are all within 2%. Although the developed

model’s prediction accuracy dropped slightly in the spring dataset
where the wind power fluctuation is more severe, the proposed
model performs best in the wind power prediction for the YMS
wind farm. It can be concluded that the developed ensemble
forecasting model has more outstanding potential and is better
able to capture valuable information in complex and non-
stationary wind power data.

3.3 Analysis of computational efficiency of
the proposed model

Computational complexity is an important index to evaluate the
efficiency of a wind power forecasting method, which describes how

TABLE 2 Statistical indexes of short-term power prediction for the ZMS wind farm using different models.

Dataset Model MAE(MW) RMSE(MW) MAPE (%)

Spring LSTM 9.82 11.50 10.74

GRU 7.49 8.61 8.32

EMD-LSTM 6.13 7.26 7.27

EMD-GRU 3.61 4.45 4.38

EEMD-LSTM 4.03 5.15 4.59

EEMD-GRU 1.87 2.37 2.18

EEMD-GRU-MC 1.37 1.97 1.76

Summer LSTM 9.62 11.11 8.35

GRU 6.19 6.55 5.49

EMD-LSTM 3.58 7.97 2.90

EMD-GRU 2.27 6.03 1.84

EEMD-LSTM 2.13 5.86 1.74

EEMD-GRU 1.90 3.36 1.58

EEMD-GRU-MC 1.43 1.41 1.28

Autumn LSTM 5.45 7.41 9.69

GRU 4.07 5.52 7.43

EMD-LSTM 4.37 5.72 8.15

EMD-GRU 3.95 5.67 7.00

EEMD-LSTM 2.68 4.32 4.67

EEMD-GRU 2.24 3.22 4.49

EEMD-GRU-MC 0.76 0.84 1.69

Winter LSTM 6.08 6.33 11.53

GRU 2.64 2.90 4.94

EMD-LSTM 2.48 3.01 4.62

EMD-GRU 1.60 2.52 3.00

EEMD-LSTM 1.50 2.07 2.85

EEMD-GRU 0.75 1.15 1.33

EEMD-GRU-MC 0.03 0.07 0.68
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the execution time of a method changes with the increase of the
input size. The computational complexity of EEMD-GRU-MC
model mainly depends on the respective complexity of EEMD,
GRU and MC. EEMD is an adaptive signal processing method for
nonlinear and non-stationary data. The time complexity of
EEMD is actually equivalent to the time complexity of Fourier
transform. This means that although EEMD is considered
computationally intensive, it is actually a computationally
efficient method. A GRU is a recurrent neural network used
to process sequential data. The computational complexity of a
GRU depends on several factors, including sequence length,
number of network layers, and number of hidden units per
layer. In general, the computational complexity of a GRU is
proportional to these factors. An MC is a statistical model that
describes random changes in the state of a system. The
computational complexity of MC depends on the number of
states. If the number of states is fixed, then the computational
complexity of MC can be considered constant. In general,
computational complexity is related to the parameters of the
model and the amount of data.

In order to ensure that the proposed prediction model is
realizable in practical applications, the prediction efficiency of
the proposed model is analyzed, which is shown in Table 4. This
model is designed to predict the day-ahead wind power output,
rather than real-time prediction. After 30 iterations, the model

uses an average of about 35 min to accurately predict the wind
power of the next day. Considering that the accuracy of the
model prediction is very high, the prediction time is completely
acceptable and can meet the timeliness requirement of the short-
term wind power prediction.

Few prediction methods combine data decomposition,
model prediction, and error correction techniques to further
improve the prediction accuracy. The EEMD-GRU-MC model
proposed in this paper provides a novel method for wind power
prediction. By integrating EEMD algorithm, GRU model and
MC technology, this model effectively deals with the strong
intermittency and large volatility of wind power, thus improving
the accuracy of model prediction. This novel method provides a
new perspective and idea for the theoretical research of wind
power prediction. For the research community, the EEMD-
GRU-MC model has enriched the theoretical research of
wind power prediction, and provided a new reference and
inspiration for the subsequent research. For practitioners,
especially power grid dispatching departments, the research
results of this paper can help them make more accurate and
reliable short-term wind power forecasts, so as to arrange more
reasonable day-ahead generation plans. Moreover, the wind
farms’ historical operation data and the source code of the
proposed EEMD-GRU-MC model will be made available
on request.

FIGURE 8
Short-term wind power forecasting results for the YMS wind farm.
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FIGURE 9
(A) Spring Regression analysis of prediction results for the YMS wind farm using different models. (B) Summer Regression analysis of prediction
results for the YMS wind farm using different models. (C) Autumn Regression analysis of prediction results for the YMS wind farm using different models.
(D) Winter Regression analysis of prediction results for the YMS wind farm using different models.
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TABLE 3 Statistical indexes of short-term power prediction for YMS wind farm using different models.

Dataset Model MAE(MW) RMSE(MW) MAPE (%)

Spring LSTM 3.59 4.87 11.58

GRU 2.55 3.22 10.07

EMD-LSTM 2.38 3.14 12.87

EMD-GRU 1.95 2.68 10.61

EEMD-LSTM 1.49 1.96 6.94

EEMD-GRU 1.14 1.52 5.86

EEMD-GRU-MC 0.32 0.39 2.55

Summer LSTM 2.36 2.47 16.89

GRU 1.71 1.90 12.05

EMD-LSTM 1.34 1.60 9.90

EMD-GRU 1.00 1.33 6.57

EEMD-LSTM 1.41 1.57 11.55

EEMD-GRU 0.92 1.12 7.29

EEMD-GRU-MC 0.15 0.32 1.12

Autumn LSTM 4.57 5.10 7.63

GRU 3.20 3.61 5.16

EMD-LSTM 3.31 3.86 6.14

EMD-GRU 1.81 2.31 3.40

EEMD-LSTM 1.68 2.03 2.78

EEMD-GRU 1.26 1.70 2.47

EEMD-GRU-MC 0.61 0.77 1.15

Winter LSTM 4.52 5.57 6.35

GRU 3.52 4.69 4.99

EMD-LSTM 3.63 5.28 5.29

EMD-GRU 2.85 5.06 4.11

EEMD-LSTM 2.77 4.36 4.15

EEMD-GRU 2.61 3.95 4.00

EEMD-GRU-MC 0.98 1.15 1.44

TABLE 4 Prediction time for different wind farms in different seasons.

