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Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques have opened 
new doors for examining biological tissues in vivo. By combining sensitization to 
diffusion using magnetic field gradients with a variety of imaging and localization 
schemes, diffusion-weighted MRI and diffusion-weighted MRS allow investigating 
translational diffusion of endogenous molecules, such as water or metabolites, in 
biological tissues, most commonly the brain but also other organs such as the 
prostate.

The typical voxel resolution of MRI or MRS is in the millimeter to centimeter range, 
much lower than the cellular scale. However, as molecules are typically diffusing 
over just a few µm during the duration of the measurement (the “diffusion time”) 
and encounter numerous biological membranes at these scales, the average 
cellular microstructure has a critical influence on the measured diffusion signal. 
Hence, diffusion-weighted MRI and diffusion-weighted MRS are sensitive to tissue 
microstructure at a scale well below the nominal imaging resolution. However, the 
connection between diffusion properties and tissue microstructure remains indirect, 
so any attempt to quantify microstructure will rely on modeling.

The goal of this Research Topic was to gather experts in various acquisition and 
modeling strategies and show how these approaches, despite their own strengths 
and weaknesses, can yield unique information about cellular microstructure, and 
sometimes complement each other.
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Editorial on the Research Topic

Assessing Cellular Microstructure in Biological Tissues Using in vivo Diffusion-Weighted

Magnetic Resonance

Since the seminal works of Stejskal and Tanner in the 1960s [1], the study ofmolecular self-diffusion
by diffusion-weighted (DW) nuclear magnetic resonance (NMR) has emerged as a dynamic
and rich research field. Initially introduced as a tool to measure diffusion in materials and to
estimate microstructural properties of materials by modeling deviations from free diffusion caused
by microstructural barriers [2], DW-NMR was soon proposed as a tool to characterize cellular
microstructure in biological tissues [3]. It was then quite a natural—although challenging—step
to endow magnetic resonance imaging (MRI) with diffusion-weighting capabilities to map water
diffusion in vivo [4], which almost immediately revolutionized the diagnosis of brain ischemic
stroke [5–7]. This partial historical account of the early days highlights the different “flavors”
still characterizing our research field at the interface of physics, chemistry, biology, computer
science, and medical imaging: a unique blend of powerful concepts and theories, cutting-edge
methodological, and technical innovations, ideally leading to highly-relevant biological insights or
clinical applications.

Various approaches, each with their own strengths and weaknesses, have been developed over
the years to probe microstructure with ever higher degrees of sensitivity and specificity. The
goal of this Research Topic was to gather experts in various acquisition and modeling strategies
and show how these approaches can yield unique and complementary information about cellular
microstructure. In parallel to the topics discussed here, other developments are also driving
in vivo DW-NMR forward. Important examples are the ever increasing field strength and gradient
performance of MRI scanners, boosting signal-to-noise, and enabling larger and better temporally
resolved diffusion-weighting, respectively [8, 9]. However, these technical innovations also come
with new difficulties or limitations, e.g., increased tissue heating, decreased transverse relaxation
times, increased sensitivity to motion and field fluctuations, decreased field homogeneity and
increased geometrical distortions at high fields [10, 11], and increased peripheral nerve stimulation
by powerful gradients [9]. The drawbacks resulting from these technical innovations are partially
offset by parallel developments in coil and pulse sequence technology. Such technical innovations
and solutions are not discussed in this Research Topic.
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Many fundamental questions remain open about the
relationships existing between the diffusion-weighted signal and
its derived diffusion metrics on one hand, and the underlying
microstructural features on the other hand. Approximately
half of the papers of this research topic aim at addressing such
fundamental questions, using different approaches.

Some rely primarily on theoretical considerations. Özarslan
et al. revisit the q−1 decay in narrow fibers, taking curvature
into account. The problem is examined in three distinct temporal
regimes of the Stejskal-Tanner pulse-field gradient experiment.
For smaller cells, the q−1 decay of the orientationally-averaged
signal is only predicted for straight fibers. This decay is more
general for cells with longer projections, but fades away for curvy
structures as gradient pulse duration increases. The authors stress
that the q−1 decay could represent an intermediate range, as the
true asymptotic behavior is governed by a steeper attenuation.
Laun et al. tackle another kind of diffusion experiments, where
the time-dependence of the apparent diffusion coefficient (ADC)
is measured. In the short diffusion time (td) regime, the ADC
is known to decrease as the square root of td multiplied
by the surface to volume ratio (S/V). The next term in the
expansion is proportional to td multiplied by a factor depending
on permeability and curvature. Laun et al. show that this
term is identically zero for oscillating gradients, meaning that
permeability and curvature cannot be easily measured with these
sequences, while S/V term may be easier to quantify than with
pulsed-field gradients. Ozarslan et al. present a new perspective
for the representation of restricted diffusion that is highly suitable
for diffusion experiments performed with commonly available
gradient hardware, for example on clinical scanners. Diffusion
experiments under such conditions are typically performed
with long gradient pulses, thus blurring the information
necessary for the characterization of the restricting pore. The
approach presented here assumes that diffusion occurs in an
effective quadratic potential landscape, thus resulting in a linear
(Hookean) dependence of the stochastic effective force on the
center-of-mass position. The implications that this approachmay
have on the interpretation of diffusion experiments performed
with long diffusion gradients are discussed, together with possible
extensions of this theoretical framework to potential landscapes
other than quadratic.

Theoretical analysis typically relies on idealized assumptions
for mathematical tractability, and therefore struggle to evaluate
the quantitative impact of complex structural features in realistic
acquisition conditions. In that case, numerical simulations may
help. Ginsburger et al. describe simulations in synthetic white
matter mimicking axonal bundles (Ginsburger et al.), with a
small set of parameters controlling the level of tissue complexity
and disorder. Their results show that angular dispersion and
most importantly axonal beading have non-negligible effects on
extracellular diffusion which may be measured using DW-MRI
clinical protocols with oscillating gradients.

A major limitation of both theoretical analysis and numerical
simulation may be the insufficient knowledge about the precise
nature or magnitude of some features potentially affecting
diffusion (such as the properties and detailed distribution
of membranes or the existence of molecular pools with

different relaxation times), thus precluding solid theoretical or
numerical approaches. In such situations, we must rely on
experiments for gaining further fundamental insights about
what diffusion measurements reflect. Shemesh investigates the
microstructural correlates of fractional anisotropy (FA) and
microscopic FA (µFA) using high resolution double-diffusion
encoding (DDE) and double oscillating gradient diffusion
encoding (DODE) experiments in fixed spinal cords. The results
indicate that µFA(DODE) mostly depend on axon sizes and
myelin water fraction, whereas µFA(DDE), FA(DODE), and
FA(DDE) correlate to a much lesser extent with those cellular
features. This is promising for future interpretations of these
metrics in health and disease. Valette et al. recapitulate how
intracellular metabolite diffusion has been measured in the brain,
using DW-NMR spectroscopy in vivo, from td<1ms to td>1
sec, and how the picture emerges that metabolites are not
confined into subcellular compartments, but are instead diffusing
in long fibers with some long-range complexity. Some possible
future directions to extend the range of diffusion times, and
what information about cell structure can be gleaned, are also
discussed. As a final illustration of how well-thought experiments
may yield fundamental insight, Lemberskiy et al. exploit data
obtained in the prostate at multiple td and echo times to select
and combine two different models, which allows disentangling
the cellular compartment (exhibiting shorter relaxation time
T2 and associated with diffusion through extended disorder)
from the lumen (exhibiting longer T2 and associated with
the short-time S/V limit). Beyond fundamental understanding,
data modeling allows extracting lumen diameter, fiber diameter
and membrane permeability, with possible application to non-
invasive diagnosis and staging of prostate cancer with MRI.

The potential relevance for applications of DW-NMR in vivo
certainly underlies all works in our field, even those aiming
at gaining fundamental knowledge, but some works more
directly aim toward applications in animals or humans. Such
more “application-driven” papers, either describing optimized
methods to measure biologically/clinically relevant parameters,
or evaluating the value of these methods under various
conditions (e.g., in disease), represent approximately another half
of this research topic.

Hansen and Jespersen review fast kurtosis imaging protocols,
which are capable of estimating the mean, axial and radial
kurtosis (i.e., deviations fromGaussian diffusion when q is varied
at constant td) with only a few diffusion directions. The review
describes the theoretical foundations for thesemethods, technical
and practical considerations, and potential applications mostly
related to peripheral nerve or white matter microstructure. In
a similar vein, Jelescu and Budde review popular models of
diffusion in white matter to extract parameters such as axonal
orientation dispersion, axon diameter, and extracellular volume
fraction, from the q-dependence at constant td. Assumptions
and required data are detailed for each model, before examining
how these models can be validated using numerical simulations,
phantoms, or ex vivo microscopy. Zeng et al. consider the
fitting quality of multi-exponential signal expressions to diffusion
data from white matter in healthy volunteers. Specifically, they
propose to describe water diffusion in white matter in terms
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of a modified tri-exponential expression; a biexponential plus a
“dot” compartment, i.e., a water pool having zero diffusivity. The
latter component is interpreted as restricted diffusion, and the
modified tri-exponential is found to have lower corrected Akaike
criterion than both free tri-exponential and biexponential signal
representations in several white matter ROIs.

Mériaux et al. present an original method which, unlike
other papers of this research topic, does not assess diffusion
by gradient-induced diffusion-weighting, but by dynamically
acquiring concentration maps of contrast agents as they diffuse
through the extracellular space (as more traditionally performed
with optical imaging) to evaluate the ADC and tortuosity in
the extracellular space. One original point of their approach
is that the agent is delivered to the brain after i.v. injection
and ultrasound-induced blood-brain barrier opening, avoiding
invasive intracerebral injection. This technique may be useful
to characterize the alterations of extracellular space diffusion
properties in pathologies such as Alzheimer’s disease, and also to
predict drug biodistribution.

Some methods may prove particularly relevant for specific
pathologies, such as tumors. Reynaud starts by reviewing the
fundamentals of time-dependent diffusion in the short-time
regime and near the tortuosity limit. The main three geometrical
models (IMPULSED, POMACE, VERDICT) implemented so far
to describe tumor cells as spheres are then reviewed, and their
applications for estimating tumor intra- and extracellular volume
fraction and cell size is then presented and discussed. Budde
et al. present an optimization of pulse sequences for imaging of
spinal cord injury. The authors consider orientationally invariant
DDE, filter probe DDE and filter probe single-diffusion encoding
(SDE), in which the idea of a filter probe is basically to suppress
extra-axonal water with a diffusion gradient perpendicular to

the cord. They find that filter probe SDE coupled with reduced
field-of-view excitation is the best protocol with highest signal-
to-noise ratio and with high sensitivity to injury, without
contamination from edema and cerebrospinal fluid. This is
demonstrated with simulations, and in vivo rat and human spinal
cord imaging. Finally, one important clinical use of MRI is in
assessing tissue damage and prospective recovery in ischemic
stroke. Question remains as to what are the most meaningful
diffusion metrics in ischemic stroke, that is, those that most
sensitively reflect microstructural characteristics of tissue affected
by ischemia. Galazzo et al. consider a set of indices obtained
from the Simple Harmonic Oscillator Based Reconstruction and
Estimation (SHORE). Assessment of quantities associated with
the SHORE formalism are investigated in a tract-based fashion
in white matter and region-of-interest analysis in gray matter
in patients and controls, providing insight into the potential
benefits of adopting the SHORE model and some of its metrics
in the clinic.

In conclusion, this research topic illustrates the multifaceted
nature of cellular microstructure assessment using DW-NMR.
While no particular method can grasp the full complexity
of cellular microstructure, each of them can shed light on
different aspects and find specific applications. In the long
term, some approaches will certainly prove more insightful
or useful than others. For now, the present collection of
works pays tribute to the vitality and diversity of our
research field.

AUTHOR CONTRIBUTIONS

JV drafted the first version of the editorial. IR and SJ revised the
first draft and made contributions about papers they edited.

REFERENCES

1. Stejskal EÖ, Tanner JE. Spin diffusion measurements: spin echoes in the
presence of a time-dependent field gradient. J Chem Phys. (1965) 42:288.
doi: 10.1063/1.1695690

2. Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal
systems by pulsed-gradient spin-echo method. J Chem Phys. (1968) 49:1768.
doi: 10.1063/1.1670306

3. Tanner JE. Self diffusion of water in frog muscle. Biophys J. (1979) 28:107–16.
doi: 10.1016/S0006-3495(79)85162-0

4. Lebihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Lavaljeantet M.
Mr imaging of intravoxel incoherent motions - application to diffusion
and perfusion in neurologic disorders. Radiology. (1986) 161:401–7.
doi: 10.1148/radiology.161.2.3763909

5. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-
Jeantet M. Separation of diffusion and perfusion in intravoxel
incoherent motion MR imaging. Radiology. (1988) 168:497–505.
doi: 10.1148/radiology.168.2.3393671

6. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin
N, et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-
weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR
Am J Neuroradiol. (1990) 11:423–9.

7. Warach S, Chien D, Li W, Ronthal M, Edelman RR. Fast magnetic
resonance diffusion-weighted imaging of acute human stroke. Neurology.
(1992) 42:1717–23.

8. Le Bihan D, Schild T. Human brain MRI at 500MHz, scientific perspectives
and technological challenges. Superconduct Sci Technol. (2017) 30:033003.
doi: 10.1088/1361-6668/30/3/033003

9. Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell’Acqua F, McHugh
DJ, et al. Microstructural imaging of the human brain with a ’super-scanner’:
10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage.

(2018) 182:8–38. doi: 10.1016/j.neuroimage.2018.05.047
10. Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR–from research to clinical

applications? NMR Biomed. (2012) 25:695–716. doi: 10.1002/nbm.1794
11. Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, et al.

Pros and cons of ultra-high-field MRI/MRS for human application. Prog
Nucl Magn Reson Spectrosc. (2018) 109:1–50. doi: 10.1016/j.pnmrs.2018.
06.001

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Valette, Ronen and Jespersen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org March 2019 | Volume 7 | Article 377

https://doi.org/10.3389/fphy.2018.00038
https://doi.org/10.3389/fphy.2017.00058
https://doi.org/10.3389/fnins.2017.00706
https://doi.org/10.3389/fnins.2018.00092
https://doi.org/10.1063/1.1695690
https://doi.org/10.1063/1.1670306
https://doi.org/10.1016/S0006-3495(79)85162-0
https://doi.org/10.1148/radiology.161.2.3763909
https://doi.org/10.1148/radiology.168.2.3393671
https://doi.org/10.1088/1361-6668/30/3/033003
https://doi.org/10.1016/j.neuroimage.2018.05.047
https://doi.org/10.1002/nbm.1794
https://doi.org/10.1016/j.pnmrs.2018.06.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


HYPOTHESIS AND THEORY
published: 02 March 2018

doi: 10.3389/fphy.2018.00017

Frontiers in Physics | www.frontiersin.org March 2018 | Volume 6 | Article 17

Edited by:

Julien Valette,

Commissariat à l’Energie Atomique et

aux Energies Alternatives (CEA),

France

Reviewed by:

Silvia Capuani,

Consiglio Nazionale Delle Ricerche

(CNR), Italy

Gernot Reishofer,

Medical University of Graz, Austria

Sune Nørhøj Jespersen,

Aarhus University, Denmark

*Correspondence:

Evren Özarslan

evren.ozarslan@liu.se

Specialty section:

This article was submitted to

Biomedical Physics,

a section of the journal

Frontiers in Physics

Received: 29 September 2017

Accepted: 09 February 2018

Published: 02 March 2018

Citation:

Özarslan E, Yolcu C, Herberthson M,

Knutsson H and Westin C-F (2018)

Influence of the Size and Curvedness

of Neural Projections on the

Orientationally Averaged Diffusion MR

Signal. Front. Phys. 6:17.

doi: 10.3389/fphy.2018.00017

Influence of the Size and Curvedness
of Neural Projections on the
Orientationally Averaged Diffusion
MR Signal

Evren Özarslan 1,2*, Cem Yolcu 1, Magnus Herberthson 3, Hans Knutsson 1 and
Carl-Fredrik Westin 1,4

1Department of Biomedical Engineering, Linköping University, Linköping, Sweden, 2Center for Medical Image Science and

Visualization, Linköping University, Linköping, Sweden, 3Division of Mathematics and Applied Mathematics, Department of

Mathematics, Linköping University, Linköping, Sweden, 4 Laboratory for Mathematics in Imaging, Department of Radiology,

Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States

Neuronal and glial projections can be envisioned to be tubes of infinitesimal

diameter as far as diffusion magnetic resonance (MR) measurements via clinical

scanners are concerned. Recent experimental studies indicate that the decay of the

orientationally-averaged signal in white-matter may be characterized by the power-law,
¯E(q) ∝ q−1, where q is the wavenumber determined by the parameters of the pulsed field

gradient measurements. One particular study by McKinnon et al. [1] reports a distinctively

faster decay in gray-matter. Here, we assess the role of the size and curvature of the

neurites and glial arborizations in these experimental findings. To this end, we studied

the signal decay for diffusion along general curves at all three temporal regimes of

the traditional pulsed field gradient measurements. We show that for curvy projections,

employment of longer pulse durations leads to a disappearance of the q−1 decay, while

such decay is robust when narrow gradient pulses are used. Thus, in clinical acquisitions,

the lack of such a decay for a fibrous specimen can be seen as indicative of fibers that are

curved. We note that the above discussion is valid for an intermediate range of q-values

as the true asymptotic behavior of the signal decay is ¯E(q) ∝ q−4 for narrow pulses

(through Debye-Porod law) or steeper for longer pulses. This study is expected to provide

insights for interpreting the diffusion-weighted images of the central nervous system and

aid in the design of acquisition strategies.

Keywords: diffusion, magnetic resonance, anisotropy, Stejskal-Tanner, curvature, curvilinear, power-law, powder

1. INTRODUCTION

Diffusion-sensitized magnetic resonance acquisitions have been employed to recover
the microscopic building blocks of complex nervous tissue. Simplified models exploiting the
compartmentalized structure of the tissue are instrumental in this endeavor.Watermolecules in the
intra- and extra-cellular spaces have been envisioned to form separate compartments with different
signal characteristics [2]. The intracellular signal is also thought to represent the superposition of
contributions from cells of different types, shapes, and orientations [3]. The same argument has
been employed even for a single neuron wherein each neurite has been considered to comprise
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a collection of straight compartments [4]. Such representation of
neurites as slender cylinders distributed in random orientations
within the voxel is perhaps themodel most relevant to the current
study.

The diameter of neurites, and in fact all neural projections, is
so small that diffusion in the transverse plane may be negligible.
More explicitly, a cylinder with the same diameter as a neurite
would not suffer any signal loss in a typical clinical diffusion
MRI measurement when the diffusion gradients are applied in
the direction perpendicular to the cylinder’s axis. This justifies
assigning zero value to transverse diffusivity for molecules
confined in the cylinder. Such behavior [5] was indeed observed
for N-acetyl-L-aspartate (NAA) diffusion in the brain [6] and
have been employed for water in recent models [7].

In this work, we consider the pulsed field gradient
measurement introduced by Stejskal and Tanner [8] featuring
diffusion encoding gradients G of duration δ, whose leading
edges are separated from each other by duration 1 (see
Figure 1A for the effective gradient waveform). We define
q = γ δG, where γ is the gyromagnetic ratio and note that
for sufficiently small values of q = |q|, the signal for each
compartment can be approximated with a Gaussian, i.e.,

E(q) ≈ e−q⊺Vq . (1)

Considering the form (Equation 1) of the signal, V can be
referred to as the signal decay tensor1. The geometric parameters
of the compartment have typically a complicated relation to
V ; the exact form of such relation is dictated by the temporal
parameters (δ and 1) of the diffusion encoding pulse sequence.
For axially symmetric V , we shall denote by v

‖
and v

⊥

the eigenvalues of V associated with directions parallel and
perpendicular to the symmetry axis, respectively.

Our focus in this work is the orientationally-averaged signal,
which can be obtained by computing the “isotropic component”
of the signal, as was referred to in Özarslan and Basser [10]
and actually estimated as a byproduct of the q-space signal
representation in Özarslan et al. [11]. Alternatively, the signal
values measured over all gradient directions at a particular
q-value can be averaged [12, 13] so that any dependence on
the direction of the gradient vector is lost. Repeating this
procedure for all q-values reduces the data collected over the
three-dimensional q-space into a one-dimensional profile, which
does not contain any information on ensemble (macroscopic)
anisotropy2. The estimated signal profile represents the decay
for the so-called “powdered” specimen, which contains an
isotropic distribution of each and every compartment in the
original specimen [19, 20]. The orientationally-averaged signal
for axisymmetric compartments, each of which contributes

1We note that the decay tensor is closely related to an apparent diffusion tensor
(ADT) whose time-dependence has been shown to be sufficient for describing
(approximately-)Gaussian diffusion via general gradient waveforms [9]. In this
study, it proves convenient to employ the V-tensor, which encapsulates all
dependencies other than that on the q-vector.
2Yet another approach would involve employing alternative gradient waveforms
for isotropic diffusion weighting [14–18]. However, we do not discuss such
sequences here because of the complicated dependence of the signal intensity on
the gradient waveform.

FIGURE 1 | (A) Stejskal and Tanner’s pulsed field gradient experiment features
a pair of rectangular gradient pulses of duration δ whose leading edges are
separated by 1. (B) The timing parameters of this experiment lie on or above
the dashed line since the separation of the two pulses (1) has to be at least as
long as the duration of each of them (δ). Thus, the experiment has three distinct
regimes (labeled A, B, and C) based on whether these timing parameters are
short or long. These are the three regimes that exhibit all interesting features of
the signal. The same features are expected to be observed to various degrees
in the intermediate region between these three regimes.

according to Equation (1), is thus the same as the signal for
an isotropic ensemble of such compartments, and is given by
[6, 21, 22]

¯E(q) =

√

πe−q2v
⊥ erf(q

√

v
‖
− v

⊥
)

2q
√

v
‖
− v

⊥

. (2)

This expression predicts a squared exponential decay in general.
However, if signal loss is limited to only the fiber direction
(v

⊥
= 0), a much slower decay emerges. A power law of the

form ¯E ∝ q−1, to be specific. Therefore, the appearance
of this particular power-law can be used as an indicator of
vanishing transverse diffusivity, in other words, the signal decay
tensor V being of rank 1. We note that the problem of
characterizing the orientationally averaged signal is considerably
more complicated when Equation (1) cannot be used to represent
the compartmental signal; addressing this issue is one of our goals
in this study.

The ¯E ∝ q−1 decay alluded to above was recently reported
in white matter [1, 23]. These studies have found that in
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white-matter-dominated regions of the brain, the orientationally
averaged signal exhibits a decay ∼ q−c with an exponent c close
to 1, in support of cylindrical neural projections as remarked
above. In gray-matter-dominated regions, McKinnon et al. [1]
have observed a larger exponent c ≈ 1.8 ± 0.2. They proposed
that the apparent breakdown of the cylinder model may indicate
a significantly larger permeability of the cellular membranes in
gray matter vs. white matter. Here, we investigate an alternative
hypothesis. Namely, the departure of the exponent c from 1 can
well be due to impermeable but curved projections. To assess this
point, we studied the influence of neural projections’ size and
shape on the orientationally-averaged diffusion MR signal. Due
to the large variability in the geometric features of the neural
cells, all temporal regimes of the Stejskal-Tanner sequence were
considered, and the problem was studied both in the small-q
regime as well as at larger q-values for which Equation (1) and
thus Equation (2) are inaccurate.

Investigation of power-like tails in the diffusion MR signal
goes back to Köpf et al. [24], where large values of the wave
vector were achieved using a fringe field method. A range of
exponents (roughly between −1.8 and −4.6) were observed
across various nonneural tissue types, as well as stretched
exponential behavior, which was ascribed to fractional Brownian
motion. In a subsequent study, Yablonskiy et al. [25] predicted
an exponent of −2 for specimens featuring compartments with
a distribution of diffusivities. Jian et al. [26] considered a
parametric tensor distribution, which suggested a signal decay
with a general power-law tail. These studies, however, observe
or predict the signal decay for measurements along a single
direction. As for the orientationally (powder) averaged signal, a
quite general statement regarding an asymptotic power-law decay
in the diffusion MR signal is the Debye-Porod law [27]. Here, the
orientationally averaged signal measured using narrow pulses is
predicted to follow a q−4 tail under quite general considerations.
In our discussion, we take up apparent violations of this.

Although the influence of fiber curvature on theMR signal has
been considered [28–33] in various contexts, to our knowledge,
this is the first study to provide explicit expressions for the signal
decay for diffusion along a general parametrized curve and study
its effect on the orientationally averaged signal.

In the next section, we provide explicit expressions for the MR
signal for diffusion on curves in three distinct temporal regimes
of the Stejskal-Tanner measurement. In the subsequent section,
we discuss the implications of our theoretical findings as they
relate to the morphology of neural cells and recent experimental
observations. The article is concluded following a brief discussion
of what observed power-law tails in the powder averaged signal
may represent in that context, as well as from the perspective of
the Debye-Porod law.

2. COMPARTMENTAL AND
ORIENTATIONALLY-AVERAGED SIGNAL
FOR DIFFUSION ALONG CURVES

The effective gradient waveform of a traditional Stejskal-Tanner
measurement is shown in Figure 1A. In this work, we consider

FIGURE 2 | The relevant size parameters of a simplified neural projection
(ignoring branchings and other features such as beading patterns [34]) are: its
contour length denoted by ℓ, its radius of gyration Rg, the characteristic radius
of curvature Rc, and the radius of the projection’s cross-section R0.

three distinct regimes of this pulse sequence based on whether δ

and1 are short or long. These regimes are indicated by the letters
A, B, and C on the δ-1 plane in Figure 1B. We note that the
essential features of the signal at these three extreme situations
are exhibited to some extent for more general timing values, i.e.,
within the interior of the triangle whose vertices are at A, B,
and C.

The relevant size parameters of a simplified neural projection
(ignoring branchings and other features such as beading patterns
[34]) are: its contour length denoted by ℓ, its radius of gyration
Rg, its characteristic curvature radius Rc, and the radius of the
projection’s cross-section R0. These parameters are illustrated
for a representative projection in Figure 2. As mentioned in
Introduction, R0 is typically so small that qR0 ≪ 1 for clinical
MRI; this justifies representing the neurites and glial projections
via one-dimensional curves. Thus, we shall consider diffusion
taking place on a curve r(s) = (r1(s), r2(s), r3(s))⊺ parameterized
by its arclength s, where 0 6 s 6 ℓ.

2.1. Regime A: Short Diffusion-Time
In the first case, diffusion is observed for such a short time
that the hindrances have not been encountered. This condition
implies that the pulse durations are short as well. In fact, when
D1 ≪ R2c , spins spread so little that even the most curved point
along the projection seems like a straight segment3. Thus, the

3The “most curved point” should be taken with a grain of salt. Even though,
mathematically, the approximations in this regimewould require a diffusion length
√

D1much smaller than the smallest radius of curvature along the curve, Rc is not
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compartmental signal occurs as the average, over the curve, of
the signals originating from the tangents of the curve:

E(q) =
1

ℓ

∫ ℓ

0
ds e−D1q⊺ t̂(s)t̂

⊺
(s)q , (3)

where

t̂(s) =
dr(s)

ds
(4)

is the unit tangent to the curve.
As shown in Appendix A (see the Supplementary Material),

the very small-q behavior of the orientationally-averaged signal

(q2D1 ≪ 1) is given by ¯E(q) ≈ e−q2D1/3. Thus, the decay rate is
determined solely by the (intracellular) diffusivity, and bears no
geometric feature of the neural arborization in this regime.

For a more general analysis involving larger q-values, one can
still employ Equations (1, 2) as follows. We are interested in the
orientational average of the compartmental signal in Equation
(3), i.e.,

¯E(q) =
1

ℓ

∫ ℓ

0
ds

〈

e−D1q⊺ t̂(s)t̂
⊺
(s)q

〉

, (5)

where the order of integration and orientational averaging,
indicated by the angular brackets, was changed. However, the
expression within the angular brackets is of the Gaussian form
(Equation 1) with a rank-1 decay tensor whose non-vanishing
eigenvalue is D1. Consequently, the signal for the powdered
specimen is given through Equation (2) by setting v

⊥
= 0, and

v
‖
= D1 to be

¯E(q) =

√

π erf(q
√

D1)

2q
√

D1
. (6)

Clearly, for larger q-values, the orientationally-averaged signal
decay in regime A is proportional to q−1 irrespective of the shape
of the curve as long as R2c ≫ D1. It can be observed that Equation
(5) has the form of a signal arising from a uniform orientational
distribution of “sticks”. Hence the emergence of q−1 at large q-
values can be justified alternatively by Veraart et al.’s arguments
[23].

2.1.1. Incorporating Curvature Effects
The above expression holds when the diffusion distance is much
smaller than Rc as pointed out earlier. Here, we would like to
generalize this expression to larger timing parameters, 1 and δ,
to allow for the possibility that the diffusion distance during the
course of the experiment is long enough for the molecules to
traverse an approximately circular arc along the curve. Moreover,
we assume that there is a single characteristic radius of curvature
that represents the effective curvedness of the entire projection.
This characteristic curvature is denoted by Rc.

Let Earc(n̂,ϕ, q) denote the signal for a single such arc, where n̂
is the unit vector normal to its plane and ϕ is the polar coordinate

such a strict measure. Rather, it is the minimal radius of curvature that the curve
exhibits along a portion of it significant enough to influence the signal.

of the center of the arc in a cylindrical reference frame oriented
along n̂. The orientationally averaged signal can then be written
as the average of Earc(n̂,ϕ, q), over all possible realizations of a
single arc, i.e.,

¯E(q) =
1

4π

∫

S2

dn̂
1

2π

∫ 2π

0
dϕ Earc(n̂,ϕ, q) , (7)

where S2 denotes the unit sphere. The second average simply
defines the signal for a full circle of radius Rc. If we denote by
Ecirc(n̂, q) the signal for such a circle whose plane has the normal
vector n̂, the orientationally averaged signal can be expressed as

¯E(q) =
1

4π

∫

S2

dn̂Ecirc(n̂, q) . (8)

Due to its axial symmetry, the signal for the circle has the
functional dependence Ecirc(n̂ · q̂, q), where q̂ = q/q. Since n̂ · q̂

is invariant under exchange of the unit vectors n̂ and q̂, one is
free to replace the integration variable above with q̂ and fix n̂

instead [19] .With the variable θ defined through n̂·q̂ = cos θ , we
moreover note that since there is no motion and hence no signal
attenuation in the direction along n̂, the integrand’s functional
dependence may further be reduced to Ecirc(q sin θ), namely, the
signal obtained when a q-vector of magnitude q sin θ is applied
in the plane of the circle. Upon taking these observations into
account, we obtain

¯E(q) =

∫ π/2

0
dθ sin θ Ecirc(q sin θ) . (9)

2.1.1.1. Narrow Pulses
First, we shall consider the scenario involving narrow pulses, i.e.,
Dδ ≪ R2c , but allow for the possibility that D1 ≈ R2c . For
arbitrary 1, the signal for a full circle is given by Özarslan et al.
[28]

Ecirc(q) = J0(qRc)
2
+ 2

∞

∑

n=1

e−n2D1/R2c Jn(qRc)
2 , (10)

where Jn denotes the nth order Bessel function. This expression
yields, via Equation (9), the orientationally-averaged signal to be

¯E(q) = J0(2qRc)+
π

2

[

J1(2qRc)H0(2qRc)− J0(2qRc)H1(2qRc)
]

+ 2
∞

∑

n=1

e−n2D1/R2c
(qRc)2n

(2n+ 1)!

1F2

(

n+

1

2
; n+

3

2
, 2n+ 1;−q2R2c

)

, (11)

where Hα is the Struve function of order α and 1F2 represents
the generalized hypergeometric function. We note that this
orientationally averaged signal in the narrow pulse regime has the
asymptotic behavior

¯E(q) ∼

√

π erf(q
√

D1)

2q
√

D1
+

(D1)2q2e−D1q2

6R2c
−O(R−4

c ) . (12)
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This expression contains the curvature-related correction to
Equation (6), which is valid for straight fibers, and suggests that
curvature induced effects are rather limited for the case of narrow
pulses, as the ¯E(q) ∝ q−1 dependence is unaffected at larger
q-values.

2.1.1.2. Longer pulse durations
To investigate the influence of longer pulse durations, we
numerically evaluated the integral in Equation (9) using
Simpson’s rule [35]. We adapted the multiple correlation
(MCF) framework to the problem of diffusion on a circle. The
details of this procedure are provided in Appendix B (see the
Supplementary Material).

In Figure 3, we illustrate the signal decay curves at different
pulse durations. In these simulations, the D1 value was set
equal to R2c ; during a time interval of duration 1, the spread of
molecules on the circle is about 80◦. When the pulse duration
is short, we verified that the decay obeys the expressions in
Equations (11) and (12) (results not shown). The power-law,
E(q) ∝ q−1, which is valid in the narrow pulse regime does not
prevail when the pulses are prolonged.

2.2. Regime B: Long Diffusion-Time and
Narrow Pulses
When diffusion is probed via a pair of impulses (or, when Dδ ≪

R2c) separated from each other by a duration long enough for the
molecules to reach all points within the curve, i.e., D1 ≫ ℓ2, the
signal is given simply by the expression E(q) = |ρ̃(q)|2, where
ρ̃(q) is the Fourier transform of the density

ρ(r) =
1

ℓ

∫ ℓ

0
ds δ(r − r(s)) , (13)

which is uniform along the curve. The orientationally averaged
signal decay is thus obtained by averaging |ρ̃(q)|2, and is given by

¯E(q) =
1

ℓ2

∫ ℓ

0
ds

∫ ℓ

0
ds′

sin
[

q |r(s)− r(s′)|
]

q |r(s)− r(s′)|
. (14)

This expression is referred to as the Debye scattering equation
[36], which is widely utilized in studies employing small
angle scattering experiments for characterizing the structure
of polymers. The essential features of the resulting ¯E(q) curve
are well-understood [37, 38]. As shown in Appendix A (see
the Supplementary Material), the small-q regime (qRg ≪ 1,
the “Guinier regime” of scattering experiments) is described

by the relationship ¯E(q) ≈ e−(qRg)2/3. As for larger q-values,
such studies indicate that depending on the structure of the
polymer, different sections of the curve could be characterized
by different power-laws. For example, Gaussian chains undergo
q−2 decay, while fractional exponents are obtained for curves
exhibiting fractality. Perhaps the most relevant finding, however,
is that wormlike structures (i.e., those characterized by a so-called
persistence length over which the polymer is likely to retain its
direction) are characterized by a decay ∝ q−1 at q-values about
the reciprocal of the chain’s persistence length [39]. Thus, even a
class of non-straight structures exhibit q−1 decay in Regime B.

FIGURE 3 | Signal attenuation curves for different values of the pulse duration.
The separation of pulses was taken so that D1 = R2c . The q

−1 decay, visible
at short pulse durations, disappears as the pulses are prolonged.

2.3. Regime C: Long Pulse-Duration
For the traditional Stejskal-Tanner measurement utilizing a pair
of identical pulses in opposite directions, the compartmental
signal has the form

E =

〈

e−iq·(ξ2−ξ1)
〉

paths
, (15)

where the averaging is performed over all trajectories, with

ξn =

1

δ

∫ tn+δ

tn

r(t) dt (16)

being the center of mass coordinate [40] of the fragment of
trajectory coinciding with each pulse (t1 = 0 and t2 = 1).
Therefore, the MR signal (Equation 15) elicited by flat gradient
pulses is not sensitive to the Brownian trajectories instant by
instant but only in a time averaged sense.

In the limit Dδ/ℓ2 → ∞, the two random variables lose
correlation and the explicit dependence on 1 disappears, leading
to the signal intensity [40]

E =

∣

∣p̃cm(q, δ)
∣

∣

2
, (17)

where

p̃cm(q, δ) =

∫

pcm(ξ , δ)e
−iq·ξ dξ (18)

is the Fourier transform of the center of mass distribution.
Moreover, in this limit, the distribution for the random variable
ξ approaches a Gaussian due to the central limit theorem
[41]4. Consequently, the signal (Equation 17) also approaches
a quadratic exponential form, encoding no more structural
information than the variance of pcm(ξ , δ). Whether the domain

4This non-obvious statement, whose rigorous proof can be found in mathematics
literature [42], was instrumental in our identification of an effective potential for
restricted diffusion [43].
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is an irregularly curved fiber or a much more regular shape like
a sphere, its fine structural features will find no representation in
the signal acquired this way, since the length of the time averaging
(pulse) has suppressed all short-scale (high q) variation encoded
in the cumulants higher than the second.

Hence, the compartmental signal has the form Equation (1).
Here, though, V is the variance tensor for the center of mass
coordinate (Equation 16) for a trajectory of (long) duration δ.
This variance can be calculated for diffusion along a general
continuous curve following Mitra and Halperin’s [40] derivation
in the case of slab geometry, with slight modifications. One finds

Vij =
2

Dδ

∫ ℓ

0
ds ri(s)

∫ ℓ

0
ds′ rj(s

′)

{

B2

(

|s− s′|

2ℓ

)

+ B2

(

s+ s′

2ℓ

)

+

ℓ2

3Dδ

[

B4

(

|s− s′|

2ℓ

)

+ B4

(

s+ s′

2ℓ

)]}

, (19)

where Bn(·) denotes the nth order Bernoulli polynomial, and
Dδ/ℓ2 ≫ 1. Here, the exponentially decaying terms are ignored
as their contribution is negligible at even moderate durations.
The details of the derivation of the above expression is provided
in Appendix A (see the Supplementary Material). We note that
alternative representations of the final result (Equation 19) can
be given in terms of polylogarithmic or Hurwitz zeta functions.
We verified that Equation (19) correctly reproduces Mitra and
Halperin’s expression [40] in the same regime for the slab
geometry, i.e., for a straight line.

As were in the previous cases, the signal decay tensor for long
pulse duration is not rank-1 for a general curve. However, unlike
in previous regimes, the compartmental signal decay is truly
Gaussian. Consequently, the orientationally averaged signal in
this regime suffers q−1 decay if and only if the fibers are straight.

3. RESULTS AND DISCUSSION

3.1. Summary
The above findings can be summarized as follows: For narrow
pulses (Dδ ≪ R2c , ℓ

2) in regimes A and B, the orientationally
averaged signal exhibits a slow q−1 tail for large q for diffusion
along curved as well as straight 1 dimensional structures. As the
pulse duration is prolonged, as we have studied for regime A, the
slow q−1 tail gives way to a steeper drop for substantially curved
fibers, by which we mean Rc .

√

Dδ. Indeed, the signal may be
expected to bear less features of diffusion along a 1D structure
and more of diffusion in a 3D domain (i.e., a steep decay), since a
long pulse serves to average the motion of the spin carriers over
a length ∼

√

Dδ along the path curved in 3D space. Fibers much
shorter than the averaging length (ℓ ≪

√

Dδ) fall into regime C
and may contribute to an exponent of −1 in the orientationally
averaged signal only if they are straight (Rc ≫ ℓ).

3.2. Clinical Relevance
An important question to ask is:What regime is themost relevant
for clinical MR examinations of the brain? There is no clear
answer to this question, essentially because of the extremely wide

variability in the size and shapes of cells within the brain [44]5.
Consequently, it is impossible to suggest that diffusion within
all neural cells takes place in a single experimental regime. We
can, nonetheless, argue that regime B is the least relevant one as
it is impossible to meet the narrow pulse condition along with
the long diffusion time condition when δ ≈ 1 as in clinical
acquisitions performed at larger (in a practical sense) b-values,
where b = q2(1−δ/3). The diffusion distance

√

2D1 is expected
to be about 10–20 µm in such acquisitions, which will place
longer (ℓ ≫

√

D1) arborizations toward regime A while the
shorter (ℓ ≪

√

D1) ones will tend to exhibit features of regime
C. If the longer structures furthermore exhibit curvature radii
safely above the “averaging length” (Rc≫

√

Dδ), the q−1 signature
will be possible to observe over a range of large q-values without
requiring strict straightness, as demonstrated in Figure 3. For
structures whose radii of curvature are small (Rc .

√

Dδ) the
appearance of the slow decay q−1 becomes sensitive to curvature,
and is not retained for as wide a range of q-values (see Figure 4).
At the extreme end of the spectrum, for structures so short that
ℓ≪

√

Dδ, entering into regime C, no curvature is tolerated if the
tail q−1 is to appear. These considerations will have to be revisited
if one measures the diffusion of molecules other than water, due
to differences in their diffusion characteristics [48–50].

3.3. On Experimental Findings
In light of the above deliberations, we can revisit the experimental
observations of McKinnon et al. [1] who have reported the
powder averaged signals stemming from various brain regions
dominated by white- or gray-matter. In white-matter regions,
they have measured a decay q−c for large q with c values in
the neighborhood c ≈ 1.1 ± 0.1, whereas in gray-matter
regions, the decay was significantly faster, with c ≈ 1.8 ±

0.2. Concerning the faster decay observed in gray-matter, they
propose an explanation based on permeability differences in
white and gray-matter regions. If one assumes impermeable
membranes, as we did in this study, the following alternative
interpretation seems adequate: In white-matter, the observation
of the tail q−1 is compatible with regimes A and C, suggesting
a substantial presence of fibers that fall into these regimes. The
former implies long fibers (ℓ ≫

√

D1) that could in fact be
modestly curved (as long as Rc ≫

√

Dδ remains valid). The
latter implies short fibers (ℓ ≪

√

Dδ) that are straight. In gray-
matter regions, the loss of the slow q−1 decay suggests that
the signal originates predominantly from fibers that fall outside
these descriptions, i.e., exhibiting strong curvature (Rc .

√

Dδ).
Indeed, gray-matter is rich in dendrites and unmyelinated axons,
which will exhibit a fair amount of bending distributed across
any voxel. The gray box in Figure 4 depicts roughly the q range
used in McKinnon et al.’s study, where it is seen that while
modest curvatures do exhibit the exponent−1 for a while, strong
curvature yields a steeper decay for most of the range.

5A collection of neuron images for various species and anatomical regions can be
found in the Neuromorpho database, which can be accessed through its web site,
http://www.neuromorpho.org. For a recent review on the findings based on this
database, see Parekh andAscoli [45].We also note [46] wherein the authors employ
the approach taken in Jespersen et al. [47] on this database to relate the neuronal
morphology in gray-matter to the MR signal at very low diffusion sensitivity.
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FIGURE 4 | Simulation of the orientationally averaged signal for diffusion along
an arc of various curvature radii. The contour length was taken to be infinite so
that the results for Regime A are employed. The timing parameters were taken
to be clinically realistic for high b-value acquisitions (δ = 50 ms and
1 = 60 ms), and the diffusion coefficient was set to D = 3 µm2/ms. The gray
box depicts roughly the range of b-values between 1 and 10 ms/µm2. It is
seen that the larger the curvature radius, the wider the range over which the
exponent −1 can be observed. Conversely, below a cutoff determined by the
averaging length

√

Dδ, a steeper decay of the signal becomes very prominent.

Another potential explanation involves glial cells, which
constitute a substantial portion of all neural cells. Similar to
neurons, glial cells exhibit an extraordinary level of diversity
in their size and shape throughout the brain. Their relative
number and distribution is the subject of ongoing debate [51].
Thus, an accurate assessment of their influence on the detected
diffusion MR signal is infeasible at this time. It is known,
however, that the glial cells tend to be smaller than neurons,
they lack axons, and many of them are star-shaped [52]. These
structural features tend to disfavor the emergence of a q−1 decay.
However, recent studies have suggested that the glial cells are
significantly more prevalent in cerebral white-matter compared
to gray-matter [53]. Thus, it can be argued that their contribution
to the overall MR signal must be rather limited. We note that
the vast variation in neuronal and glial morphology along with
the reported regional differences justify future studies performed
at high spatial resolutions, for understanding the influence of
compositional variations on the diffusion MR signal.

3.4. Immobile Water
The detected orientationally-averaged signal would typically
include contributions frommany different compartments besides
the neural projections, including extracellular matrix, cell bodies,
and molecules trapped within very small regions (e.g., within
certain organelles, between myelin layers, etc.). Among these,
molecules diffusing relatively freely (for instance, between the
neural processes) are expected to yield a decay rate faster than
q−1 so that much of their contribution is expected to disappear
at larger q values. Conversely, there would be no significant loss
of signal for truly restricted particles. Presence of a substantial
portion of signal originating from such compartments as well as
noise-induced bias associated with employing magnitude-valued

data would make the decay appear slower [54, 55] than q−1 .
The decay exponent c ≈ 1.1 ± 0.1 reported by McKinnon et al.
[1] suggests that contributions from such immobile spins could
be negligible in their acquisitions. This can be attributed [23] to
the relatively short transverse relaxation times those spins are
expected to have, along with the long echo times employed at
larger q-value acquisitions via clinical scanners.

3.5. A Possible Error
One may be tempted to employ Equation (1) for the
compartmental signal, as it always has a Gaussian form for
sufficiently small q values, and then to attribute the emergence of
the q−1 behavior of the orientationally averaged signal through
Equation (2) to the rank of the decay tensor V being 1.
However, this may be permissible for large q only in regime
C. This attribution would therefore be erroneous for large q
in regimes A and B. Specifically, in regimes A and B, the q
range in which Equation (1) applies is similar to the q range
in which the orientational average (Equation 2) exhibits a
Gaussian tail no matter the rank of the tensor V (see Appendix
A in the Supplementary Material). Thus, the q−1 behavior is
not a consequence of the signal decay tensor having rank 1.
Importantly, such behavior naturally emerges at larger q-values
in regimes A and B for reasonable shapes of neural projections.

3.6. Debye-Porod Law
The powder averaged signal may be envisioned as having
originated from a porous specimen which is macroscopically
isotropic, in which case one expects an asymptote of the form
q−4 due to the Debye-Porod law [27] (see Appendix C in the
Supplementary Material), while a steeper decay is predicted for
longer pulses as the process approaches a Gaussian (Regime C).
Since this behavior arises from quite general considerations, the
observation of a tail of q−1 appears questionable. Indeed, the
observed power is most likely valid only in an intermediate range,
as opposed to the strict q → ∞ limit. The asymptotic expansion,
whose leading term gives the Debye-Porod law, contains terms
that decay faster than any pure power (e.g., exponential). These
terms may very well exhibit decays slower than q−4 over a certain
stretch of q-values, before the Debye-Porod asymptote takes over,
which happens when q begins to compete with the inverse length
of the smallest dimension of the pore geometry. Alas, the q values
used in McKinnon et al.’s experiments are of the order 0.1µm−1

which is far from large enough compared to the inverse length
scale of 1µm−1 afforded by the axon diameter.

3.7. Unaccounted Factors
One of the hallmarks of neuronal morphology is the axonal
and dendritic branchings [56], which are not accounted for
in our treatment of diffusion on curves. Although an accurate
assessment of the influence of branchings could be achieved
via careful numerical studies [57], the insight gained from
our description above can be employed to some extent for
making some predictions. For long structures, each branch can
be considered a separate segment along which diffusion takes
place. Thus, the presence of branchings would not impact the
formulation for projections in regime A. However, since the total
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contour length can be considerably increased in the presence
of branchings, it may be more difficult to satisfy the long pulse
duration condition of regime C. When this condition is met,
however, the rank of the signal decay tensor would almost
certainly be greater than one. In other words, detecting q−1

decay in regime C would be nearly impossible for smaller cells
unless most arborizations run parallel within a narrow cylindrical
region.

The detected MR signal is known to be dependent on factors
other than those accounted for in this work. Among these, spatial
heterogeneity of magnetic susceptibility within the tissue have
been reported to influence the diffusion decay [58, 59] as well. In
fact, suppressing [60] or taking advantage [61, 62] of effects due
to susceptibility variations is an active area of research. We note
that the presence of internal gradients could be investigated as
yet another mechanism that could explain the reported features
in the orientationally averaged signal; doing so would require an
extension of existing studies relating the diffusion MR signal to
microscopic perturbations in susceptibility [63, 64].

4. CONCLUSION

In an attempt to interpret new experimental findings, we
studied the influence of diffusion along parameterized curves
on orientationally-averaged diffusion MR signal. We examined
the problem in three distinct temporal regimes of the Stejskal-
Tanner experiment and investigated the appearance of a slow
decay. We have found that for smaller cells, the q−1 decay of
the orientationally-averaged signal is predicted only for straight
fibers. This decay ismore general for cells with longer projections,
while it fades away for curvy structures as the pulse duration

of the gradient sequence increases. Finally, we stressed that the
q−1 decay could represent an intermediate range as the true
asymptotic behavior is governed by a steeper attenuation. The
findings of this paper are expected to provide insight into the link
between the diffusion weighted MR acquisitions and geometry of
the neural cells.
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73. Yolcu C, Memiç M, Şimşek K, Westin CF, Özarslan E. NMR signal for
particles diffusing under potentials: from path integrals and numerical
methods to a model of diffusion anisotropy. Phys Rev E (2016) 93:
052602.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Özarslan, Yolcu, Herberthson, Knutsson and Westin. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physics | www.frontiersin.org March 2018 | Volume 6 | Article 1717

https://doi.org/10.3389/fphy.2016.00046
https://doi.org/10.1006/jmre.1999.1778.575
https://doi.org/10.1103/RevModPhys.79.1077
https://doi.org/10.1063/1.3082078
https://doi.org/10.1063/1.2841367
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 14 November 2017
doi: 10.3389/fphy.2017.00056

Frontiers in Physics | www.frontiersin.org November 2017 | Volume 5 | Article 56

Edited by:

Sune Nørhøj Jespersen,

Aarhus University, Denmark

Reviewed by:

Valerij G. Kiselev,

Universitätsklinikum Freiburg,

Germany

Junzhong Xu,

Vanderbilt University, United States

*Correspondence:

Tristan A. Kuder

t.kuder@dkfz.de

Specialty section:

This article was submitted to

Biomedical Physics,

a section of the journal

Frontiers in Physics

Received: 03 August 2017

Accepted: 24 October 2017

Published: 14 November 2017

Citation:

Laun FB, Demberg K, Nagel AM,

Uder M and Kuder TA (2017) On the

Vanishing of the t-term in the

Short-Time Expansion of the Diffusion

Coefficient for Oscillating Gradients in

Diffusion NMR. Front. Phys. 5:56.

doi: 10.3389/fphy.2017.00056

On the Vanishing of the t-term in the
Short-Time Expansion of the
Diffusion Coefficient for Oscillating
Gradients in Diffusion NMR
Frederik B. Laun 1, Kerstin Demberg 2, Armin M. Nagel 1, Micheal Uder 1 and

Tristan A. Kuder 2*

1 Institute of Radiology, University Hospital Erlangen, Erlangen, Germany, 2Medical Physics in Radiology, German Cancer

Research Center, Heidelberg, Germany

Nuclear magnetic resonance (NMR) diffusion measurements can be used to probe

porous structures or biological tissues by means of the random motion of water

molecules. The short-time expansion of the diffusion coefficient in powers of t1/2, where

t is the diffusion time related to the duration of the diffusion-weighting magnetic field

gradient profile, is universally connected to structural parameters of the boundaries

restricting the diffusive motion. The t1/2-term is proportional to the surface to volume

ratio. The t-term is related to permeability and curvature. The short time expansion can

be measured with two approaches in NMR-based diffusion experiments: First, by the use

of diffusion encodings of short total duration and, second, by application of oscillating

gradients of long total duration. For oscillating gradients, the inverse of the oscillation

frequency becomes the relevant time scale. The purpose of this manuscript is to show

that the oscillating gradient approach is blind to the t-term. On the one hand, this prevents

fitting of permeability and curvature measures from this term. On the other hand, the

t-term does not bias the determination of the t1/2-term in experiments.

Keywords: magnetic resonance imaging, diffusion, short-time limit, surface-to-volume ratio, gradient profile,

oscillating gradients

INTRODUCTION

This article builds on and extends a previous article [1], which investigated the term linear in time
of the short-time expansion of the diffusion coefficient [2–5] which is given by:

D (t) = D0

(

1−
4

3d
√

π

S

V

√

D0t +

(

1

d

S

V
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̺ −

1

12

S

V
D0R−1

)

t + O
(

t3/2
)

)

, (1)

where D0 is the free diffusion coefficient, S/V is the surface-to-volume ratio, κ is the surface
permeability, ̺ is the surface relaxivity, R−1 is a mean curvature term, d is the spatial dimension,
and t is the observation time. This universal expansion is valuable, since it connects a measurable
quantity, i.e., D (t), to structural parameters of barriers restricting the diffusive motion.

Using magnetic resonance diffusion experiments [6–9], information about the diffusive motion
of spin-bearing particles can be encoded into the signal by using diffusion-weighting magnetic
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field gradient pulses. Regarding the diffusion time t linked to
the total duration of the diffusion-weighting gradient profile, one
often considers the long-time and short-time limit. In the first
case, the limit of long diffusion time, detailed information about
the porous structure of the investigated material can be obtained
[10–12] such as actual pore shapes [13–15]. On the other
hand, D (t) can be measured in the short-time limit to obtain
the structural parameters in Equation (1). For this purpose, a
pair of bipolar gradient pulses is applied to achieve diffusion
encoding [16]. In the short gradient pulse approximation [6, 17],
the measured diffusion coefficient in such experiments is D (t)
(Equation 1). If the gradient pulses cannot be considered to
be short, Equation (1) must be modified to take into account
the effect of the gradient pulse duration and of the temporal
evolution of the gradients G (t) [18–22]:

Dapp (t) = D0

(

1− c1
4

3d
√

π

S

V

√

D0t + c2

(

1

d

S

V
κ

−

1

12

S

V
D0R−1

)

t + O
(

t3/2
)

)

(2)

Here, the influence of the temporal gradient profile is expressed
solely by the constants c1 and c2, which can be computed from
G (t), so that an elegant decoupling takes place. Note that surface
relaxation is neglected in Equation (2) and in the remainder of
the manuscript, thus avoiding the difficulties in the mathematical
treatment [23], and that t is the total duration of the diffusion
gradients in Equation (2).

In Laun et al. [1], it was shown that c2 can be tuned to values
between 0 and 1. Tuning c2 to zero can be advantageous, for
example, if the aim of the experiment is to measure the

√

t-term
without bias from the t-term.

A striking result [24–30] is that the short-time expansion is
moreover valid for the diffusion spectrumD (ω), orDapp (τ ) : =

D
( 2π

τ

)

, that can be measured by the use of oscillating gradients.
Note thatDapp (τ ) andDapp (t) are different functions as outlined
in more detail below. Then Equation (1) can be cast in a similar
form for the diffusion spectrum, where t is replaced by the
duration τ of one gradient oscillation:
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The constants Cn in Equation (3) are printed in capital letters
because they differ, in general, from the constants cn of Equation
(2) as will be described below.

Equations (2) and (3) were successfully applied in experiments
to obtain information about the first order term and thus
about the surface-to-volume ratio [27, 28, 31–37]. The thereto
necessary constants C1 were derived for some gradient
waveforms such as the bipolar waveform and oscillating gradients
[18, 27, 29, 38].

The aim of the work at hand is to investigate the constant
C2. For this purpose, Equation (3) is derived starting from
Equation (1).

MATERIALS AND METHODS

Numerical simulations were performed as in Laun et al. [1]1.
The diffusion coefficient Dapp (t) and the diffusion spectrum
Dapp (τ ) [using the signal decrease as recalled in Equation (A13)
in Appendix A (Supplementary Material)] were computed using
the multiple correlation function (MCF) approach [22, 39–45]
(using Equation 114 in Grebenkov [42]). The MCF approach
decomposes the magnetization into the eigenfunctions of the
Laplace operator. One important parameter is the number Nλ

of employed eigenfunctions, which should be sufficiently large to
ensure numerical accuracy. In the presented results, the accuracy
was verified by increasing Nλ and checking whether numerical
results remained unchanged. A detailed description of the MCF
approach is beyond the scope of this article, but can be found in
Grebenkov and Grebenkov [46, 47], for example.

The following closed domains were considered: slab, cylinder,
sphere, “bi-slab” (see Figure 1). The bi-slab domain consists of
three parallel planes. The inner plane is permeable, while the
two outer ones are impermeable. Particles only reside within the
volume between the two impermeable slabs. The radii of cylinder
and sphere were 5µm, the separation of the slabs was 10µm, and
the separation of the planes of the bi-slab domain was 10µm
(thus the bi-slab domain was in total 20µm wide). The free
diffusion coefficient D0 was set to 1µm2/ms. The boundaries
were fully reflecting except for the inner wall of the bi-slab
domain, which had a permeability of 50µm/s.Nλ was 100 for the
bi-slab domain, 500 for slab domain and cylinder, and 200 for the
sphere. Oscillating cosine gradients were simulated with a total
duration Tcos of 0.05, 0.1, and 0.5 s. The number of oscillations
N was varied in twenty steps. For bipolar gradients, δ was set to
10−3 ms and t was varied between 0.1 and 15ms.

Additionally, the difference between simulated diffusion
coefficients and first order short time expansion was calculated.
This difference is labeled 1D in the plots and represents
Dapp,simulated (t) − D0 − M1c1t

1/2 or Dapp,simulated (τ ) − D0 −

M1C1τ
1/2.

RESULTS

Derivation of the t-Term for Oscillating
Gradients
First, a shorthand-notation for Equation (2) is introduced:

D (t) =
∑

n=0
Mncnt

n/2 (4)

with the coefficients

M0 = D0
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4
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√

π

S

V
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0
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V
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12
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0

1A considerable overlap of the Methods sections with the corresponding sections
of the earlier article is present.
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FIGURE 1 | Impact of the t-term on the short-time expansion of the diffusion

coefficient. Markers indicate values obtained by numerical simulations. Solid

lines represent the short-time expansion to order
√

t and dotted lines represent

it to order t. Red square markers represent bipolar gradients (i.e., Dapp (t))

and black circular markers represent oscillating cosine gradients (i.e.,Dapp (τ )).

(Continued)

FIGURE 1 | Continued

(A) Slab domain. The t-term is zero because curvature and permeability of the

sample are zero. (B–D) Cylinder, sphere, and bi-slab. In case of oscillating

cosine gradients, the t-term is zero, because C2 is zero. For this reason, the

markers stay close to the solid line in contrast to the markers indicating the

bipolar gradients, which stay close to the dotted line. Tcos was 500ms.

and so on (with c0 = 1).
As outlined in Appendix A (Supplementary Material), the

short-time expansion for the position correlation function that
generates an experimentally detectable signal attenuation reads:

〈x(t2)x(t1)〉 = −D (|t21|) · |t21| = −

∑

n=0
Mn |t21|

1+n/2 (5)

with t21 = t2−t1, where the brackets 〈. . .〉 denote the expectation
value. Note that the terms 〈x(t2)2〉 and 〈x(t1)2〉 where neglected
in Equation (5) because they do not contribute to the signal
attenuation. Equation (5) can be related to the diffusion spectrum
D (ω) (see Appendix A in Supplementary Material) via:

D (ω)

ω2
=

1

2

∫

∞

−∞

〈x (t2) x (t1〉) e−iωt21dt21

= −

1

2

∑

n=0

∫

∞

−∞

Mn|t21|
1+n/2e−iωt21dt21. (6)

This Fourier integral exists (see Appendix B in Supplementary
Material):

1

2

∫

∞

−∞

|t21|
1+n/2e−iωt21dt21 = −ω−2− n

2 cos
(nπ

4

)

Ŵ

(

2+
n

2

)

,

ω > 0, n ≥ 0 (7)

and thus by inserting Equation (7) in Equation (6), one finds:

D(ω) = D0 +M1

√

π

2

3

4ω1/2
+ 0 ·M2 + 0

(

ω−3/2) . (8)

Note that the gamma function Γ makes the constants cn increase
swiftly at larger n. Defining the time parameter τ = t/n, entailing
ω = 2π/ τ , one finds:

Dapp(τ ) := D

(

2π

τ

)

=D0+M1
3

8
τ 1/2 + 0 ·M2 + O

(

τ 3/2
)

(9)

with Dapp (τ ) being identical to D (ω) except for taking a
different argument. Dapp (τ ) has exactly the form of Equation
(3) as desired and one can read off the coefficients Cn directly:
C1 = 3/8 and C2 = 0. Note that the value of C1 was reported
previously (e.g., in Novikov and Kiselev [29]). The vanishing of
C2 has not been reported so far to our knowledge.

Using the expression forM1, one finds:

D (ω) = D0 −
D0

d
√
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S

V

√

D0

ω
+ O

(

ω−3/2) , (10)

Dapp (τ ) := D
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)

= D0 −
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+ O
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.

(11)
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FIGURE 2 | Difference between simulated diffusion coefficients and first order

short time diffusion expansion for slab domain (A), cylinder (B), sphere (C),

and bi-slab (D).

It is interesting to calculate the coefficients c1 and c2 for a
short-time cosine gradient with one oscillation [with methods as
described, e.g., in Laun et al. [1] and references therein]. We find
c1 = 3 ·

(

4π FresnelC(2) + 3 FresnelS(2)
)

/16/π ≈ 0.428 and
c2 = 0. These values bear great similarity to C1 ≈ 0.375 and
C2 = 0. It should be noted that c2 of oscillating cosine gradients
with any number of oscillations equals zero because they are
“flow-compensated,” i.e., because their first moment vanishes [1].

Validation with Simulations
Figure 1 displays Dapp (t) and Dapp (τ ). Markers indicate
simulation results using the MCF approach and lines represent
the short-time expansion. For Dapp (t), solid lines equal M0 +

M1c1t
1/2 and dotted lines equal M0 + M1c1t

1/2
+ M2c2t. For

Dapp (τ ), solid lines equalM0+M1C1τ
1/2 and dotted lines equal

M0 + M1C1τ
1/2

+ M2C
2
1τ . The term M2C

2
1τ shall represent a

reasonable “guess” for the t-term with an effective diffusion time
τeff = C2

1τ , where the coefficient C2 was set to one. The intention
is to visualize a line with C2 6= 0, although this term does not
occur in reality. Some remarks on effective diffusion times can be
found in Appendix C (Supplementary Material).

For the slab domain (Figure 1A), Mn>1 = 0 holds true
(see [42]). Hence, Figure 1A does not display a dotted line and
markers stay close to the solid lines.

In Figures 1B,C (cylinder, sphere) and Figure 1D (bi-slab),
it is clearly visible that the markers for the bipolar gradients
(with c2 = 1 6= 0) stay close to the dotted lines indicating
the importance of the t-term. The markers of the oscillating
cosine gradients stay close to the solid line indicating that the
t-term does not influenceDapp (τ ). Owing to higher order terms,
deviations between the short-time expansion and markers are
present at larger t.

Figure 2 shows 1D, i.e., the difference between simulated
diffusion coefficients and first order short time expansion. The
dotted line represents the t-term, i.e., M2c2t for the bipolar
gradients. For the oscillating gradients, the black dotted line shall
represent an educated guess for the t-term, i.e., M2C

2
1τ , as in

Figure 1.
First, the bipolar gradients displayed in Figure 2 are discussed

(displayed in red color). For the slab domain (Figure 2A), the
dotted line is flat because M2 = 0. However, deviations of 1D
from zero are well visible for t > 10 ms. This does not result from
the influence of higher order terms because all higher order terms
are zero. It rather indicates the breakdown of the short-time
expansion. For cylinder, sphere, and bi-slab (Figures 2B–D), the
slope of 1D is identical to that of the dotted line at t = 0,
but starts deviating already roughly at t = 2 ms indicating that
either higher order terms are needed or, again, that the short-time
expansion breaks down. This deviation is more pronounced for
cylinder and sphere than for the bi-slab.

Next, the oscillating gradients in Figure 2 are discussed
(displayed in black color). For cylinder, sphere, and bi-slab, 1D
does have zero slope at t = 0 and does not follow the dotted
line for any of these domains, which supports the finding that
C2 = 0. This holds true for Tcos = 500ms, but also for reduced
total duration of the oscillating gradients, i.e., for smaller Tcos.
The difference of1D between Tcos = 500ms and Tcos = 50ms is
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smaller than 0.015 µm2/ms for all domains at τ = 10ms, which
is roughly equally large as the guessed t-term, but an order of
magnitude smaller than the

√

t-term. Thus, for the considered
domains, Tcos = 50ms still appears to be well suited for
investigations of the

√

t-term, even with as few as five oscillations.

DISCUSSION

The main result of this work is that oscillating cosine gradients
are blind with respect to the t-term of the short-time expansion
of the apparent diffusion coefficient.

Oscillating gradients and extensions [48–51] have been used
in several research studies [27, 28, 32, 35, 38, 52–65], among them
applications to human brains in vivo [66]. Comparing oscillating
gradients to pulsed gradients, the advantage of the oscillating
gradients is that the obtainable b-value is higher allowing the
assessment of shorter times. This is particularly useful if strong
gradient amplitudes are not available or if the structure of interest
is too small. The disadvantage is the need for longer echo
times entailing decreased signal-to-noise ratio due to transversal
relaxation, which also entails a longer acquisition time.

As oscillating gradients are blind to the t-term, estimates of
S/V as in Reynaud et al. [36] are not biased by this term, but,
obviously, the membrane permeability, for example, cannot be
estimated using the t-term. This is in line with the findings by
Li et al. [67], who reported that the membrane permeability has
little effect on oscillating gradient derived diffusion coefficients at
high frequencies. This is presumably not a major limitation given
the smallness of the t-term that is visible in Figures 1, 2, which
makes a fit challenging. The permeability information must have
some influence on Dapp (τ ) at long τ ; otherwise diffusion in
the bi-slab would have to be identical to that of a single slab
domain of double size. Therefore, the estimation of membrane
permeability using oscillating gradients might in principle be
possible.

As different versions of Equations (10) and (11) can be
found in the literature, a comparison is worthwhile. Equation
(10) is identical to Equation 10 of the article by Novikov and
Kiselev [29]. Except for a small deviation, which may be due
to numerics, Equation (10) is also identical to Equation (3) of
the article by Xu et al. [35], but, to our understanding, not to
the respective equations in an earlier article [27]. In general,
care must be taken concerning the definition of τ . For example,
Zielinski et al. [38] use the definition τZielinski = τ/2, which is
closer to the classical timing definitions of CPMG echo trains
than our definition. Considering this difference in definitions,

their respective coefficient C1 for the CPMG condition as stated
in their Equation (6) is almost identical to 3/8, which is in
agreement with the finding that the difference between C1 of
CPMG and cosine gradients should be almost negligible as stated
in section 3.3 of Novikov and Kiselev [29]. Further, we found
our coefficient C1 to be a factor of six smaller than the one
stated in Equation 14 in the article by Stepišnik et al. [28]. This
difference was noted by the authors themselves and in Novikov
and Kiselev [29].

Interestingly, the disappearance of the t-term in the Mitra
expansion of Equation (3) using oscillating gradients is due to
its disappearance in D (ω), or Dapp (2π/τ), respectively. Thus,
optimizing oscillating gradient profiles instead of using, for
example, just cosine gradients, which was a successful approach
in other regards [68, 69], does not help to make the t-term
reappear in the signal attenuation.

In practice, diffusionmeasurements use spin echoes and hence
two gradients at both sides of the refocusing pulse (as in Baron
and Beaulieu [66]). This effectively introduces an extra variable,
i.e., the separation of two gradients, which can affect the spectrum
of diffusion gradients. When interpreting oscillating gradient
experiments, this effect must be taken into account.

A limitation of the presented simulations is that they cannot
prove the disappearance of the t-term. In principle, a very small
t-term might be present and go unnoticed.

In conclusion, oscillating gradients are blind to the t-term and
hence no bias in fits of the surface-to-volume ratio arises from the
t-term.
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The signature of diffusive motion on the NMR signal has been exploited to

characterize the mesoscopic structure of specimens in numerous applications. For

compartmentalized specimens comprising isolated subdomains, a representation of

individual pores is necessary for describing restricted diffusion within them. When

gradient waveforms with long pulse durations are employed, a quadratic potential profile

is identified as an effective energy landscape for restricted diffusion. The dependence

of the stochastic effective force on the center-of-mass position is indeed found to

be approximately linear (Hookean) for restricted diffusion even when the walls are

sticky. We outline the theoretical basis and practical advantages of our picture involving

effective potentials.

Keywords: diffusion, magnetic resonance, anisotropy, microscopic, local, confinement, tensor, parabolic

1. INTRODUCTION

Recovering the mesoscopic structure of porous media and biological tissues via diffusion sensitized
NMR methods has been an active area of research since 1960s [1, 2]. As a molecule diffuses within
the medium, its magnetic moment acquires a certain phase depending upon the particle’s trajectory
and the impressed magnetic field gradient profile. The total signal generated by all molecules can
be expressed mathematically as

E =

〈

e−iγ
∫ t
0 dsG(s)·x(s)

〉

, (1)

where γ is the gyromagnetic ratio whileG and x denote the time-dependent magnetic field gradient
and the position of the particle, respectively. The average is taken over all particle trajectories.

Conventional techniques for relating the NMR signal above to microstructural features of the
medium vary from “localized” models in which the aggregate signal is envisioned to arise from
isolated (e.g., restricted) compartments [3, 4] tomore “global” models, which attempt to capture the
medium’s disorder [5, 6]. Here, we propose to approach the problem of relating the NMR signal to
microstructural features of the medium with an alternative paradigm wherein diffusion is thought
to be taking place within a potential energy landscape.

When the gradient waveform, G(s), comprises two well-separated pulses of infinitesimal
durations, the relationship between the NMR signal and the compartment shape is the same as that
in scattering experiments. For closed pores, the signal intensity is given by E(q) = |ρ̃(q)|2, i.e.,the

25

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2017.00068
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2017.00068&domain=pdf&date_stamp=2017-12-19
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:evren.ozarslan@liu.se
https://doi.org/10.3389/fphy.2017.00068
https://www.frontiersin.org/articles/10.3389/fphy.2017.00068/full
http://loop.frontiersin.org/people/319543/overview
http://loop.frontiersin.org/people/461361/overview
http://loop.frontiersin.org/people/499401/overview
http://loop.frontiersin.org/people/500089/overview


Özarslan et al. Effective Potential for Restricted Diffusion

power spectrum of the equilibrium distribution of spins ρ(r).
Here, the wavevector q is taken to be the time integral of
each gradient pulse multiplied by γ . As the pulse duration
is prolonged, the oscillatory diffraction pattern of the signal
stretches toward larger q-values (q = |q|), and eventually
becomes unobservable [7, 8]. This is a manifestation of the
loss of information in experiments featuring long pulses; such
information loss is key to our endeavor to identify an effective
potential for the diffusion process.

In this Perspective, we argue that the theory of diffusion under
a Hookean restoring force [7, 9–13] can be regarded as the
effective theory of restricted diffusion for a wide class of highly
relevant NMR signal acquisition scenarios. This is evident at the
macroscopic scale when one considers the dependence of the
signal on experimental parameters for sequences featuring long
gradient pulses or plots the average effective force experienced
by the particles against their mean position (center of mass
of their trajectories) during the application of a long pulse.
For NMR examinations of microscopic diffusion anisotropy
[14, 15], the quadratic potential profile is ideally suited to
represent the observable properties of small pores making up a
compartmentalized medium.

2. EFFECTIVE POTENTIAL FOR
RESTRICTED DIFFUSION

Here we demonstrate that, under certain experimental
conditions, the influence of restricted diffusion is essentially
the same as that for the Hookean potential model, which was
studied in-depth recently [13]. After the theoretical grounds for
the effective theory are established, we proceed with presenting
simulation results that provide additional justification.

2.1. Long-Pulse Train
Consider a pulse sequence which consists of N rectangular
gradient pulses of varying (vector) magnitudes Gn and durations
δn. With the definition

qn = γGnδn, (2)

the NMR signal (Equation 1) is given by

E =

〈

exp

{

−i

N
∑

n=1

1

δn

∫ tn+δn

tn

qn · x(t)dt

}〉

, (3)

where tn denotes the leading edge of the nth pulse. Angular
brackets indicate averaging over the possible trajectories x(t).

Further, introducing the stochastic center-of-mass of the
particle trajectory [7] during the nth pulse through

ξn =

1

δn

∫ tn+δn

tn

x(t) dt, (4)

the stochastic signal can be rewritten as

E =

〈

e−i(q1·ξ1+q2·ξ2+...+qN ·ξN)
〉

. (5)

In words, the NMR signal elicited by spatially constant gradient
pulses of finite duration is sensitive to the center of mass (average
position) of Brownian trajectories, rather than instantaneous
coordinates. The duration of the pulses therefore serve to smear
out fine spatial features.

Let pcm(ξ , δ) denote the distribution of the center of mass
during a time interval of duration δ. In the long duration regime,
δn → ∞, the dependence on the pulse separation disappears and
the signal intensity (Equation 5) factorizes, leading to

E = p̃cm(q1, δ1) p̃cm(q2, δ2) . . . p̃cm(qN , δN), (6)

where

p̃cm(q, δ) =

∫

pcm(ξ , δ)e
−iq·ξ d3ξ (7)

is the Fourier transform of the center of mass distribution.
Due to its construction (Equation 4), the random variable ξ

has a distribution pcm(ξ , δ) that approaches a Gaussian in the
limit of long duration1. Therefore, both its Fourier transform
(Equation 7) and hence the signal (Equation 6) approach
Gaussians as well.

The Gaussian distribution is determined simply by its variance
matrix (with its mean set to zero for convenience). The
relevance of this fact here is that when a train of long pulses is
employed, the signal has no means of encoding for fine features
of the microscopic environment where diffusion takes place2.
What survives in the signal is merely that component of the
microscopic forces that provide a stable equilibrium (since the
particles do not escape to infinity) for the center of mass and no
more. More specifically, a Hookean force.

While restricted diffusion becomes a difficult problem to
tackle in higher dimensions for all but a few special geometries,
diffusion under a Hookean force is much more tractable, and
it behooves one to adopt the latter model when its features are
all that can be observed, as argued above. Hence we consider
the case of diffusing particles subject to a (dimensionless)
parabolic confining potential U(x) = (1/2)x⊺Cx, where C

is the confinement tensor [13]. Under this potential, the
magnetization density evolves according to the Bloch-Torrey-
Smoluchowski equation [13, 17, 18]. For this process, the center
of mass distribution is Gaussian for any duration, and its Fourier
transform is given by

p̃cm(q, δ) = e−
1
2 q

⊺Vq, (8)

with the variance matrix

V = 2(Dδ)−2
C
−3(DCδ + e−DCδ

− 1), (9)

which is just a straightforward generalization of an expression in
Mitra and Halperin [7] to higher dimensions. Via Equation (6),
the signal encodes the confinement tensor, C, for the restricted
region.

1A rigorous proof of this can be found in the mathematics literature [16].
2Indicated also by the absence of powers of “momentum” q higher than 2 in its
cumulant expansion.
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2.2. Insights from the One-Dimensional
Problem
The eigenvalues of the inverse of the confinement tensor C

can be associated with the square of three lengths pertaining
to the overall size of a 3-dimensional region. Of course, these
three lengths cannot characterize the irregular boundary of a
general 3-dimensional region, as alluded to above. However,
for the illustration of the size-confinement correspondence,
we momentarily take up the simple 1-dimensional example of
diffusion restricted by two parallel plates separated by a distance
L. The variance of the center of mass position is provided by
Mitra and Halperin [7] to be

〈

ξ (δ)2
〉

res
=

16L4

π6Dδ

∞

∑

n=1,3,5,...

1

n6

[

1−
1− e−π2n2Dδ/L2

π2n2Dδ/L2

]

, (10)

where the subscript stands for restricted diffusion3.
In the long pulse duration regime wherein the statistics of the

restricted problem approach those of the confinement problem,
the variances of the center of mass position for the two problems
are found by taking the long time limit of Equations (9) and (10),
respectively,

〈

ξ (δ)2
〉

con ∼

2

C2Dδ
, δ → ∞, (11)

〈

ξ (δ)2
〉

res ∼
L4

60Dδ
, δ → ∞. (12)

Demanding that the two variances above agree results in the
relation

C =

√

120

L2
, (13)

meaning that the confinement model with parameter C becomes
the appropriate effective theory for the restriction model (the
“true” theory) with length L, yielding the same observed
quantities under the coarse-graining furnished by the long
averaging pulse.

While in the above it was the long pulse duration that
ensured the Gaussianity of the signal (through the center of mass
distribution) for restricted diffusion, an alternative situation is
one where the gradient strength is so small that qL is much
smaller than unity. Because the observed signal is Gaussian for
such q values, the confinement model would perfectly represent
the data, yet Equation (13) would not apply since the pulse
duration is not necessarily long. If one adopts a matching
scenario as above, a correspondence can be obtained numerically
for general pulse durations. As shown in Figure 1A, the effective
confinement value obtained by matching the variances of the
center-of-mass distributions for the two problems, which is
equivalent to matching the signals in an experiment employing
well-separated pulses, varies within a very narrow range, namely
between C = 12/L2 and C =

√

120/L2. Therefore, employing
the asymptotic correspondence (Equation 13) in lieu of the
numerical one (blue curve in Figure 1A) would still provide an
acceptable estimate of L.

3Coordinates are chosen such that 〈ξ〉 = 〈x〉 = 0.

FIGURE 1 | (A) Effective dimensionless confinement value (gray circles)
computed by matching the variances of the center of mass distributions in the
two problems plotted vs. the dimensionless time Dδ/L2. The variation in CeffL

2

value is well-captured (error less than 0.12%) by the expression
y = 12− (12−

√

120)(αx)kγ [1+ (αx)k ]−γ , with α = 9.495, γ = 1.210, and
k = 1.266 (blue line). The dashed line indicates the asymptotic value

√

120.
(B) The absolute value of the difference in the normalized signals implied by
the two problems (restricted diffusion with separation L, and the Hookean
potential with a confinement value taken to be C =

√

120L−2) for a traditional
Stejskal-Tanner sequence [32] with two gradient pulses whose leading edges
are separated by 1 with D1/L2 = 100. The restricted diffusion signal was
computed using the multiple correlation function method [33, 34].

