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Editorial on the Research Topic

Neuroscience-driven visual representation

Visual representation learning seeks to mimic the human visual system using deep

neural networks, enabling machines to interpret digital images and video for diverse

applications from manufacturing to energy. However, major gaps remain compared to

biological vision, and most representation learning methods do not sufficiently incorporate

neuroscientific and psychological principles. Key open questions persist around designing

optimized architectures to extract meaningful representations from complex 2D or 3D

scenes containing numerous heterogeneous, unlabeled examples.

While deep learning has achieved state-of-the-art results across various vision tasks

like classification, detection and segmentation, core challenges in representation learning

need to be tackled to reach human-level visual understanding. For instance, handling

unlabeled, unstructured data and generalizing learned patterns to novel datasets continue

to pose difficulties. Furthermore, lack of model interpretability is an issue that integration of

biological approaches could help address.

This research area aims to advance visual representation learning through synergistic

fusion of deep neural networks with psychological and neuroscientific concepts. By

providing a platform to exchange cutting-edge techniques spanning both data-driven and

theory-driven disciplines, impactful progress can bemade toward biomimetic visual systems.

Realizing more efficient, generalizable, and explainable visual learning has the potential

to profoundly transform capabilities in scientific imaging, manufacturing, transport

and healthcare.

Enhanced analysis of facial imagery for health assessment. Building on advanced

computer vision techniques, Li et al. present a facial analysis methodology using

convolutional neural networks (CNNs) to detect depression. They introduce innovations

including multi-head attention modules and region-specific tuning to improve CNN

sensitivity in analyzing different facial areas tied to depression. With further research, such

AI-based systems could assist in mental health evaluation and screening.

Multi-constraint modeling for 3D shape reconstruction. Reconstructing 3D structure

from 2D image sequences is an important but challenging computer vision task. Chen

X. et al. put forth a multi-constraint estimation algorithm that first extracts shape bases

via sparse coding, then estimates 3D geometry through a penalized least-squares model

incorporating orthogonal and similarity constraints. Experiments demonstrated higher

accuracy compared to existing methods, showing the value of fusing multiple constraints.
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Automated defect recognition for semiconductor quality

control. As discussed by Chen Y. et al., precise identification

of surface defects in semiconductor wafers is critical for

controlling manufacturing quality. They develop a multi-scale

visual perception network architecture for automated wafer defect

pattern recognition. By effectively integrating fine-grained texture

cues across resolutions, their approach achieved state-of-the-art

accuracy on a real-world industry dataset, demonstrating feasibility

for quality inspection.

Self-supervised representation learning from multimodal data.

For human action recognition, Yang et al. present a novel

framework applying contrastive self-supervised learning on paired

unlabeled data (skeleton sequences and inertial sensor signals).

Without requiring negative samples, they show superior cross-

dataset retrieval and zero-shot transfer performance compared

to previous multimodal methods. This highlights the promise of

self-supervised techniques to improve model generalization.

Elucidating audiovisual processing in the brain. Understanding

the complex neural mechanisms underlying sensory integration

remains a key challenge in neuroscience. Jiang et al. combine

functional MRI and EEG to construct brain networks involved

in audiovisual processing. Through their novel dynamic analysis

approach, they revealed early visual-auditory integration occurring

prior to attentional effects. These insights shed light on the nature

of inter-sensory interactions within the brain.

AI for detecting overloaded trucks to improve road safety.

Excessively overloaded trucks pose critical challenges regarding

road damage and traffic safety. Sun et al. develop an AI system to

detect truck overloading by recognizing truck models from images

and matching against weight data. Achieving 85–100% accuracy

on small real-world datasets shows feasibility for automated

enforcement on highways to improve infrastructure maintenance

and prevent hazardous accidents.

More human-like image captioning via reinforced decoding.

Generating textual descriptions for images, known as image

captioning, requires modeling both visual concepts and language

semantics. Bai et al. introduce techniques including guided

decoding connections, DenseNets, and reinforcement learning to

enhance contextual modeling and feature extraction. Superior

results across standard captioning metrics represent tangible

progress toward human-level visual understanding.

Targeted smoke reduction to maintain surgical visualization.

As discussed by Wang et al., smoke generated during endoscopic

procedures can severely obscure surgical sight. They create

an enhanced classifier to detect smoke-filled frames prior to

selective image enhancement, maximizing efficiency. Achieving

high accuracy and speed shows promise for integrated, real-time

de-smoking systems to improve situational awareness.

Intelligent product recognition to enable smart vending. As

Xu et al. explored, computer vision powered by deep learning

can enable emerging autonomous retail models like smart vending

machines to accurately recognize products for automatic checkout

and inventory status tracking, reducing overhead costs. Their

results demonstrate the feasibility of AI to deliver advanced

functionality without constant human intervention.

Multi-Scale adaptive learning for robust driving scene

parsing. Liu et al. address core challenges in semantic

segmentation for autonomous vehicle perception including

variations in scale, occlusions and diverse appearances. Their

multi-scale adaptive network dynamically selects the most

relevant features across levels to accurately parse complex

driving environments. State-of-the-art performance on

automotive datasets confirms robustness, advancing safety

for self-driving systems.

Group-based sparse modeling for image restoration.

Recovering high-quality images from incomplete or corrupted

inputs remains an active computer vision research area. Ning

et al. propose a multi-scale group sparse residual constraint model

exploiting patch correlations to effectively eliminate noise and fill

in missing regions. Experiments show marked improvements in

restoration fidelity compared to existing methods, enabled by joint

image priors.

In conclusion, recent advances in visual representation learning

could unlock transformative capabilities in transportation,

manufacturing, healthcare, and scientific imaging. While

progress has been made in tackling real-world vision tasks,

continued research into dynamic models, multimodal fusion, and

incorporating domain-specific constraints will be instrumental in

achieving human-like scene understanding.
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Cognitive Computation, Anhui University, Hefei, China, 4School of Electrical Engineering and

Automation, Anhui University, Hefei, China, 5Information Materials and Intelligent Sensing Laboratory of

Anhui Province, Anhui University, Hefei, China

In this study, a multiple-constraint estimation algorithm is presented to estimate

the 3D shape of a 2D image sequence. Given the training data, a sparse

representation model with an elastic net, i.e., l1−norm and l2−norm constraints,

is devised to extract the shape bases. In the sparse model, the l1−norm and

l2−norm constraints are enforced to regulate the sparsity and scale of coe�cients,

respectively. After obtaining the shape bases, a penalized least-square model is

formulated to estimate 3D shape and motion, by considering the orthogonal

constraint of the transformation matrix, and the similarity constraint between

the 2D observations and the shape bases. Moreover, an Augmented Lagrange

Multipliers (ALM) iterative algorithm is adopted to solve the optimization of

the proposed approach. Experimental results on the well-known CMU image

sequences demonstrate the e�ectiveness and feasibility of the proposed model.

KEYWORDS

non-rigid structure from motion, elastic net, similarity constraint, Augmented Lagrange

multipliers, 3D reconstruction

1. Introduction

As an important component of computer vision, 3D shape reconstruction has been

widely used in many applications (Li et al., 2016, 2018; Adamkiewicz et al., 2022; Chiang

et al., 2022; Fombona-Pascual et al., 2022; Jang et al., 2022; Lu et al., 2022; Nian et al., 2022a,b;

Wang et al., 2022; Wen et al., 2022). Among the various 3D shape reconstruction methods,

non-rigid structure from motion (NRSFM) offers a technique to simultaneously recover the

3D structures and motions of an object, by using the 2D landmarks in a series of images

(Graßhof and Brandt, 2022; Kumar and Van Gool, 2022; Song et al., 2022). Nevertheless,

NRSFM is still an underconstrained and challenging issue because of lacking any prior

knowledge of 3D structure deformation.

To alleviate the uncertainty, the various constraints are exploited constantly. Bregler

et al. (2000), proposed a low-rank constraint-based approach to decompose the observation

matrix into a motion factor and a shape basis. In order to reduce the number of the unknown

variables proposed by Bregler et al. (2000), a point trajectory approach was presented by

Akhter et al. (2010) by using the predefined bases of discrete cosine transform (DCT).

However, the high-frequency deformation cannot be reconstructed well via this trajectory

representation because of the low-rank constraint. Gotardo and Martinez (2011) modeled

a smoothly deforming 3D shape as a single point moving along a smooth time trajectory

within a linear shape space. In addition to the low-rank constraint, the higher frequency

DCT was adopted to capture the high-frequency deformation.
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For the low-rank constraint methods, it is difficult to

determine the optimal number of shape bases or trajectory

bases. To solve this problem, a Procrustean normal distribution

(PND) model was presented by Lee et al. (2013) to separate

the motion and deformation components strictly, without any

additional constraints or prior knowledge. The experimental

results demonstrate the performance of PND. Subsequently, the

Procrustean Markov Process (PMP) algorithm was proposed by

Lee et al. (2014), by combing in a first-order Markov model

representing the smoothness between two adjacent frames with

PND. Lee et al. (2016) reported a consensus of non-rigid

reconstruction (CNR) approach to estimate 3D shapes based on

local patches. However, the reconstruction performance of these

methods may degrade significantly when the number of images

becomes small, especially for a single image.

Referring to the active shape model (Cootes et al., 1995), a

limb length constraint-based approach was presented by Wang

et al. (2014) to estimate the 3D shape of an object from a

single 2D image, by solving a l1−norm minimization problem.

Zhou et al. (2013) proposed a sparse representation-based convex

relaxation approach (CRA) to guarantee global optimality. The

shape bases were extracted from a given training data by using a

sparse representation model. The corresponding coefficients were

obtained by adopting a convex relaxation assumption. A prominent

advantage of CRA is that the algorithm can deal with a single image.

To further enhance the performance of the CRA algorithm,

a multiple-constraint-based estimation approach is proposed to

estimate the 3D shape of a 2D image sequence. Inspired by Zhang

and Xing (2017), a dictionary learning model with l1−norm and

l2−norm, i.e., elastic net, is constructed to extract more effective

shape bases from a given training set. Referring to (Cheng et al.,

2015), a penalized least-square model is constructed to estimate 3D

shape and motion, by considering the orthogonal constraint of the

transformation matrix and the similarity constraint between the

FIGURE 1

One frame of those eight categories.

2D observations and the shape bases. In addition, an augmented

Lagrange multipliers (ALM) iterative algorithm is developed to

optimize the reconstructionmodel. The effectiveness and feasibility

of the proposed algorithm are verified on the well-known CMU

image sequences.

The rest of this article is organized as follows. A detailed

description of the designed MCM-RR approach is introduced in

Section 2. In Section 3, we report the experimental results. Finally,

the article is concluded in Section 4.

2. Methods

According to the shape-space model by Zhou et al. (2013),

the unknown 3D shape S ∈ R
3×p is constructed as a linear

combination of a few shape bases Bi ∈ R
3×p, i.e.,

S =

K∑

i=1

ciRiBi, (1)

where p and K are the numbers of feature points and shape bases,

respectively. The parameter ci and Ri ∈ R
3×3 denote the coefficient

and rotation matrix, respectively. In terms of the weak-perspective

projection model, the corresponding 2D observations are modeled

as a matrixW ∈ R
2×p,

W =

K∑

i=1

MiBi. (2)

The matrixMi ∈ R
2×3 can be represented as

Mi = ciR̃i, (3)

where R̃i ∈ R
2×3 is the first two rows of Ri. Combining the

orthogonal constraint, the matrixMi satisfies

MiM
T
i = c2i I2, (4)

where I2 ∈ R
2×2 is an identity matrix. The 3D shape, i.e.,

z−coordinates, and the motion parameters ci and Ri, are estimated

by utilizing the observationsW, i.e., the (x, y) coordinates of feature

points.

In the proposed method, the shape bases B ∈ R
3K×p are

extracted via a sparse model with the elastic net constraint. The B

is the stacking of Bi(i = 1, ...,K). The matrix M are solved by a

penalized least-square model. Given M, the parameters ci and Ri

are derived via refinement decompose (Zhou et al., 2013). After

obtaining ci, Ri and Bi, the unknown 3D shape can be computed

via (1). The pseudocode of the proposed algorithm is summarized

in 1. The pseudocode of the proposed algorithm is summarized in

Algorithm 1.

2.1. Extraction of shape bases via a sparse
model with elastic net constraint

For a given 3D training set A ∈ R
3p×F , i.e., the (x, y, z)

coordinates of feature points of training images, the shape bases
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TABLE 1 Mean and standard deviation (µ ± σ ) of the 3D reconstruction errors ξ of eight motion categories for five methods.

Sequence PMP CNR PND2 CRA MCM-RR

Walk 97.06± 17.35 78.28± 15.70 104.20± 26.13 38.98± 19.64 35.37± 18.49

Run 119.37± 31.37 65.92± 23.69 124.54± 28.82 55.69± 18.13 52.64± 17.05

Jump 102.22± 30.74 61.66± 40.35 84.64± 41.80 57.08± 41.56 44.56± 27.30

Climb 119.08± 39.39 69.36± 30.21 87.72± 56.04 58.87± 24.73 50.25± 25.88

Box 252.61± 41.28 82.83± 33.65 146.91± 45.17 72.90± 30.64 65.28± 26.82

Dance 118.24± 35.34 105.73± 38.81 118.52± 62.07 102.36± 44.93 83.59± 34.88

Sit 96.31± 32.77 69.58± 42.18 73.20± 32.47 75.68± 36.29 62.72± 26.79

Basketball 121.26± 44.83 67.63± 38.97 105.38± 72.17 63.66± 27.92 57.57± 22.96

TABLE 2 Corresponding 3D reconstruction error decreasing percentage

ξp(%) of MCM-RR compared to CRA for eight motion categories.

Sequence ξp

Walk 9.26

Run 5.48

Jump 21.93

Climb 14.64

Box 10.43

Dance 18.34

Sit 17.12

Basketball 9.57

N ∈ R
3p×K and the coefficient matrix X ∈ R

K×F can be obtained

from the following sparse model:

min
N1 ,··· ,NK

1

2
‖A−NX‖2F + λ

(
τ ‖X‖1 + (1− τ ) ‖X‖22

)

s.t. ‖Ni‖F ≤ 1, Xij ≥ 0, ∀i ∈ [1,K] , j ∈ [1, F] ,

(5)

where F and τ are the number of frames and a weight coefficient,

respectively. The Ni ∈ R
3p×1 is the i-th column of N. The

linear combination of l1−norm and l2−norm, called elastic net

constraint, are enforced to constraint the sparsity of coefficients X

as well as scale. The parameter λ is a trade-off parameter between

the reconstruction error and the elastic net constraint.

For (5), we first compute the partial differentials of X and N,

i.e.,

∂X = (Nt)T
(
A−N

t
X

)
+ λ

(
τ IKF + 2(1− τ )X

)
, (6)

∂N =
(
A−N

(
X
t+1

)T) (
X
t+1

)T
, (7)

where IKF is a K × F identity matrix. Thereafter, X and N can be

updated alternately as

X
t+1 = X

t − φ1∂X, (8)

N
t+1 = N

t − φ2∂N, (9)

1: Compute the shape bases B via the elastic net

based sparse model (5).

2: Initialize α, β, γ.

3: Initialize M0, Z0, Y0, µ0, t = 0.

4: while t <= 1000 do

5: Compute the optimized Mt+1 according to (15) by

fixing Zt, Yt, and µt,

6: Update Zt+1 via (17) by fixing Mt+1, Yt, and µt,

7: Update Yt+1 via (18) by fixing Mt+1, Zt+1,

8: if δ1 < ε & δ2 < ε then

9: break,

10: else

11: if δ1 > 10δ2 then

12: µt+1 = 2µt,

13: else {δ2 > 10δ1}

14: µt+1 = µt/2.

15: end if

16: end if

17: Update t← t + 1.

18: end while

19: if refinement reconstruction then

20: Compute R and c according to (22) via the

alternating minimization (Zhou et al., 2013).

21: end if

22: Estimate S by using (1)

Algorithm 1. Pseudocode of the MCM-RR algorithm.

where φ1 and φ2 are the step size of ∂X and ∂N, respectively.

After convergence, the shape bases B can be obtained by a re-

arrangement of N.

2.2. 3D shape estimation via a penalized
least-square model with similarity
constraint

In terms of (2), the proposed penalized least-square model,

including a relaxed orthogonality constraint (Zhou et al., 2013) and
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a similarity constraint (Cheng et al., 2015) can be formulated as

min
M̃,Z

1

2

∥∥W− ZB̃
∥∥2
F
+ α

K∑

i=1

‖Mi‖2 +
β

2
‖ZD‖22

s.t. M̃ = Z,

(10)

where Z ∈ R
2×3K is an auxiliary variable and M̃ = [M1, · · · ,MK],

B̃ =
[
B
T
1 , · · · ,B

T
K

]T
. The parameters α and β are used to weight

the two regularization terms. The diagonal matrix D ∈ R
3K×3K is

represented as

D =
(
D̄⊗ I3

)
. (11)

For the diagonal similarity matrix D̄ ∈ R
K×K , the diagonal

element di is computed as

di = exp

(
‖W−5Bi‖

2γ 2

)
, (12)

where 5 = [1, 0, 0; 0, 1, 0], γ 2 is the parameter of an exponential

function.

With the ALM iterative algorithm, the penalized least-square

model (10) can be reformulated as

L =
1

2

∥∥W− ZB̃
∥∥2
F
+ α

K∑

i=1

‖Mi‖2 + 〈Y, M̃− Z〉

+
β

2
‖ZD‖22 +

µ

2

∥∥M̃− Z
∥∥2
F
,

(13)

where Y and µ are a dual variable and a weight of penalty term,

respectively. In (13), there are four unknown variables M̃, Z, Y, and

µ. The solutions can be solved by the alternating direction method

of multipliers (ADMM).

First, the optimal M̃ at the (t + 1)th iteration can be formulated

as

M̃
t+1 = arg min

M̃

K∑

i=1

1

2

∥∥Mi − P
t
i

∥∥2
F
+

α

µ
‖Mi‖2 , (14)

where P
t
i is the ith column-triple of Zt − 1

µ
Y
t . According to the

proximal problem (Zhou et al., 2013),Mt+1
i can be computed as

M
t+1
i = Udiag

(
6 −

α

µ
Pl1

(
6µ

α

))
VT , i ∈ [1,K], (15)

where U6VT = svd(Pti ). The operation Pl1 (·) denotes the

projection of a vector to the unit l1−norm ball (Zhou et al., 2013).

Similarity, the optimal Z at the (t + 1)th iteration can be

formulated as

Z
t+1 =arg min

Z

1

2

∥∥W− ZB̃
∥∥2
F
+ 〈Yt , M̃t+1 − Z〉

+
β

2
‖ZD‖22 +

µ

2

∥∥M̃t+1 − Z
∥∥2
F
.

(16)

We compute the one-order partial derivative of (16) with

respect to Z and set it as zero. Thereafter, Zt+1 can be given by

Z
t+1 =

(
WB̃

T + µM̃t+1 + Y
t
) (

B̃B̃
T + µI+ βDD

T
)−1

. (17)

Afterward, the optimal Y at the (t + 1)th iteration can be

computed as

Y
t+1 = Y

t + µ
(
M̃

t+1 − Z
t+1

)
. (18)

Given a weight τ , the coefficient µ at the (t + 1)th iteration can

be given by

µt+1 =

{
2µt , if δ1 > τδ2,

µt/2, if δ2 > τδ1,
(19)

where

δ1 =

∥∥M̃t+1 − Z
t+1

∥∥
F∥∥Zt

∥∥
F

, δ2 =

∥∥Zt+1 − Z
t
∥∥
F∥∥Zt

∥∥
F

. (20)

The iterations are repeated until

δ1 < ε & δ2 < ε, (21)

where ε is a small threshold value. After obtainingMi, the unknown

3D shape can be reconstructed by refinement reconstruction (Zhou

et al., 2013).

In the refinement reconstruction, we assume that the rotation

matrices of each shape base are equal, denoted as R̄. Thereafter, ci
and R̄ can be estimated by the following rotation synchronization

model

min
c,R̄

k∑

i=1

∥∥Mi − ciR̄
∥∥2
F

s.t. R̄R̄
T = I2,

, (22)

which can be solved via the alternating minimization (Zhou et al.,

2013). Finally, the 3D shape S can be estimated afterMi is obtained.

3. Experimental results

3.1. Experimental comparison of di�erent
algorithms

The performance evaluation of the proposed 3D shape

reconstructionmodel (denoted asMCM-RR) is carried out on eight

motion categories (walk, run, jump, climb, box, dance, sit, and

basketball) from the CMU motion capture dataset (Zhou et al.,

2013). Figure 1 shows one frame of those eight categories.

In the experiments, the performance of several state-of-the-

art 3D shape estimation methods are used to compare with the

presented approach, including PND2 (Lee et al., 2013), CNR (Lee

et al., 2016), PMP (Lee et al., 2014), and CRA (Zhou et al., 2013).

Mean error ξ of 3D shapes is calculated as the performance

indicator to measure the estimation results:

ξ =
1

F

F∑

t=1

‖S̃t − St‖
2
F , (23)

where S̃t ∈ R
3×p and St ∈ R

3×p are the reconstructed 3D structure

and real 3D structure of tth frame, respectively.

Table 1 displays the mean and standard deviation (µ ± σ )

of reconstruction errors ξ of eight motion categories for the five
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FIGURE 2

Comparisons of estimated shapes for single frame of Jump between MCM-RR and other methods from three di�erent viewpoints. The symbol “◦”

denotes the observed real points, whereas “+” denotes reconstructed points.

TABLE 3 Mean and standard deviation (µ ± σ ) of the 3D reconstruction errors ξ of eight motion categories for four methods.

Sequence CRA CRA-EN CRA-SC MCM-RR

Walk 38.98± 19.64 36.56± 19.18 38.64± 19.03 35.37± 18.49

Run 55.69± 18.13 52.60± 16.70 56.06± 18.03 52.64± 17.05

Jump 57.08± 41.56 46.61± 33.79 56.42± 39.52 44.56± 27.30

Climb 58.87± 24.73 49.99± 25.53 58.99± 24.88 50.25± 25.88

Box 72.90± 30.64 65.32± 27.64 73.02± 30.10 65.28± 26.82

Dance 102.36± 44.93 85.23± 35.63 101.49± 44.01 83.59± 34.88

Sit 75.68± 36.29 63.12± 26.79 74.92± 34.80 62.72± 26.79

Basketball 63.66± 27.92 57.81± 22.58 63.28± 28.29 57.57± 22.96

methods, respectively. The best results are highlighted in red,

whereas the second best is in blue.

Table 1 shows the estimation errors of the last two methods

are clearly less than that of the first triple algorithms. Among

eight categories, the mean reconstruction errors of MCM-RR are

the lowest compared to CRA. Moreover, the standard deviations

of MCM-RR are less than that of CRA among most categories.

Therefore, compared to CRA, both accuracy and robustness are

effectively improved for the proposed method.

Compared to CRA, the 3D reconstruction error decreased the

percentage ξp(%) of MCM-RR can be computed as

ξp =
ξCRA − ξMCM-RR

ξCRA
× 100%. (24)

From Table 2, we can see that the mean reconstruction errors

of MCM-RR decreased about 5.48% ∽ 21.93% compared to CRA.

Thus, MCM-RR has a better 3D reconstruction performance than

CRA for the eight motion categories.

Take one frame of Jump as an example. Figure 2 displays a

comparison of reconstructed shapes between MCM-RR and the

other methods from three different viewpoints. From Figure 2,

we can see that compared to other methods, most estimated

shapes of MCM-RR are closer to real points than that of the

other methods.

3.2. Ablation experiment

In order to verify the feasibility of the proposed two

strategies, the elastic net (denoted as CRA-EN) and similarity

constraint (denoted as CRA-SC) are separately applied to

the original algorithm CRA. Table 3 displays the mean

and standard deviation (µ ± σ ) of 3D reconstruction

errors ξ of eight motion categories for the four methods,

respectively. Compared to CRA, both the elastic net and

similarity constraint can decrease the 3D reconstruction errors.

Therefore, the 3D reconstruction performance can be effectively

improved once the two methods are simultaneously designed

into CRA.
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4. Conclusion

In this study, a multiple-constraint algorithm is devised to

estimate the 3D shape of a 2D image sequence. Experimental results

on the well-known CMU datasets demonstrated that the proposed

methods have higher accuracies and more robustness. Compared

with CRA, the 3D reconstruction error is decreased by at least

5.48%.
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A facial depression recognition
method based on hybrid
multi-head cross attention
network

Yutong Li, Zhenyu Liu*, Li Zhou, Xiaoyan Yuan,

Zixuan Shangguan, Xiping Hu* and Bin Hu*

Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China

Introduction: Deep-learn methods based on convolutional neural networks

(CNNs) have demonstrated impressive performance in depression analysis.

Nevertheless, some critical challenges need to be resolved in these methods: (1)

It is still di�cult for CNNs to learn long-range inductive biases in the low-level

feature extraction of di�erent facial regions because of the spatial locality. (2) It is

di�cult for a model with only a single attention head to concentrate on various

parts of the face simultaneously, leading to less sensitivity to other important facial

regions associated with depression. In the case of facial depression recognition,

many of the clues come from a few areas of the face simultaneously, e.g., the

mouth and eyes.

Methods: To address these issues, we present an end-to-end integrated

framework called Hybrid Multi-head Cross Attention Network (HMHN), which

includes two stages. The first stage consists of the Grid-Wise Attention block

(GWA) and Deep Feature Fusion block (DFF) for the low-level visual depression

feature learning. In the second stage, we obtain the global representation by

encoding high-order interactions among local features with Multi-head Cross

Attention block (MAB) and Attention Fusion block (AFB).

Results: We experimented on AVEC2013 and AVEC2014 depression datasets. The

results of AVEC 2013 (RMSE = 7.38, MAE = 6.05) and AVEC 2014 (RMSE = 7.60,

MAE = 6.01) demonstrated the e�cacy of our method and outperformed most of

the state-of-the-art video-based depression recognition approaches.

Discussion: Weproposed a deep learning hybridmodel for depression recognition

by capturing the higher-order interactions between the depression features of

multiple facial regions, which can e�ectively reduce the error in depression

recognition and gives great potential for clinical experiments.

KEYWORDS

facial depression recognition, convolutional neural networks, attention mechanism,

automatic depression estimation, end-to-end network

1. Introduction

Major depressive disorder (MDD), also called depression, is one of the most common

mental and mood disorders. It presents itself through depressed mood, pessimism, loss

of attention and memory, self-denial, poor appetite, and decreased activity, among other

symptoms. In addition, it can severely impact a person’s thoughts, behaviors, work-life,

and eating habits (Belmaker and Agam, 2008). With the increasing pressure of life, many

people are suffering from depression. TheWorld Health Organization (WHO) released data

in 2007 stating that 350 million people worldwide suffered from depression. Moreover, in

2030, depression may overtake cardiovascular disease as the number one cause of disability,

Frontiers inNeuroscience 01 frontiersin.org13

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1188434
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1188434&domain=pdf&date_stamp=2023-05-24
mailto:liuzhenyu@lzu.edu.cn
mailto:huxp@lzu.edu.cn
mailto:bh@lzu.edu.cn
https://doi.org/10.3389/fnins.2023.1188434
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1188434/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1188434

TABLE 1 The relation between the BDI-II cut-o� scores and the

depression severity level.

BDI-II score Severity level

0–13 None or minimal

14–19 Mild

20–28 Moderate

29–63 Severe

which means that depression has become a severe social health

problem (World Health Organization, 2017). Unfortunately, there

are no impactful clinical patterns for the diagnosis of depression

due to personal and social development and other factors, which

makes the diagnosis of depression complicated and subjective (Maj

et al., 2020). Meanwhile, there are few professional psychiatrists

in some developing countries, and the insufficient ratio of doctors

to patients has become a major problem faced by mental health

workers as well. Therefore, it is necessary to find objective

parameter indicators to assist doctors in improving the current

medical situation.

Studies have shown that depression alters various non-

verbal behaviors (Ellgring, 2007), including psychomotor delays,

insensitivity to emotional stimuli, and diminished positive and

negative emotional responses, all of which can transfer information

about depression levels (Cohn et al., 2009; Michalak et al.,

2009; Canales et al., 2017). Especially, the face presents most

of the people’s non-verbal information, which leads to that

as a characteristic indicator with high information content in

the diagnosis of depression. Clinically, patients with depression

often have reduced facial expression richness, drooping eyes,

frowning, drooping mouth corners, reduced smile, and easy crying

(Pampouchidou et al., 2020). Therefore, various researchers from

the affective computing field have attempted to use facial changes

as a biomarker to analyze the individual depression level and

measured by the Beck Depression Inventory-II (BDI-II) score

(McPherson and Martin, 2010), as presented in Table 1.

Estimating the level of depression from facial images usually

includes the following steps: (1) feature extraction and (2)

regression (or classification). Among them, the task of feature

extraction involves designing an effective depression representation

that plays a significant role in facial depression recognition. At

present, there are two main methods of feature extraction as

follows: hand-crafted (Valstar et al., 2013, 2014; Wen et al., 2015)

and deep-learned (Jan et al., 2017; Zhu et al., 2017; Al Jazaery

and Guo, 2018; Zhou et al., 2020; Guo et al., 2021). For hand-

crafted features, Local Phase Quantization (LPQ) and Local

Gabor Binary Patterns from Three Orthogonal Planes (LGBP-

TOP) are adopted as visual features for predicting the scale of

depression (Valstar et al., 2013, 2014). However, these features

are difficult to obtain accurate and subtle facial information

(Song et al., 2018). Meanwhile, hand-crafted methods often

involve a complex set of image processing steps, leading to

relying heavily on expert knowledge (Ojala et al., 2002; Laptev

et al., 2008; Meng and Pears, 2009). On the contrary, deep

learning features do not rely on expert knowledge and complex

manual design, which can capture and reveal high-level semantic

features of faces. Zhou et al. (2020) propose a deep regression

network to learn a depressive feature representation visually

interpretably, and the result shows that the area near the

eyes plays a crucial role in recognizing depression. Al Jazaery

and Guo (2018) have automatically learned spatiotemporal

features of facial regions at two different scales by using

three-dimensional convolutional neural network (3D-CNN) and

recurrent neural network (RNN), which can model the local

and global spatiotemporal information from continuous facial

expressions to predict depression levels.

However, most of the above methods do not further explore

the local details. One unique aspect of facial depression recognition

lies in the delicate contention between capturing the subtle local

variations and obtaining a unified, holistic representation. Some

recent studies focus on attention mechanisms to balance the

local details and unified, holistic representation. For instance,

He et al. (2021a) propose an integrated architecture called Deep

Local-Global Attention Convolutional Neural Network (DLGA-

CNN), which utilizes Convolutional Neural Network (CNN)

with attention mechanism and weighted spatial pyramid pooling

(WSPP) to model a local-global facial feature. Liu et al. (2023)

design a global region-based network with part-and-relation

attention, which learns the relation between part and global

features. Niu et al. (2022) introduce an architecture using CNN

and attention mechanism for automatic depression recognition

by facial changes, and the performance surpasses most facial

depression recognition methods. These methods focusing on

attention mechanisms have achieved promising results by paying

attention to facial details. Nevertheless, as shown in Figure 1,

it is difficult for a model with only a single attention head to

concentrate on various parts of the face simultaneously and just

concentrate on one coarser image region, missing other important

facial locations. Existing research results show that the differences

in facial changes between depressed patients and healthy people

are simultaneously manifested in multiple parts of the face

(Schwartz et al., 1976; Scherer et al., 2013), such as eyebrows, eyes,

cheeks, and mouth. Therefore, to mitigate the problems mentioned

above, we propose a Hybrid Multi-Head Cross-Attention Network

(HMHN), which implements multiple attention mechanisms to

capture the high-order interactions between the local features

of multiple facial regions by instantiating multiple attention

heads.

More specifically, as shown in Figure 2, the HMHN consists

of four components as follows: (1) Grid-Wise Attention Module

(GWA), (2) Deep Feature Fusion Block (DFF), (3) Multi-head

cross Attention Block (MAB), and (4) Attention Fusion Block

(AFB). Concretely, GWA and DFF are designed to model the

long-range dependencies among different regions of the low-

level facial image. Next, MAB further measures the high-level

detail features from multiple facial regions by combining multiple

attention heads, consisting of spatial and channel attention. At

the same time, the AFB module makes the attention maps

extracted by the MAB focus on different regions, which enables

the HMHN to capture several depression-related face regions

simultaneously. Finally, AFB outputs the depression severity (BDI-

II Score).

The main contributions of this study can be summarized as

follows:
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FIGURE 1

Example cases of visualization facial images with di�erent cross-attention head. The first column is original facial images (BDI-II scores of 3, 16, and

44 from top to bottom), and the rest of the columns are generated by four cross-attention heads from HMHN.

• We propose an integrated end-to-end framework HMHN,

which effectively captures the facial dynamics information

from multi-region as a non-verbal behavior measure for

estimating the severity of depression scale.

• To regularize the convolutional parameter learning in the low-

level feature extraction for facial depression recognition, we

design grid-wise attention and DFF block, which can model

long-range dependencies between different facial regions.

• To address the problem that a single attention module cannot

adequately capture the subtle depression features of faces,

we propose MAB and AFB. On the one hand, MAB further

extracts high-level detail features. On the other hand, AFB

is designed to capture multiple non-overlapping attention

regions and fuse them to encode high-order interactions

among local features.

• We conduct the compared experiments on two publicly

benchmark depression datasets [i.e., AVEC 2013 (Valstar

et al., 2013) and AVEC 2014 (Valstar et al., 2014) depression

datasets]. The results demonstrate that our method is

promising against several state-of-the-art alternative methods.

Moreover, we also do an ablation study that specifically

demonstrates the effectiveness of each component in our

model.

The structure of the remaining chapters is provided as follows.

We, first, briefly discussed the related work in Section 2, and the

proposed depression recognition method is described in Section 3.

Section 4 demonstrates the dataset and experimental settings. The

results and discussions are presented in Section 5, and Section 6

concludes the study.

2. Related work

2.1. Hand-engineered methods

In the third and fourth Audio-Visual Emotion recognition

Challenge depression sub-challenges (AVEC 2013/14), the datasets

for depression level prediction are publicly released, which

contributed notably to research on automatic depression detection.

In the AVEC 2013 depression sub-challenges, they use the Local

Phase Quantization (LPQ; Ojansivu and Heikkilä, 2008) feature

descriptor as visual features to predict the BDI-II score. Cummins

et al. (2013) investigate Space-Time Interest Points (STIP; Laptev

et al., 2008) and Pyramid of Histogram of Gradient (PHOG;

Bosch et al., 2007) descriptors for extraction of behavioral cues

for depression analysis. Meng et al. (2013) propose to use Motion

History Histogram (MHH) feature (Meng and Pears, 2009) to

model motion in videos by improving the Motion History Image

(MHI) in the field of action recognition, and the Partial Least

Squares (PLS; De Jong, 1993) is employed for regression learning.

Wen et al. (2015) propose to encode temporal information based

on Local Phase Quantization from Three Orthogonal Plane (LPQ-

TOP) features from sub-volumes of the facial region through

discriminative mapping and decision fusion, and the recognition

performance is further improved. The following research on the

AVEC 2013 dataset relies on Median Robust Local Binary Patterns

from Three Orthogonal Planes (MRLBP-TOP; He et al., 2018)

and Local Second-Order Gradient Cross Pattern (LSOGCP; Niu

et al., 2019). In the AVEC 2014 depression sub-challenges, the

author extracted the Local Gabor Binary Pattern (LGBP; Zhang

et al., 2005) feature from the XY-T place of video to predict the
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BDI-II score. In the study by Dhall and Goecke (2015), Local

Binary Patterns (LBP) from three orthogonal plane (TOP) feature

descriptors have been considered effective for predicting the scale

of depression. In the study by Pérez Espinosa et al. (2014), they use

dynamic facial features extracted by LGBP from Three Orthogonal

Planes (LGBP-TOP) to predict depression level, another variant of

LBP-TOP.

The above methods based on hand-crafted feature descriptors

have some positive results in the field of depression recognition.

However, they still have some limitations. For instance, hand-

crafted features are highly dependent on expert knowledge and

cannot extract complex semantic information.

2.2. Deep learning methods

As deep networks can extract deeper andmore spatial inductive

biases information, deep learning methods have gained their

prevalence in facial depression recognition tasks. According to

combined facial appearance with dynamic features (optical flow)

in fully connected layers, Zhu et al. (2017) fine-tune to adopt

deep models (GoogleNet), pre-trained on the CASIA (Yi et al.,

2014) large facial dataset for predicting BDI scores from video

data, and achieve positive performance on AVEC 2013 and AVEC

2014 depression datasets. Zhou et al. (2020) propose a multi-region

DepressNet neural network by blending different facial regions

on the basis of ResNet-50 (He et al., 2016), proving that the

combination of multiple sub-models can improve the performance

of depression recognition. In the study by De Melo et al. (2019),

Melo et al. adopt a 2D-CNN and distribution learning to predict the

BDI-II score from facial images. Similarly, many of the following

works using pre-trained CNNs fine-tune their deep architectures

on the AVEC 2013 and AVEC 2014 datasets to estimate and

prediction (e.g., Kang et al., 2017; De Melo et al., 2020; He

et al., 2022a). He et al. (2021a) combine the attention mechanism

with CNN to construct an end-to-end depression recognition

model named LGA-CNN. He et al. (2022b) also designed an

end-to-end framework called the SAN to re-label the uncertain

labels for automatic depression estimation. Niu et al. (2022)

utilize a pre-trained ResNet-50 model to process video clips. They

employed a graph convolution embedding block and a multi-scale

vectorization block to capture and represent facial dynamics for

predicting BDI-II scores, which reflect the severity of depression.

Liu et al. (2023) propose an end-to-end depression recognition

model called PRA-Net. They divide the input facial images into

parts and calculate the feature weight of each part. Then, they

combine the parts using a relation attention module. PRA-Net

utilizes part-based and relation-based attention mechanisms to

improve the model’s performance.

To extract depression cues from the perspective of spatial

structure and temporal changes, various studies have been

proposed to model spatio-temporal information for depression

recognition. Al Jazaery and Guo (2018) have automatically learned

spatio-temporal features of face regions at two different scales by

using 3D Convolutional Neural Network (C3D) and Recurrent

Reural Network (RNN), which can model the local and global

spatio-temporal information from continuous facial expressions to

predict depression levels. De Melo et al. (2020) designed a novel

3D framework to learn spatio-temporal patterns by combining

the full-face and local regions. Uddin et al. (2020) introduce a

new two-stream network to model the sequence information from

video data. In addition, the 3D-CNN is also used in the study by

De Melo et al. (2021) and He et al. (2021b) to capture informative

representations for analyzing the severity of depression. In contrast

to the above methods, our HMHN achieves comparable results

using only facial visual information.

As mentioned above, the existing approaches extract high-level

representations of depression cues through CNN, but there are still

some problems. First, most of these depression estimation methods

are not end-to-end schemes, which increases the difficulty of

clinical application. Second, most of these models do not consider

convolutional filters’ properties in different feature learning stages.

This would generally lead the model to pay attention to a single

rough area of the face while ignoring other important areas

contributing to depression identification. Therefore, to address

these problems, we propose amulti-stage hybrid attention structure

that considers the long-range inductive biases in low-level feature

learning and high semantic feature representation. Multiple non-

overlapping attention regions could be activated simultaneously

to capture fined-grain depression features from different facial

regions. Experimental results on AVEC 2013 and AVEC 2014

depression datasets illustrate the effectiveness of our method.

3. Methodology

3.1. Framework overview

The proposed end-to-end depression recognition framework

HMHN is presented in Figure 2. To learn high-discriminative

attentional features with facial depression details, we first extract

the long-range biases between different facial regions by GWA

and DFF. Second, the MAB takes the features from the DFF

module as input and captures several facial regions with depression

information. Then, the AFB module attempts to train these

attention maps (i.e., outputs from the MAB module), to focus on

non-coincident facial areas and merge these attention maps, which

predicts the BDI-II score. In the following, we will describe each

component in HMHN detail.

3.2. Grid-wise attention

To learn long-range bias in low-level feature extraction of facial

images and mine discriminative features with facial depressive

patterns without relying on large-scale datasets, motivated by

Huang et al. (2021), we introduce the grid-attention mechanism,

which mainly includes two parts, local grid feature extraction and

grid-wise attention calculation. The details are presented in the

following sections.

3.2.1. Local grid feature extraction network
The facial images are cropped and aligned according to their

eye positions and resized to 224 × 224 × 3 by the machine
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TABLE 2 The configuration of local grid feature extraction network.

Input Operator Kernel Output

C × H
h
× W

w
Convolution 1× 1, Stride 1 (Ck)× H

h
× W

w

Ck× H
h
× W

w
BatchNorm / (Ck)× H

h
× W

w

Ck× H
h
× W

w
LeakyRelu / (Ck)× H

h
× W

w

Ck× H
h
× W

w
Convolution 1× 1, Stride 1 C × H

h
× W

w

C × H
h
× W

w
BatchNorm / C × H

h
× W

w

C × H
h
× W

w
LeakyRelu / C × H

h
× W

w

learning toolkit Dlib (King, 2009). Then, it divided into h×w grids

before being forwarded to the local grid feature extraction network

(LGFE), to extract the depression discrimination information in

each grid. The details are as follows:

Grid(g, h,w) =

{
g
C×H

h
×W

w
1,1 , . . . , g

C×H
h
×W

w
i,j , . . .

}
(1)

Ĝ
hw×C×H

h
×W

w = LGFE

(
ghw×C×H

h
×W

w

)
, (2)

Ĝi,j = LGFE
(
gi,j
)

(3)

where H, W, and C are the height, width, and channels of the

original image, respectively. g
C×H

h
×W

w
i,j represents that the input

image g is divided into h × w grids, every grid is with a shape of

C × H
h
× W

w and locates in the i th row and the j th column in

g. Next, as shown in the Equations (2) and (3), each grid will be

forwarded to the LGFE, and the local depression feature of the facial

region learned is defined as Ĝi,j.We believe that every grid features a

respective contribution to depression recognition. Therefore, these

feature maps are forwarded to the grid-wise attention calculation

to weight their importance. The structure of the LGFE is shown in

Table 2.

3.2.2. Grid attention calculation
To better extract the depressive features of facial regions, after

the LGFE block, the relationship between different facial regions is

constructed through grid attention calculation, which is defined as

follows:

Attq,k = δ

(
q · k

dk

)
(4)

where dk = W
w , q = Ĝ

hw×C×H
h
×W

w , and k = Ĝ
hw×C×W

w ×H
h , and δ

stand for the softmax operation.

Then, the adaptive average pooling is used to squeeze each

channel into a scalar after an attention mechanism and expand the

channel back to the original shape. The process is formulated as

follows:

G̃
hw×C×H

h
×W

w = Aavp
(
Attq,k

)
∗ Ones

(
H

h
,
W

w

)
(5)

where “∗” represents the scalar matrix product between matrices

with a broadcasting property. Aavp (·) denoted an adaptive average

pooling technique that converts an operandmatrix into a scalar and

Ones
(
H
h
, Ww

)
is to generate a matrix with all elements being equal

to 1 in the shape of
(
H
h
, Ww

)
.

G̃
C×H×W = Ungrid

(
G̃
hw×C×H

h
×W

w

)
∗ gC×H×W (6)

where Ungrid (·) is the reverse operation of Equation (1), which is

used to convert these grid attention maps back to the shape of the

original facial image and concat these weights back to the shape of

the original matrix.

Thus, the resulting G̃C×H×W is a feature map that takes into

account the long-range bias between different facial regions in the

low-level visual depression feature learning stage.

3.3. Deep feature fusion

To further extract the depressive features of the face, we fuse

the features between the original image g and the weighted feature

map G̃ of the backbone network by applying residual network

technology. In particular, based on the experimental results in

Section 5, we choose to remove the average pooling, flattening,

and fully connected layer from ResNet-18 (He et al., 2016) as the

backbone. The overall structure of the deep feature fusion block is

shown in Figure 3. It mainly includes two feature transformation

networks and one feature fusion network. These two feature

transformation networks share the structure but not the learning

parameters. The mathematical definition is as follows:

Ḡ
C×H×W = DFF(FT1

(
g
)
+ FT2

(
G̃
)
) (7)

where FTi (·) (i=1,2) is the feature transformation network of the

original facial image g and the weight feature G̃ extracted from the

GWA module, respectively. DFF denotes the deep feature fusion

network. Finally, the obtained feature map ḠC×H×W is forwarded

to the candidate backbone network.

3.4. Multi-head cross attention block

Facial depression behavior is usually manifested by multiple

facial regions simultaneously. The GWA module first extracts the

low-level local features of the face in HMHN. Then, we need

to encode the high-level interactions between local features by

multi-head cross-attention block to achieve a holistic approach.

The detailed structure of the MAB block is shown in Figure 4.

It is composed of parallel cross-head attention units, which are

combinations of spatial and channel attention units that remain

independent.