Wind farm Dataset Time (s)

Decomposition Total prediction Average

ZMS Spring 10.135 2,135 2,140

Summer 10.158 2,124

Autumn 10.206 2,138

Winter 10.319 2,162

YMS Spring 10.159 2,141 2,154

Summer 10.171 2,136

Autumn 10.238 2,150

Winter 10.338 2,170
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4 Conclusion

Accurate and reliable short-term prediction of wind power is of
important reference value for the power grid dispatching department
to arrange reasonable day-ahead generation plans. This study
innovatively combines a data decomposition technique, an AI-
based prediction model and an error correction technique, and
proposes a short-term wind power prediction method based on
EMD-GRU-MC. Two case studies, including two wind farms and
eight datasets, are used to verify the performance of the proposed
forecasting model when applied to different wind farms and in
different seasons. The conclusions can be summarized as follows:

(1) Compared with LSTM, GRU, EMD-LSTM, EMD-GRU,
EEMD-LSTM and EEMD-GRU models, the proposed
EEMD-GRU-MC model achieves the smallest MAE, RMSE
and MAPE for all datasets, and the forecasted wind power
curves very closely match the trend of the actual power curves.
Taking the spring dataset of the ZMSwind farm for example, the
MAE, RMSE and MAPE of the EEMD-GRU-MC model is
1.37 MW, 1.97 MW, and from 1.76%, respectively. Moreover,
except for the YMS wind farm in spring, the mean forecasting
error of the proposed model is always within 2%. This
demonstrates that the proposed model has excellent
forecasting performance and generalization ability, and can be
used as an effective tool for short-term wind power prediction.

(2) After 30 iterations, the proposed model uses an average of
about 35 min to accurately predict the wind power of the next
day, proving its high computation efficiency.

(3) GRU has more advantages in predicting short-term wind
power sequences than LSTM. EEMD-LSTM and EEMD-
GRU models are also achieve better prediction performance
than LSTM and GRU respectively in various scenarios,
indicating that the EEMD algorithm can overcome the
shortcomings of the original wind power sequence with its
high volatility and non-stationarity and facilitate the prediction
model to extract the hidden information in the data. Taking the
summer dataset of the ZMS wind farm as an example, the
MAE, RSME and MAPE of the EEMD-GRU model are
1.90 MW, 3.36MW and 1.58%, which decreased by 69.3%,
48.7% and 71.2%, respectively, compared with the GRUmodel.

(4) For the spring dataset of the ZMS wind farm, theMAE, RMSE
and MAPE of the EEMD-GRU model decreased by 26.73%,
16.88% and 19.27%, respectively, after MC correction. Similar
results also appear in other datasets. This proves the
effectiveness and applicability of the MC error correlation
technique in short-term wind power forecasting.

The proposed EEMD-GRU-MC model is a deterministic wind
power forecasting model, and does not take into account the complex
meteorological factors. Moreover, the process of dissecting and
projecting all of the data is not online forecasting, resulting in its
temporary can not be applied to real-time forecasting. In future studies,
the uncertainty of wind power prediction error will be considered and
meteorological factors will be embedded to build amulti-feature interval
prediction model, so as to obtain more comprehensive wind power
prediction results. Moreover, the number of decomposed IMFs of
EEMD and CEEMDAN, along with the standard EMD and its

upgraded algorithms, is uncertain for different data characteristics.
The developed model and the commercial solver Matlab 2020a can
be integrated into the wind farm short-term power prediction support
systems. In this case, the system program can automatically identify
each IMF decomposed by the EEMD method, and then give it to the
GRUmodel one by one for training and prediction. The support system
would cope with the problem that the number of decomposed IMFs is
uncertain for different data characteristics and realize online wind
power forecasting. Hence, how to integrate the hybrid prediction
model based on EEMD-GRU-MC into the decision support system
for the short-term power prediction of wind farms to realize online and
real-time prediction is our next research direction.
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Nomenclature

Sets and indices

K Total number of times white noise is added

k Index of times white noise is added

M Total number of decomposed IMFs

m Index of decomposed IMFs

t Index of time periods

S Total number of sample points

s Index of sample points

Constants

Pt Original wind power sequence

WZ Weight matrixes of the update gate

Wr Weight matrixes of the reset gate

Wh Weight matrixes of the intermediate state

phs Actual historical wind power output value of sample point s

Variables

Pk,t Wind power sequence after adding white noise for the kth time

Cm
k,t The mth IMF obtained by the EMD method for the kth time

Cm
t The mth IMF obtained by the EEMD method

rMk,t RES after EMD decomposition for the kth time

rMt RES after EEMD decomposition

rt Reset gate

sk,t White noise signal added at the kth time

zt Update gate

xt hidden state and load data of GRU neuron at time t

~ht Intermediate state

ht Output of GRU neuron

M(1)
kij

Number of times state i turns into state j after one step

Mj Total number of occurrences of state j

ppfs Predicted value of sample point s obtained by the EEMD-GRU
model

Functions

σ Sigmoid function

⊙ Element-wise multiplication (Hadamard product)