Contrary to the two cases above, the signal for restricted
diffusion is not Gaussian for other values of q or δ. Thus, the
signal profile afforded by the confinement model can only be an
approximation to the true signal when the pulses are not long.
To investigate the discrepancy, it is insightful to compare the
signal for the restricted diffusion problem (for a slab geometry of
separation L) to that for the Hookean model featuring the long-
time asymptotic value (Equation 13) of the effective confinement.
In Figure 1B, we show that the error (defined as the difference
in the normalized signal intensities implied by the restriction
and confinement pictures) is below 0.01 for a very large portion
of the relevant parameter space that could be probed. Such
differences are not detectable when the signal-to-noise ratio is
100 or less, thus justifying the confinement description as a
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reliable substitute in studies involving restricted diffusion. In
fact, the most significant exception to this statement is at the
peaks of the diffraction pattern, which occur roughly at qL =

3/2, 5/2, . . . for very short pulses (i.e., along the left edge of this
figure) and at slighly larger qL values for longer durations. For
long pulse durations, the diffraction pattern does not prevail,
and the confinement model eventually provides an accurate
description of the detectable signal.

Consider, e.g., a 4 µm pore—roughly the size of a yeast
cell. Assuming a bulk diffusivity value of 2 µm2/ms, and
for a pulse duration of 20 ms, which is typical for diffusion
measurements via clinical scanners, the Dδ/L2 value is 2.5.
Thus, the signal response of the confinement picture would be
indistinguishable from a much more elaborate theory involving
restricted diffusion. The situation is even more favorable
for smaller sized compartments. In laboratory spectrometers,
however, pulse durations an order of magnitude shorter are
feasible; in such scenarios, detectable differences between the
restricted diffusion and confinement pictures can be encountered
unless the pores are smaller. However, let us remark once more
that it is only in this simplified one-dimensional scenario that
there exists a single unambiguous size of the region, allowing
a one-to-one correspondence to be drawn between C and L. In
higher dimensions, one’s measurements have access simply to
the tensor C; the actual dimensions of the region can only be
speculated upon to the extent that its geometry is known.

2.3. Boundary Force: Simulations
The confinement model is based on a Hookean force assumption,
i.e., the presence of a restoring force whose magnitude increases
linearly as the particles move away from an attractive center.
We shall define an effective force, Feff, based on the impulse the
particles experience during a time interval of duration δ, i.e.,

Feffδ =

∫ δ

0
F(t) dt. (14)

Because the time-dependent force F(t) is proportional to −Cx(t)
for particles subject to a quadratic potential, the effective force is
proportional to −Cξ (δ), implying a perfectly linear dependence
on the center-of-mass of each and every trajectory. On the other
hand for restricted diffusion, the effective force is proportional to
−1N/δ, where 1N denotes the number of collisions the particle
makes with the wall on the left subtracted from that with the wall
on the right.

By performing random walk simulations, we investigated
whether a similar (Hookean) force model could emerge for
the restricted diffusion process as well. In the top panel of
Figure 2A, we plot the histograms of mean particle position for
different durations. As expected, the center of mass distribution
approaches a Gaussian as the time is prolonged. Note that the
net force is a stochastic variable just like the mean position of
the trajectories. Thus, in the bottom panel of Figure 2A, we plot
the average of the net effective force against the mean trajectory
position. Remarkably, the effective force is linearly related to the
mean position for an overwhelming portion of the particles even
for moderate times. Moreover, by repeating the simulations for

different L values (results not shown), we found that the slope
of the curves at long durations, i.e., the effective force constant,
is proportional to L−2 just like in Equation (13). These findings
further support the idea of employing a Hookean forcemodel as a
substitute for restricted diffusion at long durations. Importantly,
the Hookeanmodel is valid even for more complicated problems,
which are difficult to treat analytically. We illustrate this point
by introducing stickiness to the walls of the same restricted
geometry. As shown in Figure 2B, the same conclusions can be
drawn for this scenario albeit for a different value of the effective
confinement.

3. DISCUSSION AND CONCLUSION

While characterizing a compartmentalized specimen or
biological tissue via diffusion NMR, one is faced with the
problem of determining a reliable representation of the local
compartment. An accurate mathematical description of the
pore shape would typically necessitate numerous parameters.
However, such parameters are simply unavailable in diffusion
NMR measurements featuring long gradients as a result of
coarse-graining associated with the diffusion process taking
place during the application of the gradients. The confinement
tensor model [13] contains just the right number of parameters as
dictated by the central limit theorem.

Similar to the diffusion tensor, the confinement tensor is real
and symmetric, thus is described by 6 independent numbers.
However, the confinement tensor model has at least one extra
parameter—the bulk diffusivity, which can be scalar (isotropic) or
tensorial. For the latter case, the diffusion tensor model emerges
simply in the C → 0 limit [13]. It is common to express
the detected NMR signal for complex specimens as the sum of
contributions from Gaussian and restricted compartments [3].
Our work implies that, when appropriate acquisition parameters
are employed, both these compartments could be represented by
the confinement tensor model though with different confinement
values.

Diffusion tensors have also been employed for representing
diffusion in microscopic compartments [4, 19, 20]. Since the two
models (employing diffusion and confinement tensors) have the
same q dependence for traditional Stejskal-Tannermeasurements
performed with varying gradient vectors, their predictions of the
signal would be the same, and one model cannot be preferred
over the other; this was observed when the confinement tensor
is employed to represent the voxel-level signal [21] similar to
what is done in diffusion tensor imaging [22]. However, the
diffusion tensor model is based on free diffusion, and exhibits a
time-dependence which is paradoxical for a compartmentalized
structure. Manifestations of the difference in time-dependencies
would be observable, e.g., when the timing parameters of the
measurements are varied [23]. In fact, the influence of the
gradient waveform on the free-diffusion signal is fully captured
[24] by a measurement tensor, referred to as the b-matrix
[25]. Thus, any set of acquisitions featuring the same b-matrix
would yield the same signal value if diffusion tensor model is
employed. However, the quadratic potential profile would lead to
qualitatively different signal profiles, approximating the response
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FIGURE 2 | (A) Random walk simulations for particles trapped between non-sticky parallel plates separated by 4 µm, diffusing with bulk diffusivity D = 1.0 µm2/ms.
Different curves represent different time intervals, which can be associated with durations of the pulses in NMR measurements. The distributions of the positions of the
center of mass are shown at the top. The average effective force exerted on the diffusing particles plotted vs. the trajectories’ center of mass (bottom). (B) The
simulations were repeated by introducing surface adsorption effect so that the particles spend, on average, 25% of the time stuck at the walls.

of a restricted diffusion process, which is more consistent with
the underlying compartmentalized structure.

From a practical point of view, treating restricted diffusion
is quite difficult even for simple geometries. For example, if we
consider an ellipsoidal pore—the simplest geometry with the
same number of parameters as a general confinement tensor—
the problem would be very difficult to solve analytically. We
argue that doing so would also be unnecessary if long pulses are
employed. The separability of the confinement model enables one
to write [13] the expected signal simply in terms of the solution of
the one-dimensional Hookean problem, provided that we work
in a frame of reference whose axes coincide with those of the
ellipsoid; in this frame, C is diagonal. Such simplicity due to
separation of variables in the confinement model is valid even for
more complicated shapes since the statistics of the center of mass
converge to Gaussian as long as the durations of the gradient
pulses are long.

We would like to note that, as shown by Bauer et al. [26]
accumulation of Gaussian phase, if true, implies a propagator

(not just stationary distribution) that is Gaussian. In fact, the
Ornstein-Uhlenbeck propagator [17, 27, 28] associated with the
quadratic potential profile is the general form following the basic
properties of the process: diffusive, Markovian, stationary, with
Gaussian transition probabilities [26].

In a very recent study [29], some of us considered
a general potential energy landscape, U(x), in which all
disturbances to otherwise free diffusion are envisioned to
originate from the variations in this landscape. For this
scenario, the equilibrium density of the particles is governed
by Maxwell-Boltzmann statistics, i.e., ρ(x) ∝ e−U(x), which
could account for inhomogeneities in the bulk, and incorporate
the effects of boundaries if needed, in a mathematically wieldy
manner. We demonstrated that pulse sequences involving
very short and long pulses [30, 31] could be employed to
map this underlying landscape. Here, we have extended this
finding to effective potential energy landscapes associated with
restricted diffusion, which can be mapped without narrow
pulses.
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In conclusion, we have presented a new perspective in
which findings of common and relevant NMR signal acquisition
scenarios can be interpreted. At the heart of this perspective lies
modeling the diffusion as taking place in an effective quadratic
potential landscape instead of a restricted domain. We have
argued that when probed via waveforms featuring long pulses,
the two models become indistinguishable, and the signal should
rather be taken to reflect the parameters of such an effective
model. Simulations suggest that the stochastic effective force
has a linear (Hookean) dependence on the average particle
position. The signal for quadratic potential indeed provides a
very good approximation to that for restricted diffusion in small
(micron-scale) pores when examined via commonly available
hardware (see Figure 1B). This observation can be generalized
in a straightforward way to higher dimensions, thus making the
confinement tensor model [13] relevant for applications such as
clinical and pre-clinical MRI.
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13. Yolcu C, Memiç M, Şimşek K, Westin CF, Özarslan E. NMR signal for
particles diffusing under potentials: from path integrals and numerical
methods to a model of diffusion anisotropy. Phys Rev E (2016) 93:052602.
doi: 10.1103/PhysRevE.93.052602

14. Cheng Y, Cory DG. Multiple scattering by NMR. J Am Chem Soc. (1999)
121:7935–6. doi: 10.1021/ja9843324

15. Özarslan E. Compartment shape anisotropy (CSA) revealed by
double pulsed field gradient MR. J Magn Reson. (2009) 199:56–67.
doi: 10.1016/j.jmr.2009.04.002

16. Baxter JR, Brosamler GA. Energy and the law of the iterated logarithm.Math

Scand. (1976) 38:115–36. doi: 10.7146/math.scand.a-11622
17. Smoluchowski M. Über Brownsche Molekularbewegung unter

Einwirkung äußerer Kräfte und deren Zusammenhang mit der
verallgemeinerten Diffusionsgleichung. Ann Phys. (1916) 353:1103–12.
doi: 10.1002/andp.19163532408

18. Torrey HC. Bloch equations with diffusion terms. Phys Rev. (1956) 104:563–5.
doi: 10.1103/PhysRev.104.563

19. Callaghan PT, Komlosh ME. Locally anisotropic motion in a macroscopically
isotropic system: displacement correlations measured using double
pulsed gradient spin-echo NMR. Magn Reson Chem. (2002) 40:S15–9.
doi: 10.1002/mrc.1122

20. Westin CF, Knutsson H, Pasternak O, Szczepankiewicz F, Özarslan E,
van Westen D, et al. Q-space trajectory imaging for multidimensional
diffusion MRI of the human brain. NeuroImage (2016) 135:345–62.
doi: 10.1016/j.neuroimage.2016.02.039

21. Afzali M, Yolcu C, Özarslan E. Characterizing diffusion anisotropy for
molecules under the influence of a parabolic potential: a plausible alternative
to DTI. Proc Intl Soc Mag Reson Med. (2015) 23:2795.

22. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy
and imaging. Biophys J. (1994) 66:259–67. doi: 10.1016/S0006-3495(94)
80775-1

23. Zucchelli M, Afzali M, Yolcu C, Westin CF, Menegaz G, Özarslan E. The
confinement tensor model improves characterization of diffusion-weighted
magnetic resonance data with varied timing parameters. In: 2016 IEEE 13th

International Symposium on Biomedical Imaging (ISBI). Prague: IEEE (2016).
p. 1093–6.

24. Özarslan E, Westin CF, Mareci TH. Characterizing magnetic resonance signal
decay due to Gaussian diffusion: the path integral approach and a convenient
computational method. Concepts Magn Reson Part A (2015) 44:203–13.
doi: 10.1002/cmr.a.21354

25. Mattiello J, Basser PJ, LeBihan D. Analytical expressions for the b-matrix in
NMR diffusion imaging and spectroscopy. J Magn Reson A (1994) 108:131–41.
doi: 10.1006/jmra.1994.1103

26. Bauer WR, Ziener CH, Jakob PM. Non-Gaussian spin dephasing. Phys Rev A
(2005) 71:053412. doi: 10.1103/PhysRevA.71.053412

27. Smoluchowski M. Einige Beispiele Brown’scher Molekularbewegung unter
Einfluss äusserer Kräfte. Bull Int Acad Sci Cracovie Cl Sci Math Natur. (1913)
418.

28. Uhlenbeck GE, Ornstein LS. On the theory of the Brownian motion. Phys Rev.
(1930) 36:823–41. doi: 10.1103/PhysRev.36.823

Frontiers in Physics | www.frontiersin.org December 2017 | Volume 5 | Article 6830

https://doi.org/10.1017/CBO9780511770487
https://doi.org/10.1093/acprof:oso/9780199556984.001.0001
https://doi.org/10.1002/mrm.20274
https://doi.org/10.1016/j.neuroimage.2007.03.074
https://doi.org/10.1016/j.jmr.2006.08.009
https://doi.org/10.1016/j.neuroimage.2016.09.057
https://doi.org/10.1006/jmra.1995.1060
https://doi.org/10.1006/jmre.1997.1233
https://doi.org/10.1063/1.1696526
https://doi.org/10.1063/1.1670306
https://doi.org/10.1021/ma60077a012
https://doi.org/10.1103/PhysRevB.46.3465
https://doi.org/10.1103/PhysRevE.93.052602
https://doi.org/10.1021/ja9843324
https://doi.org/10.1016/j.jmr.2009.04.002
https://doi.org/10.7146/math.scand.a-11622
https://doi.org/10.1002/andp.19163532408
https://doi.org/10.1103/PhysRev.104.563
https://doi.org/10.1002/mrc.1122
https://doi.org/10.1016/j.neuroimage.2016.02.039
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1002/cmr.a.21354
https://doi.org/10.1006/jmra.1994.1103
https://doi.org/10.1103/PhysRevA.71.053412
https://doi.org/10.1103/PhysRev.36.823
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Özarslan et al. Effective Potential for Restricted Diffusion
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Matter Numerical Phantoms: A Step
toward a Better Understanding of the
Influence of Structural Disorders in
Diffusion MRI
Kévin Ginsburger 1,2*, Fabrice Poupon 2,3, Justine Beaujoin 1,2, Delphine Estournet 1,2,
Felix Matuschke 4, Jean-François Mangin 2,3,5, Markus Axer 4 and Cyril Poupon 1,2

1CEA DRF/ISVFJ/Neurospin/UNIRS, Gif-sur-Yvette, France, 2Université Paris-Saclay, Orsay, France, 3CEA

DRF/ISVFJ/Neurospin/UNATI, Gif-sur-Yvette, France, 4 Research Centre Jülich, Institute of Neuroscience and Medicine,

Jülich, Germany, 5CATI, Multicenter Neuroimaging Platform, Orsay, France

White matter is composed of irregularly packed axons leading to a structural disorder

in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin

echo sequences have shown that the diffusivity transverse to axons in this extra-axonal

space is dependent on the frequency of the employed sequence. In this study, we

observe the same frequency-dependence using 3D simulations of the diffusion process

in disordered media. We design a novel white matter numerical phantom generation

algorithm which constructs biomimicking geometric configurations with few design

parameters, and enables to control the level of disorder of the generated phantoms.

The influence of various geometrical parameters present in white matter, such as global

angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular

perpendicular diffusivity frequency dependence was investigated by simulating the

diffusion process in numerical phantoms of increasing complexity and fitting the resulting

simulated diffusion MR signal attenuation with an adequate analytical model designed for

trapezoidal OGSE sequences.This work suggests that angular dispersion and especially

beading have non-negligible effects on this extracellular diffusion metrics that may be

measured using standard OGSE DW-MRI clinical protocols.

Keywords: diffusion time-dependence, white matter microstructure, trapezoidal OGSE sequences, axonal

diameter, Monte-Carlo simulations, biomimicking numerical phantoms

1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI), sensitized to the diffusive motion of
water along the direction of an applied magnetic field gradient, has become a well-established
technique to non-invasively probe the cellular organization of tissues in vivo. Diffusion NMR
measurements embed some information about the inhibition of particles motion due to the
presence of barriers in the local environment, and can therefore be exploited to map some specific
microstructural features characterizing the brain white matter ultrastructure at cellular scales.
While Pulsed Gradient Spin Echo (PGSE) sequences [1] are still widely used in clinical routine,
alternative schemes such as Oscillating Gradient Spin Echo (OGSE) sequences seem a promising
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approach since they enable to explore the diffusion pattern in the
frequency domain dual to the diffusion time domain and are able
to probe shorter diffusion times compared to conventional PGSE.
Some OGSE studies have reported that, at frequencies below
400 Hz, the OG-measured extra-axonal diffusivity transverse to
axons in white matter is linearly dependent on the frequency
of the employed OGSE sequence [2], whereas state-of-the art
multi-compartment models of white matter relying on PGSE
or OGSE sequences usually assume a Gaussian diffusion in the
extra-axonal space [3–6]. A theoretical explanation was given in
Burcaw et al. [7], where the observed frequency-dependence is
interpreted as resulting from the extra-axonal 2D short-range
disorder of axonal packings in the plane transverse to white
matter fibers.

The extra-axonal perpendicular diffusivity transverse to axons
was thus written as

D(t) = D
∞

+ A.
ln (t/tc)

t
, tc ≪ t (1)

and, equivalently, in the frequency domain:

ReD(ω) ∼ D
∞

+ A.
π

2
|ω|, |ω|tc ≪ 1 (2)

where t is the diffusion time, ω is the dual frequency and tc
represents the time to diffuse across the correlation length lc of
the packing geometry (lc closely follows the mean external radius
rext of the axon packing [7, 8]).

Similar to recent models accounting for extra-axonal
time-dependence in the case of single diffusion encoding
sequences [9], a multi-compartment model for cosine OGSE
sequences was proposed in Ginsburger et al. [10] which added a
frequency-dependent term in the extra-axonal diffusion tensor
perpendicular diffusivity based on Equation (2), showing a
significant improvement of the model fit quality.

The first contribution of this article is to show the relevance of
such a frequency-dependent correction using clinically feasible
cosine trapezoidal OGSE sequences. The theoretically predicted
linear relationship between the extracellular perpendicular
diffusivity and the OGSE frequency was observed using 3D
simulations of the diffusion process with different values of
signal-to-noise ratios (SNR).

Having introduced a physically plausible frequency-
dependent correction in our model, the next step is to study
the dependence of its scaling coefficient A (Equation 2) to the
geometrical features of the extracellular space. Indeed, to our
knowledge, this dependence is very little known. An empirical
law A ∼ l2c relating A to the correlation length lc was given in
Burcaw et al. [7] and Fieremans et al. [8] but is not sufficient to
catch the complexity of the scaling coefficient A. The value of
A is a measure of the strength of the structural disorder [7, 11],
thus related to the geometrical properties characterizing the
spatial organization of white matter at various scales. A possible
approach to decipher the complex relationship between A and
white matter features is to perform Monte-Carlo simulations of
the diffusion process in diffusing media with increasing level of
structural disorder.

The simulation of the diffusion process in state-of-the-art
Monte-Carlo simulators such as CAMINO [12] and DMS [13]
is decomposed into three main steps: (1) the generation of a 3D
numerical phantom representing the diffusion medium (2) the
Monte-Carlo simulation of the Brownian motion of spins (3)
the synthesis of a DW-NMR signal. Simulators like CAMINO
or DMS are able to extract triangle meshes from histological
samples in step (1) in order to simulate diffusion in ultra-
realistic media. However, this approach does not allow to have
access to the plethora of possible geometries but only to the
limited set of configurations provided by the reduced set of
histological samples. Beside the possibility to use geometries
extracted from histological samples in step (1), state-of-the-art
simulators can only generate a limited number of geometries
which might not represent white matter sufficiently well. For
instance, the CAMINO and DMS simulators are able to simulate
the diffusion process in any triangle mesh, but the algorithm
used to construct simulation meshes from input geometrical
parameters only generates substrates with straight cylinders of
various diameters (including crossing between two populations
of fibers). Other simulation tools like Fiberfox [14] rely on
analytical models associated to each particular cell geometry,
including various combinations of sticks, tensors, zeppelins,
balls, dots, and astrosticks. They are inherently limited by the
realism of the used geometries and the employed analytical
models do not account for the presence of structural disorder
in the extracellular space. There is thus a real need to propose
alternative generative algorithms able to create more complex
geometries while controlling the parameters driving the various
sources of geometrical disorder to explore more extensively the
vast domain of possible geometries.

The main contribution of this article is therefore the
development of a novel algorithm to produce a wide variety of
biomimicking numerical phantoms representing more realistic
white matter tissue configurations from a reduced set of
control parameters. Embedded in the Diffusion Microscopist
Simulator (DMS) [13], this algorithm enables to control the
degree of complexity of the generated geometrical configurations
(induction of global angular dispersion and local tortuosity,
presence of Ranvier nodes along the axonal membrane, presence
of beading) with few design parameters, andwithout the necessity
of any input histological sample. Such numerical white matter
phantoms are then used to perform Monte-Carlo simulations of
the diffusion process from which simulated diffusion-weighted
NMR signals can be synthesized using trapezoidal OGSE
sequences at different values of SNR. The obtained signal is
fed into our analytical model to explore the evolution of the
structural disorder coefficient A for various well-characterized
geometrical configurations of the extracellular space.

2. MATERIALS AND METHODS

2.1. White Matter Numerical Phantoms
Actual simulation tools rely either on membrane surfaces
extracted from manual or automatic segmentations of
microscopic imaging data stemming from histological
tissue samples or on algorithms generating designs of axonal
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membranes built from a distribution of rectilinear cylinders
(possibly with angular dispersion) which diameters d follow a
Gamma distribution h. The function h can be tuned using a α

shape parameter and a β inverse scale parameter such that:

h(d;α,β) =
βαdα−1e−βd

Ŵ(α)
(3)

where Ŵ is a complete Gamma function. The first approach
is hard to achieve and generally yields a limited collection
of membrane configurations, whereas the second approach
provides over-simplistic representations of white matter. Here,
we propose a novel framework to design more realistic
membrane geometries better mimicking white matter structure.
One of the challenging issue of such an approach is to design a
tool enabling to cover a wide range of actual geometries while
using a limited number of parameters. Several observations can
be taken into account to improve the development of more
realistic white matter geometries:

• Several heterogeneous populations of fibers can populate the
field of view (FOV) of interest; whatever the target FOV
(from mesoscale to millimeter scale), complex configurations
of fibers are likely to happen and several studies in the field of
diffusionMRI have reported a percentage of around 60 percent
of voxels containing crossing, kissing or splitting fibers at the
conventional millimeter resolution of diffusion MRI data [15].

• Each fiber population is composed of myelinated or
unmyelinated axons which diameters follow the previous
Gamma distribution (Equation 3) but the shape and inverse
scale parameters can vary from a population to another;
in addition, each population is characterized by its mean
orientation in the 3D space and by its volume fraction.

• Myelinated axons are regularly interrupted by Ranvier nodes
along the axon main direction [16]; the internode distance d
has been extensively studied in Rushton [17] leading to the
maximum conduction relationship

d

D
= kg

√

log

(

1

g

)

(4)

where k is a constant, D is the external diameter of the axon
(including themyelin sheath) and g is the g-ratio defined as the
ratio between the axonal membrane and the external myelin
sheath outer membrane diameters.

• The fibers of a given population depict a macroscopic angular
dispersion that corresponds to the global misalignment of
the axons which has previously been modeled both in
ActiveAx [4] and NODDI [5] models using Watson’s or
Bingham’s distributions relying on the knowledge of the
principal orientation and of one or two concentration
parameters respectively, thus imposing a strong assumption
on the nature of angular dispersion.

• The fibers of a given population also depict local tortuosity
than can be simply measured by the ratio between the geodesic
distance along the curvilinear frame defined by the centroid
axis of the fiber and the Euclidean distance between the two
extremities of the fiber.

• It is not clear whether the axon diameter and myelin
sheath thickness remain constant along the axon; several
studies have assumed this absence of variation [18, 19]
whereas there is no clear assessment of such a property; in
particular, it is known thatmembrane injury can induce axonal
beading for instance due to cytoskeletal damage. According
to Budde and Frank [20], beading-induced changes in cell-
membrane morphology are sufficient to significantly hinder
water mobility and thereby decrease the apparent diffusion
coefficient; it is therefore recommended to account for this and
allow axon diameter variation.

Accounting for all these observations, we propose an algorithm
relying on a six-fold strategy to design white matter mimicking
numerical phantoms, that do not present the actual limitations
of existing phantom design tools. Such phantoms will allow
to go further into the study of the impact of both intra- and
extra-axonal compartments on the diffusion signal. In particular,
current achievable numerical phantoms do not provide the
possibility to induce local fiber tortuosity, which might have
a significant impact on the signal stemming from the extra-
axonal compartment by modifying the parallel and transverse
diffusivities along and perpendicular to the fibers.

The phantom generation algorithm takes a maximal number
of 14NPopulations + 2 parameters to generate complex axonal
geometries, where NPopulations is the number of fiber populations
(NPopulations > 1 in the case of crossing fibers). The list of control
parameters used to design a fiber population is summarized in
Table 1.

Step 1—During the first step of the phantom construction,
similarly to state-of-the-art simulation tools, a set of over-
simplistic fiber populations is constructed, each fiber population
corresponding to a set of rectilinear and parallel outer envelopes.
To each population corresponds an orientation, a Gamma
distribution of fiber envelope diameters (defined by a mean
diameter D and a standard deviation σD related to the shape
α and scale β of the Gamma distribution, such that αβ = D
and αβ2

= σD ), and an intracellular fraction, amounting to
4 parameters (Figure 1A). In the case of multiple populations,
the degree of interweaving of axons from different populations
is ruled by 2 scale parameters which control the distance
between axons within the same population, thus enabling to
create aggregated structures or a sheet organization [21] where
axons find their way amongst other populations. At each step
of the algorithm, the absence of intersection between the outer
envelopes of fibers populating the phantom is ensured using a 3D
collision algorithm.

Step 2—Once the fiber populations composed of parallel,
rectilinear axons are constructed, the second step of the
algorithm consists in the induction of global orientation
dispersion requiring one further parameter per fiber population.
As depicted in Figure 1B, global angular dispersion is created
by selecting randomly one fiber among a fiber population. The
fiber population is randomly selected among those that did
not reach their target angular dispersion yet. Then, a center
of rotation is selected along this fiber, following a Gaussian
distribution to ensure that most of the selected rotation centers
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TABLE 1 | List of control parameters names associated to each step of the

phantom generation algorithm.

Geometrical

characteristics

Control

parameters

names

Parameters description

Axon diameter

distribution

u Mean orientation of the

population

8 Target volume fraction of the

population

< D > Axon diameter mean value

σD Axon diameter standard

deviation

Global angular dispersion GAD Target global angular dispersion

Local tortuosity LAD Additional angular dispersion

due to tortuosity

Ranvier nodes < R > Mean ratio (internodal length) /

(node width)

σR Ratio standard deviation

Beading < BS > Beading spacing mean value

σBS Beading spacing standard

deviation

< BA > Beading amplitude mean value

σBA Beading amplitude standard

deviation

Myelin sheath < g > Mean g-ratio value

σg g-ratio standard deviation

belong to the central part of the fibers (see Figure 1B). A
perturbation vector g is then added to the orientation vector
u of the considered fiber, resulting in a rotation around the
center and in a new orientation vector u’. Each component of g
is obtained randomly, following a Gaussian distribution whose
variance is proportional to the target angular dispersion. The
proposed rotation is accepted if and only if the modified fiber
does not collide with another fiber. The global angular dispersion
AD is computed as follows:

AD =

1
∑

P∈P

Card(P)

∑

P∈P

∑

f∈P

θ(u′f , uP) (5)

where u′
f
is the new orientation vector of fiber f in fiber

population P, uP is the principal orientation vector of fiber
population P, θ(u′

f
, uP) is the angle between the two lines

supported by u′
f
and uP vectors, P denotes the ensemble

of all fiber populations in the considered field of view and
Card(P) corresponds to the number of fibers in each fiber
population P.

Step 3—The third step of the phantom generation algorithm
consists in the induction of local tortuosity in the geometry. To
this aim, one population is randomly selected from the set of
populations that did not reach their target angular dispersion yet.
One fiber of this population and a point along this fiber are then
selected randomly. A random orthonormal trieder (x, y, z) is built
such that z corresponds to the local direction uf of the fiber f .
The y-axis of the direct trieder defines the direction along which

is applied the tortuosity deformation on the fiber (see Figure 1C).
This deformation follows a Gaussian distribution with a zero
mean and a variance proportional to the tortuosity perturbation
value provided as an input. It moves all the points of the fiber
in the neighborhood of the selected point that is defined using
a tortuosity neighborhood size given as an input parameter of
the algorithm for each fiber population. The neighborhood size
controls the frequency of the undulations, e.g., the larger this size,
the smoother the undulations. Provided that all the deformed
points remain in the field of view and that the modified fiber
does not collide with any other fiber, the Gaussian deformation is
accepted. The induction of local tortuosity is a computationally
complex problem. Indeed, the total number of points NPoints in
the field of view is given by

NPoints = NPopulations.
∑

P∈P

∑

f∈P

Card(f ) (6)

where NPopulations is the number of fiber populations and Card(f )
stands for the number of control points of the centroid of a
given fiber f . A typical order of magnitude of NPoints is 104

which means that at each step of the induction of local tortuosity,
the algorithm must check at 104 points whether the fibers
are colliding, which can be computationally heavy. Thus, our
algorithm is based on the construction of a look-up table (LUT)
which is updated at each step of the tortuosity induction and
whose size is optimized so that we check the intersection at each
point of the fiber only with all the points in a neighborhood of this
very point. The LUT size must be adequately chosen to optimize
the computation time. If the LUT size is too small, collisions
might be missed whereas a too large LUT size will drastically
increase the computation time.

Step 4—Our phantom generation algorithm also enables
to distinguish the myelin sheath from the axon. The axon
membrane is created within the fiber envelope with a radius
computed from a predefined g-ratio, corresponding to the ratio
between the axon membrane diameter and the outer fiber
diameter. For each population, the g-ratio follows a Gamma
distribution, thus adding two further control parameters for each
fiber population. The myelin sheath corresponds to the space
between the axon membrane and the outer envelope of the fiber
(see Figure 1D).

Step 5—The algorithm also accounts for the presence
of Ranvier nodes along the myelin sheath (Figure 1E). The
internodal distance d is set using Equation (4) (maximal
conduction relationship [17]). The width wR of each Ranvier
node corresponds to a fraction αR of the internodal length d such
that wR = αR.d, with αR typically equal to 10−3, as described in
Salzer [16]. This fraction follows a Gamma distribution adding
two further control parameters.

Step 6—Finally, our algorithm gives the possibility to
represent beading caused by cytoskeletal damage of the axon
membrane: the contours of both axonal and outer myelin
membranes are swollen using adequate bell-shaped functions
like sine functions (see Figure 1F). The amplitude and spacing
of those lobes both follow a Gamma distribution (adding four
control parameters for each fiber population).
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FIGURE 1 | (A) Phantom generation for two populations (blue and green) with orientations ui (B). Global angular dispersion is created by selecting randomly an axon

among a given fiber and a point on this axon which will be the center of rotation of the fiber. The selection of the rotation center follows a Gaussian distribution with

mean µ and variance σ. A perturbation vector g whose components follow a Gaussian distribution with a variance proportional to the target angular dispersion is

added to the orientation vector u, resulting in a rotation around the selected fixed point and in a new orientation vector u′. (C) Local angular dispersion is induced by

deforming each axon separately. A point on the axon (in red) and a direct trieder (ux , uy , uz ) are chosen randomly. uy defines the direction of the tortuosity deformation

whose amplitude follows a Gaussian distribution with a variance depending on the number of points which are affected by the deformation around the central red

point. (D) Creation of the myelin sheath. Inside each cylinder of radius Rtot, an inner cylinder of radius R = g.Rtot (g is the g-ratio) is created which represents the

axonal membrane, and the external cylinder represents the outer layer of myelin sheath. (E) Creation of Ranvier nodes. The resolution of the fiber mesh around each

Ranvier node is refined to better account for the exponential decay of the myelin thickness around the node. (F) Beading generation. Both the axonal contour (inner

mesh) and the myelin sheath (external mesh) are swollen with a sine function. The myelin sheath thickness is preserved since beading comes from the swelling of the

axonal membrane due to injury.

2.2. Multi-compartmental Model for
Trapezoidal OG Measurements
Oscillating gradient spin echo (OGSE) sequences are sensitive
to diffusion on the time scale of the oscillation period
rather than the interval between the pulses and can thus
enhance the sensitivity to small axonal restrictions. Recently, an
ActiveAx OGSE model was proposed in Ginsburger et al. [10]
which accounts for the frequency-dependence of the diffusivity
transverse to axons in the extra-axonal space using cosine OGSE
schemes. A frequency-dependence correction was proposed for
the extra-axonal tensor and showed significant reduction of
the fit error. However, the correction derived in Ginsburger

et al. [10] is only valid for sinusoidal waveforms, while square
(or in practice trapezoidal) wave oscillating gradients maximize
sensitivity to smaller pore sizes in comparison with sinusoidal
sequences. Indeed, they yield the highest diffusion weighting
within one period compared to other periodic waveforms [22],
which also makes trapezoidal sequences more clinically feasible.
The aim of this section is thus to adapt the previous model
proposed in Ginsburger et al. [10] to trapezoidal waveforms.

2.2.1. General Model
White matter tissues are modeled using three tissue
compartments embedding three types of micro-structural
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environments: intra-cellular, extra-cellular, and cerebro-spinal
fluid (CSF) compartments. A common assumption of effectively
impermeable axonal walls is used [3–5]. Thus each compartment
provides a separate normalized MR signal and no exchange
between the populations of water molecules occurs. The
resulting model for the diffusion MR signal S can thus be
written as

S = (1− νiso)(νicSic + (1− νic)Sec)+ νisoSiso (7)

where Sic and νic are the normalized signal and volume fraction
of the intra-cellular compartment, Sec is the normalized signal
of the extra-cellular compartment, and Siso and νiso are the
normalized signal and volume fraction of the CSF compartment.
The model for Siso assumes an isotropic Gaussian distribution
of displacements [23]. Water diffusion in the intra-cellular
compartment is restricted by axonal walls and further restricted
by myelin sheath in case of myelinated fibers. Fibers are assumed
to be parallel and oriented along a single direction n. Hence, one
computes the intra-cellular signal Sic using the Gaussian Phase
Distribution approximation of the signal from particles trapped
inside a cylinder, which has been derived for trapezoidal OGSE
sequences [6, 24]. Diffusion in the extra-axonal compartment
is assumed to be hindered. This compartment is generally
characterized by a 3D Gaussian displacement distribution:

Sec = ebG
TDec(n,νic)G (8)

where b is the diffusion sensitization for a given tuning of a
diffusion-weighted NMR sequence, G represents the gradient
magnitude andDec is the extracellular diffusion tensor. Assuming
that the diffusion tensor is cylindrically symmetric, Dec is defined
as [5, 25]

Dec(n, νic) = (d − d
⊥
(νic))nn

T
+ d

⊥
(νic)I (9)

where d
⊥
is the apparent diffusion coefficient perpendicular to

axons and I is the identity tensor [5].

2.2.2. Frequency Dependence of Extra-Axonal Space

with Trapezoidal OGSE Sequences
In Ginsburger et al. [10], a correction to the d

⊥
component of

the extracellular diffusion tensor Dec which describes diffusion
perpendicular to the fibers was proposed for cosine OGSE,
making the diffusion transverse to the fiber bundle in the extra-
axonal space d

⊥
dependent on the frequency of the OGSE

sequence ω0 :

d
⊥
(ω0) = d

⊥,∞ + A
π

2
|ω0| (10)

where d
⊥,∞ is the bulk diffusion constant [5].

Equation (10) was obtained combining two observations.
First, the signal attenuation can be written as a function of the
dispersive diffusivity D(ω) [26]

− ln S ∼

∫

dω

2π
q
−ωD(ω)qω (11)

where qω is the Fourier transform of the integral
∫ t
0 dt

′ g(t′) of
the applied Larmor frequency gradient g(t). Second, the Fourier

transform qω of the integral
∫ t
0 dt

′ g(t′) of the applied Larmor
frequency gradient g(t) can be written as follows

qω =

iπγ g0

ω0

[

δ(ω − ω0)− δ(ω + ω0)
]

(12)

where δ is the Dirac distribution, for an OG profile g(t) =

g0 cos (ω0t) and for a sufficiently large number of oscillations
[ω0T
2π ≫ 1, T being the total duration of the gradient train g(t)].
Indeed, the presence of these Dirac distributions in qω leads to

the much simplified expression of the signal attenuation

− ln S(T) ∼ b. ReD(ω0) (13)

which, combined with Equation (2), results in Equation (10).
In the case of cosine trapezoidal OGSE (OGSE-CT), the peak

frequency (frequency at which qω reaches its maximum) will be
the same as for a cosine OGSE (OGSE-C) sequence with the same
frequency ω, since the Fourier expansion of the OGSE-CT ftrap(t)
is a infinite sum of odd cosine functions

ftrap(ωt) =
∞

∑

n=0

a2n+1 cos ((2n+ 1)ωt) (14)

where |a2n+1| is a decreasing sequence. However, it is not a priori
clear whether the frequency selectivity (which is characterized
by both the full-width-half-maximum of the main lobe and
the maximum ratio between the side lobes and main lobe
amplitudes) will be preserved using OGSE-CT, which might
potentially prevent the use of Equation (12) for OGSE-CT. This
question was disambiguated in Van et al. [27] who compared
the encoding spectrum F(ω) of both sequences. The encoding
spectrum for a OGSE-C sequence is:

|F(ω)|2 =

(

πγG

ω0

)2

[δ(ω + ω0)+ δ(ω − ω0)] (15)

It was shown that the differences between the encoding spectra
of OGSE-CT and OGSE-C waveforms with equal frequency
are minimal, thus justifying as well the use of Equation (12)
for OGSE-CT sequences having a high selectivity around the
frequency ω0 of interest (see also Figure 2).

Consequently, the same frequency-dependence correction of
the extra-axonal space tensor (Equation 10) can be used for both
OGSE-C and OGSE-CT waveforms.

2.3. Monte-Carlo Simulations and NMR
Signal Synthesis
The Diffusion Microscopist Simulator (DMS) [13] relies on a
three-fold architecture:

• a 3D phantom generation engine
• a Monte-Carlo simulator engine
• a DW-NMR signal synthesizer
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FIGURE 2 | Power modulation spectra for trapezoidal cosine OGSE gradient waveforms at 64 Hz for different number of half periods (or lobes), showing the influence

of the number of lobes on the frequency selectivity. The theoretical peak frequency is denoted as fth. We observe that the difference between this theoretical peak and

the actual frequency peak of the sequence decreases with increasing number of lobes. The actual frequency peak (not the theoretical one) of the OGSE sequences

employed in this article is fed in our model for better precision.

The 3D phantom generation engine, improved using our novel
algorithm to produce biomimicking numerical phantoms, creates
the 3D triangulated surfaces from the fiber descriptions. It
includes two non-linearly sampled curves (also called axon and
outer myelin sheath membrane centroids), and two profiles of
radii to represent the axon membrane and the outer myelin
sheath membrane, respectively.

The Monte-Carlo simulator engine is composed of several
element that have to be individually tuned:

• A scene modeler that contains the description of the evolving
simulated space, including the dimensions of the simulation
domain corresponding to a global bounding box set to
(−60,+60,−60,+60,−60,+60µm) in all our simulations,
the temporal resolution set to 10 µs, the number of simulation
steps set to 50,000, the set of membranes generated by the
3D phantom generation engine and the set of particles used
to perform the Monte-Carlo simulation (106 particles in our
simulations).

• A motion model that drives the motion of particles, set to
a Brownian random walk model tuned using a parameter
corresponding to the diffusivity of the medium (2.0 ×

10−9 m2/s in our simulations).
• A membrane model built for each individual axon or outer

myelin membrane that integrates:

- the triangulated surface itself
- a particle-to-membrane interaction model set to the total

reflexion interaction in our case
- a vertex evolution function set to static in our case (DMS

is also able to deal with a temporal evolution of the
membranes that is not used in this work)

- a polygon cache that facilitates and speeds up the
computation of the list of the closest membrane triangles
likely to interact with a particle of arbitrary position in the
simulation domain

- a particle or random-walker model that represents water
molecules moving in the simulation domain. Particles are
randomly distributed either over the whole simulation
domain, or only in the intra- or extra-cellular space. In
this work, two types of simulations were performed, either
with particles randomly distributed in the whole domain
or restricted to the extra-cellular space (see Figure 3), since
the present study is focused on the characterization of the
extracellular space signal for different levels of structural
disorder.

The trajectories of random walkers computed using the Monte-
Carlo simulator engine are fed into the diffusion-weighted NMR
signal synthesizer, which synthesizes a volume of DW-MRI
signals for a given DW-MRI sequence and for a specific tuning
of the sequence parameters. The DW-NMR signal synthesizer is
also composed of several elements that have to be individually
tuned:

• A DW-NMR sequence factory that allows to simulate the
chronograms of gradients and radio-frequency pulses; several
schemes are available (bipolar double STEAM sequence,
bipolar STEAM sequence, multiple PGSE sequence, single
PGSE sequence, twice refocused spin echo sequence, OGSE
sequence); in this work, a trapezoidal OGSE sequence was
tuned (see Figure 4), requiring to define the period of
oscillating gradients (varying in this study), the gradient time
resolution (10.0 µs), the maximum gradient slew rate and the
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FIGURE 3 | Illustration of the two simulation modalities available in DMS on an example mesh (A) with intracellular volume fraction of 0.2 and 5◦ angular dispersion

induced by tortuosity. In (B) corresponding to a cross-section of (A), random walkers for Monte-Carlo simulation of the diffusion process are placed only in the

extra-axonal space, with impermeable membranes. The obtained signal thus stems exclusively from the extracellular space. In (C), particles are initially placed in both

intra- and extra-cellular compartments, with impermeable membranes. The diffusion process is thus simulated in both compartments, without exchange between

them.

FIGURE 4 | Schematic representation of the employed trapezoidal cosine OGSE gradient waveform, here with six lobes (half-periods) before and after the 180◦

refocusing pulse. The separation between gradient waveforms, tsep, is required to accomodate the 180◦ RF pulse, and has been set to allow a continuous single

frequency oscillating gradient to be drawn between the two waveforms to obtain a narrower peak at the desired frequency [28]. The duration of the shorter lobes are

increased by half the gradient ramp time, tramp, to ensure zero cumulative gradient area.

maximum gradient magnitude (respectively 200 T/m/s and
80 mT/m corresponding to the latest Connectome gradient
coils available for 3T MRI systems on the market).

• A Cartesian grid defined within the MC simulation domain
using a local bounding box and the 3D volume size; in our
case, to avoid boundary effects, the local bounding box was
chosen slightly smaller than the global bounding box of the
MC domain and set to (−55,+55,−55,+55,−55,+55µm).

• A noise model to simulate the actual level of noise corrupting
the signal of real acquisitions; the analysis of the impact
of the noise on the signal of the extra-cellular space and
on the inference of the structural white matter disorder has
been done for four different values of SNR in this study: an
infinite value corresponding to the absence of noise, a SNR of
30 corresponding to state-of-the-art experimental conditions
with the latest 3T clinical MRI systems available on themarket,
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and SNR of 20 and 10 corresponding to worse experimental
conditions.

• A spin model associated to each random walker in charge
of accumulating the net phase evolution induced by the
trapezoidal OGSE sequence and seen by the random walker
along its trajectory. Although they clearly influence the SNR
when long echo times are chosen, the effects of T1/T2
relaxation have not been taken into account by the spin model
in the performed simulations.

The synthesized DW-MR image consists of a 3D volume
corresponding to the T2 reference volume at b = 0 s/mm2

(set to 10,000 in our case) and a 4D volume corresponding
to the employed trapezoidal OGSE sequence along a set of
uniformly distributed diffusion directions over the unit sphere
(300 directions in our case).

2.4. Estimation of the Scaling Coefficient A
with Simulations
Monte-Carlo Simulations were launched by placing 106 particles
in the extra-axonal space of each studied white matter numerical
phantom. The employed phantoms composed of a single fiber
population, listed in Table 2, have an intracellular volume
fraction of 0.2 and the fiber radii follow a Gamma distribution

whose shape and scale parameters α and β are set to obtain
a mean diameter αβ = 2.0µm and a standard deviation
αβ2

= 0.2µm. The signal obtained from diffusion MRI data
synthesis comes only from the extra-axonal space, since the fiber
membranes were set to be impermeable. Thus, the intra-cellular
volume fraction was set to 0 in the employed multi-compartment
model. For each studied geometrical configuration, 4D DW-
volumes were synthesized for five distinct frequency values of
the employed trapezoidal OGSE sequence : 60, 70, 80, 90, and
100 Hz. In order to have a constant b-value of 200 s/mm2 and
a constant TE of 116ms, the gradient magnitude was varied
up to 80 mT/m (corresponding to the maximum achievable
gradient magnitude of modern clinical 3T MRI systems) and the
number of lobes (half-periods of the OGSE sequence) on each
side of the refocusing pulse was also varied, as follows: 6, 8,
8, 10, and 12 lobes/50, 57, 70, 75, and 80 mT/m for encoding
frequencies of 60, 70, 80, 90, and 100 Hz. Figure 4 gives an
illustration of the employed trapezoidal OGSE sequence. The
multiple-frequency sampling enables to perform a linear fitting
procedure on Equation (10) in order to obtain reliable estimates
of the scaling coefficient A of the extra-axonal perpendicular
diffusivity linear-in-frequency term. The error associated to the
linear fit was assessed using the covariancematrix returned by the
linear least-square procedure employed to estimate the scaling

TABLE 2 | Values of the control parameters of the phantom generation algorithm for each studied configuration (C1 to C5).

C1 C2 C3 C4 C5

C21.5◦ |C22.5◦ | C35◦ |C310◦ | C4R32|C4R16| C5BS80|C5BS60|

C23.5◦ |C24.5◦ C315◦ |C320◦ C4R8|C4R4 C5BS40|C5BS20

u (0.0, 0.0, 1.0) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0)

8 0.2 0.2 0.2 0.2 0.2

< D > 2.0µm 2.0µm 2.0µm 2.0µm 2.0µm

σD 0.2µm 0.2µm 0.2µm 0.2µm 0.2µm

GAD 0◦ 1.5◦|2.5◦| 3.5◦ 3.5◦ 3.5◦

3.5◦
|4.5◦

LAD 0◦ 2.5◦ 5◦|10◦| 15◦ 15◦

15◦
|20◦

< R > ∅ ∅ ∅ 100 100

32|16|

8 | 4

σR ∅ ∅ ∅ 5 5

< BS > ∅ ∅ ∅ ∅ 80.0µm|60.0µm|

40.0µm|20.0µm

σBS ∅ ∅ ∅ ∅ 20.0µm|15.0µm|

10.0µm|5.0µm

< BA > ∅ ∅ ∅ ∅ 1.5

σBA ∅ ∅ ∅ ∅ 0.5

< g > ∅ ∅ ∅ 0.6 0.6

σg ∅ ∅ ∅ 0.05 0.05

In configurations C2–C5, one or two parameters are varied: GAD for C2, LAD for C3, < R > for C4, < BS > and σBS for C5. The parameter value in bold corresponds to the default

value used to generate each configuration, which are employed in Figure 9 to study the evolution of the scaling coefficient A for different types of structural disorder. Other values below

correspond to variants of each configuration, which are employed in Figure 10 to study the evolution of A with respect to the variation of one given geometrical parameter, associated

to one specific disorder type.
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coefficientA in Equation (10). These fitting errors are represented
by error bars in figures giving estimated values of A for various
geometric configurations (see section 3).

The evolution of the scaling coefficient A with respect to
the various sources of disorder is explored by simulating the
diffusion process within the geometric configurations presented
in Table 2 (configurations C1–C5, as well as some variants of
those configurations). Table 2 provides the list of all the control
parameters as well as their values employed for the construction
of the numerical phantoms. The purpose is to catch the complex
dependence of A with respect to geometrical characteristics of
the diffusion medium. The degree of complexity of the employed
numerical phantom is fully monitored using the DMS simulator,
thus enabling a very precise study of the influence of each
parameter on the fitted coefficient A.

3. RESULTS

3.1. Numerical Phantoms Mimicking White
Matter
We present in this section numerical phantoms generated with
our novel algorithm. Figure 5 represents various configurations
with one, two, and three fiber populations and with or without
global angular dispersion. Figure 6-1 represents a set of straight
parallel fibers randomly placed in the phantom volume, with
mean fiber diameter of 2.0µm (diameter variance of 0.2µm) and
volume fraction of 0.1. In Figure 6-2, global angular dispersion
is induced, enabling to reach 5.6◦ of angular dispersion (for
a target value of 10◦). The tortuosity induction (Figure 6-3)
brings this angular dispersion up to the 10◦ target. Figures 6-4,5
illustrate the creation of myelin sheath and Ranvier nodes
which account for the actual structure of myelinated fibers.
Beading -consisting in a swelling of both axonal and myelin
sheathmembranes—is also handled (Figure 6-6). In all presented
surface renderings, there is no collision between the membranes.
Figure 6-6 presents a realistic geometry mimicking a complex
white matter environment, taking into account all the putative
deformations of membranes observed in real tissues (angular
dispersion, tortuosity, myelination and creation of Ranvier
nodes, beadings). We note that the generated phantoms have
been presented here in the case of multiple fiber populations for
more generality. However, the simulations performed to study
the structural disorder of white matter in next sections only used
phantoms with a single fiber population. While essential to make
our approach directly applicable to most white matter regions,
the study of the structural disorder induced in crossing areas of
multiple fiber populations is out of the scope of this study. This
topic is addressed in the section 4.

3.2. Measuring Structural Disorder in the
Extra-Axonal Space
3.2.1. Validation of the Employed Trapezoidal OGSE

Model
A linear relationship between the extra-axonal perpendicular
diffusivity and the frequency of the employed trapezoidal OGSE
sequence is shown in Figure 8, where the frequency was varied

from 60 to 100Hz at a constant b-value of 200 s/mm2. This result
validates the use of Equation (10).

3.2.2. Studying Different Types of Structural Disorders
Monte-Carlo simulations were run in geometries characterized
by increasing structural complexity. In what follows, the different
geometrical configurations were classified according to the type
of structural disorder they represent, from configurations C1 to
C5. Table 2 lists all the employed geometrical configurations and
gives the associated set of control parameters.

In configuration C1 (Figure 7), parallel axons are randomly
placed in the simulation volume. The centers of the cross
section of the cylinders representing the axons follow a uniform
distribution. The diameters follow a Gamma distribution, with
a mean axonal diameter of 2.0µm. The value of the scaling
coefficient A reaches its maximum value of 9.09µm2 (all the
values of A are given for a SNR of 30) in this configuration which
corresponds exactly to the 2D short-range disorder geometry
described in Burcaw et al. [7] and Novikov et al. [11] . From
C1 to C2, the induction of global angular dispersion (fibers
remain straight but are rotated to induce angular dispersion) of
3.5◦ yields to a substantial diminution of the scaling coefficient
from 9.09 down to 8.54µm2. Local tortuosity is induced
in configuration C3 (fibers are deformed to induce angular
dispersion), enabling to reach an angular dispersion value of 15◦

and yielding a moderate decrease of the scaling coefficient from
8.54 down to 8.26µm2. The addition of Ranvier nodes along the
myelin sheath (with a g-ratio of 0.6) in configuration C4 does
not significantly change the value of the estimated A coefficient
with respect to the previous configuration (A = 8.24µm2 vs.
A = 8.26µm2 in configuration C3, which is negligible given the
fitting uncertainty at a SNR of 30). From C4 to C5, beading is
introduced (swelling of the axonal membrane andmyelin sheath)
with amplitudes equal to 1.5 times the fiber radii in average, and
mean spacing of 20.0µm, yielding a significant decrease of A (up
to 19% with A going from 8.32 to 6.76µm2).

It appears from Figures 7A–D. that the diffusion signal
variation between configuration C1 and configurations C2–C5
is stronger for diffusion sensitization directions perpendicular to
fibers, meaning that most of the information stemming from the
increasing complexity of the studied geometrical configurations
is included in the evolution of perpendicular diffusivity.
Figure 7 also clearly indicates that beading (corresponding to
configuration C5) has the strongest effect on the perpendicular
diffusivity. This result can be directly related to the important
variations of A observed in configuration C5, as reported
previously.

3.3. Understanding the Quantitative
Influence of Each Disorder Parameter
The different configurations studied in Figure 9 correspond to
qualitatively different geometric configurations. The quantitative
evolution of the structural disorder coefficient A with respect to
each geometrical parameter has also been studied (see Figure 10),
by varying one geometrical parameter in each configuration
separately. The evolution of each parameter is explained in
Table 2.
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FIGURE 5 | (Top) Surface renderings of outer fiber envelopes corresponding to one (left), two (middle), and three (right) fiber populations with intracellular fraction of

0.06 for one population, 0.03 each for the two populations, 0.02 each for the three populations and mean diameters 2.5 µm (one population), 1.5 and 2.5 µm (two

populations), 1.5, 2.0, and 2.5 µm (three populations). Bottom same as top. with global angular dispersion of 10◦ for the single population, 5.5 and 8.5◦ for the two

populations, 5.5, 6.7, and 8.5◦ for the three populations (for a target angular dispersion of 10◦ each).

The induction of global angular dispersion from 0◦ to 4.5◦ in
configuration C2 (see Table 2) results in a decrease of the scaling
coefficient A (see Figure 10A) from 9.09 to 8.43µm2 for the
biggest value of global angular dispersion of 4.5◦. The diminution
of A gets stronger for increasing values of global angular
dispersion. However, the study of the influence of global angular
dispersion on Awas limited to small values of angular dispersion,
owing to the fact that higher values of angular dispersion were
not reachable for the specific fiber density and radii distribution
of C2. These values of angular dispersion are far from the values
of microscopic misalignments of axons estimated up to 18◦ [29].
One possibility to reach this target is to decrease the intracellular
volume fraction. Another option consists in increasing angular
dispersion using local tortuosity, as was done in configuration
C3. The induction of tortuosity in this configuration causes
a moderate decrease of the scaling coefficient from 8.54µm2

corresponding to configurations C2 (global angular dispersion of
3.5◦) to 8.24µm2 for the biggest tortuosity value (20◦ of angular
dispersion), as shown in Figure 10B.

In configuration C4 (corresponding to a global angular
dispersion of 3.5◦ and to a total angular dispersion of 15◦ after
the induction of tortuosity, with the presence of Ranvier nodes),
a small increase of the scaling coefficient is observed due to

demyelination, from 8.24 up to 8.32µm2 for a demyelination
ratio of 25% (see Figure 10C), which is not significant given the
uncertainties of the estimated values of A at a SNR of 30.

The introduction of beading in configuration C5 causes
important variations of the scaling coefficient A (Figure 10D).
As mentioned previously, a mean beading spacing of 20.0µm
yields a significant decrease of A (up to 19% with A going from
8.32 to 6.76µm2 The scaling coefficient A = 7.95µm2 is still
4.5% smaller for a beading spacing of 100.0µm, corresponding
to a low density of beads, than in the absence of beading where
A = 8.32µm2.

4. DISCUSSION

4.1. White Matter Biomimicking Numerical
Phantoms
Designing realistic numerical phantoms of white matter tissue
seems to be a promising approach to study the influence
of various structural properties of white matter on the
measured diffusion signal. Being able to construct biomimicking
simulations geometries without using histological samples is an
essential step toward the comprehension of the specific effect of
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FIGURE 6 | (1) Surface renderings corresponding to three fiber populations with mean diameters 1.5, 2.0, and 3.0 µm, respectively with intracellular volume fraction of

0.05 each. N is the number of populations in general (here N = 3). (2) Global angular dispersion is induced (4.7, 2.5, and 2.8◦ per population). (3) Tortuosity is induced,

enabling to reach 10◦ of angular dispersion for each population. (4) Creation of the myelin sheath. (5) Creation of Ranvier nodes with mean ratio 1,000 between

internodal length and node width. (6) Creation of beadings with 20.0 µm mean inter-beading length and beading magnitude ratios of 1.7, 1.5, and 1.2, respectively.

each geometrical characteristic of the diffusing medium on the
obtained signal. An important aspect of our phantom generation
algorithm is its ability to deal with multiple fiber populations,
which was reported to represent up to 60% of the number of
voxels of a mask of the brain white matter at a spatial resolution
of 2 mm [15]. However, generating phantoms with multiple fiber
populations come with additional difficulties, notably related to
the generation of global angular dispersion. Phantoms presented
in Figure 5 exhibit geometrical configurations with multiple fiber
populations. In Figure 5, the target angular dispersion value of
10◦ can be reached only in the single population case for an

intra-cellular fraction of 0.2. The maximum reachable global
angular dispersion strongly depends on the number of fiber
populations, on the distribution of radii and on the target intra-
cellular volume fractions of these populations (for instance, the
lower the intra-cellular fraction, the higher the reachable angular
dispersion). The use of tortuosity is essential to reach high values
of angular dispersion in multiple population configurations.
Indeed, in Figure 6-2, the induction of global dispersion enables
to reach 5.6◦ of angular dispersion (for a target of 10◦). The
tortuosity induction (Figure 6-3) brings this angular dispersion
up to the 10◦ target.
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FIGURE 7 | From left to right, simulation domains corresponding to different geometrical configurations (from C1 to C5) are shown. A 3D rendering of the

root-mean-squared difference (represented by the minus sign) between the diffusion signal stemming from each configuration and the “reference” configuration C1

(most left configuration composed of straight parallel cylinders) is shown on a spherical surface. (A) The RMS signal difference is computed between configuration C1

and C2. The red area where the diffusion signal difference is the strongest corresponds to diffusion sensitization directions perpendicular to fibers. Blue areas

correspond to directions parallel to fibers where the signal differences are weaker but not null, and originate from the variations of diffusion properties around those

directions when structural disorder is added. (B–D) Represent the same RMS signal differences between configurations C1 and C3, C1 and C4R4 (corresponding to

configuration C4 with a demyelination ratio of 25%, see Table 2), C1 and C5, respectively.

FIGURE 8 | Frequency-dependent perpendicular diffusivity in the extracellular space measured by performing Monte-Carlo simulations with diffusing particles in the

extracellular space of configuration C1 (see Table 2), plotted against the frequency of the employed OGSE-CT sequence. A linear fit is also plotted which shows the

linear dependence of diffusivity to frequency.

4.2. Characterizing Structural Disorder
with A
As shown in Figure 7, the differences between diffusion signals
obtained by simulating the diffusion process in the extra-axonal
space of various geometrical configurations are predominant in
the diffusion direction perpendicular to fibers, although there
exists differences in all directions. This observation shows that

most of the structural disorder effects are caught by the diffusion
signal around the equator perpendicular to the mean fiber
orientation. Modeling structural disorder using an additional
term in the extra-axonal perpendicular diffusivity thus appears
to be physically reasonable.

Across all configurations, at a SNR of 30, the values of the
scaling coefficient A vary between 9.09 and 6.77µm2 which is
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FIGURE 9 | Value of the scaling coefficient A in m2 for geometric configurations with increasing structural disorder. The simulation are performed in configurations

C1–C5, whose design parameters are summarized in Table 2.

consistent with previous studies [7, 8] reporting the empirical law
A ∼ l2c were the correlation length lc closely follows the mean
external radius of the fibers. Indeed, in our case the mean axonal
diameter is equal to 2.0µm yielding lc ∼ 1.0µm, which leads to
A ∼ 1.0µm2. This value corresponds to the order of magnitude
of the fitted values of A.

As reported in Fieremans et al. [8], the effect of angular
dispersion introduced in configurations C2 and C3 on the
estimated perpendicular diffusivity can be understood by
considering the diffusion process along each fiber in the presence
of orientational dispersion. When the orientation of a given
fiber differs from the mean orientation of the fibers population,
the diffusion process along this fiber yields a local parallel
diffusivity whose projection on the plane perpendicular to the
mean fiber population direction is not null. Due to this projection
effect, the existence of longitudinal frequency-dependence along
each elementary fiber will yield a frequency-dependence of the
global perpendicular diffusivity. Thus, the frequency-dependence
observed in our work might not only originate from the 2D
short-range disorder in the plane transverse to axons, but
might also be partly explained by the contamination of the
perpendicular diffusivity (and thus of the scaling coefficient
A) with longitudinal diffusion frequency-dependence. As a
consequence, in addition to modeling the 2D short-range
disorder in the plane perpendicular to fibers, the estimated
scaling coefficient Amight also embed some information related
to physical properties along the fibers. While this hypothesis
makes the physical interpretation of the coefficient A tricky,
it would enable to obtain information from both parallel and
perpendicular extra-axonal diffusion processes by measuring
only one coefficient. The interest of such an approach is that the

estimation of A relies on a simple and robust fitting procedure. It
only requires to perform data acquisition using trapezoidal OGSE
sequences with a sufficient number of frequencies to be able to fit
the data properly, which is clinically feasible.

The introduction of Ranvier nodes in configuration C4 does
not yield to a significant change in the scaling coefficient A. This
is not surprising since Ranvier nodes correspond to a very low
volume fraction of the extracellular space, due to their low width,
reported to correspond on average to a few thousandths of the
internodal length [16], which is amplified by the low intracellular
fraction of 0.2 employed in our simulations. In Figure 10C,
demyelination is mimicked by progressively increasing the width
of the Ranvier nodes, from 1 to 25% of the internodal length.
The observed increase of the scaling coefficient A is again small
(up to 3% for the maximal demyelination ratio of 25%, roughly
corresponding to the percentage of demyelinated areas observed
in the cerebral cortex of multiple sclerosis patients [30]).

In this study, only the structural effects of Ranvier nodes
and demyelination on diffusion properties in the extra-axonal
space were studied. However, from the diffusion point of view,
the most interesting feature of Ranvier nodes and unmyelinated
regions areas is that they represent those regions along a
myelinated axon where the exchange between intra- and extra-
axonal water is the fastest. The analysis of the effect of such
an increased exchange would be of great interest to thoroughly
study the effect of Ranvier nodes and demyelination on the
scaling constant A. Indeed, in the Appendix F of Burcaw et
al. [7], the authors theoretically tackled this problem and their
prediction is that the values of the scaling constant A may or
may not be affected by the exchange, depending on the exchange
regime (slow, intermediate, or fast). Their theoretical analysis
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FIGURE 10 | (A) Value of the scaling coefficient A in m2 plotted against the global angular dispersion. The simulations were performed in variants of configuration C2

by varying the global angular dispersion value (see Table 2). (B) Value of the scaling coefficient A plotted against the angular dispersion. The simulations were

performed in variants of configuration C3 by varying the local tortuosity value (see Table 2). (C) Value of the scaling coefficient A plotted against the percentage of

demyelination. The simulations were performed in variants of configuration C4 by varying the percentage of demyelination, directly related to the width of Ranvier

nodes (see Table 2). (D) Value of the scaling coefficient A plotted against the mean beading spacing. The simulations were performed in variants of configuration C5

by varying the value of the mean beading spacing (see Table 2). A bigger spacing yields to a lower beading density.

takes into account a general uniform exchange of molecules
between intra- and extra-axonal space. However, the Ranvier
nodes and demyelination around them would introduce a local
exchange linked to the disorder with which the Ranvier nodes
occurs within the voxel. In this condition, it is not clear if the
argument in Burcaw et al. [7] still holds. This question will be
investigated in a future work.

4.3. The Strong Influence of Beading on the
Scaling Coefficient A
The value of the scaling coefficient A appears to be mostly
influenced by the local enlargement of both axonal and myelin
membranes, also called beading. Indeed, Figure 9 shows a
significant decrease of A (up to 19%) in the presence of beading.

According to Figure 10D the scaling coefficient is still 4.5%
smaller for a beading spacing of 100.0µm than in the absence
of beading, suggesting that A could be a putative marker of the
presence of beading, since A is significantly reduced even for a
lower density of beadings within the phantom.

The influence of beading on the diffusion signal has been
extensively studied in Budde and Frank [20], where it was
emphasized that neurite beading might explain the decrease

of the apparent diffusion coefficient after ischemic stroke. Our
results point in the same direction, since the significant decrease
of the coefficient A in case of beading induces a net decrease of
the transverse diffusivity which results in a diminution of the
apparent diffusion coefficient. However, in Budde and Frank [20],
simulations were run on numerical phantoms with an hexagonal
packing of fibers and periodic restrictions along the fiber. The
periodicity of the employed simulation domain might affect the
realism of the obtained diffusion signal since it does not reflect
the 1D short-range disorder along white matter fibers nor the
2D short-range disorder in the plane transverse to fibers [7, 11].
In our simulations, short-range disorder effects are expected to
be accounted for, since the spacing between each beading is
highly variable (as shown in Table 2, the variance of the spacing
distribution is equal to one fourth of the spacing value) and
the fibers are randomly placed in the phantom, thus mimicking
transverse short-range disorder better representing actual brain
white matter tissues.

The extracellular diffusion signal obtained from our
simulations thus gives a more realistic view of the effect of
beading on the transverse diffusion coefficient, which appears
to be quantitatively significant. As discussed earlier, the effect of
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beading on the scaling coefficient A might partly originate from
the hindrance of extra-axonal diffusion along the beaded fibers,
due to the projection of parallel diffusivity on the transverse
plane, as a consequence of angular dispersion.

The effect of beadings on the intra-cellular diffusion process
-which is not studied in this work- might also be quantitatively
substantial, as suggested in Marco et al. [31]. In this work,
the sensitivity of the diffusion signal of intracellular metabolites
with respect to beaded structures was studied using Monte-
Carlo simulation of brain metabolites dynamics, which can be
compared, from the numerical simulation point of view, with
the waters one after proper scaling. A clear dependence of both
radial and axial intracellular dispersive diffusivities with respect
to the frequency of the employed OGSE sequence in the presence
of beadings was observed. Moreover, results of MC molecular
diffusion simulations in complex synthetic substrates mimicking
the presence of beads showed a clear 1/

√

t dependence of the
axial intracellular Apparent Diffusion Coefficient due to 1D
short-range disorder introduced in the axial direction by the
randomly placed beads, in good accordance with theoretical
predictions in Burcaw et al. [7] and Novikov et al. in [11]. Indeed,
beadings are supposed to primarily affect the diffusion process
along the fibers and a 1/

√

t ∼

√

ω frequency-dependence of
the parallel diffusivity in the intra-cellular space of beaded axons
is expected. Similarly to what was done in Marco et al. [31] for
intracellular metabolites, an interesting approach would be to
capture directly the effect of beading on the intra-cellular parallel
diffusivity

√

ω term, by performing 3DMonte-Carlo simulations
of spin dynamics in the intra-cellular space and fitting the
scaling factor of the

√

ω term for various beaded geometrical
configurations. The amount of variation of this “intra-cellular
disorder” scaling factor in the presence of beading could be
compared to the variation of the scaling factor A studied in this
work. Moreover, since it has been observed in this study that
A depends (mostly) both on angular dispersion and beading,
further information from an intracellular model accounting for
beading would enable to disentangle the influence of angular
dispersion and beading on the coefficient A.

In any case, the presented approach provides a reliable way
to detect beading-induced modifications of the diffusion process,
which are measurable for a SNR greater or equal to 20, as shown
in Figure 9.

The estimation of A was performed using a linear fit with
five values of the perpendicular diffusivity corresponding to five
distinct OGSE frequencies. The degradation of the estimation of
A while reducing the number of measurements (by using only
three OGSE frequencies for instance) should also be studied in
order to reduce acquisition time. However, a protocol relying on
a single b-value at five different OGSE frequencies and along 60
directions already meets the requirements of a clinical research
protocol and will be used in the future to assess all the findings
presented in this work. The range of explored OGSE frequencies
from 60 to 100 Hz allows to obtain a sufficiently short echo
time (< 120 ms) that enables to preserve at least 23% of the
magnetization before diffusion-weighting, when considering an
average T2 value of 80 ms at 3T. A diffusion sensitization of
200 s/mm2 still preserves 20% of the signal after T2 relaxation

and diffusion decay for a diffusion coefficient of 0.7× 10−9 m2/s.
Therefore, it seems possible, if the voxel spatial resolution is kept
on the order of 2mm, to apply this imaging protocol on a clinical
3T MRI system in vivo in human subjects.

4.4. Effect of SNR
In order to invoke practical conclusions from the numerical
simulation results reported here, the present study addressed
the impact of noise on the quality of the A scaling coefficient
fit. Indeed, Gaussian noises with equal standard deviations were
added to the real and imaginary parts of the complex NMR
signal before computing its magnitude which corresponds to
the simulated diffusion-weighted signal, resulting in a Rician
noise corruption, as expected. Three different values of SNR
were employed: SNR = 30 (corresponding to good experimental
conditions with the latest 3T clinical MRI systems available on
the market), SNR = 20 (intermediate experimental conditions),
and SNR = 10 (worse experimental conditions). As shown in
Figure 8, our noise analysis suggests that a SNR of 10 does
not enable to fit the scaling coefficient A properly since the
estimation of the perpendicular diffusivity for each frequency
value has a too large uncertainty: the differences between the
obtained values of A for the different geometrical configurations
(shown in Figures 9, 10) are strongly mitigated by noise.
However, this analysis suggests that it is possible to reliably
detect changes in perpendicular diffusivity and estimate the
corresponding scaling coefficient A for a SNR greater or equal
to 20 (see again Figures 8–10). The algorithm employed to
estimate the parameters of the model presented in this work is
part of a framework which maximizes a Rician log-likelihood
function using a robust Expectation Maximization algorithm.
In the presence of noise in DW data, the use of such a
framework enables to alleviate the fit error of the model
parameters.

4.5. Limitations
An intracellular fraction of 0.2 was employed to generate our
numerical phantoms, which is not realistic since values of
intracellular fraction are reported in the range (0.6–0.8). The
choice of such a low fraction was deliberately made because it
enables an important variation of both global and local angular
dispersion as well as beading amplitude which is not possible at
higher intracellular fractions. Those geometrical considerations
are a major difficulty when trying to design realistic numerical
phantoms, which becomes even stronger in the case of multiple
populations.

The simulations performed in this article only used phantoms
with a single fiber population, thus omitting the effect of crossing
fibers on the scaling coefficient A. Studying the effect of multiple
fiber populations on our model is essential and will be possible
since our algorithm to design numerical phantoms enables to
generate multiple populations geometries. However, we chose to
restrict this study to single populations because (1) this study has
never been performed, even in the case of a single population;
understanding the various structural disorder effects for one
population is, in our opinion, already a major challenge (2) it
enables a more important variation of both global and local
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angular dispersion whose effects are of interest and (3) choosing
a proper adaptation of our model to multiple fiber configurations
requires a thorough investigation which should be the object of a
complete study. Indeed, there are at least two distinct approaches
to adapt our model to fiber crossing configurations. The first
approach relies on the hypothesis formulated in Burcaw et al. [7]
that the behavior of Equation (2) will persist in fiber crossing
regions because as long as the neurites of each tract are randomly
positioned, the dynamical exponent will remain equal to 1, thus
still leading to a |ω| frequency dependence in the extra-axonal
space. However, in the case of fiber crossing, Equation (2)
will no longer describe the frequency-dependence of the
sole perpendicular diffusivity. Indeed, the fact of introducing
fibers with multiple directions leads to a 3D disorder, while
in the case of parallel fibers, the disorder was 2D, in the plane
perpendicular to fibers. Thus, Equation (2) will apply not only to
the diffusion coefficient transverse to axons—the perpendicular
diffusivity—but to the overall diffusion coefficient. The second
approach assumes that there is not a qualitative change of the
underlying physics when introducing fiber crossings. In this
case, an adaptation of our model to fiber crossings would draw
from similar adaptations of state-of-the art microstructure
models to deal with multiple fiber configurations, such as
AMICOx [32] which estimates axon diameter indices in two
fiber orientations (synthetic data only, using ActiveAx model
in two orientations [5]). A second approach [33] introduced
the spherical mean technique, capable of factoring out the
effects of fiber crossing to estimate per-axon parallel and
perpendicular effective diffusion coefficients, and subsequently
extract fiber orientation using spherical deconvolution.
Similarly, estimation of NODDI in two directions [34] for
tractography uses fiber orientation estimates from neighboring
voxels.

5. CONCLUSION

In this article, a novel tool to design more realistic phantoms
of white matter was presented, enabling to study the influence
of different geometrical features on the linear-in-frequency
dependence of the extra-axonal perpendicular diffusivity,
weighted by a scaling coefficient A .

By performing Monte-Carlo simulations in the extracellular
space of numerical phantoms with increasing geometrical
complexity, it was observed that this scaling coefficient A is
sensitive to the modification of geometrical properties of the
diffusing medium, such as the introduction of global angular

dispersion and tortuosity. The presence of Ranvier nodes and
demyelinated areas along the axons in the numerical phantom
did not seem to significantly change the fitted value of A and
further simulations in both intra- and extra-axonal spaces taking
into account the high level of exchange around unmyelinated
areas have to be performed to possibly observe as stronger
effect on the coefficient A. The introduction of beading in the
numerical phantoms was by far the most impacting geometrical
modification, with a strong deviation of the fitted scaling
coefficient A from geometries without beaded structures.

Future work will consist in studying the effect of multiple
fibers populations on the estimation of the scaling coefficient
A, since crossing configurations represent at least 60% of white
matter regions. The effect of further geometrical characteristics
on the structural disorder coefficient A, such as the presence
of astrocytes and oligodendrocytes which could slow down the
diffusion in the extra-axonal space, should also be considered
by introducing those geometries in our numerical phantom
generation algorithm. Further developments are also needed to
be able to reach higher values of angular dispersion and beading
at high and realistic intracellular volume fractions (>0.7).

This simulation study shows the importance of the generation
of more realistic numerical phantoms in order to catch the
complexity of the underlying diffusion biophysics. Analytical
models such as the one employed in this article enable
to assess the degree of realism needed to perform Monte-
Carlo simulations reflecting the actual diffusion process in
white matter without adding dispensable and computationally
costly details in the phantoms geometry. This is a necessary
step towards the construction of dictionaries of simulated
biomimicking geometries to inversely decode white matter
microstructure.
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in Fixed Rat Spinal Cord
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Mapping tissue microstructure accurately and noninvasively is one of the frontiers of

biomedical imaging. Diffusion Magnetic Resonance Imaging (MRI) is at the forefront of

such efforts, as it is capable of reporting on microscopic structures orders of magnitude

smaller than the voxel size by probing restricted diffusion. Double Diffusion Encoding

(DDE) and Double Oscillating Diffusion Encoding (DODE) in particular, are highly promising

for their ability to report on microscopic fractional anisotropy (µFA), a measure of the

pore anisotropy in its own eigenframe, irrespective of orientation distribution. However,

the underlying correlates of µFA have insofar not been studied. Here, we extract µFA

from DDE and DODE measurements at ultrahigh magnetic field of 16.4T with the goal

of probing fixed rat spinal cord microstructure. We further endeavor to correlate µFA

with Myelin Water Fraction (MWF) derived from multiexponential T2 relaxometry, as

well as with literature-based spatially varying axon diameter. In addition, a simple new

method is presented for extracting unbiased µFA from three measurements at different

b-values. Our findings reveal strong anticorrelations between µFA (derived from DODE)

and axon diameter in the distinct spinal cord tracts; a moderate correlation was also

observed between µFA derived from DODE and MWF. These findings suggest that

axonal membranes strongly modulate µFA, which—owing to its robustness toward

orientation dispersion effects—reflects axon diameter much better than its typical FA

counterpart. µFA varied when measured via oscillating or blocked gradients, suggesting

selective probing of different parallel path lengths and providing insight into how those

modulate µFA metrics. Our findings thus shed light into the underlying microstructural

correlates of µFA and are promising for future interpretations of this metric in health and

disease.

Keywords: microscopic anisotropy, MRI, microstructure, diffusion MRI, myelin water fraction, spinal cord, axon

diameter

INTRODUCTION

Diffusion Magnetic Resonance Imaging (MRI) has become a mainstay of contemporary
microstructural imaging in biomedical applications. Diffusion MRI can provide rich information
on the sample’s microstructure by interrogating micron-scale dimensions within millimeter-scale
voxels [1]. In the hierarchical scaling of dimensions in biological systems, the micron-scale is
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Shemesh Microstructural Correlates of Microscopic Anisotropy

fortuitously a characteristic length scale of many (sub)cellular
structures of interest, such as axons, dendrites or cell bodies,
which cannot be accessed using routine spatial resolutions in
MRI. Most diffusion MRI methods utilize variants of Stejskal
and Tanner’s [2] Single Diffusion Encoding (SDE) technique [3],
which probes diffusion using a single diffusion epoch spanned
by diffusion-sensitizing gradient waveforms. The flexibility of
SDE in terms of parameter space led to numerous variants
[4], as well as diffusion models [5, 6], that have been devised
to probe different aspects of the microstructure. For example,
Diffusion Tensor Imaging (DTI) models diffusion using a single
tensor [7, 8] under the assumption of (time-dependent) Gaussian
diffusion, and the tensor’s rotationally invariant properties can
then report on diffusion anisotropy and parallel/perpendicular
diffusivities. Other methods, such as q-space imaging [9, 10]
or diffusion spectrum imaging [11] utilize Fourier relationships
between the diffusion propagator and signal decay with the q-
value (where q =

1
2π γδG is the wavevector, γ is the gyromagnetic

ratio, δ represents the gradient duration, and |G| is the gradient
amplitude) to extract information on pore size or orientation
distributions, respectively. Diffusion time- and/or frequency-
dependence can also provide much insight into the restricting
geometry by probing the way in which the diffusion path is
modulated with time and/or the diffusion spectrum, respectively
[12–19]. Furthermore, more advanced biophysical modeling has
been recently put forth to characterize specific microstructural
components such as neurite density [20, 21], or water fractions
tentatively associated with axons in white matter [19] from
specific acquisition schemes. Such SDE methods have been
widely useful in neuroscience [22] and biomedical applications,
typically targeting longitudinal processes such as stroke, learning,
or chronic disease progression [1].