More concretely, The spatial attention unit is shown in the

left part of Figure 4. We first feed the input features into the

1 × 1 convolution layer to reduce the channel number. Next,

we construct the 3 × 3, 1 × 3, and 3 × 1 convolution kernels

to efficiently capture spatial relationships. In general, the spatial

attention unit consists of four convolution layers and one activation

function to capture local features at multiple scales. The channel

attention unit shown in the right part of Figure 4 consists of two

linear layers and one activation function. We take advantage of
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FIGURE 2

The framework of HMHN. Notations: ① Local Grid Feature Extraction, ② Grid-Wise Attention Calculation, ③ Deep Feature Fusion Block, ④ Multi-head

cross Attention Block, and ⑤ Attention Fusion Block. DFF, deep feature fusion block; FTi, feature transformation network in DFF; MAB, multi-head

cross attention block; AFB, attention fusion block.

FIGURE 3

The detailed illustration of the deep feature fusion block.

two linear layers to achieve a mini autoencoder to encode channel

information.

Mathematically, the above process can be formulated as follows:

Si = Ḡ ×Hi

(
θs, Ḡ

)
, i ∈ {1, k} (8)

Ci = Si ×H′
i (θc, Si) , i ∈ {1, k} (9)

where k is the number of cross attention heads. Hi and H′
i are

defined as the spatial attention head and the channel attention head,

respectively, θs and θc are their parameters. Si and Ci represent the

output of the i-h spatial attention and channel attention, separately.

3.5. Attention fusion block

After going through several modules above, our HMHN has

been able to capture subtle facial depression features, but the

multi-head construction could not learn attention maps in an

orchestrated fashion. In other words, we hope that different

branches can focus on different facial regions as much as possible

and fuse the depression feature information of each head. To

achieve this aim, we propose that the AFB enhance further the

features learned by MAB. In the meantime, the cross-attention

heads are supervised to center on different critical regions and avoid

overlapping attention using the partition loss, which is defined as

follows:

Lsum = Latt + Lmse (10)

Latt =
1

NC

N∑

i=1

C∑

j=1

log

(
1+

k

σ 2
ij

)
(11)

This loss contains two components, where Lmse is the square

loss for regression and Latt is partition loss to maximize the

variance among the attention maps, k is the number of cross

attention, N is the number of samples, C is the channel size of the

attention maps, and σ 2
ij is denoted the variance of the j-th channel

on the i-th sample. The merged attention map is then used for

computing the BDI-II score with a regression output layer. Finally,

we learn the deep discriminative features by jointly minimizing the

unified loss functions Lsum.
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FIGURE 4

The detailed illustration of the cross attention head.

TABLE 3 Ablation study of the individual components on the test set of

AVEC 2013.

Combination Evaluation metrics

MAE RMSE

A1: Resnet18 (backbone) 8.47 9.32

B1: Resnet18+GWA 7.68 8.31

C1: Resnet18+GWA+DFF 7.49 8.29

D1: Resnet18+MAB+AFB 6.88 7.91

E1:

Resnet18+DFF+GWA+MAB+AFB

(Ours)

6.05 7.38

4. Experiments

In order to demonstrate the effectiveness of our depression

recognition approach, we conducted experiments on two publicly

available datasets, namely AVEC 2013 and AVEC 2014. Compare

our performance with start-of-the-art methods, and demonstrate

the effectiveness of each component in our model by an ablation

TABLE 4 Ablation study of the individual components on the test set of

AVEC 2014.

Combination Evaluation metrics

MAE RMSE

A2: Resnet18 (backbone) 8.38 9.13

B2: Resnet18+GWA 7.57 8.47

C2: Resnet18+GWA+DFF 7.41 8.46

D2: Resnet18+MAB+AFB 6.90 8.13

E2:

Resnet18+DFF+GWA+MAB+AFB

(Ours)

6.01 7.60

The bold values indicate the best results.

study. This section presents a description of the dataset, data

pre-processing, experimental setting and evaluation metrics.

4.1. AVEC 2013 and AVEC 2014 datasets

In the present paper, all experiments are evaluated on AVEC

2013 and AVEC 2014 depression datasets. The distribution of the
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FIGURE 5

The distribution of BDI-II scores in the AVEC 2013 and AVEC 2014

datasets.

BDI-II scores in both the AVEC 2013 and AVEC 2014 datasets is

shown in Figure 5.

For the AVEC 2013 depression dataset, there are 150 video

clips recorded by 82 subjects participating in human-computer

interaction (HCI) task with a microphone and a webcam to record

the information. The age range for all subjects in the dataset is

18–63 years old, with an average age is 31.5 years old and a

standard deviation of 12.3 years. These video recordings are set to

30 frames per second (fps) with a resolution of 640 × 480 pixels.

This depression dataset has been divided into three partitions by

the publisher, i.e., training, development, and test set. For every

partition, it has 50 videos, and each video has a label corresponding

to its depression severity level, which is assessed based on the

BDI-II questionnaire.

The AVEC 2014 depression dataset is a subset of the AVEC 2013

dataset. There are two tasks included: FreeForm and Northwind,

both of which have 150 video clips. Specifically, in the “FreeForm”

task, the subjects responded to several questions, such as describing

a sad childhood memory or saying their favorite dish. In the

“Northwind” task, the subjects are required to read an excerpt

audibly from a fable. The same as AVEC 2013, it also has three

partitions, i.e., training, development, and test sets. We perform

experiments employing training and development sets from both

tasks as training data, and the test sets are used to measure the

performance of the model.

4.2. Experimental settings and evaluation
metrics

4.2.1. Experimental settings
The overall framework of HMHN is shown in Figure 2. A

machine learning toolkit DliB (King, 2009) is adopted to resize the

generated facial images to 224 × 224 with RGB color channels.

Instead of using a pre-trained architecture to predict depression

severity, we directly train the whole framework in an end-to-end

fashion. To be specific, our experimental code is implemented with

Pytorch (Paszke et al., 2019), and the models are trained on a local

GPU server with a TESLA-A100 GPU (40 G global memory). In

FIGURE 6

The performance of the HMHN architecture in terms of RMSE and

MAE for various sizes of cross-attention head on AVEC 2013 (A) and

AVEC 2014 (B) datasets.

order to obtain fast convergence, we use the AdamW (Loshchilov

and Hutter, 2017) optimizer with an adaptive learning rate strategy,

and its initial learning rate is 0.001, The batch size is 64, the dropout

rate is 0.2, and the learning factor is set to 0.1.

4.2.2. Evaluation metrics
The performance of the baseline models is assessed on AVEC

2013 and AVEC 2014 datasets in terms of two evaluation metrics—

Mean Absolute Error (MAE) and RootMean Square Error (RMSE).

Afterward, many researchers have been adopting these two metrics

to evaluate the prediction accuracy of their works. This study also

regards RMSE and MAE as the metrics during testing to make an

equitable comparison, which details are defined as:

MAE =
1

M

M∑

j=1

∣∣∣ℓ̂j − ℓj

∣∣∣ (12)
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FIGURE 7

Recognition results of di�erent grid parameters of the HMHN model

on the AVEC 2013 (A) and AVEC 2014 (B) datasets.

RMSE =

√√√√ 1

M

M∑

j=1

(
ℓ̂j − ℓj

)2
(13)

where M is the total number of video samples, ℓj and ℓ̂j are the

ground truth and the predicted BDI-II score of the j-th subject,

respectively.

5. Experimental results and discussion

In this section, we first perform an ablation study to

examine the effectiveness of individual components in the propose

framework. Then, we compare the architecture with several state-

of-the-art vision-based depression analysis methods to show its

promising performance.

5.1. Ablation study

In order to verify the effectiveness of the proposed HMHN,

we carry out the ablation studies on AVEC 2013 and AVEC 2014

datasets to assess the efficacy of critical components in our method.

The results are shown in Tables 3, 4. Specifically, Resnet18+GWA

(B1,B2) outperforms the backbone network (A1,A2) on both

datasets owing to GWA can learn long-range bias in low-

level features of facial images. D1 and D2 are improved by

MAB and AFB, which capture multiple non-overlapping attention

simultaneously. E1 and E2 integrate all modules, yielding better

results than using them separately. This observation demonstrates

that the multi-stage attention mechanism performs better than

the one-stage attention mechanism. The prediction accuracy of

depression level can be effectively improved by encoding the low-

level to high-level interactions between depression discriminative

features of multiple facial regions.

5.2. Number of the cross attention heads

We opt different numbers of cross-attention heads to observe

their effect on the depression recognition performance of the

model, allowing us to select an optimal cross-attention head size.

The results are shown in Figure 6, where the lines with different

colors represent the two evaluation metrics, RMSE and MAE,

respectively. The top and bottom figures indicate experimental

results on two different datasets, AVEC 2013 and AVEC 2014. It

is apparent that the increasing number of layers does not imply

an improvement in the performance, and equipping four cross-

attention heads maximizes the model’s performance. It is probably

related that facial depression recognition is affected by multiple

facial regions. The single attention head cannot sufficiently capture

all the subtle and complex appearance variations, while too many

attention heads make the attention regions overly distributed.

As shown in Figure 6, our method explicitly learns to attend to

multiple local image regions for facial depression recognition.

5.3. Impact of the grid size

We examine the impact of grid parameters on the model’s

performance, as evidenced in Figure 7. Our findings indicate that

utilizing a grid strategy generally leads to improved performance

over not using a grid strategy. The Grid(3 × 3) achieves the best

results among the tested grid parameters, with an MAE of 6.05 and

an RMSE of 7.38 on the AVEC 2013 dataset, and MAE = 6.01 and

RMSE = 7.60 on the AVEC 2014 dataset. This phenomenon may be

related to the spatial position and size of the grid, as an overly large

or small grid size may limit the expression ability of the receptive

field and interfere with the acquisition of depression information

across facial regions.
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TABLE 5 Kernel size of separable convolution on AVEC 2013 and AVEC 2014 datasets.

Kernel settings Params(M) AVEC 2013 AVEC 2014

MAE RMSE MAE RMSE

Standard Conv 29.33 6.07 7.43 6.09 7.66

(1× 7, 7× 7, 7× 1) 26.57 6.16 7.49 6.19 7.78

(1× 5, 5× 5, 5× 1) 22.63 6.14 7.51 6.12 7.71

(3× 1, 1× 3) 17.78 6.21 7.56 6.27 7.83

(3× 3, 1× 3, 3× 1) 19.72 6.05 7.38 6.01 7.60

The bold values indicate the best results.

5.4. Kernel size of separable convolutions

We conduct experiments to evaluate the effect of separable

convolutions in MAB modules. We test standard convolutions and

separable convolutions with different kernel sizes. According to

our experimental results, as shown in Table 5, using a separable

convolution model with a smaller kernel size (1 × 3, 3 × 3, 3 × 1)

performs better than using a larger kernel size such as (1× 7, 7× 7,

7 × 1) and (1 × 5, 5 × 5, 5 × 1). In addition, we also find that

separable convolutions can achieve similar performance with fewer

parameters than standard convolutions. For example, on the AVEC

2013 dataset, the MAE of the separable convolution model with

convolution kernel sizes (1× 3, 3× 3, 3× 1) is 6.05, and the RMSE

is 7.38. Compared with using standard convolution, the number of

separable convolution parameters is reduced by 32.8%.

5.5. Comparison with state-of-the-art
methods

In order to further demonstrate the depressive recognition

performance of the proposed model, We present the quantitative

performance comparison results in Tables 6, 7 for AVEC 2013 and

AVEC 2014, respectively. Specifically, models in Valstar et al. (2013,

2014), Wen et al. (2015), He et al. (2018), and Niu et al. (2019) are

based on hand-crafted representations. Our method outperforms

all other methods, mainly because hand-crafted features rely on

researchers’ experiences, and it is difficult to characterize depression

cues fully. At the same time, our HMHN uses deep neural networks

and the multi-attention stage mechanism, which can capture

complete semantic information, thereby improving the prediction

performance.

For the methods using deep neural networks, Zhu et al. (2017),

Al Jazaery and Guo (2018), Zhou et al. (2020), and He et al. (2022a)

train the deep models on a large dataset and then fine-tune on

the AVEC 2013 and AVEC 2014 datasets. HMHN is an end-to-

end scheme for depression recognition and achieves an impressive

performance even without a pre-trained model on other large-scale

datasets. As shown in Tables 6, 7, we achieve the best performance

among end-to-end methods on the AVEC 2013 (MAE = 6.05,

RMSE = 7.38) andAVEC 2014 (MAE= 6.01, RMSE = 7.60) datasets.

We also achieve the second-best performance compared to other

methods pre-trained on large-scale datasets. Specifically, Zhou et al.

(2020) propose a CNN-based visual depression recognition model

by roughly dividing the facial region into three parts and then

combined with the overall facial image to improve the recognition

performance of the model. Our better performance is due to the

multi-stage attention mechanism for the extraction of depressive

features, and Zhou et al.’s visualization results show that their

model focuses attention on only one region and ignores other

facial details that contribute to depression recognition. In contrast,

He et al. (2021a) achieves a passable performance without a pre-

trained model. The authors divide the facial region by facial

landmark points, then block the feature map to extract local feature

information. Finally, the feature aggregation method is used to

automatically learn the facial region’s local and global feature

information. He et al. (2021b, 2022b) and Liu et al. (2023) are also

end-to-end methods. Our HMHN outperforms those methods by

a significant margin. One important reason is that we consider

the long-range inductive biases in both low-level feature learning

and high-semantic feature representation. At the same time, Niu

et al. (2022) improve the prediction accuracy of depression levels

by investigating the correlation between channels and vectorizing

the tensors along the time and channel dimensions. De Melo

et al. (2020) to encode the smooth and sudden facial expression

variations to assess individual BDI-II scores. These two methods

model the spatio-temporal information of facial regions; our

propose is trained from scratch using only facial visual information

and achieves comparable results.

5.6. Visual analysis

In order to intuitively observe how the model predicts

depression scores from facial images, we present the visualized

facial images with different cross-attention heads in Figure 1.

The first column of Figure 1 shows the original images, and the

second to fifth columns represent the attention regions of different

cross-attention heads. The heatmap in the faces is the focus area

learned by the model. Our model can attend to multiple locations

simultaneously before fusing the attention maps. Our HMHN

model specifically focuses on the facial muscle movement regions

related to depression, such as the mouth, eyebrows, and eyes, while

suppressing irrelevant regions.

6. Conclusion

In this paper, an end-to-end two-stage attention mechanism

architecture named HMHN for predicting an individual’s
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TABLE 6 Depression level prediction performance compared with

di�erent methods on the AVEC 2013 test set.

Category Methods MAE RMSE

Pre-trained Valstar et al. (2013)/LPQ 10.88 13.61

Cummins et al.

(2013)/PHOG

/ 10.45

Wen et al.

(2015)/LPQ-TOP

8.22 10.27

He et al.

(2018)/MRLBP-TOP,

DPFV

7.55 9.20

Niu et al.

(2019)/LSOGCP

6.97 9.17

Zhu et al. (2017)/Optical

Flow, 2D-CNN

7.58 9.82

Al Jazaery and Guo

(2018)/C3D, RNN

7.37 9.28

De Melo et al.

(2019)/ResNet-50

6.30 8.25

Zhou et al.

(2020)/2D-CNN

6.20 8.28

De Melo et al.

(2020)/Two-Stream

5.96 7.97

Uddin et al.

(2020)/LSTM

7.04 8.93

De Melo et al.

(2021)/MDN

6.59 8.39

Niu et al.

(2022)/2D-CNN

6.12 7.49

He et al.

(2022a)/2D-CNN

7.36 9.17

End-to-end He et al.

(2021a)/2D-CNN,

Attention

6.59 8.39

He et al.

(2021b)/3D-CNN

6.83 8.46

He et al.

(2022b)/2D-CNN

7.02 9.37

Liu et al.

(2023)/2D-CNN,

Attention

6.08 7.59

Ours 6.05 7.38

The bold values indicate the best results.

depression level by facial images is proposed. HMHN can focus

on multiple depression feature-rich areas of the face yet is

remarkably capable of recent works in recognition. Specifically,

this model mainly includes four blocks: the grid-wise attention

block (GWA), deep feature fusion block (DFF), multi-head cross

attention block (MAB), and attention fusion block (AFB). GWA

and DFF are the first stages to capture the dependencies among

different regions from a facial image in a way that the parameter

learning of convolutional filters is regularized. In the second

stage, the MAB and AFB block is composed of parallel cross-head

attention units, which combine spatial and channel attention

TABLE 7 Depression level prediction performance compared with

di�erent methods on the AVEC 2014 test set.

Category Methods MAE RMSE

Pre-trained Valstar et al.

(2014)/LGBP-TOP

8.86 10.86

Dhall and Goecke

(2015)/LBP-TOP

7.08 8.91

He et al.

(2018)/MRLBP-TOP,

DPFV

7.21 9.01

Niu et al.

(2019)/LSOGCP

7.19 9.10

Zhu et al. (2017)/Optical

Flow, 2D-CNN

7.47 9.55

Al Jazaery and Guo

(2018)/C3D, RNN

7.22 9.20

De Melo et al.

(2019)/ResNet-50

6.13 8.23

Zhou et al.

(2020)/2D-CNN

6.21 8.39

De Melo et al.

(2020)/Two-Stream

6.20 7.94

Uddin et al.

(2020)/LSTM

6.86 8.78

De Melo et al.

(2021)/MDN

6.06 7.65

Niu et al.

(2022)/2D-CNN

6.01 7.56

He et al.

(2022a)/2D-CNN

7.26 9.03

End-to-end He et al.

(2021a)/2D-CNN,

Attention

6.51 8.30

He et al.

(2021b)/3D-CNN

6.78 8.42

He et al.

(2022b)/2D-CNN

6.95 9.24

Liu et al.

(2023)/2D-CNN,

Attention

6.04 7.98

Ours 6.01 7.60

The bold values indicate the best results.

units to obtain final facial depression features bbsy encoding

higher-order interactions between local features. Experimental

results on AVEC 2013 and AVEC 2014 depression datasets

show the effectiveness of video-based depression recognition of the

proposed framework when compared withmost of the state-of-the-

art approaches.

In the future, we will collect and build a dataset with

more depression patients to learn more robust feature

representations from the images of diverse appearances. In

addition, investigation of the multi-modal (audio, video, text, etc.)

depression representation learning appears to be an attractive

topic.
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Wafer defect recognition is an important process of chip manufacturing. As 
different process flows can lead to different defect types, the correct identification 
of defect patterns is important for recognizing manufacturing problems and 
fixing them in good time. To achieve high precision identification of wafer defects 
and improve the quality and production yield of wafers, this paper proposes a 
Multi-Feature Fusion Perceptual Network (MFFP-Net) inspired by human visual 
perception mechanisms. The MFFP-Net can process information at various 
scales and then aggregate it so that the next stage can abstract features from the 
different scales simultaneously. The proposed feature fusion module can obtain 
higher fine-grained and richer features to capture key texture details and avoid 
important information loss. The final experiments show that MFFP-Net achieves 
good generalized ability and state-of-the-art results on real-world dataset WM-
811K, with an accuracy of 96.71%, this provides an effective way for the chip 
manufacturing industry to improve the yield rate.

KEYWORDS

wafer defect, deep learning, recognition, multi-scale feature, denoise

1. Introduction

With the rapid development of technology and society, semiconductor manufacturing has 
become one of the most essential industries in the world (Chen et al., 2020) and wafer processing 
is the basis of it (Bengtsson, 1992). Due to the increasing complexity of semiconductor processes 
and an increase in the number of wafers produced (Chang et al., 2005), the amount of online 
and offline data required for diagnosis yield conditions has grown exponentially (Liao et al., 
2013), with many of these wafers found to be defective on inspection. Wafer fabrication usually 
requires a series of processes such as photolithography, deposition, ion implantation, diffusion, 
machine handing, and chemical mechanical planarization (Cheon et al., 2019). Defects in wafer 
fabrication arise from variations in the manufacturing process, and defects in a single wafer can 
render the product in question completely ineffective or even discard the entire batch, so it is 
important to detect defects and improve the yield. But defects in wafer diagrams have a high 
tendency to derive necessary information about specific manufacturing process problems from 
different defect diagrams (Chen and Liu, 2000). Typical spatial patterns in Wafer Maps (WMs)
consist of edge-ring, center, scratch, donut, and near-full, etc. (Wang et al., 2019) A center often 
arises due to problems in the thin film deposition, a ring is due to problems in the etching step, 
a scratch is a result of machine handing problems (Wang and Bensmial, 2006) and particle-type 
defects can be fixed by cleaning the surface with an air blower (Cheon et al., 2019). As the 
process issue happens, engineers can analyze the defective type of wafers to identify the root 
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causes of the problem and reduce the loss caused by excursion (Chien 
et al., 2007) as soon as possible. Since all tasks of improving yield 
require engineers to analyze and process large amounts of data, defect 
pattern recognition is usually performed through statistical data 
analysis (Chen and Liu, 2000). Cunningham and MacKinnon (2002) 
divided the common visual defect metrology into three types.

 1. Quadrat statistics: the defect distribution on the wafer is analyzed 
to predict the yield model, such as by using the conventional 
Poisson model and Murphy model (Berglund, 1999). Many 
models (Collica, 1990; Weber et al., 1995; Nurani et al., 1998; 
Wang et  al., 2002) have been based on this type of defect 
metrology statistics, but this type of defect metrological method 
has ignored spatial pattern and defect clustering phenomena 
(Chen and Liu, 2000), and when the data of the wafer does not 
meet the hypothetical assumptions, it does not work well.

 2. Cluster statistics: wafer defects are often determined by defect 
coordinates, when one or more wafer defects are defined, they 
can be  classified according to the characteristics of the 
coordinates. This type of method seeks clusters with high 
defect density and ignores information about the signatures of 
clusters, such as the shape and size, etc.

 3. Spatial pattern recognition: besides defect clusters, the spatial 
pattern of the defects usually provides a good approach to 
wafer problem solving. Ken et al. (2002) outline that special 
shapes appearing on the defect map pattern may come from 
the machine or process, according to different map patterns, 
then can find out the root of problems.

Accurate and efficient wafer defect detection technology can 
identify production process problems and make adjustments to the 
production process in a timely manner, thus improving the quality 
and yield of production wafers. To address the problem of wafer 
defect detection and identification, operators have traditionally 
visually inspected defects and classified and identified them according 
to predetermined methods. However, this approach involves a great 
deal of effort and costs being invested in pre-training defect 
inspection and the classification of operators (Chen and Liu, 2000). 
Due to the influence of human factors, the results identified by 
different operators are different even for the same type of defect 
(Weber et al., 1995). Therefore, to save costs and improve accuracy, 
researchers have conducted a series of studies. In the classification of 
technology and automatic detection of semiconductor 
manufacturing, frequency domain filtering using optical methods, 
laser irradiation scanning, and various digital image processing 
techniques are applied to wafer surface image detection and mostly 
employed by charge coupled device cameras (Qu, 2002). Most 
automatic inspection systems scan the wafer surface to collect the 
coordinates of areas where defects may exist, then place a camera at 
the center of the coordinates to take pictures, before automatically 
performing defect detection. Due to the microcosmic nature of the 
scanning electron microscope sensing field, it is difficult to analyze 
and detect the surface characteristics of the whole wafer, and the 
classification accuracy is poor (Cheon et al., 2019), meaning manual 
detection is required to measure the physical parameters of the WMs 
like location, size, and color later (Lee et al., 2017). Moreover, Auto 
Detect Camera (ADC) based approaches apply machine learning and 
image recognition for wafer defect classification and are introduced 

to reduce labor and manufacturing costs. Knights Technology (Chen 
and Liu, 2000) proposed a software program named spatial pattern 
recognition, the core of the software is a signature classifier, which 
can be used to train models for different batches of wafer defects, but 
it takes a lot of time and has poor generalization in training new 
models. Lee and Inc (1996) propose a templates matching algorithm 
to detect wafer defects, which is based on the supervised learning 
method, and improves the detection accuracy; however, one 
weakness of this approach is that it requires a certain amount of the 
standard templates to be provided, and once the data volume is large, 
the effect is not so good. Due to the continuous reduction of wafer 
size (Qiang et al., 2010), the effect of traditional optical detection 
technology is gradually getting worse.

The rapid popularity of the Convolutional Neural Network (CNN) 
and its excellent effects have attracted people’s attention. CNN consists 
of three types of layers including convolution layers, pooling layers, 
and fully connected layers (Saqlain et al., 2020). The convolution layer 
can automatically extract image features, the pooling layer can extract 
the main information required to create the image while reducing the 
number of parameters, and fully connected layers finally classify the 
input image using the extracted features (Krizhevsky et al., 2012). 
These three layers can be combined to extract the high-dimensional 
features of the images. In particular, the CNN models have performed 
well in classifying image data (Sengupta et al., 2018), and have been 
introduced into various industries due to their wide application. For 
example, to cracks in civil infrastructure (Cha et al., 2017) and classify 
surface defects in steel plates. The semiconductor industry has also 
tried to introduce CNN to improve the process for defect recognition 
of spring-wire sockets (Tao et al., 2018). Lee et al. (2017) designed a 
new CNN structure, which can identify global and invariant features 
in the sensor signal data, find the multivariable process fault and 
diagnose the fault source. Currently, deep learning methods have 
achieved good results in wafer detection, for example, Takeshi 
(Nakazawa and Kulkarni, 2018) et  al. applied eight convolutional 
networks with activation functions to classify wafers and used 
simulated WMs to train a model and tested the performance on 1,191 
real WMs. Cheon et al. (2019) proposed a CNN-based automatic 
defect classification method that can extract features from WMs and 
accurately classify known defect classes. The datasets used by all these 
studies were very small and cannot therefore fully represent the actual 
situation of production. CNN models can achieve higher training 
accuracy in the presence of bigger datasets (Najafabadi et al., 2015). 
Saqlain et al. (2020) proposed a deep layered CNN-based wafer defect 
identification (CNN-WDI) model, before training and testing the 
model on a real wafer dataset called WM-811K, a large dataset that 
consisted of eight different wafer defects and 811,457 wafer maps in 
total. Yu and Lu (2016) proposed a manifold learning-based wafer 
map defect detection and recognition system and their experimental 
results from WM-811K verified that the overall accuracy was 90.5%.

Noise is common in the wafer maps and can make an impact on 
the recognition effect, denoising can effectively preserve the defect 
type of the wafer and improve the accuracy. Thus, image denoising is 
a key step in the defect recognition procedure. Wang et al. (2006) used 
a spatial filter that compares the defect densities in each die of the 
wafer. On the other hand, noise is also a test of model robustness. 
When the robustness of the model is good, the impact of noise on the 
performance will be small. Multiscale analysis is a technique in pattern 
recognition and image processing that analyzes an image or pattern at 
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various scales (Li et al., 2016a,b,c). This benefits multiple applications, 
such as object identification, image categorization, and feature 
extraction, which can help understand phenomena or processes that 
occur over a range of scales and for extracting features (Ataky et al., 
2022). Eseholi et al. (2020) decomposed the surface profile into three 
multiscale filtered image types: Low-pass, Band-pass, and High-pass 
filtered versions, respectively, by using a Gaussian Filter. Compared to 
conventional roughness descriptors, their method increased surface 
discrimination from 65 to 81%. The term “scale” has had many 
meanings in metrological studies. Scale can refer to the ratio of lengths 
on measurement renderings to the actual lengths on the actual surface 
(Brown et al., 2018). In this paper, multi-scale means that the image is 
processed by convolution to obtain feature maps with different 
channel numbers. We call these feature maps with different channel 
numbers “multi-scale.” Through comprehensive utilization of these 
multi-scales, we call them “Multi-Scale Feature Fusion.” To extract 
patterns from observable measurements we need to be able to define 
and identify stable features in observable measurements (Scott, 2004), 
convolution can extract stable abstract features of objects, so we use a 
convolution neural network to extract multi-scale information.

The contributions of this paper are as follows:

 1. A Multi-Feature Fusion module (MFF) is proposed based on 
the attributes of wafers and can combine different fine-grained 
features, capturing the key information from local and global 
regions, which can improve the robustness of wafer 
defect recognition.

 2. A Multi-Feature Fusion Perceptual Network (MFFP-Net) is 
designed to integrate information from different dimensions, 
and the next stage can abstract features from the different scales 
simultaneously. Therefore, the MFFP-Net can extract more 
information to achieve high precision wafer recognition. It also 
effectively resists the interference of noise.

 3. Comprehensive experiments demonstrate that the proposed 
method can obtain good results for identifying wafer map 
defect patterns, which has a recognition accuracy of 96.71% 
and achieves state-of-the-art wafer recognition performance 
in WM-811K.

2. Methods

In this section, we  first introduce the overall structure of 
MFFP-Net and then introduce the composition of MFF in detail.

2.1. Overview

We propose a Multi-Feature Fusion Perceptual Network (MFFP-
Net) to address the recognition of wafer defects. As shown in Figure 1, 
MFFP-Net consists of four convolution layers and two branches. The 
network takes the original wafer defect map as input. The direction of 
the arrow represents the operation direction of the feature layer in 
turn. First, the Conv1 ~ Conv4 layer serves as the feature pre-extractor 
to output 28 × 28 × 128 feature maps. Then, the feature maps are input 
into Multi-scale Branch and Global Branch to extract different 
perceptual field features. The Multi-scale Branch consists of three MFF 

modules. The Global Branch is composed of a Max Pooling layer, 
Conv5, and Conv6. Finally, we fused the feature maps with 256, 512, 
512, and 1,024 channels to predict the wafer defect type.

2.2. Backbone

The Conv1 ~ Conv4 layers serve as the backbone. Then the 
feature maps are input into two branches to extract different 
perceptual field features. The Multi-scale Branch gets fine-grained 
features through MFFs, and the Global Branch gets features of higher 
dimension through further convolution operation. Finally, the 
recognition results are obtained by fusing the feature and decision 
level. GAP denotes global average pooling layers and is an element 
wise addition. We use the traditional convolution neural network, the 
most basic compositions of the neural network are convolution 
operation, Batch Normalization, Max pooling, and Global Average 
Pooling (GAP). The details of Conv1 ~ Conv4 are shown in Figure 2.

Conv1 ~ Conv4 are composed of 3 × 3 convolution operation, 
Batch Normalization (BN), and Swish activation function. However, 
the difference in this approach relates to the convolution operation 
parameters: including the stride operation, the input channel, and the 
output channel of each convolution. When the wafer image is input 
into the network, it will pass through Conv1 ~ Conv4 in turn. Finally, 
the shallow features are output by Conv4., and Conv5 and Conv6 
both consist of convolution operation, BN, and Swish activation 
function. Conv5 uses 3 × 3 convolution and the input and output 
channels are 128. Conv6 uses 1 × 1 convolution to make the network 
deeper and the input and output channels are 128 and 256, 
respectively.

2.3. MFF module

By controlling the longest gradient path, the deeper network can 
learn and converge effectively (Wang et al., 2022). The MFF module 
aims to obtain higher fine-grained and richer features, it uses expand 
and merge channels to achieve the ability to continuously enhance the 
learning ability of the network. As shown in Figure 3, the MFF module 
is composed of three branches that are composed of one, two, and four 
convolutions, respectively. The outputs obtained from the three 
branches are joined together according to dimensions. The final 
output is obtained after the Max Pooling layer to reduce parameters. 
The module follows a philosophy that visual information should 
be processed at various scales and then aggregated so that the next 
stage can abstract features from the different scales simultaneously.

The MFF module can process information at various scales and 
then aggregate it so that the next stage can abstract features from the 
different scales simultaneously. F denotes convolutional layers, and y 
denotes output feature maps. The arrow points to the directions in 
which the feature map passes.

The MFF module can be formulated by Equations (1–4).

  y F x1 1� � �  (1)

  y F y2 3

1
1� � �  (2)

28

https://doi.org/10.3389/fnins.2023.1202985
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1202985

Frontiers in Neuroscience 04 frontiersin.org

  
y F F y3 3

3

3

2
2� � ��

�
�
�  

(3)

  F MaxPool Concat y y youtput � � ��� ��1 2 3, ,  (4)

Where x is the input of the MMF module, Foutput is the output of 
the MFF module.

Concat is the tensor splicing function, the dimension of the tensor 
can be specified for splicing.

The details of the convolution layer are shown in Figure 4.
If the number of feature map channels input to MFF is C. The 

output channels of F1x1 become C/2. In the convolution layer F1
3x3 next 

to F1x1 the input and output channels are both C/2. The input and 
output channels of F2

3x3 are C/2 and C, respectively. The input and 
output channels of F3

3x3 are C. Finally, the feature map with a channel 
number of 2C is obtained.

The MMF takes the feature map obtained through the convolution 
layers as the input. We assume the depth (the number of channels) of 
the feature map is C.

The model change in depth of the feature map through MMF is 
shown in Figure 5.

First, a 1 × 1 convolution layer is executed after the input to 
adjust the number of channel dimensions and make the depth C/2. 
The introduction of 1 × 1 convolution enables the combination of 
channels and the interaction of information between channels. 

FIGURE 1

Structure of the proposed method.

FIGURE 2

The detailed parameters of Conv1~Conv4, Conv5 and Conv6.
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Second, after 1 × 1 convolution, the number of channels in the 
feature map halves, and then we use 3 × 3 convolution to further 
extract high-dimensional features. Third, based on the second step, 
after two convolution operations, the network becomes deeper and 
the number of channels becomes C. Fourth, the feature maps 
obtained in the first, second, and third steps are joined together 
according to the channel direction, the number of channels is 2C, 
and more fine-grained features are obtained. Last, feature maps with 
2C channels pass through the convolution layer to achieve the 
final output.

The number of channels in the feature map is C. Through the 
first and second branches, the channels of input halves, then 
combine according to the channel direction, and the number of 
channels is still C. Through the third branch, the depth remains 
unchanged. Finally, splice feature maps with channel number C 

together and double the number of channels. C denotes the 
channels of the input. The arrow indicates the direction of channel 
number changes.

2.4. Auxiliary classifier and lead head

Deep supervision is a technique that is often used in training 
deep networks. We add auxiliary head in the middle layers of the 
network, auxiliary head is conducted and marked as A, B, C, and D, 
as shown in Figure 6. The shallow network weights with assistant loss 
as the guide. In this paper, we  refer to the classification header 
responsible for the final output as lead head and the head used to 
assist training is called auxiliary classifier. Auxiliary classifiers located 
at different depth levels will learn different information, and the 
learning ability of an auxiliary classifier is not strong as a lead head. 
In order to avoid losing the information that needs to learn and 
combine useful information together, it is crucial to find out how to 
assign weights to auxiliary classifiers. We will discuss the details of 
assigning auxiliary classifier weights in the part of Ablation 
Experiments. As for the output of lead head, we  filter the high 
precision results from the high recall as the final output.

3. Experiments

In this section, we  first introduce two datasets and their 
characteristics. We  then explain the details of the experimental 
implementation. Thirdly, we adjust the parameters of the experiment 
to obtain the best results and visualize the effect of model recognition. 
Finally, we analyze the error of the experimental results.

3.1. Dataset

To compare our results with previous studies and verify the 
effectiveness of the method outlined in the present study, 

FIGURE 3

The structure of MFF module.

FIGURE 4

The details of 3 × 3 convolution layer and 1 × 1 convolution layer.
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we performed experiments on real-world wafer datasets WM-811K 
(MIR Corpora, 2015; Wu et al., 2015). The WM-811K dataset is the 
largest publicly available wafer data, consisting of 811,457 wafer maps 
collected from 46,293 different lots in real-world fabrication. This 
dataset contains eight different and labeled wafer failure patterns, a 
total of 24,653 wafer maps, the rest were unlabeled and defect-free 
wafer maps. Figure 7 shows the sample wafer maps from each defect 
type including Center, Donut, Edge-Ring, Scratch, Near-full, Loc, 
Edge-Ring, and Random. The yellow part represents the defect, and 
the green part represents the defect-free part. Domain experts were 
recruited to annotate the pattern type of the wafer maps in the 

WM-811K dataset. We also found a data set about wafers on (Karen 
and Andrew, 2015) (wafer-Kaggle), shown in Figure 8.

We used 25,519 wafer defect maps labeled in the WM-811K 
dataset to verify the performance of the model. The numbers of eight 
types are 4,294, 555, 5,189, 9,680, 3,593, 149, 866, and 1,193, 
respectively, and the proportion was 25:3:30:56:20:1:5:7. The eight 
wafer defect types in this data set were shown to be  seriously 
imbalanced. The main problem in image resolution is noise and the 
wafer maps in the WM-811K dataset contain serious noise, as shown 
in Figure 9. If the robustness of the model is poor, the noise will greatly 
affect the performance of the model.

FIGURE 5

The change of channels number through MMF feature map.

FIGURE 6

The proposed model contains four auxiliary classifiers.
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3.2. Implementation details

We divided WM-811K randomly into a training set, validation 
set, and test set in the ratio of 8:1:1. For the training set, we first 
used random clipping wafer maps, as part of which the pixel size 
became 224 × 224, then a random horizontal flip. For the test set, 
we  changed the wafer map pixels to 256 × 256, then it became 
224 × 224 through the center crop. The model was developed by 
using PyTorch. An NVIDIA 3080 GPU with 16 GB memory was 
engaged to accelerate the calculation. The learning rate was set to 
a constant of 0.0001, the weight decay coefficient was 0.05, and the 
minibatch size is set to 32. We train the model for a total of 100 
epochs, during the training, we  use Cosine Annealing with a 
period of 32. The number of parameters of the proposed net is 
48.09 M.

3.3. Result and analysis

3.3.1. Ablation experiments
The features produced by the layers in the middle of the network 

are very discriminative, even low dimensional embeddings might 
contain a large amount of information. To study the impact of 
auxiliary classifiers connected to the middle layer on classification 

results, the experiment with only one auxiliary classifier is conducted 
and marked as A, B, C, and D, as shown in Figure 6.

The impact of four different auxiliary classifiers is shown in 
Table 1. When there is only one auxiliary classifier, auxiliary classifier 
B achieved the best accuracy of 92.21%, and auxiliary classifier D 
achieved the lowest accuracy of 79.60%. When we use four auxiliary 
classifiers at the same time and give them the same weight, the 
accuracy is higher than when using only one auxiliary classifier, at 
94.56%. Combining the features from the different scales could 
improve recognition accuracy.

As shown in Table 2, when only auxiliary classifier D is used, the 
recognition accuracy of the model is far lower than that of other 
auxiliary classifiers. To study the influence of auxiliary classifier D on 
classification accuracy, we  give different weights to D. When the 
weights of D are set as 1.3, 0.7, 0.5, 0.3, 0.1, and 0, respectively. The 
accuracy of the model is shown in Table 2, which indicates that when 
the A, B, C, and D ratios are 1:1:1:0.3, the model achieves the highest 
wafer recognition accuracy of 95.73%.

As shown in Table 3, when only the auxiliary classifier B is used, 
the recognition accuracy of the model is far higher than that of other 
auxiliary classifiers. We fixed the weight of the auxiliary classifier D to 
0.3, then set different weights for B. When the weights of B are set as 
1.2, 1.4, 1.6, and 1.8 respectively, the accuracy of the model is shown 
in Table 3. It is indicated that when the A, B, C, and D ratios are 
1:1.4:1:0.3, the model achieves the best performance.

FIGURE 7

Eight different wafer defect types.

FIGURE 8

There are seven different wafer defect types in wafer-kaggle.

TABLE 1 The impact of four different auxiliary classifiers on wafer 
classification accuracy.

(A, B) (C, D) Precision

(1, 0) (0, 0) 84.58%

(0, 1) (0, 0) 92.21%

(0, 0) (1, 0) 88.02%

(0, 0) (0, 1) 79.60%

(1, 1) (1, 1) 94.56%

TABLE 2 The impact of auxiliary classifier D on wafer classification 
accuracy.

(A, B) (C, D) Precision (%)

(1, 1) (1, 1.3) 87.40

(1, 1) (1, 0.7) 88.49

(1, 1) (1, 0.5) 94.56

(1, 1) (1, 0.3) 95.73

(1, 1) (1, 0.1) 95.65

(1, 1) (1, 0) 95.07

TABLE 3 The impact of auxiliary classifier B on wafer classification 
accuracy.

(A, B) (C, D) Precision (%)

(1, 1.2) (1, 0.3) 95.95

(1, 1.4) (1, 0.3) 96.71

(1, 1.6) (1, 0.3) 96.53

(1, 1.8) (1, 0.3) 95.45
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TABLE 4 Comparison to other methods tested in the WM-811K dataset.

Model Accuracy (%)

Ours 96.71

CNN-WDI (Saqlain et al., 2020) 96.20

SVE (Saqlain et al., 2019) 95.86

YOLOV4 (Shinde et al., 2022) 95.70

WMFPR (Wu et al., 2015) 94.63

YOLOV3 (Shinde et al., 2022) 94.40

CVAE (Ho et al., 2021) 93.60

SCSDAE (Yu et al., 2019) 92.63

Label reconstruction (Park and Jang, 2021) 91.20

DTE-FPR (Piao et al., 2018) 90.50

TABLE 5 Comparison to other models tested in the WM-811K dataset.

Model Accuracy (%)

Ours 96.71

ResNet50 (He et al., 2015) 95.23

VGG16 (Karen and Andrew, 2015) 95.20

MobileNet (Andrew et al., 2017) 93.20

GoogleNet (Christian et al., 2015) 93.82

ResNet34 (He et al., 2015) 92.64

ResNet101 (He et al., 2015) 91.04

3.3.2. Metrics
The methods shown in Table 4 are the results of a test run on the 

WM-811K dataset. As shown in Table 4, the proposed method is the 
best in terms of performance. The proposed method is not only simple 
to process but can also achieve good results.

We used the same settings as the proposed model to test some 
common classified networks. As shown in Table 5, our model is 1.48% 
higher than that ranked second place, ResNet50.

We also used the True Positive Rate (TPR) and True Negative Rate 
(TNR) as metrics to measure the performance of the model. TPR is 
the proportion of positive examples predicted by the model to all real 
positive examples. TNR is the proportion of negative examples 
predicted by the model to all real negative examples. TPR and TNR 
are calculated by Equations (5, 6), respectively.

  
TPR TP

TP FN
�

�  
(5)

  
TNR TN

TN FP
�

�  
(6)

TP is the number of positive examples correctly classified by 
the model.

FN is the number of positive examples incorrectly classified by 
the model.

FP is the number of negative examples incorrectly classified by 
the model.

TN is the number of negative examples correctly classified by 
the model.

As shown in Table 6, model performance in WM-811K, for other 
types except for Near-full, the recognition precision is above 88%. For 
Random and Edge-Ring, the precision is more than 99%. The reason 
for the low recognition accuracy of Near-full will be discussed in the 
error analysis. The specificity for all kinds of wafers exceeds 99%.

We also tested the proposed model in wafer-Kaggle, as shown in 
Table 7, the recognition accuracy of each type of wafer was more than 
87%. The recall was more than 87% and the specificity exceeded 98%. 
The precision of Near-full was 100%.

The confusion matrix of the WM-811K and wafer-Kaggle dataset 
are shown in Figure 10.

FIGURE 9

The wafer maps in WM-811K contains serious noise.
TABLE 6 The performance of the proposed model in WM-811K.

Defect type Precision (%) TPR (%) TNR (%)

Loc 95.3 89.4 99.3

Center 96.8 99.5 99.3

Donut 88.5 96.7 99.7

Random 100.0 88.5 100.0

Scratch 95.6 90.0 99.8

Near-full 75.0 100.0 99.8

Edge-loc 94.8 97.5 98.6

Edge-Ring 99.1 99.3 99.4

TABLE 7 The performance of the proposed model in wafer-Kaggle.

Defect type Precision (%) Recall (%) Specificity (%)

Loc 88.5 85.8 98.8

Center 97.2 99.7 99.3

Donut 93.0 97.6 99.8

Scratch 87.5 98.0 99.6

Near-full 100.0 100.0 100.0

Edge-loc 93.0 87.2 98.9

Edge-Ring 99.1 99.4 99.1
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3.3.3. Visualization
To further investigate the performance of the proposed model in 

more detail, we  use gradient weighted class activation mapping 
(Grad-CAM) (Du and Martinez, 2011) to visualize it. As shown in 
Figure 11, when the area  more brightly colored, the model  pays 
more attention to it. For different types of wafer defects, the proposed 
model can capture their unique features accurately and not be affected 
by noise.

Figure  12 shows wafer images with Random defects in the 
WM-811K dataset where MFFP-Net failed to predict the correct 
defect categories. Although MFFP-Net is robust to wafer maps with 
noise, great similarity between Random and Near-full leads to 
recognition errors. The solution to the problem is to supplement more 
information about these two defect types, such as using multiple data 
enhancement methods to increase differences.

4. Conclusion and discussion

This paper proposes a Multi-Feature Fusion Perceptual Network 
(MFFP-Net) inspired by the attributes of the wafers and human 

visual perception mechanism to recognize wafer defects. 
We  designed a multi-feature fusion module through which 
information can be processed at various scales and then aggregated 
so that the next stage can abstract features from the different scales 
simultaneously. The final experiment and comparison with existing 
methods showed that the proposed method can effectively eliminate 
the influence of noise and achieve high precision recognition. DNA 

FIGURE 10

Confusion matrix of the WM-811K and wafer-Kaggle datatset. 
(A) Confusion matrix of the WM-811K. (B) Confusion matrix of the 
wafer-Kaggle datatset.

FIGURE 11

Attention maps of eight different wafers in WM-811K.