Abbreviations

MC Markov chain

GRU Gated recurrent unit

EEMD Ensemble empirical mode decomposition

NWP Numerical weather prediction

WRF Weather Research and Forecasting

ARMA Autoregressive moving average model

ARIMA Autoregressive integrated moving average model

GARCH Generalized autoregressive conditional heteroscedasticity

SVM Support vector machine

RF Random forest

BART Bayesian additive regression tree

AI Artificial intelligence

BP Back-propagation

CNN Convolution neural network

RNN Recursive neural network

LSTM Long short-term memory

TCN Temporal convolutional network

ELM Extreme learning machine

ENN Elman neural network

LSSVM Least square SVM

RBFNN Radial basis function neural network

ORELM Outlier robust ELM

BiLSTM Bidirectional LSTM

EMD Empirical mode decomposition

VMD Variational mode decomposition

WT Wavelet transform

CEEMDAN Complete ensemble empirical mode decomposition with adaptive
noise

MLP Multilayer Perceptron

NSGA- ӀӀ Non-dominated Sorting Genetic Algorithm II

MOGWO Multi-objective grey wolf optimization

PSO Particle Swarm Optimization

ESN Echo State Network

IMF Intrinsic mode function

RES Residual

GRUNN GRU neural network

RMSE Root mean square error

MAE Mean absolute error

MAPE Mean absolute percentage error

Frontiers in Energy Research frontiersin.org17

Wang et al. 10.3389/fenrg.2023.1252067

120119

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1252067


A runoff-based hydroelectricity
prediction method based on
meteorological similar days and
XGBoost model

Yang Wu1, Yigong Xie1, Fengjiao Xu2*, Xinchun Zhu1 and
Shuangquan Liu1*
1Yunnan Power Dispatching and Control Center, Yunnan Power Grid Co, Ltd., Kunming, China, 2Beijing
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This paper proposes a runoff-based hydroelectricity prediction method based on
meteorological similar days and XGBoost model. Accurately predicting the
hydroelectricity supply and demand is critical for conserving resources,
ensuring power supply, and mitigating the impact of natural disasters. To
achieve this, historical meteorological and runoff data are analyzed to select
meteorological data that are similar to the current data, forming a meteorological
similar day dataset. The XGBoost model is then trained and used to predict the
meteorological similar day dataset and obtain hydroelectricity prediction results.
To evaluate the proposedmethod, the hydroelectricity cluster in Yunnan, China, is
used as sample data. The results show that the method exhibits high prediction
accuracy and stability, providing an effective approach to hydroelectricity
prediction. This study demonstrates the potential of using meteorological
similar days and the XGBoost model for hydroelectricity prediction and
highlights the importance of accurate hydroelectricity prediction for water
resource management and electricity production.

KEYWORDS

hydroelectricity prediction, meteorological similar days, XGBoost model, runoff-based
hydroelectricity, distributed

1 Introduction

In recent years, with the rapid development of distributed small hydropower, its position
in the field of clean energy has become increasingly important (Li et al., 2021). However, the
power transmission distance in distributed small hydropower-rich areas is far, and the
channel resources of the main power grid are limited. Furthermore, large and small
hydropower stations occupy the channel resources, which has an impact on the main
power grid. The problem of small interference stability is prominent, and it is difficult for the
power dispatching department to accurately grasp the power generation capacity of small
hydropower stations, resulting in the frequent occurrence of large-scale power generation
and water abandonment of small hydropower stations, which seriously affects the utilization
efficiency of clean energy and the safe and stable operation of the power grid (Graciano-
Uribe et al., 2021; Zhang et al., 2022). Therefore, it has become an urgent problem to carry
out the distributed small hydropower generation capacity prediction and provide reference
for the power dispatching department to carry out the coordinated dispatch of multiple
power sources.
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In recent years, the field of hydropower has become the focus of
many experts and scholars in the new energy sustainable
development industry (Kougias et al., 2019). The traditional
runoff hydropower forecasting method is mainly based on the
trend extrapolation method, which has fast calculation speed and
is suitable for forecasting with small load fluctuations (Zhou et al.,
2022). However, the modeling process of this method is relatively
complex and requires high stability of the historical data trend,
which has certain limitations.

Jung et al. (2021) predicted the potential of small hydropower in
the future by building a neural network model using climate change
scenarios and artificial simulations. The prediction results are

generally optimistic, but they cannot directly guide the power
dispatching department to carry out the coordinated dispatch of
multiple power sources, and they need to be combined with
hydropower output prediction. Demir et al. (2023)
comprehensively analyzed the advantages of using the XGBoost
algorithm in prediction from the aspects of samples, characteristics,
index performance, and model robustness. Hanoon et al. (2023)
verified the effective application of different machine learning
algorithms in hydropower forecasting by modeling three different
scenarios in quarterly, monthly, and daily dimensions with different
machine learning methods. With the continuous development of
artificial intelligence technology, application of some machine

TABLE 1 Summary of characteristics.

Feature type Generated feature Effect

Hysteresis characteristics Hydropower output lag T-2 Historical data reflect output characteristics

Water flow lag T-2 Time lag effect of flow and output

Meteorological characteristics Rainfall Rainfall directly affects runoff hydropower output

Temperature Temperature affects rainwater evaporation

Time characteristics Year Reflects seasonal variation

Month Reflects seasonal variation

Day Reflects seasonal variation

Statistical characteristics Average rate of flow Reflects the correlation between hydropower generation and runoff

Variance rate of flow Reflects the correlation between hydropower generation and runoff

Maximum rate of flow Reflects the correlation between hydropower generation and runoff

Minimum rate of flow Reflects the correlation between hydropower generation and runoff

TABLE 2 Comparison of prediction accuracy.

