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Editorial on the Research Topic
Advances in nonlinear systems and networks, volume II

1 Introduction

Nonlinear systems and networks refer to physical, chemical, biological, or engineering
systems and networks that have nonlinear relationships within them. Compared to linear
systems and networks, the characteristic of nonlinear systems and networks is the non-
linear relationship between input and output. In nonlinear systems and networks, the
relationship between input and output does not follow the principle of linear superposition,
so simple linear equations cannot be used to describe the behavior of systems and networks.

Nonlinear systems and networks are widely present in various fields, such as mechanics,
circuits, chemical reactions, encrypted communication and biology [1–5]. The study of
nonlinear systems is of great significance for us to deeply understand the essence of natural
phenomena and improve engineering design. Due to the complexity, unpredictability, and
adaptability of nonlinear systems and networks, their applications and research face
significant challenges. But with the continuous development of science and technology,
the research and application of nonlinear systems and networks are also deepening in
various fields, such as chaotic systems [6–10], chaotic circuits [11–14], nonlinear devices
[15–17], neural networks [18–24], neural circuits [25–28], memristors [29–31], system
synchronization and control [32–36], system optimization [37–39], and related application
fields [40–43].

Due to the success of the first Research Topic of “Advancements in Nonlinear Systems
and Networks” [44], we have decided to continue to focus on the continuous progress of
Nonlinear Systems and Networks in the second volume. In this Research Topic, 10 articles
about nonlinear systems and networks and their applications are reported. For nonlinear
networks, dynamic displacement estimation of structures using onedimensional
convolutional neural network is studied (Zhou and He), and two-layer complex
propagation network with individual heterogenous decreased behavior is analyzed (Tian
et al.). A robust and fast representation learning model RFRL for heterogeneous networks is
studied (Lei et al.). A reputation-based user electricity scheduling scheme for the complex
network of user electricity consumption is proposed (Tang et al.). For nonlinear devices,
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Ternary combinational logic gates (Li et al.) and current mode multi
scroll chaotic oscillator (Lin et al.) are studied. For the
synchronization control of nonlinear systems and networks,
effective vibration control in Nano-Beams (Alsubaie), brain-like
coupling synchronization (Fu et al.) and pinning synchronization
(Yu et al.) are studied. In addition, considering the application of
nonlinear systems and networks, a novel grid multi-structure
chaotic attractor and its application in medical image encryption
is researched (Hu et al.).

2 Summary of papers presented in this
Research Topic

Zhou and He, in the paper “Dynamic displacement estimation of
structures using onedimensional convolutional neural network,”
proposed a structural dynamic displacement estimation method
based on one-dimensional convolutional neural networks and
acceleration data. To verify the reliability of the method, this paper
established a finite element-based framework structure. Collect the
acceleration and displacement of each node in the framework model
under earthquake response. In addition, a typical neural network was
used for comparative research. The results show that the error of the
neural network model in dynamic displacement estimation task is 9.
52 times that of the one-dimensional convolutional neural network
model. Meanwhile, the proposed modeling scheme has strong noise
resistance. To verify the practicality of the proposed method, the
authors collected data from actual framework structures. The
experimental results show that the mean square error of this
method in actual dynamic displacement estimation tasks is only 5.
097, which meets the engineering needs.

Tian et al., in the paper “Dynamics analysis on two-layer
complex propagation network with individual heterogenous
decreased behavior,” constructed a double-layer network model
to describe individual behavioral contact and proposes a
threshold function to represent individual heterogeneous
decreased behavior (IHDB). Meanwhile, the authors use partition
theory to explain the mechanism of information dissemination.
Through experiments, it has been proven that there is a sustained
information explosion in the final adoption scale when an individual
exhibits positive IHDB. However, when individuals exhibit passive
IHDB, the final adoption of scale will result in discontinuous
information bursts. Finally, the experiment shows that the
theoretical analysis is consistent with the simulation results.

Lei et al., in the paper “Robust and fast representation learning for
heterogeneous information networks,” studied a robust and fast
representation learning model RFRL for heterogeneous networks.
Firstly, the global features of heterogeneous networks are divided
into multiple intra type local features and inter type local features,
and a type aware biased sampling is designed to generate training
samples for each local feature. Secondly, shallow representation
strategies using node type perception and link type perception are
used to learn intra type and inter type features, respectively. Finally,
adversarial learning is used to integrate the above two representation
strategies to address invisible network noise and enhance the robustness
of representation learning. A large number of experiments on three
network analysis tasks and three public datasets have demonstrated the
good performance of the RFRL model proposed in this paper.

Tang et al., in the paper “Reputation-based electricity scheduling
scheme for complex network of user electricity consumption,”
proposed a reputation-based user electricity scheduling scheme
for the complex network of user electricity consumption. In the
scheme of the paper, the authors first model the complex network of
user electricity consumption. Then, a method for calculating the
reputation of power users was constructed. In addition, the paper
uses machine learning methods to train computational models to
calculate the adjustment coefficients of power loads, and then
adjusts power scheduling tasks based on the calculated
adjustment coefficients. Finally, the corresponding power
dispatch tasks are assigned to the selected power users for
adjusting their electricity consumption. The experimental results
demonstrate the effectiveness of the scheme.

Li et al., in the paper “Ternary combinational logic gates design
based on tri-valued memristors,” proposed a design method for
ternary circuits without cascading basic ternary logic gates on the
basis of ternary memristors. The proposed method can directly
achieve specific logic functions through series memristors. At the
same time, this method was used to implement a ternary encoder,
ternary decoder, ternary comparator, and ternary data selector.
Finally, the authors verified the effectiveness of the circuit
through LTspice simulation.

Lin et al., in the paper “Current mode multi scroll chaotic
oscillator based on CDTA,” proposed a current mode chaotic
oscillation circuit based on a current differential
transconductance amplifier (CDTA). This circuit fully utilizes the
advantages of current differential transconductance amplifiers. The
linear and nonlinear parts of the proposed circuit operate in current
mode, achieving a true current mode multi scroll chaotic circuit.
Finally, the authors conducted simulations using Pspice, and the
results showed that the proposed current type chaotic circuit can
generate multi scroll chaotic attractors.

Alsubaie, in the paper “a neural state-space-based model
predictive technique for effective vibration control in nano-
beams,” proposed a system recognition method based on deep
neural networks and combines it with MPC. In addition, the
paper ensures the robustness and convergence of the closed-loop
system by adding control terms. Then, the control equation for non
local strain gradient (NSG) nanobeams was given. Finally, the
proposed control scheme will be applied to the vibration
suppression of NSG nanobeams. To verify the effectiveness of the
proposed method, the controller is applied to an unknown system.
The simulation results ultimately proved the significant
performance of the method proposed by the authors in
effectively suppressing vibration.

Fu et al., in the paper “Multi-scroll Hopfield neural network
under electromagnetic radiation and its brain-like coupling
synchronization,” proposed a new non-volatile magnetic
controlled memristor and uses it to simulate the effects of
membrane flux changes caused by neuronal exposure to
electromagnetic radiation. Through dynamic analysis, a series of
complex chaotic phenomena were discovered, including multi
vortex chaotic attractors controlled by memristors, symmetric
bifurcation behavior, and coexisting phenomena with enhanced
initial offset. Secondly, the authors also proposed a dual
memristive HNN coupled synchronization model to simulate
synchronization schemes between different regions of the human
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brain. The feasibility of the synchronization scheme was verified by
establishing a Simulink model and conducting simulation
experiments.

Yu et al., in the paper “Moment-based analysis of pinning
synchronization in complex networks with sign inner-coupling
configurations,” investigated the pinning synchronization problem of
complex networks with symbolic intra coupling configuration using a
moment-based analysis method. Firstly, two representative nonlinear
systemswith dynamic parameter changes are presented. Then, a detailed
study was conducted on the impact of symbol internal coupling
configuration on network synchronization. Research has found that
adding negative parameters to the internal coupling matrix can
significantly improve the synchronization of the network. Finally, the
authors provided explanations through numerical simulations.

Hu et al., in the paper “A novel grid multi-structure chaotic
attractor and its application in medical image encryption,” proposed
a memristive Hopfield neural network model using the memristor
synaptic control method. This model can generate new grid multi
structure chaotic attractors. Firstly, the generation mechanism of
grid multi structure chaotic attractors were analyzed from the
perspectives of equilibrium points and stability. Secondly, its
basic dynamic characteristics were analyzed. Thirdly, the
simulation circuit of the neural network model was designed and
implemented using Multisim. Finally, combining the principle of
chaotic encryption, the authors designed an image encryption
scheme based on a generated grid multi structure attractor. The
experimental results show that compared with existing schemes, this
scheme has greater information entropy, higher key sensitivity, and
good application prospects.

3 Concluding remarks

Overall, the research on the application and development of
nonlinear systems and networks requires continuous advancement
from multiple aspects, in order to better respond to challenges and
explore their broad application prospects. The exploration and
research of nonlinear systems and networks will undoubtedly
bring us more new modeling, control, prediction, and
optimization methods in the future.

Finally, we would like to thank all the authors of the 10 articles in
this Research Topic for their outstanding contributions, all of which
are well suited to the scope of this Research Topic. In addition, we
would also like to sincerely thank all the reviewers, editors, and
editorial staff of Frontiers in Physics journal for their support.
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Moment-based analysis of pinning
synchronization in complex
networks with sign inner-coupling
configurations
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1School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China, 2School
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In this paper, pinning synchronization of complex networks with sign inner-
coupling configurations is investigated from a moment-based analysis
approach. First, two representative non-linear systems with varying dynamics
parameters are presented to illustrate the bifurcation of the synchronized regions.
The influence of sign inner-coupling configurations on network synchronizability
is then studied in detail. It is found that adding negative parameters in the inner-
coupling matrix can significantly enhance the network synchronizability.
Furthermore, the eigenvalue distribution of the coupling and control matrix in
the pinned network is estimated using the spectral moment analysis. Finally,
numerical simulations are given for illustration.

KEYWORDS

complex network, spectral moment, pinning control, synchronization, sign inner-
coupling

1 Introduction

Synchronization is a typical collective behavior in complex networks [1–5]. In the past
two decades, the issues of synchronization, control, and optimization in complex network
systems have become focal subjects in network science and engineering [6–31], and
numerous works have been reported on such topics as complete synchronization [6],
near-synchronization [32], phase synchronization [33], bounded synchronization [34],
fixed-time synchronization [35, 36], heterogeneous node dynamics [37], multiplex
networks [38], time-delay systems [39–41], and time-varying networks [42, 43].

It has been demonstrated that the local stability of a complex dynamical network under
the pinning control can be converted into two independent sub-problems: identifying the
synchronized regions of the pinned network and analyzing the scaled eigenvalues of the
coupling and control matrix [44]. On one hand, the bifurcation behavior of the synchronized
regions has been observed in complex networks with varying node parameters [39, 40, 45].
Various rich bifurcation patterns of the synchronized regions have been found in the pioneer
work [45]. On the other hand, the moment-based analysis approach [46–48] has been
introduced to successfully estimate the eigenvalue distribution of the coupling and control
matrix [49]. Therein, without performing explicit eigenvalue decomposition, the eigenvalue
distribution can be estimated only from the network structural parameters and the control
mechanism.

It is worth noting that most of the above-reviewed works on network synchronization
assume that the inner-coupling matrix consists of zeros and positive parameters. However,
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less attention has been paid to the case that the elements in the
inner-coupling matrix are negative [50]. Interestingly, negative
interactions among the nodes will lead to the enhancement of
the synchronization in complex networks [51]. Moreover, a
recent work on network controllability has revealed that adding
negatively-weighted edges in a signed network can significantly
change its average controllability [52]. Indeed, in real-world
scenarios, it is more reasonable and accurate to model a complex
system using a network with both negative and positive weights on
edges. For instance, in social networks, positive edge weights can
denote the relations of like and friendships, while negative edge
weights on can represent the relations of dislike and foe [53].
Inspired by these observations, a sign inner-coupling matrix with
positive and negative parameters is introduced to denote the
cooperation and competition relationships, respectively, between
the node variables.

The main contributions of this paper are two-fold. First, the
influence of sign inner-coupling configurations on network
synchronizability is studied. The interesting bifurcation behavior of the
synchronized regions is observed in the pinned network with a varying
node dynamics parameter. It is shown that the network synchronizability
can be improved by adding negative parameters in the inner-coupling
matrix, while blindly adding inner-coupling elements with positive
parameters may weaken it. This finding provides a good alternative to
optimize the network synchronizability. Second, the eigenvalue
distribution of the pinned network is analyzed from the moment-
based approach. The analytical expressions of the spectral moments
for a globally coupled network and a nearest-neighbor coupled network
are derived, respectively. It is found that the expected moments depend
not only on the structural parameters of the network but also on the
control mechanism. The derived expected moments are then used to
estimate the eigenvalue distribution. Numerical examples demonstrate
the efficiency of the proposed spectral estimation method.

The rest of the paper is organized as follows. Notation and
preliminaries are given in Section 2. The influence of sign inner-
coupling configurations on network synchronizability is investigated
in Section 3. In Section 4, the estimation of the eigenvalues of the
coupling and control matrix for two representative regular networks
is provided. Section 5 shows the numerical results. Finally, Section 6
concludes the paper.

2 Notation and preliminaries

2.1 Notation

Throughout the paper, let R denote the set of real numbers, Rn

the vector space of n-dimensional real vectors, and Rm×n the set of
m × n real matrices. Let Im be anm ×m identity matrix and diag{a1,
a2, . . ., an} an n × n diagonal matrix. Let ⊗ indicate the Kronecker
product and tr(A) the trace of matrix A.

2.2 Graph theory

Let G � (V, E) be an undirected graph with a node set V �
{1, 2, . . . , N} and an edge set E ⊆ V × V. A path between two nodes,
say i and j, is given by the node sequence v1, v2, . . ., vk, where v1 = i,

vk = j, and (vl, vl+1) ∈ E. An undirected graph G is connected if, for
any two nodes, there exists a path connecting them. Let A �
(Aij) ∈ RN×N denote the adjacency matrix of the undirected
graph G. If there is an edge between nodes i and j, then Aij =
Aji = 1, and Aij = 0 (j ≠ i) otherwise. The degree of node i is the
number of edges directly connected to it and can be denoted by
di � ∑N

j�1Aij. The degree sequence of G is the list of node degrees,
denoted by {d1, d2, . . ., dN}. The degree matrix is, thus, defined asD =
diag{d1, d2, . . ., dN}. The corresponding Laplacian matrix is given by
L = D − A.

2.3 Problem statement

We consider a complex dynamical network of N nodes
described by

_xi t( ) � F xi t( )( ) − σ∑N
j�1

LijHxj t( ), i � 1, 2, . . . , N, (1)

where xi(t) � [xi1(t), xi2(t), . . . , xim(t)]T ∈ Rm is the state vector
of node i. The non-linear function F(·) is continuously
differentiable denoting the self-dynamics of the nodes. σ > 0 is
the global coupling strength. The matrix H ∈ Rm×m describes the
inner-coupling of the state variables of nodes, while the Laplacian
matrix L � (Lij) ∈ RN×N describes the outer-coupling among the
nodes. We assume that the network is undirected and connected.
If there is a connection between node i and node j, then Lij =
Lji = −1; otherwise, Lij = Lji = 0 (j ≠ i). In addition, the diagonal
elements of L are given by

Lii � − ∑N
j�1,j≠i

Lij, i � 1, 2, . . . , N, (2)

which satisfy the diffusion condition ∑N
j�1Lij � 0. It can be verified

that L is a symmetric and diagonalizable matrix.
Suppose that all the nodes have a common equilibrium �x,

satisfying F(�x) � 0. In order to synchronize network (1) at the
state �x, pinning control is applied. The pinned network is, thus,
described as follows:

_xi t( ) � F xi t( )( ) − σ∑N
j�1

LijHxj t( ) − δiσbiH xi t( ) − �x( ),
i � 1, 2, . . . , N,

(3)

where the variable δi denotes whether node i is under control. If
control is directly applied to node i, then δi = 1 with bi = b > 0,
otherwise δi = bi = 0. Here, b denotes the feedback gain to be
designed. Let l (1 ≤ l <N) be the number of pinned nodes. Therefore,∑iδi = l.
Let ei(t) � xi(t) − �x and E(t) � [eT1 (t), eT2 (t), . . . , eTN(t)]T ∈ RmN.

Linearizing system (3) at �x leads to the following error system:

_E t( ) � IN ⊗ JF �x( ) − σC ⊗ H( )E t( ), (4)
where JF(�x) is the Jacobian matrix of F(·) evaluated at �x, C = L + B is
the coupling and control matrix, and B = diag{b1, b2, . . ., bN} is the
feedback gain matrix.

It is worth noting that the matrix C is a real symmetric matrix,
which can be written as Λ = Φ−1CΦ, where Λ = diag{λ1, λ2, . . ., λN}
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with λi, i = 1, 2, . . .,N being the eigenvalues of C, and the columns of
Φ are the set of the corresponding eigenvectors. It can be verified
that the eigenvalues of the matrix IN ⊗ JF(�x) − σC ⊗ H and those of
JF(�x) − σλiH, i � 1, 2, . . . , N are identical. For convenience, let αi =
σλi, i = 1, 2, . . ., N. It has been demonstrated in the literature that the
local stability of the pinned network (3) is determined by the
following generic system [49]:

_η t( ) � JF �x( ) − αH( )η t( ), (5)
where η(t) is a new auxiliary variable.

λm(α) denotes the maximal real part of the eigenvalues of
JF(�x) − αH. The synchronized region S is defined as the range
of α with λm(α) < 0. The synchronization will be achieved if all the
eigenvalues of σC are located inside S.

In summary, pinning synchronization in network (3) is
separated into two sub-problems: 1) identifying the synchronized
regions and 2) analyzing the eigenvalue distribution of σC. Previous
works on the types and bifurcation behavior of synchronized regions
assume that the elements in the inner-coupling matrix are either
zeros or positive parameters. Here, a zero indicates the absence of a
relation between some state variables of nodes, while a positive
parameter characterizes the cooperative relationship between two
corresponding state variables. However, less attention has been paid
to the case of negative or competitive interactions between node
variables. In this paper, a more general inner-coupling matrix
including negative parameters is considered.

Definition 1. If the elements of matrix H consist of the symbols +,
−, and 0, H is then called the sign pattern matrix [50].

For example,

H �
− + 0
0 + 0
0 0 −

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

is called a sign pattern matrix, in which 0, +, and − represent zero,
positive, and negative parameters, respectively.

If the state variables of nodes are coupled through a sign pattern
matrix, the networked system is said to have a sign inner-coupling
configuration. Without loss of generality, in what follows, the
elements of H are denoted by 1, −1, and 0, where “1” indicates
cooperative relationship, “−1” indicates competitive relationship,
and “0” indicates that there is no relation between some state
variables of nodes.

3 Bifurcation of the synchronized
regions

In this section, the influence of sign inner-coupling
configurations on network synchronizability is studied in detail.
In particular, two representative non-linear systems with varying
parameters are given to illustrate the bifurcation of the synchronized
regions.

3.1 Lü system

A single Lü system [54] is described as

_x1

_x2

_x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � a x2 − x1( )
−x1x3 + γx2

x1x2 − βx3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
where β = 3 and γ = 20. Obviously, �x � [0, 0, 0]T is an equilibrium
point of the aforementioned Lü system, and the Jacobian matrix of
the system is as follows:

JF �x( ) �
−a a 0
0 20 0
0 0 −3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
In what follows, three different types of inner-coupling matrices

are considered.
(i) When the inner-coupling matrix is chosen as

Hl1 �
−1 0 0
1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
the corresponding characteristic equation is obtained as follows:

f λ, α, a( ) � λ + 3( ) λ2 + a − 20( )λ − α2 + 2a + 20( )α − 20a[ ] � 0.

One has λ1 = −3 < 0. If a − 20 > 0 and −α2 + (2a + 20)α − 20a > 0,
then λ2,3 < 0; that is, the pinned network can synchronize at
�x � [0, 0, 0]T. Here, the boundary curves of the synchronized
region are represented by α1 � − �������

a2 + 100
√ + a + 10,

α2 �
�������
a2 + 100

√ + a + 10, and a > 20. In this situation, the
synchronized region of the Lü system with varying dynamics
parameter a and its boundary curves are given as shown in
Figure 1A. The cyan-shaded area denotes the synchronized
region in which λm(α) < 0. The magenta line denotes the
corresponding boundary curve. These notations will be used for
Figures 1B, C and Figure 2.

(ii) When the inner-coupling matrix is chosen as

Hl2 �
−1 1 0
1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
the corresponding characteristic equation is obtained as follows:

f λ, α, a( ) � λ + 3( ) λ2 + a − 20( )λ − 2α2 + 2a + 20( )α − 20a[ ] � 0.

One has λ1 = −3 < 0. If a − 20 > 0 and −2α2 + (2a + 20)α − 20a >
0, then λ2,3 < 0; that is, the pinned network can synchronize at
�x � [0, 0, 0]T. Here, the boundary curves of the synchronized region
are represented by α1 � − ������������

a2/4 − 5a + 25
√ + a/2 + 5, α2 �������������

a2/4 − 5a + 25
√ + a/2 + 5 and a > 20. In this situation, the
synchronized region of the Lü system with varying dynamics
parameter a and its boundary curves are given as shown in
Figure 1B.

(iii) When the inner-coupling matrix is chosen as

Hl3 �
−1 −1 0
1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
the corresponding characteristic equation is obtained as follows:

f λ, α, a( ) � λ + 3( ) λ2 + a − 20( )λ + 2a + 20( )α − 20a[ ] � 0.

One has λ1 = −3 < 0. If a − 20 > 0 and (2a + 20)α − 20a > 0, then
λ2,3 < 0; that is, the pinned network can synchronize at �x � [0, 0, 0]T.
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Here, the boundary curves of the synchronized region are
represented by α0 � 20a

2a+20 and a > 20. In this situation, the
synchronized region of the Lü system with varying dynamics
parameter a and its boundary curves are given as shown in
Figure 1C.

Figure 1 shows the synchronized regions of Lü system for
three different sign inter-coupling matrices. Table 1
further summarizes the synchronized regions for three
specific values of a. It can be observed from Figures 1A, B
that the synchronized region switches from “empty set” to
“bounded region” with the increase in the
dynamics parameter a, while in Figure 1C, the
synchronized region switches from “empty set” to
“unbounded region.”

3.2 Unified chaotic system

A single unified chaotic system [55] is described as

_x1

_x2

_x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ �
25a + 10( ) x2 − x1( )

28 − 35a( )x1 − x1x3 + 29a − 1( )x2

x1x2 − a + 8
3

x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where a ∈ [0, 1]. Obviously, �x � [0, 0, 0]T is an equilibrium point of
the aforementioned unified chaotic system, and the Jacobian matrix
of the system is as follows:

JF �x( ) �
− 25a + 10( ) 25a + 10( ) 0

28 − 35a 29a − 1 0

0 0 −a + 8
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Then, we consider the following three types of different inner-
coupling matrices:

(i) We set the inner-coupling matrix as

Hu1 �
1 1 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.

FIGURE 1
Synchronized regions of the Lü system with varying dynamics parameter a and its boundary curves.

FIGURE 2
Synchronized regions of the unified chaotic system with varying dynamics parameter a and its boundary curves.
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The corresponding characteristic equation is obtained as
follows:

f λ, α, a( ) � λ + a + 8
3

( ) λ2 + 11 − 4a + α( )λ[
+ 29 − 64a( )α − 25a + 10( ) 27 − 6a( )] � 0.

One obtains λ1 � −a+8
3 < 0. If 11 − 4a + α > 0 and (29 − 64a)α −

(25a + 10)(27 − 6a) > 0, then λ2,3 < 0; that is, the pinned network can
synchronize at �x � [0, 0, 0]T. Here, the boundary curve of the
synchronized region is represented by α0 = (25a + 10)(27 − 6a)/
29 − 64a. When the inner-coupling matrix is set as Hu1, the
synchronized region of unified chaotic system with varying
dynamics parameter a and its boundary curve are illustrated in
Figure 2A.

(ii) We set the inner-coupling matrix as

Hu2 �
1 1 0
1 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
The corresponding characteristic equation is obtained as

follows:

f λ, α, a( ) � λ + a + 8
3

( ) λ2 + 11 − 4a + α( )λ − α2[
− 39a − 39( )α − 25a + 10( ) 27 − 6a( )] � 0.

One has λ1 � −a+8
3 < 0. If 11 − 4a + α > 0 and −α2 − (39a − 39)α −

(25a + 10)(27 − 6a) > 0, then λ2,3 < 0; that is, the pinned network can
synchronize at �x � [0, 0, 0]T. Here, the boundary curves of
the synchronized region are represented by

α1 �
�����������������������������
4(25a + 10)(6a − 27) + (39a − 39)2

√
/2 − (39a − 39)/2, α2 �

−
�����������������������������
4(25a + 10)(6a − 27) + (39a − 39)2

√
/2 − (39a − 39)/2. When

the inner-coupling matrix is set as Hu2, the synchronized region
of the unified chaotic systemwith varying dynamics parameter a and
its boundary curves are shown in Figure 2B.

(iii) We set the inner-coupling matrix as

Hu3 �
1 1 0
−1 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
The corresponding characteristic equation is obtained as

f λ, α, a( ) � λ + a + 8
3

( ) λ2 + 11 − 4a + α( )λ + α2[
+ 19 − 89a( )α − 25a + 10( ) 27 − 6a( )] � 0.

One has λ1 � −a+8
3 < 0. If 11 − 4a + α > 0 and α2 + (19 − 89a)α −

(25a + 10)(27 − 6a) > 0, then λ2,3 < 0; that is, the pinned network can
synchronize at �x � [0, 0, 0]T. Here, the boundary curves of the

synchronized region are represented by α1 ������������������������������
4(25a + 10)(6a − 27) + (19 − 89a)2

√
/2 − (19 − 89a)/2 and α2 � −�����������������������������

4(25a + 10)(6a − 27) + (19 − 89a)2
√

/2 − (19 − 89a)/2. When the
inner-coupling matrix is set as Hu3, the synchronized region of the
unified chaotic system with varying dynamics parameter a and its
boundary curves are shown in Figure 2C.

Figure 2 shows the synchronized regions of the unified chaotic
system for three different sign inter-coupling matrices. Table 2
further summarizes the synchronized regions for three specific
values of a. It can be observed from Figures 2A, C that the
synchronized region switches from “unbounded region” to
“empty set” with the increase in the dynamics parameter a, while
in Figure 2B, the synchronized region switches from “bounded
region” to “empty set.”

In summary, there exist bifurcation phenomena in the
synchronized regions of complex networks for some specific
inner-coupling matrices. The synchronized region can evolve
with the varying node dynamics parameter and switch from one
type to another type.

Given the node dynamics, the larger the range of the
synchronized region corresponding to the sign inner-coupling
matrix, the easier it is for the network to achieve
synchronization. From the aforementioned simulations, the
following conclusions can be drawn:

(i) From Figure 1, it can be seen that when the inner-coupling
matrix is chosen as Hl2, the synchronized region is smaller than
that of Hl1. In Figure 2, when the inner-coupling matrix is
chosen as Hu2, the synchronized region is smaller than that of
Hu1. It can be seen that Hl2 and Hu2 add a cooperative inner-
coupling element to Hl1 and Hu1, respectively. This means that
blindly adding positive parameters in the inner-coupling matrix
may weaken the synchronizability of the network.

(ii) From Figure 1, it can be seen that when the inner-
coupling matrix is chosen as Hl3, a larger synchronized
region is obtained compared to Hl1. From Figure 2, it can be
seen that when the inner-coupling matrix is chosen as Hu3, a
larger synchronized region is obtained compared to Hu1. It can
be observed that Hl3 and Hu3 add a competitive inner-coupling
element to Hl1 and Hu1, respectively. This implies that the
network synchronizability can be significantly enhanced by
adding a small number of negative parameters in the inner-
coupling matrix.

Remark 1. It should be pointed out that although numerical
simulations are performed with the aforementioned two chaotic
systems, the extension to other general systems is
straightforward.

TABLE 2 Synchronized regions of the unified chaotic system under different
sign inter-coupling matrices.

a Hu1 Hu2 Hu3

0.05 (11.64, ∞) (11.99, 25.07) (11.64, ∞)

0.15 (18.5, ∞) ∅ (16.325, ∞)

0.25 (31.88, ∞) ∅ (21.97, ∞)

TABLE 1 Synchronized regions of the Lü system under different sign inter-
coupling matrices.

a Hl1 Hl2 Hl3

36 (8.64, 83.36) (10, 36) (7.83, ∞)

46 (8.93, 103.07) (10, 46) (8.21, ∞)

56 (9.11, 122.89) (10, 56) (8.48, ∞)
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Remark 2. Recall that the bifurcation behavior of the synchronized
regions in a network with a varying node dynamics parameter is
analyzed in this section. The assumption that all the nodes have a
common equilibrium can ensure that the boundary curves of the
synchronized region can be analytically derived. It is found that the
boundary curves of the synchronized region are related to the
varying node dynamics parameter.

4 Spectral analysis of pinned networks

In this section, the spectral moment method [46] is applied to
estimate the eigenvalues of C [49].

4.1 Spectral moments of the matrix C

The nth-order spectral moment of C is defined as

Qn C( ) � 1
N

∑N
i�1

λni �
1
N

tr Cn( ) � 1
N

tr L + B( )n. (7)

The first three spectral moments of C can be obtained as follows:

Q1 C( ) � 1
N

∑N
i�1

di + bi( ),

Q2 C( ) � 1
N

∑N
i�1

d2
i + di + 2dibi + b2i( ),

Q3 C( ) � 1
N

∑N
i�1

d3
i + 3d2

i + 3d2
i bi + 3dibi + 3dib

2
i + b3i − 2ti( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where bi is the feedback gain, di is the degree of node i, and ti is the
number of triangles touching node i.

4.2 Globally coupled network

We consider a globally coupled network composed of N nodes,
in which any two nodes are directly connected by an edge. The
degree distribution of nodes of the globally coupled network is

δN−1 � δ di − N − 1( )( ) � 0, for di ≠ N − 1,∫∞

−∞
δN−1 di( ) dx � 1, for di � N − 1. (9)

The first three expected moments of node degree are obtained by

E di[ ] � N − 1( ),
E d2

i[ ] � N − 1( )2,
E d3

i[ ] � N − 1( )3.

⎧⎪⎪⎨⎪⎪⎩ (10)

The number of connected triples centered on any node in the
globally coupled network is

N − 1
2

( ) � 1
2

N − 1( ) N − 2( ). (11)

When the pinned nodes are consecutively distributed in the
network, the first three expected moments of C can, thus, be
derived as

E Q1 C( )[ ] � N − 1 + b
l

N
,

E Q2 C( )[ ] � N − 1( )2 +N − 1 + 2 N − 1( )b l

N
+ b2

l

N
,

E Q3 C( )[ ] � N − 1( )3 + 3 N − 1( )2 − N − 1( ) N − 2( )
+3 N − 1( )2 +N − 1[ ]b l

N
+ 3 N − 1( )b2 l

N
+ b3

l

N
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

Example 1. We consider a globally coupled network of N = 17
nodes. Here, only l = 4 consecutively distributed nodes are pinned
with b = 10.4. Table 3 compares the numerical values of the
moments of C with the analytical predictions in (13). It shows
that the analytical expectations of the moments are exactly the same
as the numerical realizations.

4.3 Nearest-neighbor coupled network

Consider a nearest-neighbor coupled network of N nodes, in
which each node is only connected to its 2k nearest-neighbor nodes.
The degree distribution of nodes of the nearest-neighbor coupled
network is

δ2k � δ di − 2k( ) � 0, for di ≠ 2k,∫∞

−∞
δ2k di( ) dx � 1 for di � 2k. (13)

Then, one obtains the first three expected moments of node
degree as follows:

E di[ ] � 2k,
E d2

i[ ] � 4k2,

E d3
i[ ] � 8k3.

⎧⎪⎪⎨⎪⎪⎩ (14)

The number of connected triples centered on any node in the
network is

2k
2

( ) � k 2k − 1( ). (15)

When the pinning nodes are uniformly distributed in the
network, the first three expected moments of C are then obtained by

E Q1 C( )[ ] � 2k + b
l

N
,

E Q2 C( )[ ] � 4k2 + 2k + 2kb
l

N
+ b2

l

N
,

E Q3 C( )[ ] � 8k3 + 8k2 + 2k + 12k2b
l

N

+ 6kb
l

N
+ 6kb2

l

N
+ b3

l

N
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

Example 2. We consider a nearest-neighbor coupled network
with N = 200 and k = 6. It is assumed that l = ∑iδi = 20 uniformly

TABLE 3 Moments for a globally coupled network.

Moment order 1st 2nd 3rd

Numerical realization 18.52 379.5 8259.71

Analytical expectations 18.52 379.5 8259.71

Relative error 0 0 0
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distributed nodes are pinned with i = 1, 11, . . ., 191. We set b = 11.7.
Table 4 compares the numerical values of the moments with the
analytical predictions in (17). It shows clearly that the analytical
expectations of the moments are suited to capture the spectral
property of the matrix C.

Remark 3. In this paper, the spectral moment method is
extended to the aforementioned two kinds of regular
networks. The relationship between the lower-order expected
moments and the local structural properties, control scheme
including feedback gain and the number of pinned nodes,
together with their distributions (i.e., the positions of pinned
nodes in the whole network), is established. Note that other
network models, such as ER random networks, Chung-Lu
random networks, and NW small-world networks, have been
given to verify the efficiency of the moment-based estimation
method [49].

4.4 Triangular reconstruction of matrix C

In this section, the triangular reconstruction method [56] is
generalized to estimate the bounds of the eigenvalues.

We define a triangular distribution T(λ) based on a set of
abscissas p1 ≤ p2 ≤ p3 as

T λ( ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h

p2 − p1
λ − p1( ), for λ ∈ p1, p2[ ),

h

p2 − p3
λ − p3( ), for λ ∈ p2p3[ ],

0, otherwise,

with h = K/(p3 − p1) and K > 0. The expected moments of C are
obtained as follows:

E Q1 C( )[ ] � 1
3

p1 + p2 + p3( ),
E Q2 C( )[ ] � 1

6
p2
1 + p2

2 + p2
3 + p1p2 + p1p3 + p2p3( ),

E Q3 C( )[ ] � 1
10

p3
1 + p2

1p2 + p2
1p3 + p3

2 + p2
2p1(

+p2
2p3 + p3

3 + p2
3p1 + p2

3p2 + p1p2p3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

For simplicity, we use �Q to represent E[Q(C)]. The aim is to
find a set of abscissas {p1, p2, p3} so as to fit a given set of
expected moments { �Q1, �Q2, �Q3}. Using the symmetries of the
polynomials, the values of {p1, p2, p3} can be determined as roots
of the polynomial

p3 − s1p
2 + s2p − s3 � 0, (18)

with

s1 � 3 �Q1,
s2 � 9 �Q2

1 − 6 �Q2,

s3 � 27 �Q3
1 − 36 �Q1

�Q2 + 10 �Q3.

⎧⎪⎨⎪⎩ (19)

Example 3. We consider again a 17-node globally coupled
network (as shown in Example 1) and a 200-node nearest-
neighbor coupled network (as shown in Example 2),
respectively. For the globally coupled network, the abscissas
for the triangular function are p1 = 1.4359, p2 = 26.1860, and
p3 = 27.9311 with h = 20/(p3 − p1). For the nearest-neighbor
coupled network, the abscissas for the triangular function are p1 =
0.5547, p2 = 14.3239, and p3 = 24.6314 with h = 3/(p3 − p1).
Figures 3, 4 show the eigenvalue histograms of C and triangular

TABLE 4 Moments for a nearest-neighbor coupled network.

Moment order 1st 2nd 3rd

Numerical realization 13.17 197.77 3270.53

Analytical expectations 13.17 197.77 3228.53

Relative error 0 0 1.3%

FIGURE 3
Eigenvalue histograms of C and its triangular approximations for
a globally coupled network.

FIGURE 4
Eigenvalue histograms of C and its triangular approximations for
a nearest-neighbor coupled network.
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approximations for the globally coupled network and the nearest-
neighbor coupled network, respectively. The ordinate μ(λ)
denotes the percentage of the eigenvalue with a certain value
in all eigenvalues. It can be seen from Figures 3, 4 that the
triangular function can well fit the eigenvalue distribution of the
matrix C.

5 Numerical results

We consider the globally coupled network in Example 1 and set
the Lü system as the node dynamics. When the node dynamics
parameter a = 36 and the inner-coupling matrix is chosen as Hl3, it
can be obtained from Table 1 that the corresponding synchronized
region of the Lü system is (7.83, ∞). According to Example 3, �λ1 �
1.4359 and �λN � 27.9311 are good estimations of the lower and
upper bounds of the eigenvalues, respectively. The 17-node globally
coupled network of Lü systems can achieve synchronization if
σ ∈ (7.83/�λ1,∞) � (5.45,∞). Figures 5A, B show the evolution
of the node states with σ = 5∉(5.45, ∞) and σ = 6 ∈ (5.45, ∞),

respectively. The numerical results are in good agreement with the
theoretical results.

We consider the nearest-neighbor coupled network in Example
2 and set the unified chaotic system as the node dynamics. When the
parameter a = 0.05 and the inner-couplingmatrix is set asHu3, it can be
obtained from Table 2 that the corresponding synchronized region of
the unified chaotic system is (11.64,∞). From Example 3, �λ1 � 0.5547
and �λN � 24.6314 are the bound estimations of the eigenvalues. The
nearest-neighbor coupled network of unified chaotic systems can
achieve synchronization if σ ∈ (11.64/�λ1,∞) � (20.98,∞). Figures
6A, B show the evolution of the node states with σ = 15∉(20.98,∞) and
σ= 22 ∈ (20.98,∞), respectively. The numerical simulations are in good
agreement with the theoretical results.

6 Conclusion

In this paper, pinning synchronization of complex networks with
sign inner-coupling configurations has been investigated. The
bifurcation behavior of the synchronized regions has been observed,

FIGURE 5
Evolution of the node states in a 17-node globally coupled
network of Lü systems with (A) σ = 5; (B) σ = 6.

FIGURE 6
Evolution of the node states in a 200-node nearest-neighbor
coupled network of unified chaotic systems with (A) σ = 15; (B) σ = 22.
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and the effect of sign inner-coupling configurations on network
synchronizability has been studied in detail. It is shown that the
synchronized region can evolve with the varying node dynamics
parameter and switch from one type to another type. It is also
found that the network synchronizability can be significantly
improved by adding negative parameters in the inner-coupling
matrix, while blindly adding inner-coupling elements with positive
parameters may weaken it. The expected moments of C for the globally
coupled network and nearest-neighbor coupled network have been
derived. The shape of the eigenvalue distribution of C for each of the
aforementioned regular networks can, thus, be estimated to predict
pinning synchronization of the network.

It is worth noting that the obtained results in this paper can be
generalized to handle control problems with directed topologies or
switching topologies. However, directed topology implies that the
network is not symmetric, and switching topology means that the
network is time-varying. From a technical perspective, this
introduces more challenges than its undirected and time-
invariant counterpart. In the future, it will be interesting to study
the higher-order moments of the matrix C and their corresponding
fitting functions. Moreover, pinning synchronization of multiplex
networks with time delays [57, 58], noise [59], and disturbances [60,
61] is more challenging but worthy of deep investigation.
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With the emergence of various high-powered electrical equipment, the demand
for electric energy has increased rapidly. Subsequently, it has highlighted some
issues of electricity consumption, such as the adjustment of electricity
consumption peak. Although many electricity scheduling schemes have been
proposed to adjust and control user load of electricity consumption, the current
regulation of user load is not accurate and effective because the load regulation of
different regional grid users is a complex network system. In this paper, we
propose a reputation-based user electricity scheduling scheme for the
complex network of user electricity consumption, whose purpose is to
accurately adjust the electricity consumption of related users to further
improve the adjustment of electricity consumption peak. In our scheme, we
first model a complex network of user electricity consumption. Then we
construct a reputation calculation method for electricity users, where the
calculated reputation of users is one of the basis for assigning scheduling tasks
to users and calculating the price subsidy received by users who complete the
scheduling tasks. Further, we use the machine learning method to train a
computation model to calculate the adjustment coefficients of electricity load,
and then the electricity scheduling tasks are adjusted based on the calculated
adjustment coefficients. Finally, the corresponding electricity scheduling tasks are
assigned to the selected electricity users respectively for adjusting the electricity
consumption of these users. Experiment results show the effectiveness of our
proposed scheme. Our scheme can effectively calculate the reputation values of
users based on their historical data, and the corresponding electricity scheduling
tasks are effectively assigned to related users to accurately adjust the electricity
consumption of these users according to their reputation values and the real-time
adjustment coefficients, so as to efficiently improve the adjustment of electricity
consumption peak.
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reputation, complex network, electricity consumption, adjustment coefficients,
electricity scheduling
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1 Introduction

1.1 Background

With the continuous innovation of science and technology,
various electrical equipment has emerged, which enriches
people’s lives and provides greater security for people’s lives.
However, the increase of electrical equipment has created greater
demands for electricity. People also need to use many high-power
electrical appliances in their daily lives. Therefore, huge electricity
loads are generated, which can influence the stability of power grid
systems and people’s daily life. Figure 1 shows the electricity
consumption framework of power grid system. At present, the
most common forms of electricity generation in daily life are
thermal power generation, hydroelectric power generation, wind
power generation and nuclear power generation, etc. Although there
are various electricity generation forms and the amount of electricity
generated is considerable, all aspects of life need electricity power to
drive, leading to the total electricity load of all users is a too large or
too small in certain periods, which increases the burden of electricity
lines. And it will also increase the maintenance cost of power grid
systems.

Due to the diversity and uncertainty of electricity demand, the
electricity generation capacity set to meet the maximum demand of
users is largely idle during the low demand period. Therefore, it not
only increases the cost of electricity generation, but also increases the
electricity bills burden of users. In order to change this situation,
electric power enterprises have embarked on research and taken
measures to manage the electricity load. In the early stage, some
studies adjusted the production shift or the commuting time by
guiding enterprises. And some studies suggest shut down large
electrical equipment during peak hours to achieve off-peak
electricity consumption. These schemes improve the load rate of
the power grid. Subsequently, some new studies introduce economic
incentives linked to the interests of users, and it further encourages
users to voluntarily change the time and modes of their electricity
consumption. This could further increase the power grid’s load rate
and reduce users’ electricity bills. With the development of science

and technology, power enterprises have adopted direct load control
technology for some users.

In recent years, many researchers have devoted themselves to
reducing the operation cost of electricity systems and improving the
quality of electricity consumption in people’s daily life. However,
many existing traditional solutions are using energy storage to
reduce the occurrence of peak and trough of electricity
consumption, which solves the problem of storage and waste of
electric energy. But these schemes are all used after the occurrence of
peak and valley of electricity consumption periods, which uses
additional energy storage resources. The emergence of demand-
side response avoids the above problems. In order to achieve the
demand-side response, there are many studies suggest that indirectly
affect the consumption time of users by adjusting the electricity price
in different periods. This is a scheme specified for the consumption
behavior of users, which prevents the occurrence of peak and valley
of electricity consumption. And it does not need additional
equipment to store electric energy.

[1] take into account the uncertainty of user’s response behavior
and construct a high-dimensional parameter space that including
multiple influencing factors such as participation, response time and
net load power. And this scheme quantifies user’s response ability by
utilizing the expectation of net load envelope domain before and after
response. Then they propose a response capability gradient evaluation
index that comprehensively considers power grid incentive cost and
user’s response cost. There are also some works on the realization of
demand-side response by encouraging users to participate in incentive
demand response. The incentive demand response requires a contract
signed between the power grid and users. The upregulated and
downregulated capacity are directly controlled by the scheduling
center, which can effectively suppress real-time electricity deviation.
In order to fully improve the enthusiasm of users to participate in the
incentive demand response, the real-time electricity deviation of the grid
could be better suppressed. [2] propose a new idea of users’
participation in incentive demand response: for the incentive
demand response with faster response speed, the power grid adjusts
the incentive price of the incentive demand response according to the
real-time electricity deviation. And the power grid allows users to re-
declare the incentive demand response capacity of the future incentive
demand response operating cycle 1 h before each rolling optimization.
Therefore, the scheme achieves the goal that the incentive demand
response capacity can increase or decrease with the trend of power
deviation. But for the incentive demand response with slower response
speed, the contract capacity declare before the day is executed.

1.2 Our contribution

To prevent the occurrence of electricity consumption peaks and
valleys in complex network of user electricity consumption, we propose
a reputation-based electricity scheduling scheme for complex network
of user electricity consumption. In our scheme, we first model a
complex network of user electricity consumption, which reflects the
relationship and function of each entity in the network. Then in this
model, we construct a reputation calculation method for electricity
users, and then the users who participate in the incentive demand
response of electricity scheduling are selected according to the
calculated reputation of users. Further, we use the machine learning

FIGURE 1
Electricity consumption framework of power grid system.
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method to train a computation model to calculate the adjustment
coefficients, and then the electricity scheduling tasks are adjusted based
on the calculated adjustment coefficients. Finally, the corresponding
electricity scheduling tasks are assigned to the selected electricity users
respectively for realizing electricity peak load shifting. The main
contributions of our scheme are summarized as follows.

• We propose a user electricity scheduling task allocation
scheme in complex network of user electricity
consumption, which can allocate corresponding electricity
scheduling tasks for related users according to the
calculated reputation of users to improve the reliability of
power grid scheduling tasks. A two-layer user selection
scheme is constructed to select related users participating in
the incentive demand response of electricity scheduling, where
these users are filtered based on their historical and real-time
electricity consumption data.

• The machine learning method is used to train a computation
model to calculate the adjustment coefficients of electricity
load, and then the electricity scheduling tasks are adjusted
based on the calculated adjustment coefficients.

• Experiment results show our proposed scheme is efficient and
effective for adjusting electricity consumption peaks and
valleys. Our scheme can effectively calculate the reputation
values of users based on their historical data, and the
corresponding electricity scheduling tasks are effectively
assigned to related users.

1.3 Paper organization

The structure of the rest of this paper is as follows: In Section 2,
we describe related works about the adjustment of electricity
consumption. In Section 3, a reputation-based electricity
scheduling scheme for complex network of user electricity
consumption is proposed. In Section 4, we make some
experiments to test the efficiency and effectiveness of our
scheme. In Section 5, we draw our conclusions.

2 Related works

In order to solve the issues of electricity consumption, many
scholars have proposed various schemes for efficient electricity
scheduling, including the use of energy storage system in the peak
discharge and trough of the power grid charging to alleviate the problem
of peak and trough of electricity consumption, a scheme that indirectly
affects the consumption habits of users through the change of electricity
price, and a scheme that adjusts the consumption behavior of users and
other schemes based on incentives.