One interesting metric that can be probed by diffusion is the
microscopic diffusion anisotropy (µA) [23–25], from which its

FIGURE 1 | Diffusion MRI pulse sequences used in this study. (A) DODE and (B) DDE weightings were overlaid on a basic SE-EPI sequence. The diffusion gradient

orientations are independent and can vary in any of the axes, the particular instantiation here represents one particular case where G1 is oriented along the PE axis

and G2 is at an angle in the PE-RO plane. Other than the relative orientations that varied, identical waveforms were used for the two diffusion encodings.

normalized counterpart – the microscopic fractional anisotropy
(µFA) – can be derived. µFA defines a single compartment’s
anisotropy in its own eigenframe [26], e.g., for a sphere µFA = 0
while for an infinite cylinder µFA can approach 1. However, in
practice, the MRI signal will always originate from an ensemble,
thereby making it necessary to account for orientation dispersion
within the ensemble [27]. In systems comprising coherently-
aligned anisotropic objects where orientation dispersion is ideally
zero, µFA would be equivalent to the fractional anisotropy (FA)
derived from DTI. However, in conventional SDE methods,
when orientation dispersion is significant, estimated FA values
typically do not represent the true anisotropy, or µFA, as they
are conflated with orientation dispersion [28, 29]. For example,
in ideal randomly oriented infinite cylinders, the averaging of
anisotropic compartments results in FA = 0, which—without a-
priori knowledge or extensive modeling—would suggest that the
microscopic geometry is spherical.

In recent years, the Double Diffusion Encoding (DDE)
methodology (Figure 1) has been gaining increasing attention
for its potential to refine and identify microstructural aspects
not so easily probed by SDE [25, 30]. Unlike SDE, DDE
probes diffusion correlations using—as its name suggests—
two diffusion encoding periods, spanned by two independent
gradient wavevectors, which are separated by a mixing time
(τm). Comparing q-space-like signal decays using parallel
and perpendicular relative gradient orientations, Cheng and
Cory have been able to measure the sizes of randomly
oriented elongated (anisotropic) yeast cells, and distinguish
them from spherical cells [24]. Similarly, Callaghan and
Komlosh have shown that diffusivities extracted from parallel
vs. perpendicular DDE experiments could provide insight into
µFA in randomly oriented liquid crystals characterized by
Gaussian diffusion [23]. Such measurements provided the first
clues that µFA (termed using many divergent terms [3])
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could be recovered from DDE irrespective of orientation
dispersion.

Mitra [25], and later Özarlsan [31] derived exact solutions
for DDE signals, and have identified the importance of the
mixing time in decoupling µA from other effects. In the short
mixing time regime, interesting diffusion-diffraction phenomena
can be produced [32–36], and angular dependencies can provide
insight into pore sizes as shown experimentally first by Koch and
Finsterbusch [37, 38] and then by others [39–41]; however, by
analyzing the displacement correlation tensor [42], the short τm
angular DDE experiment aiming to measure compartment sizes
was found by Jespersen to be equivalent to a time-dependent SDE
experiment [43]. By contrast, in the long mixing time regime,
the second order term in the displacement correlation tensor,
from which sizes are measured, is decoupled from µA, making
its measurement much less complicated [25, 31]. The ability to
measure accurate µA values was validated in Shemesh et al.
[34] and its importance was shown in biological systems such
as ex-vivo neural tissues [44], yeast cells [45], and preclinical
in-vivo experiments [46], where the orientational variance
of the measurements was highlighted. Lawrenz et al. have
proposed rotationally invariant schemes for mapping an index
of µA [47, 48], and Jespersen et al. subsequently generalized
rotationally invariant DDE measurements up to 5th order (in
q-values) via a measurement scheme termed DDE 5-design
[26]. Numerous promising studies have also been performed
on human scanners [37, 38, 48–51], suggesting quite promising
potential for disentangling µFA from the underlying orientation
dispersion. Additional recent experiments have even extended
the DDE methodology toward MR spectroscopy, aiming to
impart specificity toward specific cell populations via cellular-
specific metabolites [52, 53].

As alluded to above, the diffusion process in biological
tissues is highly time-dependent, and thus the filter with
which the diffusion experiment is performed can be important.
Oscillating Diffusion Encoding (ODE) experiments [14, 54, 55]
have been widely used in SDE to enhance contrast in neural
tissue, likely since they access shorter diffusion time than
could be reached using pulsed-gradient-spin-echo methods [56].
Additionally, ODE has been shown to be highly beneficial for
mapping axonal sizes in rat spinal cord [57, 58] as well as
for contrasting malignancy in tissues [59, 60]. More recently,
the DDE framework was extended toward accommodation
of oscillating gradients, termed Double Oscillating Diffusion
Encoding (DODE, Figure 1A), first in theory [61], and more
recently, in experiment [62]. Importantly, DODE enables the
time/frequency-dependence of µFA to be studied. Furthermore,
DODE sequences reach the long mixing time regimes much
more easily than their DDE counterparts, thereby making the
experiments less mixing-time dependent [61], and, as a result,
offering the benefit of reduced echo times. This property is likely
due to the mixing beginning already from the first gradient
pair, and accumulating over the entire gradient waveform. Such
DODE experiments were recently reported for the first time in
the ex-vivo mouse brain, and µFA maps derived from DODE
indeed showed richer contrast than those of their DDE-derived
counterparts [62].

Many studies have investigated the underlying
microstructural correlates of FA, mainly in white matter
(for a classical review, the reader is referred to Beaulieu [63]).
It is clear that although myelin strongly modulates FA, it is
not necessary for detection of anisotropy in biological systems.
Axonal membranes, for example, can impede the diffusion
processes with orientational preference and thus can contribute
to FA. However, in most studies attempting to investigate the
origins of restriction in tissues, orientation dispersion was
conflated with SDE-driven metrics; an interesting question is
therefore whether µFA, which should not suffer from orientation
dispersion effects, could be associated with microstructural
features to different extents than FA. The goal of this study was
therefore to investigate how µFA and FA correlate underlying
microstructural features such as myelin water fraction (MWF) or
axonal diameters. As well, we aimed to investigate whether these
parameters are differently correlated, and to qualitatively assess
the importance of orientation dispersion, especially in the white
matter. The final goal of this study was to determine whether
µFA is modulated when different length scales are probed
via DODE and DDE sequences. A well-characterized system,
namely, fixed spinal cord—which has been extensively used in
the past to study diffusion [15, 58, 64–66] or relaxation [67–70]
microstructural correlates—was used for these investigations.
Our findings demonstrate interesting differences in correlations
between µFA and FA and MWF, as well as with the a-priori
known axonal sizes in white matter, when measured using
DODE or DDE. Interesting findings in gray matter tissues are
also presented. Implications for D(O)DE contrasts and future
routes for investigations of the origin of µFA in neural tissue, are
discussed.

THEORY

Most DDE-MRI studies up to date have used only a single b-
value to extract µFA. However, very recently, Ianus et al. showed
that for most plausible microstructural scenarios, µFA obtained
in such a way can be highly biased due to neglecting the higher-
order terms in the signal decay [62]. Ianus et al. proposed tomore
accurately estimate µFA in both DDE and DODEmethodologies
by performing D(O)DE experiments at multiple b-values, and
fitting both µA (from which µFA is then calculated) and the
higher-order term via polynomial fits. That is, the D(O)DE signal
decay at long mixing times can be expanded with b-value as:

1

12

∑

log
(

S
‖
(b)

)

−

1

60

∑

log
(

S
⊥
(b)

)

= µA2b
2
+ P3b

3,

where µA2
=

3
5var (σi) , σi=1,2,3 are the diffusion tensor

eigenvalues, S
‖
and S

⊥
represent the D(O)DE signals acquired

using parallel and perpendicular gradients, respectively, and P3
contains the higher-order terms up to third order (even higher-
order terms are neglected). Ianus et al. showed that polynomial
fitting can be used to estimate µA2 and P3 from Equation 1.
When the mean diffusivity (MD) is additionally measured at
lower b-values (e.g., from fitting a tensor to the 12 parallel
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orientations in the 5-design),µFA can be directly calculated from
Eq. 2:

µFA =

√

3

2

µA2

µA2
+

3
5MD2

.

Although polynomial fitting probably yields more accurate
estimates of µA2, it should be noted that ideally, many b-
value shells would be required for robust fitting. An alternative
approach would be to acquire a much more minimalistic
dataset and still be able to quantify µA2 and P3. Setting
1
12
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)

−
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)

≡ ǫ̃(b), Eq. 1 can be
rewritten for two different b-values b1 and b2:
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= µA2b
2
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3
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2
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3
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.

It is then straightforward to show that from twomeasurements at
different b-values, µA2 can be directly obtained from

˜µA2
=

ǫ̃
(

b2
)

− ǫ̃
(

b1
) b32
b31

b22 −
b32
b1

,

which can then be plugged into Equation 2 to obtain µFA
directly. Note that we use the tilde to distinguish the extracted
˜µA2 from the real µA2. This approach for accurate µFA
extraction thus requires, in principle, only two measurements,
one at low b-value, fromwhichMD and ǫ̃

(

b1
)

would be obtained,
and another at higher b-value, where ǫ̃

(

b2
)

would be obtained.
However, since at low b-values required for accurate estimation
of MD, ǫ̃

(

b1
)

may be very small and comparable to noise levels,
it is more appropriate to acquire ǫ̃

(

b1
)

and ǫ̃
(

b2
)

at somewhat
higher b-values (where the b2 terms are more dominant) and
perform a separate, third acquisition for extracting MD at lower
b-values. This 3-shell approach was thus preferred in this study.

MATERIALS AND METHODS

This study was carried out in accordance with the
recommendations of the directive 2010/63/EU of the European
Parliament of the Council, authorized by the Champalimaud
Centre for the Unknown’s Animal Welfare Body, and approved
by the national competent authority (Direcção Geral de
Alimentação e Veterinária, DGAV).

Specimen Preparation
Spinal cord specimens were obtained from adult male Wistar
rats (N = 2) weighing ∼300 gr. The rats underwent standard
transcardial perfusion under deep pentobarbital anesthesia.
Cervical spinal cords were extracted, washed in PBS, and kept in
4% paraformaldehyde (PFA) for 24 h at 4◦C. The samples were
then placed in freshly prepared phosphate buffer saline (PBS) for
at least 48 h prior to MRI experiments. The samples were cut
to ∼1 cm segments and placed in a 5mm NMR tube filled with
fluorinert (Sigma Aldrich, Lisbon, Pt).

MRI Experiments
All MRI experiments were performed on a vertical 16.4T (700
MHz 1H frequency) Aeon Ascend scanner (Bruker, Karlsruhe,
Germany) interfaced with a Bruker AVANCE IIIHD console.
A Micro5 probe equipped with a 5mm birdcage coil for
transmit and receive functions and a gradient system capable of
producing amplitudes of up to 3T/m isotropically was used. The
sample was kept at a constant temperature of 23◦C throughout
the experiments by means of air flow, and the samples
were allowed to equilibrate with the surrounding temperature
for at least 4 h before acquiring any diffusion or relaxation
experiments.

All diffusion sequences were written in-house and were based
on an Echo Planar Imaging (EPI) readout. For both DODE
and DDE, the same acquisition parameters were used, namely,
two-shot and double-sampled EPI with a readout bandwidth
of 555.555 kHz, Field of View (FOV) of 6 × 4 mm2 and in-
plane matrix size of 120 × 80, leading to an isotropic in-plane
resolution of 50 × 50 µm2. The slice thickness was 500µm, and
TR/TE = 2,500/52ms. For both DODE and DDE acquisitions,
Jespersen’s 5-design sampling scheme [26] was used for the
diffusion weighted images, and, additionally, eight images with
zero b-value were acquired, such that the total number of images
acquired in a given scan was 80. For both DODE and DDE,
three separate acquisitions were performed with different b-
values, namely, 2b = 1.2, 2.4 and 3.0 ms/µm2 (where the factor
of 2 reflects the accumulated diffusion weighting along the two
diffusion epochs). The specific b-values were chosen based on
signal-to-noise and contrast considerations: on the one hand,
they have to be sufficiently low such that even higher-order terms
do not contribute, but on the other hand, they have to be high
enough for µFA contrast to be detectable. The lowest b-value
scans were acquired with 12 averages, while the other two b-
value shells were acquired with 32 averages each. The DODE
diffusion parameters were: TDODE = 13ms, N = 5, τs = 2ms.
The DDE diffusion parameters were 1/δ = 12/1ms, τm = 12ms,
see Figure 1 for definitions of the parameters.

Additional experiments were performed for mapping myelin
water fraction. Those consisted of a Carr-Purcell-Meiboom-Gill
(CPMG)-based acquisition performed using a modified pulse
multi-slice-multi-echo (MSME) sequence. The same slice was
acquired as in the diffusion images with identical in-plane
resolution and FOV. The acquisition bandwidth for the pulse
sequence was 100 kHz, and the pulses used for slice-selective
excitation and refocusing had durations of 1.16ms (Shinnar-
Le-Roux design) and 50 µs (Gaussian shape), respectively. The
respective bandwidths of the excitation and refocusing pulses
were 3625 and 32,100Hz, respectively, such that the refocusing
pulse provided complete refocusing on the entire slice. The 1TE
that could be achieved using these parameters was 2.85ms, and
96 echoes were acquired from 2.85 to 273.6ms. The repetition
time was 2500ms and two averages were acquired.

Diffusion Data Preprocessing
All preprocessing and analyses were performed using MatLab R©

(The MathWorks, Inc., Natick, Massachusetts, United States).
Raw images were registered using an implementation of
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Guizar-Sicairos et al. [71] found in https://goo.gl/3bGU8b.
The images were then denoised using Veraart’s method based
on Marchenko-Pastur distributions in Principal Component
Analysis of redundant data [72]. Gibbs unringing was performed
using Kellner’s method [73] implemented in Matlab. Finally, the
denoised and unrung images were very slightly smoothed using a
[2 2] median filter.

Relaxation Data Preprocessing
The preprocessing steps for the relaxation data were identical to
the diffusion data preprocessing steps, except for an additional
step in the very beginning of the pipeline whereby the magnitude
data was converted to real data using Eichner’s method [74]. All
steps listed above including denoising, unringing and median
filter smoothing were then executed in sequence.

Diffusion Data Analysis
The first analysis step for D(O)DE data was to fit the diffusion
tensor. Diffusivities were computed using a simple linear fitting
of S

‖
data acquired at the lowest b-value experiments followed by

diagonalization and extraction of the diffusion tensor eignevalues
and eigenvectors. The mean diffusivity and fractional anisotropy
were then calculated from the tensor eigenvalues as MD =

1
3 (λ1 + λ2 + λ3) and FA =

√

3
2

(λ1−MD)2+(λ2−MD)2+(λ3−MD)2

λ21+λ22+λ23
,

where λi represent the tensor eigenvalues.
The second step in the analysis was to use the data from the

two higher b-values to extract µFA. First, ˜µA2 was extracted
directly from Eq. 4; the mean diffusivity estimate was then used

along with the extracted ˜µA2 to obtain µFA via Equation 2.

Relaxation Data Analysis
Following the preprocessing steps listed above, the filtered
relaxation data were subject to a voxelwise inverse Laplace
Transform (iLT) using 150 T2 components log-spaced between
2.1 and 328.3ms. The T2 spectra were smoothed by minimum-
curvature constraint as in Dula et al. [75] and extended
phase graph analysis was performed to account for any B+1
inhomogeneity and ensuing stimulated echoes [76]. The myelin
water fraction (MWF) was computed from each spectrum as the
fraction of signal originating from components with peak T2

smaller than 17ms. ROIs were drawn manually on the raw data
closely following Dula et al. [75], and the ROI data underwent the
same analysis using the mean signal decay in each ROI.

Statistical Analysis
Gray matter and white matter masks were created by
thresholding MWF maps with MWF < 0.22 for gray matter and
MWF > 0.25 for white matter. The histograms in Figure 4 were
then generated for each metric/method using Matlab’s histogram
function which automatically selects the bin width to represent
the underlying distribution in the most accurate way. Parameter
means and standard deviations are reported in the text and
Tables.

Correlation analyses between different diffusion metrics were
performed using automatic outlier rejection (Grubbs test for
outliers) followed by calculation of Spearman’s ρ (µFA and

FA data from all methods were not normally distributed). An
analysis of variance (ANOVA) was performed to compare µFA
and FA arising from DODE and DDE methods, with post-hoc
Bonferroni tests corrected for multiple comparisons.

To correlate MWF with µFA or FA extracted from the
different methods, the diffusion maps were registered to the
MWF using Matlab’s imregister function using a multimodal
configuration, initial radius of 1e-5, maximum number of
iterations= 1,000, and allowing for affine transformations due to
the small differences in image geometry arising from EPI-based
(diffusion) and line-by-line (relaxation) acquisitions.

When linear fits are presented (Figure 8), Matlab’s robustfit
function was used to extract the coefficients.

RESULTS

Diffusion data quality can be appraised in Figure 2, which
plots representative raw data from one of the spinal cords,
obtained from experiments with zero b-value (Figure 2A),
parallel (Figure 2B), and perpendicular (Figure 2C) diffusion
orientations at the highest b-value used in this study. Before
denoising, the worst-case signal to noise ratio (SNR)—measured
at the highest b-value and with significant diffusion weighting
gradients in the direction parallel to the spinal cord’s principal
axis—was ∼20 in white matter. The middle column in Figure 2

shows the corresponding preprocessed data and the ensuing
enhancement of image quality from denoising and Gibbs
unringing (Figures 2D–F). Figures 2G–I show the result of
subtracting raw and denoised images. The lack of structure
in the subtracted images suggest that indeed only noise was
removed and that no significant signal components were lost
during denoising [72]. The SNR of the preprocessed images was
enhanced by a factor of∼2.

To assess the different maps obtained in this study,
representative µFA and FA maps derived from DODE as
well as DDE experiments (hereafter referred to as µFADODE

and µFADDE or FADODE and FADDE, respectively) are shown
in Figure 3. Several interesting qualitative features can be
highlighted from these images: (1) both µFADODE and µFADDE

maps (Figures 3A,C) have higher values than their FADODE and
FADDE counterparts (Figures 3B,D) in white matter, as well as
in gray matter; (2) µFADDE is higher and less tract-specific when
compared with µFADODE (for approximate definitions of tract
locations and spinal cord anatomy, the reader is referred to
Figure 3E); (3) µFADDE appears quite homogeneous in the WM
while µFADODE shows more variation within WM; (4) similarly,
FADDE is more homogeneous in white matter compared with
FADODE, which shows a greater variance in different tracts. To
provide a more quantitative view on these features, Figure 4 plots
histograms of µFA and FA in white matter and gray matter (c.f.
Figures 4A,B for the ROI masks). In white matter, µFADODE is
higher than its FADODE counterpart (Figure 4C), while in gray
matter, µFADODE is distributed at much higher values compared
to FADODE (Figure 4D). Similar trends were observed for DDE
but with µFA or FA shifted toward somewhat higher values
(Figures 4E,F).
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FIGURE 2 | Quality of diffusion MRI data and preprocessing in a representative spinal cord. (A–C) Raw data with zero b-value, parallel, and perpendicular waveforms

acquired at the highest b-value, respectively. In this particular direction, the perpendicular waveform had more significant components along the spinal cord principal

axis and thus show greater attenuation. (D–F) Results of preprocessing the data in A–C (denoising and Gibbs unringing). Notice how the noise is highly reduced in the

preprocessed images without adverse effects to image quality. (G–I) Subtraction of denoised and raw data, showing only noise and thus demonstrating that no

significant signal components were removed during Marchenko-Pastur PCA denoising.

FIGURE 3 | Parameter maps for a representative spinal cord. (A) µFADODE; (B) FADODE; (C) µFADDE; (D) FADDE. Notice the differences in contrast both in white and

in gray matter tissues both between metrics and between sequences. Most notably, µFA is higher than FA and DDE-driven metrics are higher than DODE-driven

metrics, especially in white matter. (E) Anatomy of the spinal cord for reference, displayed over a smoothed false-color image of the cervical segment. The gray matter

is shown in red and green, while the tracts are highlighted on the left side of the cord.
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FIGURE 4 | Histogram distributions of the different metrics in white matter and gray matter. (A,B) Masks for the white and gray matter tissues, respectively.

(C,D) µFADODE and FADODE for white and gray matter. (E,F) µFADDE and FADDE for white and gray matter. Notice the different distributions in white matter for both

DODE- and DDE-driven metrics, as well as the higher µFA as compared to FA in all tissues.

It is also interesting to compare differences between methods
within the same tissue type (e.g., comparing same-color
distributions down the columns of Figure 4). µFADODE is clearly
lower and more widely distributed compared with µFADDE in
white matter. In gray matter, µFADDE is high, while µFADODE

is somewhat smaller. Another interesting finding in gray matter,
is that FADODE and FADDE values are only slightly different. The
means and standard deviations of µFA and FA for each method
are tabulated in Table 1.

A statistical analysis of these data is given in Figure 5, which
presents box plots of the data. A one-way ANOVA revealed that
in each tissue type (e.g., white matter or gray matter), all four
metrics are highly statistically significantly different from each
other (corrected p < 1e-12, post-hoc Bonferroni test). However,
it should be noted that although the metrics are different, they
are not completely uncorrelated. Table 1 reports Spearman’s
ρ and its significance levels when comparing µFA and FA
(extracted by the same method) in each ROI. While µFADODE
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TABLE 1 | White matter and gray matter microscopic and fractional anisotropies, along with their spearman correlation coefficient and significance.

µFA DODE FA DODE Spearman’s ρ p-value µFA DDE FA DDE Spearman’s ρ p-value

White Matter 0.41 <10−10 0.19 <10−10

Mean σ 0.77 ± 0.10 0.49 ± 0.12 0.89 ± 0.16 0.69 ± 0.13

Gray Matter 0.22 <10−10
−0.10 <0.002

Mean σ 0.71 ± 0.10 0.24 ± 0.15 0.79 ± 0.10 0.31 ± 0.18

FIGURE 5 | Box-and-whisker plots of the different metrics. (A) White matter analysis. (B) Gray matter analysis. *p < 10−12 between all pairs from ANOVA with

Bonferroni post-hoc comparison and corrected for multiple comparisons.

and FADODE are correlated in white matter (Spearman’s
ρ = ∼0.41), µFADDE and FADDE metrics are only weakly
correlated (Spearman’s ρ = ∼0.19). In gray matter, the
correlations between µFA and FA were weak for both methods
and (Spearman’s ρ = 0.22 and −0.10 for DODE and DDE,
respectively). Note that although outlier rejection was used, in
all cases < ∼1% of the data were identified as outliers and
rejected.

To establish whether and how myelin modulates the
anisotropy metrics, Carr-Purcell-Meiboom-Gill (CPMG) MRI
experiments were performed on the same slice with the same
resolution as the diffusion experiments. To assess the quality of
the data, Figures 6A,B show the preprocessed data at short and
very short TE of 2.9ms and very long TE of 142.5ms, respectively,
in a representative spinal cord. Even at the very long TE, the
SNR remains very high, especially after denoising. Denoising
and unringing procedures were validated and found to have
no negative impact on the quality of T2 fitting procedure (data
not shown), while improving the fits significantly. Figure 6C
shows ROIs drawn in the major tracts of the spinal cord, while
Figures 6D,E show the T2 decays (with the ordinate drawn
in log scale) and the resultant T2 spectra (with the abscissa

drawn in linear scale), respectively. The decays in white matter
are clearly non-linear, and the myelin water can be seen as
an early peak in the T2 spectrum with its peak T2 around
∼10ms.

A representative myelin water fraction (MWF) map arising
from pixel-by-pixel quantification of the spectra is shown in
Figure 7A. Note the sharp contrast between the different tracts
in MWF: for example, the dCST shows the lowest MWF
(MWF∼0.30) while VST and FC exhibit the highest MWF
(MWF∼0.45). Scatter plots between MWF and µFA or FA in
white matter are shown in Figure 7 for DODE (Figure 7B)
and DDE (Figure 7C), respectively. Table 2 summarizes the
correlation coefficients and associated statistics. A moderate
anticorrelation between MWF and µFADODE is observed in the
white matter (Spearman’s ρ = ∼ −0.36), while FADODE did
not correlate with MWF in a statistically significant manner.
The DDE counterparts µFADDE and FADDE exhibited weak
anti-correlation and correlation, respectively. Figures 7D,E show
similar plots as described above, but for gray matter. Notably,
correlations between MWF and FADODE, as well as FADDE were
very weak and their statistical significance not very high; on the
contrary, µFADODE was found to correlate somewhat with MWF,
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FIGURE 6 | Relaxation data and analysis in a representative spinal cord. (A,B) Preprocessed data at short and long TEs, respectively, reveal excellent SNR. (C) ROI

definitions. (D) Mean ROI signal decays with TE (symbols) along with their respective fits (solid lines). N.b. the log scale in the ordinate. (E) T2 spectra (plotted in log

scale in the abscissa) extracted from an iLT fit to the ROI data. The myelin water is associated with the peak corresponding to shorter T2 values. The ROI colors in (C)

correspond to the color of the plots in (D,E).

while µFADDE correlated moderately with MWF, with very high
statistical significance (c.f. Table 2).

Finally, the correlation of the mean µFA in the different
tracts with literature regional averaged axon diameter was
assessed. Figures 8A,B plot mean µFA and FA against the axon
diameters reported in Dula et al. [75] for the different spinal cord
tracts. These data, along with the values tabulated in Table 3,
demonstrate that µFADODE exhibits very strong anticorrelation
with axon diameters (Spearman’s ρ = −0.96, p = 0.0028). All
other metrics are not significantly correlated with axon diameter.

DISCUSSION

µFA has been recently gaining increasing attention as a
potentially useful source of contrast in microstructural MRI
due to its ability to disentangle anisotropy from orientation
dispersion. Methods other than D(O)DE, targeting µFA
such as tailoring b-tensor shapes are emerging, with many
potential applications [77–80]. However, such methods may
be confounded by time-dependent diffusion effects [27, 81–
83], whereas D(O)DE at long mixing times naturally avoids
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FIGURE 7 | Myelin Water Fraction (MWF) and its correlations with diffusion-derived metrics. (A) MWF from a representative spinal cord, showing excellent contrast

between the white matter and gray matter as well as within most white matter tracts. (B–E) Correlations between DODE and DDE metrics with MWF in white and gray

matter tissues. Blue circles represent FA whereas black diamonds represent µFA. Red lines represent−1*identity to guide the eye.

TABLE 2 | Statistical analysis of correlations between (µ)FA and myelin water

fraction in white matter and gray matter.

µFA DODE FA DODE µFA DDE FA DDE

WHITE MATTER

Spearman’s ρ −0.36 0.02 −0.07 0.30

p-value <10−10 NS 0.0011 <10−10

GRAY MATTER

Spearman’s ρ 0.23 0.11 0.45 −0.1

p-value <10−10 0.0002 <10−10 0.0015

these confounds [43]. It is therefore imperative to investigate
how µFA may be correlated with underlying microstructural
features such as axon dimensions and myelin, much like the
early studies aiming to understand the sources for FA [63, 67,
84, 85]. In general, perhaps the most significant findings of
prior studies on FA (conducted nearly invariably with SDE)
were that (1) anisotropy in white matter depends on axonal
membranes; and (2) the presence of myelin can further modulate
FA metrics [63]. The application of oscillating gradients has
also been shown to generate more contrast and more accurate
estimations of small dimensions as compared to long diffusion
time experiments, presumably due to the more efficient probing
of smaller dimensions via the shorter diffusion times [58, 86, 87].

The present study aimed to investigate how µFA differs
from FA in terms of correlations with myelin water and axonal
diameters, and to compare those metrics when measured with
DDE or DODE sequences. We first focus attention to our results

arising from white matter tissue. Notably, µFA was always
larger than FA (Figures 3–5 and Table 2), in agreement with
previous DDE experiments in fixed tissues [26] and in-vivo [88].
Since the µFA and FA metrics were extracted from the same
acquisition, it is unlikely that other effects such as exchange or
relaxation contributed to µFA > FA. Thus, our finding supports
the notion that that orientation dispersion is significant even
in highly structured tissues, such as spinal cord white matter.
This is in excellent agreement with a recent study of SDE-
derived diffusion tensor and kurtosis time-dependencies which
also pointed to the same conclusion in pig spinal cord [15],
as well as with histological studies attempting to measure the
dispersion directly in white matter [89]. It is difficult to draw
conclusions on whether the orientation dispersion arises within
intra- or extra-axonal spaces (or both), or, whether undulations
[90] or passing collateral fibers [91] can contribute to these
observations. Performing similar spectroscopic measurements
utilizing cell-specific markers such as NAA or mI [52, 53],
or performing much more extensive time/frequency/b-value-
dependent measurements on water [19, 59, 92], or onmetabolites
[93, 94] may further assist in addressing this question in the
future.

Another interesting aspect when comparing µFA with FA
in white matter, is that the two metrics are only moderately
correlated when measured with DODE, and very weakly
correlated when measured with DDE (c.f. Table 1). This finding
suggests that when diffusion is encoded using oscillating
gradients, spins experience less orientation dispersion than when
they are probed using block gradients, since µFA would be
perfectly correlated (and identical) to FA for perfectly aligned
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FIGURE 8 | Correlations of diffusion metrics with literature-based average axon diameters in the different white matter tracts. (A) Correlations of metrics derived from

DODE. (B) Correlations derived from DDE. The best linear regressions to the experimental data are also given as solid lines. Note the excellent inverse agreement

between µFADODE and axon diameter, which also had a very high anticorrelation coefficient of ρ ∼−0.96 while all other metrics did not show significant correlations.

TABLE 3 | Statistical analysis of correlations between (µ)FA and literature-based

average axon diameter (extracted from Dula et al. [75]) in the rat spinal cord.

µFA DODE FA DODE µFA DDE FA DDE

WHITE MATTER

Spearman’s ρ, p-value −0.96, 0.0028 −0.68, NS −0.14, NS −0.43, NS

fibers. Hence, our findings point to specific length scales for
orientation dispersion that are probed differently using the
different sequences.

Next, we consider the relationships between myelin and
µFA. Akin to its FA counterpart–µFA is ambiguous in that a
compartment with length “L” and radius “R” can give rise to the
same µFA as a compartment with length 2L and radius 2R. The
axial path length could be restricted due to nodes of Ranvier, non-
ideal cylindrical structure, varicosities, etc. However, if the path
length parallel to the (assumingly) ellipsoids is constant, then one
could predict that when larger amounts of myelin surround an
axon, the µFA will be smaller as the restriction will increase in
the perpendicular direction. However, in our study, a moderate
negative correlation was observed between MWF and µFADODE

in white matter (Figure 7 and Table 2). This can be explained
by considering the dependence of MWF and axon diameter via
the g-ratio [95]: the larger the axon, the thicker the myelin
around it in (healthy) mammalian white matter [96]. Hence, the
negative correlation between µFADODE and MWF would reflect
indirectly the approximately constant g-ratio in healthy tissue,
rather than enhanced restriction. Interestingly, µFADDE showed
a much weaker, yet still negative correlation with MWF. Since
the microstructure has not changed between measurements,
this likely reflects that DODE and DDE probe different path
lengths parallel to the spinal cord’s major axis: the larger the
diffusion time, the longer path will be probed in the unrestricted

dimension, and thence theµFAwill be larger and less reflective of
axon diameter or, by proxy, its myelin thickness. FADDE showed a
small positive correlation with MWF, which perhaps reflects the
ambiguity of probing restriction and orientation distribution at
the same time. Extracellular space contributions again cannot be
neglected here, but for coherently aligned systems the arguments
are similar as one could potentially treat the space between
densely packed axons as potentially even more restricted than
the intra-axonal space itself [45]. It is also worth mentioning
that MWF extracted frommultiexponential T2 measurements, as
performed in this study, have been shown in the past to reflect
microstructural metrics such as axon size and myelin thickness
very faithfully in white matter [67, 75, 97].

Our most striking findings in this study, perhaps, is that
µFADODE showed an extremely high, and statistically significant,
negative correlation with axon diameters reported by Dula et al.
[75] and Harkins et al. [98] for the different tracts (Table 3).
This observation lends further credence to the explanation
above: the finite parallel length scale probed by DODE makes
the measurement strongly dependent on the perpendicular
restriction, which in this case is reflected through axon sizes.
Although the axon diameters were obtained from literature, it is
worth stressing that axon diameter dependence in healthy spinal
cords is highly reproducible and that the tracts analyzed were
obtained from very similar cervical slices as in Dula et al. [75].
Such a strong correlation is also highly unlikely to be obtained
randomly. It is very interesting to also note that all other metrics
did not correlate in a statistically significant fashion with axon
diameters: µFADDE likely due to its probing of longer parallel
lengths, and the FA from both methods due to its inherent
conflation or restriction with orientation dispersion.

In the spinal cord gray matter, very low FADODE and FADDE

values were measured, suggesting a much lower degree of
restriction compared to white matter diffusion. However, the

Frontiers in Physics | www.frontiersin.org June 2018 | Volume 6 | Article 4960

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shemesh Microstructural Correlates of Microscopic Anisotropy

µFADODE and µFADDE metrics in gray matter were still very
high in the gray matter. In fact, the values reported in Table 1

also reflect
µFAGM

DODE

µFAWM
DODE

= ∼ 0.92 and
µFAGM

DDE

µFAWM
DDE

= ∼ 0.89.

Combined with the low FA values in the gray matter, our
findings suggest that a significant component of gray matter
tissue experiences restricted diffusion but with a large degree of
orientation dispersion. This finding is also in good agreement
with previous literature demonstrating significant angular DDE
modulations in ex-vivo gray matter [44, 45]. Further studies are
needed to establish which underlying biological components give
rise to such high µFA in gray matter, but dendrites, astrocyte
branches, and nonmyelinated or myelinated axons traversing
gray matter could be suspected [93, 99]. Time-dependent or
spectroscopic experiments on metabolites could provide insight
into such questions in the future.

Several limitations can be identified in this study. First, we

have introduced a new way of measuring ˜µA2 harnessing the 5-
design acquisition at two b-values to reduce the recently-reported
bias in µA2 estimation due to higher order terms. Our new
method is likely inferior to a sampling of a large range of b-
values and the ensuing polynomial fitting as done in Ianus et al.
[62]. However, the advantage of the current approach is that
it manages to avoid a prohibitively long experiment duration.
Future studies will identify the accuracy and precision of the
method proposed above vis-à-vis the ground-truth, and attempt

to find optimal b-values for measuring ˜µA2 as accurately and
with as little bias as possible. Second, to compute µFA, we
executed a third measurement at lower b-value to extract MD,
which is then input into Eq. 2 along with ˜µA2. However, MD
itself may be conflated with higher-order terms, as pointed
out recently by Chuhutin et al. [100]; in this study, this issue
was not accounted for, and may induce minor biases in the
measurements of µFA. Better estimation of MD could probably
be performed by sampling one or more low b-values and
fitting kurtosis and MD at the same time from spherically
averaged data. In addition, we have not explored the impact
of specific b-value selection. At too low b-values, the difference
in the log signals is very small, while at higher b-values, even
higher-order terms may come into play. Third, the sample size
was quite small (N = 2 spinal cords, only a single slice per
cord), such that the variability across animals was not very
well sampled. However, it is worth noting that the results were
actually very consistent between both spinal cords: the meanµFA
and FA, for both DODE and DDE, varied <10% between the
cords (both in gray and white matter tissues), and the MWF
varied <6% between the tissues. Although this consistency is
promising for the robustness of the approach, the small number
of samples renders this study perhaps more exploratory. Fourth,
the experiments were performed at a relatively long TE of 52ms.
Given that the MWF was associated with T2 < 20ms and that
the other water T2s were distributed between ∼20 and 60ms,
the diffusion experiments can be considered completely filtered

for (directly contributing) myelin water, as e
−TE

T2myelin
∼ 0.005.

Exchange between myelin water and intra/extra-axonal water is
likely to occur, which may also confound the measurements,

although it should be noted that at least for conventional
DODE MRI, the relatively long TE is nearly unavoidable due
to the necessity of non-negligible diffusion gradient waveform
durations. Double-stimulated-echo approaches [101, 102] would
thus be nearly impossible to execute for DODE, even before
considering the significant SNR reduction associated with such
sequences, (1/2)N, where N is the number of stimulated echoes.
Finally, a histological study was not here performed, and the
study relies on literature reports of correlations between MRI-
derived MWF and myelin thickness and the values for axon
diameters. Future studies can expand the findings here and
perform more direct correlations with histology, although it
should be pointed out that big differences in these parameters are
unlikely to be observed for healthy tissues. In addition, it would
be fruitful to modulate the microstructure actively and to observe
how µFA varies, e.g., using genetic mutations that alter myelin
content. All these highly interesting avenues will be pursued in
the future, but the present study provides the first steps in this
direction.

CONCLUSIONS

This study investigated the microstructural correlates ofµFA and
FA using high resolution D(O)DE experiments in fixed spinal
cords at 16.4 T. Our results indicate very strong anticorrelations
of µFADODE with axon size, and moderate anticorrelations
of µFADODE with MWF, whereas µFADDE, FADODE and
FADDE correlate to a much lesser or no extent with those
microstructural features. These findings shed light on the
mechanisms of restriction in spinal cord white matter when
investigate without conflation by orientation dispersion. The
correlations of µFADODE with axon diameters and myelin
water fraction are thus promising for future investigations of
longitudinal variations in these properties, e.g., in disease or with
learning.
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In vivo diffusion-weighted MR spectroscopy (DW-MRS) allows measuring diffusion

properties of brain metabolites. Unlike water, most metabolites are confined within cells.

Hence, their diffusion is expected to purely reflect intracellular properties, opening unique

possibilities to use metabolites as specific probes to explore cellular organization and

structure. However, interpretation and modeling of DW-MRS, and more generally of

intracellular diffusion, remains difficult. In this perspective paper, we will focus on the

study of the time-dependency of brain metabolite apparent diffusion coefficient (ADC).

We will see howmeasuring ADC over several orders of magnitude of diffusion times, from

less than 1ms to more than 1 s, allows clarifying our understanding of brain metabolite

diffusion, by firmly establishing that metabolites are neither massively transported by

active mechanisms nor massively confined in subcellular compartments or cell bodies.

Metabolites appear to be instead diffusing in long fibers typical of neurons and glial cells

such as astrocytes. Furthermore, we will evoke modeling of ADC time-dependency to

evaluate the effect of, and possibly quantify, some structural parameters at various spatial

scales, departing from a simple model of hollow cylinders and introducing additional

complexity, either short-ranged (such as dendritic spines) or long-ranged (such as cellular

fibers ramification). Finally, we will discuss the experimental feasibility and expected

benefits of extending the range of diffusion times toward even shorter and longer values.

Keywords: intracellular diffusion, brain metabolites, ADC time-dependency, microstructure, diffusion time

INTRODUCTION

While water molecules are ubiquitous in the brain, many metabolites detected by magnetic
resonance spectroscopy (MRS) in vivo are primarily intracellular, with typical extracellular
concentrations ∼1,000–10,000 times lower than intracellular concentrations. Moreover, works on
extracts or cell cultures suggested that some metabolites exhibit preferential compartmentation
in different cell types, with glutamate (Glu) and N-acetylaspartate (NAA) predominantly found
in neurons, and myo-inositol (Ins) and choline compounds (tCho) preferentially found in glial
cells (Simmons et al., 1991; Brand et al., 1993; Griffin et al., 2002; Le Belle et al., 2002; Choi
et al., 2007) (in particular astrocytes, representing the largest volume fraction of glial cells). Hence,
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measuring the brain metabolite diffusion may provide specific
insight into cellular organization and microstructure.

The intracellular compartmentation of metabolites may
a priori seem to simplify interpretation and modeling of
metabolite diffusion as compared to water, because extracellular
space and membrane permeability may be neglected. However,
it is conceivable that metabolites are highly compartmentalized
at a subcellular scale, in some subcellular regions or organelles.
For example, NAA has been reported to be synthetized
in mitochondria (Madhavarao et al., 2003), so that it
may be primarily found in mitochondria. In this context,
metabolite diffusion would reflect its subcellular metabolic
compartmentation rather than diffusion within the whole
cytosol and restriction by cell membrane. Here we will see
how studying the time-dependency of metabolite apparent
diffusion coefficient (ADC) allows clarifying the nature of the
compartments where MRS-detected metabolites are diffusing,
and may allow probing morphological features at different
spatial scales. We will then try to explain some motivations and
approaches to push further the limits of achievable diffusion
times.

WHAT DOES ADC TIME-DEPENDENCY

TELL ABOUT METABOLITE DIFFUSION?

To measure metabolite ADC at very short time-scales,
experiments were performed in the rat (Marchadour et al.,
2012) and mouse brain (Ligneul and Valette, 2017) using
oscillating gradients. Measurements frequencies f went up to
∼250Hz, corresponding to diffusion time td down to∼0.5–1ms,
depending on the conversion used between f and td [td =

1/(4f ) based on the identification of the effective diffusion
time in the b-value expression (Parsons et al., 2006), or using
td = 9/(64f ) as derived in the Mitra limit when considering
the surface-to-volume ratio of the restrictions (Novikov and
Kiselev, 2011)]. They showed that ADC increased by ∼50%
when f increased from ∼20 to 250Hz for NAA, tCho, and tCr
(also for Ins and Tau in the mouse brain), approaching ADC
∼0.2–0.30µm2/ms at the highest frequency. Note that, although
later measurements in the mouse brain (Ligneul and Valette,
2017) suggested that early measurements in rats (Marchadour
et al., 2012) may have been slightly biased by some motion
artifact for some frequencies, the overall trend was preserved.
The large ADC increase at short time-scales reflects significantly
decreased restriction/hindrance and the progressive approach
toward free diffusion. It rules out any significant contribution
of active transport at these scales, which would result in the
opposite trend (as the velocity autocorrelation function would
be positive and decrease to 0 for increasing time Does et al.,
2003). At ∼1ms, the typical diffusion distance for metabolites
is ∼1µm, so the typical distance between obstacles/walls
inducing ADC time-dependency must be in this range. More
quantitatively, modeling metabolite ADC acquired in the rodent
brain with oscillating gradients (Marchadour et al., 2012; Ligneul
and Valette, 2017) using Stepisnik’s and Callaghan’s frequency-
domain formalism for diffusion in cylinders or spherical pores

(Stepisnik, 1981; Callaghan and Stepisnik, 1995) yields typical
radii of ∼1µm. It also allows estimating the free intracellular
diffusivities to be Dintra ∼0.5–0.6µm2/ms, i.e., corresponding
to a low-viscosity cytosol, less than twice the viscosity of pure
water). This is in excellent agreement with fluorescence-based
estimates of fluid-phase cytoplasm viscosity being quite similar
to bulk water (Fushimi and Verkman, 1991; Luby-Phelps et al.,
1993).

Measurements at longer td were achieved using pulsed-field
gradients. Most DW-MRS works investigating brain metabolite
diffusion were performed at a single td, in the 10–250ms
range, and reported ADC in the 0.1–0.25µm2/ms range (see
for example Merboldt et al., 1993; Wick et al., 1995; Dreher
et al., 2001 for measurements performed at td slightly longer
than 10ms, and Posse et al., 1993; Ellegood et al., 2006 for
measurements at td > 200ms). We are not aware of many
works investigating td-dependency, except pioneer works where
the high b-value attenuation of NAA was studied in the 35–
305ms range in excised rat brains (Assaf and Cohen, 1998a,b)
and in the 50–100ms range in the living rat brain (Kroenke
et al., 2004). However, because acquisition and analysis differed
between these studies, and some of them may be prone to
artifacts (e.g., absence of scan-to-scan phase correction, incorrect
b-value calculation ignoring cross-terms, signal contamination
by macromolecules. . . ), it is very difficult to see any clear pattern
emerge in terms of ADC time-dependency. To specifically
study ADC time-dependency at long td, a series of studies
were performed in the rodent, primate and Human brain,
all based on stimulated echo acquisitions (which are more
favorable than spin echo to reach long td, as magnetization
relaxes according to T1 during the mixing/diffusion time) and
designed to minimize measurement bias (Najac et al., 2014, 2016;
Palombo et al., 2016a). These studies all report very stable ADC
(around 0.1µm2/ms, except in Human white matter where it
was ∼0.15µm2/ms) for all metabolites as td is increased from
a few dozen ms up to ∼700ms in Human brain (Najac et al.,
2016), and up to ∼2 s in the mouse and macaque brain (Najac
et al., 2014; Palombo et al., 2016a). Note however that a slight
trend to decrease can be observed (at least in the mouse and
primate brain) when considering the whole time-window. The
fact that ADC does not drop as td is increased up to 2 s is
a very clear indication that metabolites are not confined in
closed compartments of size equivalent to the diffusion distance
(30–40µm) or below, such as cell bodies or organelles (e.g.,
see Figure 3 in Najac et al., 2016). Instead, the fact that ADC
remains fairly stable at approximately one third of the ADC value
measured at ultra-short time-scales (Figure 1) is very consistent
with metabolite diffusing in long fibers (in the ideal situation of
infinitely long and straight fibers, and in the case of an isotropic
distribution of fiber orientations, ADC would drop from Dintra

at td ∼ 0 to Dintra/3 once full restriction has been reached in the
plane perpendicular to fiber axis, and then stabilize at Dintra/3 at
longer td).

This framework of diffusion in long fibers can obviously
only be considered as an approximation. First, cells do not
consist of hollow tubes with smooth surfaces. The cytosol is
filled with cytoskeleton and organelles which might induce
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FIGURE 1 | ADC time-dependency as measured in different published works from ultra-short td using oscillating gradients [down to td ∼ 0.5ms when taking td =

9/(64f ) (Novikov and Kiselev, 2011), where f is the oscillating gradient frequency], up to very long td ∼ 1 s using stimulated echo (data acquired at td ∼ 2 s and

reported in Palombo et al., 2016a are not shown here for clarity). Data points are ADC averaged for NAA, tCho, and tCr, but the trend is similar for each metabolite.

The fact that ADC drops when td is increased at very short td , and then remains fairly stable at approximately one third of the ADC value measured at ultra-short

times, is very consistent with metabolite diffusion mainly occurring in long and thin fibers (indeed, in the ideal situation of infinitely long and straight fibers, and in the

case of an isotropic distribution of fiber orientations, ADC would drop from Dintra at infinitely short td to Dintra/3 once full restriction has been reached in the plane

perpendicular to fiber axis, and then would stabilize at Dintra/3 at longer td , where Dintra is the free intracellular diffusivity). In a situation with metabolites massively

confined in subcellular regions such as organelles or cell bodies, the ADC would drop to ∼ 0 at long td over the observed time-range. Active transports would rather

lead to ADC increasing with td , at least for the time-scales at which these transports become significant compared to diffusion.

tortuous diffusion. Similarly, dendritic spines and astrocytic
leaflets, which are small protrusions along the dendrites and
astrocytic processes, will slow down metabolites longitudinal
diffusion, also resulting in tortuous diffusion along fiber axis.
These features will result in decreased ADC plateauing atDintra/τ
along fibers at long td or, in the case of an isotropic distribution
of fiber orientations or an isotropic ADC measurement (trace
of the tensor), at Dintra/(3τ ), where τ is the tortuosity along
fibers. Theoretical considerations predict that this asymptotic
value should be approached according to a −1/2 power-law in
the case of a random distribution of obstacles with short-range
disorder, i.e., ADC(td) ∼ ADC(td = ∞) + Ktd

−1/2, where K
depends on the correlation length of the obstacles (Novikov
et al., 2014). However, it is not trivial to determine when the
tortuosity limit would be reached in practice, i.e., at what td
would the ADC approach this asymptotic value within a few
percent, which can be considered as a practical threshold due
to limited measurement precision. Works based on numerical
simulations suggested that tortuosity limit imposed by spines
or similar structures with realistic densities (i.e., in the range
of 0–5µm−1) would be reached within ∼200ms (Santamaria
et al., 2006; Palombo et al., 2017), corresponding to a typical
diffusion distance of∼10µm along fibers. Hence the ADC value
at ∼200ms could be a good estimate of Dintra/(3τ ), which would
allow extracting the tortuosity induced by short-range structures,
provided Dintra is known. Considering the values of Dintra ∼0.5–
0.6µm2/ms estimated from modeling of oscillating gradients
data in the rodent brain, and ADC∼ 0.1µm2/ms at td ∼ 200ms
in the rodent brain, one gets τ ∼ 1.6–2, corresponding for
example to 2–4 spines/leaflets perµm (see Table 1 in Palombo

et al., 2017). This is however an upper estimate for τ . Indeed,
other works based on the analysis of high b-value at a single td,
using models of diffusion in cylinders, have reported Dintra to be
rather ∼0.3–0.45µm2/ms (Kroenke et al., 2004; Palombo et al.,
2016b), which would rather correspond to a very low intracellular
tortuosity τ ∼ 1–1.3 (corresponding to 0–1 spines or leaflets
perµm), but these high-b values experiments were performed at
td ∼ 50–60ms, so that Dintra might actually already include some
tortuosity. This illustrates how the estimation of τ depends on
estimation of Dintra, which remains indirect as it relies on some
modeling.

Once the tortuosity limit imposed by short-range structures
has been reached (beyond td ∼ 200ms), structural features at
larger spatial scales (>∼10µm) are also expected to induce
some temporal dependency of ADC, again challenging the
approximation of diffusion in long cylinders. These structural
features may include fiber undulation, fiber branching, and
finite fiber length, which may explain the slight trend of
ADC to decrease when increasing td up to ∼2 s. The effect
of undulations on intracellular diffusion has been investigated
using analytical models or numerical simulations (Nilsson et al.,
2012), while the effect of branching and finite length has been
modeled using numerical simulations (Palombo et al., 2016a).
Actually, the later approach was used to analyze experimental
data, and suggested that realistic fiber branching and length
were indeed quantitatively able to explain observed ADC time-
dependency up to 2 s. In particular, diffusion compartments of
supposedly astrocytic metabolites were found to be smaller and
less complex than those of supposedly neuronal metabolites,
and to be also smaller in rodents than in primates, consistently
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with histology (Palombo et al., 2016a). In this latter work, an
intracellular diffusion coefficient including some short-range
tortuosity along fibers (equivalent to Dintra/τ ) as discussed in
the previous paragraph was also let as a free parameter in
addition to morphometric parameters, and was found to be
∼0.3–0.45µm2/ms, i.e., lower than those derived from oscillating
gradient data, but very close to values derived from high-b
values (Kroenke et al., 2004; Ligneul et al., 2017b), suggesting
that the latter also already include short-range tortuosity. It
is worth mentioning that these long-range structures are of
different natures: in theory, undulation and branching would
result in “long-range” tortuosity toward a non-zero ADC value,
while finite length would result in full restriction with a td

−1

approach toward zero. However, these different trends remain
hypothetical, as they would become manifest only at very long
td (several seconds or even tenths of seconds); at such td other
phenomena such as intercellular trafficking, enzyme binding
or biochemical transformations may become significant and
obscure any long-time power law induced by structure.

WHY AND HOW TO GET FURTHER?

As discussed above, the determination of Dintra remains indirect
and uncertain. However, it is in theory possible to directly
measure Dintra provided ADC is measured at sufficiently short
time-scales. Simulations in fibers with “realistic” spines/leaflets
size and density, as performed in Palombo et al. (2017) but
over an extended frequency range, suggest that oscillating
gradient frequencies of at least 2,500Hz are required to
approach Dintra within less than 10% (assuming Dintra =

0.5µm2/ms). Reaching such high frequencies while maintaining
sufficiently high b (∼1 ms/µm2 or higher) to reliably measure
signal attenuation is extremely challenging. We have obtained
preliminary metabolites ADC measurements up to f = 665Hz
in the rat brain (Ligneul et al., 2017a), using a gradient coil
capable of reaching 1.5 T/m within 250µs along each axis.
This corresponds to td ∼ 0.2ms, when using td = 9/(64f ) in
the Mitra limit (Novikov and Kiselev, 2011). ADC values of
0.25–0.3µm2/ms were measured, which actually well extend
the trend toward higher ADC at higher frequencies as recently
reported in the mouse brain (Ligneul and Valette, 2017), as
shown in Figure 2. Although we are presumably far from
reaching sufficiently high frequencies to directly get ADC ∼

Dintra, it is actually tempting to estimate Dintra (and S/V) in
the Mitra limit using the universal formula valid for oscillating
gradients (Novikov and Kiselev, 2011), considering the nice
linear trend when plotting ADC as a function of f−1/2, which
yields Dintra ∼ 0.3µm2/ms for NAA and tCho, and ∼0.35
for tCr (and S/V from 2.4 to 2.9µm−1). This seems relatively
low, and compatible with the absence of short-range tortuosity
when comparing to ADC values at longer td [ADC(td ∼

200ms)∼Dintra/3] but simulations actually show that the Mitra
regime is not strictly reached yet in this frequency range, and
that the estimation of Dintra (but not S/V) remains biased toward
lower values if spines/leaflets are present (Palombo et al., 2017).

Exploring the uncharted territory from∼700 to∼2,500Hz to
reliably determine Dintra and the intracellular tortuosity would
require extremely powerful gradients. To reach b = 1 ms/µm2

FIGURE 2 | Trying to approach the free intracellular diffusion coefficient of

brain metabolites using oscillating gradients. On this figure the ADC measured

for NAA, tCr, and tCho, in the mouse brain at 11.7 T using a gradient coil

capable of reaching 0.75 T/m along each axis (red open squares) (Ligneul and

Valette, 2017) and the rat brain at 7 T using a gradient coil capable of reaching

1.5 T/m along each axis (blue diamonds) (Ligneul et al., 2017a), are displayed

as a function of the inverse of square root of the angular frequency [since a

linear trend is expected for ADC(ω−1/2) in the Mitra limit]. For better

consistency between datasets, the first rat data obtained with oscillating

gradients (Marchadour et al., 2012), which were probably slightly biased

toward higher values due to some motion artifact, are not displayed here. Data

points on the left (smallest ω−1/2) correspond to maximal OG frequency f =

665Hz. Error bars stand for standard errors of the mean.

at f = 2,500Hz using a trapezoidal cosine waveform (Van
et al., 2014) to maximize the weighting, while imposing total
gradient waveform duration to be no more than 50ms to retain
some macromolecule signal (which is critical to discard datasets
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corrupted by motion artifacts; Ligneul and Valette, 2017), one
would need a gradient coil capable of reaching ∼5.5 T/m within
100µs along each axis. This appears beyond reach in Humans,
and very difficult to achieve in preclinical systems. Hence, the
possibility to measure the intracellular viscosity in a “model-
free manner” essentially depends upon uncertain technological
breakthrough, and may remain elusive.

Although going to td ∼ 2 s seems to already yield some
sensitivity to long-range structure (in particular fiber length), this
sensitivity remains relatively poor. Indeed, the observed ADC
time-dependency at long td, or the different time-dependency
between neuronal and astrocytic metabolites, is quite close
to ADC standard deviation, requiring averaging over many
experiments. Further increase of td would allow enhancing
the “ADC contrast” (relative decrease of ADC), which would
subsequently lead to more reliable modeling and parameter
estimation. For example, going to td ∼ 10 s would approximately
double the ADC contrast, for most situations with reasonable
fiber length and complexity (see Figure 2 in Valette, 2014).
Furthermore, going to such long td would help assessing
the importance of phenomena that could potentially become
significant at long time-scales (such as chemical exchange,
intercellular exchange, active transport. . . ) and that we have
neglected so far, since structural effects alone appeared to
satisfactorily explain data in the observed time-window.

Is it possible to reach td ∼ 10 s (or longer)? Diffusion time is
obviously limited by relaxation, and it is extremely difficult to
measure diffusion much beyond metabolite T1. Increasing the
magnetic field is a way to increase T1, but this gain becomes
modest after 11.7 T (Lopez-Kolkovsky et al., 2016), therefore
no significant jump beyond td ∼ 2 s can be expected when
increasing the magnetic field. However, it might be possible to
observe metabolites with longer relaxation times under special
conditions. For example, the 13C nuclei of the carboxyl groups
of glutamate and glutamine have very long T1 (∼10 vs. 1.5 s for
1H at high fields), due to the absence of strong dipole-dipole
interaction, as these carboxyl groups share no chemical bondwith
proton. 13C natural abundance is too low (1.1%) to allow reliable
detection in a reasonable time, however glutamate/glutamine can
be labeled with 13C at the C5 carboxyl group, by intravenously
infusing glucose labeled at position C2 and/or C5 (Sibson et al.,
2001). In that context, signal might be detectable by direct 13C
MRS. We actually tried to implement such an approach in the rat
brain but, although some glutamate C5 signal could be detected,
it remained too low for reliable ADC quantification. However, the
progresses in radiofrequency coil technologies, and in particular
the introduction of 13C cryogenic probes, might make this
strategy viable in a near future. Another possibility might reside

in the “long-lived states” (Levitt, 2010) where the dipole-dipole
coupling is made ineffective (for systems with only two coupled
spins-1/2, this corresponds to the antisymmetric “singlet state”
with total spin I = 0). Some molecules with a high enough degree
of symmetry can be brought to (using dedicated pulse sequences
exploiting J-coupling), and then maintained in such states (using
spin-locking), during a time significantly exceeding T1, thus
allowing diffusion measurements over longer time-scales. This
approach was already suggested for slowly diffusing compounds
(Cavadini and Vasos, 2008), where the gradient strength can
be limiting to induce enough diffusion attenuation, which can
instead be increased by increasing td. It is actually possible to
bring some endogenous metabolites in such long-lived states. For
example, taurine was shown to have long-lived state lifetime ∼3
times longer than T1 (∼2.7 vs. 1 s at 800 MHz; Ahuja et al.,
2009). The extent to which long-lived state metabolite diffusion
at ultra-long td may be measured in vivo remains to be explored.

CONCLUSION

Over the last years, the range of DW-MRS diffusion times
has considerably increased, now spanning approximately four
orders of magnitude in the rodent brain (from ∼0.2ms to
∼2 s). These measurements concurred with the vision that
intracellular metabolites are neither massively transported by
active mechanisms nor massively restricted in subcellular
regions, but are primarily diffusing in long fibers, and that
these fibers have some short-range and long-range structures
(dendritic spines and astrocytic leaflets, fiber embranchments,
finite fiber length...) that may also influence ADC time-
dependency. The full elucidation—and accurate quantification—
of these deviations from the simple infinite cylinders model
requires increasing even further the range of td by at least one
order of magnitude (e.g., from 0.1ms to 10 s), if not more, which
appears extremely challenging, yet not absolutely impossible.
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For many pathologies, early structural tissue changes occur at the cellular level, on the

scale of micrometers or tens of micrometers. Magnetic resonance imaging (MRI) is a

powerful non-invasive imaging tool used for medical diagnosis, but its clinical hardware

is incapable of reaching the cellular length scale directly. In spite of this limitation,

microscopic tissue changes in pathology can potentially be captured indirectly, from

macroscopic imaging characteristics, by studying water diffusion. Here we focus on

water diffusion and NMR relaxation in the human prostate, a highly heterogeneous

organ at the cellular level. We present a physical picture of water diffusion and

NMR relaxation in the prostate tissue, that is comprised of a densely-packed cellular

compartment (composed of stroma and epithelium), and a luminal compartment with

almost unrestricted water diffusion. Transverse NMR relaxation is used to identify fast and

slow T2 components, corresponding to these tissue compartments, and to disentangle

the luminal and cellular compartment contributions to the temporal evolution of the

overall water diffusion coefficient. Diffusion in the luminal compartment falls into the

short-time surface-to-volume (S/V ) limit, indicating that only a small fraction of water

molecules has time to encounter the luminal walls of healthy tissue; from the S/V ratio,

the average lumen diameter averaged over three young healthy subjects is measured

to be 217.7 ± 188.7µm. Conversely, the diffusion in the cellular compartment is highly

restricted and anisotropic, consistent with the fibrous character of the stromal tissue.

Diffusion transverse to these fibers is well described by the random permeable barrier

model (RPBM), as confirmed by the dynamical exponent ϑ = 1/2 for approaching

the long-time limit of diffusion, and the corresponding structural exponent p = −1 in

histology. The RPBM-derived fiber diameter and membrane permeability were 19.8 ±

8.1µm and 0.044 ± 0.045 µm/ms, respectively, in agreement with known values from

tissue histology and membrane biophysics. Lastly, we revisited 38 prostate cancer cases

from a recently published study, and found the same dynamical exponent ϑ = 1/2

of diffusion in tumors and benign regions. Our results suggest that a multi-parametric

MRI acquisition combined with biophysical modeling may be a powerful non-invasive

complement to prostate cancer grading, reducing the need for biopsies.

Keywords: prostate diffusion, microstructure imaging, prostate cancer, gleason score, RPBM, diffusion tensor

imaging, biophysical modeling, PIRADS
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INTRODUCTION

Magnetic resonance imaging (MRI) research aims to identify and
validate imaging biomarkers that offer insight for diagnosing
diseases and monitoring their progression. This problem is
difficult, because MRI hardware limitations result in images of
about 1mm resolution in all three dimensions. This resolution
is too coarse to directly observe and categorize pathologies
originating, primarily, at the cellular level of∼1–100µm. Hence,
tissue characterization with MRI has generally been empirical
in nature. However, recently the field of quantifying tissue
microstructure with MRI has been gaining increasing attention,
with the number of publications growing exponentially [1].
While not accessing the cellular-level structure directly, its
overarching goal is to quantify typical microstructural tissue
parameters indirectly, relying on biophysical modeling of the
NMR signal acquired (i.e., averaged) over a macroscopic imaging
voxel [2, 3].

The possibility of model-based microstructural mapping has
spurred with the advent of diffusion MRI (dMRI) [4, 5], an
imaging technique based on diffusion NMR [6–8], that measures
the spatial Fourier transform Gt,q of the voxel-averaged diffusion
propagator Gt,x (i.e., probability density of water molecules’
displacements x(t) over time t), in each voxel. By shifting the
focus from nominal hardware resolution, to the effective length
scale probed by the Brownian motion of spin-carrying molecules
in each voxel, dMRI becomes sensitive to the microscopic
tissue structure commensurate with the diffusion length (rms
molecular displacement) L (t) ∼

√

D (t) t. The time-dependent
diffusion coefficient D (t) = 〈x2(t)〉/2t ∼ 1 µm2/ms, or more
generally, the time-dependent diffusion tensor, characterizes the
rate of effective coarse-graining [3] of the tissue structure by
the diffusing molecules over the diffusion time t. This time
scale, and with that, the coarse-graining window L (t), can be
experimentally controlled within the range between a few to a few
tens of microns, limited by the tissue NMR T1 ∼ 1,000ms time
scale.

The fundamental challenge lies in interpreting the measured
diffusion propagator Gt,q, or its basic characteristics [e.g., the
cumulants, such as the bulk diffusion coefficient D (t)], in the
context of the complex mesh of biological tissue. In physics
terms, for a given tissue, one has to identify the relevant degrees
of freedom of its structural complexity at the scale of L (t),
that affect the bulk measurement the most, and thus can be
quantified using biophysical modeling. Therefore, from the basic
science standpoint, clinically-relevant dMRI research falls into
the category of transport in classical disordered (random) media,
a part of modern-day condensed matter physics. This establishes
a somewhat unexpected yet exciting and fruitful connection
[3, 9, 10] between the fundamental characterization of classical
disordered transport, and the potentially clinically impactful
applications in diagnostic radiology and in assessing treatment
efficacy.

This study is focused on identifying the relevant degrees of
freedom for dMRI within the prostate, which is a male organ
that has highly heterogeneous tissue at multiple length scales
Figures 1A,B [11]. While dMRI is used in clinic for prostate

cancer diagnosis [12], the basic MRI-relevant characteristics of
prostate microstructure have yet to be identified and validated.
We will use prostate dMRI as an example to illustrate our basic
physics-inspired approach for revealing and validating potential
diagnostic markers of in vivoMRI.

To give a general sense of the relevant prostate anatomy
(Figure 1), signal arising from any given voxel will come
from a mixture of macroscopic stroma, epithelium, and lumen
contributions, usually referred to as “compartments” [13]. Here,
“macroscopic” means that their sizes exceed the available range
of diffusion length scales. Yet the diffusion inside each of these
compartments, at the scale L (t), may be quite complex (non-
Gaussian), as we will argue below. The stroma and epithelium
compartments are densely packed and have comparable cellular
length scales ∼10 µm, which allows us, for simplicity, to lump
them into a single “cellular” compartment, whereas the glandular
lumen are considerably larger and biophysically distinct—
reminiscent of the “lakes” of almost unrestricted water, of ∼100
µm diameter in healthy tissue Figure 1B [14, 15]. (Later, we will
comment on the relative roles of epithelium and stroma in the
dMRI signal).

Partial-volume contributions of macroscopic compartments
have been a persistent problem for model selection in dMRI.
An empirical approach to intermixing compartments is by
representing them with a multi-Gaussian diffusion signal
expression, in which the signal is separated into components
with different diffusion coefficients (or tensors), equivalent to
the Laplace transform with respect to the so-called “diffusion
weighting” parameter b = q2t, such that the Gaussian propagator
corresponds to a monoexponential diffusion signal S ∼ e−bD.
A bi-exponential signal representation, with “fast” and “slow”
empirical diffusion coefficients, has been shown to fit very well
to signals from fresh and fixed ex-vivo prostates [16], however
the biophysical origin of compartment fractions and diffusivities
has remained unclear.

The parameter b does not fully characterize a measurement,
since, generally speaking, signal from each tissue compartment
does not have to be Gaussian, in which case one needs to specify
two parameters – e.g., q and t, or, as we will do here, b and t, in
adherence to existing historical conventions [5]. In fact, the time
dependence of the overall diffusion coefficient D (t) necessarily
means that at least one macroscopic tissue compartment n is
characterized by time-dependent diffusion, in which case its

propagator G
(n)
t,q must be non-Gaussian [10], i.e., the Taylor

expansion of lnG(n)
t,q should generally have time-dependent

higher-order cumulant terms O(q4), O(q6), . . . . Recently, we
found significant time-dependence of the diffusion coefficient
in benign and cancerous human prostates [17], highlighting
the need to re-interpret multiexponential fits. Even at fixed t,
over-interpreting the bi-exponential fit of the signal in terms of
genuine Gaussian diffusion compartments has been cautioned
against [18, 19].

Several studies have compared various modeling approaches
side-by-side to determine the “correct” model using fit
quality. Unfortunately, there is still no clear consensus on
the preferred biophysical model, or even the most optimal

Frontiers in Physics | www.frontiersin.org September 2018 | Volume 6 | Article 9172

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lemberskiy et al. Prostate Microstructure via Diffusion-Relaxatometry

FIGURE 1 | Schematic of prostate microstructure and coarse-graining. H&E stained cross sections are shown from a radical prostatectomy (A,B). To emphasize the

structures and orientations, K-means clustering was applied onto the H&E images to emphasize the different intra-voxel compartrments and stromal orientations. In

(A) we show that there is considerable structural anisotropy and local coherence in stromal cell orientation. There is an apparent directionality as certain fiber bundles

of smooth muscle appear in both perpendicular and longitudinal cross sections within the a 1,000 × 784 µm2 section. In (B) we show that stroma and glandular

lumen can reside very close to each other, therefore the signal contribution from a voxel will be a weighted average depending on various tissue weightings. (C) As the

echo time (TE) increases, the cellular compartment (stripes) decays with a faster T2, while the luminal compartment (solids) decays with a slower T2. By modeling the

T2 weighting of each compartment, the signal weighting, W, of each tissue subtype can be determined based on the diffusion-free signal, S0, cellular compartment

fraction, f, and relaxation parameters T1, T
C
2 , and TL2 . Given the compartment weights, the overall diffusion tensor may be subsequently separated into cellular-only

and lumen-only tensors. Once tissue compartments are separated, the evolution of D(t) in each tissue compartment can be interpreted through the context of the

underlying microstructure. Diffusing molecules “see” the compartmental microstructure through the lens of a Gaussian filter of width L (t) ∼
√

D (t) t, which increases

with t.

signal representation (i.e., a set of basis functions, cf. ref
[1]). Some studies favor a mono-exponential [20, 21], others
favor bi-exponential [16], while some suggest that including
the empirical fourth-order cumulant (kurtosis) term in the
overall signal provides the best fit [22]. Most importantly,
each of these works agree that even the simplest mono-
exponential representation of diffusion (at fixed t) already
fits clinical data reasonably well. Putting their conclusions
together, these works suggest that there may not be enough
information to reliably select the adequate biophysical tissue
model by studying diffusion (at fixed t) alone in clinically feasible
acquisitions.

While identifying tissue compartments using diffusion is
a challenge, separating compartments using transverse NMR
relaxation, T2, has been done as early as 1987 [23]. There
has been a catalog of studies [23–27], which state that
there exists a fast-decaying T2 component, associated with
cellular (epithelium+stromal) tissue, TC

2 ∼ 50 ms, and a
slowly-decaying T2 component, associated with luminal tissue,
TL
2 ∼ 350 ms. Interestingly, the luminal compartment

has a small volume fraction in the average MRI voxel
(<10%) [13], yet due to its much longer T2, it may
notably contribute to the overall signal, as we confirm below.
Meanwhile, the distinct geometry [14, 15] of cellular and luminal
compartments should give rise to distinct functional forms
for the time-dependent diffusion coefficients DC(t) and DL (t),
respectively.

Here we introduce the following diffusion-relaxation model
in the 3-dimensional parameter space: b, t, and echo time, TE

(Figure 2), with the signal as a sum of (generally non-Gaussian)

contributions with distinct T2 times:

S
(

b, t,TE
)

= S|b, t,TE=0 ·
∑

n=C,L

fn e
−

TE

T
(n)
2

−bD(n)(t)+O(b2)
. (1)

In this work, we limit ourselves to the two major compartments,
cellular = (stroma + epithelium), with volume fraction fC ≡

f , and luminal, with fL = 1 − f . Due to the notable
difference in T2 relaxation rates, the cellular compartment will
lose its signal much faster than the luminal compartment with
increasing echo time TE, thereby creating a large dynamic
range that will facilitate the separation of tissue compartments
and their diffusion properties, as schematically pointed in
Figure 1C. We will keep the b-value low, to stay in the diffusion
tensor regime (effectively, factoring out the q-dependence) (see
Supplemental Information), and vary the mixing time TM

of the stimulated echo sequence (Figure 3), thereby studying
the dependence of diffusion tensors in the cellular and
luminal compartments separately on the diffusion time t. The
qualitatively distinct time-dependencies of DC(t) and DL(t) will
be utilized for model selection in each compartment.

RELEVANT MODELS OF
TIME-DEPENDENT DIFFUSION

Short-Time Limit: D(t) as a Probe of S/V
At short diffusion times, the time-dependence of the diffusion
coefficient can be described solely by the surface-to-volume
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FIGURE 2 | The parameter space of MRI experiments. Varying the b-value

(that yields, progressively, diffusion tensor imaging, diffusion kurtosis imaging,

intravoxel-inherent motion, multiexponential diffusion, and other signal

representations) has been the most popular approach to studying diffusion

weighting (red vertical line). Diffusion time, t, giving measurements regarding

structural disorder, and echo time, TE, which can be used for altering the

compartment weighting, have both been largely unexplored as effects on the

diffusion measurements in the prostate. The blue volume surrounding the

3-axes represents the extent of parameter space covered by this study.

ratio (S/V) of the pore walls (e.g., cell membranes), and the
unrestricted (free) diffusivity D0 [28]:

D (t) = D0

(

1−
4

3d
√

π

S

V

√

D0t

)

. (2)

This equation assumes isotropic distribution of the restrictions
to diffusion in d spatial dimensions. The advantage of this limit is
that it offers a biologically relevant length scale, the inverse S/V ,
without too much model complexity and minimal assumptions.
The disadvantage is in being sensitive only to the net amount
of restrictions, rather than to their relative positions in space
(i.e., structural correlations) and their permeability, as it occurs
at longer times.

The range of times over which the S/V limit (2) is applicable
is t ≪ l2pore/(2dD0), where lpore is the pore characteristic length
scale; this estimate was recently validated in a phantom on
the same clinical scanner used in this study [29]. Assuming
that glandular lumen has D0 ≈ 3 µm2/ms (free water at
body temperature), and diameter lpore ∼ 100 µm, the S/V
limit will apply for t ≪ 500 ms. This indicates that the S/V
limit would be applicable in the healthy glandular lumen over
a broad t range. However, luminal diameters do shrink with
tumor grade [15, 30], which will shorten the range of t over
which the S/V limit is applicable in patients. The corrections to
Equation (2) due to wall curvature or permeability are beyond
the scope of this work, due to signal-to-noise ratio and scan time
limitations.

Long-Time Limit: D(t) as a Probe of
Membrane Permeability and Structural
Correlations
In contrast to the luminal compartment, the cellular
compartment is densely packed and contains cells with
small ∼10µm diameters, which may shrink even further with
increasing tumor grade [31]. Assuming D0 ∼ 1 µm2/ms, locally
in d = 2-dimensions due to fibrous geometry [13, 32] (as we will
also confirm below), the range over which the S/V limit would
apply is expected to be t ≤ 25ms. For clinically accessible t,
diffusion in the cellular compartment will be acquired outside of
the S/V limit. Exceeding this limit, the diffusion length becomes
comparable or greater than the characteristic length scale of the
tissue (cell diameter), andD(t) becomes dependent on numerous
tissue parameters describing both cell geometry and membrane
permeability. In general, modeling diffusion in tissue geometry
over a broad range of times is an unsolved problem, as it is
unclear which features of tissue microarchitecture need to be
included.

To identify what features of tissue complexity are most
relevant for the measurement, Novikov et al. [9] showed that it
is advantageous to observe time-dependent diffusion in the long
time limit, approaching the bulk diffusion coefficient D

∞
. Time-

dependence in this limit reveals the most essential footprint of
the underlying structure via the dynamical exponent ϑ in the
instantaneous diffusion coefficient

Dinst (t) ≡
1

2

∂

∂t

〈

x2 (t)
〉

∼ D
∞

+ A · t−ϑ , t → ∞. (3)

Here,A is the associated strength of the structural disorder, which
is being effectively coarse-grained [3] by the molecules traveling
over an increasing diffusion length. The exponent

ϑ = (p+ d)/2 (4)

is related to the statistics of the global arrangement of tissue
microstructure—in our case, of stroma and epithelium cells—
via the structural exponent p in d spatial dimensions. The
exponent p defines the structural universality class [9] of random
media. Roughly speaking, the larger the exponent p, the faster
the structural fluctuations decrease at large distances, and the
more ordered the medium. Formally, this exponent describes
the low-k behavior of the power spectrum Γ

(

k
)

∼ Akp of
the restrictions, corresponding to the decay of their density-

density correlation function Γ (r) =

∫

ddk
(2π)d

eikrΓ
(

k
)

at large

distances r. The Poissonian, and more generally, short-range
disorder corresponds to p= 0, strong disorder to p< 0 (diverging
fluctuations at large distances, e.g., due to spatially extended
restrictions [9, 33]), and hyper-uniform disorder to p > 0
(variance of fluctuations within a volume growing slower than
the volume [34]). The gradual coarse-graining of the structure
embodied in Γ (r) over an increasing diffusion length L(t) ∼
r results in the universal scaling, Equation (3). Note that the
dimensionality d of the diffusion process has to be inferred from
the shape of the diffusion tensor. In an isotropic case d = 3,
whereas, for instance, for an axially symmetric diffusion tensor
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FIGURE 3 | Diagram of the Stimulated Echo Acquisition Mode (STEAM) sequence showing how to manipulate parameters of NMR relaxometry (T2 and T1) by varying

the echo time, TE, and the mixing time, TM; and how to manipulate parameters of diffusion weighting by varying the applied gradient amplitude, G, the applied

gradient duration, δ, and the spacing 1 between applied gradients. The diffusion time t is approximately given by 1; the accuracy in its definition is set by the value of

δ, cf. section 2.3 of Novikov et al. [3].

(e.g., in tissue fibrous geometry), d = 2 for the transverse and
d = 1 for the longitudinal diffusion eigenvalues λ

⊥
and λ

||
,

correspondingly.
The universal asymptotic law (3), with the relation (4) between

the structure and diffusive dynamics, is a recipe for model
selection. However, dMRI measures the cumulative D (t) =

1
t

∫ t
0 Dinst

(

t′
)

dt′. Such temporal averaging limits the range
of directly-measurable exponents (without differentiating noisy
data), since the corresponding long-time tail inD (t)will have the
exponent ˜ϑ = min (ϑ , 1) [9, 35]. We now outline a few relevant
structural universality classes.