Dry/wet season Date Similar-day weighted XGBoost/% Original XGBoost/% GM/%

Dry season December 8 100.00 97.16 98.17

December 9 100.00 98.15 98.53

December 10 100.00 99.44 99.42

December 11 100.00 96.98 99.71

December 12 91.50 88.84 89.33

December 13 100.00 99.54 99.41

December 14 85.60 60.50 70.56

Average accuracy in the dry season 96.73 91.51 93.60

Wet season July 2 96.18 93.24 92.51

July 3 95.49 91.63 89.75

July 4 97.50 93.84 91.23

July 5 96.09 90.52 88.41

July 6 97.85 93.56 90.24

July 7 99.72 96.63 93.38

Average accuracy in the wet season 97.14 93.24 90.92
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learning methods, such as XGBoost algorithm, is gradually becoming
feasible for runoff hydropower prediction (Zhang et al., 2021; Kumar
et al., 2021). These methods use the historical data as training samples,
utilize the intelligent processing and self-learning mode of the
algorithm, learn the mapping relationship between the historical
data and the influencing factors, and apply the algorithm to predict
the future load data after strengthening learning and improving the
accuracy (Bordin et al., 2020; Bernardes et al., 2022; Lai et al., 2020). The
XGBoost method shows the nonlinear mapping ability and strong self-
adaptation ability and is expected to become an effective means to solve
the problem of distributed small hydropower generation capacity
prediction. Bilgili et al. (2022) introduced a deep learning method
based on long short-term memory (LSTM) to predict the power
generation of a run-of-the-river hydroelectric power plant 1 day in
advance. In addition, in order to compare the prediction accuracy, the
adaptive neural fuzzy inference system (ANFIS) and fuzzy C-means
(FCM), ANIS and subtractive clustering (SC), and ANFIS grid
partitioning (GP) methods were adopted, which shows that the
LSTM neural network provides higher accuracy results in short-term
energy production forecasting. Dehghani et al. (2019) combined the
gray wolf method with ANFIS to predict hydroelectric power.

1.1 Research highlights

Forecasting the generation capacity of distributed small
hydropower is an effective means to solve the problem of

frequent large-scale water abandonment due to its long
transmission distance, limited channel resources, unknown
generation capacity, and other factors.

The XGBoost algorithm applied to runoff hydropower
prediction has the ability of nonlinear mapping and strong self-
adaptation, which can effectively improve the prediction accuracy
and overall accuracy.

The artificial intelligence forecasting method takes historical
data as training samples, and its intelligent processing and self-
learning mode can learn the mapping relationship between
historical data and the influencing factors and apply it to forecast
future load data, which is an effective means to solve the problem of
distributed small hydropower generation capacity forecasting.

2 Hydropower forecasting method

2.1 Principle of the XGBoost algorithm

Themain problems of traditional runoff hydropower forecasting
methods are as follows:

Complicated modeling process: Traditional runoff-based
hydropower forecasting methods often involve complex modeling
processes, which require specialized knowledge and skills, increasing
the difficulty and cost of prediction.

High requirements for the stability of historical data trends:
The effectiveness of these methods depends heavily on the

FIGURE 1
Similar-day weighted XGBoost result prediction.
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stability of historical data. If the historical data trends change
significantly, the accuracy of predictions based on these data may
be affected.

Suitability for predictions with fewer load fluctuations: Due to
the computational process and results of traditional methods being
limited by the consistency and stability of historical data, they may
be more suitable for predictions with fewer load fluctuations. For
situations with greater load fluctuations, the accuracy of predictions
may be reduced.

Limited adaptability to future changes in hydropower
output: Traditional runoff-based hydropower forecasting
methods are mainly based on extrapolating historical data,
which may have limited the adaptability to future changes in
hydropower output. If there are significant changes in
hydropower output in the future, these methods may need to
be adjusted or re-modeled.

Lack of handling of uncertainties: Traditional methods usually
assume that the future hydropower output is deterministic, but in
reality, the future hydropower output may be affected by many
uncertain factors, such as climate change and fluctuations in the
energy demand. Traditional methods lack effective handling of these
uncertainties.

For the prediction of many quantities with uncertain
characteristics, i.e., random variables, people often use the
method of probability and statistic in engineering practice. The
probability and statistic method requires finding statistical laws
from a large number of data samples, and this statistical law

must be easy to be processed by mathematical methods (Walpole

et al., 1993). Different from probability and statistics, the gradient

boosting decision tree (GBDT) is a type of machine learning

algorithm (Ke et al., 2017); its good performance in the

prediction and classification of problems has been widely

observed by industry researchers (Charbuty et al., 2021). The

algorithm is composed of multiple decision trees and uses the

negative gradient value of the loss function in the current model

as the approximate value of the residual in the lifting tree for the

regression fit of the decision tree (Natekin et al., 2013). The general

steps of the GBDT algorithm are as follows:

1) Input n training samples X and set relevant parameters. The
number of iterations isN, F is the function space composed of all
trees, and fk is the single decision tree model; the initial value is
f0 � 0, and the expression of the GBDT algorithm is as follows:

ŷi � ∑K

k�1fk xi( ), (1)

where xi is the eigenvector of the i-th sample;K is the number
of weak regression trees; fk(xi) is the output value of the k-th
weak regression tree; and ŷi is the final predicted value of the
ith sample.

2) Define the objective function of the GBDT algorithm as

Obj � ∑n

i�1l yi, ŷi( ) +∑K

k�1Ω fk( ), (2)

FIGURE 2
Original XGBoost result prediction.
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where Ω is the complexity of the decision tree; n is the total
number of samples; l is the loss function; and yi is the true value of
the i-th sample.

The complexity is defined by the regular term:

Ω ft( ) � κT + 1
2
λ∑T

j�1ωj
2, (3)

where T is the number of nodes of the leaf; ωj is the vector value
corresponding to the leaf node; κ is the minimum loss reduction
required for leaf node splitting of the tree; and λ is the penalty term
coefficient.

3) According to the addition structure of the GBDT algorithm,
we obtain

ŷi
t � ŷi

t−1 + ft xi( ), (4)
where ŷi

t is the sum of the outputs of the first t trees of the i-th
sample; ŷi

t−1 is the sum of the outputs of the first i trees of the (t-1)-
th sample; and ft(xi) is the output value of the tth tree of the
ith sample.

Substituting Eq. 4 into the objective function and carrying out
the Taylor expansion, we obtain

Objt � ∑n
i�1

gift xi( ) + 1
2
hift

2 xi( ) + κT + 1
2
λ∑T

j�1ωj
2[ ]

� ∑T

j�1 Giωj + 1
2

Hi + λ( )ωj
2[ ] + κT, (5)

where Gi � ∑gi,Hi � ∑ hi and gi and hi are the first and
second derivatives of the loss function, respectively.