2.1 Application of complex network in power
system

Complex network refers to a network with self-organization,
self-similarity, attractor, small world, scale-free, partial or total
properties network. Over the years, many researchers have

applied complex networks to power systems. In [3], a new
methodology for stability assessment of a smart power system
was proposed. The key to this assessment was an index called
betweenness index which was based on ideas from complex
network theory. [4] studied the vulnerability analysis and
recognition of key nodes in power grids from a complex network
perspective. To effectively analyze the behavior and verify the
correctness of node electrical centrality, the net-ability and
vulnerability index were introduced to describe the transfer
ability and performance under normal operation and assess the
vulnerability of the power system under cascading failures,
respectively. When a single failure occurs in a vulnerable part of
a power system, this may cause a large area cascading event.
Therefore, an advanced method that could assess the risks during
cascading events is needed. Therefore, [5] proposed an improved
complex network model for power system risk assessment. Risk was
defined by consequence and probability of the failures in their
model, which were affected by both power factors and network
structure. Compared with existing risk assessment models, the
proposed one can evaluate the risk of the system
comprehensively during a cascading event by combining the
topological and electrical information. As a promising approach
to modeling complex systems, complex networks could provide a
sound theoretical framework for developing proper simulation
model. [6] proposed a complex network model of the bilateral
power transaction market. Unlike other general commodity
transactions, both of the financial layer and the physical layer
were considered in the model. Through simulation analysis, the
feasibility and validity of the model were verified.

2.2 Traditional electricity scheduling
schemes

To implement effective electricity scheduling, the traditional
schemes use the energy storage method to realize peak load shifting.
[7] investigated the potential of peak shaving through battery
storage. For each user, they studied the peak load reduction
achievable by batteries of varying energy capacities (kWh),
ranging from 0.1 to 10 times the mean power (kW). The results
showed that for 75% of the users, the peak reduction stayed below
44% when the battery capacity was 10 times the mean power.
Furthermore, for 75% of the users the battery remained idle for
at least 80% of the time. [8] proposed a decision-tree-based peak
shaving algorithm for the islanded micro-grid. The proposed
algorithm helped an islanded micro-grid to operate its generation
units efficiently; [9] tried to summarize the response modeling for
different types of demand-side resources by analyzing the
characteristics of different demand-side resources. Then they
established a scheduling-response mode, which took optimal
peak shaving response as its goal and took the power and
electricity quantity as the constraint conditions to solve the
model; [10] carried out a long-term distribution system (DS)
planning model considering the peak shaving of the Energy
station (ES), which was achieved by scheduling the input energy
of ES. By regarding DS and ES as different stakeholders, a
decentralized framework was devised to shave the electric peak
loads in the DS planning, where the coupling relationship between
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the time-of-use (TOU) price and exchanged power (e.g., the input
power of ES) was clearly expressed. [11] proposed a novel peak load
shaving algorithm for peak shaving application in a hybrid
photovoltaic (PV) generation system and Battery Energy Storage
System connected isolated micro-grid (IMG) system, which helped
an IMG system to operate its generation systems optimally and
economically along with a PV generation unit.

2.3 Demand-side response

Demand-side response refers to that when the wholesale
electricity market price rises or the system reliability is
threatened, electricity users change their habitual mode of
electricity consumption after receiving the direct compensation
notice of induced load reduction or the signal of electricity price
rise sent by the electricity supplier. Therefore, the electricity supplier
reduces or delays the electricity load in a certain period and responds
to the electricity supply. Then it ensures the stability of the power
grid system and restrains the short-term behavior of electricity price
rise [12]. This scheme is a basic platform for communication
between the power grid and users. According to different
demand response modes of users, demand-side response
technology in the smart power grid can be divided into a price-
based and an incentive-based demand side response. According to
the different response ways of users, demand response can be
divided into two categories: price-based demand response and
incentive-based demand response. Price-based demand response
can be divided into time-of-use electricity price, real-time electricity
price and peak electricity price. Price-based demand response
adjusts the consumption time of users through the difference of
electricity price in different periods. Compared with the period of
high electricity price, users are more inclined to use electricity in the
period of low electricity price. Incentive-based demand response
refers to the demand response implementer making policies to
encourage users to reduce the load when the system burden is
large or the electricity price is high. Incentive-based demand
response can be divided into direct load control, interruptible
load, demand-side bidding, emergency demand response and
capacity/auxiliary service plan, etc. The existing incentive-based
demand response mainly consists of direct load control and
interruptible load.

There are many schemes to implement demand-side response.
Some studies indirectly regulate users’ electricity consumption
behavior through TOU, so as to achieve scheduling goals. [13]
derived the optimal capacity investment and pricing decisions for
the electricity company. Furthermore, they used real data from a
case study to validate the results and derived insights for
implementing the TOU tariff. [14] proposed an analytical
method that incorporated the TOU strategy into the reliability
evaluation of the electricity system. A price-based demand
response was modeled to calculate the hourly load using an
apportionment method. By using the particle swarm optimization
algorithm, a TOU-based optimization model with a penalty was
constructed to find the optimal electricity price in their scheme. [15]
proposed models of costs to utility companies arising from user
demand fluctuations, and models of user satisfaction with the
difference between the nominal demand and the actual

consumption. They designed utility functions for the company
and the users, and obtained a Nash equilibrium using backward
induction. Some studies have implemented different measures for
different users based on their behaviors, so as to better develop
demand response schemes. [16] based on system dynamics,
constructed a demand response incentive signal strength analysis
model, analyzed the demand response behavior of different users,
and calculated demand response incentive subsidies standards for
different types of users. [17] decomposed the users’ electricity
consumption situation by using the additive model, extracted
various influencing factors, and constructed the modulus one
vector to describe and analyzed the electricity consumption
behavior of different users. [18] based on the research of feature
optimization method for the behavior analysis of intelligent
electricity users in the early stage proposed a cluster number
optimization method for user behavior analysis to effectively
improve the data clustering effect of electrical behavior analysis.
[19] proposed a Python-based K-means plus clustering algorithm to
classify Taiyuan electricity data. The K-means plus clustering
algorithm classified the data of electricity consumption and
finally got five different kinds of users. [20] discussed the cluster
analysis of electricity consumption behavior and the selection of
demand target users, and proved that the selection could guide the
implementation of demand response projects. A reasonable
assessment of demand response potential was of great
significance for effectively gathering demand-side resources. [21]
took Jiangxi Province as an example to predict the load after the
analysis of adjustable load, analyzed the adjustable load of users, and
evaluated the demand response potential of different users. There
are also some other demand-side response schemes. [22] proposed a
new economic scheduling model combined with wind power, which
considered incentive-based DR And reliability measures. Compared
with the traditional model, this model considered the response of the
users’ electricity consumption to the incentive price. The expected
cost of unsupplied energy was added to the target in order to strike
an optimal balance between the economy and the reliability of
electricity system operation. [23] proposed a safe optimal scheduling
model of the electricity system considering the demand response of
electricity price under the incentive mechanism of the electricity
market aiming at the traditional day-ahead scheduling scheme.
Based on the peak valley TOU price, the incentive compensation
mechanism should be established to encourage users to actively use
it. Participating in demand-side resource scheduling, which made
the effect of peak load shifting more obvious.

3 Proposed scheme

In this section, we propose a reputation-based electricity
scheduling scheme for complex network of user electricity
consumption. In our scheme, we first construct a complex
network model of the user’s electricity consumption, which
reflects the relationship and function of each entity in the
network. Then in this model, we construct a reputation
calculation method for electricity users, and then the users who
participate in the incentive demand response of electricity
scheduling are selected according to the calculated reputation of
users. Further, we use the machine learning method to train a
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computation model to calculate the adjustment coefficients, and
then the electricity scheduling tasks are adjusted based on the
calculated adjustment coefficients. Finally, the corresponding
electricity scheduling tasks are assigned to the selected electricity
users respectively for realizing electricity peak load shifting.

3.1 System framework

In this section, we show a system framework of user electricity
scheduling, which consists of users, user areas (aggregators) and
grid company. In our framework, Due to the interconnection of
various entities and various interrelationships, the whole power
grid system can be regarded as a complex network. In Section 3.2,
we introduce the construction of a complex network model for
user electricity consumption in detail, which demonstrates the
distribution of individual entities in the system and the
relationships between individual entities, such as users,
aggregators and grid companies.

In the system, various entities cooperate with each other to
realize the electricity scheduling. Among them, the electricity data of
users is the basis of the whole scheduling scheme. At the same time,
the realization of scheduling task also needs the cooperation of
electricity users. Due to the big size of the power grid system,
interacting directly with area users through the power grid side will
incur relatively large resource consumption. Aggregator plays the
role of an intermediate agent in the system, the electricity data of
users are aggregated and sent to the power grid side through the
aggregator. The tasks assigned by the users and the incentives
obtained by the users for completing the scheduling tasks are
also distributed to the electricity users in the region through the
aggregator. Power grid company is the initiator of the data
processing center and scheduling tasks. Due to the emergence of
the peak will increase power grid company of power circuit
operations costs, even cause damage to the power circuit, so the
grid company interacts with the user response by publishing power
scheduling task to users. In order to mobilize users to complete the
scheduling task, the grid side distributes the corresponding subsidies
for the users who complete the scheduling task. The framework is
shown in Figure 2. The functions of each entity are summarized as
follows.

• Users: The users are the object that participate in the incentive
demand response. By responding to the task assigned by the
power grid, the users can assist the power grid to complete the
scheduling tasks. Meanwhile, the users can also obtain the
corresponding price subsidies through their own reputation
values and the scheduling tasks completed by users.

• User areas (Aggregators): Each area will firstly collect the
electricity consumption data of the users in the area, send data
to the server, and accept the scheduling tasks assigned by the
power grid company for the area. Then the aggregators will
assign the corresponding scheduling tasks to users according
to the reputation values and adjustable load of users.

• Grid company: The server of grid company calculates the
adjustable load of users after receiving the user electricity
consumption data sent by various aggregators. In this paper
we assume that electricity consumption directly interacts with
users, and the reputation value of each user is stored in the
server. By calculating the adjustable load of users and the
weight of the reputation values of users, the corresponding
scheduling tasks are assigned to users.

3.2 Modeling complex network of user
electricity consumption

Because the load control of power grid users in different areas is
a complex network system, the current user load control method is
not accurate and effective for electricity consumption. Based on the
above system framework, we further model the complex network of
user load regulation. Since the users in each region have different
habits of using electricity, the task allocation for the users in each
region is different, even though the users’ electricity consumption
data at the same time is the same. Therefore, groups of electricity
users are typically complex systems. We regard a single user in each
region as a node, and each node will be linked to the aggregation
server in each region, where the aggregation server is the
intermediate node. When the node interacts with the
intermediate node, that is, when the user participates in the
incentive demand response, the user’s reputation value will
change with the completion of the scheduling task. Therefore, the
weight of the connection between this node and the intermediate
node is increased, and the user’s reputation value is taken as the
weight. Similarly, the aggregation servers in each region and the grid
company’s servers can be represented by the network relationship
described above. For the convenience of the experiment, in this
paper we assume that the power grid directly interacts with users in a
certain area. In actual application, aggregators are still used to
complete the overall implementation of this scheme. The
complex network model of user electricity consumption is shown
in Figure 3.

3.3 User electricity scheduling scheme

In this section, we show the details of our electricity scheduling
scheme for the complex network of user electricity consumption in
the model. In our scheme, for users in a certain area, their real-time
adjustable loads are calculated based on the users’ historical

FIGURE 2
System framework.
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electricity consumption data and real-time electricity consumption
data. It is convenient for users that they don’t need to upload their
adjustable load before participating in incentive demand response
every time. Assigning corresponding scheduling tasks to users based
on the users’ reputation values is conducive to improve the reliability
of users participating in completing scheduling tasks. While the
power grid allocates scheduling tasks to users participating in
incentive demand response by combining users’ reputation values
with real-time adjustable load of users. We firstly outline the five
steps of this scheme, and then introduce the implementation details
of each step. The process of implementation of this scheme is shown
in Figure 4.

• Initialization: The server of grid company receives the data of
users. Subsequently, the power grid company adjusts
coefficient s according to total load scheduling announced
price subsidies;

• Calculation of Reputation Values: The server calculates the
reputation values of users based on the number of times that
users accept their scheduling tasks and the number of times
they complete their scheduling tasks;

• Filtering of Participating Users: According to the users’
historical electricity consumption data and real-time
electricity consumption data, the users’ load elasticity
coefficients and adjustable load coefficients are calculated

respectively. These coefficients are used as reference for
filtering of users;

• Assignment of Tasks: The server sends incentive demand
response request to filter users, users can choose whether to
participate in the incentive demand response. Then the server
assigns the scheduling tasks to the users who finally participate
in the incentive demand response according to the users’
reputation values and real-time adjustable load;

• Calculation of Price Subsidies: The server assigns
corresponding subsidies to users based on the reduced load
and the reputation values of users who completed the
scheduling tasks.

3.3.1 Initialization
The historical data of electricity consumption of users are stored

in the grid company. The server can directly obtain the historical
data of users and the situation of users’ participation in incentive
demand response and completion of scheduling tasks. However, the
power grid company does not have the data of the users’ adjustable
load, so the users need to upload the real-time adjustable load lit to
the server. In this paper, we take each week as a cycle. For the
convenience of users, we set the users to upload their data once every
four cycles. What’s more, the power grid company needs to
determine the budget for each interaction response. Then the
price subsidies coefficient s is calculated according to the total

FIGURE 3
Complex network model of user electricity consumption.
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load to be scheduled and the budget for completing the scheduling
task:

s � B

E
× δ (1)

Where δ is the floating coefficient and δ ∈(0, 1), E is the total load
needed to be reduced this time, B is the budget for this scheduling
task. The price subsidy coefficient is a reference for the calculation of
the users’ price subsidies.

3.3.2 Calculation of reputation values
In this section, we propose a method to calculate the reputation

values of users. The reputation value is a measurement that reflects
the reliability of the users to complete their scheduling tasks. It is
calculated by the number of scheduling tasks completed by users and
the number of scheduling tasks accepted by users in the scheduling
task assigned by the server. Besides, the reputation values of users
will be used as the reference for users to obtain the price subsidies
after completing their scheduling tasks. However, the reputation
value of the users participating in scheduling task in the first time
cannot be calculated, so we need to initialize the credit value of the
users who have not participated in the scheduling task to ensure the
amount of scheduling tasks for users who participate in the

scheduling task for the first time. We set the reputation value of
the users who participate in the scheduling task for the first time
as 0.5.

The calculation process of reputation value is as follows. Firstly,
users upload their data to the server, and then the users’ reputation
values are calculated according to the incentive demand response
data of users. The user’s reputation value is:

Ri �
0.5, The user i accepts a scheduled task first time

γ ×
Di

Gi

⎧⎪⎪⎨⎪⎪⎩ (2)

where γ is a hyper-parameter and γ � 10, Di is the number of
scheduled tasks completed by the user i, Gi is the number of
scheduled tasks accepted by the user i. The user’s reputation
value is related to two factors, one is the number of scheduling
tasks assigned when the user participates in electricity scheduling,
the other is the price subsidies the user gets after completing the
scheduling task. It is used for the subsequent calculation of the user’s
reputation level.

3.3.3 Filtering of participating users
In this section, we show how users are assigned related electricity

scheduling tasks. Due to some users have no adjustable load at a

FIGURE 4
The process of user electricity scheduling.
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certain period, users involved in the scheduling task need to be
filtered. We define the load used by the user in a certain period as
follows: There are 60 min in each hour. We take the maximum load
value generated by the power user per minute as the load within
1 minute, and the load within each hour is the average of the load
within 60 min during that period. Then based on the historical and
real-time electricity consumption data of users, users are selected to
participate in scheduling. We use a two-layer scheme to select
participating users. Firstly, the load elasticity coefficient is
calculated according to the users’ historical data, and the users
whose load elasticity coefficient meeting the requirements are
selected preliminarily. Then, users meeting the requirements are
further filtered according to the real-time electricity load of users,
and the process of users filtering is shown in Figure 5.

3.3.3.1 The first layer
First of all, the user set meeting the requirements of this

scheduling task is preliminarily obtained by processing the users’
electricity usage habits and historical data of electricity
consumption. In this scheme, each week is divided into 7 days as
a cycle. In each cycle, the electricity consumption of user i in each
period of 24 h and the maximum electricity load of users in each
week are standardized to obtain the standardized load of users in
each period:

Pwidt � Nwidt

Nwidm
(3)

Where w represents the statistical period number and it is a natural
number greater than or equal to 1. d represents the number of dates

within a period and d = 1,2,3, . . ., 7. t represents t periods of day and
t = 0,1,2, . . ., 23. Nwidt is the electricity load of the user i at the t
period of the d day in the w cycle. Nwidm is the maximum daily
electricity load of the user i on day d of the w cycle.

In order to analyze the data better, we initially process the
data. Firstly, after standardizing the load in each period for user i,
the server calculates the mean square deviation of the
standardized load in the same period of every day in a cycle.
Then the average standardized load of user i in each period is
calculated:

uidt � 1
C
∑C

l�1Plidt (4)

Where C is the total number of cycles, and C is taken as 5 in the
experimental section of this paper. Secondly, the mean square
deviation of the standardized load σ idt in each period of the day
in a cycle is calculated according to the average standardized load:

σ idt �
����������������
1
C
∑C

l�1 Plidt − uidt( )2
√

(5)

Firstly, the server calculates the mean square deviation of the
standardized load of user on a certain day according to the mean
square deviation of the standardized load:

uidw � 1
24

∑23

t�0σ idt (6)

Secondly, according to the mean square deviation of the user’s
average standardized load, the user’s load elastic coefficient on that
day is obtained:

FIGURE 5
Selection frame of participating users.
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φidw �
�����������������
1
24

∑23

t�0 σ idt − uidw( )2
√

(7)

Then, the server selects the user whose load elastic coefficient is
greater than the threshold as the candidate.

3.3.3.2 The second layer
Users need to be filtered more accurately after the first layer of

filtering for them. According to the user’s real-time electricity load,
the real-time adjustable load coefficient is obtained:

τ it � Pit − Pl

Pim − Pl

(8)

where Pit is the user’s real-time electricity load at time t, Pl represents
the average electricity load of the user on the day. We take the
maximum load used by the user within a certain minute as the load
within that minute, and then calculate the average load of the user
within an hour according to this method, and then calculate the
average load of the user within a day. Pim represents the maximum
electricity load of the user on the day. According to the above load
determination method, we can determine the maximum average
load used by users in 1 hour of the day, and use it as Pim. If τit is
greater than 0, the user i is selected as a participant in the incentive
demand response.

3.3.4 Assignment of tasks
In this section, we describe how to perform the task assignment

in detail. After the server selects the users who meet the
requirements, it sends to them an invitation message to
participate in the incentive demand response. The users can
choose whether to participate in the response or not, and then
the server assigns tasks to the users who finally participate in the
incentive demand response. Reasonable allocation of scheduling
tasks is conducive to solving the problem of electricity consumption
in the grid company. The details of the task assignment are as
follows:

Firstly, users participating in the response are selected by server
according to the period when the power grid publishes scheduling
tasks, the reputation values of users and the adjustable load
coefficients of users. Then the users choose whether to
participate in the incentive demand response. The users with a
high reputation value are assigned more scheduling tasks. Finally,
the user set su which includes users who participate in this incentive
demand response are obtained, and su is
ui|θit > 0 and ui selects to participate in the scheduling task{ }.
According to the number of users in the user set su and the
reputation value of each user, the corresponding scheduling tasks
are generated and sent to users.

3.3.4.1 Calculation of users’ adjustable load
To select high-quality users, users’ adjustable load needs to be

ensured. The user’s adjustable load is calculated according to the
user’s real-time adjustable load coefficient and the user’s real-time
electricity load:

Pi � Ht × τ it × Pit (9)
Where theHt is the adjustment coefficient when the total electricity
load is too high in time period t.

3.3.4.2 Determination of parameter Ht

To determine the parameter Ht, we use the machine learning to
train a computation model. The first step is to build a training set,
which includes the real-time electricity consumption data and the
real-time adjustable load of users. We adjusted the division of the
data set in the model training, and divided the data set containing
50 users into three sub-data sets: training set, validation set and test
set, and the number of users in each sub-data set was
30,10,10 respectively. The adjustable load coefficient can be
calculated according to the real-time adjustable load coefficient
and the real-time adjustable load of users. Since users upload
data every four cycles, the parameters are updated every four
cycles to ensure the accuracy of the scheme. Then through the
formula (9), each user’s Hit is calculated to construct a data set
{(τit, lit; pit)| Hit}, i ∈ [0, 50], t ∈ [0, 23]. And then we use the training
set {(τit, lit; pit)| Hit}, i ∈ [0, 30], t ∈ [0, 23] to train a linear regression
model. The objective function is:

J θit( ) � minimize
θit

1
2m

∑m

n�1 hθit xn( ) −Hit
n( )2 (10)

The optimal parameters of the model are obtained by
minimizing the objective function through the gradient descent
algorithm. Since the parameters of each period are different, we need
to train the models for 24 periods. After that, the real-time electricity
load of the user and the period are taken as the input of the model to
obtain the parameters Hit. After the parameters are trained
according to the data of each user, the average value of the
parameters of each user in the same period is taken as the final
parameter value Ht.

3.3.4.3 Assignment of tasks
After the server calculates the users’ adjustable load, it assigns the

corresponding tasks to users according to the users’ reputation values.
But the scheduling task should not exceed the range of the user’s

FIGURE 6
Values of Ht in each period.
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adjustable load. Otherwise, most users may fail to complete their
scheduling tasks. The following is a detailed description of our task
allocation scheme. First of all, according to the users’ reputation values,
the server calculates the reputation weight of all users in the su:

Wi � Ri∑M
l�1Rl

(11)

Where M is the total number of user and M � |su|. When the
reputation value of the user is 0, that is, when the reputation weight
of the user is 0, the minimum scheduling task is assigned to the user
according to the total load of the scheduling task:

P0 � E∑M
l�1Rl

, Rl ∈ 1, 10[ ] (12)

If P0 is greater than Pi, the user’s scheduling task is Pi. When the
user’s reputation value is greater than 0, the scheduling task of the
user can be calculated as follows according to the user’s reputation
weight:

Pib � Wi − M× Wi − 1∑M
l�1Rl

( ) × E (13)

If Pib is greater than Pi, the user’s scheduling task is Pi. Above all, the
scheduling task of user i is as follows:

Pid �
Pib, Ri ≠ 0 andPi>Pib

P0, Ri � 0 andPi >P0

Pi, Others

⎧⎪⎨⎪⎩ (14)

3.3.5 Calculation of price subsidies
In this section, we propose a method to calculate the incentive.

In order to mobilize the enthusiasm of users to participate in
incentive demand response, we need to give certain subsidies to
users who have completed scheduling tasks. In this way, users will be
more willing to receive scheduling tasks, and help the grid company
to achieve peak load shifting and other scheduling tasks. In our
scheme, users’ corresponding subsidies are generated according to
their reputation values and the values of the scheduled load
completed by users. The incentive obtained by the user is directly
proportional to the user’s reputation value and the scheduling task
completed by the user. If users receive and complete the scheduling
task, their reputation values will increase. If users receive a task, but
they don’t complete it, then their reputation values will decrease. If
users don’t receive the scheduling task, their reputation values
remain unchanged. The users’ original reputation value before
updating are used as the basis to calculate the subsidies for the
completion of the scheduling task. We divide the reputation value
levels into ten levels, from 1 to 10 respectively. The users’ reputation
ratings are rounded up to their reputation values, denoted as �Ri�,
where Ri ∈ [1, 10]. If the user’s reputation values are greater than the
threshold value r after participating in the incentive demand
response, the user’s price subsidies (incentive) can be calculated
by the users’ own reputation values and the schedule load of the
users participating in the schedule:

Si � �Ri� × s × Pid, �Ri�> r (15)

FIGURE 7
Comparison between scheduling tasks and adjustable load of users with different load elastic coefficient threshold (threshold ∈ [1,9]).
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where r is the threshold of the price subsidies users can get after
completing the scheduling tasks, and s is the price subsidy
coefficient used by the power grid company to adjust the
subsidies to the users. Users are more active in participating in
demand response and completing scheduling tasks by providing
incentives to users in the form of price subsidies. When the users
pay the electricity bills, the corresponding amount can be offset
with the price subsidies obtained by participating in the incentive
demand response.

4 Experiment

In this section, the experimental process and results are
introduced in detail. The experimental part of this paper is
described below. Due to the difficulty in obtaining power grid
data and the innovation of the method adopted in this paper, the
data set adopted in this experiment is generated based on our daily
consumption habits. And then we reasonably generate the data of
electricity load of 50 users for 24 h a day within 5 weeks, as well as
the times of each user accepting and completing scheduling tasks, so
as to obtain the reputation values of each user. In this paper, every
week is taken as a cycle, and the electricity consumption of users is
different every day in each cycle. Therefore, in the experiment, a
certain period from Monday to Sunday should be selected as the

target regulation period, and the total regulation load should be
input. Then, we calculate the parameter Ht by machine learning
method, and show the influence of load elasticity coefficient
threshold and reputation threshold on scheduling task allocation
and the incentives users can get. In the end, this experiment proves
the effectiveness of this scheme by simulating the assignment of
tasks and the allocation of price subsidies to users.

4.1 Calculation of parameter Ht

In this section, we show the calculation results of the parameter.
The server uses the electricity data of every moment in one specified
day provided by users and adjustable load for the users eachmoment
to combine the adjustable load coefficients calculated at this
moment. And the server takes the users’ adjustable load
coefficients, real-time electricity loads, real-time adjustable load
and parameter Hit calculated by each user data to constitute
training set (θit, lit, pit) |Hit{ }, t ∈ [0, 23]. Since the simulation
data of 50 users are used in this experiment, the data of 30 users
are taken as the training data. After the parameters are trained
according to the data of each user, the average value of the
parameters of each user in the same period is calculated as the
final parameter value Ht. Figure 6 shows the value of Ht for each
period.

FIGURE 8
Changes of users’ scheduling tasks and subsidies with different load elastic coefficient threshold (threshold ∈ [1,9]).

Frontiers in Physics frontiersin.org11

Tang et al. 10.3389/fphy.2023.1183419

28

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1183419


4.2 Assignment of scheduling tasks

In this section, we show the influence of load elasticity coefficient
threshold and reputation threshold on scheduling task allocation
and the incentives users can get. The assignment of users’ scheduling
tasks is a relatively important link in this scheme. The price subsidies
obtained by users participating in incentive demand response are
not only related to their own electricity consumption data, but also
related to some parameters selected at the grid company side, such as
load elastic coefficient threshold and reputation value threshold. The
load elasticity coefficient threshold and reputation value threshold
are determined according to the range of load elasticity coefficient
and reputation value. Because the load elasticity coefficient is small,
the load elasticity coefficient threshold is the amplified value for the
sake of observation. In practical application, the most appropriate
threshold is selected by the grid end to screen users and assign
scheduling tasks.

4.2.1 Influence of load elastic coefficient threshold
In this section, we discuss the impact of the load elastic

coefficient threshold on the scheme performance. After the daily
load elastic coefficient within a cycle is calculated according to
the historical electricity consumption data of the user, the daily
load elastic coefficient of the user compares with the threshold
value. The users, whose load elastic coefficient is larger than the
threshold value, are preliminarily selected. The selection of
different load elastic coefficients will affect the selection of
users participating in scheduling tasks. Thus, different

scheduling tasks are assigned to users, and the price subsidies
users get after completing the scheduling tasks are different. The
adjustable load coefficient of the user is obtained through
multiple calculations based on the historical electricity
consumption data and real-time electricity consumption data
of each user. The parameters Ht are obtained through a linear
regression model, and then the adjustable load of the user is
calculated based on the real-time electricity consumption data of
the user and parametersHt. There is a certain difference between
the users’ adjustable load and the tasks assigned to the users by
the power grid according to the users’ reputation values. Figure 7
shows the difference between the calculated scheduling tasks that
should be assigned and the users’ adjustable load when the load
elastic coefficient threshold is different.

As can be seen from Figure 7, the load elastic coefficient
threshold should not be too large or too small. If the threshold of
load elasticity coefficient is too small, many low-quality users
will also be selected. Although more users are selected to
participate in scheduling tasks, the quality of users
participating in scheduling tasks is not high, which will affect
the completion of the overall tasks of power grid scheduling.
When the load elastic coefficient threshold is too large, users
participating in scheduling tasks are over-filtered. When the
load elastic coefficient threshold is equal to 9, no users even meet
the requirement to participate in scheduling tasks. In the
selection of the final scheduling tasks of users, if the values of
the calculated scheduling task assigned to the user is smaller
than the adjustable load of the user, the calculated scheduling

FIGURE 9
Differences of subsidies obtained by users under different reputation thresholds (r ∈ [1,9]).
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tasks are selected as the final scheduling tasks. If not, the user’s
adjustable load is selected as the final scheduling task. The load
elastic coefficient threshold will also affect the subsidies obtained
by users when they complete scheduling tasks by affecting the
assignment of their scheduling task. Figure 8 shows the change
of subsidies obtained by users when the load elastic coefficient
threshold is different.

As we can see from Figure 8, the number of users
participating in scheduling tasks changes with the change of
the load elastic coefficient threshold. When the load elastic
coefficient threshold is small, the number of users
participating in scheduling tasks is large, and the average
scheduling tasks assigned to users are small, so the subsidies
obtained by users also decrease. In this case, although there are
more users participating in scheduling tasks, there are more users
who are not highly likely to complete scheduling tasks. Because
the load elastic coefficient is small while the time limit of
participating in scheduling tasks is large, then the complete
degree of overall scheduling tasks may be low. As the load
elastic coefficient threshold increases, the number of users
participating in scheduling tasks also decreases. Accordingly,
users participating in scheduling tasks are assigned more
scheduling tasks and get more price subsidies. However, due
to the limitation of users’ adjustable load, the scheduling tasks
that users can complete will not exceed their adjustable load.
Therefore, too few people participating in the overall scheduling
task will lead to a low completion degree of the overall scheduling
task. Therefore, the threshold of load elastic coefficient should
not be too small or too large.

4.2.2 Influence of reputation threshold
In this section, we discuss the impact of the reputation

threshold on the scheme performance. Firstly, the server
calculates the weight of the users participating in this
scheduling task among all participating users based on their
reputation values. And the server considers them as the weight of
the scheduling tasks assigned to users in the total scheduling
tasks. Then, the server compares the user’s adjustable load with
the scheduling tasks assigned to the user. If the scheduling task
of the user is smaller than the adjustable load, the scheduling
task is taken as the final scheduling value. Otherwise, the
calculated adjustable load of the user is taken as the final
scheduling value. After completing the scheduling task, users
will get the corresponding subsidies according to their
reputation levels and the size of the scheduling tasks
completed by users, but the users whose reputation value is
less than the reputation value threshold will not get the price
subsidies. The difference of the reputation value threshold will
affect the users who participate in the incentive demand
response to get their subsidies. Figure 9 shows the differences
of the users’ subsidies under different reputation value
thresholds.

As can be seen from Figure 9, when the reputation threshold
increases, the number of users who can get price subsidies
decreases. When the reputation threshold reaches nine, no
user can get price subsidies. If the reputation threshold is too
large, it will reduce the enthusiasm of users to participate in

scheduling tasks. If the reputation threshold is too small, it will
increase the cost of the power grid. Because users with small
reputation value are less likely to complete scheduling tasks, it is
necessary to set an appropriate reputation threshold, and users
with low reputation can get subsidies after reaching the
threshold. Then the enthusiasm of low-reputation users to
complete their scheduling tasks can be improved.

5 Conclusion

To solve the issues of user electricity consumption in complex
network, we propose a reputation-based electricity scheduling
scheme for complex network of user electricity consumption in
this paper. We first construct a complex network model of the user’s
electricity consumption. Then we construct a reputation calculation
method for electricity users, and then we use the machine learning
method to train a computation model to calculate the adjustment
coefficients of electricity load, which is the basis for adjusting the
electricity scheduling tasks. Further, the corresponding electricity
scheduling tasks are assigned to the selected electricity users
respectively for realize electricity peak load shifting when the
total electricity load is too high. Finally, the incentives of users
who participate in the incentive demand response of electricity
scheduling are calculated according to the calculated reputation
and the completed scheduling tasks of users. Experiment results
show our scheme can effectively calculate the reputation values of
users based on their historical data, and the corresponding electricity
scheduling tasks are effectively and efficiently assigned to related
users according to the users’ reputation values and the real-time
adjustable load.
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Network representation learning is an important tool that can be used to optimize
the speed and performance of downstream analysis tasks by extracting latent
features of heterogeneous networks. However, in the face of new challenges of
increasing network size, diverse latent features, and unseen network noise,
existing representation models need to be further optimized. In this paper, a
robust and fast representation learning model is proposed for heterogeneous
networks, called RFRL. First, the global features of a heterogeneous network are
divided into multiple intra-type local features and inter-type local features, and a
type-aware biased sampling is designed to generate training samples for each
local feature. Second, a node-type-aware and a link-type-aware shallow
representation strategy are used to learn intra-type features and inter-type
features respectively. This enables the model to achieve good performance
while having high speed through the divide-and-conquer learning process and
shallow learning model, thus coping with increasing network size and latent
feature diversity. Finally, adversarial learning is used to integrate the above two
representation strategies to address unseen network noise and enhance the
robustness of representation learning. Extensive experiments on three network
analysis tasks and three public datasets demonstrate the good performance of our
RFRL model.

KEYWORDS

heterogeneous information network (HIN), robust representation learning, adversarial
learning, intra-type feature, inter-type feature

1 Introduction

In the real world, many systems (such as traffic systems and social systems) can be
abstracted into heterogeneous information networks (HINs) with different node types and
link types [1]. However, as HINs grow in size, complex coupled network data cannot cope
with the real-time demands of downstream network analysis tasks [2]. For this reason,
heterogeneous network representation learning has been proposed and is developing rapidly
[3]. Heterogeneous network representation learning is the process of converting high-
dimensional complex HINs into low-dimensional simple discrete vectors that retain as much
of the underlying features of the network as possible [4]. After heterogeneous network
representation learning, the resulting low-dimensional vectors can be used as feature input
for downstream network analysis tasks to improve speed and performance [5].
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Heterogeneous network representation learning has proved to be
very useful in many downstream tasks [6] such as link prediction,
node classification, node clustering, etc.

Depending on the depth of the model structure, existing
heterogeneous network representation models can be simply
classified into shallow and deep models [7]. Shallow models learn
the feature representation of nodes by neural networks with fewer
layers [8, 9]. In the metapath2vec [10] model, a meta-path guided
walk strategy is used to sample node sequences. These node
sequences are then used to generate node embedding via a word
vector model skip-gram, which maps the feature information of
HINs into low-dimensional vectors. The ASPEM [11] model
proposes a multi-aspect-based approach to capture the semantic
information of HINs by learning low-dimensional discrete vectors of
nodes in multiple semantic spaces. Shallow models have fewer
model layers and parameters and are therefore faster to train and
rarely suffer from overfitting problems [12]. Deep models generally
extract feature information in HINs through multiple nonlinear
transformations between multiple hidden layers [13]. The HAN
model first splits the graph into multiple sub-graphs with the same
type guided by meta-paths, and then uses a node-level attention
strategy to learn the features of nodes in each sub-graph. Finally,
these sub-graphs with different types are mapped into the same
feature space by the semantic-level attention strategy. In HetGNN
[14], both long short-term memory (LSTM) and Multilayer
Perceptron (MLP [15]) are used to extract and understand the
feature information of HINs and convert it into low-dimensional
discrete vectors. With more complex structures, deeper models can
learn higher dimensional features and be applied to more tasks such
as image processing, speech recognition, etc. In summary, shallow
models are faster than deep models but perform worse.

In the new era of big data, the scale of HINs is getting larger and
larger, the network features are getting more and more complex and
diverse, and the network noise is getting more and more numerous
[16]. Facing the characteristics of HINs in the new era, there are
three further challenges to existing models.

• Speed and performance are difficult to balance.With the rapid
development of IoT [17] and cloud computing technologies,
the size of HINs is increasing [18]. Meanwhile, downstream
network analysis tasks are increasingly time-sensitive. Existing
deep models perform well, but their timeliness cannot meet
the demands of the big data era. Existing shallow models have
good speed and scalability, but they struggle to accurately
capture network features and have yet to improve their
performance.

• Accurate network features are difficult to extract. In the era of
big data, the number of node types and link types in a HIN is
also increasing, and the latent features it represents are
becoming increasingly complex and diverse. Moreover,
multiple features are increasingly coupled and mixed. As a
result, feature extraction becomes increasingly difficult. Most
traditional models try to extract all features directly and fail to
separate multiple features better, thus facing the dilemma of
insufficient feature extraction accuracy.

• The effect of network noise is neglected. There is often some
noise in HINs, such that some nodes are lost and some
nonexistent links are constructed. These noises can cause

local features of nodes or links to be lost or inaccurate.
During model training, this noise increases the
generalization error of the model and degrades its
performance when dealing with unseen data. Overall, this
noise can make the learned heterogeneous network
representation vectors less accurate, which can affect the
performance of downstream tasks.

To solve the above problems, the motivation of this paper is to
design a heterogeneous network representation model that can
adapt to network noise with high speed and performance. For
one thing, to maintain the high-speed of representation learning,
shallow models rather than deep models are chosen to cope with
large-scale HINs. And for another, to maintain the performance of
representation learning, the features of the heterogeneous network
are further decomposed into intra-type and inter-type features.
Intra-type features refer to the proximity of multiple nodes under
the same node type. Inter-type features refer to the semantic
similarity of nodes between two different node types. The
accuracy of feature extraction is further improved by converting
the original one learning process of global features into multiple
learning processes of different sub-features. And thirdly, to attenuate
the effect of network noise, generative adversarial networks (GANs
[19]) are introduced into the representation learning process to
enhance the generalization ability. Based on the above ideas, we
propose a robust and fast representation learning model for HINs,
called RFRL. The main contributions of this paper are as follows.

• A type-aware bias sampling strategy is proposed to treat each
node type and each link type as independent subspaces, and
generate both intra-type training samples for each node type
and inter-type training samples for each link type using a
random walk strategy.

• A node type-aware adversarial learning strategy is designed to
learn intra-type features in each node type space using a
shallow network, and generate more unseen samples using
GAN to enhance the robustness of feature extraction and
attenuate the effects of noise.

• A link-type-aware adversarial learning strategy is designed to
learn inter-type features in each link type space using another
one shallow network, and also to enhance the robustness and
generalization of feature extraction using adversarial learning
as well.

• The RFRL model is designed to achieve a balance between speed
and performance by combining the above strategies. Extensive
experiments on three analysis tasks and three public datasets
demonstrate the excellent performance of our RFRL model.

The rest of the paper is organized as follows. Related work and
definitions are presented in Section 2 and Section 3, respectively.
Section 4 shows our RFRL model in detail. The experimental analysis
is described in Section 5. Finally, Section 6 concludes the paper.

2 Related work

From the technical perspective, existing models or methods can
be simply divided into two categories:
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(1) Shallow model-based algorithms. The first shallow
representation models are random walk-based models. These
models first use a random walk strategy to obtain training
samples with both intra-type and inter-type features, and
then use a shallow skip-gram model to learn both features
simultaneously [10, 20–22]. For example, in metapath2vec [10],
the setting of meta-paths guides the model to sample intra-type
features and inter-type features. The Spacey [20] model
proposes a meta-path-based random walk method for
heterogeneous personalized space to collect samples on a
meta-graph collapsed from a given meta-path. The HHNE
[21] model uses meta-path guided random walk to generate
heterogeneous neighborhoods for each node to obtain intra-
type features and inter-type features. The MARU [22] model
uses a meta-context-aware skip-gram based model to learn
dynamic meta-contextual relationships to collect samples.
Such algorithms have high speed and performance, but most
rely on supervised information given by external experts to
guide the learning patterns of intra-type features and inter-type
features. The second shallow representation models are
decomposition-based models. These models decompose the
original network into multiple subnetworks and perform
shallow learning for each sub-network [23–25]. For example,
the EOE [23] model incorporates a harmonious embedding
matrix to further embed the embedding that only encode intra-
network links. In RHINE [24], pairs of network links are used to
distinguish relations into affiliation relations (ARs) and point-
to-point structured interaction relations (IRs) to capture the
unique structure of the relations. The MIFHNE [25] method
models structural proximity, attribute information, and label
information in the framework of non-negative matrix
decomposition (NMF). The PME [26] model propose to
build object and relation embedding in separate object space
and relation spaces. Such algorithms do not rely on external
supervised information and are fast in time. However, the
integration and fusion of multiple subgraph features is
difficult, resulting in the performance of this type of
algorithm being weak and stable.

(2) Deep model-based algorithms. To better capture intra-type
features and inter-type features, multiple deep models are
used to enhance the feature learning capability of the models
[27]. For example, in MAGNN [28], inner and outer
aggregation of meta-paths are designed to collect samples
containing inter-type features and intra-type features. The
HAN [29] model proposes a node-level attention mechanism
and semantic-level attention mechanism to learn intra-type
features and inter-type features of HINs, respectively. Both
models are designed to consider intra-type and inter-type
features of HINs, but both rely on the setting of meta-paths.
The HetSANN [34] model and the HGT model take the same
type of node as the center and calculate the importance of other
types of nodes around it. These two methods can capture the
interactions between different types of nodes well, but do not do
specialized learning of intra-type node features. The HetGNN
[14] model uses a restarted random walk strategy instead of
meta-path-based walk strategy, using multiple artificial neural
networks to learn the attributes and structures of the nodes,
respectively. The model considers and explicitly uses both

artificial neural networks to learn intra-type features and
inter-type features. However, due to the complexity of the
model structure, the training learning of the model is slow
and the generalization ability is not strong [30]. The MV-ACM
[31] model is a GAN-based model of multiple views divided by
link relations, using a game of generators and discriminators to
robustly learn the relations between views.

In summary, shallowmodels have high speed but relatively weak
learning ability for network features; deep models can better capture
the nonlinear features of complex networks, but their time
complexity is higher. Moreover, existing models rarely consider
the effect of noise in the network. With the rapid development of
new technologies (such as IoT and cloud computing), HINs are
getting more large, heterogeneous, and noisy, and their features are
getting more complex. The existing models need to be further
improved in the face of new features of HINs. To this end, this
paper tries to decompose complex and diverse feature learning into
intra-type feature learning for node-type subspaces and inter-type
feature learning for link-type subspaces to reduce the learning
difficulty and enhance the learning accuracy. Meanwhile, in this
paper, we try to design a novel shallow model that guarantees the
speed and performance of learning. To reduce the effect of network
noise, adversarial learning is incorporated into the shallow model to
generate more unseen training samples using adversarial learning,
which results in more generalized and robust network features.

3 Definition

In this section, several definitions in this paper are first
introduced.

Definition 1: Heterogeneous Information Networks (HINs). The
heterogeneous network G (N, E, T, R) is composed of a node set N=
{n1, n2, . . ., nn} with node type T= {T1, T2, . . ., Tn}. and a link set E=
{e1, e2, . . ., en} with link type R= {R1, R2, . . ., Rn}. The mapping
relations between node types T with nodes V and between link types
Rwith links E are φ. Specifically, if nodes vi and vj belong to the same
node type T1, then there exists φ(vi) = φ(vj) = T1. The links ei and ej
belong to the same link type R1, then there exists φ(ei) = φ(ej) = R1.

Definition 2: Heterogeneous Network Representation Learning.
Heterogeneous network representation learning is the process of
mapping node vi to low-dimensional vectors xi ∈ R1×d by learning
from a HIN, that is f(vi)→xi ∈ R1×d. A feature matrix X ∈ R│V│×d is
formed with the low-dimensional vectors of all nodes, where │V│ is
the number of nodes. The feature matrix X of nodes can be used in
the analysis of downstream tasks of the network.

4 The proposed model

4.1 Overview

With the advent of the era of big data, complex systems in the
real world are getting larger and noisier, and their internal
heterogeneity is getting stronger. That is to say, in the network,
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the types of nodes and links are increasingly numerous, the features
are increasingly complex and diverse, and the correlations between
features are increasingly strong. To cope with the change of HINs,
the paper constructs a robust and fast heterogeneous network
representation model, called RFRL. Based on the idea of “divide
and conquer”, the model decomposes the heterogeneous network
global features into intra-type local features and inter-type local
features. Specifically, the model treats each node type and each link
type as a feature subspace. The intra-type features refer to node
proximity under each node type feature subspace, and inter-type
features refer to semantic similarity between each link type feature
subspace. Through multiple learning of intra-type and inter-type
features instead of one learning of global features, the accuracy of
feature learning increased. Moreover, the model uses shallowmodels
instead of deep models to ensure the high-speed of feature learning,
and use adversarial learning to enhance generalization of learned
features and compatibility with network noise.

The overview of the RFRL model is shown in Figure 1. The
whole model contains four parts.

• Type-aware biased sampling is the first part. In this part, a
type-aware random walk strategy is designed to
simultaneously generate intra-type training samples for
each node type and inter-type training samples for each
link type in one sampling process. Furthermore, the global

information of node types is used as weights to generate the
final biased intra-type samples of different node types.
Meanwhile, the global information of link types is used as
weights to generate the final biased inter-type samples of
different link types.

• Node-type-aware adversarial learning is the second part. In
this part, each node type is first viewed as an intra-type feature
subspace. Then, based on the idea that “if two nodes are near
neighbors, the coordinates of the two nodes in the subspace
should be close”, a shallow network is designed as a
discriminator to accurately learn intra-type features of the
subspace. Next, a noisy version of the same shallow model is
used as a generator to generate fake intra-type features. The
fake features are disguised as more unseen fake samples to
cheat the discriminator. Finally, the discriminator identifies
real and fake features from real and fake samples to generate
more robust features and reduce the influence of network
noise.

• Link-type-aware adversarial learning is the third part. Similar
to above part, each link type is viewed as an inter-type feature
subspace. Then, based on the idea that “if a link exists between
two nodes with different types, the embedding vector of one
node can reach the embedding vector of another node by

FIGURE 1
The overview of the RFRL model.
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transforming the semantic features of the link”, another
shallow network is designed as a discriminator to
accurately learn inter-type features of the subspace. Next, a
noisy version of the same shallow model is used as a generator
to generate fake inter-type features as unseen fake samples to
cheat the discriminator. Finally, adversarial learning between
generator and discriminator can capture more robust and
generalized inter-type features and weaken the impact of
network noise.

• Joint training is the fourth part. This part uses the intra-type
features of each node as shared parameters. By the alternate
execution of intra-type feature learning and inter-type feature
learning, the global node representation is further improved.