Structural order in any d, and hyperuniform disorder (p >

0) in d ≥ 2 dimensions all have ϑ > 1, which means that the tail
in the cumulative D (t) will have exponent ˜ϑ = 1, masking the
genuine ϑ :

D (t) ≃ D
∞

+ A · t−1, t → ∞. (5)

Hyperuniform disorder suppresses structural fluctuations and
may arise in optimal random packings [36]. In a sense,
hyperuniform disorder is the closest to a perfectly periodic
arrangement of the building blocks in a medium. Equation (5)
tells that any such arrangement (e.g., a periodic lattice of barriers
[37], or the “crystal lattice” of identical cells) would yield the
asymptotic∼1/t behavior in D(t).

A similar-looking 1/t tail arises when a tissue compartment
corresponds to perfectly impermeable cells of size ∼

√

A (fully
restricting cell walls), placing a hard upper bound on

〈

x2 (t)
〉

.
This is, perhaps, the simplest non-Gaussian compartment model,
and it has been popular in describing dMRI signal from tumors
[38–42].

Short-range disorder in 2 dimensions (e.g., transverse to
aligned fibers randomly packed in a bundle) yields ϑ = 1 and
the corresponding ln( t/δ)/t tail in D(t), which, for the diffusion
gradient pulse width δ > tc exceeding the corresponding
correlation time across the packing correlation length, yields the
behavior [43]

D (t, δ) ≃ D
∞

+

A

2δ2
(

t − δ
3

)

[

t2 ln
t2 − δ2

t2

+δ2 ln
t2 − δ2

δ2
+ 2tδ ln

t + δ

t − δ

]

, t > δ, (6)

that asymptotically becomes A ln( t/δ)/t for t ≫ δ.

Extended-disorder (randommembranes), e.g., random lines
in d = 2 dimensions or randomly placed and oriented planes in
d = 3, yields the slow power-law tail [33]

D (t) ≃ D
∞

+ A · t−
1
2 , t → ∞. (7)

This disorder geometry was approximately described for all
t by the random permeable barrier model (RPBM) based on
the real-space renormalization group approach to the diffusion
equation represented as a scattering problem [33]. The RPBM
was subsequently found to well describe diffusion transverse to
muscle fibers (d = 2) [9, 44–46], where diffusion along fibers was
practically unrestricted, while the transverse diffusion coefficient
strongly decreased with t.

Note a subtle yet important difference between Equations
(6) and (7), as applied to the d = 2 fiber geometry: Equation
(6) applies if the fibers are randomly packed in a bundle,
hindering the extra-cellular water (such as a random packing
of disks in the cross-section [43]), yielding Γ

(

k
)

∼ const
for k → 0, i.e., p = 0, while Equation (7) applies if the cell
walls appear to be locally flat (i.e., lines in the cross-section,
Figure 4A) and sufficiently permeable, so that the intra- and
extra-cellular spaces can be considered on an equal footing.
The exponent ½ arises due to the distinct spatial statistics
of the restrictions, Figure 4A, represented by the locally flat
permeable membranes (fiber walls) that extend for longer
than the diffusion length, and yield the corresponding low-k
divergence in Γ

(

k
)

∼ k−1; the temporal scaling (7) emerges
when these membranes are traversed more than once during the
diffusion time t.

We have recently shown that there is a measurable effect of a
time-dependent D(t), which differs between benign and various
stages of peripheral zone cancer [17]. This adds to a growing
body of research that is interested in modeling D(t) for cancer
applications [42]. However, at that point we have not separated
the relative compartment contributions to the overall D(t). We
realized that partial volume effects [47] need to be overcome, so
that the microstructure of intermixing tissue can be identified.
In what follows, by decomposing the dMRI signal into fast and
slow T2 compartments, model selection for D(t) within cellular
and luminal tissues will be performed independently, based on
the above range of models of diffusion in disordered media.
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FIGURE 4 | Structural Correlation from histopathology. H&E stained samples of benign fibromuscular stroma from a radical prostatectomy were considered. In the

body of the text, we found that extended disorder geometry, related to random membranes, defined the structural disorder for DC
⊥

. We plot 55 randomly oriented

membranes in 2D (A) as an idealistic case for extended disorder and 3 samples (B–D) of segmented prostate fibromuscular stroma, which are predominantly taken

through perpendicular cross sections. The segmentation was used to emphasize the cell walls as the primary sources of restriction to diffusion. The average length

scale from was determined by calculating S/V = 2l/A (A) and S/V = l/A for (B–D), where l is the number of voxels found at the edge of each cell, and A is the area of

the sample. The number of randomly oriented barriers in (A) was selected to match the average fiber diameter 4V/S for the histological samples. For (A–D) the Fourier

transform density autocorrelation function, Γ (k) was determined by radially averaging over k-space and plotting 1,200 bins from the 1,440 × 1,440 pixel2 / 590 × 590

µm2 images (E). The dashed black line represents the fit Γ (k) = Ak−1.

We emphasize, that here we are performing model selection
by inferring the distinct functional form of the measured D(t),
rather than relying on goodness-of-fit metrics which can be often
misleading [1]. By identifying the dynamical exponent (4), or
the short-time regime (2), we are, in a way, asking the tissue
to reveal its type of structure (the S/V limit, or a structural
universality class), instead of imposing a particular model of
restricted diffusion from the outset. Identification of the disorder
class will then justify searching for the most parsimonious model
within that class. This logic naturally follows the fact that the
structural complexity is hierarchical; its most relevant degrees
of freedom should be identified first (they define the signal’s
overall functional form), followed by fine-tuning the remaining
microscopic details, SNR permitting.

METHODS

Subjects
This study was in compliance with the Health Insurance
Portability and Accountability Act guidelines and was approved
by the institutional review board of New York University
School of Medicine. Following written informed consent, 3 male
volunteers (ages: 22, 28, 32) with no history of prostate disease
were imaged on aMAGNETOM 3T Prisma system (Siemens AG,
Erlangen, Germany) using the 18-channel phased array body coil.

MRI Acquisition
The major challenge in separating between the compartment
diffusivities is to accurately map out the necessary parameters

pertaining multi-compartment relaxation, and to measure the
diffusion in a broad range of diffusion times for the model
selection purpose. For these reasons, we used a stimulated
echo acquisition mode (STEAM) sequence (WIP916B, Siemens),
which allows us to study diffusion dependence on TE and
t simultaneously (Figure 3). STEAM is the preferable pulse
sequence, as it is T1-weighted and preserves more signal at long t,
than the more commonly used T2-weighted pulsed gradient spin
echo (PGSE) diffusion sequence.

Diffusion weighted images (DWI) were acquired in sets of
17 non-collinear directions distributed on a sphere at b = 0.5
ms/µm2

= 500 s/mm2, and 2 nominally-unweighted images
(which do not, technically, correspond to b = 0, but whose b-
value is calculated within the sequence). With this orientation of
gradient directions, DWI were acquired with TE = [52, 115, 180]
ms and t = [25.2, 40, 65, 105, 175, 280, 450, 740] ms, resulting in
a total of 24 imaging series, each containing 17+2 = 19 imaging
volumes. The applied gradient pulse duration, δ, was fixed to
10ms, and the applied gradient amplitude, G, decreased with
t, where the average G(t) was [56.51, 43.65, 33.66, 26.21, 20.18,
15.89, 12.51, 9.74] mT/m. STEAM allows the user tomodulate the
mixing time (TM), which is the spacing between the second and
third RF pulses, giving rise to a variable T1 weighting (Figure 3).
The mixing time is also related to t, which is the spacing between
the de-phasing and re-phasing diffusion gradients in the narrow-
pulse limit. Here, TM ranged from 6.38 to 719.32ms and varied
with changing TE and t.

The order of the acquisitions was randomized to avoid any
potential temperature effects and aid in image registration (see
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next sub-section). Diffusion gradients were compensated to
match the requested b-value [42, 48, 49]. As the amplitude of
diffusion gradients decreased with t, the nominal b= 0 weighting
increased from 3 to 102 s/mm2. The SNR, calculated via [50], at
these nominal b = 0 ranged from 39.0 down to 5.3, dropping
with increasing TM and TE. The repetition time, TR, was fixed
to 5 s in order to minimize scan time, yet enabling practically full
magnetization recovery. The imaging resolution was 2.5 × 2.5 ×
5.0 mm3 over a 96 × 96 × 10 grid with a bandwidth of 1,490
Hz/pixel. To minimize the echo train length, the acquisition was
under-sampled using GRAPPA parallel receive with acceleration
factor 2, multiband acceleration with factor 2, and 6/8 partial
Fourier. Adaptive combine was used to merge images from
individual receive coils with optimal phase shifts. In order to
minimize geometric distortions, diffusion images were acquired
axially with slices oriented parallel to the static magnetic field
rather than perpendicular to the rectal wall. Distortion was
further reduced through the use of the static field correction [51]
as implemented by the vendor.

Image Processing
Firstly, Gibbs ringing correction [52] was applied to all dMRI
images. Outlier rejection and reduction of eddy currents was
then implemented for each of the 24 series separately, using
FSL’s eddy [53] tool. This tool also applied rigid registration
within each diffusion tensor. A separate mutual-information
rigid transformation was performed [54, 55] to align the
images from each series to one another. Given the wide
range of TE and SNR, we found that mutual registration to
TE = 180ms would produce inconsistent results. To resolve
this, the acquisition was performed in random order. The
parameters for rigid (Euler) transformation calculated from
higher SNR images at either TE = 52 or 115ms were then applied
to the subsequent TE = 180ms series, acquired immediately
afterwards. This assumes that the volunteers remained mostly
stationary for ∼3 minutes. Parametric maps of mean diffusivity

(D) and fractional anisotropy (FA) were derived for each tensor
acquisition using a weighted linear least squares fit [56, 57]
using diffusion tensor imaging (DTI) estimation implemented
in MATLAB. The region of interest (ROI) was drawn on a
high resolution T2-weighted image to study the peripheral zone
(PZ) of the prostate (Figure 9A). Our volunteers were much
younger than a typical prostate patient, so the size of the
transition zone/central gland was much smaller than that in the
clinical practice. For this reason, ROI analysis focused on PZ
only.

Estimation of Compartment Weights
If there are observable compartments in T2, they likely exist in
T1 as well. One conference abstract [58] identified a slow T1

compartment of 2,944± 765ms, which suggests that the luminal
compartment is indeed nearly unbounded water. Kjaer et al.
[23] have also acknowledged that a long T1 compartment likely
exists, but stated that they were unable to measure it within
clinical SNR and time-constraints. Since the range of TM in
our experiment was <800ms, we were unable to take advantage
of this longer T1 compartment to improve our modeling

estimates. For this reason, we account for mono-exponential T1

relaxation only. If we maintain a constant repetition time (TR)
and assume perfect π/2 RF pulses, the signal evolution for a
STEAM acquisition without diffusion weighting can be written
as:

S|b=0 (TM,TE) = S0e
−TM/T1






f e−TE/TC

2

︸ ︷︷ ︸

C

+

(

1− f
)

e−TE/TL
2

︸ ︷︷ ︸

L






. (8)

We used weighted linear least squares [57] to estimate the un-
weighted S|b=0 images. S|b=0 values for the range of TM and
TE were used to solve for the 5 parameters (S0, f , T

C
2 , T

L
2 , T1) in

Equation (8), Figure 5. The fit of Equation (8) to the data in each
voxel was reinitialized 100 times with randomized starting values
over unconstrained bounds. After rejecting the trials in which the
fit results were unphysical, the median of the cluster of estimated
parameters with the highest prevalence was selected as the final
result.

Subsequently, the relative compartment weights for each TM

and TE can be determined [with C and L from Equation (8)]:

WC
≡ W(TE) =

C (TE)

C (TE) + L (TE)
, WL

= 1−W. (9)

The cumulant expansion [59] of the signal, Equation (1), yields

D (t,TE) = WC (TE) ·D
C (t) +WL (TE) · D

L (t) . (10)

For a number N of distinct TE measurements, Equation (10)
reads
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Using the fact that the weights depend on TE but not on t, while
the compartment diffusivities (in any given diffusion direction)
depend on t but not on TE, we determine DC(t) and DL(t) (in
any given direction) separately for each t using matrix pseudo-
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. (11)

This is schematically illustrated in Figure 1. In our case, the
number of different TE measurements was N = 3.

Compartment Tensor Eigenvalues and
Fiber Tracking
Each set of compartment directional diffusivities [cf. Equation
(11)] was processed using standard DTI methodology [5] with
weights of Veraart et al. [57] to generate the diffusion tensors, the
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FIGURE 5 | STEAM Relaxometry. (A) Echo time (TE) and mixing time (TM) dependence of the non-diffusion-weighted dMRI signal, S
∣

∣

b=0, demonstrating the

suppression of the majority of tissues at long TE. (B) Fitting Equation (8) to S
∣

∣

b=0 after averaging over the peripheral zone (PZ). (C) Parametric maps of the 5 fitted

parameters: the proton density S0, overall T1, cellular compartment fraction, f, fast (cellular) TC2 , and slow (luminal) TL2 . (D) Histograms displaying the distribution of

relaxation parameters on all 3 volunteers within PZ only. The dashed line is the mean parameter derived from
〈

S
∣

∣

b=0

〉

across all volunteers.

TABLE 1 | The mean and standard deviation over a PZ ROI is shown for the relaxation parameters derived from S
∣

∣

b=0.

Parameters W(TE ) f Tc
2
[ms] TL

2
[ms] T1[ms] R2

Subject 1 (22y/o) [0.82, 0.66, 0.49] ± [0.11, 0.14, 0.18] 0.91 ± 0.09 62.20 ± 14.46 269.95 ± 93.03 1,014.70 ± 292.70 0.933 ± 0.064

Subject 2 (28y/o) [0.91, 0.82, 0.69] ± [0.09, 0.14, 0.20] 0.95 ± 0.06 62.75 ± 6.66 244.87 ± 88.95 857.97 ± 154.38 0.972 ± 0.037

Subject 3 (32y/o) [0.91, 0.82, 0.66] ± [0.05, 0.12, 0.21] 0.96 ± 0.03 55.65 ± 6.95 226.45 ± 85.94 824.02 ± 117.88 0.942 ± 0.038

associated eigenvectors (ε1, ε2, ε3), eigenvalues (λ1, λ2, λ3), and
fractional anisotropy (FA), for each compartment, over each t,
Figure 6. Eigenvalues for each t were averaged to produce mean
diffusivity, D(t).

FA(t) typically increases with t [17, 60], implying that the
anisotropy of the diffusion tensor becomes more apparent at
longer diffusion times, driven by the fact that the differences
between the physics of diffusion in different directions become
more apparent with coarse-graining over larger distances.

Orientation in each eigenvector, on the other hand, will be
independent of t, as it is produced by the same underlying
tissue anisotropy. Given this orientation redundancy, an averaged
orientation of the i-th eigenvector can be derived from the mean
dyadic tensor computed across t [61]:

〈

εtiε
tT
i

〉

=

1

Nt

Nt
∑

t=1

εtiε
tT
i (12)

for each of principal directions i (no summation over i is
implied). The principal eigenvector associated with the dyadic
tensor serves as the tissue orientation averaged over all t, where
Nt = 8. The orientation and anisotropy is then visualized
by creating directionally-encoded color FA (DEC-FA) maps, in
which the median FA(t) is multiplied by the principal eigenvector
of

〈

εt1ε
tT
1

〉

.

The principal eigenvectors from
〈

εt1ε
tT
1

〉

,
〈

εt2ε
tT
2

〉

, and
〈

εt3ε
tT
3

〉

for
each compartment and the eigenvalues at t= 105ms were used to
reconstruct the corresponding diffusion-weighted images. They
were subsequently used as input to perform fiber tractography
in mrtrix3.0 using probabilistic streamline tractography. The
fibers from the cellular compartment represent smooth muscle
stroma, for which the structural anisotropy is clear on histology
(Figure 1A). At each voxel, residual bootstrap was performed
to obtain a unique realization of the dMRI data. The data was
then resampled via trilinear interpolation at each streamline
step. The diffusion tensor representation was then applied and
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FIGURE 6 | PZ ROI separation of prostate tissue diffusivities (A,B) into compartment contributions (C,D) in 3 healthy volunteers. Error bars indicate variance between

subjects. (A) The change in the mean diffusivity, D, with t was as much as ∼16% for a given TE. (B) Replotting D as function of TE for a given t, reveals a larger

change of ∼59% over this parameter. (C) Mean diffusivities from the cellular and luminal compartments plotted against
√

t, where a linear dependence be the hallmark

of the short-time S/V limit. (D) Axial and radial compartment diffusivities, λ
||
, λ

⊥
plotted against t−1/2, where a linear dependence of λ

⊥
would indicate extended

disorder universality class of random membranes, and justify the usage of the RPBM for calculating length scales and permeability.

streamlines were drawn following the orientation of the principal
eigenvector.

Revisiting Clinical Data From 38 Subjects,
Lemberskiy et al. [17]
In addition to the newly acquired data from 3 normal volunteers,
we also revisited the dataset recently published [17], with the
purpose of determining the disorder class in regions of variable
Gleason score. This set of dMRI was not acquired with multiple
TE, thus it cannot be used to assess cellular and luminal
diffusivities separately. Instead, relaxation parameters derived
from each of the 3 volunteer subjects were used to determine the
signal weighting W = WC at the TE = 40.4ms of the patient
data: [0.862, 0.916, 0.927]. The prostate increases in size with
age, largely relating to expansion of the stroma and epithelium
[62]. Given a median age in Lemberskiy et al. [17] of 64 years,
we assume that the patient data was weighted more heavily by
the cellular compartment (∼W ≥ 0.927, fast T2, large f ), with
approximately less than 0.07 of the signal represented by the
luminal compartment. Additionally, the luminal compartment
shrinks as prostate cancer progresses [63], therefore prostate
cancer ROIs are expected to have an even greater cellular

compartment fraction. For these reasons, we treat D(t) from the
patient cohort as samples of the cellular compartment.

Determination of the Dynamical Exponent
From Diffusion
The compartmental diffusion coefficients, DC (t), and DL(t),
were compared against the short-time S/V limit, Equation (2),
and the associated power law tail of the long-time limit for
ordered or hyperuniform restrictions, Equation (5), short-range
disorder in dimension d = 2, Equation (6), and extended
disorder, Equation (7). The most appropriate disorder geometry
and its corresponding tissue model was selected using Pearson

correlation, ρ, with the corresponding power-law tail t− ˜ϑ , as
an objective goodness-of-fit criterion. In addition, systematic
features in the residuals were examined, Figure 7.

Given the anisotropy and fiber-like geometry of the stromal
contribution to the cellular compartment (Figures 8A, 9B),
the long-time models were evaluated in d = 2 dimensions,
perpendicular to the principal axis of diffusion, using the
overall λ

⊥
(t,TE), and the derived λC

⊥

(t) and λL
⊥

(t), from the
compartment diffusion tensors. Conversely, given the isotropic
characteristics of the luminal compartment (Figure 8A), the
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FIGURE 7 | Model selection in prostate cancer of various Gleason Scores based on disorder class from ROI averaged across 38 patients published in Lemberskiy

et al. [17] Radial diffusivity (λ
⊥
) is fitted (solid line over each ROI) by the associated power law tail for (A) ordered or hyper-uniform restrictions Equation (5), (B)

short-range disorder in 2-dimensions Equation (6), and (C) extended-range disorder Equation (7). The residual is included to emphasize systematic differences

between the tested disorder classes. λ
⊥

and the residual is plotted against the corresponding power laws of t, in which a linear dependence would indicate stronger

association with the given disorder class (Table 2).

TABLE 2 | Pearson correlation coefficient, ρ, is used as a proxy for model selection at various echo time (TE ) and at separated cellular/luminal diffusion tensors.

(A) Pearson correlation (ρ) on volunteers TE = 52ms TE = 115ms TE = 180ms Cellular Luminal

D (t) vs. Equation (2) 0.912 0.932 0.957 0.9476 0.9160

λ
⊥

(t) vs. Equation (5) 0.925 0.703 0.617 0.9192 0.1796

λ
⊥

(t) vs. Equation (6) 0.955 0.765 0.693 0.9458 0.2315

λ
⊥

(t) vs. Equation (7) 0.972 0.817 0.757 0.9634 0.2794

(B) Pearson correlation (ρ) on patients from Lemberskiy et al. [17] PZ TZ 3+3 3+4 ≥4+3

¯D (t) vs. Equation (2) 0.911 0.983 0.902 0.771 0.855

λ
⊥

(t) vs. Equation (5) 0.826 0.730 0.912 0.959 0.910

λ
⊥

(t) vs. Equation (6) 0.886 0.809 0.952 0.961 0.956

λ
⊥

(t) vs. Equation (7) 0.921 0.868 0.971 0.948 0.982

Averaged mean diffusivity (D) or radial diffusivity (λ
⊥
) across (A) volunteer peripheral zone (PZ) and (B) patient ROIs: PZ, transition zone (TZ), low grade PZ (3+3), intermediate grade PZ

(3+4), and high grade PZ (≥4+3) were compared against short-time Equation (2) S/V limit t → 0 and long-time Equation (5–7) limit (t−1,∼ log(t/δ)/t, t
−1/2

) models. The bolded ρ in

each column displays the highest correlation with the ROI.

short-time behavior was evaluated over the mean diffusivity: the

measured D(t,TE), and the derived D
C
(t), and D

L
(t). For the

volunteer data, SNR became an issue for D(n) (t = 480, 740ms)
at SNR < 10, as evident on both ROI analysis, Figures 6C,D, and
parametric maps, Figure 8I. The last two points were excluded

from studying correlations between D(n)(t) and t−
˜ϑ .

For the patient data from Lemberskiy et al. [17], the diffusion
tensor eigenvalues were averaged over 5 ROIs and over the
cohorts taken from the set of 38 subjects: peripheral zone (PZ),
transition zone (TZ), low grade PZ (3+3), intermediate grade
PZ (3+4), and high grade PZ (≥4+3) tumors. The power-law
tails corresponding to hyper-uniform (Equation 5), short-range

(Equation 6), and extended (Equation 7) disorder classes in d= 2
dimensions were compared with the ROI-averaged data. Linear
evolution of λ

⊥
(t) was plotted against the power-law scaling,

t−
˜ϑ , for each disorder class, and the Pearson correlation values as

well as qualitative inspection of fit residuals were used to identify
the most appropriate disorder geometry among the long-time
models.

Parameter Estimation for Tissue
Compartments (Healthy Controls)
As a result of model selection (see section Results), time-
dependent diffusion was modeled within the PZ ROI of each
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FIGURE 8 | Compartment parameters derived from the diffusion tensor. (A) Cellular and luminal directionally-encoded color FA (DEC-FA) were derived from principle

eigenvalues of the mean dyadic tensor over time and the median FA(t). (B–I) Mean diffusion over diffusion time, D(t), is shown for both cellular and luminal

compartments. The whole prostate ROI was drawn from the image at t = 25.2ms and overlaid onto all parameter maps with a white outline to highlight any motion.

subject using the RPBM in the cellular compartment and the S/V
limit in the luminal compartment.

Luminal Compartment

D(t) within the luminal compartment was evaluated using the
S/V limit, Equation (2). Lumen diameters were estimated from
aL = 6V/S, which would be the length of one side on a 3-
dimensional cube with given S/V. Alternatively, one can consider
modeling aL via a 3-dimensional sphere, which would result in a
factor of 2 difference in the definition of luminal diameters; given
the irregular shape of the lumen, the identification of the precise
pre-fractor in front of V/S is beyond the scope of this work. We
also estimate aL|D0=3 with a fixed DL

0 = 3.0 µm2/ms, which
follows from the model assumption that the glandular lumen are
lakes of largely unrestricted restricted water, where t → 0 would
give the free water diffusion coefficient at body temperature [64].

Cellular Compartment
The dynamical exponent analysis (see section Results) indicated
the dominance of the extended disorder geometry in 2
dimensions (Figure 7, Table 2). This suggests that the RPBM
utilized previously for studying muscle fiber diameter and
membrane permeability [9, 33, 44–46] can be applied to study
the cellular compartment using λC

⊥

(t).
The RPBM depends on 3 parameters: the free-diffusivity D0,

the S/V ratio of all membranes, and the membrane permeability
κ . The RPBM result forD(t) in d= 2 dimensions is given in terms
of D0 and the two auxiliary parameters: the effective “volume
fraction” ζ = (S/V) · (D0/4κ) of the membranes [describing the
net effect of their hindrance relative to D0, as D∞

= D0/(1 +

ζ )], and the time-scale associated with a single membrane,
τ = D0/ (2κ)2 [33]; see Fieremans et al. [45] for the details
of fitting and practical implementation of RPBM. For improved

model precision, D0 ≡ DC
0 here was fixed to

〈

λC
||

(t > 100 ms)
〉

,

Figure 9C. These model parameters are then used to calculate
cellular (fiber) diameter, which can be approximately estimated
as aC = 4/(S/V), which yields aC = 2

√

D0τ/ζ ; and fiber
membrane permeability κC

= D0/(2
√

D0τ ).
The parameters from the RPBM: DC

0 , a
C, and, κC; and

from the S/V limit: DL
0 , and aL, were estimated (i) by

applying the model to every voxel separately, and (ii) averaging
the corresponding DTI eigenvalues across all PZ voxels and
estimating model parameters from this average.

Determination of Structural Exponent and
Fiber Diameter From Histopathology
For an independent validation of the prevailing disorder
geometry, 590 × 590µm samples with 1,440 × 1,440 pixels of
benign stromal tissue in cross-section were selected by a board
certified pathologist. These samples were obtained from radical
prostatectomy of a 72 y/o patient with Gleason Score 4+3, which
were stained with Hematoxylin and eosin (H&E). These samples
were evaluated using the power spectrum approach [9, 43],
determining the power-law behavior Γ

(

k
)∣

∣

k→0 ∼ Akp of the
power spectrum at low wave-vectors k=|k|, by calculating the 2-
dimensional Γ (k) = ρ (−k) ρ(k)/V , where ρ(k) is the Fourier
transform of the intensity of restrictions in the histological image
(Figures 4B–D), and subsequent binning of Γ (k) over 1,200
concentric shells (bins), parametrized by the shell radius k. The
low-k behavior was then characterized by a structural exponent p,
which can take a discrete set of values (cf. text after Equation 4).

From the H&E-stained histology image we needed to produce
the contrast that depicts fiber walls in the cross-section, Figure 4.
The domains with fiber bundles transverse to the histology
slice were identified within a large field of view that contained
many fiber orientations; these fragments of the large image were
subsequently processed to emphasize the cell walls, as we now
describe.

First, the red channel was isolated and filtered by a Gaussian
filter with a smoothing kernel of σ = 5 pixels. The low pass
filter removed salt-and-pepper spatially-uncorrelated noise that
would otherwise interfere with segmentation in the subsequent
steps, but did not have an impact on the low-k (large-distance)
behavior which we were after. Second, K-means clustering
in MATLAB was performed to isolate the three predominant
clusters: extracellular space, intracellular space, and cellular
nuclei. The masks of cellular nuclei and intracellular space were
then combined; the remaining space was deemed mostly related
to the fiber membranes (i.e., everything but cells and their
organelles). The resultingmembranemask was used to determine

Frontiers in Physics | www.frontiersin.org September 2018 | Volume 6 | Article 9181

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lemberskiy et al. Prostate Microstructure via Diffusion-Relaxatometry

FIGURE 9 | Cellular and luminal parameters derived from D(t). (A) The peripheral zone ROI, is overlaid onto a high-resolution T2-weighted image. (B) The probabilistic

fiber tracks, derived from the cellular compartment, are color coded by their terminal endpoints. These tracks were derived from a dyadic tensor across all diffusion

times. (C) Cellular diffusivity, DC0 , (D) cellular fiber diameter, aC, and (E) cellular membrane permeability, κC, were derived from the RPBM applied to the cellular

diffusion tensor. The (F) luminal diffusivity, DL0, (G) luminal diameter, aL, and (H) the luminal diameter, aL
DL0=3

, were derived by applying Equation (2) to the luminal

diffusion tensor. The corresponding histograms under each parameter map, show the range and median (dashed line) of the modeled parameter under the ROI (A)

combining estimates obtained from all volunteers.

the power spectrum Γ (k) as a function of the two-dimensional
Fourier wave vector k. Last, the histological length scale was
determined by calculating ahist = 4V/S, where S/V = l/A.
The area, A, was determined by the total area of the membrane
mask image, and the length, l, was determined by finding the
total number of voxels outlining each cell from the membrane
mask, i.e., counting both faces of each membrane. In the case
of the simulated image with parallel lines, l was multiplied
by 2 to account for the surface on both sides of the unit-
thickness membrane, Figure 4A. With this definition of S/V ,
conventional in the field of porous media, the length scale ahist
would correspond to the size of a square if the membranes were
to be arranged in a perfect square lattice (a checkerboard) within
the fiber cross-section.

Determination of the Luminal Fraction fL
and the Luminal Diameter aL From
Histology
Two larger samples taken again from the radical prostatectomy
of the 72 y/o subject (Figures 10A,B) of benign peripheral zone
were selected containing 1,000 × 1,400 pixels over a field of
view of 2.4 × 3.4 mm2. The lumen were segmented using
K-means clustering with the same approach described in the
previous subsection. The luminal mask was used to determine
the lumen area fraction, fL,A, over 200 × 200 non-overlapping
pixel segments. In order to compare our results with MRI, we
assumed cubic-shaped lumen and estimated the corresponding
luminal volume fraction and the cell volume fraction:

fL,hist = f
3/2
L,A ; fhist = 1− fL,hist. (13)

We note that for lumen of different shape, the right-hand side
of the first formula in Equation (13) would have a non-universal
coefficient∼1. Therefore, our estimates are to be treated as order-
of-magnitude. However, the power law exponent 3/2 in the above

equation is universal, and will prove to be quite important to
match MRI with histology.

To determine the luminal diameter, aLhist, from the histology,
we again, for simplicity and consistency, assume the cubic-
shaped lumen of size aLhist, for which case the perimeter-to-

area ratio l/A = 4/aLhist, or, equivalently, the 3-dimensional

S/V =

3
2 l/A. Hence, we estimate aLhist = 6V/S within each

histology segment, and compare our distributions with MRI-
derived metrics. We can equivalently view this comparison as
that between the 3-dimensional S/V ratios from MRI and from
histology (re-calculated from the 2-dimensional slices).

RESULTS

Relative Contributions of Prostate
Compartments
Increasing TE led to suppression of much of the surrounding
pelvic signal as shown on S|b=0 (TM,TE). Surrounding tissues
which are largely composed of muscle or collagen are completely
dark at TE = 180ms (Figure 5A). Unlike the surrounding
tissues, the prostate retains its signal, particularly around
PZ. Fitting Equation (8) to S|b=0 (TM,TE) reveals a non-
linear surface, dependent on compartment fractions and NMR
relaxation times (Figure 5B). On average, fit R2 > 0.92 for
each subject; however, as with previous studies [23–27], our
dynamic range and SNR limitations led toward larger variance on
estimated TL

2 (Table 1, Figures 5C,D). The range of parameters
derived from Equation (8) indicate that the signal at each
TE are weighted by the cellular compartment differently,
W(TE=52)∼0.9, whereas W(TE=180)∼0.6. Additionally, model
fitting suggests that the volume fraction of the cellular
compartment, f, increases with age as evidenced by the f = [0.91,
0.95, 0.96], which confirms observations from histopathology
[9].

We found a remarkably strong agreement between MRI and
histology-derived f (Figure 10D), where Equation (13) was used
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FIGURE 10 | A comparison of MRI- and histology-derived cellular fraction, f, and luminal diameter, aL. (A,B) Two samples of benign peripheral zone containing 1,000

× 1,400 pixels over a field of view of 2.4 × 3.4 mm2 were segmented using K-means clustering. 200 × 200 non-overlapping pixel segments were sampled from

these masks in order to determine the volume fraction, Equation (13), and surface-to-volume ratio, S/V =

3
2 l/A, which was then used to approximate aL

hist
= 6V/S.

The power-law exponent 3/2 was used to convert the 2-dimensional properties of histology into 3-dimensional units (in order to match the MRI results). This

conversion approximately assumes a 3-dimensional cubic geometry within the luminal compartment (see section Methods). We display histograms the median of

each distribution comparing aL (C) and f (D), derived from MRI and histology. Note that the histograms for MRI results are identical to distributions shown in

Figure 5C, for fMRI, Figure 9G, for aL
MRI

.

to calculate the histological counterpart. The difference between
the medians of the MRI distribution across voxels, and histology
distribution across histology segments is 0.5%. Such degree of
the quantitative agreement may be accidental because of the
∼1 coefficient in Equation (13) for non-cubic glands, as well
as because of comparing young healthy controls (MRI) with
radical prostatectomy (benign area, histology). However, the
order-of-magnitude correspondence between MRI and histology
is reassuring.

Dependence of the Overall D(t) on TE
Mean diffusivity D consistently increased with TE

(Figures 6A,B), revealing the competing effect of cellular
and luminal compartment weighting on the measured diffusion

signal. The difference between D(t) at TE = 52ms and
TE = 180ms appears to grow over the first six time points (25.2–
280ms) (ρ = 0.89, p= 0.016), with D(t = 25.2ms) increasing by
34% and D(t = 280ms) increasing by 59%. However, it begins
to drop at the latest t, (t = 450ms, 51%) and (t = 740ms,
45%). This finding indicates that the degree of separation
between compartments is also confounded by diffusion
time-dependence.

Structural Universality Class and Model
Selection From Diffusion Measurements
First, we consider the time-dependence of the overall D(t).
The volunteer data at each TE was used to determine the
most appropriate choice of tissue specific D(t) model (Table 2).
Linear correlation of mean diffusivity D(t) with various models
is chosen to be the criterion for evaluating the changing
functional form of D(t) with TE. At the shortest TE, all models
representing the long-time limit, Equations (5–7), (ρ > 0.93)
describe D(t) better than the S/V limit, Equation (2) (ρ =

0.92). Overall, the model with ϑ = 1/2, Equation (7),
had the greatest correlation with the overall radial diffusivity
λ
⊥
(t) at TE = 52ms. At longer TE, the correlation with the

S/V limit continued to increase: ρ(TE = 115) = 0.93,
ρ(TE = 180) = 0.96; whereas the correlation with long-
time limit continued to drop precipitously: ρ (TE = 115) ∼ 0.7,
ρ (TE = 180) ∼ 0.6. To summarize, shorter TE is associated
with diffusion through extended disorder, Equation (7), whereas
longer TE is associated with the short-time S/V limit, Equation
(2).

Clinical data from Lemberskiy et al. [17] was acquired with
low TE = 40.4ms, suggesting W=Wc ≥ 0.927. For this reason,
the diffusion-weighted signal was dominated by the cellular
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compartment (Table 2). Given this context, the power law scaling
of the radial diffusivity λ

⊥
(t) can be used to determine the most

appropriate tissue model for (stroma+epithelium). We find that
the power-law approach of λ

⊥
(t) in nearly all ROIs was described

best by the dynamical exponent ϑ = 1/2, Equation (7), again
indicating the extended disorder (Figure 7), with the exception of
D(t) in the Gleason-score 3+4 ROIs, which were best described
by Equation (6). Given the overall agreement of benign and
malignant PZ with Equation (7), it seems appropriate to use the
RPBM to study λ

⊥
(t) in the cellular compartment.

As for TZ, although there is a preference for Equation (7)
in the ROI pertaining to TZ, it is not well described by any
of the established disorder classes: R2 = [0.73, 0.81, 0.87], for
Equations (5–7), respectively. If considered as a long-time limit,
the corresponding ϑ appears to be closer to 0 than to 1/2,
indicating that D(t) in TZ is either (i) highly confounded by
partial volume, or (ii) far from the long-time limit. Alternatively,

comparing D(t) to the short-time S/V limit, Equation (2),
revealed remarkably strong correlation with the model in TZ
(ρ = 0.98).

For the volunteer data, DC
⊥

(t) and DL
⊥

(t) (Figures 6C,D,
8B–I) were best described by extended disorder, Equation (7)
(ρ = 0.963), and the S/V limit, Equation (2) (ρ =0.916),
respectively. This is consistent with the above observation
that shorter TE is associated with extended disorder (where
DC(t) dominates), while longer TE is associated with the S/V
limit, where DL (t) is dominant. Following the conclusion
of extended disorder defining the cellular compartment, we
find that RPBM had better correlation with the cellular λ

⊥
(t)

(ρ = 0.986) than with the luminal λ
⊥
(t) (ρ = 0.551)

(Figure 6D).
Quite remarkably, the 1/t scaling, Equation (5), a hallmark

of either ordered/hyperuniform restrictions, or fully confined
water pools (e.g., impermeable cells), never gives the best
fit. Moreover, the data residuals (Figure 7B) show temporal
structure, which also disfavors this scaling, and with that,
the assumption of assigning compartment non-Gaussianity
(i.e., time-dependence of diffusion) to fully restricted pore(s)
in VERDICT [38] and RSI [39, 65] models. This means
that randomly-placed, permeable and extended membranes,
Figure 4A, rather than the fully restricted compartments, are
most relevant for explaining the diffusion time dependence in
the bulk prostate tissue (excluding lumen), and therefore are also
key for biophysical modeling of non-Gaussian diffusion in its
microstructure.

The DEC-FA based on the calculated diffusion tensor in
each compartment provides a measurement of compartment
anisotropy (Figure 8A). The cellular compartment displays
highly oriented structure, with large regions within PZ colored
in purple, which would be characterized by a mixture of
blue (in-plane/out-plane) and green (up-down) orientation
(Figure 9B). The urethra, which is at the center of the prostate,
is entirely colored in blue (in-plane/out-plane orientation). In
contrast, it is difficult to identify any meaningful structures
from the DEC-FA of the luminal compartment, as both
FA and principal eigenvector ε1 are dominated by noise
(Figure 8A).

Structural Universality Class From
Histology
The power spectra for the restrictions in all of the histological
samples in the cellular compartment converged toward Γ ∼ kp

with exponent p = −1, where the measured p across each
sample was found to be—[1.00, 1.17, 1.01 ± 0.17, 0.14, 0.13]
(Figures 4B–D), indicating that the structure belongs to the
extended-disorder structural universality class. This is consistent
with the low-frequency/long diffusion time dependence in the
stromal cross section being well described by randomly oriented
barriers (RPBM), a representative of this universality class.

Between the 3 cases shown in this publication, the scale
beyond which random barriers become a dominant tissue feature
occur at k = 1/ahist = 1/23.13 ± 1/1.06 µm−1. At the smallest
k (corresponding to distances of the order of the histology cut-
out), statistical fluctuations between the samples are large, and
the power-law scaling becomes noisy.

The dynamical exponent ϑ = 1/2 identified above in λ
⊥
(t)

for the cellular compartment, and the structural exponent p =

−1 in d = 2 dimensions, are in agreement with the relation (4).

Cellular and Luminal Parameters From the
Compartmental D(t)
Luminal Compartment
Fitting of DL

0 (Figure 9F), we find its values sometimes greater
than 3 µm2/ms. In the Supplementary Information we show
that this is consistent with the noise propagation at the relevant
SNR. As the mean of the distribution of DL

0 is quite close to
water diffusion coefficient at the body temperature, this result
reinforces our initial assumption that the luminal compartment
is composed of “lakes” of practically unrestricted water. The
range of luminal diameters, aL, and aL|D0=3 (Figures 9G,H),
overlap with the range of observed diameters anticipated from
histology 300 ± 120µm [14, 15, 30]. However, the lumen
diameter of our healthy controls exceeds that obtained from
histology of radical prostatectomy, aLMRI > aLhist, Figure 10C,
with 65.9% difference between the means of each distribution;
this is consistent with the glandular shrinkage with age. Fixing
DL
0 = 3 µm2/ms does improve the precision of aL|D0=3

over aL (Figure 9H, Supplementary Figure S4). Overall, the
spread in the model parameter estimates seem to come mostly
from the noise rather than from the biological variability (see
Supplementary Information).

Cellular Compartment
Diffusion through the cellular compartment reveals restriction
sizes of aC = 19.79 ± 8.09 µm from diffusion MRI, indicating
a near perfect match with histology reported from Γ

(

k
)∣

∣

k→0.
Although the striking similarity in diameters may to some degree
be a coincidence, our findings indicate that cellular diameters
measured with diffusion were consistent with the length scales
anticipated from the tissue (Figure 4). Moreover, aC varies over
the prostate, where the largest fibers appeared closer toward
the peripheral zone (Figure 9D). The distribution of cellular
permeability (Figure 9E) was close to the permeability of the
red blood cell membrane—perhaps, the most studied permeable
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biological membrane, with permeability between 0.02 and 0.09
µm/ms [66, 67]. On the other hand, voxel-wise and ROI averaged
κC demonstrated substantial similarity, indicating that the range
of possible permeability is much smaller than the range of
possible fiber diameters.

DISCUSSION

Specificity Toward Microstructure Arising
From Dependence on Both t and TE
This study emphasizes the importance of compartment
weighting on modeling prostate diffusion. Although time-
dependence is apparent at individual TE, the functional form
of D(t) for different TE reflects a different mixture of tissue
microstructure (Table 2). This relative compartment weighting
implies that the selection of the most appropriate tissue model
is confounded by TE. Partial volume between cellular and
luminal compartments must be resolved, before modeling
D(t) could reflect tissue specific length scales. For example,
when applying RPBM or S/V limit models to the overall
D(t), the calculated length scale, a = 4/(S/V), increased
with TE. Using compartment weighting to decompose the
diffusion representation into cellular and luminal tensors

reveals a unique contrast as well; the maps of D
C

appear

smooth, whereas the D
L

has higher diffusivity localized
around PZ, a region that is dense with glandular lumen
(Figure 8).

We emphasize that it is the t-dependence, in combinationwith
TE, that helped us identify the relevant microstructural degrees
of freedom, as the time dependence provides the sensitivity
to the cellular-level length scale and the spatial correlations
of the restrictions. Without investigating D(t), one could only
argue that there are 2 compartments with different T2, and that
this has an impact on the diffusivity (Figures 6A,B). Having
identified the relevant degrees of freedom for the compartmental
D(t), we apply specific models to obtain corresponding length
scales and membrane permeability. Good agreement with
existing histopathology [14, 15, 30] for the luminal sizes (300
± 120µm) and myofiber diameters (19.81 ± 1.18)µm, as
well as with previous measurements of T2 volume fractions
(ffast >0.8 and fslow <0.2) [13, 26], points at strong associations
of compartment-specific properties with non-invasive MRI
parameters.

Due to the large differences between cellular and lumen T2

values, this study focused on separation of only these tissue
compartments. In principle, the “cellular” compartment which
had volume fractions >0.9 was a combination of all non-
luminal tissue subtypes. Since our acquisition had merely 3
TE values, modeling more than 2 compartments would be
a challenge. Researchers have shown considerable interest in
studying epithelium and stroma separately [13, 15, 30, 63,
68]. If this experiment were revisited with a denser sampling
of TE, the “cellular” compartment would be expected to
split into more granular components, such as epithelium and
stroma, with potentially different microstructural degrees of
freedom.

RPBM v. Fully Restricted Compartment
(RSI, VERDICT)
Model selection based solely on the goodness of fit is unreliable
[1]. Given how “remarkably unremarkable” [69, 70] the dMRI
signal is, model selection is always a challenge. Here, we
tried to reveal subtle signatures of distinct classes of structural
complexity, by choosing between them on an equal footing,
rather than pre-conditioning ourselves toward a particular
model. For Equations (5–7), the goodness of fit at low TE or in
the cellular compartment were all consistently strong, ρ > 0.9.
If this work were dedicated to an individual model, the strong
correlation would likely give a false sense of security about that
model’s success.

The previous modeling assumption of diffusion being fully
restricted by impermeable barriers is a common one in the
prostate [38, 39, 65], perhaps, because this is the easiest
“nontrivial” model of diffusion, for which exact solutions for
simple geometries (e.g., a spherical pore) have been derived
decades ago [71, 72]. However, a fully restricted compartment’s
asymptotic D(t) behavior, Equation (5), is not preferred by
the goodness-of-fit (neither in volunteers nor in the clinical
population), and, more importantly, shows systematic temporal
structure in the fit residuals, Figure 7. Based on our accumulated
body of evidence, we conclude that the cellular compartment’s
time dependence is dominated by the extended disorder
universality class, Equation (7).

Strictly speaking, the biophysical assumptions of, on the
one hand, the RPBM, and on the other hand, an impermeable
compartment at the heart of RSI and VERDICT, are mutually
exclusive. If the extended disorder and the functional form of
Equation (7) is indeed a correct assumption, fitting a model
based on the asymptotic behavior of Equation (5) (e.g., for
a fixed t by varying b) will yield biased results; moreover,
because of a qualitatively different functional form, the fit
results for VERDICT and RSI will depend on the chosen
range of t and b, reflecting the acquisition/modeling variability
challenge discussed by Novikov et al. [1]. The corresponding
estimated “compartment sizes,” technically speaking, will lose
their meaning.

Because we lumped fibromuscular stroma and epithelium
into a single cellular compartment, in principle there could be
a competition between different power law tails from different
compartments. If, for instance, the epithelium compartment is
described by approximately impermeable cells (VERDICT/RSI
holds there), it will be practically impossible to distinguish its role
in the overall “cellular” diffusivity time dependence as it will be
asymptotically dominated by the smallest exponent ϑ = 1/2,

c1/2 t
−

1
2
+ c1 t

−1
∼ c1/2 t

−

1
2 , t → ∞,

which will overshadow the effect of other compartments.
To understand whether the fully restricted compartment can
play a non-negligible role, one should repeat our analysis
but with N = 3 compartments, provided that the separation
between epithelium and stroma via their T2 values is practically
achievable, and investigate the dynamical exponent of the
epithelium separately.
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The dynamical exponent ½ reveals the extended nature of
the restrictions and their permeability as relevant degrees of
freedom for diffusion in this tissue. Furthermore, we find that
the cellular compartment falls into the same disorder structural
universality class as skeletal muscle. If restrictions in the cellular
compartment are largely dominated by fibromuscular stroma
(smooth muscle), as shown by Bourne et al. [13], then the
strong agreement with Equation (7), which also best describes
skeletal muscle [9, 44–46], should be anticipated. Based on
our permeability estimates, the effective membrane hindrance
parameter ζ ∼ 2.14 ± 1.77 is not very large, indicating that
the membranes are quite leaky, which a posteriori also justifies
neglecting the distinction between intra- and extra-cellular space
in the RPBM. Lastly, the average standard deviation inD

∞
across

all measurements was ∼0.03 µm2/ms, indicating that this is a
highly robust parameter. These consistent findings of a finite
D
∞

are also incompatible [1] with the pictures of stretched-
exponential diffusion signal, and anomalous diffusion in prostate
[73].

Correlating MRI With Histology
In 2012, Bourne et al. [13] presented work that quantified
microscopic diffusion compartmentation using high resolution
MRI on a 16.4 T magnet, with 40 µm isotropic voxels. The
study stated that benign prostate had an extremely small luminal
compartment, with fraction of about 0.03, and a massive
cellular compartment, with fraction of about 0.97. Remarkably,
our estimates (Figure 10) are very close to these values. This
agreement can be expected, since the experiment of Bourne et al.
was directly resolving the three-dimensional volume fractions
of sufficiently large glands. Other publications [27, 63, 74]
correlate histology with MRI findings, which is a challenging
task as histological images are in 2 dimensions whereas MRI
measurements are in 3 dimensions. Sabouri et al. [27] discussed
this challenge and suggests that this difference contributes to
as much as 33% of the mismatch between histology and MRI.
To our knowledge it is for this reason, that no previous MRI
publication has been able to reproduce the volume fractions
obtained from Bourne et al. [13]. In our work, the median
area fraction was fL,A = 0.153 ± 0.119; however the
corresponding median volume fraction estimated via Equation
(13) was fL,Hist = 0.059 ± 0.734. This conversion from
2d to 3d makes the agreement between Bourne et al. [13]
and the results of our histology and MRI experiment very
close (Figure 10). We anticipate that this assumption would
break down as the isotropic 3d geometry of the luminal
compartment may gradually change with the progression of
prostate cancer. The mismatch between histology and MRI for
aL could suggest that the S/V greatly changes with age and/or
noise propagation andmodeling considerations should be refined
in future work (we note, however, that MRI was performed
on healthy controls, while histology was obtained from the
benign area of the radical prostatectomy in a 72 yo patient).
Measurements sampling multiple slices or more sophisticated
modeling approaches should be considered for future histological
comparisons with MRI.

Effect of Intra-Compartmental
Non-Gaussian Diffusion
Previous studies have invoked the concept of multiple
compartments, by empirically separating fast/slow diffusing
water “pools” from an individual voxel [75, 76]. However, the
estimation of the compartment fractions can be easily biased
via higher-order terms in b from an individual compartment
[10, 18]. Fast diffusivity derived from the bi-exponential
model represents well over 40% of the signal in the prostate
[16, 22]. Given that the expected luminal volume fraction is
∼5%, it is clear that compartment fractions derived from the
bi-exponential model cannot be easily linked toward major
tissue compartments: stroma, epithelium, and lumen. A likely
reason for why the bi-exponential model does not reflect any
meaningful familiar tissue properties is that for the prostate
in particular, the assumption of Gaussian compartments was
in-validated by the observation of a time-dependent D(t)
[17, 60]. Fortunately, separating compartments via T2 relaxation
is “orthogonal” (Figure 2) to diffusion acquisition parameters
b and t. This implies that our approach, Equation (1), can be
extended further to include higher order diffusion metrics, such
as kurtosis, in each compartment, by relying on the distinct T2

relaxation properties.
Chatterjee et al. [74] modeled diffusion and T2 relaxometry

together, albeit assigning purely Gaussian diffusion to each of
the distinct compartments. In particular, a compartment with
high diffusivity and long T2 was also assigned to the lumen.
However, the 3d volume fractions estimated in that paper from
MRI were nearly in a 1:1 agreement with the 2d area fractions
from histology. While these results were presented as a validation
of the model, as we already mentioned above, the 3d volume
fractions [13] have been shown to be significantly different from
those measured from 2d histology [27]; in other words, a correct
model should provide the lumen fraction that is notably below
the histological area fraction. Hence, we suggest that the volume
fractions estimated in Chatterjee et al. [74] are notably biased by
the non-negligible effect of time-dependent diffusion resulting
in the non-Gaussianity of the diffusion propagator at higher-b
values employed in the multi-exponential dMRI fit. This strong
effect of higher-order terms in b in each compartment has been
precisely the reason to leave them out in this work, and to rather
remain at the level of DTI.

Our multi-parametric acquisition revealed TE as a meaningful
filter to separate cellular and luminal diffusivity. TE compartment
weighting affecting ADC measurements in the prostate has
been shown previously [77]; however, the connection to the bi-
exponential T2 was not established in that publication. A recent
study explored the effect of TE and t on the prostate diffusion
signal ex-vivo [60], by varying both TE and t simultaneously.
The effect of TE dependence was minimal on that dataset as the
monotonically decreasing diffusion coefficient began to increase
only at the longest t and TE. Outside of prostate applications, the
value of varying TE to study diffusion to stabilize model fitting
was recently demonstrated in the brain [78, 79].

Given the appropriate range of TE, estimating the NMR
relaxation times via S|b=0 (TM,TE) was fairly simple, i.e., we
did not need to employ constraints or priors to produce robust
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estimates of f, TC
2 ,T

L
2 . The fitting was simple mainly due to

the large separation of compartmental T2 values. However, it is
well established that T2 becomes shorter with increasing field
strength [80]. By extension, this will have an impact on diffusion
measurements: the diffusion coefficient in the brain between
1.5 and 3T systems has been reported to have a variance of
∼7% [81].

Compartmental Anisotropy
Since the cellular compartment was found to be within
the long-time limit, it is possible to derive a meaningful
interpretation of the diffusion tensor orientation. Fiber tracking
could be performed on this compartment to characterize tissue
anisotropy in 3-dimensions. Many areas do not display any track
information, which could mean that (1) the fiber orientation was
incoherent, as an example, Figure 1A shows a histological cross
section with axial and perpendicular stromal cross-sections, or
(2) the dataset was unable to resolve meaningful tracts. This
could be expected as prostate imaging is vulnerable to motion
and distortion artifacts. While the rigid motion correction and
the Siemens static distortion correction [51] have been very
useful for the experiment, the image quality is still imperfect
(Figures 8B–I). For this reason, the only fiber tracks shown
are the ones that were generated with high confidence. The
luminal compartment is far from the long-time limit, and thus
no consistent orientation information is apparent (Figure 8A).
This finding serves as additional confirmation that the luminal
compartment for our volunteer data is indeed within the
S/V limit. Note that lumen may as well be anisotropic (at
sufficiently large length scales), but our acquisition would only
become sensitive to this anisotropy at prohibitively long t in
healthy subjects. The applicability of the S/V limit to the lumen
compartment is expected to change in patient populations as
glandular lumen shrinks with increasing tumor grade [15, 82]. At
higher tumor grade, characterization of orientation dependence
in both the cellular and gland compartments may become
feasible.

Perfusion/IVIM as a Possible Confounding
Factor
At low b-values, the signal dependence on b is sensitive to
incoherent or multi-directional flow, attributed to a vascular
compartment. Perfusion has been studied in the context of
prostate cancer through the intra-vascular incoherent motion
(IVIM) [20, 83], e.g., incorporated in the VERDICT parameter
estimation scheme [20, 38]. However, in a recent paper, Merisaari
et al. [20] performed a diffusion acquisition that has been
optimized for measuring perfusion: b= 0, 2, 4, 6, 9, 12, 14, 18, 23,
28, 50, 100, 300, 500 s/mm2. After comparing multiple models
using Akaike Information Criterion, the mono-exponential
model prevailed as the best representation of diffusion in the
prostate over b = 0–500 s/mm2 (same range as our study).
Remarkably, an acquisition with 14 b-values in the optimal range
was insufficient for IVIM parameters to outperform the mono-
exponential diffusion. Given this finding, we doubt that perfusion
would bias our results in any meaningful capacity.

As a counter-argument, one may point toward the ∼10%
vascular fraction, fvasc, estimated by the VERDICT model [84].
Let us now argue that this apparent vascular compartment
(characterized by high diffusivity) could rather be assigned to
the luminal water. For that, we recall that VERDICT models
the IVIM compartment not by the signal’s phase eiqvt averaged
over the directions of flow velocity v, but rather via a collection
of “sticks” (i.e., cylinders with zero radius) in direction n with
longitudinal effective diffusion coefficient P. For the prostate, the
sticks are considered to be uniformly oriented within a voxel,
such that a signal in the gradient direction g averaged over sticks’
orientations

Svasc
(

b, g
)

= 〈e−bP(gn)
2

〉n = 1−
bP

3
+ O

(

b2
)

= e−bD
∗

+O(b2),

D
∗

=

P

3

looks like an isotropic diffusion signal with an effective diffusion
coefficient D

∗

= P
〈

cos2 θ
〉

= P/3. To improve the precision for
the prostate, the intrinsic diffusivity of the vascular compartment
was fixed to P = 8 µm2/ms [84]; the values for P were
previously estimated to range between 7 and 12 µm2/ms [38].
Hence, the effective diffusivity value for the vascular VERDICT
compartment is D

∗

=

8
3 µm2/ms. Remarkably, D

∗

and

fvasc from VERDICT are quite similar to our D
L
(free water

value) and f L. Hence, VERDICT seems to be attributing the
luminal contribution to the vascular compartment. If this is the
case, VERDICT’s fvasc encapsulates both vascular and luminal
contributions. Since luminal fraction [27] is much larger than
the vascular fraction [85], then fvasc ≈ fL, especially in the
view of the shorter T2 of the blood than of the luminal water
(T2 ≈180ms for the oxygenated blood at 3T and even shorter
for the deoxygenated blood [86, 87]). This suggests that the
luminal contribution should dominate the vascular one in the
high-diffusivity compartment.

Localization Regime as a Possible Future
Avenue for Model Validation and
Parameter Estimation
Since the diffusion gradient G was not fixed with t, the
diffusion weighting could be confounded by spatially variable
spin dephasing (with the signal suppressed less next to, e.g.,
lumen walls), which is an interesting albeit orthogonal avenue
of microstructure investigation [88–90]. In the case of luminal
diffusivities, D = 3 µm2/ms, the localization length in our
experiment increased together with t, because of the decreasing
gradient: LG = (D/γG)1/3 = [5.83, 6.36, 6.93, 7.54, 8.22,
8.90, 9.64, 10.48] µm; the diffusion length LD =

√

Dδ =

4.47µmwas fixed. This indicates that our experiment was always
performed in the “free-diffusion” regime [91] (LG > LD),
where the “localization regime” near the walls has a relatively
weak contribution toward echo decay. However, we emphasize
that LG and LD are fairly close to each other; therefore, we
in principle can have the choice of selecting for the free
diffusion regime or the localization regime. In practice, the
localization regime could be probed by varying G while setting
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δ ∼ t, or by varying δ, with relatively high G, such that
LD > LG.

Limitations
The study had some notable limitations that should be
addressed in future research. From a theoretical perspective,
we did not investigate diffusion kurtosis or higher-order terms
in q-space. For a finite b, this may cause potential bias
for estimated DC and DL (see Supplementary Information).
Supplementary Figure S3 shows that higher-order terms may
affect diffusion estimates, but does not alter the functional
form of D(t) or the conclusions regarding model selection
(Supplementary Table S2). This modeling limitation will be
revisited in later works.

This volunteer data experiments employed only 3 TE values.
More TE values potentially would enable to become sensitive
to different compartments of the bulk tissue (such as stroma
vs. epithelium), and produce more precise measurements,
which will be investigated in future work. The patient data
was not acquired with multiple TE; for this reason, model
selection on D(t) was confounded by the luminal compartment.
However, since the clinical dataset was acquired with smaller
TE, coupled with the fact that the luminal compartment
shrinks with age, we made the assumption that the signal
contribution from lumen did not impact model selection too
much.

Due to the acquisition length, nearly 1 h, the volunteer could
move a great deal. We were able to address most of the motion
using rigid registration, but there is still room for improvement as
registration was impacted by SNR limitations, particularly at long
TM and TE. Alternative coil designs and removing noise through
data redundancy [50, 92] may alleviate concerns regarding SNR.
As for the scan time, many cutting edge acceleration techniques
such as parallel imaging and multiband, were already used in
this experiment. Reducing the acquisition time any further would
require a novel acquisition approach, similar to Sabouri et al. [26].

Finally, our histological validation had the following
confounds. Although a histological image is two dimensional,
a 1:1 cross section of fibromuscular stroma representing 2-
dimensional diffusion may be difficult to find. Even in the
samples that were selected, there is inevitably some degree of
orientation dispersion that confounds Γ (k). Lastly, the H&E is
not a faithful representation of restrictions to water diffusion.
For example, heavily stained structures such as cellular nuclei
are prominent on H&E, but are unlikely to be the primary
sources of restriction to D

⊥
(t). The histological images had to be

segmented to emphasize the borders of the cell walls, providing
a more faithful representation of tissue diffusion. Nonetheless,
we were reassured that the length scale beyond which the 1/k
scaling is valid, estimated to be about 20µm from histology,
Figures 4A–D, is quite close to the length scale estimated from
applying the RPBM onto DC

⊥

(t), aC∼20µm.

Clinical Implications
According to the National Cancer Institute, roughly 11.6% of
men will be diagnosed with prostate cancer (PC) within their

lifetime. It is the second most common cancer among men in
the United States and represents nearly 9.6% of all new cancers
[93]. An estimated 26,730 individuals will die from PC in 2017;
however, this represents less than 1% of the 3,085,209 individuals
living with PC.

Given the indolent nature of most cases, it is valuable
to be able to properly identify tumor grade before pursuing
radical prostatectomy (RP). While RP entails complete surgical
removal of the prostate and is effective for preventing disease
progression in patients with high-grade disease, the operation
is associated with considerable morbidity including erectile
dysfunction and incontinence [94]. In order to maintain quality
of life, there is increasing use of active surveillance (AS) for
managing patients with low-risk PC. Traditionally, AS involves
serial biopsies and measurements of serum prostate specific
antigen (PSA), with any evidence of PC progression on such
testing resulting in RP [95, 96]. The biopsy specimens are
interpreted using the Gleason Score, which remains the gold
standard for PC grading [97–100]. However, a primary challenge
relates to incomplete sampling during biopsy [101–104], such
that there may be a lack of confidence in low-risk biopsy
results.

Diffusion MRI is actively used as a biomarker aiding in
AS [12]. The sequence has a key role in identifying regions
suspicious for clinically significant PC that can be confirmed
via targeted biopsy. The so-called apparent diffusion coefficient
(ADC) is utilized through a single b, t, and TE measurement.
Much of the imaging and clinical community interprets ADC
as a biomarker of “cellularity.” This association with cellularity
relied on studies observing a strong correlation between cell
density and ADC [105–107]. A more recent study recognized
that the representation described earlier is insufficient and that
changes in epithelium, stroma, and lumen volume fractions
correlate more strongly with prostate ADC values than the
cellularity [63]. This study offered histological validation that
diffusion MRI is actually more sensitive to changes in prostate
tissue microstructure rather than to changes in cell density. Our
study builds upon this observed correlation with prostate tissue
microstructure by modeling individual features that make up
the prostate signal, rather than a vague concept of an aggregate
cellularity. Our work suggests that the dMRI signal is specific
to the individual underlying microarchitecture of distinct tissue
types.

It has not escaped our notice that specific microstructural
degrees of freedom, such as compartment fractions, luminal
diameter, fiber diameter, and cell membrane permeability,
identified by our physics-inspired model selection strategy, may
serve as a foundation for objective cellular-level assessment
of tumor grade and of treatment efficacy. Furthermore, our
acquisition and parameter estimation is quite modest from
a hardware perspective. For example, our choice of b does
not require high imaging gradients, which implies that this
approach can be easily ported toward lower-end scanners.
Though we employed DTI for our images, our acquisition
and modeling approach may be further simplified: e.g., if
clinicians are mainly interested in lumen diameters, the
acquisition may be accelerated even further by only studying
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the isotropic mean diffusion coefficient D(t) derived from 3
orthogonal directions, without the need to estimate the full
tensor.

CONCLUSIONS

This study identified basic building blocks for a physical picture
of water diffusion in prostate tissue microstructure, relevant for
in vivo diffusion MRI measurements in humans. We showed
that both diffusion and transverse NMR relaxation is comprised
of at least two biophysically distinct contributions, which we
attribute to glandular lumen (long T2 and fast diffusion), and
tissue, such as stroma, with short T2 and heavily restricted
anisotropic diffusion. In both compartments, the diffusion is
time-dependent, and therefore, non-Gaussian. For the luminal
compartment, diffusion appears to be in the short-time S/V
limit, affected by the initial restrictions by lumen walls; the
corresponding time-dependent diffusion coefficient yields typical
prostate lumen diameters. In the tissue compartment, diffusion
is anisotropic, with the transverse diffusivity strongly decreasing
with diffusion time. Its dynamical exponent reveals that the
restrictions are permeable, and fall into the universality class
of random permeable barriers in two spatial dimensions,
most likely corresponding to the stroma fiber walls in cross-
section. Applying the RPBM, we derive the fiber diameter
and membrane permeability, which have good agreement with
histopathology from literature and from our quantification of
radical prostatectomy specimen. Our approach offers a number

of objective cellular-level tissue structure parameters as candidate
markers for the non-invasive diagnosis and staging of prostate
cancer with MRI.
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Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor

imaging (DTI) technique. DKI takes into account leading deviations from Gaussian

diffusion stemming from a number of effects related to the microarchitecture and

compartmentalization in biological tissues. DKI therefore offers increased sensitivity to

subtle microstructural alterations over conventional diffusion imaging such as DTI, as

has been demonstrated in numerous reports. For this reason, interest in routine clinical

application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI,

recent work by our group has focused on developing experimentally fast and robust

estimates of DKI metrics. A significant increase in speed is made possible by a reduction

in data demand achieved through rigorous analysis of the relation between the DKI signal

and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or

19 images for DKI parameter estimation compared to more than 60 for the most modest

DKI protocols applied today. Closed form solutions also ensure rapid calculation of most

DKI metrics. Some parameters can even be reconstructed in real time, which may be

valuable in the clinic. The fast techniques are based on conventional diffusion sequences

and are therefore easily implemented on almost any clinical system, in contrast to a

range of other recently proposed advanced diffusion techniques. In addition to its general

applicability, this also ensures that any acceleration achieved in conventional DKI through

sequence or hardware optimization will also translate directly to fast DKI acquisitions. In

this review, we recapitulate the theoretical basis for the fast kurtosis techniques and

their relation to conventional DKI. We then discuss the currently available variants of

the fast kurtosis techniques, their strengths and weaknesses, as well as their respective

realms of application. These range from whole body applications to methods mostly

suited for spinal cord or peripheral nerve, and analysis specific to brain white matter.

Having covered these technical aspects, we proceed to review the fast kurtosis literature

including validation studies, organ specific optimization studies and results from clinical

applications.
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INTRODUCTION

Microstructural sensitivity in MRI is most often obtained by
sensitizing the signal to the diffusion of water. In combination
with modeling, such data can yield specific microstructural
markers, but the data required to support such modeling is often
prohibitive in particular in a clinical context. A less data intense
strategy to obtain microstructural sensitivity in diffusion MRI
(dMRI) is the diffusion kurtosis imaging (DKI) framework [1]
which quantifies the leading deviation from Gaussian diffusion
in each image point. This deviation arises from the influence of
tissue microstructure on the water diffusion profile and is easily
visualized by plotting the log signal as function of b-value. This
is done in Figure 1 using data acquired along one direction in a
white matter region in normal human brain (circles). Here the
familiar log-linear signal decay is seen up to b ≈ 1 ms/µm2,
below which a diffusion tensor fit (solid red line) approximates
the signal very well. Extrapolation of this fit beyond b ≈ 1
ms/µm2 (dashed red line), however, clearly does not match
the observed signal. Conversely, the DKI fit (solid green line)
is seen to approximate the measured signal over the entire b-
value range shown, although it will diverge at sufficiently high
b-values. DKI thus allows quantification of the deviation from
log-linear signal decay caused by tissue microarchitecture and
compartmentalization. This deviation thereby indirectly provides
information about these tissue properties.

Compared to most other advanced dMRI techniques, DKI is
easily implemented. For this reason, and because of its increased
sensitivity to tissue microstructure compared to diffusion tensor
imaging (DTI), DKI has grown to be a popular dMRI method.
Nevertheless, DKI is not experimentally inexpensive, as typical
protocols consist of a few unweighted images for normalization
and two 30-direction shells at two non-zero b-values (typically 1.0
ms/µm2 and 2.0–2.5 ms/µm2) thus totaling 60–70 images [2].
This is current standard, although more data intense protocols
are not uncommon [3]. While most DKI protocols are too
lengthy for everyday clinical use, high quality data can be
acquired in a time frame considered reasonable for many clinical
and preclinical studies. Even so, the time required for post-
processing of DKI is significant, and both acquisition time and
data processing time limit its clinical application, especially in
patients with time sensitive ailments (e.g., stroke or trauma), or
patients with difficulties lying still, e.g., children.

The DKI method yields a wealth of parameters that can
be mapped on a voxel by voxel basis. Several of these DKI
metrics have been shown to detect subtle changes in brain tissue
structure. To briefly summarize, studies have shown DKI to have
potential in diagnostics of a number of diseases such as stroke
[4, 5], Alzheimer’s disease [6], multiple sclerosis [7], gliomas
[8, 9], and head trauma [10–12] (see also the review of this area
in Ostergaard et al. [13]). DKI is not only of clinical interest but
is also a valuable tool in basic neuroscience, and the method
has for example been employed in studies of natural alteration
of brain microstructure e.g., in the context of development and
aging [14, 15].

DKI is sensitive to microstructure generally, and therefore in
brain it can be used to study both gray matter (GM) and white

FIGURE 1 | Diffusion MRI data (circles) from a white matter region in human

brain acquired along one direction over the b-value range from 0 to 3 ms/µm2.

Fits obtained with DTI (solid red line, b = 0–1 ms/µm2) and DKI (green line, all

b-values) are shown. The signal deviation from the DTI signal prediction is

illustrated by extrapolating the DTI fit (the dashed red line) into the DKI regime

(b > 1 ms/µm2 ). Conversely, the DKI fit is seen to approximate the signal very

well.

matter (WM). However, in WM, DKI can be combined with
modeling to obtain some of the biophysical specificity of more
advanced dMRI modeling frameworks. One important example
of this is the white matter tract integrity (WMTI) technique
[2] which on the basis of a DKI data set provides detailed
information aboutmicrostructure of highly aligned fiber bundles,
such as intra- and extra-axonal diffusivities, axonal water fraction
(AWF), and the tortuosity, α, of the extra-axonal space.

Like DKI, WMTI has also been used to study the brain
in a wide range of contexts: normal brain development and
aging [16, 17], Alzheimer’s disease [18, 19], mild head trauma
[20], multiple sclerosis [21], autism [22], and stroke [4].
Validation studies comparing WMTI indices to histology and
electron microscopy [23–26] have largely confirmed the ability
of WMTI to detect microstructural changes in WM. While other
frameworks for DKI-based estimation of tissuemodel parameters
have been proposed [27, 28], a recent comparative study showed
WMTI to be the most widely applicable [27].

While WMTI was developed specifically for analysis of WM,
the DKI framework itself is almost without assumptions and
its applications are therefore not limited to brain imaging.
Consequently, interest in DKI for body imaging is growing [29]
with demonstrated applications in imaging of liver [30, 31],
kidney [32, 33], and prostate [34–36].

This short survey of the DKI literature documents the high
potential of DKI as a method to obtain sensitive markers
suitable for basic research (e.g., for the study of brain plasticity),
diagnostics and treatment monitoring. However, widespread
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clinical application of DKI and WMTI has yet to emerge. Two
major limitations that are most likely responsible for DKI not
being routinely used in the clinic have already been identified:
acquisition time and post-processing time. Lowering both of
these barriers has therefore been an important goal as methods
for fast DKI and WMTI would not only increase the clinical
applicability of DKI and WMTI, but also make possible more
widespread, routine exploration of DKI metrics by allowing
inclusion of DKI, at little additional cost, as a component of any
protocol for imaging of the brain or other organs. Furthermore,
such methods would facilitate high resolution preclinical studies
for characterization of animal models of disease or for validation
studies.

Here we review recent developments enabling fast kurtosis
imaging based on small data sets (13 or 19 images) and with
near-instant post-processing [37–42]. The review is structured
such that first the theoretical foundation of DKI and WMTI is
recapitulated briefly. For a more in-depth review of conventional
DKI we refer to Jensen and Helpern [43], Wu and Cheung
[44]. On this basis we then introduce the rapidly obtainable
DKI metrics used in fast kurtosis and discuss their relation
to conventional DKI definitions. Since a few variants of fast
kurtosis have been introduced we cover all of them and their
various area of application. Having covered the methodological
background we review the literature of fast DKI application
studies and discuss current efforts for method refinement and
potential future applications. All data shown was reused from the
cited papers from our group. The presented non-human data was
acquired at 9.4T (except from Figure 8, acquired at 16.4T) while
human brain data was acquired in normal volunteers at 3T. We
refer to the original publications for details on data acquisition
and analysis.

DIFFUSION KURTOSIS IMAGING
VARIANTS

Conventional DKI
The standard expression for the DKI signal is [1]:

log S(b, n̂)/S0 = −bninjDij +
1

6
b2D

2
ninjnknlWijkl + O(b3)

= −bD(n̂)+
1

6
b2D

2
W(n̂)+ O(b3) (2.1.1)

= −bD(n̂)+
1

6
b2D(n̂)2K(n̂)+ O(b3)

Here S0 = S(b = 0) is the unweighted signal used for normali-
zation and b is the diffusion weighting applied along a direction
n̂ =

(

nx, ny, nz
)

. The normalized signal is denoted S from here
on. Throughout, subscripts label Cartesian components (e.g., i=
x,y,z) and summation over repeated indices is assumed. D is the
diffusion tensor [45], and the kurtosis tensor W and the apparent
excess kurtosis K(n̂) are defined as in Jensen et al. [1]. Overbar
denotes mean value over diffusion directions, i.e., D = Tr(D)/3
is the mean diffusivity (Tr is the trace).

In the DKI analysis, the tensors D and W are estimated
by fitting Equation (2.1.1) to data acquired as described above

(with b-values sufficiently low so that the O(b3) terms can be
neglected and satisfying b ≤ 3/D(n̂)K(n̂) [46] so that the
DKI signal model Equation (2.1.1) does not diverge). From these
tensors, a wealth of metrics is available. For the diffusion tensor,
the most important metrics are D, fractional anisotropy (FA)
and radial and axial diffusivities. To obtain these, the diffusion
tensor is diagonalized to yield three pairs of eigenvectors v̂i and
eigenvalues λi (i = 1, 2, 3). The eigenvalues (diffusivities) are
sorted by size so that the primary eigenvector (v̂1) indicates the
direction of highest diffusivity (λ1), etc. The axial diffusivity is
then D

||
= λ1 and radial diffusivity is D

⊥
= (λ2 + λ3) /2.

The anisotropy of D is summarized by the FA due to Basser and
Pierpaoli [47]:

FA =

√

3

2

√

(

λ1 − D
)2

+

(

λ2 − D
)2

+

(

λ3 − D
)2

√

λ21 + λ22 + λ23

=

√

3

2

∥

∥D−DI
∥

∥

‖D‖
, (2.1.2)

where the double vertical bars ‖·‖ denote the Frobenius norm
and I is the rank-2 identity matrix. From the kurtosis tensor,
summary metrics can also be derived, the most important
parameter being the mean kurtosis (MK, K) [1]:

K =

1

4π

∫

S2

K(n̂)dn̂ =

1

4π

∫

S2

W(n̂)
D
2

D(n̂)2
dn̂ (2.1.3)

Other meaningful parameters can be extracted from the
kurtosis tensor. Similar to the directional diffusivities, the
kurtoses observed along (||) and orthogonal (⊥) to the primary
eigenvector direction have been introduced [3, 43, 48, 49]:

K
||
= K(v̂1) (2.1.4)

K
⊥

≡

1

2π

∫

S2

dn̂ δ(n̂ · v̂1)K(n̂)

=

1

2π

∫ 2π

0
dϕK(v̂2 cosϕ + v̂3 sinϕ)

where S2 is the sphere. These are known respectively as
(conventional) radial and axial kurtosis. Note that in contrast
to their diffusion tensor counterparts, they are not strictly
rotationally invariant. The reason for this behavior is that in
orthogonal fiber bundle crossings the diffusion eigenvalues may
be degenerate (i.e., for such a 3D fiber arrangement there is no
primary fiber direction and the diffusion tensor is isotropic) while
the apparent kurtosis can differ among the fiber directions due to
microstructural differences in the bundles [42]. Consequently, in
this thought-experiment noise will determine which eigenvector
will be deemed the primary direction thus causing the estimated
directional kurtosis values to vary between measurements. While
such fiber configurations are most likely rare this property
should nevertheless be kept in mind when employing directional
kurtosis metrics. Other definitions have been proposed and
the fast DKI counterparts rely on other definitions than those
presented in Equations (2.1.3) and (2.1.4). These will be discussed
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in Sections “Fast estimation of mean diffusivity and mean
kurtosis”, “Fast kurtosis estimation with increased experimental
robustness” and, “Axisymmetric DKI”.

In addition to the raw tensor metrics, D and W can also
provide metrics of white matter tract integrity (WMTI) based
on modeling described in Fieremans et al. [2]. The assumptions
and modeling choices that make estimation of these WMmetrics
possible are covered in the following section.

White Matter Tract Integrity from DKI
WMTI uses the estimated tensors D and W to estimate the (MR
detectable) axonal water fraction, and several compartmental
diffusivities. This analysis exploits the relation between the
tensors D and W and the WMTI parameters found by the
cumulant expansion of the expression for the dMRI signal from
a two-compartment system consisting of the extra-axonal space
(EAS) and an intra-axonal space (IAS) described as sticks with an
effective radius of zero, which is valid for the gradients employed
in acquiring typical clinical diffusion data. Diffusion in both the
EAS and the IAS is approximated with anisotropic Gaussian
diffusion, and because of the latter, the analysis is restricted
to areas of highly aligned WM. Water exchange is assumed to
be negligible over the experimental time window, and myelin
water is assumed not to contribute because of its large value of
TE/T2. A limited amount of dispersion of axons within the WM
bundle does not violate the Gaussian intra-axonal assumption,
but implies that the intra-axonal diffusion tensor has three non-
vanishing eigenvalues [2]. With these assumptions, the signal
expression for this two-compartment system becomes:

S(b, n̂) = f exp(−bn̂TDan̂)+ (1− f ) exp(−bn̂TDen̂) (2.2.1)

where f is the axonal water fraction (AWF from here on), Da

and De are the diffusion tensors belonging to the IAS and EAS
respectively. The form of these tensors is:

Da =





Da3 0 0
0 Da2 0
0 0 Da1



 , De =





De3 0 0
0 De2 0
0 0 De1



 (2.2.2)

where subscript numbers label the eigenvalues by magnitude in
descending order, implying that here the primary direction is
ẑ . From the cumulant expansion of this model, the measured
diffusion and kurtosis tensors D andW can be expressed in terms
of the model parameters. In this manner, the otherwise unspecific
DKI parameters yield approximations for specific biophysical
parameters: the AWF, IAS diffusivity (Da = Tr(Da)), parallel and
radial EAS diffusivities (De,|| = De,1 and De,⊥ = (De2 + De3) /2),
and the EAS tortuosity (α = De,||/De,⊥). Notably, the estimates
are only approximate, as the diffusion and kurtosis tensors
in principle do not supply sufficient information to estimate
all diffusivities and the axonal volume fraction because of the
confounding factors of axonal dispersion [50]. Additionally,
kurtosis based estimation of compartmental diffusivities yields
two solutions. This arises because the kurtosis is related to
the variance (“mean of square minus square of mean”) over
diffusivities [43] causing the square root to enter the analysis.