Let the first derivative of Objt be 0. Then the optimal value of
leaf node ωj* can be obtained as follows:

ωj* � − Gj

Hj + λ
. (6)

At this time, the objective function value is

Objt � −1
2
∑T

j�1
Gj

2

Hj + λ
+ κT. (7)

4) Generate a new decision tree through the greedy strategy to
minimize the value of the objective function (Friedman et al.,
2001), and obtain the optimal predictive value ωj* corresponding
to the leaf node. Add the newly generated decision tree ft(x) to
the model to obtain

ŷi
t � ŷi

t−1 + ft xi( ). (8)

5) Continue to iterate until the end of N iterations, and output the
GBDT algorithm composed of N decision trees.

The GBDT algorithm has many effective implementations, such
as the XGBoost algorithm and LightGBM algorithm, which are
integrated learning algorithms of GBDT (Shi et al., 2018; Bentéjac
et al., 2021).

FIGURE 3
GM result prediction.
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XGBoost is an improved algorithm based on GBDT that uses
multithreading parallelism to improve the accuracy and is
suitable for classification and regression problems (Chen et al.,
2016). The basic principle of XGBoost is the same as that of
GBDT. The difference is that GBDT uses the first derivative of the
loss function, while XGBoost uses the first and second derivatives
to perform the second-order Taylor expansion of the
loss function.

Experimentally, XGBoost is relatively faster than many other
integrated classifiers, such as AdaBoost. The impact of the
XGBoost algorithm has been widely recognized in many
machine learning and data mining challenges, and it has
become a more commonly used and popular tool among
Kaggle’s competitors and industry data scientists. In addition
to using different boosting algorithms, MART and XGBoost also
provide different regularization parameters. In particular,
XGBoost can provide additional parameters that are not
available in GBDT. In addition, it provides the penalty for a
single tree in the additive tree model. These parameters will affect
the tree structure and the weighting of the leaves to reduce
variance in each tree. In addition, XGBoost provides an
additional randomization parameter that can be used to
disassociate individual trees, thereby reducing the overall
variance of the additive tree model (Nielsen, 2016).

The loss function of the XGBoost algorithm is

Obj ϕ( ) � l y, f x( )( ) +∑
m
Ω fm( ), (9)

where y is the true value corresponding to the current sample
y; f(x) is the predicted value of sample x; l(y, f(x)) is the loss
function; fm is the mth classification tree model; Ω(fm) is the
regularization term, which reflects the complexity of the
algorithm; and ϕ is the model parameter to be solved.

Obj m( ) � ∑N

i�1l yi, ŷi
m( )( ) +∑m

i�1
Ω fi( )

� ∑N

i�1l yi, ŷi
m−1( ) + fm xi( )( ) +Ω fm( ), (10)

Obj m( ) ≈ ∑N

i�1 l yi, ŷi
m−1( )( ) + gifm xi( ) + 1

2
hifm

2 xi( )[ ] +Ω fm( ).
(11)

The Taylor expansion is used to approximate function fm(xi).
Substituting Eq. 10 into Eq. 11, we obtain

gi � ∂ŷi m−1( )l yi, ŷi
m−1( )( ), (12)

hi � ∂2
ŷi

m−1( ) l yi, ŷi
m−1( )( ), (13)

where ∂ŷi
(m−1) and ∂2

ŷi
(m−1) are the first and second derivatives of

ŷi
(m−1) on the loss function, respectively.
The regularization term in the objective function is

Ω fm( ) � γT + 1
2
λ ω‖ ‖2, (14)

where γ is the minimum loss reduction required for further
splitting at the leaf node of the tree, representing the complexity of
each leaf, and ω is the value of the leaf node.

2.2 Runoff hydropower forecasting method
based on XGBoost

The runoff hydropower prediction based on XGBoost is mainly
divided into five steps: data collection, preprocessing, characteristic
engineering, model training, and model validation (Li et al., 2019).
We collect historical hydropower generation data, runoff data, and
meteorological data related to hydropower generation. Among
them, runoff data refer to the flow data of the river, which can
be obtained through hydrological stations. After screening, de-
duplication, and checking the collected data, the duplicate,
invalid, and abnormal data are removed. Second, we process the
missing data and filled the missing data using the interpolation
method. Then, we use the method based on an isolated forest to
detect and process the outliers of the data. In runoff hydropower
prediction, feature engineering is a very important step. It can
process the data reasonably and improve the prediction
performance of the model. In this paper, we use a variety of
feature engineering methods, including lag characteristics, time
characteristics, and statistical characteristics. Table 1 lists the
specific functions:

Considering that meteorological data, which include multiple
factors such as precipitation and temperature, have a great impact
on runoff hydropower prediction, this paper proposes an XGBoost
runoff hydropower prediction method based on “meteorological
similar days.” Before model training, the meteorological data of the
day to be predicted are first composed into a feature vector, and the
similarity is then calculated by the feature vector composed of the
feature vector of the forecast day and the historical meteorological
data. This paper uses the reciprocal of Manhattan distance to
measure the similarity between the two. The specific form is
as follows:

similarity � 1

∑N
i�1 xi − yi

∣∣∣∣ ∣∣∣∣ (15)

where N represents the length of the meteorological vector, yi

represents the ith element of the meteorological vector of the day to
be predicted, and xi represents the ith element of the historical
meteorological vector of a day. According to the above similarity, the
XGBoost algorithm model is weighted by the loss function to
increase the impact of similar samples on the forecast date.
Finally, the model is verified based on this scheme.

3 Example analysis

We select the output data of the hydropower cluster in Yunnan
area, which contains multistage runoff hydropower stations, as the
sample data to evaluate the proposed method.

Hydropower prediction is a complex task. The industry usually
uses capacity accuracy instead of RMSPE accuracy for the
assessment of new energy. The formula is as follows:

ACCnew energy � 1 −

���������������
1
N

∑N

i�1
yi − ŷι

Cap
( )2

√√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ × 100%, (16)
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where N is the number of output points collected in a day, taken
as N = 96, and yi is the actual output value at the i-th time point in a
day. ŷι is the predicted output value at the i-th time point in a day,
and Cap is the capacity of the station.