FIGURE 12

Error analysis. (A) Water images with random defect in the WM-811K 
dataset where MFFP-Net failed to predict the correct defect 
categories. (B) Comparison between near-full and random.
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computing is a novel intelligent method that can be  applied to 
remote sensing image classification (Jiao et al., 2010) and sodar data 
classification (Ray and Mondal, 2011). Due to DNA computing 
having the characteristics of massive parallel computing, in future 
work, we plan to explore using it to classify wafers and compared it 
with the method based on neural networks in performance.
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Action recognition is an important component of human-computer interaction,

and multimodal feature representation and learning methods can be used to

improve recognition performance due to the interrelation and complementarity

between di�erent modalities. However, due to the lack of large-scale

labeled samples, the performance of existing ConvNets-based methods are

severely constrained. In this paper, a novel and e�ective multi-modal feature

representation and contrastive self-supervised learning framework is proposed

to improve the action recognition performance of models and the generalization

ability of application scenarios. The proposed recognition framework employs

weight sharing between two branches and does not require negative samples,

which could e�ectively learn useful feature representations by using multimodal

unlabeled data, e.g., skeleton sequence and inertial measurement unit signal

(IMU). The extensive experiments are conducted on two benchmarks: UTD-MHAD

and MMAct, and the results show that our proposed recognition framework

outperforms both unimodal and multimodal baselines in action retrieval,

semi-supervised learning, and zero-shot learning scenarios.

KEYWORDS

human action recognition, multimodal representation, feature encoder, contrastive self-

supervised learning, Transformer

1. Introduction

Automatic recognition framework is a research field that aims to develop systems capable

of identifying and classifying human actions or behaviors, which is to enable machines

to understand and interpret human behavior, with applications in areas including video

surveillance, healthcare, sports analysis, and human-computer interaction (Li et al., 2016a,b;

He et al., 2023). Different techniques in real life adopt different types of data inputs, but each

modality has its own advantages and limitations ( Sun et al., 2023). To achieve more robust

and accurate feature extraction, some approaches improve the performance of models by

aggregating the advantages of various modalities in a reasonable manner. Due to the success

of deep learning in the past decades, a large number of ConvNets-based frameworks have

made impressive achievements in the field of multimodal visual tasks (Grillini et al., 2021;

Mughal et al., 2022; Li et al., 2023). However, most of them require many large amounts of

labeled data, especially for multimodal data (Zhang et al., 2019, 2020), and labeling the data

requires exponentially more time and effort (Li et al., 2009).
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Recently, self-supervised representation learning has made

significant progress on visual tasks, which is mainly divided

into the pre-training and fine-tuning stages (Chen et al., 2020;

Grill et al., 2020). In the pre-training stage, it focuses on

constructing feature representations of different views by unlabeled

samples. In the fine-tuning stage, these representations are used as

inputs and fed into a small-scale linear classifier, which requires

only a small amount of labeled data. Moreover, contrastive

learning is one of the self-supervised learning, where the core

concept is to pull the representation distance between positive

samples closer and push the distance away from other negative

samples. For example, the CMC framework (Tian et al., 2020)

is mainly to form positive samples between different data

modalities, and consider other different samples as negative

sample pairs. Due to the problem of relying too much on

negative sample pairs, it is necessary to set a large batch

size or a queue for storing negative samples in the learning

process, therefore leads to a complex model and is vulnerable to

information collapse.

In order to overcome the above shortcomings, inspired by

Barlow Twins and VICReg (Zbontar et al., 2021; Bardes et al.,

2022), we propose a contrastive self-supervised learning framework

for unimodal and multimodal without relying on negative

samples. Our proposed method employs multimodal samples

as input data, e.g., skeleton sequence and inertial measurement

unit signal (IMU). The main contributions of this paper are

as follows:

• A unimodal contrastive self-supervised framework is

proposed to encode and learn feature representations for

multimodal action recognition with skeleton sequence and

IMU data.

• The proposed recognition framework is extended to

multimodal contrastive self-supervised learning. The model is

designed to obtain simple and efficient feature representations

without negative samples.

The remainder of this paper is organized as follows. Section 2

presents an overview of related works. In Section 3, we provided a

detailed introduction to the proposed method. Section 4 provides

experimental results for benchmark datasets and comparisons with

state-of-the-art. Section 5 concludes this paper and look forward to

future work.

2. Related works

In this section, we discuss unimodal, multimodal, and

contrastive learning methods for human action recognition from

the perspective of input data modality.

2.1. Unimodal human action recognition

Unimodal human action recognition primarily focuses

on classifying and recognizing actions by using a single

modality, including RGB videos, depth and skeleton sequences,

IMU data, etc. This field encompasses tasks such as feature

extraction, feature representation, and the construction of

deep learning models, including convolution neural networks

(CNNs) (Andrade-Ambriz et al., 2022; Islam et al., 2022;

Xu et al., 2022), recurrent neural networks (RNNs) (Shu

et al., 2021; Shen and Ding, 2022; Wang et al., 2022), graph

convolution networks (GCNs) (Cheng et al., 2020; Chi et al.,

2022; Feng et al., 2022; Tu et al., 2022) and Transformer

models (Chen and Ho, 2022; Mazzia et al., 2022; Ahn et al.,

2023).

Since the skeleton sequence would not be sensitive to

viewpoint variation and circumstance disturbance, there are

numerous skeleton-based methods is developed for human action

recognition. In CNN-based methods, Li et al. (2018) proposed

an end-to-end convolutional co-occurrence feature learning

framework from the perspectives of intra-frame representation and

inter-frame representation of skeleton temporal evolutions, which

introduced a global spatial aggregation method and discarded

the local aggregation approach. In RNN-based methods, Xie

et al. (2018) aimed to address the issue of skeleton variations

in 3D spatiotemporal space, which proposed a spatiotemporal

memory attention network based on RNN and CNN to perform

frame recalibration of skeleton data in the temporal domain.

Regarding GNN-based methods, Yan et al. (2018) emerged as

a classic approach based on spatial-temporal graph convolution

networks. The core idea was to model human body joints

as graph nodes and the connections between joints as graph

edges, and the multiple graph convolutional layers were stacked

to extract high-level spatial-temporal features. In Transformer-

based methods, Plizzari et al. (2021) model employed a spatial

self-attention module to capture intra-frame interactions among

different body parts and a temporal self-attention module to model

inter-frame correlations.

For IMU data, due to its ability to provide good complementary

features and better privacy protection, it is gradually being used for

human action recognition tasks. Through convolutional layers and

pooling layers, CNN (Yi et al., 2023) were able to capture local and

global features in IMU data, extract relationships between skeleton

body parts, and achieve accurate classification of different actions.

In IMU-based human action recognition, RNN (Al-qaness et al.,

2022) utilized their memory units (e.g., Long Short-Term Memory

Units or Gated Recurrent Units) to capture the temporal evolution

of skeleton sequence, extracting crucial motion patterns and action

features from it. Additionally, there have been research efforts that

combined the strengths of CNNs and RNNs to comprehensively

utilize the spatiotemporal information in IMU data for human

activity recognition (Challa et al., 2022; Dua et al., 2023). It is

worth noting that, with the progress of research, other IMU-

based human action recognition methods have emerged, such as

those based on Transformers (Shavit and Klein, 2021; Suh et al.,

2023).

2.2. Multimodel human action recognition

Due to the limitation of single modal, it is difficult

to further improve the performance of recognition model.
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FIGURE 1

The feature encoder for IMU data. “BN” denotes batch normalization, “LN” indicates layer normalization, and N× represents that there are multiple

multi-head self-attention modules.

FIGURE 2

The feature encoder for skeleton sequence. The output channels of the 6 blocks 2D convolution layer are [64, 32, 32, 64, 128, 256]. The transpose

layer transposes the dimensions of the input tensor according to the sequential parameters.

A B

FIGURE 3

Contrastive learning framework for unimodal recognition. (A) Pre-training stage: for a skeleton sequence, the embedding representation z is

generated by the same encoder f and projection head g after data augmentation using contrast loss Lc, respectively. (B) Fine-tuning stage: the

labeled skeleton sequence is passed through the frozen encoder f, and then processed through the classifier to obtain the action recognition label.

Since the complementary information provided by different

modalities, researchers have become interested in combining

multimodal features to improve recognition performance, such

as skeleton and IMU data (Das et al., 2020; Khaertdinov and

Asteriadis, 2022). There are many excellent recognition models

are developed to leverage the strengths of different modalities

and achieve more robust and accurate action recognition.

However, the main challenge in executing multimodal recognition
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FIGURE 4

Contrastive learning framework for multimodal recognition. (A) Pre-training stage: the non-labeled skeleton sequences and IMU data were passed

through modality-specific encoders f and projection heads g to generate embeddings representing z using contrasting loss. (B) Fine-tuning phase:

the skeleton sequences with labels and the IMU data with labels were passed through frozen modality-specific encoders f, respectively, and then

obtained action recognition label via fusion layer and classifier.

lies in effectively fuse the feature information from different

modalities. Based on the above statement, the related work

in multi-modal human action recognition can be roughly

categorized into modality fusion and feature fusion, and we

focus on the fusion method of skeleton sequence and IMU

signal features.

Skeleton data provides precise positional information of

human joints, while IMU data provides measurements from

sensors such as accelerometers and gyroscopes (Das et al., 2020).

By fusing skeleton and IMU data, more comprehensive and rich

action features can be obtained. From the perspective of modality

fusion, Fusion-GCN (Duhme et al., 2022) directly integrates IMU

data into existing skeletons in the channel dimension during

data preprocessing. Furthermore, RGB modality is processed

to extract high-level semantic features, which are then fed into

the GCNs as new nodes for fusion with other modalities. From

the perspective of feature fusion (Khaertdinov and Asteriadis,

2022), features from different modalities are combined and

integrated to achieve more representative and discriminative

representations. In addition, cross-modal contrastive learning

networks through knowledge distillation are also an effective

identification method. Liu et al. (2021) proposed a Semantics-

aware Adaptive Knowledge Distillation Network (SAKDN) that

utilizes IMU data and RGB videos as inputs for the teacher

and student model, respectively. The SAKDN adaptively fuses

knowledge from different teacher networks and transfers the

trained knowledge from the teacher network to the student

network. The CMC (Tian et al., 2020) framework proposed

a multi-modal learning architecture based on contrastive

representation learning, which extended the representation

learning to multiple modalities for improving the quality of the

learned features with the number of modalities increased. It

demonstrated the subtle relationship between mutual information

across multiple modalities and multiple viewpoints. Similarly,

CMC-CMKM (Brinzea et al., 2022) employed cross-modal

knowledge distillation to perform feature-level fusion of IMU

data and Skeleton information, which has achieved good

recognition performance.

2.3. Contrastive learning for human action
recognition

Recently, several advanced self-supervised learning methods

have been proposed with excellent results in image and video

tasks. Self-supervised contrast learning focuses on the variation

between different views of the same or different samples, and better

robust and transferable feature representations can be learned

through contrast loss. SimCLR (Chen et al., 2020) incorporated

a new contrastive loss function called Normalized Temperature-

Scaled Cross-Entropy Loss (NT-Xent) into the network, which

is a simple and effective contrastive learning framework. In

contrast, BYOL (Grill et al., 2020) designed a more scalable and

easily trainable self-supervised learning approach by contrasting

the hidden representations in the network. Furthermore, to

obtain more distinctive representations without requiring negative

samples, Barlow Twins (Zbontar et al., 2021) minimized the

correlation between features by employing the Barlow Twins loss.

In addition, the biggest advantage of VICReg (Bardes et al.,

2022) is its simplicity and effectiveness, which only necessary to

compare along the batch dimension by invariance, variance and

covariance, and does not require the weights of two branches to

be shared.

In the case of action recognition tasks, most of the self-

supervised contrastive learning is mainly applied to individual

modalities, such as sensor data, skeleton sequence, or RGB video.

To date, there has been a large number of works on fully

supervised learning for multimodal human action recognition,

and the disadvantage of these methods is that they require a

large number of labeled samples for training. In contrary, to

our knowledge, self-supervised contrastive learning frameworks
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# f: encoder network

# lambda, mu, nu: coefficients of the

invariance, variance and covariance

losses

# N: batch size

# D: dimension of the representations

# mse_loss: Mean square error loss function

# off_diagonal: off-diagonal elements

of a matrix

# relu: ReLU activation function

for xsj , x
i
j in loader : # load a batch with

N samples

# obtain augmented skeleton and

# IMU samples

x̃sj = T (xsj )

x̃ij = T (xij)

# compute representations

hsj =
(
fθs

(
x̃
s
j

))
# hidden layer feature

hij =
(
fθs

(
x̃
i
j

))
# hidden layer feature

zsj = gθs
(
hθi

)

# embeddings for skeleton [N × D]

zij = gθi
(
hθi

)
# embeddings for IMU [N × D]

# variance loss

zsj = zsj − zsj .mean(dim = 0)

zij = zij − zij .mean(dim = 0)

std_zsj = torch.sqrt(zsj .var(dim = 0)+ 1e− 04)

std_zij = torch.sqrt(zij .var(dim = 0)+ 1e− 04)

std_loss = torch.mean(relu(1− std_zsj ))

+torch.mean(relu(1− std_zij))

# invariance loss

sim_loss = mse_loss(zsj , z
i
j)

# covariance loss

cov_zsj = (zsj .T @ zsj )/(N − 1)

cov_zij = (zij .T @ zij)/(N − 1)

cov_loss = off_diagonal(cov_zsj ).pow_(2).sum()/D

+off_diagonal(cov_zij).pow_(2).sum()/D

# total loss

loss = lambda ∗ sim_loss+mu ∗ std_loss

+nu ∗ cov_loss

# optimization step

loss.backward()

optimizer.step()

Algorithm 1. Multimodal pre-training pytorch pseudocode.

are rarely used in the field of multimodal human action

recognition. Akbari et al. (2021) adopted a convolution-free

Transformer architecture to train unlabeled video, audio, and

text data end-to-end, and evaluated the model performance

through downstream tasks such as video action recognition,

audio event classification, image classification, and text-to-video

retrieval. Inspired by VicReg (Bardes et al., 2022) and multimodal

framework CMC, we propose a simple and effective self-supervised

contrastive learning framework based on VICReg to address

the multimodal human action recognition problem of IMU and

skeleton data.

3. Methodology

3.1. Problem definition

Multimodal-based action recognition is defined as the fusion

of different data modalities to obtain more comprehensive human

pose and more precise action information. Specifically, for a given

input {Xm|m ∈ M} from a multimodal setM, the goal is to predict

the label y ∈ Y with the associated input X. In our work, we

focus on IMU signal data and Skeleton sequences. IMUs could

be used to measure the pose and acceleration of the human body

with multivariate time series on the x, y and z axes for human

motion recognition and analysis. Specifically, for S wearable sensors

with S signal channels acquired at any t time stamp, we can

define the input signal as xt =
[
x1t , x

2
t , . . . , x

S
t

]
∈ R

S. Therefore,

the IMU modal inputs are represented in matrix form as Xi =

[x1, x2, ..., xT] ∈ R
T×S for any T time stamp. Furthermore, skeleton

sequences can be collected by a pose estimation algorithm or a

depth camera, which contain several joints of a human body, and

each joint has multiple position coordinates. For a given skeleton

sequence Xs ∈ R
C×T×V , as 2D coordinates are used, the input

channel C = 2, T denotes the number of frames in a sequence,

and V means that the number of joints with respect to the dataset

collection method.

3.2. Feature encoder

In order to obtain more effective features, we designed two

feature encoders to handle IMU data and skeleton sequence,

respectively, as shown in Figures 1, 2. In IMU data feature encoder,

inspired by CSSHAR (Khaertdinov et al., 2021), we first employ a

1D convolution layer with 3 blocks for modeling in the temporal

dimension, which includes a convolution kernel size of 3 and a

feature map with channels of [32,64,128]. Furthermore, we employ

a Transformer with a Multi-head self attention (heads N = 2) as

the backbone to capture long-range dependencies from IMU data.

Besides, inspired by hierarchical co-occurrence feature learning

strategy, a two-stream framework is designed to learn and fuse the

“joint” and “motion” features of skeleton sequences. Specifically,

a skeleton sequence is divide into spatial joints and temporal

motions. Then, they are fed into each of the four 2D CNNmodules

and assembled into semantic representations in both spatial and

temporal domains, and point-level information of each joint is

encoded independently.

3.3. Contrastive learning for unimodal
recognition

As shown in Figure 3, given a skeleton sample in the pre-

training, a positive sample pair Xs
n and Xs,

n could be obtained in a

small batch by normal data augmentation. Then, they are fed into

an encoder fθs with HCN to yield the hidden layer features as

hsi = fθs (X
s
n) (1)

hsj = fθs (X
s,

n ) (2)
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TABLE 1 Pre-training hyperparameter settings.

Modality
UTD-MHAD MMAct

Learning rate Training scale Batch size Learning rate Training scale Batch size

IMU 1e-2 100 epochs 128 1e-3 100 epochs 96

Skeleton 1e-2 100 epochs 128 1e-3 100 epochs 96

IMU+Skeleton 1e-3 200 epochs 256 1e-4 200 epochs 128

TABLE 2 The performance of action recognition for accuracy (%) and F1 score (%) is compared with the baseline methods.

Method Modality
UTD-MHAD MMAct cross-subject MMAct cross-scene

Accuracy F1-score Accuracy F1-score Accuracy F1-score

Supervised_transformer IMU 79.77 79.59 62.15 62.32 78.27 71.86

Supervised_cooccurrence Skeleton 93.49 93.43 80.53 81.93 78.61 74.30

SimCLR IMU 64.65 64.64 52.32 51.94 66.16 60.28

SimCLR Skeleton 92.09 91.87 75.97 76.75 72.62 62.04

Barlow Twins IMU 58.60 57.69 45.17 44.11 59.96 51.77

Barlow Twins Skeleton 88.84 88.24 67.86 69.24 60.68 52.34

Barlow Twins IMU+Skeleton 91.63 91.72 82.17 81.98 82.70 80.05

CMC IMU+Skeleton 95.12 95.08 82.05 83.06 84.01 82.41

CMC-CMKM§ IMU+Skeleton 95.81 95.74 82.34 82.69 85.24 83.60

Ours IMU 75.58 75.93 49.04 47.08 60.81 53.80

Ours Skeleton 86.05 86.23 73.78 75.66 74.94 73.29

Ours IMU+Skeleton 96.06 96.96 82.95 83.62 87.06 85.78

Supervised IMU+Skeleton 96.51 96.36 81.78 82.86 89.47 87.94

Bolded data indicate the best results, underlined data the second best. § represents the reproduced results.

Inspired by the Barlow Twins, the feature representations zsi
and zsj are obtained by an MLP projection layer, which are denoted

as

zsi = gθs (h
s
i) (3)

zsj = gθs (h
s
j ) (4)

Finally, to explore the relationship between the two views Xs
n

and Xs,
n , the cross-correlation matrix C between embedding zsi and

zsj can be computed as follows

Cij =

∑
b zb,iz

′
b,j

√∑
b

(
zb,i

)2
√

∑
b

(
z′
b,j

)2 , (5)

where b denotes the batch dimension, i and j represent the

embedding dimension. Finally, by enforcing the empirical cross-

correlation matrix between the embeddings Zs of variations to

be an identity matrix, the encoder could be used to capture

the relationship between the two-stream siamese networks. The

contrastive loss function is formulated as follows

Lc(Z
s) =

∑

i

(
1− C

′
ii

)2
+ β

∑

i

∑

j6=i

C
′2
ij (6)

Intuitively, the first term encourages the diagonal

elements of C to converge to 1, so that the embedding is not

subject to variation. The second term is intended to drive

the different embedding components to be independent

of each other, minimizing the redundancy of the output

units and avoiding becoming a constant. β is a positive

constant used to weigh the first term and against the

second term.

3.4. Contrastive learning for multimodal
recognition

Our proposed VICReg-based multimodal recognition

framework focuses on generating and contrasting embeddings

from the IMU data and skeleton sequence branches,

which eventually form a joint embedding architecture

with variance, invariance and covariance regularization.

It is a self-supervised learning method that incorporates

two different modality training architectures based on

the principle of preserving the content of the embedding

information.

As shown in Figure 4, given a multimodal training

sample {xsj , xij}, where s and i refer to skeleton and IMU

data modalities respectively. The augmented inputs are
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FIGURE 5

Average accuracy and F1 score with 95% confidence intervals for the semi-supervised learning scenario. (A) UTD-MHAD. (B) MMAct (cross-subject).

(C) MMAct (cross-scene). (D) UTD-MHAD. (E) MMAct (cross-subject). (F) MMAct (cross-scene).

generated by modality-specific data augmentation in accordance

with

xsj = T (xsj ) (7)

x̃ij = T (xij) (8)

In details, for the skeleton sequence augmentation methods are

jittering, scaling, rotation, shearing, cropping and resizing, whereas

the IMU data augmentationmethods are jittering, scaling, rotation,

permutation, shuffle of channel. Then, the feature representation

of the two modalities are computed. Specifically, two modality-

specific encoders fθs and fθi perform feature extraction to obtain the

high-dimensional hidden layer features.

hsj =
(
fθs

(
x̃
s
j

))
(9)

hij =
(
fθs

(
x̃
i
j

))
(10)

Both of these are passed through projection heads gθs and

gθi , implemented by a multilayer perceptron, and finally generate

mode-specific embeddings representations of the two modalities

which are zsj = gθs
(
hθi

)
and zij = gθi

(
hθi

)
. The loss function

is calculated at the embedding level with respect to zsj and

zij . We describe the three components of variance, invariance

and covariance that constitute our loss function in the pre-

training process.

Firstly, we define the variance regularization term v to adopt the

form of a hinge function that represents the standard deviation of

the embeddings along the batch dimension.

v(Z) =
1

d

d∑

j=1

max
(
0, γ − Std

(
zj, ǫ

))
, (11)

where Std denotes the regularization standard deviation formula as:

Std(x, ǫ) =
√
Var(x)+ ǫ, (12)

where we defineZ = [z1, ..., zn] consisting of n vectors of dimension

d with embeddings zj from the feature encoding network of two

modalities. zj is represented as the value of each vectors in Z in

dimension j, γ denotes a fixed value of the standard deviation and

defaults to 1 in our experiments. ǫ is a small scalar to guarantee data

stability, which is set to 0.0001. The objective of this regularization

term v(Z) is to ensure that the variance of all embeddings Zs and

Zi are close to γ in the current batch (s indicates the skeleton

modality and i indicates the IMU modality), preventing all inputs

from mapping on the same vector.

Secondly, we define the invariance regularization term s by

using the mean square Euclidean distance between two positive

sample pairs Zs and Zi. The formulation is as follows:

s(Zs,Zi) =
1

N

N∑

j

∥∥∥zsj − zij

∥∥∥
2

2
, (13)

where N denotes the batch size, both embeddings Zs and Zi come

from the siamese architecture of the two branches.
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FIGURE 6

Visualization of representations learned using t-SNE for the UTD-MHAD benchmark. (A) Barlow Twins (IMU). (B) Barlow Twins (Skeleton). (C) Barlow

Twins (IMU+Skeleton). (D) Ours (IMU). (E) Ours (Skeleton). (F) Ours (IMU+Skeleton).

Finally, the most critical component of the loss function, this

term approximates the covariance between each pair of embedding

variables to zero. Generally, it is the embeddings of the model

that are decorrelated to each embedding variable to ensure the

independence of the variables and prevent the model from learning

similar or identical feature information. Inspired by Barlow Twins,

we define the variance regularization term c as:

c(Z) =
1

d

∑

i6=j

[
C(Z)

]2
i,j
, (14)

where the 1/d scales this function at the dimensional

level and C(Z) denotes the covariance matrix

of the embeddings Z. The formula is expressed

as follows:

C(Z) =
1

N − 1

n∑

j=1

(
zj − z̄

)(
zj − z̄

)T
, z̄ =

1

N

N∑

j

zj. (15)

Therefore, the overall loss function with weighted average of

the invariance, variance and covariance terms could be expressed

as follows:

L(Zs,Zi) = λ ∗ s(Zs,Zi)+µ ∗
[
v(Zs)+ v(Zi)

]
+ ϕ ∗ [c(Zs)+ c(Zi)],

(16)

where λ, µ, and ϕ are hyperparameters that measure

the importance of each loss component. In our

experiment, ϕ is set to 1 and a grid search is performed

for the values of λ and ϕ with the basic condition

λ = ϕ > 1.

The pseudo-code algorithm implementation is illustrated in

Algorithm 1.

4. Experiments

4.1. Datasets

UTD-MHAD (Chen et al., 2015). The dataset is a multimodal

dataset widely used for human action recognition, which includes

RGB video, depth sequences, skeleton and IMU data. During the

capturing process, 8 subjects perform 27 categories of actions,

each individual repeating each action 4 times, for a total of
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FIGURE 7

The normalized confusion matrix for UTD-MHAD.

861 samples. For the skeleton sequences, the Kinect camera

would capture information regarding the subject’s posture and

movements. For the IMU data, the subjects were required to

wear gloves, shoes and belts with IMU sensors attached, which

recorded motion information on the subject’s body parts, including

accelerations, angular velocities and gyroscope data. Similar to

the evaluation protocol in the original paper, we use data

from odd-numbered subjects: 1, 3, 5, 7 as the training and

validation sets, and data from even-numbered subjects: 2, 4, 6,

8 as the testing set, and report the accuracy and F1 score on

the testing set.

MMACT (Kong et al., 2019). The dataset is a multimodal

dataset consisting of 20 subjects performing 36 classes of actions,

including skeleton sequences and IMU data. In this work, a

challenge version of the dataset with 2D keypoints is adopted for

the skeleton data. The IMU data is derived from smartphones

including accelerometers, gyroscopes and orientation sensors. We

verify our proposed recognition framework against the evaluation

protocol from the previous study: cross-subject and cross-scene.

For the cross-subject setting, the first 16 subject samples are used

for training and validation, while the remaining ones are used for

testing. For the cross-scene setting, the numbered 2 samples from

the occlusion scene were used for testing and the rest for training,

numbered 1, 3, 4. We report the accuracy and F1 score on the

testing set.

4.2. Implementations details

Our experimental environment is implemented on the A5000

GPU platform using the Pytorch framework. Subsequently,

we detailed three aspects: data pre-processing, pre-training

and fine-tuning.

Data pre-processing. In order to normalize the IMU data

and skeleton sequences, we employed a resampling method to

uniformly represent all sequences with 50 time steps. Furthermore,

to ensure consistency and comparability, we applied a standard

normalization procedure to normalize the joints in all skeleton

sequences. This normalization process involved scaling the joint

positions based on the reference frame established by the first frame

of each sequence. For data augmentation of skeleton sequences, we

employ {jittering, random resized crops, scaling, rotation, shearing}

for two benchmarks. For data augmentation of IMU data, we

employ {jittering, scaling, permutation, rotation, channel shuffle}.

Pre-training. For the UTD-MHAD dataset, in unimodal

pretraining, our proposed method uses a batch size of 100 and sets

the random seed for both skeleton and IMU modalities to 28. The

training is performed for 100 epochs with a learning rate of 1e-2

and Adam optimizer. In the case of multimodal pretraining, our

proposed method increases the batch size to 200 epochs, adjusts

the learning rate to 1e-3, and sets the training scale to 200 epochs.

The optimizer remains Adam. For theMMAct dataset, wemaintain
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FIGURE 8

Visualization of representations learned using t-SNE for the MMAct benchmark. (A) Barlow Twins (IMU). (B) Barlow Twins (Skeleton). (C) Barlow Twins

(IMU+Skeleton). (D) Ours (IMU). (E) Ours (Skeleton). (F) Ours (IMU+Skeleton).

A B

FIGURE 9

The normalized confusion matrix for MMAct benchmarks. (A) MMAct (cross-subject). (B) MMAct (cross-scene).
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TABLE 3 Zero shot performance (%) on UTD-MHAD benchmark.

Modality
num_classes=1 num_classes=2 num_classes=5

Accuracy F1-score Accuracy F1-score Accuracy F1-score

IMU 73.95 73.95 73.49 73.79 75.35 75.54

Skeleton 88.84 88.43 87.91 87.84 89.77 89.51

IMU+Skeleton 95.58 95.59 93.95 93.85 96.05 96.00

TABLE 4 Zero shot performance (%) on MMAct benchmark.

Modality
num_classes=1 num_classes=2 num_classes=5

Accuracy F1-score Accuracy F1-score Accuracy F1-score

IMU 48.39 48.11 48.31 47.34 48.81 48.63

Skeleton 73.67 75.74 72.35 73.97 73.68 75.83

IMU+Skeleton 81.39 81.19 81.73 82.35 82.45 83.02

the same training settings as before, regardless of single or multi-

modality. In unimodal pretraining, the learning rate is set to 1e-3,

and the batch size is 96. In multimodal pretraining, we increase the

batch size to 128 and adjust the learning rate to 1e-4. Similarly, the

parameter initialization random seed is set to 28. All settings are

shown in Table 1.

Fine-tuning. Following prior fine-tuning routines, we

implemented modality-specific feature fusion layers for the

multimodal fine-tuning process, including batch normalization

and non-linear ReLU, mapping the embeddings of IMU data

and skeleton sequence to the same size of 256. And then

concatenated them up by a linear classifier with Softmax function.

We train the samples with labels by fine-tuning the model both

to 100 epochs either unimodal or multimodal for our action

recognition task.

4.3. Evaluations

4.3.1. Learning feature representation
To evaluate the multimodal learned feature representation,

we perform linear evaluation of the features extracted

from a specific encoder and then input the labeled

samples into the fine-tuned training encoder and linear

classifier. The performance of our model is compared with

existing state of the art methods, and the results as shown

in Table 2.

From the accuracy and F1 score terms obtained from the linear

evaluation, our method significantly outperforms unimodal (more

than 20% for IMU and almost 10% for Skeleon) for two benchmarks

when multimodal contrastive learning is implemented. When

comparing the self-supervised learning baseline models, our

method is superior to other contrastive learning methods in terms

of the multimodal learning approach. However, for the unimodal

learning approach, our method has relatively no advantage. It is

possible that our method undergoes a certain degree of embeddings

collapse when calculating the standard deviation and variance.

Meanwhile, the accuracy and F1 score of our method are also

slightly lower when comparing fully supervised learning, which

may be due to the fact that the supervised learning approach can

perform end-to-end feature extraction for specific modalities. It is

worth noting that our proposed method achieves 82.95% accuracy

and 83.62% F1 score for MMAct (cross-subject), which exceeds

the supervised learning method by 1.17 and 0.76%, indicating

that our method has a better learned feature representation for

multimodal training.

4.3.2. Semi-supervised learning
In the experiments, we adopt proportional unlabeled IMU

and Skeleton data to perform contrastive learning in the pre-

training phase. In particular, we set a random percentage

p ∈ {1%, 5%, 10%, 25%, 50%} to conduct the experiment.

To obtain a reasonable fine-tuning result, we calculate the

average accuracy under the evaluation protocol corresponding

to that presented in the colored interval by repeating the

training 10 times on each p. In addition, we train a supervised

learning multimodal model using the same encoders (Transformer

for IMU and Co-occurrence for Skeleton). Similarly, fine-

tuning the two-stream siamese networks and performing feature

fusion, the final recognition results are obtained by a linear

classifier, especially noting that the weights of the encoders are

randomly initialized.

As shown in Figure 5, despite training only a small number

of labeled samples, the contrastive learning methods all exhibit

excellent robustness and performance. Specifically, the contrastive

learning based approach outperforms the supervised learning

based approach when the labeled samples are less than 25%,

regardless of the dataset. Besides, our proposed method is

superior to both Barlow Twins and CMC contrastive learning

based multimodal methods with arbitrary p values, which

further validate the effectiveness and generalization ability of our

proposed method.

4.3.3. Qualitative analysis
In order to evaluate the clustering effect of the model from

a qualitative perspective, we employ a t-Distributed Stochastic
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Neighbor Embedding (t-SNE, van der Maaten and Hinton, 2008)

method to visualize the high-dimensional embeddings into a two-

dimensional plane.

As shown in Figures 6, 7, we explore the IMU-based, Skeleton-

based and multimodal approaches on the UTD-MHAD and

MMAct datasets, respectively. Compared to the Barlow Twins,

from an intuitive point of view, our proposed method is

obviously effective in separating action class. Moreover, it is

discovered that the multimodal data clustering is better than

the unimodal clustering by fusing the features of IMU and

Skeleton modalities. Furthermore, to measure the classification

performance of our proposed method after fine-tuning, we

performed accuracy evaluation by normalizing the confusion

matrix. As shown in Figures 8, 9, we plot the normalized

confusion matrices on UTD-MHAD, MMAct (cross-subject) and

MMAct (cross-scene) to intuitively evaluate the performance of

the classifier.

4.4. Zero shot setting

In the zero shot setting, we further explore the proposed

method on the IMU and skeletonmodalities through hiding certain

action groups during the pre-training process. Specifically, we

ensured that the action categories index [1, 2, 5] were not leaked

during the training process by masking them.

As shown in Tables 3, 4, the performance of our model is

compared with existing state of the art methods. Regarding UTD-

MHAD benchmark for the unimodal evaluation, we could observe

that the difference of the model is not significant after fine-tuning,

but the skeleton sequence-based is much higher 15% than the

IMU-based method. This is probably due to the fact that the

skeleton sequences are modeled in both spatial and temporal

dimensions, whereas IMU is only considered in the temporal

dimension. For the multimodal evaluation, the model achieved

96.05% for accuracy and 96.00% for F1 score with class_id = <

5 > hidden, which is very close to the results achieved without

the zero shot approach. Furthermore, regardless of the action class

hidden, it is noted that the multimodal-based achieves much higher

accuracy than the unimodal-based approach, exceeding the IMU-

based approach by approximately 20% and the skeleton-based

approach by approximately 6%. This validates that our proposed

method achieves superior results with multimodal data inputs,

which demonstrate the ability of the proposed method to learn

complementary information.

5. Conclusion

In this paper, we propose a simple and effective contrastive

self-supervised learning framework for human action recognition.

Specifically, we construct a multimodal dataset by combining

skeleton sequences and IMU signal data, and feed them into

pretrained modality-specific two-stream networks for feature

encoding. During the fine-tuning stage, labeled data is fed into

the frozen encoders with weight initialization, and a linear

classifier is applied to predict actions. Extensive experiments

demonstrate that our proposed method outperforms unimodal

approaches. It is worth noting that our model achieves comparable

performance to pure supervised multimodal learning in certain

metrics. In the future, we plan to further investigate other

modalities, such as depth maps and RGB videos, to enhance

multimodal human action recognition methods. Additionally,

by incorporating knowledge distillation and unsupervised

learning techniques, we aim to explore different ways of feature

fusion between modalities to improve its performance in

complex scenarios.
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The effects of attention in 
auditory–visual integration 
revealed by time-varying networks
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1 Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 
China, 2 Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China, 
3 Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, China

Attention and audiovisual integration are crucial subjects in the field of brain 
information processing. A large number of previous studies have sought to 
determine the relationship between them through specific experiments, but failed 
to reach a unified conclusion. The reported studies explored the relationship 
through the frameworks of early, late, and parallel integration, though network 
analysis has been employed sparingly. In this study, we employed time-varying 
network analysis, which offers a comprehensive and dynamic insight into cognitive 
processing, to explore the relationship between attention and auditory-visual 
integration. The combination of high spatial resolution functional magnetic 
resonance imaging (fMRI) and high temporal resolution electroencephalography 
(EEG) was used. Firstly, a generalized linear model (GLM) was employed to find the 
task-related fMRI activations, which was selected as regions of interesting (ROIs) for 
nodes of time-varying network. Then the electrical activity of the auditory-visual 
cortex was estimated via the normalized minimum norm estimation (MNE) source 
localization method. Finally, the time-varying network was constructed using the 
adaptive directed transfer function (ADTF) technology. Notably, Task-related fMRI 
activations were mainly observed in the bilateral temporoparietal junction (TPJ), 
superior temporal gyrus (STG), primary visual and auditory areas. And the time-
varying network analysis revealed that V1/A1↔STG occurred before TPJ↔STG. 
Therefore, the results supported the theory that auditory-visual integration occurred 
before attention, aligning with the early integration framework.

KEYWORDS

auditory–visual integration, attention, time-varying network connectivity, fMRI, EEG

1. Introduction

Individuals are constantly exposed to a plethora of sensory information that they 
unconsciously integrate in order to comprehend their environment. Visual and auditory 
information constitutes the majority (over 90%) of the information that is perceived (Treichler, 
1967; Ristic and Capozzi, 2023). Auditory–visual integration occurs when auditory and visual 
stimuli coincide temporally and spatially, and when two stimuli are presented within a close 
time interval and similar spatial arrangement (Stein and Meredith, 1990; Frassinetti et al., 2002; 
Stevenson et al., 2012; Spence, 2013; Tang et al., 2016; Ľuboš et al., 2021). Attention plays a 
crucial role in selectively processing external information and improving information processing 
performance through focusing on target locations (Posner and Rothbart, 2006; Zhang T. et al., 
2022). Attention is instrumental in processing dynamic stimuli efficiently and enhancing 
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perception, as it directs limited cognitive resources toward information 
relevant to the current task (Tian et  al., 2014; Li et  al., 2015). In 
addition, the researches on the attention mechanism may help to 
improve deep neural networks for visual processing tasks (Zhang  
et al., 2019; Wang et al., 2020).

There is ongoing debate regarding the role of attention in 
multisensory integration, particularly in the case of auditory–visual 
integration. Three mainstream theories about the relationship between 
auditory–visual integration and attention were proposed in previous 
studies (Koelewijn et al., 2010; Xu et al., 2020). The first, the early 
integration framework, asserts that integration occurs prior to 
attention and can even drive it (Vroomen et al., 2001; Rachel et al., 
2022). Evidence for this is seen in the “pip-pop effect,” where the 
addition of auditory stimulation to a visual search task led to faster 
results (Erik et al., 2008). Then non-spatial auditory stimulation was 
added to the spatial visual experiment. The second theory, the late 
integration framework, demonstrates that multisensory integration 
appears behind attention. In other words, two unimodal (i.e., auditory 
and visual) events are attended to separately before they are integrated. 
This model indicates that attention is necessary for multisensory 
integration (Laura et al., 2005; Sébastien et al., 2022). A later study 
used a cross-modal attention preference task to prove that cross-
modal interactions are influenced by attention (Romei et al., 2013; 
Wen et  al., 2021). Furthermore, late integration suggests that late 
cross-modal effects are mediated by attentional mechanisms. The 
third theory is the parallel integration framework; here, the stage at 
which multisensory integration takes place is uncertain. Multisensory 
integration can be early or late, and it depends on experimental or 
external conditions (Calvert and Thesen, 2004; Sébastien et al., 2022). 
Some studies extended the seminal methods of the parallel integration 
framework (Talsma et al., 2010; Stoep et al., 2015). This may produce 
different results as a result of several factors, including task type 
(detection or identification), stimulus properties (simple or complex), 
and attention resources (exogenous or endogenous).

In the study of the relationship between attention and auditory–
visual integration, various methods have been employed. Early research 
utilized behavioral data and discovered that an auditory stimulus 
influences the reaction time (RT) of a synchronous or nearly synchronous 
visual stimulus (Mcdonald et al., 2000; Shams et al., 2000; Laura et al., 
2005; Zhang X. et al., 2022) and the reverse is also true (Platt and Warren, 
1972; Bertelson, 1999). These results indicate that a simultaneous or 
near-simultaneous bimodal stimulus reduces stimulation uncertainty 
(Calvert et  al., 2000), potentially supporting the early integration 
framework or enhancing stimulation response for the late framework 
(Stein et al., 1989; Zhang et al., 2021). However, external factors, such as 
the state of the experimental subjects, may be overlooked.

With the advancement of brain imaging technology, increasing 
numbers of researchers have turned to brain imaging to investigate the 
relationship between attention and auditory–visual integration. By 
utilizing an event-related potential component (ERP) of an auditory–
visual streaming design and a rapid serial visual presentation 
paradigm, they explored the interactions between multisensory 
integration and attention (Durk and Woldorff, 2005; Kang-jia and Xu, 
2022). The results indicated that activity associated with multisensory 
integration processes is heightened when they are attended to, 
suggesting that attention plays a critical role in auditory–visual 
integration and aligning with the late integration criteria. The 

improvement of the spatial resolution of scalp EEG has long been a 
subject of interest for researchers.

Studies using functional magnetic resonance imaging (fMRI) with 
high spatial resolution have reported the accurate location of many 
areas involved in auditory–visual integration and attention; these 
mainly include the prefrontal, parietal, and temporal cortices (Calvert 
et al., 2001; Macaluso et al., 2004; Tedersälejärvi et al., 2005; Noesselt 
et al., 2007; Cappe et al., 2010; Chen et al., 2015).The superior temporal 
gyrus (STG) and sulcus (STS) both participate in speech auditory–
visual integration (Klemen and Chambers, 2012; Rupp et al., 2022) and 
non-speech auditory–visual stimuli (Yan et al., 2015). In the past, STG 
was considered an area of pure sound input (Mesgarani et al., 2014). 
The temporoparietal junction (TPJ), which is close to the STG, is an 
important area of the ventral attention network (VAN) that is located 
mostly in the right hemisphere, and is recruited at the moment a 
behaviorally relevant stimulus is detected (Corbetta et al., 2008; Tian 
et al., 2014; Branden et al., 2022). The TPJ is activated during detection 
of salient stimuli in a sensory environment for a visual (Corbetta et al., 
2002, 2008), auditory (Alho et al., 2015), and auditory–visual task 
(Mastroberardino et  al., 2015). However, as many studies have 
mentioned, it is difficult to determine accurately the timing 
characteristics when using fMRI with poor temporal resolution.

For the reason that EEG and fMRI are two prominent noninvasive 
functional neuroimaging modalities, and they demonstrate highly 
complementary attributes, there has been a considerable drive toward 
integrating these modalities in a multimodal manner (Abreu et al., 
2018). The combination of scalp EEG’s exceptional temporal resolution 
and fMRI’s remarkable spatial resolution enables a more comprehensive 
exploration of brain activity, surpassing the limitations inherent to 
individual techniques (Bullock et al., 2021). Previous investigations 
have examined the functional aspects of the brain in various 
pathological conditions, such as schizophrenia (Baenninger et al., 2016; 
Ford et al., 2016). Multiple researchers have employed combination of 
EEG and fMRI to explore cognitive mechanisms (Jorge et al., 2014; 
Shams et  al., 2015; Wang et  al., 2018). Some other studies have 
investigated brain dynamics in relation to complex cognitive processes 
like decision-making and the onset of sleep (Bagshaw et al., 2017; 
Pisauro et al., 2017; Hsiao et al., 2018; Muraskin et al., 2018). In this 
study, we used these two neuroimaging technologies to investigate the 
appearance order of auditory–visual integration and attention. 
Previous studies have tended to apply a specific experimental paradigm 
to investigate this relationship, but few have used network analyses to 
resolve this conundrum. We employed time-varying network analysis 
based on the adaptive directed transfer function (ADTF) method to 
uncover dynamic information processing. This method can uncover 
the dynamic information processing with a multivariate adaptive 
autoregressive mode (Li et al., 2016; Tian et al., 2018b; Nazir et al., 
2020). This approach may offer new insights into the temporal order of 
multisensory integration and attention in a stimulated EEG network.

2. Materials and methods

2.1. Participants

The data for this study was obtained through separate EEG and 
fMRI recordings, conducted on 15 right-handed, healthy adult males 
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(mean ± standard deviation (SD) = 21.4 ± 2.8 years). Participants 
provided informed consent and were free from visual or auditory 
impairments and any mental health conditions. Upon completion of 
the experiments, participants were compensated for their time. The 
study was approved by the Ethics Committee of the University of 
Electronic Science and Technology of China.

2.2. Experimental design

Throughout the experiment, a white fixation cross of dimensions 
(0 5 0 5. .°× ° ) was presented at the center of a black monitor. The 
visual stimuli consisted of rectangular boxes that randomly appeared 
in either the left or right visual field (LVF or RVF, respectively). The 
box was 2 2°× ° and its width was 0 2. ϒ. The boxes remained on the 
screen for 50 ms and were followed by an auditory stimulus, a 
1,000 Hz pure tone that also randomly appeared in the left or right 
auditory field (LAF and RAF, respectively) after a 50 or 750 ms 
interval. Participants were instructed to respond by pressing the ‘Z’ 
key with their left hand if the tone appeared in the LAF, and the ‘/’ 
key with their right hand if it appeared in the RAF. Participants were 
required to react as soon as they heard the pure tone, which lasted 
for 200 ms. The fixation cross remained on the monitor for an 
additional 800 ms to ensure participants had sufficient time to 
respond correctly. The experimental procedure is illustrated in 
Figure 1.

2.3. Behavioral data and analysis

The behavioral data was obtained via EEG and fMRI. We analyzed 
RT using repeated measures analysis of variance (ANOVA) with the 
following factors: stimulus visual field (LVF vs. RVF), cue validity 
(valid vs. invalid), stimulus-onset asynchrony (SOA), and the 
interval between the cue and target stimulus (long vs. short). Data 
consistency was ensured by excluding RTs greater than 900 ms and 
less than 200 ms, as well as any instances of missed or incorrect 
key presses.