4.2 Type-aware biased sampling

To accurately learn intra-type and inter-type features in HINs, it is
essential to generate suitable training samples for these features. This
involves generating intra-type training samples for each node type and
inter-type training samples for each link type. However, in HINs,
different node types have different global distributions (in terms of
the number of nodes with different types), and different link types also
have different global distributions (in terms of the number of links with
different types). This global information determines the importance of
different intra-type features or different inter-type features in the global
features. Therefore, the intra-type training samples should satisfy the

global distribution of node types, and inter-type training samples should
satisfy the global distribution of link types. Moreover, due to intra-type
features and inter-type features are coupled to each other, it is important
to use a same sampling process to generate both intra-type and inter-
type training samples, so as to preserve the coupling between them.

Based on the above ideas, supervised by the global distribution
information, a type-aware biased sampling strategy is designed to
simultaneously generate intra-type samples for each node type and
inter-type samples for each link type. The detailed procedure of this
strategy consists of three steps, as shown in Figure 2.

Step 1, calculate global information of node types and link types.
First, grouping the network topology by node type, the proportion of
nodes in each group is the weight WN of all intra-type features in
global feature learning, as shown in Figure 2A. Second, grouping the
network topology by link type, the proportion of links in each group
is the weight WL of all inter-type features in global feature learning,
as shown in Figure 2B.

Step 2, type-aware sampling. First, a sample queue QN(Tk) is
assigned to each node type Tk for storing intra-type feature samples
and a sample queue QL(Rs) is assigned to each link type Rs for storing
inter-type feature samples. After that, a node ni as npre is randomly
selected from the HIN as the starting point. The node npre walks
randomly from its neighbors to the next node npre through a link.
Following this, node nnext as npre walks to the next node nnext at
random. Each walked node nnext is dropped into the queue QN of its
type. And the link (npre, nnext) is dropped into the queue QL of its
type. A walking ends when the number of walking nodes exceeds the
preset random walk length. When all nodes in the network are used

FIGURE 2
The process of type-aware biased sampling. (A) calculate global information of node types. (B) calculate global information of link types. (C)
generate intra-type biased samples. (D) generate inter-type biased samples.
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as the starting point for a walking, the random walk process ends.
Finally, in each queue QN(Tk), the node sequence is further divided
into multiple subsequences with window size L. In each
subsequence, any two nodes ni and nj can form a positive
sample < ni, Tk, nj > to preserve 1-order and high-order intra-
type features. And, two nodes ni and nm in different subsequences
can generate a negative sample< ni, no Tk, nj >. Moreover, in each
queue QL(Rs), a link and its two vertices can generate a positive
sample< ni, Rs, nj > for the inter-type feature learning of type Rs.
And, a positive sample < nx, Rl, nh > of type Rl can be transformed to
a negative sample < nx, Rs, nh >of type Rs by replacing Rl with Rs. In
the two training samples, the ratio of positive samples to negative
samples is 1:3.

Step 3, generate biased samples. After sampling, the intra-type
training samples (or inter-type training samples) must be
proportionally consistent with the weights WN (or WL) calculated
in step 1. Therefore, the expected number of each intra-type training
samples (or inter-type training samples) is first calculated based on
the weight WN (or WL). Then, for a node type (or link type), if the
number of generated samples is larger than the expected number,
the redundant part is randomly removed. Finally, if the number of
generated samples is smaller than the expected number, the missing
parts are randomly copied from the existing samples.

4.3 Node-type-aware adversarial learning
for intra-type features

The first important feature of a HIN is the intra-type feature,
which refers to the proximity among multiple nodes with the same
type. In this paper, each node type corresponds to a feature subspace
with a special intra-type feature. Compared to global features, each
intra-type feature will be purer, and its learning process will be

simpler and accurate. Moreover, the difference in the number of
training samples for different node types helps more accurate intra-
type features to meet global distribution. In addition, the learning
process of multiple intra-type features can be executed in parallel to
improve the speed of the representation model. In order to further
resist the noise in the network, we try to employ the generative
adversarial network (GAN) to learn the distribution of each intra-
type feature. This allows us to generate more unseen training
samples and reduce the impact of noise on model training. By
using the GAN, we are able to capture more robust and generalized
intra-type features for nodes.

Based on the above ideas, a node type-aware adversarial
learning strategy is designed to use the shallow network
instead of deep network to learn more robust and accurate
intra-type features of nodes, as shown in Figure 3. The whole
strategy consists of two components: the generator and the
discriminator, which engage in a game to learn more robust
and accurate the intra-type features of nodes. Then, a noised
version of the same shallow model is used as a generator to
generate fake intra-type features. The fake features are disguised
as more unseen fake samples to cheat the discriminator. Next, the
discriminator identifies real and fake features from real and fake
samples. Finally, adversarial learning between generator and
discriminator can capture more robust and generalized inter-
type features and weaken the impact of network noise. As an
example, the adversarial learning process of the intra-type feature
learning for node type T1 is as follows.

4.3.1 Intra-type feature learning
Based on the idea that “if two nodes are neighbors, the

coordinates of the two nodes in the subspace should be close”,
the intra-type feature learning of node type T1 is to project two T1-
type nodes into the same feature subspace, and then pull the

FIGURE 3
The process of node-type-aware adversarial learning.
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coordinates of the two nodes as close together as possible when the
two nodes are neighbors, or push the coordinates of the two nodes as
far away as possible when the two nodes are not neighbors. Taking
two T1-type nodes i and j as examples, the intra-type feature learning
process is as follows.

First, the two nodes are mapped to the feature subspace of node
type T1, and the position coordinates of the two nodes are obtained
respectively, as follows.

f i( ) � xi · ST1

f j( ) � xj · ST1
(1)

Where xi (or xj)∈ R1×d is the global representation vectors of node i
(or node j). The ST1∈ R d×d is the projection matrix of node type T1,
which represents the feature subspace of node type T1.

Second, since the coordinates of two nodes are vectors, the inner
product of the two vectors is used to calculate the proximity of the
coordinates of the two nodes in the feature subspace, as follows.

dis i, j( ) � f i( ) · f j( )[ ]T (2)
Then, the Sigmoid function is used to regularize the distance

between nodes for easy comparison, as follows.

Sim i, j( ) � sigmoid dis i, j( )( ) � 1
1 + exp −dis i, j( )( ) (3)

After regularization, the distance between two nodes is
quantified into the range of [0, 1]. If two T1-type nodes are
neighbors, then the distance between the two nodes in the
subspace of node type T1 should converge to 1, otherwise the
distance between the two nodes should converge to 0.

4.3.2 Intra-type generator
Based on the above pattern of feature learning, we try to design a

noisy feature extractor as a generator G1 to generate fake intra-type
features of node type T1, so as to help the model tolerate noise and
extract more robust and general intra-type features. Specifically, the
fake intra-type feature generation process of node type T1 is as
follows.

Fake intra-type feature generation. First, another projection
matrix ST1

G ∈ R d×d of node type T1 is generated and randomly
initialized, which represents the feature subspace of node type T1 in
the generator G1 and competes with the projection matrix ST1of the
T1-type real feature subspace.

Second, one node i is mapped to the T1-type fake feature
subspace of G1, and the position coordinate is calculated
respectively, as follows.

fG i( ) � xi · ST1
G (4)

Where fG(i)∈ R1×d is the coordinate of node i in T1-type real feature
subspace.

Then, to generate noisy fake intra-type features, we use Gaussian
noise to disturb the coordinate of node i in the T1-type fake feature
space of G1, defined as follows.

fnoise
G i( ) � N fG i( ), σ2I( ) (5)

Where the σ is the variance of Gaussian noise, which is a preset
hyper-parameter. The I is the unit vector, N(*,σ) is a function to
generate a Gaussian distribution with mean * and variance σ.

Finally, we use a multi-layer perceptron to enhance the
nonlinearity of the noise coordinate of node i, and defined as.

fnoise
G i( ) � g · · ·g fnoise

G i( ) ·W1 + b1( ) · · ·Wk + bk( ) (6)
WhereW∈ R d×d is the parameter matrix of the MLP and b∈R1×d

is the bias of the MLP. And the MLP is set to one layer in this paper.
The g() is the nonlinear activation function(LeakyReLU is used in
this paper).

Loss function. To ensure the effectiveness of the generated fake
feature distribution, we hope that the generated fake feature
distribution is as close as possible to the real distribution. To
achieve this goal, we use the positive intra-type samples <i, T1,
j> of node type T1 to train the generator G1.

Therefore, the loss function of generator G1 consists of two
parts. The first part is that the coordinates of two nodes of one
positive sample in G1 should be as close as possible, defined as
follows.

Loss1 � − ∑
< i,j> ∈

postive
samples

{ }
log Sim fnoise

G i( ), fnoise
G j( )( )( ) (7)

The second part is that the fake coordinate in G1 of any node in
one positive sample should be as close as possible to the coordinate
in the real subspace, defined as follows.

Loss2 � − ∑
< i,j> ∈

postive
samples

{ }
log Sim fnoise

G i( ), f i( )( )( )

+ log Sim fnoise
G j( ), f j( )( )( ) (8)

Where f(j) and f(i) is the representation vector (the coordinate) in
the real feature subspace of node type T1.

The final loss of generator G1 is defined as follows.

LossG1 � Loss1 + Loss2 (9)

4.3.3 Intra-type discriminator
As a game competitor of the generator G1, a discriminator

D1 needs to be constructed. In this way, the generator G1 and the
discriminatorD1 form an adversarial generative network GAN. In this
paper, to simplify the structure of GAN, the D1 needs to have two
capabilities. The first capability is to learn the true feature distribution in
the feature subspace of node type T1. The second capability is to identify
the real feature distribution and the fake feature distribution.

Real intra-type feature learning and discrimination. The fake
feature distribution fnoise

G generated by G1, positive intra-type
samples <i, T1, j> and negative intra-type samples<i, not T1, j>
generated by the type-aware biased sampling strategy are inputs of
the discriminator D1. To achieve the two capabilities of D1, three
inputs are transformed into three types of training samples.

The first type of training samples are real positive samples <i, T1,
j>∈RPS, and they are generated by the type-aware biased sampling
strategy. For a real positive sample<i, T1, j>, the proximity of the
coordinates of two nodes i and j in the T1-type true feature subspace
of should be 1. That is to say, Sim(i,j) = 1 according to Equation 3.

The second type of training samples are real negative samples <i,
not T1, j>∈RNS, and they are also generated by the type-aware biased
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sampling strategy. For a real negative sample<i, not T1, j>, the
proximity of the coordinates of two nodes i and j in the T1-type true
feature subspace of should be 0. That is to say, Sim(i,j) = 0 according
to Equation 3.

The third type of training samples are fake positive samples <i,
T1, G(j)>(or <G(i), T1, j>)∈FPS where the G(j) represents the fake
feature vector of node j in G1. For a fake positive sample <i, T1, G(j)
>, the proximity of the coordinates of two nodes i and j in the T1-
type true feature subspace should be 0. That is to say, Sim(i,j) =
0 according to Equation 3.

When the discriminatorD1 is trained only with real positive and
real negative samples, theD1 can accurately capture the true feature
distribution in the T1-type feature subspace. When the discriminator
D1 is trained with real positive and fake positive samples, theD1 can
accurately identify the real and fake feature distribution. Therefore,
through the combined training of three training samples, theD1 can
not only learn the real feature distribution, but also distinguish the
real and fake feature distributions. Moreover, driven by the fake
feature distribution generated by generator G1, a large number of
unseen training samples are generated. These fake samples can
further help D1 to learn more robust and generalized intra-type
features, and reduce the influence of network noise.

Loss function. According to three types of training samples, the
loss function of discriminator D1 consists of three parts, defined as.

LossD1 � ∑
< i,j> ∈RPS

−log Sim f i( ), f j( )( )( )
+ ∑

< i,j> ∈RNS

−log 1 − Sim f i( ), f j( )( )( )
+ ∑

< i,j> ∈FPS
−log 1 − Sim f i( ), fnoise

G j( )( )( )
− log 1 − Sim fnoise

G i( ), f j( )( )( ) (10)

4.4 Link-type-aware adversarial learning for
inter-type features

The second important feature of a HIN is the inter-type
feature, which refers to the semantic similarity between two node
types. That is to say, if there is a link of type R1 between node i of
type T1 and node j of type T2, then the node i can reach the node j
through the semantic relation R1. In this paper, each link type is
also regarded as a feature subspace possessing a unique inter-type
feature that enables the semantic transformation of two
heterogeneous nodes. More specifically, if a link of type R1

exists between node i of type T1 and node j of type T2, then
the T1-type intra-type feature of node i can be similar to the T2-
type intra-type feature of node j through the semantic
transformation of relation R1, abbreviated as <i, T1, R1, T2, j>.
Similar to the intra-type feature learning, the difference in the
number of training samples for different link types helps more
accurate inter-type features to meet global distribution. To
reduce the impact of network noise, we also employ the
generative adversarial network (GAN) to learn the more
robust and generated inter-type feature distribution.

Based on the above ideas, a link-type-aware adversarial learning
strategy is designed to learn more robust and accurate inter-type

features of nodes, as shown in Figure 4. The whole strategy consists
of generators and discriminators, each of which uses a shallow
network. It is important to note that the inter-type feature learning
aims to capture the relation between two intra-type feature spaces.
For instance, in the case of link type R1, we use a generator and a
discriminator to learn inter-type features as follows.

4.4.1 Inter-type feature learning
Based on the idea that “if a link exists between two nodes with

different types, the embedding vector of one node can be transformed to
the embedding vector of another node by the semantic features of the
link”, the inter-type feature of link typeR1 is to learn the transform from
the intra-type feature of one node to the intra-type feature of another
node in theR1 feature subspace. Then, the two intra-type feature vectors
are pushed close when there is anR1 relation between them, and the two
feature vectors are drawn far apart when there is not an R1 relation
between them. TakingT1-type node i andT2-type node jwith an edge of
type R1 as example<i, T1, R1, T2, j>, the inter-type feature leaning
process is as follows.

First, the intra-type feature f(i) of node i in T1-type feature space
and the intra-type feature f(j) of node j in T2-type feature space are
first obtained from the Section 4.3. Meanwhile, the link type R1 is
regarded as a semantic feature subspace, and a transformation
matrix SR1 is defined to represent the semantic transformation
process in the subspace.

Second, the intra-type feature f(i) of T1-type node i is mapped to
the R1 feature subspace, and defined as.

Tran i( ) � f i( ) · SR1 (11)
Where S R1∈ R d×d is the semantic transformation matrix of link

type R1, and the · is the function of matrix multiplication.
Then, the similarity between the transformation feature Tran(i)

of node i and the intra-type features f(j) of node j is calculated as.

Sim i, j( ) � Tran i( ) · f j( )[ ]T (12)
Finally, the Sigmoid function is used to regularize the similarity

to the range of [0,1], as follows.

Sim i, j( ) � 1
1 + exp −Sim i, j( )( ) � 1

1 + exp −Tran i( ) · f j( )[ ]T( )
(13)

The similarity is adjusted according to the correctness of the
semantic transformation of R1. Specifically, the value of similarity
should be increased to 1 when Tran(i) can correctly reach the T2

features space. Conversely, the value of similarity should be
decreased to 0.

4.4.2 Inter-type feature generator
Same as the intra-type generator, the generator G2 is used to

generate the noisy fake inter-type features and apply them to the
inter-type discriminator D2, so as to learn more robust features and
reduce the impact of the network noise. The generating process for
the fake inter-type features of R1 is as follows.

Fake inter-type feature generation. First, another projection
matrix SR1

G ∈ R d×d of link type R1 is generated and randomly
initialized, which represents the fake feature subspace of R1 in
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G2. And, the intra-type feature of node i is transformed by the fake
feature subspace in G2 to obtain the transformation feature
TranG(i).

TranG i( ) � fG i( ) · SR1G (14)
Second, to better obtain the fake inter-type feature, we add some

Gaussian noise to the inter-type feature TranG(i), defined as follows.

TrannoiseG i( ) � N TranG i( ), σ2I( ) (15)
Where the size of the variance σ can be adjusted to control the

degree of disturbance of Gaussian noise.
Finally, to enhance the expressiveness of TrannoiseG (i), the model

continues using the MLP model with two layers to obtain the final
fake inter-type features in the following way.

TrannoiseG i( ) � g · · ·g TrannoiseG i( ) ·W1 + b1( ) · · ·Wk + bk( ) (16)
Where W∈ R d×d is the parameter matrix of the MLP and b∈R1×d is
the bias of the MLP. And the g() is the nonlinear activation function
(LeakyReLU is used in this paper).

Loss function: For inter-type features, the concern is whether the
node intra-type features can reach the correct feature subspace after
the semantic transformation. Therefore, we use the cross-entropy
loss to make the fake inter-type features Trannoise G(i) similar to the
true intra-type features f(j), so that the fake inter-type features of
type T1 can arrive correctly in the feature subspace of T2. To achieve
this goal, we use the positive inter-type samples <i, T1, R1, T2, j> to
train the generator G2. The details are as follows.

LossG2 � − ∑
< i,j> ∈

postive
samples

{ }
log Sim TrannoiseG i( ), f j( )( )( ) (17)

4.4.3 Inter-type feature discriminator
Similarly, we need an inter-type discriminator D2 as a

competitor to the inter-type generator G2. In this way, the
generator G2 and the discriminator D2 form an adversarial
generative network GAN. Similar to D1, D2 also needs to have
two capabilities. The first capability is to learn real inter-type
features. The second capability is to achieve discrimination
between true inter-type features and fake inter-type features.

Real inter-type feature learning and discrimination. The fake
feature distribution Trannoise G(i) generated by G2, positive
inter-type samples <i, T1, R1, T2, j> and negative intra-type
samples <i, T1, not R1, T2, j> generated by the sampling
strategy are inputs of the discriminator D2. To achieve the
two capabilities of D2, three inputs are transformed into three
types of training samples.

The first type of training samples are real positive samples. For
the real positive samples <i, T1, R1, T2, j>∈RPS, the similarity of the
inter-type features Tran(i) and f(j) should be 1. That is to say,
Sim(i,j) = 1 according to Equation 13.

The second type of training samples are real negative samples.
For a real negative sample <i, T1, not R1, T2, j>∈RNS, the similarity of
the inter-type features Tran(i) and f(j) should be 0. That is to say,
Sim(i,j) = 0 according to Equation 13.

The third type of training samples are fake positive samples <
G2(i), T1, R1, T2, j> (or < i, T1, R1, T2,G2(j)>∈FPS. For a fake positive
sample < G2(i), T1, R1, T2, j>, the similarity of the inter-type features
TrannoiseG (i) and f(j) should be 0. That is to say, Sim(G2(i), j) =
0 according to Equation 13.

When discriminator D2 is trained with only true positive
samples and true negative samples, D2 can accurately capture
the true inter-type feature distribution. When discriminator
D2 is trained with true positive and fake positive samples,

FIGURE 4
Comparison of intra-type feature learning and inter-type feature learning. (A)Node-type-aware adversarial learning for intra-type features. (B) Link-
type-aware adversarial learning for intra-type features.
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D2 can accurately identify the true and fake feature
distributions. Therefore, through the joint training of three
training samples, D2 can not only incrementally learn the
true inter-type features, but also achieve the discrimination
of true inter-type features and fake inter-type features. In
addition, the large number of unseen training samples
generated by generator G2 can further help D2 to achieve
robust and accurate learning of inter-type features and thus
reduce the effect of network noise.

Loss function. Based on the above idea, the cross-entropy loss
function is used as the loss of D2, and defined as follows.

LossD2 � ∑
< i,j> ∈RPS

−log Sim Tran i( ), f j( )( )( )
+ ∑

< i,j> ∈RNS

−log 1 − Sim Tran i( ), f j( )( )( )
+ ∑

< i,j> ∈FPS
−log 1 − Sim TrannoiseG i( ), Tran i( )( )( ) (18)

4.5 Joint learning

Comparing intra-type feature learning with inter-type
feature learning, it is not difficult to get the following
finding, as shown in Figure 4. First, the two learning
processes use different shallow learning strategies. Intra-type
feature learning attempts to learn the positional proximity of the
projected coordinates of two nodes in the same subspace. Inter-
type feature learning attempts to learn the semantic similarity
between two nodes by the semantic transformation of one link
type. Second, the two learning processes are closely related to
each other. The global representation vector of each node is
shared in the two learning processes. Moreover, the learned
intra-type features of node types are used as input in the inter-
type feature learning process. In addition, an adversarial
learning strategy is used in two learning processes to capture
more robust and generalized network features and reduce the
impact of network noise.

Therefore, node-type-aware intra-type feature learning and
link-type-aware inter-type feature learning need to be jointly
trained for better performance. In our experiment, the intra-
type feature learning process is performed for 5 consecutive
epochs with separate sampling, where the sampled intra-type
samples are used and the inter-type samples are kept. After the
intra-type features are learned, the inter-type feature learning
process are performed without sampling for 5 epochs, where
each epoch uses the inter-type samples reserved by the intra-
type feature learning process. This can help the two learning
processes capture the coupling between the intra-type feature
and inter-type feature. All training procedures use the
stochastic gradient descent algorithm (SGD) for parameter
updates. The ratio of the iterations of generator and
discriminator is adjusted during training to balance the
learning rates of both, resulting in a steady improvement in
the performance of both. In addition, adjusting the ratio of two
learning rates also controls the learning speed of both. However,
it is important to note that adjusting the learning rate may cause
the performance of the generator and the discriminator to

degrade. In this paper, the learning rate of the generator and
discriminator is set to 1e-4.

5 Experiments

5.1 Experimental setup

Datasets. We select three datasets with different sparsity levels,
which are related to the literature citation network, the shopping
network, and the business network. (1) DBLP network is a citation
network with journal and conference bibliographic information
(https://dblp.uni-trier.de/xml/). (2) Amazon network comes from
the user and product information of the Amazon platform (http://
jmcauley.ucsd.edu/data/amazon/). (3) Yelp network contains
information on merchants and users in multiple cities in the
United States (https://www.yelp.com/dataset). The details of each
dataset are shown in Table 1.

Baselines. In the comparison experiments, we selected five
models as baselines: two shallow models (RHINE [24] and
Metapath2vec [10]), two deep models (HAN [29] and HGT
[32]), and one GAN-based representation model (HeGAN [33]).
In addition, recommended meta-paths and default parameter
settings are used for all models. The details of the baselines are
shown in Table 2.

Tasks and metrics. We chose the following three tasks and five
metrics to comprehensively evaluate the performance of our model.
(1) Node classification. Based on the learned node representation
vector, the classifier predicts the labels of the nodes. In this task, we
use Macro_F1 and Micro_F1 metrics to evaluate the performance of
the node classification task. (2)Node clustering. Based on the learned
node representation vector, the nodes are divided into multiple
clusters, where each cluster represents a category. We evaluate the
performance of the node clustering task using the NMI metric. (3)
Link prediction. Based on the learned node representation vector, we
predict whether there is a link between two nodes. We use AUC and
ACC metrics to evaluate the performance of link prediction tasks.

Setting. The experimental platform is a PC server equipped with
an NVIDIA T4 card. The server is outfitted with a 32-core Intel
Xeon Cascade Lake (2.5 Hz) processor, 64 GB of RAM, and the
Ubuntu 18.04 operating system. The RFRL algorithm was
programmed using the PyCharm IDE.

5.2 Node classification

In this section, we perform the node classification task on three
datasets Amazon, DBLP, and Yelp, compared to five baselines to
test our performance. In this experiment, to verify the stability,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of the real labeled
samples as 9 training datasets are used to train all models, and 10%
of other real labeled samples are used as the test set. For the
classifier, we use SoftMax to calculate the probability of each
category and evaluate the classification result with Macro_
F1 and Micro_F1 metrics.

Figure 5 shows the accuracy of node classification on
3 different networks, where Figures 5A–C are the Macro_
F1 metrics and Figures 5D–F are the Micro_F1 metrics. In
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each graph, we used different colored lines to indicate the
performance scores of different algorithms. By observing, we
can obtain the following results. (1) Comparing all models, the
best average performance in the three datasets is RFRL and HGT,
followed by HeGAN, HAN, and finally RHINE, metapath2vec.
For example, in the Macro_F1 metric, RFRL outperforms the
second-best HGT by 0.76% on average across the three datasets;
In the Micro_F1 metric, the average performance of RFRL is
1.01% higher than that of the second-best HGT. (2) Considering
the stability, the stability of the RFRL model is better than that of
the shallow model and better than that of the deep model on three
networks. For example, on Macro_F1 of the DBLP dataset, the
performance drift range of 3.75% for RFRL is lower than the
ranges of 4.33% for metapath2vec and 5.21% for HGT.
Meanwhile, for the training set with fewer labels, the RFRL
model outperforms the other models. For example, on
Amazon network, the Micro_F1 score of our RFRL model is
6.22% higher than the second-best model in the training set with
20% labels. (3) Comparing the structure of the models, the deep
models (HGT and HAN) generally outperforms the shallow
models (metapath2vec and RHINE). For example, on the
Amazon dataset, the average performance of Macro_F1 of

HGT is 3.01% higher than that of RHINE. (4) Considering the
potential of capturing information, the RFRL model has a better
potential to capture information than other models. That is to
say, it can obtain good performance on fewer training sets. For
example, on the Amazon training sets with 10%–30% labels,
RFRL is on average about 3% better than the second-best Macro_
F1 metric. (5) In summary, the RFRL model has high
generalization ability and performance, especially when most
of the node information is unknown (few label samples).

5.3 Node clustering

In this section, we test our performance on the node clustering
task by choosing the same datasets and baselines as in the above
experiments. In this experiment, we use the k-means algorithm to
divide the nodes into multiple clusters based on the learned node
representation vectors, each of which is a category. Finally, the NMI
metric is used to evaluate the consistency of these categories with the
true labeled categories.

Table 3 shows the comparison of the best clustering results of
the six algorithms on the three datasets. The following

TABLE 1 Datasets.

Dataset Nodes Number of nodes Relation Number of relations Avg.Degree

DBLP

Author(A) 14,475

9.04

Paper(P) 14,376 P-A 41,794

Conference(C) 20 P-C 14,376

Type(T) 8,920 P-T 114,624

Amazon

User(U) 344

10.29

Item(I) 95 I-U 365

View(V) 3,773 I-V 195,791

Brand(B) 5 I-B 95

Yelp

User(U) 1,286

19.77

Business(B) 2,614 B-U 30,838

Service(S) 2 B-S 2,614

Star(St) 9 B-St 2,614

Reservation(R) 2 B-R 2,614

TABLE 2 Baselines.

Algorithms Full name Implement

RHINE [24] Relation Structure-Aware Heterogeneous Information Network Embedding Python

Metapath2vec [10] metapath2vec: Scalable Representation Learning for Heterogeneous Networks Python

HAN [29] Heterogeneous Graph Attention Network Python

HGT [32] Heterogeneous Graph Transformer Python

HeGAN [33] Adversarial Learning on Heterogeneous Information Networks Python
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conclusions are drawn from Table 3. (1) Comparing all models,
the clustering performance of RFRL is higher than baseline
algorithms in the three datasets, which proves the effectiveness
and accuracy of RFRL. (2) Considering the stability, RFRL is more
stable relative to the other models. For example, the smallest
differences from the peak in the three datasets are 0.802% for
RFRL, 2.75% for HeGAN, and 3.68% for HAN. (3) Comparing the
structure of the models, GAN-based models (HeGAN, RFRL)
generally outperform the other models. For example, in the Yelp
dataset, the NMI of HeGAN is 0.3965 and that of RFRL is 0.4253;
while the NMI of the other models is below 0.3872. In addition,
the deep models (HAN, HGT) generally outperform the shallow
models (metapath2vec, RHINE). For example, the NMI of HAN

and HGT are roughly 1%–9% higher than metapath2vec and
RHINE in all three datasets. (4) Comparing GAN-based models,
RFRL outperforms HeGAN overall. For example, in the Amazon
dataset, HeGAN has an NMI of 0.397 and RFRL has an NMI of
0.4375. (5) In summary, the RFRL model is robust and effective in
the node clustering task.

5.4 Link prediction

In this section, we test our model using the link prediction task.
In this task, we concatenate the node representation vector at the
two ends of the link as a low-dimensional feature vector of the link,
and then use logistic regression to implement a binary classification
to determine the existence of a link. As with node classification, to
demonstrate the stability of the model, we still use 5 baselines as
competitors and 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of
the real labeled samples as 9 training datasets for comparison
experiments.

Figure 6 shows the link prediction performance of the six
algorithms on three datasets. The following conclusions can be
drawn from the observations. (1) Comparing the ACC of all
models, the best average performance is achieved by RFRL and
HeGAN, followed by HGT and HAN, and finally RHINE and
metapath2vec. For example, in the ACC metrics, the average
ACC performance of RFRL is 66.53%, and the average ACC
performance of HAN is 64.97%. (2) Comparing the AUC of all
models, the performance of HeGAN has decreased. The best
performances on average were RFRL and HGT, followed by

FIGURE 5
Performance of multiple algorithms in node classification. (A) The Macro-f1 scores of multiple algorithms on the Amazon dataset; (B) The Macro-f1
scores ofmultiple algorithms on theDBLP dataset; (C) TheMacro-f1 scores ofmultiple algorithms on the Yelp dataset; (D) TheMicro-f1 scores ofmultiple
algorithms on the Amazon dataset; (E) The Micro-f1 scores of multiple algorithms on the DBLP dataset; (F) The Micro-f1 scores of multiple algorithms on
the Yelp dataset.

TABLE 3 Performance of multiple algorithms in node clustering.

Amazon Yelp DBLP

NMI NMI NMI

metapath2vec 0.2989 0.3069 0.6738

RHINE 0.3479 0.3739 0.7352

HAN 0.3893 0.3631 0.7831

HGT 0.3981 0.3871 0.7438

HeGAN 0.367 0.3965 0.7689

RFRL 0.4375 0.4253 0.7576
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HeGAN and HAN, and finally RHINE and metapath2vec. For
example, on the Yelp dataset, the average performance of
HeGAN is 64.50% and that of RFRL is 72.10%, a difference of
7.60%. (3) Considering the stability, the GAN-based models RFRL
and HeGAN are the best. For example, in the DBLP dataset, the
extreme differences of RFRL and HeGAN are 2.76% and 2.89%.
Meanwhile, the performance of these two GAN-based models is
relatively better in the training set with 30% labels. For example,
on the ACC of Amazon dataset, the average performance of RFRL
and HeGAN is 61.62% and 60.15%. (4) Comparing the structure
of the models, the GAN-based models (RFRL and HeGAN)
outperform the other models on average, and the deep models
(HGT and HAN) outperform the shallow models (RHINE and
Metapath2vec) overall. For example, in DBLP dataset, the
average AUC value of HGT is 4.41% higher than that of
metapath2vec and 3.57% higher than that of RHINE. (5) In
summary, RFRL outperforms the other baselines by 1%–13%
on the link prediction task. The good performance of RFRL on
the datasets with less real samples demonstrates the effectiveness
and robustness of the model.

5.5 Additional experiments

To further demonstrate the advantages of the biased sampling
strategy, the robustness and Scalability of the model, we perform the
following additional comparison experiments based on the link
prediction task.

5.5.1 The biased sampling strategy
In this experiment, the samples collected by biased and

unbiased sampling strategy are fed into our RFFL model as two
different models for training, and finally, the performance of the
two models is evaluated on the link prediction task using the ACC
metric.

Figure 7 shows the performance on the ACC metric for link
prediction with two different sampling strategies. In the figure,
red bars represent the results of the unbiased sampling strategy
and blue bars represent the results of the biased sampling
strategy. We can get the following findings. (1) Comparing

FIGURE 6
Performance of multiple algorithms in link prediction. (A) The ACC scores of multiple algorithms on the Amazon dataset; (B) The ACC scores of
multiple algorithms on the DBLP dataset; (C) The ACC scores ofmultiple algorithms on the Yelp dataset; (D) The AUC scores ofmultiple algorithms on the
Amazon dataset; (E) The AUC scores of multiple algorithms on the DBLP dataset; (F) The AUC scores of multiple algorithms on the Yelp dataset.

FIGURE 7
Performance of biased and unbiased sampling strategy in link
prediction.
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the two strategies, the overall performance of biased sampling is
better than random sampling. For example, on the Amazon,
Yelp and DBLP datasets, the performance improves by 2.25%,

6.93% and 4.4%, respectively. This demonstrates that the biased
sampling can indeed better preserve the feature information of
heterogeneous networks. (2) Comparing different datasets, the
performance optimizations of the biased sampling strategy on
different datasets are different. For example, the optimization on
the Yelp dataset is 6.93%, while on the DBLP it is only 2.25%.
This may be related to the sparsity of the data, as well as the
number of types. Specifically, the Yelp dataset has a larger
number of types and degrees than the other two datasets. (3)
In summary, the biased sampling strategy captures the intra-
type and inter-type features in the network better and performs
better.

5.5.2 Robustness
In this experiment, a noise network is obtained by randomly

removing 20% of the links from the original heterogeneous network.
On the noise network, RFRL is compared with other baseline
algorithms in terms of ACC metric for link prediction. The ratio
of the training set to the test set is 9:1.

Figure 8 shows the link prediction performance of different
algorithms on the noise networks. From the figure, we can

FIGURE 8
Performance ofmultiple algorithms in the noise networks. (A) The ACC scores ofmultiple algorithms on the Amazon dataset with noise; (B) The ACC
scores of multiple algorithms on the DBLP dataset with noise; (C) The ACC scores of multiple algorithms on the Yelp dataset with noise.

FIGURE 9
The scalability performance of the RFRL model.
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observe the following information. (1) Comparing all the
models, the overall performance of all models decreased.
RFRL showed the smallest decrease in performance with an
average decrease of 16.96%; followed by HeGAN, RHINE,
metapath2vec with average decreases of 20.43%, 21.13%,
23.6%, and HAN, HGT with average decreases of 22.97% and
23.60%, respectively. (2) Comparing different datasets, the
model performance degradation varies, which is related to
the structure and semantics of the network. Although the
degradation of RFRL in the Amazon dataset is slightly higher
at 19.8% than that of metapath2vec at 19.1%, good noise control
performance is achieved in all other datasets. For example,
RFRL performance decreases by only 15.2% on Yelp. (3)In
summary, RFRL is more robust and more compatible with
noise.

5.5.3 Scalability
In the era of big data, the scalability of the model is very

important, so we further validate the scalability of the RFRL
model. In this experiment, intra-type feature learning process is
parallelized using multi-threading techniques, and the ratio of
parallelized threads to accelerated multipliers is recorded. The
experimental results are shown in Figure 9.

Figure 9 plots the number of threads versus the speedup
multiplier. In the figure, the vertical axis is the acceleration
multiplier, the horizontal axis is the number of concurrent
threads, and the curve is the ratio between the two. By
analyzing Figure 9, we can see that the RFRL model has a
significant speedup with fewer threads. Specifically, a speedup
of 10–12 times is achieved when using 16 threads for concurrent
execution. As the number of threads increases, the speedup
increases more slowly. For example, when 40 threads are
executed concurrently, the speedup is only 18 to 19 times. In

addition, the speedup almost stops growing when the experiment
is performed concurrently with 78 threads.

5.6 Parameter sensitivity

The context window length L is an important hyper-parameter
for our RFRL model, which determines the range of node intra-type
proximity features needs to learn. In the type-aware biased sampling
strategy, any two nodes in a context window constitute a positive
sample. That is to say, if the window length L is larger, then the two
nodes are farther away in the original network, and the order of
proximity between them is higher. On the contrary, if the window
length L is smaller, the closer the two nodes are in the original
network, the lower the order of proximity between them is. In this
experiment, the performance of our RFRL model with different
window lengths is evaluated on the link prediction task using the
ACC metric.

Figure 10 shows the ACC accuracy of our RFRL model with
different window lengths L. From the figure, we can get the following
observations. (1) Focusing on a network, the link prediction accuracy
rises and then falls as the L value increases. For example, for the
DBLP dataset, the ACC value increases rapidly in the range [1,2].
Then, in the range [2,4], the ACC values stabilize. Finally, in the
range [4,7], the ACC value decreases slowly. This indicates that too
small L values cannot fully capture the intra-type features of nodes in
the network, and too large L leads to capturing imprecise intra-type
features. Specifically, the relative stability range of the parameter L is
[1,3] on Amazon, [2,4] on DBLP and Yelp. (2) Comparing different
datasets, the window length of the Yelp and DBLP datasets should be
larger than that of the Amazon dataset. This is because neighboring
nodes in a walk sequence are more closely related in a dense
network. It experimentally demonstrates that the first- and

FIGURE 10
Sensitivity analysis of the hyper-parameter L. (A) The ACC scores of the different parameters L on the Amazon dataset; (B) The ACC scores of the
different parameters L on the DBLP dataset; (C) The ACC scores of the different parameters L on the Yelp dataset.
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second-order neighbor relations of nodes are the most worth
learning, which can help the model to capture the proximity
feature information between nodes well. (3) In summary, with
context window length L in the range of [2,3], the model has the
most stable performance for different datasets. In all our
experiments, the value of the context window length is 2 as default.

6 Conclusion

In this paper, we propose a robust and fast representation
learning model for heterogeneous networks, called RFRL. The
RFRL model is well adapted to the following characteristics of
future heterogeneous networks: larger scale, more diverse
features, and stronger noise. To better cope with large-scale
networks, two novel shallow learning strategies are designed
to replace the traditional deep learning network to quickly
generate the low-dimensional feature vectors of nodes. To
better learn complex and diverse features, each node type and
link type is treated as a feature subspace to perform
representation learning separately. The RFRL model uses
multiple learning processes for partial features instead of a
single learning process for all features to achieve high speed
and performance. To reduce the impact of network noise, GANs
are further used to generate fake training samples in each
subspace, and the adversarial learning between generator and
discriminator can help the RFRL model to capture more robust
and generalized node features. Extensive experimental results
on multiple networks and multiple tasks demonstrate the
performance of our model.
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Current mode multi scroll chaotic
oscillator based on CDTA
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Compared to voltage mode circuits, current mode circuits have advantages such
as large dynamic range, fast speed, wide frequency band, and good linearity. In
recent years, the development of call flow modeling technology has been rapid
and has become an important foundation for analog integrated circuits. In this
paper, a current mode chaotic oscillation circuit based on current differential
transconductance amplifier (CDTA) is proposed. This proposed circuit fully utilizes
the advantages of current differential transconductance amplifier: a current input
and output device with a large dynamic range, virtual ground at the input,
extremely low input impedance, and high output impedance. The linear and
non-linear parts of the proposed circuit operate in current mode, enabling a true
current mode multi scroll chaotic circuit. Pspice simulation results show that the
current mode chaotic circuit proposed can generate multi scroll chaotic
attractors.

KEYWORDS

current mode, multi scroll, chaotic oscillation, CDTA, chaotic attractors

1 Introduction

In the past 40 years, due to the unique advantages of chaotic systems such as extreme
sensitivity to initial values and parameters, ergodicity, and pseudorandomness, chaos has
paid more attention to the combination of theory and practical applications, and has been
widely used in fields such as secure communication [1–3], image encryption [4–8], random
number generators [9–11], memristors [12–17], neural networks [18–25], and chaotic
synchronization control [26–30].

The chaotic signal generated by chaotic oscillation circuits or chaotic systems is the core
part of the entire chaotic communication system and has always been a research hotspot in
the field of chaos [31–38]. How to generate multi scroll chaotic attractors with more complex
topological structures has been widely concerned [39–41]. At present, most of the multi
scroll chaotic oscillators are implemented by operational amplifiers [42–44],
transconductance operational amplifiers (OTA) [45], current feedback operational
amplifiers (CFOA) [46, 47] and second-generation current conveyers (CCII) [48–50].
The principles and methods for designing multi scroll chaotic oscillators based on
operational amplifiers, CFOAs, and OTAs are summarized in [45]. In [46], a multi
scroll chaotic oscillator was implemented using CFOA, and 3–10 scrolls from 1 kHz to
100 kHz were generated in experiments. In [49], the authors proposed a simple multi scroll
chaotic oscillator implemented using a positive CCII and a negative CCII-. Circuit
simulation shows that the chaotic electronic oscillator can generate more scroll chaotic
attractors with higher frequencies. Because the operational amplifier belongs to the
traditional voltage mode (voltage input, voltage output) circuit, the chaotic oscillator
based on the operational amplifier has the problem of narrow bandwidth; OTA, CFOA
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and CCII belong to the voltage and current mixedmode devices, The
following problems exist in the chaotic oscillator based on OTA,
CFOA and CCII:

1) Since the chaotic oscillator composed of OTA, CFOA and CCII
still works in voltage mode, the output impedance is very high
and changes with frequency.

2) Due to the large parasitic parameters at the input terminals of
OTA, CFOA and CCII, the frequency bandwidth of the chaotic
oscillator based on OTA, CFOA and CCII is not large.

Currently, analog integrated circuit designs mostly use voltage
mode circuit designs [51–53]. With the development and
breakthrough of various new technologies represented by the
PCB process, traditional voltage mode circuits are no longer
suitable for low power supply voltage design requirements due to
their high impedance, high voltage gain, and high signal swing
characteristics, while current mode circuits have attracted
widespread interest due to their low impedance, zero or even
negative voltage gain, and broadband characteristics [54–59].
Current differential transconductance amplifier (CDTA) is a
current input and output device, characterized by extremely low
input impedance, high output impedance, and large dynamic range.

FIGURE 1
Circuit model of CDTA.

FIGURE 2
Circuit schematic diagram of CDTA.

FIGURE 3
Relation curve of Iz and Ip.

Frontiers in Physics frontiersin.org02

Lin et al. 10.3389/fphy.2023.1202398

50

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1202398


Compared to OTA, CFOA, and CCII, it is a true current mode
device [60–63]. Two new implementations of current mode
quadrature oscillators using CDTA as active components are
proposed in [64]. The proposed circuit uses two grounded
capacitors to achieve current controllability of the oscillation
frequency. In [65], a floating decreasing and increasing
memristor simulator using OTA, CDTA, and two grounded
capacitors is used. Then, the proposed memristor simulator is
used in the design of chaotic oscillators and adaptive learning
circuits. Simulation results of a chaotic oscillator and an adaptive
learning circuit verify the effectiveness of the proposed design.
When it is used to form a current mode chaotic circuit, the input

FIGURE 4
Relation curve of Iz and In.

FIGURE 5
The transconductance gain of CDTA.

FIGURE 6
CDTA-C current mode integrator.
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and output impedances have nothing to do with frequency, which
can generate a larger number of chaotic attractors at high
frequencies. In addition, since the input end of the CDTA is a
virtual ground, the frequency parasitic parameters are small and the
bandwidth is large.

In this paper, a current mode chaotic circuit based on CDTA is
proposed, which can generate multi scroll chaotic attractor current
signals, promote the practical application of chaos communication,
chaotic neural network and other fields.

This paper is organized as follows. In Section 2, the CDTA is
studied by theoretical analyses and Pspice simulation. In Section 3,
the proposed current mode basic operation modules of chaotic
circuit based on CDTA is studied by theoretical analyses and
Pspice simulation. In Section 4, we draw our conclusions.

2 The CDTA

The CDTA is a current-input, current-output current mode
device with a large dynamic range. When forming a current mode
circuit, it has both low input impedance and high output impedance
characteristics. Figure 1 is the circuit symbol of CDTA.

Among them, p and n are the differential current input
terminals, z is the auxiliary terminal, the current at the z
terminal is the difference between the input currents of p and n,
the x terminal is the current output terminal, and IB is the external
bias current. The port characteristics of CDTA are as follows:

vp � vn � 0, iz � ip − in, ix � gmvz � gmZziz (1)
where gm is the function of the external bias current IB, there is
gm � f(IB).

A CMOS CDTA circuit is designed, and the circuit schematic
diagram is shown in Figure 2. Multiple x+ and x-ports can be
expanded as needed. The transistor constitutes the current
differential part, so that the z current of the auxiliary terminal is
equal to the current difference between the p and n terminals. After
an impedance is connected to the auxiliary terminal, the voltage vz of
the z terminal is obtained to realize the transconductance. The
amplifying unit converts vz into the current output of the x terminal.

The Pspice simulation results of CDTA are as follows: Power
supply voltage VDD = 2.5V, VSS = −2.5 V, external control current
Ib = 200 uA. If only Ip is scanned when In = 0A is given, the
relationship curve between Iz and Ip can be obtained as shown in
Figure 3; If only In is scanned when Ip = 0A is given, the relationship
curve between Iz and In can be obtained as shown in Figure 4.
According to these two curves, it is not difficult to see that Iz is a
difference relationship with Ip and In. When Ip = 1A, In = −1A, Ib =
200 uA, the transconductance gain of CDTA gm = Ix/Vz = Ix/(Ip-In)
can be obtained, and the simulation results are shown in Figure 5.

3 The proposed current mode basic
operation modules of chaotic circuit
based on CDTA

The basic operation modules of the chaotic system (such as
addition and subtraction, integration, etc.) and non-linear function
generating circuits (such as step function, saturation function, etc.)
can be easily realized by CDTA.

FIGURE 7
CDTA-C CDTA current mode adder and subtracter.

FIGURE 8
Current step function generation circuit composed of CDTA.
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3.1 Integrator module

It can be seen from Equation 1 and Figure 1 that the input
voltage of CDTA is zero and the input impedance is zero (the input
impedance of the actual circuit is very small). In addition, the output
impedance is also very high. When CDTA is used to form a current
mode integrator, the input and output impedance characteristics are
not destroyed. Figure 6 shows the current mode integrator
composed of CDTA and capacitor, the output current expression
is: Io � gm

C ∫ Iidt.
Since the capacitor is not connected to the input and output

terminals of CDTA, but is connected to the auxiliary terminal z of
CDTA, the CDTA-C current mode integrator has very low input

impedance and high output impedance, and has nothing to do
with frequency, The input impedance of the CDTA-C current
mode integrator is ideally 0, and the output impedance is the
output impedance of CDTA (usually MΩ level). When
implementing a chaotic circuit, the system parameters are
independent of frequency, so that it can output chaos signal
with a large bandwidth.

3.2 Adder module

Figure 7 shows the current mode addition and subtraction
operation module composed of CDTA. Since CDTA has p and n

FIGURE 9
The proposed current mode multi scroll Jerk chaotic oscillation circuit.

FIGURE 10
2-step wave simulation.
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as differential current input terminals, current mode addition and
subtraction can be easily realized. The output current expression is:

Io � ∑i
j�1

Ij − ∑n
j�i+1

Ij
.