The gray theory model (GM) is considered a classic model in the
field of hydropower prediction, which mainly solves the problems of
lack of data and uncertainty. Therefore, the prediction experimental
group in this paper adopts the similar-day weighted XGBoost, while
the control experimental group selects the original XGBoost and
GM, normalizes the historical data to the interval of [−1,1], and takes
80% of the data as the training data and the remaining 20% as the
test data. The prediction results are shown in Table 2.

It can be seen from the above table that considering the same
factors, the prediction accuracy of GM in the dry season is higher
than that of the original XGBoost algorithm after sample screening
according to our proposed similarity measure and allocating weights
to the sample. The prediction accuracy of GM in the dry season is
higher than that of the original XGBoost algorithm, but it is not ideal
in the wet season. The effectiveness of the sample weight selection
method based on similar days is demonstrated using the control
experimental group. In addition, we found that the accuracy of the
algorithm for winter data prediction is higher than that in the
summer. This is because the summer weather changes violently, the
unit output level fluctuates greatly, and the weather has an
unbalanced effect. Therefore, it can be seen that the selection of
meteorological data has a great impact on the prediction accuracy of
small hydropower output.

An overall comparison shows that the similar-day weighted
XGBoost has the highest prediction accuracy compared to original
XGBoost and GM in both wet and dry periods.

The prediction results using the similar-day weighted XGBoost
algorithm are shown in Figure 1. It can be seen that the hydropower
cluster has higher output and stable cycle in the wet season, and the
prediction accuracy of this algorithm is higher.

Figures 2, 3 show that the prediction accuracy of original
XGBoost is higher than that of GM in the wet season. Through
the comparison of Figures 1–3, it can be seen that similar-day
weighted XGBoost has the best prediction effect in the wet season.

4 Summary

In this paper, a novel hydropower forecasting method
combining meteorological similar days and XGBoost model is
proposed. By analyzing the historical meteorological and runoff
data, this paper selected the meteorological similar days with
meteorological conditions similar to the current data, which
provided a valuable reference for the prediction of hydropower
output. The XGBoost model not only shows its effectiveness in
learning meteorological similar day datasets but also produces
accurate and stable hydropower prediction results. The results
show that the combination of meteorological similar days and
XGBoost model is a promising method to improve the accuracy
of hydropower prediction. The high prediction accuracy and
stability of this method are particularly beneficial to water

resource management and power production, which is conducive
to better planning and utilization of hydropower resources, while
ensuring a reliable power supply.

The application of this method in the Yunnan hydropower
cluster in China has successfully demonstrated its practicability
and the potential for promotion in other regions and power
systems. However, it is worth noting that the universality of this
method in different geographical locations and different
climatic conditions needs further research and verification.
The method proposed in this paper has made a valuable
contribution to the field of hydropower prediction, and its
effectiveness in improving the accuracy and stability of
prediction highlights its importance in solving the challenges
encountered in water resource and energy management. With
continuous attention to water resources and energy, we believe
that this method will help strengthen the management of
sustainable water resources and energy, reduce the impact of
natural disasters, and promote the development of green and
sustainable energy in the future.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors without undue reservation.

Author contributions

YW: writing–review and editing. YX: writing–review and
editing. FX: writing–original draft. XZ: conceptualization and
writing–review and editing. SL: writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

Authors YW, YX, XZ, and SL were employed by Yunnan Power
Grid Co., Ltd. Author FX was employed by Beijing Tsintergy
Technology Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Energy Research frontiersin.org07

Wu et al. 10.3389/fenrg.2023.1273805

127126

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1273805


References

Bentéjac, C., Csörgő, A., and Martínez-Muñoz, G. (2021). A comparative analysis of
gradient boosting algorithms. Artif. Intell. Rev. 54, 1937–1967. doi:10.1007/s10462-020-
09896-5

Bernardes, J., Jr, Santos, M., Abreu, T., Prado, L., Jr, Miranda, D., Julio, R., et al. (2022).
Hydropower operation optimization using machine learning: a systematic review. AI 3
(1), 78–99. doi:10.3390/ai3010006

Bilgili, M., Keiyinci, S., and Ekinci, F. (2022). One-day ahead forecasting of energy
production from run-of-river hydroelectric power plants with a deep learning approach.
Sci. Iran. 29 (4). doi:10.24200/sci.2022.58636.5825

BordinSkjelbredKong, C. H. I. J., and Yang, Z. (2020). Machine learning for
hydropower scheduling: state of the art and future research directions. Procedia
Comput. Sci. 176, 1659–1668. doi:10.1016/j.procs.2020.09.190

Charbuty, B., andAbdulazeez, A. (2021). Classification based on decision tree algorithm for
machine learning. Appl. Sci. Technol. Trends 2 (01), 20–28. doi:10.38094/jastt20165

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, San Francisco, CA, USA, August 13-17, 2016, 785–794.

Dehghani, M., Riahi-Madvar, H., Hooshyaripor, F., Mosavi, A., Shamshirband,
S., Zavadskas, E. K., et al. (2019). Prediction of hydropower generation using grey
wolf optimization adaptive neuro-fuzzy inference system. Energies 289 (12).

Demir, S., and Sahin, E. K. (2023). An investigation of feature selection methods
for soil liquefaction prediction based on tree-based ensemble algorithms using
AdaBoost, gradient boosting, and XGBoost. Neural Comput. Appl. 35 (4),
3173–3190. doi:10.1007/s00521-022-07856-4

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Ann. Statistics 29 (5), 1189–1232. doi:10.1214/aos/1013203451

Graciano-Uribe, J., Sierra, J., and Torres-Lopez, E. (2021). Instabilities and influence of
geometric parameters on the efficiency of a pump operated as a turbine for micro hydro
power generation: a review. Water Environ. Syst. 9 (4), 1–23. doi:10.13044/j.sdewes.d8.0321

Hanoon, M. S., Ahmed, A. N., Razzaq, A., Oudah, A. Y., Alkhayyat, A., Huang, Y. F., et al.
(2023). Prediction of hydropower generation viamachine learning algorithms at three Gorges
Dam, China. Ain Shams Eng. J. 14 (4), 101919. doi:10.1016/j.asej.2022.101919

Jung, J., Han, H., Kim, K., and Kim, H. S. (2021). Machine learning-based small
hydropower potential prediction under climate change. Energies 14 (12), 3643. doi:10.
3390/en14123643

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm: a
highly efficient gradient boosting decision tree. Adv. neural Inf. Process. Syst. 30.

