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Editorial on the Research Topic 


Applications of artificial intelligence, machine learning, and deep learning in plant breeding


In recent years, the field of plant breeding has witnessed a paradigm shift driven by advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL) technologies. These cutting-edge techniques have transformed our understanding of plant biology. From decoding the intricate molecular mechanisms of plant defense to automating disease detection and optimizing nutrient levels, AI is reshaping the landscape of plant breeding (Hamazaki and Iwata, 2024). AI-assisted omics techniques offer insights into plant-pathogen interactions and facilitate the identification of stress-responsive genes (Mahmood et al., 2022; Chao et al., 2023).

This Research Topic presents 16 papers on the application of computer techniques in plant science. Murmu et al. highlighted the potential of AI algorithms, particularly ML and DL, in decoding complex omics data to elucidate the molecular foundations of plant defense. In their review article, they explored AI-assisted omics techniques’ applications, challenges, and prospects in enhancing crop protection strategies and ensuring global food security amidst environmental challenges. By integrating AI with omics technologies, researchers can unravel intricate gene regulatory networks and develop targeted interventions for enhancing crop resilience.

As we confront the challenges of climate change and emerging diseases, AI-driven approaches offer a robust toolkit for ensuring global food security and sustainability in agriculture. Climate change poses significant threats to agricultural systems, emphasizing the importance of elucidating cold defense mechanisms in crops. Konecny et al. introduced the Self Organizing Maps (SOM)-based ML method to decipher gene expression patterns in response to different temperature regimes. Their study accentuated the value of SOM as a promising tool for unraveling complex transcriptomic data and provided insights into the molecular basis of cold defense mechanisms in grapevines.

Genomic selection has revolutionized plant breeding by enabling the prediction of breeding values based on genomic information. Despite significant advancements, accurately measuring the long-term genetic value remains challenging. The concept of oracle selection offers a unique perspective on the challenges and opportunities in plant breeding. Vanavermaete et al. discussed the implications of oracle selection for breeding program optimization and highlighted its potential to drive innovation in genomic selection methodologies. While not directly applicable in practical scenarios, oracle selection stimulates critical thinking and fosters innovation in breeding program design.

Phenomics has emerged as a vital tool for bridging the genotype-phenotype gap in plant breeding. Singh et al. addressed the challenge of predicting biomass accurately using models developed from RGB images, emphasizing the need for stable performance across experiments. The study’s findings simplify uncovering novel genes related to biomass production and breaking the yield plateau through non-invasive, high-throughput phenotyping techniques.

ML algorithms, such as random forests (RFs) and XGBoost, have demonstrated exceptional predictive accuracy in estimating crop yield and identifying desirable genotypes. Pugh et al. showed the efficacy of ML models in predicting peanut yield and enhancing breeding efficiency using high-throughput phenotyping data obtained from unmanned aerial vehicles. By applying above-ground traits to estimate underground yield, their approach circumvents traditional limitations in phenotyping.

In this regard, Li et al. highlighted the advancements in unmanned aerial remote sensing and vegetation indices for winter wheat yield prediction but emphasized the need for effective feature selection to enhance model performance. Their findings prove the superiority of the Cubist model, showing the efficacy of the PCRF-RFE method and providing valuable insights for future research in yield prediction and feature selection. Mousavi et al. addressed the yield prediction challenge by integrating soil and environmental factors with ML to predict wheat yield. By integrating soil properties, topographic attributes, and vegetation indices, their study applied RF and artificial neural networks (ANNs) to map actual wheat yield, highlighting the potential of ML in optimizing agricultural production.

DL methods, particularly convolutional neural networks (CNNs), have revolutionized image-based analysis in plant breeding. Davidson et al. present a groundbreaking study that explores the untapped potential of CNNs in automating the analysis of mature somatic embryos, a critical process in plant propagation. By employing CNNs for semantic and instance segmentation of conifer embryos, their study confirmed the precision and efficiency of neural network-based methods in delineating morphological regions and counting cotyledons, providing unprecedented accuracy and efficiency compared to previous techniques. By enabling precise segmentation and counting of morphological features, AI-assisted approaches open avenues for further analysis of somatic embryos and enhancing crop productivity and sustainability in agriculture and forestry.

Pubescence, a key phenotypic trait in plants, correlates with stress resistance, particularly in wheat. Visual determination of glume pubescence aids in cultivar selection but is subjective and laborious. Artemenko et al. proposed an AI-driven approach using CNNs to automate glume pubescence detection, addressing the limitations of traditional methods and enhancing breeding efficiency. They employed image segmentation to extract spike contours, followed by cropping for uniformity. Investigation into image scale and distortions revealed optimal conditions for accurate pubescence prediction. Their method offers a reliable and efficient solution for phenotype analysis, empowering breeders with advanced tools for cultivar selection and stress resilience enhancement.

Deep learning models have the potential to optimize agricultural practices and enhance crop management strategies. Wheat cultivation faces the recurring issue of seedling shortages and damage in agricultural fields, leading to reduced grain yields and economic losses. Feng et al. offered valuable insights into the application of DL for wheat seedling variety recognition, introducing the MssiapNet model as a promising solution for addressing challenges in agricultural productivity. Their findings highlighted the importance of using advanced technologies to streamline variety identification processes and improve crop management practices in wheat cultivation. SCGNet, another novel DL model, introduced by Sun et al. incorporates several modules designed to enhance information exchange and feature multiplexing. It is tailored for rapid and efficient varietal classification of wheat grains. By employing DL techniques, they demonstrated the feasibility of efficient and accurate varietal identification in plant breeding.

A combination of DL models i.e., one-dimensional CNN (1D-CNN) model with a hyperspectral imaging system was employed by Li et al. for predicting cottonseed vitality. They extracted relevant information for cottonseed vitality prediction through preprocessing techniques and feature extraction algorithms. By indicating the efficacy of the 1D-CNN model in predicting cottonseed vitality, their study facilitated the development of automated detection devices, revolutionizing cottonseed quality assessment practices. Moreover, the fusion of spectral and image features enhanced prediction accuracy, offering a comprehensive approach to cottonseed vitality evaluation.

The integration of near-infrared hyperspectral imaging and transfer learning holds great promise for advancing seed vigor detection and enhancing agricultural productivity. Qi et al. offered a pioneering methodology for detecting rice seed vigor using near-infrared hyperspectral imaging and transfer learning techniques. Their findings provide valuable insights into optimizing crop seed quality assessment processes, thereby improving rice yield and quality. Their findings showed the efficacy of the MixStyle transfer strategy in improving the generalization ability of CNN models across different rice varieties, leading to the rapid and accurate assessment of seed vigor. This approach has profound implications for enhancing rice production efficiency.

Identifying pests and diseases affecting plant crops is a laborious and error-prone task, often leading to suboptimal control measures and decreased yields. By accurately identifying and categorizing plant diseases, AI technology enables breeders to select and develop disease-resistant plant varieties more efficiently. Disease-resistant crops are essential for sustainable agriculture, as they reduce the reliance on chemical pesticides and contribute to higher yields and food security. Therefore, advancements in plant disease detection through AI-driven methods directly support plant breeding initiatives aimed at developing resilient and high-yielding crop varieties.

The YOLO (You Only Look Once) architecture, known for its real-time object detection capabilities, is employed for object detection in plant image analysis (Liu et al., 2024). Li et al. showed the efficacy of the CFNet-VoVGCSP-LSKNet-YOLOv8s model in accurately identifying cotton pests and diseases amidst challenging environmental conditions. The model’s superior performance offers a promising solution for real-time monitoring and early intervention in pest and disease outbreaks, thereby mitigating yield losses and reducing reliance on chemical interventions. This article heralds a new era in cotton plant breeding, wherein cutting-edge AI, ML, and DL techniques converge to address age-old challenges with remarkable precision and efficiency. By providing a robust technical foundation for pest and disease identification and control, the CFNet-VoV-GCSP-LSKNet-YOLOv8s model emerges as a game-changer in the quest for agricultural sustainability. On the other hand, Ullah et al. introduced a novel DL-based architecture, DeepPlantNet, for efficient and accurate prediction and categorization of plant leaf diseases. With 28 learned layers including convolutional and fully connected layers, DeepPlantNet achieved high accuracy in classifying various plant diseases into multiple categories. Their results indicated AI potential to significantly reduce agricultural losses by aiding in timely disease identification, demonstrating superiority over existing methods.

Efficient optimization of nutrient levels enhances crop quality and resilience, attributes vital for successful plant breeding programs aiming to develop high-yielding and resilient crop varieties. Cho et al. introduced a decision-tree-based dosing algorithm for managing ion-specific nutrient solutions in closed hydroponic systems, crucial for crop quality and nutrient recycling efficiency. Evaluating its performance, the algorithm demonstrated feasible accuracies and significantly reduced fertilizer injections and carbon emissions, promising more sustainable agricultural practices that align with the broader goals of environmentally conscious plant breeding initiatives.

Overall, AI, ML, and DL techniques offer unique opportunities from deciphering complex omics data to automating phenotypic trait analysis and disease detection to revolutionize breeding practices, develop stress-tolerant and high-yielding crop varieties, and contribute to global food security in the face of escalating environmental challenges (Orlov and Chen, 2023; Ngugi et al., 2024). Continued investment in AI applications in plant breeding holds the key to unlocking the full potential of agriculture and ensuring a prosperous and sustainable future for generations to come.

We aim to continue a series of Research Topics (special journal issues) on computational plant biology and bioinformatics application (Orlov and Baranova, 2020; Anashkina et al., 2023) in Frontiers.
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Introduction

Phenomics has emerged as important tool to bridge the genotype-phenotype gap. To dissect complex traits such as highly dynamic plant growth, and quantification of its component traits over a different growth phase of plant will immensely help dissect genetic basis of biomass production. Based on RGB images, models have been developed to predict biomass recently. However, it is very challenging to find a model performing stable across experiments. In this study, we recorded RGB and NIR images of wheat germplasm and Recombinant Inbred Lines (RILs) of Raj3765xHD2329, and examined the use of multimodal images from RGB, NIR sensors and machine learning models to predict biomass and leaf area non-invasively.