2.4. EEG and fMRI data recording

In the study, EEG and fMRI data were collected separately. 
We  used a Geodesic Sensor Net (GSN) with 129-scalp electrodes 
located according to the International 10–20 system (Tucker, 1993) to 
record the EEG at a rate of 250 Hz. The Oz, Pz, CPz, Cz, FCz, and Fz 
electrodes were placed in the middle of the skull, and the remaining 
electrodes were distributed along both sides of the midline. The 
central top electrode (Cz) was used as the reference electrode and all 
electrodes had impedances lower than 40 kΩ (Tucker, 1993).

fMRI data was collected using the fast T2*-weighted gradient 
echo EPI sequence on a 3-T GE MRI scanner (TR = 2000 ms, 
TE = 30 ms, FOV = 24 cm × 24 cm, flip angle = 90°, matrix = 64 × 64, 
30 slices) at the University of Electronic Science and Technology of 

FIGURE 1

Illustration of stimulus sequence in the experiment.
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China. This method obtained 198 volumes for each session. Because 
the machine at was unstable at the beginning of the data collection, 
we  discarded the first five image volumes of each run for  
preprocessing.

2.5. The processing framework for 
time-varying networks

The processing framework for calculating time-varying networks 
consisted of three stages, as illustrated in Figure 2.

 1. ROI selection based on task-related fMRI activations, as shown 
in Figure 2A.

The fMRI data was preprocessed and constructed by a generalized 
linear model (GLM). The results of the GLM were then subjected to a 
statistical test. Reply on the statistical results, 4 activations for the left 
cue and 4 activations for the right cue in the fMRI experiment were 
selected as ROIs (nodes) in the cerebral cortex, providing relatively 
accurate MNI coordinates for the construction of the time-varying 
network in the following steps.

 2. Source wave extraction (Figure 2B).

The EEG data was preprocessed, and the scalp electrical signals 
are mapped to the cerebral cortex by MNE source localization method. 
Then, the MNI coordinates provided by fMRI were converted to the 
corresponding positions of the head model and the corresponding 
time series of the cortical electrical signals are extracted.

 3. Time-varying network construction (Figure 2C).

In the third stage, the time-varying network was constructed 
using the ADTF technology, based on the results from steps 1 and 2.

2.6. fMRI data processing

The remaining volumes underwent preprocessing using Statistical 
Parametric Mapping version 8 (SPM8) software. Four preprocessing 
pipelines were applied in this study. Firstly, slice timing correction was 
implemented to address temporal differences among the slices. 
Secondly, spatial realignment was performed to eliminate head 
movement, whereby all volumes were aligned with the first volume. 
Participants whose head movement exceeded 2 mm or 2 degrees were 
excluded (Bonte et al., 2014). Thirdly, normalization was carried out 
to standardize each participant’s original fMRI image to the standard 
Montreal Neurological Institute (MNI) space using EPI templates. 

FIGURE 2

The processing framework for calculating time-varying networks. (A) fMRI processing; (B) EEG processing; (C) Time-varying network constructing.
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Voxel resampling to 3 × 3 × 3 mm3 was performed to overcome head 
size inconsistencies. Lastly, spatial smoothing was implemented to 
ensure high signal-to-noise ratio (SNR) by smoothing the functional 
images with a Gaussian kernel of full width half maximum (FWHM) 
of 6 × 6 × 6 mm3.

After data preprocessing, the time series of all voxels underwent 
a high-pass filter at 1/128 Hz and were then analyzed with a general 
linear model (GLM; Friston et  al., 1995) using SPM8 software. 
Temporal autocorrelation was modeled using a first-order 
autoregressive process. At the individual level, a multiple regression 
design matrix was constructed using the GLM, that included two 
experimental events based on the cue location (left visual field or right 
visual field). The two events were time-locked to the target of each trial 
by a canonical synthetic hemodynamic response function (HRF) and 
its temporal and dispersion derivatives. By including dispersion 
derivatives, the analysis accounted for variations in the duration of 
neural processes induced by the cue location. Nuisance covariates, 
such as realignment parameters, were included to account for residual 
motion artifacts. Parameter estimates were obtained for each voxel 
using weighted least-squares, which provided maximum likelihood 
estimators based on the temporal autocorrelation of the data (Wang 
et al., 2013).

In this study, to compute simple main effects for each participant, 
baseline contrasts were applied to the experimental conditions. 
Subsequently, the resulting individual contrast images were entered 
into a second-level one sample t-test using a random-effects model. In 
order to identify areas of significant activation, a threshold of p < 0.05 
(false discovery rate [FDR] corrected) and a minimum cluster size of 
10 voxels were utilized. These stringent criteria were employed to 
ensure robust and reliable identification of neural activation patterns.

2.7. EEG data preprocessing

The EEG data underwent five preprocessing steps. Firstly, the EEG 
epochs were set to a time range of −200 to 1,000 ms. Secondly, we used 
the average of 200 ms pre-stimulus data as a baseline to correct the 
epochs. Thirdly, we performed artifact rejection, excluding epochs 
contaminated by eye blinks, eye movements, amplifier clipping or 
muscle potentials that exceeded ±75 μv. Fourthly, we  filtered the  
EEG recordings using a band-pass filter of 0.1-30 Hz. Finally, 
we re-referenced the data using the reference electrode standardization 
technique (REST) (Yao et al., 2005; Tian and Yao, 2013; Tian et al., 
2018a). We excluded trials with incorrect behavioral responses and 
bad channel replacements, and averaged the ERPs from the stimulus 
onset time point based on the validity of the cue, visual field, and 
SOA length.

2.8. Minimum norm estimation

The volume conductor effect may lead to the generation of 
pseudo-connections during brain network construction using scalp 
brain electricity. And invasive methods for directly collecting brain 
electricity in the cerebral cortex are challenging to use. To overcome 
this problem, we employed source localization technology to transfer 
scalp brain electrical signal to the cortex, enabling estimation of 
cortical electrical signals (Tian et al., 2018a; Tian and Ma, 2020), and 

we converted 129 scalp electrodes into 19 electrodes covering the 
whole brain.

In this study, we used the normalized minimum norm estimation 
(MNE) source localization method to estimate the electrical activity 
of the auditory–visual cortex. Compared to other methods, the 
normalized MNE offers higher dipole positioning accuracy, especially 
in depth source analysis. Our head model consisted of a three-layer 
realistic representation of the cortex, skull, and scalp. The formula for 
MNE calculation is expressed as follows:

 ϕ ωt x t( ) = ( ) (1)

Where x t( ) is the EEG collected by the scalp, ϕ t( ) is the 
corresponding cortical EEG, and ω is the field matrix, which can 
be obtained from the following formula:

 
ω µ= +( )−C A AC A Cs

T
s
T

n
2

1

 
(2)

where Cs is the signal covariance, Cn is the noisy covariance, and 
A is the transfer matrix obtained by the boundary element theory. µ  
is a regularization parameter and is obtained by the following formula:
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trace C snr
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where snr is the signal to noise ratio.

2.9. Cortical time-varying network

The MNE source localization method was employed to transfer 
scalp electrical signals to the cerebral cortex. Next, MNI coordinates 
obtained from fMRI were mapped to the corresponding positions 
on the head model, and the cortical electrical signal time series at 
these positions were extracted. Subsequently, we designated these 
positions as nodes of the network and constructed the time-varying 
network using the relationship between these time series as the 
network edges.

To calculate the ADTF, we computed the multivariate adaptive 
autoregressive (MVAAR) model for all conditions. The model was 
normalized and expressed by following equation:

 
X t j t X t j t

j

p
( ) = ( ) −( ) + ( )∑ω η,

 
(4)

where X t( ) is the EEG data vector over the entire time window, 
ω j t,( ) is the coefficient matrix of the time-varying model, which can 
be calculated by the Kalman filter algorithm, and η t( ) represents the 
multivariate independent white noise. The symbol p denotes the 
MVAAR model order selected by Schwarz Bayesian Criterion 
(Schwarz, 1978; Wilke et al., 2008; Tian et al., 2018b).

After obtaining the coefficients of the MVAAR model, 
we  calculated the ADTF by applying Equation (5) to convert the 
model coefficient ω j t,( ) to the frequency domain. The Hij  element of 
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H f t,( ) describes the directional information flow between the jth 
and the ith element at each time point t  as:

 ω ηf t X f t f t, , ,( ) ∗ ( ) = ( ) (5)

 X f t f t f t H f t f t, , , , ,( ) = ( ) ∗ ( ) = ( ) ∗ ( )−ω η η1

 (6)

where ( ) ( )
p

j2 tk
k k

k 0
f,t t e fπ−

=
ω = ω ω∑ 

 is the matrix of the time-

varying coefficients. É f,t( ) and ( )f,tη  are transformed into the 
frequency domain as X t( ) and ( )f,t ,η  respectively.

Defining the directed causal interrelation from the jth to the ith 
element, the normalized ADTF is described between (0,1) as follows:

 

¹ f,t
H f,t

H f,t
ij

ij

k

n

ik

2

2

2
( ) =

( )
( )∑  

(7)

To obtain total information flow from a single node, the integrated 
ADTF is calculated as the ratio of summed ADTF values divided by 
the interested frequency bands (f1, f2):

 
( )

( )f 2 2
ij2 f1

ij
é k,t

t
f 2 f1

υ =
−

∑
 

(8)

Surrogate data were used to establish the empirical ADTF value 
distribution under the connectionless zero assumption since the 
ADTF function has a highly non-linear correlation with the time 
series it derives, making it impossible to determine the distribution of 
the ADTF estimator under zero assumption without causality. The 
shuffling procedure independently and randomly iterated Fourier 
coefficient phases to produce new surrogate data while preserving the 
spectral structure of the time series (Wilke et al., 2008). To establish a 
statistical network, the nonparametric signed rank test was used to 
select statistically significant edges. The shuffling procedure was 
repeated 200 times for each model-derived time series from each 
participant to obtain the significance threshold of p < 0.05 with 
Bonferroni correction (Tian et al., 2018b).

2.10. Correlation analysis

The relationship between the information flow and the 
corresponding average response time (RT) was calculated using 
Pearson correlation based on the results of time-varying 
network analysis.

3. Results

3.1. Behavioral data analysis

Significant effects were observed for SOA (F[1,14] = 9.85, p < 0.01) 
and validity (F[1,14] = 8.74, p < 0.05), as well as their interaction 
(F[1,14] = 27.54, p < 0.001). However, no significant visual field effect 

(F[1,14] = 3.60, p > 0.05) or interactions between visual field and SOA 
or validity were found.

Because SOA, validity, and their interaction were significant, 
we  conducted paired t-tests for the effects of SOA and validity 
(Figure 3). The results showed that participants reacted significantly 
faster in long SOA-invalid trials (268.94 ± 19.33 ms) than in long 
SOA-valid trials (277.79 ± 17.91 ms). In short SOA-invalid trials 
(291.91 ± 20.76 ms), participants took significantly more time to react 
than in short SOA-valid trials (273.80 ± 20.87 ms). There were also 
significant differences between long and short SOA-invalid trials. 
Although the RTs of long SOA-valid trials were slower than those of 
short SOA-valid trials, the difference was not significant.

3.2. fMRI results

A single sample t-test was performed to analyze fMRI data, 
revealing areas related to visual (V1), auditory (A1), multisensory 
integration (STG), and attention (angular, middle frontal cortex 
[MFG]) in both the left and right visual field (LVF and RVF). In the 
LVF, the main activated areas (p < 0.05, FDR correction) included the 
right angular gyrus (BA39), which is part of the right temporoparietal 
junction (rTPJ), right STG (BA21), right Heschl’s gyrus as A1 (BA48), 
right lingual gyrus as rV1 (BA18), and right MFG (BA46), as shown 
in Figure  4A. In the RVF, more activated areas (p  < 0.05, FDR 
correction) included left STG (BA21), left A1 (BA48), left V1 (BA17), 
bilateral MFG (BAs44/45/46), right TPJ (BA39), and so on, as shown 
in Figure 4B.

We selected four ROIs based on the task-related fMRI activations 
depicted in Figure 4 for both LVF and RVF cues. Specifically, when the 
cue appeared in either the LVF or RVF, the right TPJ (rTPJ) was 
selected for both LVF and RVF cues. When the cue appeared in the 
LVF, we chose the right STG (rSTG), right A1 (rA1), and right V1 
(rV1). When the cue appeared in the RVF, we chose the contralateral 
STG, A1, and V1. The coordinates and sizes of the ROIs are presented 
in Table 1.

FIGURE 3

The average response time (RT) of subjects for the four conditions. lv 
denotes long SOA-valid condition, liv denotes long SOA-invalid 
condition, sv denotes short SOA-valid condition, siv denotes short 
SOA-valid condition. **p  <  0.001, *p  <  0.05.
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3.3. Time-varying network

We computed the time-varying network at time points ranging from 
200 ms to 900 ms and displayed the connection time points only when it 
changed in the four conditions. When the cue appeared in the LVF or RVF, 
the changes in cue conditions were illustrated in Figure 5A and Figure 5B, 
respectively. Figure 5C summarizes the results of the time-varying network 
analysis. The first step for the long SOA condition was A1↔STG, whereas 
for the short SOA condition, it was V1↔STG. The last step for both long 
and short SOA conditions was V1↔STG and STG↔TPJ. Notably, in the 
long SOA-valid condition, V1↔STG was the middle step.

3.4. Correlation analysis

Our analysis revealed significant correlations between reaction 
and information flow (such as STG → TPJ and TPJ → STG) for all 
conditions, as shown in Figure 6. For the long SOA, distinct differences 
were observed for each condition. Negative correlations were evident 

when the cue was invalid and appeared in the LVF (STG → TPJ: 
r = −0.54, p < 0.05; TPJ → STG: r = −0.52, p < 0.05) or RVF (STG → TPJ: 
r = −0.51, p < 0.05; TPJ → STG: r = −0.58, p < 0.05). Conversely, positive 
correlations were evident when the cue was valid and appeared in 
either the LVF (STG → TPJ:r = 0.65, p < 0.01; TPJ → STG: r = 0.52, 
p < 0.05) or RVF (STG → TPJ:r = 0.53, p < 0.05; TPJ → STG: r = 0.57, 
p < 0.05). Similar trends were noted for all conditions for the short 
SOA, as shown in Figure 6. Positive correlations between mean RT 
and information flow were observed when the cue was invalid and 
appeared in the LVF (STG → TPJ: r = 0.59, p < 0.05; TPJ → STG: 
r = 0.56, p < 0.05) or RVF (STG → TPJ: r = 0.59, p < 0.05; TPJ → STG: 
r = 0.56, p < 0.05). Similarly, positive correlations were observed when 
the cue was valid, regardless of whether it appeared in the LVF 
(STG → TPJ:r = 0.72, p < 0.005 TPJ → STG: r = 0.55, p < 0.05) or RVF 
(STG → TPJ: r = 0.52, p < 0.05; TPJ → STG: r = 0.53, p < 0.05)

4. Discussions

In this study, the behavioral results showed that the RT for a valid 
cue was significantly shorter than an invalid cue in the short SOA 
condition, while the opposite was opposite for the long SOA, which 
was similar to the unimodal task. In both long and short SOA 
conditions, we observed STG activation, a critical auditory–visual 
integration region (Klemen and Chambers, 2012). Additionally, 
we observed activation in TPJ and MFG, which are important VAN 
areas (Corbetta et al., 2008), indicating that attention plays a role in 
auditory–visual integration. Our time-varying network analysis 
revealed that V1/A1↔STG occurred before TPJ↔STG, as shown in 
Figure 5, indicating that pre-attention in auditory–visual integration.

4.1. Similar results observed between the 
bimodal and unimodal cue-target 
paradigms

Previous researches have reported that there is a significant cue 
effect for short SOAs in the visual cue-target paradigm. On the 

FIGURE 4

Brain activation maps. (A) Illustration of the activation map when the cue stimulus appeared in the LVF. The main activated areas (p  <  0.05, FDR) 
included the right TPJ, right STG, right A1, right V1, and right MFG; (B) Illustration of the activation map when the cue stimulus appeared in the RVF 
(p  <  0.05, FDR correction). The activated areas included the left STG, left A1, left V1, bilateral MFG, right TPJ, and right MT.

TABLE 1 The four selected regions of interest (ROIs) in each visual field.

ROI
MNI coordinates (mm) The size 

of ROI 
(mm)x y z

Cue in the LVF

rTPJ 45 −54 30 6

rSTG 63 −39 18 6

rA1 45 −21 12 10

rV1 9 96 −3 10

Cue in the RVF

rTPJ 45 −54 33 6

lSTG −64 −46 18 6

lA1 −40 −26 14 10

lV1 −9 −96 −9 10
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condition of the time interval of the cue and target stimulus is shorter 
than 300 ms, the subjects exhibited faster responses when the cue was 
valid as compared to when it was invalid. However, the subjects 
showed slower responses when the cue was valid rather than invalid 
for long SOA (more than 300 ms). These findings were consistent with 
previous studies (Lepsien and Pollmann, 2002; Mayer et al., 2004a,b; 
Tian and Yao, 2008; Tian et al., 2011) and suggested that stimulus-
driven attention effects are faster and more transient than goal-
directed attention effects (Jonides and Irwin, 1981; Shepherd and 
Müller, 1989; Corbetta et al., 2002; Busse et al., 2008; Macaluso et al., 
2016; Tang et al., 2016). Similar outcomes have been observed in the 
auditory paradigm (Alho et  al., 2015; Hanlon et  al., 2017). Our 
behavioral analysis aligns with previous research on the unimodal 
paradigm and suggests that there is no difference between unimodal 
and bimodal paradigms in the cue-target paradigm.

4.2. Integration and attention exist in the 
bimodal cue-target paradigm

Previous studies have emphasized that auditory–visual integration 
in the cue-target paradigm occurs when the cue with one modal 

stimulus and the target with a different modal stimulus are presented 
from around the same spatial position (Stein and Meredith, 1990; 
Spence, 2013; Wu et al., 2020) and at approximately the same time 
(Stein and Meredith, 1990; Frassinetti et al., 2002; Bolognini et al., 
2005; Spence and Santangelo, 2010; Stevenson et al., 2012; Tang et al., 
2016). However, it will not appear if the cue precedes the target by 
more than 300 ms (Spence, 2010). In our paradigm, the time intervals 
between cue and target stimulus were divided into 100 and 800 ms, 
which cannot be directly compared to previous studies. Our fMRI 
results, where the STG appeared in all conditions, indicate that 
auditory and visual integration occurs even when these two stimuli 
are not aligned in space or time (i.e., more than 300 ms interval).

The role of attention in multisensory integration is still under 
debate. Some studies proposed that multisensory integration is an 
automatic process (Vroomen et  al., 2001; José et  al., 2020), while 
others suggested that attention played an important role in 
multisensory integration (Talsma et  al., 2007, 2010; Fairhall and 
Macaluso, 2009; Tang et al., 2016). Since rTPJ and MFG important 
parts of the ventral attention network (Corbetta et al., 2008; Klein 
et  al., 2021), the experimental activation of these rTPJ and MFG 
suggested that attention may also be involved in integration. We used 
time-varying networks to determine the temporal order between 

FIGURE 5

The time-varying networks when the cue stimulus appeared in the (A) LVF and (B) RVF. (C) Summary of time-varying networks. ①②③ denote the order 
in which the connections appear.
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multisensory integration and attention using combination of fMRI 
and EEG data, which allowed for greater precision than EEG data 
alone. Additionally, the fMRI data provided a more precise spatial 
resolution for the time-varying networks.

4.3. Auditory–visual integration prior to 
attention

In this research, we constructed a time-varying network using 
task-related fMRI activations as nodes, including TPJ as the core of 
the VAN (Corbetta et al., 2008), and STG as an important area for 

integration (Yan et  al., 2015). Our aim was to investigate the 
relationship between multisensory integration and attention. As 
depicted in Figure 5C, the V1/A1↔STG connection was always the 
first order, followed by STG↔TPJ, regardless of the conditions. This 
finding supports the notion that pre-attention is involved in auditory 
and visual integration, which is consistent with previous studies (Erik 
et al., 2008). However, we observed some differences under different 
conditions, such as the SOA length. For short SOA, the first connection 
was V1↔STG, as visual stimuli are dominant in processing spatial 
characteristics, while auditory events dominate temporal characteristic 
processing (Bertelson et al., 2000; Stekelenburg et al., 2004; Bonath 
et  al., 2007; Navarra et  al., 2010). Conversely, for long SOA, 

FIGURE 6

The correlation between information flow and average reaction time (RT) when the cue stimulus appeared in the (A) LVF and (B) RVF. *a significant 
difference between the two regions. STG  →  TPJ denotes the causal flow from STG to TPJ. TPJ  →  STG denotes the causal flow from TPJ to STG.
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information flowed from the A1 to STG. This result might be due to 
the auditory–visual stimuli being temporally unsynchronized in our 
data collection. As the SOA increased, the dominant role of the visual 
stimulus diminished, and the auditory effect became stronger, leading 
to a significant A1↔STG flow. Interestingly, TPJ↔STG and STG↔V1 
were the last step in all conditions, indicating that the TPJ modulates 
the primary cortex by using integration areas as a transfer node in 
all cases.

4.4. Relationship between information flow 
and RT

Numerous studies have investigated how attention affects a 
subject’s reaction time, but there is disagreement on whether attention 
boosts or limits the reflection (Senkowski et  al., 2005; Karns and 
Knight, 2009; Macaluso et al., 2016). Some studies have suggested that 
attention accelerates reaction speed (Mcdonald et al., 2005, 2009; Van 
der Stoep et al., 2017), while others have proposed that attention may 
actually inhibit reaction (Tian and Yao, 2008). A recent study has 
demonstrated that both stimulus-driven attention and multisensory 
integration can accelerate responses (Van der Stoep et  al., 2017; 
Motomura and Amimoto, 2022).

In this study, we compared the correlation between mean RT and 
the information flow of STG↔TPJ under different circumstances. 
Our findings suggest that attention has a direct influence on 
multisensory integration, as the extent of information flow reflects 
the mutual influence of the two brain regions. Specifically, 
we observed a negative correlation between the two regions in the 
long SOA-invalid condition, indicating that larger information flow 
led to faster reflection times. We inferred that this phenomenon is 
due to bottom-up attention, where increased information flow leads 
to greater information exchange between the STG and TPJ and, thus, 
faster reactions. However, in other conditions, we observed positive 
correlations, which we  attribute to the modulation of attention. 
Specifically, greater attention modulation results in 
inhibited reactions.

5. Conclusion

In this paper, our analysis of the behavioral data showed no 
discernible difference between the multisensory and unisensory 
cue-target paradigms. We  also employed fMRI data analysis to 
demonstrate the existence of auditory–visual integration in the long 
SOA condition and the necessity of attention for such integration. The 
constructed time-varying networks based on fMRI coordinates 
revealed that multisensory integration occurs prior to attention and 
pre-attention is involved in auditory–visual integration. Furthermore, 
our findings suggest that attention can impact the subject’s reaction 
time, but the effect depends on the situation, and greater attention 
modulation results in inhibited reactions.
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Efficient and reliable transportation of goods through trucks is crucial for road 
logistics. However, the overloading of trucks poses serious challenges to road 
infrastructure and traffic safety. Detecting and preventing truck overloading 
is of utmost importance for maintaining road conditions and ensuring the 
safety of both road users and goods transported. This paper introduces a novel 
method for detecting truck overloading. The method utilizes the improved 
MMAL-Net for truck model recognition. Vehicle identification involves using 
frontal and side truck images, while APPM is applied for local segmentation of 
the side image to recognize individual parts. The proposed method analyzes 
the captured images to precisely identify the models of trucks passing 
through automatic weighing stations on the highway. The improved MMAL-
Net achieved an accuracy of 95.03% on the competitive benchmark dataset, 
Stanford Cars, demonstrating its superiority over other established methods. 
Furthermore, our method also demonstrated outstanding performance on 
a small-scale dataset. In our experimental evaluation, our method achieved 
a recognition accuracy of 85% when the training set consisted of 20 sets of 
photos, and it reached 100% as the training set gradually increased to 50 sets of 
samples. Through the integration of this recognition system with weight data 
obtained from weighing stations and license plates information, the method 
enables real-time assessment of truck overloading. The implementation of the 
proposed method is of vital importance for multiple aspects related to road 
traffic safety.
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1. Introduction

With the rapid development of the global economy and the acceleration of urbanization 
processes, highways play a crucial role in connecting different regions and cities. In the realm 
of road transportation, trucks serve as vital transportation tools, undertaking the task of 
transporting a substantial amount of goods. However, the issue of truck overloading has become 
one of the primary challenges in road traffic safety and road damage. Overloaded trucks exert 
significant pressure on road infrastructure, increasing the risk of traffic accidents and potentially 
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leading to severe road collapse incidents. Therefore, the development 
of an accurate and efficient truckload monitoring method holds 
significant practical significance.

Traditional methods for truckload monitoring mainly rely on 
static weight measurement equipment such as weighbridges (Zhou 
et al., 2005) and fixed scales. However, these devices have several 
limitations, including the need for trucks to stop for measurement and 
high time and labor costs. Additionally, static measurement methods 
cannot provide real-time monitoring and detection capabilities for 
violations, limiting their effectiveness in practical applications.

To address these challenges, a promising solution has emerged: 
utilizing camera images from highway weigh stations for truck model 
recognition and combining them with weighing information obtained 
from a dynamic weighing system. By leveraging truck photos captured 
near these stations and employing advanced image processing and 
pattern recognition techniques, truck models can be  identified 
accurately. Regrettably, the current network architectures utilized for 
recognition in this context often exhibit a simplistic nature, leading to 
suboptimal accuracy in the identification process. As a consequence, 
determining whether a truck is overloaded becomes inaccurate. 
Moreover, the ability to perform real-time recognition using captured 
photographs poses an unresolved challenge that demands 
urgent attention.

This paper aims to propose a truck model recognition method 
based on highway automatic weighing station camera images, with 
the objective of accurately identifying truck models. Consequently, 
the maximum load capacity of the trucks is determined. Through 
the integration of license plates and weighing information, the 
system can accurately determine if a truck is carrying excessive 
load. By doing so, it can prevent the occurrence of misjudgments 
caused by incidents of license plates damage, which are likely to 
happen in schemes that rely solely on license plates recognition to 
obtain vehicle models. Through this method, precise truck 
information can be  provided for freight management, 
transportation safety, and highway planning, promoting the 
development of the logistics industry and enhancing traffic safety.

2. Literature review

2.1. FGVC

Fine-Grained Visual Categorization (FGVC) refers to the task of 
classifying objects into different subcategories or fine-grained classes 
within a broader category. In FGVC, the goal is to achieve detailed 
discrimination and classification among visually similar objects, such 
as different species of birds, breeds of dogs, or models of cars. This 
field of research focuses on developing computer vision algorithms 
and techniques to accurately recognize and classify objects at a fine-
grained level, where subtle differences between subclasses need to 
be distinguished.

Fine-grained image classification, in contrast to conventional 
image classification tasks, encompasses a low signal-to-noise ratio, 
restricting the presence of highly discriminating information to 
minuscule local regions. Thus, the crux of achieving success in fine-
grained image classification algorithms lies in the identification and 
efficient utilization of these valuable local region insights. Presently, 
most classification algorithms adhere to a common workflow: initial 

localization of the foreground object and its distinct local regions, 
followed by individual feature extraction from these regions. The 
processed features are subsequently utilized for classifier training and 
prediction purposes. To attain satisfactory classification results, 
numerous existing algorithms heavily depend on manual annotation 
information (Wei et  al., 2018), such as bounding boxes and part 
locations. The annotation frame aids in foreground object detection, 
effectively mitigating background noise interference. Local region 
positions serve to identify valuable regions or align perspectives, 
facilitating the extraction of local features. Nevertheless, the costly 
acquisition of manual annotation information severely limits the 
practicality of these classification algorithms. In recent years, an 
increasing number of studies have opted to exclude such labeling 
information, relying solely on labels to accomplish image classification 
tasks (Lin et  al., 2005; Zhang et  al., 2016), resulting in 
commendable outcomes.

In the research and development of FGVC, traditional 
classification algorithms based on handcrafted features were initially 
employed. These algorithms typically begin by extracting local 
features, such as Histogram of Oriented Gradients (HOG) (Dalal and 
Triggs, 2005), from the images. Subsequently, an encoding model like 
Vector of Locally Aggregated Descriptors (VLAD) (Jégou et al., 2010) 
is employed for feature encoding, resulting in the desired feature 
representation. However, the limited descriptive power of handcrafted 
features often leads to suboptimal classification performance. In the 
early stages of fine-grained visual categorization research, the 
representation capacity of features became a primary bottleneck 
hindering performance improvement.

In recent years, Convolutional Neural Network (CNN)-based 
methods for fine-grained image recognition (Wang et al., 2017; 
Xie et al., 2017) have significantly matured. Donahue et al. (2014) 
conducted an analysis of a CNN model trained on the ImageNet 
dataset, revealing that the features extracted from the CNN 
possess more robust semantic characteristics and exhibit superior 
differentiation compared to artificial features. Building upon these 
findings, the researchers applied the convolution features to 
various domain-specific tasks, including fine-grained 
classification, resulting in improved classification performance. 
Nevertheless, the crucial components of the task tend to be subtle 
and were not adequately captured by conventional CNN 
approaches. Consequently, researchers have directed their 
attention toward internal enhancements within the framework. 
Zhang et al. (2014) introduced the Part R-CNN algorithm, which 
leverages R-CNN (Girshick et al., 2014) for image detection. This 
methodology aims to achieve precise localization of crucial 
components and enhance feature representation. Branson et al. 
(2014) proposed the Pose Normalized Convolutional Neural 
Network (Pose Normalized CNN) algorithm. Their approach 
comprises several steps: localization detection is performed on 
local regions for each input image, followed by cropping the image 
based on the detected annotation boxes, extracting hierarchical 
local information, and conducting pose alignment. Subsequently, 
distinct layers of convolutional features are extracted for different 
body parts. Finally, these convolutional features are concatenated 
into a feature vector and utilized for SVM model training. These 
approaches have demonstrated robust feature representation 
capabilities and yielded promising results in fine-grained image 
recognition tasks.
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Compared to regular classification tasks, acquiring fine-grained 
image databases poses greater challenges and requires stronger 
domain expertise for data collection and annotation. However, in 
recent years, there has been a significant increase in the availability 
of fine-grained image databases, which reflects the flourishing 
development trend and strong real-world demand in this field. 
Currently, commonly used fine-grained image databases include (1) 
CUB200-2011: It comprises a total of 11,788 bird images belonging 
to 200 different categories. This database provides rich manual 
annotations, including 15 local part locations, 312 binary attributes, 
1 bounding box, and semantic segmentation images, (2) Stanford 
Dogs: This database offers a collection of 20,580 images featuring 
120 different breeds of dogs. It provides only bounding box 
annotations, (3) Oxford Flowers: This database is divided into two 
scales, containing 17 and 102 categories of flowers, respectively. The 
102-category database is more commonly used, with each category 
containing 40 to 258 images. In total, there are 8,189 images in this 
database, which provides only semantic segmentation images 
without any additional annotations, (4) Cars: This database provides 
a collection of 16,185 vehicle images belonging to 196 different 
categories, encompassing various brands, years, and models. Only 
bounding box annotations are provided, and (5) FGVC-Aircraft: 
This database consists of 10,200 images of 102 different aircraft 
categories, with each category containing 100 distinct photos. Only 
bounding box annotations are provided. In recent years, extensive 
research has been conducted on fine-grained image databases. DCL 
(Chen et al., 2019) employed a deconstruction and reconstruction 
approach to learn semantic correlations among local regions in 
input images. API-Net (Zhuang et  al., 2020) progressively 
recognized pairs of fine-grained images through iterative 
interaction. GCP (Song et al., 2022) introduced a dedicated network 
branch to magnify the importance of small eigenvalues. MSHQP 
(Tan et al., 2022) effectively modeled intra and inter-layer feature 
interactions, integrating multi-layer features to enhance part 
responses. These methods primarily focus on locating and utilizing 
key regions for final recognition, yielding promising performance. 
However, they tend to overlook the potential contribution of 
complementary regions that can also play a positive role in the 
recognition process.

2.2. Vehicle recognition and classification

Vehicle recognition and classification are essential components of 
FGVC field. In the context of vehicles, this entails distinguishing 
between closely related classes such as different car models, brands, 
and types, where subtle visual differences in features become crucial 
for accurate classification. Currently, research on vehicle recognition 
and classification primarily centers around three main approaches: 
pattern recognition based on matching method, pattern recognition 
based on machine learning and pattern recognition based on 
deep learning.

The first approach involves the identification of vehicles through 
license plates and vehicle tag detection using a matching method. 
While the license plate number and label characteristics can directly 
identify the vehicle’s brand and model (Psyllos et al., 2010; Huang 
et al., 2015), this method has a limitation: it does not encompass all 
the fine-grained features associated with the vehicle brand and model. 

Apart from the license plates and labels, vehicle lights and other 
textural information also bear the characteristics of the vehicle model. 
Relying solely on license plates and tags is insufficient. Additionally, 
the license plates of trucks are prone to being contaminated by dirt 
and dust, which leads to reduced visibility and clarity. In such 
scenarios, this method becomes ineffective.

The second approach involves using machine learning to classify 
vehicle brands and models. The traditional machine learning method 
comprises two steps: feature extraction and classifier classification. 
Fraz et al. proposed a method for recognizing vehicle brands and 
models based on a SIFT feature dictionary (Fraz et al., 2014). In this 
method, SIFT features of pictures from the training set’s vehicles were 
treated as “words” to create a dictionary of vehicle brands and models. 
However, this method necessitates extensive computation and takes a 
considerable amount of time to identify each image, making it 
unsuitable for real-time vehicle brand and model classification in 
practical scenarios. Abdul et  al. proposed a method employing a 
cascade classifier (Siddiqui et  al., 2016). Initially, representative 
features were extracted from the samples instead of using all features. 
Subsequently, a cascade-based SVM classifier was employed, resulting 
in significant improvements in real-time recognition. Biglari et al. 
(2019) introduced an algorithm based on the histogram of gradient 
directions feature and cascade classifier. Multiple vehicle brand models 
were trained first, followed by classification using a cascade SVM 
classifier, achieving an impressive classification accuracy of up to 
96.78%. However, this method still requires hardware acceleration for 
real-time classification.

The third approach involves vehicle pattern recognition based on 
deep learning. Yang et al. proposed a method for recognizing vehicle 
brands and models based on the joint attributes of vehicles (Yang et al., 
2015). This method extracts vehicle features from multiple 
perspectives and angles, fuses the extracted features, and performs 
recognition. While this method is well-suited for recognizing vehicle 
brands and models in complex scenes, its real-time performance is 
compromised due to the abundance of features. Huang et al. suggested 
randomly discarding certain layers during the training of ResNet to 
obtain a convolutional neural network with random depth (Huang 
et al., 2016), thereby addressing the issue of gradient vanishing caused 
by excessively deep networks. Fang et al. introduced a fine-grained 
method for recognizing vehicle brands and models (Fang et al., 2016), 
utilizing a CNN model to extract local and overall features of vehicles, 
and combining them for classification. Wang et al. (2020) proposed a 
method based on structural graph to learn discriminative 
representations for vehicle recognition. This approach first constructs 
a global structural graph from the features generated by a 
convolutional network. Then, it utilizes this structural graph as 
guidance to generate effective vehicle representations. Mo et al. (2020) 
analyzed the relationship between the number and distribution of 
vehicle axles and the weight limit of trucks. They proposed a circular 
detection method based on an improved Hough and clustering 
algorithm to identify the axles of trucks. Presently, most studies on 
deep learning for vehicle brand recognition rely on a single 
convolutional neural network model. However, for the intricate task 
of truck brand classification, a single model falls short in achieving 
satisfactory classification accuracy. Consequently, integrating multiple 
convolutional neural network models to develop a fusion model 
suitable for truck brand classification becomes a problem that requires 
resolution in this study.
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3. Method

In typical scenarios, automatic weighing stations on highways are 
equipped with multiple cameras to capture frontal and side images of 
trucks. When utilizing these images for model recognition, the initial 
step involves utilizing the frontal image (front view) for identification. 
Analyzing the frontal image allows for the determination of the truck’s 
model. Additionally, the side image is utilized to enhance accuracy in 
identifying the frontal view. The side image provides supplementary 
perspectives and details, thereby improving the accuracy of frontal 
view recognition. Moreover, the side image enables the segmentation 
of the truck into multiple parts, further refining model recognition 
precision. Through comprehensive analysis of both frontal and side 
images, we can achieve more accurate truck identification and conduct 
additional analysis based on its body features. Knowing the truck’s 
model provides information regarding its rated load capacity. The 
weight measurement data obtained in the automatic weighing area 
enables straightforward determination of whether the truck is 
overloaded. Moreover, the inclusion of license plates information 
enables efficient monitoring and regulation by traffic authorities. 
Figure 1 illustrates the process described above.

3.1. The improved MMAL-Net

We improved MMAL-Net (Zhang et al., 2021) and employed it for 
truck recognition and classification. In Figure  2, we  illustrate the 
network architecture that was constructed during the training phase, 
consisting of three branches: frontal, side, and part branches. The 
frontal branch is responsible for recognizing and classifying frontal 
truck images, while the side branch receives side images and segments 

them into multiple parts using the Attention Part Proposal Module 
(APPM). The part branch, on the other hand, specializes in 
recognizing and classifying part images. All three branches utilize a 
ResNet-50 (He et al., 2016) for feature extraction and employ a Fully 
Connected (FC) layer for classification, employing cross-entropy loss 
as the classification loss function.

ResNet-50 is a CNN architecture that belongs to the ResNet family. 
The ResNet family of architectures was specifically developed to address 
the problem of vanishing gradients in deep neural networks. In ResNet-
50, the numerical suffix “50” indicates that the network consists of a total 
of 50 layers, including convolutional layers, pooling layers, fully 
connected layers, and shortcut connections. The key innovation of 
ResNet lies in the introduction of residual or skip connections, which 
allow information to bypass certain layers. This enables the network to 
learn more effectively by facilitating the propagation of gradients during 
training and enabling the acquisition of deeper and more complex 
representations. These skip connections also mitigate the problem of 
degradation, wherein the accuracy of a deep network decreases as its 
depth increases, by facilitating the training of deeper networks. ResNet-50 
has been widely utilized and has achieved significant success in various 
machine vision tasks, such as image classification, object detection, and 
image segmentation. It has proven to be a powerful architecture that has 
advanced the field of computer vision and deep learning.

Formulas 1, 2, and 3 represent the loss function of the three 
branches, respectively.

 L P cfrontal f= − ( )( )log  (1)

 L P cside s= − ( )( )log  (2)

FIGURE 1

The process of the overload detection.
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Where c represents the ground truth label of the input image, while 
Pf  and Ps denote the category probabilities obtained from the last softmax 
layer outputs of the frontal and side branches, respectively. Pp n( ) refers to 
the output of the softmax layer in the part branch that corresponds to the 
nth part image. N represents the total count of part images.

The total loss is defined as Formula 4:

 total frontal side partL L L L= + +  (4)

The total loss is calculated as the cumulative sum of losses from 
the three branches, collaborating to enhance the model’s performance 
during backpropagation. This enables the final converged model to 
generate classification predictions by considering both the global 
structural attributes of the object and its detailed features. During the 
testing phase, the part branch was excluded to minimize computational 
complexity, ensuring efficient prediction times for practical 
applications of our method.

3.2. APPM

By analyzing the activation map A, we observed that areas 
with high activation values corresponded to key parts, such as the 
front area of the truck. To identify these informative regions, 
we  adopted a sliding window approach inspired by object 

detection techniques. This approach allowed us to extract part 
images from windows containing relevant information. 
Additionally, we employed a modified version of the traditional 
sliding window method using a fully convolutional network, 
similar to the approach used in Overfeat (Sermanet et al., 2013). 
This method involved obtaining feature maps for different 
windows from the output feature map of the previous network 
branch. Subsequently, we aggregated the activation maps Aw of 
each window along the channel dimension and computed their 
mean activation value aw, as described in Formula 5. Here, Hw and 
Ww denote the height and width of a window’s feature map, 
respectively. We  then ranked the windows based on their aw 
values, with higher values indicating more informative regions, as 
illustrated in Figure 3.
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However, we cannot directly select the initial windows because 
they are often adjacent to the windows with the highest average 
activation values aw and contain nearly identical parts. Nonetheless, 
our objective is to choose a diverse range of parts. To minimize 
redundancy in the regions, we employ Non-Maximum Suppression 
(NMS) to select a fixed number of windows as part images at different 
scales. The visualization of the module’s output in Figure  4 
demonstrates that the proposed method effectively identifies distinct 
part regions with varying levels of importance. We utilize red, orange, 
yellow, and green rectangles to highlight the regions proposed by 
APPM that have the highest average activation values at various 

FIGURE 2

The improved MMAL-Net in the training phase.
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scales, with the red rectangle indicating the highest value. Figure 4 
illustrates that the proposed approach captures detailed information 
and exhibits a more logical ordering at the same scale, thus 
significantly enhancing the model’s robustness to scale variations. 
Notably, the head region stands out as the most discriminative region 
for truck recognition.

4. Results and discussion

To validate the advantages of the enhanced MMAL-Net, 
we conducted an evaluation of our method on the well-established 

and competitive benchmark dataset, Stanford Cars (Krause 
et al., 2013).

In our experiments, we  adopted a consistent preprocessing 
approach. Initially, we resized the images to dimensions of 512 × 512, 
serving as inputs for both the frontal and side branches. Additionally, 
all part images were uniformly resized to 256 × 256 for the part branch. 
To ensure efficient initialization, we pre-trained ResNet-50 on the 
widely used ImageNet dataset, allowing us to effectively obtain the 
network’s initial weights. Throughout both the training and testing 
phases, we exclusively relied on image-level labels, refraining from 
employing any additional annotations. Our optimization process 
involved utilizing SGD with specific hyperparameters: a momentum 

FIGURE 3

The simple pipeline of the APPM. We use red, orange, yellow and green colors to indicate the order of windows’ aw.

FIGURE 4

Visualization of part regions.
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value of 0.9 and a weight decay of 0.0001. To enhance training 
efficiency, we employed a mini-batch size of 6, utilizing a Tesla P100 
GPU for computation. For fine-tuning the learning process, we set the 
initial learning rate to 0.001, which we later scaled down by a factor of 
0.1 after 60 epochs. This step was instrumental in facilitating smoother 
convergence during training. We  utilized PyTorch as the 
foundational framework.

In the experiments, we compared the proposed method to several 
baseline approaches and achieved competitive results, as shown in 
Table 1. By comparison, we can observe that our method attains the 
highest accuracy 95.03%.

In practice, there is a continuous emergence of new truck models. 
Given their recent introduction, it becomes challenging to obtain an 
adequate number of instances for constructing a comprehensive 

dataset. Hence, we utilized a customized dataset on a smaller scale to 
validate the applicability and effectiveness of our method. The 
personalized truck dataset includes four truck models: FAW J7, 
Shaanxi Delong X3000, Dongfeng Dorica D6, and JAC Junling V6. 
FAW J7 and Shaanxi Delong X3000 are heavy-duty trucks, whereas 
Dongfeng Dorica D6 and JAC Junling V6 are light-duty trucks. Each 
truck category is composed of 50 sets of training images and 20 sets 
of test images and each set comprises one frontal image and one side 
image. An example is depicted in Figure 5.

Thereafter, the overall network structure with specific features 
was fine-tuned to achieve fine-grained recognition of multiple 
target models. Moreover, we evaluated the effect of varied training 
samples on the recognition performance of the intelligent 
identification model by testing the same dataset using different 

TABLE 1 Comparison of different methods on the Stanford Cars dataset.

Methods Backbone Source Accuracy (%)

RA-CNN Fu et al. (2017) VGGNet-19 CVPR’2017 92.5

MA-CNN Zheng et al. (2017) VGGNet-19 ICCV’2017 92.8

NTS-Net Yang et al. (2018) ResNet-50 ECCV’2018 93.9

MAMC Sun et al. (2018) ResNet-101 ECCV’2018 93.0

TASN Zheng et al. (2019) ResNet-50 CVPR’2019 93.8

DCL Chen et al. (2019) ResNet-50 CVPR’2019 94.5

API-Net Zhuang et al. (2020) ResNet-50 AAAI’2020 94.8

DP-Net Wang et al. (2021) ResNet-50 AAAI’2021 94.8

SAM Shu et al. (2022) ResNet-50 ECCV’2022 94.18

MSHQP Tan et al. (2022) ResNet-152 TOMM’2022 94.9

The Improved MMAL-Net ResNet-50 This paper 95.03

FIGURE 5

The personalized truck dataset. (A–D) represent FAW J7, Shaanxi Delong X3000, Dongfeng Dorica D6, and JAC Junling V6.

69

https://doi.org/10.3389/fnins.2023.1243847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2023.1243847

Frontiers in Neuroscience 08 frontiersin.org

incremental levels of training data. This simulation emulated the 
impact of increasing the number of target truck images collected 
in actual scenarios on the enhancement of the recognition 
model’s performance.

In our experiment, we selected sets of 20, 30, 40, and 50 images 
for each classifier as training datasets and used the same number of 
test set to compare the performance of API-Net, DP-Net, MSHQP and 
the improved MMAL-Net. It is worth mentioning that API-Net, 
DP-Net, and MSHQP were the top three performing methods in our 
experiments on the Stanford Cars dataset, excluding our proposed 
method. The results indicate that as the training data increases, the 
network’s ability to identify and extract features from target trucks 
gradually improves, suggesting that larger datasets can effectively 
enhance the model’s capability to extract potential features. The 
improved MMAL-Net exhibits comparable or superior performance 
to other methods across all numbers of training sets, demonstrating 
its superior ability to extract fine-grained features of target trucks (see 
Figure 6).