3.3 Step function module

The step function can be approximated as a saturation function
with a sufficiently large slope. The basic unit circuit of the step
function using CDTA is shown in Figure 8. The saturation current
that the CDTA can achieve for a given supply voltage is denoted by
± |Isat|. Then the output current can be approximately expressed as:

Io � |Isat|sign(Ii − Ij). By connecting several basic units in parallel,
the step function sequence can be obtained, and the expression is:
Io � ∑Q

j�1 |Isat|sign(Ii − Ij).
It can be seen from the above that the non-linear function

generation circuit composed of CDTA compares the state variable
current with the comparison current, and outputs the current
saturation function. It can be seen that when CDTA is used to
form a chaotic circuit, whether it is a linear circuit part or a non-
linear circuit, all of themwork in the current mode, which can realize
the real current mode chaotic circuit.

In addition, due to the grounding of the input terminal
(generally virtual grounding when the circuit is implemented),

FIGURE 11
4-step wave simulation.

FIGURE 12
3-step wave simulation.
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the parasitic parameters are small, the frequency characteristics are
good, and the operating frequency bandwidth is wide.

Therefore, compared with operational amplifiers, OTA, CFOA
and CCII, CDTA is more suitable for implementing current mode
chaotic oscillator circuits. However, so far, there is no report on the
use of CDTA to form a chaotic oscillator circuit.

3.4 The proposed CDTA-based current
mode multi scroll Jerk chaotic oscillator
circuit

Due to the simplicity and good recursion characteristics of the
Jerk system, it has become a typical example for the study of multi

FIGURE 13
Two scroll chaotic attractor. (A) x-y phase diagram of chaotic attractor. (B) x-z phase diagram of chaotic attractor.
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scroll chaotic systems. This design adopts the classic Jerk system,
and its dimensionless state equation is:

_x � y − f y( )
_y � z − f z( )
_z � −a x + y + z( )

⎧⎪⎨⎪⎩ (2)

The proposed CDTA-based current mode multi scroll Jerk
chaotic oscillator circuit is shown in Figure 9.

Themain circuit of the chaotic oscillation circuit is composed of three
CDTAs and three programmable equivalent capacitances CEQ, and the
circuit structure is very simple. Its non-linear function adopts a step
function, and the step function generating circuit is shown in Figure 8. By

FIGURE 14
Four scroll chaotic attractor. (A) x-y phase diagram of chaotic attractor. (B) x-z phase diagram of chaotic attractor.
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connecting several basic units in parallel, the step function sequence can
be obtained.

_I1 � gm1

C1
I2( )

_I2 � gm2

C2
I3( )

_I3 � −gm3

C3
I1 + I2 + I3 − f I1( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(3)

It can be seen from Figures 8, 9 that the non-linear function
generating circuit and the main circuit of the chaotic circuit are
both current mode circuits implemented by CDTA, with good
high frequency characteristics and large dynamic range, and can
be designed to generate more scrolls chaotic system. And
because the capacitor is connected to the auxiliary z
terminal, the input and output impedances are independent
of the frequency, so the chaotic system equation will not change
with the frequency.

FIGURE 15
Three scroll chaotic attractor. (A) x-y phase diagram of chaotic attractor. (B) x-z phase diagram of chaotic attractor.
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Derive the dynamic equation of the multi scroll chaotic oscillator
circuit corresponding to the circuit diagram shown in Figure 9.

This is a set of third-order non-linear autonomous ordinary
differential equations with the currents at the x + ports of the output
terminals of CDTA1, CDTA2, and CDTA3 respectively, and as the three
state variables, and the non-linear functions f(I2) and f(I3) as the
current step function. Through reasonable design of transconductance
and selection of capacitance, the dimensioned current signals I1, I2, I3,
time t are converted into signals x, y, z and dimensionless time. It can be
seen that the proposed current modemulti scroll chaotic oscillator circuit
shown in Figure 9 can realize the multi scroll Jerk system.

3.5 Design of even-numbered scroll Jerk
system

The non-linear function adopts step function:

f x( ) � N −M( )A1 + s x( ) +∑N
n�1

s x − 2nA1( ) + ∑M
m�1

s x + 2mA1( )

(4)
Where, N, M = 1,2,3,4, etc. Especially when N = M, there is

f x( ) � s x( ) +∑N
n�1

s x − 2nA1( ) + ∑N
m�1

s x + 2mA1( ) (5)

Where A = A1 is the saturation value of the saturation function,
and the number of scrolls can be generated is 2 *N+2. When N = 0,
f(x) � s(x), From this, 2-step waves can be obtained, and the
simulation is shown in Figure 10. It can be seen that the 2-step
function can be achieved, which can generate two saddle focal
equilibrium points with two indicators, and can achieve two scrolls.

From the above figures, we can get A = A1 = 30uA, take N = 1,
then we can get 4-step waves, and the simulation is shown in
Figure 11. It can be seen that the 4-step function can be
achieved, which can generate four saddle focal equilibrium points
with two indicators, and can achieve four scrolls.

3.6 Design of odd-numbered scroll Jerk
system

Using Eq. (4), an odd number of scrolls can be generated, and the
number of scrolls is N + M+2. Now take the generation of three scroll
numbers as an example. Let N = 1,M = 0, and the scroll number be N +
M+2 = 1 + 0+2 = 3. Then Eq. (4) becomes Eq. (6)

f x( ) � A1 + s x( ) + s x − 2A1( ) (6)
From this, 3-step waves can be obtained, and the simulation is

shown in Figure 12. It can be seen that the 3-step function can be
achieved, which can generate three saddle focal equilibrium points
with two indicators, and can achieve three scrolls.

3.7 Simulation of multi scroll chaotic circuit

According to the expression Eq. (4) of the non-linear function
f(x), when N andM take different values, different step waves will be

generated, which will affect the number of scroll generated. When
N = M and N = 0, two scroll attractors are generated, as shown in
Figure 13.

When N = M, N = 1, four scroll attractors are generated, as
shown in Figure 14.

When N = 1, M = 0, three scroll attractors are generated, as
shown in Figure 15.

As shown in these figures, the proposed CDTA-based
current mode multi scroll Jerk chaotic oscillator circuit can
display a theoretical number of scrolls in both the x-y and x-
z directions. The experimental results are consistent with the
theoretical results.

4 Conclusion

The circuit structure of the multi scroll chaotic oscillator based
on CDTA proposed in this paper is simple, the main circuit does not
contain passive resistance elements, has low input impedance, high
output impedance, and the input and output impedance are
independent of frequency, and the dynamic range is large, so
that the chaotic oscillator can generate more scrolls, and the
signal is not distorted.
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Dynamics analysis of the
two-layer complex propagation
network with individual
heterogeneous decreased
behavior

Yang Tian1, Hui Tian1*, Xuzhen Zhu1 and Qimei Cui2

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China, 2School of Information and Communication Engineering, Beijing
University of Posts and Telecommunications, Beijing, China

Due to the differences in society stratum, personal profession, and social
acceptability, information propagation can be impacted by the contact
capabilities of individuals. Importantly, we found that with the changes in
individual psychology, their response to a phenomenon will gradually weaken.
This phenomenon is called heterogeneous decreased behavior and applied in the
fields of economics, sociology, and ecology. In the social network, people show a
gradually decreasing degree of interest for information, named individual
heterogeneous decreased behavior (IHDB). We structure a two-layer network
model to describe individual behavioral contact and propose a threshold function
to represent IHDB. Meanwhile, we use partition theory to explain the information
propagation mechanism. Through experiments, it is demonstrated that there is a
continuous information outbreak in the ultimate adoption size when individuals
exhibit a positive IHDB. However, when individuals exhibit a passive IHDB, there is
a discontinuous information outbreak in the ultimate adoption size. Eventually, our
experiments show that the theoretical analysis coincides with the results of the
simulations.

KEYWORDS

information propagation, two-layer networks, individual behavioral contact, individual
heterogeneous decreased behavior, adoption threshold function

1 Introduction

1.1 Research background

With the persistent exploration of the information propagation mechanism, researchers
have discovered the influencing factors of different individual behaviors on information
outbreak [1–9]. Individual behavior is mainly affected by individual psychology. For
example, in information propagation, some people show positive adoption, while others
show negative adoption [10, 11]. These behaviors are not only applied in information
propagation but also in other fields, such as economics, ecology, and medicine. By
investigating abundant literature works, we found that there is a latent behavioral
phenomenon in multiple fields. Particularly, in investment, when the investment quota
is increased, the additional income brought by an increase in one unit of investment will
decrease [12–15]. In agricultural production, when the number of chemical fertilizers
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increases, the additional yield that can be brought by a unit of
chemical fertilizers will decrease [16, 17]. In medicine, when the dose
of drugs increases, the treatment effect of drugs on patients will
decrease [18, 19]. In the field of education, the additional
educational effects that can be brought about by one unit of
educational resources will be reduced [20, 21]. In summary, this
behavior is called a decreasing behavior which is applied in multiple
fields. For propagation dynamics, the paper aims to explore the
impact mode of decreasing behavior on information propagation.

Based on our survey, we found that the phenomenon of
decreased behaviors also exists in information propagation. For
example, for advertising effect, at the beginning, advertising may
attract people’s attention, but over time, the interest degree of people
in advertising will gradually decrease [22, 23]. For media marketing,
people’s interest degree in the same type of content will also decrease
[24, 25]. For teaching, learning motivation of students for the same
knowledge will decrease [26, 27]. In summary, in information
propagation, if the same information is repeatedly received, the
interest degree of people will decrease, which is closely related to
individual psychology [28]. Therefore, this paper defines the
phenomenon as an individual heterogeneous decreasing behavior,
which is called IHDB, to explore its impact on information
propagation mechanisms.

1.2 Main contributions

In this study, we found that people can only closely contact with
a small number of friends due to the differences in society stratum,
personal profession, and social acceptability [29–31]. For instance, a
user can face difficulty to connect with all of his/her friends in a short
period of time. Furthermore, several social media platforms, such as
Twitter, Instagram, Tinder, and WhatsApp, are used frequently by
many individuals [32–34]. Therefore, this paper considers the two-
layer contacted network to explore the individual contact capacity
which needs to be considered to analyze the information
propagation mechanism.

More importantly, information propagation will be influenced
by the individual adoption behaviors [35, 36]. According to the
explanation given in Section 1.1, we found that the individual
interest in behavior adoption is closely related to the proportion
of neighbors who adopt the behavior. The individual heterogeneous
decreasing behavior (IHDB) illustrates that when more and more
neighbors transmit a same piece of information to the individual, the
passion degree of the individual to receive the information gradually
decreases.

The advantages of the IHDB compared to other behaviors are as
follows: i) More accurate simulation of reality: IHDB reflects
different responses and response degrees of the individual in
information acceptance. This is closer to the real situation
because the response of a person is gradually weakened in each
receiving information, which will affect the information propagation
process. ii) More accurate prediction of information propagation: By
considering IHDB, you can more accurately predict the spread trend
of information in the networks. With the proportion of neighbors in
adoption state changes, the individual behavior spreads more
passively or slowly. This difference can be reflected in the model,
thereby providing more accurate diffusion forecasts. iii) Planning

more targeted propagation strategies: The consideration of IHDB
can help decision-makers formulate more targeted information
dissemination strategies. By understanding the mental
characteristics and behaviors of people, we can make better
customized strategies for different types of information and
improve the effect of information propagation. iv) Research and
identification of crucial factors: Simulation of IHDB can help
researchers identify the impact factors. By observing the IHDB in
the individual, it is possible to determine the factors that play a key
role in the information dissemination network so as to intervene or
use these factors to promote information propagation.

Enlightened by the aforementioned overview, we consider
individual limited contact capacity, capture the IHDB, and define
a non-rule trapezoidal-like threshold function to illustrate the IHDB
feature. The non-rule trapezoidal-like threshold function displays a
slow and non-linear rising, subsequently maintaining a horizontal
line. In addition, we provide a partition theory to analyze the
information propagation mechanism based on limited contact
and IHDB. Finally, through the theoretical analysis and
experimental simulation, this paper reveals the information
propagation mechanism.

The remainder of this paper is organized as follows: in Section 2,
we put forward a probability adoption threshold model for
information propagation on the two-layer contacted network.
Section 3 exhibits a division theory based on limited contact and
IHDB function model. Section 4 uses simulations and theoretical
assessments to validate the information propagation mechanism.
Finally, Section 5 summarizes the results, and Section 6 reports the
conclusion.

2 Information propagation model

2.1 Related work

A two-layered network model with N nodes is set up to explore
the impacts of individual contact capability and IHDB
characteristics on information propagation. Layers A and B
represent two independent social network layers. Since the nodes
connecting the various tiered networks are one-to-one
correspondences, the same node is present in each layer. Then,
the degree vector of node i is represented by ki

→ � (kAi , kBi ), where kXi
represents a node degree. The degree distribution P( �k) of the
network is represented by the degree vector �k. Furthermore, the
degree distributions PX(k

X) of P( �k) can be broken down in
accordance with the uncorrelated feature. Considering the
independence of PA(k

A) and PB(k
B), P( �k) � PA(kA)PB(kB).

This paper establishes a two-layer social network model to
explore a novel information propagation mechanism by
exploiting S–A–R (susceptible–adopted–recovered) propagation
theory, as illustrated in Figure 1A. The explanation of the S–A–R
model theory is as follows: a node in the susceptible state is denoted
as the S-state, in the adopted state is denoted as the A-state, and in
the recovered state is denoted as the R-state. Specifically, the
individuals in the S-state cannot propagate information, but they
can receive it from their A-state neighbors. The A-state individuals
have adopted a piece of information and will transmit it to their
neighbors in the S-state. The individuals in the R-state no longer
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receive information and exit the whole propagation process. If an
individual transforms its state in the X-layer in the two-layer
network model, it will change to the same state in other layers.

This paper first considers that the contact ability of individuals
can be set as C. If C < ki, where ki is the degree of individual i, an
individual that has been adopted who can only contact some of its
neighbors. However, it can contact all of its neighbors if C ≥ ki. The
probability of information transmission in the network can be set as
λ. The probability that the information is received by the neighbor j
in the S-state can be denoted as λC

kXj
(X ∈ {A, B}).

mX is the total amount of information that the individual in the
S-state has successfully received in the layer X. At the beginning,
there is no information spreading on the multiple-layered
network, the reason why the j value mX

j of the individual in
the S-state is 0. When a neighbor i in the A-state effectively spreads
information to individual j along the related link in the A-layer or
B-layer, the total information bits of individual j will rise by 1 at
each time step, i.e., mX

j → mX
j + 1. To explain the IHDB on

information propagation, a non-rule trapezoidal-like function is
proposed to illustrate the individual behavioral adoption in the
whole network:

hX x, α, β( ) � x

α
( )β, 0≤ x< α, 0< β< 1

1, α≤x< 1,

⎧⎪⎨⎪⎩ (1)

where x represents the proportion between the receiving
information of an individual and the number of its contacted
neighbors and parameter α represents the IHDB variable. In
region I of Figure 1B, the behavioral adoption probability rises

slowly to 1 based on the increase in x. In region II of Figure 1B, the
adoption probability remains at 1.

2.2 Propagation mechanism

We randomly select a portion of ρ0 individuals to act as the
individuals (seeds) in the A-state at the beginning of information
propagation and all other individuals to act as S-state individuals.
Each A-state individual randomly chooses C of its neighbors to
whom information is transferred in layer A(B) with probability
λA(λB). The total amount of information that individual j in the
S-state effectively gets from layer X is mX

j → mX
j + 1. Due to non-

redundancy in information propagation, the information will not
then be repeated through the same edge. Additionally, the individual
in the susceptible state of X will accept the information and transmit
to the adoption state with possibility hX(mX

kX , α, β) at every time
step. The S-state individual then changes to the corresponding state
in other layers. Following successful information spreading, when
the individual lost interest in information, the individuals in the
adoption state transfer disinterested information and change to the
recovery state with probability γ. In the two-layered contacted
network, once there is no individual in the A-state, the
information spreading process eventually comes to an end.

3 Theoretical analysis

We explore the novel IHDB properties of non-redundant
information memory on two-layer networks by investigating

FIGURE 1
(A) Diagram of S–A–R propagation on the two-layer social network. Node 1 in the adopted state can transmit information to its neighbors in the
susceptible state. Symbol λ represents the transmission probability in the social network. The dotted linemeans that the information has been transmitted
in the last time step such as node 1 and its neighbors 4, 7 in layer A and node 1 and its neighbors 5, 8 in layer B. The solid line denotes that the information
has not been transmitted along the corresponding edges. (B) Numerical function of a non-rule trapezoidal-like behavior. Symbol h denotes the
proportion of information that a node in the adopted state has obtained its degree. Symbol α denotes the IHDB parameter.
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literature works [37, 38]. Then, in order to mathematically
investigate the information propagation mechanism, we
propose an information propagation theory including
individual limited contact and IHDB. The ultimate spreading
size is defined as the proportion of individuals in the recovery
state when the information spreading progress has ended. We
introduce the initialization state [39] in which the individual can
receive information but cannot transmit it outside.

The probability that an edge in layer X(X ∈ (A, B)) has not
seen information propagation toward its S-state neighbor j up to
time t is represented by θXkXj

(t). With a degree of kXj , the
probability that i and j are neighbors in layer X is represented

by the expression
kXj P(kXj )
〈kX〉 . As a result, at time t, the individual i

cannot receive the information by its neighbors in the X-layer
with probability

θA t( ) � ∑
kAj �0

kAj P kAj( )
〈kA〉 θAkAj t( ), (2)

θB t( ) � ∑
kBj �0

kBj P kBj( )
〈kB〉 θBkBj t( ), (3)

respectively.
Until time t, the probability that an individual in the S-state

possessing ki
→ � (kAi , kBi ) will cumulatively take mX bits of

information in the A-layer or B-layer can be expressed as

ϕA
mA

kAi , t( ) � kAi
mA

( )θA t( )kAi −mA 1 − θA t( )[ ]mA , (4)

ϕB
mB

kBi , t( ) � kBi
mB

( )θB t( )kBi −mB 1 − θB t( )[ ]mB , (5)

respectively.
Individual i with mX pieces of information in layer X,

according to the IHDB features and the adoption threshold
function, has not adopted the information and remained in
the S-state with a probability ∏mX

j�0[1 − hX( j
kXi
, α, β)]. While

getting mX bits of information from those of layer X, the
probability that an individual remains in the S-state at time t
can be expressed as

τXmX
kXi , t( ) � ∑kXi

mX�0
ϕX
mX

kXi , t( )∏mX

j�0
1 − hX

j

kXi
, α, β( )[ ]

� ∑αkXi� �
mX�0

ϕX
mX

kXi , t( )∏mX

j�0
1 − j

αkXi
( )β⎡⎣ ⎤⎦

+ ∑kXi
mX� αkXi� �

ϕX
mX

kXi , t( ) ∏αkXi� �
j�0

1 − j

αkXi
( )β⎡⎣ ⎤⎦ ∏mX

j� αkXi� �
1 − 1( )

� ∑αkXi� �
mX�0

ϕX
mX

kXi , t( )∏mX

j�0
1 − j

αkXi
( )β⎡⎣ ⎤⎦.

(6)
As a result, the S-state individual i gets mA and mB pieces of

information until time t and continues to be in the S-state possessing
the probability

s �k, t( ) � 1 − ρ0( ) ∑kAi
mA�0

ϕA
mA

kAi , t( )∏mA

j�0
1 − hA

j

kAi
, α, β( )[ ]

× ∑kBi
mB�0

ϕB
mB

kBi , t( )∏mB

j�0
1 − hB

j

kBi
, α, β( )[ ]

� 1 − ρ0( )τAmA
kAi , t( )τBmB

kBi , t( ).
(7)

The probability that a piece of information would have
accumulated in the X-layer by time t when the S-state individual
has not received information is expressed as

ηX �∑
kXi

PX kXi( )τXmX
kXi , t( ). (8)

As a result, the percentage of the S-state individuals in the multi-
layer network at time t is denoted as

S t( ) �∑
�k

P �k( )s �k, t( ) � 1 − ρ0( )ηAηB. (9)

All of the model’s individuals can only alternate between three
states; therefore, θXkXj (t) can be transformed to

θXkXj t( ) � ξXS,kXj t( ) + ξXA,kXj t( ) + ξXR,kXj t( ), (10)

where the probability that a neighbor of individual j is in the
S-state, A-state, or R-state and has not sent the information to i by
time t in layer X is represented by ξXS,kXj (t), ξ

X
A,kXj

(t), and ξXR,kXj (t),
respectively.

Individual i in the initialization state cannot contact its
neighbors due to the cavity theory. The degree vector of
individual j is kj

→� (kAj , kBj ). The S-state individual j can receive
information from all neighbors in layer A with the exception of
individual i of layer A and kBj neighbors of layer B if individual in the
S-state i links its neighbor j of layer A. The probability for the
individual j with degree kj

→ � (kAj , kBj ) is indicated by ςAnA(kXj − 1, t)
who receives nA bits of information by its neighbors in the A-layer
cumulatively up to time t. The probability ςXnX(kXj − 1, t) can be
denoted as

ςXnX kXj −1, t( )� ∑k
X
j −1

nX�0
ϕX
nX

kXj −1, t( )∏nX
j�0

1−hX j

kXj
,α,β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� ∑αk
X
j⌊ ⌋

nX�0
ϕX
nX

kXj −1, t( )∏nX
j�0

1− j

αkXi
( )β⎡⎣ ⎤⎦

+ ∑k
X
j −1

nX� αkXj⌈ ⌉ϕ
X
nX

kXj −1, t( ) ∏αk
X
j⌈ ⌉

j�0
1− j

αkXi
( )β⎡⎣ ⎤⎦

∏nX
j� αkXj⌈ ⌉ 1−1( ) � ∑αk

X
j⌊ ⌋

nX�0
ϕX
nX

kXj −1, t( )∏nX
j�0

1− j

αkXi
( )β⎡⎣ ⎤⎦.

(11)
jwith �kj � (kAj , kBj ) is also more likely to have acquired nB bits of

information from neighbors in layer B at time t by τBnB(kBj , t).
Following the accumulation of nA and nB bits of information, the
probability that j will stay in the susceptible state is given as
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ΘA
�k, t( ) � ∑k

A
j −1

nA�0
ϕA
nA

kAj − 1, t( )∏nA
j�0

1 − hA
j

kAj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

× ∑k
B
j

nB�0
ϕB
nB

kBj , t( )∏nB
j�0

1 − hB
j

kBj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� ςAnA kAj − 1, t( )τBnB kBj , t( ).

(12)

The probability that j in layer B will continue to be in the
susceptible state after receiving all of the nA and nB bits of
information is kj

→
when the individual i in the S-state interacts

with j by a degree of kj
→

is expressed as

ΘB
�k, t( ) � ∑k

A
j

nA�0
ϕA
nA

kAj , t( )∏nA
j�0

1 − hA
j

kAj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

× ∑k
B
j −1

nB

ϕB
nB

kBj − 1, t( )∏nB
j�0

1 − hB
j

kBj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� τAnA kAj , t( )ςBnB kBj − 1, t( ).

(13)

So, the probability that individual i and individual j in the S-state
are linked by an edge can be expressed as

ξXS,kXj t( ) � 1 − ρ0( )
∑
kj
→kXj PX kj

→( )ΘX kj
→
t( )

〈kX〉 , (14)

where
kXj PX(kj

→
)

〈kX〉 defines the normal degree of the X-layer and 〈kX〉
represents the probability that individual i is next to j
possessing kXj .

The evolutionary equation of ξXR,kXj (t) and ξ
X
A,kXj

(t) of layer X can
be examined in the following expression. An A-state individual
possessing degree kXj chooses C

kXj
of its neighbors and contacts them.

The probability of information transmission is λ. As a result, the
probability that rumor will spread from individual j to its neighbors
can be denoted by λC

kXj
. The following expression defines how θXkXj

(t) is
evolved in layer X:

dθXkXj t( )
dt

� −λC
kXj

ξXA,kXj t( ). (15)

Individuals in the adoption state cease spreading information
and move to the recovered state with γ. The calculation for the
evolution of ξXR,kXj (t) is

dξXR,kXj t( )
dt

� γξXA,kXj t( ) 1 − λC

kXj
⎛⎝ ⎞⎠. (16)

Combining Eqs 15, 16 with the original conditions θXkXj (0) � 1 and
ξXR,kXj (0) � 0, the development of ξXR,kXj (t) in layer X(X ∈ {A, B}) is

ξXR,kXj t( ) � γ 1 − θXkXj t( )[ ] kXj
λC

− 1⎡⎣ ⎤⎦. (17)

Combining Eq. 10, Eq. 14, and Eq. 17 will derive

ξXA,kXj t( ) � θXkXj t( ) − ξXS,kXj t( ) − ξXR,kXj t( )

� θXkXj t( ) − 1 − ρ0( )
∑
kj
→kXj PX kj

→( )Θ kj
→
t( )

〈kX〉 − γ 1 − θXkXj t( )[ ]
× kXj

λC
− 1⎛⎝ ⎞⎠.

(18)
Substituting Eq. 18 into Eq. 15, it is possible to rewrite the

evolution of θXkXj (t) in layer X(X ∈ {A, B}) as

dθXkXj t( )
dt

� −λC
kXj

θXkXj t( ) − 1 − ρ0( )
∑
kj
→kXj PX kj

→( )Θ kj
→
t( )

〈kX〉 − γ 1 − θXkXj t( )[ ] kXj
λC

− 1⎛⎝ ⎞⎠
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

� 1 − ρ0( ) λC
kXj

∑
kj
→kXj PX kj

→( )Θ kj
→
t( )

〈kX〉 + γ 1 − λC

kXj
⎛⎝ ⎞⎠ − γ + λC

kXj
1 − γ( )⎡⎢⎣ ⎤⎥⎦θXkXj t( ).

(19)

FIGURE 2
Individual status has changed three stages over time. For the same condition, the propagation time spends nine steps in subgraph (A) setting C = 5
and six steps in subgraph (B) settingC= 10. By comparison, the increase in the individual contact capacity accelerates the propagation process. The other
variables include αA = αB = 0.1, βA = βB = 0.1, and λA = λB = 0.5.
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In the whole network, the expression for state change of the
individuals is given as follows:

dR t( )
dt

� γA t( ), (20)
dA t( )
dt

� −dS t( )
dt

− γA t( ). (21)

As a result, S(t), A(t), and R(t), which represent the nodes’ states
at every given time step, can be calculated by combining and
iterating Eqs 9, 20, 21, respectively.

While t → ∞, the nodes’ states in the network will not become

any longer, meaning that
dθX

kX
j
(t)

dt → 0. R(∞) is also the ultimate
propagation size. Currently, the entire network consists solely of
individuals in the S-state and the R-state. To determine R(∞), we
must determine θXkXj

(∞) as

θXkXj ∞( ) � ξXS,kXj ∞( ) + γ 1 − θXkXj ∞( )[ ] kXj
λC

− 1⎡⎣ ⎤⎦. (22)

Then, by combining and iterating Eqs 9, 22, S(∞) and R(∞) are
derived.

The crucial propagation probability is our next problem of concern.
Moving the left side of Eq. 22 to the right side, it can be denoted as

F θXkXj ∞( )[ ] � ξXS,kXj ∞( ) − θXkXj ∞( ) + γ 1 − θXkXj ∞( )[ ] kXj
λC

− 1⎡⎣ ⎤⎦.
(23)

At the critical point θXc (∞), F[θXkXj (∞)] is tangent to the
abscissa. The critical condition can be denoted as

dF

dθXkXj ∞( )

∣∣∣∣∣∣∣∣∣∣∣
θXc ∞( )

� 0. (24)

Therefore, the critical information propagation probability is

λ � γ

A + γ + 1
, (25)

where

dξXS,kXj ∞( )
dθXkXj ∞( )

∣∣∣∣∣∣∣∣∣∣∣
θXc ∞( )

� 0. (26)

4 Parameter settings

This section simulates and evaluates the developed model through
testing on a multiple-layered contacted network such as ER [40] and SF
networks [41]. The experiment is carried out in the ER network and the
SF network with 10,000 nodes. Additionally, each layer network has
〈kX〉 � 10 as an average degree of X ∈ {A, B}. Furthermore, for
convenience, the probability of information transmission can be
given at λA = λB = λ. The experiment was conducted using double-
layer contacted networks. In an ER network, there is an equal possibility
of a connection forming between any two nodes, and the degrees of the
nodes in layer X follow PX(kX) � e−〈kX〉〈k〉

kX

kX!
. In SF networks, the

degree distribution variability of nodes is negatively correlated with the

degree exponent v. In an SF network, where ζX � 1∑
kX

kX
−v, the degrees of

nodes follow PX(kX) � ζXk
−v
X . Additionally, a relatively small number

of seeds (ρ0 = 0.001) and a recovered probability γ = 1.0 cause A-state
nodes to move to the R-state.

Furthermore, for further explanation of the critical condition
in our scenario, the relative variance is unitized and written as
follows:

χ � N
〈R ∞( )2〉 − 〈R ∞( )〉2

〈R ∞( )〉 , (27)

where 〈 . . . 〉 stands for the mean set. The important parameters of
the ultimate adoption size are implied by χ.

5 Experiments and discussion

5.1 Numerical analysis of the two-layer ER
network

In Figure 2, with the unit transmission probability λ and the
adoption threshold parameters α and β, we first investigate how the
proportion of individuals in the three states of S-state, A-state, and
R-state has changed with time.

Then, as shown in Figures 2A, B, R(t), which represents the
ultimate spreading size, changes to 1 at the end, while S(t)
increasingly decreases from 1 to 0 and A(t) progressively drops
to 0 over time. As the increase in parameter C in subgraph (a) to
subgraph (b), the evolution time costed steadily decreases from 9 to
6, while R(∞), which denotes the ultimate spreading size, increases
at the same step t. The time progress demonstrates that information
outbreak on a two-layered contacted network can be accelerated by
enhancing contact ability of individuals.

Figure 3 displays the roles of unit transmission probability in each
individual’s eventual adoption size with various IHDB values α in the
subgraphs. The ultimate spreading size R(∞) spreads to a global
network as λ rises, as shown in Figure 3A (β = 0.5) and (b) (β =
0.9). Furthermore, Figures 3A, B also indicate how IHDB can affect the
propagation phase transition. In subgraph (a), the pattern of R(∞)
always shows a second-order growth of continuous phase transition for
any IHDB behavior exhibited by the individual (αA = αB = 0.1, 0.5, 0.9).
The pattern of R(∞) in subgraph (b) indicates a second-order phase
transition in the continuous propagation pattern when an individual
exhibits a positive IHDB such as αA = αB = 0.1. This suggests that, when
there is a small λ, a positive IHDB can result in widespread behavioral
propagation. When αA = αB = 0.5, R(∞) also shows the same
propagation phenomenon. While an individual exhibits a weak
IHDB, R(∞) exhibits a first-order increase in the discontinuous
pattern, i.e., αA = αB = 0.9.

Figure 3C displays the relative variances and critical information
propagation probability of (a) and (b) individually (d). The global
adoption will emerge from the deviation of behavioral propagation,
which is represented by the top values of relative variance χ.
Additionally, the numerical values of the simulation (symbols)
agree with our theoretical analyses (lines).

For the two-layer contacted ER network, Figure 4 exhibits the joint
impacts of variable (λ, α) on R(∞). Figure 4 (a) with βA = βB = 0.5 and
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(b) with βA = βB = 0.9 depict the effects of (λ, α) on the dissemination of
information. In subgraph (a), the phase transition shows a continuous
pattern in the whole area. Then, in subgraph (b), the image can be
divided into two parts. In area I, a second-order continuous increase can

be seen in the R(∞) pattern. The critical value between region I and
region II is α* = 0.61. In area II, a first-order discontinuous increase can
be seen in the R(∞) pattern. Additionally, the individual contact
capability parameter is set at C = 5.

FIGURE 3
Effects of unit transmission probability of a multi-layer ER network on each individual’s ultimate spreading size while using various IHDB parameters.
Subgraphs (A) (β= 0.5) and (B) (β = 0.9) demonstrate how the IHDB parameter affects the propagation pattern. The critical values of subgraphs (C) and (D)
show the relative deviations and the critical values of (A) and (B), respectively.

FIGURE 4
Impact of the unit transmission probability and the dynamic IHDB parameter α on each person’s final spreading size for an ER network with
numerous layers of contacts. The impacts of subgraphs (A) (βA= βB=0.5) and (B) (βA= βB=0.9) on the ultimate spreading size are shownwith varying IHDB
parameters. In subgraph (A), the phase transition shows a continuous pattern in the whole area. In subgraphs (B), the phase transition shows two areas:
the continuous second-order pattern in area I and the discontinuous first-order pattern in area II.
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FIGURE 5
Integrative roles of the dynamic IHDB parameter α and transmission probability in each individual’s ultimate spreading size for a multiple-layered
contacted ER network. The impacts of subgraphs (A) (αA = αB = 0.5) and (B) (αA = αB = 0.9) on the ultimate spreading size are shown with varying IHDB
parameters. In subgraph (A), the phase transition shows a continuous pattern in the whole area. In subgraph (B), the phase transition shows two areas: the
continuous second-order pattern in area I and the discontinuous first-order pattern in area II.

FIGURE 6
Effect of the unit transmission chance and the IHDB parameter α on each person’s ultimate spreading size for themultiple contacted SF network The
IHDB parameter (βA = βB = 0.9) and the same contact capacity of people (C = 5) are applied to each subgraph. The vertical subgraphs use a unique degree
distribution exponent as well, with subgraphs (A) and (B) corresponding to v = 2, 4, respectively. Subgraphs (A) and (B) display the effects on the ultimate
spreading size with unit transmission probability λ. The critical values of subgraphs (C) and (D) show the relative deviations and the critical values of
(A) and (B), respectively.
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The joint impacts of variable plane (λ, β) on R(∞) for the two-
layered ER network are shown in Figure 5. Figures 5A, B depict the
effects of (λ, β) on information propagation, respectively, with αA = αB =
0.5 and αA= αB= 0.9. In subgraph (a), the image can be divided into two
parts. There is a second-order continuous increase pattern in region I of
R(∞) phase transition. The critical value between region I and region II
is β* = 0.95. There is a first-order discontinuous increase pattern in
region II of R(∞). Then, in subgraph (b), the image can also be divided
into two parts. In area I, R(∞) exhibits a second-order continuous
spreading. The critical value between region I and region II is β* = 0.78.
In area II, R(∞) exhibits a first-order discontinuous spreading.
Additionally, the individual contact capability parameter is set at C = 5.

5.2 Numerical analysis of the two-layer SF
network

Figure 6 depicts the influence of IHDB variable α and
transmission probability λ on the ultimate spreading size of the
multi-layer contacted SF network. In each subgraph, the

fundamental parameters include C = 5 and βA = βB = 0.9.
Figures 6A, B show how the ultimate adoption size R(∞) grows
as λ increases until it achieves global adoption. When αA = αB = 0.1
and αA = αB = 0.5, the final spreading size shows a continuous
spreading with second-order. However, R(∞) pattern exhibits a
discontinuous spreading with first-order when αA = αB = 0.9. Then,
the same growth pattern is also exhibited in subgraph (b) (v = 4).
Moreover, compared with subgraph (b) (v = 4), subgraph (a) (v = 2)
shows an incomplete global adoption because of strong
heterogeneous degree distribution. Additionally, the numerical
values of the simulation (symbols) match those of our theoretical
analyses (lines).

For the multiple-layered contacted SF network, Figure 7
shows the effect of R(∞) on the behavioral parameter plane
(λ, β). The subgraphs (a) and (b), and (c) and (d) are set as the
identical contact capacity of individuals by C = 5 and C = 10,
respectively. The subgraphs (a) and (b), and (c) and (d)
demonstrate the growth tendency of R(∞). In subgraph (a)
with v = 2 and C = 5, the image can be divided into three
parts. In the phenomenon of eventual information outbreak

FIGURE 7
Combined effect of the unit transmission chance and the IHDB parameter β on the ultimate information outbreak for the two-layer contacted SF
network. The influence of (λ, β) on the ultimate adoption size is shown in subgraphs (A) and (B)with v=2 and subgraphs (C) and (D)with v= 4, respectively.
In subgraph (A)with C = 5, the phase transition shows three areas: the continuous second-order pattern in area I, the discontinuous first-order pattern in
area II, and the static pattern in area III. In subgraph (B) with C = 10, the phase transition shows two areas: the continuous second-order pattern in
area I and the discontinuous first-order pattern in area II. In subgraph (C)with C = 5, the phase transition shows two areas: the continuous second-order
pattern in area I and the discontinuous first-order pattern in area II. In subgraph (D) with C = 10, the phase transition shows two areas: the continuous
second-order pattern in area I and the discontinuous first-order pattern in area II.
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R(∞), area I displays a second-order continuous propagation
pattern. The critical value between region I and region II is β* =
0.85. Area II exhibits a first-order discontinuous phase transition in

the pattern of R(∞). The critical value between region II and region III
is β** = 0.99. In area III, the R(∞) pattern does not exhibit information
outbreak. In subgraph (b) with v = 2 and C = 10, the image can be

FIGURE 8
Effect of the unit transmission chance and the IHDB parameter α on each person’s ultimate spreading size for the two-layer contacted ER–SF
network. The IHDB parameter (βA = βB = 0.9) and the same contact capacity of people (C = 5) are applied to each subgraph. The vertical subgraphs use a
unique degree distribution exponent as well, with subgraphs (A) and (B) corresponding to the SF layer with vB = 2, 4, respectively. Subgraphs (A) and (B)
display the effects on the ultimate spreading size with unit transmission probability λ. The critical values of subgraphs (C) and (D) show the relative
deviations and the critical values of (A) and (B), respectively. The initial seed is set at ρ = 0.001.

FIGURE 9
Combined effect of the unit transmission chance and the IHDB parameter β on the ultimate information outbreak for the two-layer contacted ER–SF
network. The influence of (λ, β) on the ultimate adoption size is shown in subgraph (A)with v = 2 and subgraph (B)with v = 4, respectively. In subgraph (A),
the phase transition shows two areas: the continuous second-order pattern in area I and the discontinuous first-order pattern in area II. In subgraph (B),
the phase transition also shows two areas: the continuous second-order pattern in area I and the discontinuous first-order pattern in area II. Other
parameters are set at C = 5, αA = αB = 0.9, and ρ0 = 0.001.
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divided into two parts. The R(∞) pattern of individual final spreading
size in area I displays a second-order continuous increase. The critical
value between region I and region II is β* = 0.75. In the pattern of
R(∞), area II displays a first-order discontinuous increase. In
subgraph (c) with v = 4 and C = 5, the image can be divided
into two parts. While showing the pattern of information outbreak
scale R(∞), area I displays a second-order continuous propagation
pattern. The critical value between region I and region II is β* = 0.8.
A first-order discontinuous increase in area II’s pattern of R(∞) is
visible. In subgraph (d) with v = 4 and C = 10, the image can be
divided into two parts. In the pattern of individual eventual
spreading size R(∞), area I displays a second-order continuous
increase. The critical value between region I and region II is β* =
0.85. Area II exhibits a first-order discontinuous phase transition in
the pattern of R(∞). Furthermore, the heterogeneous degree
distribution alters the information propagation but cannot alter
the pattern of phase transition. Because there are some hub people
in the multi-layer contacted SF network, when it exhibits a strong
heterogeneous degree distribution (v = 2), there is a pattern of
information suppression in the phase transition.

5.3 Numerical analysis of the two-layer
ER–SF network

Figure 8 exhibits the impact of IHDB variable α and
transmission probability λ on the final spreading scope for the
two-layer contacted ER–SF network. In each subgraph, the
fundamental parameters include C = 5 and βA = βB = 0.9.
Figures 8A, B (vB = 2 and vB = 4) show how the final
spreading scope R(∞) grows as λ increases until it achieves
global adoption. When αA = αB = 0.1 and αA = αB = 0.5, the
final outbreak pattern shows a second-order continuous
propagation. However, the R(∞) pattern shows a first-order
discontinuous pattern when αA = αB = 0.9. In addition, the
numerical values of the simulation (symbols) match those of
our theoretical analyses (lines).

For the two-layer contacted ER–SF network, Figure 9 shows
the effect of R(∞) on the behavioral parameter plane (λ, β). The
subgraphs (a) and (b) are set as the identical contact capacity of
individuals by C = 5. The subgraphs (a) and (b) demonstrate the
growth tendency of R(∞). In subgraph (a) with v = 2, the image
can be divided into two parts. In the phenomenon of eventual
information outbreak R(∞), area I displays a second-order
continuous propagation pattern. The critical value between
area I and II is β* = 0.86. Area II exhibits a first-order
discontinuous phase transition in the pattern of R(∞). In
subgraph (b) with v = 4, the image can be divided into two
parts. The R(∞) pattern of individual final spreading size in area
I displays a second-order continuous increase. The critical value
between region I and region II is β* = 0.9. In the pattern of R(∞),
area II displays a first-order discontinuous increase.

6 Conclusion

Researchers have explored how transmission probability,
information type, individual psychology, and heterogeneous

behaviors affect information propagation mechanisms. In the
research on information propagation, we found that individual
behavior depends on individual psychology to show positive or
negative, linear or non-linear adoption. In this paper, we explore
how individual psychology affects the information propagation.

This paper considers the individual contact capacity, which
affects the information outbreak. More importantly, we found that
an individual can show the heterogeneous decreasing behavior on
information propagation, which is called IHDB. Then, we
proposed a non-rule trapezoidal-like probability function on the
two-layer network model. Meanwhile, we proposed a novel
generalized edge-based compartmental theory to analyze the
information propagation mechanism. Finally, the propagation
pattern on the two-layer contacted ER and SF networks was
revealed by the simulation and theoretical analysis. When
IHDB changes, the phenomenon of the ultimate information
outbreak first increases continuously in the second-order phase
transition and then increases discontinuously in the first-order
phase transition. Additionally, increasing the number of contacted
neighbors makes it easier for propagation information and
changing the propagation pattern. Furthermore, the
heterogeneous degree distribution also has influence on
information spreading but has not altered the phase transition
pattern. This paper demonstrates the impact of individual
heterogeneous decreasing behavior on information propagation.
We also present a heuristic theory to describe how individual
behavior affects the propagation of information.
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A neural state-space-basedmodel
predictive technique for effective
vibration control in nano-beams

Hajid Alsubaie*

Department of Mechanical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia

Model predictive control (MPC) is a cutting-edge control technique, but its
susceptibility to inaccuracies in the model remains a challenge for embedded
systems. In this study, we propose a data-driven MPC framework to address this
issue and achieve robust and adaptable performance. Our framework involves
systematically identifying system dynamics and learning the MPC policy through
function approximations. Specifically, we introduce a system identification
method based on the Deep neural network (DNN) and integrate it with MPC.
The function approximation capability of DNN enables the controller to learn the
nonlinear dynamics of the system then the MPC policy is established based on the
identified model. Also, through an added control term the robustness and
convergence of the closed-loop system are guaranteed. Then the governing
equation of a non-local strain gradient (NSG) nano-beam is presented. Finally, the
proposed control scheme is used for vibration suppression in the NSG nano-
beam. To validate the effectiveness of our approach, the controller is applied to
the unknown system, meaning that solely during the training phase of the neural
state-space-based model we relied on the data extracted from the time history of
the beam’s deflection. The simulation results conclusively demonstrate the
remarkable performance of our proposed approach in effectively suppressing
vibrations.

KEYWORDS

model predictive control, data-driven MPC, nano system, robust control, NSG theorem

1 Introduction

Neural networks have brought about substantial changes in the handling of nonlinear
systems, holding immense potential to revolutionize the control field. Their unique ability to
model and interpret complex, high-dimensional dynamics positions them as key
contributors in areas where traditional mathematical models typically face challenges [1,
2]. State-space models based on neural networks are capable of mapping the intricate
relationships between the inputs, outputs, and internal states of nonlinear systems, using
their capacity to approximate any continuous function [3, 4]. They utilize past and current
data, learning the nonlinear dynamics, to predict the future states of a system based on the
present state and control inputs.

MPC is a highly effective control approach widely employed in diverse engineering
domains to achieve superior control performance compared to conventional methods [5, 6].
By utilizing a predictive model of the system, MPC optimizes control actions over a finite
time horizon. MPC enables the consideration of future system behavior and constraints,
allowing for more precise and robust control actions [7, 8]. Hence, to now, MPC has been
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widely used in various engineering domains to achieve superior
control performance compared to conventional methods [9–12].

Nanostructures, including nano-beams, have generated
considerable attention across a range of disciplines due to their
superior mechanical attributes and the profound potential they
possess for advancements in nanotechnology applications. Up to
this point, an expansive corpus of research has been established
within this particular field of study. Undeniably, it is of utmost
importance to sustain these scholarly pursuits. Doing so will not
only enhance our comprehension but will also enable us to leverage
these findings more effectively for the greater benefit. For example,
the study by Ohashi et al. [13] underscores the necessity for the
stable delivery of nano-beams in facilitating advanced nanoscale
analyses. However, the diminutive dimensions of these structures
pose unique challenges pertaining to their dynamic behavior,
notably when exposed to vibrational forces [14, 15].

Given the escalating demand for nanotechnology across diverse
sectors, frommedicine to information technology, it is clear that this
area of research requires continued exploration and development
[16–18]. However, the miniaturized scale of these structures brings
forth distinct challenges related to their dynamic behavior, especially
when exposed to vibrations. Consequently, the study and control of
nano-beams have emerged as an integral field of study, aiming to
ensure the reliability and operational efficacy of nano-devices. This
focus is evident in the comprehensive review by Roudbari et al. [19],
which emphasizes the significance of size-dependent continuum
mechanics models for micro and nano-structures. Similarly, the
research by Miandoab et al. [20] offers a nonlocal and strain
gradient-based model for electrostatically actuated silicon nano-
beams, thereby addressing specific control issues inherent in such
structures.

Sliding mode controllers [21, 22] and other robust controllers
[23] have been extensively investigated and suggested for nano and
microsystems. However, when it comes to control in nano and
microsystems, the application of MPC has not been adequately
proposed. The main reason behind this limitation is the substantial
amount of uncertainties present in these systems. Unlike other
control methods, MPC relies on having an accurate model of the
system, which is practically impossible to obtain in real-world nano
and microsystems. Therefore, despite the potential advantages of
MPC, its practical implementation in this domain remains
unfeasible. As researchers continue to explore novel control
approaches, finding ways to overcome these challenges and
devise MPC strategies for nano and microsystems will be essential.

The quest for optimally controlling nonlinear and uncertain
systems is a formidable challenge in modern control theory, where
traditional methods like MPC and robust control present significant
advantages but also face limitations. MPC’s high computational
costs and reliance on accurate system models make it less suited for
real-time applications and systems with complex, uncertain
dynamics. On the other hand, robust control handles
uncertainties [24, 25] but often leads to suboptimal performance
and does not directly account for state and control constraints. For
example, in [26], MPC was suggested as a method for atomic force
microscopy. However, this control strategy relies on the assumption
that a complete and perfectly accurate system model is available,
which is often not a reality in actual practice due to the
unpredictability and complexity inherent in real-world scenarios.