Results

The image-based traits (i-Traits) containing geometric features, RGB based indices, RGB colour classes and NIR features were categorized into architectural traits and physiological traits. Total 77 i-Traits were selected for prediction of biomass and leaf area consisting of 35 architectural and 42 physiological traits. We have shown that different biomass related traits such as fresh weight, dry weight and shoot area can be predicted accurately from RGB and NIR images using 16 machine learning models. We applied the models on two consecutive years of experiments and found that measurement accuracies were similar suggesting the generalized nature of models. Results showed that all biomass-related traits could be estimated with about 90% accuracy but the performance of model BLASSO was relatively stable and high in all the traits and experiments. The R2 of BLASSO for fresh weight prediction was 0.96 (both year experiments), for dry weight prediction was 0.90 (Experiment 1) and 0.93 (Experiment 2) and for shoot area prediction 0.96 (Experiment 1) and 0.93 (Experiment 2). Also, the RMSRE of BLASSO for fresh weight prediction was 0.53 (Experiment 1) and 0.24 (Experiment 2), for dry weight prediction was 0.85 (Experiment 1) and 0.25 (Experiment 2) and for shoot area prediction 0.59 (Experiment 1) and 0.53 (Experiment 2).





Discussion

Based on the quantification power analysis of i-Traits, the determinants of biomass accumulation were found which contains both architectural and physiological traits. The best predictor i-Trait for fresh weight and dry weight prediction was Area_SV and for shoot area prediction was projected shoot area. These results will be helpful for identification and genetic basis dissection of major determinants of biomass accumulation and also non-invasive high throughput estimation of plant growth during different phenological stages can identify hitherto uncovered genes for biomass production and its deployment in crop improvement for breaking the yield plateau.





Keywords: high-throughput phenotyping (HTP), RGB image, NIR image, machine learning, i-traits, wheat, shoot area





Introduction

Wheat (Triticum aestivum L.) is one of the most important cereal crops in the world since the beginning of agriculture, feeding nearly 40% of the world’s population (Giraldo et al., 2019). It is grown in about 217 million hectares across the globe, with an annual production of about around 731 million tonnes (Ramadas et al., 2020). Wheat crop production needs to be increased at least by 60%, to feed the 10-billion people by 2050 (Misra et al., 2020). India is the world’s second-largest wheat producer and a major exporter of wheat. Hence wheat crop is given emphasis in crop improvement programs in India as well as in different countries for breeding better wheat varieties with enhanced yield and quality.

Recent advances in the next generation genotyping technologies have helped to cut the cost and time while boosting genotyping precision. At the same time, phenotyping continues to be a barrier in establishing genotype-phenotype relationships (Yang et al., 2020). The introduction and evolution of phenomics in plant science occurred around 2010 with sensors to capture time series information and plant characteristics from digital images, which can ease the phenotyping bottleneck (Yang et al., 2020). Phenomics is the multidisciplinary study of high-throughput accurate acquisition and analysis of multidimensional phenotypes by using digital sensors to capture the morphological and physiological responses of plants (Kumar et al., 2016; Tardieu et al., 2017; Yang et al., 2020). Throughout plant growth and developmental life cycle, phenomics aids in the study of plant morphometry, physiology, leaf color, biomass, seed characteristics, spike number, growth rate and water use efficiency (Chen et al., 2014; Al-Tamimi et al., 2016; Guo et al., 2018; Misra et al., 2020; Elangovan et al., 2023). Researchers across the globe are targeting many plant traits to break the current plateau of the yield (Rauf et al., 2015; Neeraj et al., 2022). The harvest index is one of the most important traits as it links biomass accumulation and grain yield in cereals (Reynolds et al., 2017) and hence biomass is one of the key traits for crop improvement. Plant leaf area is an important conventional physiological trait used for plant developmental studies and leaf area index estimation (Wu et al., 2022). It is an essential parameter for assessing crop growth and is highly related to the crop biomass and yield (Qiao et al., 2019; Wu et al., 2022).

Manual estimation of plant biomass and shoot area gives accurate information but it is destructive, time and labour intensive, less throughput, and the accuracy is affected due to human errors (Buxbaum et al., 2022) thereby restricting its use in breeding and commercial contexts. Hand-gathered allometric approaches that connect plant volume and height data to biomass are time-consuming, arduous, and may not generalize (Pottier and Jabot, 2017). Also, by the conventional phenotyping, we could only get biomass and leaf area as a single point data, while the high throughput phenotyping empowered generation of time series biomass data (Rahaman et al., 2017; Song et al., 2021). Predicting biomass at multiple stages gives more insight into complex yield architecture (Buxbaum et al., 2022), crop phenotypic (P) and genotypic (G) along with G×E behaviour of plants (Xu, 2016; Van Eeuwijk et al., 2019). As biomass is a time-dependent variable in the plant life cycle, its non-invasive measurement at multiple time points is essential to dissect the complex plant growth characteristics and for its functional mapping (Wu and Lin, 2006; Li and Wu, 2010).

Non-invasive biomass estimation was mainly carried out, in the past, with a single sensor and very few image-based features (Campbell et al., 2015; Al-Tamimi et al., 2016; Rahaman et al., 2017; Asif et al., 2018). Researchers also have tried to predict biomass as linear function of projected area (Golzarian et al., 2011), multiple linear regression of different parameters, considering both the volume of the plants and their density (Busemeyer et al., 2013; Yang et al., 2014) and with four machine learning based biomass estimation from multiple sensor traits (Chen et al., 2018b). Many well established machine learning methods have been used earlier for various purposes, such as the prediction of gene expression patterns due to chromatin features (McLeay et al., 2012; Yang et al., 2014; Song et al., 2016), biomass (Chen et al., 2018b), and classification of the disease status of plants (Baranowski et al., 2015). Several models have been developed for in-house experiments to predict biomass of Arabidopsis (Arvidsson et al., 2011), barley (Bendig et al., 2015; Chen et al., 2018b), wheat (Golzarian et al., 2011; Parent et al., 2015), and rice (Yang et al., 2014; Campbell et al., 2015), but their reproducibility in other experiments has not been characterized. Also, researchers have tried to predict biomass at early stages (Golzarian et al., 2011; Chen et al., 2018b) which might not cover all the phenotypic variability of plant biomass. Machine learning model-based prediction of biomass and leaf area in wheat under controlled environment condition have not been reported yet.

So, we planned our experiment to develop a generalized robust protocol for non-destructive estimation of biomass and shoot area in wheat at peak vegetative stage by using open-source machine learning tools from the large number of image-based features and from multiple sensors which can be used to precisely predict plant biomass in future experiments by plant scientists. The objectives of this study were (i) to generate multi-experiment phenomics data from multiple sensors to predict plant biomass and shoot area at vegetative stage in wheat (ii) to select the best generic model for accurate prediction of fresh weight (FW), dry weight (DW) and shoot area (SA) by using open source machine learning tools (iii) to identify best surrogate i-Trait for FW, DW and SA. As a result, we screened a generalised model from a large set of machine learning models which considers traits derived from multiple sensors incorporating geometric features, RGB indices, colour class and NIR features covering major determinants of plant growth and also showing higher accuracy across experiments.





Materials and methods




Experimental design for biomass estimation

Two independent experiments were conducted in the Nanaji Deshmukh Plant Phenomics Centre (28°38’31.2”N, 77°09’39.6”E), New Delhi, India, during the winter seasons (Nov-April, Rabi) of 2018 and 2019. In both experiments, wheat germplasm lines and recombinant inbred lines (RILs) of Raj3765 x HD2329 were used. Seeds were sown in pots (0.19 m diameter, 0.4 m high, 15 L volume) containing uniformly filled soil (12.5 Kg per pot). Both experiments differed in genotypes and RILs to validate the model’s effectiveness in a wide range of biomass across experiments. Recommended dose of fertilizer (120-80-60 kg/ha N-P-K respectively) was applied to each pot. Well watered condition was maintained in all the pots and recommended weed, pest and disease control practices were followed. Plants were grown in the natural environment for proper growth and biomass accumulation, and shifted to the greenhouse in phase wise manner to capture the biomass at different vegetative stages (before booting). The idea to capture biomass before booting was due to the fact that after booting the ear creates erroneous result due to its variable weight than leaf and stem. The age of plants were ranging from 30 to 70 days after sowng at the time of imaging. This variability in plant age helped in capturing wider range of FW, DW and SA. Before imaging of the plant, ultra-low weight & solid polypropylene beads were applied just over the soil surface to about 5cm height to arrest direct evaporation from the soil surface, and also for easy segmentation of image. Three hundred plants in 2018 experiment and 154 plants in 2019 experiment were selected for image acquisition using the LemnaTec-Scanalyzer 3D automated phenotyping and imaging platform. Destructive sampling of plants was done to measure above-ground biomass FW (g), DW (g), and SA (cm2). The SA of the whole plant, along with stem and leaf, was measured by using LI-3100C (LI-COR, Lincoln, NE, USA) automatic leaf area meter.





Image acquisition and processing

RGB and NIR images of the plants were taken using a commercial grade RGB (Prosilica GT6600, sensor: ON Semi KAI-29050, LemnaTec, GmbH, Aachen, Germany) and NIR camera (Gold eye P-032 SWIR Cool cameras, sensor: InGaAs, LemnaTec, GmbH, Aachen, Germany) using LemnaTec-Scanalyzer 3D software. Three different side views of RGB images (angles: 0°, 120°, 240°), and one top view RGB image of the plants were captured for each plant using the automated turning and lifting system inside the imaging unit. Three side views were considered, as it is hypothesized that the image from one direction cannot cover all the plant parts; besides, it helps increase the data points corresponding to one plant. NIR sensor captured one side view and one top view image for analysis. A uniform white background was maintained to increase the accuracy of separation between the background and foreground in the images.

Images were processed by the wheat image analysis pipelines developed in the commercial LemnaGrid software. Images were pre-processed to segment the image into foreground and background sections accordingly, and then feature extraction was done to produce a trait list. Extracted traits from the whole dataset were exported in CSV format via LemnaGrid and LemnaMiner functionalities, which were used for post-processing and statistical analysis. A detailed data set report is available in (Supplementary Table 1).





Feature analysis and data transformation

After feature extraction, all the features were categorized into four groups: Geometrical features, colour class features, RGB-based indices and near-infrared features. Finally, these features are classified into two major categories namely architectural features (geometric features) and physiological features (colour class, RGB based indices and NIR features). Details of these features are available in Supplementary Table 1. These features were specified by considering the type of imaging sensors (RGB and NIR) and object orientations (side and top views). All the traits were curated for redundancy, processing error, outliers, and non-informativeness by both statistical approach (Multicollinearity removal, poor heritability, etc.) and manual curation. We kept as much variation and informative features as possible to improve the model accuracy for biomass estimation.