In our small-scale custom dataset, it is evident that the 
recognition accuracy reaches 85% when the training set consists 
of 20 sets of photos. This greatly addresses the practical issue of 
scarce images of a particular type of truck. The improved 
MMAL-Net demonstrated remarkable resilience to image quality 
and scene noise, as evidenced by its recognition accuracy of 100% 
when trained on a dataset comprising 50 sets of samples. This 
noteworthy achievement further supports the superior 
performance of the enhanced network.

Confusion matrices in Figure 7 illustrate the test results of the 
improved MMAL-Net. At a training set size of 40 sets of images, 
the improved MMAL-Net had a single misclassification on the test 
set, misclassifying a Dongfeng Dorica D6 as a JAC Junling V6. 
However, at a training set size of 50 sets, all classifications were 

accurate. The improved MMAL-Net accurately classified heavy-
duty trucks, avoiding misclassification as light-duty trucks. 
Similarly, it correctly identified light-duty trucks without 
misclassification as heavy-duty trucks. This is crucial because 
misidentifying an overloaded light-duty truck as a heavy-duty 
truck can result in undetected overweight issues, thus posing 
safety concerns.

5. Conclusion

This paper introduces a method for precise identification of 
truck models. In our experimental evaluation, this method 
achieved an accuracy of 95.03% on the competitive benchmark 
dataset, Stanford Cars. Furthermore, it achieved an accuracy of 
100% on our custom truck dataset. When integrated with weighing 
and license plates systems, it can be applied in highway automatic 
weighing stations to determine if a truck is overloaded. By 
providing accurate truck information, this method contributes to 
freight management, transportation safety, and highway planning, 
thereby fostering the development of the logistics industry and 
improving traffic safety. However, the accuracy of truck model 
recognition may decrease in real-world scenarios due to the 
reduced data quality. Consequently, future research will focus on 
addressing this issue, with specific emphasis on long-distance 
shooting conditions.
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Image desmoking is a significant aspect of endoscopic image processing, 
effectively mitigating visual field obstructions without the need for additional 
surgical interventions. However, current smoke removal techniques tend to apply 
comprehensive video enhancement to all frames, encompassing both smoke-
free and smoke-affected images, which not only escalates computational costs 
but also introduces potential noise during the enhancement of smoke-free 
images. In response to this challenge, this paper introduces an approach for 
classifying images that contain surgical smoke within endoscopic scenes. This 
classification method provides crucial target frame information for enhancing 
surgical smoke removal, improving the scientific robustness, and enhancing 
the real-time processing capabilities of image-based smoke removal method. 
The proposed endoscopic smoke image classification algorithm based on the 
improved Poolformer model, augments the model’s capacity for endoscopic 
image feature extraction. This enhancement is achieved by transforming the 
Token Mixer within the encoder into a multi-branch structure akin to ConvNeXt, 
a pure convolutional neural network. Moreover, the conversion to a single-path 
topology during the prediction phase elevates processing speed. Experiments 
use the endoscopic dataset sourced from the Hamlyn Centre Laparoscopic/
Endoscopic Video Dataset, augmented by Blender software rendering. The dataset 
comprises 3,800 training images and 1,200 test images, distributed in a 4:1 ratio 
of smoke-free to smoke-containing images. The outcomes affirm the superior 
performance of this paper’s approach across multiple parameters. Comparative 
assessments against existing models, such as mobilenet_v3, efficientnet_b7, and 
ViT-B/16, substantiate that the proposed method excels in accuracy, sensitivity, 
and inference speed. Notably, when contrasted with the Poolformer_s12 
network, the proposed method achieves a 2.3% enhancement in accuracy, an 
8.2% boost in sensitivity, while incurring a mere 6.4 frames per second reduction 
in processing speed, maintaining 87 frames per second. The results authenticate 
the improved performance of the refined Poolformer model in endoscopic 
smoke image classification tasks. This advancement presents a lightweight yet 
effective solution for the automatic detection of smoke-containing images in 
endoscopy. This approach strikes a balance between the accuracy and real-time 
processing requirements of endoscopic image analysis, offering valuable insights 
for targeted desmoking process.

KEYWORDS

endoscopic image, image classification, Poolformer, token mixer, ConvNeXt, single-
path topology only during inference
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1. Introduction

Endoscopes are essential tools that utilize the body’s natural 
cavities or tiny incisions to provide real-time visualization of internal 
organs and tissues (Fu et al., 2021; Boese et al., 2022; Chadebecq et al., 
2023). This minimizes the need for larger incisions during surgery, 
leading to shorter patient recovery periods. Consequently, endoscopy 
is now extensively employed in examining and treating various 
diseases involving the gastrointestinal tract (Aceves et  al., 2022; 
Niknam et al., 2022), ear, nose, throat (Bastier et al., 2022; Poutoglidis 
et al., 2022), spine (Ahn, 2020; Simpson et al., 2022) and urinary 
system(Zou et al., 2020; Yamashita et al., 2022). Despite the benefits 
of endoscopy, challenges arise during procedures: the generation of 
smoke due to the destruction and vaporization of tissue proteins and 
fat by the instruments (Yi et  al., 2023). This smoke hinders the 
visibility of tissue structures in endoscopic images, obstructing the 
physician’s vision and impeding accurate judgment and treatment. To 
address this challenge, image-based surgical smoke analysis and 
processing have emerged as a promising solution. Not constrained by 
hardware limitations, this approach reduces the reliance on surgical 
aids and assists physicians in obtaining clearer views for more precise 
diagnoses and treatments. Consequently, it holds immense potential 
and value for clinical applications.

However, the existing methods for intelligent analysis and 
processing of surgical smoke primarily focus on desmoking 
endoscopic images. For instance, Wang et  al. (2019) proposed an 
improved convolutional neural network (CNN) with an encoder-
decoder architecture for real-time surgical smoke removal. Their 
network takes an image with smoke along with its laplacian image 
pyramid decomposition as input and produces an image with smoke 
removed. To create the synthetic dataset, they utilized Blender and 
Adobe Photoshop to add rendered smoke to clean images. Similarly, 
Lin et al. (2021) introduced a supervised UNet-based network where 
the Laplace pyramid is fused at the encoder, and the CBAM module 
is integrated at the decoder. They employed Blender to generate 
datasets of laparoscopic images with varying levels of light and dense 
smoke. Their method achieved a high structural similarity of 0.945 
and a peak signal-to-noise ratio of 29.27 for the test data. Furthermore, 
Bolkar et  al. (2018) constructed a synthetic surgical desmoking 
dataset. They adapted the integrated desmoking network, AOD-Net, 
initially designed for outdoor desmoking, and their proposed 
supervisory model comprises five convolutional layers with ReLU 
activation units and three cascade layers. Azam et al. (2022) removed 
smoke from laparoscopic images by manual multiple exposure image 
fusion method. Venkatesh et al. (2020), Pan et al. (2022), Zhou et al. 
(2022), and Su and Wu (2023) respectively used CycleGAN-based 
network structure to realize laparoscopic image de-smoking and 
affirmed the important role of smoke detection in laparoscopic image 
desmoking, but their main design focus was on the structure of smoke 
purification network. Additionally, Wang et al. (2023) proposed a 
desmoking method based on Swin transformer, employing Swin 
transformer blocks to extract deep features. Most of the 
aforementioned desmoking techniques process all endoscopic images 
within the video stream for smoke removal, which is inefficient 
because smoke is not consistently present throughout the entire 
surgical procedure, and a substantial portion of the video stream 
consists of smoke-free images. Processing all video stream images for 
de-smoking not only increases computational demands but may also 

introduce new noise into the original smoke-free images. Hence, it 
becomes imperative to differentiate between smoked and smoke-free 
images, enabling the smoke cleaning algorithms to selectively focus 
on desmoking only the images containing smoke, while leaving the 
smoke-free images unaltered. This targeted approach ensures more 
efficient and precise desmoking, preserving the clarity and integrity of 
the original smoke-free images. This approach would significantly 
reduce equipment resource requirements, improve processing speed, 
and enhance the real-time, accuracy, and scientificity of desmoking in 
endoscopic scenarios.

To date, few studies specifically focus on the classification of 
endoscopic images containing smoke. Nevertheless, endoscopic image 
classification aligns with the fundamental principles of other image 
binary/multi-classification problems, wherein the objective is to 
predict input images into multiple categories based on their distinctive 
features. In the early stages, researchers employed algorithms like 
k-nearest neighbors, Support Vector Machine, and Random Forest for 
such tasks. These methods typically involved feature extraction prior 
to classification, necessitating human selection of one or more features 
that influenced the classification quality. In recent years, CNNs have 
gained prevalence for image classification due to their ability to 
automatically extract relevant image features and demonstrate 
exceptional performance on large-scale datasets. Lecun et al. (1998) 
proposed an early CNN architecture, comprising two convolutional 
layers, two pooling layers, and three fully connected layers, which 
facilitated the classification and recognition of handwritten digits and 
laid the groundwork for subsequent image classification models. 
Notably, Krizhevsky et al. (2012) introduced AlexNet, which achieved 
groundbreaking results in the ImageNet image classification 
competition. Their work significantly improved performance on large-
scale image datasets. Additionally, Tan and Le (2019) introduced 
EfficientNet, a CNN structure optimized through neural network 
search technology. Furthermore, ResNet was proposed as an 
innovative deep residual learning framework to address the issue of 
gradient explosion in deep network training (He et al., 2016). Howard 
et al. (2017) proposed MobileNet, a lightweight deep neural network 
designed for embedded devices. MobileNet utilizes depth-wise 
separable convolution to efficiently reduce the number of model 
operations and parameters, making it well-suited for resource-
constrained environments. Dosovitskiy et al. (2021) made a significant 
breakthrough in image classification by directly applying the 
transformer architecture to this domain, introducing the vision 
transformer (ViT) model. The ViT model utilizes the transformer’s 
encoder to extract essential features from images, resulting in 
remarkable advancements in image classification. In a related 
development, Yu et al. (2022) proposed the Poolformer model. Instead 
of employing the attention module, the Poolformer model utilizes a 
straightforward spatial pooling operation. Even with fewer parameters, 
the Poolformer model achieves competitive performance in image 
classification tasks. Furthermore, Almeida et al. (2022), Dewangan 
et al. (2022), and Zhao et al. (2022) individually explored lightweight 
CNNs for smoke detection in images of natural scenes.

Among existing image classification methods, network models 
like Poolformer have demonstrated the capability to achieve highly 
accurate real-time recognition in natural images. They hold significant 
potential for extending their effectiveness to the detection of 
endoscopic smoke-containing images. However, compared to natural 
images, endoscopic images face distinctive challenges in feature 
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extraction and recognition. This is primarily due to the 
non-Lambertian reflective properties of human tissues, resulting in 
weak texture features and a lack of salient features. Furthermore, the 
classification of endoscopic smoke-containing images necessitates 
real-time performance during surgical procedures, where achieving a 
high level of real-time efficiency is critical for successful 
implementation. The characteristics inherent in endoscopic scenes 
introduce complexity to the task of automatic feature extraction 
and recognition.

To enhance real-time performance while maintaining accuracy in 
smoke detection on endoscopic images with weak textures, this paper 
proposes a method for endoscopic smoke image classification using 
Poolformer. The primary enhancement of the algorithm lies in the 
model’s encoder, where the Token Mixer is upgraded from a basic 
pooling layer to a multiplexed branching structure akin to the purely 
convolutional neural network ConvNeXt (Liu et al., 2022). During 
prediction, it is further transformed into a single-path topology to 
bolster the model’s inference speed.

2. The proposed method

2.1. Overview

The Poolformer-based network for endoscopic image classification 
proposed in this paper is depicted in Figure 1. In terms of the network 
structure, the original Poolformer replaces the Multi-head Attention 
module in the encoder block of the conventional vision transformer 
with a simple pooling layer. To further enhance the feature extraction 
capabilities for weakly textured images, this paper proposes the design 
of a multi-branch pure convolutional neural network structure similar 
to ConvNeXt, aiming to optimize the pooling layer in the original 
Poolformer model. This enhancement improves the model’s feature 
extraction ability. Furthermore, to ensure real-time processing in 
endoscopic video streaming, the model’s structure is transformed into 
a one-way model to obtain classification results through predictive 
reasoning during the testing process.

2.2. Convolution module

In the Vision Transformer (ViT) module (Dosovitskiy et  al., 
2021), input tokens (vectors) are essential for processing images of 
various sizes. As an example, in the ViT-B/16 model, the input image, 
x h w c� � � , where h denotes the height, w signifies the width, and c 
represents the number of channels, undergoes convolution with a 
kernel size of 16 × 16, a stride of 16, and employs 768 convolution 
kernels to accomplish this operation. This process involves partitioning 
the input image x into patches of size 16 × 16. While increasing the 
convolutional kernel and step size in large datasets can expand the 
receptive field, allowing for feature maps over a wider area and 
obtaining superior global features, in smaller datasets, such as medical 
datasets like endoscopes, this advantage may lead to the loss of 
detailed information between patches.

To tackle this issue, this paper adopts the convolution-based 
patching method, which effectively mitigates the loss of detailed 
information. This approach removes the constraint that each patch 
size must be a multiple of the image’s dimensions, enabling adaptation 

to datasets with varying size dimensions. As illustrated in Figure 2, the 
preprocessed input vector x undergoes feature extraction through 
convolution, activation function, and maximum pooling operations. 
A downsampling operation is applied to meet the input specifications 
of the subsequent Positional Embedding layer. The GELU activation 
function is integrated in order to introduce randomness by combining 
it with the concept of dropout, thereby enhancing the robustness of 
the model. Additionally, to address the degradation problem, a 
residual module based on ResNet (He et  al., 2016) is employed. 
Finally, a positional embedding layer vector of the same size as ViT is 
obtained through a convolution and flattening operation.

2.3. Improved Poolformer encoder

The encoder of the fundamental ViT model primarily comprises 
two components: an attention module, also known as the token mixer, 
which facilitates information exchange between tokens, and 
subsequent elements such as channel MLP and residual connections. 
Abstracting the architecture while disregarding the specifics of how 
the token mixer is implemented with an attention module, the 
aforementioned design can be  represented as the MetaFormer 
architecture (Yu et  al., 2022), depicted in the first panel of 
Figure  3A. Contrasting with the conventional ViT model, the 
Poolformer model transforms the multi-head attention mechanism 
into a simple pool pooling layer, as illustrated in Figure 3B. Leveraging 
the overall superiority of the entire MetaFormer framework and the 
inclusion of the pooling layer, it significantly reduces the computation 
burden, machine load, and required video memory.

The pooling layer, in the process of dimensionality reduction, 
may lead to the loss of local information, which is particularly 
critical in weak texture endoscopic images where local information 
plays a crucial role. It is essential to minimize information loss as 
much as possible. Convolutional neural networks excel at retaining 
local information compared to pooling layers. Leveraging this 
advantage, the token mixer part is optimized to adopt a ConvNeXt-
like multiplexed branching structure, as depicted in 
Figure  3C. ConvNeXt is a pure convolutional neural network 
architecture that competes with transformer networks. In 
comparison to the transformer model, ConvNeXt significantly 
reduces the number of parameters, introduces spatial inductive bias, 
and eliminates positional bias. Consequently, this acceleration of 
network convergence leads to a more stable network training 
process. Through modifications involving stage proportions, 
grouping convolutions, an anti-bottleneck design, utilization of 
larger convolutional kernels in finer details, and replacing the 
activation function, ConvNeXt achieves faster inference speed and 
higher accuracy than the Swin Transformer.

For the improved Poolformer encoder, the 2D matrix x1 obtained 
from the input image through the convolution operation and 
flattening operation in Figure 2 serves as the input sequence. The 
specific structure and steps, for example, using ViT-B/16 (where the 
2D matrix x1 is in the format of [197,768]), are illustrated in Figure 4. 
In step (1), x1 undergoes mapping to interchange the H (height) 
dimension and C (channel) dimension, resulting in the matrix x2. A 
similar operation is performed in step (2), where the height dimension 
containing class categorization information is considered as the 
channel dimension.
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FIGURE 1

An overview of the proposed network, which consists of convolution module, improved Poolformer encoder, sequence pooling and MLP head.

FIGURE 2

Flow chart of convolution module.
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2.4. RepConvNeXt block

The proposed module, transforms the ConvNeXt Block into 
a RepConvNeXt Block—a one-way structure resembling RepVgg 
(Ding et al., 2021)—during prediction process to further enhance 
real-time performance, as depicted in Figure 5. During training, 
using multi-branch structures such as ResNet or models like 
DenseNet (Huang et al., 2017) generally increases the model’s 
representational capacity by parallelizing multiple branches.

Converting the multi-branch into a single-path topology 
during inference offers several advantages: Firstly, it enhances 
speed. Considering the degree of parallelism in hardware 
computation and MAC (memory access cost) during model 
reasoning, multi-branch models require separate computation of 
results for each branch. Some branches may compute faster while 
others compute more slowly, leading to potential underutilization 
of hardware arithmetic and insufficient parallelism. Additionally, 
each branch necessitates memory access and storage, resulting in 
substantial time wasted on IO operations. Secondly, it improves 

memory efficiency. The residual module depicted in Figure 6A, 
assuming the convolutional layer does not alter the number of 
channels, requires storing the respective feature maps on both the 
main branch and the shortcut branch, leading to roughly twice the 
memory consumption of the input activation before the add 
operation. Conversely, the structure shown in Figure 6B maintains 
the same memory usage throughout.

2.5. Classification

Through enhancements made to the Poolformer encoder, the 
output of the Transformer encoder after sequence pooling to the 
L-layer differs from the traditional ViT model. Instead of 
generating classification results by slicing the class token 
separately, the improved model utilizes data sequences containing 
both input image and class information. As a result, the model 
becomes more compact, and the sequence pooling output of the 
Transformer encoder produces sequential embedding in the latent 

FIGURE 3

Illustrations of the architecture of different encoders. (A) MetaFormer. (B) Poolformer. (C) Our model.
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space, enhancing the association with the input data. The final 
output obtained after sequence pooling can be utilized to derive 
results through a linear classifier.

3. Experiments and results

3.1. Dataset

For the experiment, real laparoscopic images from the 
Hamlyn Centre Laparoscopic/Endoscopic Video Dataset1 are 
employed, comprising 5,000 endoscopic images with dimensions 
of 384 × 192 pixels. As the images constitute a continuous video 
sequence with minimal differences between adjacent frames, to 
ensure the robustness of model training and the accuracy of 
model testing, we  adopted a sampling approach. Specifically, 
we  selected 5,000 images from the video dataset at irregular 
intervals and rendered 1,000 of them to generate a dataset 

1 http://hamlyn.doc.ic.ac.uk/vision/

comprising smoke-containing images, as illustrated in Figure 7. 
The remaining 4,000 images constitute the smoke-free dataset. 
The selected images is further partitioned into a training set 
(3,800 images) and a test set (1,200 images), maintaining a 4:1 
ratio between smoke-free and smoke-containing images in each 
set. This balanced distribution ensures effective model training 
and evaluation.

This paper introduces Blender,2 a 3D graphic image engine, for 
software rendering to generate smoke-containing images, which 
enhances the neural network training dataset. The integration of 
software rendering addresses the limitation of smoke images in the 
real endoscopy image dataset. The Blender physical rendering 
engine is utilized to create realistic and accurate smoke textures, 
enabling the generation of simulated smoke with random shapes 
and densities. The rendered smoke possesses local color and 
transparency, with its position controlled by input parameters: 
random intensity (Trand), density (Drand), and position of smoke 
generation (Prand). The smoke image is defined as follow:

2 https://www.blender.org/

FIGURE 4

Illustrations of the architecture of our improved encoder. (A) The improved encoder. (B) The ConvNeXt block.
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 I x y T D Psmoke´ , Blender , ,rand rand rand� � � � � (1)

The smoke image, denoted as Ismoke (x, y), is synthesized by utilizing 
the luminance values of RGB channels. By fusing this rendered smoke 

with the laparoscopic image, the smoke-containing image is defined 
as follow:

 I x y I x y I x ysimage original smoke, , ,� � � � � � � � (2)

3.2. Experimental platforms

The experimental platform used in this study consists of a Windows 
10 operating system, 8 GB RAM, a single NVIDIA 2080Ti 11 GB GPU, 
and a sixth-generation Intel® Core™ i5 (4C4T) processor. CUDA 10.2, 
the computing platform provided by NVIDIA, is installed on this 
platform. The PyTorch 1.8.1 framework is employed to implement the 
endoscopic smoke image classification algorithm presented in this paper.

3.3. Experimental setup

In the training process of endoscopic smoke image classification, 
the hyperparameters for image training were set as follows: The 
dataset images were resized to a size of 224 × 224 using the transforms. 
Resize function as input to the Convolutional Tokenization layer. An 
exponential decay method was applied to adjust the learning rate, 
starting with an initial learning rate of 0.001. To enhance the number 
of Poolformer encoders and prevent overfitting, L = 10 was employed, 
and data augmentation was implemented through random level 
inversion. The training was conducted using a 10-fold cross-validation 
method with 50 epochs.

The experiments were conducted by the controlled variable 
method on endoscopic images for multiple separate groups, including 
the following network architectures: mobilenet_v3 (Howard et al., 
2019), efficientnet_b7 (Tan and Le, 2019), the ViT network (ViT-B/16) 
(Dosovitskiy et  al., 2021), Poolformer network with Token Mixer 
changed from attention to pooling layer (Poolformer_s12) (Yu et al., 
2022), improved Poolformer network with the utilization of 
multiplexed branching structure akin to ConvNeXt during training, 
and improved Poolformer network with the utilization of multi-branch 
structure during training and single-path structure during prediction.

FIGURE 5

Illustrations of the architecture of RepConvNeXt Block.

FIGURE 6

Illustrations of the architecture of multiple and single path. (A) Residual. (B) Plain.
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4. Results

4.1. Evaluation metrics

For the classification algorithm of endoscopic images based on 
Poolformer, which is adopted in this paper, the metrics used for 
evaluation include Accuracy (Acc), Sensitivity (Sens), and inference 
speed/ frames per second (fps).

 
Acc TP TN

TP FN FP TN
�

�
� � �  

(3)

 
Sens TP

TP FN
�

�  
(4)

where TP represents the number of true positive samples (images 
with smoke correctly predicted as images with smoke), FP represents 
the number of false positive samples (smoke-free images incorrectly 
predicted as images with smoke), FN represents the number of false 
negative samples (images with smoke incorrectly predicted as smoke-
free images), and TN represents the number of true negative samples 
(smoke-free images correctly predicted as smoke-free images).

4.2. Method comparison

To verify the effectiveness of the model, multiple sets of 
comparison experiments were conducted using the same endoscopic 
image dataset and smoke rendering scenarios, along with consistent 
settings for the remaining experimental parameters. The results were 
averaged over five runs, and the performance of different detection 
models on the dataset is presented in Table 1. Among the networks for 
comparison, all are lightweight neural networks designed for 
low-power devices, except for the classic ViT-B/16 network. The 
results reveal that in comparison to the mobilenet_v3, efficientnet_b7, 
and ViT-B/16 models, the proposed model demonstrates 

improvements in accuracy by 2, 1.6, and 1.4%, along with 
enhancements in sensitivity by 4.9, 3.2, and 2.7%, respectively. 
Furthermore, the proposed model achieves superior processing speed 
performance, with a frame rate increase of 30.9, 39.3, and 44.5 fps 
when compared to the mentioned models. These comparative 
experiments highlight the efficacy of the paper’s approach in 
conducting more accurate, comprehensive, and expeditious screening 
of smoke-containing images within endoscopic scenes, surpassing 
these existing modeling methodologies.

4.3. Ablation experiment

To evaluate the effectiveness of the improved multi-branch 
structure and the single-path inference process, we compare the 
performance of the original Poolformer model with versions that 
incorporate the multi-path structure alone and in combination 
with the single-path structure for real endoscopic image 
classification. The comparative experiments are presented in 
Table 2. The results demonstrate that the enhanced model, which 
incorporates a multiplexed branching structure, surpasses the 
original Poolformer model in terms of classification performance 
on the dataset. Specifically, the enhanced model exhibited a 2.8% 
enhancement in accuracy and a notable  9.6% increment in 
sensitivity. This outcome substantiates the efficacy of replacing 
the conventional pooling layer with a multiplexed branching 
structure within the Poolformer architecture, effectively 
bolstering detail retention within the endoscopic environment. 
However, the incorporation of this structure introduced a minor 
drawback, resulting in a reduction of processing speed by 26.3 fps. 
Further refinement of the model, encompassing a training process 
enriched with the multiplexed branching structure and a 
prediction network strengthened by a single-path topology, 
yielded commendable results. This adaptation yielded a 2.3% 
enhancement in accuracy and an 8.2% augmentation in sensitivity. 
Remarkably, this performance boost incurred only a marginal 6.4 
fps decline in processing speed compared to the original 

FIGURE 7

Experimental data set. (A,B) Original image. (C,D) Synthesized image with smoke.

TABLE 1 The results of comparable experiments on different classification model.

Model Acc/% Sens/% Inference Speed /fps

mobilenet_v3 93.9 78.6 56.2

efficientnet_b7 94.3 80.3 47.8

VIT-B/16 94.5 80.8 42.6

Our method 95.9 83.5 87.1
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Poolformer model. Thus, the strategic integration of the 
multiplexed branching structure into the training network 
emerged as a viable approach to amplify detail retention in the 
endoscopic environment. The incorporation of RepConvNeXt 
structure concurrently elevated processing speed, thereby 
enhancing endoscopic smoke classification performance and 
reducing processing time. Conclusively, the experimental results 
demonstrate the significant capability of the approach proposed 
in this study. This approach effectively enhances the detection 
prowess of the Poolformer model in the endoscopic image while 
concurrently sustaining its efficient real-time operational cadence.

5. Conclusion

This paper introduces an improved Poolformer model for the 
automatic classification and recognition of endoscopic images 
containing smoke. The proposed model enhances the Token 
Mixer in the encoder by replacing the simple pooling layer with 
a multiplexed branching structure, similar to the pure 
convolutional neural network ConvNeXt. During the prediction 
process, the structure transforms into single-way, further 
improving the inference speed.

The experimental findings establish the superiority of our 
proposed method in the field of endoscopic image classification. In 
comparison to the traditional ViT-B16 network and the newer, 
lightweight networks including mobilenet_v3 and efficientnet_b7, 
our model exhibits substantial improvements. Specifically, it achieves 
an enhanced accuracy of 1.4, 2, and 1.6%, alongside sensitivity 
improvements of 2.7, 4.9, and 3.2%, respectively. Notably, these 
enhancements are accompanied by a significant boost in inference 
speed, with improvements of 44.5, 30.9, and 39.3 fps, respectively. 
These performance gains are attained without any appreciable 
degradation in image processing speed, underscoring the model’s 
efficiency. Furthermore, in contrast to the Poolformer framework, 
our model achieves these performance enhancements while 
maintaining image processing speeds, thus ensuring real-time 
processing remains unaffected. Comparatively, when compared to 
Poolformer_s12, our proposed method excels further, achieving an 
accuracy increase of 2.3% and a sensitivity boost of 8.2%. Although 
there is a marginal reduction in processing speed by 6.4 fps, these 
trade-offs emphasize the method’s prowess in smoke feature 
recognition and real-time processing efficiency within endoscopic 
environments. This method serves as an effective means for real-time 
screening of smoke-containing images in endoscopes, paving the way 
for potential integration with smoke removal techniques. Such 
integration can lead to more targeted and precise desmoking, 
avoiding the issues arising from the enhancing of smoke-free images, 

notably mitigating computational overhead. By introducing real-time 
smoke detection into endoscopic procedures, we aspire to reduce 
equipment resource requirements, augment processing speed, and 
enhance the real-time, precision, and scientific validity of smoke 
removal in endoscopic settings.
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Image caption technology aims to convert visual features of images, extracted
by computers, into meaningful semantic information. Therefore, the computers
can generate text descriptions that resemble human perception, enabling
tasks such as image classification, retrieval, and analysis. In recent years,
the performance of image caption has been significantly enhanced with the
introduction of encoder-decoder architecture in machine translation and the
utilization of deep neural networks. However, several challenges still persist in
this domain. Therefore, this paper proposes a novel method to address the issue
of visual information loss and non-dynamic adjustment of input images during
decoding. We introduce a guided decoding network that establishes a connection
between the encoding and decoding parts. Through this connection, encoding
information can provide guidance to the decoding process, facilitating automatic
adjustment of the decoding information. In addition, Dense Convolutional
Network (DenseNet) and Multiple Instance Learning (MIL) are adopted in the
image encoder, and Nested Long Short-Term Memory (NLSTM) is utilized as the
decoder to enhance the extraction and parsing capability of image information
during the encoding and decoding process. In order to further improve the
performance of our image caption model, this study incorporates an attention
mechanism to focus details and constructs a double-layer decoding structure,
which facilitates the enhancement of the model in terms of providing more
detailed descriptions and enriched semantic information. Furthermore, the Deep
Reinforcement Learning (DRL) method is employed to train the model by directly
optimizing the identical set of evaluation indexes, which solves the problem of
inconsistent training and evaluation standards. Finally, the model is trained and
tested on MS COCO and Flickr 30 k datasets, and the results show that the model
has improved compared with commonly used models in the evaluation indicators
such as BLEU, METEOR and CIDEr.

KEYWORDS

image caption, encoder-decoder architecture, deep neural networks, attention
mechanism, deep reinforcement learning

1. Introduction

In recent years, profound advances have been made in deep learning technology due to the
breakthrough in computing power of computers and the surge in data (LeCun et al., 2015).
Meanwhile, image caption based on deep learning has also seen significant improvements
(Bai and An, 2018; Srivastava and Srivastava, 2018; Liu et al., 2019). Image caption is
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the intersection of the fields of computer vision and natural language
processing, along with its potential value in terms of contributing
to visually impaired individuals’ daily life assistance, graphic
conversion, automatic title generation and machine intelligence
(Hossain et al., 2019; Kang and Hu, 2022). Fundamentally, it
involves utilizing techniques grounded in deep learning to interpret
a given image and automatically generate descriptive text as if
the machine is looking at an image and speaking. Despite its
intuitive nature for humans, this process is highly challenging for
machines, requiring the accurate interpretation of image content,
object relationships and the synthesis of appropriate language.
As such, significant research efforts are still required to achieve
reliable and effective image caption models that match human-level
performance (Anderson et al., 2016; Bernardi et al., 2016).

The advancement of image caption technology is of profound
importance in terms of both research and practical application. Its
significance is particularly evident in the following areas: firstly,
in the field of visual assistance systems, image caption can play
a vital role in helping the visually impaired access crucial visual
information (Jing et al., 2020; Bhalekar and Bedekar, 2022). By
expressing image content comprehensively and concretely, this
technology can reduce the obstacles that the visually impaired face
in their learning and daily life. Secondly, due to the widespread
deployment of cameras and the increasing amount of monitoring
data being acquired, the workloads of surveillance personnel
have become overwhelming. A system based on image caption
can provide summarized information of the monitoring data
leading to more efficient work processes (Nivedita et al., 2021).
Overall, with the continuous development and maturity of deep
learning theory, image caption technology will undoubtedly have
an increasingly significant impact on people’s lifestyles, advancing
progress across society and industry (Amritkar and Jabade, 2018;
Kinghorn et al., 2018).

Image caption has broad application prospects, and more
and more researchers begin to study this challenging task. Before
the introduction of encoder-decoder architecture, two primary
approaches had emerged in the early stages, template-based
method and search-based method. The template-based approach
generates the final caption from a pre-set sentence template.
Farhadi et al. (2010) use detectors to detect objects to form
descriptions of images based on language templates. Other
researchers use independent corpus construction and more
effective semantic analysis models to describe the images.
Elliott and de Vries (2015) express target objects in images by
means of visual dependency representation, selects the target
objects corresponding to the most appropriate features, and fills
them in the template. After continuous improvement of the
template-based method, although the main object of the image can
be recognized accurately, the generated sentences are monotonous
and lack some semantic information. The search-based method
involves using similarity algorithms to compute the similarity
between extracted features and the images stored in a constructed
image library, to find out the images in line with the algorithm,
and these images have been matched with the corresponding
sentence descriptions in advance, which can be fine-tuned for
appropriate output. Verma et al. (2013) adopt traditional image
feature extraction methods to compare the extracted image features
with those in the database, so as to determine the maximum

joint probability output in the description tuple. Li and Jin (2016)
introduce the reordering mechanism which greatly improves the
model performance. The search-based method relies heavily on
the constructed search image library, and the results have great
uncertainty and poor robustness.

The image caption model based on encoder-decoder
architecture is derived from the machine translation model
(Cho et al., 2014). The encoder-decoder architecture can directly
realize the mapping between the images and the descriptions
by learning. And the deep neural network model can learn
these mappings from a large amount of data to generate a more
accurate descriptions, which makes this method have greater
improvement in performance compared with the previous
methods. The Multimodal Recurrent Neural Network (M-RNN)
model is proposed in Mao et al. (2014), stands out as a pioneering
approach utilizing an encoder-decoder architecture, effectively
bridging the gap between image and text features through modal
fusion. The Neural Image Caption (NIC) model proposed in
Vinyals et al. (2015) adopt Long Short-Term Memory (LSTM) to
replace RNN, which effectively improves performance and is also
the baseline model for many subsequent methods. Deng et al. (2020)
introduce an adaptive attention model with a visual sentinel, and
introduces the Dense Convolutional Network (DenseNet) to extract
the global features of the image in the encoding phase, which
significantly improves the quality of image caption generation.
Fei (2021) propose a memory-augmented method, which extends
an existing image caption model by incorporating extra explicit
knowledge from a memory bank, and the experiments demonstrate
that this method holds the capability for efficiently adapting to
larger training datasets. In Shakarami and Tarrah (2020), an
efficient image caption method using machine learning and deep
learning is proposed. The experimental results demonstrate the
superiority of the offered method compared to existing methods
by improving the accuracy. Huang et al. (2019) propose an
Attention on Attention (AoA) network for both the encoder
and the decoder of the image caption model, which extends the
conventional attention mechanisms to determine the relevance
between attention results and queries. Krause et al. (2017) use
faster-RCNN to acquire regional features and combine them, and
then uses multi-layer recurrent neural networks to get the image
caption. There are several other improvements (Yang et al., 2019;
Liu et al., 2020; Parikh et al., 2020; Singh et al., 2021) that are
based on this encoder-decoder architecture. This kind of method
is characterized by its flexibility and strong generalization ability.
At present, most improvements are based on encoder-decoder
architecture.

With the development of technology, the performance of image
caption has been made substantial advancements compared with
traditional methods (Liu et al., 2020). However, there are several
challenges persist, including shortcomings in the encoding and
decoding processes, loss of visual information during decoding,
insufficient attention to detail information, and discrepancies
between training objectives and evaluation indicators. To address
these issues, this paper studies and optimizes the image caption
model with encoder-decoder architecture. The structure of the
paper is arranged as follows: section 2 puts forward the image
caption model based on guided decoding and feature fusion.
Section 3 further improves the performance of the image caption
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FIGURE 1

DenseNet model.

model. Section 4 provides the experimental process and result
analysis. Finally, the conclusion of our image caption model is in
section 5.

2. Image caption model based on
guided decoding and feature fusion

In order to solve the problems in image caption technology, this
paper proposes an image caption model based on guided decoding
and feature fusion. Based on the encoder-decoder architecture,
DenseNet model is used to encode image features, and the Multiple
Instance Learning (MIL) method is used to extract the image
visual information. The two parts together constitute the encoding
process of image visual information, and the guided decoding
module is adopted to dynamically adjust the input image visual
information during the decoding process. The decoder uses a Nested
Long Short-Term Memory (NLSTM) network, which can learn
more hidden information by increasing the depth of the network
model.

2.1. Encoder design based on feature fusion

Convolutional Neural Network (CNN) is a crucial model for
processing visual image problems and have significantly improved
with each architecture iteration. Typically, lower-level features are
utilized to distinguish between various classes of basic contour
information, while higher-level features are more abstract and
effectively differentiate between different varieties of semantic
information for the same target. From this perspective, the deeper
the layers of the network model, the richer the information
extracted. However, the consequent problem is that the increase
in model depth causes the gradient to diminish until it disappears
during the transfer process. The problem of gradient disappearance
can be solved to some extent by using the Batch Normalization
(BN) method (Bjorck et al., 2018). Residual Network (ResNet)
and highway network also address the problem of gradient
disappearance and model degradation by using bypass settings and
gating units (Shaked and Wolf, 2017). Nevertheless, these models
are prone to excessive parameters and depth redundancy. In image
caption tasks, where image scenes are rich, it is necessary not
only to identify targets but also to be able to abstractly describe
the interconnections between targets, so fusing the base feature
map with higher-level feature maps is a good way to handle
this problem. In this paper, we employ the DenseNet model for
image feature extraction, which is based on the architecture as

illustrated in Figure 1. The fundamental concept of DenseNet
resides in establishing connections between varied depth feature
maps, enabling the utilization of both high-level and low-level
features to their fullest potential.

DenseNet has been identified to improve feature multiplexing by
means of bypass and this not only deepens the network’s layer depth,
but also amplifies image information availability. Furthermore, it
mitigates problems related to gradient disappearance and model
degradation while also keeping the number of parameters less
than those of deep neural networks such as ResNet. Meanwhile,
with the increase in layer depth, optimization of the network
does not become more convoluted. The model’s accuracy increases
proportionally with an increase in parameters, devoid of overfitting
occurrences.

For the image caption tasks, the object, attribute and relation
detector are trained separately by independent hand-labeled
training data. We train our image caption models on datasets that
contain multiple images and descriptive sentences corresponding
to each image. Different from the tasks of image classification
and object detection, in the task of image caption, there are not
only nouns, but also verbs, adjectives, adverbs and other parts of
speech in the description generated by an image. Therefore, in order
to describe the needs of the tasks, it is necessary to construct a
word set D composed of 1,200 common words, which basically
contains more than 95% of the words that need to be used in the
training set, and the remaining words are treated as non-essential
words.

Then, we need to extract the corresponding word from the
image through the constructed word set. Because the datasets
used in this paper did not define and label corresponding words
with corresponding bounding boxes, at the same time, the parts
of speech are not even marked, typical supervised learning
methods are not suitable for this task. Certainly, while image
classification can provide corresponding words for a whole image,
many words or semantics are only applicable to the subregions
of the image. Such generic classifications often fail to enhance
model performance. Therefore, this study applies the MIL method
to tackle tasks with one-to-many relationships (Dietterich et al.,
1997).

In the image caption tasks, each image corresponds to a packet.
For each word w in the word set D, the packets are divided into
positive packets and negative packets according to different image
areas, thus forming the input set of the whole MIL model. The
classification method is as follows: if the word w in the word set
D appears in the corresponding description sentence of an image
I, then the packet is marked as a positive packet; if the word in the
word set has no corresponding word in the description sentence, the
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FIGURE 2

The model structure of guided decoding network.

packet is marked as a negative packet. The training set is represented
in formula (1). {(

x1y1
) (

x2y2
)
…

(
xlyl

)}
(1)

For the input packet in the training set xi, when yi = 1, it is the
positive packet, and when yi = −1, it is the negative packet. Using
the MIL model, the probability Pw that each packet bi contains the
word w in the word set D is calculated by the following formula:

Pw = 1 −
∏
j∈bi

(
1 − xw

ij

)
(2)

Where xw
ij represents the probability that a particular region j in

an image i corresponds to the word w in the word set. Since it is
image information, the Visual Geometry Group Network (VGGNet)
model is used here for calculation. VGG16 model has a total of 16
layers, including 5 convolutional layers, each convolutional layer is
followed by a pooling layer, generally using the maximum pooling
method. After the convolutional layers, there are 3 fully connected
layers, and finally the SoftMax layer is used for classification. The
input of the network model is a 224*224 RGB image. The specific
calculation process of xw

ij is to adopt a fully connected layer with a
sigmoid nonlinear activation function, and the formula is as follows.

xw
ij =

1
1 + exp

(
−Wt

w𝜃
(

bij
)
+ bw

) (3)

Where 𝜃
(

bij
)

represents the features of region j in the image i
extracted by the seventh fully connected layer in the model, Ww and
bw, respectively, represent the weight and bias of the word w, which
can be obtained by learning in model training.

After the operation of the model, a spatial feature map of the
image will be obtained in the last fully connected layer, which is
corresponding to the position of the input image, that is, the features
of different regions in the image. The visual text information of the
images in datasets is generated by the MIL model. Generally, the top
10 words with the highest probability after being processed by the
MIL model are selected.

In this paper, the image feature extraction module and visual
information extraction module will be fused by guiding the
decoding module to provide a basis for the subsequent decoding
process. In the NIC model of image caption, visual information
is only input to the decoder at the beginning of decoding, and
the strength of its information features will gradually diminish
during the decoding process. The ideal decoder should be able to
balance the two-input information of image vision and description,
so as to avoid the reduction of decoding accuracy because one
information dominates the decoding. Therefore, a CNN model
for guided decoding is constructed in this paper. By inputting
the learned features into the network for modeling, the modeled
guidance vector is sent into each time sequence of the decoder, and
at the same time, it can accept the error signal feedback from each
time sequence of the decoder and make corresponding adjustments.
The introduction of the model structure can realize the complete
end-to-end training process. The guided decoding network is a
deep neural network composed of two convolutional layers and one
fully connected layer, represented by CNN-g. Its model structure is
shown in Figure 2.

2.2. Decoder design based on NLSTM
model

Text information is a critical component of training datasets and
plays a vital role in the effectiveness of decoding. To ensure optimal
feature extraction and expression, it is necessary to structure raw
unstructured text data using a text representation model. This allows
for efficient participation in the decoder’s training process.

Word to Vector (Word2Vec), a highly effective word embedding
model built using shallow neural networks, consists of two main
structures: skip-gram and CBOW (Continuous Bag of Words).
While skip-gram predicts the probability of generating surrounding
words based on the current word, CBOW predicts the generation
probability of the current word based on surrounding words. The
complexity and variation of the semantic environment in image
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FIGURE 3

The simplified structure of skip-gram.

caption require more precise word embedding inputs. To address
this need, this paper adopts the skip-gram model. Skip-gram is
a shallow neural network model composed of the input layer,
hidden layer and output layer, and its simplified structure is shown
in Figure 3. Wherein, each word in the input layer uses one-hot
encoding, the size of the training set thesaurus is N, and the hidden
layer has K hidden units. After the training is completed, any word
xi in the thesaurus can be calculated to get the feature vector with
this word as the central word.

In the actual model training process, managing the number
of output feature vectors can pose a challenge due to the large
volume of training data involved. To address this issue, the
hierarchical SoftMax method is leveraged in this paper. This method
entails constructing a Huffman coded binary tree based on word
frequencies, where high-frequency words are placed at the root
node to minimize computations. The tree is organized hierarchically
from top to bottom, with each node classified by a sigmoid
activation function. The sigmoid activation function determines the
probability of the left and right branches of the tree, and the goal of
model training is to multiply the probability on the passed branches
to reach the maximum value.

In the context of processing and predicting sequence data,
Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM) networks are commonly employed. When it comes to image
caption tasks, RNN and LSTM serve as decoders. Among them,
LSTM has proven effective in addressing the long-term dependence
issue. In this paper, an enhanced NLSTM model is utilized as a
decoder to decode input image features. Different from the general
LSTM model, in NLSTM, the memory function ctcan be obtained
through model training as shown in formula (4).

ct = mt
(

ft ⊙ ct−1it ⊙ Tanh
(

wcxt + ucht−1
))

(4)

Where mt is a state function learned from NLSTM, and represents
the state m at time t. ht and xt are the input and hidden states of the
memory function, respectively. it and ft respectively represent the
input gate and forgetting gate. wc and uc are learned during training.

In the NLSTM model, the specific calculation method of internal
LSTM is obtained by the following formulas:

ĩt = �̃�i
(

w̃ix̃t + ũih̃t−1 + b̃i
)

(5)

f̃ t = �̃�f
(

w̃f x̃t + ũf h̃t−1 + b̃f
)

(6)

õt = �̃�o
(

w̃ox̃t + ũoh̃t−1 + b̃o
)

(7)

c̃t = f̃ t ⊙ c̃t−1 + ĩt ⊙ Tanh
(

w̃cx̃t + ũch̃t−1 + b̃c
)

(8)

h̃t = õt ⊙ �̃�h
(

c̃t
)

(9)

Where c̃t is the internal memory function, x̃t and h̃t are the input
layer and hidden layer states of the memory function, respectively.
ĩt , f̃ t , and õt respectively represent the input gate, forgetting gate
and output gate of the internal LSTM. To achieve the gating effect
in the neural network, the sigmoid function �̃� is commonly used
as the activation function, and the Tanh function is utilized as the
candidate memory function. The parameters w̃, ũ, and b̃ are learned
during training.

The memory unit of the external LSTM is updated according to
formula (10).

ct = h̃t (10)

The value of ht is then updated through the memory unit ct of
the external LSTM as shown in formula (11).

ht = ot ⊙ Tanh
(

ct
)

(11)

NLSTM uses the standard LSTM network as a gating unit to
input relevant information into its memory unit, reducing internal
memory burden. This enables a more deterministic time hierarchy
and better handling of time series problems compared to stacked
models. Finally, a SoftMax layer is used in the model to predict the
output words obtained by the final model through the probability
distribution of words at time t. The structure of the image caption
model is shown in Figure 4.
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FIGURE 4

The structure of the image caption model.