In practice, obtaining a fully accurate model of the system is
challenging due to inherent uncertainties and practical limitations.
Thus, the assumptions made in the design of the controller do not
hold true in practical applications. This emphasizes the need to
develop control strategies that can effectively handle the
uncertainties and limitations present in nano and microsystems
without relying on perfect system models.

Recently, data-driven methods, as presented in studies such as
[27–29] promise a more efficient and adaptive approach. These
methods leverage machine learning to learn system dynamics and
control policies, reduce the computational burden, and adapt to
system changes. For instance, Li and Tong [30] applied an encoder-
decoder neural network model for developing an MPC. Their focus
was on the efficient control of an HVAC system, and their results
showcased promising convergence. Also, in a more recent study,
Bonassi et al. [31] offered a comprehensive discussion on the
integration and evaluation of various recurrent neural network
structures within the framework of MPC.

Despite the aforementioned advancements, some problems
persist in the majority of studies within this field. Most notably,
there is a consistent lack of guaranteed convergence and stability,
which presents significant challenges for the advancement of
machine learning-based MPC solutions. Hence, more research is
needed to refine data-driven approaches for optimal control of
nonlinear and uncertain systems, focusing on their performance,
computational efficiency, robustness, convergence, generalizability,
and data requirements. This challenge has served as a significant
motivation for our current study. Recognizing the limitations of
existing control techniques, particularly in the context of nano and
microsystems, we are driven to explore innovative approaches that
can overcome the hurdles associated with uncertainties in these
systems. Through our study, we aspire to pave the way for practical
implementation and real-world applications of advanced control
methods in the realm of nano and microsystems.

We propose a neural state space-based model predictive control
by integration of DNN with MPC. DNNs have the remarkable
ability to learn complex patterns and capture intricate relationships
from data [32, 33]. Therefore, we utilize Deep Neural Networks
(DNNs) as neural state space models for the systems. Through
training on accessible data, DNNs can construct nonlinear models
that effectively approximate the system’s behavior, even when
uncertainties and disturbances are present. This provides a
valuable advantage when dealing with nano-beam vibrations,
where comprehensive knowledge of the system’s dynamics may
be elusive. The integration of DNNs with MPC enables the
development of an intelligent control framework that effectively
compensates for the limitations ofMPC and suppresses vibrations in
NSG nano-beams. In this study, we enhance the control strategy by
integrating an additional control term, ensuring the robustness of
the controller and promoting the convergence of the closed-loop
system to the desired value. This synergistic combination of DNNs
and MPC acts as a corrective component, elevating the stability and
performance of the control system.

The structure of this paper is as follows: Section 2 offers a
comprehensive introduction to the fundamental concepts and
principles, setting the groundwork for our proposed framework.
Subsequently, we present and validate our framework in subsequent
sections. Section 3 focuses on the governing equations of the NSG
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nano-beam, taking into account its unique characteristics. In Section
4, we apply the proposed controller to the nano-beam and
thoroughly investigate its performance through simulations.
Finally, in Section 5, we present the concluding remarks
summarizing the key findings and suggest areas for further
improvements.

2 The proposed control scheme

In this section, we present some preliminaries and our control
approach. Firstly, in Section 2.1 we describe the methodology used
to construct a neural state-space-based model that captures the
dynamics of the system accurately. Subsequently, in Section 2.2, we
delineate the MPC policy employed in our framework. We outline
the optimization problem formulation and the steps involved in
generating control actions over a finite time horizon. Furthermore,
in Section 2.3, we introduce the robustness term that is added to
enhance the controller’s stability and performance. Additionally, we
depict the control scheme, illustrating how the neural state-space-
based MPC policy and robustness term are integrated to form a
cohesive control framework.

2.1 Neural state-space models

Neural state-space models encompass a category of models that
employ neural networks to depict the functions that define the
nonlinear state-space representation of a system. In traditional
control theory, state-space models are used to describe the
behavior of dynamic systems by representing the relationship
between the system’s inputs, outputs, and internal states. Suppose
a general state-space form with the following mathematical
representation. The mathematical form of the system is given by

_x t( ) � fc x t( )( ) + hc x t( )( )u t( ) (1)
where x ∈ Rn is the state vector, and the input vector is represented
by u ∈ Rm. Also, fc and hc are two static non-linear mappings. The
discrete-time formulation is given by

x k + 1( ) � f x k( )( ) + h x k( )( )u k( ) (2)
in linear systems, these equations are typically represented by linear
functions.

Assumption 1. The system dynamics functions f(x) and h(x)
are assumed to be Lipschitz continuous, indicating that there exists a
Lipschitz constant that governs the behavior of f(x) and h(x) as
follows

‖ f �x k( )( ) + h �x k( )( )�u k( ) − f x k( )( ) + h x k( )( )u k( ) ‖ ≤ εx ‖ �x − x

‖ +εu ‖ �u − u ‖
(3)

in which εx, εu ≥ 0 are constants values.
However, in many real-world scenarios, systems exhibit

nonlinear behavior that cannot be accurately captured by linear
models. Neural networks offer a powerful framework for
representing and learning nonlinear relationships [34] making
them well-suited for constructing state-space models for such

systems. Here, we introduce a neural state-space model, where
the state equation is represented by neural networks. The neural
network represents the function that describes the behavior of the
system’s states, although here we used DNN, these networks can be
designed as recurrent neural networks (such as LSTM or GRU), or
other types of architectures depending on the characteristics of the
system being modeled.

The DNN in the neural state-space model is trained using data
from the system. This training involves optimizing the network
parameters to minimize the discrepancy between the model’s
predictions and the observed behavior of the system. Various
techniques, such as gradient descent or backpropagation, can be
employed for this purpose. Once trained, the neural state-space
model is used to simulate the behavior of the system, estimate its
internal states based on available inputs and outputs, and predict
future system responses. The mathematical form of the learned state
space is given by

x̂ k + 1( ) � f̂ x̂ k( )( ) + ĥ x̂ k( )( )u k( ) (4)
where the variables x̂(k) and u(k) correspond to the baseline state
and control input, respectively, for the baseline model. The function
f̂(x̂(k)) represents the baseline model dynamics (here is the neural
network).

It is noteworthy that the learned state space model as
represented in Eq. 4 can be backpropagated, and its derivatives
are computable through the application of automatic differentiation.
Here we assume f̂ and ĥ satisfy the conditions of Lipschitz
continuity and general continuity. This assumption of Lipschitz
continuity and general continuity for the dynamic functions is
widely recognized in the field. The current study also
acknowledges and incorporates this fundamental premise.

2.2 Nonlinear MPC for the baseline model

By data-driven NMPC we refer to establishing MPC policies
based on the learned neural state space-based model.

The cost function of MPC associated with the neural state space
model 4) is defined as follows

JN � ∑N−1

k�0
Q x̂ k( ), u k( )( ) + T x̂ N( )( ), (5)

The cost function for plant 1) is determined by considering
several factors. It incorporates the stage cost, represented by
Q(x̂(k), u(k)), which takes into account the current state x and
control input u at each stage. Additionally, there is a terminal cost
component denoted by T(x̂(N)), which captures the cost associated
with the final state. In the current study, the terminal cost was not
applied, despite its mention within the theoretical formulations. This
was intended to preserve the generality of the presentation. Also,
The cost function is defined over a prediction horizon N,
encompassing the control inputs u(0, 1, . . . , N − 1), state
variables x̂(0, 1, . . . , N). Eq. 5 illustrates the system in its general
form; however, the controller proposed in this study has been
specifically designed for affine systems. By employing the baseline
model 4) and initiating from an initial state x̂(0) � x̂0, the data-
driven NMPC is introduced. This approach aims to minimize the
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cost function 5) with respect to the baseline model 4) which ius
given by

x̂o, uo( ) � argmin
�x,�u

JN x̂, u( )
s.t. x̂ k + 1( ) � f̂ x̂ k( )( ) + ĥ x̂ k( )( )u k( )

x̂ 0( ) � x̂0.

(6)

the augmented cost function, denoted as J, expands the original cost
function 5) to include the constraints and Lagrange multipliers. It is
obtained by integrating the Hamiltonian function across the
prediction horizon N. Therefore, the augmented cost function
can be expressed as:

C k( ) � Q x̂ k( ), u k( )( ) + λT k + 1( ) f̂ x̂ k( )( ) + ĥ x̂ k( )( )u k( )[ ]
�JN � ∑N−1

k�0
C k( ) − λT k + 1( )x̂ k + 1( )( ) + T x̂ N( )( ), (7)

In this context, λ(k + 1) represents the Lagrange multiplier
associated with the dynamics of the baseline model 4). It is
worth noting that these Lagrange multipliers, also known as co-
states, play a significant role. By solving the NMPC problem (Eq. 6),
we obtain the optimal trajectories for the baseline denoted as x̂o(k)
and uo(k). During this optimization process, the Karush-Kuhn-
Tucker (KKT) conditions are employed to derive the necessary
optimality conditions, ensuring that the augmented cost function 7)
is effectively minimized. These optimality conditions can be
expressed as follows:

Cu k( ) � 0, k � 0, 1, . . . , N − 1 (8 − a)
λ k( ) � Cx̂ k( ), k � 0, 1, . . . , N − 1 (8 − b)

λ N( ) � Tx̂ x̂ N( )( ), k � 0, 1, . . . , N − 1 (8 − c)
By utilizing the KKT conditions and the Lagrange multipliers

λ(k + 1) as well as the baseline optimal solution x̂o(k) and uo(k) can
be computed online. Taking into account the KKT conditions, we
have the following expressions:

C�u k( ) � Q�u x̂o k( ), uo k( )( ) + λT k + 1( )
f̂u xo k( )( ) + ĥu x̂o k( )( )uo k( )[ ] � 0 (9 − a)

λ k( ) � Qx̂ x̂o k( ), uo k( )( ) + λT k + 1( ) f̂x̂ xo k( )( ) + ĥx̂ x̂o k( )( )uo k( )[ ],
(9 − b)

λ N( ) � Tx̂ x̂o N( )( ). (9 − c)
By considering Eqs 8, 9, the Lagrange multipliers λ(k + 1) can be

obtained through the following calculations:

λ k + 1( ) � Qx̂ k( ) + λT k + 1( )f̂x̂ k( ), (10)
Additionally, the Lagrange multipliers (10) are considered

to be the baseline optimal Lagrange multipliers denoted as
λo(k).

Consider the scenario involving system 1), baseline model 4),
and data-driven NMPC 6). The data-driven NMPC yields an
optimal solution denoted by x̂o(k) and uo(k), which serves as
the baseline solution. However, due to an error between the real
systems and the baseline systems a perturbation ~N(x, t)may arise as
a result. If this perturbation does not affect the status of the
constraints, the optimal solution for system 1) can be adjusted as
u � uδ(k) + uo(k). The focus now lies on devising a robust NMPC
framework capable of effectively addressing the challenges arising

from unknown bounded disturbances and errors in the neural state
space model. This objective is explicitly articulated in the
following part.

2.3 Robust NMPC with guaranteed
convergence

We define the error of the system as e � x − xd, where xd

represents the desired reference trajectory. The robust control
tracking control law can be expressed as follows:

uδ � − ur

ĥ x( ) � − ur

h x( ) + ~M
ur � f̂c x̂ t( )( ) + _xd + δe + μ sign e( ) (11)
~M � ĥ x( ) − h x( )

Here, δ and μ are user-defined parameters that need to be
positive.

Theorem 1. Assuming that the compound uncertainty remains
within established boundaries, the proposed control law, as described in
Eq. 12, in conjunction with the MPC defined in Eq. 6 and derived from
the neural state-space model in Eq. 4 handles residual errors in the
tracking control, and guarantees the convergence of the states in the
state-space model 1) towards the desired values.

Proof. Suppose that the error arising from the estimation of
the system’s dynamics and the error in the baseline initial
condition can be combined into a single term denoted as
~N � fc(x) + hc(x)uo − f̂(x̂) + ĥ(x̂)uo. By substituting Eq. 11
and Eq. 1 in the time derivative of the defined error, we achieve:

_e � _x − _xd � fc x t( )( ) + hc x t( )( )u t( ) − _yd

� fc x t( )( ) + hc x t( )( ) uδ + uo( ) − _xd

� fc x t( )( ) + hc x t( )( )uδ + f̂ x̂( ) + ĥ x̂( )uo + ~N − _xd (12)

Now due to the optimality of uo we know after a shoer period of
time f̂(x̂) + ĥ(x̂)uo � 0, also we know h(x) ur

h(x)+ ~M
� ur − ~M

h(x)+ ~M
ur.

Therefore we have

_e � _x − _xd

� fc x t( )( ) − f̂c x̂ t( )( ) + ~M

h x( ) + ~M
ur − δe − μ sign e( ) + ~N

(13)
We define fc(x(t)) − f̂c(x̂(t)) + ~M

h(x)+ ~M
ur � ~Md and substitute

in Eq. 13 which results in

_e � _x − _xd � ~Md − δe − μ sign e( ) + ~N (14)
Now, let us consider a Lyapunov function candidate denoted as

V(x), which is expressed as:

V � 1
2
e2 ≥ 0 (15)

The derivative of the Lyapunov function V(x) with respect to
time is expressed as

_V � e _e � e ~Md − δe − μ sign e( ) + ~N( )≤ − δe2 + ~Md + ~N( )e − μ e| |
(16)

parameters μ should be selected in a way that μ> | ~Md + ~N|, as a
result, we have
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_V � e _e � e ~Md − ϑe − μ sign e( ) + ~N( )≤ − δe2 (17)

By utilizing Eq. 17, we can validate that the convergence of the
states of the closed-loop system towards the equilibrium point is
assured, in accordance with the Lyapunov stability theorem. This
result completes the proof.

Remark 1. The parameters δ and μ, defined by the user, must
adhere to predefined constraints in order to ensure the validity of the
results and the stability of the model. Specifically, the parameter δ is
required to maintain a positive value. Furthermore, the parameter μ,
besides being positive, should satisfy an additional condition,
namely, that μ> | ~Md + ~N|. This criterion is of paramount
importance for maintaining Lyapunov stability, as elucidated in
Eq. 17.

Remark 2. The deployment of the sign function in the
controller design can give rise to non-smooth control
inputs, leading to undesirable chattering. A prevalent and
efficacious strategy to counteract such instances involves
employing a continuous approximation instead of the sign
function. In this context, the arctangent (atan) function
emerges as a fitting option and can be used to result in
smooth control inputs.

The block diagram presented in Figure 1 illustrates the proposed
control technique. It incorporates robust control in Eq. 11, allowing
for the inclusion of disturbances in the model. This design choice
ensures that the controller is well-suited and resilient for controlling
nanobeams.

3 NSG nano-beams

The Euler-Bernoulli displacement components of a hinged-
hinged nanobeam are expressed as follows:

ux � da x, t( ) − z
∂dt x, t( )

∂x
uy � 0 (18)
uz � dt x, t( )

The nanobeam’s x, y, and z displacements are symbolized by
ux, uy, and uz correspondingly. The axial and transverse deflections
of any point on the neutral axis are represented by da and dt,
respectively. The independent spatial and time variables are denoted
by x and t, respectively.

Here we use the NSG theorem to present the governing
equation of nanobeam. Strain gradients refer to the variation
of strain within a material [35, 36]. In traditional continuum
mechanics, the strain is assumed to be constant throughout the
material. However, at small scales, such as in microstructures or
near material boundaries, the strain may vary significantly. Strain
gradients take into account this variation and introduce
additional terms to the constitutive equations to capture the
effect. Nonlocal effects refer to the fact that the behavior of a
material at a particular point depends not only on its immediate
surroundings but also on a larger region. In other words, the
material’s response is influenced by the overall deformation state
of the neighboring points. Nonlocal effects are particularly
important in materials with characteristic length scales, such
as granular materials or materials with microstructural features.
When both strain gradients and nonlocal effects are considered
together, the resulting theory is referred to as NSG theory. It
provides a more accurate description of the mechanical behavior
of materials at small scales and can be used to analyze phenomena
such as size-dependent plasticity, fracture, and creep in
microstructures [37, 38]. The formulation for the strain
energy (U) of an isotropic linear elastic material, as provided
by the NSG theory, can be expressed in the following manner:

U � 1
2
∫
V

σ11ε11( + σ11
1( )∇ε11)dV (19)

FIGURE 1
The proposed neural state-space-based model MPC.

Frontiers in Physics frontiersin.org05

Alsubaie 10.3389/fphy.2023.1253642

77

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1253642


where σ11 denotes the classical stress, σ11(1) and ε11 represent the
stress and the normal strain. The differential operator is denoted by
∇ which is equivalent to the partial derivative with respect to x.
Additionally, σ11 and σ11(1) are defined as follows.

σ11 � ∫L
0

Eξ0ε
′
11 x′( )dx′ (20 − a)

σ11
1( ) � ls

2∫L
0

Eξ1ε
′
11 x′( )dx′ (20 − b)

t11 � σ11 − ∇σ11
1( ) (20 − c)

where the length of the nanobeam is symbolized by L and ξ0
represent the principal attenuation kernel function, which
combines the constitutive equations describing the nonlocal
effects. ls is the strain gradient length scale parameter, Alongside,
we have ξ1, an additional kernel function that relates specifically to
the nonlocal effect. Young’s modulus, denoted as E, is also a key
factor in the equation. The underlying assumption of nonlocal
elasticity theory is that the stress at a point in a body does not
only depend on the strain at that point but also depends on the strain
at other points. The use of the integral in Eq. 20 represents this
nonlocal behavior. The integral sums up the contributions of the
strain at all points (from 0 to L, the length of the nanobeam) in the
body to the stress at a particular point.

The constitutive behavior of NSG can be described by the
following general equation:

1
E

1 − θ0
2∇2[ ] 1 − θ1

2∇2[ ]t11 � 1 − θ1
2∇2[ ]ε11 − ls

2 1 − θ0
2∇2[ ]∇2ε11

(21)
where ∇2 is Laplacian operator and the nonlocal parameters θ0 and
θ1 are incorporated to acknowledge the significance of the nonlocal
elastic stress field. These nonlocal parameters, modulate the
influence of the stress field at distant points. They are typically
chosen based on experimental observations or are calibrated using
numerical methods to match the predictions of the nonlocal theory
with the observed material behavior. Let θ0 � θ1 � θ (this is a valid
assumption, for more detailed information and clarification, see
[39], Eq. 21 can be reformulated as

1
E

1 − θ2∇2[ ]t11 � 1 − l2S∇
2( )ε11 (22)

Assuming ls � 0, it leads to the formulation of local elasticity
theory as follows:

1
E

1 − θ2∇2[ ]t11 � ε11 (23)

By setting θ � 0 to zero, the strain gradient theory can be
represented as follows:

t11 � E 1 − ls
2∇2( )ε11 (24)

Remark 3: It should be underscored that the assumptions of ls �
0 and θ � 0 are not adopted in the present study. Their inclusion
here is merely illustrative, employed with the explicit intent of
elucidating the interconnections between nonlocal strain
gradients, strain gradients, and local elasticity. When analyzing a

straight Euler-Bernoulli nanobeam under the assumptions of large
deflection and small slope, the nonlinear strain relationship derived
from Von Karman’s theory can be represented in the following
manner:

ε11 � ∂da x, t( )
∂x

+ 1
2

∂dt x, t( )
∂x

( )2

− z
∂2dt x, t( )

∂x2
(25)

where ε11 represents the longitudinal strain, consequently one can
achieve:

δ∫t
0

Udt � ∫t
0

∫L
0

Nc
∂δda

∂x
+ ∂dt

∂x
∂δdt

∂x
( ) −Mc

∂2δdt

∂x2
[ ]dxdt

+∫t

0
Nnc

∂δda

∂x
+ ∂dt

∂x
∂δdt

∂x
( ) −Mnc

∂2δdt

∂x2
[ ]∣∣∣∣∣∣∣∣

L

0

dt (26)

in which Nnc, Mnc,Nc, and Mc are given by

Nnc � ∫
A

σ11
1( )dA,Mnc � ∫

A

zσ11
1( )dA,Nc � ∫

A

t11dA,Mc

� ∫
A

zt11dA, (27)

where Mc represents the classical normal moment, Nc

represents the classical force, Mnc represents the non-
classical normal moment, and Nnc represents the non-
classical force. Furthermore, the work of the applied external
forces is given by

δ∫t
0

Wdt � ∫t
0

∫
L

faδd + ftδdt( )dxdt (28)

In the provided equation, fa and ft denote the distributed axial
and transverse loads, respectively. Additionally, the expression for
the first variation of kinetic energy (Ke) is given as follows:

δ∫t
0

Kedt � ∫t
0

∫L
0

IA
∂da

∂t
∂δda

∂t
+ ∂dt

∂t
∂δdt

∂t
( )dxdt (29)

where IA � 1
12 bh

3. Note that this formulation is based on several
common assumptions, which include: 1) The principle of virtual
work holds true, which means that the virtual work done by the
applied forces is equal to the change in kinetic and potential energy
2) The quantities da and dt are assumed to be differentiable
functions of time. 3) The moment of inertia IA is constant across
the length of the system. This would imply a uniform mass
distribution along the system.

The given expression for Hamilton’s principle, which is
employed to derive the equations of motion, is as follows:

δ∫t
0

Ke − U −W( )[ ]dt � 0 (30)

By applying Hamilton’s principle (30) and considering the
rotational inertia of the beam to be negligible, we obtain the
governing equation for the nanobeam according to the NSG
theory. The aforementioned equation can be represented in the
following manner:
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D11l2m
∂6dt

∂x6 −D11
∂4dt

∂x4 + [A11

2L
∫L

0

∂dt

∂x
( )2

dx − A11l2m
L

∫L

0

∂dt

∂x
∂3dt

∂x3(
+ ∂2dt

∂x2
( )2)dx] ×

∂2dt

∂x2 − θ2
∂4dt

∂x4[ ] + IA
∂2

∂t2
θ( )2∂

2dt

∂x2 − dt[ ]
� θ2

∂2qt
∂x2 − ft

(31)
To render Eq. 31 in a dimensionless manner, the subsequent

variables are introduced:

�x � x

L
, �dt � dt

r
, �z � z

h
, �t � t

�����
EI

ρAL4

√
, ] � θ

L
, κ � lm

L
(32)

By substituting t r �
�
I
A

√
, the resulting equation becomes

dimensionless, and the governing equation can be expressed as
follows.

β2 �D11
∂6 �dt

∂�x6 − �D11
∂4 �dt

∂�x4 +
�A11

2
∫1

0

∂ �dt

∂�x
( )2

d�x − κ2 �A11∫1

0

∂�d

∂�x

∂3 �dt

∂�x3 + ∂2 �dt

∂�x2( )2⎛⎝ ⎞⎠d�x⎡⎢⎢⎣ ⎤⎥⎥⎦ ∂2 �dt

∂�x2

− α2 �A11

2
∫1

0

∂ �dt

∂�x
( )2

d�x − v2κ2 �A11∫1

0

∂ �dt

∂�x

∂3 �dt

∂�x3 + ∂2 �dt

∂�x2( )2⎛⎝ ⎞⎠d�x⎡⎢⎢⎣ ⎤⎥⎥⎦ ∂4 �dt

∂�x4

+v2�IA ∂4�dt

∂�x2∂�t2
− �IA

∂2�dt

∂�t2
� v2

∂2�q

∂�x2 − τ

(33)
Given that we are dealing with a homogeneous nanobeam, it

can be demonstrated that �A11 � 1, �D11 � 1, and �IA � 1 (see [40]
for detailed information). Now, we can employ the Galerkin
approach to convert the partial differential equation into a
nonlinear ordinary differential equation. This procedure
entails separating the temporal and spatial components of
�dt(�x, �t) as outlined in [41].

�dt �x, �t( ) � ϱ �x( )ψ �t( )
ϱ �x( ) � sin π�x( ) (34)

Within the provided context, ψ(�t) signifies the temporal
component that is yet to be determined, whereas ϱ(�x) represents
the spatial component of the transverse deflection. Note that the
mode shape ϱ(�x) � sin(π�x), is a common choice for a beam that is
hinged, or simply supported, at both ends. The primary rationale
behind this selection is based on the boundary conditions of a simply
supported beam and the mathematical properties of the sine
function. Additionally, the concentrated force �q(�x,�t) is defined
as follows.

�q �x,�t( ) � ft �t( )δ �x − 1
2

( ), (35)

By combining Eqs 32, 33 with Eq. 38, and subsequently
multiplying both sides of Eq. 38 by the spatial component
ϱ(�x), and integrating over the length of the beam, an
intriguing transformation is obtained. This transformation
leads us to an ordinary differential equation as follows

€ψ �t( ) + β1ψ �t( ) + β2ψ
3 �t( ) � bτ �t( ) (36)

while the coefficients β1 and β2 are determined by the following
expressions

β1 �
β2 �D11∫1

0
ϱ 6( )ϱd�x − �D11∫1

0
ϱ 4( )ϱd�x

α2∫1

0
ϱ″ϱd�x − ∫1

0
ϱ( )2d�x

β2 � −

�A11

2
∫1

0
ϱ′( )2d�x.∫1

0
ϱ″ϱd�x − κ2 �A11∫1

0
ϱ‴ϱ′d�x.∫1

0
ϱ″ϱd�x

−κ2 �A11∫1

0
ϱ″( )2d�x.∫1

0
ϱ″ϱd�x

]2∫1

0
ϱ″ϱd�x − ∫1

0
ϱ( )2d�x

−

]2 �A11

2
∫1

0
ϱ′( )2d�x.∫1

0
ϱ 4( )ϱd�x − ]2κ2 �A11∫1

0
ϱ‴ϱ′d�x.

∫1

0
ϱ 4( )ϱd�x − ]2κ2 �A11∫1

0
ϱ″( )2d�x.∫1

0
ϱ 4( )ϱd�x

]2∫1

0
ϱ″ϱd�x − ∫1

0
ϱ( )2d�x

b � − ]2π2 + 1( ) (37)
In the given context, ϱ(i) represent the ith derivative of ϱ with

respect to time. On the other hand, ϱ′ refers to the first derivative of ϱ
with respect to �x. Taking into account that
ψ(�t) � x1, _ψ(�t) � _x1 � x2, we derive the following non-
dimensional state-space equation of motion:

_x1 � x2

_x2 � −β1x1 − β2 x1( )3 − bτ �t( ){ (38)

where x1 denotes the non-dimensional deflection of the beam and
x2 represents its derivative.

4 Numerical results

Herein, we present the numerical simulation showcasing the
stabilization of a nanobeam through the implementation of the
proposed control scheme. The parameters used for the simulation of
the nanobeam are ] � κ � 0.1. Considering the formulation in
Appendix, we obtain the corresponding values of β1 � 97.4,
β2 � −19.97, and b � 1.09, based on the given ] and κ values.
The criteria for the design parameters of the controller are
detailed in Remark 1. For the numerical simulations here, we
have chosen the parameters such that μ equals 10 and δ equals 1.

To generate training data, we employed random inputs to
stimulate the system, measuring and recording both the
deflection and its derivative. Subsequently, the collected training
data was used to train the neural network offline. For training, we
employed 200-time histories of deflection and its corresponding
derivative. An example of this 200-time history samples used in the
training phase can be seen in Figure 2. In this study, random inputs
have been utilized to facilitate the learning of the neural state space
representation of the model. The core rationale behind this selection
pertains to the enhancement of the model’s generalization
capabilities. By deploying random inputs, we can expose the
model to a more extensive and varied spectrum of data, thereby
augmenting the robustness of the learning process. This strategy
ensures that the model experiences a wide variety of situations
during the training phase, equipping it with the ability to better
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adapt to unforeseen scenarios when it is subsequently implemented
in a real-world context. Utilizing a specific or limited type of input
data for training could lead to the development of a bias in the model
towards this data. This bias could adversely affect the model’s
performance when presented with diverse data or scenarios. To
circumvent this potential bias and guarantee the broad
generalizability of our model, we have chosen to employ random
inputs.

The software used for the simulations is MATLAB 2022a. In
the initial phase of model learning, the computational cost is
primarily dependent on the number of training samples.
However, considering the low-dimensional nature of the
system, these costs are relatively moderate compared to

typical regression and classification problems tackled by
feed-forward neural networks. Once the state-space model
has been learned, the computational expenditure for
implementing the controller aligns with that of a typical
MPC application. Hence, while the pre-training phase causes
additional computational costs, the operational costs of the
controller do not significantly deviate from conventional MPC
approaches.

Figure 3 illustrates the loss function of the neural network
training for the neural state-space model representation of the
system. This loss function provides insight into the optimization
process of the neural network. By monitoring the loss function, we
can assess the progress and convergence of the training process,

FIGURE 2
A training time history used for training of state space neural network.

FIGURE 3
The loss function of neural state space model during training.
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ensuring that the neural network captures the essential dynamics of
the system accurately.

In what follows, two distinct situations have been taken into
account, and the proposed controller has been implemented for
each. The reasoning behind having chosen two different initial
conditions — [x1 (0), x2(0)] � [[0.5, 0] and [x1 (0), x2 (0)] �
[−0.5, 0.1] — has been to accommodate a wide range of
situations. By selecting these initial conditions, we have been able
to comprehensively explore both positive and negative initial
positions. Furthermore, these conditions have also allowed us to
investigate the impact of zero and non-zero speeds at the starting
point.

Figure 4 display the outcomes of the stabilization process for the
nanobeam, employing the suggested control technique with the
initial states of the system set as [x1(0), x2(0)] � [0.5, 0]. These
figures vividly exhibit the remarkable capability of the proposed
robust adaptive controller to effectively counteract and completely
reject disturbances. Additionally, Figure 5 showcases the temporal
evolution of the nanobeam’s deflection when utilizing the proposed
control scheme. The figures demonstrate that the controller, which
integrates a neural state-space model equipped with a robust term
estimator, adeptly addresses control problems of the unknown
system. This particular ability to handle uncertainties plays a
crucial role in controlling nano systems.

FIGURE 4
Time history of states and control input of the system while [x1(0), x2(0)] � [0.5,0].

FIGURE 5
The deflection of NSG nano-beam while [x1(0), x2(0)] � [0.5,0].
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To evaluate the effectiveness of our proposed controller, we
performed an additional test by varying the initial values of the
system’s states. Specifically, we selected [x1, x2] � [−0.5, 0.1].
Figure 6 illustrates the controller’s performance in achieving
system stabilization under these modified conditions. The
figure demonstrates that the proposed controller operates
within an acceptable range, ensuring feasible control
signal values. Notably, despite the system’s dynamics being
completely unknown, the proposed controller
exhibits outstanding performance, achieving state
stabilization in less than 2 time units. Figure 7 illustrates
the deflection of the system, clearly indicating that the
suggested controller facilitates rapid vibration suppression
in the nano beam.

To facilitate a more in-depth assessment of the proposed
controller’s efficacy, Table 1 outlines the settling time, as well as
the maximum and norm of control signals for both numerical
instances illustrated in this section.

In summary, the simulations and numerical results presented in
Table 1 clearly demonstrate that the proposed control scheme excels
in vibration suppression in the nanobeamwith completely unknown
dynamics, ensuring the stability and robustness of the system.
Compared to conventional MPC and robust controls [42, 43],
our method provides significant advantages in handling nano-
beam vibrations, especially when full knowledge of the system’s
dynamics is not readily available. By combining DNNs with MPC,
we develop an intelligent control framework that effectively
mitigates MPC’s limitations and reduces vibrations in NSG nano-

FIGURE 6
Time history of states and control input of the system while [x1(0), x2(0)] � [−0.5,0.1].

FIGURE 7
The deflection of NSG nano-beam while [x1(0), x2(0)] � [−0.5,0.1].
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beams. We further enhance the control strategy by introducing an
extra control term for robustness and improved system convergence.
However, it is important to note that our method requires pre-
processing and data collection for training the model before real-
world deployment, unlike traditional approaches.

5 Conclusion

The present study introduced a neural state-space-based
MPC framework with guaranteed convergence. The framework
entailed a systematic identification of system dynamics and the
learning of the MPC policy through function approximations.
Specifically, the system dynamics were captured utilizing DNN,
and the MPC policy was established based on the identified
model. Additionally, the robustness and convergence of the
closed-loop system were guaranteed by incorporating an
additional control term. Subsequently, the governing
equation of motion for NSG nano-beams was presented and
derived. Then, the proposed control technique was validated by
applying it to NSG nano-beams. The obtained results exhibited
exceptional performance, confirming the efficacy of the
proposed method. In this study, the robust control term has
been consistently applied in conjunction with the optimal
control term at all stages. Nevertheless, there are ways to
further streamline the system without compromising
accuracy. Incorporating event-triggered approaches could be
beneficial in this regard. These strategies would enable the
controller to be deployed only as required and then
deactivated afterward, creating a more optimal control.
Therefore, a potential area for future research in this domain

would be to enhance the proposed controller’s efficiency
through the integration of event-trigger mechanisms.
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Multi-scroll Hopfield neural
network under electromagnetic
radiation and its brain-like
coupling synchronization
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Multi-scroll attractors have attracted attention because of their more complex
topological structures and artificially controllable attractor structures. This paper
proposes a new nonvolatile magnetic-controlled memristor and uses it to
simulate the effect of membrane flux changes caused by neuronal exposure to
electromagnetic radiation. A series of complex chaotic phenomena are found by
plotting phase diagrams, bifurcation diagrams, attractor domains and 01 tests,
including multi-scroll chaotic attractors controlled by memristors, symmetric
bifurcation behavior, coexistence phenomena enhanced by initial offset. The
mechanisms behind them are explained through equilibrium point analysis. A
dual memristive HNN (MHNN) coupling synchronization model is proposed to
simulate the synchronization between regions within the human brain. The
Lyapunov function of the error is constructed to prove that this coupling
synchronization scheme is ultimately bounded. The feasibility of this
synchronization scheme is verified by establishing a Simulink model and
conducting simulation experiments.

KEYWORDS

memristor, Hopfield neural network (HNN), multi-scroll, multistability, synchronization

1 Introduction

Numerous neurophysiological and neuroanatomical studies have shown that human
brain activity is closely related to the dynamic behavior of biological neurons and neural
networks. In order to reveal the mystery of how the brain processes, manipulates and
accesses information, scientists have conducted long-term research on the structure and
working mechanism of biological neural networks and established various artificial neuron
and neural network models [1–10]. Hopfield neural networks (HNN) have been widely
studied for their simple mathematical form and rich dynamical behavior. Liang et al.
investigated the long time behavior of the mild solution to delayed reaction-diffusion HNNs
driven by infinite dimensional Wiener processes. They analyzed the existence, uniqueness,
and stability of this system under the local Lipschitz function by constructing an appropriate
Lyapunov-Krasovskii function and utilizing the semigroup theory. Pu et al. proposed to
introduce fractional calculus to implement HNN. They implemented the fractional HNN by
utilizing fractor in the form of an analog circuit and the fractional steepest descent approach.
In addition, they construct the Lyapunov function to prove the stability of fractional HNN
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and analyze its attractors [11]. Danca et al. unveiled the existence of
hidden chaotic sets in a simplified HNN with three neurons. They
proved that besides two stable cycles, the system also has hidden
chaotic attractors and hidden chaotic transients, which converge to
regular motions along the stable cycles after a relatively long lifetime
[12]. In order to make HNN generate more rich and complex brain-
like dynamical behaviors, more and more scholars introduce the
brain-like element memristor into them [13–19].

A memristor is a nonlinear circuit element whose resistance
changes in response to the current flowing through it or the voltage
at both ends [20–23]. This nonlinear behavior is very similar to the
plasticity of synapses in the human brain [24]. In the process of
transferring action potentials, the properties of synapses also change
dynamically. Therefore, in recent years, many scholars have used
memristors to replace the invariant synaptic weights in HNN and
proposed a series of memristive HNN (MHNN) [25–28]. For
example, Leng et al. proposed a new circuit to emulate the
Coupled Hyperbolic Memristors and utilized it to simulate the
synaptic crosstalk of a HNN. With various crosstalk strengths,
multi-stability, asymmetry attractors, and anti-monotonicity are
observed in this MHNN [29]. Dong et al. proposed a novel
memristive synaptic HNN with time delay, which used a
memristor synapse to simulate the electromagnetic induced
current caused by the membrane potential difference between
two adjacent neurons. By choosing time delay and the coupling
strength of memristors as bifurcation parameters, they obtained
sufficient conditions of zero bifurcation and zero-Hopf bifurcation
[26]. Besides simulating synapses, memristors are also used to
simulate the effects of electromagnetic radiation on neurons.
With the popularity of electronic products, electromagnetic
radiation fills people’s daily lives. In order to explore the
dynamical behavior of the human brain under electromagnetic
radiation, more and more scholars introduce magnetically
controlled memristors into HNN and propose a series of new
MHNN [30–32]. For instance, Lin et al. studied the chaotic
dynamics of a three-neuron HNN under electromagnetic
radiation stimulation, and found hidden extreme multistability
that includes hyperchaos and transient chaos. In addition, they
also designed a circuit based on HNN composed of commercially
available electronic components to verify the theoretical analysis
[33]. Wan et al. investigated the hidden multistability and parallel
bifurcation behaviors of a HNN under the simulation of external
electromagnetic radiation and dual bias currents. They also designed
an equivalent analog circuit and verified the numerical simulation
results by Multisim simulation and hardware experiment based on
discrete electronic components [34].

In recent years, various complex dynamical behaviors have been
found in both memristive synaptic weight HNN and HNN under
electromagnetic radiation, including multi-scroll or multistructure
chaotic attractors. Compared with general chaotic attractors, they
are more attractive for their more complex topological structure and
artificially controllable attractor structure. Zhang et al. introduced a
non-ideal magnetically controlled memristor model containing a
sign function into HNN, and constructed a memristive HNN model
with multiple double-scroll attractors. The odd and even numbers of
double scrolls can be flexibly controlled by the internal parameters of
the memristor. In particular, they found the coexisting behavior
induced by the initial state offset of the memristor, and the number

of coexisting attractors was closely related to the total number of
scrolls, and eventually tended to infinity as the total number of
scrolls increased [35]. Yu et al. proposed a locally active memristor
containing a smooth sign function and established a MHNN
satisfying the Lipschitz condition by replacing the synaptic
weights of HNN. From it, they found controllable multi-scroll
behavior and extreme multistability. In addition, they physically
implemented this multi-scroll MHNN using FPGA technology and
applied it to image encryption [36]. Lai et al. established a novel flux-
controlled memristor model using hyperbolic function series. By
taking the memristor as synapses in a HNN, they constructed three
MHNNs. These MHNNs can generate multi-double-scroll chaotic
attractors or grid multi-double-scroll chaotic attractors, and the
number of double scrolls in the attractors is controlled by the
memristor [37].

Inspired by the above research status, We propose a new model
of MHNN under electromagnetic radiation, from which we discover
the complex dynamic behavior. The main novelty and contributions
of this study are summarized as follows:

1) We propose a newmemristor model with controllable number of
power interruption steady states, whose memductance does not
contain any polynomials.

2) By using it to simulate the effects of membrane flux changes
caused by electromagnetic radiation, a new model of MHNN
under electromagnetic radiation is proposed

3) A series of complex chaotic phenomena are found, including
memristor-controlled multi-scroll attractors, symmetric
bifurcation behaviors, initial offset boosting coexistence.

4) Inspired by inter-brain region synchronization of the human
brain, we propose a dual MHNN coupling synchronization
model. Through Lyapunov function and Simulink
experiments, the feasibility of this synchronization scheme is
verified.

The rest of this article is organized as follows. In Section 2, the
memristor model is constructed. In Section 3, a MHNN under
electromagnetic are constructed and analyzed. In Section 4, The
dynamic numerical simulation is carried out. In Section 5, an dual
coupling synchronous model is designed and proved. Section 6
summarizes the paper.

2 Novel nonvolatile memristor

2.1 Construction of memristor model

Over the past few years, a number of memristor models that can
assist in the generation of multi-scroll attractors have been proposed
one after another, and they are summarized in Table 1. Based on the
general form of memristors, we propose a novel non-volatile
memristor model that can induce controllable multi-scrolls in
HNN. It can be expressed by the following equation:

im � W x( )vm
W x( ) � a − b

x

1 + x| |( )
_x � mvm − nh x( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)
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where W(x) is the memductance of the memristor. And h(x) is
the function of the internal state variable of the memristor,
which has two forms, h1(x) and h2(x), to choose from, as
follows:

h1 x( ) �
x,M � 0

x −∑M
i�1

sgn x + 2i − 1( )( ) + sgn x − 2i − 1( )( )( ),
M � 1, 2, 3,/

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

and

h2 x( ) �
x − sgn x( ), N � 0

x − sgn x( ) −∑N
j�1

sgn x + 2j( ) + sgn x − 2j( )( ),
N � 1, 2, 3,/

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

where sgn(x)is a symbolic function. By choosing different forms of
the internal state variable function of the memristor and changing
the parametersM,N, any odd or even number of scrolls can be easily
induced in HNN.

2.2 Hysteresis characteristics and non-
volatility

For the proposed memristor model, we first need to verify
whether it satisfies the three fingerprints of a memristor [42]. Let
the parameters a, b, m and n in Eq. 1 be 2.1, 0.5, 4.5 and
1.9 respectively, and take h1(x) and M = 2 as an example.
Connect the memristor to an AC voltage source Vm � A sin(Ft).
The voltage across the memristor and the current through it form a
figure-eight-shaped pinched hysteresis loop (PHL) on the v-i plane.
We take the frequency F of the AC voltage source as 30, 90 and
150 respectively, and superimpose the PHLs that appear each time
on the same plane. The results are shown in Figure 1A. From the
final results, it can be seen that when the frequency of the voltage
source increases, the area enclosed by the PHL gradually shrinks.
And when F = 150, the PHL almost shrinks into a straight line. From
the test results of PHL, it can be seen that the model described by Eq.
1 is a memristor. To verify the non-volatility of the memristor, we
usually need to draw a power-off plot (POP) of the memristor.

TABLE 1 Summary of memristors helping construct multi-scroll attractor.

References Memristor Internal state variable function

Reference [14] im � sin(x)vm
dx

dt
� avm − bh(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −m[∑N

i�0
tanh(n(x − (2i + 1)m)) +∑N

i�0
tanh(n(x + (2i + 1)m))]

h2(x) � x −m[∑N
i�0

tanh(n(x − 2im)) +∑N
i�0

tanh(n(x + 2im)) − tanh(nx)]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [15] im � (a + bx2)vm

dx

dt
� cvm − dh(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −∑N

i�1
sgn(x − (2i − 1)) −∑N

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) −∑N
i�1

sgn(x − 2i) −∑N
i�1

sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [35] im � (a + bh(x))vm

dx

dt
� cvm − dh(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −∑N

i�1
sgn(x − (2i − 1)) −∑N

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) −∑N
i�1

sgn(x − 2i) −∑N
i�1

sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [36] im � (a + bh(x))vm

dx

dt
� cvm − dh(x)

⎧⎪⎨⎪⎩
h(x) �

h1(x) � x −∑M
i�1

s(n(x + 2i − 1)) −∑M
i�1

s(n(x − 2i + 1))

h2(x) � x − s(x) −∑M
i�1

s(n(x + 2i)) −∑M
i�1

s(n(x − 2i))

s(x) � x

1 + x| |

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Reference [38] im � h(x)vm

dx

dt
� −vm

⎧⎪⎨⎪⎩ h(x) �
h1(x) � −(2N − 1)kc − b + ∑4N−1

m�1
k(−1)m−1 x − (2N −m)c| |

h2(x) � −(2N − 2)kc − b + ∑4N−3

m�1
k(−1)m−1 x − (2N −m − 1)c| |

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [39] im � (p + qf2(x))vm

dx

dt
� vm − h(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −∑N

i�1
sgn(x − (2i − 1)) −∑N

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) −∑N
i�1

sgn(x − 2i) −∑N
i�1

sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [40] im � kh(x)vm

dx

dt
� pvm

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x − ∑N−1

i�0
sgn(x − (2i − 1)) −∑M

i�1
sgn(x + (2i − 1))

h2(x) � x + sgn(x) − ∑N−1

i�0
sgn(x − 2i) − ∑N−1

i�0
sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [41] im � (a + b x| |)v

dx

dt
� cv − d(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x − ∑N−1

i�0
sgn(x − (2i − 1)) −∑M

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) − ∑N−1

i�0
sgn(x − 2i) − ∑N−1

i�0
sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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When the voltage across the memristor disappears, i.e., vm = 0 in Eq.
1, the dynamic equation of the internal state variable of the
memristor is simplified as follows:

_x � mvm − nh x( ) (4)
Taking the internal variable x as the horizontal axis and _x as the
vertical axis, we can draw the POP of the memristor. Figure 1B
shows that there are five zeros in the POP of the memristor at this
time, and the slopes at these zeros are all negative, which means that
the memristor has five stable equilibrium points after power-off.
Since there are more than two steady states, the memristor described
by Eq. 1 has non-volatility.

3 MHNN under electromagnetic
radiation

3.1 MHNN model construction

HNN has a simple mathematical form and complex dynamic
behavior. In the study of chaotic dynamics, the membrane
capacitance and membrane resistance of neurons are usually set
to 1 to further simplify the dynamic equation of HNN. At this time,
any HNN can be expressed by the following formula:

_X � −X +W tanh X( ) + I (5)

Where X is the neuron membrane potential vector, I is the external
stimulus current vector,W is the weight matrix between neurons. In
this paper, the weight matrix is:

W �
1.5 2.9 0.7
−2 1.2 0
3 −20 0.1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

The external stimulus current is uniformly set to zero. Let the initial
membrane potentials of neuron one and neuron three be 0.1, and let
the initial membrane potentials of neuron two be 1 and
-1 respectively. The three-dimensional HNN can exhibit complex
chaotic coexistence behavior at this time, and its phase diagram is
shown in Figure 2A. By continuously changing the initial membrane
potential of neuron 2, we can obtain the corresponding Lyapunov
exponent spectrum diagram. Figure 2B shows that when the initial
membrane potential of neuron 2 takes values in [-2, 2], it finally
corresponds to a chaotic attractor.With the development of
electronic products, people are exposed to electromagnetic
radiation more and more frequently. According to Maxwell’s
equations, the effect of electromagnetic radiation on a single
neuron can be described by the fluctuation of magnetic flux on
the cell membrane. The coupling between magnetic flux and
membrane voltage can be realized by a magnetically controlled
memristor [43]. Specifically for this paper, we add the memductance
term of the memristor described by Eq. 1 to the dynamic equation of
neuron 2 to simulate the effect of neuron 2 exposed to

FIGURE 1
PHL and POP of nonvolatile memristor: (A) PHL varying with F, (B) POP.