Each experiment dataset was transformed into matrix Xn×m where “n” is the number of plants and “m” is the number of phenotypic traits. Plants represented rows, and different traits represented columns. All missing value plants were discarded for reduction of data analysis complicacy. Before applying regression models, all datasets were normalized as described by (Chen et al., 2018a).





Phenotypic data interpretation and visualization

A phenotypic similarity tree was used to see the correlation between all the traits and the similarity between experiments. Principle component analysis was performed on the transformed data matrix Xn×m in the same way as described by (Chen et al., 2014) for all the experiments. Both correlation and PCA analysis was done in R software (R Core Team, 2021). All visualization graphs were produced using “ggplot2” package in R software (R Core Team, 2021).





Modelling for predicting plant biomass

After i-Trait selection and phenotypic analysis, the next part was to fit the selected data into the model to predict FW, DW, and SA. We used the open-source tool “HTPmod” for modelling (Chen et al., 2018a). In HTPmod (Shiny framework-based application), the module predMod contains 16 models constructed with 16 different machine learning methods to regress input features to output traits of interest. The description and details of all the models is available in supplementary data sheet 1. We used the default hyperparameters applicable for different machine learning models present in the HTPmod application. All the model parameters were controlled using respective R package (Given in supplementary data sheet 1). Also, for additional tuning functionality of “caret” R package was used.





Evaluation of the models performance

Model performance was evaluated using k fold cross-validation method and N-times randomization, where we assigned k and N to 10. So, we adopted a 10-fold cross-validation strategy and ten times randomization for model evaluation by considering the average value. The data set was randomly divided into a training set of 90% of plants and a testing set of the remaining 10% of plants. Then each model was run to predict FW, DW, and SA for the testing data, and then the predicted biomass was compared with the manually measured FW, DW, and SA.

All the regression models were evaluated by the Pearson correlation coefficient (PCC; r), the coefficient of determination (R2) and the root mean squared relative error of cross-validation (RMSRE) between the predicted and observed values (Chen et al., 2018a).






Results




i-Trait extraction and characterization

We analysed two image datasets, 1800 images (Experiment 1, 2018) and 924 images (Experiment 2), collected from 300 (Experiment 1) and 154 plants (Experiment 2, 2019), respectively. An overview of the experimental site and experiment is shown in Figure 1. Each plant was imaged at a single time point by RGB (One top view and three side view images at 0°, 120° and 240° angle) and NIR sensor (One top view and one side view), then plants were harvested to measure FW) and SA immediately, and oven dried to record DW. To increase the variability in biomass range, we conducted our experiment with germplasm and RILs with wider variability in biomass, and phenotyping at different plant growth stages. All the images retrieved from the server and processed by the LemnaGrid image analysis pipeline, which was modified explicitly for mid to large-sized important cereals such as wheat (challenging due to its narrow leaf and compact character), resulting in nearly 200 phenotypic traits extracted from images of each plant (Figures 2A, B). After quality control such as outliers, multicollinearity and manual checking of all the extracted traits, we selected 77 i-Traits (Figure 2C) which were divided into two major categories of traits such as architectural (35 traits) and physiological (42) traits (Supplementary Table 1).




Figure 1 | Pictorial representation of experimental site and setup. (A) Nanaji Deshmukh Plant Phenomics Center (NDPPC), Indian Council of Agricultural Research–Indian Agricultural Research Institute, New Delhi, India. (B) Four climate controlled green houses present within the facility. (C) Ongoing wheat plant experiment for wheat non invasive biomass prediction. (D) LemnaTec system controller computer for image acquisition and processing. (E) RGB, side view image of wheat plant inside imaging chamber. (F) Destructive sampling for biomass measurement.






Figure 2 | Data analysis and modelling pipeline for biomass prediction by i-Traits. (A) Digital imaging based plant phenotyping by visible (or color) and near-infrared sensors (NIR). (B) Image datasets were saved in data server and processed through LemnaGrid for feature extraction. (C) Phenotypic data were subjected to quality check to remove low-quality data and classified into two categories such as architectural and physiological traits (Commonly referred as i-Traits). (D) All the i-Traits were described by per plant basis and combined with manually measured data such as fresh weight (FW), dry weight (DW) and shoot area. (E) Now the data matrix with all i_traits and manual traits were used to predict biomass by HTPmod (a shiny based application) using eight machine learning method developed by Chen et al. (2018a). (F) The results of aal the models were interpreted by R2, PCC and RMSRE value.







Phenotypic profile analysis of plants in both experiments

We observed broader range of phenotypic values in all the traits in both experiments. The phenotypic value of FW, DW, and SA of experiment 1 ranged 0.6-145.86 g, 0.15-27.35g and 18.43-3622.25 cm2, respectively. In the experiment 2, the FW, DW, and SA ranged 3.3-107.8 g, 0.5-22.2 g, and 26.15- 1434.01 cm2, respectively (Figures 3C-E).




Figure 3 | Characterization of all the i-Traits by phenotypic analysis for both experiments (Experiment 1 and Experiment 2). (A, B) Principal component analysis of all the i-Traits for experiment 1 and experiment 2 respectively. Four PCs represented here which captured approximately all the variation in the data. Variance proportion explained by the PCs is shown in parentheses. Individuals are represented by orange dots and traits are represented by green lines. (C–E) Differences in the FW, DW and shoot area across experiments represented by box plot analysis.



In both experiments, 77 selected i-Traits were analysed. Principal component analysis (PCA) was carried out for both experiments to see the global phenotypic variation present in the population. The top 4 principal components (PCs) of experiment 1 and 2 accounted for 76.56% and 75.02% of the total phenotypic variation explained by i-Traits. The first two PCs clearly distinguished the experiments as the first two PCs of experiment 1 and 2 accounted for 39.41%, 17.77% and, 29.03%, 23.28%, respectively (Figures 3A, B).

To access the patterns of trait correlations, we performed the trait similarity analysis based on canonical Pearson’s correlation coefficient (Figures 4A, B). We observed that the patterns of correlation were similar in both experiments however i-Traits were more correlated in experiment 1 than in experiment 2 as suggested by the intensity of colour in Figures 4A, B but traits across experiments shows similar correlation with each other. Also, the correlation of architectural traits with physiological traits was less, and traits were both positively and negatively correlated in the two experiments. Correlation among the physiological traits as higher than the correlation among the architectural traits.




Figure 4 | Assessment of trait similarity between i-Traits across experiments. (A) Canonical correlation analysis of i-Traits based on experiment 1 (Top) and (B) experiment 2 (Bottom). Heatmap plot is organized by both architectural and physiological traits represented by two highlighted boxes. Top box represents Architectural traits and bottom box represents physiological traits.







Phenotypic association of i-Traits with FW, DW and shoot area

We further evaluated the association of i-Traits with the manual traits in both experiments to see the relation between i-Traits and manual traits and to observe the biological relevance of predicting biomass from digital image-derived parameters (Figure 5). The direct relatedness of architectural traits with biomass is well reported in literature and the physiological traits that we included here having some unique feature that have not been reported earlier such as RGB colour class and RGB indices. The use of physiological traits in biomass estimation is to incorporate the additional properties presented by NIR grey value (water status of plant), RGB colour class (greenness of different plant pixels) and RGB indices (reported vegetation indices). The PCC of the i-Traits with FW, DW and SA in experiment 1 ranged from -0.73 to 0.97, -0.76 to 0.92, and -0.76 to 0.93, respectively. While in the case of experiment 2, the FW, DW and SA correlations with i-Traits ranged from -0.76 to 0.95, -0.74 to 0.93 and -0.73 to 0.95, respectively. Architectural traits had a higher correlation with manual traits, than physiological traits. Among all the traits, PSA and Area_SV had a correlation of >0.9 for FW, DW and SA in both experiments. As expected, both boundary point count and compactness of side view images are also highly correlated with the manual traits. This explains that the biologically relevant traits, such as area and architecture, are highly related to biomass traits. We also found that physiological traits such as colour class correlated with biomass traits. NIR_SV was negatively correlated with FW, DW and SA ranging from -0.36 to -0.68 in both experiments. This also suggests that physiological traits not directly measured as plant architectural traits can also be used as biomass predictors. Indices derived from the mean blue, green and red values of RGB images also correlated with biomass, but the correlations were relatively lower than other traits.




Figure 5 | Pearson’s correlation coefficients (PCC) in each experiment were calculated to assess the relationship between i-Traits and manual traits. The PCC were consistent in both experiments and most of the features were having more than 0.5 positive or negative correlation coefficients with FW, DW and shoot area. (A, B) PCC between FW and i-Traits in experiment 1 and 2 respectively. (C, D) PCC between DW and i-Traits in experiment 1 and 2 respectively. (E, F) PCC between shoot area and i-Traits in experiment 1 and 2 respectively.







Modelling of plant biomass using machine learning methods

HTP is particularly meaningful in dissecting complex genetics of biomass development in plants. The relationship between i-traits and above-ground shoot biomass accumulation were analysed by digital phenotyping data containing structural (e.g., architectural traits) and physiological traits (e.g., colour class, RGB based indices and plant moisture content as reflected by NIR-intensity traits). The results about i-Traits and manual traits suggested that these i-Traits can be very useful in predicting plant biomass-related traits.

To develop the model by machine learning (ML) methods, we used the available open-source tools. We used the predMod module from the HTPmod, a R program based shiny application. We used 16 ML methods available in predMod. From the 16 models, we found eight models that were consistent for all the manual trait estimations in both the experiments. The selected models were Bayesian LASSO, Bayesian regularized neural networks (BRNN), Lasso and elastic-net regularized generalized linear models (GLMNET), Gaussian process with the polynomial kernel (GP-Poly), multivariate adaptive regression splines (MARS), random forest (RF), ridge regression (RIDGE) and Support vector machines with linear kernel (SVM-Linear).