In Figure 4, CNN-e represents the DenseNet model used
in the coding process, and CNN-g is the guided decoding
network. The extracted image fusion features are represented by the
formula (12).

v = fg (A + M) (12)

Where A represents the global image feature, M stands for the visual
text information learned from multiple instances, and fg represents
the model function learned by guiding the decoding model.

The decoded output yt at time t is calculated by formula (13).

yt = wvv + wext (13)

3. Image caption combining attention
mechanism and deep reinforcement
learning

In order to further improve the performance of the image
caption model, we build a double-layer decoding network by
introducing the attention mechanism on the basis of the model
proposed above. The output of the first layer and the image
features are sent to an attention module to extract important detail
features. The output of the module is fused with the output of
the first layer as the input of the second layer for the second
decoding. Meanwhile, considering the powerful perception and
decision abilities of Deep Reinforcement Learning (DRL), this paper
constructs a training optimization method based on DRL to improve
the overall performance of the model.

3.1. Attention mechanism

Although the traditional encoder-decoder based image caption
model can describe the content of the image in a short text
description, it often ignores some local and detailed information in
the image during the description process. However, this information
is very important to the richness and accuracy of the description.
When the attention mechanism was introduced into the image
caption task for the first time, which effectively improved the
performance of the NIC model. The attention mechanism is inspired

by the human process of observing things, people immediately focus
on the important information in an image while paying less attention
or ignoring irrelevant information or background information.
In deep learning, the formation of attention is basically through
the way of masks, that is, important information in the image is
distinguished by giving different weights. After continuous training
of the model, it can learn which regions are important in the image
and form more attention to these regions. There are two main types
of attention mechanisms: hard attention and soft attention. Here, we
represent the feature vector v extracted by the encoder as shown in
formula (14).

v =
{

v1v2 … vk
}
, vi ∈ ℝg (14)

The output of the last convolutional layer of the DenseNet is
used to represent the features of different positions in the image. At
different moments of decoding, the attention weights for different
regions of the image can be calculated by formula (15).

v̂it = fatt
(

viht−1
)

(15)

Where ht−1 represents the state of the hidden layer on the
decoder LSTM at time t − 1, fatt represents a function that assigns
different weights to each region of the image.

The SoftMax function is used to normalize formula (15) so that
the weight range is [0,1] and the weighted sum is 1, as shown in
formula (16).

ait = fsoftmax
(

v̂it
)

(16)

Finally, the visual context vectors of different regions of the
image are calculated by weight. Its visual context features v̂t are
expressed as shown in the formula (17).

v̂t =
∑k

i=1
hitvi (17)

Where hit is the multivariate two-point distribution of the input
vector v, aitis the weight of the different regions of the image in the
input decoder at time t, as shown in formula (18).

(
hitv

)
= ait (18)

To obtain local image details during the decoding phase, we
propose a double-layer stacked decoding structure, based on the
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FIGURE 5

The improved structure of the image caption model.

previous model in Figure 4 as the first layer decoding. The new
model is depicted in Figure 5. After the output of the first layer
decoder and the visual features of the image are calculated by the
attention module, they are used as the input of the second layer
LSTM decoder by means of residual connection. The introduction
of the attention mechanism can effectively improve the performance
of the model. The feature vector of the image is represented and
calculated by formula (19).

v = wvifcnn (I) (19)

Where I represents the input original image after preprocessing, fcnn
represents the computational model of DenseNet.

In this model, the last fully connected layer in Figure 4 is
removed, and the output of the convolution model is reduced
dimensionality by the matrix. The state of the hidden layer
of the first layer decoder at time t is calculated by formula
(20).

h1
t = fnlstm

(
xtht−1vg

)
(20)

Where xt represents the input feature vector of word embedding,
ht−1 represents the hidden layer state at the moment t − 1, vg
represents the input vector to guide the decoding, and fnlstm stands
for the NLSTM network used by the decoder of the first layer.

In the attention module, the image features and the hidden layer
state of the first layer decoder are used as inputs, and unlike the
hidden layer state of the t − 1 moment used by the soft attention
mechanism, the hidden layer state of the t moment used here is
shown in formula (21).

v̂it = Tanh
(

wvv ⊕ whh1
t

)
(21)

Where wv and wh represent the parameter matrix to be learned by
the model, ⊕ represents the summation operation of the matrix.

The weight of the attention module is calculated as shown in
formula (22).

at = fsoftmax
(

wav̂it
)

(22)

Where wa represents the parameter matrix to be learned by the
model, fsoftmax represents the SoftMax operation.

Based on the weight of the attention module, we can get the
visual attention features of the image v̂t, as shown in formula
(23).

v̂t = atv (23)

Then, by means of residual connection, the visual attention
feature is added and fused with the corresponding subscript element
of the hidden layer state ht at t moment of the first layer decoder, as
shown in formula (24), and it is used as the input of the second layer
decoder.

x2
t = v̂t ⊕ h1

t (24)

LSTM is used as the second layer decoder for the final processing
of sequence information. The hidden layer state of the second layer
decoder is obtained by formula (25).

h2
t = flstm

(
x2

t h2
t−1

)
(25)

Where h2
t−1 represents the hidden layer state of the second layer

decoder at time t − 1, flstm represents the model calculation function
of the second layer LSTM.

After the second hidden layer state is obtained, an evaluation
module is used to predict the possibility of output words, which is
mainly composed of linear layer, fully connected layer and SoftMax
layer. The linear layer is used for dimensionality reduction of words
output by LSTM, and the fully connected layer is used for the
upsampling of vectors after dimensionality reduction. Finally, the
probability distribution yt of word output is calculated through the
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FIGURE 6

Dropout operation in the double-layer decoding structure.

SoftMax layer, as shown in formula (26).

yt = fsoftmax
(

wN h2
t + bN) (26)

With the increase of the number of model layers, the
expressiveness of the model is also enhanced. However, this also
leads to overfitting problems. To address this issue, this paper adopts
the dropout method in the double-layer decoding structure that
reduces overfitting. The main idea of this method is to deactivate
part of the computing units and keep the other part of the
computing units working on the data that flows into each unit.
Figure 6 illustrates the implementation of dropout operation in the
double-layer decoding structure, at time t = 0, input x0 is passed
into the first layer of RNN, and then transmission continues in
the first layer until time t = 2, during which there is no dropout
operation. At time t = 2, the dropout operation is performed when
the first layer passes to the second layer, which is always coherent
in timing. The dropout operation helps greatly in improving the
robustness of the model.

3.2. Deep reinforcement learning

Reinforcement learning is an artificial intelligence learning
method. Different from supervised learning and unsupervised
learning, reinforcement learning will only make different rewards
or punishments according to the quality of actions. DRL not only
has the understanding ability of deep learning, but also makes use
of reinforcement learning to make decisions and judgments on the
environment, and realizes the response and treatment of complex
problems through the end-to-end learning process. The framework
of DRL is mainly derived from Markov Decision Process (MDP).

The policy gradient algorithm is a frequently adopted technique
for DRL. It offers a direct approach to optimize the expected reward
of the policy, without relying on intermediate stages, and enables
the determination of an optimal policy within the given policy

FIGURE 7

Policy gradient learning method based on actor-critic architecture.

space. The method utilizes an approximation function to directly
optimize the policy and achieve the highest expected total reward.
The actor-critic architecture diagram for this algorithm is illustrated
in Figure 7, with its policy gradient being expressed through the
formula (27).

gp = E
(∑∞

t=0
𝜓t∇𝜃 log𝜋𝜃

(
atst

))
(27)

Where 𝜋𝜃
(

atst
)

represents the policy function, which is learned by
the neural network in DRL, 𝜓t represents the evaluation function,
which is approximated by a neural network.

The policy function can guide the agent’s actions. The guidance
process is calculated according to the probability of taking an action
in a certain state, and it is a mapping function from state to action.
At the same time, the optimal policy is selected to guide the value
function through policy evaluation. The value function is the state
value function under the guidance of the policy. The policy function
𝜃t is updated by formula (28) during the learning process. The value
function wt is updated by the formula (29).

𝜃t+1 = 𝜃t + a𝛿∇𝜃 log𝜋
(

atst𝜃t
)

(28)
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FIGURE 8

The model structure and prediction process based on DRL.

wt+1 = wt + 𝛽𝛿∇wv̂
(

stwt
)

(29)

Where at and st , respectively, represent the action and state at
time t.

Considering the powerful perception and decision abilities of
DRL, we use it to further optimize our image caption model. And
on the basis of the actor-critic structure, two kinds of deep neural
networks, policy network and value network, are used to construct
models for predicting words that best describe the image in each
state. Specifically, the policy network evaluates the confidence of the
next predicted word based on the current state, and thus suggests
the next possible action to be taken. The value network evaluates
the reward scores of the actions predicted by the policy network
in the current state, and decides whether to choose the actions
given by the policy network according to these reward scores.
In other words, the model’s predictions are constantly adjusted
according to the actual situation for producing the better image
caption. The model structure and prediction process are shown in
Figure 8.

The whole process consists of four main elements, including
agent, environment, action and goal. In the image caption tasks,
the policy network and the value network are the agents and also
the main parts of the model. The input image I and its description
sentence st =

{
x1x2 … xt

}
represent the actual environment of

the agents. The next predicted word xt+1 is the next action, and
the thesaurus of all the words in the caption is the space for
the actions. Generating the image caption is the goal of this
process.

The policy network adopts the encoder-decoder architecture
mentioned above in this paper. We use st to represent the current
state, e =

{
Ix1x2 … xt

}
to represent the environment, and at =

xt+1 to represent the next action based on the environment. The
visual feature vg of image I is extracted by CNN, as shown in
formula (30).

vg = fcnn (I) (30)

Using vg as the input of the decoder NLSTM, the action at at
time t is predicted according to the hidden layer state ht at time t
and the input word xt−1 at time t − 1. Because the decoder adopts a
sequential processing mode, the prediction word xt will also be used
as the input for time t + 1, and the hidden layer state at the next time

will also be updated as the input is updated. The formulas are shown
as follows.

ht = NLSTM
(
𝜓
(

xt−1vg
)

ht−1
)
, t ∈ N∗ (31)

p𝜀
(

atst
)
= 𝜙

(
ht
)

(32)

Where 𝜓 and 𝜙 represent the input and output of the decoder,
respectively. p𝜀

(
atst

)
represents the possibility of taking action at

in the case of determining state st .
In the value network, the value function vp under the policy p is

first defined, which represents the prediction of the total reward r in
the state st , expressed by formula (33).

vp (s) = E
(

rstat …T ∼ p
)

(33)

In this paper, the output v𝜀 (s) of the value network is
constructed to fit the value function. The value network is
based on the deep neural network, and its structure is shown
in Figure 9. It mainly consists of three parts: CNN module,
RNN module and fully connected network module. The CNN
module is used to extract the visual features of the image, and
the Inception-v3 model is selected in this paper. RNN module
adopts LSTM structure to extract semantic features of descriptions.
The fully connected network module uses the linear regression
method to obtain the reward score of the generated semantic
descriptions.

In the value network, when the agents complete a goal, the
total reward is used to motivate the actions taken. Here, the linear
mapping method implemented by the fully connected module
maps the image and the corresponding description into a semantic
embedding space, to calculate the vector distance between them.
The loss function mloss of this mapping can be expressed by the
formula (34).

mloss =
∑
fcnn

∑
s
𝛼
[
max

(
0hT−1 (s) ⋅ fm

(
fcnn

))
− hT (s) ⋅ fm

(
fcnn

)]
(34)

Where 𝛼 is the penalty coefficient with the range of (0,1), fcnn is
the image feature extracted by the DenseNet, and fm is the mapping
function.

For a given description sentence s, whose embedded
characteristics depend on the final state hT of the hidden layer, and
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FIGURE 9

The structure of value network.

the total reward is defined as shown in formula (35).

rT =
hT−1 (s) ⋅ fm

(
fcnn

)
‖hT−1 (s) ⋅ fm

(
fcnn

) ‖ (35)

According to formula (35), the total loss rloss is calculated in
formula (36).

rloss = 𝛽
(

mloss + rT
)

(36)

Where 𝛽 is the hyperparameter with the range of (0,1).

4. Experimental process and result
analysis

We assess the effectiveness of the image caption model presented
in this paper by means of a deliberate experimental process,
including thorough comparative analysis of the experimental
results. The experimental environment and datasets deployed
in the experiment are introduced in detail. Additionally, the
data preprocessing method, specific model training methodology,
and optimization of model parameters are also comprehensively
discussed. Finally, through comparative analysis, the performance
and advantages of the proposed model are evaluated in depth for
maximum objectivity and credibility.

In the tasks of image caption, the most popular datasets adopted
by most researchers include MS COCO (Lin et al., 2014) and Flickr
30 k (Young et al., 2014). The Flickr dataset is primarily a description
of human activity scenarios. We use 29,000 of the Flickr data as
a training set, 1,000 as a validation set, and the remaining 1,000

as a test set. In addition, 40,775 images and 30,775 data of the
corresponding image descriptions from the MS COCO dataset are
added to the training set to increase the number of training samples.
The deep learning framework used is TensorFlow.

First of all, it is necessary to preprocess the data in the datasets,
including the images and the descriptions. The image size is
uniformly adjusted to 256*256, then trimmed to 224*224 to fit
the model input. And the image is normalized to scale each pixel
with the range of (0,1). Firstly, the description sentences need to
segment, convert all letters to lower case, and remove spaces and
punctuation. Then, the number of occurrences of all words in the
datasets is counted, and words that appear less than 5 times are
tagged UNK which have little effect on predicting outcomes. Finally,
it is stipulated that the length of the sentences is not more than
15 words, each sentence only intercepts the characteristic values
corresponding to the first 15 words. For sentences with less than
15 words, we supplement the number of characteristic values to 15,
and the supplementary characteristic values are 0. At the same time,
the tag start and end, respectively, placed at the beginning and end
of the description sentences, to mark the beginning and end of the
sentences.

In this paper, we adopt BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr
(Vedantam et al., 2015), which are commonly used evaluation
indicators. In the model testing phase, this paper uses the method
of beam search to choose a better generated sentence. The five
sentences with the highest probability value are output at each
decoding moment, that is, the value of beam size is set to 5.

Given that dropout operation is used during model training,
the impact of different dropout ratios on model performance can
vary. To determine the optimal dropout ratio for the model, this
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TABLE 1 Comparison of model performance on MS COCO dataset.

Models BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr

Google NIC 0.666 0.277 0.237 - 0.855

Soft attention 0.707 0.243 0.239 - -

g-LSTM 0.670 0.264 0.227 - 0.813

RIC 0.734 0.299 0.254 - -

RHN 0.723 0.306 0.252 - 0.989

LSTM-A5 0.730 0.325 0.251 0.538 0.986

This paper (basic model with no DRL and attention mechanism) 0.716 0.289 0.244 0.456 0.893

This paper (final model with DRL but no attention mechanism) 0.746 0.339 0.284 0.583 0.991

This paper (final model with DRL and attention mechanism) 0.752 0.344 0.289 0.588 1.066

TABLE 2 Comparison of model performance on the Flickr 30 k dataset.

Models BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr

Google NIC 0.663 0.183 - - -

Soft attention 0.669 0.199 0.185 - -

g-LSTM 0.646 0.206 0.180 - -

RIC 0.745 0.244 0.202 - -

RHN 0.738 0.307 0.216 - -

This paper (basic model with no DRL and attention mechanism) 0.718 0.242 0.191 0.352 0.886

This paper (final model with DRL but no attention mechanism) 0.734 0.320 0.215 0.492 0.885

This paper (final model with DRL and attention mechanism) 0.738 0.335 0.222 0.504 0.921

FIGURE 10

A comparison of the scores of different dropout ratio on CIDEr.

paper compares model scores across different dropout ratios using
the CIDEr evaluation indicator and presents a comparative graph
in Figure 10. Analysis of the results indicates that when dropout
operation is not performed, the score of the model fluctuates greatly,
which indicates that the model is too complex and overfitting has
occurred. Similarly, when the dropout ratio is 0.3, the fluctuation
remains high and the model convergence score is low suggestive
of underfitting arising from insufficient involvement of neurons in
training. In contrast, when the dropout ratio is set at either 0.5 or 0.7,
the curve remains relatively stable with a better CIDEr score when
the dropout ratio is 0.5. Thus, the appropriate dropout ratio for the
model is determined to be 0.5.

In this study, we conducted a comparative analysis of our
model’s performance against other mainstream models, namely
Google NIC, Soft attention, g-LSTM, RIC, RHN, and LSTM-A5.
We evaluated the models using different metrics on MS COCO and
Flickr 30 k. The comparison results are presented in Tables 1, 2.

As shown in Table 1, on the MS COCO dataset, the basic model
proposed in this paper has improved the scores of BLEU-1 and
BLEU-4, which measure sentence coherence and accuracy, by nearly
0.05 and 0.03, respectively, compared with the g-LSTM model, due
to the use of the guided decoding network. At the same time, using
DenseNet and MIL to process image information also improved
the score of CIDEr evaluation index reflecting semantic richness
by nearly 0.04 compared with Google NIC which only used the
Inception-v3 structure as the image information extraction model.
However, compared with more advanced models such as RIC and
LSTM-A5, the proposed basic model still has a certain gap in the
scores of various evaluation indexes. The reason is that the attention
mechanism is not introduced, so the details are not enough. And the
decoder only uses a single layer structure, so the decoding process
is not sufficient.

As can be seen from the results in Table 1, on the MS COCO
dataset, the performance of the final model in this paper is superior
to the comparison models on various evaluation indicators even
when without attention mechanism. Therefore, the use of DRL can
significantly improve the performance of the image caption model,
and when the attention mechanism is added, the model certainly
performs better. Specifically, the BLEU scores of the proposed model
are improved by 0.018 and 0.019, respectively, compared with the
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FIGURE 11

The effect diagram of the attention mechanism.

best results in the comparison models, which indicates that the
output sentences of the proposed model have better coherence
and accuracy. In terms of the METEOR scores, the proposed
model also has an improvement of more than 0.03 compared with
other models. In addition, without the attention mechanism, the
model in this paper is also improved by more than 0.05 compared
with the g-LSTM model, so the end-to-end model structure in
this paper has greater advantages than the static adjustment of
g-LSTM. Compared with the Soft attention model, which also
uses the attention mechanism, the performance is improved by
0.05 due to the double-layer mechanism guiding the decoding
and the optimization of DRL. In terms of CIDEr scores, which
measures semantic richness and description consistency, there is
also an improvement of 0.077 compared with the best results in the
comparison models, which shows the excellent performance of the
model designed in this paper.

As shown in Table 2, because the Flickr 30 k dataset contains
much less data than the MS COCO dataset, the evaluation index
scores of the proposed basic model and final model are basically
decreased compared with those in Table 1. However, the basic
model presented in this paper has higher evaluation index scores
than the Google NIC, Soft attention, and g-LSTM models. And the
scores of the final model are better than the comparison models in
most evaluation indicators, however, the scores of some indicators
are slightly lower than those of some models, which may be caused
by the poor generalization ability of the model due to too small
amount of data.

After the attention mechanism is used to improve the proposed
model, in order to verify the actual effect, the extracted image
features and the hidden layer state of the first layer decoder are
processed by the attention module, then the words corresponding
to different regions in the image are determined according to
the corresponding weights, and the effect diagram is shown in
Figure 11. Figure 11 shows the corresponding focus of each word
in the sentence in the image. The white highlights in each image
from left to right correspond to each word from left to right in the
sentence below, and the whiter part of the highlights indicates the
greater attention weight assigned. As can be seen from the images,
the attribute word “green” about color focuses on the position of
the bird’s body, and the target subject “bird” focuses on the head
of the bird, because the head is the area that can best reflect the
characteristics of the bird. The phrase “standing on” focuses on the
bird’s feet, which is characteristic of the action. The word “grass”

focuses on the green area where the bird is standing. Through
the above analysis, it can be seen that the double-layer decoding
structure model with the introduction of the attention mechanism
is very accurate in extracting and matching key information and
local information in the image, and it is also helpful in improving
the performance of the image caption model.

5. Conclusion

Aiming at the problems of existing image caption models, this
paper proposes an image caption model based on deep learning.
Firstly, based on the NIC model, the encoder and decoder are
optimized through DenseNet and NLSTM networks. Meanwhile,
this paper also introduces a guided decoding network to realize
the dynamic adjustment of encoded information in the decoding
process and avoid the loss of image information. The experimental
results show that compared with several common models, the
performance of the basic model designed in this paper is improved.
Then, on the basis of the proposed image caption model, we
introduce the attention mechanism to construct a double-layer
decoding structure and improve the decoding depth to obtain
the details of the image. The powerful perception and decision
abilities of DRL are adopted to optimize the model, which solve the
problem of discrepancies between training objectives and evaluation
indicators, and improve the expressive ability of the image caption
model. Through the comparison and analysis of the experimental
results with several common models, our image caption model
further improves the scores of each evaluation index, and the output
description of the image is more accurate and semantic rich. In
future work, we will design the image caption model based on
expression ways in different scenes and language habits of different
people, so that the sentences output by the model will be closer
to the expression ways of humans in real scenes. Meanwhile, we
will continue to expand the datasets to include richer content,
and further design a better model to enable zero-sample learning
through textual inference.
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Introduction: Semantic segmentation is a crucial visual representation learning 
task for autonomous driving systems, as it enables the perception of surrounding 
objects and road conditions to ensure safe and efficient navigation.

Methods: In this paper, we present a novel semantic segmentation approach for 
autonomous driving scenes using a Multi-Scale Adaptive Mechanism (MSAAM). 
The proposed method addresses the challenges associated with complex driving 
environments, including large-scale variations, occlusions, and diverse object 
appearances. Our MSAAM integrates multiple scale features and adaptively 
selects the most relevant features for precise segmentation. We introduce a novel 
attention module that incorporates spatial, channel-wise and scale-wise attention 
mechanisms to effectively enhance the discriminative power of features.

Results: The experimental results of the model on key objectives in the 
Cityscapes dataset are: ClassAvg:81.13, mIoU:71.46. The experimental results on 
comprehensive evaluation metrics are: AUROC:98.79, AP:68.46, FPR95:5.72. The 
experimental results in terms of computational cost are: GFLOPs:2117.01, Infer. 
Time (ms):61.06. All experimental results data are superior to the comparative 
method model.

Discussion: The proposed method achieves superior performance compared 
to state-of-the-art techniques on several benchmark datasets demonstrating its 
efficacy in addressing the challenges of autonomous driving scene understanding.

KEYWORDS

semantic segmentation, attention mechanism, autonomous driving, convolutional 
neural networks, deep learning

1. Introduction

Over the past several decades, autonomous driving technology has made remarkable strides. 
The current bottleneck impeding its mass adoption is safety, as it directly pertains to human life 
and well-being. Autonomous vehicles are increasingly becoming integral across a multitude of 
scenarios—from daily living and work commutes to travel and leisure—where safety emerges 
as a critical factor governing their application. These self-driving platforms are fundamentally 
built upon sophisticated visual perception systems (Hubmann et al., 2018; Jin et al., 2021; Hu 
et al., 2023), in which semantic segmentation plays an essential role for pixel-level classification 
of camera images. While recent research has primarily focused on enhancing the accuracy of 
semantic segmentation, high-precision pixel-level classification of objects often relies on strong 
supervised learning methods trained on large, fully-annotated datasets. These models are 
consequently limited to classifying conventional objects—that is, categories predefined in the 
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dataset—operating under the overly idealistic assumption that all 
objects in real-world driving environments remain constant. 
Unfortunately, the real world is ever-changing, and unpredictable 
situations can arise at any moment. For instance, an object with altered 
characteristics, such as an small obstacle in a driving scene in Figure 1, 
may not be  properly identified by the model, which may 
overconfidently misclassify it into another category. Such scenarios 
pose serious safety risks and significantly hamper the practical 
deployment of deep learning algorithms in autonomous driving. 
Moreover, collecting a dataset that encompasses every conceivable 
variation is impractical. Driving environments that present significant 
challenges due to their dynamic nature fall under the category of 
hazardous scenarios, where all dynamic elements could be termed 
‘anomalous obstacles.’ Therefore, it is crucial for a perception network 
to be  trained to adapt to variations and anomalies in these 
risky settings.

Several studies have addressed the challenge of detecting 
variations and anomalous targets in hazardous driving scenarios 
(Lis et al., 2019; Doshi and Yilmaz, 2020; Xia et al., 2020; Blum 
et al., 2021; Vojir et al., 2021). One line of approaches employs 
uncertainty estimation techniques, intuitively based on the low 
prediction probabilities associated with anomalous targets. These 
methods design specific functions to compute uncertainty 
probabilities and subsequently generate anomaly scores. However, 
these techniques often yield noisy and imprecise detection results 
due to the model’s overconfidence in identifying anomalous 
targets. Another primary approach involves augmenting the 
training pipeline with additional tasks specifically for detecting 
anomalous obstacles. Some methods employ external out-of-
distribution (OoD) datasets as training samples for this category, 
while others utilize feature reconstruction techniques to either 
manually design or learn the features of unknown classes to 
distinguish anomalies. Generative models are then used to 
resynthesize the input images. Although these methods have 

proven effective, they are either computationally expensive in 
terms of inference time or labor-intensive in their implementation. 
Moreover, the retraining process may compromise the original 
network’s performance in semantic segmentation. Therefore, 
there is a pressing need for more balanced solutions for 
perceiving and segmenting variations and anomalous objects in 
hazardous scenarios. The ideal approach should enhance the 
performance of uncertainty methods without significantly 
increasing computational overhead or training complexity, all 
while preserving the accuracy of semantic segmentation.

Human attention mechanisms serve as the foundation for 
various cognitive processes, allowing us to selectively focus on 
specific stimuli from an array of available inputs for deeper 
processing. While psychology offers critical methodologies for 
studying these attention mechanisms, neuroscience also stands as a 
primary field in which they are explored (Desimone and Duncan, 
1995). Human attention can be conceptualized as a filtering process, 
determining which pieces of information merit further consideration 
and which should be  disregarded (Treisman and Gelade, 1980). 
Psychological research delves into the behavioral aspects of 
attention, such as its selectivity, concentration, and shifting focus. 
Extensive inquiries into the operational aspects of attention have 
been made through experiments, observations, and surveys, 
covering theories of selective attention, filtering models, theories of 
attention allocation, and the attentional blink, among others 
(Broadbent, 1958; Kahneman, 1973; Raymond et  al., 1992). 
Neuroscience examines the neural underpinnings of attention, 
identifying specific brain regions involved in the attention process. 
Utilizing functional Magnetic Resonance Imaging (fMRI) and 
electrophysiological techniques, scientists have identified the 
prefrontal and parietal cortices as key areas for regulating attention 
(Corbetta and Shulman, 2002), with additional research focusing on 
neurotransmitter systems and neural oscillations (Arnsten and Li, 
2005; Jensen and Mazaheri, 2010). Given that attention mechanisms 

FIGURE 1

Examples of hazardous scenarios.
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are integral to human cognition and crucial for learning, memory, 
decision-making, and other cognitive functions, they have inspired 
research and applications in computer science and artificial 
intelligence. In fields ranging from resource allocation to state-of-
the-art deep learning models—particularly in scenarios dealing with 
big data and large volumes of information—attention mechanisms 
have found robust applications (Mnih et al., 2014; Bahdanau et al., 
2015; Ma et al., 2019). Drawing inspiration from psychological and 
neuroscience research into attention mechanisms, significant 
progress has also been made in developing attention algorithms 
within the domain of artificial intelligence (Vaswani et al., 2017; 
Nobre and van Ede, 2018; Cichy and Kaiser, 2019).

Inspired by human attention mechanisms, humans demonstrate 
remarkable environmental perception skills, effortlessly identifying 
invariant and ordinary elements amidst variations and anomalies such 
as large-scale changes in object dimensions, occlusions, and diverse 
object appearances. This keen attention to the constant and ordinary 
amidst flux and irregularities equips humans with robust capabilities 
for environmental perception. How might this attention paradigm 
be mapped onto the domain of semantic segmentation in autonomous 
driving scenes? First, by analyzing and constructing the feature 
attributes associated with variations and anomalies in hazardous 
scenarios; and second, by aligning these identified feature attributes 
with the most fitting attention mechanisms.

One of the most pervasive attributes of variation and anomaly in 
autonomous driving scenarios is the substantial and high-frequency 
scale change of environmental objects. Objects may vary considerably 
in size and shape, and can be particularly challenging to recognize at 
differing image resolutions. For instance, a distant car may appear 
small in the image, whereas a nearby car would be considerably larger, 
leading to anomalies such as two objects at different distances with 
similar scales and contours being misperceived as the same category. 
To address this issue, we employ a scale attention mechanism that 
operates over multiple image scales within the network architecture. 
These results are then integrated to enhance the accuracy and 
robustness of semantic segmentation, thereby providing more reliable 
and granular information for autonomous driving scenarios.

Due to the spatially diverse distribution of objects at different 
scales—for instance, distant vehicles may occupy a diminutive spatial 
footprint, while nearby pedestrians may occupy a more substantial 
one—a scale attention mechanism necessitates integration with spatial 
attention. Without such a fusion, the model may struggle to ascertain 
the relative spatial positions and importance of differently sized 
structures or objects. For example, a distant small vehicle might 
be semantically more critical than a proximal large tree, but in the 
absence of spatial context, the model might disproportionately focus 
on the tree. Additionally, spatial attention allows the model to home 
in on partially obscured yet crucial areas, such as the legs or head of 
an obstructed pedestrian. Given that different features or attributes 
may reside in different channels—for instance, some channels may 
prioritize edge information, while others may focus on texture or color 
information—structures or objects of different scales may exhibit 
diverse feature expressions across these channels. For a scale attention 
mechanism to properly weight these features, channel attention 
integration becomes necessary, failing which could lead to information 
loss or confusion at certain scales. Moreover, objects in driving 
environments display various characteristics owing to changes in 
lighting, weather, and object types, among other factors. For instance, 

the same object category—such as a car—can display significant 
variations in color, model, and design. Since different appearance 
features may be  distributed across different channels, channel 
attention allows the model to focus on key channels instrumental in 
identifying specific appearances.

This paper introduces a Multi-Scale Adaptive Attention Mechanism 
(MSAAM) for Semantic Segmentation in Autonomous Driving Scenes. 
Initially, a scale attention module is incorporated at the end of the 
Convolutional Neural Network (CNN) encoder. Subsequently, spatial 
and channel attention models are synergistically integrated to enhance 
the performance of the multi-scale attention mechanism. Building on 
this, a composite weighting model encompassing scale, spatial, and 
channel attention is established. This model is trained through a 
compact neural network to meet the requirements for adaptive 
weighting and employs the Softmax function to ensure the sum of the 
weights equals one, thereby preventing disproportionately large weights. 
Finally, an attention-specific loss function is proposed to further amplify 
the distance between the attention values focused on specific pixels and 
those on the remaining pixels. These methodologies allow us to train a 
semantic segmentation network based on MSAAM, effectively 
addressing the perceptual challenges posed by hazardous scenarios in 
autonomous driving, such as large-scale variations, occlusions, and 
diverse object appearances, among others.

The main contributions of our work are as follows:
This paper introduces the Multi-Scale Adaptive Attention 

Mechanism (MSAAM) specifically designed for semantic 
segmentation in driving scenarios. It is an attention mechanism that 
seamlessly integrates three channels—scale, spatial, and channel—and 
adaptively allocates their weights.

The multi-scale adaptive attention model that fuses multiple 
channels is adept at handling various attributes encountered in scenes, 
such as large-scale variations, occlusions, and diverse object 
appearances. Moreover, this attention model is highly modular and 
can be flexibly adapted to integrate with various Convolutional Neural 
Network (CNN) architectures, essentially offering a plug-and-
play solution.

Our approach improves the performance of pixel-level semantic 
segmentation without substantially increasing the number of 
parameters or complicating the training process.

2. Related work

In the realm of hazardous scenario analysis, research work 
predominantly focuses on two main approaches for detecting 
variations and abnormal feature attributes: one that leverages 
uncertainty estimation and another that incorporates additional 
training tasks. This article also explores studies relevant to multi-scale 
attention mechanisms, which is the focus of our work. In this section, 
we  provide an overview of research conducted in these three 
key areas.

2.1. Anomaly segmentation via uncertainty 
estimation

Methods based on uncertainty estimation serve as the most 
straightforward approach in abnormality detection, where 
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uncertainty scores are utilized to identify obstacles on the road. 
Early studies employed Bayesian neural networks and Monte Carlo 
dropout to assess uncertainty. However, these techniques are often 
slow in inference and prone to boundary misclassifications 
(Kendall et  al., 2015; Kendall and Gal, 2017; He et  al., 2020). 
Alternative approaches focus on utilizing maximum softmax 
probabilities or maximum logits to improve uncertainty 
assessment, but these too suffer from the issue of boundary 
misclassification (Hendrycks and Gimpel, 2016; Jung et al., 2021; 
Hendrycks et al., 2022). Generally speaking, without additional 
fine-tuning using outlier data, methods based on uncertainty tend 
to perform poorly in terms of overconfidence and false positives 
at boundaries.

2.2. Anomaly segmentation via introducing 
additional training tasks

Another approach to abnormal segmentation involves 
incorporating extra training tasks. These tasks primarily fall under 
three categories: feature reconstruction, leveraging auxiliary datasets, 
and image re-synthesis. Feature reconstruction methods operate by 
analyzing the normality and deviations in the input features but are 
dependent on precise pixel-level segmentation (Creusot and Munawar, 
2015; Di Biase et  al., 2021). Methods based on auxiliary datasets 
employ external data to enhance detection accuracy but struggle to 
capture all potential anomalies, compromising the model’s 
generalizability (Bevandic´ et  al., 2019; Chan et  al., 2021). Image 
re-synthesis techniques, such as those employing autoencoders and 
Generative Adversarial Networks (GANs), create more diverse 
abnormal samples but at the cost of computational complexity and 
extended inference time (Ohgushi et al., 2020; Tian et al., 2021). While 
these additional training tasks contribute to improving abnormality 
detection, they may also adversely impact the primary task, i.e., 
semantic segmentation performance.

2.3. Multi-scale attention mechanisms for 
image segmentation or fine-grained image 
classification

Effective learning of multi-scale attention regions is pivotal in 
the domains of image segmentation and fine-grained image 
classification (Ge et al., 2019; Zheng et al., 2019). Earlier research 
largely relied on manually annotated object bounding boxes, a 
process that is both time-consuming and impractical. Xiao et al. 
were the first to introduce a multi-scale attention model that does 
not depend on manual annotation, incorporating both object-level 
and part-level attention (Xiao et al., 2015). More recent studies 
have evolved to be  more intricate, involving adaptive region 
localization, weakly-supervised learning, and Feature Pyramid 
Networks (Fu et al., 2017; Rao et al., 2019; Ding et al., 2021). These 
advancements contribute to more precise localization and 
classification of target areas, thereby enhancing the performance 
of pixel-level segmentation or fine-grained classification (Li et al., 
2016a,b; Nian et al., 2016; Zhang et al., 2019, 2020; Jiang et al., 
2020; Liu et al., 2021).

3. Methodology

This section elucidates the Multi-Scale Adaptive Attention 
Mechanism (MSAAM) approach that we  employ for semantic 
segmentation in autonomous driving scenes. Initially, in Subsection 
3.1, we  articulate the motivations underlying our methodology. 
Following this, Subsection 3.2 presents an overview of the 
comprehensive architecture of MSAAM. Subsection 3.3 details the 
multi-scale attention module, while Subsection 3.4 describes a weight-
adaptive fusion attention system.

3.1. Motivation

Human attention mechanisms assist us in selecting and focusing 
on a particular stimulus among various inputs for in-depth 
processing. This mechanism is not only a focal point in psychological 
research but also a principal area of study in neuroscience. 
Psychology investigates the behavioral characteristics of attention, 
utilizing a range of experiments and questionnaires to understand 
how attention is selected and allocated. Neuroscience, on the other 
hand, delves into the brain regions responsible for attention, 
employing technologies such as fMRI and electrophysiology. 
Attention plays a crucial role in cognitive functions like learning, 
memory, and decision-making. Inspired by these insights, the fields 
of computer science and artificial intelligence have also begun to 
explore and implement attention mechanisms, especially in contexts 
that involve large-scale data and high information volume. Advances 
in attention mechanisms within artificial intelligence have been 
made by drawing upon foundational research in psychology 
and neuroscience.

Inspired by human attention mechanisms, we can identify stability 
and regularity amidst environmental variations and anomalies, 
thereby perceiving the environment more effectively. How can such 
an attention paradigm be  applied to semantic segmentation in 
autonomous driving scenarios? First, it involves analyzing and 
identifying the characteristics of variations and anomalies in 
hazardous scenes; second, it calls for choosing suitable attention 
mechanisms tailored for these specific traits.

In autonomous driving scenes, rapid and substantial changes in 
object scale pose a significant challenge. For instance, cars at varying 
distances appear drastically different in size within the same image, 
potentially leading to erroneous identification. To tackle this issue, 
we employ scale attention mechanisms to process multiple image 
scales and integrate the results. This enhances the accuracy and 
robustness of semantic segmentation, making autonomous driving 
more reliable.

In autonomous driving contexts, both the scale and spatial 
positioning of objects are of paramount importance. For example, a 
distant car may hold more significance than a nearby tree, yet the 
model may overemphasize the tree due to a lack of spatial context. 
Therefore, scale attention must be combined with spatial attention to 
comprehend the relative positioning and importance of objects in 
space. Spatial attention also helps the model focus on partially 
occluded yet crucial areas. Additionally, object features of different 
scales and appearances might reside in different channels, such as edge 
or color information. To avoid losing or confusing these details, the 
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scale attention model also incorporates channel attention. In this way, 
the model can more accurately identify a variety of appearances under 
different lighting conditions, weather, and object types.

3.2. Overall architecture

Semantic segmentation models are generally formulated as 
encoder-decoder architectures. An input image is initially transformed 
into high-dimensional features via the encoder. Subsequently, with 
these intermediate features as input, the MSAAM first infers a 
two-dimensional attention map. Importantly, attention should not 
be unbounded. A constant-sum constraint on attention values forces 
pixels within the attention map to compete against each other for 
maximal gain, thereby circumventing the pitfall of the model setting 
all attention values unfavorably high. We  then select multi-layer, 
multi-scale features generated by the encoder and fuse them with the 
attention map. These fused features are fed into the decoder network 
to produce the predictive output. To widen the gap in attention values 
between focus pixels and other pixels, we introduce a penalty term in 
the loss function, termed as MSAAM Loss. Finally, the network’s 
predictive output is combined with MSAAM’s attention map to 
generate the ultimate integrated prediction.

Within the architecture, the MSAAM module situated between the 
encoder and the decoder serves as the linchpin for the attention 
mechanism. Initially, a Pyramid Attention Module is integrated at the 
terminal phase of the encoder. This module employs Pyramid Pooling 
to capture information across different scales, thereby establishing a 
multi-scale attention mechanism. Subsequently, we  utilize the 
Convolutional Block Attention Module (CBAM) to concurrently 
address both spatial and channel attention. CBAM enriches contextual 
information by employing Global Average Pooling and Global Max 
Pooling techniques. To precisely calculate the weights across the three 
dimensions—scale, space, and channel—we have engineered a 
miniature neural network. This network comprises several fully 
connected layers and a Softmax layer, designed to learn the aggregate 
attention weights across different dimensions. As a specific 
implementation detail, Gated Recurrent Units (GRU) are employed to 
update the weights for each dimension, thus constructing a weight-
adaptive model. The basic architecture of attention is shown in Figure 2.

3.3. Multi-scale attention module

Addressing the large-scale variations of objects poses a significant 
challenge for semantic segmentation in autonomous driving scenarios. 
Integrating a multi-scale attention mechanism into the segmentation 
process ameliorates these challenges by enabling the model to focus 
on regions of varying sizes.

The Pyramid Pooling Attention module (PSA) is specifically 
designed to capture contextual information across different 
dimensions and spatial resolutions. Traditional attention 
mechanisms often operate at a single scale, which could limit their 
ability to understand either broader or more nuanced details. In 
contrast, pyramid models, by creating representations at various 
granularities, can effectively tackle the multi-scale challenges 
inherent in computer vision. These representations offer a 
more comprehensive understanding of the scene, which is 
crucial for enhancing segmentation performance in diverse and 
dynamically changing environments, such as those encountered 
in autonomous driving.

The scale-wise attention module f
sc in our framework is a 

sophisticated operation that effectively combines the input feature 
map Fin  with an attention map produced by the PSA module. 
Mathematically, it is represented as:

 f
sc F F F PSA Fin in in in( ) = + ( )  (1)

in this context, symbolizes the scale-wise attention module, Fin  is 
the input feature map,  stands for element-wise multiplication, and 
PSA denotes the Pyramid Pooling Attention module. The essence of 
this formula is that given an intermediate feature map, our module 
produces an attention map through the Pyramid Pooling Attention 
module and then multiplies this attention map with the input feature 
map, achieving adaptive feature refinement.

The definition of the Pyramid Pooling Attention module PSA is 
as follows:

 
PSA F softmax P Fin

i

N
i i in( ) = ∗











=
∑

1

ω
 

(2)

FIGURE 2

Architecture of the MSAAM attention mechanism.
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in this equation, N represents the number of layers in the pyramid, 
Pi refers to the pooling operation at the i-th layer, wi is the weight for 
that layer, and ∗ denotes the convolution operation. The resulting 
attention map amalgamates information from different scales by using 
a weighted combination of pyramid layers.

3.4. Weight-adaptive fusion attention 
system

Following the scale attention layer, we integrate both spatial and 
channel attention layers, formalized as follows:

 
f ,

sp F Conv
C F

f F F g F
j

i j j( ) = ( ) ( ) ( )
























×

∀
∑σ 7 7

1

 
(3)

where, f sp represents the spatial attention module, Ã denotes the 
sigmoid function, Conv7 7×  stands for a convolutional layer with a 
kernel size of 7 7× , Fi and Fj  represent the input features from any 
two positions, f is a function for calculating the relationship between 
two positions, g is a function to compute the embedding of input 
features, and C signifies a normalization factor.

 
f

c F F W W W F bin in in( ) = ( )( ) +( )( )σ δ δ3 2 1 3  
(4)

here, fc indicates the channel-wise attention module, Fin  is the 
input feature map,  refers to element-wise multiplication, σ  
represents the Sigmoid function, δ  is the ReLU function, W1, W2, and 
W3 are convolution kernel parameters, and b3 is the bias parameter.

To accurately calculate the weights across three dimensions—
scale, space, and channel—a compact neural network is designed. It 
consists of several fully connected layers and a Softmax layer, 
employed for learning the composite attention weights across 
different dimensions. Specifically, Gated Recurrent Units (GRU) are 
utilized to update the weights for each dimension. The formal 
definition is:

 

h GRU
W f F W f F

W f F h
t

sc
sc

in sp
sp

c
c

in t
=

⋅ ( ) + ⋅ ( )
+ ⋅ ( )










−, 1  

(5)

here, ht represents the hidden state at time t, employed for weight 
calculation. Wsc, Wsp, and Wc  are weight matrices corresponding to 
scale, space, and channel, respectively.

The computation of the weights can be  realized through a 
straightforward fully connected layer:

 
αsc, ,α αsp c h tSoftmax W h= ⋅( )  (6)

here, α α αsc sp c, ,and denote the weights across the 
three dimensions.

To enlarge the attention-value gap between the focus pixels and 
the remaining pixels, a penalty term is introduced in the loss function, 
known as MSAAM Loss, defined as:

 

MSAAMLoss CrossEntropy Y,=








 +

( ) + ( ) + (

∧
Y

Var Var Varsc sp cλ α α α ))( )  
(7)

here, Y is the ground truth, Y
∧

 is the model prediction, and λ  is 
a hyperparameter that balances the importance of the two terms. 
Var α( ) indicates the variance of the weights; a higher variance implies 
that the model has allocated significantly different weights across 
different scales, spaces, or channels—something we wish to encourage.

In summary, the GRU model maintains a hidden state that 
captures the significance of the scale, space, and channel information 
observed thus far. These weights are normalized through a Softmax 
layer for subsequent use in the attention mechanism. The MSAAM 
Loss is an extension of the basic cross-entropy loss for semantic 
segmentation tasks. The second term is a variance term, intended to 
encourage the model to allocate different weights across the three 
disparate dimensions—scale, space, and channel—to enhance the 
model’s diversity and robustness. Finally, we merge the network’s 
predicted output with the MSAAM attention map to obtain the final 
integrated prediction. Such a design helps the model better capture 
the importance across different scales, spaces, and channels, 
while also encouraging greater attention to the variances among 
these dimensions.

4. Experiments

4.1. Datasets

MSAAM is proposed to improve the semantic segmentation 
for autonomous driving cars in street scenes, we empirically verify 
it on CamVid dataset and Cityscapes dataset in this section. 
CamVid contains 367 training images, 101 validation images, and 
233 test images. The resolution of images in this dataset is 960 × 720 
which will be  downsampled to 480 × 360 for accelerating the 
training stage of SS models. Cityscapes is comprised of a large, 
diverse set of high-resolution (2048 × 1,024) images recorded in 
streets, where 5,000 of these images have high quality pixel-level 
labels of 19 classes and results 9.43 × 10^9 labeled pixels in total. 
Following the standard setting of Cityscapes, the 5,000 images are 
split into 2,975 training and 500 validation images with publicly 
available annotation, as well as 1,525 test images with annotations 
withheld and comparison to other methods is performed via a 
dedicated evaluation server.