FIGURE 2
The coexistence (A) and the variation of Lyapunov exponent spectrum with the initial potential of neuron 2 (B) of the three-dimensional HNN.
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electromagnetic radiation. At this time, the dynamic equation of the
original three-dimensional HNN becomes:

_x1

_x2

_x3

_x4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
−x1

−x2

−x3

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +W

tanh x1( )
tanh x2( )
tanh x3( )
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
0

kx2 a − b
x4

1 + x4| |( )( )
0

mx2 − nh x4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where k represents the intensity of electromagnetic radiation,
a, b, m and n are memristor parameters. h(x4) is the internal
state variable function of the memristor, which includes
Eqs 2, 3.

3.2 Equilibrium analysis

Let the left side of Eq. 7 be zero, then we get the following system
of equations:

0 � −x1 + 1.5 tanh x1( ) + 2.9 tanh x2( ) + 0.7 tanh x3( )
0 � −x2 − 2 tanh x1( ) + 1.2 tanh x2( )

+ kx2 a − b
x4

1 + x4| |( )( )
0 � −x3 + 3 tanh x1( ) − 20 tanh x2( ) + 0.1 tanh x3( )
0 � mx2 − nh x4( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

After Gaussian elimination, it can be simplified to the following
form:

H1 � − x2 − 2 tanh x1( ) + 1.2 tanh x2( )
+ kx2 a − b

x4

1 + x4| |( )( ) � 0

H2 � − x3 + 3 tanh x1( ) − 20 tanh x2( )
+ 0.1 tanh x3( ) � 0

x1 � 0.5x3 + 12.9 tanh x2( ) + 0.65 tanh x3( )
x2 � nh x4( )

m

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

After eliminating x1 and x2, we can use the graphical method to solve
the equation. Let the roots obtained be (r1, r2, r3, r4). These roots are
the equilibrium points of the MHNN. Next, we linearize the MHNN
at the equilibrium points. The result of the Jacobian matrix for Eq. 7
is shown in Eq. 10.

J �

0.5 − 1.5tanh x1( )2 2.9 − 2.9tanh x2( )2 0.7 − 0.7tanh x3( )2 0

2tanh x1( )2 − 2 −1.2tanh x2( )2 + k a − bx4

x4| | + 1.0
( ) + 0.2 0 −kx2

b

x4| | + 1
− bx4sgn x4( )

x4| | + 1( )2( )
3 − 3tanh x1( )2 20tanh x2( )2 − 20 −0.1tanh x3( )2 − 0.9 0

0 m 0 −nh′ x4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

Substituting the equilibrium point (r1, r2, r3, r4), we can obtain the
eigenvalues of the Jacobian matrix. According to Shil’nikov’s
theorem, if there exists a real eigenvalue δ and two complex
conjugate eigenvalues α + βi and |α/δ|< 1 and δα < 0 are
satisfied, then the system will exhibit chaos at the equilibrium
point. In the following analysis, we will substitute specific values
for specific analysis.

4 Kinetic analysis of MHNN

Let the parameters a = 2.1, m = 2, n = 1.9. Taking h1(x) as the
internal state variable function of the memristor and M = 0 as an
example, the bifurcation behavior of the MHNN with respect to
parameters k and b is studied. The parameter k in Eq. 7 represents
the intensity of electromagnetic radiation. By continuously changing
it in the range of [-0.3, 0.3], we can obtain the bifurcation diagram
and the Lyapunov exponent spectrum diagram with respect to
parameter k, as shown in Figure 3. Combining the bifurcation
diagram and the Lyapunov exponent spectrum diagram, it can be
seen that the MHNN is very sensitive to parameter k. In the interval
(−0.3, −0.095), the system exhibits a period one. Near k = −0.095, the
system bifurcates from period one to period two. Then near
k = −0.065, the system evolves from period two to period four.
After that, with the acceleration of period doubling, the system goes

FIGURE 3
Bifurcation behavior of parameter k: (A) bifurcation diagram, (B)
Lyapunov exponential spectrum.

FIGURE 4
Bifurcation behavior of parameter b: (A) bifurcation diagram, (B)
Lyapunov exponential spectrum.
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to chaos. In the interval [-0.055, 0.235], chaos and periodicity
alternate. Finally, after k = 0.235, the system degenerates from
chaos to period one and no longer exhibits chaotic behavior.

In addition to parameter k, the bifurcation behavior of the
MHNN with respect to parameter b is more interesting.
Similarly, let parameter b continuously change in the interval
[-10, 10], we can obtain the bifurcation diagram and the
Lyapunov exponent spectrum diagram with respect to parameter
b, as shown in Figure 4. In the interval (−10, −9.7), the system
exhibits a period one. Near b = −9.7, the system bifurcates from
period one to period two. Then near b = −7.9, the system evolves
from period two to period four. Near b = −6.6, the system
degenerates from period two to period one. Until near b = −4.05,
the system again starts to change from period two to period four.
After that, with the acceleration of period doubling, the system goes
to chaos. In the interval [-3.85, 3.85], chaos and periodicity alternate.
Near b = 4.05, the system degenerates from period four to period
two. Near b = 6.6, the system evolves from period two to period four.
Then near b = 7.9, the system degenerates from period four to period
two, and finally degenerates to period one near b = 9.7. It is not
difficult to find that the system evolves and degenerates at almost
symmetrical positions. In addition, the Lyapunov exponent

spectrum in Figure 4 is almost symmetrical about the vertical
axis. In summary, the MHNN has a symmetrical bifurcation
behavior with respect to parameter b.

4.1 Bifurcation behavior

4.1.1 Multi-scroll chaotic attractor
Due to the introduction of the memristor, the MHNN can

exhibit multi-scroll behavior that does not exist in the general HNN.
Let the parameters a = 2.1, b = 0.1,m = 5, n = 1.9 and k = 0.2 and the
initial values be [0.1, 0.1, 0.1, 0.1]. First, we choose h1(x) as the
internal state variable function of the memristor. By setting the
parameter M = 0, M = 1, M = 2 respectively, the MHNN exhibits a
single scroll chaotic attractor, a three scroll chaotic attractor and a
five scroll chaotic attractor. Then we choose h2(x) as the internal
state variable function of the memristor. Similarly, by setting the
parameter N = 0, N = 1, N = 2 respectively, the MHNN exhibits a
double scroll chaotic attractor, a four scroll chaotic attractor and a
six scroll chaotic attractor. Their phase diagrams are plotted in
Figure 5. From the simulation results, it is easy to summarize the
control law of the memristor for the number of scrolls. When

FIGURE 5
Phase diagram of multi-scroll MHNN: h(x) = h1(x) (red), h(x) = h2(x) (blue).

Frontiers in Physics frontiersin.org06

Fu et al. 10.3389/fphy.2023.1252568

90

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1252568


choosing h1(x) as the internal state variable function of the
memristor, the MHNN can easily induce 2M + 1 scrolls. And
when choosing h2(x) as the internal state variable function of
the memristor, the MHNN can easily induce 2N + 2 scrolls.

With the help of Shil’nikov’s theorem, the law behind this can be
further explained. Taking the appearance of a five-scroll chaotic
attractor as an example, according to the idea provided in Section
3.2, all the equilibrium points of the system at this time can be
obtained. First, the graphical method is used to obtain the rough
values of the roots. Using all the intersections in Figure 6 as a guide,
numerical methods are used to obtain more accurate results of x3
and x4. Then the obtained results are substituted into Eq. 9 to obtain
all the roots. Next, QR decomposition is used to obtain the
eigenvalues corresponding to each equilibrium point, and the
final results are shown in Table 2. Table 2 shows that for the

MHNN that exhibits a five-scroll chaotic attractor, there are a
total of 15 saddle-focus points at this time. And according to
Shil’nikov’s theorem, there will be chaotic attractors near these
equilibrium points, which is consistent with the simulation
results in Figure 5. By observing the distribution of equilibrium
points in Figure 6 and Table 2, it is not difficult to summarize that as
the parameter M or N increases, the equilibrium points gradually
extend along the direction of x4. That is to say, by changing the form
of the internal variable function of the memristor and its parameters
M or N, the number of equilibrium points of the MHNN can be
easily controlled. And according to Shil’nikov’s theory, there will be
chaotic attractors near these saddle-focus type equilibrium points.
This directly makes the range of chaotic attractors of the MHNN
also increase accordingly, which is specifically manifested as an
increase in the number of scrolls in this section.

4.1.2 Initial offset boosting coexistence
In addition to having complex topological structures of multiple

scroll attractors, the MHNN also has complex coexistence behavior.
Let the parameters of the MHNN be a = 2.1, b = 0.1, m = 2, n =
1.9 and k = 0.2. First, we choose h1(x) as the internal state variable
function of the memristor, and takeM = 2 as an example. The initial
membrane potentials of neurons 1, 2, and 3 are all set to 0.1, while
the initial values of the internal state variable of the memristor
are −4, −2, 0, 2 and 4 respectively. By superimposing the phase
diagrams corresponding to each initial value together, we obtain the
situation of five attractors coexisting as shown in Figure 7A.
Observing these five coexisting attractors, it is not difficult to
find that their shapes and sizes are highly similar, and they only
shift by a fixed distance in the x4 direction. Figure 7B shows the

FIGURE 6
Trajectory diagram of the equation in Eq. 9.

TABLE 2 Equilibrium point analysis results of MHNN when h(x)= h1(x) and M = 2.

Equilibrium points Eigenvalues Type

x1 x2 x3 x4

−0.0718 −0.2331 4.4648 −4.6135 −1.9002 −0.9984 0.5322 ± 2.3371i Saddle focus

0.0000 0.0000 0.0000 −4.0000 2.4764 −1.9000 −1.1202 ± 2.6998i Saddle focus

0.0717 0.2331 −4.4655 −3.3865 −1.8997 −0.9984 0.5315 + 2.3373i Saddle focus

−0.0716 −0.2332 4.4662 −2.6136 −1.9004 −0.9984 0.5313 ± 2.337i Saddle focus

0.0000 0.0000 0.0000 −2.0000 2.4758 −1.9000 −1.1212 ± 2.7003i Saddle focus

0.0713 0.2332 −4.4682 −1.3862 −1.8991 −0.9984 0.5293 ± 2.3377i Saddle focus

−0.0708 −0.2333 4.4710 −0.6140 −1.9019 −0.9984 0.5287 ± 2.3364i Saddle focus

0.0000 0.0000 0.0000 0.0000 −1.9000 2.4728 −1.1264 ± 2.7026i Saddle focus

0.0691 0.2336 −4.4819 0.6148 −1.8981 −0.9984 0.5193 ± 2.3385i Saddle focus

0.0684 0.2338 −4.4868 2.6151 −1.8996 −0.9984 0.5167 ± 2.3379i Saddle focus

0.0000 0.0000 0.0000 2.0000 2.4698 −1.9000 −1.1316 ± 2.7049i Saddle focus

−0.0687 −0.2337 4.4848 1.3850 −1.9009 −0.9984 0.5187 ± 2.3372i Saddle focus

0.0000 0.0000 0.0000 4.0000 2.4692 −1.9000 −1.1326 ± 2.7054i Saddle focus

0.0000 0.0000 0.0000 4.0000 2.4692 −1.9000 −1.1326 ± 2.7054i Saddle focus

−0.0683 −0.2338 4.4875 3.3848 −1.9003 −0.9984 0.5165 ± 2.3376i Saddle focus
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FIGURE 7
Initial offset boosting coexistence when h1(x) is selected andM = 2: (A) Phase diagram, (B) Attraction of basin, (C) Bifurcation diagram, (D) Result of
0–1 test.

FIGURE 8
Initial offset boosting coexistence when h2(x) is selected and N = 2: (A) Phase diagram, (B) Attraction of basin, (C) Bifurcation diagram, (D) Result of
0–1 test.
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basins of attraction corresponding to these attractors. These basins
of attraction have the characteristics of clear boundaries and similar
shapes, and their positions are very regular, that is, they shift by a
fixed distance in the x4 direction. By plotting the bifurcation diagram
and 01 test results with respect to the initial value of the internal
variable of the memristor, we obtain Figures 7C, D, which further
verify the results in Figures 7A, B.

In addition, h2(x) is chosen as the internal state variable
function of the memristor, and N = 2 is taken as an example.
The initial membrane potentials of neurons 1, 2, and 3 are all set to
0.1, while the initial values of the internal state variable of the
memristor are −5, −3, −1, 1, 3 and 5 respectively. Similarly, by
superimposing the phase diagrams corresponding to each initial
value together, six attractors coexisting can be obtained as shown in
Figure 8A. Observing these six coexisting attractors, it is not difficult
to find that their shapes and sizes are highly similar, and they only
shift by a fixed distance in the x4 direction. Figure 8B shows the
basins of attraction corresponding to these attractors. These basins
of attraction have the characteristics of clear boundaries and similar
shapes, and their positions are very regular, that is, they shift by a
fixed distance in the x4 direction. By plotting the bifurcation diagram
and 01 test results with respect to the initial value of the internal
variable of the memristor, Figures 8C, D are obtained, which further
verify the results in Figures 8A, B.

From the analysis results of the previous section, it can be known
that by choosing the form of the internal variable function of the
memristor and its parameters M or N, the number of equilibrium
points of the MHNN can be easily controlled. And there will be
chaotic attractors near these saddle-focus type equilibrium points.
Different from the previous section, the MHNN does not exhibit
multi-scroll phenomena, but manifests as coexistence induced by
initial position offset. By analogy with the change law of the number
of scrolls of multi-scroll attractors, it can be inferred that when
choosing h1(x) as the internal state variable function of the
memristor, there are 2M + 1 coexisting attractors in the MHNN.
And when choosing h2(x) as the internal state variable function of
the memristor, there are 2N + 2 coexisting attractors in the MHNN.

5 Coupling synchronization of MHNN

5.1 Dual coupling synchronous model

Studies have shown that synchronization plays an important
role in memory processing. Synchronization between brain regions
supports working memory and long-term memory by facilitating
communication between neurons and enhancing neuronal plasticity
[44]. Brain regions are synchronized through the connection of
some neurons to form inter-regional neural networks, and thus
complete the information transmission between different brain
regions. Designing a suitable controller is one of the most
fundamental methods for controlling complex systems to achieve
synchronization, and many scholars have proposed different control
strategies [45–55]. In this paper, we use two bounded sub-MHNNs
to represent different brain regions. By coupling these two sub-
neural networks with a single neuron, a dual-MHNN coupling
model is established:

_x1 � − x1 + 1.5 tanh x1( ) + 2.9 tanh x2( )
+ 0.7 tanh x3( ) + p x1 − y1( )

_x2 � − x2 − 2 tanh x1( ) + 1.2 tanh x2( )
+ kx2 a − b

x4

1 + x4| |( )( )
_x3 � − x3 + 3 tanh x1( ) − 20 tanh x2( ) + 0.1 tanh x3( )
_x4 � mx2 − nh1 x4( )
_y1 � −y1 + 1.5 tanh y1( ) + 2.9 tanh y2( )

+ 0.7 tanh y3( ) − p x1 − y1( )
_y2 � −y2 − 2 tanh y1( ) + 1.2 tanh y2( )

+ ky2 a − b
y4

1 + y4

∣∣∣∣ ∣∣∣∣( )( )
_y3 � −y3 + 3 tanh y1( ) − 20 tanh y2( ) + 0.1 tanh y3( )
_y4 � my2 − nh2 y4( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where p represents the coupling strength of the sub-neural
networks. To make the two sub-neural networks successfully
synchronized, the difference between their outputs needs to be
zero, that is:

lim
t→∞

e1 � lim
t→∞

xi − yi � 0 (12)

where i = 1, 2, 3. To prove the validity of the above equation, the
following Lyapunov function can be constructed:

V � 1
2

e1
2 + e2

2 + e3
2( ) (13)

Then its derivative with respect to time is:

_V � e1 _e1 + e2 _e2 + e3 _e3
� 2p − 1( )e12 − e2

2 − e3
2

+ 1.5e1 − 2e2 + 3e3( ) tanh x1( ) − tanh y1( )( )
+ 2.9e1 + 1.2e2 − 20e3( ) tanh x2( ) − 2.9 tanh y2( )( )
+ 0.7e1 + 0.1e3( ) tanh x3( ) − tanh y3( )( )
− bke2

x2x4

1 + x4| | −
y2y4

1 + y4

∣∣∣∣ ∣∣∣∣( )
≤ 2p − 1( )e12 − e2

2 − e3
2

+ 2 1.5e1 − 2e2 + 3e3| |
+ 2 2.9e1 + 1.2e2 − 20e3| |
+ 2 0.7e1 + 0.1e3| |
− bke2

x2x4

1 + x4| | −
y2y4

1 + y4

∣∣∣∣ ∣∣∣∣( )

(14)

Since −1< x
1+|x|< 1 and both x2 and y2 are bounded, there exists a

sufficiently large constant c, satisfying:

x2x4

1 + x4| | −
y2y4

1 + y4

∣∣∣∣ ∣∣∣∣< c (15)

Therefore, Eq. 14 can be further relaxed as:

_V≤ 2p − 1( )e12 − e2
2 − e3

2

+ 2 1.5e1 − 2e2 + 3e3| |
+ 2 2.9e1 + 1.2e2 − 20e3| |
+ 2 0.7e1 + 0.1e3| |
+ cbke2| |

≤ 2p − 1( )e12 − e2
2 − e3

2

+ 10.2 e1| | + 6.4 + cbk| |( ) e2| | + 46.2 e3| |
≤ 2p − 1( ) e1| | − 5.1

1 − 2p
( )2

− 5.12

2p − 1

− e2| | − 6.4 + cbk| |
2

( )2

+ 6.4 + cbk| |
2

( )2

− e3| | − 23.1( ) + 23.12

(16)
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Therefore, when 2p − 1 < 0 holds, Eq. 13 is ultimately uniformly
bounded.

5.2 Simulink simulation

The schematic diagram of Simulink experiment is shown in
Figure 9 and let the system parameters be a = 2.1, b = 0.1,m = 2, n =
1.9, k = 0.1. By building a Simlulink model, the coupling
synchronization model described by Eq. 11 can be easily
simulated. When the coupling strength p = −1, the simulation
results are shown in Figures 10, 11. Figure 11 shows that after
the two sub-memristive HNNs are coupled, the difference between
the potentials on the corresponding neurons quickly drops to near
zero. Figure 10 is the time domain diagram of the potentials on
neuron 1 of the two sub-networks, which shows that they
match well.

6 Conclusion

This paper has investigated the nonlinear dynamics and
applications of a new non-volatile magnetic-controlled
memristor. It is demonstrated that the memristor can
simulate the effect of electromagnetic radiation on neuronal
membrane flux. By introducing this memristor to a 3D HNN, a
4D MHNN under electromagnetic radiation is constructed. By
plotting phase diagrams, bifurcation diagrams, basins of
attraction and 01 tests, a series of complex chaotic

phenomena are found, including memristor-controlled multi-
scroll chaotic attractors, symmetric bifurcation behaviors,
initial offset boosting coexistence. Through equilibrium point
analysis, the mechanisms behind them are explained. Finally, a
dual MHNN coupling synchronization model simulating the
inter-brain region synchronization of the human brain is
proposed. By constructing a Lyapunov function for the error,
this coupling synchronization scheme is proved to be ultimately
bounded. By building a Simulink model, we verify the feasibility
of this synchronization scheme by simulation experiments. This
study contributes to the understanding of memristive systems,
synchronization of brain regions and their potential
applications in engineering.
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Simulink schematic diagram.

FIGURE 10
Time domain diagram of the membrane potential of two
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FIGURE 11
Membrane potential difference of subnetwork over time.

Frontiers in Physics frontiersin.org10

Fu et al. 10.3389/fphy.2023.1252568

94

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1252568


Funding

This paper was supported by the Integrated Innovation Project
of the Group Company under Grant 2023-JC-13.

Conflict of interest

SF, XW, and XC were employed by the Aircraft Technology
Branch of Hunan Aerospace Co., Ltd. SF and HG were
employed by the China Aerospace Science and Industry
Corporation.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol (1952) 117:500–44. doi:10.
1113/jphysiol.1952.sp004764

2. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating
nerve axon. Proc IRE (1962) 50:2061–70. doi:10.1109/jrproc.1962.288235

3. Deng Z, Wang C, Lin H, Sun Y. A memristive spiking neural network circuit with
selective supervised attention algorithm. IEEE Trans Computer-Aided Des Integrated
Circuits Syst (2022) 42:2604–17. doi:10.1109/TCAD.2022.3228896

4. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural networks
(2003) 14:1569–72. doi:10.1109/tnn.2003.820440

5. Hindmarsh JL, Rose R. Amodel of neuronal bursting using three coupled first order
differential equations. Proc R Soc Lond Ser B. Biol Sci (1984) 221:87–102. doi:10.1098/
rspb.1984.0024

6. Chua LO, Yang L. Cellular neural networks: Theory. IEEE Trans circuits Syst (1988)
35:1257–72. doi:10.1109/31.7600

7. Chen Z, Liang Q, Wei Z, Chen X, Shi Q, Yu Z, et al. An overview of in vitro
biological neural networks for robot intelligence. Cyborg Bionic Syst (2023) 4:0001.
doi:10.34133/cbsystems.0001

8. Hopfield JJ. Neurons with graded response have collective computational
properties like those of two-state neurons. Proc Natl Acad Sci (1984) 81:3088–92.
doi:10.1073/pnas.81.10.3088

9. Lin H, Wang C, Yu F, Hong Q, Xu C, Sun Y. A triple-memristor hopfield neural
network with space multi-structure attractors and space initial-offset behaviors. IEEE
Trans Computer-Aided Des Integrated Circuits Syst (2023) 1. doi:10.1109/TCAD.2023.
3287760

10. Xu Q, Wang Y, Iu HH-C, Wang N, Bao H. Locally active memristor-based
neuromorphic circuit: Firing pattern and hardware experiment. IEEE Trans Circuits
Syst Regular Pap (2023) 70:3130–41. doi:10.1109/TCSI.2023.3276983

11. Pu Y-F, Yi Z, Zhou J-L. Fractional hopfield neural networks: Fractional dynamic
associative recurrent neural networks. IEEE Trans Neural Networks Learn Syst (2017)
28:2319–33. doi:10.1109/tnnls.2016.2582512

12. Danca M-F, Kuznetsov N. Hidden chaotic sets in a Hopfield neural system.
Solitons and Fractals (2017) 103:144–50. doi:10.1016/j.chaos.2017.06.002

13. Yu F, Yu Q, Chen H, Kong X, Mokbel AAM, Cai S, et al. Dynamic analysis and
audio encryption application in iot of a multi-scroll fractional-order memristive
hopfield neural network. Fractal and Fractional (2022) 6:370. doi:10.3390/
fractalfract6070370

14. Lai Q, Wan Z, Zhang H, Chen G. Design and analysis of multiscroll memristive
hopfield neural network with adjustable memductance and application to image
encryption. IEEE Trans Neural Networks Learn Syst (2022) 2022:1. doi:10.1109/
tnnls.2022.3146570

15. Yu F, Shen H, Yu Q, Kong X, Sharma PK, Cai S. Privacy protection of medical data
based on multi-scroll memristive hopfield neural network. IEEE Trans Netw Sci Eng
(2023) 10:845–58. doi:10.1109/tnse.2022.3223930

16. Wan Q, Li F, Chen S, Yang Q. Symmetric multi-scroll attractors in magnetized
Hopfield neural network under pulse controlled memristor and pulse current
stimulation. Solitons and Fractals (2023) 169:113259. doi:10.1016/j.chaos.2023.113259

17. Yu F, Chen H, Kong X, Yu Q, Cai S, Huang Y, et al. Dynamic analysis and
application in medical digital image watermarking of a new multi-scroll neural network
with quartic nonlinear memristor. The Eur Phys J Plus (2022) 137:434. doi:10.1140/epjp/
s13360-022-02652-4

18. Chen C, Min F, Hu F, Cai J, Zhang Y. Analog/digital circuit simplification for
Hopfield neural network. Solitons and Fractals (2023) 173:113727. doi:10.1016/j.chaos.
2023.113727

19. Chen C, Min F, Zhang Y, Bao H. ReLU-type Hopfield neural network with analog
hardware implementation. Solitons and Fractals (2023) 167:113068. doi:10.1016/j.
chaos.2022.113068

20. Chua L. Memristor-the missing circuit element. IEEE Trans Circuit Theor (1971)
18:507–19. doi:10.1109/tct.1971.1083337

21. Xu Q, Wang Y, Chen B, Li Z, Wang N. Firing pattern in a memristive
Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation.
Solitons and Fractals (2023) 172:113627. doi:10.1016/j.chaos.2023.113627

22. Liu X, Mou J, Zhang Y, Cao Y. A new hyperchaotic map based on discrete
memristor and meminductor: Dynamics analysis, encryption application, and
dsp implementation. IEEE Trans Ind Elect (2023) 2023:1–10. doi:10.1109/TIE.
2023.3281687

23. Yu F, Xu S, Xiao X, Yao W, Huang Y, Cai S, et al. Dynamics analysis, fpga
realization and image encryption application of a 5d memristive exponential
hyperchaotic system. Integration (2023) 90:58–70. doi:10.1016/j.vlsi.2023.01.006

24. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, LuW. Nanoscale memristor
device as synapse in neuromorphic systems. Nano Lett (2010) 10:1297–301. pMID:
20192230. doi:10.1021/nl904092h

25. Chen C, Chen J, Bao H, Chen M, Bao B. Coexisting multi-stable patterns in
memristor synapse-coupled hopfield neural network with two neurons. Nonlinear Dyn
(2019) 95:3385–99. doi:10.1007/s11071-019-04762-8

26. Eftekhari L, Amirian MM. Stability analysis of fractional order memristor
synapse-coupled hopfield neural network with ring structure. Cogn Neurodynamics
(2023) 17:1045–59. doi:10.1007/s11571-022-09844-9

27. Huang L-L, Zhang Y, Xiang J-H, Liu J. Extreme multistability in a hopfield neural
network based on two biological neuronal systems. IEEE Trans Circuits Syst Express
Briefs (2022) 69:4568–72. doi:10.1109/tcsii.2022.3183340

28. Lin H, Wang C, Yu F, Sun J, Du S, Deng Z, et al. A review of chaotic systems based
on memristive hopfield neural networks. Mathematics (2023) 11:1369. doi:10.3390/
math11061369

29. Leng Y, Yu D, Hu Y, Yu SS, Ye Z. Dynamic behaviors of hyperbolic-type
memristor-based Hopfield neural network considering synaptic crosstalk. Interdiscip
J Nonlinear Sci (2020) 30:033108. doi:10.1063/5.0002076

30. Chen C, Min F, Zhang Y, Bao B. Memristive electromagnetic induction effects on
hopfield neural network. Nonlinear Dyn (2021) 106:2559–76. doi:10.1007/s11071-021-
06910-5

31. Chen M, Chen C-j., Bao B-c., Xu Q. Multi-stable patterns coexisting in memristor
synapse-coupled hopfield neural network. In: Mem-elements for neuromorphic circuits
with artificial intelligence applications. Amsterdam, Netherlands: Elsevier (2021).
p. 439–59.

32. Hu Z, Wang C. Hopfield neural network with multi-scroll attractors and
application in image encryption. Multimedia Tools Appl (2023) 2023. doi:10.1007/
s11042-023-15670-w

33. Lin H, Wang C, Tan Y. Hidden extreme multistability with hyperchaos and
transient chaos in a hopfield neural network affected by electromagnetic radiation.
Nonlinear Dyn (2020) 99:2369–86. doi:10.1007/s11071-019-05408-5

34. Wan Q, Yan Z, Li F, Liu J, Chen S. Multistable dynamics in a hopfield neural
network under electromagnetic radiation and dual bias currents. Nonlinear Dyn (2022)
109:2085–101. doi:10.1007/s11071-022-07544-x

35. Zhang S, Zheng J, Wang X, Zeng Z, He S. Initial offset boosting coexisting
attractors in memristive multi-double-scroll hopfield neural network. Nonlinear Dyn
(2020) 102:2821–41. doi:10.1007/s11071-020-06072-w

36. Yu F, Kong X, Mokbel AAM, Yao W, Cai S. Complex dynamics, hardware
implementation and image encryption application of multiscroll memeristive hopfield

Frontiers in Physics frontiersin.org11

Fu et al. 10.3389/fphy.2023.1252568

95

https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/jrproc.1962.288235
https://doi.org/10.1109/TCAD.2022.3228896
https://doi.org/10.1109/tnn.2003.820440
https://doi.org/10.1098/rspb.1984.0024
https://doi.org/10.1098/rspb.1984.0024
https://doi.org/10.1109/31.7600
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1109/TCAD.2023.3287760
https://doi.org/10.1109/TCAD.2023.3287760
https://doi.org/10.1109/TCSI.2023.3276983
https://doi.org/10.1109/tnnls.2016.2582512
https://doi.org/10.1016/j.chaos.2017.06.002
https://doi.org/10.3390/fractalfract6070370
https://doi.org/10.3390/fractalfract6070370
https://doi.org/10.1109/tnnls.2022.3146570
https://doi.org/10.1109/tnnls.2022.3146570
https://doi.org/10.1109/tnse.2022.3223930
https://doi.org/10.1016/j.chaos.2023.113259
https://doi.org/10.1140/epjp/s13360-022-02652-4
https://doi.org/10.1140/epjp/s13360-022-02652-4
https://doi.org/10.1016/j.chaos.2023.113727
https://doi.org/10.1016/j.chaos.2023.113727
https://doi.org/10.1016/j.chaos.2022.113068
https://doi.org/10.1016/j.chaos.2022.113068
https://doi.org/10.1109/tct.1971.1083337
https://doi.org/10.1016/j.chaos.2023.113627
https://doi.org/10.1109/TIE.2023.3281687
https://doi.org/10.1109/TIE.2023.3281687
https://doi.org/10.1016/j.vlsi.2023.01.006
https://doi.org/10.1021/nl904092h
https://doi.org/10.1007/s11071-019-04762-8
https://doi.org/10.1007/s11571-022-09844-9
https://doi.org/10.1109/tcsii.2022.3183340
https://doi.org/10.3390/math11061369
https://doi.org/10.3390/math11061369
https://doi.org/10.1063/5.0002076
https://doi.org/10.1007/s11071-021-06910-5
https://doi.org/10.1007/s11071-021-06910-5
https://doi.org/10.1007/s11042-023-15670-w
https://doi.org/10.1007/s11042-023-15670-w
https://doi.org/10.1007/s11071-019-05408-5
https://doi.org/10.1007/s11071-022-07544-x
https://doi.org/10.1007/s11071-020-06072-w
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1252568


neural network with a novel local active memeristor. IEEE Trans Circuits Syst Express
Briefs (2023) 70:326–30. doi:10.1109/tcsii.2022.3218468

37. Lai Q, Wan Z, Kuate PDK. Generating grid multi-scroll attractors in memristive
neural networks. IEEE Trans Circuits Syst Regular Pap (2023) 70:1324–36. doi:10.1109/
tcsi.2022.3228566

38. Wang C, Liu X, Xia H. Multi-piecewise quadratic nonlinearity memristor and its
2 n-scroll and 2 n+ 1-scroll chaotic attractors system. Chaos (2017) 27:033114. doi:10.
1063/1.4979039

39. Xia X, Zeng Y, Li Z. Coexisting multiscroll hyperchaotic attractors generated from
a novel memristive jerk system. Pramana (2018) 91:82–14. doi:10.1007/s12043-018-
1657-3

40. Zhang S, Zheng J, Wang X, Zeng Z. Multi-scroll hidden attractor in memristive hr
neuron model under electromagnetic radiation and its applications. Chaos (2021) 31:
011101. doi:10.1063/5.0035595

41. Lin H, Wang C, Sun Y, Wang T. Generating n-scroll chaotic attractors from a
memristor-based magnetized hopfield neural network. IEEE Trans Circuits Syst Express
Briefs (2023) 70:311–5. doi:10.1109/tcsii.2022.3212394

42. Adhikari SP, Sah MP, Kim H, Chua LO. Three fingerprints of memristor. IEEE
Trans Circuits Syst Regular Pap (2013) 60:3008–21. doi:10.1109/tcsi.2013.2256171

43. Lin H, Wang C, Deng Q, Xu C, Deng Z, Zhou C. Review on chaotic dynamics of
memristive neuron and neural network. Nonlinear Dyn (2021) 106:959–73. doi:10.
1007/s11071-021-06853-x

44. Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat
Rev Neurosci (2011) 12:105–18. doi:10.1038/nrn2979

45. Tan F, Zhou L, Lu J, Quan H, Liu K. Adaptive quantitative control for finite time
synchronization among multiplex switched nonlinear coupling complex networks. Eur
J Control (2023) 70:100764. doi:10.1016/j.ejcon.2022.100764

46. Zhang C, Yan L, Gao Y, Wang W, Li K, Wang D, et al. A new adaptive iterative
learning control of finite-time hybrid function projective synchronization for unknown
time-varying chaotic systems. Front Phys (2023) 11:1127884. doi:10.3389/fphy.2023.
1127884

47. Yao W, Wang C, Sun Y, Gong S, Lin H. Event-triggered control for robust
exponential synchronization of inertial memristive neural networks under
parameter disturbance. Neural Networks (2023) 164:67–80. doi:10.1016/j.
neunet.2023.04.024

48. Zhou L, Huang M, Tan F, Zhang Y. Mean-square bounded
synchronization of complex networks under deception attacks via pinning
impulsive control. Nonlinear Dyn (2023) 111:11243–59. doi:10.1007/s11071-
023-08448-0

49. Lin L, Zhuang Y, Xu Z, Yang D, Wu D. Encryption algorithm based on fractional
order chaotic system combined with adaptive predefined time synchronization. Front
Phys (2023) 11:1202871. doi:10.3389/fphy.2023.1202871

50. Ma M-L, Xie X-H, Yang Y, Li Z-J, Sun Y-C. Synchronization coexistence in a
rulkov neural network based on locally active discrete memristor. Chin Phys B (2023)
32:058701. doi:10.1088/1674-1056/acb9f7

51. Xu Q, Liu T, Ding S, Bao H, Li Z, Chen B. Extreme multistability and phase
synchronization in a heterogeneous bi-neuron rulkov network with memristive
electromagnetic induction. Cogn Neurodynamics (2023) 17:755–66. doi:10.1007/
s11571-022-09866-3

52. Zhang C, Zhang C, Zhang X, Wang F, Liang Y. Dynamic event-triggered
control for intra/inter-layer synchronization in multi-layer networks. Commun
Nonlinear Sci Numer Simulation (2023) 119:107124. doi:10.1016/j.cnsns.2023.
107124

53. Yu Y, Xiang L, Liu B, Xia C. Moment-based analysis of pinning synchronization in
complex networks with sign inner-coupling configurations. Front Phys (2023) 11:
1179469. doi:10.3389/fphy.2023.1179469

54. Zhou L, Lin H, Tan F. Fixed/predefined-time synchronization of coupled
memristor-based neural networks with stochastic disturbance. Solitons and Fractals
(2023) 173:113643. doi:10.1016/j.chaos.2023.113643

55. Yao W, Wang C, Sun Y, Zhou C. Robust multimode function synchronization of
memristive neural networks with parameter perturbations and time-varying delays.
IEEE Trans Syst Man, Cybernetics: Syst (2020) 52:260–74. doi:10.1109/tsmc.2020.
2997930

Frontiers in Physics frontiersin.org12

Fu et al. 10.3389/fphy.2023.1252568

96

https://doi.org/10.1109/tcsii.2022.3218468
https://doi.org/10.1109/tcsi.2022.3228566
https://doi.org/10.1109/tcsi.2022.3228566
https://doi.org/10.1063/1.4979039
https://doi.org/10.1063/1.4979039
https://doi.org/10.1007/s12043-018-1657-3
https://doi.org/10.1007/s12043-018-1657-3
https://doi.org/10.1063/5.0035595
https://doi.org/10.1109/tcsii.2022.3212394
https://doi.org/10.1109/tcsi.2013.2256171
https://doi.org/10.1007/s11071-021-06853-x
https://doi.org/10.1007/s11071-021-06853-x
https://doi.org/10.1038/nrn2979
https://doi.org/10.1016/j.ejcon.2022.100764
https://doi.org/10.3389/fphy.2023.1127884
https://doi.org/10.3389/fphy.2023.1127884
https://doi.org/10.1016/j.neunet.2023.04.024
https://doi.org/10.1016/j.neunet.2023.04.024
https://doi.org/10.1007/s11071-023-08448-0
https://doi.org/10.1007/s11071-023-08448-0
https://doi.org/10.3389/fphy.2023.1202871
https://doi.org/10.1088/1674-1056/acb9f7
https://doi.org/10.1007/s11571-022-09866-3
https://doi.org/10.1007/s11571-022-09866-3
https://doi.org/10.1016/j.cnsns.2023.107124
https://doi.org/10.1016/j.cnsns.2023.107124
https://doi.org/10.3389/fphy.2023.1179469
https://doi.org/10.1016/j.chaos.2023.113643
https://doi.org/10.1109/tsmc.2020.2997930
https://doi.org/10.1109/tsmc.2020.2997930
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1252568


A novel grid multi-structure
chaotic attractor and its
application in medical image
encryption
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Grid multi-scroll/wing chaotic systems are complex non-linear dynamic systems,
which are widely used in secure communication. The grid multi-scroll/wing
chaotic systems are usually realized by using the function control method,
which has a complex realization method, many control parameters, and a
simple unit attractor structure. In this paper, based on the Hopfield neural
network, a memristive Hopfield neural network model is proposed by using
the memristor synapse control method. The model can generate novel grid
multi-structure chaotic attractors, which have the characteristics of a simple
implementation method, few control parameters, and complex unit
attractor structure. Firstly, the generation mechanism of the grid multi-
structure chaotic attractors is analyzed by the equilibrium points and
stability. Secondly, its basic dynamical characteristics including the
Lyapunov exponent spectrum, fractal dimension, time series, power
spectrum, bifurcation diagram, and Poincaré section are analyzed. Thirdly,
an analog circuit of the neural network model is designed and realized by
Multisim. Finally, combined with the chaos encryption principle, an image
encryption scheme is designed based on the generated grid multi-structure
attractors. Experimental results show that compared with the existing
schemes, the proposed scheme has larger information entropy, higher key
sensitivity, and a good application prospect.

KEYWORDS

multi-structure attractor, memristor, Hopfield neural network, image encryption, circuit
implementation

1 Introduction

Chaos theory is an important discovery of human natural science in the 20th century and
has been widely concerned in the fields of non-linear circuits, neural networks, information
security, and so on [1–3]. Chaotic attractors are the core of chaos theory, which corresponds
to themotion of a disordered steady state in a chaotic system. Since Lorenz [4] discovered the
first double-wing attractor in 1962, the construction of complex attractors in chaotic systems
has been an important topic in the field of chaos research. After years of exploration, many
chaotic systems with different types of attractors have been discovered [5–8], but a complete
theoretical model has not yet been developed. The study of chaotic attractors is a very
important and key link in the study of chaos theory. From the whole research process, the
study of chaotic attractors has just started, and more chaotic attractors are still to be explored
and discovered. Furthermore, the wide application of chaotic signals generated by chaotic
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attractors in the field of information security is another reason that
attracts many researchers.

At present, there are three types of chaotic attractors found at
home and abroad: 1) Self-excited attractors and hidden attractors.
The chaotic attractors discovered earlier are closely related to the
unstable equilibrium point of the system and are called self-excited
attractors, such as the classical Lorenz attractors [4], Chua’s
attractors [9], Chen attractors [10], Lv attractors [11] and so on
[12–16]. With the deepening of research on self-excited attractors,
some scholars have found that there is an attractor basin of chaos
that does not intersect with any open small neighborhood of the
equilibrium point of the system, which is called a hidden attractor
[17]. In recent years, various hidden attractors have been proposed,
such as the hidden attractor of no equilibrium point [18], the hidden
attractor of a stable equilibrium point [19], and the hidden attractor
of infinite equilibrium points [20]. 2) transient chaotic attractors,
chaotic attractors, and hyperchaotic attractors. Chaotic systems can
be characterized by the Lyapunov exponent, and chaotic attractors
can be divided into different types according to the maximum
Lyapunov exponent spectrum. In general, a transient chaotic
attractor is defined as the existence of a positive Lyapunov
exponent in finite time [21]. The attractor has a positive
Lyapunov exponent in infinite time and is called a chaotic
attractor. Hyperchaotic attractors are defined as the simultaneous
existence of two or more positive Lyapunov exponents in infinite
time [22]. In the past few decades, the research on transient chaotic
attractors, chaotic attractors, and hyperchaotic attractors has been
fruitful [23–25]. 3) Double scroll/wing attractor, multi-scroll/wing
attractor, and grid multi-scroll/wing attractor. Double scroll/wing
attractors are classical chaotic attractors with special scroll and
dynamic trajectories of butterfly wings. Many simple chaotic
systems can produce double scroll/wing attractors, such as
Chua’s system, Lorenz system, Sprott system [26], Jerk circuit
[27], and so on [28, 29]. With the deepening of research on
double scroll/wing attractors, various functions such as periodic
function [30], piecewise linear function [31], and multistage logic
pulse function [32] have been used to expand double scroll/wing
attractors in multiple directions to generate multi-scroll/wing
attractors [33–35] and grid multi-scroll/wing attractors [36–38].
Among them, the grid multi-scroll/wing attractor has flexible
adjustability and high complexity and has a very broad
application prospect in secure communication and chaos control
[39, 40], so it has become a research hotspot in academia.

The artificial neural network is a kind of non-linear system with
complex dynamic characteristics [41, 42]. In recent years, the study
of neural network dynamics has gradually become a new research
hotspot in the intersection of physics, mathematics, computer
science, and neuroscience [43–45]. Among them, Hopfield neural
network is a complex non-linear system with chaotic behaviors [46].
Due to its chaotic characteristic, various Hopfield neural network
models with different neurons and synaptic weights have been
proposed and analyzed [47–50]. In particular, memristive
Hopfield neural networks have attracted much attention because
of their complex chaotic behavior and potential applications in
image encryption. For example, Lin et al. [51] constructed a
memristive Hopfield neural network with an arbitrary number of
scroll attractors. Yu et al. [52, 53] designed two different memristive
Hopfield neural networks which can generate multi-double-scroll

attractors. Furthermore, Lai et al. [54] proposed a memristive
Hopfield neural network with grid multi-scroll attractors.
Meanwhile, the memristive neural network is used to design an
image encryption scheme. Although the grid multi-scroll/wing
attractor has excellent characteristics, the existing grid multi-
scroll/wing attractor implementation methods are complex, the
unit structure is simple, and the control parameters are many,
and the exploration in recent years seems to indicate that the
research of grid multi-scroll/wing attractor is difficult to make
updated progress.

To solve these problems, this paper proposes a new method
for the generation of novel grid multi-structure chaotic attractors
controlled by memristor synapses based on the Hopfield neural
network. This method is based on the neural network with
complex dynamic characteristics, which successfully gets rid of
the scroll/wing attractor unit structure, and makes it appear a
more complex and changeable chaotic attractor unit structure. In
addition, only two memristor synaptic control parameters are
needed to adjust the grid size of the chaotic attractor. The basic
dynamic characteristics of the new grid multi-structure attractor
are studied by theoretical analysis and numerical simulation. At
the same time, the existence of the attractor is verified from the
aspect of the circuit. Finally, a scheme of grid multi-structure
attractor image encryption is designed based on chaotic
encryption theory. The experimental results show that the
chaotic attractor exhibits complex dynamic characteristics, so
it has better encryption performance and effect in image
encryption.

The rest of this paper is organized as follows. Section 2
constructs a memristive Hopfield neural network. Section 3
analyzes the dynamical behaviors of the neural network. Section
4 designs and implements an analog neural network circuit. Section
5 designs a medical image encryption scheme. Section 6 concludes
the article.

2 Construction of grid multi-structure
attractors

2.1 Introduction of memristor and Hopfield
neural network

A memristor is a non-linear circuit element with synaptic
memory properties [55], often described in terms of voltage and
current relationships. In this paper, a multi-piecewise non-linear
flux-controlled memristor model is introduced [51], which can be
expressed as

i � a + bφ( )v
_φ � cv − dh φ( ){ (1)

where a, b, c, and d represent the four positive parameters of the
memristor, and W(φ) = (a + bφ) represents the memristor
conductance associated with the memristor state variable φ. In
addition, h(φ) is the internal state variable function of the
memristor, which can be expressed as

h φ( ) � h1 φ( )
h2 φ( ){ (2)
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where

h1 φ( ) �
φ, N � 0

φ −∑N
i�1

sgn φ + 2i − 1( )( ) + sgn φ − 2i − 1( )( )( )
N � 1, 2, 3, . . .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

h2 φ( ) �
φ − sgn φ( ),M � 0

φ − sgn φ( ) −∑M
j�1

sgn φ + 2j( ) + sgn φ − 2j( )( )
M � 1, 2, 3, . . .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4)

the sgn(.) is a symbolic function, N and whereM are the two control
parameters of the memristor. To verify that the above mathematical
model is a memristor model, consider the case when N = 3. With
fixedmemristor parameters a = 1, b = 0.05, c = 2.2, d = 1.2, φ0 = 0, the
pinched hysteresis loop of the memristor is simulated by MATLAB
R2017a when sinusoidal voltage v = Asin(2πFt) is applied at both
ends of the memristor. The simulation results are shown in Figure 1.
Under different excitation amplitude A, the pinched hysteresis loop
of the model always passes through the origin of the voltage and
current plane. With the increase of voltage frequency F, the area of
the pinched hysteresis loop of the memristor decreases gradually.
When the voltage frequency increases to infinity, the pinched
hysteresis loop shrinks to a one-valued function. In summary,
the proposed mathematical model satisfies the three
characteristics of the memristor and is a memristor model.

The Hopfield neural network can produce complex chaotic
phenomena and is a classical model for studying chaotic
dynamics. A Hopfield neural network with n neurons can be
expressed as [46]

Ci _vi � − vi
Ri

+∑n
j�1
wijtanh vj( ) + Ii i, j ∈ N*( ) (5)

where, Ci, vi, and Ri respectively represent the membrane
capacitance, membrane voltage and membrane resistance of
neuron i. wij represents the synaptic connection weight from
neuron j to neuron i, and tanh(.) is the neuronal activation
function. In addition, Ii represents the external bias current of
the neuron. Generally speaking, the dynamic behavior of the
Hopfield neural network is closely related to its synaptic weight
coefficient. According to neural network model (Eq. 5), a Hopfield
neural network model with four neurons is constructed by selecting

appropriate synaptic weight coefficients, let Ci = 1, Ri = 1, Ii = 0, and
its expression is as follows

_x1 � −x1 + 3tanh x2( ) + 3tanh x3( ) − 13tanh x4( )
_x2 � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − 5tanh x4( )
_x3 � −x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( )
_x4 � −x4 + 0.7tanh x1( ) + 2tanh x4( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(6)

where xi (i = 1, 2, 3, 4) is the membrane voltage of neuron i.