Biomass estimation model performance evaluation

Since our aim was to produce a more generalized model that can use genotypes and RILs to predict the biomass from image traits over multiple time points, the models were tested in both experiments to validate their performance and to evaluate their generalized nature. Analysis was performed with all 16 models, from which eight models that performed better for all the traits irrespective of experiments were selected. Results of all the 16 models showed that the R2 for FW prediction was between 0.84 to 0.96, DW prediction was between 0.79 to 90 and SA prediction was 0.85 to 0.97 in experiment 1 (Supplementary Data sheet 1). In experiment 2 the R2 for FW prediction was between 0.88 to 0.96, DW prediction was between 0.86 to 93 and SA prediction was 0.86 to 0.93 (Supplementary Data sheet 1). We found that eight models performed relatively better than other eight models. Bayesian Generalized Linear Model (BGLM), Gradient Boosting Machine (GBM), Generalized Linear Model (GLM), Gaussian Process with Radial Kernel (GP-Radial), K-Nearest Neighbors (KNN), Least Absolute Shrinkage and Selection Operator Regression (LASSO), Multivariate Linear Regression (MLR) and Support Vector Machines with Radial Kernel (SVM-Radial) performed with relatively less accuracy than other eight models namely Bayesian LASSO, Bayesian regularized neural networks (BRNN), Lasso and elastic-net regularized generalized linear models (GLMNET), Gaussian process with the polynomial kernel (GP-Poly), multivariate adaptive regression splines (MARS), random forest (RF), ridge regression (RIDGE) and Support vector machines with linear kernel (SVM-Linear). BGLM, GBM, GLM, GP-Radial, KNN, LASSO, MLR and SVM-Radial had R2 value for prediction of FW ranged from 0.84 to 0.90, for DW ranged from 0.79 to 0.87 and for SA ranged from 0.85 to 0.95 in experiment 1 (Supplementary data sheet 1). At the same time BLASSO, BRNN, GLMNET, GP-Poly, MARS, RF, RIDGE and SVM-Linear had higher R2 value of 0.94 to 0.96 for FW, 0.87 to 0.90 for DW and 0.93 to 0.96 for SA prediction in experiment 1 (Figures 6–8). Similar condition was there in experiment 2 also. In experiment 2, BGLM, GBM, GLM, GP-Radial, KNN, LASSO, MLR and SVM-Radial had R2 value of 0.88 to 0.92 for FW, 0.86 to 0.89 for DW and 0.86 to 0.90 for SA prediction (Supplementary data sheet 1). While BLASSO, BRNN, GLMNET, GP-Poly, MARS, RF, RIDGE and SVM-Linear had higher R2 value of 0.94 to 0.96 for FW, 0.91 to 0.93 for DW and 0.90 to 0.93 for SA prediction in experiment 2 (Figures 6–8). We also noticed that these eight models performed better than normal multivariate regression (MLR) model. All eight selected models BLASSO, BRNN, GLMNET, GP-Poly, MARS, RF, RIDGE and SVM-Linear performed relatively similar in terms of estimation accuracy, while we confined the results to select four best-suited models for our experiments namely BLASSO, BRNN, GLMNET and GP-Poly that were with less RMSRE value and with similar estimation accuracy across experiments.




Figure 6 | Non destructive estimation of above ground plant biomass (AGPB) with i-Traits, using predmod in HTPmod. Scatter plots of observed FW vs predicted FW values using 8 prediction models based on machine learning methods BLASSO, BRNN, GLMNET, GP-Poly, MARS, RF, RIDGE and SVR. The prediction models were evaluated by Pearson’s correlation coefficient (r), its corresponding P-value, R2 and RMSRE. (A, B) Prediction of FW in experiment 1 and 2 respectively. (C) Evaluation of the model performance of each regression model used for AGPB prediction.






Figure 7 | Non destructive estimation of DW by using i-Traits. (A, B) Prediction of DW in experiment 1 and 2 respectively. (C) Summary of the predictive power of each regression model.






Figure 8 | Non destructive estimation of shoot area by using i-Traits. (A, B) Prediction of shoot area in experiment 1 and 2 respectively. (C) Summary of the predictive power of each regression model.



In case of FW estimation, R2 and r value ranged from 0.95 to 0.96 and 0.97 to 0.98 in the two experiments for BLASSO, BRNN, GLMNET and GP-Poly models (Figure 6). So, this represents the generalized nature of the estimation, as almost all four models showed similar results. DW’s estimation also showed promising results as the R2 and r value ranged from 0.89 to 0.93 and 0.94 to 0.96 in the two experiments (Figure 7). In SA estimation, R2 and r value ranged from 0.91 to 0.97 and 0.95 to 0.98 in both the experiments (Figure 8). As per these four models, Experiment 1 had slightly higher estimation accuracy than experiment 2 for FW and SA estimation but in the case of the DW, experiment 2 had better performance than experiment 1. RMSRE values were relatively lower in experiment 2 than in experiment 1 in most of the parameters but the difference was not large.

By observing the estimation ability of the models by R2 and r and RMSRE we found out BLASSO, BRNN, GLMNET and GP-Poly were relatively better-performing models in all the traits and across all the experiments. Selecting a single model was interesting due to the relatively similar and better estimation accuracy across models. Nevertheless, BLASSO performed better in all the trait estimations in all the experiments with the highest R2 and lowest RMSRE values. The R2 of Bayesian Least Absolute Shrinkage and Selection Operator BLASSO for FW prediction was 0.96 (both year experiments), for DW prediction was 0.90 (Experiment 1) and 0.93 (Experiment 2) and for SA prediction 0.96 (Experiment 1) and 0.93 (Experiment 2). Also, the RMSRE of BLASSO for FW prediction was 0.53 (Experiment 1) and 0.24 (Experiment 2), for DW prediction was 0.85 (Experiment 1) and 0.25 (Experiment 2) and for SA prediction 0.59 (Experiment 1) and 0.53 (Experiment 2).





Evaluation of i-Traits for predictive power and relative importance

For each i-Trait, the predictive power and relative importance were calculated by the degenerate model using the predMod module. In both experiments, the predictive power and feature importance of i-Traits were similar, so here we explained the individual capability of each i-Trait as a predictor of biomass in experiment 1 (Figure 9) and experiment 2 (Supplementary data sheet 1). Both predictive power and relative importance of most architectural traits were higher than physiological traits. The top 10 important features contained architectural and physiological traits, but more architectural traits were present than physiological ones. PSA, Area_SV, and BPC_SV have higher predictive power and relative importance among all the i-Traits for FW, DW and SA. Area_SV had R2 of 0.94 for the estimation of FW, which was highest than the DW (R2 of 0.79) and shot area (R2 of 0.89) estimation. Among physiological traits, PSCC_17, 16, 13, NIR_TV and SV, B_SV, G_SV, SLR5_SV, Gray_TV, etc., had higher predictive power and relative importance than other physiological traits. NIR_TV and NIR_SV also had significant predictive power and relative importance ranging from ~0.1 to 0.5 (R2) and ~5 to 59% (Inclusive MSE) relative importance. The best predictor i-Trait for FW and DW prediction was Area_SV and for SA prediction was projected shoot area. These results give deep understanding into major determinants of plant biomass and also suggests that along with architectural traits, physiological traits also help to improve estimation accuracy and are determinants of plant growth.




Figure 9 | Estimation of predictive power and relative importance of features (i-Traits) used in regression models. Bayesian-LASSO (BLASSO) model was used for wheat FW, DW and shoot area prediction, using i-Traits from two independent experiments. But as both experiments performed relatively similar with respect to prediction power and relative importance, experiment 1 information is presented here for the ease of understanding. (A, C, E). Relative importance of i-Traits used for FW, DW and shoot area prediction respectively. (B, D, F) Predictive power of i-Traits used for FW, DW and shoot area prediction respectively.








Discussion

Aided by multiple imaging sensors and computer vision optimization by machine learning methods, high throughput phenotyping has emerged as a major technology helping to dissect plant biological characters unseen before (Kumar et al., 2016; Singh et al., 2016; Strock et al., 2022). So, gathering multi-dimensional data over multiple time points at multiple organ levels is the critical component of HTP, which has boosted crop improvement programs (Roth et al., 2021; Pérez-Valencia et al., 2022). Harvest index has been a critical trait for cereal breeders for decades in crop improvement programs, which is closely related to the ability of the plant to accumulate plant biomass and convert it into yield (Chao et al., 2019; Porker et al., 2020). Since, already we have reached a plateau in improving harvest index, for further improvement in yield, we must improve biomass. We need to characterize accurate biomass of plants at different stages to identify genes working at different phenological stages for biomass production (Chang et al., 2019; Chen et al., 2020; Rabab et al., 2021). Also, data at multiple time points are needed for the functional mapping of plant biomass accumulation. Functional mapping can be a powerful tool to reveal transient and deterministic quantitate trait loci (QTLs) for a complex trait such as biomass (Wu & Lin, 2006; Camargo et al., 2018; Jiang et al., 2019; Lyra et al., 2020). Plant leaf area is a critical physiological parameter which determine the ability of plant to produce economic yield and also it helps to determine the plant leaf area index which is an important conventional physiological trait used for plant developmental studies (Wu et al., 2022). Leaf area index (LAI), is a critical parameter of wheat growth, can provide dynamic information during wheat growth phases and closely associated with crop biomass and yield. So, shoot area estimation by non-destructive methods will definitely help to the plant science community in the future. As per our knowledge no work has been done particularly for image-based shoot area estimation by validating with actual shoot area in wheat as it has a compact plant architecture. Traditionally, biomass measurement has been done by destructive methods, which is laborious and time-consuming. Also, one of the other major lacuna was the inability to take data points at multiple time scales (Tackenberg, 2007; Buxbaum et al., 2022). Therefore, to address this major bottleneck, automated, non-destructive biomass estimation by digital imaging method is gaining importance since the evolvement of high throughput phenotyping (Golzarian et al., 2011; Rahaman et al., 2017; Chen et al., 2018b; Buxbaum et al., 2022).

Several studies in the recent past have developed different models for biomass estimation, but their applicability in other in-house experiments has not been tested widely. Golzarian et al. (2011) and Chen et al. (2018b) predicted biomass in wheat at the age of 15 to 43 days after sowing and in barley at the age of 27 to 58 days after sowing respectively, where crop biomass is not very high and overlapping of leaves are less. But it is challenging to predict the biomass of wheat plant at peak vegetative growth. Also, different crops pose different plant architecture such as leaf distribution, tiller numbers overlapping of leaves etc which affects the biomass prediction model accuracy. So, a robust and open-source model that excludes the need for repeated destructive measurement is the need of the hour for any high throughput phenotyping facility worldwide. To address this, we conducted an experiment to estimate wheat biomass and related traits non-destructively in the largest phenomics facility in India, Nanaji Deshmukh Plant Phenomics Centre (NDPPC). We aimed to develop a pipeline to predict plant FW, DW and SA non-destructively by open-source tools, which can be used in future experiments by different researchers. We conducted two experiments in consecutive years to see if the models work equally well in different datasets.