4.2. Experimental setup

4.2.1. Implementation details
We adopt DeepLabv3+ with ResNet101 backbone for our 

segmentation architecture with the output stride set to 8. MSAAM is 
incorporated at the end of the encoder. We train our segmentation 
networks on Cityscapes. We use the same pre-trained network for 
all experiments.

To avoid over-fitting, common data augmentations are used as 
preprocessing, including random flipping horizontally, random 
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scaling in the range of [0.5, 2], random brightness jittering within the 
range of [−10, 10], and random crop of 512 × 512 image patches. For 
training, we use the Adam optimizer (Kahneman, 1973) with an initial 
learning rate of 0.0003 and weight decay of 0.00001. The learning rate 
is scheduled by multiplying the initial learning rate with 

1

0 9

−










epoch
maxEpoches

. . All models are trained for 80 epochs with 

minibatch size of 8.

4.2.2. Evaluation metrics
For quantitative evaluation, mean of class-wise Intersection over 

Union (mIoU) are used. We also use the class accuracy (ClassAcc) to 
evaluate the performance of compared methods on different datasets. 
We compare the performance by the area under receiver operating 
characteristics (AUROC) and average precision (AP). In addition, 
we  measure the false positive rate at a true positive rate of 95% 
(FPR95) since the rate of false positives in high-recall areas is crucial 
for safety-critical applications.

4.2.3. Baselines
In Cityscapes dataset, we pick up 19 the most frequently occurred 

classes from the original 35 classes based on the official evaluation 
metrics (Raymond et al., 1992), and their importance groupings from 
trivial to important are.

Group 1 = {Sky, Building, Vegetation, Terrain, Wall};

Group 2 = {Pole, Road, Sidewalk, Fence};
Group  3 = {Traffic sign, Traffic light, Car, Truck, Bus, Train, 

Motorcycle, Person, Rider, Bicycle};
We compare our method with important approaches including 

Synboost, SML, Max logits, Entropy, MSP, Energy, SynthCP, 
Meta-OoD (Broadbent, 1958; Treisman and Gelade, 1980; 
Desimone and Duncan, 1995; Hubmann et al., 2018; Lis et al., 2019; 
Doshi and Yilmaz, 2020; Xia et al., 2020; Blum et al., 2021; Vojir 
et  al., 2021) on test sets of CamVid and on validation sets of 
Cityscapes. Note that Synboost and SynthCP requires additional 
training of extra network and utilizing OoD data. Energy and 
Meta-OoD requires additional training of extra component or 
network. SML, Max logits, Entropy and MSP do not require 
additional training or utilize external datasets.

4.3. Evaluation results

In this section, we  compare the performances of important 
approaches with MSAAM under the above experimental settings. The 
experimental results of compared methods on the investigated classes 
of the two datasets are shown in Tables 1–4, respectively. A more 
comprehensive set of quantitative analysis metrics is shown in Table 5.

From the results shown in Tables 1, 2, we find that by embedding 
our MSAAM to the adopted deep models, the performance of the 

TABLE 1 The comparison results (%) of various methods on the Groups 1 and 2 of Camvid Dataset.

Models Group 1 Group 2

Sky Building Tree Column Road Sidewalk Fence

Synboost 97.06 71.61 77.84 34.31 93.41 90.35 53.57

SML 93.77 86.75 83.29 21.59 98.28 86.38 31.38

Max logits 94.21 71.6 90.88 48.92 93.17 88.78 45.19

Entropy 89.98 88.92 84.58 9.71 94.56 81.27 19.86

MSP 93.38 87.45 83.87 17.23 90.24 88.76 43.33

Energy 85.12 86.4 71.77 20.23 98.66 75.03 25.56

SynthCP 94.44 78.71 88.09 42.28 98.29 94.57 44.84

Meta-OoD 97.87 86.28 81.18 30.04 98.66 86.04 32.74

MSAAM 96.82 75.16 82.81 60.36 92.11 95.19 62.02

The bold values mean highlighting the best results in the data comparison.

TABLE 2 The comparison results (%) of various methods on the Group 3 of Camvid Dataset.

Models Group 3

Sign Car Pedestrian Bicyclist ClassAvg mIoU

Synboost 50.49 82.92 67.21 33.11 71.21 51.19

SML 40.79 80.28 59.93 15.19 64.21 51.08

Max logits 26.58 79.38 39.43 42.29 67.88 52.34

Entropy 0.72 75.37 25.09 0.48 52.32 45.35

MSP 32.33 83.53 36.08 23.45 58.91 47.71

Energy 29.39 80.82 48.08 28.25 60.11 48.51

SynthCP 43.37 76.01 66.39 52.05 72.51 55.31

Meta-OoD 19.58 76.56 37.65 36.08 63.07 53.21

MSAAM 67.57 91.63 78.17 62.51 74.81 55.87

The bold values mean highlighting the best results in the data comparison.
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investigated important classes like sign/symbol, pedestrian, and 
bicyclist can be  significantly improved when compared with the 
results of other approaches. Not surprisingly, the performance on 
unimportant classes such as sky, building, and tree weakly drop 
because they are the target of the attention mechanism. The 
performance gain of MSAAM over the second approach are 17.08, 8.1, 
11.04, 10.46 on sign, car, pedestrian, bicyclist, respectively. Meanwhile, 

MSAAM achieve better performance than other approaches of 
ClassAvg and mIoU values.

From the results in Tables 3, 4, we observe that the important 
classes in Group 3 are segmented with very high performance by 
MSAAM. The performance gain of MSAAM on ClassAvg and mIoU 
are 1.14 and 2.12. For some unimportant classes in Group 1 and 2, the 
performances of the MSAAM-based model are inferior to the other 
models. However, they will not have a large impact on safe-driving as 
explained above.

To further evaluate the experimental results through quantitative 
analysis, we conducted a data analysis on the three metrics, AUROC, 
AP, FPR95 presented in Table 5. From the results, we observe that 
embedding our MSAAM to the adopted deep models, the performance 
achieved the best results compared to all other models. The 
performance gain of MSAAM on AUROC, AP and mIoU are 1.41, 
1.05, 8.04, respectively.

4.4. Auxiliary hierarchical representation

To qualitatively analyze the experimental results, we design 
an algorithm to extract the weights from multiple attention 
modules. It then simplifies the attention pixels into rectangular 

TABLE 4 The comparison results (%) of various methods on the Group 3 of Cityscapes Dataset.

Models Group 3

Traffic 
Sign

Traffic 
Light

Car Truck Bus Train Motorcycle Person Rider Bicycle ClassAvg mIoU

Synboost 75.96 71.18 98.92 68.10 73.87 61.07 42.50 87.29 57.79 81.82 74.66 58.20

SML 62.75 27.42 91.60 0.00 62.93 0.00 0.00 83.05 0.00 63.91 58.52 44.84

Max logits 55.08 21.27 96.42 44.86 41.29 16.94 3.14 67.28 39.47 66.89 59.72 42.58

Entropy 15.03 7.57 90.01 13.20 1.04 52.52 2.55 62.68 0.00 50.58 45.80 38.92

MSP 45.98 14.01 91.50 1.34 29.85 1.02 0.52 67.59 3.57 61.25 48.52 40.20

Energy 42.59 11.60 93.85 2.25 3.51 11.83 0.29 61.65 0.10 57.02 46.28 37.76

SynthCP 83.64 77.40 95.90 77.59 87.49 78.30 56.92 85.37 66.96 85.38 75.69 67.89

Meta-OoD 74.72 67.08 96.56 72.26 82.57 72.02 53.00 87.59 64.57 81.22 79.99 69.34

MSAAM 89.55 81.61 99.36 88.85 89.52 85.82 57.41 89.11 70.11 89.64 81.13 71.46

The bold values mean highlighting the best results in the data comparison.

TABLE 5 The comparison results of various methods on AUROC, AP, and 
FPR95.

Models AUROC↑ AP↑ FPR95↓
Synboost 92.48 47.88 49.04

SML 96.77 50.09 17.37

Max logits 93.75 28.07 29.86

Entropy 90.39 21.93 34.75

MSP 88.26 14.85 33.97

Energy 92.61 30.30 38.37

SynthCP 89.34 22.26 32.72

Meta-OoD 97.38 67.41 13.76

MSAAM 98.79 68.46 5.72

The bold values mean highlighting the best results in the data comparison.

TABLE 3 The comparison results (%) of various methods on the Groups 1 and 2 of Cityscapes Dataset.

Models Group 1 Group 2

Sky Building Vegetation Terrain Wall Pole Road Sidewalk Fence

Synboost 95.57 94.27 94.73 77.53 57.85 74.28 94.89 84.84 64.16

SML 99.21 92.21 97.64 66.35 35.54 49.66 98.36 82.78 59.97

Max logits 98.58 85.37 95.73 52.48 43.38 59.65 93.39 86.97 36.92

Entropy 94.17 92.95 93.06 61.71 12.45 40.11 96.48 81.23 43.69

MSP 92.19 81.63 93.44 64.77 32.95 30.43 97.81 80.23 35.33

Energy 93.56 95.02 90.73 41.24 16.85 28.79 98.61 77.03 25.84

SynthCP 99.52 90.52 90.79 76.21 68.52 70.03 96.80 87.28 64.95

Meta-OoD 94.67 93.04 93.72 75.85 58.48 67.48 99.62 92.61 59.81

MSAAM 93.55 86.86 91.26 67.14 54.47 70.73 94.66 94.48 62.03

The bold values mean highlighting the best results in the data comparison.

104

https://doi.org/10.3389/fnins.2023.1291674
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1291674

Frontiers in Neuroscience 09 frontiersin.org

blocks for visualization. This algorithm is named auxiliary 
hierarchical representation.

The original image dimensions are H W C× × . The attention 
weights αsc , αsp  and αc  are extracted from the GRU model. In 
the Scale Attention Auxiliary Hierarchical Representation, the 
weight αsc  and the scale attention output f sc Fin( ) are utilized to 
compute an H W×  scale weight matrix. In this matrix, the weight of 
each pixel (i, j) is the weighted sum of αsc ⋅ fijsc  across all scales, 
defined as follows:

 
ScAHij =∑

s
sc s s ij

scfα , ,·

 
(8)

here, ScAH stands for Scale Attention Highlight.
In the case of Spatial Attention Auxiliary Hierarchical 

Representation, the weight αsp  and the spatial attention output 
f

sp F( )  are employed to calculate an H W×  spatial weight matrix, 
defined as:

 
SpAHij sp= α · fij

sp
 (9)

here, SpAH stands for Spatial Attention Highlight.
For Channel Attention Auxiliary Hierarchical Representation, the 

weight αc  and the channel attention output f c Fin( ) are used to 
compute an H W×  channel weight matrix. Here, the weight of each 
pixel (i, j) is the weighted sum of αc· fijc  across all channels, defined 
as follows:

 
CAHij

c

=∑αc c c ij
cf, ,·

 
(10)

in this context, CAH represents Channel Attention Highlight.
Upon the completion of the hierarchical model construction, the 

model undergoes normalization and color mapping to facilitate the 
high-contrast highlighting of attention regions. For an optimized 
visual experience, a simplified treatment is generally applied to the 
regions of attention.

After auxiliary hierarchical modeling is accomplished for all three 
attention mechanisms—scale, spatial, and channel—their respective 
weights are combined to create a rectangular attention visualization 
model, providing a more straightforward and interactive way to 
represent attention intervals.

Initially, the weights are amalgamated by integrating the weight 
matrices of Scale, Spatial, and Channel into a new weight matrix 
termed as Combined Attention Highlight, abbreviated as CoAH. The 
combination is formalized as:

 CoAHij p= + +α α αsc ij s ij c ijScAH SpAH CAH· · ·  (11)

here, αsc , αsp , and αc  are normalized weights retrieved from 
the GRU model.

Subsequently, a simplified rectangular model is established. A 
simplification algorithm, such as a greedy algorithm or another 
optimization technique, is employed to identify a rectangular 
region with the highest average attention weight. Assuming the 
rectangular region is defined by the top-left corner x ,y1 1( ) and the 

bottom-right corner x ,2 2y( ) , the average weight for this area is 
computed as follows:

 
AW =

− +( )× − +( ) = =
∑ ∑1

1 12 1 2 1
1

2

1

2

x x y y
CoAH

i x

x

j y

y

ij
 

(12)

in this equation, AW stands for Average Weight.
The visualization of the auxiliary hierarchical representation 

based on the MSAAM attention mechanism is shown in Figure 3. 
Scale attention captures objects of the focused category at different 
sizes. Subsequently, spatial attention tends to prioritize obscured 
targets, while channel attention is inclined toward targets with 
significant appearance variations. Both spatial and channel 
attentions assist scale attention in optimizing the areas and objects 
of focus, culminating in an integrated attention model. Auxiliary 
hierarchical representation is for the purpose of visualizing 
this process.

4.5. Ablation study

We integrated the MSAAM into the models that do not require 
additional training or utilize external datasets. These models 
include SML, Max logits, Entropy and MSP. From the results in 
Table 6, we observe that all performance metrics of every model 
improved. The experimental outcomes underscore the versatility 
and effectiveness of MSAAM.

4.6. Comparison on effectiveness

To demonstrate the effectiveness of MSAAM on Cityscapes 
dataset, Figure 4 shows some representative segmentation results of 
the SML, Max logits, Entropy and MSAAM. We  find that the 
interested regions segmented by the MSAAM are highly compact, and 
the shapes of the segmented objects are also more close to that of the 
ground truth. Therefore, MSAAM is effective in emphasizing the 
small but critical targets, and thus is useful for semantic 
segmentation tasks.

4.7. Comparison on computational cost

To demonstrate that our method requires a negligible amount of 
computation cost, we report GFLOPs (i.e., the number of floating-
point operations used for computation) and the inference time. As 
shown in Table 7, our method requires only a minimal amount of 
computation cost regarding both GFLOPs and the inference time 
compared to the other approaches.

5. Conclusion

In this paper, we present the Multi-Scale Adaptive Attention 
Mechanism (MSAAM), a specialized framework tailored for 
enhancing semantic segmentation in automotive environments. The 
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attention mechanism uniquely harmonizes three critical 
dimensions—scale, spatial context, and channel features—while 
adaptively balancing their respective contributions. By integrating 
these multi-faceted channels, MSAAM excels in addressing 
complex scene attributes such as scale discrepancies, object 
occlusions, and diverse visual appearances. Notably, the architecture 

of this attention mechanism is highly modular, enabling seamless 
incorporation into a wide array of Convolutional Neural Network 
(CNN) models. As a result, it serves as a versatile, plug-and-play 
component that augments pixel-level semantic segmentation 
performance without significantly inflating the parameter count or 
complicating the training regimen.

TABLE 6 Comparison of metric gains after embedding our MSAAM to models that do not require additional training or utilize external datasets.

AUROC↑ AP↑ FPR95↓ mIoU

SML + MSAAM +0.63 +1.66 +2.70 +1.49

Max logits + MSAAM +0.10 +6.90 +2.47 +0.42

Entropy + MSAAM +1.54 +7.21 +1.85 +1.65

MSP + MSAAM +1.45 +2.34 +1.63 +0.19

FIGURE 3

Visualization of the working process of the MSAAM attention mechanism.
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The Group Sparse Representation (GSR) model shows excellent potential in

various image restoration tasks. In this study, we propose a novel Multi-Scale

Group Sparse Residual Constraint Model (MS-GSRC) which can be applied to

various inverse problems, including denoising, inpainting, and compressed sensing

(CS). Our newmethod involves the following three steps: (1) finding similar patches

with an overlapping scheme for the input degraded image using a multi-scale

strategy, (2) performing a group sparse coding on these patches with low-rank

constraints to get an initial representation vector, and (3) under the Bayesian

maximum a posteriori (MAP) restoration framework, we adopt an alternating

minimization scheme to solve the corresponding equation and reconstruct the

target image finally. Simulation experiments demonstrate that our proposedmodel

outperforms in terms of both objective image quality and subjective visual quality

compared to several state-of-the-art methods.

KEYWORDS

image restoration, group sparsity residual, low-rank regularization,multi-scale, non-local

self-similarity (NSS)

1. Introduction

Unsuitable equipment and other disturbances unavoidably contribute noise in the target

images. Image denoising is a crucial area of image processing and has attracted much

attention from scholars in related fields recently. Digital image denoising techniques have

a wide range of uses, involving disciplines of medicine and industry, and also in spectral

images for weather forecasting, remote sensing images, and so on. Taking image denoising

as a basis, the method can be introduced to more image restoration problems and be useful

in more fields (Buades et al., 2005; Osher et al., 2005; Elad and Aharon, 2006; Zoran and

Weiss, 2011; Gu et al., 2014; Zhang et al., 2014b; Liu et al., 2017; Keshavarzian et al., 2019;

Ou et al., 2020; Zha et al., 2020a, 2022; Jon et al., 2021). This task aims to generate a latent

image x from the degraded version y. The process modeling can be depicted as

y = Hx+ n (1)

Where H is an irreversible linear operator in matrix form and n is the additive white

Gaussian noise vector. By requiring H, Eq.(1) can be converted to diverse image restoration

problems. For example, Eq.(1) represents the image denoising problem if H is an identity

(Elad and Aharon, 2006; Ou et al., 2020); Eq.(1) denotes the image inpainting problem if H

is a mask (Liu et al., 2017; Zha et al., 2020a); and Eq.(1) stands for the image CS problem if

H is an undersampled random projection matrix (Keshavarzian et al., 2019; Zha et al., 2022).

We concentrate on image denoising, inpainting, and CS challenges in this article.
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Given that the problem always ill-posed, it is common to use

image priors to regularize the model so as to gain excellent restored

images. Namely, the Maximum A Posteriori (MAP) approach

allows for the image restoration problem to be formulated as a

mathematical equation to address the minimization problem:

x̂ = min
x

1

2

∥∥y − Hx
∥∥2
2
+ λR (x) (2)

The former is the data-fidelity term and the latter is the image

prior constraint term. The weights between these two terms are

regulated by the parameter λ. After establishing the mathematical

model, we conceived an optimization algorithm to address various

image restoration problems. The method yields a reconstructed

image that approximates a clean image after several iterations.

Numerous image prior models have been put forward in earlier

studies, mainly classified into local smoothness (Rudin et al., 1992;

Osher et al., 2005; Dey et al., 2006), non-local self-similarity (Fazel

et al., 2001; Buades et al., 2005; Gu et al., 2014), and sparsity

(Zhang et al., 2014b; Ou et al., 2020, 2022a). Yet, the curse of

dimensionality makes it difficult to construct a global model for the

entire image. Therefore, the approach of building patch priors has

become popular in recent years for its efficiency and convenience.

Sparse representation is one of the most representative patch-

based priors. Elad and Aharon (2006) proposed K-SVD (K-

Singular Value Decomposition) which is a pioneering work in

applying sparse coding to image denoising. NSS is another crucial

prior information widely used. Buades et al. (2005) proposed

the first model using NSS for image denoising. In addition, the

high correlation between patches leading to the data matrix of

a clean image is as often low-rank. Related studies mainly fall

into two categories: low-rank matrix factorization (LRMF) (Srebro

and Jaakkola, 2003; Buades et al., 2005) and the Nuclear Norm

Minimization (NNM) (Fazel et al., 2001; Hu et al., 2012). NNM

is the more popular one in most cases. Gu et al. presented the

Weighted Nuclear NormMinimisation model (WNNM) (Gu et al.,

2014) which dramatically enhances the flexibility of NNM, and it

remains among most widespread image denoising methods. Apart

from this, RRC (Zha et al., 2019), which makes use of low-rank

residuals for modeling, has also achieved good quality in various

image restoration problems.

Some studies have combined image sparsity and self-similarity

to modeling, and these algorithms have shown great potential

in image restoration research. For instance, in the study by

Dabov et al. (2007), BM3D applies NSS to cluster patches before

collaborative filtering, which is a benchmark method in the current

area of image denoising. Both NCSR (Dong et al., 2012b) and GSR

(Zhang et al., 2014b) use the NSS property to aggregate image

patches into groups, and then perform sparse coding on the self-

similar groups. Mairal J et al. devised the LSSC (Mairal et al.,

2009) to force all self-similar groups to be imposed with the same

dictionary. Zha et al. (2017) designed an efficient GSRC model that

converts the task of image denoising into one of minimizing group

sparse residuals. In addition, Zha et al. (2020a) also proposed a

GSRC-NLP model with a better image restoration result based on

the above.

Another groundbreaking patch-based image recovery method

is Expected Patch Log Likelihood (EPLL) (Zoran and Weiss,

2011) which restores images by learning a Gaussian mixture

model(GMM). Later on, Zoran et al. introduces a multi-scale

EPLL (Papyan and Elad, 2015) model, which can improve the

performance of image restoration further. Subsequently, image

denoising methods using external GMM priors have been widely

used. Most of the relevant studies have combined external GMM

with internal NSS for modeling, such as Xu et al. (2015) proposed

PGPD, Chen et al. (2015) proposed PCLR, and Zha et al. (2020b)

proposed SNSS.

In addition to the above methods, deep convolutional neural

networks (CNNs) (Zhang et al., 2017; Zhang and Ghanem, 2018) is

an emerging approach in recent years, but it requires learning in an

external database before restoring damaged images.

It is not comprehensive to only consider the sparsity or low-

rankness property of the image. Hence, with the aim of obtaining a

higher-quality restored image, our study uses the low-rank property

of similar groups as a constraint in combination with sparsity to

design the model. Furthermore, based on the NSS property, we can

not only find similar patches for a specified patch on a single scale

image but also extend the search window to multi-scales. Finally,

we propose a novel Multi-scale Group Sparsity Residual Constraint

(MS-GSRC) model with the following innovations:

1. We propose a novel MS-GSRC model that provides a simple yet

effective approach for image restoration: find neighbor patches

with an overlapping scheme for the input degraded image using

a multi-scale strategy and perform a group sparse coding on

these similar patches with a low-rank constraint.

2. An alternating minimization mechanism with an automatically

tuned parameter scheme is applied to our proposed model,

which guarantees a closed-form solution at each step.

3. Our proposed MS-GSRC model is validated on three tasks:

denoising, inpainting, and compressed sensing. The model

performs competitive in both objective image quality and

subjective visual quality compared to several state-of-the-art

image restoration methods.

The remainder of this article is as follows: In Section 2, after

the brief overview of the GSRC framework and LR methods, we

introduce a novel MS-GSRCmodel. Section 3 adopts an alternating

minimization schemewith self-adjustable parameters to resolve our

proposed algorithm. Section 4 lists extensive experimental results

that prove the feasibility of our model. Conclusion is presented in

Section 5.

2. Models

In this part, we briefly review some relevant knowledge and

present our new model.

2.1. Group-based sparse representation

Principles of the GSR model can be described as follows:

divide the image into many overlapping patches, find self-similarity

groups for each image patch using the NSS property, perform

sparse coding for each self-similarity group, and finally reconstruct

the image (Dong et al., 2012b; Zha et al., 2020a; Ou et al., 2022a).
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Specifically, the image x ∈ R
M is divided into m overlapping

patches {xi}
m
i=1, where xi ∈ R

n×n. Next, for each overlapping patch

xi, we use the K-Nearest Neighbor classification (KNN) algorithm

(Keller et al., 1985; Xie et al., 2016) to select k neighbor patches

from aW ×W search window to form the group Ki. Subsequently,

stack all Ki into a data matrix Xi ∈ R
n×k; this matrix contains each

element of Ki as its column, i.e., Xi =
{
xi,1, xi,2 . . . xi,k

}
, where

{
xi,j
}k
j=1

denotes the k-th similar patch of the k-th group. Each

similarity group Xi is represented sparsely as X̂i = DB̂i, where Di

denotes the dictionary.

Nevertheless, solving the 0-norm minimization problem is NP-

hard, so for the ease of making the solution, The sparse code B̂i is

obtained from the following equation (Zhang et al., 2014b):

B̂i = min
Bi

(
1

2
‖Xi − DiBi‖

2
F + λ ‖Bi‖1

)
∀i (3)

It is well-known that clean images x are unavailable in image

restoration problems. Thus, we replace x with degenerate images

y ∈ R
M×M . Eq.(3) can be transformed into the problem of

recovering the group sparse code Ai from Yi:

Âi = min
Ai

(
1

2
‖Yi − DiAi‖

2
F + λ ‖Ai‖1

)
∀i (4)

The restored Xi is obtained by X̂i = DiÂi, and the final

complete image X can be gained by simple averaging {Xi}
m
i=1.

2.2. Group sparsity residual constraint

After observing the GSR model, it is clear that the closer the

computed A approximates to B, the better the quality of the final

restoration image. Consequently, the following definition of the

group sparsity residual constraint (GSRC) (Zha et al., 2017) is given:

R = A − B. Then, Eq.(4) for solving the group sparse coefficients

Ai can be converted into:

Âi = min
Ai

(
1

2
‖Yi − DiAi‖

2
F + λ ‖Ai − Bi‖1

)
∀i (5)

This model uses BM3D to restore the the degenerate

observation y to the image z. Moreover, z can be viewed as a good

approximation of the target x considering BM3D has an excellent

denoising performance. Thus, the group sparsity coefficients Bi can

be obtained from z. In the study by Zha et al. (2020a), GSRC-NLP

uses NLP before constraining the input image.

2.3. Low-rank approximation

According to Gu et al. (2014), Zha et al. (2019), and Zha

et al. (2020b), it can be found that NNM is a popular low-rank

approximations methods. For X, define the i-th singular value as

σi (x), and the nuclear norm as ‖X‖∗ = 6iσi(x). The specific

solution for X is:

X̂ = min
X

‖Y − X‖2F + ‖X‖∗ ∀i (6)

Equation (6) yields a simple solution: X̂ = USτV
T , where

Ŷ = U6VT is the SVD for Y and Sτ (6) is a soft-thresholding (Cai

et al., 2010) function. Namely, Sτ (6)ii = max(6ii − τ , 0), where

6ii is the diagonal element of 6.

2.4. Multi-scale GSRC

The established GSRC model has performed well in image

denoising, but it requires additional pre-processing of degraded

images for obtaining the group sparsity coefficients B. Thus, we

combine group sparsity and low-rank property to build a model.

Furthermore, the GSRC model only focuses on a single scale.

However, it is evident that NSS can appear not only on the

original scale of an image but also on a coarse scale, so we can

find neighbor patches for the original image patch at multi-scales

(Yair and Michaeli, 2018; Ou et al., 2022a,b). The specific steps of

our proposed new Multi-Scale Group Sparse Residual Constraint

(MS-GSRC) model are as follows:

(a) First, we use KNN to find a specified number of similar

patches from both the original scale and scaled-down version for

the overlapping patches of the input image.

(b) Then, these similar patches are stacked separately into

groups.

(c) Next, the low-rank constraint is imposed on each group to

obtain good group sparsity coefficients Bi.

(d) After estimating the group sparsity coefficients Ai by using

the group sparsity residuals Ri, each group was recovered in

sequence.

(e) Finally, we select the patch belonging to the original image

from each group, and aggregate the complete image by simple

averaging.

We propose the following constraint function:

x̂ = min
x

1

2σ 2
n

∥∥y − Hx
∥∥2
2
+

1

2µ

m∑

i=1

∥∥Rix
MS

−DiAi‖
2
F + λ

m∑

i=1

‖Ai − Bi‖1 ∀i

(7)

Rix
MS is a multi-scale similarity group, which is a matrix with

k nearest neighbor patches matched for each original image patch.

These similar patches are derived from both the original and coarse

scales of the image. The window size isW×W in the original scale,

and it isχW × χW in the other scale images, where χ indicates the

scale factor (0 < χ < 1). χ will be set to different values in different

experiments.

For image denoising, for example, the flowchart of MS-GSRC

model is shown in Figure 1.

3. Algorithm for image restoration

This section is a detailed analysis of our proposed MS-

GSRC model. The solution of this algorithm is obtained using

an alternating minimization method whose parameter is self-

adjustment.

First, we divide Eq.(7) into three sub-problems:
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FIGURE 1

Flowchart of the proposed MS-GSRC for image denoising.

Require: The observation y and the degradation

operator H.

1: Initialize x̂0 = y and parameters m, n, W, γ, ζ, α,

β, χ, ε,ǫ and Iter.

2: for t=1:Iter do

3: Update parameters by Eq.(21-23);

4: divide x(t) into patches {xi}
m
i=1.

5: for each xi do

6: Construct multi-scale group Rix
MS;

7: end for

8: for each group Rix
MS do

9: Construct dictionary Di by Pi by using PCA;

10: Compute Ai by Eq.(9);

11: Compute Bi by Eq.(12);

12: end for

13: ADMM:

14: Initialize:c = 0 and s = x̂.

15: Compute s(t+1) by Eq.(18);

16: Compute c(t+1) by Eq.(17);

17: if H is an unnstructured random projection

matrix then

18: Construct x(t+1) by Eq.(20);

19: else

20: Construct x(t+1) by Eq.(19);

21: end if

22: end for

23: Output:Restored image x̂.

Algorithm 1. The MS-GSRC algorithm for image restoration.

3.1. Ai sub-problem

Given x and Di, we get a sub-problem of Ai:

Âi = min
Ai

n∑

i=1

1

2µ

∥∥Rix
MS

− DiAi

∥∥2
F
+ λ ‖Ai − Bi‖1

= min
Ai

m∑

i=1

‖Pi − Ai‖
2
F + 2λµ ‖Ai − Bi‖1

= min
αi

m∑

i=1

∥∥pi − αi

∥∥2
F
+ 2λµ ‖αi − βi‖1

(8)

where Pi = D−1
i Rix

MS, αi, βi, pi stand for the vector

representations of Ai, Bi, and Pi, respectively. Di is a dictionary,

A crucial step for solving the Ai problem is to design an efficient

Di. The restored image is prone to visual artifacts (Lu et al., 2013)

if learning the over-complete dictionary. To reduce this terrible

phenomenon, we choose to adopt principal component analysis

(PCA) (Abdi and Williams, 2010) for learning the dictionary Di in

this study because PCA is more robust and adjustable.

Equation (8) can be deduced as a closed-form solution:

Âi = Soft
(
p̃i − β̃i, 2λµ

)
+ β̃i ∀i (9)
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FIGURE 2

The 27 widely tested images for experiences.

Soft(·) represents the soft-thresholding operator.

Since x is an unknown target image, it is impossible to gain the

group sparse coefficients Bi directly. Consequently, we must utilize

methods to gain an approximation value.

The introduction of low-rank constraints into the model is a

practical approach. After applying LR constraints to the Yi group,

we can obtain a matrix Si. The clean group sparsity coefficients Bi

can be computed from Si. It is easy to derive the following equation:

‖Yi − Si‖
2
F = ‖Ai − Bi‖

2
F (10)

So,we can obtain

Ŝi = argmin
Si

1

2
‖Yi − Si‖

2
F + θ ‖Si‖∗

⇔ B̂i = argmin
Bi

=
1

2
‖Ai − Bi‖

2
F + θ ‖Bi‖∗

where ‖Bi‖∗ = 6jδi,j,
{
δi,j
}s
j=1

are singular value of matrix.

Apparently, we are able to get a closed-form solution for Bi:

B̂i = Uisoft (1i, θ)VT
i ∀i (11)

where Ai = Ui1iV
T
i is the SVD for Ai and 1i is the diagonal

element of the singular matrix.

3.2. x sub-problem

Given Ai and Di, subproblem of x in Eq.(7) turns into:

x̂ = min
x

1

2σ 2
n

∥∥y − Hx
∥∥2
2
+

1

2µ

m∑

i=1

∥∥Rix
MS

− DiAi

∥∥2
F

(12)

Clearly, Eq.(13) is a quadratic optimization equation. We adopt

Alternate DirectionalMultiplicationMethod (ADMM) (Boyd et al.,

2011) to simplify the optimization process.

First, we bring in an auxiliary variable s = xMS, and Eq.(13) can

be converted into an equivalence equation:

〈
x̂, ŝ
〉
= min

x,s

1

2σ 2
n

∥∥y − Hx
∥∥2
2
+

1

2µ

m∑

i=1

‖Ris − DiAi‖
2
F (13)

By observing Eq.(14), it is plain that this equation has three

unknown variables requiring solutions. Thus, we decompose

Eq.(14) into three iterative processes. In the t-th iteration:

x̂t+1 = minx
1

2σ 2
n
‖y − Hx‖22 +

1
2ζ

∥∥x − st − ct
∥∥2
2

(14)

ŝt+1 = mins
1
2µ

∑m
i=1 ‖Ris − DiAi‖

2
F +

1
2ζ

∥∥xt+1
− s − ct

∥∥2
2
(15)

ct+1 = ct −
(
xt+1

− st+1
)

(16)

The parameter c indicates the Lagrangian multiplier. To make

the derivation process lookmore concise, we omit t in the following

formulation expression.

Update s : Given DiAi, x, and c, s can be represented as a

closed-form solution by Eq.(16), namely:

ŝ =

(
µI + ζ

m∑

i=1

RT
i Ri

)−1 (
µx− µc+ ζ

m∑

i=1

RT
i DiAi

)
(17)

Since I is a matrix of identities and RT
i Ri represents a diagonal

matrix,
(
µI + ζ

∑m
i=1 R

T
i Ri

)
is positive. So the above formula is

valid.

Update x : Given s and c, Eq.(15) provides a solution to the

variable x:

x̂ =

(
ζHTH + σ 2

n I
)−1 (

ζHTy+ σ 2
n s+ σ 2

n c
)

(18)

Notably, sinceH is an unstructured random projection matrix,

the cost required to solve x using Eq.(19) directly is too high in CS
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TABLE 1 PSNR (dB) and SSIM comparison of di�erent methods for image denoising.

Image Airplane Flower Foreman J.Bean Lake Leaves Lena Lin Monarch Starfish Pentagon Peppers Average

σ = 15

BM3D
32.14 31.57 35.68 35.70 30.45 31.72 33.04 34.23 31.86 31.15 29.68 31.80 32.42

0.9230 0.9074 0.9178 0.9693 0.9063 0.9648 0.9209 0.9243 0.9353 0.8958 0.8716 0.8764 0.9177

PGPD
32.31 31.85 35.51 35.65 30.67 32.02 33.13 34.16 32.23 31.31 29.72 31.78 32.53

0.9193 0.9076 0.9140 0.9582 0.9086 0.9671 0.9185 0.9110 0.9362 0.9024 0.8724 0.8725 0.9156

WNNM
32.47 32.04 35.88 36.56 30.83 32.83 33.34 34.47 32.72 31.83 30.06 32.03 32.92

0.9252 0.9132 0.9234 0.9735 0.9129 0.9735 0.9248 0.9227 0.9424 0.9081 0.8810 0.8770 0.9231

NCSR
32.95 31.77 35.52 37.89 31.21 32.16 33.04 34.27 32.31 31.46 29.93 31.86 32.86

0.9201 0.9082 0.9189 0.9782 0.8965 0.9694 0.9192 0.9190 0.9401 0.9042 0.8779 0.8725 0.9187

RRC
32.38 31.81 35.71 36.16 30.70 32.55 33.23 34.31 32.61 31.50 29.72 31.85 32.71

0.9248 0.9076 0.9225 0.9734 0.9091 0.9719 0.9233 0.9197 0.9435 0.8988 0.8693 0.8720 0.9197

LGSR
32.47 32.02 35.88 36.40 30.84 32.73 33.32 34.43 32.69 31.67 30.05 32.00 32.87

0.9255 0.9127 0.9244 0.9751 0.9130 0.9732 0.9249 0.9222 0.9435 0.9040 0.8818 0.8753 0.9230

GSRC-NLP
32.37 31.97 35.84 36.10 30.76 32.61 33.23 34.33 32.59 31.55 29.96 31.96 32.77

0.9240 0.9107 0.9235 0.9720 0.9107 0.9729 0.9234 0.9183 0.9422 0.9007 0.8764 0.8748 0.9208

OURS
32.56 32.10 35.80 36.69 30.93 32.99 33.33 34.46 32.78 31.83 30.03 32.03 32.96

0.9266 0.9141 0.9229 0.9741 0.9162 0.9745 0.9245 0.9203 0.9436 0.9072 0.8860 0.8764 0.9239

σ = 30

BM3D
28.49 27.97 32.75 31.97 26.74 27.81 29.46 30.95 28.36 27.65 26.41 28.66 28.94

0.8642 0.8204 0.8779 0.9371 0.8256 0.9254 0.8590 0.8701 0.8808 0.8217 0.7492 0.8167 0.8540

PGPD
28.63 28.11 32.83 31.99 26.90 27.99 29.60 30.96 28.49 27.67 26.31 28.70 29.02

0.8646 0.8213 0.8818 0.9317 0.8294 0.9300 0.8622 0.8606 0.8853 0.8277 0.7400 0.8164 0.8542

WNNM
28.75 28.34 33.23 32.50 27.02 28.61 29.72 31.07 28.91 28.07 26.66 28.84 29.31

0.8698 0.8318 0.8892 0.9438 0.8355 0.9389 0.8670 0.8643 0.8926 0.8357 0.7615 0.8201 0.8625

NCSR
28.40 27.58 32.66 32.85 26.65 28.24 29.35 30.71 28.59 27.77 26.37 28.64 28.99

0.8473 0.7704 0.8853 0.9468 0.7902 0.9377 0.8583 0.8669 0.8890 0.8304 0.7492 0.8153 0.8489

RRC
28.63 28.12 33.27 32.33 26.89 28.35 29.67 30.96 28.79 27.95 26.33 28.67 29.16

0.8716 0.8240 0.8952 0.9482 0.8323 0.9366 0.8672 0.8703 0.8954 0.8304 0.7374 0.8184 0.8606

LGSR
28.76 28.30 33.36 32.32 27.05 28.48 29.78 30.96 28.87 28.02 26.58 28.77 29.27

0.8749 0.8316 0.8960 0.9491 0.8378 0.9386 0.8718 0.8663 0.8952 0.8348 0.7541 0.8204 0.8642

GSRC-NLP
28.68 28.21 33.15 32.28 26.89 28.56 29.66 30.92 28.80 28.02 26.41 28.71 29.19

0.8726 0.8262 0.8941 0.9482 0.8303 0.9401 0.8682 0.8647 0.8939 0.8313 0.7383 0.8186 0.8605

OURS
28.85 28.38 33.09 32.63 27.10 28.90 29.79 31.13 28.97 28.23 26.50 28.82 29.37

0.8767 0.8332 0.8912 0.9470 0.8418 0.9431 0.8692 0.8680 0.8957 0.8405 0.7551 0.8218 0.8653

σ = 50

BM3D
25.76 25.49 30.36 29.26 24.29 24.68 26.90 28.71 25.82 25.04 24.21 26.17 26.39

0.7967 0.7311 0.8396 0.9038 0.7381 0.8639 0.7938 0.8200 0.8197 0.7377 0.6282 0.7548 0.7856

PGPD
25.98 25.63 30.45 29.20 24.49 25.03 27.15 28.79 26.00 25.11 24.17 26.31 26.53

0.8059 0.7324 0.8410 0.8934 0.7483 0.8794 0.7990 0.8118 0.8269 0.7457 0.6206 0.7578 0.7885

WNNM
26.18 25.93 30.98 29.63 24.56 25.47 27.27 28.74 26.32 25.43 24.47 26.41 26.78

0.8133 0.7502 0.8548 0.9098 0.7567 0.8926 0.8074 0.8138 0.8350 0.7596 0.6418 0.7630 0.7998

(Continued)
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TABLE 1 (Continued)

Image Airplane Flower Foreman J.Bean Lake Leaves Lena Lin Monarch Starfish Pentagon Peppers Average

NCSR
25.63 25.31 30.41 29.24 24.15 24.94 26.94 28.23 25.73 25.06 23.92 26.04 26.30

0.8066 0.7217 0.8559 0.9134 0.7420 0.8787 0.8009 0.8171 0.8252 0.7440 0.6058 0.7567 0.7890

RRC
26.13 25.72 30.87 29.38 24.48 25.30 27.17 28.51 26.22 25.34 24.21 26.23 26.63

0.8171 0.7413 0.8611 0.9125 0.7571 0.8910 0.8073 0.8140 0.8361 0.7589 0.6162 0.7643 0.7981

LGSR
26.15 25.92 31.03 29.40 24.59 25.39 27.27 28.56 26.24 25.40 24.47 26.37 26.73

0.8212 0.7544 0.8637 0.9141 0.7629 0.8930 0.8140 0.8171 0.8364 0.7616 0.6423 0.7655 0.8039

GSRC-NLP
26.17 25.76 30.77 29.58 24.44 25.66 27.06 28.60 26.25 25.36 24.24 26.32 26.69

0.8201 0.7416 0.8610 0.9166 0.7492 0.8991 0.8014 0.8153 0.8297 0.7540 0.6125 0.7633 0.7970

OURS
26.23 26.02 31.08 29.67 24.64 25.79 27.34 28.82 26.39 25.59 24.49 26.44 26.87

0.8209 0.7530 0.8605 0.9067 0.7631 0.8991 0.8110 0.8188 0.8369 0.7663 0.6473 0.7665 0.8042

σ = 75

BM3D
23.99 23.82 28.07 27.22 22.63 22.49 25.17 26.96 23.91 23.27 22.59 24.43 24.55

0.7331 0.6515 0.7880 0.8613 0.6636 0.8021 0.7310 0.7704 0.7557 0.6619 0.5240 0.6973 0.7200

PGPD
24.15 23.82 28.39 27.07 22.76 22.61 25.30 27.05 24.00 23.23 22.55 24.46 24.62

0.7492 0.6468 0.7965 0.8503 0.6760 0.8121 0.7356 0.7669 0.7642 0.6638 0.5145 0.7026 0.7232

WNNM
24.25 24.07 28.95 27.42 22.76 23.06 25.52 26.91 24.31 22.84 24.45 23.47 24.84

0.7601 0.6697 0.8133 0.8707 0.6850 0.8351 0.7514 0.7717 0.7754 0.5412 0.7035 0.6801 0.7381

NCSR
23.76 23.50 28.18 27.15 22.48 22.60 25.02 26.22 23.67 23.18 22.10 24.19 24.34

0.7547 0.6409 0.8171 0.8792 0.6743 0.8234 0.7415 0.7730 0.7648 0.6685 0.4881 0.7073 0.7277

RRC
24.10 23.77 28.83 27.17 22.64 22.91 25.33 26.86 24.24 23.32 22.56 24.35 24.67

0.7638 0.6499 0.8259 0.8749 0.6822 0.8377 0.7498 0.7729 0.7782 0.6741 0.5028 0.7172 0.7358

LGSR
24.25 24.14 29.10 27.37 22.74 23.09 25.55 26.97 24.31 23.43 22.91 24.56 24.87

0.7709 0.6772 0.8296 0.8828 0.6836 0.8410 0.7577 0.7839 0.7794 0.6805 0.5354 0.7190 0.7451

GSRC-NLP
24.13 23.88 28.76 27.29 22.61 23.33 25.32 26.84 24.35 23.32 22.65 24.45 24.74

0.7671 0.6614 0.8251 0.8796 0.6772 0.8512 0.7480 0.7806 0.7779 0.6712 0.5146 0.7179 0.7393

OURS
24.32 24.19 29.11 27.62 22.80 23.49 25.51 27.24 24.48 23.56 22.65 24.64 24.97

0.7721 0.6677 0.8273 0.8851 0.6916 0.8514 0.7545 0.7873 0.7807 0.6859 0.5269 0.7231 0.7461

The data marked in red represent the best values.

problem. Hence, after setting step size γ and gradient direction q,

we employ the gradient descent method (Ruder, 2016): x̂ = x− γ q

to rewrite Eq.(19) as:

x̂ = x− γ

(
1

σ 2
n

(
HTHx − HTy

)
+

1

ζ
(x − s − c)

)
(19)

In addition, it is recommended to compute HTH and HTy in

advance to further enhance the algorithm efficiency.

3.3. Parameter settings

In the model we proposed above, there are four parameters

(µ,λ, θ , ζ ) requiring setting. Here, we set a strategy for the

parameters that can be automatically adjusted in each iteration,

which allows us to achieve more robust and accurate experimental

results.

The noise standard deviation σn is automatically updated in

each iteration (Osher et al., 2005):

σ t
e = ω

√
σ 2
n −

∥∥∥y − x̂(t)
∥∥∥
2

2
(20)

Where ω represents a scaling factor, it is evident from Gu et al.

(2014) and Chen et al. (2015) that this approach to regularize σe

has been implemented in diverse models and has exhibited positive

performance.

After setting σe, the value of µ is tuned to change in proportion

to σ 2
e (Zha et al., 2022):

µ = ρ
(
σ 2
e

)t
(21)

where ρ denotes a constant.
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Moreover, the regularization parameters λ and θ represent the

constraint penalties on sparsity and LR, respectively. Inspired by

Dong et al. (2012a), they are adjusted in each iteration as follows:

λ(t) =
2
√
2α
(
σ t
e

)2

mi + ε
θ (t) =

2
√
2β
(
σ t
e

)2

ni + ǫ
(22)

wheremi is the estimated standard variance of Ri and ni stands for

the estimated standard variance of 1i. The ε and ǫ are two small

constants to avoid zero divisors. α and β are set to two constants.