Kougias, I., Aggidis, G., Avellan, F., Deniz, S., Lundin, U., Moro, A., et al. (2019).
Analysis of emerging technologies in the hydropower sector. Renew. Sustain. Energy
Rev. 113, 109257. doi:10.1016/j.rser.2019.109257

Kumar, K., Singh, R. P., Ranjan, P., and Kumar, N. (2021). “Daily plant load analysis
of a hydropower plant using machine learning,” in Applications of artificial intelligence
in engineering, 819–826.

Lai, J. P., Chang, Y. M., Chen, C. H., and Pai, P. F. (2020). A survey of machine
learning models in renewable energy predictions. Appl. Sci. 10 (17), 5975. doi:10.3390/
app10175975

Li, A., Su, S., Han, T., Yin, C., Li, J., Chen, L., et al. (2021). “Energy demand forecast in
yunnan province based on seq2seq model,” in E3S Web of Conferences 293, 02063,
Strasbourg, France, May 5-7, 2021.

Li, C., Zhu, L., He, Z., Gao, H., Yang, Y., Yao, D., et al. (2019). Runoff prediction
method based on adaptive Elman neural network.Water 11 (6), 1113. doi:10.3390/
w11061113

Natekin, A., and Knoll, A. (2013). Gradient boosting machines, a tutorial. Front.
Neurorobotics 7, 21. doi:10.3389/fnbot.2013.00021

Nielsen, D. (2016). Tree boosting with xgboost-why does xgboost win" every" machine
learning competition? Trondheim, Norway: NTNU.

Shi, Y., Li, J., and Li, Z. (2018). Gradient boosting with piece-wise linear regression
trees. arXiv preprint arXiv:1802.05640 Available at: http://arxiv.org/abs/1802.05640.

Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (1993). Probability and statistics
for engineers and scientists, 5.

Zhang, F., Zhang, Y., Qiu, Y., Wu, X., Tao, Y., and Ji, Q. (2022). Research review on
hydropower-wind power-photovoltaic multi-energy coupling power prediction
technology. Conf. Ser. 2354 (1), 012016. doi:10.1088/1742-6596/2354/1/012016

Zhang, Y., Ma, H., and Zhao, S. (2021). Assessment of hydropower sustainability:
review and modeling. Clean. Prod. 321, 128898. doi:10.1016/j.jclepro.2021.128898

Zhou, F., Wang, Z., Zhong, T., Trajcevski, G., and Khokhar, A. (2022).
HydroFlow: towards probabilistic electricity demand prediction using
variational autoregressive models and normalizing flows. Intell. Syst. 37 (10),
6833–6856. doi:10.1002/int.22864

Frontiers in Energy Research frontiersin.org08

Wu et al. 10.3389/fenrg.2023.1273805

128127

https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.3390/ai3010006
https://doi.org/10.24200/sci.2022.58636.5825
https://doi.org/10.1016/j.procs.2020.09.190
https://doi.org/10.38094/jastt20165
https://doi.org/10.1007/s00521-022-07856-4
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.13044/j.sdewes.d8.0321
https://doi.org/10.1016/j.asej.2022.101919
https://doi.org/10.3390/en14123643
https://doi.org/10.3390/en14123643
https://doi.org/10.1016/j.rser.2019.109257
https://doi.org/10.3390/app10175975
https://doi.org/10.3390/app10175975
https://doi.org/10.3390/w11061113
https://doi.org/10.3390/w11061113
https://doi.org/10.3389/fnbot.2013.00021
http://arxiv.org/abs/1802.05640
https://doi.org/10.1088/1742-6596/2354/1/012016
https://doi.org/10.1016/j.jclepro.2021.128898
https://doi.org/10.1002/int.22864
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1273805


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Advances and innovation in sustainable, reliable 

and affordable energy

Explores sustainable and environmental 

developments in energy. It focuses on 

technological advances supporting Sustainable 

Development Goal 7: access to affordable, 

reliable, sustainable and modern energy for all. 

Discover the latest 
Research Topics

See more 

Frontiers in
Energy Research

https://www.frontiersin.org/journals/energy-research/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Key technologies for hybrid energy system planning and operation

	Table of contents

	Editorial: Key technologies for hybrid energy system planning and operation
	Author contributions
	Conflict of interest
	Publisher’s note

	A safety check method to maximize the effective reserve by optimizing the power of the tie-line in the power market
	1 Introduction
	2 Safety check method
	3 Safety check model
	3.1 Objective function: effective reserve maximization
	3.2 DC tie-line model
	3.2.1 Limits of tie-line power
	3.2.2 Tie-line adjustment time limit
	3.2.3 Tie-line adjacent periods cannot be reversed
	3.2.4 Tie-line power adjustment rate constraints
	3.2.5 Tie-line channel constraints

	3.3 Effective reserve-related constraints
	3.3.1 Coupling constraint between the unit operating status and effective reserve variables
	3.3.2 Unit climbing constraint coupled with effective reserve
	3.3.3 Unit energy constraint coupled with effective reserve
	3.3.4 Power grid security constraint with effective reserve coupling
	3.3.4.1 Constraint linearization


	4 Case analysis
	4.1 Boundary data analysis

	4.2 Results of safety checks
	4.3 Safety check and clearance model iteration

	5 Summary
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	A multi-objective optimization model for the coordinated operation of hydropower and renewable energy
	1 Introduction
	2 Methodology
	2.1 Uncertainty analysis of wind and solar power
	2.2 Objective
	2.3 Constraints
	2.3.1 System constraints
	2.3.2 Hydropower constraints