The selection of predictor variables for the estimation of a trait is necessary. In the past, single i- trait based biomass estimation (Tackenberg, 2007; Golzarian et al., 2011; Campbell et al., 2015) and modified experiments with multiple traits have been carried out (Yang et al., 2014; Rahaman et al., 2017; Chen et al., 2018b). Previous studies have suggested that combining multiple traits such as vegetation indices and plant-height information can improve biomass estimates (Bendig et al., 2015; Han et al., 2019). Reports have shown that multiple traits and multi-sensor based estimation of biomass have more accuracy and biological meaning (Chen et al., 2018b) which includes different categorical features such as geometric or architectural traits, colour based and NIR based physiological traits. NIR reflectance have been reported to determine water status of plants (Neilson et al., 2015; Jin et al., 2017). As two plants having same plant architecture but different water status will differ in their fresh weight due to the differences in water status. By taking a leaf out of the literature review of non-destructive plant biomass, we selected both RGB and NIR-based traits for our study. We included architectural, colour class based, mean red, blue and green-based indices and mean grey values to improve the estimation accuracy and make a robust model. We selected 77 high-quality i-Traits by removing redundant, non-informative traits using statistical and manual methods. Both experiments 1 and 2 have differed in phenotypic responses as accessed by principal component and box plot analysis (Figure 3) which emphasizes the independent nature of experiments. So, this will help in understanding the generalised nature of the models across experiments.

We predicted FW, DW and SA using 77 i-Traits by 16 machine learning methods which was available in open-source tool “HTPmod”. To validate the results, we also ran all the models in another dataset (experiment 2) with the same i-Traits for the estimation of FW, DW and SA. The estimation accuracy was consistent in both experiments which suggests that all those models were generalized in nature and selecting a particular model will not discriminate much accuracy. By observing the predictive power, PCC and RMSRE, we found eight models to be performing relatively similar with higher estimation accuracies. We included multivariate adaptive regression splines (MARS), random forest (RF) and support vector machine-Radial regression (SVR) in our selected eight models as they had accurate biomass predicting ability (Chen et al., 2018b). All the predictive models worked accurately for FW, DW and SA in both experiments. But we found that eight models namely BGLM, GBM, GLM, GP-Radial, KNN, LASSO, MLR and SVM-Radial performed relatively poor than other eight models namely BLASSO, BRNN, GLMNET, GP-Poly, MARS, RF, RIDGE and SVM-Linear. Here it is interesting to see that simple multivariate linear regression was in the relatively poor performing group which suggests that use of complex machine learning model improved the accuracy of prediction than simple MLR model (Chen et al., 2018b). The main reasons for the difference in the prediction accuracy of different machine learning models depends upon factors such as model assumption parameters, model architecture, overfitting of model, sensitivities to extreme values, collinearity present within the data set, complexity of the model and number of samples (Ogutu et al., 2012; Arruda et al., 2015; Esposito et al., 2019; Adak et al., 2021). From all the 16 models four models performed relatively poor than other models namely BGLM, GP-Radial, KNN and SVM-Radial. BGLM model is less suited for small scale data and affected by multicollinearity (Koehrsen, 2018), GP-Radial has problem of scalability, representational power and targeted optimisation (Hensman et al., 2013; Krauth et al., 2016), KNN mostly used on classification and detection based problems and has limitations of poor performance under high dimensionality and sensitive to extreme values (Uddin et al., 2022) and SVM-Radial has sensitivities to extreme values, collinearity and more helpful for classification problems. Although these are very good machine learning algorithms cited in literature and worked well under different datasets but in our dataset and type of data, they performance were hampered.

However, for general use and model selection purposes, we made the more stringent model selection with respect to robustness, predictive power, PCC and RMSRE for ease of use in future experiments. The four models BLASSO, BRNN, GLMNET and GP-Poly were consistent across the experiments in FW, DW and SA estimation with relatively similar predictive power, PCC and RMSRE value. These four models had higher R2 and PCC value and lower RMSRE value than other models. The estimation accuracies of these models were at par with the accuracy that have been reported (Neumann et al., 2015; Rahaman et al., 2017; Chen et al., 2018b) in literature and also the reproducibility of the accuracy was validated by the results from our second experiment. Also, the validation of actual leaf area to predicted SA has been a unique feature of this undertaken research. Among all these models we found BLASSO to be the best model in terms of high accuracy and low RMSRE value for all the biomass and related trait prediction and was also stable and interpretable across experiments. BLASSO had highest R2 value and PCC value for both year experiment and lowest RMSRE value among all models. BLASSO is a popular high dimensional data analysis method. It can perform regularization and variable selection at the same time. This can increase the precision of predictions and interpretation of a problem (Vasquez et al., 2016). It has major advances in terms of assumptions regarding the sample distribution as it is independent of normality of sample distribution, very efficient in handling large data set and dimensionality also helps to overcome underfitting of model data. So, with the help of this model along with multi-sensor dataset, we were able to predict FW, DW and SA accurately in wheat.

Our results showed that by using open-source tools, we can predict FW, DW and SA of wheat plant accurately in any in-house experiment. The estimation accuracy of all the traits, such as FW, DW, and SA, across both experiments was consistent with past studies (Golzarian et al., 2011; Campbell et al., 2015; Neilson et al., 2015; Neumann et al., 2015; Rahaman et al., 2017; Chen et al., 2018b). It also reflected how individual trait impact estimation by analysis of the relative importance and predictive power of each trait. The critical features such as PSA, Area_SV, BPC_SV, PSCC_17, 16, 13, NIR_TV, SV, B_SV, G_SV, SLR5_SV and Gray_TV, which had consistently higher predictive power and more significant correlation with FW, DW and SA can be used as a surrogate for biomass accumulation and dissection of their genetic basis in crop improvement programs. As biomass is a complex trait showing both spatio-temporal variations upon different environments, its characterization can be done using the above-said i-Traits and models effectively at multiple time points.

There was no major limitation of this study but found some interesting challenges which can be addressed by conducting further research. This study was conducted in the controlled greenhouse conditions so the models selected here have to be tested to predict the biomass under field condition to check the generalised nature of the models. Increase in number of samples and testing of models in different abiotic stress conditions will give deeper insights into biomass modelling. As we have witnessed increase in prediction accuracy was achieved by multiple sensor data, use of advanced hyperspectral sensor data and LIDAR sensor data in further research can give new insight into prediction accuracy of machine learning models.





Conclusion

We developed the biomass and leaf area estimation model using the Bayesian Least Absolute Shrinkage and Selection Operator (BLASSO) machine learning method with high accuracy, which will be helpful to future researchers in predicting biomass and leaf area with high accuracy and robustness. We used the broad genotypic base to include all possible variations in the biomass estimation model to make it more robust. In order to bring out novelty in our research, we used 16 machine-learning models to identify the best estimation model. Wide range of phenotypic variations were taken into consideration by mixing genotypes and recombinant inbred lines (RILs) at different phenological stages. We predicted SA with higher accuracy in wheat crop having compact plant architecture which had not been validated earlier. We considered consecutive-year data set to evaluate the model replicability. We found Bayesian Least Absolute Shrinkage and Selection Operator (BLASSO) to be the best model which gives prediction accuracy of 0.96 for FW, 0.90 for DW and 0.96 for SA. So, this model can be used as a generic model to predict the vegetative stage biomass and leaf area in wheat. The use of leaf area for estimation of conventional physiological parameters such as leaf area index will be useful in crop improvement programmes. As unique research, it included many biologically relevant image-based traits, including NIR mean gray value, RGB colour class data and mean RGB-derived indices. This work showed the vast potential for future applicability in discovering novel QTLs for biomass and growth-related traits at different phenological stages. Precise phenotyping of biomass at multiple time points in the plant life cycle will serve as a seed for the functional mapping of dynamic traits. It also has future implications in characterizing and quantifying nutrient deficiency effects at the different phenological time scale.
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Since the introduction of genomic selection in plant breeding, high genetic gains have been realized in different plant breeding programs. Various methods based on genomic estimated breeding values (GEBVs) for selecting parental lines that maximize the genetic gain as well as methods for improving the predictive performance of genomic selection have been proposed. Unfortunately, it remains difficult to measure to what extent these methods really maximize long-term genetic values. In this study, we propose oracle selection, a hypothetical frame of mind that uses the ground truth to optimally select parents or optimize the training population in order to maximize the genetic gain in each breeding cycle. Clearly, oracle selection cannot be applied in a true breeding program, but allows for the assessment of existing parental selection and training population update methods and the evaluation of how far these methods are from the optimal utopian solution.
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1 Introduction

Since prehistory, when man started to settle and shifted from a hunter-gatherer to a settled-agricultural lifestyle, plants have played a crucial role in the development and survival of humankind. Over time, plants have been cultivated and selected based on morphological characteristics to improve favorable traits. Initially, phenotypic information was used to guide the selection of parental lines in plant breeding. Contemporary plant breeding methods select parents based on molecular markers such as single nucleotide polymorphisms (SNPs). Based on the idea that a phenotypic trait is controlled by many quantitative trait loci (QTLs) or genes, molecular markers can serve as proxies for these QTLs, assuming that they are in strong linkage disequilibrium with at least one QTL (de Roos et al., 2008). Genomic selection exploits this strategy to predict the genome-wide estimated breeding value (GEBV) using molecular markers that are uniformly distributed over the whole genome (Meuwissen et al., 2001). It has led to an improvement of trait performance in both animal and plant breeding and a reduction in time in between breeding cycles (Hayes et al., 2009; Cros et al., 2018).

A variety of methods aiming to maximize the long-term genetic value have been proposed. This problem can be tackled by optimizing the parental selection and by improving the prediction of the GEBVs. Different methods to update the training population (TP) have been proposed (Maenhout et al., 2010; Rincent et al., 2012; Akdemir et al., 2021), but Neyhart et al. (2017) demonstrated that most methods resulted in the same long-term genetic values as long as the TP is updated on a regular basis. Recently, Akdemir et al. (2021) proposed a genetic algorithm to select an optimal TP, outperforming the aforementioned update methods.

The genetic gain can also be maximized in the short term by increasing the selection intensity to only select the most superior lines (highest GEBVs) as parents (truncation selection) (Hayes et al., 2009; VanRaden et al., 2009). This often results in the selection of closely related individuals, reducing the genetic variation of the offspring and causing a lower genetic value in the long term (Jannink, 2010). To avoid the loss of genetic variation, alternative approaches such as the scoping (Vanavermaete et al., 2020) and deep scoping methods (Vanavermaete et al., 2021) were proposed. Compared to truncation selection, by slightly decreasing the selection intensity, the mentioned methods are able to better preserve genetic variation, increase the predictive performance and maximize the long-term genetic value. Although these methods outperform other parental selection strategies such as the population merit (Lindgren and Mullin, 1997), the maximum variance total (Cervantes et al., 2016) and the HUC with bridging methods (Allier et al., 2020), it remains difficult to evaluate to what extent these breeding strategies really maximize the long-term genetic value.