2.2 Construction of single-directional multi-
structure attractors

Memristors have synaptic memory and programmability and
can be used to simulate neural synapses [55]. When replacing the
resistive synapses between neuron 3 and neuron 1 in the neural
network (6) with the multi-piecewise non-linear memristor (1)
described above, a memristive Hopfield neural network can be
constructed as follows

_x1 � −x1 + 3tanh x2( ) + ρW φ( )tanh x3( ) − 13tanh x4( )
_x2 � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − 5tanh x4( )
_x3 � −x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( )
_x4 � −x4 + 0.7tanh x1( ) + 2tanh x4( )
_φ � ctanh x3( ) − dh φ( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

where, ρ represents the memristor synaptic coupling strength,
ρW(φ) = ρ(a + bφ) represents the memristor synaptic coupling
weight.

When a = 1, b = 0.01, c = 2.2, d = 1.2, ρ = 3, the initial value (0.1,
0.1, 0.1, 0.1, 0.1), the system in theρ-axis can produce n structure
attractor. Taking N = 3 and M = 3 respectively, the numerical

FIGURE 1
Pinched hysteresis loop characteristics of the memristor. (A) F =
0.1. (B) A = 4.

FIGURE 2
Multi-structure chaotic attractor of system (7). (A) 7-structure
attractor on the φ-x1 plane. (B) 7-structure attractor on the φ-x2 plane.
(C) 8-structure attractor on the φ-x3 plane. (D) 8-structure attractor
on the φ-x4 plane.
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simulation results of 7-structure chaotic attractor and 8-structure
chaotic attractor are obtained according to the system (7), as shown
in Figure 2. From the attractor substructure in Figure 2, it is not
difficult to find that, unlike the multi-scroll/wing chaotic attractor,
the multi-structure chaotic attractor contains the unit structure
attractor with multiple trajectory-disorder, rather than the
conventional scroll/wing.

2.3 Construction of grid multi-structure
attractors

Further studies show that the chaotic attractor can be
reconstructed and expanded in different directions by using other
synapses in the same type of multi-segment non-linear memristor
synaptic replacement system (7), and the grid multi-structure
chaotic attractor can be constructed. The system model is as follows

_x1 � −x1 + 3tanh x2( ) + ρ1W φ1( )tanh x3( ) − 13tanh x4( )
_x2 � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − ρ2W φ2( )tanh x4( )
_x3 � −x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( )
_x4 � −x4 + 0.7tanh x1( ) + 2tanh x4( )
_φ1 � ctanh x3( ) − dh φ1( )
_φ2 � ctanh x4( ) − dh φ2( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where ρi represents the memristor synaptic coupling strength,
ρiW(φi) = ρi(a + bφi) represents the memristor synaptic coupling
weight.

Select a = 1, b = 0.01, c = 2.2, d = 1.2, ρ1 = 3, ρ2 = 5, and the initial
value is (0.1, 0.1, 0.1, 0.1, 0.1). By taking different memristor control
parameters Ni and Mi, the n × m grid multi-structure chaotic
attractor can be obtained from system (8), as shown in Figure 3.

Obviously, by controlling the two control parameters of the two
memristor synapses, a grid multi-structure chaotic attractor of
arbitrary size can be obtained, as shown in Table 1. Therefore,
compared with the existing multi-parameter function control
methods of grid multi-scroll/wing chaotic attractors [30–32], the
proposed control method of grid multi-structure chaotic
attractors is greatly simplified. In addition, by comparing the
structure of system (7) and system (8), we can see that: Only one
memristor synapse is introduced in system (7), so that the
attractor expands horizontally in the direction of introducing
the magnetic flux variable φ, while system (8) introduces two
memristor synapses at the same time, so that the attractor
expands simultaneously in both directions of the magnetic
flux variable φ1 and the magnetic flux variable φ2, thus
forming a more complex grid multi-structure chaotic attractor.
This is a phenomenon that has not been seen in many chaotic
structures before.

3 Basic dynamics analysis

In this section, the dynamic generation mechanism and chaotic
characteristics of system (8) are analyzed by dynamic analysis
method and numerical simulation.

3.1 Equilibrium points and their stabilities

The equilibrium point is a necessary condition for the
generation of self-excited chaos, which can reveal the formation
mechanism of chaos attractor from the system level. If the right-
hand side of Eq. 8 is equal to 0, the equilibrium state equation of the
system can be obtained as follows

−x1 + 3tanh x2( ) + ρ1W φ1( )tanh x3( ) − 13tanh x4( ) � 0
−x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − ρ2W φ2( )tanh x4( ) � 0
−x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( ) � 0
−x4 + 0.7tanh x1( ) + 2tanh x4( ) � 0
ctanh x3( ) − dh φ1( ) � 0
ctanh x4( ) − dh φ2( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Equation 9 is a sixth-order equation, using the MATLAB
platform to solve the equilibrium point by graphical analysis
method. To have resistance control parameters N1 = N2 = 1 as
an example, set a = 1, b = 0.01, c = 2.2, d = 1.2, ρ1 = 3, ρ2 = 5, Eq. 9 can
be converted to

FIGURE 3
Grid multi-structure chaotic attractor of system (8). (A) 3 × 3-
structure attractor (N1 = 1,N2 = 1). (B) 3 × 4-structure attractor (N1 = 1,
M2 = 1). (C) 4 × 5-structure attractor (M1 = 1,N2 = 2). (D) 5 × 5-structure
attractor (N1 = 2, N2 = 2).

TABLE 1 Relation between memristor synaptic control parameters and grid
attractors.

N1/M1 φ1 (n) N2/M2 φ2 (m)

0 1/2 0 1/2

1 3/4 1 3/4

2 5/6 2 5/6

. . . . . . . . . . . .

N/M (2N + 1)/(2M + 2) N/M (2N + 1)/(2M + 2)
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x3 � atanh dh φ1( )/c( )
x4 � atanh dh φ2( )/c( )
x1 � atanh x4 − 2tanh x4( )( )/0.7( )
x2 � atanh −x3 + 1.8tanh x3( ) + 4tanh x4( )( )/4( )
f1 φ1 ,φ2( ) � −x1 + 3tanh x2( ) + ρ1W φ1( )tanh x3( ) − 13tanh x4( ) � 0
f2 φ1 ,φ2( ) � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − ρ2W φ2( )tanh x4( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(10)

The functions f1 and f2 are drawn inMATLAB R2017a, as shown
in Figure 4, where f1 is represented by a green curve and f2 by a red
curve. It can be observed from the figure that f1 and f2 have
25 intersection points in different positions, that is, the system
(8) has 25 equilibrium points at this time. Near the equilibrium
point, the Jacobian matrix of the system can be expressed as

J �

−1 3m2 ρ1W φ1( )m3 −13m4 ρ1btanh x3( ) 0
−m1 −1 + 1.5m2 7m3 −ρ2W φ2( )m4 0 −ρ2btanh x4( )
0 −4m2 −1 + 1.8m3 4m4 0 0

0.7m1 0 0 −1 + 2m4 0 0
0 0 cm3 0 −dh′ φ1( ) 0
0 0 0 cm4 0 −dh′ φ2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where mi = sech2(xi), i = 1, 2, 3, 4. Through numerical calculation,
these 25 equilibrium points have three different stability, namely,
unstable saddle coke of indicator 4 (yellow), unstable saddle coke of
indicator 5 (blue), and unstable saddle coke of indicator 6 (black), as
shown in Table 2. Obviously, system (8) generates 9 single structure
attractors in the neighborhood of 9 unstable saddle focal points with
index-4, 10 unstable saddle focal points with index-5 produce bond
bands in the direction of φ1 and φ2, and 4 unstable saddle focal
points with index-6 play a role in strengthening the connection in
the diagonal direction. Finally, under the action of 25 unstable

equilibrium points, a 3 × 3 grid multi-structure chaotic attractor
phenomenon is generated, as shown in Figure 4. A large number of
simulation results show that with the increase of the control
parameters N1/M1 and N2/M2 of the two memristic synapses, the
equilibrium point of the system will gradually expand along the φ1
and φ2 axes, resulting in a larger number of grid multi-structure
chaotic attractors on the φ1-φ2 phase plane.

3.2 Lyapunov exponents and Kaplan-Yorke
dimension

Lyapunov exponent spectrum analysis is an important method
to study the dynamical characteristics of chaotic systems. It reveals
the chaotic characteristics of the system from the perspective of the
average exponential rate of convergence or divergence between
adjacent orbits in the phase space of the system. Under the
condition of multi-structure attractor generation in a 3 × 3 grid,
six Lyapunov indices of the system were obtained by using the
Wolf’s Jacobian-based method, as shown in Figure 5. Where L1 =
0.2146, L2 = 0.0015, L3 = −0.2608, L4 = −0.5047, L5 = −1.201,
L6 = −1.202. Obviously, it is not difficult to find that system (8) has a
positive Lyapunov exponent; a Lyapunov exponent is approaching 0;
The sum of all Lyapunov exponents is negative. Therefore, under
these conditions, the system is chaotic. The Kaplan-Yorke
dimension corresponding to its Lyapunov index is

DKY � j + 1

Lj+1
∣∣∣∣ ∣∣∣∣∑

j

i�1
Li � 2 + L1 + L2

L3| | � 2.8286 (12)

Obviously, the Kaplan-Yorke dimension of the system is
fractional, which further proves that the grid multi-structure
attractors generated by the system are chaotic.

FIGURE 4
Function f1 and f2 curves, equilibrium point, and superposition
diagram of 3 × 3 structure attractor.

TABLE 2 Representative equilibrium points of system (8), corresponding to eigenvalues and types of equilibrium points.

Equilibrium points Eigenvalues Stabilities

E1 (0,0,0,0,0,0) (−1.2,−1.2, 0.3181 ± 5.9165i, 0.3319 ± 1.9652i) unstable saddle focus with index 4

E2 (0,0,0,0,-1,0) (1.2e + 6,−1.2, 0.3213 ± 5.9156i, 0.3286 ± 1.9678i) unstable saddle focus with index 5

E3 (0,0,0,0,1,1) (1.2e + 6, 1.2e + 6, 0.3165 ± 5.9186i, 0.3335 ± 1.9586i) unstable saddle focus with index 6

FIGURE 5
Lyapunov exponents of system (8).
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3.3 Time series and power spectrum

When system parameters are kept unchanged, the timing
waveform of system (8) in the direction of state variable φ1 is
shown by the blue curve in Figure 6. It can be seen from the figure
that its motion trajectory oscillates randomly in a certain region and
has distinct aperiodic characteristics. In addition, after slightly
changing the initial value x10, the time-domain waveform
obtained by system (8) is shown by the red curve in Figure 6. It
is not difficult to see that when the initial values are 0.1 and 0.1 +
10−16 respectively, there is no obvious difference between the two
timings in (0, 120 s) time, but when t is greater than 120 s, they show
completely different time evolution tracks. Therefore, even with a
size adjustment of 10−16 for x10, the trajectory of the system canmake
a huge difference, which means that the motion state of the system is
not only aperiodic but also extremely sensitive to initial conditions.
To further verify its non-periodicity, the power spectrum of system
(8) is shown in Figure 7. It can be seen that the system exhibits a
continuous power spectrum similar to a noise signal in a limited
frequency range, which indicates that the system has obvious
aperiodic chaotic characteristics.

3.4 Bifurcation diagrams and Poincaré maps

The bifurcation diagram is an important tool to describe the
dynamic state of chaotic systems with parameter variation. Figure 8
shows the structure of local branch forks within the range of
parameter ρ2∈[5, 5.2], where red is the bifurcation in the
direction of state variable φ1, and blue is the bifurcation in the
direction of state variable φ2. It can be seen from Figure 8 that there
are pieces of quasi-random points in the bifurcation diagram,
indicating that the system is in a chaotic state. More importantly,
different from the general chaotic bifurcation structure, the
bifurcation diagram of system (8) presents three parallel
bifurcation structures simultaneously in the directions of φ1 and
φ2, and they are all in a chaotic state. This means that the system
generates a 3 × 3 grid multi-structure chaotic attractor. In addition,
Figure 9 shows the Poincaré map of a 3 × 3 grid multi-structure
chaotic attractor in the φ1-φ2 phase plane. Among them, the red
section diagram is generated by the x1 = 0 section, and the green
section diagram is generated by the x2 = 0 section. Through
observation, it is not difficult to find that the Poincare map of
system (8) shows a series of irregular dense points, which further

FIGURE 6
Time domain waveform of state variable φ1.

FIGURE 7
Power spectrum of system (8).

FIGURE 8
Bifurcation diagram of system (8) with ρ2.

FIGURE 9
Poincaré maps of system (8) in the plane φ1-φ2.
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proves that the grid multi-structure attractors have complex chaotic
characteristics.

4 Circuit implementation and
verification

Circuit realization is one of the effective ways to verify the
mathematical model [56]. In general, chaotic systems can be
implemented by analog or digital circuits to generate chaotic
signals [57, 58]. In this section, we first design the physical
circuit of system (8) and then verify the existence of grid multi-
structure chaotic attractors by Multisim simulation.

4.1 Circuit design

First, a multi-segment non-linear memristor circuit is designed,
as shown in Figure 10. Where, the internal state equation h(φ) of the
memristor is realized by a non-linear function generator, e1, e2,..., ei
is the control voltage, S1, S2,..., Sn is the selection switch. By selecting
the corresponding control voltage and switch, the memristor
function under different control parameters can be realized, as
shown in Table 3.

Then, based on the memristor circuit, the physical circuit of
system (8) is realized, as shown in Figure 11. Where the neuron
activation function tanh(.) The equivalent circuit is available in Ref.
[47]. In addition, the four neuronal membrane voltages are
simulated by the four capacitor voltages of the circuit, and the
fixed synaptic weight coefficients are simulated using resistors
R1–R10. The memristor synaptic weight is achieved by the
memristor. According to Kirchhoff’s current law, the circuit
equation of system (8) can be expressed as

RC _v1 � −v1 + R

R1
tanh v2( ) + R

1
Ra1

+ g
vφ1
Rb1

( )tanh v3( ) − R

R2
tanh v4( )

RC _v2 � −v2 − R

R3
tanh v1( ) + R

R4
tanh v2( ) + R

R5
tanh v3( ) − R

1
Ra2

+ g
vφ2
Rb2

( )tanh v4( )

RC _v3 � −v3 − R

R7
tanh v2( ) + R

R8
tanh v3( ) + R

R9
tanh v4( )

RC _v4 � −v4 + R

R10
tanh v1( ) + R

R11
tanh v4( )

RC _vφ1 � R

Rc
tanh v3( ) − R

Rd
h vφ1( )

RC _vφ2 � R

Rc
tanh v3( ) − R

Rd
h vφ2( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

4.2 MULTISIM simulation

The physical circuit of system (8) is implemented and simulated
on the Multisim14.0 platform. In this section, we first design the
physical circuit of system (8) and then verify the existence of grid
multi-structure chaotic attractors by Multisim simulation. Set
capacitance C = 1 nF, R = 10 kΩ. Fixed synaptic weight
coefficient according to system (8), setting R1 = R/w12 = 3.3 kΩ,
R2 = R/w14 = 0.77 kΩ, R3 = R/w21 = 10 kΩ, R4 = R/w22 = 6.7 kΩ, R5 =
R/w23 = 1.4 kΩ, R6 = R/w32 = 2.5 kΩ, R7 = R/w33 = 5.7 kΩ, R8 = R/
w34 = 2.5 kΩ, R9 = R/w41 = 14.3 kΩ, R10 = R/w44 = 5 kΩ. In addition,
the resistance of the memristor circuit Ra = R/ρa, Rb = gR/ρb, Rc = R/
c, Rd = R/d. When the system parameters a = 1, b = 0.01, c = 2.2, d =
1.2, ρ1 = 3, ρ2 = 5, Ra1 = 3.3 kΩ, Rb1 = 34 kΩ, Ra2 = 2 kΩ, Rb2 = 20 kΩ,
Rc = 4.5 kΩ, Rd = 8.4 kΩ can be solved. Set the initial voltage of the
five capacitor voltages to (0.1V, 0.1V, 0.1V, 0.1V). By setting the
corresponding switching and control voltage according to Table 3,
the system circuit can generate a grid multi-structure chaotic
attractor consistent with the numerical simulation results, as

FIGURE 10
Memristor circuit.
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shown in Figure 12. By comparing the results of Figure 12 and
Figure 13, it can be found that the results obtained by Multisim
circuit simulation and Matlab numerical simulation are almost
exactly the same, thus verifying the grid multi-structure chaotic
attractor characteristics of system (8).

5 Medical image encryption
applications

Chaotic signals have the characteristics of ergodic, initial value
sensitivity, high randomness, etc., and are mainly used for the key

generation of secure communication [59, 60]. Generally, the more
chaotic the attractor trajectory of chaotic systems, the more sensitive
the initial conditions, the higher the randomness of the key
generated, and the better the encryption performance. Based on
the above analysis results, the grid multi-structure chaotic attractor
proposed in this paper has a complex structure, high initial value
sensitivity, and strong chaos randomness, which can greatly improve
the communication encryption effect and crack difficulty.

5.1 Image encryption scheme

In this section, a new image encryption scheme is designed based
on the grid multi-structure chaotic attractor. The specific encryption
steps are as follows:

Step 1: Set (a, b, c, d, ρ1, ρ2, x20, x30, x40, φ10, φ20,N1,N2) = (1, 0.01, 2.2,
1.2, 3, 5, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1), discarded number N0 = 1000,
time step Δt = 0.002, based fourth-order Runge-Kutta algorithm, the
system (8) is continuously iterated 256 × 256 times. For each iteration,
we can get six values x1(i), x2(i), x3(i), x4(i), φ1(i), φ2(i).

Step 2: The following preprocessing is performed on the six
chaotic sequences to produce two distinct sets of sequences,
respectively

K1 i( ) � x1i + x2i + x3i + x4i (14)
K2 i( ) � mod f loor x1i + x2i + x3i + x4i + φ1i + φ2i( )/6( )*1015( ), 256( )

(15)

Step 3: The index sequence index is obtained by arranging the
sequence K1 in ascending order. Then, the index sequence is
replaced and encrypted with the original image pixels
successively to obtain the replaced image P1 as follows

P1 i( ) � P index K1 i( )( )( ) (16)

Step 4: The pixels of the sequence K2 and the diagram P1 to be
encrypted are different or encrypted as follows

TABLE 3 Different memristor types realized by selecting the combination of switch and control voltage.

S1 S2 S3 S4 . . . Sn Memristor

e1 = 1 V e2 = 3 V e3 = 5 V e4 = 7 V . . . ei=(2n-1) V h1(φ)

Open Open Open Open . . . Open N = 0

Open Off Open Open . . . Open N = 1

Open Off Off Open . . . Open N = 2

. . . . . . . . . . . . . . . . . .

e1 = 2 V e2 = 4 V e3 = 6 V e4 = 8 V . . . ei=(2n) V h2(φ)

闭合 断开 断开 断开 . . . 断开 M = 0

闭合 闭合 断开 断开 . . . 断开 M = 1

闭合 闭合 闭合 断开 . . . 断开 M = 2

. . . . . . . . . . . . . . . . . . . . .

FIGURE 11
Physical circuits of system (8).
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C i( ) � P1 i( ) ⊕ K2 i( ) (17)

5.2 Encryption performance analysis

In order to prove the effectiveness and security of the above
encryption algorithm, the following tests are carried out on the
MATLAB R2017a platform. In the experiment, four 256 ×
256 medical images were used as original images, which were

brain image, virus image, lung image, and chest image, as shown
in Figures 13Ai–Aiv. The key space, histogram, correlation
coefficient, information trail, key sensitivity, noise and data loss
attacks of the encryption system are analyzed below.

(1) Keyspace analysis. The secret key space is an important index to
evaluate the encryption system. Generally speaking, the larger
the key space of the encryption system, the stronger the
resistance to external brute force attacks. The designed
encryption algorithm uses the above 11 parameters as the

FIGURE 12
Experiment results. (A) 3 × 3-structure attractor. (B) 4 × 5-structure attractor.

FIGURE 13
Encryption results. (Ai–iv)Original images. (Bi–iv)Histograms of the original images. (Ci–iv) Encrypted images. (Di–iv)Histograms of the encrypted images.
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secret key, making it difficult to decrypt illegally. In the
experiment, all bytes are double-precision data, so the secret
key space of the encryption system is (1016)11 = 10176 ≈ 2528.
Obviously, this key space is much larger than the minimum key
space value of 2100 to resist various brute force attacks.

(2) Histogram analysis. Histogram is a key index to evaluate the
intensity distribution of pixel values in an image. The more
average the histogram distribution of the image, the stronger
the resistance to statistical attacks. Figure 13 shows the
original image, the original image histogram, the
encrypted image, and the encrypted image histogram of
the four medical images respectively. Figures 13Ci–Civ
look confusing and completely lose the information of the
original images. In addition, by comparing Figures 14Bi–Biv
and Figures 13Di–Div, we can see that the histogram of the
encrypted image is very different from that of the original
images. The histogram distribution of the original image is
completely inconsistent and uneven, while the histogram
distribution of the encrypted image is very average.
Therefore, the designed encryption algorithm has good
security against statistical analysis attacks.

(3) Correlation analysis. The correlation coefficient is an important
index of image robustness. It represents the correlation between
two adjacent pixels in an image. Usually, the correlation
coefficient of the original image in all directions is relatively
large, close to 1. The correlation of the encrypted image should
be as small as possible, close to zero. In general, the correlation
coefficient of the image can be calculated by the following
formula

ρxy �
∑N
i�1

xi − E x( )( ) yi − E y( )( )������������
∑N
i�1

xi − E x( )( )2
√ �������������

∑N
i�1

yi − E y( )( )2
√ (18)

where x and y represent two adjacent pixel values, and N represents
the total number of pixels. E(x) and E(y) represent the average values
of pixels xi and yi, respectively. In order to calculate the correlation
coefficient between the original image and the encrypted image,
10,000 pixels are randomly selected for analysis. Table 4 shows the
phase relation values of the four original images and the encrypted
images. As can be seen from Table 4, although the correlation
coefficients of the four original images are close to 1 in the vertical,
horizontal, and diagonal directions, after encryption, the correlation
coefficients of the four encrypted images are very close to 0.
Therefore, the designed encryption algorithm can greatly reduce
the correlation of images, so as to effectively resist statistical attacks.

(4) Entropy analysis. Information entropy is an important index to
describe the degree of image uncertainty. In general, the larger the
information origin value, the higher the randomness of the image
information. An ideal value for grayscale images is 8. Therefore, a

FIGURE 14
Test results of key sensitivity. (Ai–Di) Accurate decrypted images with right secret keys. (Aii–Dii) Inaccurate decrypted images with wrong secret
keys.

TABLE 4 Correlation coefficient and information origin between the original
image and the encrypted image.

Images Horizontal Vertical Diagonal Entropy

Brain Original 0.963966 0.964300 0.936475 6.3463

Encrypted 0.009911 0.000687 −0.009079 7.9980

Virus Original 0.965515 0.961770 0.940575 6.0599

Encrypted −0.007801 0.003794 0.000667 7.9974

Lung Original 0.943080 0.954554 0.917790 7.1008

Encrypted −0.001244 0.000561 −0.002912 7.9975

Chest Original 0.960183 0.920840 0.899727 7.4130

Encrypted −0.000161 0.001065 −0.002258 7.9975
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good encryption algorithm shouldmake the information descent of
the encryption graph as close to 8 as possible. Information origin
can be calculated by the following formula

H P( ) � ∑2N−1

i�0
P xi( )log2

1
P xi( ) (19)

where N represents the bit depth of image P, and P(xi) represents the
occurrence probability of pixel xi. Table 5 shows the information origin
values of the four original and encrypted graphs. Obviously, compared
with the origin of the original graph, the origin value of the encrypted
graph is not only greatly improved, but also very close to the ideal value of
8. Therefore, the encryption algorithmhas good encryption performance.

(5) Sensitivity analysis. The sensitivity of the key is an important index to
evaluate the security performance of encryption algorithms. A good
encryption algorithm should be as sensitive to the key as possible.
When the keys a, b, c, d, ρ, φ0, and N are fixed and the values of the
keys x10, x20, x30, and x40 are changed, the key sensitivity of the four
images ismeasured. The experimental results are shown in Figure 15.
For the small change of the secret key, even with the disturbance of
10–16, the decrypted image still cannot decrypt the encryption
diagram correctly. As shown in Table 6, compared with the
existing similar work, the secret key sensitivity value of the image
encryption algorithm based on multi-scroll memristor HNN in
literature [34] is 10−9, and the secret key sensitivity value of the
image encryption algorithm based on multi-scroll chaotic system in
literature [35] is 10−12. The designed image encryption algorithm
based on multi-structure attractor memristor HNN has great
advantages in terms of secret key sensitivity.

(6) Data loss and noise attacks. Noise and data loss attacks can be used
to evaluate the robustness of cryptosystems. On the one hand, the
image is prone to sudden and strong noise interference in the
transmission process, which will produce noise and affect the
correct decryption of the image. Therefore, for image encryption
systems, resisting noise attacks is a very important performance
index. Here, different proportions of salt and pepper noise are
added to the encrypted image, as shown in Figures 15Ai–Aiii. Then
the secret key is used to decrypt the encrypted image, as shown in
Figures 15Bi–Biii. It can be observed that although some pixels of
the decrypted image are changed after the addition of salt and
pepper noise, most of the main information of the original image
can still be obtained. Therefore, the noise has very little effect on the
decryption process of the designed encryption algorithm. On the
other hand, it is easy to lose some data in the process of encrypted
image transmission. Therefore, a good encryption algorithm
should be robust to partial data loss. Here, the data of different
sizes of the encryption graph is cut out, as shown in Figures
15Ci–Ciii. Then, using the secret key to decrypt it, the results are
shown in Figures 15Di–Diii. Obviously, although the encrypted
graph has lost some data information, it can still recovermost of the
original image information through the decryption process.

Therefore, the experimental results show that the designed
encryption algorithm has strong resistance to data loss attacks.

(7) Encryption time analysis. Regardless of the security performance,
encryption time is also very important, especially in emergency
medical care applications. The time test of the scheme is operated
using MATLAB R2017a on a PC with Windows 10 64-bit
operation system, 2.5 GHz CPU, and 8 GB RAM. All medical
images are tested, and the comparison results of one round of
encryption execution time are listed in Table 7. It is clear that the
execution time of our scheme is shorter than the other schemes.

The above experimental results show that the designed medical
image encryption algorithmbased on amulti-structure chaotic attractor

TABLE 5 Comparison of information entropy of different encryption schemes.

References [31] [34] [35] [39] [61] This work

Entropy 7.9898 7.9976 7.9979 7.9975 7.9976 7.9980

FIGURE 15
Test results of data loss and noise attacks. (Ai–iii) The encrypted
images with 1%, 10%, and 25% salt and pepper noise, respectively.
(Bi–iii) Corresponding decrypted images. (Ci–iii) The encrypted
images with 1/32, 1/16, and 1/4 data loss, respectively. (Di–iii)
Corresponding decrypted images.

TABLE 6 Comparison of key sensitivity of different encryption schemes.

References [32] [34] [35] [39] [62] This work

Key sensitivity 10–12 10–9 10–12 10–6 10–15 10–16

TABLE 7 Comparison results of the encryption time.

References Images Time (s)

This work Brain (256 × 256) 0.125

Virus (512 × 512) 0.273

Lung (768 × 768) 0.854

[32] Lena (256 × 256) 0.241

[34] Lena (256 × 256) 0.876

[35] Lena (256 × 256) 0.546
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has a larger key space and higher key sensitivity, can effectively resist
various internal and external attacks, and can be applied to protect
image data better in practical information communication.

6 Conclusion

Based on the chaotic property of the Hopfield neural network and
the memristor synapse control method, a grid multi-structure attractor
chaotic system is proposed in this paper. Its complex and varied chaotic
structure provides a new idea for the study of new grid chaotic
attractors. The basic dynamic analysis, such as equilibrium point,
Lyapunov exponential spectrum, power spectrum, bifurcation
diagram, and Poincare cross section, shows that the multi-structure
chaotic attractor has the characteristics of simple implementation, few
control parameters, complex unit topology, expandable unit structure,
and complex chaotic dynamics. At the same time, based on the chaotic
circuit design method, the circuit simulation of the chaotic attractor is
realized, and the feasibility of the system circuit is verified. Finally,
combined with the study of chaotic image encryption theory, an image
encryption scheme based on the grid multi-structure attractor is
designed. The experimental results show that the new grid multi-
structure chaotic attractor has certain advantages in encrypted
communication and has a good application prospect. The next step
will consider introducing multiple memristor synapses into neural
networks to construct n-dimensional grid multi-structure chaos
attractors to improve the complexity of chaotic systems.
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Ternary combinational logic gate
design based on tri-valued
memristors
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Traditional binary combinational logic circuits are generally obtained by cascading
multiple basic logic gate circuits, usingmore components and complicatedwiring.
In contrast to the binary logic circuit design in this method, ternary combinational
logic circuit implementation is more complicated. In this paper, a ternary circuit
design method that does not require cascading basic ternary logic gates is
proposed based on a tri-valued memristor, which can directly realize specific
logic functions through a series connection of memristors. The ternary encoder,
ternary decoder, ternary comparator, and ternary data selector are implemented
by this method, and the effectiveness of the circuits is verified by LTspice
simulations.

KEYWORDS

tri-valuedmemristor, ternary encoder, ternary decoder, ternary comparator, ternary data
selector

1 Introduction

Traditional digital systems are built on binary numbers, where only two levels are
considered, namely, “0” and “1.” However, with the rapid development of modern
information technology and the increasing integration of digital systems, interconnection
limitations have become one of the main challenges in implementing the binary logic in the
nano-scale circuit design [1]. Interconnect lines cause increased latency, noise, and power
consumption in the system. In multi-valued logic (MVL), a single signal line carries more
information, which can effectively reduce the number of interconnecting lines and solve the
interconnection problem in binary digital systems [2]. After the calculation demonstration in
[3], it can be seen that when the base is e, the complexity and cost of the multi-valued system
are the lowest and 3 is the integer closest to e. Therefore, compared with binary logic, ternary
logic has significant advantages. In 1840, the British mathematician and inventor Thomas
Fowler first proposed the concept of a ternary computer, but the relevant details have long
been lost. Glusker studied and sorted it, and elaborated the relevant concepts of ternary logic
and ternary computer in [4] in 2005. Although the same number of binary signals are easier
to process than ternary signals, ternary signals can carry more information, which can
effectively improve the efficiency of information transmission and storage. Therefore,
compared with binary logic, ternary logic has stronger information processing
capabilities and can solve some complex and cumbersome problems in binary logic.

Memristor is a nonlinear nano-component with many excellent properties such as stable
resistive performance, low power consumption, and compatibility with traditional CMOS
technology. In particular, the circuit realized by the memristor can have both operation and
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storage functions, so a memristor is considered to be a strong
competitor to replace traditional silicon chips and continue
Moore’s law. Compared with traditional digital logic circuits
using CMOS, memristor-based digital logic circuits can
effectively reduce the area and power consumption of the circuit
[5–9]. At present, there are still few research studies on ternary logic
based on the memristor, and most of them need to realize
corresponding functions by memristors combined with
complementary metal–oxide semiconductor (CMOS). In 2016,
Khalid designed a basic ternary logic gate using a circuit
structure similar to MRL (hybrid CMOS/memristive logic gate)
[10], which reduced the number of components. In 2020, Zhang
designed flexible logic circuits based on spintronic memristors and
CMOS switches to implement basic unbalanced logic gates with
non-volatility, good load capacity, and constant voltage input and
output without signal degradation [11]. In the same year, Wang
designed ternary AND gates, OR gates, NOT gates, and maximum
and minimum circuits by utilizing the compatibility of memristors
and CMOS, and achieved an order of magnitude improvement in
data density; the switching speed of the memristor is reduced by a
factor of about 13 [12]. However, the aforementioned circuits
require CMOS devices to work together, which leads to more
circuit area and power consumption, as well as more complex
operation steps and the amount of running power supply. In
addition, some of the ternary logic circuits are designed by the
memristor combined with the carbon nanotube field-effect
transistor (CNTFET). In 2018, basic ternary logic gates, ternary
decoders, 2-bit adders, and standard ternary inverters based on
memristors and CNTFETs were proposed [13,14]. In 2019, Soliman
proposed a systematic method for constructing a 2-bit ternary
function based on the concept of the memristive threshold logic
[15]. A 2-bit ternary adder and multiplier are implemented using
VTEAM memristors and Stanford CNTFET transistor models. In
the same year, Chen fabricated a memristor device based on nano-
columnar crystalline ZnO thin films and used it to realize a complete
set of ternary logic and a ternary multiplier unit [16]. Nevertheless,
the logic variables of these circuits are voltage, and the memristors
are only used as a computing unit rather than a storage unit.
Therefore, these designs have the problems of signal degradation
and loss of power-off information.

Due to the lack of actual ternary components corresponding to
ternary logic, the promotion of ternary logic in practical applications
is not smooth. Based on the asymmetric piecewise linear memristive
mathematical model [17] extended by Chua on the basis of the
voltage-controlled odd-symmetric piecewise linear memristive
model in 2015, Wang’s team first proposed the concept of the
tri-valued memristor in 2019, obtained tri-valued and multi-valued
memristor models on this asymmetric piecewise linear memristor
model, and realized a new chaotic circuit based on the tri-valued
memristor model [12]. In [18], a method for realizing ternary basic
logic gates based on tri-valuedmemristors is proposed. The designed
logic gates do not need to use other CMOS devices, and the power
consumption of the circuit is lower. As a multi-valued memristor,
the tri-valued memristor can exhibit three different resistance states
without using any additional devices to represent “0,” “1,” and “2” in
ternary logic, and the application of tri-valued memristors to digital
logic circuits can further reduce circuit power consumption and the
circuit area, which improves the storage density. In addition, a tri-

valued memristor provides a non-traditional computing architecture,
that is, combines information storage and processing, which create
favorable conditions for the realization of ternary logic circuits.

The rest of this paper is as follows: Section 2 explains the process
of constructing a voltage-controlled tri-valued memristor, and the
threshold characteristics and pinched hysteresis loop of this
memristor are analyzed. Section 3 proposes a tri-value circuit
design method using the resistance state of the memristor to
represent the logic value. This method does not require cascading
the basic tri-value logic gates and allows specific logic functions to be
implemented directly through series and parallel connections of the
memristors. Concretely, the ternary combinational logic gate
circuits based on a tri-valued memristor include a ternary
encoder, a decoder, a comparator, and a data selector, and the
designed circuit is verified by LTspice. Section 4 gives the summary
of this paper.

2 A tri-valued memristor built by two
common binary memristors

Ternary logic is a multivalued logic with three different logic
states. The tri-valued memristor is a crude element which exhibits
three different states (resistances) matching “0,” “1,” and “2” in the
ternary logic without using any additional devices. In this paper, the
resistances of the tri-valued memristor are used as the logic state
variables, where RH, RM, and RL are used to represent logics “0,” “1,”
and “2”. The voltage threshold tri-valued memristor explained in
this paper and its threshold characteristics are introduced as follows.

2.1 Modeling of a tri-valued memristor

In 2021, Wang proposed a voltage threshold tri-valued
memristor model that has the characteristics of simple structure
and clear principle. The model parameters can be modified
according to the actual application requirements [18]. In [19], an
implementation method of connecting two tri-valued memristors in
series and parallel to obtain a multi-valued memristor was proposed.
As a result, a voltage-controlled tri-valued memristor model is
obtained in this paper by connecting two voltage-controlled
binary memristors in parallel, and the resulting tri-valued
memristor model is used to design ternary combinational logic
circuits. It is also proved that the tri-valued memristor model in [18]
can be realized using the binary memristor through the circuit
structure.

FIGURE 1
Constructing a tri-valued memristor in parallel with binary
memristors.
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In 2015, Knowm Inc. company designed and produced a voltage
thresholdbinarymemristorcalledtheKnowmmemristor.Inthispaper,
by modifying the expression of G(v) of the Knowm memristor from
G(v) = v/Ron +(1- v)/Roff to G(v) = IF (v < 0.5, 1/Roff, 1/Ron), a better
thresholdbinarymemristormodel is obtained.Basedon thismodel,we
obtained a tri-valuedmemristor by putting twoKnowmmemristors in
parallel, as shown inFigure1,withparameters shown inTable1.Thev-i
curves of two single memristors (M1 and M2) and the tri-valued
memristor with three distinct resistance states are shown in Figure 2.

2.2 Characteristics of the tri-valued
memristor

The tri-valued memristor mentioned previously has voltage
threshold characteristics, and its two threshold voltages are vth1 =
1 V and vth2 = 1.2 V, respectively. RL, RM, and RH correspond to
three different resistance states of the model. According to the
characteristics of the tri-valued memristor, voltages with different
amplitudes (applied to the positive electrode of the memristor) will
be used to initialize the memristor and implement the update of the
memristor resistance value in the subsequent logic gate design.
Specifically, when the voltage v ≥ 1.2 V, the memristor switches from
any resistance state toRL.When1 V≤ v<1.2 V, if the resistance state of
the memristor is RH at this time, it will switch to RM; otherwise, it will
remainunchanged.When-1 V<v<1 V,thememristorwill continueto

maintainitsoriginalstate.When−1.2 V<v≤−1 V, if theresistancestate
of thememristor isRL at this time, it will switch toRM; otherwise, it will
not change. When v ≤ −1.2 V, the memristor switches from any
resistance state to RH. Table 2 summarizes the voltage range
required for the resistance state switching of the tri-valued
memristor. The symbol “→” indicates that the resistance state on the
left side is switched to that on the right side of the symbol.

In order to verify the threshold characteristics of the tri-valued
memristor model, the voltage signals v = t and v = -t are applied to
the memristor models with initial states of RH and RL, respectively,
and the LTspice simulation results, as shown in Figure 3, are
obtained, which indicate that the resistance switching process of
the memristor is consistent with Table 2, proving that the tri-valued
memristor built exhibit the threshold characteristics.

2.3 Analysis of the pinched hysteresis loop of
the tri-valued memristor

Figure 2 shows the trajectory of the pinched hysteresis loop
obtained by applying the voltage v = 2sin (2πt) to the tri-valued
memristor. The starting point of the pinched hysteresis loop, as
shown in Figure 2, is ①; at this time, the resistances of M1 and M2

are both Roff, so the state of the tri-valued memristor at point ① is
the initial state RH. Before reaching point②, the voltage value across
the memristor will not exceed the threshold voltage 1V, so the state
of the memristor will not change. When point ② is reached, since
the input voltage exceeds the threshold voltage 1V, it exceeds the
threshold voltage Von of M1, and the resistance of M1 is switched to
Ron, while the resistance ofM2 remains unchanged. At this time, the
resistance of the tri-valued memristor is set to RM.

At point③, the voltage across thememristor reaches the threshold
voltageof1.2 V;at this time, the thresholdvoltagesVonofM1andM2are
exceeded at the same time, and the resistances ofM1 andM2 are both
switchedtoRon; theresistanceofthetri-valuedmemristor issettoRL.On
thetrajectorybeforereachingpoint④, thevoltagecontinuestoincrease,
but the resistance of the tri-valuedmemristor will remain at RL. Along
with the applied voltage decrease, from points④ to⑤, although the
threshold voltage 1 V is crossed at this stage, the state of thememristor
will not change because the resistance of the tri-valuedmemristor isRL

TABLE 1 Parameter values of the two binary memristors.

Parameter M1 M2

Ron 500Ω 125Ω

Roff (4000/3)Ω 2000Ω

Von 1 V 1.2 V

Voff 1.2 V 1 V

FIGURE 2
v-i curve of the tri-valued, M1 and M2 memristors.

TABLE 2 Voltage range required for resistance state switching.

Resistance state switching Voltage range

RL → RL v > −1 V

RL → RM −1.2 V < v ≤ −1 V

RL → RH v ≤ −1.2 V

RM → RL v ≥ 1.2 V

RM → RM −1.2 V < v < 1.2 V

RM → RH v ≤ −1.2 V

RH → RL v ≥ 1.2 V

RH → RM 1 V ≤ v < 1.2 V

RH → RH v < 1 V
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during this period. When point ⑤ is reached, the voltage across the
memristor reaches the threshold voltage−1 V, it exceeds the threshold
voltageVoff ofM2, and the resistance ofM2 is switched toRoff, while the
resistance ofM1 remains unchanged,making the tri-valuedmemristor
settoRMagain.Astheinputvoltagefurtherdecreases,reachingpoint⑥,
thevoltageacrossthememristorexceedsthethresholdvoltage−1.2 V;at
this time, the threshold voltagesVoff ofM1 andM2 are exceeded at the
same time, and the resistances ofM1 andM2 are both switched to Roff,
makingthetri-valuedmemristorset toRHagain.Then, theinputvoltage
reachespeakpoint⑦andbeginstoincrease,duringwhichtheresistance
of the tri-valuedmemristor will not change until it returns to the initial
point① to start the next cycle.

Overall, the pinched hysteresis loop of the tri-valued memristor
model shows the characteristics that the resistance decreases with
the increase in the forward voltage, and the resistance increases with
the increase in the negative voltage. It is worth noting that the
change law of the resistance value of this tri-valuedmemristor model
is consistent with the change law of the resistance value shown by the
HP memristor. So this tri-valued memristor model can be used to
research on the application of multivalued memristors
manufactured in the method of an HP memristor.

3 Ternary combination logic gates
design

In this section, a series of ternary combinational logic circuits
withmemristor resistance as the logic state variable will be proposed.
Specifically, it includes a ternary encoder, ternary decoder, ternary
comparator, and ternary data selector, and the effectiveness of the
designed ternary combinational logic gate will be verified by LTspice
simulation.

3.1 Ternary encoder

In the traditional binary or multivalued encoder, the circuit
structure of the encoder is composed of cascaded basic logic gates,
and the circuit structure is relatively complex. In this paper, a ternary

encoder circuit based on the tri-valued memristor is proposed,
which does not require cascading basic ternary logic gates. The
circuit consists of three input memristors, one output memristor,
and a corresponding number of voltage-controlled switches, and can
realize the function of converting three channels of binary signals
into one channel of ternary signals. The truth table of the designed 3-
line–1-line ternary encoder is shown in Table 3, whereX0,X1, andX2

are input signals, and Y is the output signal.
Figure 4 shows the circuit structure of a 3-line to 1-line ternary

encoder based on tri-valued memristors. Among them, Min1, Min2,
and Min3 are input memristors, Mout is the output memristor, and
the initial resistance value of Mout is RH. The magnitudes of the
output voltages of the DC voltage sources Vset1 and Vset2 are 1.1 and

FIGURE 3
Relationship between the input voltage and the resistance of the tri-valuedmemristor; (A) the initial resistance is RH, and the input voltage is v= t; (B)
the initial resistance value is RL, and the input voltage is v = -t.

TABLE 3 Truth table of the 3-line to 1-line ternary encoder.

X0 X1 X2 Y

1 0 0 0

0 1 0 1

0 0 1 2

FIGURE 4
3-line–1-line ternary encoder circuit.
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1.3 V, respectively, which are used to complete the operations of
setting “1” and setting “2”to Mout. S1 and S2 are voltage-controlled
switches, which are turned on when the applied control voltages Vba

and Vcb across Min2 and Min3 exceed their threshold voltages. After
evaluation, the threshold voltages of S1 and S2 are set to satisfy that
only one of these two switches is turned on or none of the switches is
turned on (the output memristor maintains the initial value) under
different inputs to realize the encoding function of the ternary
encoder.

The operation of the encoder is driven by an excitation voltage
source V, and its working process can be divided into two stages: the
first stage is the initial stage where V outputs initial voltage VInit,
which is used to measure the initial resistance state of each
memristor. The second stage is the running stage, and in this
stage, V will output running voltage VRun to complete the
encoding operation. The initial voltage VInit must meet two
conditions to complete the operation of measuring the initial
state of the memristor: the first condition is to ensure that the
voltage division of each input memristor does not exceed the
threshold voltages vth1 and vth2 of the memristor when VInit is
input. Otherwise, the resistance state of the input memristor will be
changed; The second condition is that when VInit is input, the
divided voltages Vba and Vcb onMin2 andMin3 would not exceed the
threshold voltages of S1 and S2; otherwise, the resistance of the
output memristor will change in the initial stage, which will cause
the encoding result not correct under the running voltage VRun.
Here, the only demand on VRun is to ensure that the voltage division
of each input memristor does not exceed the threshold voltages vth1
and vth2 of the memristor whenVRun works as an input. Based on the
aforementioned rules, the initial voltage VInit and the operating
voltage VRun of the ternary encoder are determined as 1.5 and 1.2 V,
respectively. The operation stage of the 3-line–1-line ternary
encoder designed in this paper can be divided into the following
three situations:

(1) When the input logic is “100,” namely, Min1 = 400Ω, Min2 =
800Ω, andMin3 = 800Ω, according to the input voltage division
calculation, Vba = Vcb = −0.48 V can be obtained. In the circuit,
switches S1 and S2 need not be turned on at the same time to
ensure the output logic “0,” so the threshold voltages of switches
S1 and S2 must be greater than −0.48 V.

(2) When the input logic is “010,” namely, Min1 = 800Ω, Min2 =
400Ω, andMin3 = 800Ω, Vba = −0.24V and Vcb = −0.48 V can be
produced at this moment based on the input voltage division
computation. To assure the output logic “1,” switches S1 must be
switched on and S2 need to turn off, so the threshold voltage of
switches S1 must be less than −0.24 V and S2 must be more
than −0.48 V.

(3) When the input logic is “001,” namely, Min1 = 800Ω, Min2 =
800Ω, andMin3 = 400Ω, the corresponding output logic should
be “2.” In this case, the input voltage yields Vba = −0.48V and
Vcb = −0.24 V, so the switch S1 need to be turned off and S2 must
be switched on, which force the threshold voltage of switches S1
must be greater than −0.48 V and S2 must be less than −0.24 V.

Through the aforementioned analysis, it can be obtained that the
range of the threshold voltages of S1 and S2 should be between −0.48,
and −0.24 V to complete the function of the encoding circuit,

so −0.3 V is chosen as the threshold voltages of both S1 and S2 at
the end.

The ternary encoder circuit is built using LTspice, and the
simulation results are shown in Figure 5. It can be observed that
when the inputs are “100,” “010,” and “001”, the logic values of the
output memristor are “0,” “1,” and “2,” which is consistent with the
truth table of the ternary encoder, which proves the rationality of the
designed ternary encoder circuit.