FIGURE 2 | Schematic representation of a white matter fiber bundle and its

biophysical properties accessible with the WMTI analysis framework.

For this reason, WMTI furthermore relies on the assumption
that intra-axonal diffusivity Da1 is smaller than extra-axonal
diffusivity De1 as argued in Fieremans et al. [2]. Figure 2

shows a schematic of this representation of a WM bundle
and the biophysical properties that may be estimated from
WMTI analysis. For further details on derivations and modeling
assumptions, the reader is referred to the original WMTI papers
[2, 51].

Fast Estimation of Mean Diffusivity and
Mean Kurtosis
The ability to rapidly estimatemean diffusivity andmean kurtosis
from only 13 images was presented in Hansen et al. [39, 40]. In
order to achieve this, a mean kurtosis definition was introduced
(W) which differs from the definition in Equation (2.1.3),
namely:

W =

1

4π

∫

S2

dn̂W(n̂)

=

1

5
Tr(W) (2.3.1)

=

1

5
(Wxxxx +Wyyyy +Wzzzz + 2Wxxyy + 2Wxxzz + 2Wyyzz)

This definition differs from the conventional MK definition in
Equation (2.1.3) in that it is based on the spherical average of the
apparent tensor kurtosisW(n̂):

W(n̂) = K(n̂)
D(n̂)2

D
2 , (2.3.2)

instead of K(n̂). For this reason we also refer toW as the mean of
the kurtosis tensor (MKT). This definition is compactly written
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FIGURE 3 | The nine encoding directions required for fast DKI illustrated as

unit vectors. The directions are listed explicitly in Table 1.

as one fifth of the trace (Tr) of the kurtosis tensor W. The factor
of one fifth stems from the spherical average [52]:

1

4π

∫

S2

dn̂ ninjnknl =
1

15
(δijδkl + δikδjl + δilδjk) ≡

1

5
Iijkl

(2.3.3)

where I is the fully symmetric isotropic rank 4 tensor [53]. Hence,
W represents the isotropic part of the kurtosis tensor [39]. The
advantage of this mean kurtosis definition is apparent from the
last line in Equation (2.3.1) which states that W is proportional
to a linear combination of six tensor elements, and this linear
combination can be obtained frommeasurements without fitting
to the data. For the measurements, the “pure” tensor elements
(Wiiii) can be probed directly, whereas the mixed elements
(Wiijj , i 6= j) requires the combination of two directions for
each to cancel cross terms, see Hansen et al. [39] for details.
Therefore, a total of nine directions is needed to calculate W.
These directions are illustrated in Figure 3, where it is readily
seen that this encoding scheme does not sample the sphere very
efficiently; the high estimation quality obtained with this scheme
rests entirely on the relations introduced shortly. The directions
are also listed in Table 1 which also defines the notation used in
the following equations.

For data acquired along these directions (i = 1,2,3) the
following holds [39]:

1

15

(

3
∑

i=1

log S(b, n̂(i))+ 2
3
∑

i=1

log S(b, n̂(i+))+ 2
3
∑

i=1

log S(b, n̂(i−))

)

= −bD+

1

6
b2D

2
W (2.3.4)

With an independent estimate of D, Equation (2.3.4) allows
estimation of W without data fitting, thus eliminating both

TABLE 1 | The nine directions in the compact notation (leftmost column) used in

the manuscript and stated as normalized vectors.

Direction x-component y-component z-component

n̂(1) 1 0 0

n̂(1+) 0 1/
√

2 1/
√

2

n̂(1−) 0 1/
√

2 −1/
√

2

n̂(2) 0 1 0

n̂(2+) 1/
√

2 0 1/
√

2

n̂(2−) 1/
√

2 0 −1/
√

2

n̂(3) 0 0 1

n̂(3+) 1/
√

2 1/
√

2 0

n̂(3−) 1/
√

2 −1/
√

2 0

the time consuming post-processing and the pitfalls associated
with it [54–56]. The mean diffusivity D can be estimated from
data acquired along three orthogonal directions at a single b-
value (and b = 0), but is improved by taking into account the
kurtosis term in the analysis [57], which can be done if the 3
directions are acquired also at a second higher b-value shell.
In this manner a closed form solution for D [58] is obtained
taking into account the directional kurtosis for high fidelity
estimation [57]. The strategy proposed in Hansen et al. [39]
thus implements the estimation of D based on data acquired at
an intermediate b-value along the three main directions, n̂(1),
n̂(2) and n̂(3), which are already contained in the nine directions
in Table 1. Thus, the “1-3-9 approach” for fast estimation of
D and W is to acquire one b=0 image, 3 images at b1 =1.0
ms/ µm2 along the x,y,z directions (n̂(i), i = 1,2,3), and nine
images acquired at b2 = 2.5 ms/µm2 along the directions listed
in Table 1.

The scaling factor of D(n̂)2/D
2
in Equation (2.3.2) generally

depends on direction and as such will affect the spherical average
so that K = W only for isotropic systems. From the definitions
therefore, K and W are expected to deviate the most in highly
anisotropic tissue. It is natural therefore to evaluate whether the
rapidly obtainable tensor based mean kurtosis (W) offers similar
contrast to the conventional MK. This is illustrated in Figure 4

which shows typical DTI and DKI parameters mapped in fixed
rat brain at an in-plane resolution of 100 µm x 100 µm to
allow contrast comparison in specific brain regions such as the
subfields of the hippocampus. Overall, the parameters can be seen
to provide vastly different contrast, except for K and W which
are seen to be almost indistinguishable although a few blank
pixels are seen in the W map due to noise (see also comments
on preprocessing below). The level of agreement between K and
W presented in Figure 4 has been quantified (linear correlations
exceed 0.9 in most cases but will depend on the data foundation)
and demonstrated in both fixed and live brain in a number of
studies [59–61] and also in fixed kidney [62]. In the diseased
brain, the 1-3-9 method has been validated in an animal model
of stroke [63, 64] and was found to yield diffusion and kurtosis
lesions in good agreement with conventional DKI. Similarly,
strong correlations between the diffusion-kurtosis stroke lesion
mismatch obtained from 1-3-9 and conventional DKI was shown
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FIGURE 4 | Example maps of typical DTI and DKI parameters in fixed rat brain. The two mean kurtosis definitions are shown and seen to provide similar contrast.

Figure adapted from Hansen and Jespersen [37] with permission.

FIGURE 5 | Examples of estimates of mean diffusivity (Top) and W (Bottom). In each row estimates were obtained (left to right) from a large DKI data set, a 1-3-9

acquisition, and a 1-9-9 data set. Figure adapted from Hansen et al. [41] with permission.

[63]. Additionally, W was found to be the most sensitive
parameter for revealing acute ischemic injury in an analysis also
including axial and radial kurtosis [64]. This is important because
W can be reconstructed almost instantly once acquisition is
complete, making this most sensitive parameter immediately
available e.g., for clinical decision making. In the same study

[64], the contrast to noise ratio (CNR) of W estimated from fast
DKI was found to be significantly higher than for conventional
DKI. Importantly, the fast DKI CNR efficiency (CNR per unit
scan time) was shown to be twice that of conventional DKI.
The authors conclude that the fast kurtosis method captures
heterogeneous diffusion and kurtosis lesions in acute ischemic
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stroke, and thus is suitable for translational applications. The
rapidly obtainable W is therefore by now established as a
biomarker offering the same information as the conventional
K in normal tissue and stroked brain. Strictly speaking, the
methods await similar validation in other pathologies but W is
now recognized as an independent marker and not merely a
rapidly obtainable surrogate for K. Recent clinical studies have
employed the 1-3-9 method for glioma grading [65], for studying
the effect of crack cocaine addiction [66], and in mild traumatic
brain injury patients [12]. Preliminary results in stroke patients
was presented in Li et al. [67] obtained using a combination of the
1-3-9 technique and the simultaneous multislice imaging (SMS)
technique [68].

Fast Kurtosis Estimation with Increased
Experimental Robustness
The 1-3-9 method relies heavily on the nine direction scheme
being precisely met. Encoding may, however, be imperfect
causing deviations from the encoding scheme required for
Equation (2.3.4) to hold. Such encoding errors may have a
number of causes such as gradient non-linearities, eddy currents,
contributions from gradient cross-terms and coregistration due
to subject movement. While not explored initially, subsequent
analysis of these effects showed the 1-3-9 scheme to be quite
sensitive to severe encoding deviations. A simple remedy was
demonstrated in Hansen et al. [41] where the 1-3-9 scheme was
extended so that all of the nine directions in Table 1 are acquired
at the two non-zero b-values, b1 and b2. This so-called 1-9-9
version of fast DKI achieves increased experimental robustness
by forming Equation (2.3.4) at two distinct b-values, b1 and b2:

A1 ≡
1

15

(

3
∑

i=1

log S(b1, n̂
(i))+ 2

3
∑

i=1

log S(b1, n̂
(i+))

+ 2
3
∑

i=1

log S(b1, n̂
(i−))

)

= −b1D+

1

6
b21D

2
W

A2 ≡
1

15

(

3
∑

i=1

log S(b2, n̂
(i))+ 2

3
∑

i=1

log S(b2, n̂
(i+))

+ 2
3
∑

i=1

log S(b2, n̂
(i−))

)

= −b2D+

1

6
b22D

2
W (2.3.5)

producing a set of two equations with two unknowns, D and W,
for which closed for solutions are readily obtained so that the
1-9-9 estimate for D is:

D199 =
(

b21A2 − b22A1
)

/
(

b1b
2
2 − b21b2

)

(2.3.6)

and forW:

W199 = 6b1b2
(

A1b2 − A2b1
) (

b1 − b2
)

/
(

A1b
2
2 − A2b

2
1

)2

(2.3.7)
For precise encoding, i.e., when effective b-values are constant
among directions on each encoding shell and encoding directions
follow the prescribed directions, the 1-3-9 and 1-9-9 schemes

produce very similar appearingmaps as shown in Figure 5, where
estimates of D and W from a full DKI data set can be compared
to estimates obtained with 1-3-9 and 1-9-9 in the same normal
human brain. The effect of the 1-9-9 method’s increased data
foundation is apparent when comparing the schemes’ robustness
to experimental imperfections: numerical analysis reveals that
the 1-9-9 scheme has precision similar to nonlinear least squares
(NLS) fitting to large data sets, vastly outperforming the 1-
3-9 scheme [41]. The effects of imperfect encoding was also
addressed in a series of simulations showing that the 1-9-9
estimation quality (evaluated as the %-error compared to the
ground truth value) remains below 10% even when b-values
vary by as much as 10% among directions and the within-
shell encoding directions deviate up to 10◦ from the prescribed
directions. For the 1-3-9 scheme, these conditions cause estimates
to deviate on the order of 15%. These results indicate that the 1-
9-9 method is robust to most real-world encoding imperfections
and even to effects from subject movement, where coregistration
will cause b-matrices to require rotation. Nevertheless, a post-hoc
correction scheme was also proposed and demonstrated to repair
effects of even severe encoding faults [41].

Recommended b-values for both the 1-3-9 and 1-9-9 schemes
are b1 ≈ 1 ms/µm2 and b2 ≈ 2.5 ms/µm2, but the experimental
and numerical b-value optimization in Hansen et al. [41] showed
that precise matching to these two b-values was not critical. These
values are achievable on most if not all gradient systems while
also keeping the echo time sufficiently short to retain good SNR
even at b2. The analysis in Hansen et al. [41] showed that the
recommended b-values are (perhaps surprisingly) suitable for
both in vivo (37◦C) and ex vivo (21◦C) work. These b-values were
used with the 1-9-9method in an animal model of stroke, where a
relaxation-based normalizationmethod was introduced to enable
automatic segmentation of kurtosis lesions [69]. Nevertheless,
optimal b-values may vary between brain regions, and example
data sets for region specific b-value optimization are freely
available as described in Hansen et al. [70].

Increasing the number of data points from 13 (1-3-9) to 19
(1-9-9) also makes possible estimation of the full diffusion tensor
(with fitting) from which all DTI metrics can then be calculated.
As a rapid alternative, FA estimation from 1-9-9 data was also
proposed based on the variance (var) ofD(n̂) over the 9 sampling
directions (the expression is exactly FA for complete sampling of
the sphere):

FA199 =

√

3

2

var(D(n̂))

var(D(n̂))+ 6/15D
2 (2.3.8)

Here the D
(

n̂
)

values over the nine directions are calculated
using both non-zero b-values as in Jensen et al. [58] so that the
directional kurtosis is included to improve estimation [57]. FA
maps obtained in this manner were found to correlate strongly
(average correlation was 0.77 ± 0.04 across three subjects)
with ground truth FA from a large data set. Code enabling
automatic parameter map calculation from 1-3-9 and 1-9-9 data
during image reconstruction on Siemens systems is available as
described in Hansen et al. [41]. The data examples shown in
Figures 4, 5 were produced from non-preprocessed data and so
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the maps in Figure 5 illustrate the map quality one might expect
to achieve with online parameter calculation. For offline dMRI
data preprocessing and analysis (including DKI and WMTI)
a number of toolboxes are available e.g., Diffusion Kurtosis
Estimator (DKE: http://academicdepartments.musc.edu/cbi/dki/
dke.html), the Dipy library in python [71] (http://nipy.org/
dipy/), MRTrix (http://www.mrtrix.org), some of which also
include estimation ofW and kurtosis fractional anisotropy (KFA,
see Equation (2.5.5) and the related text).

Recent work on efficient experimental designs for estimating
the isotropic part of higher-order tensors [72], suggests that the 9
directions of the 1-3-9 and 1-9-9 designs can be reduced to 7 for
an even more economical version of fast mean kurtosis imaging.

Axisymmetric DKI
As mentioned in the introduction, DKI parameters other than
mean kurtosis are available, e.g., the kurtosis along the primary
eigenvector (axial kurtosis) and perpendicular to it (radial
kurtosis). Furthermore, modeling based WM characterization
such as WMTI provides other valuable markers, but requires
knowledge of the full diffusion and kurtosis tensors. It is therefore
desirable to be able to estimate these valuable markers from
fast protocols. Since the number of free parameters in the
conventional DKI signal equation amounts to 22 (Equation
2.1.1), the 1-9-9 protocol does not provide enough data points
to support estimation of D and W from fitting. For estimation
of D and W from reduced data sets (say a 1-9-9 acquisition,
but in principle it could be other low angular resolution DKI
acquisitions), a substantial reduction of parameters in the DKI
signal expression would be needed. An effective strategy to
achieve such a reduction was proposed in Hansen et al. [42], and
builds on the observation that if the system is assumed to possess
axial symmetry, the apparent kurtosis W(n̂) can be expressed
by only three independent parameters: letting ẑ be parallel to
the symmetry axis, W(n̂) is characterized by W, W

||
= W(ẑ)

(axial kurtosis), and W
⊥
(radial kurtosis). Stated in terms of the

diffusion tensor eigenvectors (v̂1, v̂2 , v̂3 in decreasing order of
the eigenvalues as above), the tensor-based directional kurtosis
parameters are defined to be:

W
⊥

≡

1

2π

∫

S2

dn̂ δ(n̂ · v̂1)W(n̂) =
1

4

(

W(v̂2)+W(v̂3)

+W
(

(v̂2 + v̂3)/
√

2
)

+W
(

(v̂2 − v̂3)/
√

2
))

W
||
= W(v̂1) (2.5.1)

Comparing these definitions to the conventional directional
kurtosis parameter definitions in Equation (2.1.4) shows K

||
=

(

D
2
/λ21

)

W
||

so that only for isotropic media K
||

= W
||
.

Rescaling of the axial and radial tensor kurtosis is convenient and
causes the axial kurtosis definitions to become identical but radial
kurtosis as defined in Equation (2.5.1) is in general different from
the convention in Equation (2.1.4), unless there is axial symmetry
[42].

The assumption of axial symmetry requires the axis of
symmetry to be specified with respect to the lab frame, which
adds two angles, resulting in a total of only 5 parameters
needed to fully describe an axisymmetric kurtosis tensor. Under

axisymmetry, D and W share their symmetry axis so that D
only adds two parameters. Finally, signal normalization adds
one parameter, producing a total of eight free parameters for
axisymmetric DKI [42]. Even in regions where axial symmetry
is unlikely to hold in reality, the simplified DKI signal expression
thus obtained yields reliable estimates of mean and directional
kurtosis and diffusion metrics [42]. Not only does this open
the possibility of estimation of all DTI and DKI metrics
from small DKI data sets such as those acquired with the
1-9-9 scheme, the axisymmetric DKI framework also allows
direct (no fitting) estimation of tensor-based directional kurtosis
parameters in regions with a well-defined axis of symmetry
(i.e., known pricipal axis) such as large peripheral nerves and
spinal cord. This is readily seen in Equation (2.5.1) for W

||
=

W(ẑ) and from the rightmost expression for W
⊥
. Software

for axisymmetric DKI analysis is freely available on our group
homepage: http://cfin.au.dk/cfinmindlab-labs-research-groups/
neurophysics/software.

Fast Estimation of White Matter
Biomarkers Using Axisymmetic DKI
Axisymmetric DKI makes it possible to estimate D and W from
small data sets. A natural next step is to use this framework
to provide a fast variant of the technique for assessment of
WM tract integrity metrics (WMTI) proposed in Fieremans
et al. [2, 51]. In its original form, WMTI adds an analysis
step so that in addition to the data acquisition and data
processing related to conventional DKI, WMTI also requires
a rather time-consuming pixel-by-pixel estimation procedure
including numerical optimization. With the assumption of axial
symmetry and fully aligned axons, both the data requirement
and computational load can be reduced significantly. This is
achieved by establishing closed form solutions for all WMTI
parameters based on the axisymmetric DKI parameters directly.
In this manner, only one optimization procedure is needed for
the WMTI analysis, the initial fitting to Equation (2.1.1) or its
axisymmetric counterpart. The expressions for the biophysical
parameters that describe the axonal system are obtained from this
relationship for 2-compartment Gaussian systems [43]:

D(n̂) = f Da(n̂)+ (1− f )De(n̂)

W(n̂)D
2
= 3f (1− f )(Da(n̂)− De(n̂))

2 (2.5.2)

When evaluated along the radial and axial directions and with
averaging over all directions, these general expressions yield
directional diffusivities and kurtoses from which expressions for
AWF = f , Da, De,⊥, and De,|| can be derived [38]:

D
⊥

= (1− f )De,⊥ (a)

D
||
= f Da + (1− f )De,|| (b)

W
⊥
D
2
= 3f (1− f )De,⊥

2 (c)

W
||
D
2
= 3f (1− f )(Da − De,||)

2 (d)

WD
2
= 3f (1− f )

[

De,⊥
2
+

1

15
(De,|| − Da − De,⊥)

(

7De,⊥

+ 3(De,|| − Da)
)

]

(e) (2.5.3)
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where it was used thatDa⊥ = 0 for parallel sticks. It is readily seen
that the left-hand sides of Equation (2.5.3) can be determined
using parameters obtained directly from an axially symmetric
DKI fit as well as from a general DKI fit.

Of the five equations in Equation (2.5.3), only 4 of the
equations are actually independent (i.e., they have only four
unknowns due to the assumption of parallel axons with radius
zero), so that one equation can be omitted. In Hansen et al. [42]
W was found to be more robustly estimated from 1-9-9 thanW

||
.

We therefore advice to omit Equation (2.5.3d) which contains
the slightly noisier W

||
. In this way, closed form expressions for

the WMTI parameters can be established based on Equations
(2.5.3a,b,c,e):

f = AWF =

(

1+ 3D2
⊥

/

W
⊥

¯D2)−1 (a)

De,⊥ = D
⊥

/(

1− f
)

(b)

De,|| = D
||
−

2

3

f

1− f



D
⊥
±

√

15
(

1− f
)

4f
¯D2 ¯W − 5D2

⊥



 (c)

Da = D
||
−

2

3



D
⊥
∓

√

15
(

1− f
)

4f
¯D2 ¯W − 5D2

⊥



 (d)

α = De,||
/

De,⊥ (e) (2.5.4)

These expressions clearly show the existence of a sign ambiguity
which affects the estimates of De,|| (and consequently α) and Da

[2]. Determining which of these two “branches” yields physically
correct parameter estimates has been subject of some debate [38,
73, 74] and is not yet fully resolved. In Hansen et al. [38] affected
parameters are reported for both branches. The solutions for
the two branches are much more obvious than in conventional
WMTI, where the sign choice is only known to be stable over
diffusion encoding directions for the branch defined by Da ≤

De,|| [2]. WMTI analysis based on modest data makes it feasible
to experimentally investigate the unresolved branch duality—e.g.,
using data acquisitions employing varying diffusion times as in
Jespersen et al. [73] which would have been prohibitively time
consuming with conventional WMTI. Similarly, the increase in
acquisition speed facilitates high resolution data acquisitions for
validation purposes or for in vivo applications. High resolution in
vivoWMTI based on the 1-9-9 fast DKI protocol is demonstrated
in Figure 6 using one of four rats analyzed in Hansen et al.
[38]. The advantage of the fast WMTI techniques is evident
as the low data requirement allows whole brain coverage at an
isotropic resolution of 300 µm to be acquired in 1 h. For ex vivo
studies, e.g., for validation studies with subsequent histological
analysis, the fast axisymmetric WMTI method enables studies
at even higher resolution with high SNR with substantially
shorter acquisition times than required for conventional
WMTI.

When abandoning the assumption of fully parallel axons,
the relationships between the measured diffusion and kurtosis
metrics and the microstructural parameters will also involve
parameters characterizing the orientation distribution of the
axons (fODF) [75]. For axially symmetric systems specifically,
these are p2 and p4, the two lowest nontrivial Legendre expansion

coefficients of the fODF [73]. Hence in general, there are
more unknowns than equations. However, if a one parameter
fODF, such as the Watson distribution, can be assumed, p2
and p4 become interdependent and the number of unknowns
equals the number of equations, facilitating fast axisymmetric
WMTI in the presence of dispersion [73]. Figure 7A (upper
row) shows estimates of the time-dependent dispersion [Watson
concentration parameter κ (kappa)] of both branches (labeled +

and−, shown on the left and right, respectively) measured using
such an approach with data acquired from a stimulated echo
diffusion-weighted sequence in four regions of interest (ROIs) in
in pig spinal cord white matter. The data is from Jespersen et
al. [73] with ROI labels matching that work. Figure 7B (lower
row) plots time dependence of intra-axonal diffusivity of both
branches (again + branch on the left and − branch on the
right). As argued in Jespersen et al. [73], these results indicate
the most likely choice to be the plus branch Da > De,|| for
this data set. In this manner, the framework allows analysis of
time dependence of microstructural parameters in both branches
in white matter providing further insight into the branch
choice.

Other metrics suitable for WM characterization are available
from DKI, e.g., the kurtosis fractional anisotropy (KFA)
introduced in Hansen et al. [39] and Jespersen [76] in complete
analogy to FA (Equation 2.1.2):

KFA =

∥

∥W−WI
∥

∥

‖W‖

(2.5.5)

where double bars ‖·‖ signify the Frobenius norm of the tensor
and I is the fully symmetric isotropic tensor. This metric
describes the ratio of the size of the anisotropic part of W to
the Frobenius norm of the full W and thus assumes values in the
range 0–1 without the need for rescaling to this range as done for
FA (Equation 2.1.2). KFA can be estimated in any region but is
likely to be of most interest in anisotropic tissues and in regions
where more than one dominant fiber orientation exists. KFA was
investigated using simulations and human brain data in Hansen
and Jespersen [37] and Glenn et al. [61] and found to provide
contrast in regions where complex WM fiber composition causes
the FA to vanish, manifesting as dark bands in the FA maps
in Figure 8. This is because D cannot resolve more than one
primary direction and is related to the well-known crossing fiber
problem in DTI. Since KFA does not vanish when 2 or 3 fiber
bundles cross, KFA may aid in identifying regions where low FA
is due to fiber complexity. The maps from normal human brain
shown in Figure 8 allow comparison of FA and KFA contrast
in three consecutive slices. Evidently, KFA provides a different
contrast than FA. Such additional information from W may be
used to increase the robustness of diffusion tensor tractography
in complex fiber arrangements. In Hansen and Jespersen [37]
KFA was explored further using data from various model systems
and KFA estimation by proxy was tested. With sufficient SNR,
the proxy was found to agree very well with true KFA even for
estimates based on a 1-9-9 data set. However, the SNR required
(>100) for this strategy is unrealistic for practical purposes. A
strategy for KFA estimation from small data sets based on an
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FIGURE 6 | Example of three WMTI parameters mapped in an in vivo rat brain using axisymmetric WMTI analysis of a 1-9-9 data set. Parameters are shown mapped

onto b = 0 data in two orthogonal slice orientations. Data was acquired at 300 µm isotropic resolution.

axisymmetric W was evaluated in Hansen et al. [38], but here
KFA contrast deteriorates due to the symmetry imposed on W.
At present, therefore, KFA can only be reliably estimated based
on conventional DKI acquisitions and post-processing yielding
the full W tensor with no symmetry constraints.

Summary of Parameter Definitions
In addition to allowing fast estimation, the tensor-based kurtosis
metrics covered above also bring DKI metrics onto a form more
analogous to their DTI counterparts. This feature is evident
in Table 2 which summarizes the definitions for each of the
corresponding parameters derived from D and W. Note that the
different ranks of D and W cause some definitions to differ by a
scaling factor, nevertheless the analogy is obvious in most cases
with the notable exception being radial kurtosis in the principal
diffusion tensor frame, which cannot be formed from the two
non-primary axis directions alone but also contains a crossterm
(Wxxyy). For completeness, we also note that other mean kurtosis
definitions than those shown in Table 2 have been proposed such
as the generalized kurtosis (GK) and the generalized kurtosis of
the norm (GKN) [77] which reflect the kurtosis of the diffusion
propagator obtained from q-space data based on concepts from
multivariate statistics [78].

FUTURE DIRECTIONS FOR THE FAST
KURTOSIS TECHNIQUES

Imaging of tissue microstructure has been a strong motivation
for diffusion MRI research since the technique was introduced.
Since then, studies aimed at improving our ability to image tissue
microstructure have focused on understanding cellular-level

diffusion properties by MR microscopy in an effort to inform
modeling [79–85], and modeling aimed at extracting specific
cytoarchitectural measures [86, 87]. A common limitation of
these methods is the requirement for strong gradients. In
contrast, DKI yields valuable reporters of tissue microstructure
(although most frequently unspecific) while remaining feasible
on clinical systems, even those with modest gradient capability.
However, acquisition and post-processing time are often limiting
factors for clinical imaging and therefore may impede routine
clinical application of DKI. Therefore, rapid DKI acquisitions
with fast post-processing are important for further clinical
adaptation of DKI. Preclinically, the mentioned time constraints
are perhaps not as severe. However, the low data requirement
of the 1-3-9/1-9-9 protocols enables higher spatial resolution
or higher SNR in the same (or less) scan time as conventional
DKI acquisitions, which is certainly a significant benefit for
all areas of DKI related research. Furthermore, fast DKI may
become increasingly valuable in preclinical studies as imaging of
awake animals becomes more widely used to avoid physiological
perturbations caused by either inhaled or injected anesthesia
[88, 89]. Here, methods with modest data demand are preferable
to reduce animal stress and to afford data acquisition with gating
or even reacquisition if data is affected by movement.

Despite its sensitivity, DKI is microstructurally unspecific,
causing studies with comparison of DKI metrics to histology
to be needed to understand how disease related microstructural
alterations are reflected in DKI (regardless of metric definitions
and acquisition methods). Such studies have been carried out for
experimental stroke [5, 90], stress and depression [60, 91], and
kidney fibrosis [62] to name a few. Furthermore, studies have
been performed to elucidate the relation between DKI metrics
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FIGURE 7 | Plots of diffusion time dependence for dispersion (A) and intra-axonal diffusivity (Da, B) in both of the two WMTI solution branches (labeled + and −).

Data points are color coded to four ROIs in the pig spinal cord used for this experiment. The ROIs are labeled A, C, E, G in keeping with Jespersen et al. [73] where

the data was first presented. Figure adapted from Jespersen et al. [73] with permission.

FIGURE 8 | Comparison of diffusion tensor derived fractional anisotropy (FA, upper row) and kurtosis fractional anisotropy (KFA). Contrast differences are evident with

FA being uninformative in certain white matter regions (dark bands). Conversely, KFA remains informative in these regions. Figure adapted from Hansen and Jespersen

[37] with permission.

and tissue magnetic susceptibility [92, 93] with results suggesting
a susceptibility contribution in DKI metrics warranting further
investigation. Similarly, studies have been performed to optimize

diffusion sampling schemes for DKI [3] and to assess the DKI
metric reproducibility across field strengths [94]. Field strength
dependence was found to be most pronounced for KFA which
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TABLE 2 | Summary of the fast kurtosis metrics definitions and their DTI counterparts.

Diffusion tensor Kurtosis tensor

Mean D =

Tr(D)
3 W =

Tr(W)
5

Anisotropy FA =

√

3
2

∥

∥

∥
D−DI

∥

∥

∥

‖D‖

KFA =

∥

∥

∥
W−WI

∥

∥

∥

‖W‖

Axial/longitudinal D
||
= D(v̂1) = λ1 W

||
= W(v̂1) = Wzzzz (*)

Radial/orthogonal D
⊥

=

1
2π

∫

S2
dn̂ D(n̂)δ(n̂ · v̂1) =

(

λ2 + λ3
)

/2

=

1
2 (Dxx + Dyy ) (*)

W
⊥

≡

1
2π

∫

S2
dn̂ δ(n̂ · v̂1)W(n̂)

=

3
8 (Wxxxx +Wyyyy + 2Wxxyy ) (*)

Note the convenient similarity in these DTI and DKI metric definitions. (*), The latter identity holds in the frame with ẑ = v̂1.

is known to be more SNR dependent than the remaining DKI
metrics [37, 61]. In validation studies, high resolution is often
desirable in order to identify specific regions or sub-regions, since
varying response is sometimes seen in sub-regions as for example
in the hippocampus in relation to stress [60, 95]. In such cases,
the fast DKI methods are convenient to ensure reasonable scan
time for high resolution data acquisitions.

The fast kurtosis methods are already used for imaging of
experimental stroke [63, 64] and with the developments in
Hansen et al. [38, 42], axial and radial kurtosis can also be
investigated from fast DKI data along with WMTI parameters,
e.g., for detection of axonal beading [96]. Fast kurtosis imaging
is also convenient for studies of the diffusion time dependence of
DKI and WMTI parameters. Such experiments are expected to
provide a deeper understanding of the WMTI branch ambiguity
explored in Hansen et al. [38] by making use of the theoretically
expected diffusion time dependence [73].

An intriguing prospect of the fast DKI methods is the
combination with SNR-efficient, rapid imaging techniques such
as simultaneous multislice imaging (SMS) [68]. Combined with
slice dithered enhanced resolution (gSlider), SMS can in principle
be used to acquire diffusion MRI with sub-millimeter resolution
on clinical systems, although so far demonstrations have
used non-standard, high-performance gradient sets [97]. The
combination of these fast imaging techniques and fast kurtosis
methods would make it feasible to acquire high resolution DKI
and WMTI data sets in clinically feasible acquisition times and
might even be used for acquisition of time series data so that
1-9-9 data sets can be acquired with high (sub-minute) sliding
window temporal resolution. Such data sets may then form the
basis for analysis with the presented techniques, yielding time
series data of DKImetrics (e.g., mean, radial and axial kurtosis for
use in the study of GM plasticity [98]) and WM biomarkers for
high sensitivity studies of WM plasticity [99, 100]. Other future
applications might include combination of the 1-9-9 framework
with diffusion weighted spectroscopy. With such data sets from

cell-specific reporter molecules, such as NAA for neurons or
myo-inositol for glia, the intra-cellular environment could be
selectively probed to non-invasively assess cellular mechanisms
in a number of neurological diseases, e.g., stroke as done in
Shemesh et al. [101].

In conclusion, DKI is a non-invasive imaging technique with
high sensitivity to microstructural alterations in biological tissue
and has demonstrated value in a number of neuroscientific
and clinical contexts. Methods now exist which enable rapid
estimation of the full range of DKI parameters facilitating routine
clinical use of DKI and WMTI.
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Diffusion MRI is arguably the method of choice for characterizing white matter

microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of

water molecules is conveniently on a length scale similar to that of the underlying cellular

structures. Moreover, water molecules in white matter are largely compartmentalized

which enables biologically-inspired compartmental diffusion models to characterize and

quantify the true biological microstructure. A plethora of white matter models have

been proposed. However, overparameterization and mathematical fitting complications

encourage the introduction of simplifying assumptions that vary between different

approaches. These choices impact the quantitative estimation of model parameters

with potential detriments to their biological accuracy and promised specificity. First,

we review biophysical white matter models in use and recapitulate their underlying

assumptions and realms of applicability. Second, we present up-to-date efforts to

validate parameters estimated from biophysical models. Simulations and dedicated

phantoms are useful in assessing the performance of models when the ground truth

is known. However, the biggest challenge remains the validation of the “biological

accuracy” of estimated parameters. Complementary techniques such as microscopy

of fixed tissue specimens have facilitated direct comparisons of estimates of white

matter fiber orientation and densities. However, validation of compartmental diffusivities

remains challenging, and complementary MRI-based techniques such as alternative

diffusion encodings, compartment-specific contrast agents and metabolites have been

used to validate diffusion models. Finally, white matter injury and disease pose additional

challenges to modeling, which are also discussed. This review aims to provide an

overview of the current state of models and their validation and to stimulate further

research in the field to solve the remaining open questions and converge toward

consensus.

Keywords: diffusion MRI, white matter, modeling, microstructure, tissue compartments

Diffusion weighted MRI (DWI) is unique in its ability to detect brain microstructure
non-invasively. Characterization of white matter microstructure using DWI has shown high
sensitivity to changes associated with normal brain development and aging and to the wide
array of neurological diseases, injuries, and potential treatments. DWI is an excellent probe of
microstructure, whose characteristic features are on the same length scale as the micrometer-scale
displacement of water molecules. However, it remains an indirect probe, because extracting
quantitative metrics that characterize the underlying tissuemicrostructure requires modeling of the
DWI signal. Decisions regarding model choice and fitting procedures have considerable influence
on the accuracy, reliability, and validity of the extracted metrics.
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This review first presents an overview of current white matter
models “in circulation” and exposes their common features
and individual limitations (Part 1), noting that the discussion
is restricted to long-time limit diffusion models, where axons
are modeled as sticks. Next, efforts to validate models in
the normal white matter using complementary techniques are
discussed (Part 2), followed by a brief discussion of the additional
challenges related to modeling of the diseased tissue (Part 3).
Future directions of research are highlighted at every step.

MODELS

Two complementary approaches have emerged for extracting
information about the tissue microstructure from the diffusion
signal: signal representations and tissue models.

Signal representations—sometimes also referred to as
“statistical models”—aim at empirically describing the diffusion
signal behavior in a given voxel without assumptions about the
underlying tissue. Thus, they are applicable to any tissue type,
healthy or diseased, but the estimated parameters lack specificity
and remain an indirect characterization of microstructure.

Tissue models, on the other hand, assume a given (schematic)
geometry—a “picture” of the underlying tissue [1]. The analytical
expression of the diffusion signal in the chosen environment is fit
to the diffusion data, which allows the estimation of the relevant
parameters of the microstructure. Tissue models can potentially
provide greater specificity and interpretation of biologically-
relevant parameters, but only if the assumption is met that the
chosen model accurately captures all of the relevant features of
the tissue, i.e., all those that effectively and substantially impact
the diffusion signal in a given acquisition range.

In this section, we will first briefly review examples of
signal representations, in order to reinforce the distinction with
modeling.We will then reviewmajor biophysical models of white
matter, with clear identification of their main assumptions and
estimated parameters.

Signal Representations
The most widespread signal representation is the cumulant
expansion [2–4], which relies on an expansion of the logarithm of
the signal in polynomials up to a given order in b—i.e., a Taylor
series:

ln

(

S

S0

)

= −bD+

1

6

(

bD
)2
K + . . . (1)

where D is the diffusion coefficient and K the kurtosis. Or, in
tensor form:
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(

S

S0

)

= −b

3
∑

i,j=1

gigjDij +
1

6

(

b ¯D

)2 3
∑

i,j,k,l=1

gigjgkglWijkl + . . .(2)

where D is the rank-2 diffusion tensor, W is the rank-4 kurtosis
tensor, D is the mean diffusivity and g is the direction of the
applied diffusion weighting.

Diffusion tensor imaging (DTI) is thus an expansion up to the
first order in b, valid for low diffusion weighting (b ≪ 1/(DK))

[5]. It is important to stress that DTI does not assume that the
tissue is a Gaussianmedium (K = 0)—which is reputedly not true
for biological tissue, but rather that it is indistinguishable from a
Gaussian medium when b≪ 1/(DK).

Naturally, going beyond this low b-value regime and
estimating the kurtosis of the diffusion probability distribution
function—i.e., by how much it deviates from a Gaussian
distribution—provides information about tissue complexity that
is complementary to DTI metrics [2].

In order to estimate the six independent components of
the diffusion tensor, the minimal required data is one b = 0
(unweighted) image and six non collinear directions on a single
diffusion weighting, or “shell.” The additional estimation of the
15 independent components of the kurtosis tensor requires a
minimal acquisition of one b = 0 image and 21 measurements
distributed over 2 shells. The choice of the shell b-values is a
trade-off between accuracy—they should be as low as possible,
since the Taylor expansion is valid for bD → 0— and precision—
they should be as high as admittedly possible to limit the impact
of noise [6]. This trade-off value is typically around b = 1
ms/µm2 for DTI and b = 2 ms/µm2 for DKI, in vivo. Largely
improved algorithms for unbiased estimation of the diffusion and
kurtosis tensors have been developed [7]. It is also noteworthy
that fitting the kurtosis tensor greatly improves the accuracy of
the diffusion tensor estimation [8]. Extending the series to the
sixth order cumulant (in b3) increases the accuracy of the kurtosis
estimation, albeit with a penalty on precision [9].

Since no assumption is made about the tissue structure,
metrics derived from the diffusion tensor, such as mean
diffusivity and fractional anisotropy are used extensively for brain
and body tissue characterization in a wide variety of conditions
[10, 11]. DKImetrics, such as mean kurtosis, are also increasingly
used as complementary biomarkers to DTI metrics in a large
panel of applications [12–17]. With acquisition acceleration
options available on most clinical scanners, and new reduced
acquisition schemes [18, 19], DKI is expected to become more
and more widespread.

Other signal representations than the cumulant expansion are
of course possible. Yablonskiy et al. [20] proposed to introduce a
distribution of diffusion coefficients ρ(D) in the tissue, which can
theoretically be estimated by inverse Laplace transform:

S

S0
=

∫

∞

0
ρ(D)e−bDdD (3)

However, because the inverse Laplace transform is a
mathematically ill-posed problem, in practice some functional
form is assumed for ρ(D) and its characteristic parameters
estimated [20, 21]. Moreover, the estimated distribution does
not mirror the actual distribution of diffusion coefficients in the
tissue unless the measurement is performed in a very strong
diffusion weighting regime (qlc ≫ 1, where q is the amount of
spatial phase-warping introduced and lc is the diffusion distance)
[9, 22]. Thus, this approach remains an empirical description of
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the diffusion-weighted signal and falls in the category of signal
representations rather than biophysical models.

The departure from Gaussianity can also be captured
empirically as a “stretched exponential” expression of the
diffusion signal [23]:

S

S0
= exp

(

−

(

b · ADC
)α)

(4)

The stretched exponential function has later been associated with
the theory of anomalous diffusion, which represents a departure
from Brownian motion (

〈

x2
〉

∝ t), by several groups [24–26]. A
comprehensive discussion on the implications of such a theory
for biological tissue can be found in Kiselev [9] and Novikov et
al. [1]. Although devoid of biophysical meaning, the stretching
parameter α is largely used in the literature for tumor delineation
and characterization [27–30].

Another example of signal representation is the expansion
of the diffusion signal using harmonic oscillator basis functions
(Hermite polynomials), as proposed by Özarslan et al. [31],
a method dubbed mean apparent propagator (MAP-MRI). In
addition to the reconstruction of a diffusion tensor, the method
allows the estimation of the return-to-origin probability, which is
sensitive to compartment sizes, and of non-Gaussianity indices,
indicative of tissue complexity. The data required for MAP-MRI
can be acquired in under 10min on a clinical scanner [32].

Biophysical Models of White Matter
The first attempts at modeling the diffusion signal as multi-
compartmental can be attributed to Latour et al. [33] in red blood
cells and Szafer et al. [34] who modeled “tissue” as cuboids on
a regular lattice, surrounded by extracellular medium. Building
on their work, Stanisz et al. [35] proposed the first white matter
model based on electron micrographs of bovine optic nerve. In
their model, axons were represented as prolate ellipsoids and
glial soma as spheres, the extracellular space constituting the
third compartment. The model also accounted for membrane
permeability of axons and glial cells. The authors noted that the

nine-parameter model required a wide range of diffusion times
and gradient strengths, and that even with extensive data, the
goodness of fit remained unsatisfactory. They also underlined
that releasing some of the assumptions and increasing the
number of parameters would make the fit unstable. Twenty years
later, those insights are still very much topical.

At long diffusion times, the diffusion distance across the
axon becomes constant (it is limited by the axon diameter)
and the diffusivity tends to zero: axons can thus be modeled
as infinitely long “sticks” (cylinders with zero radius). The first
group to introduce the stick geometry was Behrens et al. [36]
and assumed that water in and around the axons similarly
diffused only in the fiber direction with a second compartment
of free, isotropically diffusing water. Shortly after, Kroenke et
al. [37] used a biophysical model of isotropically oriented sticks
to characterize the diffusion of N-acetyl aspartate (NAA) in the
neurites. A similar description to Behrens’ of two compartments
was later adopted by Jespersen et al. [38], who also formulated for
the first time the clear goal of estimating dendrite density—i.e., a
specific biomarker of themicrostructure—in vivo, using diffusion
MRI modeling.

Building on these initial works, most white matter models
“in use” today rely on the same common picture: water signal
is assumed to originate from two or three non-exchanging
compartments, each weighted by their relative volume fractions
(Figure 1).

The first compartment is the collection of axons, which
are modeled as infinitely long sticks, and whose collective
orientations are characterized by some orientation distribution
function (ODF). Water diffusivity inside each axon is Da,‖ along
the axon and zero perpendicular to it. The parametrization of the
ODF varies between models.

The second compartment is the extra-axonal space which, by
exclusion, includes features not explicitly ascribed to the axonal
space, including extracellular water, cell somas, and glial cells, all
assumed to be in fast exchange. This compartment is modeled
as Gaussian anisotropic, with axial and radial diffusivities De,‖

FIGURE 1 | Correspondence between model compartments (Left) and tissue components (Right). (Left) Schematic of a typical three-compartment model with

relevant parameters. De,‖ and De,⊥ are local extra-axonal diffusivities, and D′

e,‖ and D′

e,⊥, are apparent extra-axonal diffusivities, depending how the model defines

them. (Right) Cross-sectional electron microscopy image of a white matter bundle. Adapted from Mikula and Denk [39] with permission. While myelin is present in

WM, it is absent from DWI models due to its short T2.
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and De,⊥, respectively. These extra-axonal diffusivities are either
defined locally in proximity of a coherent axon sub-bundle
with the resulting signal response convolved with the ODF,
or as apparent extra-axonal diffusivities over the entire voxel
(indicated with a “prime” symbol in Figure 1 and hereafter, for
disambiguation).

The third compartment, if included, is modeled as Gaussian
isotropic, with a diffusivity Diso. If it represents freely diffusing
water such as cerebrospinal fluid (CSF), Diso (Dfree) is set to
3 µm2/ms in vivo. If it represents water with a negligible
diffusivity in all directions, often referred to as “still water,”
and non-exchanging with the extracellular space, Diso = 0.
The parametrization, constraints, and nomenclature of Diso vary
between models.

Modeling necessarily comes with a level of simplification,
since the entire biological complexity certainly cannot be
rendered. The most difficult part of the modeling task is perhaps
figuring out which features of the microstructure are relevant to
the voxel-averaged diffusion signal and should be represented
in the model, and which ones can be omitted without violating
assumptions or accuracy. For a more detailed discussion on
coarse-graining and effective medium theory, we direct the
reader to a very comprehensive review by Novikov et al. [1].

In what follows, we will briefly review the main white matter
models that have, for the most part, emerged in the last decade
and that share the common features outlined above. While
many different diffusion models and corresponding applications
have been proposed, this review will only focus on models of
tissue microstructure pertaining to the brain and spinal cord
and in the long-time limit where axons are modeled as sticks.
We also neglect potential measures of permeability between
compartments, though they could have substantial impact on
modeling, especially in the case of pathologies [40].

NODDI
The tissue model in Neurite Orientation Dispersion and Density
Imaging (NODDI) matches exactly the cartoon in Figure 1

[41]. It is a three-compartment model fully described by
seven parameters: two volume fractions (f intra and f iso), four
diffusivities (Da,‖, De,‖, De,⊥, and Diso) and the orientation
dispersion, modeled by a Watson distribution of concentration
parameter κ. The latter can be related to the angular spread via

〈

(cosψ)2
〉

= −

1

2κ
+

1
√

πe−κerfi(
√

κ)
√

κ
.

where ψ is the angle between an axon and the main diffusion
orientation in the voxel. In order to stabilize the fitting procedure,
NODDI constrains all diffusivity values, effectively leaving only
the two volume fractions and the orientation dispersion to be
estimated, i.e., the underlying geometry. The model assumptions
are as follows:

Da,‖ = De,‖ = 1.7 µm2/ms (5)

De,⊥ = (1− fintra) · De,‖ (6)

Diso = 3 µm2/ms (7)

The popularity of NODDI is indisputable, with applications to
a very large panel of brain alterations and pathologies [42–
48]. However, there are important assumptions within NODDI
related to its design that have strong implications to its specificity.

NODDI imposes assumptions on the intrinsic diffusivities to
the point of fixing Da,‖ and De,‖ to the same predetermined value
for all tissues (Equation 5). First, any deviation from these fixed
values can bias the remaining parameters and they will lose their
desired specificity. Substantial changes in diffusivity, such as that
occurring in cerebral ischemia, for example, will impart a false
change in orientation dispersion, neurite density, or CSF partial
volume that does not accurately capture the underlying tissue
pathology—as will be discussed in more detail in the third part
of this review. The decision to fix the axial intra- and extra-
axonal diffusivities equal to one another is another assumption
that can lead to unpredictable effects. Recent work has shown
that fixing Da,‖ = De,‖ masks a fundamental property of multi-
compartment models, namely the multiplicity of mathematical
solutions [49, 50]. Indeed, it has been shown that, if all parameters
in the fitting procedure are released, namely f intra, Da,‖, De,‖,
De,⊥, and κ (ignoring the CSF compartment), there are two
distinct solutions to the parameter estimation problem, both
within biologically plausible ranges (Figure 2). The two solutions
of a two-compartment model can roughly be described as one
where Da,‖ < De,‖, and another where Da,‖ > De,‖. Establishing
which inequality is biologically valid is an active field of research,
with most studies pointing toward Da,‖ > De,‖. This will be
covered in detail in the second part of the review. Finally, the
tortuosity approximation that relates De,‖ and De,⊥ (Equation 6)
has been shown not to hold for tight packings of axons [51].

WMTI
White Matter Tract Integrity (WMTI) is a two-compartment
model of sticks embedded in a Gaussian anisotropic extra-axonal
medium [52]. The tissue can be described as a combination
of two Gaussian compartments (intra- and extra-axonal) each
characterized by a tensor ( ˆDa and ˆDe

′) which can be directly
derived from the overall diffusion and kurtosis tensors ˆD and ˆK
[53]. In any direction j,

Dj = fintraDa,j + (1− fintra)D
′

e,j (8)

Kj = 3fintra · (1− fintra)

(

D′

e,j − Da,j
)2

D2
j

(9)

This approach by-passes inherent limitations associated with
non-linear fitting (local minima and long computation time): the
linear estimation of the diffusion and kurtosis tensors is followed
by a direct derivation of the WMTI model parameters. The
quadratic expression in Equation (9) demonstrates, as previously
mentioned, that for a two-compartment model, there are two
mathematical solutions, where either Da,‖ < De,‖, or Da,‖ > De,‖.
Establishing which inequality is biologically valid is an active field
of research, which will be covered in detail in the second part of
the review.

In WMTI, the authors had chosen the inequality Da,‖ < De,‖

to solve the system (which is the opposite of the inequality that
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FIGURE 2 | NODDIDA optimization landscape reveals the existence, in the full 5-parameter space, of two disconnected minima, each surrounded by a pipe-like

ensemble of low objective function values. Shown are 3D isosurfaces of the objective function F (f, Da,‖, κ ). (Aa) F calculated with (De,||; De,⊥) = (2.10; 0.74) and SNR

= ∞, thus containing the true global minimum. (Ab) F calculated with (De,||; De,⊥) = (0.32; 0.85) and SNR = ∞, thus containing the second local minimum of the 5D

minimization problem. (Ac) The same as (Aa), but SNR = 50. (Ad) The same as (Ab), but SNR = 50. The theoretical minimum of F along each pipe is identified by a

black bullet. Noise can displace the effective minimum along the pipe very far from the true one (see Ac). Figure taken from Jelescu et al. [49], with permission.

seems to hold from recent work), hence:

fintra =
Kmax

Kmax + 3
(10)

D′

e,j = Dj

[

1+

√

Kj · fintra

3(1− fintra)

]

(11)

Da,j = Dj

[

1−

√

Kj(1− fintra)

3fintra

]

(12)

WMTI has been used in studies of a large variety of conditions,
with substantial validation efforts using animal models of altered
myelin [12, 13, 54–58].

In WMTI, the collection of axons is modeled as a Gaussian
compartment, which is an assumption that only holds if the
axons are highly aligned in a single bundle. Fieremans and
colleagues estimated a maximum orientation dispersion of 30◦

for this approximation to hold, in the case of coplanar dispersion
only. The validity of the approximation for three-dimensional

dispersion has not been evaluated. Thus, while WMTI captures
changes in diffusivities, it is best applied to regions of highly
aligned single fiber bundles as per the recommendations. A
more recent approach consists in deriving the WMTI equations
assuming a Watson distribution of axons, like in NODDI, thus
alleviating one of the strongest assumptions of WMTI [59]. The
authors then further use time dependent functional forms of
model parameters to evaluate which of the two possible solutions
is the biologically valid one.

Another limitation is that sinceWMTI is based on the kurtosis
model, it is restricted to the low b-value regime which could
lead to some bias, although this may also be advantageous for
compatibility with clinical hardware systems.

Rotationally Invariant Features: LEMONADE & co.
In a two-compartment model, estimating compartment
diffusivities and orientation dispersion of axons simultaneously
is problematic and prone to bias, hence requiring fixed
parameter assumptions (NODDI) or limitations to coherent
fibers only (WMTI). Loosening these constraints to achieve
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greater specificity comes at the expense of a larger number of
parameters to be estimated in the model, which is problematic
for non-linear fitting. In particular, allowing for a complex
ODF quickly increases the number of parameters. NODDI
for example also has a declination that uses a Bingham rather
than Watson distribution (2 free parameters) [60]. Jespersen
and colleagues modeled the ODF using a spherical harmonic
expansion up to L = 2 (5 free parameters) [38] and later L = 4
(14 free parameters) [61].

For the purpose of extracting a reliable ODF for tractography,
several groups had modeled the diffusion signal as a convolution
between the response of a perfectly aligned fascicle (axons and
their immediate extra-axonal space) pointing in direction n, and
the fiber ODF P(n) [62–64]:

Sg
(

b
)

= S(0) ·

∫

|n|=1
K

(

b, g · n
)

P (n) dn (13)

Equation 13 factorizes in the spherical harmonics basis, thus
separating the estimation of the scalar parameters of the kernel
K from that of the ODF parameters. Recently, Novikov et al. [50]
and Reisert et al. [65] have exploited this property to estimate the
scalar parameters of a two-compartment kernel separately from
the ODF:

K
(

b, g · n
)

= fintrae
−bDa,‖(g·n)

2

+(1− fintra)e
−bDe,‖(g·n)

2
−bDe,⊥(1−(g·n)

2) (14)

The approach of Novikov et al. [50] can be decomposed into
two steps. The first step relies on solving an algebraic system
of equations which relates the kernel parameters to the signal
moments. More specifically, using “low b-value” data (e.g.,
bmax = 2.5 ms/µm2), the scalar parameters and a few basis-
independent ODF parameters pl can be directly derived from
the first moments of the diffusion signal (up to 6th order) in a
similar fashion to whichWMTI uses direct relationships between
model parameters and cumulants up to the 4th order. This
method was dubbed LEMONADE (Linearly Estimated Moments
provide Orientations of Neurites And their Diffusivities Exactly),
and requires diffusion data distributed over 3 non-zero b shells.
Circumventing issues related to non-linear fitting, LEMONADE
provides estimates for f intra, Da,‖, De,‖, De,⊥, and p2 =

3
〈

(cosψ)2
〉

−1
2 , which gives an estimate of the orientation dispersion

in a similar way to κ from theWatson distribution. The spherical
harmonic expansion of the ODF can then be fully reconstructed
up to L = 6. In a second step, all available data (including high
b-values) can be exploited to minimize the rotationally invariant
(RotInv) energy function of the system, using the LEMONADE
estimates as initialization values. In other words, the projections
of the scalar kernel onto Legendre polynomials, weighted by
rotational invariants of the ODF, are fitted to rotational invariants
of the spherical harmonics decomposition of the signal, in a
least-squares sense.

LEMONADE provides further evidence for the existence of
two mathematical solutions to the two-compartment model and
that, in principle, the degeneracy can be lifted with robust
measurements up the 3rd order in b. In practice, solution

selection based on noisy data remains challenging and should be
validated independently.

The approach of Reisert et al. [65] relies on machine
learning to estimate the model parameters. A choice of
plausible parameter values is made using insight from isotropic
diffusion weighting results, as will be discussed in Validating
Microstructural Features. This method also allows renouncing to
the determination of specific parameters of the model when data
proves insufficient.

The remaining assumptions behind these two methods are:
the existence of only two compartments (intra- and extra-
axonal), the consistency of kernel parameters across all fascicles
in the voxel (e.g., all axons in the voxel have the same diffusivity
Da,‖), and axial symmetry of the elementary fiber response
(kernel).

By contrast to these two approaches, the method described by
Kaden et al. [66] based on the spherical mean technique is similar
in spirit, in the sense that it factors out the fiber ODF, but it only
exploits the lowest order rotational invariant and the estimation
of the scalar kernel is constrained by Da,‖ = De,‖ and by the
tortuosity approximation for the extra-axonal space (Equation 6).

DBSI
Another model was proposed with the intent of covering regions
of multiple fiber crossings; this model is DBSI (Diffusion Basis
Spectrum Imaging) [67], and its general formulation is the
following:

Sg
(

b
)

=

NAniso
∑

i=1

fi · e
−bD

‖,i(g·ni)
2
−bD

⊥,i(1−(g·ni)
2)

+

∫ β

α

f (D)e−bDdD (15)

where the tissue is described as a collection of NAniso

axially symmetric anisotropic tensors (each with unknown
fraction f i, axial and radial diffusivities D

‖,i and D
⊥,i and

orientation ni) and a continuous spectrum f (D) of isotropic
diffusion tensors. The anisotropic tensors represent water
inside and just outside myelinated and unmyelinated axons
of varied directions, while the continuum of isotropic tensors
represents water in cells, sub-cellular structures, and edematous
water.

The DBSI fitting procedure is complex and details can be
found in Wang et al. [67]. Briefly, it is a two-step process
where first the number of anisotropic tensors and their principal
orientations are estimated. These parameters are then fixed in
the second step of the procedure, which aims at estimating
f i, D‖,i, and D

⊥,i for each anisotropic tensor, as well as f (D).
This is achieved by optimizing f i and f (D) for recursively
chosen combinations of D

‖,i and D
⊥,i and finally selecting the

combination providing a global minimum.
DBSI has been applied to a variety of pathologies [68–72],

but has not been extensively validated outside of the originating
group. Given the unfavorable fitting landscape in a comparatively
much simpler model such as NODDIDA [49], especially in
the presence of limited signal-to-noise ratio (SNR) (Figure 2),
the reliability of DBSI model estimates remains to be clarified.
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Moreover, the biophysical interpretation of the continuous
distribution of diffusion coefficients f (D) is also problematic, as
explained in connection with Equation (3).

Hybrid Models
Hybrid models are based on a combination of biophysical
modeling and signal representations.

Free Water Elimination (FWE)
The motivation of the free water elimination technique is
to separate CSF contamination from “brain tissue” diffusion
properties. The overall signal is separated into an isotropic
component of free diffusion (Dfree) and a single diffusion
tensor representing the rest of the tissue signal (Dtissue). This
approach was first proposed by Pierpaoli and Jones [73] using a
comprehensive q-space acquisition (107 directions over 8 shells,
bmax = 1.2 ms/µm2). Its potential advantages are the extraction
of a free water map (as a new biomarker), improved tissue
tensor estimation, and benefits for fiber tracking. The direct
correspondence between “free water” and CSF is however not
straightforward.

Its application was further extended to single-shell DTI data
by Pasternak et al. [74]. Naturally, estimating a system which
includes a tensor and an isotropic compartment from single-shell
data is an underdetermined problem. To circumvent this issue,
Pasternak and colleagues initially imposed additional constraints:
spatial regularization and tighter upper and lower bounds on
the tissue volume fraction, dependent on tissue diffusivities. This
constrained implementation has been applied to a variety of
conditions [75–78].

While the intention of making the method applicable to
the most widespread acquisition scheme (i.e., single shell)
is understandable, the ill-posed nature of the mathematical
problem and the issue of constraints has been recognized by
the authors, who proposed incorporation of an additional low
b-value shell for accuracy and stability [79]. The initial, more
conventional, multi-shell approach proposed by Pierpaoli and
Jones has also been reintroduced in parallel byHoy et al. [80]. The
latter work included simulations showing that in the absence of a
CSF compartment, fitting the FWE model indeed overestimated
tissue FA. Later work by the same group compared the FWE
technique to the more standard FLAIR-DTI approach where
the CSF signal was directly suppressed at the acquisition stage
[81, 82]. They reported similar performance between the two
techniques inWM tracts where CSF contamination was expected
to be high (i.e., fornix and corpus callosum), but unlike FLAIR-
DTI, the FWE technique resulted in greater FA and reduced
diffusivity measures even in tissues without CSF partial volume
effects (e.g., cingulum). The proposed explanation that the “free
water” signal arises from the extracellular space [79] highlights
the complications of assigning a single tensor to a “tissue”
compartment which is known to exhibit non-Gaussian behavior.

DIAMOND
A new hybrid model, termed DIAMOND (DIstribution of
3D Anisotropic MicrOstructural eNvironments in Diffusion-
compartment imaging) [83] has recently been proposed. It
expands on the concept of distribution of diffusion coefficients

introduced by Yablonskiy et al. [20], by accounting for
several discrete compartments (biophysical modeling), each
withholding a continuous distribution of diffusion tensors
(statistical modeling). In mathematical terms:

Sg
(

b
)

= S0

Np
∑

i=1

fi ·

∫

D∈Sym+(3)
Pκi ,6i (D) e

−bgTDgdD (16)

where Np is the number of compartments (or spin populations),
each with its associated volume fraction, and Pκi ,6i (D) is the
distribution of diffusion tensors within the compartment, chosen
to be a multi-variate Gamma distribution of shape parameter
κ and scale parameter 6. The diffusion tensors are symmetric
positive definite matrices [Sym+(3)].

Starting from the generic expression in Equation (16), three
types of particular compartments are considered and their
presence in each voxel is evaluated using model selection
techniques. The three types of compartments are free isotropic
(attributed to CSF), restricted isotropic (attributed to water in
glial cells) and water in and around white matter fascicles.

In practice, DIAMOND uses an iterative approach in defining
the number of compartments in each voxel. The optimization
begins with a freely-diffusing compartment and zero fascicles,
and the number of fascicles is gradually increased up to three—
the higher complexity is retained only if the general error of the
model is significantly reduced compared to the previous simpler
model. Spatial regularization of voxel parameters is also used.
While the goodness of fit has been extensively used in the past to
choose which model is most appropriate for describing the data
[84, 85], recent insights into the topology of the fitting landscape
for a two-compartment model (Figure 2) advises against relying
solely on such metrics for model selection [49, 50].

As an extension of the concept of continuous distribution
of diffusion coefficients (Equation 3), DIAMOND also inherits
from its associated issues, discussed in the section on Signal
Representations.

Microstructure metrics estimated using DIAMOND will need
to be subjected to substantial validation studies in the near future.
Recent work on traumatic brain injury in the mouse suggests that
DIAMOND, as any higher order model, is more sensitive than
DTI in detecting differences, but a more thorough validation of
specificity against histology remains to be performed [86].

Summary
Main approaches for deriving quantities from the diffusion
weighted signal include signal representations (also known
as statistical models), biophysical models of white matter,
and hybrid models that contain features of both approaches.
Table 1 summarizes the properties of each of these approaches.
Essentially, single-shell diffusion MRI data only enables the
estimation of a single diffusion tensor for the voxel, i.e., DTI.
Any othermore complex analysis that accounts for non-Gaussian
diffusion effects in the tissue requires at least two non-zero
b-shells, each with sampling along a minimum number of
directions.

Biophysical models come with the promise of characterizing
tissue microstructure with improved specificity. However, their
intrinsic assumptions have the potential to introduce bias.
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TABLE 1 | Summary of method characteristics.

Method Minimum/typical data requirements Estimated metrics Assumptions/constraints

Statistical models DTI 1 b = 0; 6 b = 1 Diffusion tensor (and derived FA, MD, AD,

RD)

None

DKI 1 b = 0; 6 b = 1; 15 b = 2 Same as DTI + kurtosis tensor (and

derived MK, AK, RK)

None

Biophysical models NODDI 1 b = 0; 30 b = 0.7; 60 b = 2 f intra, f iso, κ Da,‖ = De,‖ = 1.7

De,⊥ = (1– f intra)De,‖

Diso = 3

WMTI 1 b = 0; 6 b = 1; 15 b = 2 f intra, Da,‖, De,‖, De,⊥ Limited dispersion

f iso = 0

Da,‖ ≤ De,‖

LEMONADE /

RotInv

1 b = 0; minimum 3 non-zero shells with

e.g., 64 dirs per shell

f intra, Da,‖, De,‖, De,⊥

SH up to 6th order for ODF

f iso = 0

Reisert et al.

[65]

2 non-zero shells or uniform filling of

q-space

f intra, f iso, Da,‖, De,‖, De,⊥ Some parameters will not be

estimated if insufficient data

DBSI 99 directions over 9 b-shells, bmax = 1 Number of anisotropic tensors N and their

respective f i, λ‖,i and λ⊥,i, + isotropic

tensor distribution f (D)

Two-step fitting process, with some

parameters temporarily fixed

Hybrid models FWE 1 b = 0; 32 b = 0.5; 32 b = 1.5 f iso + tissue diffusion tensor Diso = 3

Tissue described by a tensor

DIAMOND “CUSP90”:

12 b = 0; 6 b = 0.4; 6 b = 0.6; 6 b = 0.8;

30 b = 1

+ 30 directions on a cube (1 ≤ b ≤ 3)

f iso, number of fascicles (up to 3) and their

respective f i, κi and Σi

Iterative fitting for number of

compartments;

Spatial regularization;

mv-Ŵ distribution of tensors within

compartment

b-values are in ms/µm2 and diffusivities in µm2/ms.

Nearly all models outperform DTI in capturing tissue diffusion
properties, but this is a very low benchmark. Biophysical models
need to be increasingly compared to one another, and to
higher order signal representations such as DKI, to understand
convergent model properties likely to be successful in broad
applications [57, 65, 87, 88]. Their reliability in the case of
pathological tissue also needs thorough investigation.

VALIDATING DIFFUSION MODELS

Most biophysical diffusion models share at least partial similarity
with one another with respect to their common geometry, as
represented in Figure 1. This section will review validation efforts
for each of the model features (compartment volume fractions,
axon orientation dispersion, and compartment diffusivities).
While many validation studies have been performed for DTI,
the goal is to emphasize results in the context of biophysical
models and how well their derived parameters reflect the true
biology of interest. The first two sub-sections focus on method
validation using either computer simulations or phantoms, while
the following ones discuss the validation of quantitative estimates
for each microstructural feature of white matter.

Computational Simulations
Simulating the random walk of diffusing spins within simple
or complex environments is often the first step to establish a
connection between derived estimates of physical features and
their ground truth values. Simulations have been used where
analytic solutions are difficult or impossible, and their use is so

common that it is impossible to list them here. Notable examples
are those that have also released accompanying software packages
[89–92]. Synthetic geometries, which are typically composed
of cylindrical axons, have been used to model the effects of
axon diameter, packing, volume fractions, permeability, and
other features that can be easily modulated synthetically, and
these have in turn been performed under many different
simulated experimental conditions such as modulation of
diffusion times, gradient waveform shapes, signal to noise ratios,
and other features that would be difficult or time-consuming to
perform experimentally. As the diffusion models have evolved
to include more complex features such as bending, crossing,
and asymmetric fiber orientations, simulations have followed
suit and implemented similar physical features. In addition to
purely fiber models, other notable examples include complex
axonal geometries to demonstrate the effects of swelling [93],
beading [94], undulation [95], and other features. Geometrical
substrates derived from tissue specimens [96] have been also
demonstrated recently, although these remain challenging due
to the difficulties in obtaining high-resolution, 3D images of
tissues and their subsequent conversion to physical substrates.
As 3D microscopy and connectomic techniques push for high
resolution and large-scale imaging of brain tissues at microscopic
resolutions, parallel advances in relating diffusion indices with
more realistic models will likely follow. Importantly, the fidelity
of the simulation geometry to the true underlying biology is a
major concern. To the extent possible, these should encompass
realistic and accurate distributions of axon diameters consistent
with histological reports, random packing as opposed to a regular
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lattice, and other physical features that have been validated in
tissue preparations. Although geometrical models are simplistic,
simulations ensure that the estimated parameters are at least
accurate and precise with respect to known ground truth features,
and if this criteria is not met, acceptable performance in real
tissues is likely compromised.

Phantoms
Ground truth hardware phantoms have been developed
to estimate relevant parameters and calibrate multi-center
studies. Ideally, phantoms mimicking WM structure possess
certain desirable qualities most notably being tubular hollow
structures with diameters approximating those of axons. Another
desirable feature is to organize axon-like structures in different
configurations that mimic complex features such as dispersed
and crossing fibers. Intrinsic diffusivity of the filling material
may also be considered, as well as magnetic susceptibility of
the scaffolding material. Vegetables with tubular structures
or domains, such as celery, asparagus, and chives, have been
routinely used to demonstrate the effects of anisotropic diffusion,
but these substances are clearly not amenable to long-term or
cross-center studies, and phantoms with high consistency and
longevity were sought. Most hardware phantoms have so far
been developed for the purpose of optimizing DTI acquisitions
or validating tractography rather than microstructure models.
Textile fiber phantoms were developed with the scope of easily
mimicking bending or dispersed fibers but their diameters
typically far exceed the range of axons and they are of course not
hollow [97]. Microcapillaries have the advantage of producing
both an intra-axonal and an extra-axonal space to be filled
[98–100], and most recent designs display somewhat more
realistic diameters between 9 and 20 microns [101]. However,
while crossing bundles can be designed, within each bundle the
capillaries are highly aligned, which is a limitation for modeling
true white matter.

Two types of phantoms have so far been developed for the
purpose of validating higher order diffusion models. Fieremans
et al. proposed a phantom of tightly packed solid fibers of
Dyneema and compared the measured signal to simulations for
diffusion, kurtosis and time dependence [102–104]. While it used
reasonable diameters (20µm) the drawback was that it only

modeled the extra-axonal space. Better magnetic susceptibility
matching between water and the Dyneema material can be
achieved using magnesium chloride [105]. A complementary
phantom design of the intra-axonal space has recently been
proposed using co-electrospun fibers that produce a hollow
honeycomb-like arrangement and a distribution of diameters
of about 9.5µm [106]. The ideal phantom for diffusion
microstructure model validation would mimic both intra- and
extra-axonal water with diameters matching those of white
matter axons, randomly packed to appropriate volume fractions,
and orientation dispersion. Clearly, it is challenging to meet all of
these conditions simultaneously.

The advantages of phantoms are well recognized and aim to be
standardized instruments for calibration ofMRI experiments and
assessments of multi-site variability. The disadvantages include
sophisticated chemistry, limited availability to materials and
specialized equipment, and non-standardization. Despite these
current limitations, the role of consistent and widely-accepted
phantoms has been well-recognized [107]. With the push for
reproducibility and precision medicine, physical phantoms will
continue to emerge as a solution to multi-center and multi-
vendor diffusion MRI data acquisition and modeling.

Validating Microstructural Features
Fiber Orientation and Dispersion
Diffusion MRI and its associated models offer the unique ability
to track fiber pathways non-invasively. Diffusion tractography
has been widely used in research settings to probe structural
connectivity in health and disease and has seen success in
clinical scenarios. Most notably, tractography has been used
to identify fiber pathways during tumor resection [108] or
other neurosurgical applications [109]. Tractography is based
on the coherence in fiber orientation between adjacent voxels
and is therefore fundamentally based on the accuracy of the
estimated fiber orientation within each voxel. Validation efforts
to demonstrate the accuracy of diffusion MRI have typically
focused on applications to tractography, but these findings are
also pertinent to microstructural modeling to derive local (i.e.,
voxel level) estimates of fiber orientations and dispersion. While
the diffusion tensor models a single fiber orientation within
each voxel, several methods have been developed to provide

FIGURE 3 | Fiber Orientation Measurements in Fixed Tissues. Examples of fiber orientation measurements in human brain specimens. Structure tensor analysis (A)

uses a digital texture analysis method to detect fiber orientations in stained sections imaged with bright-field or fluorescence microscopy. Both polarized light imaging

(B) and polarization-sensitive optical coherence tomography (C) exploit the intrinsic birefringence of myelin to obtain fiber orientations. Sections in (A) [114] and (B)

[115] (reproduced under the Creative Commons Attribution License) are from the human brain white matter, and (C) [116] from the human medulla oblongata (with

permission).
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a comprehensive estimate of the number and distribution
of fiber orientations within each voxel [64, 110], each with
their own implications for tractography. Although, they have
potential applications to tractography [111–113], diffusion MRI
microstructural models aim to estimate intra-voxel orientation
dispersion as its own unique feature to reveal interesting
characteristics of the healthy, developing, or diseased brain.

Validating the intravoxel fiber dispersion, or ODF, is
typically accomplished through imaging of the tissues using
light microscopy or similar modalities and deriving quantities
reflecting the neurite orientations (Figure 3). Thus, there is
a more direct relationship between diffusion MRI quantities
and those measured from histological samples than for volume
fractions (see following section) because fiber orientations are
largely unaffected by fixation and can be reliably measured in
tissues with relative ease. Among the first examples to conduct
direct validation studies, manual segmentation of axons in
stained tissue white matter sections were compared to DTI and
Diffusion Spectrum Imaging (DSI) estimates [117]. A variety of
automated image processing techniques have been used to derive
the angular orientation profiles of stained tissues, permitting
large-scale automated analysis of tissue specimens [118–127].
These methods generally fall into classes of algorithms that use
pattern-matching, Fourier analysis, or edge detection. Pattern
matching attempts to identify discrete fibers within the image
to build a full distribution of fiber dispersion. On the other
hand, Fourier analysis and structure tensor analysis instead use
the texture of the images to derive angular profiles of edges or
spectral content. Structure tensor analysis has been particularly
attractive since its interpretation is analogous to the diffusion
tensor. Typically, the histological specimens were limited by two-
dimensional samples, but the structure tensor analysis has also
been extended to 3D sections using confocal imaging [128, 129].
Collectively, the results from these studies all demonstrate a
consistent and expected finding that while DTI fails to capture the
full complexity of the underlying fiber orientation distributions,
diffusion models that include dispersion as a feature better
reflect the underlying structures. However, most studies thus
far have validated orientation in tractography-driven approaches
that focus solely on retrieving orientation without regard for
diffusivities and volume fractions and do not fall into the category
of microstructure models.

Stained histological sections for validation have several
disadvantages and potential complications and confounds.
Tissue processing and cutting can lead to distortion or
artifacts, and histological staining may also be complicated
by staining irregularity or artifacts. Moreover, sectioning,
staining, and imaging large volumes at high magnification is
very time consuming [130]. Although the brains and spinal
cords of small animals can be captured with most laboratory
microscopes, imaging large-scale tissues at high resolution such
as human brain slices may require custom equipment and high-
performance computing. Advances in large-scale microscopic
imaging of fixed tissues have circumvented some of the issues
with traditional sectioning and staining by using blockface
imaging and intrinsic contrasts. Myelin exhibits the property of
birefringence [131] which permits imaging of fiber architecture

in fixed but unstained tissue sections. Somewhat analogous
to diffusion encoding, rotating the polarization angle along
different directions enables the estimation of fiber orientations
in both 2D and 3D to examine human brain sections in their
entirety [115, 132, 133]. Blockface microscopy, which consists
of repeated imaging of the exposed surface of a tissue cut
using serial sectioning, has also emerged as a powerful tool for
large-scale imaging. Notably, compared to traditional sectioning,
blockface imaging reduces distortions and the full process can
be automated [116, 134, 135]. Modalities such as two-photon
microscopy [136] or optical coherence tomography [137, 138]
also image up to tens of microns below the surface and can
provide contiguous 3D images of large tissue. Many of the
whole-specimen imaging techniques developed for local neuron
connectomic studies [139–141] have demonstrated utility when
coupled with diffusion MRI [142].

Direct histological examination with microscopy has
consistently demonstrated that white matter tracts are not
strictly composed of uniform bundles. Even in the corpus
callosum, an intravoxel dispersion of ∼18–20 degrees is
consistently evident from rodent [117], and human samples
[118, 143]. In the gray matter, Jespersen et al. demonstrated
strong agreement between the estimated neurite orientation
distributions and histological staining [144].

Volume Fractions or Neurite Density
The ability of diffusion MRI to monitor axon content in the
brain and spinal cord has demonstrated wide ranging utility
in a variety of applications across normal development, aging,
injury, and disease. Unlike fiber orientation, which is generally
preserved in fixed tissues, the relative volume fractions are
perturbed during fixation and processing which has made non-
MR measurements somewhat biased and inconsistent. It is
important to first distinguish the true physical cellular fractions
obtained from microscopy or other non-MRI methods from
those reported from diffusion MRI models. In the brain, the
extracellular volume fraction is typically around 20% [145],
but traditional tissue fixation and processing artificially reduces
this to ∼2–5% [146]. In white matter, the axoplasm constitutes
∼25–30% of the physical space in white matter tissues [147],
myelin constitutes ∼20–30% [147, 148], and glial cell bodies
and processes constitute ∼30–40% [147]. Recent extracellular
space-preserving methods of fixation support the approximation
of 15–20% extracellular space [149] and indicate that axonal
volumes are relatively unaffected by the method of fixation [150].
In typical diffusion MRI experiments, the signal from water
associated with myelin has a negligible contribution to the overall
signal due to its short T2 and is therefore routinely ignored
in diffusion models. Diffusion MRI measures of compartment
signal fractions are commonly referred to as neurite density or
axonal volume fraction. Since density implies axonal counts and
axonal volume fraction is ambiguous due to the myelin volume
fraction, the term axonal water fraction (AWF) is a more precise
terminology. Thus, derived from physical measurements alone,
the AWF in healthyWM should be∼33% [147, 148]. However, to
further complicate things, the relative fractions of the remaining

Frontiers in Physics | www.frontiersin.org November 2017 | Volume 5 | Article 61117

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jelescu and Budde White Matter Models and Validation

“MR-visible” compartments are also weighted by their respective
T2’s.

Several studies have compared MR-derived axon water
fractions with direct histologic preparations of the same samples.
Estimates of the intra-axonal volume fractions fromDWImodels
consistently emerge around 40–60% [38, 151], which is generally
in line with histologic estimates although slightly higher than
estimated from microscopy [152]. Jespersen et al. demonstrated
agreement between neurite density estimates from DWI and
quantitative microscopy, notably using both ex vivo DWI and
histology [38, 61], and others have shown similarly strong
relationships [153], although lower fractions have been noted in
some samples [154]. Correlations (or absence thereof) between
diffusion-derived and electron microscopy (EM)-derived metrics
have also helped further establish the selective sensitivity of
biomarkers derived from diffusionmodeling to different features.
For example, using WMTI, AWF has been shown to correlate
with axon volume fraction but not with the g-ratio derived from
EM, while De,⊥ correlated with the g-ratio but not the with axon
volume fraction [56]. Measures of AWF have also been combined
with MRI measures of myelin content to estimate myelin g-
ratio in vivo, which compared favorably to that derived from EM
[155, 156]. However, a strong correlation is not necessarily proof
of parameter specificity. Notably, axon fractions derived from
microscopy typically correlate very strongly with radial diffusivity
(RD) derived from the diffusion tensor [61].