Oracle selection is a hypothetical frame of mind in which a value of interest (e.g., genetic gain) is maximized using the ground truth. Therefore, oracle selection can only be used in silico, allowing for the assessment of different selection algorithms. By assuming that oracle selection represents the optimal selection, the progress of existing parental selection methods and TP update methods can be assessed. Additionally, by exploiting the insights resulting from oracle selection, new (non-oracle) selection methods could be developed in the future.

In this paper, an oracle parental selection method and an oracle TP update method are proposed. Both oracle methods are compared with existing, state-of-the-art selection methods. In the case of TP updates, each method is assessed using a simulated breeding population with a narrow as well as a broad genetic variation. Different numerical characteristics such as the genetic value, predictive performance and genetic relationship of a breeding population using different TP update methods including oracle selection will be assessed. Finally, based on these insights, new approaches for parental and TP update methods are discussed.




2 Materials and methods

The base population and breeding scheme in this paper are adopted from Neyhart et al. (2017). The base population is constructed from two datasets of North American barley (Hordeum vulgare) from the University of Minnesota (UMN) and the University of North Dakota (NDSU), counting respectively 384 and 380 six-row spring inbred lines with 1590 biallelic SNP loci.



2.1 Breeding scheme

The recurrent breeding scheme is depicted in Figure 1 and has been described by Vanavermaete et al. (2020) as well as by Neyhart et al. (2017). In each breeding cycle, 100 parents are selected from the current breeding population and paired into 50 couples. Each couple produces 20 offspring resulting in a total of 1000 F1 hybrids. After two generations of single-seed descent, 1000 F3 individuals are obtained. These individuals form the new breeding population from which parents can again be selected.




Figure 1 | Overview of the recurrent breeding scheme. First, 50 couples of parents ( ) each produce 20 offspring, yielding a total of 1000 F1 hybrids. After two generations of single-seed descent, 1000 F3 individuals are obtained. From those F3 individuals, new parental lines are selected.



In the first breeding cycle, 50 individuals with the highest phenotypic values of the NDSU dataset are coupled with 50 individuals with the highest phenotypic values of the UMN dataset. In all subsequent breeding cycles, 100 parents are selected and coupled according to one of the parental selection methods that are described further. From this point onwards, the parents are selected solely based on the genomic estimated breeding values(GEBVs). The GEBVs are predicted using a linear mixed effects model that has initially been fitted using the base population and incorporates both phenotypic and genotypic information. During each breeding cycle, the TP is updated using one of the TP update methods (described further). These methods add and remove individuals from the TP. Added individuals are selected from the current breeding population.

The different parental selection methods are compared over 50 breeding cycles, whereas the different TP update methods are compared over 15 breeding cycles. All results are averaged over 100 simulation runs.




2.2 Parental selection methods

Truncation selection selects 100 individuals with the highest GEBVs and crosses them randomly. This method is generally associated with a high short-term genetic gain and is therefore often used in breeding programs.

The optimal genomic mating (OGM) method, on the other hand, selects parents that minimize an objective function combining the inbreeding coefficient, the coancestry coefficient and a usefulness criterion (Akdemir and Sánchez, 2016). Parents are selected by a genetic algorithm using the R package GenomicMating.

The scoping method has been proposed by the present authors and consists of two steps (Vanavermaete et al., 2020). First, individuals with the highest GEBVs are preselected from the breeding population. The fraction of the population that is preselected is controlled by the scoping rate (SR). Second, parents are selected iteratively from the preselected individuals. The individual with the highest GEBV is selected as the first parent, whereas the second parent is the one that maximizes the F-score ( ):

 

with   the number of markers,   the  –th column of the   matrix Z containing the genotypes (coded as -1,   and  ) of the   already selected individuals. The vector p consists of   Boolean values that are initially set to 1 for all marker positions. When both alleles at marker   are present,   is set to  . If all   equal 0, they are restored to 1. This way, the inclusion of all marker alleles in the parental population is assured to the highest extent possible. A complete overview of the scoping method can be found in Vanavermaete et al. (2020).

The deep scoping method uses the scoping method to (re)introduce new QTL alleles in the breeding population through the use of a genebank. First, truncation selection is used for five breeding cycles (DSBC5) to simulate a reduction in genetic variation in the breeding population due to intensive breeding. Next, a genebank is used to (re)introduce genetic variation in the breeding population. Because the genebank is characterised by a broad genetic variation and individuals with a low genetic value, the breeding population is divided into different layers allowing for the genetic values to gradually increase over different breeding cycles before introducing these individuals into the elite population. A complete overview of the deep scoping method is reported in Vanavermaete et al. (2021).




2.3 Oracle parental selection

Oracle parental selection is a hypothetical frame of mind that allows to reveal the full potential of parental selection. Classical selection methods only have access to information extracted from molecular markers that are linked to the QTLs that underlie the trait of interest. In contrast, oracle parental selection is allowed to exploit knowledge of the actual QTL effects. Intuitively, the method selects individuals with the highest number of favorable QTL alleles, giving priority to QTL positions that have not yet been selected in the parental population, thus preventing the loss of rare favorable QTL alleles. Formally, each individual receives a score between 0 and   (number of QTLs), representing the number of favorable QTL alleles that are present in its genome. The individual with the highest score is selected as the first parent. The remaining individuals are scored again, this time only taking into account QTL positions whose favorable alleles have not yet been selected in the parental population. In case all favorable QTL alleles are already present in at least one of the selected parents, the score is calculated over all QTLs. Again, the individual with the highest score is selected. This process is repeated until the required number of parents is selected. The selected parents are randomly paired using a recurrent breeding scheme (see Figure 1). The oracle selection method maximizes the genetic progress while avoiding the loss of favorable QTL alleles.




2.4 Training population update methods

Different methods to update the TP will be evaluated. Each method selects individuals from the current breeding population and adds them to the TP. The top TP update method selects individuals with the highest GEBVs, the tails TP update method selects individuals from both tails of the normally distributed GEBVs and the random TP update method selects individuals at random. A complete description of these methods can be found in Neyhart et al. (2017). The PEVmean TP update method selects individuals that minimize the prediction error variance, whereas the CDmean TP update method selects individuals that maximize the reliability of the predictions (Maenhout et al., 2010; Rincent et al., 2012). Finally, the TrainSel TP update method selects individuals from the breeding population by means of a genetic algorithm (Akdemir et al., 2021); this method is available in R via the package TrainSel.




2.5 Oracle training population updating

We propose the oracle TP update method to construct an optimal TP that maximizes the predictive performance of the genomic prediction model. The oracle TP update method is again a hypothetical frame of mind to study the characteristics of an optimally selected TP. In contrast to the oracle parental selection method, the oracle TP update method only requires the phenotypic and genotypic values of each individual. QTL information is thus not needed. The oracle TP update method can be used in combination with classical (i.e., non-oracle) parental section methods that rely on GEBVs. The difference is that by using an optimally selected TP, the GEBVs are better predicted.

In the oracle TP update method, individuals are added and removed from the TP iteratively. First, the contribution of each individual towards the predictive performance is calculated. The predictive performance is expressed as the Pearson correlation between the predicted and true genetic values of the whole breeding population. To avoid overfitting, individuals of the breeding population that have been accepted in the TP are not used to calculate the predictive performance. The individual that maximizes the predictive performance after its addition to the TP is accepted in the TP. Second, the impact of removing each individual separately from the TP is assessed and the individual that maximizes the predictive performance after its removal is eliminated from the TP. In total, up to 50 individuals can be added and removed from the TP. An individual will only be added to or removed from the TP if that action increases the predictive performance. It is, however, possible that each individual in the TP has a positive contribution towards the predictive performance and that no individual is removed. Therefore, the size of the TP could vary, depending on the addition and removal of individuals.




2.6 Prediction model

In the first breeding cycle, the complete base population is used as TP. In the subsequent breeding cycles, 150 individuals are phenotyped and added to the TP according to the tails method, selecting 75 individuals with the highest and 75 individuals with the lowest GEBVs (Neyhart et al., 2017). According to Neyhart et al. (2017), this results in a (non-significantly) higher genetic gain compared to other update methods. Before updating the TP, the 150 oldest individuals in the TP are removed from the TP. This reduces the computational time without reducing the predictive performance (Neyhart et al., 2017).

In the case of the oracle TP update method, only 100 randomly selected individuals of the base population are used as TP. To compare the different TP update methods, in subsequent breeding cycles, only up to 50 individuals are added to the TP. Additionally, the oracle TP update method can also remove up to 50 individuals from the TP if the removal of such individuals increases the predictive performance.

The GEBVs are predicted by fitting a linear mixed effects model:

 

with y a vector of phenotypic values, 1n a vector of size   containing ones,   the number of individuals in the TP,   the fixed effect (phenotypic mean),   he incidence matrix of the TP with marker information,   the marker effects following a normal distribution   with   (with   the identity matrix of dimension  ),   the number of markers and   the residual effects following a normal distribution   with  . Both   and   are estimated by means of restricted maximum likelihood (REML). The GEBVs of the individuals are calculated as:

 

with   the GEBVs,   the marker information and   the predicted marker effects.

The linear mixed effects model in Eq. (2) is fitted using the package rrBLUP in R (Endelman, 2011). Even though it has been recommended to remove markers with low levels of polymorphism from the TP (Chang et al., 2018), we kept all markers as this resulted in a higher predictive performance.




2.7 Simulation of the population

The simulation study was built upon the work of Neyhart et al. (2017), using the packages GSSimTPUpdate and hypred in R (version 3.6.3). First, the QTLs were simulated based on the marker position, allele, and chromosomal information. One hundred QTLs ( ) are selected randomly from the available 1590 biallelic SNP loci. The remaining 1490 biallelic SNP loci are available as markers for prediction and selection purposes. The QTL effects are calculated according to a geometric series. At the  -th QTL, the favorable homozygote will have a value  , the heterozygote a value zero, and the unfavorable homozygote a value   with  . Dominance and epistatic effects were assumed to be absent. The phenotypic value is calculated over three different environments, each drawn from a normal distribution with mean 0 and variance   which is defined as 8 var(g) with   the genetic values of the breeding population (Bernardo, 2014). The variance of the genetic value, and hence   is calculated before the first breeding cycle and remains unchanged during the simulation. The phenotypic value of the  -th individual in the  -th environment ( ) is calculated as follows:

 

with   the genetic value of the  -th individual,   the  -th environmental effect and   the residual effect of the  -th individual and the  -th environment. The residual effect is drawn from a normal distribution with mean 0 and variance  , with   scaled to simulate a population with a heritability   of 0.5. The residual error   is calculated as:

 

The phenotypic value of an individual is defined as the average over the three environments. A comprehensive overview of the simulation study can be found in Vanavermaete et al. (2020).