Finally, parameter ζ is also set to a fixed constant.

The detailed procedure of theMS-GSRC algorithm is presented

in Algorithm 1.

4. Experiences

In this chapter, extensive trial are conducted on image

denoising, inpainting, and CS to verify that our proposed MS-

GSRC model possesses better image restoration capabilities

compared to some classical methods. To obtain intuitive

comparison results, we set on two metrics: peak signal-to-noise

ratio (PSNR) and structural self-similarity (SSIM) (Wang et al.,

2004).

PSNR is commonly used to measure signal distortion. This

parameter is calculated based on the gray scale values of the

image pixels. Although sometimes the value of PSNR is not

consistent with competent human perception, it remains an

important reference evaluation metric. SSIM is a metric intended

for assessing similarity between two images, which is an intuitive

human standard for evaluating image quality.

If the degraded image is in color, we mainly recover the

luminance channel due to the fact that variations in the luminance

of color images are more easily perceived by the human eye.

The codes for all comparison algorithms used in this study are

obtained from the original author’s homepage and uses the given

default parameters directly. For reasons of limited space, only a few

images frequently used for testing are detailed list in Figure 2. In all

tables, the data marked in red represent the best values.

4.1. Image denoising

First, we verify the performance of our MS-GSRC model on

the image denoising task. The corresponding parameters are set as

follows. We set the search windowW×W to 30×30, the patch size
√
m×

√
m to 6×6, 7×7, 9×9 for σ ≤ 15, 15 < σ ≤ 30, and 30 <

σ ≤ 75, with the number of neighbor patches k to 70, 110, 120 for

σ ≤ 30, 30 < σ ≤ 50, 50 < σ ≤ 75, respectively. The parameters

(α,β ,ω, ζ ) are set to (0.03, 1.75, 0.81, 0.085), (0.015, 1.8, 0.86, 0.07),

(0.05, 2.2, 0.81, 0.12), (0.006, 2, 0.86, 0.05) for σ ≤ 15, 15 < σ ≤ 30,

30 < σ ≤ 50, 50 < σ ≤ 75. In addition, we set the multi-scale

to [1,0.8], [1,0.85], and [1,0.9] for σ ≤ 15, 15 < σ ≤ 50, and

50 < σ ≤ 75, separately.

Our MS-GSRC method is compared with several recently

proposed popular denoising methods and classical traditional

denoising methods, including BM3D (Dabov et al., 2007), PGPD

(Xu et al., 2015), WNNM (Gu et al., 2014), NCSR (Dong et al.,

TABLE 2 PSNR (dB) and SSIM comparison of di�erent methods for image

denoising on BSD68 dataset.

σ 15 30 50 75 Average

BM3D
31.08 27.76 25.62 24.21 27.17

0.8722 0.7732 0.6869 0.6221 0.7386

PGPD
31.14 27.81 25.75 24.30 27.25

0.8697 0.7698 0.6873 0.6214 0.7370

WNNM
31.32 27.97 25.86 24.39 27.39

0.8766 0.7802 0.6983 0.6348 0.7475

NCSR
31.18 27.78 25.57 24.04 27.14

0.8769 0.7771 0.6858 0.6209 0.7402

RRC
31.07 27.74 25.67 24.18 27.17

0.8644 0.7643 0.6840 0.6117 0.7311

LGSR
31.37 27.99 25.86 24.35 27.39

0.8817 0.7862 0.7025 0.6347 0.7512

GSRC-NLP
31.15 27.74 25.66 24.15 27.18

0.8681 0.7646 0.6835 0.6217 0.7345

OURS
31.38 28.01 25.88 24.38 27.41

0.8827 0.7889 0.7042 0.6400 0.7539

The data marked in red represent the best values.

2012b), RRC (Zha et al., 2019), LGSR (Zha et al., 2022) and GSRC-

NLP (Zha et al., 2020a). Of all the comparison methods, BM3D

is a frequently adopted benchmarking method, NCSR, PGPD,

and GSRC-NLP all use GSR as a prior, and WNNM and RRC

exploit low-rankness knowledge. And LGSR combines GSR and

LR. Besides, both GSRC-NLP and our proposed model use the

GSRC framework. Taking 12 frequently used images as an example,

Table 1 lists the PSNR and SSIM results for various denoising

methods at different noise levels. It is observed that our proposed

MS-GSRC method produced superior performance. Specifically,

the average PSNR and SSIM we achieve are improved by (0.47

dB, 0.0149) compared to BM3D, (0.38 dB, 0.0107) compared to

PGPD, (0.07 dB, 0.0032) compared to WWNM, (0.42 dB, 0.0149)

compared to NCSR, (0.25 dB, 0.0066) compared to RRC, (0.1 dB,

0.0005) compared to LGSR, and (0.19 dB, 0.0054) compared to

GSRC-NLP.

We also utilize the BSD68 dataset (Wang et al., 2004) to

assess the denoising ability of all compared approaches. We can

observe from Table 2 that the average PSNR gains obtained by

our proposed MS-GSRC method in comparison to the BM3D,

PGPD, WNNM, NCSR, RRC, GSRC-NLP, and LGSR methods are

0.24 dB, 0.16 dB, 0.02 dB, 0.27 dB, 0.24 dB, 0.23 dB, and 0.03

dB. Meanwhile, on average, the proposed MS-GSRC achieve an

SSIM improvement of 0.0153 on BM3D, 0.0169 on PGPD, 0.0064

on WNNM, 0.0137 on NCSR, 0.0228 on RRC, 0.0027 on LGSR,

and 0.0194 on GSRC-NLP. Evidently, our proposed MS-GSRC

method yields better PSNR and SSIM in almost all noise cases. Our

method is only 0.01 dB lower than WWNM in PSNR, but 0.0052

higher than in SSIM at σ = 75. Beyond objective metrics, the

subjective perception of the human body is also a crucial criterion

for assessing the quality of an image. Consequently, we present

the visual contrast between the two images of starfish and 223,061
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FIGURE 3

Denosing results on image starfish (σ = 75). (A) Noise image. (B) BM3D (PSNR = 23.27 dB and SSIM = 0.6619). (C) PGPD (PSNR = 23.23 dB and SSIM =

0.6638). (D) WNNM (PSNR = 22.84 dB and SSIM = 0.5412). (E) NSRC (PSNR = 23.18 dB and SSIM = 0.6685). (F) RRC (PSNR = 23.32 dB and SSIM =

0.6741). (G) LGSR (PSNR = 23.43 dB and SSIM = 0.6805). (H) GSRC-NLP (PSNR = 23.32 dB and SSIM = 0.6712). (I) OURS (PSNR = 23.56 dB and SSIM =

0.6859).

FIGURE 4

Denosing results on image 223061 (σ = 75). (A) Noise image. (B) BM3D (PSNR = 22.27 dB and SSIM = 0.5470). (C) PGPD (PSNR = 22.30 dB and SSIM =

0.5420). (D) WNNM (PSNR = 22.51 dB and SSIM = 0.5690). (E) NSRC (PSNR = 22.15 dB and SSIM = 0.5383). (F) RRC (PSNR = 22.22 dB and SSIM =

0.5351). (G) LGSR (PSNR = 22.32 dB and SSIM = 0.5545). (H) GSRC-NLP (PSNR = 22.13 dB and SSIM = 0.5313). (I) OURS (PSNR = 22.42 dB and SSIM =

0.5761).

restored by different methods in Figures 3, 4, respectively. Figure 3

indicates that BM3D, PGPD, WNNM, and RRC are likely to over-

smooth the restored image, whereas NCSR, GSRC-NLP, and LGSR

can lead to the appearance of some undesired visual artifacts. As

can be seen in Figure 4, although the image restored by WNNM

has a higher PSNR, the image restored by our MS-GSRC method

has a higher SSIM value and presents a better visual effect. PGPD,

NCSR, RRC, and GSRC-NLP are susceptible to loss of detail in the

restored images, while BM3D, WNNM, and LGSR may result in

undesirable artifacts.

4.2. Image inpainting

Next, we verify the superiority of the MS-GSRC model on

inpainting. We likewise compare the proposed MS-GSRC method

with many classical or recently popular methods, such as SAIST

(Afonso et al., 2010), TSLRA (Guo et al., 2017), GSR (Zhang

et al., 2014b), JSM (Zhang et al., 2014c), JPG-SR (Zha et al.,

2018b), LGSR (Zha et al., 2022), and IDBP (Tirer and Giryes,

2018). Among these, SAIST is one of the earliest proposed

methods for image restoration, GSR, JPG-SR, LGSR, TSLRA,
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TABLE 3 PSNR (dB) and SSIM comparison of di�erent methods SAIST, TSLRA, GSR, JSM, JPG-SR, LGSR, IDBP, and OURS for image inpainting.

Images Bahoon Bear House Lake Leaves Lena Lily Pepper Nanna Butterfly Gilrs Fireman Average

Pixels missing = 80%

SALSA
23.15 27.29 26.63 22.20 19.78 25.96 24.31 25.55 21.96 19.95 21.80 22.17 23.40

0.5815 0.7952 0.8421 0.7420 0.7749 0.8294 0.7485 0.8633 0.7288 0.7883 0.7078 0.6812 0.7569

JSM
25.21 29.35 34.28 25.57 26.17 30.50 27.92 30.26 25.16 25.38 25.07 25.25 27.51

0.6577 0.8378 0.9102 0.8302 0.9209 0.8991 0.8410 0.9214 0.8196 0.9011 0.8015 0.7664 0.8423

GSR
24.58 30.28 35.57 25.67 27.46 31.42 28.87 31.10 25.23 26.03 25.50 25.46 28.10

0.6893 0.8650 0.9313 0.8560 0.9452 0.9250 0.8820 0.9393 0.8531 0.9223 0.8386 0.8041 0.8709

TSLRA
25.44 29.34 31.30 25.31 25.09 30.09 27.96 28.39 25.32 24.91 24.99 25.44 26.96

0.6714 0.8401 0.9106 0.8103 0.8934 0.8904 0.8400 0.9087 0.8163 0.8835 0.7974 0.7759 0.8365

JPG-SR
24.99 30.15 34.92 25.93 27.42 31.46 28.97 31.23 25.66 26.29 25.60 25.48 28.18

0.6904 0.8562 0.9148 0.8508 0.9409 0.9193 0.8767 0.9326 0.8500 0.9214 0.8373 0.7977 0.8657

LGSR
25.24 30.55 35.83 26.33 27.48 31.69 29.07 31.75 25.91 26.53 25.81 25.79 28.50

0.6989 0.8678 0.9333 0.8611 0.9419 0.9251 0.8813 0.9383 0.8541 0.9244 0.8423 0.8078 0.8730

IDBP
25.03 30.06 33.69 25.84 26.48 30.29 28.10 30.89 25.42 25.60 25.48 25.46 27.70

0.6695 0.8447 0.9060 0.8319 0.9233 0.8979 0.8486 0.9153 0.8214 0.9011 0.8146 0.7645 0.8449

OURS
25.32 30.62 35.55 26.38 27.60 31.91 29.20 31.97 26.06 26.78 25.97 26.04 28.62

0.7006 0.8694 0.9246 0.8619 0.9436 0.9267 0.8840 0.9405 0.8564 0.9278 0.8461 0.8125 0.8745

Pixels missing = 70%

SALSA
24.32 29.29 27.49 24.33 22.01 28.10 26.20 28.40 23.93 22.41 23.53 23.96 25.33

0.6867 0.8542 0.8827 0.8325 0.8572 0.8864 0.8278 0.9159 0.8179 0.8669 0.7962 0.7703 0.8329

JSM
26.48 31.56 36.69 27.56 29.28 32.67 29.74 33.28 27.19 27.84 27.18 27.07 29.71

0.7514 0.8895 0.9402 0.8854 0.9581 0.9351 0.8924 0.9535 0.8819 0.9374 0.8739 0.8385 0.8948

GSR
26.17 32.01 37.63 28.08 31.18 33.54 31.10 34.77 27.89 28.92 27.86 27.47 30.55

0.7797 0.9043 0.9543 0.9057 0.9744 0.9507 0.9246 0.9633 0.9076 0.9506 0.9015 0.8681 0.9154

TSLRA
26.71 31.65 35.86 27.30 27.94 32.58 29.91 32.64 27.27 27.74 27.05 27.23 29.49

0.7602 0.8917 0.9485 0.8770 0.9440 0.9355 0.8942 0.9494 0.8808 0.9342 0.8668 0.8412 0.8936

JPG-SR
26.38 32.21 37.41 28.04 30.89 33.58 31.12 34.49 27.95 29.18 27.91 27.54 30.56

0.7774 0.8997 0.9445 0.9011 0.9707 0.9469 0.9197 0.9580 0.9036 0.9494 0.8982 0.8624 0.9110

LGSR
26.65 32.28 37.98 28.72 31.31 33.76 31.19 34.92 28.21 29.39 28.14 27.90 30.87

0.7846 0.9065 0.9555 0.9097 0.9729 0.9507 0.9237 0.9619 0.9065 0.9523 0.9025 0.8707 0.9165

IDBP
26.39 31.74 36.48 27.92 29.23 32.58 30.08 33.36 27.16 28.25 27.49 27.37 29.84

0.7582 0.8872 0.9293 0.8856 0.9549 0.9340 0.8974 0.9460 0.8767 0.9387 0.8766 0.8391 0.8936

OURS
26.76 32.38 37.97 28.77 31.57 33.88 31.53 35.11 28.42 29.62 28.35 28.13 31.04

0.7867 0.9078 0.9541 0.9102 0.9744 0.9515 0.9284 0.9632 0.9090 0.9542 0.9053 0.8743 0.9183

Pixels missing = 60%

SALSA
25.40 29.73 29.99 25.84 24.65 29.69 28.11 30.60 25.37 25.28 25.06 25.37 27.09

0.7648 0.8880 0.9096 0.8772 0.9192 0.9203 0.8848 0.9443 0.8688 0.9186 0.8536 0.8349 0.8820

JSM
27.71 33.07 38.53 29.35 31.43 34.60 31.56 35.35 29.06 29.77 28.96 28.72 31.51

0.8175 0.9182 0.9580 0.9213 0.9748 0.9559 0.9278 0.9678 0.9182 0.9567 0.9151 0.8871 0.9265

GSR
27.74 33.60 39.68 29.86 33.39 35.81 33.05 36.42 30.13 31.09 29.55 29.32 32.47

(Continued)
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TABLE 3 (Continued)

Images Bahoon Bear House Lake Leaves Lena Lily Pepper Nanna Butterfly Gilrs Fireman Average

0.8445 0.9298 0.9674 0.9366 0.9849 0.9668 0.9505 0.9739 0.9383 0.9667 0.9359 0.9086 0.9420

TSLRA
27.92 32.77 37.23 29.01 30.19 34.26 31.55 34.96 29.17 29.42 28.79 28.73 31.17

0.8239 0.9195 0.9641 0.9156 0.9666 0.9555 0.9282 0.9654 0.9173 0.9531 0.9097 0.8860 0.9254

JPG-SR
27.92 33.61 39.22 30.13 33.26 35.73 33.10 36.40 30.21 31.30 29.84 29.46 32.52

0.8404 0.9240 0.9594 0.9328 0.9829 0.9626 0.9464 0.9692 0.9350 0.9641 0.9326 0.9039 0.9378

LGSR
28.15 33.94 39.82 30.66 33.70 35.97 33.31 36.85 30.40 31.58 30.13 29.83 32.86

0.8481 0.9320 0.9678 0.9396 0.9848 0.9665 0.9506 0.9732 0.9381 0.9673 0.9373 0.9119 0.9431

IDBP
27.71 33.53 38.18 29.76 31.55 34.35 31.85 35.27 29.22 29.71 29.24 28.98 31.61

0.8226 0.9176 0.9487 0.9209 0.9728 0.9531 0.9301 0.9628 0.9184 0.9544 0.9153 0.8839 0.9251

OURS
28.23 34.10 39.90 30.71 34.11 36.08 33.54 36.99 30.55 31.84 30.43 30.05 33.04

0.8481 0.9331 0.9676 0.9402 0.9861 0.9672 0.9528 0.9740 0.9396 0.9684 0.9395 0.9142 0.9442

Pixels missing = 50%

SALSA
26.50 31.79 31.64 27.83 26.61 30.98 29.59 31.08 26.85 27.28 26.90 27.09 28.68

0.8270 0.9226 0.9326 0.9176 0.9471 0.9436 0.9181 0.9595 0.9062 0.9452 0.8992 0.8826 0.9168

JSM
29.05 34.63 40.43 30.99 33.80 36.37 33.41 37.32 30.73 31.35 30.63 30.27 33.25

0.8697 0.9415 0.9710 0.9447 0.9848 0.9705 0.9523 0.9773 0.9440 0.9692 0.9433 0.9196 0.9490

GSR
29.41 35.62 41.62 32.14 35.87 37.63 35.41 38.53 32.16 32.78 31.93 31.00 34.51

0.8923 0.9509 0.9768 0.9575 0.9909 0.9779 0.9685 0.9817 0.9589 0.9759 0.9582 0.9353 0.9604

TSLRA
29.15 33.01 40.22 30.53 32.56 35.52 33.20 36.61 30.87 31.01 30.48 30.25 32.79

0.8734 0.9407 0.9748 0.9409 0.9803 0.9702 0.9518 0.9758 0.9433 0.9672 0.9397 0.9186 0.9480

JPG-SR
29.49 35.53 40.85 31.89 35.83 37.39 35.21 38.19 32.27 32.89 32.02 30.96 34.38

0.8887 0.9454 0.9704 0.9533 0.9896 0.9732 0.9647 0.9771 0.9558 0.9737 0.9556 0.9310 0.9565

LGSR
29.74 35.89 41.78 32.57 36.35 37.89 35.41 38.59 32.50 33.38 32.19 31.42 34.81

0.8950 0.9524 0.9772 0.9592 0.9910 0.9775 0.9684 0.9810 0.9592 0.9771 0.9592 0.9379 0.9613

IDBP
29.14 34.85 40.20 31.51 34.05 36.36 33.66 37.60 30.86 31.99 31.11 30.53 33.49

0.8726 0.9383 0.9653 0.9447 0.9836 0.9668 0.9523 0.9738 0.9420 0.9686 0.9427 0.9170 0.9473

OURS
29.80 35.99 41.80 32.58 36.60 38.07 35.63 38.89 32.53 33.44 32.38 31.58 34.94

0.8950 0.9530 0.9769 0.9595 0.9915 0.9780 0.9694 0.9817 0.9597 0.9775 0.9604 0.9395 0.9618

The data marked in red represent the best values.

and JSM use the NSS prior, and IDBP is a deep learning-

based method. In simulation experiments, we test images by

randomly generated masks that included missing pixels of 80%,

70%, 60%, and 50%. Following are the parameters that we set

for the MS-GSRC model in different cases. We set the patch

size to 7 × 7, the search window size to 25, and the non-local

similar patches to 60. In addition, for all cases, we set the multi-

scales to [1,0.85]. Moreover, we set (0.0002, 0.0001, 1.5, 15) and

(0.0001, 0.0001, 1.5, 15) as parameters (ω, ζ ,α,β)when the missing

pixels are 0.8 and others, respectively. In addition, σ =
√
2 for all

experiences.

Table 3 illustrates the PSNR and SSIM results for each method

on the 12 frequently used test images. As observed in Table 3, our

proposed method exceeds the comparison algorithm virtually often

when it comes to image inpainting performance. The proposed

MS-GSRC outperforms SAIST, JSM, GSR, TSLRA, JPG-SR, LGSR,

and IDBP approaches in average PSNR performance, with gains

of 5.8 dB, 1.43 dB, 0.51 dB, 1.82 dB, 0.51 dB, 0.13 dB, and 1.26

dB, respectively. Additionally, on average, the proposed MS-GSRC

surpasses SAIST by 0.0776, JSM by 0.0216, GSR by 0.0025, TSLRA

by 0.0238, JPG-SR by 0.007, LGSR by 0.0012, and IDBP by 0.022.

Similarly, two images are selected for detailed visual analysis.

The image butterfly with a 80% loss of pixels restored by different

methods are presented in Figure 5. Moreover, Figure 6 displays the

outcomes of a visual comparison of image flowers with a 70% loss

of pixels restored with different algorithms. By analyzing the visual

comparison images, we can find that images restored using SAIST,

JSM, TSLRA, IDBP GSR, and JPG-SR are susceptible to excessive

smoothing, and images restored using LGSR tend to show excessive

visual artifacts. The images restored using our proposed MS-GSRC

model have significantly better restoration capabilities with regard

to image detail and edges.

Frontiers inNeuroscience 11 frontiersin.org119

https://doi.org/10.3389/fnins.2023.1293161
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ning et al. 10.3389/fnins.2023.1293161

FIGURE 5

Inpainting results on image butterfly (missing ratio=80%). (A) Missing pixels image. (B) SAIST(PSNR = 19.95 dB and SSIM = 0.7883). (C) JSM (PSNR =

25.38 dB and SSIM = 0.9011). (D) GSR (PSNR = 26.03 dB and SSIM = 0.9223). (E) TSLRA (PSNR = 24.91 dB and SSIM = 0.8835). (F) JPG-SR (PSNR =

26.29 dB and SSIM = 0.9214). (G) LGSR (PSNR = 26.53 dB and SSIM = 0.9244). (H) IDBP (PSNR = 25.60 dB and SSIM = 0.9011). (I) OURS(PSNR = 26.78

dB and SSIM = 0.9278).

FIGURE 6

Inpainting results on image flowers (missing ratio = 70%). (A) Missing pixels image. (B) SAIST (PSNR = 27.69 dB and SSIM = 0.8422). (C) JSM (PSNR =

29.74 dB and SSIM =0.8924). (D) GSR (PSNR = 31.10 dB and SSIM = 0.9246). (E) TSLRA (PSNR = 29.91 dB and SSIM = 0.8942). (F) JPG-SR (PSNR =

31.12 dB and SSIM = 0.9197). (G) LGSR (PSNR = 31.19 dB and SSIM = 0.9237). (H) IDBP (PSNR = 30.08 dB and SSIM = 0.8974). (I) OURS (PSNR = 31.53

dB and SSIM = 0.9284).

4.3. Image compressed sensing

Finally, we validate the restoration capability of our proposed

MS-GSRC model on the image compressed sensing problem.

In this part of experiments, we use the Gaussian random

projection matrix (Zhang et al., 2014b) to generate blocks of

size 32 × 32 to test the CS restoration effects. The parameters

set for the MS-GSRC model are as follows: For all cases, the

patch size is set to be 8 × 8, the patch number to 80, the

search window size to be 25, and the multi-scales to be [1,0.75].

In addition, (0.004, 0.00002, 0.6, 25), (0.0014, 0.00005, 0.9, 15),

(0.0015, 0.00001, 0.5, 10), and (0.0015, 0.00001, 1.4, 6) are set for

(ζ ,ω, α,β) when subrate is 0.1N, 0.2N, 0.3N, and 0.4N.

BSC (Mun and Fowler, 2009), RCOS (Zhang et al., 2012), ALSB

(Zhang et al., 2014a), GSR (Zhang et al., 2014b), ASNR (Zha et al.,

2018a), and LGSR (Zha et al., 2022) are choosen as competing
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methods. Among them, GSR performs a sparse representation on

similar groups of images, ASNR is an image of the CS method

that extends on the basis of NCSR, and LGSR combines sparsity

and LR. Similarly, we selected 12 images frequently used in image

restoration experiments as test images. Table 4 presents the average

outcomes of PSNR and SSIM of the restored images using different

method. To be concrete, the proposed MS-GSRC model over BCS,

TABLE 4 PSNR (dB) and SSIM comparison of di�erent methods for image

CS on 12 test images.

Subrate 0.1 0.2 0.3 0.4 Average

BCS
23.60 26.26 28.19 29.88 26.98

0.6308 0.7418 0.8117 0.8609 0.7445

RCOS
25.92 29.20 31.54 33.34 30.00

0.7163 0.8298 0.8909 0.9236 0.8402

ALSB
26.66 30.19 32.67 34.87 31.10

0.7778 0.8751 0.9209 0.9484 0.8806

GSR
27.00 30.96 33.66 35.89 31.88

0.8002 0.8963 0.9367 0.9587 0.8980

ASNR
27.24 31.04 33.51 35.78 31.89

0.7965 0.8953 0.9329 0.9568 0.8954

LGSR
27.51 31.34 33.89 36.07 32.20

0.8062 0.8994 0.9379 0.9593 0.9007

OURS
27.91 31.40 33.94 36.09 32.34

0.8150 0.9009 0.9387 0.9598 0.9036

The data marked in red represent the best values.

RCOS, ALSB, GSR, ASNR, and LGSRmethods are 5.36 dB, 2.34 dB,

1.24 dB, 0.46 dB, 0.45 dB, and 0.14d B in PSNR and 0.1591, 0.0634,

0.0023, 0.0056, 0.0082, and 0.0029 in SSIM, respectively.

Due to the other competing algorithms used in this thesis,

all use BCS to pre-process CS images, and here we use the BCS-

processed images as corrupted images. Figure 7 shows the visual

contrast of the image fence with 0.1 N CS measurements, and we

can observe that RCOS and ALSB are less capable of restoring

details, GSR and LGSR lead to over-smooth, and ASNR generates

some redundant artifacts. Figure 8 illustrates the visual comparison

of the image leaves measured with 0.1N CS. All comparison images

have strong ringing phenomena and present terrible artifacts. In

Figure 9, we have selected the image airplane processed with 0.2N

CS for detailed analysis. It is obvious that the details of the images

restored by ALSB and LGSR are seriously missing. The images

restored by RCOS, GSR, and ASNR produced more artifacts. In the

above three cases, our proposed MS-GSRC algorithm significantly

outperforms other competing algorithms in recovering the image

overall and some texture details.

5. Conclusion

In this study, we propose a novel model Multi-Scale

Group Sparse Residual Constraint Model (MS-GSRC) for image

restoration. This model introduces the low-rank property into

the group sparse residual framework and finds similar patches

for overlapping patches of the input image using a multi-scale

strategy. Furthermore, under the MAP restoration framework, an

alternatingminimizationmethod with adaptive tunable parameters

is used to deliver a robust optimization solution for our

FIGURE 7

CS results on image fence (subrate = 0.1 N). (A) BCS (PSNR = 19.54 dB, SSIM = 0.5034). (B) RCOS (PSNR = 23.29 dB, SSIM = 0.6932). (C) ALSB (PSNR =

25.05 dB and SSIM = 0.7736). (D) GSR (PSNR = 26.06 dB and SSIM = 0.8047). (E) ASNR (PSNR = 26.01 dB and SSIM = 0.8006). (F) LGSR (PSNR = 26.58

dB and SSIM = 0.8107). (G) OURS (PSNR = 27.26 dB and SSIM = 0.8216).
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FIGURE 8

CS results on image leaves (subrate = 0.1 N). (A) BCS (PSNR = 18.37 dB, SSIM = 0.5767). (B) RCOS (PSNR = 22.17 dB, SSIM = 0.0.8323). (C) ALSB

(PSNR = 21.52 dB and SSIM = 0.7939). (D) GSR (PSNR = 23.22 dB and SSIM = 0.8731). (E) ASNR (PSNR = 23.48 dB and SSIM = 0.8805). (F) LGSR (PSNR

= 23.75 dB and SSIM = 0.8824). (G) OURS (PSNR = 24.57 dB and SSIM = 0.8992).

FIGURE 9

CS results on image airplane (subrate = 0.2 N). (A) BCS (PSNR = 25.87 dB, SSIM = 0.8111). (B) RCOS (PSNR = 28.22 dB, SSIM = 0.8854). (C) ALSB

(PSNR = 28.39 dB and SSIM = 0.8942). (D) GSR (PSNR = 28.87 dB and SSIM = 0.9082). (E) ASNR (PSNR = 29.17 dB and SSIM = 0.9075). (F) LGSR (PSNR

= 29.43 dB and SSIM = 0.9110). (G) OURS (PSNR = 29.59 dB and SSIM = 0.9120).

MS-GSRC method. We employ the MS-GSRC model to three

image restoration problems, namely, denoising, inpainting, and

compressed sensing. Extensive simulation trials show that our

novel model performs superior to many classical methods in terms

of both objective image quality and subjective visual quality.
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With the continuous development of China’s economy and the improvement

of residents’ living standards, it also brings increasing costs of labor and rent.

In addition, the impact of the pandemic on the entity industry has brought

opportunities for the development of new retail models. Based on the booming

development of artificial intelligence, big data, and mobile payment in the

new era, the new retail industry using artificial intelligence technology has

shown outstanding performance in the market. Among them, intelligent vending

machines have emerged in the new retail model. In order to provide users

with a good shopping experience, the product detection speed and accuracy

of intelligent vending machines must be high enough. We adopt Faster R-CNN,

a mature object detection algorithm in deep learning, to solve the commodity

settlement scenario of intelligent vending machines.

KEYWORDS

deep learning, computer vision, object detection, ResNet, intelligent vending machines

1. Introduction

In recent years, deep learning-based computer vision methods have received extensive

research attention, especially the ResNet proposed by He et al. (2016), which addressed the

degradation problem caused by increasing the number of layers in neural networks, and the

Faster R-CNN proposed by Ren et al. (2017), which has made significant progress in object

detection. These mature and efficient artificial intelligence algorithms have been widely used

in the new retail industry, such as intelligent vending machines that use computer vision

algorithms discussed in this article. Compared with traditional vendingmachines or physical

retail stores, intelligent vending machines have lower costs, more flexible types of goods sold,

and higher profits to the retail industry, thus standing out in the new retail market.

The object detection of retail product checkout in intelligent vending machines faces

several challenges. One challenge is that it is difficult to predict user behavior, and the

products in checkout images may be stacked, placed in abnormal ways, or obscured by

obstacles (such as hands). The challenges mentioned above may result in the algorithm

receiving insufficient information. Therefore, it is essential to ensure that the accuracy

of product detection meets the requirements in such cases. Another challenge is the

detection speed of the algorithm, which is crucial for improving the user experience. This

article addresses these two issues by selecting a unique dataset for training on single-

target commodities from multiple angles and perspectives and verifying it on multi-target

items. Meanwhile, ResNet50 is chosen as the backbone neural network of Faster R-CNN to

improve feature extraction for each product’s angle and enhance the overall performance

and prediction speed of the model. The Faster R-CNN based on ResNet50 used in this article

achieves good accuracy and acceptable response speed in the intelligent vending machine

product checkout scene.
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2. Related work

Intelligent vending machines have advantages such as flexible

stocking and low costs compared to traditional vending machines.

Classic vending machines have complex manufacturing processes

and high prices, are limited by the structure of the vending

channel, and have a specific failure rate. At present, there

are three different technical solutions for intelligent vending

machines, namely gravity induction (Brolin et al., 2018), radio

frequency identification (RFID) (Ramzan et al., 2017), and

computer vision algorithms based on deep learning. The gravity

solution is just an improvement method for traditional vending

machines, and it does not entirely overcome the shortcomings

of conventional vending machines. Due to technical limitations,

RFID cannot perform well on metal goods, meaning that

canned beverages are unsuitable for RFID vending machines.

Moreover, because of the technical characteristics of RFID,

each item must be manually labeled with an RFID tag before

being placed in the intelligent vending machine for sale; this

is an additional cost that cannot be ignored for the RFID

technical solution.

The fundamental technology of intelligent vending machines

based on computer vision is to identify products through images

captured by the camera. Many works have achieved significant

success in object detection (Li et al., 2016; Nian et al., 2016;

Zhang et al., 2019; Ren et al., 2020, 2022), which can be

applied to product recognition. Currently, deep learning-based

object detection algorithms have become mainstream. These

algorithms can be divided into two main types: region proposal-

based methods and single-stage methods. Region proposal-based

methods generate candidate regions and then classify and regress

these regions to obtain the final detection results. These methods

include RCNN (Girshick et al., 2014), Fast RCNN (Girshick, 2015),

Faster RCNN (Ren et al., 2017), etc. Single-stage methods directly

classify and regress the image without generating candidate regions.

These methods include YOLO (Redmon et al., 2016; Redmon and

Farhadi, 2017, 2018; Bochkovskiy et al., 2020), SSD (Liu et al.,

2016), RetinaNet (Lin et al., 2017), etc. In addition, object detection

faces many challenges, such as occlusion, scale variation, and

illumination variation. To overcome these challenges, researchers

have proposed many improved algorithms. For example, Mask

RCNN (He et al., 2017) adds instance segmentation functionality

to Faster RCNN, allowing the model to detect and segment objects

simultaneously. CenterNet (Zhou et al., 2019) is a center point-

based detection algorithm that can maintain high accuracy while

improving detection speed.

For the datasets of retail product checkout, Goldman (Goldman

et al., 2019) assembled a dataset consisting of images of

supermarket shelves. It contains 110,712 product categories,

averaging 147.2 instances per image. The dataset we used, Retail

Product Checkout (RPC) proposed by Wei et al. (2019), is a large-

scale retail dataset that includes 83,739 images with bounding box

annotations for 200 categories of products. In the PRC dataset,

training images only contain a single object. In contrast, testing

images may contain multiple objects and are divided into three

groups: easy, medium, and hard, making it an ideal dataset for

our purposes.

3. Product detection and recognition
methods for intelligent vending
machines

This section applies the Faster R-CNN to the product settlement

scenario of intelligent vending machines. Figure 1 illustrates the

network architecture of the Faster R-CNN based on ResNet50,

which can be summarized as the RPN network + Fast R-CNN. In

this network, the candidate regions for Fast R-CNN are not selected

by the Selective Search algorithm (Uijlings et al., 2013) but are

provided by the RPN. Additionally, the Faster R-CNN used in this

paper extracts features from the input image using ResNet50 rather

than VGG16.

3.1. Input image preprocessing

The input image resolution of the dataset used in this

paper ranges from 1,750×1,750 to 1,850×1,850. High-resolution

images provide more detailed information but pose challenges for

training due to the large number of parameters and calculations

required by the deep neural network ResNet50 used in this paper.

Modern deep-learning methods commonly use GPU acceleration

for training. Still, training on personal computers with limited GPU

andmemory resources can easily lead tomemory overflow and out-

of-memory errors. For example, on my personal computer with

16GB RAM and 8GB GPU memory, when the batch size is set to 3,

the memory usage is up to 95% when using the Dataloader to read

data, and the GPUmemory overflow occurs when preparing to start

training after reading the data. When the batch size is set to 2, the

training time for one epoch is as long as eight hours. Therefore,

we attempted to reduce the resolution of all input images from

3×438×438 to 3×463×463 before training. And when calculating

the bounding box loss, the predicted coordinates of the model’s

bounding boxes are multiplied by four before being compared to

the coordinates in the labels. This can be done because there are

generally no tiny targets in the checkout scenario, so the negative

impact on the model is relatively small. Through experiments, this

has been shown to improve the training speed.

3.2. ResNet50

As shown in Figure 2, the first layer of all ResNet consists of

a 7×7 convolutional layer with a stride of 2, followed by a 3×3

max pooling layer with a stride of 2. After the convolutional layer,

there is a 3×3 max pooling layer with a stride of 2. The max pooling

layer downsamples the feature maps output from the convolutional

layer, reducing the size of the feature maps while retaining the most

salient features. After passing through the common convolutional

and pooling layers, all ResNet structures are followed by four

residual block layers. Specifically, implementing the residual block

in ResNet involves adding a shortcut connection between two

convolutional layers and adding the input directly to the output of

the convolutional layers.
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FIGURE 1

Network architecture of the faster R-CNN based on ResNet50.

FIGURE 2

Network architecture of ResNet.

When VGG16 was used as the backbone neural network

in the original Faster R-CNN paper, the number of parameters

used for feature extraction was ∼ 138 M, with a floating-point

calculation of 30.8 G FlOPS. In contrast, ResNet50 only had about

23 M parameters and 8.2 G FlOPS floating point calculations.

During training, ResNet50 had amuch faster convergence rate than

VGG16, making it both quick and efficient, significantly reducing

training time. Additionally, ResNet50 has a larger receptive field

in its feature map than VGG16 due to the multiple convolutional

layers, which allows it to capture larger image contexts. A larger

receptivefield is generally better in object detection tasks, as it

can capture more overall features. When the receptive field is

not large enough, it can cause the model to have bias errors,

seriously affecting its performance. ResNet50 has a receptive lot

of approximately 483, while VGG16’s receptive field is only 212.

Since the target pixels in the images used in this paper are mostly

equal to or larger than 300×300, ResNet50 is better suited to this

task than VGG16. The formula for calculating the receptive field is

as follows:

RFi = (RFi−1 − 1) ∗ Stridei + Ksizei (1)

RFi refers to the receptive field of the i-th layer; Stridei is the stride

of the i-th layer; Ksizei is the size of the convolutional kernel used in

the i-th layer.

3.3. Faster R-CNN

3.3.1. Region proposal network
In Faster R-CNN, the role of the region proposal network(RPN)

is to generate region proposals, which are candidate regions that

may contain objects. These region proposals are then fed into a

subsequent classification network for object detection.

The RPN operates on a feature map and uses a convolutional

neural network over the feature map, generating multiple anchor

boxes of different sizes and aspect ratios, as shown in Figure 3.
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FIGURE 3

Illustration of anchor boxes.

There are three sizes of anchor boxes, which are 128, 256, and

512, and three aspect ratios, which are 1:2, 2:1, and 1:1. Based

on the combinations of sizes and aspect ratios, nine different

anchor boxes are generated at each point in the feature map, with

their coordinates projected onto the original image as the center.

For each anchor box, the RPN predicts whether it contains an

object and the rough location of the object, thus generating region

proposals. These region proposals can then be fed into a subsequent

classification network for object detection, resulting in the final

detection results. In the end, we divided the image into 9×14×14

anchor boxes (approximately 1.7k). Some of the anchor boxes we

split may span across boundaries, but we ignore those that do.

After removing the anchor boxes that span across boundaries, we

sample 64 anchor boxes from the remaining ones, with an equal

distribution of positive and negative samples, each accounting for

50%. If there are not enough positive samples to fill half of the

selected samples, we can use negative samples to fill the remaining

slots. Whether the IoU (Intersection over Union) value between

each candidate box1 and the ground-truth box exceeds a preset

threshold is the criterion for determining positive and negative

samples.

The loss function of RPN consists of two parts: classification

loss and bounding box regression loss. In the classification

loss function, we calculate a binary classification loss for each

anchor box, representing the error of classifying it as foreground

(containing an object) or background (not including an object). For

each anchor box, the corresponding binary classification loss is:

Lcls =

{
− log(p) if (y == 1)

− log(1− p) else
(2)

Where p represents the predicted probability of the anchor box

being classified as foreground, y represents the ture label.When

y == 1, it represents true lable of the anchor box is foreground,

and when y == 0, the true label is the background. In the bounding

box regression loss function, we calculate a smooth L1 loss for each

anchor box that is classified as foreground, which represents the

difference between the predicted bounding box coordinates and the

true bounding box coordinates. For each foreground anchor box,

1 The sampled 64 anchor boxes are referred to as candidate boxes.

its corresponding L1 loss is:

smoothL1(x) =

{
0.5 ∗ x2 if (x < 1)

|x| − 0.5 else
(3)

Lreg(t
∗, t) = smoothL1(t

∗
i − ti) (4)

Here, t∗ represents the true bounding box coordinate offset, t

represents the predicted bounding box coordinate offset, and i

represents the dimension of the coordinate axis. The N represents

the number of anchor boxes classified as foreground.After

computing the loss functions for both components, we add them

together to obtain the final RPN network loss function:

LRPN =
1

Ncls

Ncls∑

i

Lcls + λ
1

Nreg

Nreg∑

i

piLreg(t
∗
i , ti) (5)

p and t denote the classification prediction and bounding box

regression prediction of the RPN network, while and t∗ represent

the true bounding box coordinate offsets. Ncls and Nreg correspond

to the numbers of all and foreground anchor boxes, respectively.

λ is a hyperparameter that balances the classification loss and

bounding box regression loss.

3.3.2. ROI pooling
Since the dimensions of the images are not the same, it

means that the corresponding feature map sizes are also different.

The purpose of ROI pooling is to unify the feature map sizes,

making it easier for subsequent neural network processing. The

implementation of ROI pooling involves dividing the feature

map into 7×7 regions and performing max pooling within each

region.The feature map image outputted by the ROI Pooling

layer is a three-dimensional tensor of size 7×7×2048. We flatten

it into a one-dimensional vector of size 1×100,352. Then, we

concatenate these vectors in the order of their corresponding

ROIs in the input image, forming a two-dimensional tensor

of size 64×100,352 This two-dimensional tensor serves as

the input to the fully connected layer for classification and

regression tasks.

4. Experimental analysis

4.1. Retail product checkout dataset
introduction

The dataset used in this article is a large-scale retail product

checkout dataset publicly available on Kaggle (link: https://www.

kaggle.com/datasets/diyer22/retail-product-checkout-dataset).

This dataset provides rich image data of products during the

checkout process and is currently the largest dataset regarding

the number of images and product categories. It includes 200

common product categories in daily life, with a training set of

48,000 single-product images, a test set of 24,000 multi-target

product images, and a validation set of 6,000 multi-target

product images.

The training set consists of single-object images captured

by four cameras placed at the top, 45 degrees upward, 30
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degrees upward, and horizontally in a specified environment,

covering 0–360 degrees, as shown in Figure 4. The validation

and test sets are multi-object images. They are categorized

into easy mode, medium mode, and hard mode based on

the clutter level of the products in the images. The training

set consists of single-object images captured by four cameras

placed at the top, 45 degrees upward, 30 degrees upward, and

horizontally, respectively, in a specified environment, covering

0–360 degrees. The validation and test sets are multi-object

images and are categorized into easy mode, medium mode,

and hard mode based on the clutter level of the products in

the images.

The dataset validation is divided into three levels of difficulty

based on the complexity of product arrangement, as shown in

Figure 5.

4.2. Experimental parameter settings and
experimental environment

The experimental environment is a personal computer with

the following specifications: Processor: AMD R7-5800H; GPU:

NVIDIA RTX 3070 8G; Memory: 16G. The editor used is Pycharm

2022.1; operating system: WIN11; CUDA version: 11.02; Pytorch

version: 1.11.0. We used the Pytorch framework to construct

our model. Before starting the training, we loaded the pre-

trained parameters of ResNet50 into the model to speed up

the training process. The optimizer we used is the stochastic

gradient descent algorithm with a momentum value of 0.9

and set weight decay to prevent overfitting. Finally, we set

a learning rate with dynamic decay. Since we trained on a

personal computer with limited GPU memory, we set the batch

size to 4.

4.3. Analysis of experimental results

In order to evaluate the model we trained, we used Pycocotools

provided by the COCO official for evaluation. It provides 10

evaluation metrics including AP (Average Precision), AP (IOU

= 0.5), AP (IOU = 0.75), AP (Small Area), AP (Medium Area),

and AP (Large Area), AR (Average Recall), AR (Max = 1), AR

(Max = 10), and AR (Max = 100). Among them, AP(IOU =

0.5) is the most commonly used metric. The experimental results

are shown in Table 1. The above results indicate that using the

Faster R-CNN algorithm for object detection on the Retail Product

Checkout dataset can achieve good performance. The performance

of the model varies under different AP metrics, with AP (IOU =

0.5) and AP (Large Area) performing well and AP (Small Area)

and AP (Medium Area) performing poorly. This is because the

environment of the intelligent vending machine is relatively fixed,

and there are no small or medium-sized objects in the dataset, so

APs and APm are close to 0. This can also be inferred from the fact

that APl and AP values are always close.

4.4. Detection performance of the model
under di�erent di�culty levels

This section presents themodel’s prediction performance under

different difficulty levels, and the detection of the goods is good. See

Figures 6–8.

FIGURE 4

The collection form of the training set.
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FIGURE 5

Three levels of validation di�culty. (A) Easy mode. (B) Medium mode. (C) Hard mode.

TABLE 1 Evaluation results.

Epoch Average precision

AP AP (IOU = 0.5) AP (IOU = 0.75) AP (Small area) AP (Medium area) AP (Large area)

20 0.539 0.6379 0.5596 0 0 0.5391

24 0.5794 0.6412 0.5784 0 0 0.5795

28 0.5818 0.6415 0.5807 0 0 0.5819

32 0.5888 0.6435 0.5825 0 0 0.5986

36 0.5962 0.6463 0.5875 0 0 0.5972

40 0.5921 0.6484 0.5866 0 0 0.5921

5. Conclusion

After years of development, object detection technology has

made rapid progress, and there are now many mature and

efficient object detection algorithms such as Faster R-CNN,

YOLO, SSD, and others. In this paper, we successfully applied

Faster R-CNN for object detection in the context of commodity

settlement and achieved good results. Using object detection
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FIGURE 6

Easy mode.

FIGURE 7

Medium mode.

FIGURE 8

Hard mode.
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in computer vision as a commodity settlement recognition

task for intelligent vending machines is reliable, low-cost,

and efficient.

The Faster R-CNN object detection model based on ResNet50

constructed in this paper achieved good results on a large

commodity dataset, with precision meeting the requirements on

recognized targets and a very low probability of misclassification.

However, there are still cases of missed detections in multi-

object scenarios, which I believe can be improved through

further training. At the same time, the model constructed in

this paper has already met the recognition speed requirements

for intelligent vending machines, but there is still room for

improvement.
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