3.2 Ternary decoder

Decoding is the reverse operation of encoding, and the function
of the ternary decoder is to convert one ternary signal into three
binary signals. Table 4 shows the truth table of the ternary decoder,
where X represents the input of the ternary decoder, and Y0, Y1, and
Y2 represent the outputs of the ternary decoder. It is worth noting
that the valid logic values output by Y0, Y1, and Y2 can be either logic
“1” or logic “2” according to actual needs, and in this paper, we take
logic “1” as an example to design the ternary decoder.

Figure 6 shows the 1-line to 3-line decoder circuit based on tri-
valued memristors and voltage-controlled switches. The resistance
state of the memristorMin is used to represent the logic value of the
input variable X. The initial resistance values of Mout1, Mout2, and
Mout3 are all RH, which represent the logic values of the output
variables Y0, Y1, and Y2, respectively. The voltage source Vset1

outputs 1.1 V to set each of the output memristor as logic “1.”
The auxiliary resistor R is a key component in the circuit, and it helps
realize more voltage division cases in the circuit. Without this
resistor, the negative pole of Min would be grounded directly so
that the voltage source V will be applied directly to Min. During the
resistance state ofMin changing, the divided voltage on it will always
be equal to the power voltage V, which means the three input
conditions cannot be distinguished, resulting in the inability to
complete the decoding function. The value of R needs to be between
the high resistance value and the low resistance value of the tri-
valued memristor; in this part, R is selected as 400Ω. Similar to the
3–1 encoder circuit, the ternary decoder work in two stages, which
are the initial stage with V=VInit = 0.5 V and running stage V =
VRun = 1.2 V, respectively.

In the decoder design, if only one voltage-controlled switch is
connected to each output memristor in the circuit, there is no
guarantee that only one branch of each output is selected through.
For example, each output memristor is connected to only one
voltage-controlled switch, whose control voltage is the voltage
across Min. In Case 1, when Min = RL, the switch with the
smallest threshold voltage will be turned on. In Case 2, when
Min = RM, the switch with the minimum and middle threshold
voltages will be both turned on. In Case 3, when the resistance value
ofMin is the maximum value, that is,Min = RH, all three switches will
be turned on, which do not guarantee that only one switch is turned
on at each case. Therefore, in this design, we connect two voltage-
controlled switches to each output memristor to ensure that under
different input conditions, only one output memristor is connected
to the voltage source Vset1 so that the corresponding output
memristor can be set to RM.

In Figure 6, the control voltage of switches S1, S3, and S5 is the
divided voltage Vbc on the resistor R. The control voltages of S2, S4,
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and S6 are the divided voltage Vab on the memristor Min. In the
ternary decoder circuit design process, an operating voltage is first
selected; then, by analyzing the voltage division under different
inputs, the threshold voltage of switches S1–S6 is set to meet the
command above as 0.3, 0.7, 0.5, 0.5, 0.9, and 0.2 V, respectively.

According to the specific resistance state of Min, the circuit
operation stage of the ternary decoder can be summarized into the
following three situations under the threshold voltage of switches
S1–S6 set previously:

(1) When the input is logic “0,” that is, Min = 800Ω, at this time,
Vbc = 0.4V and Vab = 0.8V, all of the switches S1, S2, S4, and S6
are turned on, and S3 and S5 are turned off, so only the output
memristor Mout1 is set to 400Ω. The other two output

memristors remain in their initial status. The logic gate
output is “100.”

(2) When the input is logic “1,” Min = 400Ω. Vbc = Vab = 0.6 V.
Switches S1, S3, S4, and S6 are all on, S3 and S5 are turned off, and
only the output memristor Mout2 can be set to 400Ω. So the
output of the logic gate is “010.”

(3) When the input is logic “2,” that is, Min = 100Ω, then Vbc =
0.96V and Vab = 0.24 V. Switches S1, S3, S5, and S6 are all on, and
S2 and S4 are turned off, while the output memristorMout3 is set
to 400Ω; the other memristors will not change, so we obtain the
outputs of the logic gate as “001.”

Similarly, the ternary decoder is simulated and verified using
SPICE, as shown in Figure 7. When the inputs are “0,” “1,” and “2”,
the corresponding outputs are “100,” “010,” and “001,” respectively.
The function of converting one ternary signal into three binary
signals is realized, which confirms the effectiveness of the designed
1-line–3-line ternary decoder circuit.

3.3 Ternary comparator

In digital logic circuits, it is often necessary to compare the
magnitude of two numbers, and the circuit that completes this logic
function is called a numerical comparator. For a one-bit ternary
comparator, its input is two ternary numbers, and the output is the
result of the comparison of the two numbers. The truth table of the
one-bit ternary comparator is shown in Table 5, where A and B are
the two input ternary numbers, and L, E, and G represent the three
output binary numbers. L, E and G are valid when output logic “1,”
representing A < B, A = B, and A > B, respectively.

As shown in Figure 8, the one-bit ternary comparator consists of
two input memristors, three output memristors, two voltage sources,
and six voltage-controlled switches. Input variables A and B are
represented by the resistances of Min1 and Min2, and the resistances
ofMout1,Mout2,andMout3areusedtorepresentvariablesL,E, andG.The
initial resistances ofMout1,Mout2, andMout3 are all RH. Similar to the
decoder circuit, each outputmemristor in the circuit is connected with
two switches to ensure that only one output memristor is connected to
the voltage source Vset1 during the operation phase of the circuit. The
two output voltagesVInit andVRun of the voltage sourceV are 0.5V and
1 V, respectively, and Vset1 outputs 1.1 V for the operation of “1.”

FIGURE 5
LTspice simulation results of the ternary encoder: (A) input as (1,0,0), (B) input as (0,1,0), and (C) input as (0,0,1).

TABLE 4 Truth table of the 1-line to 3-line ternary decoder.

X Y0 Y1 Y2

0 1 0 0

1 0 1 0

2 0 0 1

FIGURE 6
1-line to 3-line decoder circuit.
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In Figure 8, the control voltages of switches S1, S3, and S5 are Vbc

acrossMin2, and Vab crossMin1 is used to control S2, S4, and S6. The
threshold voltages of S1–S6 are 0.1, 0.6, 0.4, 0.4, 0.6, and 0.1 V,
respectively. According to the specific logic states of Min1 and Min2,

the specific operation of the ternary comparator in the running
phase can be summarized as follows:

(1) If A < B, there are three cases of input resistances of Min1 and
Min2, namely, (800Ω, 400Ω), (800Ω, 100Ω), and (400Ω, 100Ω).
The divided voltages Vab and Vbc of Min1 and Min2 are (0.67 V,
0.33 V), (0.89 V, 0.11 V), and (0.8 V, 0.2 V). In the
aforementioned three cases, all the switches S1, S2, S4, and S6
are turned on, and S3 and S5 are turned off. Therefore, only the
output memristor Mout1 is set to 400Ω. The resistance of the
other two output memristors remains unchanged, and the
ternary comparator output is “100.”

(2) If A = B, the input resistances ofMin1 andMin2 are the same, that
is, (800Ω, 800Ω), (400Ω, 400Ω), and (100Ω, 100Ω). If Vab =
Vbc = 0.5 V, at this time, switches S1, S3, S4, and S6 are all on, and
S2 and S5 are turned off. Thus, onlyMout2 is set to 400Ω, and the
corresponding logic gate output is “010.”

(3) If A > B, there are also three cases of input resistance ofMin1 and
Min2, namely, (400Ω, 800Ω), (100Ω, 800Ω), and (100Ω, 400Ω).
Vab and Vbc are (0.33 V, 0.67 V), (0.11 V, 0.89 V), and (0.2 V,
0.8 V). Switches S1, S3, S5, and S6 are all on, and S2 and S4 are
turned off, which corresponds to the output memristor ofMout3,
which is set to 400Ω;Mout1 andMout2 remain RH. At this point,
the output of the logic gate is “001.”

Figure 9 shows the LTspice simulation results of the ternary
comparator. When the logic value of Min1 is less than that of Min2,
Mout1, which is corresponding to the variable “L,” is set to logic “1.”
Similarly, when the logic value ofMin1 is equal to that ofMin2,Mout2

corresponding to the variable “E” will output “1.” When the logic
value represented byMin1 is greater thanMin2, the output memristor
Mout3, which represents the variable G, outputs the effective
resistance value “1.” The simulation results are consistent with
the truth table of the ternary comparator, which verifies the
effectiveness of the designed one-bit ternary comparator circuit.

3.4 Ternary data selector

In the process of digital signal transmission, sometimes, it is
necessary to select one from a group of data, and then, a logic

FIGURE 7
LTspice simulation results of the ternary decoder, (A) input “0,” (B) input “1,” and (C) input “2.”

TABLE 5 Truth table of the one-bit ternary comparator.

A B L E G

0 0 0 1 0

0 1 1 0 0

0 2 1 0 0

1 0 0 0 1

1 1 0 1 0

1 2 1 0 0

2 0 0 0 1

2 1 0 0 1

2 2 0 1 0

FIGURE 8
One-bit ternary comparator circuit.
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circuit called data selector or multiplexer is used. The traditional
binary data selector can select one data from four data through
two address signals, while the ternary data selector based on the

FIGURE 9
LTspice simulation results of the ternary comparator: (A) input as (0, 0), (B) input as (0, 1), (C) input as (0, 2), (D) input as (1, 0), (E) input as (1, 1), (F) input
as (1, 2), (G) input as (2, 0), (H) input as (2, 1), and (I) input as (2, 2)

TABLE 6 Truth table of the 9-to-1 ternary data selector.

A B Y

0 0 D0

0 1 D1

0 2 D2

1 0 D3

1 1 D4

1 2 D5

2 0 D6

2 1 D7

2 2 D8

FIGURE 10
Ternary copy circuit.
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tri-valued memristor can select one output from nine data
through two address signals. The truth table of the 9-out-of-
1 ternary data selector is shown in Table 6, where A and B are two
address signals, and Y outputs the data selected by the address
signal.

Before designing the ternary data selector circuit, a ternary copy
gate needs to be introduced, whose function is to copy the
information from the data memristor to the output memristor.
The circuit structure is shown in Figure 10, which consists of an
operating voltage source V, a data memristor DM, and an output
memristor Mout. Among them, V outputs the operating voltage

Vcopy, and the initial resistance of Mout is RH. According to the
different input logic, it can be divided into the following three cases:

(1) If DM = 800Ω and the logic is “0,” the voltage ofMout should be
less than 1 V to ensure Mout remain its initial resistance, which
demand the divided voltage of Mout meets (800/1600)
*Vcopy <1V, that is, Vcopy<2 V.

(2) If DM = 400Ω and the logic is “1,” to ensure Mout change from
RH to RM, the divided voltage of Mout should be between 1 V
and 1.2 V, so the divided voltage of Mout should satisfy the
condition of ‘1 V< (800/1200)*Vcopy<1.2 V’, that is, 1.5 V ≤
Vcopy<1.8 V.

(3) If DM = 100Ω and the logic is “2,”Mout need to change from RH

to RL, which needs to meet the condition of Vcopy≥1.35 V.

Combining the three aforementioned situations, the operating
voltage of the ternary copy gate circuit must satisfy 1.5 V ≤
Vcopy<1.8 V. So we choose 1.6 V as the operating voltage of the
copy gate, and the specific voltage division between the data
memristor and the output memristor is shown in Table 7.

The circuit structure of the 9-out-of-1 ternary data selector
based on tri-valued memristors is shown in Figure 11, where the
input memristors Min1 and Min2 store two address signals A and B,
and the data memristors D0–D8 store, respectively, nine channels of
known ternary data. Mout outputs the data Di (i = 0, 1, 2, . . ., 8)
selected by the address signals, and all of the initial resistance values
ofMout are RH. In this design, Di forms a ternary copy gate with the
output memristorMout and the voltage sourceVcopy, and its function
is to copy the data on Di toMout. Switches S1–S18 are used to control
the access conditions of the memristors D0–D8, ensuring that only
one data memristor Di is connected to the circuit during the circuit
operation stage. It is worth mentioning that the auxiliary resistor R is
also added to the data selector circuit, and its function is to make the
circuit have more voltage divider cases. If there is no auxiliary
resistor, when the values of Min1 and Min2 are same, there will be
three different cases (Min1 =Min2 = 800Ω,Min1 =Min2 = 400Ω, and
Min1 = Min2 = 100Ω), but the divided voltages on Min1 and Min2 in
these three cases will always be the same, which will cause the switch
groups that work for these cases to be the same. However, with the
help of an auxiliary resistor R, the voltage division in these three
cases will easily be distinguished, and different switch groups can be
turned on according to different cases. To meet this demand, R is
calculated as 500Ω, and the other parameters are Vcopy = 1.6 V,
VInit = 0.5 V, and VRun = 1.2 V.

TABLE 7 Specific voltage division of each memristors in the calculation stage of the ternary copy gate.

First stage Second stage

Data memristor Output memristor Data
memristor

Output memristor

Memristor (logical
value)

Voltage
(V)

Memristor (logical
value)

Voltage
(V)

Voltage (V) Memristor (logical
value)

Voltage
(V)

800Ω(0) 0.8 800Ω(0) 0.8 No change in status

400Ω(1) 0.53 800Ω(0) 1.07 0.8 400Ω(1) 0.8

100Ω(2) 0.18 800Ω(0) 1.42 0.8 100Ω(2) 0.8

FIGURE 11
9-out-of-1 ternary data selector circuit.
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TABLE 8 Conduction of the 9-to-1 ternary data selector under different inputs.

Input resistance (logical value) Control voltage (V) Conductive switch group Mout

Min1 Min2 Vab Vbc

800Ω(0) 800Ω(0) 0.457 0.743 (S1,S2) D0

800Ω(0) 400Ω(1) 0.565 0.635 (S3,S4) D1

800Ω(0) 100Ω(2) 0.686 0.514 (S5,S6) D2

400Ω(1) 800Ω(0) 0.282 0.918 (S7,S8) D3

400Ω(1) 400Ω(1) 0.369 0.831 (S9,S10) D4

400Ω(1) 100Ω(2) 0.48 0.72 (S11,S12) D5

100Ω(2) 800Ω(0) 0.086 1.114 (S13,S14) D6

100Ω(2) 400Ω(1) 0.12 1.08 (S15,S16) D7

100Ω(2) 100Ω(2) 0.171 1.029 (S17,S18) D8

FIGURE 12
LTspice simulation result of the ternary data selector: (A) input as (0, 0), (B) input as (0, 1), (C) input as (0, 2), (D) input as (1, 0), (E) input as (1, 1), (F) input
as (1, 2), (G) input as (2, 0), (H) input as (2, 1), and (I) input as (2, 2).
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For convenience, switches S1–S18 are divided into nine groups.
Each group is called a switch group, which is expressed as (S1, S2) ~
(S17, S18), and each switch group is turned on only when two
switches in the switch group are turned on at the same time. The
threshold voltages of S1–S18 are set to 0.4, 0.73, 0.5, 0.6,0.6, 0.5, 0.2,
0.9, 0.3, 0.8, 0.47, 0.7, 0.05, 1.1, 0.1, 1.05, 0.15, and 1 V. Table 8 lists
the situation of conductive switch groups and the output of Mout

under different inputs of the 9-out-of-1 ternary data selector.
According to the specific logic states of Min1 and Min2, the
specific operation of the ternary data selector in the running
phase can be summarized as follows. In this paper, the input
logic “00” and “01” are taken as examples for detailed analysis.
The analysis process of other inputs is the same, and the description
will not be repeated here.

(1) The input logic is “00,” that is, Min1 = 800Ω and Min2 = 800Ω.
Vab = 0.457V and Vbc = 0.743 V can be obtained by voltage
division calculation. At this time, only S1 and S2 will be closed at
the same time among the nine switch groups. Then, memristors
D0 andMout are connected in series for the copy operation, and
the logic gate outputs the data stored in D0.

(2) The input logic is “01,” that is,Min1 = 800Ω,Min2 = 400Ω, Vab =
0.565V, and Vbc = 0.635 V. Only S3 and S4 are turned on at the
same time among the nine switch groups. So the memristor pair
D1 and Mout will be connected in series for the copy operation,
and the logic gate outputs the data stored in D1.

The 9-out-of-1 ternary data selector is simulated using LTspice
software, in which the data memristorsD0–D8 store nine channels of
ternary signals, and its resistance value and corresponding logic
value are D0 = 800Ω (“0”), D1 = 400Ω (“1”), D2 = 100Ω (“2”), D3 =
800Ω (“0”),D4 = 400Ω (“1”),D5 = 100Ω (“2”),D6 = 100Ω (“2”),D7 =
400Ω (“1”), and D8 = 800Ω (“0”). The simulation results under
different combinations of address signals are shown in Figure 12,
which shows the data selection results of the 9-out-of-1 ternary data
selector. The resistance values ofMin1 andMin2 are the input address
signals, and the resistance value of Mout is the output signal. When
the inputs are “00,” “01,” “02,” “10,” “11,” “12,” “20,” “21,” and “22,”
the ternary signals stored inD0,D1,D2,D3,D4,D5,D6,D7, andD8 are
outputs, which are consistent with the output of the ternary data
selector in Table 6, and verify the effectiveness of the designed
ternary data selector circuit.

4 Conclusion

This paper presents a design method of the ternary
combinational logic gate circuit based on a tri-valued memristor
and realizes the ternary encoder, ternary decoder, ternary
comparator, and ternary data selector with the resistance of the
tri-valued memristor as the logic state variable. First, a voltage
threshold tri-valued memristor is introduced, and the threshold
characteristics of the tri-valued memristor are analyzed in detail.
Second, using the tri-valued memristor, a series of complex
combinational logic circuits with the resistance of the memristor
as the logic state variable are designed, respectively, and the

implementation principle of each gate is analyzed in detail.
Finally, the effectiveness of the designed combinational logic gate
circuits is verified by LTspice circuit simulation. Compared with the
existing binary or ternary combinational logic gate circuits, the
ternary combinational logic gate circuit based on the tri-valued
memristor proposed in this paper does not need to be realized by
cascading basic logic gates and can be realized only by a small
number of tri-valuedmemristors and voltage-controlled switches. In
addition, the logic gate designed by this method can not only
perform logic operations but also store logic values.
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Dynamic displacement estimation
of structures using
one-dimensional convolutional
neural network

Xin Zhou1 and Yuanpeng He2*
1School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai, China,
2Faculty of Geosciences and Ground Engineering, Southwest Jiaotong University, Chengdu, Sichuan,
China

For large infrastructures, dynamic displacement measurement in structures is an
essential topic. However, limitations imposed by the installation location of the
displacement sensor can lead to measurement difficulties. Accelerometers are
characterized by easy installation, good stability and high sensitivity. For this
regard, this paper proposes a structural dynamic displacement estimation
method based on a one-dimensional convolutional neural network and
acceleration data. It models the complex relationship between acceleration
signals and dynamic displacement information. In order to verify the reliability
of the proposed method, a finite element-based frame structure was created.
Accelerations and displacements were collected for each node of the frame
model under seismic response. Then, a dynamic displacement estimation dataset
is constructed using the acceleration time series signal as features and the
displacement signal at a certain moment as target. In addition, a typical neural
network was used for a comparative study. The results indicated that the error of
the neural network model in the dynamic displacement estimation task was
9.52 times higher than that of the one-dimensional convolutional neural
network model. Meanwhile, the proposed modelling scheme has stronger
noise immunity. In order to validate the utility of the proposed method, data
from a real frame structure was collected. The test results showed that the
proposed method has a mean square error of only 5.097 in the real dynamic
displacement estimation task, whichmeets the engineering needs. Afterwards, the
outputs of each layer in the dynamic displacement estimationmodel are visualized
to emphasize the displacement calculation process of the convolutional neural
network.

KEYWORDS

convolutional neural network, displacement estimation, acceleration, visualization,
portable measurement

1 Introduction

With the development of structural health monitoring, the safety of some structures,
such as high-rise buildings [1, 2], bridges [3, 4], and rapid transit [5, 6], has gradually
attracted public attention. These structures may be affected by natural disasters such as
typhoons and earthquakes. These natural disasters could cause structural damage and even
lead to major accidents. Therefore, these structures are usually equipped with structural
health monitoring systems and a large number of sensors [7–10] are placed to monitor the
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safety of the structure. The most common sensors used in structural
safety monitoring are accelerometers, fiber-optic gratings, strain
gauges, displacement gauges, and so on. However, structural
displacement monitoring has been a challenge in the monitoring
field. Due to the limitation of structural space, it is sometimes
difficult to find suitable locations for sensor installation, such as
dynamic displacement detection in bridges. Even if there is enough
space in the structure to install sensors, only relative displacement
can be measured. Acceleration is easier to monitor than
displacement. Furthermore, acceleration sensors can be connected
directly to the test point. In addition, acceleration sensors are small
and convenient and do not require a large installation space, so
acceleration monitoring is easy to implement in engineering
applications.

Despite the many difficulties in displacement monitoring, many
innovative monitoring methods based on certain sensors have been
proposed, such as lasers [11, 12], cameras [13, 14], radar [15], and global
positioning systems [16]. These methods have been widely used in real
structures, and even some sophisticated measurement devices such as
laser displacement sensors, total stations, and millimeter wave radars
have emerged. However, these displacement measurement devices still
require a large installation space. They can only measure the relative
displacement of the structure, and the actual displacement of the
structure is difficult to measure. For bridge deflection measurement,
it is impossible to build scaffolding on both sides of the bridge to install
the sensors. Therefore, the installation space is a key issue that restricts
the displacement measurement. In addition, there are many indirect
monitoring methods based on acceleration data. Theoretically, the
displacement signal can be obtained by double integration of the
acceleration signal. The monitoring of acceleration signals is very
easy to achieve, so some dynamic displacement measurement
methods based on acceleration signals have been proposed. However,
these methods may result in a continuous error trend in the
displacement signal. Various algorithms for eliminating the error
trend [17–20] have been extensively studied. The methods for
removing the error trend are mainly classified into three types: time-
domain integration, filtering, and frequency-domain integration. These
integrationmethods are fixed signal processingmethods that are not able
to adapt to changes in the environment and uncertainty in the data. In
complex and dynamic environments, these methods may not be able to
adapt and process data efficiently. They are mostly used for linear signal
processing and have limited ability to deal with nonlinear problems.
However, many phenomena in engineering are non-linear issues [21].
Machine learning methods are better able to cope with nonlinear
problems and improve performance by learning the nonlinear
relationships of the data. Compared to machine learning, they have
some limitations in terms of data dependency, feature design, adaptivity
and non-linear problemhandling. In addition, some neural networks are
devoted to address multimodal functional synchronization [22, 23] and
communication security [24]. Machine learning methods are more
flexible in dealing with different types of data and can automatically
learn features and patterns from data, making them more applicable in
dealing with complex and uncertainty-prone problems.

In recent years, Convolutional Neural Network (CNN) has
made great achievements in the field of object recognition. It is
widely used in various fields, such as image recognition [25–28],
medical diagnosis [29, 30], traffic safety [31, 32], crack detection [33,
34], pedestrian identification [35], and bolt loosening monitoring

[36, 37]. These research results show that convolutional neural
networks can accurately model numerous complex systems
relying on big data. Li et al. accurately identified concrete surface
cracks using a semantic segmentation algorithm based on
convolutional neural networks [38, 39]. According to the
semantic recognition results, they extracted the crack parameters
and analyzed the fractal characteristics of the surface cracks from
different specimens using image processing techniques. Zhang et al.
used a convolutional neural network to process the time-frequency
features of the seismic response, which were subsequently input into
a dynamic network to complete the signal classification [40]. The
convolutional neural network can deeply analyze the two-
dimensional time-frequency features, and the dynamic network
further improves the efficiency of signal processing [41]. All of
these monitoring methods are based on two-dimensional
convolutional neural networks, but one-dimensional convolutional
neural networks [42, 43] also have great advantages in data processing.
In recent years, convolutional neural networks have achieved
remarkable results in the field of image processing. Consequently,
the integration of CNNs and machine vision has become widely
prevalent. However, when it comes to extracting localized features in
image processing, the commonly employed approach is the
utilization of two-dimensional CNNs. One-dimensional
convolutional neural networks are commonly used to process
one-dimensional signals, such as acceleration signals. Two-
dimensional convolutional neural networks cannot directly
process one-dimensional signals. Of course, one-dimensional
signals can be converted into two-dimensional features, such as
time-frequency features for processing by two-dimensional
convolutional neural networks. However, one-dimensional
convolutional neural networks can directly extract features from
one-dimensional signals without additional conversion steps to
achieve good recognition results. In addition, convolutional
neural networks have the ability of autonomous learning. There
is a simple integral relationship between acceleration and
displacement at the same point. Although there is a trend term,
the convolutional neural network has a strong learning ability to
learn how to remove the trend term. In addition, the convolutional
neural network has the ability to extract data features and optimize
them without human intervention. Convolutional neural networks
are very effective in processing data.

In this paper, a new method for estimating dynamic
displacements of structures using one-dimensional convolutional
neural networks and acceleration is presented. The method is used
to estimate the dynamic displacement of a three-layer finite element
model and a three-layer steel frame. A typical neural network
algorithm provides a reference for the proposed CNN method.
Section 2 describes the neural network and convolutional neural
network used in this paper. A finite element model is designed in
Section 3. Under the effect of Wenchuan earthquake wave, the
acceleration signal and displacement signal of each node of the
model are collected to form a dataset. The data set is divided into
training set, validation set and test set. The training and validation
sets are fed into the neural network and the proposed convolutional
neural network. To validate the noise resistance of the proposed
method, four noise levels (i.e., 10%, 20%, 30%, and 40%) are added to
the acceleration signals to examine the robustness of the CNN to
noisy data. These data were directly fed into the training model,
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which was trained by the noise-free dataset. The results show that
the convolutional neural network is robust to noise. In Section 4, a
three-layer steel frame is constructed and the acceleration signals
and displacement signals of the nodes of the frame are collected by
acceleration sensors and displacement sensors. The training and
validation sets are fed into the proposed convolutional neural
network. The results show that the mean square error (MSE) of
the displacement estimation is 5.097, which can meet the
engineering needs. Subsequently, the output of each layer is
visualized to understand how the convolutional neural network
processes the data. Section 5 discusses the article. Section 6
summarizes the article.

2 Methodology

This paper presents a dynamic displacement estimation method
based on a one-dimensional convolutional neural network and
acceleration signals. The method uses acceleration signals and an
estimation model trained by a convolutional neural network to
estimate the dynamic displacement of the structure. The estimation
results of the neural network method can be used as a reference for
the proposed convolutional neural network method. The following
section describes the neural network and convolutional neural
network in detail. In this paper, a workstation is used to train
the model and computational frameworks such as TENSORFLOW
and KERAS are applied.

2.1 Neural network

Neural network algorithms are generated by modelling the
working of human neurons. A neural network generally consists
of an input layer, a hidden layer, and an output layer, as shown in
Figure 1. Sometimes, a neural network may have more than one
hidden layer. In a fully connected neural network, neurons between

two neighboring layers are connected exactly in pairs. The weights
refer to the strength or amplitude of the connection between two
neurons. During training, these connection weights are updated
until the global error of the network approaches a minimum. In the
parameter update calculation, this is typically done using a gradient
descent algorithm. The key to the gradient descent algorithm is the
calculation of the gradient, which tells us how to update the
parameters to minimize the loss function. Gradient descent
algorithms generally include Batch Gradient Descent, Stochastic
Gradient Descent and Mini-Batch Gradient Descent [44]. They
differ in the number of samples used each time the parameters
are updated. Gradient descent algorithms have the advantage of
being simple to implement and can be used to optimize a variety of
loss functions.

The neural network used in this paper consists of one input
layer, two hidden layers and one output layer, as shown in Tabel 1.
The number of neurons in the input layer is 50, the number of
neurons in the first hidden layer is 30, the number of neurons in
the second hidden layer is 20, and the number of neurons in the
output layer is 1. In general, the raw data usually has highly dense
features, and the complex features can be transformed into sparse
features. This can enhance the robustness of the features.
Therefore, introducing an activation function in the neural
network can improve the data sparsity. However, a large
proportion of sparsity can destroy the characteristics of the
data and affect the learning effect of the neural network. The
sparsity ratio of human brain is 95%. Due to the property of
Rectified Linear Unit (ReLU) (negative output of x is 0), Rectified
Linear Unit (ReLU) can be generated for alternate networks.
ReLU is shown in Figure 2. ReLU is a nonlinear activation
function that helps the neural network model to learn
nonlinear relationships. This is important for solving complex
problems and fitting nonlinear data. In addition, the output of
ReLU is 0 when the input value is less than 0. This means that
there will not be any negative signals passed to the next layer of
neurons. This sparse activation can help the network learn more
robust feature representations and reduce redundancy between
features [45]. Compared to other activation functions such as
sigmoid and tanh which have small gradients over positive
intervals, ReLU has constant gradients over positive intervals,
reducing the problem of gradient vanishing and facilitating the
training of the network.

The loss function is mainly used to measure the difference
between the predicted value and the actual value. When the
predicted value is closer to the actual value, the value of the loss
function is smaller. When the predicted value is closer to the actual
value, the value of the loss function is smaller. In neural networks,
the loss function is the mean square error (MSE), which is often used
in regression problems. The MSE can be calculated as the square of
the difference between the actual value and the predicted value. The
formula is as follows:

MSE � 1
n
∑n
i�1

actuali − predictedi( )2 (1)

where n is the number of samples; actual is the actual value;
predicted is the predicted value; i is the i-th sample. In order to
comprehensively assess the impact of noise on the proposedmethod,

FIGURE 1
Neural network diagram.
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three evaluation metrics such as Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and R2 are also calculated.

MAE � 1
n
∑n
i�1

actuali − predictedi

∣∣∣∣ ∣∣∣∣ (2)

MAPE � 100%
n

∑n
i�1

actuali − predictedi

actuali

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (3)

R2 � 1 −
∑n
i�1

actuali − predictedi( )2
∑n
i�1

actuali −mean( )2
(4)

where mean represents the mean value of the real sample.

2.2 Convolutional neural network

The major difference between convolutional neural networks
and ordinary neural networks is the convolution operation. To
illustrate the advantages of convolutional neural networks, the
proposed convolutional neural network uses the same activation
function and loss function as the fully connected neural network.
The architecture of the convolutional neural network is different
from the fully connected neural network. Convolutional neural
network contains convolutional layer, maximum pooling layer,

flat layer and dense (fully connected) layer. Each neuron in a
neural network is connected to all the previous layers of neurons,
which leads to a large increase in the number of parameters.
Whereas in CNN only the inputs that are within the range of the
convolutional kernel will be selected for connection, which reduces
the number of parameters and increases the computational
efficiency. The detailed parameters of the convolutional neural
network are shown in Table 2.

2.2.1 Convolutional layer
The convolutional layer is an important part of a convolutional

neural network. The convolutional kernel extracts feature from the
input data. CNNs use the convolutional kernel to perform sliding
window operations on the input data, reducing the number of
parameters in the network by means of parameter sharing. This
makes CNNs more efficient in processing data with spatial and
temporal relationships and allows spatially localized features to be
extracted [46]. The convolution operation (⊗) starts from the top left
corner of the input data. The parameters of the convolution kernel
are multiplied with the parameters of the overlay region. The
product values are added together as the output of the
convolution operation. The convolution kernel is then shifted
one element to the right or down (stride is 1) for the next
convolution. The initial parameters of the convolution kernel are
randomly generated. During the training process, the parameters of

TABLE 1 Architecture of the neural network.

Layer Number of neurons Activation function Number of trainable parameters

Input 50 ReLU 2550

Hidden layer#1 30 ReLU 1530

Hidden layer#2 20 ReLU 620

Output 1 ReLU 21

FIGURE 2
Activation function.
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the convolution kernel are updated until the end of training. An
example of a convolution operation is shown in Figure 3.

2.2.2 Pooling layer
The pooling layer, also known as the down sampling layer, is

mainly used to reduce the size of the feature data. CNNs use a
pooling layer to reduce the spatial size of the feature map, to extract
the positional information of the features and at the same time to
preserve the most salient features in the feature map. Similar to
convolutional layers, pooling layers allow for parameter sharing.
This means that pooling operations performed in a local region use
the same parameters, which can effectively reduce the number of
parameters in the network and improve the computational
efficiency of the model. In addition, like convolutional layers,
pooling layers have a kernel. However, the pooling kernel does
not contain any parameters. The most common pooling operation is
maximum pooling. By selecting the maximum value within a local
region, maximum pooling captures the most salient features. It is
very effective in highlighting the most important and active features
in the data [47]. An example of the max pooling operation is shown
in Figure 4. For mean pooling, the input features can be smoothed by
averaging them to reduce noise and redundant information.

2.2.3 Flatten layer
In this paper, the input data to the network is one-dimensional

data. One convolutional kernel in the convolutional layer is
convolved with the input data to generate one-dimensional data
and multiple convolutional kernels are convolved with the input
data to generate multidimensional data. The input data of the dense
(fully connected) layer must be one-dimensional data. Therefore, the
multidimensional data is transformed into one-dimensional data by
the Flatten layer. The Flatten layer transforms the multidimensional
input data into one-dimensional vectors, allowing the subsequent
fully-connected layer to process the entire input. It is useful for
processing multidimensional data, and after converting the input
data into a one-dimensional form, the common neural network
architecture can be used in the fully connected layer.

3 Numerical simulation

3.1 Dataset generation

The finite element model was created by ABAQUS. Themodel is
a three-storey frame structure with a storey height of 4,500 mm and

TABLE 2 The parameters of the convolutional neural network.

Layer Input shape Output shape Kernel size Kernel number

Convolution 1-D (50,1) (46,6) 5 6

Convolution 1-D (46,6) (42,12) 5 12

Convolution 1-D (42,12) (38,64) 5 64

Convolution 1-D (38,64) (34,128) 5 128

Max Pooling 1-D (34,128) (17,128) 2 128

Flatten (17,128) (2176) None None

Dense 2176 (1) None None

FIGURE 3
Example of convolutional operation.
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a span of 7,200 mm. The beams and columns are made of Q235 steel.
The seismic intensity is 8°. The finite element model and node
numbers are shown in Figure 5.

The Wenchuan seismic waves are input into the finite element
model and then the acceleration and displacement signals of twelve
nodes (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 and 13) are collected. The
acceleration signals with a duration of 0.5 s at each node will be used
as inputs to the neural network and convolutional neural network.
The sampling frequency is 100 Hz, so the input data is a 50 ×
1 vector. The output of the network is the displacement signal (1 × 1)
at the end of the corresponding 0.5 s interval. The acceleration and

FIGURE 4
Example of pooling operation.

FIGURE 5
The finite element model and node number.

FIGURE 6
The MSE curves of the two methods. (A) NN. (B) CNN.
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displacement signals form the dataset. There are a total of
2,387 samples in this data set. The samples in the dataset are
then randomly arranged, with 1,600 samples as the training set,
400 samples as the validation set, and 387 samples as the test set.

3.2 Estimation result

In this section, the dataset is trained using a fully connected
neural network (NN) and the proposed convolutional neural
network (CNN)-based modelling approach, respectively. In
order to verify the advantages of convolutional neural network,
the proposed convolutional neural network uses the same
activation function and loss function as the fully connected
neural network. The activation function is ReLU and the loss
function is Mean Square Error (MSE). The MSE curves of the two
methods are shown in Figure 6. From the figure, it can be seen that
when the epoch is 200, the MSE curve of CNN remains basically
unchanged. When the epoch is 450, the MSE curve of NN remains
basically unchanged. This shows that CNN has stronger feature
extraction ability and only 200 epochs are needed to reach the
convergence state. The number of epochs for NN to reach the
convergence state is 2.25 times more than that of CNN. In CNN,
the MSE is 0.899 for the training set and 3.426 for the validation
set. In NN, the MSE is 22.386 for the training set and 24.198 for the
validation set. When the number of training epochs is less than 80,
the MSE of the NN is too large. In order to facilitate the
comparison of the effects from the two types of networks, MSE
comparisons from 80 epochs to 200 epochs were chosen for this
section, as shown in Figure 7. As can be seen from the figure, the
MSE of NN gradually decreases from 350 to around 50 whereas the
MSE of CNN is very small. As can be seen in the local figure, the
MSE of the CNN is only 1.5 when the epoch number is 140. In
contrast to NNs, CNNs have significant training efficiency and
accuracy in dynamic displacement estimation task.

There were 387 samples in the test set. The predicted displacements
are automatically generated by feeding these samples into the
displacement estimation model generated by the above two methods.
The predicted displacements based on the fully connected neural
network are shown in Figure 8. From the figure, it can be seen that
the predicted displacement curve based on the fully connected neural
network method partially overlaps with the actual displacement curve,
and the MSE of the test set is 29.489. It can be seen that the predicted
displacements generated by the fully connected neural network have a
good degree of overlap with the actual displacements.

The results of displacement prediction based on convolutional
neural network are shown in Figure 9. It can be seen that the
displacement curve predicted based on convolutional neural
network has a great overlap with the actual displacement curve.
The MSE of the test set is 3.096, which indicates that the CNN has
high accuracy in estimating the dynamic displacement of the
structure. For the same test set, the MSE of the convolutional

FIGURE 7
Comparison of the training loss curves between the two
networks.

FIGURE 8
The predicted displacement based on NN.

FIGURE 9
The predicted displacement based on CNN.
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neural network is much smaller than that of the fully connected
neural network, and the number of training episodes of the
convolutional neural network is also smaller than that of the
fully connected neural network. Therefore, compared with the
fully connected neural network, the proposed convolutional
neural network performs better in displacement estimation with
both higher estimation accuracy and higher modelling efficiency.

3.3 The effects of noise

Noise is inevitable in data acquisition systems. Meanwhile, disturbed
by the external environment, there are often more noise signals and
uncertainties in the sensor-based sensory data. In order to verify the noise
resistance of the proposed convolutional neural network, four noise levels
(i.e., noise-to-signal ratios of 10%, 20%, 30%, and 40%, respectively) are
added to the acceleration signals to investigate the robustness of the CNN
to noisy data. These data were directly fed into the trained dynamic

displacement estimation model, which was trained and updated from
noisy data samples. The dynamic displacement prediction results based
on convolutional neural network are shown in Figure 10. It can be seen
that the displacements predicted by the convolutional neural network still
have good accuracy under the influence of noise. Since the effects of the
four noise levels on the convolutional neural network are basically the
same, only the predicted displacements based on the test set for two noise
levels (10% and 40%) are shown in the figure. Four evaluation indicators
(MSE, MAE, MAPE, and R2) based on the test set for each of the four
noise levels are calculated in Table 3. These four-assessment metrics
change very little as the noise-to-credit ratio continues to increase.
Especially for R2, its value is always 0.991. The results showed that
the convolutional neural network is robust against noise. The noise of
data acquisition has little effect on it because the convolutional and
pooling layers in the convolutional neural network are similar to filters
and are more powerful than normal filters.

4 Physical model test

4.1 Dataset generation

In Section 3, acceleration and displacement signals are generated
by numerical simulation. The dataset is trained to estimate the
dynamic displacements. However, the data generated by numerical
simulation is idealized. The acceleration and displacement signals of
the actual structure are acquired by sensors. The data collected by
the sensors is incomplete and complex due to the noise and missing
data characteristics of the sensors. Therefore, it is necessary to verify
the effect of the proposed convolutional neural network on the
actual structure. The design of the actual frame structure is shown in
Figure 11. In the case where the real frame structure is subjected to
transient excitation, the acceleration and displacement signals of the
nodes are collected by piezoelectric accelerometers and laser
displacement sensors. The piezoelectric accelerometers and laser
displacement sensors are acquired at a frequency of 100 Hz. This
real dynamic displacement estimation dataset is formed in the same
way as in Section 3. The dataset contains a total of 2,333 samples, of
which 1,600 samples are used as the training set, 400 samples are
used as the validation set, and 333 samples are used as the test set.

4.2 Estimation result

The training set is fed into the proposed convolutional neural
network. The MSE curve is shown in Figure 12. It can be seen that

FIGURE 10
The predicted displacements based on test set with noise. (A)
10%. (B) 40%.

TABLE 3 Estimation error for test samples with varying degrees of noise.

Noise-to-signal
ratios (%)

MSE MAE MAPE (%) R2

0 3.096 1.032 19.2 0.991

10 3.115 1.030 18.8 0.991

20 3.106 1.041 19.3 0.991

30 3.121 1.039 19.4 0.991

40 3.124 1.037 19.3 0.991
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the MSE curve remains almost constant when the epoch is 250. This
indicates that the model has basically reached the convergence state.
TheMSE based on the training set is 5.097 and theMSE based on the
validation set is 10.770. The MSE value can satisfy the need of
engineering design.

The test set contains 333 samples and the test set is fed into the
dynamic displacement estimation model. The predicted and actual
displacements are shown in Figure 13. It can be seen that the
predicted displacement curves are in high agreement with the
actual displacement curves. The MSE based on the test set is
6.150. The results show that the displacement estimation method

based on convolutional neural network can accurately estimate the
displacement signal using the acceleration signal.

4.3 Visualization of the output

A neural network is similar to a black box. It is difficult to
understand and does not give direct visualization of the output. Data
processing in neural networks is invisible. Convolutional neural network
is one of the neural networks which also has this characteristic.
Therefore, in order to have a clearer understanding of how
convolutional neural networks process data, we have visualized the
output of the hidden layer of the convolutional neural network. The
proposed convolutional neural network consists of an input layer, four
convolutional layers, a pooling layer, a flattening layer and an output
(dense) layer. In convolutional neural network, convolutional and
pooling layers are the core components.

In this section, the output of the convolutional layer and the pooling
layer is visualized. The first sample data in the test set is shown in
Figure 14A, and the curve fluctuates between 150 and 1000 mm/s2. The
input data is passed to the first convolutional layer. The first
convolutional layer has 6 convolutional kernels. Each convolution
kernel processes the input data to produce a 46 × 1 vector.
Therefore, there are 6 vectors (46 × 1). One of the vectors is shown
in Figure 14B, where the curve fluctuates between 50 and 300. The
second convolutional layer has 12 convolutional kernels, and there are
12 vectors (42 × 1). One of the vectors is shown in Figure 14C, and the
curve fluctuates between 0 and 100. The third convolutional layer has
64 convolutional kernels and a total of 64 vectors (38 × 1). One of the
vectors is shown in Figure 14D, and the curve fluctuates between 3 and
16. The fourth convolutional layer has 128 convolutional kernels with
128 vectors (34 × 1). One of the vectors is shown in Figure 14E, and the
curve fluctuates between 0 and 2. As the data is processed through the
convolutional layers, the value of each data becomes smaller. The pooling
layer has 128 convolutional kernels and a total of 128 vectors (17 × 1).
One of the vectors is shown in Figure 14F, where the curve fluctuates
between 0 and 2. It can be seen that the pooling layer does not change the
value of the data, but reduces the amount of data. The data curve

FIGURE 11
Physical frame structure.

FIGURE 12
The MSE curves.

FIGURE 13
The predicted displacements and actual displacements.
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becomes smoother after the data is processed by the pooling layer. The
convolutional and pooling layers can also act as filters, so the
convolutional neural network has strong noise immunity. Although
the size of the output vector of the hidden layer is decreasing, the overall
shape of the original data is still well preserved.

The output of the pooling layer is a multidimensional vector. The
Flatten layer then converts the multidimensional vectors into one-

dimensional vectors. The Flatten layer rearranges the data into a one-
dimensional form, preserving the feature order of the multidimensional
vectors. This allows the subsequent Fully Connected layer to learn based
on the overall features of the input and to model the relationships
between the features. The one-dimensional vectors are fed into the fully
connected (dense) layer. Finally, an estimate of the dynamic
displacement is output. Table 4 shows the predicted and actual

FIGURE 14
The output of hidden layers. (A) input data. (B) output of 1st convolutional layer. (C) output of 2nd convolutional layer. (D) output of 3rd convolutional
layer. (E) output of 4th convolutional layer. (F) output of pooling layer.
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values of the first 10 samples in the test set. It can be seen that only the
sixth and ninth samples have an error greater than 10%, while the other
samples have an error between 0.15% and 9.30%. The average error is
6.69%, so the proposed method can meet the engineering needs.

5 Discussion

In this paper, a 1D convolutional neural network is used for data-
driven modelling of the complex relationship between acceleration
signals and dynamic displacements. The dynamic displacement
estimation method based on convolutional neural network is
verified by numerical simulation to be superior to the method
based on fully connected neural network in terms of accuracy,
stability and convergence efficiency. Noise is added to the test set
and these data are directly fed into the dynamic displacement
estimation model which is trained from noise-free data samples. It
is worth noting that the displacements estimated by the convolutional
neural network model still have good accuracy under the influence of
noise. Subsequently, a real frame structure is used to verify the
feasibility of the proposed method in real engineering applications.
Although the root-mean-square error of the predicted displacements
of the real structure is larger than the root-mean-square error of the
predicted displacements of the finite element model, the predicted
displacements of the real structure satisfy the engineering needs. This
is mainly due to the fact that the sensors are affected by many factors
when sensing the dynamic characteristics of the structure, and the
collected signals contain more noise and uncertainty. The results of
the output visualization of the convolutional neural network show
that the convolution operation not only reduces the amount of data,
but also reduces the data values. In addition, the convolutional and
pooling layers act as filters, which results in a convolutional neural
network with strong noise immunity.

6 Conclusion

In this paper, a dynamic displacement estimation method based
on convolutional neural network and acceleration is proposed. The
acceleration and displacement signals are trained to generate an

estimation model. The acceleration data is input into this
estimation model, and the displacement estimate can be output
automatically. Numerical simulations and physical model tests
verify the feasibility and stability of the method. Some important
results are obtained: the 1D convolutional neural network can
accurately model the complex relationship between acceleration
timing signals and displacement signals; the convergence efficiency
of the convolutional neural network is much greater than that of a
typical neural network when modelling the complex relationship
using the convolutional neural network. The updating efficiency of
the former is 2.25 times that of the latter; due to the existence of the
convolution kernel in the convolutional neural network, it can filter
the data and has a strong anti-noise ability; in this paper, the
visualization part at the end fully reflects the filtering effect of the
convolution kernel on the noise. The proposed method can easily and
quickly estimate the dynamic displacement of structures using
acceleration information. It also still shows good results in noisy
environments. However, the proposed method is affected by the
accuracy of the acceleration signal. To further improve the
accuracy of displacement estimation, multi-sensor fusion such as
accelerometers and strain gauges can be considered. In addition,
deep learning architectures based on multi-sensor fusion need to
be further explored.
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TABLE 4 The predicted error of test set.

Count Predicted value Actual value Error (%)

1 19.342 19.635 1.49

2 14.212 15.670 9.30

3 −25.742 −27.300 5.71

4 22.301 24.305 8.25

5 14.447 14.425 0.15

6 −5.952 −7.172 17.01

7 −3.662 −3.892 5.91

8 −24.783 −25.935 4.44

9 −23.849 −26.812 11.05

10 16.703 16.120 3.62
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