To track the fixation of unfavorable QTL alleles, the maximum reachable genetic value is calculated as the sum of the QTL effects that are fixed (both favorable and unfavorable) and the sum of the favorable QTL effects that are not yet fixed. It represents the maximum genetic value that could still be reached, taking into account the fixation of unfavorable QTL alleles. The maximum reachable genetic value and the mean genetic value are rescaled such that the maximum reachable genetic value, when no unfavorable QTLs are fixed, has a value of 1. As in Vanavermaete et al. (2020), the mean genetic value of the top-10 individuals is reported. These individuals represent the superior lines that are prime candidates for commercialization.





3 Results



3.1 Oracle parental selection

Oracle parental selection is a hypothetical frame of mind that uses the knowledge of QTL positions and QTL effects to demonstrate the effect of an almost perfect parental selection on the genetic value. In the initial population, some of the QTLs are already fixed for one of the two possible alleles. Some of these alleles have a negative contribution to the genetic value. This explains why the maximum reachable genetic value is slightly lower than 1 for the initial population (see Figure 2). Over the subsequent breeding cycles, the maximum reachable genetic value remains unchanged, indicating that no favorable QTL alleles are eliminated during breeding. Meanwhile, the frequency of favorable QTL alleles in the breeding population increases, leading to high mean genetic values. Over time, unfavorable QTL alleles are lost from the breeding population, leading to the fixation of favorable QTL alleles.




Figure 2 | Mean genetic value of the top-10 individuals and maximum reachable genetic value of a breeding population using the oracle selection method, scoping method (SR = 0.3), and deep scoping method (DSBC5), OGM method and truncation selection over 50 breeding cycles. Oracle selection leads to a high increase of the mean genetic value over the first breeding cycles, while the maximum reachable genetic value remains constant, indicating that no favorable QTL alleles are lost. The difference in genetic value between the oracle selection method and the other methods indicates that further improvements of the parental selection methods could increase the genetic value up to 14 percentage points.



The scoping method   and the deep scoping method (DSBC5) are able to increase the long-term genetic values compared to truncation selection (baseline) and the OGM method. However, oracle selection reaches much higher genetic values in the short as well as in the long term. This indicates that current parental selection methods could, in principle, be further optimized to increase the short- and long-term genetic values up to 14 percentage points. An overview of the mean genetic value of the top-10 individuals and of the maximum reachable genetic value for the different parental selection methods is listed in Tables S1, S2 in the Supplementary Material, respectively.




3.2 Oracle training population update

The oracle TP update method is a hypothetical frame of mind that selects individuals to construct a TP using their genotypic and phenotypic values. The optimal TP is then used to (re-)train the mixed effects model that predicts the GEBVs of the current breeding population. In turn, these GEBVs are used to select parents for the next breeding cycle. Assuming that the oracle TP update method results in a good prediction of the GEBVs, it can be used to assess the current progress of other TP update methods.

The TP update methods were compared using a breeding population where the parents are either selected according to truncation selection or according to the scoping method. Truncation selection prioritizes individuals with the highest GEBVs, whereas the scoping method will also select individuals that maximize the genetic variation of the parental population. Therefore, both approaches may require a different TP update strategy. The results for truncation selection (left panel) and the scoping method (right panel) using different TP update methods are shown in Figure 3.




Figure 3 | Simulation results of different TP update methods (top, tails, random, CDmean, PEVmean and TrainSel) and the oracle TP update method. The oracle TP update method yields the highest long-term genetic values.



At the start of the simulation, each method results in the same mean genetic value of the top-10 individuals. After only two breeding cycles, the oracle TP update method already yields a higher genetic gain compared to the other TP update methods. At breeding cycle 15, a difference of 15 and 21 percentage points is observed between the oracle and top TP update methods for a breeding population using truncation selection and the scoping method, respectively. It is clear that the oracle TP update method results in a better prediction of the GEBVs, optimizing the parental selection and thus leading to higher long-term genetic values. An overview of the mean genetic value of the top-10 individuals and of the maximum reachable genetic value using different update methods is listed in Tables S3, S4, respectively, for truncation selection, and Tables S5, S6, respectively, for the scoping method.

The top, random, tails, PEVmean and CDmean TP update methods (Rincent et al., 2012; Neyhart et al., 2017) yield approximately the same genetic values. When parents are selected according to truncation selection, the top TP update method yields high genetic values, whereas when the scoping method is used, the tails TP update method results in higher long-term genetic values. The TrainSel TP update method (Akdemir et al., 2021) is able to outperform both the top and tails TP update methods in both scenarios (truncation selection and scoping method). Especially when the scoping method is used, the TrainSel TP update method results in a 3 percentage points higher genetic gain after 15 breeding cycles compared to the tails TP update method.





4 Discussion



4.1 Strength of the oracle selection methods

The oracle selection method is a theoretical concept that uses QTL positions, QTL effects, and genotypic and phenotypic information to select an optimal parental population or TP. This method allows for the comparison of currently existing methods. If a method obtains a similar genetic value as observed for the oracle method, then this means it is optimal and cannot be further improved upon. However, as observed in Figure 2, this is not yet the case for the current methods. Additionally, the oracle method can provide insights into which variables (e.g., the genetic relationship, inbreeding coefficient, coancestry coefficient, etc.) should be controlled to maximize the short- or long-term genetic gain.




4.2 The greedy selection of QTL alleles

Oracle parental selection was developed to study the effects of using a modified truncation selection scheme in which the frequency of all favorable QTL alleles is maximized. Oracle parental selection assumes knowledge of the actual QTL effects and is therefore only of conceptual interest; in vivo, only genetic markers are available to guide parental selection. Although oracle selection is able to maximize the genetic gain by greedily selecting the favorable QTL alleles in the parental population, when the parental selection process relies on genetic markers that are putatively linked to the causal QTL effects, greedily selecting individuals (as observed for truncation selection) often results in a premature convergence of the genetic value. In other words, by only preserving the marker alleles that have a positive estimated marker effect, the loss of favorable QTL alleles cannot be prevented. Preserving both marker alleles in the breeding population prevents the elimination of poorly estimated QTL alleles resulting in higher long-term genetic values compared to a greedy strategy like truncation selection.




4.3 Reaching the theoretical maximum genetic value

The favorable QTL alleles are not always abundantly present in the initial population and many breeding cycles may be needed before fixation occurs. This explains the relatively slower increase of the fixed genetic value compared to the mean genetic value of the top-10 individuals (see Figure 4). In a standard setting, the fixed genetic value represents the overall effect of all QTL alleles that are fixed in the breeding population. As oracle parental selection avoids the fixation of unfavorable QTL alleles, the fixed genetic value can, in this case, be used to monitor the fixation of favorable QTL alleles. After almost 30 breeding cycles, the genetic value and the fixed genetic value converge to a slightly lower value than the maximum reachable genetic value. Oracle parental selection, which was designed to prevent the loss of favorable QTL alleles, should make it possible to reach the maximum genetic value. However, when two or more QTL alleles are in strong linkage disequilibrium (LD) w.r.t. one another, linking a favorable QTL allele to an unfavorable QTL allele, fixation of both QTL alleles becomes difficult. This was the case for five percent of the QTLs, preventing the genetic value from reaching its absolute maximum and explaining why the genetic value and the fixed genetic value did not converge to the same value. The oracle selection method demonstrates that, even in an ideal situation, at least 30 breeding cycles are needed to approach the maximum reachable genetic value in the breeding population for the base population and simulation settings used in this study.




Figure 4 | Simulation results using the oracle selection method over 50 breeding cycles. Oracle selection leads to a high increase of the mean genetic value over the first breeding cycles. The maximum reachable genetic value remains constant, indicating that no favorable QTL alleles are lost. Due to selection, the frequency of the favorable QTL alleles increases, finally leading to the loss of unfavorable QTL alleles. This eventually results in high genetic values.






4.4 Genetic values, phenotypic values, and genomic estimated breeding values

The main goal of breeding is to maximize the genetic value of various traits of interest and this both in the short and the long term. Unfortunately, the genetic value cannot be measured, and thus selection is often based on the phenotype. Because the phenotype is also influenced by the environment, its use to guide parental selection will result in a lower genetic gain compared to the use of genetic values. This is shown in Figure 5. Measuring the phenotype is a time-consuming and expensive process, therefore, GEBVs are often used instead, predicting the genetic values using a linear mixed effects model. The selection of superior individuals using GEBVs hinges on the predictive performance of the underlying genomic prediction model. The construction of a genomic prediction model is based on a TP for which phenotypic and genotypic data is required. Due to prediction errors, selecting parents based on GEBVs results in a lower genetic gain compared to parental selection based on phenotypic or genetic values (see Figure 5). The difference in the genetic value obtained by selecting the parents based on the GEBVs and phenotypic values could be reduced by using a more accurate prediction model and a better TP design. However, linear mixed models such as rr-BLUP and gBLUP generally achieve competitive predictive performances (Moser et al., 2009), and according to Neyhart et al. (2017), as long as the TP is updated, the genetic value converges to the same long-term value.




Figure 5 | Mean genetic value of a breeding population using truncation selection. The parents are selected based on the GEBVs, true genetic values (TGVs), or phenotypic values. Selecting parents based on the TGVs results in the highest genetic values, followed by phenotypic values and GEBVs (TP updated by means of the tails method).



Aside from environmental effects and prediction errors, selecting the parents with the oracle selection method results in a higher long-term genetic value than when the parents are selected with truncation selection based on the true breeding values. Truncation selection selects individuals with the highest genetic value. Because the genetic value is calculated as the sum of all the QTL effects, an individual with a high genetic value can still possess unfavorable QTL alleles. In other words, truncation selection based on genetic values can still result in the loss of favorable QTL alleles. Oracle selection prevents, just like the (deep) scoping method, the loss of these favorable QTL alleles, resulting in an overall higher long-term genetic value.