	3 Solution method
	3.1 Hydro-wind-solar complementary constraint processing
	3.2 ε−constraint method

	4 Case study
	4.1 Background information
	4.2 Analysis of the results

	5 Impact analysis of the wind and solar output
	5.1 Influence of the wind and solar uncertainty on the peak shaving effect
	5.2 Influence of the wind and solar uncertainty on the navigation
	5.3 The influence of the expanding wind power and solar power scale on hydro-wind-solar complementarity

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Flexible torque control for wind turbines considering frequency response under wind speed crossing region
	1 Introduction
	2 Problem description
	2.1 Dynamic modeling and control of wind turbines
	2.2 Frequency response method based on speed control
	2.3 Transient shocks to generator torque caused by conventional methods

	3 Proposed flexible torque
	3.1 Proposed dynamic deloading method
	3.2 Proposed method for flexible torque control
	3.3 Dynamic analysis

	4 Case study
	4.1 Turbulent wind speed
	4.2 Participation in frequency regulation
	4.3 Performance under random system load
	4.4 Performance under different frequency response methods

	5 Conclusions and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Optimal configuration and operation of the regional integrated energy system considering carbon emission and integrated dem ...
	1 Introduction
	2 Basic structure of the RIES
	3 The whole process of carbon emission and integrated demand response in the RIES
	3.1 Conventional device model of the RIES
	3.2 CSP thermoelectric conversion model
	3.3 The whole process of carbon emission including P2G collaborative operation
	3.3.1 Operating characteristics of P2G
	3.3.2 Principles of carbon capture and carbon utilization
	3.3.3 Carbon trading mechanism

	3.4 Integrated demand response of flexible loads considering compensation cost
	3.4.1 Price-based demand response
	3.4.2 Substitution-type demand response


	4 Double-layer optimization model of the RIES
	4.1 Models of upper programming
	4.2 Models of lower operating
	4.3 Constraint conditions
	4.3.1 Constraints of the CSP station
	4.3.2 Constraints of the CCS
	4.3.3 Constraints of P2G
	4.3.4 Constraints of new energy units and purchasing energy
	4.3.5 Constraints of electrical energy storage devices
	4.3.6 Constraints of other devices
	4.3.7 Constraints of integrated demand response
	4.3.8 Balance of the loads

	4.4 Model solving
	4.4.1 Multi-objective problems of the upper layer solved by the improved NSGA-II
	4.4.2 Transformation and solution of the lower nonlinear model
	4.4.3 Solving procedure


	5 Example analysis
	5.1 Comparative analysis under different cases
	5.2 Analysis of optimized comparison
	5.3 Analysis of operating results

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Mid-term scheduling and trading decisions for cascade hydropower stations considering multiple variable uncertainties
	1 Introduction
	2 Introduction to prospect theory
	3 The risk decision model based on the joint information gap decision theory and prospect theory
	3.1 Medium and long term market income model of cascade hydropower producers
	3.2 Medium term optimal operation model of cascade hydropower producers
	3.2.1 Objective function of optimal scheduling in operation stage
	3.2.2 Objective function

	3.3 Robust optimization modeling and solution based on IGDT
	3.3.1 Objective function
	3.3.2 Model solving method

	3.4 Decision making model of mid long term market bidding based on prospect theory
	3.4.1 Modeling
	3.4.2 Model solving method


	4 Example analysis
	4.1 Accuracy verification of solving algorithm
	4.2 Risk analysis of cascade hydropower stations in operation stage
	4.3 Risk analysis of cascade hydropower station bidding decision in bidding stage
	4.3.1 Model solving method
	4.3.2 Impact of bidding volume change on bidding strategy


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Market bidding method for the inter-provincial delivery of cascaded hydroelectric plants in day-ahead markets considering s ...
	1 Introduction
	2 Mathematical models
	2.1 Objective function
	2.2 Constraints
	2.2.1 Hydroelectric power plant-related constraints
	2.2.2 Unit-related constraints
	2.2.3 Market power decomposition constraints


	3 Model processing strategy
	3.1 Uncertainty description method of the price
	3.2 Power station–substation difference regional outbound relationship processing
	3.3 Target linearization processing
	3.4 Description of the flow curve under the tailwater level considering the top support of the return water

	4 Example analysis
	4.1 Calculation parameters
	4.2 Analysis of penalty rules
	4.3 Scheduling result analysis
	4.4 Analysis of the stable unit operation
	4.5 Analysis of market price uncertainty

	5 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Deep learning integrationoptimization of electric energyload forecasting and market pricebased on theANN–LSTM–transformer method

	1 Introduction
	2 Methodology
	2.1 Overview of our network
	2.2 ANN model
	2.3 LSTM model
	2.4 Transformer model
	3 Experiment
	3.1 Experimental environment
	3.2 Experimental datasets
	3.3 Experimental setup and details
	3.4 Experimental results and analysis

	4 Discussion and conclusion
	Data availability statement
	Author contributions

	Funding
	Conflict of interest
	Publisher’s note
	References


	An ensemble model for short-term wind power prediction based on EEMD-GRU-MC
	1 Introduction
	2 Methodology
	2.1 Data decomposition based on EEMD
	2.2 Model prediction based on GRU neural network
	2.3 Detailed description of error correlation based on MC
	2.3.1 Basic theory of Markov chain
	2.3.2 Basic theory of Markov chain

	2.4 Overall model prediction process

	3 Case studies
	3.1 Data description
	3.2 Case 1: short-term wind power prediction for the ZMS wind farm
	3.3 Case 2: Short-term wind power prediction of the YMS wind farm
	3.3 Analysis of computational efficiency of the proposed model

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Nomenclature

	A runoff-based hydroelectricity prediction method based on meteorological similar days and XGBoost model
	1 Introduction
	1.1 Research highlights

	2 Hydropower forecasting method
	2.1 Principle of the XGBoost algorithm
	2.2 Runoff hydropower forecasting method based on XGBoost

	3 Example analysis
	4 Summary
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Back Cover