Compartment-Specific Diffusivities
Diffusivities of the various modeled cellular compartments are
both critical features that form the basis for diffusion models,
and have been arguably the most difficult to validate. Alternative
methods to NMR for measuring the self-diffusion coefficient of
water are not available, and NMR-based measurements include
signals from all compartments. In order to circumvent this issue
and gain information about compartment-specific diffusivities,
alternative approaches have been proposed: the use of model
systems, endogenous compartment-specific metabolites,
exogenous compartment-specific probes and tracers, signal
suppression in a given compartment, exploiting alternative
encoding methods, analyzing time-dependent properties, and
combining diffusion methods with other contrasts (T2). Early
studies examined compartment-specific diffusivities to glean
insight into the nature of diffusion in the nervous system,
with a particular focus on the biophysical basis of changes in
cerebral ischemia. More recently, as highlighted in Part 1, a
two-compartment model of diffusion shows a degeneracy that
only an independent determination of compartment diffusivities
can lift.

Model systems using invertebrates with large axons were
first used to identify the source of anisotropy in the nervous
system [157], demonstrating that biological membranes were
the primary determinants of diffusion restriction/hindrance.
These studies measured the intrinsic intra-axonal diffusivity,
demonstrating it was ∼70–80% that of pure water [158, 159].
Hence, these studies set the stage showing that intra-axonal
diffusion was largely unrestricted along the axon, and the

axonal membrane serves as a considerable barrier to diffusion
perpendicular to the fibers.

Endogenous MRI-detectable tracers to assess diffusion
primarily include metabolites detected through proton magnetic
resonance spectroscopy (MRS). These include NAA, creatine,
choline, and myo-inositol. NAA is a neuronal-specific metabolite
and a surrogate marker of the intra-axonal space in white matter.
Although, the neuronal specificity of NAA has recently been
called into question since it was found to be also localized
in myelin [160], the influence of myelin-associated NAA on
the MR signal remains unclear and diffusion of NAA has so
far been used to probe intra-axonal diffusion. Kroenke et al.
[37] performed diffusion-weighted MRS in the human corpus
callosum and rat brain, demonstrating that in vivo the Da,‖

of NAA was ∼50% (0.36 µm2/ms) of that of an aqueous
solution and Da,⊥ was effectively zero. Similar results were
shown for NAA in the human brain and in a peripheral nerve
preparation [161, 162]. Ronen et al. [143], accounting for both
the macro- and microscopic curvature of the human corpus
callosum, measured a slightly larger Da,‖ (0.51 µm2/ms) putting
it in the range of 60–70% of aqueous NAA. Palombo et al.
[163] have also demonstrated diffusion of NAA and other
metabolites can be modeled as occurring in long, cylindrical
fibers, having a Da,‖ of 0.33 µm2/ms. The diffusion weighted
signals of other metabolites were also fit well by assuming
long cylindrical processes [163–165]. Since metabolites have
differences in molecular size, affinity to charged surfaces, and
potential ambiguity in compartment selectivity, the intra-axonal
diffusivity of water cannot be unequivocally extrapolated from
metabolite diffusivities. However, these studies and those in
experimental preparations are consistent with the intra-axonal
water diffusivity being 60–80% of its temperature-matched
aqueous diffusivity.

Exogenous MRI-detectable tracers, most notably injectable
agents used in animal models, have also been used to probe
the diffusivity of specific environments. Non-proton probes
have been used to selectively probe either the extracellular
space (sodium-based [166]), the intracellular space (cesium-
based [167]) or each of them separately (fluorine-based [168]).
The diffusivity of extracellular proton-based agents such as
mannitol, phenylphosphonate, and polyethylene glycols has
also been investigated using diffusion spectroscopy [169].
Often though, the compartment specificity is not perfect
and transmembrane exchange is a complicating factor [170].
Nonetheless, using these approaches, it has been suggested that
the diffusivities in the intra- and extracellular environments
for molecules of these sizes are approximately similar to one
another. It should be noted though that these measurements
were typically limited to the apparent diffusion coefficient
(ADC) in rat gray matter, and should rather be interpreted
as: the traces of the diffusion tensors in the intra- and
extracellular environments are approximately similar to one
another.

Compartment selectivity can be also achieved by suppressing
the extracellular water signal using exogenous tracers.
Intracerebroventricular infusion of a gadolinium-based contrast
agent causes the T2 of the extracellular space to decrease,
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effectively suppressing its contribution during signal acquisition.
Following measurements in the rat gray matter, Silva et al.
reported similar ADCs with and without the suppression, which
supports the idea of comparable diffusion traces in the intra-
and extracellular environments for water molecules as well
[171]. Recently, this experiment was replicated in the rat corpus
callosum in a direction-specific manner and concluded that Da,‖

≥ De,‖ [172].
Non contrast-based alternatives using non-conventional

diffusion encoding have also provided insight into how axial
compartment diffusivities compare. A double diffusion encoding
(DDE) sequence was recently used to exploit Da,⊥ = 0 and
suppress the extra-axonal signal using a strong initial diffusion
gradient perpendicular to the spinal cord, with the results
suggesting Da,‖ ≈ De,‖ [173]. Isotropic diffusion weighting has
been used by two independent groups to show that isotropic
kurtosis is negligible in most brain structures, including white
matter tracts [174, 175], whereby the traces of the intra-
and extra-axonal compartments were similar. This recurrent
observation implied the Da,‖ ≥ De,‖ solution of the two-
compartment model was valid. Most recently, Jespersen et al.
have shown also that the time-dependence for compartment-
specific diffusivities in a Watson-WMTI model is physically
acceptable only forDa,‖ ≥De,‖, albeit in fixed rat spinal cord [59].
The inclusion of compartment T2’s in the LEMONADE model
also suggested likewise [176]. Thus, evidence from a variety of
experiments has generally favored Da,‖ ≥ De,‖, although true
independent validation is still lacking.

Validation of Model Parameter Choices
The choice and accuracy of diffusion model parameters can be
gleaned from these validation studies. The first observation is
that, for clinical diffusion times, the long-time limit applies and
intra-axonal diffusion perpendicular to a single fiber (Da,⊥) is
effectively zero: thus the “stick” model of axons is generally
appropriate for axon diameters in the central nervous system,
as has also been demonstrated recently [177]. Second, under
this stick model assumption, the orientations of fibers examined
histologically are reasonably well-approximated by diffusion
models that account for dispersion or crossing-fibers, but it
should be noted that most of these studies have not jointly
considered dispersion along with simultaneous estimates of
other microstructural properties. Third, the intra-axonal parallel
diffusivity (Da,‖) is ∼60–80% of the temperature-matched
aqueous solution of the same molecule (Dfree). Fourth, in the
healthy white matter, the intra-axonal parallel diffusivity Da,‖ is
likely faster than the extra-axonal diffusivity De,‖, although not
substantially.

PARAMETER CHOICE IN THE INJURED

AND DISEASED WHITE MATTER

In the healthy white matter, diffusion models have converged to
a relatively uniform set of parameters as described previously,
which has been proposed as the universal model of white
matter diffusion. To avoid model overfitting, each of the

biophysical model variants neglects, constrains, or holds
fixed certain parameters while leaving others free to fit to
the data. Importantly, while these constraints have nuanced
effects in the healthy brain and spinal cord, there is still
considerable disparity and disagreement about the necessary
and relevant model parameters in the injured or diseased
brain. A complication arises in which the pathologies of
different injuries or diseases may be different from one
another and are likely to evolve over time and therefore,
since there is no consistent pathology, there is unlikely to
be a diffusion model that universally captures it. Moreover,
while a specific pathology can lead to predictable diffusion
MRI outcomes, many different pathologies can lead to the
same diffusion behavior. Furthermore, single pathologies rarely
occur in isolation. While the diffusion model parameters
themselves are independent, there are often strong correlations
between pairs of diffusion parameters and specific pathological
features.

Diffusion MRI has been applied to nearly every brain and
spinal cord disease or injury. DTI represents the overwhelming
majority of studies related to validation, yet many investigators
have conducted comprehensive studies to relate biophysical
model parameters with the gold-standard techniques. While
a comprehensive review of all of the different disease and
injury categories is beyond the scope here, highlighting specific
examples will shed light on the issues.

Cerebral Ischemia
The most common clinically useful application of diffusion MRI
is in the detection of acute cerebral ischemia [178, 179]. Within
minutes of the onset, diffusion within the infarct is decreased
by approximately one half. Although the precise mechanism
has been debated, it is closely related to the loss of membrane
polarization, ion imbalance, and cell swelling characteristic of
acute ischemia [180]. Compartment-specific tracer studies have
indicated that the intracellular and extracellular compartments
exhibit similar decreases in diffusion [168, 171], while others
have shown that intracellular diffusivity decreases substantially
while the extracellular diffusivity experiences a somewhat lesser
decrease [167]. The extracellular decrease is consistent with a
reduction in the extracellular space and increase in tortuosity
that leads to decreased diffusivity in that compartment [33],
while the intracellular decrease is consistent with neurite beading
[94, 181]. Oscillating gradient measurements in the rat brain
have demonstrated that restrictions caused by ischemia occur
on the scale of several microns typical of cell sizes [182]. The
reduced diffusion in stroke can also relate to a larger fraction of
highly restricted diffusion [183, 184] which may be compatible
with a still water compartment (Diso = 0). Clearly, as the injured
tissue degenerates, multiple coincident pathologies exist and the
interpretation of diffusion MRI changes becomes increasingly
more complex. For example, both NODDI and WMTI have
been applied to acute human stroke, with contrasting results.
WMTI demonstrated a large reduction in Da,‖ in coherent fiber
pathways, with lesser reductions in De,‖ (under the assumption
Da,‖ < De,‖) consistent with neurite beading hypothesis [13]. On
the other hand, NODDI applied to human stroke demonstrated
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pronounced increases in the estimated orientation dispersion
[42]. Although these differences may be related to the time
after onset, animal models reveal almost no changes to neurite
organization in the acute aftermath [185]. Thus, the model
assumptions of NODDI of fixed diffusivities appear to cause
misleading interpretations when those assumptions are strongly
violated.

Demyelination and Myelin Disorders
Demyelination and other myelin disorders, despite having
hallmark pathologies of myelin loss, degeneration, or
dysfunction, also typically exhibit multiple overlapping
pathologies. Particularly in the acute inflammatory phases
of the disease or model, myelin pathologies are accompanied
by microglia and astrocyte activation and proliferation [186],
and axonal injury is also prominent in some models of multiple
sclerosis or optic neuritis [187]. Thus, multiple confounding
pathologies present significant challenges of both specificity
and sensitivity in relation to diffusion models. A chemical
model of demyelination induced through cuprizone toxicity
has been used by many groups to validate diffusion and
other MRI markers related to specific pathologies. Using the
WMTI framework, Guglielmetti et al. [12] demonstrated a
prominent reduction in Da,‖ during the acute inflammatory
phase, while a reduced AWF was observed throughout the
remyelination and recovery period. Jelescu et al. [56] showed
that the axonal fraction assessed with electron microscopy
correlated with AWF derived from WMTI, while the g-ratio
correlated with De,⊥. In a model of hypomyelination, Kelm et al.
[58] demonstrated strong correlations between axonal fractions
obtained from histology and MRI, again using WMTI, but no
significant correlations between other WMTI parameters and
histology measures were found. Using the DBSI framework,
Wang et al. [67] demonstrated strong correlations between
axial diffusivity (a DBSI parameter related to Da,‖) and axon
integrity, radial diffusivity (a parameter related to De,⊥), and
myelinated axons, and cell ratio (a parameter related to Diso)
and histological cell counts, with similar findings reported in
the experimental autoimmune encephalomyelitis [72] and optic
neuritis [68] animal models. However, most disease models
examined previously with DTI [188, 189] demonstrated strong
associations between many of the microscopy measures and
quantitative diffusion MRI measures, thus strong correlations
are not an indicator of specificity. These studies highlight the
challenges of diffusion MRI-based biomarkers since many
different pathologies can give rise to similar diffusion signatures
and separate pathologies rarely occur in isolation from one
another. Moreover, it is worth reiterating that diffusion is an
indirect marker of the entire water content of the voxel, and
while high specificity is desired, the reliability, sensitivity, and
clinical usefulness of these techniques will also be paramount.

SUMMARY

Diffusion MRI is uniquely sensitive to microscopic tissue
features that are nearly impossible to achieve through other

means. However, diffusion MRI is intrinsically limited since it
is an indirect measure of tissue microstructure and relies on
inferences from models and estimation of relevant parameters.
A plethora of approaches have emerged. The biologically-
inspired models have many similarities although each has
different inherent assumptions and algorithms. Consequently,
validating diffusion models and derived parameters is necessary
to demonstrate accuracy, and has relied on various approaches.
Simulations and phantoms have a role in demonstrating the
accuracy and precision to a known ground truth and can
identify sources of error and effects of violating the underlying
assumptions. The predominant approach to validate diffusion
MRI models is optical imaging of fixed tissue specimens since
it offers a direct assessment of the physical features of the
tissues and their true biological complexity. An increasing
body of literature has demonstrated that diffusion models
which account for intra-voxel fiber dispersion are generally
good approximations to the underlying white matter fiber
organization. Estimates of axonal volume fraction with diffusion
MRI are also approximately consistent with histological
measurements when accounting for potential bias of fixation
and tissue processing. The intrinsic diffusivities of the intra- and
extra-axonal compartments are more challenging to validate
independently since they can only be measured using NMR
itself, and alternative diffusion encodings seem promising in
providing the sought validation. In the injured and diseased
white matter, considerable ambiguity still exists in the choice
of model parameters along with their imposed constraints.
Critically, the range of possible pathologies is likely to be too
complex to be accurately captured with a single universal model
and avoid over-fitting. Validation studies will be important
to establish disease and pathology specific applications.
Ultimately, the goal of diffusion MRI modeling is to provide
a clinically meaningful insight for diagnosis and treatment
efficacy.
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Purpose: To present a new modified tri-exponential model for diffusion-weighted

imaging (DWI) to detect the strictly diffusion-limited compartment, and to compare it

with the conventional bi- and tri-exponential models.

Methods: Multi-b-value diffusion-weighted imaging (DWI) with 17 b-values up to 8,000

s/mm2 were performed on six volunteers. The corrected Akaike information criterions

(AICc) and squared predicted errors (SPE) were calculated to compare these three

models.

Results: The mean f0 values were ranging 11.9–18.7% in white matter ROIs and

1.2–2.7% in gray matter ROIs. In all white matter ROIs: the AICcs of the modified

tri-exponential model were the lowest (p < 0.05 for five ROIs), indicating the new model

has the best fit among these models; the SPEs of the bi-exponential model were the

highest (p < 0.05), suggesting the bi-exponential model is unable to predict the signal

intensity at ultra-high b-value. The mean ADCvery−slow values were extremely low in white

matter (1–7 × 10−6 mm2/s), but not in gray matter (251–445 × 10−6 mm2/s), indicating

that the conventional tri-exponential model fails to represent a special compartment.

Conclusions: The strictly diffusion-limited compartment may be an important

component in white matter. The new model fits better than the other two models, and

may provide additional information.

Keywords: diffusion magnetic resonance imaging, brain, white matter, computer-assisted image processing,

theoretical models

INTRODUCTION

Diffusion-weighted imaging (DWI) is the only noninvasive method for detecting the diffusion
motion of water molecules in tissues. Currently, in clinical practice, apparent diffusion coefficient
(ADC) maps are typically calculated with the mono-exponential model. However, it has been well
established that the attenuation of the DWI signal does not follow the mono-exponential model
in many tissues (Clark and Le Bihan, 2000; Koh et al., 2011). It is believed that more than one
proton pool exists inside each voxel (Bennett et al., 2003, 2006). Therefore, many models have been
developed in order to accurately reflect the diffusion motion of water molecules in vivo (Le Bihan
et al., 1988; Bennett et al., 2003; Jensen et al., 2005), such as the bi-exponential model.
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However, the bi-exponential model is being challenged for
the heterogeneity of its results across studies and its lack of
reproducibility (Müller et al., 1998; Grant et al., 2001; Schwarcz
et al., 2004; Koh et al., 2011; Steier et al., 2012; Hu et al.,
2014; Lin et al., 2015). This model is considered oversimplified
(Bisdas et al., 2013), and some researchers even speculate that
there are continuous distributions of diffusion coefficients inside
each voxel (Bennett et al., 2003, 2006). Recent studies have
demonstrated that the three-pool model can perform a better
fitting and may provide more detailed information than the bi-
exponential model in many tissues (Hayashi et al., 2013, 2014;
Cercueil et al., 2015; Ohno et al., 2016; Ueda et al., 2016; van
Baalen et al., 2017). However, it is well known that a highly
parameterized model can always fit a given data set better than
a model with fewer parameters. Whether or not a model can
provide more information should be well verified to avoid over-
fitting.

Recently, ultra-high b-value DWI has been studied more
frequently in recent years because of the popularization of 3.0-
Tesla MR systems (Ling et al., 2015; Hu et al., 2017). Several
studies using DWI with ultra-high b-value have found that the
signal curves of DWI decrease very slowly and tend to be stability
at ultra-high b-values in some tissues (Grant et al., 2001; Ling
et al., 2015). This phenomenon can be hardly explained by the
existing models. Many studies have suggested the existence of
the strictly diffusion-limited compartment with extremely low
ADC in tissues and even cells (Niendorf et al., 1996; Grant et al.,
2001; Sen and Basser, 2005; Baxter and Frank, 2013; Ling et al.,
2015). The ADC of water molecules, which are strictly limited in
microstructures with extremely small space (such as intracellular
organelles), might be extremely low. Because of the very low
signal attenuation of this compartment at normal b-values, the
ADC of this compartment can be set as zero mathematically.
Accordingly, by setting one ADC value of the conventional tri-
exponential model as zero, we developed a new modified tri-
exponential model.

The purpose of this study was to present the new modified
tri-exponential model to detect the strictly diffusion-limited
compartment, and to compare it with the conventional bi- and
tri-exponential models. Previously, stationary water molecules
have been suspected to be exist in white matter (Alexander et al.,
2010), and three compartment models with a “dot” compartment
(zero radius sphere) have been found to produce a better
fitting for diffusion MRI in white matter (Ferizi et al., 2014).
Accordingly, we hypothesized that the modified tri-exponential
model with a “zero-ADC” compartment might also produce a
better fitting for DWI in white matter. Hence, we performed this
preliminary study in brain. To indicate the existence of the strictly
diffusion-limited compartment, a multi-b-value DWI sequence
with b-values range from 0 to 8,000 s/mm2 was used in this study.

MATERIALS AND METHODS

Participants
This study was approved by the institutional review board at
the Second Affiliated Hospital of Zhejiang University. Six young
healthy volunteers (four males and two females, age range 24–27

years) were enrolled in this study, without any previous history
of central nervous system diseases. Written informed consents
were obtained from all participants. This study was conducted
according to the principles expressed in the Declaration of
Helsinki.

DWI Parameters
The volunteers were imaged on a 3.0-Tesla MR system
(Discovery MR750, GE Healthcare Systems, Milwaukee, WI)
with a gradient strength of 50mT/m using an eight-channel high-
resolution receiver head coil. A single-shot echo planer imaging
sequence was used for the imaging with the following parameters:
number of sections, 24; section thickness, 4mm; field of view,
240 × 240mm; matrix, 256 × 256; in-plane resolution, 0.94 ×

0.94mm; repetition time/echo time, 3,000/107.7ms; phase FOV,
1.00; flip angle, 90; and pixel bandwidth, 1953.1 Hz/pixel. The
sequence was performed with 17 b-values (0, 10, 20, 30, 50,
70, 100, 150, 200, 300, 500, 700, 1,000, 2,000, 3,000, 5,000, and
8,000 s/mm2) in three orthogonal directions, and the signals
were averaged over three directions by the imaging system
automatically. The numbers of scan averages (NSAs) for b = 0
to 8,000 s/mm2 were 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5,
9, and 12, respectively. Magnitude reconstruction was applied
by the imaging system automatically. The total scan time was
21min 30 s.

Models
The potential biological interpretations for the three
compartments of the modified tri-exponential model are
shown in Figure 1A. The strictly diffusion-limited compartment
is suspected to represent water molecules strictly limited in
microstructures with extremely small space, such as intracellular
organelles. The signal attenuation curves for three different ADC
values are shown in Figure 1B. For normal ADC values, the
remaining signal ratio will be very low at b= 8,000 s/mm2 (1.8%
for ADC = 500 mm2/s and 0.0% for ADC = 2,000 mm2/s).
However, the signal ratio will still remain high at b = 8,000
s/mm2 for an extremely low ADC value (92.3% for ADC = 10
mm2/s).

The signal attenuation of the bi-exponential model, the
conventional tri-exponential model and the modified tri-
exponential model as a function of b is expressed by Equations
(1–3), respectively.

S

S0
= fslow

∗e−ADCslow
∗b

+ ffast
∗e−ADCfast

∗b, f slow + ffast = 1(1)

S

S0
= fvery−slow

∗e−ADCvery−slow
∗b

+ fslow
∗e−ADCslow

∗b

+ffast
∗e−ADCfast

∗b, fvery−slow + f
slow

+ ffast = 1 (2)

S

S0
= f0 + f slow

∗e−ADCslow
∗b

+ ffast
∗e−ADCfast

∗b, f0

+ fslow + ffast = 1 (3)

In these equations, S represents the signal intensity at
corresponding b, and S0 represents the signal intensity at b =

0 s/mm2. The fvery−slow, fslow, and ffast , respectively represent
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FIGURE 1 | Potential biological interpretations for the three compartments of

the modified tri-exponential model (A). The red regions represent the strictly

diffusion-limited compartment, the yellow regions represent the slow diffusion

compartment, and the green regions represent the fast diffusion compartment.

Signal attenuation curves of three ADC values (B). The unit of the ADC values

was mm2/s.

the fractions of corresponding diffusion compartments, with
corresponding ADC marked as ADCvery−slow, ADCslow, and
ADCfast . The f0 represents the fraction of the strictly diffusion-
limited compartment.

Model Ranking
For model selection, the small-sample corrected Akaike
information criterion (AICc) has been widely used in previous
studies (Bourne et al., 2014; Jambor et al., 2015). The akaike
information criterion (AIC) was first proposed by Akaike
for determining the best model among models and avoiding
over-fitting (Akaike, 1974). Hurvich and Tsai improved this
method and proposed AICc to compensate for the number of
data points, and this improved method has been tested valuable
in small samples (Hurvich and Tsai, 1989). The equation for
calculating the AICc is as listed below:

AICc = 2 ∗ k+ N ∗ ln

(

RSS

N

)

+

2 ∗ k ∗ (k+ 1)

N − k− 1
(4)

where k is the number of free parameters of models, N is the
number of points used for fitting, and RSS is the RSS from fitting
(Hurvich and Tsai, 1989; Jambor et al., 2015).

Besides, we also compared the models with a leave-one-out
test, in order to confirm that the models were correctly ranked
by the AICc (Bourne et al., 2014). The predicted residual sum
of squares (PRESS) is an index of this method first proposed by
Allen for model selection (Allen, 1974).

Image Processing and Analysis
The DWI images were realigned by using SPM12 (available at:
www.fil.ion.ucl.ac.uk/spm). Then, these images were analyzed by
using programs written in MatLab (MatLab 2009b; MathWorks,
Natick, MA). The conventional bi- and tri-exponential models
and the modified tri-exponential model were all used for curve
fitting.

Curve fittings of these three models were performed using
DWI maps obtained with the first 16 b-values (excluding b
= 8,000 s/mm2), and were implemented voxel-by-voxel using

the steepest descent algorithm (Lenglet et al., 2009). Signal
values were all normalized to corresponding signal value S0
prior to model fitting. The initial values of parameters were set
empirically. For these three models, the initial value of fslow was
set to 0.50, withADCslow set to 600× 10−6 mm2/s andADCfast set

to 2,000 × 10−6 mm2/s. For the modified tri-exponential model,
the initial value of f0 was set to 0.10, while for the conventional
tri-exponential model, the initial value of fvery−slow was set to

0.10, with ADCvery−slow set to 100 × 10−6 mm2/s. The detail
description of the programmed algorithm ofmodel fit is shown in
Supplement Figure S1. Thus, the parametric maps and the maps
of residual sums of squares (RSS) were derived. Subsequently, the
AICc maps of these three models were calculated from the RSS
maps. Besides, the PRESS maps were also obtained.

After the curve fitting, the signal intensities at b = 8,000
s/mm2 were predicted, and the error of the prediction was
squared to form the squared prediction error (SPE) by Equation
(5). Thus, the SPE maps were derived. The SPE was a new index
presented in the current study to evaluate the ability of models in
predicting DWI signals at ultra-high b-values.

SPE = (Sm − Sp)
2 (5)

where Sm and Sp represent the measured signal intensity and the
predicted signal intensity at b= 8,000 s/mm2, respectively.

The regions of interest (ROIs) were drawn by an experienced
neuroradiologist. Each ROI was drawn to include corresponding
zones as much as possible at one section. Two ROIs were drawn
in the cingulate gyrus and supramarginal gyrus, representing
gray matter. Six ROIs were drawn in the genu of the corpus
callosum, splenium of the corpus callosum, posterior limbs of
the internal capsule, centrum semiovale, forceps minor and
forceps major, representing white matter. Average values of the
parameters and indexes were calculated within each ROI. Besides,
the signal-to-noise ratios (SNR) of DWI maps were determined
by using a “difference method,” which is based on the evaluation
of a difference image of two repeated acquisitions on a single
volunteer (Dietrich et al., 2007). ROIs were placed on centrum
semiovale and cingulate gyrus, representing for white matter and
gray matter, respectively.

In addition, we also performed a stability experiment to
investigate the fitting stability of the modified tri-exponential
model toward initial conditions. We set random values between
0.05 and 0.10 to initial f0 values, random values between 0.50
and 0.60 to initial fslow values, random values between 500 and
800 mm2/s to initial ADCslow values and random values between
1,900 and 2,200 mm2/s to initial ADCfast values. Thus, we totally
generated 20 random initial value sets for the modified tri-
exponential model. For each initial value set, curve fitting of the
modified tri-exponential model was performed, and the mean
values of the parameters were calculated over the ROI on the genu
of the corpus callosum (CCG) for one volunteer.

Statistical Analysis
All statistical analyses were performed using SPSS version 22
(SPSS Inc, Chicago, IL, USA). The median values and quartile
ranges of the RSS, SPE, and AICc were calculated. Wilcoxon
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signed-rank test were used to compare these three indexes
between any pair of the models. A value of p < 0.05 was regarded
as statistically significant.

RESULTS

The mean DWI signal intensity over an ROI decayed much more
slowly in white matter than in gray matter, shown in Figure 2.
In particular, the remaining signal intensity ratio at b = 8,000
s/mm2 was as high as 18.7% in the white matter ROI, while only
2.4% in the gray matter ROI. In white matter, the SNRs of the
DWI image at b= 0, 5,000, and 8,000 s/mm2 were 28.2, 27.8, and
23.7, respectively. In gray matter, those were 31.2, 9.8, and 6.5,
respectively. For the modified tri-exponential model, the stability
experiment showed that the distributions (mean ± SD) of the
mean f0, fslow, ffast , ADCslow, and ADCfast values on CCG over the
initial value sets were 18.2 ± 0.6, 58.4 ± 1.2, 23.6 ± 1.2%, 816 ±
7 and 4,525± 88 mm2/s, respectively.

For the white matter ROIs, the RSSs of the modified tri-
exponential model were lower than those of the other twomodels
(p < 0.05). Besides, the RSSs of the conventional tri-exponential
model were lower than those of the bi-exponential model (p <

0.05), shown in Table 1. For the gray matter ROIs, the RSSs of
the conventional tri-exponential model were lower than those of
the other two models, and there were no significant differences
in RSSs between the modified tri-exponential model and the
bi-exponential model.

The AICcs of the conventional tri-exponential model were
significantly larger than those of the other two models in all ROIs

FIGURE 2 | DWI images achieved with b = 0 (A), b = 1,000 (B), and b =

8,000 s/mm2 (C) from one volunteer. Plots of the average signal-intensity

decay of two ROIs as a function of b (D). CG, cingulate gyrus; CCg, genu of

the corpus callosum.

(p < 0.05), shown in Table 2. The AICcs of the modified tri-
exponential model were lower than those of the bi-exponential
model in the white matter ROIs (p < 0.05, except for the genu
of the corpus callosum), while were higher than those of the
bi-exponential model in the gray matter ROIs (p < 0.05).

The PRESSs of the modified tri-exponential model were
significantly lower than those of the other two models in all
white matter ROIs (p < 0.05), while those of the conventional
tri-exponential model were significantly lower than those of the
other two models in two gray matter ROIs (p < 05), shown in
Table 3.

The bi-exponential model was unable to predict the DWI
signal at b = 8,000 s/mm2 as accurately as the other two models,
shown in Figure 3. The SPEs of the bi-exponential model were
significantly higher than those of the other two models in all
white matter ROIs (p < 0.05), shown in Table 4.

TABLE 1 | Residual sums of squares (RSSs) of the bi-exponential, conventional

tri-exponential, and modified tri-exponential models in ROIs.

ROI Bi-exponential

(×10−4)

Conventional

tri-exponential (×10−4)

Modified

tri-exponential (×10−4)

CCg 194 (135, 214) 136 (122, 175)* 126 (110, 159)*#

CCs 121 (106, 159) 94 (82, 134)* 85 (78, 129)*#

ICp 61 (45, 72) 47 (34, 59)* 44 (29, 51)*#

CS 64 (58, 86) 50 (44, 70)* 44 (38, 66)*#

Fmi 80 (71, 107) 65 (53, 88)* 62 (43, 80)*#

Fmj 64 (54, 93) 52 (41, 70)* 45 (38, 60)*#

CG 187 (88, 291) 178 (82, 278)* 189 (90, 314)#

SpG 101 (69, 147) 93 (62, 142)* 96 (71, 151)#

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major; CG, cingulate gyrus; SpG, supramarginal gyrus. Data expressed as median

(Q1, Q3). *p < 0.05, vs. the bi-exponential model; #p < 0.05, vs. the conventional

tri-exponential model.

TABLE 2 | Small-sample corrected Akaike information criterions (AICcs) of the

bi-exponential, conventional tri-exponential and modified tri-exponential models in

ROIs.

ROI Bi-exponential Conventional

tri-exponential

Modified

tri-exponential

CCg −102 (−106, −94) −98 (−103, −89)* −105 (−108, −94)#

CCs −112 (−115, −107) −108 (−112, −105)* −114 (−117, −110)*#

ICp −123 (−126, −118) −120 (−125, −115)* −126 (−131, −121)*#

CS −121 (−124, −118) −119 (−121, −116)* −124 (−127, −121)*#

Fmi −120 (−124, −117) −117 (−123, −114)* −122 (−128, −119)*#

Fmj −123 (−124, −115) −121 (−122, −113)* −126 (−127, −117)*#

CG −112 (−119, −98) −105 (−113, −91)* −109 (−115, −94)*#

SpG −117 (−121, −102) −110 (−115, −104)* −114 (−118, −107)*#

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major; CG, cingulate gyrus; SpG, supramarginal gyrus. Data expressed as median (Q1,

Q3). *p < 0.05, refers to the bi-exponential model; #p < 0.05, refers to the conventional

tri-exponential model.
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Representative parameter maps derived from themodified tri-
exponential model and the conventional tri-exponential model
are shown in Figure 4. In the white matter ROIs, the mean
ADCvery−slow values (1–7 × 10−6 mm2/s) were extremely low,
and the mean fvery−slow values (11.8–18.3%) were similar to the

TABLE 3 | Predicted error sums of squares (PRESS) of the bi-exponential,

conventional tri-exponential and modified tri-exponential models in ROIs.

ROI Bi-exponential

(×10−5)

Conventional

tri-exponential (×10−5)

Modified

tri-exponential (×10−5)

CCg 2,930 (2,534, 3,864) 2,399 (1,786, 3,373)* 1,985 (1,458, 3,054)*#

CCs 1,679 (1,593, 2,327) 1,316 (1,121, 1,805)* 1,144 (1,044, 1,602)*#

ICp 861 (685, 1,038) 670 (530, 810)* 518 (489, 694)*#

CS 879 (793, 113) 715 (589, 835)* 582 (495, 759)*#

Fmi 1,006 (736, 1,203) 780 (572, 916)* 688 (454, 852)*#

Fmj 869 (728, 1,243) 619 (546, 886)* 573 (434, 807)*#

CG 1,964 (976, 3,433) 1,898 (915, 3,324)* 1,925 (989, 3,510)#

SpG 1,146 (819, 1,684) 1,073 (756, 1,621)* 1,085 (860, 1,721)

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major; CG, cingulate gyrus; SpG, supramarginal gyrus. Data expressed as median (Q1,

Q3). *p < 0.05, refers to the bi-exponential model; #p < 0.05, refers to the conventional

tri-exponential model.

mean f0 values (11.9–18.7%). However, in the gray matter ROIs,
the mean ADCvery−slow values (251–445 × 10−6 mm2/s) were
not extremely low and the mean fvery−slow values (11.9–15.7%)
were much higher than the mean f0 values (1.2–2.7%), shown in
Table 5.

Figure 5 presents the whole brain f0 maps of one volunteer.
The f0 is high in white matter, but very low in gray matter. These

TABLE 4 | Squared prediction errors (SPEs) of the bi-exponential, conventional

tri-exponential and modified tri-exponential models in ROIs of white matter.

ROI Bi-exponential

(×10−5)

Conventional

tri-exponential (×10−5)

Modified

tri-exponential (×10−5)

CCg 500 (340, 595) 56 (31, 69)* 46 (22, 60)*

CCs 613 (462, 761) 52 (46, 110)* 50 (42, 185)*

ICp 414 (352, 488) 38 (22, 43)* 44 (31, 56)*#

CS 362 (267, 428) 38 (24, 95)* 46 (36, 104)*#

Fmi 356 (337, 403) 23 (12, 31)* 28 (20, 42)*#

Fmj 328 (293, 351) 24 (17, 31)* 33 (23, 40)*#

CCg, genu of the corpus callosum; CCs, splenium of the corpus callosum; ICp, posterior

limbs of the internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps

major. Data expressed as median (Q1, Q3). *p < 0.05, refers to the bi-exponential model;

#p < 0.05, refers to the conventional tri-exponential model.

FIGURE 3 | The fitting curves of the three models with the first 16 b-values in a typical voxel of white matter (A). The maps of the squared prediction errors (SPE)

calculated by the bi-exponential model (B), the conventional tri-exponential model (C), and the modified tri-exponential model (D). The unit for SPE is ×10−5.
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FIGURE 4 | The f0 map (A), fslow map (B), ffast map (C), ADCslow map (D), and ADCfast map (E) derived from the modified tri-exponential model. The fvery−slow
map (F), fslow map (G), ffast map (H), ADCvery−slow map (I), ADCslow map (J), and ADCfast map (K) derived from the conventional tri-exponential model. The unit for

f maps is ‰, and the unit for ADC maps is ×10−6 mm2/s.

images show good resolution and good definition at white-gray
matter interfaces.

DISCUSSION

In our study, the AICcs and PRESSs of the newmodel were found
to be the lowest in white matter, suggesting that this newmodel fit
better than the conventional bi-exponential and tri-exponential

models and may provide more detailed information. The f0
values were found to be very small in gray matter but ranging
10–20% in white matter. This result indicates that the strictly
diffusion-limited compartment may be an important component
in white matter and may need to be considered when we develop
models for multi-b-value DWI.

First of all, we certified that the fraction of the strictly
diffusion-limited compartment (f0) in white matter cannot be
explained only by noise. In white matter, the remaining signal
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intensity ratio was as high as 18.7% at b = 8,000 s/mm2, while
the SNR was 23.7. Thus, the ratio of noise at b = 8,000 s/mm2

to signal at b = 0 s/mm2 was only 0.79%. This ratio is much
lower than the fractions of the strictly diffusion-compartment in
white matter which were ranging from 11.8 to 18.7%. Thus, the

TABLE 5 | The f0 derived from the modified tri-exponential models, and the

fvery−slow and the ADCvery−slow derived from the conventional tri-exponential in

ROIs.

ROI f0 (%) fvery−slow (%) ADCvery−slow (×10−6 s/mm2)

CCg 16.9 ± 2.8 17.8 ± 0.2 7 ± 11

CCs 18.7 ± 2.0 18.3 ± 1.8 2 ± 4

ICp 15.3 ± 0.7 14.3 ± 0.9 1 ± 1

CS 14.9 ± 1.3 14.3 ± 1.1 1 ± 1

Fmi 13.2 ± 1.8 12.8 ± 1.6 4 ± 3

Fmj 11.9 ± 1.3 11.8 ± 0.8 7 ± 5

CgC 1.2 ± 1.0 15.7 ± 3.5 445 ± 144

SpG 2.7 ± 1.3 11.9 ± 1.5 251 ± 83

CCg, genu of corpus callosum; CCs, splenium of corpus callosum; ICp, posterior limbs

of internal capsule; CS, centrum semiovale; Fmi, forceps minor; Fmj, forceps major; CgC,

cingulate cortex; SpG, supramarginal gyrus. Data expressed as mean ± sd.

existence of the strictly diffusion-limited compartment in white
matter is not only a result of noise.

In the present study, the bi-exponential model was found to be
an over-simplified model. According to the intravoxel incoherent
motion (IVIM) theory, the fast ADC is thought to be linked to
the microcirculatory perfusion of blood within the capillaries,
while the slow ADC is related to diffusion of water molecules
in the tissues (Le Bihan and Turner, 1992; Koh et al., 2011;
Cercueil et al., 2015). This theory is not suitable when b >

1,000 s/mm2. Another explanation for this model is that two
components represent intra- and extra-cellular compartments,
respectively (Niendorf et al., 1996; Steier et al., 2012). However,
researchers have found that the attenuation of DWI signal
does not obey the mono-exponential model even without extra-
cellular compartment or even in a single cell (Grant et al., 2001;
Schwarcz et al., 2004; Steier et al., 2012). These findings of
previous studies also indicate that the bi-exponential model may
not be a satisfying model for explaining the attenuation of DWI
signal. Models with more pools might be preferable to accurately
reflect the diffusion motion of water molecules in tissues.

In the present study, we also found that the SPEs of the bi-
exponential model were much higher than the other two models
in white matter. As we know, the remaining signal intensity
ratio will be very low at ultra-high b-value for compartments

FIGURE 5 | Sequential 30 slices of the f0 maps of one volunteer derived by the modified tri-exponential model. The f0 maps are displayed from the top left. The

unit is ‰.
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with a normal ADC, while this ratio will still remain high for
the compartment with an extremely low ADC. Hence, as the
bi-exponential model does not contain the compartment with
extremely low ADC, it is conceivable that the predicted signal at
b= 8,000 s/mm2 would be much lower than the measured value,
resulting in high SPE.

When compared with the modified tri-exponential model,
the conventional tri-exponential model had significantly higher
AICcs in all ROIs and was considered as an over-fitting
model. More importantly, the biological implications of the
ADCvery−slow compartment differed between white matter and
gray matter. In the white matter ROIs, ADCvery−slow values were
extremely small, and the fvery−slow values were found to be similar
to the f0 values. Thus, f0 and fvery−slow represent the fraction
of the same compartment with extremely small ADC in white
matter. However, when f0 values were negligible in the gray
matter ROIs, the fvery−slow values were still as high as in white
matter, while the ADCvery−slow values were not extremely small.
This finding suggests that the ADCvery−slow compartment no
longer represents the compartment with extremely small ADC
in gray matter. In our view, the three compartments of the
conventional tri-exponential model may represent three major
proton pools in tissues, while the major proton pools may differ
among tissues. Hence, the parameters derived from this model
may have no specific biological implications. This might be an
important limitation for the application of the conventional tri-
exponential model. Generally, models with more pools may also
suffer from this fatal limitation.

On the contrary, by directly setting the ADCvery−slow to
zero, the modified tri-exponential model is able to detect the
volume fraction of the extremely-low ADC compartment. In
the present study, the mean f0 values were found to be non-
ignorable in white matter, ranging from 11.9 to 18.7%. Ferizi
et al. also found that three compartment models with a “dot”
compartment (zero radius sphere) can produce better fit for
diffusion MRI in white matter, suggesting the existence of the
extremely-low ADC compartment (Ferizi et al., 2014). In white
matter, it has been suspected that there are stationary water
molecules trapped in glial cells and other small compartments
or bound to membranes and other subcellular structures
(Alexander et al., 2010). However, Dhita et al. recently showed
that still water compartment was absent in white matte by
using isotropic diffusion measurement (Dhital et al., 2017). A
similar conclusion was also made by Veraart el al. using single-
direction measurements (Veraart et al., 2016). Although Dhital
et al. found that the slowly diffusing water pools existed in
all directions, these pools were suspected to reside in separate
micro-environments (Dhital et al., 2017). It is recommended
that orientation dispersion of axons and glial processes should
be taken into account when developing models for fitting
isotropic diffusion measurement (Dhital et al., 2017). Thus, the
exact biological interpretation for the strictly diffusion-limited
compartment in white matter needs to be investigated further.
Besides, the existence of this compartment in other normal or
pathological tissue also needs to be investigated.

One limitation of the application of ultra-high b-value DWI
is low SNR. To ensure high SNRs, the NSAs were designed very

large in this study, especially for DWI images with ultra-high
b-values. Our result showed that the SNRs of DWI maps with
ultra-high b-values were comparable with that of DWImaps with
b = 0 s/mm2. However, traditional magnitude reconstruction
which is used in this study, may lead to an accumulation of
noise (Eichner et al., 2015). Averaging the repeat measurements
in complex domain is recommend to further improve the SNR,
while it requires complex phase navigation and is not normally
provided by hardware vendors (Jones et al., 2013; Eichner et al.,
2015).

Anisotropic resolution with a high in-plant resolution and
a large slice thickness was applied in this study. Clinically,
a high in-plant resolution is required to distinguish fine
structure in brain. SNR has a linear relationship with voxel
volume, thus a relative large slice thickness can improve
the SNR. Besides, a large slice thickness can also shorten
the scan time. However, anisotropic resolution can lead to
differential averaging of fiber orientations (Jones et al., 2013).
This effect is not accounted for in this study because the
DWI images used for model fitting do not contain direction
information.

There are still several limitations in this study. First, the total
scan time of this sequence is too long for clinical practice. Hence,
the multi-b-value DWI sequence should be optimized, including
the selection of b-values and NSAs. Second, in gray matter,
the SNRs of DWI maps at ultra-high b-values were low, which
reduced the reliability of some results. However, the main focus
of the study was on white matter, and the SNR still remained high
at ultra-high b-values in white matter. Third, the impact of T2
values of different compartments were not evaluated in our study,
and need further research.

In conclusion, the bi-exponential model is an over-simplified
model and unable to predict the signal intensity at ultra-
high b-values in white matter, while the conventional tri-
exponential model is an over-fitting model and has no specific
biological implication for each compartment. The new model fits
better than the other two models, and may provide additional
information.
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The characterization of extracellular space (ECS) architecture represents valuable

information for the understanding of transport mechanisms occurring in brain

parenchyma. ECS tortuosity reflects the hindrance imposed by cell membranes to

molecular diffusion. Numerous strategies have been proposed to measure the diffusion

through ECS and to estimate its tortuosity. The first method implies the perfusion for

several hours of a radiotracer which effective diffusion coefficient D∗ is determined

after post mortem processing. The most well-established techniques are real-time

iontophoresis that measures the concentration of a specific ion at known distance from

its release point, and integrative optical imaging that relies on acquiring microscopy

images of macromolecules labeled with fluorophore. After presenting these methods,

we focus on a recent Magnetic Resonance Imaging (MRI)-based technique that consists

in acquiring concentration maps of a contrast agent diffusing within ECS. Thanks to

MRI properties, molecular diffusion and tortuosity can be estimated in 3D for deep brain

regions. To further discuss the reliability of this technique, we point out the influence of

the delivery method on the estimation of D∗. We compare the value of D∗ for a contrast

agent intracerebrally injected, with its value when the agent is delivered to the brain after

an ultrasound-induced blood-brain barrier (BBB) permeabilization. Several studies have

already shown that tortuosity may be modified in pathological conditions. Therefore, we

believe that MRI-based techniques could be useful in a clinical context for characterizing

the diffusion properties of pathological ECS and thus predicting the drug biodistribution

into the targeted area.

Keywords: brain tissue tortuosity, extracellular diffusion,MRI contrast agents, in vivo concentration quantification,

dynamic T1 mapping, ultrasound-induced BBB permeabilization

WHY ASSESSING BRAIN TORTUOSITY?

The diffusion of substances in the brain is predominantly occurring through the narrow
extracellular space (ECS) that comprises the fluid-filled spaces external to cell membranes. A
consequent number of studies (see [1] for an extensive review) have already established that the
ECS labyrinthine nature makes the brain act like a porous medium for substances that cannot cross
cellular membranes, allowing the use of established diffusion equation [2]. Two main structural
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descriptors, α and λ, are usually reported to define the diffusion
processes in the ECS. The volume fraction α reflects the fact
that molecules released into the ECS are restricted to a smaller
volume than the entire brain volume. Furthermore, the diffusion
of molecules can be considered as hindered by cells, because of
the increase in path length imposed by the ECS geometry. This
hindrance relatively to a free medium is quantified introducing
the tissue tortuosity λ [3]:

λ =

√

Dfree

D∗

where Dfree is the diffusion coefficient in obstacle-free medium
(water or very dilute gel), andD∗ the effective diffusion coefficient
in ECS.

Volume fraction α admits of a simple interpretation
and its value is reported to be ∼0.2 for most regions of
different studied brains [1]. Moreover, tortuosity λ, which
value is around 1.6 for small molecules, remains a composite
parameter as many potential mechanisms may contribute to
the hindrance experienced by molecules. This parameter is
commonly described as some combination of (i) an increased
path length as molecules are compelled to diffuse around
cellular obstructions [4, 5], (ii) a transient trapping in dead-
space microdomains [6, 7], and (iii) extracellular matrix
interactions [8, 9]. When considering the ECS diffusion of larger
macromolecules, such as dextrans or proteins, a new behavior
occurs leading to an increase of λ with the hydrodynamic
diameter (dH). In this regime, the ECS porous structure is
dominating and the observed restricted diffusion of molecules
is mainly influenced by (i) the steric hindrance arising from
the pore’s limited cross-sectional area and (ii) the drag from
the pore walls. Thorne and Nicholson performed tortuosity
measurements using quantum dot nanocrystals (dH∼35 nm),
and they were able to estimate that the true average ECS width
in the in vivo rat cortex lies between 38 and 64 nm using specific
pore models [10].

Although diffusion transport predominates in the ECS, it is
often modified by loss of molecules through removal across
the blood-brain barrier (BBB), uptake into cells, or binding to
receptors. Furthermore, clearance processes may also be due to
a hydrodynamic flow of fluid, but it seems likely that this bulk
flow is confined to the perivascular spaces in healthy brain [11]. If
the underlyingmechanism, importance, and even the existence of
interstitial fluid flow remain incompletely resolved, this question
has become a topic of renewed interest with the introduction of
the brain lymphatic drainage system, known as the glymphatic
system [12–14]. This system, which involves convective transport
from para-arterial to para-venous cerebrospinal fluid through
ECS, has been proposed to account for solute clearance in brain,
and for removing toxic metabolites from the brain [15]. However,
Jin et al suggested that the glymphatic system flow is not essential,

Abbreviations: ECS, ExtraCellular Space; BBB, Blood-Brain Barrier; RTI, Real-
Time Iontophoresis; TMA, TetraMethylAmmonium; IOI, Integrative Optical
Imaging; MRI, Magnetic Resonance Imaging; ADCw, water Apparent Diffusion
Coefficient; Gd, Gadolinium

since the role of diffusion seems to remain dominant when
observing the molecules dispersion in the ECS [16].

Thus, the precise determination of ECS diffusion properties
represents valuable information for the understanding of
brain physiology and drug delivery in normal or pathological
conditions. To predict the distribution of a specific externally
administered agent, it is essential to know its effective diffusion
coefficient in brain tissue, as well as the relative importance of
diffusion vs. clearance processes that may remove that agent from
the ECS. For example, these parameters are crucial to control the
dose-dependent action of pharmacological agents used to target
specific brain diseases, and consequently to improve clinical
treatment protocols.

WHAT ARE THE WELL-ESTABLISHED
TECHNIQUES FOR ASSESSING ECS
DIFFUSION PROPERTIES?

The concept underlying methods of diffusion measurements is to
introduce a detectable substance into the ECS, to subsequently
measure its concentration distribution in space and time.
It is necessary for the measurement technique to produce
concentration distribution curves rather than single values, so
that the adequate diffusion equation can be applied to extract α

and λ values. The choice of diffusing probe is also key: it should
be small enough to explore all ECS regions, but should also not
cross cellular membranes or BBB to remain predominantly in the
ECS compartment. Furthermore, the probe should be nontoxic
to brain tissue and its concentration should be kept sufficiently
low to avoid osmolarity modifications as well as sufficiently high
to exceed the sensitivity threshold of the detection technique.

Lots of reviews have been written to detail the main drawbacks
and advantages of each technique implemented to measure
ECS diffusion properties, as well as to compare the α and λ

values obtained in various animal brains and physio-pathological
conditions [1, 4, 17–19]. The first technique used radiolabeled
probes, such as inulin, sulfate or dextran [20]. After several hours
of probe perfusion in the ECS of anesthetized animal, its brain
is removed, frozen and sectioned. The post mortem analysis of
several brains processed at various times after perfusion allows
deducing theD∗ value of radiotracer from the temporal evolution
of radioactivity profile. The need of one animal for each time
point is the main disadvantage explaining why this technique is
not in general use today.

To overcome this drawback, Nicholson and Phillips proposed
a “point-source paradigm,” which consists in releasing specific
small ions with a glass micropipette, and then measuring the
resulting concentration ∼100µm away with an ion-selective
microelectrodes (ISMs) [21]. This method is usually called Real-
Time Iontophoresis (RTI) because the source micropipette emits
molecules using iontophoresis, thanks to the application of a
constant current pulse. If the source amplitude is accurately
defined, both α and λ may be estimated. The ion employed for a
vastmajority of studies is the tetramethylammoniummonovalent
cation (TMA+). This molecule is broadly used because it does
not affect physiological function at low concentrations, and it
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remains mostly extracellular for the duration of measurements.
To date, RTI-TMA+ remains the predominant technique for
exploring ECS diffusion properties and their changes induced by
brain development and aging, as well as numerous pathological
states [1]. The major advantage of RTI method is the possibility
to perform real-time measurements in very small volumes of
living tissue, and therefore to follow diffusion properties in
specific brain regions during drug injection or other intervention.
The main drawbacks concern the relatively small number of
usable probes, since each ion requires a dedicated ISM, and the
concentration quantification that is only performed at a single
position.

Nicholson and Tao recently introduced the Integrative Optical
Imaging (IOI) technique, for quantifying in 2D the diffusion
properties of larger probes such as proteins and macromolecules
[22]. The method requires to label the probes with fluorophores,
enabling their in vivo follow-up with dedicated epifluorescence
microscope. The labeled probes are released in the ECS from a
micropipette by a pressure pulse, and by fitting a 2D Gaussian
curve to the image intensity at different time points, theD∗ value,
and hence λ, can be estimated. The diffusion measurements
performed in vivo with IOI technique exhibit at the same time
an excellent sensitivity, a high spatial and temporal resolutions
[10]. One main limitation is that optical detection can only be
performed down to a depth of ∼400µm [18]. Still, the RTI and
IOI methods are now well-established and present in most cases
the same results in terms of estimatedD∗ and λ values [1, 17, 18].

Water diffusion in the brain can be directly assessed
with Magnetic Resonance Imaging (MRI) to probe tissue
microstructure [23]. However, water is found in both
intracellular and extracellular compartments, with specific
exchange rates between them. The relationship between water
movement, water apparent diffusion coefficient (ADCw) maps
and changes in ECS characteristics thus remains difficult to
understand since changes in both α and λ are accompanied by
changes in ADCw [24]. Nevertheless, diffusion MRI of protons
from extracellular molecules such as TMA+ was recently
demonstrated to be a potential alternative to the RTI method
[25]. Another study investigated the use of 2FDG-6P as a
compartment-specific marker in normal and globally ischemic
rat brain, and followed its diffusion in ECS with dedicated
19F MRI strategy [26]. For these two studies, volume-localized
diffusion spectroscopy sequences were chosen, leading to
relatively poor spatial resolution.

In this Perspective article, we illustrate how a different
MRI approach, which relies on the dynamic mapping of
Gadolinium (Gd)-based contrast agent concentrations [27],
could be complementary to RTI and IOI methods for studying
the ECS diffusion properties in extended brain regions.

OUR APPROACH TO ASSESS BRAIN
TORTUOSITY WITH MRI

In 2013, we introduced a different approach to assess brain
tortuosity with MRI: a specific Gd-based contrast agent was
delivered in the striatum of rat brains and its diffusion through

the ECS was quantified thanks to the dynamic mapping of MRI
probe concentrations using a dedicated T1 quantification strategy
[27]. Interestingly, Hagberg et al. also relied on T1 mapping
sequences to measure ECS diffusion properties from voxel-wise
measurements of the temporal pharmacokinetic curve obtained
after an intracerebral injection of Gd-based probe [28]. One
difference between the two approaches is that ECS diffusion
estimation comes from the spatial evolution of MRI signal in
Marty et al. [27], rather than on the temporal one inHagberg et al.
[28]. Both studies succeeded in estimatingD∗ for several contrast
agents and providing brain tortuosity values, thanks to sensitive
quantification strategies.

MRI TORTUOSITY PROBE

As already explained, the choice of MRI probe used for
λ measurements is key. We selected a clinically approved
Gd-chelate named Dotarem R© (Guerbet, France) that presents
several advantages. It is nontoxic for brain tissue compared to
other MRI contrast agents [29]. Its size (dH< 1 nm) is close to
the one of TMA+ (dH∼0.6 nm) and small compared to the ECS
typical width. Furthermore, Dotarem R©is known to not cross cell
membranes and thus remain into the extracellular compartment.

Finally, Dotarem R© has a relatively good relaxivity (r1 =

3.4 mM−1.s−1) at high magnetic field (7T). This ensures to
detect relatively low local concentrations (down to a few µM),
while maintaining sufficient spatial and temporal resolutions
for detecting molecules spreading in the brain. Noticeably,
Dotarem R© is known to be a stable molecule that maintains its
relaxivity unchanged in plasma and in several tissues [30].

MRI QUANTIFICATION STRATEGY

Quantitative techniques are requested to precisely map the
distribution of MRI probe after its delivery to the brain
and then estimate its D∗ value. Therefore, instead of relying
on T1-weighted images which contrast may saturate at high
Gd concentration, we implemented one T1 mapping strategy
based on the Inversion Recovery Fast Gradient Echo sequence
presented in Figure 1A [31]. The sequence parameters were
chosen to ensure a high sampling rate of the longitudinal
magnetization recovery curve over a long time (Figures 1B,C):
60 images are acquired with inversion times between 45 and
5060ms spaced by 85ms [27]. Thus, a very accurate estimation
of T1 values for a large range of T1 can be achieved. For example,
it allows to detect in vitro Gd concentrations lower than 2.5µM
(Figure 1D). From T1 maps acquired before and after Dotarem R©

injection, and knowing its r1 value at 7T and 37◦C, one can
estimate in vivo concentration maps as illustrated on Figure 1E,
with the addition of a dedicated realignment procedure if needed.
Finally, we verified that our quantification strategy follows a
linear behavior with the injected dose, while the T1-weighted
signal saturates at high concentrations as expected (Figure 1F).

The choice of spatial resolution is also key for a precise
quantification of D∗. Indeed, low spatial resolution implies
large partial volume effects leading to drastic errors in Gd
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FIGURE 1 | MRI quantification of Gadolinium-based contrast agent concentration. (A) The T1 mapping strategy is based on one Inversion Recovery Fast Gradient
Echo sequence: it consists of a segmented series of fast gradient echo images (B) acquired at different time points after magnetization inversion. (C) The recovery of

(Continued)
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FIGURE 1 | the longitudinal magnetization is fitted voxel-by-voxel as a function of the inversion time to produce a quantitative T1 map [31]. (D) The sensitivity of this
T1 mapping strategy is estimated on a gallery of tubes filled with different concentrations of Dotarem® (0 / 2.5 / 5 / 10µM). (E) From T1 parametric maps acquired
before and after Gd-based contrast agent injection, and knowing the longitudinal relaxivity r1 of the agent, one can estimate in vivo concentration map [32], with the
addition of a realignment procedure if the animal is removed from the scanner between pre- and post-injection scans. (F) The concentration maps estimated with this
T1 mapping strategy are proportional to the injected dose, whereas the signal in standard T1-weighted images saturates at high injected doses (Figure adapted from
Marty et al. [33]: J Cereb Blood Flow Metab (2012) 32:1948–1958).

concentration mapping, while high resolution will result in poor
signal-to-noise ratio and increased errors inD∗ estimation. In our
case, Marty et al demonstrated from tortuosity values obtained by
Thorne et al. [10] that an in-plane resolution of about 200µm
was a good compromise given our sensitivity threshold. Slice
thickness could be larger since our delivery method enables us
to neglect the concentration gradient along depth (Figure 2D).

FREE DIFFUSION COEFFICIENT
MEASUREMENT

The Dfree coefficient of Dotarem R© was estimated by injecting a
5 µL aliquot with a Hamilton syringe in a tube filled with dilute
agar gel (0.3% w/w) maintained at 37◦C (Figure 2A). According
to Nicholson et al., this gel can be considered as an essentially
free medium for diffusion [22]. The diffusion of Dotarem R© was
followed during 1 h by acquiring T1 maps as described above. A
T10 map acquired before injection was used as a reference for
estimating Gd concentration as follows [32]:

[Gd] =
1

r1

(

1

T1
−

1

T10

)

COMPARISON OF TWO IN VIVO DELIVERY
TECHNIQUES FOR TORTUOSITY
ASSESSMENT IN RAT STRIATUM

Dotarem R© was delivered in vivo in the striatum of Sprague
Dawley rats to estimate D∗. Two delivery protocols were
compared. First, a direct intracranial injection was performed
using a Hamilton syringe (Figure 2D). Second, a more complex
but less invasive method was used (Figure 2E): an ultrasound-
induced BBB permeabilization protocol [33] was combined with
an intravenous injection of Dotarem R© to ensure a precise
delivery where the ultrasound beam was focused [34, 35].
For both delivery methods, Dotarem R© concentration maps
were dynamically acquired for 1 hour as described before
(Figures 2F,G).

DATA PROCESSING

Data analysis was performed using homemade Matlab routines
(MathWorks, USA). MRI images were first reconstructed from
raw K-space data, then T1 maps were obtained using the
approach proposed in Deichmann et al. [31] and Deichmann
and Haase [36]. 3D Gd concentration maps were calculated from
the T1 maps acquired before and after injection (Figure 1E).
On each slice of those maps and at every time point, the

Gd spatial distribution was fitted by a 2D Gaussian function
(Figures 2B,F,G). As illustrated on Figures 2C,H,I, the diffusion
coefficients along X and Y were computed as:

DX =

σ 2
X

2t
DY =

σ 2
Y

2t

where t is the acquisition time, σX and σY are the Gaussian
spreads along X and Y main axes. D∗ (resp. Dfree) was taken as
the average value along main axes obtained with in vivo (resp.
in vitro) diffusion data.

RESULTS

The ECS tortuosity value obtained after direct intracerebral
injection of Dotarem R© was found equal to 3.25 ± 0.40 (n = 2
rats), while being equal to 1.70 ± 0.11 (n = 3 rats) if the
probe diffuses within ECS after a local ultrasound-induced
BBB permeabilization. The over-estimation of λ value observed
with the first delivery method probably comes from two major
drawbacks of the intracerebral injection: (i) the tip diameter
of the Hamilton syringe is rather large (0.5mm) which is
unfortunately expected to induce tissue inflammation along
the needle pathway and thus locally increase the hindrance
of molecular diffusion; (ii) 2 µL of Dotarem R© solution is
injected as a bolus which induces significant changes of
interstitial pressure at the injection site. For comparison, the
RTI-TMA+ technique uses micropipettes and microelectrodes
of 2–12µm diameter and nanoliters only are injected at
slow speed.

On the other hand, the local ultrasound-induced BBB
permeabilization does not modify the ECS diffusion properties.
Indeed, the λ values obtained with this delivery method are in
good agreement with the ones obtained in the striatum of healthy
brain with other techniques (λ = 1.59–1.60) [37, 38].

DISCUSSION AND CONCLUSION

Characterization of the diffusion in the ECS is of great
importance in order to predict drug biodistribution in the
brain. Our view is that non-invasive imaging technique such
as MRI and non-invasive probe delivery based on ultrasound-
induced BBB permeabilization can be combined to better
probe brain tortuosity in vivo. Our ultrasound-based approach
relies on the intravenous injection of the probe: its diffusion
within brain tissue is thus very little disturbed as compared
to a spontaneous crossing of the BBB through biochemical
engineering.

Taking advantage of high field MRI acquisitions at 7T,
we demonstrated that our T1 quantification strategy reaches

Frontiers in Physics | www.frontiersin.org May 2018 | Volume 6 | Article 38140

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Mériaux et al. MRI Assessment of Brain Tortuosity

FIGURE 2 | MRI measurements of Gadolinium-based contrast agent diffusion. (A) The free diffusion coefficient Dfree of Dotarem® is estimated by injecting a 5 µL
aliquot with a Hamilton syringe in a tube filled with dilute agar gel (0.3% w/w) maintained at 37◦C. (B) Concentration maps of Dotarem® (upper row) are acquired at

(Continued)
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FIGURE 2 | different time points after injection with the approach described in Figure 1. Each slice of those maps is fitted with a 2D Gaussian function (middle row).
The result of this fit is also presented for the central line of the slice (lower row). (C) The squares of the 2D Gaussian spreads along X and Y main axes (σ2X and σ

2
Y ) are

fitted along time in order to estimate the diffusion coefficients DX and DY : Dfree is taken as the average value of DX and DY . The effective diffusion coefficient D* of
Dotarem® is estimated in vivo in the striatum of Sprague Dawley rat for two delivery protocols: a direct intracranial injection of a 2 µL bolus (D) and an
ultrasound-induced BBB permeabilization protocol [34] combined with an intravenous injection (E). (F,G) For both protocols, concentration maps of Dotarem® (upper
row) are acquired at different time points after injection with the approach described in Figure 1. Each slice of those maps is fitted with a 2D Gaussian function (middle
row). The result of this fit is also presented for the central line of the slice (lower row). (H,I) For both protocols, the squares of the 2D Gaussian spreads along X and Y
main axes (σ2X and σ

2
Y ) are fitted along time in order to estimate the diffusion coefficients DX and DY : D* is taken as the average value of DX and DY .

the requirements in terms of sensitivity detection, spatial and
temporal resolutions, for estimating in vivo tortuosity values in
deep regions of the rat brain. Our diffusionmeasurements are not
based on diffusion-weighted MRI data that probe water diffusion
at a few milliseconds timescale, but rather on the dynamic
acquisition at a few minutes timescale of concentration maps
of a Gd-based contrast agent diffusing in brain tissue. While
optical methods study 2D diffusion processes occurring up to
2–3min, and across distances up to about 300µm, MRI can
assess in 3D long range diffusion processes that evolve over hours
across several millimeters. Both information can complement
each other: a slower timescale should allow for example to
investigate the cellular uptake and transport, as well as the
potential clearance processes related to bulk flow or glymphatic
pathway.

Our method presents the great advantages of not being
restricted to superficial brain structures, of being compatible with
a 3D anisotropic data analysis and of being usable multiple times
on the same animal opening the door to longitudinal follow-
up of tortuosity. This features are particularly relevant to know
more about ECS structure in pathologies such as brain tumors,
during aging, or under various pharmacological conditions.
Indeed, other studies have already shown that this parameter can
change in case of pathologies, such as ischemia and edema [17].
Furthermore, another interest of our approach is that additional
MRI sequences can be added to the protocol for correlating
tortuosity with structural, vascular, morphological, spectroscopic
and functional MRI data. In a clinical context, the estimated
values of tortuosity could be used as additional indicators of the
pathological state.

Further interest in better ways to measure ECS physical
properties has recently been raised by the discovery of major
changes of ECS volume during sleep [15] and its correlation
with the glymphatic pulsation flow that plays a great role in the
cleaning of brain. Ultrafast MRI has recently been shown to be
able to catch the slow flows occurring within the ECS [39]. In this
context, such flow imaging could be combined with tortuosity
measurements at various stages of the day/night cycle to better
understand the clinical implications of the glymphatic pathway.
Finally, Frenkel et al. have recently shown with histology that low
intensity pulsed ultrasound could be used to transiently enlarge

ECS [40]. This could be transferred into clinical applications
for facilitating drug access to targets, and the characterization
of ECS diffusion properties with MRI would be of great
importance to predict the drug biodistribution into the targeted
area.

ETHICS STATEMENT

All in vivo experiments were conducted in strict accordance
with the recommendations of the European Community
(2010/63/EU) and the French legislation (decree no2013-
118) for use and care of laboratory animals. The protocol
for contrast agent injection and BBB permeabilization has
been approved by the Comité d’Éthique en Expérimentation
Animale du Commissariat à l’Énergie Atomique et aux
Énergies Alternatives – Direction des Sciences du Vivant
Ile-de-France (CETEA/CEA/DSV IdF) under protocol ID
12-058.

AUTHOR CONTRIBUTIONS

SM developed and refined the perspective. SM, AC, and BL
planned the MRI experiments. AC performed MRI acquisitions
and data analysis. SM provided all data analysis pipelines. SM
and BL managed the overall project and provided its funding. All
authors contributed to manuscript edition.

ACKNOWLEDGMENTS

This work was part of the Iseult/INUMAC project, supported
by the French public agency BPI (ex-OSEO), dedicated to the
support of small and medium-sized companies.

France Life Imaging is acknowledged for its support in
funding the NeuroSpin platform of preclinical MRI scanners.

AC received an Enhanced Eurotalents post-doctoral
fellowship (Grant Agreement n◦600382), part of the Marie
Sklodowska-Curie Actions Programme, co-funded by the
European Commission and managed by the French Atomic
Energy and Alternative Energies Commission (CEA).

The authors also thank the Health Technology Program of
CEA for its support in funding some ultrasound experiments.

REFERENCES

1. Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev.
(2008) 88:1277–340. doi: 10.1152/physrev.00027.2007

2. Nicholson C, Phillips JM. Ion diffusion modified by
tortuosity and volume fraction in the extracellular
microenvironment of the rat cerebellum. J Physiol. (1981) 321:
225–57.

Frontiers in Physics | www.frontiersin.org May 2018 | Volume 6 | Article 38142

https://doi.org/10.1152/physrev.00027.2007
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Mériaux et al. MRI Assessment of Brain Tortuosity

3. Ernst MH, Machta J, Dorfman JR, Vanbeijeren H. Long-time tails
in stationary random-media. I. Theory. J Stat Phys (1984) 34:477–95.
doi: 10.1007/BF01018555

4. Nicholson C. Diffusion and related transport mechanisms in brain
tissue. Rep Prog Phys. (2001) 64:815–84. doi: 10.1088/0034-4885/6
4/7/202

5. Tao L, Nicholson C. Maximum geometrical hindrance to diffusion in brain
extracellular space surrounding uniformly spaced convex cells. J Theor Biol.
(2004) 229:59–68. doi: 10.1016/j.jtbi.2004.03.003

6. Chen KC, Nicholson C. Changes in brain cell shape create residual
extracellular space volume and explain tortuosity behavior during
osmotic challenge. Proc Natl Acad Sci USA. (2000) 97:8306–11.
doi: 10.1073/pnas.150338197
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In diffusion weighted imaging (DWI), the apparent diffusion coefficient (ADC) has

been recognized as a useful and sensitive surrogate for cell density, paving the way

for non-invasive tumor staging, and characterization of treatment efficacy in cancer.

However, microstructural parameters, such as cell size, density and/or compartmental

diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive

but non-specific probe into changes happening at cellular level. Alternatively, tissue

complexity can be probed and quantified using the time dependence of diffusion

metrics, sometimes also referred to as temporal diffusion spectroscopy when only using

oscillating diffusion gradients. Time-dependent diffusion (TDD) is emerging as a strong

candidate for specific and non-invasive tumor characterization. Despite the lack of a

general analytical solution for all diffusion times/frequencies, TDD can be probed in

various regimes where systems simplify in order to extract relevant information about

tissue microstructure. The fundamentals of TDD are first reviewed (a) in the short

time regime, disentangling structural and diffusive tissue properties, and (b) near the

tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times.

Focusing on cell bodies (as opposed to neuronal tracts), a simple but realistic model for

intracellular diffusion can offer precious insight on diffusion inside biological systems,

at all times. Based on this approach, the main three geometrical models implemented

so far (IMPULSED, POMACE, VERDICT) are reviewed. Their suitability to quantify cell

size, intra- and extracellular spaces (ICS and ECS) and diffusivities are assessed. The

proper modeling of tissue membrane permeability—hardly a newcomer in the field, but

lacking applications—and its impact on microstructural estimates are also considered.

After discussing general issues with tissue modeling and microstructural parameter

estimation (i.e., fitting), potential solutions are detailed. The in vivo applications of this new,

non-invasive, specific approach in cancer are reviewed, ranging from the characterization

of gliomas in rodent brains and observation of time-dependence in breast tissue lesions

and prostate cancer, to the recent preclinical evaluation of new treatments efficacy. It is

expected that clinical applications of TDD will strongly benefit the community in terms of

non-invasive cancer screening.

Keywords: diffusion, diffusion magnetic resonance imaging, temporal diffusion spectroscopy, diffusion time

dependence, diffusion time, PGSE, OGSE, MRI of cancer
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INTRODUCTION

By probing the water molecule displacement at the microscopic
scale, Diffusion Weighted Imaging (DWI) is well established as
a powerful non-invasive MRI technique to characterize tissue
order—or disorder. Since diffusion gradients sensitize the overall
MR signal to potential fine changes occurring at cellular level,
DWI has been extensively used to study the abnormal cellular
growth characterizing cancer development [1] and/or predict
therapeutic outcome [2].

The apparent diffusion coefficient (ADC)—a hallmark of
DWI—has been recognized as a useful and sensitive surrogate
for cell density [3, 4], paving the way for non-invasive tumor
staging and characterization of treatment efficacy in cancer [5].
However, sensitivity does not equate with specificity, generating
confusion when attempting to interpret diffusion changes in a
meaningful manner. Cell size, density and/or compartmental
diffusivities can all affect ADC measurements so that changes
in the diffusion signal cannot be unambiguously attributed to
specific tissue properties.

Diffusion is in general not Gaussian. While the reasons tissue
complexity cannot be reduced to a single indirect diffusionmetric
are manifold, two particular aspects of non-gaussian diffusion
deserve our special attention.

For a given diffusion time, the full diffusion signal
S description can be written as a Taylor series, also
known as cumulant expansion [6, 7]: ln (S/S0) =

−bD + (bD)2K/6 + O(D2), where D is the diffusion
coefficient and K the kurtosis. The first-order approximation
therefore only holds for bD ≪ 1/K, i.e., small b-values (b < 1
ms/µm2 in vivo). The estimation of the full kurtosis tensor can
help characterize tissue structure more specifically, at the cost of
extended scan time. Successful examples in cancer can be found
in Jensen and Helpern [7] and Szczepankiewicz et al. [8] but fall
outside the scope of this review.

Alternatively, this review focuses on time-dependent diffusion
(TDD), i.e., the manifestation of tissue complexity through the
dependence of the metrics previously introduced with diffusion
time t: D = D(t) (and K = K(t)), sometimes also referred
to as temporal diffusion spectroscopy [9]. The objective of
this review is to provide the interested reader with all the
keys and tools required to design a TDD experiment in which
tissue microstructure parameters can be judiciously and non-
ambiguously estimated.

The main issue with TDD is that, for a biological system, there
is no analytical solution for the diffusion time-dependence in
general.

Starting on a positive note, there are two extreme time
domains where an exact solution exists. Diffusion in the

Abbreviations: ADC, apparent diffusion coefficient; DWI, diffusion-weighted
imaging; ECS, extracellular space; ICS, intracellular space; IMPULSED, imaging
microstructural parameters using limited spectrally edited diffusion; OGSE,
oscillating gradient spin echo; PGSE, pulsed gradient spin echo; POMACE, pulsed
and oscillating gradient MRI for assessment of cell size and extracellular space;
RBPM, random barrier permeable model; STEAM, stimulated echo acquisition
mode; VERDICT, vascular, extracellular, and restricted diffusion for cytometry in
tumors; TDD, time-dependent diffusion.

infinitely short time regime is well defined for any system, and
disentangle geometric from purely diffusive tissue properties
[10]. Alternatively, diffusion in the infinitely long time regime can
be characterized based on universal classes of tissue disorder [11].

In-between, a simple geometrical model, for which
intracellular diffusion can be conveniently derived for any
given time/frequency [12, 13], is presented. For a biological
system and/or cancer cells, the range of cell size to which it can
be applied is discussed.

Using these results, the main models used to characterize
tumor tissue using TDD are reviewed: IMPULSED [14],
POMACE [15], and VERDICT [16]. Modeling cells as
impermeable spheres, additional assumptions are made to
describe the ECS, and finally estimate diffusivities, cell size and
volume fraction ex vivo and in vivo. Non-geometrical models
[17, 18] are also discussed.

Membrane permeability is a key parameter often neglected
during tissue characterization. Using time dependence, we
discuss how this parameter—likely to vary in tumors—can be
estimated in particular time regimes [17, 19] or via novel
modeling [20].

Potential issues to keep in mind when modeling tumor tissue
are also discussed. Experiments should be carefully designed in
order to justify any modeling assumption, avoid overfitting and
optimize the fit accuracy and precision.

At last, the growing impact of TDD in the preclinical and
clinical setting is reviewed. A distinction is made between highly
sensitive but non-specific results, often lacking the rigor of
proper tumor tissue modeling, and specific yet less sensitive
studies, whose conclusions are not always backed up by different
methodologies. Issues regarding clinical scanners, as well as the
perspectives and potential of TDD regarding new avenues of
cancer research is finally discussed.

TIME DEPENDENT DIFFUSION:
FUNDAMENTAL ISSUES AND CONCEPT

There is in general no analytical solution for the time dependence
of diffusion. The problem only simplifies in three particular
regimes: at infinitely short times, at infinitely long times (also
known as tortuosity limit), and near the long time regime. We
will briefly summarize how diffusion behaves in these three time
domains.

The Short Time Regime
The universal behavior of diffusion measured with Pulsed
Gradient Spin Echo (PGSE, Figure 1A) at short times t was
initially derived in porous media byMitra et al. [10]. In amedium
with free diffusivity D0, the overall diffusion coefficient D can be
written as:

DPGSE (t) = D0

(

1−
4

3d
√

π
·

S

V
·

√

D0t

)

+ O(D0t),

with O (D0t) ≪
√

D0t when t → 0. (1)

with d the number of dimensions along which molecules
can diffuse and S/V the surface-to-volume ratio of the
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FIGURE 1 | Pulse sequence diagram for PGSE (A) and OGSE (B) and diffusion in a biological system, measured with PGSE (C) and OGSE (D). In the short time

regime (red), diffusion is fully characterized by the medium free diffusivity D0 and the surface-to-volume ratio S/V. At long times (blue), diffusion reaches its tortuosity

limit D
∞

with 1/t (PGSE) or ω3/2 (OGSE). There is no exact solution for the time dependence of diffusion in-between. A and B are geometry-dependent constants.

barriers/walls/cellularmembranes. A similar formula was derived
for Oscillating Gradient Spin Echo (OGSE, Figure 1B) using a
cosinusoidal waveform acquired at frequency ω [21]:

DOGSE (ω) = D0

(

1−
c(N)

d
√

2
·

S

V
·

√

D0

ω

)

+ O

(

D0

ω

)

,

with O

(

D0

ω

)

≪

√

D0

ω
when ω → ∞. (2)

The correction factor c (N) depends on the number of oscillations
N and rapidly converges toward 1 [22].

Interestingly, this regime unambiguously decouples the
medium diffusive properties D0 from the purely geometric
restrictions embedded in S/V. The linearity of diffusion vs.
t1/2/ω−1/2 remain valid for a typical biological system consisting
of intra- and extracellular water molecules, if the short time
regime is reached in both compartments.

The validity of surface-to-volume ratio estimates was first
verified experimentally using stimulated echo acquisition mode
(STEAM) measurements on sedimentary rocks [23, 24] and large
size beads [25]. It was later verified in smaller structures [26] and
solutions of packed beads of various size (radius 1–400µm) using
OGSE [27].

The short time regime is only valid if the typical restriction
scale R far exceeds the NMR diffusion length

√

D0t [10].
For small in vivo structures (R < 10µm), only OGSE can
achieve sufficient diffusion strength to probe this regime, by
accumulating contrast over N oscillations: btotal = N × bN=1

[27]. The linearity of D with ω−1/2 was recently demonstrated
for f = ω/2π > 90 Hz in mice brain glioma [18] with large
cellular radius (GL261, Rcell ∼ 5µm). The quadratic inequality
f ∼ 1/t ≫ D0/R

2 rapidly becomes impossible to satisfy for
smaller structures (healthy brain tissue, astrocytes, neurons, with
R∼1µm). For these applications, dedicated and strong custom-
built diffusion gradients should be used [27, 28].

The Tortuosity Limit
At very long times, diffusion lengths exceed the typical length
of restriction within the medium to approach the macroscopic
“tortuosity” limit D (t) = D

∞
(Figure 1C). Diffusion becomes

Gaussian, and time dependence and fine microstructural details
are lost. For a non-exchanging multi-compartment system, each
compartment cannot be distinguished from a homogeneous
medium, and multi-exponential behavior is observed as a
result. Various models used to describe white matter in this
regime are detailed and reviewed in Ferizi et al. [29] and
Panagiotaki et al. [30].
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In a totally confined geometry, D (t) = 〈x2(t)〉/2t < 2R2/t.
The diffusion inside closed impermeable structures converges to
D
∞

= 0 as 1/t.

Approaching the Long Time Regime
A perturbative solution to the time-dependence of diffusion
exists near the tortuosity limit [11, 31]. In this regime, Novikov
et al. [11] demonstrated that the diffusion depends on large scale
structural fluctuations via the power law:

DPGSE (t) = D
∞

+ A · t−ϑ (3)

with ϑ = (p + d)/2, p and d being respectively the discrete
structural exponent and spatial dimensionality of the problem,
as in Equations (1) and (2) in Novikov et al. [11]. The exponent
p characterizes global structural complexity, opposing regular
lattices (p = ∞) to highly disordered media (p < 0). The case
p = 0 corresponds to short-range disorder, when restrictions are
uncorrelated or exhibit finite correlation length. Outside three
dimensional dilute structures lacking long range order, such as
cancer cells, PGSE and OGSE diffusion can then be expressed as
Novikov et al. [11] and deSwiet and Sen [32]:

DPGSE (t) = D
∞

+ A/t when t → ∞ (4)

DOGSE (ω) = D
∞

+ B · ω3/2 when ω → 0. (5)

The previous equations highlight that there is no one-to-
one correspondence between diffusion time and oscillation
frequency. This becomes apparent when combining OGSE and
PGSE measurements on similar graphs [28, 33]. A common
approach when combining PGSE and OGSE is to use a single
PGSE measurement as a surrogate for a diffusion measurement
with zero frequency [27, 33–35]. This should be avoided as the
PGSE time dependence cannot be neglected, as illustrated in
Figure 5.

For All the Rest of Time
Both the extent of the intermediate regime and the diffusion
behavior in that regime are in general unknown (Figures 1C,D).
As an alternative, a Padé approximation [36] was considered in
several studies to interpolate between the short and long time
regime. Excellent agreement was found between S/V estimates
from the Padé approximant and microscopy performed on
monosized sphere packs [17, 37]. To date, this non-specific
approach has not been applied to the characterization of cancer
cells.

TUMOR TISSUE MODELING: VARIOUS
APPROACHES

A Simple Model for Intracellular Diffusion
A practical solution to characterize tissue structure using
TDD is to (a) model the cellular microenvironment using
simple geometries, where an analytical solution for the
intracellular diffusion Dics exists, and (b) consider the
extracellular contribution in one of the aforementioned regimes
(short/long/tortuosity limit). The case of impermeable spheres,
that represent the simplest three-dimensional geometrical model

for characterizing cells—and therefore cancer cells (Figure 2)—
is detailed here.

Diffusion Inside Impermeable Spheres
The signal attenuation inside impermeable spheres was first
derived for PGSE by Murday and Cotts [12] and for OGSE by
the Vanderbilt group [13]. The PGSE intracellular diffusion is
expressed as:

Dics,PGSE (t) =
4R2

(1 − δ/3)

(τR

δ

)2∑

n

1

µ6
n(µ

2
n − 2)

{

µ2
n

δ

τR
− 1

+ exp

(

−µ2
n

δ

τR

)

+ exp

(

−µ2
n

1

τR

)[

1− cosh

(

µ2
n

δ

τR

)]}

(6)

Here R is the cell radius, δ and 1 the gradient and inter-gradient
duration, and τR = R2/D0 the characteristic diffusion time of
the cell (R =

√

D0τR). µn is numerically estimated as the nth
root of ∂ j1(µ)/∂µ, where j1 (µ) = (sin(µ)− µ · cos(µ))/µ2 is
the spherical Bessel function of the first kind. For the PGSE
experiment in the narrow pulse regime, the diffusion time t
equates the inter-gradient duration 1. Finite pulse widths δ act
as low-pass filter on the velocity autocorrelation function [38,
39], potentially impacting the functional form of the diffusion
time–dependence (see for instance Equation 8 vs. Equation 9 in
Fieremans et al. [40]—an axon study).

For OGSE, using the same formalism:

Dics,OGSE (ω) = 2D0(ωτR)2
∑

n

1

(µ2
n − 2)

{

1

µ4
n + (ωτR)

2

+

2µ2
nτR/δ
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2
)2

[
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+ exp
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(

µ2
n

δ
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)]]}

(7)

The diffusion behavior inside impermeable spheres is illustrated in
Figure 2C, most changes happening around the tissue characteristic
frequency 1/τR = D0/R

2.
The complete list of TDD studies and models used to characterize

tissue structure based on this geometry are detailed in another
section of the manuscript. In addition to the unrealistic case of
infinite impermeable membranes already described by Tanner and
Stejskal [41], similar expressions were derived for diffusion inside
spherical shells [42] and infinite cylinders [43]. The former, in order
to represent cellular nuclei and cytoplasm, adds two extra degrees of
freedom to a problem already prone to overfitting [15]. The latter
was shown successful in estimating the size of small cylinders in the
absence of an extracellular medium [44] and could be promising for
axonal size estimation but is of little use for MR in cancer.

Oscillation Frequency vs. Cell Size
Depending on cell size, the tissue characteristic frequency D0/R

2

can remain out of reach using OGSE and conventional diffusion
gradients, thus preventing a good sampling of the diffusion time-
dependence. Figure 3A highlights the diffusion behavior over a
realistic range of cellular size radii (R = 1–10µm) and ICS free
diffusivity (D0 = 2 µm2/ms). Without a dedicated gradient insert,
the only oscillation frequencies that can be probed with sufficient
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FIGURE 2 | Tumor tissue modeling: intracellular diffusion. Electron micrograph (EM) of murine glioblastoma GL261 cells (A). The approximate cell contours are

delineated in red. (B) Simple three-dimensional geometrical model for tumor cells. Cells are assumed perfectly spherical, homogeneous in size and fully impermeable.

(C) Diffusivity inside impermeable spheres (black) and its frequency- derivative: the instantaneous dispersion rate (gray, arbitrary units). Oscillations frequencies are

normalized to the tissue characteristic frequency D0/R2. The EM was extracted from the dataset used for cell size measurement in Reynaud et al. [15].

FIGURE 3 | Intracellular diffusivity and cell size. (A) The oscillation frequency range available on preclinical scanners (fOGSE < 300Hz, gray area) is most suited to

characterize the diffusion time-dependence inside large structures (R > 3µm). (B) The short time regime, characterized by a linear dependence between D and ω−1/2

(Equations 1 and 2), is only accessible for very large cells (R > 5µm). Plots were adapted from the equations derived in Xu et al. [13].

diffusion contrast on commercial scanners are restricted to the far
left side of the spectrum (fOGSE < 300Hz), insufficient to explore
diffusion inside small structures (R = 1–2µm). On the other hand,
the short-time limit—characterized by the linear relationship between
D andω−1/2–is already within reach for larger cells (R= 5–10µm, see
Figure 3B), as demonstrated in vivo in Reynaud et al. [18].

Modeling Impermeable Tumor Tissue
A commonly used picture to describe tumor tissue is a
non-exchanging multi-compartmental model distinguishing
intracellular from extracellular diffusivity.

Impermeable Spheres within the Extracellular Space
At least four independent parameters (cell radius R, ICS/ECS free
diffusivities Dics

0 /Decs
0 , intracellular volume fraction f ) are needed to

describe the system {impermeable spheres + ECS compartment}.
Additional parameters are required to describe the ECS diffusion
outside the tortuosity limit (D = cste) and short-time regime
(Equations 1–2), or to model additional compartments, such as
vasculature with VERDICT [16]. In practice, multiple PGSE [16, 45]
or a combination of PGSE and OGSE [14, 15] measurements are
combined in order to probe diffusion in a specific or over several
frequency/time domains.
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The IMPULSED model
The IMPULSED (imaging microstructural parameters using limited
spectrally edited diffusion) model combines multiple low-frequency
OGSEmeasurements (fOGSE < 150Hz) and a single PGSE acquisition
in the long time regime (Figure 4A) to quantify the characteristic size
of restriction and ICS fraction [14, 46].

This approach was shown successful in estimating cancer cell
size in vitro in the range (5–10) µm using only a small subset of
measurements on murine (MEL) and human leukemia cells (K562)
[14]. In vivo, the correlation between histology and IMPULSED-
based cellularities were found superior than between histology
and conventional PGSE measurements, in three different colorectal
cancer xenograft tumor models (DiFi, HCT116, and SW620) [46].

This model assumes that the ECS diffusion varies linearly with
frequency fOGSE in the range 50–150Hz. This assumption was
motivated by (i) the empirical linear behavior of the overall ADC
(intra- and extracellular) measured in the healthy mouse brain [34]
and (ii) simulations in extra-axonal space derived from histology
samples [43]. Unfortunately, this would only be valid of a two-
dimensional problem (d = 2 in Equation 3) and the correct formula
for the ECS diffusion around spheres at long times is given by
Equation (5) instead. However, the linear approximation can be
considered as an approximation in a narrow frequency range, with
little impact on estimated parameters.

The POMACE model
The POMACE (Pulsed and oscillating gradient MRI for assessment
of cell size and extracellular space) model combines multiple OGSE
and PGSE measurements in different time domains (Figure 4B).
Microstructural parameter estimation is performed in two steps. The
surface-to-volume ratio and free diffusivity are first evaluated using
high-frequency OGSE in the short-time regime [18] using Equation
(2). These values are then used as constraints when fitting the low-
frequency OGSE and PGSE data (Figure 5, fOGSE < 88Hz) to a model
of impermeable spheres bathing in ECS [15].

Using a dedicated histology coil [47], the validity of POMACE
was tested ex vivo. ICS maps correlated well with optical microscopy
performed on the same samples used for MRI [15]. In vivo, ICS

estimates were found in agreement with ECS estimates from an
effective medium theory [25], while cell sizes matched electron
microscopy measurements in mice gliomas (GL261).

The POMACE framework was later applied to the in vivo

assessment of treatment response in GL261 gliomas and 4T1
mammary carcinomas [48]. Following tumor treatment with 5FU
and bevacizumab, a significant ECS decrease was observed with
POMACE, while the absence of impact on S/V or cell radius suggested
partial membrane deterioration and/or a decrease of the apparent
restrictive surface due to increased cell packing in both cell lines.

The VERDICT model
VERDICT (vascular, extracellular, and restricted diffusion for
cytometry in tumors) is the only model to consider the impact of
tumor vasculature on the directionality of diffusion (Figure 4C).
Cancer cells are modeled by spheres, the extracellular diffusivity by
an isotropic diffusion tensor, and the vascular compartment by an
additional highly anisotropic tensor [16], although its precise form
can vary depending on the application [49].

This more complex modeling comes at the expense of a large
number of parameters to estimate. To ensure fit robustness, the free
diffusivities in the ICS and ECS are fixed. Six independent parameters
are estimated: intracellular and extracellular volume fractions fics and
fecs, cell size R, the pseudo-diffusion coefficient of water inside blood
vessels P, and two angles characterizing the directionality of the
vascular compartment. The intravascular fractions is then calculated
as fv = 1− fics − fecs.

This model successfully differentiated two human colorectal
carcinoma cell lines based on their vascular fraction [16]: SW1222
xenografts exhibited dense perfusion (fv = 0.22) while LS174T
(Figure 5) were properly categorized as densely packed (fecs <

0.05) with low perfusion (fv = 0.12). In addition, significant
changes in intravascular and intracellular volume fractions were
observed in response to a chemotoxic agent leading to cell apoptosis
(gemcitabine), as confirmed by flow cytometry [16].

Focusing on PGSE acquired at several diffusion times (10–40ms),
diffusion contrast is plentiful and VERDICT can be easily adapted
to a clinical setting. After preliminary work on model selection,

FIGURE 4 | MR parameters and diffusion signal for three geometrical models: IMPULSED (A), POMACE (B) and VERDICT (C). Only 20 measurements (5 b-values, 4

diffusion times) are required to fit the diffusion signal with IMPULSED (red). With POMACE (blue), 42 points are acquired (3 b-values, 14 diffusion times), strictly

restricted to the DTI regime (b < 0.5 ms/µm2). The full implementation of VERDICT (green) requires 44 measurements repeated along three orthogonal axes (X/Y/Z),

plus acquisitions at b = 0. Note the different scale of b-value along the horizontal axis. The plots illustrate the protocols described in Reynaud et al. [15], Panagiotaki

et al. [16], Jiang et al. [46].
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FIGURE 5 | In vivo time-dependent diffusion in tumors plotted vs. frequency (A) and diffusion time (B). Synthetic data for different cell lines (SW620, GL261, and

LS174T) were generated using the best fits for the diffusion signals respectively reported in Reynaud et al. [15], Panagiotaki et al. [16], Jiang et al. [46]. The range of

frequencies and diffusion times probed with IMPULSED (red), POMACE (blue) and VERDICT (green) can be appreciated in (A,B). The gray area delineates the limit

between OGSE (circles) and PGSE (stars) datapoints. For display purposes, PGSE and OGSE measurements were attributed the equivalent frequency fOGSE and

diffusion time t according to fOGSE = 9/64× t−1, as discussed in Novikov et al. [79].

the previous model was modified to (i) consider the vascular
compartment as isotropic and (ii) fix the free diffusivities and pseudo-
diffusion coefficient to 2 and 8 µm2/ms, respectively. In vivo, the
new model (with only three independent parameters) was able to
distinguish tumor from benign prostatic areas in eight patients at 3T
under acceptable scan times (35min) [49].

A prospective study—INNOVATE [50]—recently started
combining the VERDICT framework with novel blood and urine
sampling based potential biomarkers in an attempt to affine patient
screening and promote the use of multi-parametric MRI before
biopsy for the diagnosis of prostate cancer. Patient follow-up is
needed before assessing the potential improvement in patient care by
diagnosing early aggressive prostate cancer.

ADC dispersion rate
A linear increase of ADC vs. OGSE frequency was reported in the ex
vivo mouse brain in the range 0–150Hz [34]. Regions of large ADC
changes (1f ADC) colocalized well with Nissl staining and densely
packed neuronal regions, suggesting a link between ADC dispersion
and ICS volume and/or cell size.

A theoretical justification for this effect can be found in Equation
(7) and Figure 3. At low frequency OGSE, the intracellular diffusion
in small structures (R ≤ 5 µm) does not approach the asymptotic
short-time limit and can be considered linear with fOGSE, as a first
approximation in a narrow frequency range. Fixing D0, the slope of
this linear relationship increases with cell size (Figure 3A) and ICS
volume, assuming slower diffusion time-dependence in the ECS.

The ADC dispersion rate averaged in the range 50–250Hz
was shown sensitive to treatment of colorectal tumor SW620 with
barasertib (AZD1152) [51], known to induce the formation of new
chromosomic structures at subcellular level, increased cell size and
eventually apoptosis [52].

A closer look on Figure 2C highlights that the instantaneous
dispersion rate ∂D/∂f is non-monotonous with OGSE frequency.
A maximum is reached around 0.4 × D0/R

2, suggesting potential
for characterizing the tissue characteristic restriction scale. This

was demonstrated in vitro using two cell lines with different
radius (R = 5/10µm for MEL/K562) with significantly different
instantaneous dispersion rate around 60Hz [53].

Although ex vivo experiments performed on kidney and liver
tissue highlighted very little contrast with dispersion rate compared
to conventional ADC [53], these result are dependent on sample
preparation and fixation, and should be reproduced in vivo. Larger
diffusivities might shift the oscillation frequency range of interest.

Impermeable Model-Free Approaches
Non-geometrical models can also be used to describe tumor
microstructure. Systems can indeed simplify in a specific time regime,
where geometry is partly irrelevant, such as the very short or long time
regime. This results almost always in a more accurate estimation of a
certain tissue parameter, at the expense of another.

The short time regime
As discussed in the first section, the universal behavior of short-time
diffusion is described for PGSE and OGSE by Equations (1) and
(2). In this regime, any system can be considered made of two spin
populations. Regardless of the particular geometry, some random
walkers will never experience the cell walls (and freely diffuse with
D0) while the displacement of the population within diffusion length
of the wall (with volume fraction: height× surface/volume =

√

D0t×

S/V) will be restricted. At such short times, neither the curvature nor
the permeability of the cell walls impact diffusion [10, 19].

The validity of the short diffusion-time regime was demonstrated
in vivo and ex vivo in mice gliomas (GL261, R∼5µm) in the range
88Hz ≤ fOGSE ≤ 225Hz [18]. The decoupling of diffusive and
geometric properties was assessed ex vivo by varying the sample
temperature, only impacting the term D0 in Equation (2). Parametric
maps of S/V and D0 were easily accessible in vivo, paving the way for
robust—thanks to linear fitting—and unambiguous interpretation of
TDD in tumors.

Potential applications in a clinical setting include characterization
of breast cancer. Recently, this regime was demonstrated in vivo at

Frontiers in Physics | www.frontiersin.org November 2017 | Volume 5 | Article 58150

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Reynaud Time-Dependent Diffusion in Tumors

3T in healthy breast tissue using STEAM and diffusion times in the
range 80–900ms [54], following up on muscular studies [55, 56] with
similar restriction scale (hundreds of microns).

Effective medium theory at long times
On the other side of the spectrum, the effective medium theory
(EMT) only focuses on the macroscopic properties of tissue. At long
times, molecules have diffused around and inside each structure, so
that microscopic information such as cell size is lost. Using an EMT
analogous to that of conductivity in porous media, the long time limit
of diffusion in a biological system {permeable spheres + ECS} was
derived [17]. In the impermeable case, Equation (2) from Latour et al.
[17] becomes:

D
∞

=

(

1− f
)3/2

× D0 (8)

where f is the ICS volume fraction and D0 the free extracellular
diffusivity. Since microstructural information is lost, changing cell
shapes should not affect Equation (8).

This EMT establishes the well-known relationship between PGSE
measurements at long times and cellularity for a simple system [3, 4].
Provided the cell size is of little interest, estimating the tortuosity
limit with multiple PGSE in the long time regime (Figure 1C) is
indeed an alternative way of estimating the size of the ICS. A priori

knowledge on D0 is however required to quantify f using Equation
(8). Additional information on D0 can be gathered in the short-time
regime using Equations (1) and (2).

An EMT approach was successfully demonstrated in mice gliomas
using only four diffusion times (6–31ms) [15]. ICS estimates
were found in excellent agreement with that of POMACE, fewer
acquisitions were required, and fit estimates found very robust.
Unfortunately, cell sizes could not be estimated using this technique.

CURRENT RESEARCH GAPS AND
PITFALLS

Modeling Issues
In this section are detailed problems commonly encountered when
modeling and fitting tissue microstructure. Potential solutions are
discussed when available. The objective is not to compare the
various fitting frameworks, but rather to discuss common flaws when
modeling biological tissue.

Accuracy and Precision of Fitting
Albeit simplistic, geometrical models require the simultaneous
estimation of at least four independent parameters: cell size R,
ICS volume fraction f, and intra- and extracellular diffusivities Dics

and Decs. Additional parameters are required for modeling time-
dependence in the ECS [14] and/or a vasculature compartment [16].
In practice, the narrow range of diffusion times available in most
scanners (Figure 5) prevents the completely unambiguous estimation
of all model parameters.

Accuracy
Accuracy represents the closeness of fit estimates compared to the
ground truth. In the absence of a ground truth, a commonly used
approach is to generate synthetic data based on the model, add noise,
and compare the “noisy” fit outputs to the initial “clean” input.
For preclinical brain studies, typical in vivo SNR values range were
reported between 100 and 150 [15].

We consider here the case of impermeable spheres within the
ECS. As in POMACE, the ECS is modeled in the tortuosity limit
for low-frequency measurements, and in the short time regime for
high-frequency OGSE acquisitions. The problem is further simplified
by initiating the fitting algorithm from the ground truth in order to
minimize the influence of local minima when estimating parameters.
Synthetic data is generated from the parameters best describing TDD
in murine glioblastoma [15].

Without PGSE, a large range of solutions emerge from noise
propagation (Figure 6A) despite high SNR (SNR= 120) and multiple
OGSE time-points (10 fOGSE steps from 60 to 225Hz). This model
is obviously not well suited to characterize tumor microstructure
accurately, its solutions are not centered on the ground truth.

This issue can be resolved here by increasing the SNR or
incorporating additional data points (b-values and/or diffusion
times), for instance PGSE measurements. Incorporating a priori

knowledge on the system—by fixing one parameter—will also help
by reducing the degree of freedom of the problem. A combination
of the last two approaches was chosen to improve the robustness of
the POMACE framework [15], as can be seen in Figure 6B. Another
“angle” can be to use the directionality of diffusion, only useful when
properly accounted for in tissue modeling [16].

Similarly, synthetic diffusion data was generated using the
IMPULSED framework [46] in order to mimic TDD in colorectal
tumors (see Table 1). Multiple instances of gaussian noise (typical
in vivo SNR = 120, n = 2,500) were added to the signal before
fitting. Although the distribution of fit estimates were not found
normal (Figures 6C,D), average fit estimates matched the ground
truth (SNR = ∞) with good accuracy for most parameters (Table 1,
relative bias below 3/13% for f, R, Dics for DiFi/HCT116 cell
lines). The matlab code used to generate synthetic tumor data and
plot parameter accuracy with POMACE and IMPULSED is readily
available for download at https://github.com/oreynaud/FIT_TDD.

Precision
The primary objective behind the development of TDD was to
attribute the changes in the diffusion signal to specificmicrostructural
metrics, without ambiguity. Even if the fit is accurate, microstructural
variations—in space or time—can only be reliably estimated if they
exceed the fit precision, defined by the reproducibility of parameter
estimation.

Small changes in volume fraction are likely to be picked up by
POMACE (Figure 6B and standard deviations in Table 1), due to
the large amount of data acquired in the long time regime. On the
other hand, the IMPULSED framework is well suited to detect small
variations in cell size (Table 1) and would benefit from a reduced
scan time. Results might depend on the particular microstructure, as
illustrated by the different precision available on diffusivities estimates
between the two colorectal cell lines.

In general, it appears unreasonable to attempt to detect variations
below the following thresholds: 1fmin = 3% and 1Rmin = 0.5µm.
Since low image SNR is extremely detrimental to the fit precision,
smoothing and/or averaging the signal within regions of interest
might be preferred to raw single-voxel parametric mapping in order
to enhance the robustness and specificity of the analysis. Special care
should however be taken in very heterogeneous tumors.

Fixing Parameters
Because of model over-parametrization, most TDD frameworks
resort to fixing one or several parameters in order to improve the
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FIGURE 6 | Model accuracy and precision. Distributions of intracellular volume fractions and cell radius estimates on noisy data (synthetic GL261 glioma signal, SNR

= 120, n = 2,500) using (A) OGSE measurements in the range (65–225) Hz, or (B) a combination of PGSE (16/9/16/31ms) and OGSE data as in POMACE [15]. Fit

estimates distribution when characterizing tumor microstructure in vivo inside DiFi (C) and HCT116 (D) colorectal tumors with IMPULSED [46]. The ground truth is

indicated by a black square. For each framework, the full list of fit estimates can be found in Table 1. The matlab code used to generate synthetic tumor data and plot

parameter accuracy with POMACE and IMPULSED is readily available for download at https://github.com/oreynaud/FIT_TDD.

fit stability and precision. This comes at the expense of accuracy,
because errors on fixed parameters can propagate into the remaining
fit estimates.

In the first VERDICT framework, the ICS and ECS diffusivities
were fixed based on fit optimization performed on preliminary data
[16], and found consistent with values derived from ex vivo studies
with high SNR [57]. To further improve the fit robustness, the
pseudo-diffusion coefficient of the water inside blood vessels was also
fixed when characterizing prostatic tissue lesions in vivo in a later
study [49].

In POMACE, the extracellular free diffusivity Decs
0 was also fixed

(Decs
0 = 2.7/1.9 µm2/ms in vivo/ex vivo) and used as an additional

constrain to reduce the degree of freedom to three parameters, using
short time limit measurements [15].

Despite being central to the fit accuracy and precision, it is not
always clear how other frameworks deal with these practical issues.
Data and code sharing, a good example of which can be found
in Panagiotaki et al. [16], would help increase the transparency so
desperately needed when dealing with complex modeling.

Diffusion Is Not Constant in the ECS
The main three geometrical models (IMPULSED, POMACE,
VERDICT) all assume that the extracellular diffusion is in the
tortuosity limit for PGSE [14, 16] and/or low-frequency OGSE [15].
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TABLE 1 | Accuracy and precision of all fit estimates (average ± std, n = 2,500).

Cell line

(model)

SNR f [%] R [µm] Becs

[1,000*µm2]

Dics

[µm2/ms]

Decs

[µm2/ms]

GL261

(POMACE)

∞ 56 4.8 – 0.95 2.06

120 57 ± 3 5.0 ± 1.0 – 0.98 ± 0.11 2.09 ± 0.23

DiFi

(IMPULSED)

∞ 86 9.5 2.1 1.15 0.44

120 87 ± 8 9.3 ± 0.6 5.2 ± 5.3 1.12 ± 0.09 0.58 ± 0.38

HCT116

(IMPULSED)

∞ 46 6.8 2.4 1.53 0.75

120 52 ± 8 7.2 ± 0.8 3.6 ± 1.8 1.34 ± 0.27 0.81 ± 0.13

The synthetic data was simulated based on the parameters estimated in vivo for GL261

gliomas [15], and DiFi and HCT116 colorectal tumors [46]. Good accuracy was generally

observed for f, R, and Dics under in vivo conditions (SNR = 120).

However, in the long time regime, Equations (6) and (7)
degenerate intoDPGSE,ics (t) ∝ 1/t andDOGSE,ics (ω) ∝ ω2. Therefore,
the ECS time-dependence, supposedly varying as 1/t or ω3/2 using
Equations (4) and (5), is not negligible when t → ∞ or ω →

0. Neglecting the ECS time-dependence is in general wrong (see
Figures 1C,D) and should be carefully justified, depending on the
application.

This problem can be resolved by estimating a lower and upper
bound for the extracellular diffusivity in the range where it is assumed
constant. If ECS diffusion variations cannot be neglected, prior
knowledge on typical restriction scales can be used to justify that
intracellular changes are expected to dominate the overall time-
dependence. Obviously, the validity of such an approach would only
hold in a certain time/frequency range, and for a specific application.

Microscopic Heterogeneity
To date, all geometrical models have considered that each component
of tissue microstructure (compartment size, diffusivities. . . ) could be
properly modeled by a single metric per voxel, fully depicting the
value of a particular parameter. This can potentially lead to substantial
bias, since tumor heterogeneity—revealed with histopathology—is
present both at macroscopic and microscopic scale.

Because the relationship between the different estimated
parameters and the resulting MR signal is not linear (see Equations
6 and 7), the various outputs of the fit procedure are likely not to
represent neither the average nor the median value of any physical
metric that could be measured using a more direct imaging method
(electron/optical/fluorescence microscopy).

Interestingly, DWI can be used to probe intra-voxel parameter
variance using conventional kurtosis imaging [7] and/or the recently
introduced kurtosis-based DIVIDE technique [8]. These techniques
can be used as safeguards to delineate areas of strong heterogeneity
in order to minimize parameter bias with TDD due to strong intra-
voxel variance. In their absence, most parameters shall be regarded as
indexes, rather than specific precise markers of tumormicrostructure.

Accounting for Tissue Permeability
All the models introduced so far consider cells to be fully
impermeable. The present section will focus on (a) how to properly
model membrane permeability κ at short and long times, (b) whether
it impacts parameter estimation using geometrical models and (c)
alternative models that attempted to account for permeability, using
TDD and/or filter exchange imaging.

The short time limit
Cell permeability does not impact diffusion measurements at very
short times: Equations (1) and (2) are always valid regardless of cell
permeability κ . However, as time increases, diffusion departs from

the previous equation and can be expressed as in Sen [19] and Sen
[58]:

D1 (t) = D1

(
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[

4
√
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√
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)

6D1
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−

ρt

6
+

D1t

12

〈 1
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+

1

R2

〉

R

]

·

)

+ O(D0t
3/2) (9)

Here ρ is the surface relaxivity, and Di, Si/Vi, and Ri the free
diffusivity, surface-to-volume ratio, and radius of curvature of
compartment i = {1,2}. A similar expression describes the diffusion
in the second compartment, by interchanging the subscripts {1,2} and
the sign of the last term 〈

1
R1

+

1
R2
〉R, representing the average inverse

curvature radius over the interior surface.
The models simplifies under two assumptions: ρ ≪ κ (true

for most biological systems) and D1 = D2. The curvature terms
cancel each other in the overall diffusion D = f D1 + (1 − f )D2.
From there follow that the linear dependence of the diffusion directly
represents the influence of permeability κ . Estimates are weighted by
the surface-to-volume ratio counted twice, as randomwalkers explore
the walls both from inside and outside the cells.

Using the diffusivity and permeability calculated for packed
erythrocytes (red blood cells) in Latour et al. [17], Sen [19] estimated
that permeability only becomes a relevant model parameter when
diffusion times approach or exceed 60ms.

Since in vivo diffusion deviates from the short-time limit regime
around fOGSE = 88Hz for cancer cells [18], one could wonder
whether permeability might already impact low-frequency diffusion
measurements. However, the mismatch between experimental data
and Equation (2) could not be fitted by a linear relationship with
fOGSE.

The long time regime
The impact of permeability on diffusion at long times can be derived
using the EMT proposed by Latour et al. [17]:

(

D
∞

− D∗

Decs − D∗

)

×

(

Decs

D
∞

)1/3

=

(

1− f
)

, with

D∗

= DicsκR/ (κR+ Dics) (10)

Equation (10) was successfully used to estimate membrane
permeability in bovine red blood cell samples around 6.3 × 10−3

cm/s [17]. Diffusion results were found well in agreement with
extensive literature in red blood cell permeability [59, 60].

This equation simplifies for f = 1 (i.e., no ECS) to the well-
known equation derived by Tanner [61] for a stack of flat layers with
characteristic length R: D−1

= D−1
ics + (κR)−1. This approximation

was later used to accurately measure cells permeability in yeast
suspensions [62].

Permeability and geometrical models
The lesser tortuosity expected from permeable cells according to
Equation (10) was observed experimentally on human leukemia K562
cells treated with saponin [63], for the multiple diffusion times and
oscillation frequency available on preclinical scanners.

The impact of non-zero permeability on parameter estimation was
simulated using a finite difference method within the IMPULSED
framework [64]. The robustness of most fit estimates (f, R, Dics) was
demonstrated under two conditions: the image SNR must remain
large (≥ 50) and the water exchange time τ–related to permeability
via κ−1

= 3τ/R− R/5Dics – must exceed 100ms.
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Such results would in all likelihood hold for other frameworks,
provided tissue exchange times exceed the longest diffusion times
used to probe diffusion. In cancer, water residency times were
estimated around hundreds of milliseconds [65–67], suggesting
that permeability could bias but not severely impact parameter
estimation performed using PGSE and OGSE. However, changes of
cell permeability due to treatment during longitudinal studies could
impair the specificity of the model via the apparent variation of other
microstructural estimates, such as cell size and ICS diffusivity.

Empirical “permeable planes/spheres” models
The analytical solutions for the diffusion inside impermeable spheres
Dspheres (R,D0) or between planes Dplanes (R,D0) predict D = 0
at infinite times. Rather than evaluating the contribution of a
second—extracellular—compartment, a handful of studies attributed
the disparity between these models and the observed diffusion
(D

∞
6= 0) to membrane permeability, and modeled the TDD

of a biological system using empirical formulas such as: D =

D
∞

+ Dplanes/spheres(R,D0 − D
∞
) [28, 35]. It should be noted that

permeability cannot be estimated using those models.
Such models can be used to sensitize MRI to small tissue changes

thanks to a restricted number of fit parameters, andwere shown useful
in assessing tumor treatment efficacy in two ovarian human cell lines
(OVCAR-8 and NCI/ADR-RES) [35].

However, interpretation of the results is limited as only a mere
qualitative insight into tissue structural changes is possible. Without
ECS, the pseudo-intracellular diffusivity D0 − D

∞
is void of physical

meaning. At best, R can represent a “restriction index”, based on
D0 − D

∞
and the characteristic oscillation frequency (Figure 2C).

The random permeable barrier model (RBPM)
In cancer, randomly oriented flat membranes represent a more
realistic model than a stack of flat layers, for which a solution
accounting for permeability can be derived [20]. Using the EMT
formalism for the diffusion signal proposed in Novikov and Kiselev
[31], D(t) is related to the dispersive diffusivityD(ω) via:

D (t) =
1

t

∫

dω

2π
e−iωt D(ω)

(ω + i0)2
(11)

andD(ω), for random permeable barriers, is described by Novikov et
al. [20]:

D0

D(ω)
= 1+ ξ + 2zω (1− zω)

[
√

1+ ξ/(1− zω)2 − 1

]

(12)

where ξ represents the effective volume fraction of membranes via
ξ = S/V × D0/2κd in d dimensions, and zω = i

√

iD0/2κ is a
dimensionless frequency.

Although never applied in tumors, the RBPM geometry is well
suited for muscle studies [56], and tissue permeability and cell size
were recently estimated in vivo and on clinical scanners [68]. This
approach could provide an interesting approach to characterizing
sarcomas using TDD in the near future.

Filter exchange imaging (FEXI)
A promising alternative to TDD for characterizing cell permeability
might lie in apparent exchange rate/filter exchange imaging (FEXI)
[69, 70]. In FEXI, a stimulated-echo double diffusion encoding
sequence uses two PGSE diffusion blocks separated by a mixing

time td, during which exchange between intra- and extracellular
compartments (where diffusion is assumed to be approximately
Gaussian) occur. The water exchange rate is estimated by measuring
a mono-exponential decay of diffusion with mixing time td [69].

The clinical potential of FEXI was first assessed in the brain, in
both healthy and brain cancer patients, where viable and necrotic
parts of the tumor could be clearly differentiated based on exchange
rate [70]. More recently, FEXI was shown capable of differentiating
two brain cancer types (astrocytomas vs. meningiomas) in vivo based
on exchange rate using only a small sample size (5–10 subjects) [71].
In breast cancer, FEXI could differentiate between multiple cell lines
in vitro, while its potential for in vivo imaging was also demonstrated
[72].

Time and Hardware Issues
Acquisition Time
A typical TDD experiment relies on the acquisition of multiple
diffusion measurements performed when varying the diffusion
time/oscillation frequency. Multiple diffusion times are required to
extract relevant microstructural information from variable molecular
restriction via Equations (6) and (7). It is also recommended to
acquire a large range of b-values due to the large amount of
parameters to estimate when fitting diffusion data to a specific model
for tissue microstructure. The multiplicity of scans considerably
lengthens the acquisition time dedicated to TDD.

Long scanning times are detrimental for the translation of newly-
derived frameworks in a clinical setting. In that view, efforts are being
made to shorten the number of measurements [46, 49].

This issue can be magnified for anisotropic media, where some
compartments should be characterized by a tensor. Tissue lesions
are often considered isotropic for convenience and practicality [49],
potentially at the expense of specificity [57].

Frequency Range and Cell Size
The apparent mismatch between preclinical and clinical applications
originates from restricted scanner capabilities.

Preclinical scanners
For a given gradient strength and duration, bOGSE ∝ f−3

OGSE for
cosine OGSE [27]. As a result, reasonable contrast at large oscillation
frequencies can only be achieved by compensating the lesser temporal
window allow for molecular diffusion by stronger dephasing, i.e.,
stronger gradient strength.

This sets an upper bound limit for the frequency of OGSE
measurements around 300–350Hz (using bOGSE = 0.4 ms/µm2 and
typical echo times) on preclinical scanners equipped with diffusion-
friendly gradients (1 T/m). This in turns sets a lower limit for the
range of restriction scales that can be probed using TDD around
R ∼

√

D0/fOGSE ∼ 2µm.
As a result, most preclinical applications of TDD so far have

focused on relatively large structures, such as brain glioma or
colorectal cells (R ∼ 4–20µm). An obvious downside is that—in
the brain—the comparison of diffusion-based tumor microstructural
metrics with healthy tissue remains out of reach, since TDD is not
adapted to characterize normal brain tissue structure (white/gray
matter).

Although sinusoidal OGSE exhibit larger b-values than their
cosine counterpart, a DC component is introduced into the
frequency spectrum, effectivelymixing conventional PGSE andOGSE
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measurements [27]. Compared to cosine OGSE, the gain in diffusion
contrast does not originates from the frequencies of interest.

Clinical scanners
The situation worsens for clinical scanners, where fOGSE = 100Hz
can only be achieved with b < 120 s/mm2 (3T, gradient strength
80 mT/m). While intra-voxel incoherent motion effects [73] do
not affect cosine modulated OGSE or other sequences with no
sensitivity to the zero frequency of the diffusion spectrum relating
to translation, this results in poor diffusion contrast. In addition,
diffusion is in that range already highly restricted in small structures,
and microstructural information cannot be retrieved using diffusion
time-dependence [74]. The development and availability of high
gradients systems is crucial to the eventual translation of the full TDD
potential to the clinic.

On the contrary, clinical diffusion—using STEAM and PGSE—
is already well adapted to characterizing breast and muscle tissues,
where the restriction scale approaches hundreds of microns. TDD
applications in sarcomas and breast cancer are well within reach of
the current hardware systems, and are expected to flourish over the
next few years.

In addition, the potential success of the INNOVATE study [50] on
a large cohort could represent a tremendous springboard for prostate
cancer characterization using TDD, as well as a major billboard for
promoting TDD applied to various forms of cancer.

APPLICATIONS OF TIME-DEPENDENT
DIFFUSION IN CANCER AND FUTURE
DEVELOPMENTS

Range of Applications
The full list of studies combining TDD with in vivoMR of cancer can
be found in Table 2.

At preclinical level, in vivo time-dependent studies have focused
on brain gliomas using rat [45, 75, 76] and mice models [15, 18, 48],
as well asmice xenografts models of colorectal [16, 46, 51] and ovarian
cancer [35].

On the other hand, human in vivo applications have targeted
prostatic tissue [49, 50, 77, 78] and breast lesions [54], while its
potential in muscle was shown in Sigmund et al. [56].

Tumor Treatment
A distinction is made between two classes of studies. On one hand,
sensitive metrics can be derived from TDD experiments without
proper tissue modeling, by benefiting from a small number of
degrees of freedom. Alternatively, the diffusion frameworks based on
geometrical modeling and multi-compartmental approaches provide
specific insight into tumor structure. This comes at the expense
of parameter accuracy and precision due to the large number of
estimates to quantify.

Sensitive Markers
The impact of tumor treatment on TDD measured with OGSE was
first observed in vivo in the rat brain following the injection of
BCNU in 9L gliomas [75]. A significant increase in contrast (tumor
vs. healthy brain) was obtained from ADC maps at high oscillation
frequencies (fOGSE = 240Hz).

From the same group, Xu et al. [51] acquired the diffusion
signal for a wide range of oscillation frequencies 2 and 4 days after
chemotherapeutic treatment on SW620 colorectal tumors grafted in
mice limbs. Results differed from the previous experiment in that the
treated tumor ADC decreased for high frequencies, but still increased
for PGSE and low-frequency OGSE. These observations, consistent
with a decrease in cell density simultaneous to an increase in cell
size following the barasertib treatment, highlighted the necessity
to probe diffusion on a large time scale. Based on these findings,

TABLE 2 | List of in vivo applications of time-dependent diffusion in cancer.

Study Species Organ Cell line Treatment Conclusion

[76] Rat Brain C6 (glioma) *** Increased diffusion contrast in tumor with OGSE

[75] Rat Brain 9L (glioma) BCNU Large ADC increase using OGSE (following tumor treatment)

[51] Mice Limb SW620 (colorectal) barasertib ADC dispersion rate decrease (following tumor treatment)

[16] Mice Limb LS174T, SW1222 (colorectal) gemcitabine Assessment of cell size and vasculature using VERDICT

[15] Mice Brain GL261 (glioma) *** Quantification of Surface-to-volume ratio in tumors

[18] Mice Brain GL261 (glioma) *** Estimation of cell size and ECS volume fraction using POMACE

[48] Mice Brain GL261 (glioma), 4T1 (mammary

carcinoma)

5FU + bevacizumab ECS decrease 1–2 days following tumor treatment

[45] Rat Brain GBM4 (glioma) Non-gaussian diffusion in restricted compartment of high tumor

density regions

[46] Mice Limb DiFi, HCT116, SW620

(colorectal)

Cell size estimation using IMPULSED

[35] Mice Limb OVCAR-8, NCI/ADR_RES

(ovarian)

Nab-paclitaxel Change in restriction size (following OVCAR-8 tumor treatment)

[49] Human Prostate Manifold Vasculature-specific tumor differentiation using VERDICT

[50] Human Prostate Manifold INNOVATE: Prospective cohort study using VERDICT for evaluating

prostate cancer screening

[78] Human Prostate Manifold Model-free observation of diffusion time-dependence in prostate

cancer

[54] Human Breast Cyst, carcinoma, fibroadenoma Observation of short time regime for radial diffusion in healthy breast

and lesions

*** indicates that ex vivo MRI was also performed on fixed tissue.
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the ADC dispersion rate—averaged over the range 50–250 Hz—
was proposed as a promising sensitive (but unspecific) marker for
treatment efficacy [51].

Recently, Jiang et al. [35] evaluated the potential of an empirical
model—of the type D = D

∞
+ Dplanes/spheres(R,D0 − D

∞
)–to study

ovarian cancer cells (OVCAR-8 and NCI/ADR-RES) undergoing
mitotic arrest. As already discussed, such models can be used to
sensitize MRI to small tissue changes thanks to a restricted number
of fit parameters. Significant changes of the “restriction index” and
“free diffusivity” were reported following treatment of OVCAR-8 with
Nab-paclitaxel [35].

In summary, TDD has been successfully used to observe a small
trend in ADC and ADC dispersion rate, or using simplistic modeling.
Although sensitive, the reported results remain difficult to interpret
due to the non-physical origin of the measured metrics. Changes
in diffusivities, compartments and cell size cannot be efficiently
disentangled from the estimation of a small number of non-physical
parameters.

Specific Markers
The influence of cell apoptosis on TDD was assessed in vivo using
the VERDICT model on LS174T colorectal xenografts treated with
gemcitabine [16]. The changes in cell size observed in vitro (on the
order of 5%) were not found significant with VERDICT, likely the
result of insufficient precision on fit estimates. However, significant
changes in vascular and intracellular volume fractions were found.
These results were found consistent with cell apoptosis, providing for
once a specific insight into changes at microstructural level based on
diffusion.

The POMACE framework was recently used tomeasure the in vivo
microstructural changes associated with chemotherapeutic therapy
on GL261 and 4T1 cell lines [48]. A small ECS decrease (−10%)
was measured 2 days after injection. Interestingly, surface–to-volume
ratio estimates in the short time regime did not vary significantly
following 5FU treatment, likely the result of a simultaneous—but
small—increase in cell size that could not be detected with POMACE.

In summary, applying the geometrical models detailed in this
review often suffer from a lack of sensitivity to detect and/or reliably
quantify the relatively small changes happening at microstructural
level. Validation is also impaired by the difficulty of confirming MRI
measurements with other imaging modalities. To date, the clear
measurement of a specific change in microstructure (f, R, S/V) or
medium property (Dics, Decs) following tumor treatment—and fully
consistent with histology and/or electron microscopy - has yet to be
demonstrated and reported.

Future Developments
Although TDD has demonstrated great potential for non-invasive yet
specific cancer characterization, many challenges remain before the
technique can be suitable integrated into a clinical setting. Some of
the questions the community will need to answer are non-specific to
the field of TDD in cancer.

In the short term, future areas of research shall include the
integration of permeability into geometrical models of cancer,
a cautious assessment of the sensitivity and utility of each
processing framework, and proper and successful validation of
TDD in cancer using multimodality (MRI/microscopy/fluorescence
imaging/Electron Micrography) imaging of the same tissues both
ex vivo and in vivo.

Addressing the specificity issue is also of prime importance—here
lies the real advantage of performing TDD compared to conventional
DWI, and the number of fixed parameters shall be kept to aminimum,
potentially by combining TDD with additional measurements in
specific extra short/long time regimes.

The added benefit of performing TDD in terms of diagnosis
and/or therapeutic follow-up shall be investigated as well. Results
from the INNOVATE study will inform further about the potential of
TDD in a clinical setting. Time-dependent measurements in muscle
and breast are equally promising, as they can easily be performed
in the clinic using the hardware (i.e., magnetic field gradients)
commercially available today.

The following questions should also be addressed. How can
we model healthy tissue so that we can extract meaningful
parameters and compare them to those of control regions at
individual level? Will TDD ever be applied for human brain cancer
mapping in vivo? Can we find an optimal unifying framework to
perform TDD?

CONCLUSION

TDD is slowly emerging as a strong contender for non-invasive
tumor characterization. Despite the lack of a general analytical
solution, diffusion can be probed in various regimes where systems
simplify to extract relevant information about tissue microstructure.
If modeling is thought adequate, Equations (1)–(8) describe how
to properly model diffusion in both intracellular and extracellular
compartments, or in a combined system. When it cannot be
neglected, permeability should be accounted for in the short and long
time regime using Equations (9) and (10), or within specific models,
as seen in muscle studies. To date, preclinical TDD applications
include amongst others the characterization of rodent brain gliomas,
and murine xenografts of colorectal or ovarian cancer. This approach
has indeed proven successful in estimating tumor intra- and
extracellular volume fraction and cell size, as well as treatment
efficacy. In the clinic, although probing such small restriction
scales is practically impossible due to hardware constraints, it is
expected that human applications on breast and prostate cancer
will strongly benefit the community in terms of non-invasive cancer
screening.
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et al. Noninvasive mapping of water diffusional exchange in the human
brain using filter-exchange imaging. Magn Reson Med. (2013) 69:1573–81.
doi: 10.1002/mrm.24395

71. Lampinen B, Szczepankiewicz F, van Westen D, Englund E, Sundgren PC,
Latt J, et al. Optimal experimental design for filter exchange imaging:
apparent exchange rate measurements in the healthy brain and in
intracranial tumors.Magn. Reson.Med. (2017) 77:1104–14. doi: 10.1002/mrm.
26641
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Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the

acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and

prognostic performance, yet translation of DTI to acute human SCI has been limited. In

addition to technical challenges, interpretation of the resulting metrics is ambiguous, with

contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI

acquisition strategies such as double diffusion encoding (DDE) have recently enabled

detection of features not available with DTI or similar methods. In this work, we perform

a systematic optimization of DDE using simulations and an in vivo rat model of SCI

and subsequently implement the protocol to the healthy human spinal cord. First, two

complementary DDE approaches were evaluated using an orientationally invariant or a

filter-probe diffusion encoding approach. While the two methods were similar in their

ability to detect acute SCI, the filter-probe DDE approach had greater predictive power

for functional outcomes. Next, the filter-probe DDEwas compared to an analogous single

diffusion encoding (SDE) approach, with the results indicating that in the spinal cord,

SDE provides similar contrast with improved signal to noise. In the SCI rat model, the

filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation,

and the results demonstrate high quality maps of the spinal cord without contamination

from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity.

The optimized protocol was demonstrated in the healthy human spinal cord using the

commercially-available diffusion MRI sequence with modifications only to the diffusion

encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were

obtained in a clinically feasible imaging time with a straightforward analysis and variability

comparable to axial diffusivity derived from DTI. Overall, the results and optimizations

describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection

of acute axonal damage in the injured or diseased spinal cord will benefit the optimized

filter-probe diffusion MRI protocol outlined here.

Keywords: diffusion tensor imaging, double diffusion encoding, spinal cord injury, magnetic resonance imaging
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INTRODUCTION

A noninvasive biomarker of spinal cord injury (SCI) severity
is a highly-sought goal that could aid clinical decision-making
and facilitate clinical trial enrollment and outcomes. Diffusion
weighted imaging (DWI) is a magnetic resonance imaging
(MRI) technique uniquely sensitive to microscopic injury and
has shown promise as a biomarker of SCI. However, although
preclinical studies have consistently shown diffusion tensor
imaging (DTI) captures microscopic injury not evident through
otherMRI contrasts (Krzyzak et al., 2005; Deo et al., 2006; Gaviria
et al., 2006; Loy et al., 2007; Herrera et al., 2008; Shemesh and
Cohen, 2008; Kim et al., 2010; Sundberg et al., 2010; Tu et al.,
2010; Mondragon-Lozano et al., 2013; Kelley et al., 2014; Wang
et al., 2014; Li et al., 2015; Patel et al., 2016; Skinner et al., 2016),
the adoption of DTI to human SCI, and acute SCI in particular,
has been limited to only a small number of studies (Cheran et al.,
2011; Endo et al., 2011; Vedantam et al., 2015; Shanmuganathan
et al., 2017). The lack of translation can be attributed to many
factors, but technical challenges of imaging the spinal cord
along with difficulties in interpretation are prominent hurdles to
clinical feasibility and utility for DWI as well as other advanced
MRI techniques (Stroman et al., 2014; Wheeler-Kingshott et al.,
2014; Martin et al., 2016). Double diffusion encoding has recently
been shown to be a rapid and accurate method of assessing the
severity of injury in a rat model (Skinner et al., 2016). The goal
of this study was to optimize the filter-probe double diffusion
encoding for human translation.

Animal studies of experimental SCI convincingly demonstrate
microscopic disruption to white matter tracts as detected with
DTI both at the lesion site and in regions remote from the
site of injury (Krzyzak et al., 2005; Ellingson et al., 2008, 2010;
Sundberg et al., 2010; Jirjis et al., 2013). This is often observed as a
decrease in the DTI parameter of fractional anisotropy (FA) that
is attributed to white matter tract injury, although FA has poor
specificity since it reflects a complex combination of multiple
pathologies. A reduction in diffusion measured parallel to the
fibers, or axial diffusivity (AD), has been shown to bemore closely
associated with axonal injury. In the acute aftermath of SCI,
decreased AD is argued to be caused by the formation of axonal
varicosities, or beading, that are observed in experimental SCI
(Williams et al., 2014). In a recent human SCI study at 24 h post-
injury, AD had a strong relationship with outcome 1 year later
(Shanmuganathan et al., 2017). However, the sensitivity of AD to
injury can change as the injury-to-imaging interval increases and
edema evolves in the initial days to weeks after injury (Leypold
et al., 2008). Thus, despite promising results as a biomarker, its
use remains limited.

Improvements in the ability of DWI to capture microstructure
have been introduced through advanced diffusion encoding
techniques, including double diffusion encoding (DDE). DDE,
as the term implies, uses two separate diffusion gradient pairs
to provide contrast (Cory et al., 1990; Mitra, 1995) unattainable
with the traditional Stejskal-Tanner single diffusion encoding
(SDE). For a review of the history of DDE with derived measures
and accepted nomenclature, see (Shemesh et al., 2016). Most
related to neurological injury is the ability of DDE to estimate

compartment shape anisotropy or eccentricity. In a previous
simulation study (Skinner et al., 2015), microscopic anisotropy
estimated from DDE was highly sensitive to axonal injury.
Importantly, one DDE variant, referred to as 5-design DDE
(Jespersen et al., 2013), has the benefit of being insensitive to
the underlying fiber distribution and is termed orientational
invariance, which is a particular confound in DTI. Thus, DDE
measures of microscopic anisotropy may have a benefit in
detecting acute injury to the brain and spinal cord. While
DDE has been reported for materials, cells, and tissues, its
application to neurological injury has been limited (Shemesh
et al., 2014) although applications in aging (Lawrenz et al.,
2016) have demonstrated its utility and advantages over more
conventional DTI.

Another DDE variant, referred to filter-probe DDE (FP-
DDE), was similarly sensitive to axonal beading (Skinner et al.,
2015) in a simulation study. It was developed specifically for
tissues in which the fiber organization is known a priori and
largely coherent, which makes it suitable for the spinal cord but
could also be a confound with improper alignment or complex
fiber arrangements. In this approach, an initial diffusion “filter”
perpendicular to the cord suppresses mobile spins, and a second
diffusion “probe” parallel to the cord measures the diffusivity
of the unsuppressed spins. It demonstrates a high sensitivity to
acute SCI in a rat model and outperforms DTI in stratifying
the degree of injury (Skinner et al., 2016). When coupled with
a single-voxel diffusion spectroscopy localization, FP-DDE has
substantially less post-processing demands than DTI, which is
believed to improve its translation to clinical settings. However,
FP-DDE is constrained by the requirement that the diffusion
encoding directions are aligned with the spinal cord axonal fibers,
and curvature of the spinal cord or user error may limit its
applicability.

While our previous spectroscopic FP-DDE approach has
methodological benefits over an imaging readout, the lack of
spatial information limits the visualization of regional injuries
that may have important benefits for outcomes along different
functional domains such as motor or sensory systems (Martin
et al., 2016). Another obvious challenge is that DDE pulse
sequences are not readily available on most MRI systems. The
inclusion of two separate diffusion encoding gradient pairs
increases echo time, resulting in lower signal to noise compared
to a SDE. Thus, DDE has other practical considerations that
could potentially limit its adoption.

To improve the feasibility and translational potential of DDE
for clinical settings, this study systematically compared several
different experimental conditions with the goal of developing a
protocol capable of clinically-feasible human translation. First,
simulations tested the relationship of derivedDWImeasures with
the underlying model of injury with an emphasis on reliability
and effects of signal to noise ratio (SNR). Next, the in vivo
application of alternative DDE methods was examined in a
rat model of SCI to identify if orientation-invariant metrics
performed as well as metrics aligned with the cord axis. Further,
it was assessed whether the contrast obtained from the DDE
approach could be capturedwith a SDE in the spinal cord. Finally,
the set of optimized parameters was applied to the healthy human
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cervical spinal cord to assess reliability of the obtained measures.
Collectively, the results define a set of experimental parameters
and considerations to provide robust measurements of spinal
cord integrity in future studies of patients with spinal cord disease
and injury.

METHODS

Simulations
Monte-Carlo simulations were performed to examine the
response of diffusion metrics to models of microscopic injury
and effects of signal to noise (SNR) using camino diffusion
toolkit (Hall and Alexander, 2009) and models of healthy and
injured axons as straight and beaded cylinders, respectively, as
previously described (Budde and Frank, 2010; Skinner et al.,
2015). A range of injured axon fractions and intracellular volume
fractions were simulated, and the pulse sequences were those
described in Figure 1, Table 1. The simulations each used 50,000
individual spins, 2,000 time-steps, and an intrinsic diffusivity of
1.8 um2/ms consistent with the measured longitudinal diffusivity
of healthy spinal cord white matter (Budde et al., 2007). To
examine the effects of SNR, additional Gaussian noise was added
to the phase-sensitive simulated signals to achieve a nominal
SNR for the b = 0 signal, noting this results in a characteristic
Rician noise profile when converted to magnitude signal. The
gradient directions are specified in Table 1 and are consistent
with the previously reported conditions for the 5-design DDE
(Jespersen et al., 2013). The filter-probe DDE was simulated with
the gradients consecutive in time as originally proposed (Skinner
et al., 2015) in which a diffusion “filter” is applied perpendicular
to the known fiber axis and the diffusion “probe” samples the
diffusion along the axis in a series of varying gradient amplitudes.
The effects of combining the two gradients into a SDE overlapped
in time was evaluated (Figure 1 bottom) with other conditions
identical.

The parameters investigated were limited to those that showed
nearly perfect specificity for axonal injury in the presence of
varying volume fractions in a previous simulation study (Skinner
et al., 2015). A measure of microscopic anisotropy, eccentricity
(ε), was derived from the 5-design DDE having the feature of
orientation invariance defined by

ε =

ln (SParallel) − ln
(

SOrthogonal
)

q4
(1)

where SParallel and SOrthogonal are themean signal from the parallel
and orthogonal diffusion encoding directions, respectively, and
q is the diffusion wave vector given by q =

1
2π γGδ with G

and δ the amplitude and duration of the diffusion encoding
gradient, respectively. Notably, ε has a strong dependence on
the diffusion encoding gradients and may be converted to
the parameter microscopic fractional anisotropy to reduce its
dependence on experimental conditions (Jespersen et al., 2013).
However, the normalization factor includes mean diffusivity
(MD) which introduces a minor dependence on intracellular
volume fraction (Skinner et al., 2015). For the purposes of this
study, ε was obtained under identical experimental conditions

and was therefore sufficient to relate to the other derived metrics
under the same conditions.

In the filter-probe diffusion encoding scheme (Skinner et al.,
2016) a measure of apparent diffusion coefficient along the spinal
cord axis (ADC

||
) was obtained in the presence of a perpendicular

diffusion filter under the assumption of coherent and uniformly
aligned fibers by

Si = S0 · exp(−b · D) (2)

where S0 is the signal measured with without diffusion weighting.
Notably, in this specific condition it reflects the signal in
the presence of the diffusion “filter” but no parallel diffusion
weighting. Si reflects the measured signal at each of the b-
values measured parallel to the fiber axis with b=q2(1 −

δ
3 ).

Likewise, a biexponential model under the same conditions and
measurements is given by

Si = S0 · fR · exp(−b · DR)+ S0(1− fR) · exp(−b · Dfast) (3)

where DR and Dfast reflect the diffusivities of the restricted and
fast compartments, respectively, and fR reflects the fraction of
the restricted signal. All analyses were performed inMatlab using
least-squares regression for Equation 2 and the non-linear curve
fitting toolbox for Equation 3. The effect of SNR on the estimated
parameters (Figure 2) was quantified as the relative error (%)
measured as the difference between the estimated and true values
(infinite SNR) normalized by the maximum across all simulated
axonal and volume fractions.

Animals
All animal procedures were approved by the Institutional Animal
Care and Use Committees (IACUC) at the Medical College
of Wisconsin, the Clement J Zablocki VA Medical Center and
Northwestern University. A total of 38 female Sprague–Dawley
rats (200–250 g) were used. Contusion SCI was performed in
rats at the T10 vertebral level of the spinal cord with varying
levels of injury severity or sham injury as previously described
(Skinner et al., 2016). Briefly, animals were anesthetized and a
dorsal laminectomy was performed followed by a weight-drop
to deliver a mild, moderate, or severe injury. Sham animals
were identical including laminectomy but the weight was not
dropped. Naïve animals were used for protocol developments and
testing where indicated. Rats underwent locomotor functional
assessments using the BBB scale (Basso et al., 1995) at 1 and 30
days post-injury and were scored by a blinded reviewer.

Rat Magnetic Resonance Imaging
In vivo MRI was collected 48 h following the injury procedure
using a Bruker 9.4T Biospec System with Paravision (6.0.1).
A quadrature volume coil was used for transmission and 4-
channel surface coil array for reception centered over the lesion
epicenter at the T10 thoracic vertebrae. Animal respiration and
temperature were monitored for the duration of the imaging.

The DDE pulse sequence consisted of two separate Stejskal-
Tanner diffusion encoding gradients (Figure 1), each with
independent direction and amplitude (Table 1), while the
diffusion separation and durations were identical (Table 2). To
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FIGURE 1 | Pulse sequence for Double and Single Diffusion Encoding Techniques. The double diffusion encoding (DDE) sequence consists of two pairs of
Stejskal-Tanner diffusion weighting gradients (G1 and G2) independent in their orientations, timing, and amplitude. The single diffusion encoding (SDE) consists of a
single gradient pair. In this work, G1 and G2 were either parallel or perpendicular to one another and modulated relative to the laboratory frame of reference according
to Table 1.

TABLE 1 | Double diffusion encoding schemes and parameters.

Orientationally Invarianta Filter-Probeb

G1 directions Orthogonal: 60 (12 unique)
Parallel: 12

Perpendicular to Cord:
2 (+ & −)

G1 b-values (s/mm2) 2,000 2,000

G2 directions Orthogonal to G1: 60
Parallel to G1: 12

Parallel to Cord:
2 (+ & −)

G2 b-values (s/mm2) 2,000 9 increments: 0–2,000

Non-DWI (b = 0) 0 0

Total Acquisitions 72 36

aJespersen et al. (2013).
bSkinner et al. (2016).

examine the effects of different DDE approaches, a single voxel
Point RESolved Spectroscopy (PRESS) acquisition (Bottomley,
1987) was used as previously described (Skinner et al., 2016),
with the voxel (10 × 10 × 6 mm3) placed at the lesion
epicenter and aligned with the spinal cord main axis (Figure 3).
The acquisition was cardiac- and respiratory-gated, and other
relevant acquisition parameters included sweep width = 4,960
Hz, and number of points = 256. As shown in Table 1, the
diffusion parameters for the DDE sequence comparison used
identical parameters to the extent possible, including a maximum
b-value for each diffusion encoding pair of 2000 s/mm2.

In the naïve spinal cord at T10, the DDE sequence was
compared to the SDE using identical diffusion gradients. The
SDE enabled a reduction in TE from 61 to 35 ms using a 4-shot
echo planar imaging (EPI) readout. Both positive and negative
diffusion gradient encoding directions on each axis were acquired
to mitigate any directional or cross-term dependence (Neeman
et al., 1991).

A reduced field of view (rFOV) excitation scheme (Saritas
et al., 2008) was implemented using a 2D excitation (2DRF)
echo planar gradient trajectory. The excitation consisted of 16
Gaussian sub-pulses (time-bandwidth product of 2.74) each
with 0.2 ms duration and amplitudes modulated by a Gaussian
window. The total pulse duration was 6.85 ms. The sequence
was evaluated in naïve animals using the DWI-EPI sequence
(13.5 × 9.6 mm2, 90 × 64 matrix), and compared to rFOV
of the same resolution (13.5 × 13.5 mm2, 90 × 90 matrix)
using outer volume suppression with four 10mm saturation
bands surrounding the acquisition FOV and a separate spectral-
selective fat suppression pulse. The 2DRF rFOV did not include
any spatial or fat suppression. DWI consisted of 12 directions, b-
value of 800 s/mm2, with TEs of 24 and 29 ms for the OVS and
rFOV, respectively, and identical acquisition times of 3:28 min.
Both schemes had 150 µm2 in-plane resolution and 2mm slice
thickness. The 2DRF excitation rFOV imaging was combined
with the FP-SDE diffusion encoding scheme and applied to the
rat SCI at 48 h and 30 days post-injury and performed at the T10
lesion epicenter.

Human Magnetic Resonance Imaging
All procedures were approved by the Institutional Review Board
(IRB) at the Medical College of Wisconsin, and written consent
was obtained from all subjects. Three subjects (age range: 28–38
years; 2 male) underwent cervical spine imaging on a 3T General
Electric Discovery system using a 12 channel head, neck, and
spine receive array. The DWI-EPI vendor-supplied sequence was
a single-shot EPI with a 2DRF excitation rFOV. The diffusion
gradient directions were modified to include the SDE filter-
probe values as shown in Table 1 along with a conventional
DTI acquisition with 2 b-values of 1,000 and 2,000 s/mm2

along 15 directions. Other sequence parameters are listed in
Table 2.
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FIGURE 2 | Simulation of DWI schemes and derived parameters. All
estimated DWI parameters, including eccentricity (A), restricted fraction (B),
and ADC

||
from the DDE (C) or SDE (D), exhibited high sensitivity to the

injured axon fraction (x-axis) with minimal differences between different
intra-axonal volume fractions (shown as individual lines). Notably, ADC

||
was

nearly identical between the DDE and SDE (E) for uniformly-oriented fibers.
The estimated parameters showed differential reliability under low SNR with
ADC

||
being most robust to noise (F).

Data Analysis
In both naïve and injured animals, maps of parallel diffusivity
(ADC

||
) along the spinal cord were calculated according to

equation 2 and 3. Notably, S0 reflects the absence of diffusion
weighted parallel to the cord but in the presence of the
perpendicular diffusion filter. Parameter maps were evaluated
using whole-cord region of interest (ROI) analysis. DTI fitting
was performed for comparison parameter map quality in full-
FOV and rFOV DWI using FSL (Jenkinson et al., 2012).
Quantification of ADC

||
in injured animals used whole-cord

averages from a single slice at the T10 injury epicenter. The
magnitude spectroscopic signals were integrated between ±2
ppm of the water peak. For the filter-probe DDE, the signals
were fit to a monoexponential model. Spinal cord images were
analyzed with regions of interest (ROI) using an approach
to avoid bias in manual segmentation. DWI

⊥
images were

converted to SNR maps by dividing the images by the standard
deviation measured from a region of pure noise. A second
ROI surrounding the whole cord was placed in the slice at the
lesion epicenter, and only voxels with SNR values above 12 were
included in the final mask, which was subsequently transferred to

the ADC
||
map. The whole-cord mean voxel ADC

||
values were

obtained.
The correlations between the resulting metrics and the

compression distance (mm) at the moment of injury were
assessed using a Pearson’s product moment correlation. Likewise,
correlations between the diffusion metrics and locomotor
function (BBB score) at 30 days post-injury were evaluated
with a Pearson correlation. A direct comparison of correlation
coefficients between the two different diffusionmethods and their
relationship with outcome was carried out using the method
described in Steiger (1980).

RESULTS

Simulations of DWI Scheme and SNR
Dependence
As expected, the three parameters derived from the simulations,
ADC

||
, fR, and ε were highly specific to axonal beading even

with variations in the intracellular volume fraction (Figure 2).
Increasing beading fraction was associated with decreased ε and
ADC

||
and increased fR. While fR exhibited the most linear

relationship with beading fraction (Figure 2B), its slope of 0.64
indicated it did not directly correspond to the true injured
fraction. In the filter-probe scheme, ADC

||
obtained from the

DDE or the SDE were identical to one another (R2
= 0.999;

Figures 2C,D), demonstrating the SDE scheme with orthogonal
gradients alignedwith the fiber axis is equally effective as theDDE
under the same conditions. The parameters differed considerably
in their accuracy under varying SNR conditions. The nominal
SNR values of 10, 30, 60, and 100 for the non-diffusion weighted
signals (b = 0 s/mm2) equated to mean SNR values of 2.6, 7.8,
15.6, and 30.0, respectively, for the diffusion weighted signals
across all directions at the highest b-values (b = 4,000 s/mm2).
Across all beading and volume fractions and the lowest SNR
condition, ADC

||
exhibited a decrease of 27.3% compared the

highest SNR condition whereas eccentricity decreased by 117%
and fR increased by 256%. Furthermore, ADC

||
was within 10%

of its true value at a DW SNR of 11.1%, eccentricity and fR
were within 10% of their true values at SNR values of 34 and
36, respectively, further demonstrating these parameters require
greater SNR for accuracy than ADC

||
. It should be noted that

these are relative differences and not absolute cutoffs since other
factors affect the results under experimental conditions.

In Vivo Effects of DWI Scheme in SCI
The DDE-PRESS was applied to a rat model of spinal cord
contusion injury (Figure 3) using parameters similar to those
of the simulations (Table 2 condition 1 and 2). The mean SNR
across diffusion-weighted spectra at b = 4,000 s/mm2 were 73.8
(±47.8) and 70.4 (±28.8) for the 5-design DDE and the filter-
probe DDE, respectively. Across all animals with varying injury
severities (n = 17), the average water peak linewidth (FWHM)
was 36.8 (±9.3)Hz, and the average coefficient of variation across
repeats was 9.8 (±8.3)%.

In a direct comparison in the same animals, ADC
||
and ε

were significantly related (Figure 4A) to one another (t = 2.58,
p = 0.021, R2 = 0.31), as were fR and ε (t = −3.63, p =
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TABLE 2 | Diffusion weighted experimental parameters.

Condition 1 2 3 4 5

Application Rat/Simulation Rat/Simulation Rat Rat Human

Readout PRESS PRESS EPI EPI EPI

EPI Segments – – 4 4 1

rFOV – – – 2DRF 2DRF

TR (ms) 3,000 3,000 1,500 1,500 2,000

TE (ms) 41 41 61 35 86

FOV (mm2) 10 10 25.6×25.6 13.5×9.6 200

Voxel/Slice thickness (mm) 6 6 1.5 1.5 5

In-plane resolution – – 266×400µm2 150µm2 1.43 mm2

DWI Schemea 5-design DDE DDE
Filter-Probe

DDE Filter-Probe SDE Filter-Probe SDE Filter-Probe

DWI Acquisitions 72 36 36 36 36

Max total b-value (s/mm2) 4,000 4,000 4,000 3,000 3,000

Diffusion separation 1 (ms) 12 12 12 12 32.5

Diffusion duration (ms) 6 6 6 6 25.4

Mixing Time (τ; ms) 6 6 6 – –

NEX 1 1 2 2 6

Acquisition Time 3:48 2:09 5:36 5:36 5:26

Outcome Measure(s) Eccentricity (µm4) ADC
||
(µm2/ms)

fR (fraction)
ADC

||
(µm2/ms) ADC

||
(µm2/ms) ADC

||
(µm2/ms)

aFrom Table 1.

0.002, R2 = 0.47) (Figure 4B). ADC
||
(t = −2.01, p = 0.067,

R2 = 0.25), fR (t = 2.39, p = 0.034, R2 = 0.32), and ε (t =

−1.95, p = 0.075, R2 = 0.24) had similar relationships with
the compression (in mm) of the spinal cord at the moment of
impact (Figures 4 C,E,G), although only fR reached significance.
ADC

||
was a significant predictive marker of locomotor outcome

(Figure 4F) as measured by the relationship with BBB score at
30 days post-injury (t = 3.39, p = 0.004, R2 = 0.45), and fR was
significant (Figure 4H) but had a lower relationship (t = −2.81,
p = 0.014, R2 = 0.36). ε (t = 1.05, p = 0.31, R2 = 0.07) was
not a significant predictor of locomotor outcome (Figure 4D).
None of the measures of data quality were related to BBB score,
including CoV (t = 0.05, p = 0.96) or FWHM (t = −0.05 p
= 0.96). Moreover, neither CoV nor FWHM were significantly
related to the outcome measures of ADC

||
(CoV: t = −0.39, p =

0.70; FWHM: t =−0.06, p= 0.95) or ε (CoV: t = 0.18, p= 0.86;
FWHM t =−1.21 p= 0.24).

In Vivo Effects of Single vs. Double
Diffusion Filter-Probe
As expected, diffusion weighted images from the SDE
(Figure 5A) had a higher SNR than those with the DDE
encoding due to the shorter TE for the SDE. The ADC

||
maps

from both filter-probe diffusion encoding schemes were similar
and were largely devoid of non-spinal cord signals, as anticipated.
Across 3 naïve animals, the mean SNR of the whole cord was 1.6
times greater in the SDE than the DDE (Figure 5B), which is
consistent with the predicted SNR increase of 1.68 based solely
on the reduction in TE, using a T2 of the spinal cord white
matter of 50.2 ms. A significant increase in the white matter
ADC

||
(Figures 5C,D) was evident in the SDE compared to the

DDE in a paired T-test (t = 6.04; p = 0.026). The difference is

likely explained by the differences in T2 relaxation filtering. In
either the SDE or DDE, no significant differences were evident
from positive or negative sign combinations of diffusion gradient
encoding directions.

Application of rFOV FP-SDE in SCI
The rFOV-DWI using 2DRF improved image quality by reducing
artifacts compared to OVS (Figure 6). The rFOV images reflected
the full FOV acquired without any cropping. Notably, OVS
images contained fold-over artifacts of the lipid signal even
though fat suppression and spatial saturation bands were utilized.
The 2DRF images contained negligible lipid signal without
separate fat suppression pulses consistent with their intrinsic
suppression of lipids based on the chemical shift. The measured
SNR of the rFOV-DWI (47.4) was increased by approximately
12% compared to the OVS-DWI (41.5) averaged across all
diffusion weighted images from a whole-cord ROI in a single
animal. The rFOV had a slight improvement in image distortion,
although neither the artifacts nor distortion was quantified.

The full pulse sequence incorporating 2DRF excitation and
FP-SDE diffusion encoding was applied to rats with varying
injury severities (Figure 7). The perpendicular weighted images
(DWI) revealed high signal in the white matter even in an animal
with a severe injury. Qualitatively, the ADC

||
maps demonstrated

a clear and pronounced effect of injury severity that was evident,
with the severely-injured animal having an ADC

||
decrease in

the central region of the cord and a higher ADC
||
rim along

the periphery. It should be emphasized that the region along
the periphery of the white matter would typically be obscured
or confounded by the surrounding CSF. A decrease in ADC

||

within the ascending dorsal columns is also evident in the
severe injury.
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FIGURE 3 | DDE-PRESS Acquisition and Quantification. A voxel was positioned over the T10 vertebral segment (A) and aligned with the cord axis, shown here for a
sham-injured animal. The integrated signal quantified as the area under the water peak (B) was obtained over the range ±2 ppm for subsequent analysis. For
orientationally invariant DDE (C), the mean signal from parallel and orthogonal directions were compared to derive eccentricity, whereas for the filter-probe DDE, the
diffusivity and restricted fraction (D) were derived from a mono- and bi-exponential fit (D) to the signals.

FIGURE 4 | DDE-PRESS Relationship to Severity and Outcomes. Across all
animals with a range of injury severities, both ADC

||
and fR measured at the

injury site were moderately correlated with eccentricity (A,B). The relationship
with cord compression (C,E,G) were similar across all three parameters. The
strength of the correlation with BBB score 30 days post-injury was lowest for
eccentricity (D), greatest for ADC

||
(F), and in between for fR (H).

A region of interest analysis was performed to quantitatively
assess the DWI measures across the full cohort of animals
(Figure 8). Based on the simulation results, only voxels with a

SNR above 12 on the DWI images were included bymasking with
a whole-cord ROI in conjunction with automatic thresholding.
ADC

||
showed a significant effect of injury severity [F(3, 18) =

10.2; p = 0.001] across all animals (n = 16) but was non-
significant with the sham animals omitted [F(2, 12) = 0.76; p =

0.49]. Single-voxel PRESS estimates of the same parameter were
also obtained in the same animals, and all spectra had sufficient
SNR to ensure robust estimates of both ADC

||
and fR. (mean SNR

= 69.7, range = 46.3–116.4). ADC
||
showed a strong effect of

injury severity [F(3, 14) = 27.2; p < 0.0001] although it was also
non-significant with the sham animals excluded [F(2, 12) = 1.1;
p = 0.37]. fR also had a significant effect of severity [F(3, 12) =
6.67; p < 0.005], but was non-significant with the sham animals
included [F(3, 12) = 2.38; p= 0.13].

Human Application of rFOV FP-SDE
A commercially-available diffusion weighted EPI sequence with
reduced field of view (rFOV) was applied to the human cervical
spinal cord using the FP-SDE diffusion encoding scheme and
compared to a conventional DTI acquisition at the same
resolution (Figure 9). ADDTI and ADC

||
were visually similar

within the spinal cord, although as expected, ADC
||
more clearly

delineated the spinal cord due to the suppression of non-cord
signals, permitting visualization of the white matter boundary
without partial volume contamination by CSF. The mean filter-
probe SNR in the cord white matter was 10.8 (±2.3). Across three
healthy subjects averaged in all 10 slices, ADC

||
in the spinal cord

white matter (1.66 ± 0.18µm2/ms) was larger than ADDTI (1.32
± 0.15µm2/ms), with difference being significant in a paired
t-test (t = −5.92; p = 0.027). In this limited sample, similar
between-subject coefficients of variation were observed for ADC

||

(10.9%) and ADDTI (11.2%).

DISCUSSION

Following from previous work (Skinner et al., 2015, 2016), the
filter-probe diffusion encoding scheme demonstrates detection
of microscopic injury in the spinal cord. These studies define
experimental parameters to enable improved detection of injury
and translation to human spinal cord. The filter-probe diffusion
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FIGURE 5 | Double and Single Filter-Probe Diffusion Encoding. Representative images (A) from the double (top) and single (bottom) diffusion encoding variants of the
DWI sequence. As expected, the SDE had improved SNR compared to the DDE acquisition. ADC

||
maps depict primarily the spinal cord white matter along with fat.

Across 3 naïve animals, the white matter signal (B) in the SDE remains above noise floor even at b
||
= 1,000 s/mm2, whereas the DDE signal was indistinguishable

from the noise above b
||
= 500 s/mm2. The measured ADC

||
of the SDE and DDE were comparable (C), with a slight elevation in the SDE that could be attributable

to the greater SNR. In the white matter voxels across all animals (D), ADC
||
values from the DDE and SDE were strongly correlated with a slope of 1.09.

FIGURE 6 | Reduced Field of View DWI and T2-weighted Imaging. rFOV using outer volume suppression (top) or 2DRF (bottom) provided high-quality images of the
thoracic spine. Fold-over and chemical shift artifacts were evident in the OVS, which includes a separate fat-suppression module. The 2DRF with a slightly smaller
FOV but an identical resolution offered similar SNR, minimal chemical shift artifacts (without separate fat suppression), and slight improvement in EPI distortion as
shown by the b = 0 images and FA maps. In a T2-weighted fast spin echo, the smaller FOV allowed a reduction in acquisition time with a comparable SNR.

encoding strategy is premised on the pathology of axonal injury
manifesting as focal swellings or beading. Beading in traumatic
SCI has been directly observed in vivo in a murine model
(Williams et al., 2014), and axonal injury is consistently the

pathological feature most related to functional outcome (Medana
and Esiri, 2003). On the other hand, edema and cavitation are
pathological features of acute and chronic spinal cord injury,
respectively, yet they are not direct markers of axonal integrity.
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FIGURE 7 | rFOV DWI in SCI with filter-probe SDE. Compared to the non-diffusion weighted images (A), the perpendicular diffusion-weighted images (B) were free
from extraneous tissue signals, although some slight EPI ghosting was evident. The filtered ADC

||
maps (C) reflected primarily the intra-axonal diffusivity. In an acute

severe SCI (right), the ADC
||
maps clearly demonstrated a reduction in the central region at the epicenter and in the dorsal columns rostral to the lesion. Magnification

of filtered ADC
||
maps are shown in (D).

FIGURE 8 | Classification of Spinal Cord Injury Severity. Region of interest analysis of FP-SDE (A) was compared to DDE-PRESS (B,C) in the same animals across a
range of injury severities. ADC

||
from imaging with a whold-cord region of interest analysis (A) showed an effect of injury severity. ADC

||
obtained from single voxel

PRESS (B) was less sensitive to severity, while fR from the same voxel (C) better distinguished injury severity. Lines indicate significant group differences at p < 0.05.

These features can confound or obscure the sensitivity of
diffusion MRI to the underlying axonal injury. Edema, detected
as T2-weighted hyperintinsities, has a strong dependence on the
injury-to-imaging time in SCI (Leypold et al., 2008) is not a good
predictor of SCI severity (Dalkilic et al., 2017). The filter-probe
design follows from prior work using diffusion weighting as a
mechanism to suppress these unwanted MR signals in addition
to its more common utility as a probe of diffusivity. Importantly,
a high-strength diffusion gradient perpendicular to the spinal
cord attenuates fast diffusing spins, which includes free CSF,
the hindered extracellular water including edema. While other
methods such as fluid attenuated inversion recovery diffusion

imaging (DW-FLAIR) have been used to suppress CSF (Hirsch
et al., 1999), it both increases scan time and does not suppress the
effects of extracellular fluid and edema.

A primary limitation of the filter-probe DWI technique
is the necessity that the diffusion filter gradients are aligned
perpendicular to the spinal cord. Importantly, we chose to
consistently employ a diffusion filter along the left-right axis,
as the spinal cord has less curvature along this axis than
along the anterior-posterior axis, and although spinal cord
white matter fibers are primarily aligned with the cord axis,
some fiber dispersion or crossing is present. Nonetheless,
considering the extent of damage following a traumatic injury,
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FIGURE 9 | Filter-Probe diffusion weighted imaging in Human Normal Cervical Spinal Cord. The filter-probe SDE scheme was implemented on a human 3T scanner
by altering the diffusion gradient orientations of the commercially-available diffusion weighted imaging sequence. Compared with AD maps derived from DTI (A),
FP-SDE provided comparable ADC

||
maps but with almost complete attenuation of non-cord signals. Three of 10 slices are shown. Results from 3 healthy subjects

(B) demonstrate similar coefficients of variation (indicated in text above bars) in the same subjects and regions of interest. ADC
||
was significantly greater than AD from

DTI. Bars indicate standard deviations.

the injury is likely to be the dominant pathology affecting the
diffusionmeasurements. The alignment of the diffusion weighted
gradients relative to the underlying fibers has a cos2 dependence
(Jespersen et al., 2010), indicating that angular deviations of up to
18 degrees will be within 10% of the true values. It was previously
demonstrated in simulations that microscopic anisotropy
(eccentricity) was both highly specific to beading and invariant
to the underlying fiber direction. It was hypothesized that this
metric would therefore retain sensitivity to axonal injury in the
spinal cord and eliminate the directional dependence, albeit with
an increase in acquisition time. Eccentricity had a correlation
with injury severity similar to that of ADC

||
, and the two were

strongly correlated to one another, which is consistent with its
similar sensitivity to axonal beading (Skinner et al., 2015) in
simulations. Somewhat surprisingly, eccentricity was less reliable
at predicting chronic functional outcome than ADC

||
(Skinner

et al., 2015). The reasons for the discrepancy are unclear, but
could be potentially related to either the underlying pathology
itself or experimental and methodological considerations. The
choice of diffusion weighting strength (b-value) and separation
between the two DDE diffusion gradient pairs (mixing time;τ)
may have affected the sensitivity of DDE. On the other hand, in
SCI, diffusion parallel to the cord (axial diffusivity) is consistently
a better marker of injury and a better predictor of outcome
than FA (Kim et al., 2010; Tu et al., 2010; Shanmuganathan
et al., 2017), suggesting there may be an underlying basis for
a similar benefit of ADC

||
compared to eccentricity. Although

eccentricity and fR were strongly correlated to one another, the
two parameters reflect different features of the microstructure
and may be seen as complementary. ADC

||
and fR reflect the

diffusivity and restrictions, respectively, along the cord that are
associated with axons, whereas eccentricity captures the shape of
microstructures and may include both axonal and non-axonal
features. Additional investigations into the pathophysiological
basis and specificity for both DDE measures, as well as their
potential applications in neurological injury and disease, are
needed.

Our initial FP-DDE studies used a single-voxel encompassing
the full cross section of the spinal cord at the injury
site. This approach allowed rapid quantification due to its
minimal and straightforward post-processing. However, as
shown in Figure 7, imaging-based readouts enable visualization
of the pattern of injury which may be more informative for
tract-specific functional outcomes. While the two techniques
are complementary, they both have distinct advantages and
disadvantages that may find different applications to clinical
situations. Most notably, there is always a balance between
spatial resolution and SNR, and as expected (Jones and Basser,
2004; Farrell et al., 2010), the reliability of the estimated
parameters depends greatly on SNR. The simulation results
revealed ADC

||
was less affected by low SNR than either

eccentricity or fR highlighting its potential value as a reliable
parameter for imaging-based DDE acquisitions where SNR and
spatial resolution are in competition with one another. Imaging,
compared to a single voxel readout, obviously enables spatial
information to address more detailed anatomical investigation.
This study utilized a whole-cord region of interest analysis
approach and semi-automated methods to reduce potential bias
compared to manually-defined regions (Martin et al., 2016).
Although segmentation of spared vs. injured white matter has
been shown to improve separation of injury groups (Kim et al.,
2010), these manual methods are subjective, labor intensive,
and require a separate control group to define the normal
white matter values and ranges. Currently, whole-cord regions
of interest are advocated by the NIH Common Data Elements
(Biering-Sorensen et al., 2015). Our decision to use a single
whole-cord region of interest was based on the simplest and
most straightforward approach for quantification. Automated
registration and tract-specific analysis methods are useful when
the cord anatomy is relatively preserved (De Leener et al., 2017),
but it is unclear how well these techniques will perform with
significant anatomical disruptions seen in acute human DTI
of spinal cord trauma (Shanmuganathan et al., 2017). Further
investigations of the different quantification approaches will be
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useful in combination with the optimized contrasts evaluated in
this study.

Importantly, the simulations and in vivo results in naïve
animals also demonstrated equivalence between the single and
double diffusion encoding using the identical diffusion encoding
schemes. The reduction in TE led to an SNR improvement of
approximately 1.6. Unlike other DDE acquisitions, the SDE was
only possible since the diffusion filter and probe gradients were
orthogonal and assumes the fibers were coherent and aligned
with the spinal cord axis. In vivo, a significant difference in
ADC

||
was observed between the single and double diffusion

encoding, which is likely due to the effects of T2 relaxation
since different TEs were used. One benefit of reduced TE with
the SDE is an improved SNR. Likewise, a practical advantage
of SDE is its compatibility with existing pulse sequences with
only minor modifications to the diffusion encoding directions
and amplitudes. Moreover, the filter-probe scheme utilizes a
perpendicular diffusion weighted image for normalization rather
than an unweighted (b = 0) image for reference as is done in
most other diffusion analytical models. This also reduces artifacts
associated with CSF signal such as flow or pulsation artifacts
(Maier, 2007) and Gibbs ringing (Perrone et al., 2015).

The combined reduced field of view and FP-SDE scheme
enabled high-resolution images of the spinal cord with
prominent detection of injury severity on a per-subject basis.
Notably, in one example ADC

||
map from a severely-injured

animal (Figure 7A), a central region of decreased ADC
||
was

evident, with a region of higher ADC
||
along the peripheral

white matter. This pathological feature is consistent with the
known pathology of contusion injury (Hausmann, 2003; Kim
et al., 2006; Loy et al., 2007). Compared to DTI maps of AD,
the suppression of CSF in the filter-probe scheme eliminated
partial volume effects along the white matter border that would
otherwise be difficult to visualize (Kim et al., 2006). The DWI
images, which are a surrogate measure of axonal density, did
not reveal pronounced effects of injury severity at the acute
timepoint. A strong relationship between ADC

||
and injury

severity was maintained in the quantitative analysis across all
animals (Figure 8). Future studies explicitly modeling axonal
density in concert with ADC

||
would be useful. Furthermore,

a single post-injury timepoint was assessed in this study at 48
h post-injury, which is typically longer than the initial MRI
exam in acute SCI (Talbott et al., 2015; Shanmuganathan et al.,
2017). Previous studies have demonstrated that diffusion indices
evolve over the initial acute post-injury period, although axial
diffusivity varies less than radial diffusivity within the first week
(Kim et al., 2007). Amore detailed examination of the post-injury
window using FP-DDE would be instrumental in assessing the
role of edema in these changes and translating these techniques
to clinical settings where the variability in the injury-to-imaging
time is expected due to the other medical complications of SCI.

Finally, in the first application to the human spinal cord, the
filter-probe diffusion approach reduced partial volume effects
with CSF (Figure 9). Interestingly, white matter ADC

||
was

greater than AD derived from DTI in the same subjects and
regions. This insight has implications for modeling of the
compartmental DWI signal models (Jelescu et al., 2015, 2016).

However, it should be noted that the two measures were derived
differently using either a single-axis (ADC

||
) or tensor-based

(AD) estimate and should not be considered a direct investigation
of the intra/extracellular diffusion properties. Importantly,
through optimization of the acquisition, the variability of ADC

||

estimates were comparable to those derived from DTI. While
respiratory gating was used for all acquisitions in the rat, no
gating was used for human studies despite studies demonstrating
its advantages (Spuentrup et al., 2003; Mohammadi et al., 2013)
evidence that CSF pulsation in the human is primarily associated
with respiration (Dreha-Kulaczewski et al., 2015, 2017). However,
the filter-probe approach suppresses CSF which is advantageous
to reduce CSF-related artifacts (Maier, 2007). Further reliability
assessments and application to patients with SCI or disease
using the optimized protocol will be needed to demonstrate the
reliability, applicability, and utility of the technique for research
purposes or clinical diagnosis.

CONCLUSIONS

Collectively, these acquisition advances demonstrate the
sensitivity of the filter-probe diffusion weighted contrast
technique to spinal cord injury. Optimizations to the acquisition
and contrast mechanisms have been refined and examined
for human translation, culminating in implementation of the
FP-SDE scheme on clinical scanner systems without significant
modifications. The strong association between quantified
diffusivity values and functional outcomes in a rat model of
SCI shows high sensitivity to acute injury with the potential to
be useful in clinical evaluation of SCI. Future applications to
patients with injury and disease of the spinal cord will refine
the clinical applicability filter-probe DWI to diagnosis and
prognosis.
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Recent tract-based analyses provided evidence for the exploitability of 3D-SHORE

microstructural descriptors derived from diffusion MRI (dMRI) in revealing white matter

(WM) plasticity. In this work, we focused on the main open issues left: (1) the comparative

analysis with respect to classical tensor-derived indices, i.e., Fractional Anisotropy (FA)

and Mean Diffusivity (MD); and (2) the ability to detect plasticity processes in gray matter

(GM). Although signal modeling in GM is still largely unexplored, we investigated their

sensibility to stroke-induced microstructural modifications occurring in the contralateral

hemisphere. A more complete picture could provide hints for investigating the interplay

of GM and WM modulations. Ten stroke patients and ten age/gender-matched healthy

controls were enrolled in the study and underwent diffusion spectrum imaging (DSI).

Acquisitions at three and two time points (tp) were performed on patients and controls,

respectively. For all subjects and acquisitions, FA and MD were computed along

with 3D-SHORE-based indices [Generalized Fractional Anisotropy (GFA), Propagator

Anisotropy (PA), Return To the Axis Probability (RTAP), Return To the Plane Probability

(RTPP), and Mean Square Displacement (MSD)]. Tract-based analysis involving the

cortical, subcortical and transcallosal motor networks and region-based analysis in GM

were successively performed, focusing on the contralateral hemisphere to the stroke.

Reproducibility of all the indices on both WM and GM was quantitatively proved on

controls. For tract-based, longitudinal group analyses revealed the highest significant

differences across the subcortical and transcallosal networks for all the indices. The

optimal regression model for predicting the clinical motor outcome at tp3 included

GFA, PA, RTPP, and MSD in the subcortical network in combination with the main

clinical information at baseline. Region-based analysis in the contralateral GM highlighted

the ability of anisotropy indices in discriminating between groups mainly at tp1, while

diffusivity indices appeared to be altered at tp2. 3D-SHORE indices proved to be suitable

in probing plasticity in both WM and GM, further confirming their viability as a novel family

of biomarkers in ischemic stroke in WM and revealing their potential exploitability in GM.

Their combination with tensor-derived indices can provide more detailed insights of the

different tissue modulations related to stroke pathology.

Keywords: diffusion propagator, tensor model, 3D-SHORE model, reproducibility, tract-based, gray matter,

ischemic stroke
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INTRODUCTION

In the last 30 years, diffusion magnetic resonance imaging
(dMRI) has been proven to be a valuable tool for characterizing
physiological and pathological conditions in-vivo (Le Bihan
et al., 1986; Beaulieu, 2002). An increasing number of modeling
methods have been proposed for inferring tissue microstructural
properties from the acquired diffusion signal (for a detailed
overview see Novikov et al., 2016), many of which rely only on
the reconstruction of the ensemble average propagator (EAP),
i.e., the probability distribution function of the water molecules
displacements. The EAP, under some optimality assumptions,
contains the full information about the diffusion process and
therefore can inform about the underlying tissue architecture
(Zucchelli et al., 2016b), leading to numerical indices that can
indirectly quantify the different microstructural features.

Diffusion Tensor Imaging (DTI) (Basser et al., 1994a) was
the first EAP model introduced to describe the anisotropic
nature of the diffusion process in biological tissues and is
still the preferred method in clinical settings thanks to its
ability to estimate the principal diffusion direction from very
few dMRI measurements. The scalar indices obtained from
DTI, mainly the mean diffusivity (MD) and the fractional
anisotropy (FA) (Pierpaoli and Basser, 1996), have become
precious tools for characterizing pathological conditions such
as tumors, stroke and neurodegenerative disorders (Sundgren
et al., 2004). Nonetheless, DTI has an inherent strong modeling
constraint related to the description of the EAP as a single
multivariate Gaussian function. This assumption is rarely
adequate in real conditions where complex white matter (WM)
topologies featuring crossing, fanning and kissing fibers are most
often encountered, severely limiting its applicability. Among
the widespread EAP models proposed for circumventing this
limitation, one of the most accurate is the Simple Harmonic
Oscillator Based Reconstruction and Estimation (SHORE), firstly
introduced in Özarslan et al. (2008). 3D-SHORE and its
extensions, asMeanApparent Propagator (MAP)-MRI (Özarslan
et al., 2013), demonstrated good performance in detecting
multiple diffusion directions and are among the most promising
EAP-based models for characterizing the tissue microstructure,
as recently highlighted at the SPARC-dMRI contest (Ning et al.,
2015). Under some assumptions, reliable measures of tissue
anisotropy can be derived from these EAP models, such as the
Generalized Fractional Anisotropy (GFA) and the Propagator
Anisotropy (PA), along withmeasures of the EAP variance (Mean
Square Displacement, MSD). In addition, they provide indices
that quantify various features of the three-dimensional diffusion
process, namely the Return to the Origin Probability (RTOP),
the Return To the Axis Probability (RTAP) and the Return
To the Plane Probability (RTPP). When the diffusion time is
long enough and under narrow pulse assumptions (Özarslan
et al., 2013), these indices reflect the degree of restriction
of the water molecules in the voxel, which is linked to the
underlying pore shape and thus represent relevant descriptors of
the microstructural properties (Zucchelli et al., 2016a).

Since their first introduction, 3D-SHORE indices have been
increasingly explored as novel potential biomarkers of brain

microstructure. This has been shown both on synthetic data and
in ex-vivo experiments on a marmoset brain (Özarslan et al.,
2013) as well as in in-vivo studies on healthy subjects (Avram
et al., 2014; Fick et al., 2015; Mendez et al., 2016; Zucchelli et al.,
2016a). Very few studies have tried to pursue their potentialities
as clinical biomarkers in pathologies, with promising results to
date only on Alzheimer’s animal models (Fick et al., 2016) and
on ischemic stroke (Brusini et al., 2015; Obertino et al., 2016).
In the latter case, albeit DTI scalar indices have been used to
assess stroke features in several longitudinal studies (Maniega
et al., 2004; Yu et al., 2009), the characterisation of the network
pathophysiology with advanced EAP-based indices would add
insights into the reorganization processes that can be combined
with clinical information to draw a more precise picture of the
disease. A recent study (Brusini et al., 2016) investigated these
aspects on a group of ischemic stroke patients and assessed the
performance of selected 3D-SHORE indices along WM tracts of
different motor networks (cortical, subcortical, and transcallosal
circuits). Results highlighted how 3D-SHORE-based indices
(mainly GFA, PA, RTAP, and RTPP) could providemeasurements
featuring high precision and allow discriminating patients from
controls, supporting their suitability for mapping longitudinal
changes after stroke.

Although the available findings for these numerical indices
are encouraging, a quantitative comparison with the classical
tensor-derivedmetrics is currently lacking but essential to further
probing their potentialities as biologically specific markers.
Indeed, MD and FA remain the standard measures in clinical
settings, especially for acute stroke imaging. Therefore, 3D-
SHORE-based indices have to be carefully related to tensor-
derived indices in terms of precision, consistency, discriminative
and predictive power in patients, all essential requirements to be
eligible as numerical biomarkers. Avram et al. (2016) reported a
first attempt to assess the feasibility of novel EAP-indices (from
MAP-MRI modeling rather than 3D-SHORE) in comparison
to classical DTI indices, demonstrating good consistency across
subjects and reproducibility in test–retest experiments on three
controls. However, despite the promising results, the authors
dealt with a very limited number of healthy subjects and relied
only on qualitative visual comparisons, acknowledging the need
for further studies on patient populations that, to the best of our
knowledge, are still missing in recent literature.

Whereas a great research effort has been devoted to dMRI
signal modeling in WM, its exploitability for characterizing gray
matter (GM) structures is still largely unexplored. In fact, there
is a growing need for a more comprehensive assessment of
GM tissue changes using dMRI. The intrinsic complexity of
GM microstructure which, as opposed to WM, lacks coherent
tissue orientation complicates the modeling and interpretation
of the diffusion process, and casts shadows on the suitability
of the currently available models. Some previous studies with
classical DTI indices have highlighted MD as a promising
marker of GM diffusivity changes in several pathologies such
as Alzheimer’s disease (Weston et al., 2015), multiple sclerosis
(Ceccarelli et al., 2007), and Parkinson (Kim et al., 2013).
However, DTI is scarcely employed in the assessment of GM
regions, especially in the cortex, and its ability of capturing
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microstructural features and feature modulations in GM is still
under debate. Conversely, thanks to the ability of capturing the
EAP in complex tissue microstructures, the 3D-SHORE model
might allow characterizing the signatures of hindered diffusion in
GM regions as well as providing information about GM changes
occurring over time.

The goal of this study was twofold. First, to complete the
assessment of the potential of the 3D-SHORE-derived indices
in capturing the microstructural feature modulations induced
by ischemic stroke in WM by providing a comparative analysis
of their performance with respect to the classical DTI-based
FA and MD indices. Second, to start bridging WM and GM
modeling by investigating the ability of the considered models
(DTI and 3D-SHORE) for the identification of microstructural
feature variations in GM, possibly hinting at plasticity processes.

MATERIALS AND METHODS

Dataset
Ten ischemic stroke patients (6 males, mean age: 60.3 ±

12.3 years) and ten age- and gender-matched healthy subjects
were enrolled in the study and underwent longitudinal MRI
acquisitions on a 3T Siemens scanner (Trio, Siemens, Erlangen,
Germany), as firstly reported in Granziera et al. (2012b). Of note,
an optimized protocol and a dedicated 32-channel head coil with
excellent signal-to-noise (SNR) properties (based on Wiggins
et al., 2006) were employed, aiming at maximizing the SNR in
the acquired data (as in Granziera et al., 2009). Acquisitions were
performed at three time points in patients (within 1 week (tp1),
1 month (± 1 week, tp2), and 6 months (± 15 days, tp3) after
the injury), and at two time points in controls (1 month apart,
tp1c, and tp2c). The same structural imaging protocol was used in
all cases. In particular, Diffusion Spectrum Imaging (DSI), a high
angular resolution diffusion technique (Wedeen et al., 2005), was
performed using a single-shot spin-echo echo-planar imaging
(EPI) product sequence and the following parameters: TR/TE
= 6,600/138ms, FOV = 212 × 212 mm2, 34 slices, 2.2 × 2.2
× 3mm3 resolution, GRAPPA = 2, scan time = 25.8min. The
sampling scheme consisted of a keyhole Cartesian acquisition
with 258 diffusion directions covering a half q-space 3D grid
with radial grid size of 5. Thirty-four different b-values (from
300 up to 8,000 s/mm2) were included in the acquisition and one
image was acquired at b = 0 s/mm2 (b0 volume). Because of the
inherent antipodal symmetry, the signal was duplicated on the
other hemisphere yielding to 515 points.

In order to provide a measure of the diffusion data quality,
SNR values were calculated for all the b0 volumes as the ratio
of the mean of the signal divided by the standard deviation
of the underlying Gaussian noise (Descoteaux et al., 2011). A
uniform ROI in the background was chosen for deriving the
noise standard deviation while the mean signal was extracted
from the corpus callosum, selected as representative ROI for
the SNR calculation. The estimated values are reported in
Table 1. High-resolution 3DT1-weighted images were also added
to the protocol (TR/TE = 2,300/3ms, FOV = 256 × 256
mm2, 160 slices, 1 × 1 × 1.2 mm3 resolution, scan time =

6.13min). Besides MRI acquisitions, patients underwent clinical

TABLE 1 | Signal-to-Noise (SNR) ratio for the diffusion datasets.

SNR-corpus callosum

Controls tp1 28.47 ± 5.33

tp2 28.63 ± 4.38

Patients tp1 28.21 ± 4.60

tp2 29.65 ± 6.24

tp3 27.25 ± 4.55

SNR values were calculated on the b0 volume of each subject. In particular, a uniform

ROI in the background was chosen for estimating the noise standard deviation while the

mean signal was extracted from the corpus callosum, selected as representative ROI for

the SNR calculation. Mean ± standard deviation values across subjects are reported,

considering each time point and group separately.

neurological assessment following the National Institutes of
Health Stroke Scale (NIHSS) at each tp. Only the motor part
of the NIHSS score was retained for further analysis. Stroke
volumes were derived from the individual high-resolution T1-
weighted images using the statistical parametric mapping (SPM)
lesion segmentation toolbox (www.fil.ion.ucl.ac.uk/spm/). All the
subjects signed the written informed consent to the imaging in
accordance with the Declaration of Helsinki and the Lausanne
University Hospital approved the protocol. Patient demographics
and main clinical information are reported in Supplementary
Table 1.

Signal Modeling and Microstructural
Descriptors
The classical DTI (Basser et al., 1994a,b) and the 3D-SHORE
(Özarslan et al., 2008, 2013) models were used to reconstruct
the EAP from which the microstructural descriptors were then
derived.

The EAP can be recovered from the diffusion weighted signal
attenuation E

(

q
)

under the narrow pulse assumption (Stejskal
and Tanner, 1965) via the Fourier relationship:

P (r) =

∫

q∈R3
E
(

q
)

ei2πqrdq (1)

where P (r) is the EAP, indicating the likelihood for a particle to
undergo a net displacement r in the unit time and q = qu is
the sampling position, with u being unit vector of the reciprocal
space, or q-space.

DTI assumes that the diffusion propagator can be described
by a single 3D Gaussian distribution (Basser et al., 1994a,b) from
which a 3 × 3 symmetric positive-definite matrix is derived (D,
diffusion tensor) and used to compute the classical tensor-based
indices (MD and FA) as follows:

MD =

(λ1 + λ2 + λ3)

3
(2)

FA =

√

1

2

(λ1 − λ2)
2
+ (λ2 − λ3)

2
+ (λ1 − λ3)

2

λ21 + λ22 + λ23
(3)
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where λ1, λ2, λ3 are the eigenvalues of D. Only b < 1,500 mm2/s
were used for the DTI analysis, corresponding to 32 gradient
directions.

The novel microstructural indices explored in this work were
calculated by fitting the SHORE model (Özarslan et al., 2008,
2013) based on the solutions of the 3D quantum harmonic
oscillator in the formulation using the orthonormalized basis:

E
(

q
)

=

Nmax
∑

l=0,even

(Nmax+l)
2
∑

n=l

l
∑

m=−l

cnlmΦnlm

(

q
)

(4)

In this equation, Nmax is the maximal order of the functions,
8nlm

(

q
)

are the functions forming the 3D-SHORE orthonormal
basis and are given by:

8nlm

(

q
)

=

[

2
(

n− l
)

!

ζ
3
2 Ŵ
(

n+

3
2

)

]
1
2 (

q2

ζ

)

l
2

exp

(

−q2

2ζ

)

L
l+ 1

2
n−l

(

q2

ζ

)

Ym
l (u) (5)

where Ŵ is the Gamma function and ζ is a scaling parameter
determined by the diffusion time and themean diffusivity (Merlet
and Deriche, 2013; Zucchelli et al., 2016a). For the 3D-SHORE
model, the EAP is obtained by plugging Equation (4) into
Equation (1) (Özarslan et al., 2013; Zucchelli et al., 2016a). Due
to the linearity of the Fourier transform, the EAP basis is thus
expressed in terms of the same set of coefficients cnlm as the
diffusion signal.

RTAP and RTPP (Özarslan et al., 2013) represent the integral
of the EAP along the main diffusion direction and over the
plane passing through the origin and perpendicular to the main
diffusion direction, respectively:

RTAP =

∫

R
P
(

r
‖

)

dr
‖

(6)

RTPP =

∫

R2
P (r

⊥
) d2r

⊥
(7)

where r
‖
is the main diffusion direction, and r

⊥
indicates

the plane orthogonal to the main diffusion direction and
passing through the origin. It has been shown (Özarslan et al.,
2013; Zucchelli et al., 2016b) that, under the assumptions of
narrow pulses and long diffusion time, RTAP and RTPP are
proportional to the inverse of the mean apparent cross-sectional
area and length of the compartment where diffusion takes place,
respectively.

The MSD represents the mean square displacement of the
water molecules in the unit time and is computed as follows:

MSD =

∫

R3
P (r) r2d3r (8)

MSD has been proven to be closely related to the classical MD
index, sharing similar patterns (Wu and Alexander, 2007).

From the EAP it is possible to derive a propagator anisotropy
index, depending on the angular distance between the isotropic

part of the EAP, that is encoded in the coefficients cn00, and the
full EAP as in Özarslan et al. (2013):

PA =

√

√

√

√1−

∑Nmax
n=0 c2n00

∑Nmax
n,l,m c2

nlm

(9)

Finally, the Orientation Distribution Function (ODF) can be
analytically obtained from the 3D-SHORE by taking the radial
integral of the EAP along a given direction (Merlet and Deriche,
2013; Özarslan et al., 2013). From the ODF it is possible to derive
another measure of anisotropy, the GFA index, which can be
viewed as the normalized variance of the ODF:

GFA =

√

n
∑n

i=1 (ODF (ui) − 〈ODF〉)2

(n− 1)
∑n

i=1 ODF (ui)
2 (10)

where ODF (ui) is the value of the ODF in the direction ui, and
〈ODF〉 is the mean ODF value across all directions.

In this work, we used both classical tensor-based indices (MD,
FA) along with the aforementioned 3D-SHORE-based indices
(RTAP, RTPP, MSD, PA, and GFA) to detect microstructural
modulations by both tract-based analyses in WM and by ROI-
based analyses in GM, respectively. While the first allowed
assessing the performance of the 3D-SHORE-based indices with
respect to FA and MD in the motor cortical and subcortical
networks, the second targets the GM in order to provide a more
complete picture of changes occurring after stroke and possibly
pointing at plasticity processes.

Tract-Based Analysis of WM
The tractogram was obtained via a streamline-based algorithm
with diffusion tensor ODFs computed from the DSI images
(Diffusion Toolkit, CMTK, www.connectomics.org). Individual
high-resolution T1-weighted images were parcellated using
Freesurfer (http://surfer.nmr.mgh.harvard.edu/) and the
Desikan-Killiany anatomical atlas at 83-region scale (sixty-four
cortical and nineteen subcortical regions) plus the corpus
callosum was employed. The FLIRT tool from the FMRIB
FSL software (www.fmrib.ox.ac.uk/fsl) was used for the linear
(affine) registration of the T1-weighted scan to diffusion data.
In particular, the diffusion baseline images (b0 volumes) were
considered as reference images for estimating the registration
transformation subsequently applied to back-project the
subject-specific anatomical parcellation into the DSI space.

Among all the parcels, a subset of the motor regions of
interest (ROIs) was considered for the analyses. For the cortical
area we selected the primary motor area (M1), supplementary
motor area (SMA), somatosensory cortex (SC) and premotor
area (PM), which was considered as a unique region given by
the joint combination of the dorsal and ventral parts from the
Freesurfer parcellation, while thalamus (Thl), caudatus (Cau),
putamen (Put), and globus pallidus (GPi) were selected for the
subcortical part. Then, three loops involved in themotor network
and linking these cortical-subcortical ROIs were considered in
the analysis as in Brusini et al. (2016). In details, the transcallosal
circuit (CC) gathers the set of fibers linking the corpus callosum
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FIGURE 1 | Schematic representation of transcallosal (A), cortical (B), and subcortical (C) networks. Cortical areas (white): M1, primary motor area; SMA,

supplementary motor area; SC, somatosensory cortex; PM, premotor area. Subcortical nuclei (gray): Thl, thalamus; Cau, caudatus; Put, putamen; GPi, globus

pallidus. Bundle of neural fibers (light gray): CC, corpus callosum.

with each considered ROI (Figure 1A). The cortical loop (CORT)
consists of fibers linking the four cortical ROIs (Figure 1B), while
the subcortical loop (SUBCORT) includes the set of fibers linking
cortical (except SC) with subcortical ROIs (Figure 1C).

Tensor-based and 3D-SHORE-based indices were finally
calculated along each fiber bundle linking every pair of regions in
the proposed networks. To this end, the values of the considered
microstructural parameter were firstly mapped onto each fiber
connecting two specific ROIs, then averaged across the whole
fiber bundle. In this way, a representative microstructural value
was derived for each connection of the considered network.

Region-Based Analysis of GM
The individual high-resolution T1-weighted images were
segmented into WM, GM, and cerebrospinal fluid (CSF) tissues
using the SPM toolbox (Friston et al., 1995). A binary mask
was derived for GM using a conservative 95% threshold on the
individual probability maps.

Eighty regions from the Freesurfer parcellation were
considered (brainstem and corpus callosum were excluded) and
masked with the binary GMmask. Four small subcortical regions
per hemisphere resulted to be empty after GM masking and
were excluded from further analyses, for a total of seventy-two
regions. For all indices, the mean GM value across each masked
ROI was then calculated. In particular, average measures were
calculated across corresponding regions in both hemispheres for
controls, while averaging was constrained to the contralateral
hemisphere for patients, leading in both cases to thirty-six
representative GM values for each index and subject. The list of
the considered regions and relative abbreviations is provided in
Supplementary Table 2.

Test–Retest Reproducibility Analysis
Before comparing the performance of the indices in the two
groups and assessing their discriminative/predictive power, a
preliminary step for analyzing their variability and longitudinal

stability was performed following the test-retest paradigm on
controls (tp1c and tp2c). This allowed to quantitatively assess
their reproducibility in physiological conditions and thus to
estimate the precision of the measurements. These elements
were quantified for all the microstructural indices, relying on all
the representative measures coming from both tract-based and
region-based analysis.

The following metrics were computed for each measure to
assess the reproducibility: the intraclass correlation coefficients
(ICC) and the intra- and inter-subject coefficients of variation
(CVintra and CVinter) (Bland and Altman, 1996; Chen et al., 2011;
Pinto et al., 2016). ICC is one of the most important methods
to assess the reliability of a measure, reflecting both intra- and
inter-subject variability. It allows evaluating how measurements
derived from the same subject are reproducible across sessions,
taking into account the intra/inter-subject variability as follows:

ICC =

σ 2
bs

σ 2
bs
+ σ 2

ws

(11)

where σbs is the between-subject standard deviation and σws is the
within-subject standard deviation for repeated measurements.
ICC levels and reliability can be evaluated using the following
recommendations: poor (<0.4), fair (0.41–0.59), good (0.60–
0.74) and excellent (>0.75) (Fleiss, 1981; Cicchetti, 2010).

The CVintra (within-subject CV) measures the variability
between sessions of the same subject, reflecting both
physiological variations that can occur in a natural way
and possible measurement errors (Pinto et al., 2016). CVintra was
computed as:

CVintra =
σws

µ
· 100 [%] (12)

where µ is the mean value of the parameter across subjects and
sessions (overall mean). Since only twomeasurements per subject
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were available, σws can be calculated as:

σws =

√

√

√

√

(

∑k
i=1

(

aitp1 − aitp2
)2

2× k

)

(13)

where k is the number of subjects, and aitp1and aitp2 are the
measurements for subject i on test (tp1) and retest (tp2) sessions,
respectively (Bland and Altman, 1996).

Finally, the CVinter (between-subject CV) measures the
stability across the group, reflecting the inter-individual
variability. For each index, the CVinter was initially computed for
each session as follows:

CVinterj =
σtpj

µtpj
· 100 [%] (14)

where tpj represents the session j (j = 1, 2), µtpj and σtpj are
the mean and standard deviation values, respectively, calculated
across all the subjects for the considered session tpj. The
representative CVinter measure was then computed as the mean
of the CVinterj from the two sessions.

For biological measurements from MRI, CVintra ≤ 10% and
CVinter < 15% are considered as acceptable (Heiervang et al.,
2006; Marenco et al., 2006).

For tract-based measures, ICC and CVintra were a single
measure for each loop, as all the connections belonging to the
corresponding network were grouped for providing a global
representative measure of network reproducibility, in line with
(Brusini et al., 2016). Conversely, the representative CVinter

metric was first computed for each tract and then summarized for
each loop by the mean ± standard deviation (SD) values across
connections. This allowed to evaluate the stability across subjects
and also the inter-subject variability across the different structural
links of each network.

For region-based analysis, CVintra and ICC were computed
for each ROI individually (mean ± SD values across GM ROIs),
while the representative CVinter metric was initially calculated for
each region and then reported as mean ± SD values across GM
ROIs. This again allowed to appreciate the variability across the
GM structures.

Statistical Analysis on Tract-Based
Outcomes–Patients and Controls
After the reproducibility analysis, the outcome measures
from tract-based analysis were assessed for depicting possible
differences between patients and controls and determining the
discriminative power of the different indices. In particular, for
each index and network, the percentage absolute changes inmean
values between tp (1tp) were calculated as in Brusini et al. (2016).

Since the Kolmogorov–Smirnov normality test confirmed
the normal distribution of the percentage values, statistical
comparisons with the unpaired t-test were performed to detect
significant differences between delta changes in controls (1tp12c)
and 1tp12, 1tp23, 1tp13 calculated in the patient cohort. While
in our previous work (Brusini et al., 2016) the False Discovery
Rate (FDR) correction was applied to the statistical results, here
a more conservative Bonferroni adjustment (α = 0.05) was used

to correct for multiple comparisons across indices. This approach
was chosen in order to further strengthen the statistical findings
and highly reduce false positive results.

In addition, in order to assess the predictive power of both
tensor-derived and 3D-SHORE-derived indices, different linear
regression models were considered and their performance in
predicting the clinical motor outcome at 6 months (NIHSS at
tp3) was tested. First, a linear regression model including only
clinical information at baseline (age, stroke size, and NIHSS
motor scores at tp1) as predictors was calculated for reference.
Then, for each network, three types of regression models were
built and compared as opposed to what was done in our previous
work (Brusini et al., 2016), where a single model combining
clinical information with a set of 3D-SHORE-based descriptors
(GFA, PA, R, RTAP, RTOP, RTPP) was considered. In detail, the
following models were considered:

1) Tensor-based model (TBM): the average across all the
connections of the considered loop at tp1 was calculated for
each index (MD, FA) and both mean values were included as
predictors along with age, stroke size and NIHSS at tp1.

2) 3D-SHORE-based model (SBM): the average across all the
connections of the considered loop at tp1 was calculated for
each index (GFA, PA, RTAP, RTPP, MSD) and these mean
values were included as predictors along with age, stroke size
and NIHSS at tp1.

3) Global microstructural model (GBM): all the indices at tp1
(both tensor-derived and 3D-SHORE-derived) were included
as predictors, after having calculated their individual mean
value across all the connections of the considered loop. No
clinical information was included.

All the linear regression analyses were performed in SPSS,
version 18 (SPSS, Inc., Chicago, Illinois), setting p = 0.05 as
significance threshold of the overall F-test to determine whether
the regression model significantly predicts the clinical motor
outcome. A backward elimination strategy was utilized to obtain
a parsimonious regression model. In details, a full model that
includes all the predictor variables was initially created. Then,
each subsequent step removed the least significant variable in the
model until all the remaining variables had individual p-values
smaller than the selected criterion. The default criterion in SPSS
(based on the probability of F-to-remove, with pout = 0.10) was
chosen for deleting a predictor that had little or no influence on
the dependent variable. For each optimal model, the calculated
R2 value was adjusted for the number of predictors included,
in order to perform a valid comparison across the different
regression models and penalize the addition of extraneous
predictors. The following equation, as implemented in SPSS
(Ezekiel, 1930; Kirk, 1996), was applied:

R2adj = 1−
(1− R2)(N − 1)

N − k− 1
(15)

where N is the sample size and k is the number of predictors in
the corresponding model, i.e., those that were not deleted by the
backward selection process, excluding the constant.
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Statistical Analysis on GM Region-Based
Outcomes–Patients and Controls
In order to compare the GM region-based measures, a three-
way mixed (within-between) analysis of variance (ANOVA)
was firstly performed for each microstructural index to test
the significance of different factors, using the mean index
value as dependent variable. Three independent variables were
considered: Time with two levels and Region with thirty-six levels
(within-subject factors) plus Group with two levels as between-
subject factor. In addition, a further two-way repeated measures
ANOVA was performed on the patient group data in order to
assess for the presence of longitudinal changes in contralateral
GM structures across all temporal scales. Also in this case the
mean value for each index was used as dependent variable in
the corresponding ANOVA, while two independent variables
were included: Time with three levels and Region with thirty-six
levels.

For each ANOVA, Mauchley test was used to assess
the sphericity assumption and Greenhouse-Geisser epsilon
adjustments for non-sphericity were applied where appropriate.
Post-hoc tests adjusted for multiple comparisons with the
Bonferroni correction were used when significant interactions
were found. For all statistical tests, performed in SPSS v.18, p <

0.05 was considered to be significant.

RESULTS

Qualitative Assessment of dMRI-Based
Indices
Classical tensor-derived and 3D-SHORE-derived indices were
estimated in all subjects and tp. Figures 2, 3 show the different
maps calculated for each index across times in a representative
control and a representative ischemic stroke patient, respectively.
For ease of visualization and for the sake of clearer presentation,
the three anisotropy measures were normalized to the respective
maximum index value, while the square-root of the RTAP maps
was extracted to report the values in the same range of RTPP, as
in Avram et al. (2016).

All the anisotropy measures as well as RTAP and RTPP maps
revealed high values in WM, while lower values were reached
in GM and especially in voxels with strong CSF contribution.
The opposite pattern was visible in MD and MSD maps, where
WM appeared to be hypointense due to restricted diffusion
while higher values were reached in GM and CSF tissues.
These patterns were consistent across subjects and temporal
scales. Comparing GFA, PA, and FA, both control and patient
representative slices revealed a higher WM/GM contrast for the
normalized 3D-SHORE-derived anisotropy measures that also
appeared to be less noisy and more uniform throughout WM in
comparison to the classical FA. Moreover, FA appeared to have
lower values in regions with large fiber orientation dispersions
where the single tensor representation precludes the possibility to
cope with complex structures leading to drops. RTAP maps were
hyperintense in regions of coherently packed WM fibers, while
RTPP was similar in GM andWM tissues. Finally, MSD, andMD
visually demonstrated a correlated behavior, appearing brighter

in regions where water particles are free to diffuse like ventricles
and darker in regions of restriction like WM.

In the stroke patient reported in Figure 3, a large ischemic
lesion can be appreciated in the left hemisphere (cortico-
subcortical areas) and the modulation of tissue microstructure is
visible across the different tp. The lesion was hypointense in GFA,
PA, MSD, FA, and MD at tp1, while markedly brighter than the
other tissues in RTAP and RTPP. After 1 month from the injury
(tp2), the contrast was reversed for these two indices, such that
the lesion appeared hypointense as in the anisotropy measures,
where hyperintensities within the lesion became visible in MSD
andMD. Such a trend persisted at 6 months after the initial brain
damage (tp3).

For all the subsequent quantitative analyses, we investigated
the contralateral hemisphere only, where microstructural
changes after stroke might be subtle and not visually
detectable.

Test-Retest Reproducibility on Healthy
Controls
In terms of test-retest reproducibility, tract-based results
highlighted excellent consistency across sessions in the three
networks for tensor-derived as well as 3D-SHORE indices, with
ICC > 0.8 in almost all cases and values close to unity for the
SUBCORT loop (Supplementary Table 3). Indeed, the highest
ICC was obtained for PA in SUBCORT (ICC = 0.96), followed
by MSD in the same network (ICC = 0.95). Conversely, MSD
together with RTPP reached the lowest values in CORT, although
still amenable to be judged as having good reliability (ICC= 0.67
and ICC = 0.59, respectively). This high reliability was matched
with high intra-subject stability across sessions as measured by
CVintra values, well below 10% and, in most of the cases, also
below 5%. The lowest stability was found in the CC loop for
MD (CVintra = 7.7%), while MSD resulted to be the index with
the highest stability in all the loops, reaching a remarkable 1.1%
within-subject variability in the SUBCORT network.

GM region-based reproducibility results are reported in
Table 2 in terms of mean and SD values across ROIs. RTAP,
RTPP, MSD, and MD reached excellent consistency, with mean
ICC > 0.90 and very low SD across ROIs (<0.10). Conversely, all
the anisotropy measures showed only good reliability and more
variability across the different GM structures. This was further
confirmed by the CVintra measure, reporting mean values <10%
in all cases albeit higher for GFA, PA, and FA in comparison to the
other microstructural indices. Also in this case, MSD reached the
lowest variability values with a limited spread around the mean.

Figure 4 shows the inter-subject variability results (CVinter)
represented as mean ± SD across all the connections of a given
loop for tract-based analysis, and across ROIs for region-based
analysis on GM. As expected, the between-subject variability was
higher than the within-subject, although the mean CVinter values
were ≤ 15% in all cases. Regarding the network analysis, similar
patterns in the three loops were observed for each index, with
RTPP and MSD featuring the lowest variability across subjects
(RTPP: CVinter = 4.67± 2.53 % in CORT;MSD: CVinter = 2.36±
1.82 % in SUBCORT). Conversely, RTAP was the index showing
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FIGURE 2 | dMRI-based indices on a representative control. Axial slices of a representative control are reported for each index (columns) and each time point (rows).

Images are displayed in radiological convention.

FIGURE 3 | dMRI-based indices on a representative patient. Axial slices of a representative patient (ischemic stroke in left cortico-subcortical areas) are reported for

each index (columns) and each time point (rows). Images are displayed in radiological convention.

more variability in all loops, especially in CC. The same trend was
observed in the ROI-based analysis on GM, where the CVinter

values were similar to those resulting from tract-based analysis
with RTPP andMSD reaching the highest stability (RTPP: CVinter

= 4.87 ± 1.34 %; MSD: CVinter = 6.49 ± 1.72 %). It is worthy of
note that all the values were within the recommended 15% range
(Heiervang et al., 2006;Marenco et al., 2006), even though tensor-
derived indices featured relatively lower stability across subjects

in GM, with the highest values reached by FA (CVinter = 11.68±
3.09 %).

Quantitative Assessment on Tract-Based
Outcomes–Patients and Controls
For each index and network, the mean of the percentage absolute
changes between tp is reported in Figure 5 along with SD across
subjects. The p-values resulting from the statistical analysis are
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shown as stars with three levels of significance (∗p < 0.05, ∗∗p
< 0.01, ∗∗∗p < 0.001). In all cases, data from the control group
confirmed the limited percentage changes between time points,
with mean values <5%, in agreement with the reproducibility
results from the previous section.

Regarding the CC network, all the anisotropy measures (GFA,
PA, and FA) reached the highest significance when comparing
1tp12c and 1tp12 as well as 1tp12c and 1tp13 (p < 0.001).
Moreover, GFA and FA showed higher significance than the
other microstructural indices in the comparison between 1tp12c

and 1tp23 (p < 0.01). MSD and MD highlighted the same
patterns across time and the same statistical differences, with
no significant changes between 1tp12c and 1tp23. In the CORT
network, only few significant differences were detected between
controls and patients (1tp12) by GFA and RTAP, while for all
the other indices the longitudinal changes, although appreciable,
did not reach the statistical threshold. Conversely, several
significant differences were detected again in the SUBCORT
loop by all the indices at multiple time scales, except for
RTAP and RTPP which did not depict significant changes
between1tp12c and1tp23. All the anisotropymeasures confirmed
the presence of marked changes over time involving also

TABLE 2 | Reproducibility for gray matter (GM) outcomes.

ICC CVintra %

GFA 0.63 ± 0.22 7.36 ± 2.96

PA 0.61 ± 0.24 6.82 ± 2.42

RTAP 0.91 ± 0.07 3.40 ± 1.63

RTPP 0.92 ± 0.07 1.73 ± 0.78

MSD 0.93 ± 0.09 1.97 ± 0.75

FA 0.66 ± 0.17 9.25 ± 3.59

MD 0.94 ± 0.08 3.09 ± 1.71

Results are quantified in terms of intra-class correlation coefficient (ICC) and intra-subject

coefficient of variation (CVintra) for all the indices. In particular, mean ± standard deviation

values across all the considered GM regions are reported.

this network, with similar patterns to the findings shown
in CC.

Extending the preliminary analyses on predictive models
reported in Brusini et al. (2016), the tract-based results in patients
were further used to predict the clinical motor outcome at tp3
by relying on several regression models. The reference linear
regression model including only clinical variables at baseline
(age, stroke size and NIHSS motor score at tp1) and avoiding
microstructural indices could predict the NIHSS outcome at tp3
with low correlation (R2 = 0.546; adjusted R2 = 0.489; p < 0.05).
The TBM, enclosing MD-FA at tp1 plus the clinical variables,
allowed increasing the prediction capability of the reference
model in the CORT and SUBCORT networks (Figure 6, first
row). In detail, the TBM for SUBCORT presented the best
performance (R2 = 0.975; adjusted R2 = 0.955; p < 0.001)
holding MD, FA, stroke size and age as relevant predictors. In
the case of the CORT network, a higher correlation than the
reference model was found with the TBM retaining only stroke
size and MD as significant predictors (R2

= 0.700; adjusted R2

= 0.614; p < 0.05). Conversely, the TBM for CC did not include
any microstructural index, returning the reference model as the
optimal one.

The SBM, embedding the five 3D-SHORE indices at tp1
plus the clinical variables, reached the highest correlation in
the SUBCORT network (R2 = 1; adjusted R2 = 0.998; p <

0.001) (Figure 6, second row). The optimal predictive model held
clinical variables plus GFA, MSD, RTPP, and PA as significant
predictors. The SBM for CORT excluded all the microstructural
indices, leading to the referencemodel as the optimal one. Finally,
in the CC network the SBM presented a slightly lower correlation
than the reference (R2 = 0.454; adjusted R2 = 0.385; p < 0.05)
but highlighting RTPP as the only significant predictor.

The GBM, including only the dMRI-based indices, allowed to
substantially increase the capability to timely predict the motor
outcome compared to the clinical reference model (Figure 6,
third row). In detail, the SUBCORT network provided again
the highest correlation (R2

= 0.728; adjusted R2 = 0.694; p <

0.01) keeping only RTPP as significant predictor. The predictive

FIGURE 4 | Reproducibility in terms of inter-subject coefficient of variation (CVinter) for all the indices and for all the outcome measures. Results are expressed as

percentage and reported as mean ± standard deviation across connections (for tract-based) and regions (for region-based on gray matter), respectively. CC,

transcallosal network; CORT, cortical network; SUBCORT, subcortical network.
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FIGURE 5 | Group-based analyses on controls and patients over time. Longitudinal changes in percent absolute values in controls and patients are reported. The

significant differences between cohort distributions are indicated in figure (*p < 0.05, **p < 0.01, ***p< 0.001) for each index in transcallosal (CC), cortical (CORT), and

subcortical (SUBCORT) networks. Mean ± standard deviation values across subjects are reported.

model for the CC network also featured high correlation (R2
=

0.713; adjusted R2 = 0.631; p < 0.05) maintaining MD and RTPP
as predictors, while GFA, RTAP, and MD were retained in the
predictive model for CORT. This network led to the GBM with
the lowest correlation (R2 = 0.724; adjustedR2 = 0.586; p< 0.05),
but still higher than the reference model. Further details on the
predictive models and the retained predictors are reported in the
Supplementary Tables 4.

Quantitative Assessment on GM
Region-Based Outcomes–Patients and
Controls
Regarding the control vs. patient analyses on the outcomes
from the region-based quantification in GM tissues, the mixed
ANOVA revealed a significant three-way interaction between
Group, Time (TP) and Region (ROI) for all the anisotropy
measures (GFA, PA, and FA) and RTPP. Details about these
statistical results are reported in Table 3. For the four indices,
post-hoc Bonferroni tests revealed significant between-group
differences in several regions at both time scales, showing in
these cases higher values in patients than controls (Figure 7).
While the most widespread changes were detected in terms
of anisotropy at tp1, four common regions were identified as
significantly altered (Patients>Controls) also by RTPP. In detail,
the inferior temporal gyrus (ITG) and the lateral occipital cortex
(LOC) were in common at both tp, while the lateral orbitofrontal
cortex (lOFC) and the middle temporal gyrus (MTG) presented
high significance (p ≤ 0.01) at tp1 and tp2 in GFA, PA, and
RTPP and only at tp1 in FA (Figure 7). RTPP changes were
more visible at tp2, with several regions showing higher values
in patients compared to controls and non-significant anisotropic
differences. The remaining indices failed to reach a significant
three-way interaction even though control vs. patient differences
can be visually appreciated in Figure 7A. In particular, for RTAP
a similar trend to the anisotropy measures was detected in all
the regions, especially at tp1 over motor areas and subcortical

nuclei as PM, SMA, SC, M1 and Thal, Cau and Put (Patients >

Controls). For MSD, while few ROIs presented relatively higher
values in patients at tp1, there was an overall increase in all
regions at tp2 (Patients > Controls), except for the temporal pole
where lower values were found over time in this group. Finally,
MD patterns were in line with MSD results, although with less
marked changes between groups.

Moving a step backward in the mixed ANOVA, all the indices
except RTAP revealed a significant two-way interaction between
Group and ROI confirming that, considering the overall time
scales, there were differences in specific GM regions between the
two groups (Table 3; Supplementary Figure 1). The anisotropy
measures were highly consistent, with FA highlighting more
widespread increased values in GM for patients as before. Finally,
only GFA, PA, and FA revealed an overall significant main effect
of Group (between-subject factor), as reported in Table 3.

Considering the longitudinal analysis on the patient measures
only, again all the anisotropy indices along with RTPP and
MD revealed a significant interaction between TP and ROI. In
details, for GFA F(70, 630) = 1.61, p = 0.002; for PA F(70, 630)
= 1.52, p = 0.006; for RTPP F(70, 630) = 1.47, p = 0.01; for
FA F(70, 630) = 1.92, p < 0.0001; and for MD F(70, 630) =

1.76, p = 0.0003 (Supplementary Table 5). Post-hoc Bonferroni
tests (Figure 8) highlighted for the three anisotropy measures
consistently significant differences over the lingual gyrus (LgG)
for tp1 vs. tp2, and in the medial orbitofrontal cortex (mOFC)
for tp1 vs. tp3. Moreover, FA presented LgG differences for
tp1 vs. tp3, and in the precuneus (PCN) for both tp1 vs. tp2
and tp1 vs. tp3. In all these statistically significant changes,
higher values were detected just after the stroke event (tp1) in
comparison to tp2 and tp3. Conversely, an opposite trend was
found for RTPP detecting a single region [frontal pole (FP)]
with higher values at tp2 compared to tp1. For MD, despite
the significant interaction no regions survived the Bonferroni
corrections of the post-hoc paired tests (Figure 8). When using
a less conservative approach [Least Significant Different (LSD)
post-hoc tests], five regions, including PM, SC, and Thal, turned
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FIGURE 6 | Linear regression models. Representation of the measured and predicted NIHSS-motor score at tp3 using tensor-based (TBM), 3D-SHORE-based

(SBM), and global (GBM) predictive models. For each model, the adjusted R2 and corresponding p-values are reported.

out to be significantly increased at tp3 compared to tp2 and tp1
(Supplementary Figure 2). Applying LSD post-hoc tests also to the
other indices, the anisotropy measures revealed more widespread
regions of increased values in the early phase (tp1) in comparison
to the other two time points, consistently with the results from
the mixed ANOVA. GFA and PA, in addition, showed higher
values at tp3 compared to tp2 over two motor regions, e.g.,
Put and M1, respectively. Finally, RTPP confirmed a significant
increase over time (both tp2 and tp3) in comparison to tp1 in the
FP region.

Regarding the other two indices that did not show a significant
interaction (RTAP and MSD) and were thus precluded to
be evaluated with post-hoc tests, a different trend was visible
across time with a series of appreciable longitudinal differences
(Figure 8A). In particular, RTAP revealed a similar behavior to

the anisotropy measures, with higher values at tp1 that decreased
over time, especially at tp3. Conversely, MSD highlighted higher
values over time, as in the case of MD, with marked visual
increases at tp3 over several regions (as PM, SC, FP, Thal, Put,
Cau).

DISCUSSION

In this study, our results suggest that 3D-SHORE-based
microstructural descriptors obtained from DSI data are capable
to quantify the remodeling of WM tracts and GM regions
involved in motor recovery after ischemic stroke. 3D-SHORE-
based indices proved to perform similarly to the classical DTI
indices (FA and MD) and revealed common patterns across the
networks and ROI evaluated in the analyses.
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TABLE 3 | ANOVA results (three-way mixed ANOVA) for the control vs. patient comparison of gray matter outcomes.

Between-subject Within-subject

Group Group*ROI Group*TP*ROI

F-ratio (1, 18) p-value F-ratio (35, 630) p-value F-ratio (35, 630) p-value

GFA 6.205 0.023* 2.340 <0.001* 2.235 <0.001*

PA 6.256 0.022* 2.218 <0.001* 1.669 0.010*

RTAP 1.548 0.229 1.249 0.157 1.326 0.102

RTPP 2.064 0.168 2.152 <0.001* 1.843 0.003*

MSD 2.681 0.119 2.601 <0.001* 0.552 0.990

FA 7.346 0.014* 2.082 <0.001* 2.731 <0.001*

MD 0.186 0.671 1.825 0.003* 1.105 0.314

The three independent variables were Group (between-subject factor), Time Point (TP) and Region (ROI) (within-subject factors), while the dependent variable was the mean index value.

Group, along with Group*ROI and Group*TP*ROI interactions, are expressed in terms of F-ratio (degree of freedom, error) and p-values. *, significant values.

FIGURE 7 | Post-hoc test results for the three-way mixed ANOVA (controls vs. patients). (A) For each index and each time point (tp) block, the first column represents

the mean values for the controls while the second column the mean values for the patients. (B) Post-hoc results expressed in terms of p-values for the significant

interactions between Group, TP and Region (ROI). Two different colormaps are used to display the p-values for the ROIs with significant differences between control

and patient mean values (hot: Controls < Patients; cold: Controls > Patients). These values (p < 0.05) are Bonferroni corrected for multiple comparisons.

Considering their performance and different nature, their
combination in clinical studies would allow to provide a
more detailed and specific tissue characterization, allowing to
disentangle different conditions where tensor-based indices take
the same values. For instance, DTI cannot distinguish between
a reduction of FA caused by crossing fibers and one caused by
a decrease of neural density in a voxel. Conversely, the joint
exploitation of RTAP and RTPP can allow disentangling such

ambiguity, as RTAP and RTPP both diminish in the case of
neuronal density reduction, while RTAP decreases and RTPP
increases for crossing fibers, as previously reported (Zucchelli
et al., 2016a). In addition, the combination of tensor-based
and SHORE-based indices in the linear regression models
allowed to greatly increase their ability to predict the clinical
motor outcome in all the considered networks. To the best
of our knowledge, this is the first study focusing on the
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FIGURE 8 | Post-hoc test results for the two-way ANOVA for repeated measures on patients. (A) For each index, the first column represents the mean values at tp1,

the second column at tp2 and the third at tp3. (B) Post-hoc results expressed in terms of p-values for the significant interactions between Time Point (TP) and Region

(ROI). Each column in the matrix refers to a specific statistical comparison between time scales, i.e. tpi vs. tpj with i = 1, 2 and j = 2, 3 (first: tp1 vs. tp2; second: tp2

vs. tp3; third: tp1 vs. tp3). Two different colormaps are used to display the p-values for the ROIs with significantly different values between the considered time scales

(hot: positive difference, tpi > tpj; cold: negative difference, tpi < tpj). These values (p < 0.05) are Bonferroni corrected for multiple comparisons.

quantitative comparison between 3D-SHORE-based and tensor-
based descriptors in healthy subjects and in a patient population,
aiming at demonstrating their behavior in different brain
conditions/tissues and accomplishing an essential step toward
their applicability as viable tissue markers.

Qualitative Assessment of dMRI-Based
Indices
A growing body of literature is currently reporting the advantages
of using multiple b-values in terms of both detecting fiber
crossings (Sotiropoulos et al., 2013; Jeurissen et al., 2014) and
recovering the tissue microstructure (Assaf and Basser, 2005;
Zhang et al., 2012; Kaden et al., 2016). Because of these facts,
nowadays, sampling schemes presenting higher b-values (as DSI
and multi-shell) are becoming popular in research and started
to appear also in clinical application. In order to fully exploit
advanced dMRI datasets, reconstruction models that require
multiple b-values such as the 3D-SHORE are necessary and
therefore will become more common in this field. In this context,
it is therefore necessary to provide an extensive characterization
of these indices in describing tissues in physiological and
pathological condition, as we did for stroke patients. In line
with the findings firstly described by Özarslan et al. (2008,
2013), our results suggest that 3D-SHORE-based indices can
provide a wide set of information, reflecting meaningful tissue

properties as visually appreciable from the different maps. In
particular, the values estimated in our healthy population for
each index and their spatial distribution across the different
anatomical structures appear to be in agreement with the
available literature results (Özarslan et al., 2013; Avram et al.,
2016; Zucchelli et al., 2016a), with a high consistency across
subjects and time. These 3D-SHORE-based metrics are able to
provide accurate microstructural information especially in brain
regions characterized by complex architectures and geometries,
to which the classical indices have low sensitivity. GFA and
PA represent alternative measures of anisotropy to the classical
FA, based on different mathematical formulations. Indeed, while
GFA is a measure of the ODF variance, PA is derived from the
EAP as a measure of its deviation from the isotropic component,
and FA is computed from the tensor eigenvalues. In consequence,
they provide different descriptors of the diffusion anisotropy with
a high degree of correlation. However, GFA and PA are able to
more properly quantify the anisotropy, presenting more contrast
between the GM and regions with multiple fiber crossings in
which the FA usually results in the same value. The two zero-
displacement probability measures derived from SHORE reflect
diffusion restriction in different directions, respectively radially
(RTAP) and axially (RTPP) to the main diffusion direction
(Özarslan et al., 2013). Consistently, RTAP maps exhibited high
values in regions of coherently packed WM fibers, as the corpus
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callosum which is less contaminated by partial volume effects.
RTPP values were similar in both GM and WM tissues featuring
less WM/GM contrast. This could suggest similar apparent axial
diffusivity for WM and GM, even though the mapping of this
measurement to real tissue microstructural properties is still an
open issue. Finally, MSD and MD were consistently higher in
regions featuring free diffusion, like the CSF and in areas with
ischemic oedema (Alexander et al., 2007). These two indices are
directly related via the Einstein diffusion equation as reported
in the works of Wu and Alexander (2007) and Hosseinbor et al.
(2013) and, accordingly, are visually correlated.

Evaluating qualitatively the longitudinal maps derived from
the stroke patients, the microstructural indices exhibited a
different behavior in the voxels belonging to the damaged area
but with a consistent pattern. Indeed, while all the anisotropy
measures revealed low values within the lesion that persisted
over time, RTAP and RTPP shifted from initial hyperintensities
toward hypointensities after 1 month from the event (tp2),
highlighting an opposite trend for anisotropy and restriction.
This stresses the complementarity of the information brought by
those indices. Furthermore, considering their opposite trend in
comparison to MSD and MD (from hypo- to hyperintensities)
and the ischemic nature of the stroke, these findings support
the hypothesis of Avram et al. (2016) according to which the
zero-displacement measures are more specific biomarkers of
the presence of restricting barriers to diffusion. Interestingly,
RTAP and RTPP featured the highest values at tp1 highlighting
restricted diffusion in the lesion. Moreover, we found MSD to
be more contrasted than MD inside the ischemic lesion in all
cases. In particular, this index seems to identify and characterize
different portions of the lesion, while MD appears to be more
homogeneous in the same areas. Some patients (mainly those
with extensive lesions) also revealed increased MSD values in the
periphery. However, as this pattern was not confirmed in all cases,
a larger sample size and more focused analyses on the stroke
lesion would be necessary to draw robust conclusions on this
aspect, possibly pointing at an inflammatory reaction which has
been previously described (Wang et al., 2007; Kim et al., 2016).
Finally, the heterogeneous patterns of RTAP, RTPP, and MSD
visible within the lesion 1 week after stroke could be of help for
distinguishing the ischemic core from the penumbra area. This
issue deserves further investigation.

Reproducibility Analyses on Controls
The quantitative analysis of possible plasticity processes was
focused on the contralateral hemisphere to the stroke. The
contralesional GM and WM tissues have been widely considered
as normal appearing, although the plasticity and compensatory
processes that might take place in the non-injured areas are still
not well understood. First of all, several complementary aspects
were evaluated on healthy controls in order to quantify the
reliability of these microstructural indices through a test-retest
paradigm and their potentialities as novel biomarkers for stroke
recovery. In particular, both 3D-SHORE-based and DTI indices
exhibited high reproducibility, as quantified by ICC, and high
stability, as quantified by intra/inter-subject CV parameters, on
both tract and region-based outcomes.

Interestingly, for tract measures the 3D-SHORE index MSD,
rarely considered in previous studies, showed the lowest intra-
subject variability (CVintra) in all cases, and the highest reliability
(ICC) in CC and SUBCORT. Conversely, it revealed lower,
although still good, ICC values in CORT along with RTPP
that resulted to be the index with the lowest reliability in this
network. This is possibly related to the fact that these two indices
exhibited here a relatively higher within-subject SD for repeated
measurements than in the other cases, which resulted to be closer
to the between-subject SD values and therefore led to lower ICC
values for this loop. Despite this consideration concerning the
CORT loop only, the reliability and discriminative power of MSD
and RTPP were not compromised as further proven by the other
group-based analyses performed in this study. To note that beside
Brusini et al. (2016), where some of these indices were initially
evaluated along WM tracts, no other studies have quantified the
reproducibility of 3D-SHORE-based metrics across subjects and
sessions. Moreover, the previous reports aiming at quantifying
the reliability of classical tensor-basedmeasures generally focused
only on few major fiber tracts (e.g., corpus callosum, cingulum,
fornix and arcuate fasciculus) (Heiervang et al., 2006; Danielian
et al., 2010; Wang et al., 2012) rather than considering specific
brain networks with different sets of tracts. Despite this main
difference, our findings are in line with the results of these
studies, which demonstrated reliable measurements for FA and
MD featuring both inter-session CVintra ≤ 10% and ICC ≥ 0.70,
with some variability related to the considered tract.

Regarding region-based outcomes, the reproducibility
analysis in GM ROIs revealed a higher intra-subject variability
for the three anisotropy measures (GFA, PA, and FA) in
comparison to the other indices, with mean values still well
within the 10% range, matched with a good reliability from ICC.
This is possibly due to the lack of directed orientation in a tissue
as GM (Basser and Ozarslan, 2009) and is in agreement with
previous studies showing a two-three times higher variation
of FA in regions of GM compared to WM structures (Vollmar
et al., 2010; Bouix et al., 2013). Conversely, MSD and RTPP
appeared again as featuring the lowest intra-subject variability
and, along with MD, reached the highest ICC reliability values.
The performance of FA for GM ROIs appears to be in line
with previous reports evaluating DTI indices in this tissue
(Veenith et al., 2013; Grech-Sollars et al., 2015), showing higher
CVintra values for the whole GM than for MD (8–11% vs.
2–5%, respectively) and a wide range of variation across the
different GM structures (3.3–19.2%). Conversely, no studies
have previously quantified the measurement precision of 3D-
SHORE-based indices in GM regions, therefore our findings
add an important step to the current literature on the topic and
their reassurance in terms of reliability encourages their use for
evaluating GM tissues as well.

Considering as additional reliability measure the between-
subject variability, we found average CVinter values well below the
15% threshold for both tract- and region-based outcome. Among
the seven variables, RTPP and MSD generally had lower CVinter

than the other metrics with average values ≤ 6%. Tensor-based
measures revealed overall lower between-subject stability than
3D-SHORE-based indices, especially in the GM ROIs where the
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average values were around 10%. Previous studies have indicated
FA and MD as the measures with lower CVinter in different WM
fiber tracts, for example Wang et al. (2012) reported average
values in the range 2.4–7.6% for FA and 1.7–9.9% for MD
respectively, while Grech-Sollars et al. (2015) showedmean inter-
subject values <6% for the whole GM and WM regions (not
tracts). Our results confirmed the good inter-subject stability
for FA and MD but demonstrated that the 3D-SHORE-based
indices improve on the classical measures in terms of between-
subject variability in most of the cases. The latter observation
demonstrated the gain in using a multi-b-values model such as
3D-SHORE. In particular, GFA and MSD were already defined
the analogs of FA and MD for multi-b-values acquisitions by
Hosseinbor et al. (2013). The combined high stability over time,
relatively higher inter-subject variability (CVintra << CVinter)
shown by the 3D-SHORE based indices, which is a pattern
that can help detecting group differences between subjects, and
excellent inter-session ICC values for most of the cases reinforce
their potentialities as microstructural biomarkers for revealing
longitudinal changes.

Quantitative Analyses on Tract-Based
Outcomes of WM
Longitudinal group-based analyses were performed to
statistically compare the mean absolute changes between
time points calculated for each network. Regarding 3D-SHORE-
based indices, the Bonferroni corrected t-tests revealed several
highly significant differences between patients and controls in
the SUBCORT and CC networks, also for the newly introduced
MSD index. These findings further confirm and strengthen our
preliminary results on a subset of 3D-SHORE indices (Brusini
et al., 2016), where the t-tests were corrected for multiple
comparisons with FDR. Conversely, a more conservative
correction was employed here in order to quantify with
additional confidence the longitudinal changes detected by the
different indices and to reduce false positive results. Tensor-
derived indices also exhibited similar patterns to 3D-SHORE
descriptors, in terms of both evolutions of changes over time and
level of significance.

In all cases, the highest levels of significance were reached
in the patient group for the tp1-tp2 and tp1-tp3 relative
changes, suggesting the presence of marked modifications in the
contralateral hemisphere just 1 week after the stroke event (tp1).
Interestingly, 3D-SHORE-based indices appeared to be the only
capable of depicting statistically significant changes across the
CORT loop. Indeed, only GFA and RTAP found a significant
patient vs. control difference in the first phase (tp1-tp2), further
highlighting the relevance of this time scale in the course of the
disease.

These findings are in line with the few previous works
reporting changes in the WM tracts of the contralesional
hemisphere after stroke. Indeed, the possible modifications in
the contralateral hemisphere with respect to the lesion have
been scarcely investigated in literature, especially in humans,
as these tissues have been widely disregarded as considered
healthy and not directly involved in any rearrangement process
(Maniega et al., 2004; Ozsunar et al., 2004). However, as the field

moved forward, it became apparent that also the non-injured
hemisphere undergoes marked changes and has a fundamental
role in stroke recovery, as recognized by several authors relying
on different MRI techniques (Ward et al., 2003; Gerloff et al.,
2006; Crofts et al., 2011; Granziera et al., 2012b; Lin et al., 2015).
Specifically, Crofts et al. (2011) showed how communicability
values, derived from complex network analysis, were reduced in
both ipsilateral and homologous contralateral regions. Moreover,
Granziera et al. (2012a) reported significantly increased apparent
diffusion coefficient (ADC) values in the infarct region (in both
GM and WM tissues) moving from acute to chronic, whereas
WM FA significantly decreased in the mirror regions. Our
study extends the available literature on the topic and the novel
biomarkers derived by the 3D-SHORE model possibly add new
metrics that can be employed in this context (for a detailed
overview see Kim and Winstein, 2017).

In addition, the predictive power of all the microstructural
indices for patientmotor outcome at tp3were investigated relying
on the tract-based values and comparing several regression
models for the prediction. Notably, among the three loops, the
SUBCORT was the only one for which all the three types of
models created (tensor-based model, 3D-SHORE-based model,
global microstructural model) reached excellent performance. In
particular, the 3D-SHORE-based model, combining a subset of
these indices together with clinical patient information, led to
the best linear regression model featuring a very high predictive
power (R2adj = 0.998, p < 0.001), which slightly outperformed the

optimal model we found in our previous work (R2adj = 0.988, p

= 0.009) (Brusini et al., 2016). The set of indices in the optimal
model of this work embedsMSD, suggesting that this index holds
a higher potential in probing stroke-induced microstructural
changes during the early phase.

The model using all the microstructural indices led to the
best performance in the SUBCORT loop, reaching the highest
correlation score (R2adj = 0.694, p < 0.01) and keeping RTPP

as key predictor. The relevance of RTPP for subcortical WM
tracts appears to be coherent with another observation of Avram
et al. (2016) according to which RTPP is very sensitive to deep
structures, showing higher intensity in nuclei like thalamus.
RTPP also highlighted high predictive power in CC, contributing
to the optimal model for both the 3D-SHORE-based and global
model, in combination with MD in this latter case. These results,
jointly with the high precision and the ability to detect significant
changes between patients and controls, stress the potential of this
index in the considered task.

Quantitative Analyses on ROI-Based
Outcomes of GM
Besides evaluating the performance of the different indices along
the WM connections of specific brain networks, we performed
a quantitative comparison of their patterns within contralateral
GM regions. GM tissue changes related to the disease are
generally quantified by volume or density analyses and are very
rarely investigated with dMRI-based indices. A growing body of
literature is emerging to endorse the use of dMRI techniques
for detecting microscopic changes in GM in different disorders.
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Indeed, the analysis of diffusivity GM changes using MD has
shown to be promising for detecting abnormalities in Alzheimer
disease (Weston et al., 2015) and multiple sclerosis (Ceccarelli
et al., 2007). GM FA alterations were also demonstrated in
schizophrenic patients in Situ et al. (2015), reporting increased
MD and decreased FA values in patients compared to controls.
In stroke patients, studies in GM are less consistent and generally
consider the tissues in the contralateral hemisphere as normal
appearing, although regions remote (upstream or downstream)
from the infarct have been demonstrated to undergo marked
changes over a time course of 2 days to 1 year (Sotak, 2002).
In one of these studies using the contralateral part as reference,
Maniega et al. (2004) showed a trend of increased MD/decreased
FA values within the lesion, which just started the first week from
the event.

In our study, the longitudinal analyses on the patient
group demonstrated a similar pattern but in the contralateral
hemisphere, revealing an increase in MD values over time which
mainly involved GM motor regions. Conversely, FA exhibited
an initial widespread increase at tp1 over temporo-frontal and
motor areas, followed by a gradual decrease toward normality at
tp3. This was further confirmed by the group-based comparisons
with ANOVA, highlighting in most of these regions significantly
higher FA values at tp1 in patients vs. controls, whereas the
increased pattern remained restricted to few ROIs when tp2
values were evaluated. Similar patterns of alterations were
detected also by SHORE-based indices, in particular by GFA,
PA, RTPP and MSD. The group comparisons 1 week after the
stroke revealed several GM regions (cACC, FuG, IGG, mOFC,
PORB, rMFG, FP, ITG, LOC, IOFC, MTG) in which the patients
exhibit significantly higher values for all the anisotropy indices
(GFA, PA, FA) with respect to the controls. Considering that in
the same regions, at the same time point, the MD and MSD
appear to be increasing (Figure 7A), although not significantly,
we can speculate that we are observing a general increase of the
diffusivity along the main diffusion direction in the GM. More
difficult to interpret is the simultaneous increase of the RTPP
in some of these regions (ITG, LOC, IOFC, MTG). RTPP is
generally inversely proportional to anisotropy inWM, e.g., RTPP
is low in single fiber bundle areas such as the CC, and higher
in crossing regions (Özarslan et al., 2013; Avram et al., 2016;
Zucchelli et al., 2016a). Understanding the possible causes of this
contemporary increase of RTPP and anisotropy in the GMwill be
one of the aims of our future works.

Contralateral changes in GM involved not only regions in
the motor systems, but also areas playing an important role in
cognition and behavior, as the FP and frontal areas, supporting
the hypothesis of extensive rearrangements during stroke
recovery. These indices therefore confirm their potentialities in
describing not only WM but also GM properties, with high
reliability and discriminative power. However, RTAP and MSD,
which resulted to be suitable to characterize WM tracts in all the
networks, appeared to be less sensitive to GM changes. Indeed,
these indices failed to highlight statistically significant differences
in the GM areas, especially when comparing the patient data over
time. However, they deserve further investigations considering
their good stability over time and their physiological relevance.

It is worthmentioning that the impact of partial volume effects
was minimized by restricting the analysis to voxels where the
GM contribution was above the 95%. This further enhances the
hypothesis of extensive contralateral changes involving also the
GM, reducing the contamination by other tissues.

As a side note, we also extracted for each patient and
time point the average volumes of GM ROIs (results not
shown). However, when statistically compared by means of
a two-way repeated measure ANOVA, no significant changes
were detected, possibly because of the small sample size and
the limitations of such morphometric measure that might be
not sensitive enough to subtle changes in the contralateral
hemisphere. A larger sample size and more sophisticated
analyses, for example based on cortical thickness measures or
voxel-based morphometry, might be more suitable for depicting
GM longitudinal changes following stroke, as often done in
literature (Stebbins et al., 2008; Brodtmann et al., 2012). Our
results, though preliminary, support the hypothesis that SHORE-
based indices might hold the potential of revealing GM plasticity
processes in the contralesional stroke area. We are aware of the
fact that the interpretation in terms of geometrical restriction of
the diffusion of the SHORE-derived indices in GM is prone to
criticism because the real tissue architecture cannot be directly
mapped to the underlying reference model (i.e., the pore).
However, the fact that differences across time within a patient
population and across groups can be detected using such indices
provide evidence in favor of their exploitability as potential
numerical biomarkers for GM plasticity in disease, leaving their
interpretation in terms of microstructural properties an open
issue.

Some limitations have to be acknowledged. This work has
to be considered as a preliminary comparison between DTI
and SHORE-based EAP derived indices in stroke. Here, we
considered only the two most used DTI derived indices (FA
and MD) and some of the principal EAP derived indices (RTAP,
RTPP, MSD, PA, GFA). However, it will be interesting to extend
the analyses to further indices that can be derived, e.g., the
radial and axial diffusivity for the DTI, RTOP and the MAP-
MRI non-gaussianity for the EAP. Moreover, our findings are
based on the comparison between 10 healthy subjects and 10
ischemic stroke patients. A higher number of subjects would
be necessary in future studies to fully exploit the potentialities
and discriminative/predictive power of these rather novel indices.
In particular, the linear regression analyses have to be carefully
evaluated bearing in mind they are preliminary, although
encouraging, findings. Indeed, the limited sample size precluded
the possibility of identifying the optimal model in a subset of
the population and testing it in a different validation cohort,
as normally does in the machine learning/classification field.
Moreover, a large number of predictors was initially included
in the models, possibly leading to over-fitting problems that
should be carefully considered when dealing with a limited
number of subjects. Adding more data will allow to increase
the power of the statistical analyses performed in this work and
to further validate the promising findings about contralateral
WM and GM changes suggesting the presence of plasticity
processes.
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CONCLUSIONS

In conclusion, this work provided new evidence in favor of the
suitability of dMRI-based microstructural indices for probing
WMmodifications and highlighted their potential as descriptors
of microstructural feature changes in GM in ischemic stroke
patients. To the best of our knowledge this is the first attempt
of using 3D-SHORE-derived indices for studying microstructure
in GM in both controls and patients, contributing a first step in
bridging WM and GM diffusion signal modeling. In particular,
the RTPP seems to be able to convey relevant information while
being consistent across groups and time.

From the clinical point of view, our results provide additional
evidence in favor of the hypothesis of the contralateral
remodeling after stroke. The 3D-SHORE-derived indices
performed as well as classical tensor-derived indices (FA and
MD), achieving a high predictive power for clinical outcome
over cortico-subcortical connections and a good discrimination
between patients and controls at different time scales, further
confirming their viability in ischemic stroke. Their combination
can allow to convey a more detailed microstructural description,
marking a step forward in the definition of a novel family of

biomarkers. Finally, the detection of significant changes in
GM across groups and in the patient longitudinal comparison
provides a new perspective along the path of characterizing
disease-related microstructural modulations which deserves
further investigation.
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