4.5 Size of the training population

Figure 6 shows the size of the TP as a function of the breeding cycle when the oracle TP update method is used in combination with truncation selection (left panel) and scoping method (right panel). At the start of the simulation, the TP is constructed as a random selection of 100 individuals from the base population. The oracle TP update method can, each cycle, add and remove up to 50 individuals from the TP. An individual can only be added to or removed from the TP if a higher predictive performance is obtained as a consequence. A similar TP update pattern is observed for both truncation selection and the scoping method. However, after breeding cycle 5, the scoping method results in a slightly higher TP size compared to truncation selection. This can be explained by the inherent aim of the scoping method to increase the genetic variation in the breeding population and therefore requires a larger TP to accurately predict all GEBVs.




Figure 6 | Overview of the number of individuals that are added to and removed from the TP using the oracle TP update method. Parents are selected according to truncation selection (left) or the scoping method (right). Over the first breeding cycles, a lower number of individuals are removed from the breeding population, allowing for an increase in the size of the TP.



At the first breeding cycle, the oracle TP update method adds approximately 30 individuals to and removes 30 individuals from the TP, replacing the randomly chosen individuals one by one. In subsequent breeding cycles, the number of individuals that are removed from the TP is reduced, allowing for an increase in the size of the TP. Over time, fewer individuals are added to the TP, resulting in the same number of individuals that are added to and removed from the TP (steady state). This means that the predictive performance is not maximized by consistently increasing the TP size.

For truncation selection, the size of the TP starts to converge at breeding cycle 15. At that point, fewer than 25 individuals are added to the TP. This observation seems to indicate that using huge datasets to fit a prediction model may not be the best strategy.




4.6 Constructing an optimal training population

The top and tails TP update methods rely on GEBVs. Because the top TP update method selects only the individuals with the highest GEBVs, the mean genetic value of the TP is higher compared to that of the breeding population (see top left panel of Figures 7, 8). This is not observed for the oracle TP update method. Selecting on the basis of the highest GEBVs does not seem like the best strategy to maximize the predictive performance of the GEBVs.




Figure 7 | Simulation results using various TP update methods (Top, CDmean, PEVmean, Random, Tails, TrainSel, Oracle) using truncation selection to select the parents in each breeding cycle. Top left: the mean genetic value of the TP; top right: the predictive performance; bottom left: the mean genetic relationship calculated according to VanRaden (2008) between the members of the breeding population and the members of the TP scaled to the average genetic relationship between the members of the base population; and bottom right: the absolute residual error.






Figure 8 | Simulation results using various TP update methods (Top, CDmean, PEVmean, Random, Tails, TrainSel, Oracle) using the scoping method to select the parents in each breeding cycle. Top left: the mean genetic value of the TP; top right: the predictive performance; bottom left: the mean genetic relationship calculated according to VanRaden (2008) between the members of the breeding population and the members of the TP scaled to the average genetic relationship between the members of the base population; and bottom right: the absolute residual error.



The oracle TP update method yields a much higher predictive performance than the other methods, whose performances are similar (see top right panel of Figures 7, 8). As discussed in Vanavermaete et al. (2020), by preserving the genetic variation in the breeding population, an overall higher Pearson correlation coefficient between the true and predicted breeding values is obtained. This can be observed in Figures 7 and 8.

A TP should contain individuals that represent the genetic diversity of the current breeding population, allowing for a better prediction of each individual. This is also observed in Figure 3, where the tails TP update method results in higher long-term genetic values compared to the top TP update method. The scoping method maximizes the genetic variation, therefore, only selecting individuals with high GEBVs will not be sufficient to accurately predict the GEBVs of the whole breeding population. If individuals of the TP are a good representation of the breeding population, both will have a high genetic relationship. This can easily be calculated as:

 

with M a matrix with   rows and   columns of which each column is calculated as  ,   the number of individuals in the breeding population,   the genotype of   individuals at the  -th marker,   a vector of size   containing ones,   the number of markers, and   the frequency of the alternative allele at the  -th marker (VanRaden, 2008).

The mean genetic relationship between the members of the TP and the members of the breeding population for different TP update methods is shown in the bottom left corner of Figures 7 and 8 for truncation selection and the scoping method, respectively. In the top TP update method, the individuals selected as parents are also added to the TP, resulting in a slightly higher genetic relationship between the TP and the breeding population compared to other similar TP update methods (random, PEVmean, CDmean and tails). This difference is more pronounced when truncation selection is used, since in the scoping method only the first parent is selected based on the GEBV. Therefore, the top TP update method will not always select the same individuals. The oracle TP update method also results in a training population with a high genetic relationship w.r.t. the breeding population, indicating the importance of maximizing the genetic relationship.

The residual error is the absolute difference between the genetic value and the phenotypic value of an individual. Over the first breeding cycles, the oracle TP update method selects individuals with a low residual error. In vivo, the residual error is unknown and thus selecting individuals that minimize the residual error cannot easily be achieved. The PEVmean update method (Rincent et al., 2012) selects individuals by minimizing specific contrasts of the prediction error variance matrix that is associated with the random effects part of the mixed model equations, but according to Neyhart et al. (2017) it was not able to outperform other update methods in the long term. This is also confirmed in Figure 3. Therefore, non-oracle update methods will probably not be able to reach the same long-term genetic values as the oracle TP update method as long as the residual error cannot be measured or predicted more accurately.

The two driving forces of the oracle TP update method are the maximization of the genetic relationship between the TP and the breeding population and the minimization of the residual error of the TP. Although the genetic relationship can easily be maximized, minimizing the residual error may be more difficult. High-throughput phenotyping could result in data of higher quality, thus reducing the residual error. In this simulation study, the oracle TP update method only required a TP size of approximately 150 individuals. This indicates that phenotyping efforts should probably focus more on quality than on quantity.





5 Future prospects

A parental selection method should aim to maximize the fixation of favorable QTL alleles. However, if the reliability of the GEBVs is low, this may also result in premature convergence of the genetic value. Therefore, a parental selection method should also aim to preserve genetic variation to the highest extent possible. Combined with high genetic progress, this will result in high genetic gains while avoiding a premature convergence of the genetic value.

In one way, both the scoping and deep scoping methods maximize the genetic gain while preserving a certain amount of genetic variation in the parental population. The preservation of genetic variation can at a later stage be reduced to fully maximize the genetic gain. This was demonstrated with the adaptive scoping method (Vanavermaete et al., 2022), but this idea can be further improved upon by dividing the crossing block design into two parts. Assuming a parental selection of 100 parents that are paired into 50 couples, the first   couples are selected according to the scoping method. The remaining   couples are selected solely using the F-score to select both parents, fully maximizing the genetic variation of the parental population. This will result in offspring with a lower genetic value but a broad genetic variation. Because P1 parents are still selected via truncation selection in the scoping method, increasing   will result in higher short-, but lower long-term genetic values. Therefore, in due time, by increasing the number of parental pairs that are selected according to the scoping method, the genetic gain will gradually increase. This concept, coined chimeric scoping, is shown in Figure 9. Just like a chimera is composed out of cells with more than one distinct phenotype, the crossing block design of chimeric scoping consists of two separate parental selection strategies. By preserving the genetic variation till the  -th breeding cycle, higher long-term genetic values of up to 10 percentage points are observed compared to the original scoping method. This demonstrates that maximizing the genetic progress while still preserving genetic variation can result in higher genetic values in the long term. We believe that this approach can be used to further develop new parental selection methods.




Figure 9 | Mean genetic value of the top-10 individuals and maximum reachable genetic value of a breeding population using the scoping method and the chimeric scoping method. Compared to the scoping method, chimeric scoping results in lower short-term but higher long-term genetic values.






6 Conclusion

The results obtained by the oracle parental selection method indicate that current methods to select the parental population are far from optimal. Although the scoping method increases the long-term genetic values considerably compared to truncation selection, the optimal breeding strategy has not yet been found, incentivizing the quest for more performant methods. Similarly, the TP update methods are also not able to maximize the genetic gain compared to the oracle TP update method. Although the oracle method clearly adds individuals to the TP that maximize the genetic relationship between the TP and the breeding population, it also selects individuals with a lower residual error, which cannot easily be achieved in vivo. Therefore, TP update methods will probably never be able to reach the same long-term genetic values as the oracle TP update method does. Nevertheless, this also shows that phenotyping technology should perhaps focus more on quality and less on quantity.
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Introduction

Recently, plant disease detection and diagnosis procedures have become a primary agricultural concern. Early detection of plant diseases enables farmers to take preventative action, stopping the disease's transmission to other plant sections. Plant diseases are a severe hazard to food safety, but because the essential infrastructure is missing in various places around the globe, quick disease diagnosis is still difficult. The plant may experience a variety of attacks, from minor damage to total devastation, depending on how severe the infections are. Thus, early detection of plant diseases is necessary to optimize output to prevent such destruction. The physical examination of plant diseases produced low accuracy, required a lot of time, and could not accurately anticipate the plant disease. Creating an automated method capable of accurately classifying to deal with these issues is vital. 





Method

This research proposes an efficient, novel, and lightweight DeepPlantNet deep learning (DL)-based architecture for predicting and categorizing plant leaf diseases. The proposed DeepPlantNet model comprises 28 learned layers, i.e., 25 convolutional layers (ConV) and three fully connected (FC) layers. The framework employed Leaky RelU (LReLU), batch normalization (BN), fire modules, and a mix of 3×3 and 1×1 filters, making it a novel plant disease classification framework. The Proposed DeepPlantNet model can categorize plant disease images into many classifications.





Results

The proposed approach categorizes the plant diseases into the following ten groups: Apple_Black_rot (ABR), Cherry_(including_sour)_Powdery_mildew (CPM), Grape_Leaf_blight_(Isariopsis_Leaf_Spot) (GLB), Peach_Bacterial_spot (PBS), Pepper_bell_Bacterial_spot (PBBS), Potato_Early_blight (PEB), Squash_Powdery_mildew (SPM), Strawberry_Leaf_scorch (SLS), bacterial tomato spot (TBS), and maize common rust (MCR). The proposed framework achieved an average accuracy of 98.49 and 99.85in the case of eight-class and three-class classification schemes, respectively.





Discussion

The experimental findings demonstrated the DeepPlantNet model's superiority to the alternatives. The proposed technique can reduce financial and agricultural output losses by quickly and effectively assisting professionals and farmers in identifying plant leaf diseases.





Keywords: artificial intelligence, deep learning, DeepPlantNet, leaf diseases, plant diseases classification




1 Introduction

The earth’s ecosystem, a geographically dispersed natural setting, includes plants undistinguishably. The planet’s habitat is growing by roughly 1.6% annually (Garg and Singh, 2023). Thus, rising demand for plants and items made from plants is increasing. A wide range of biotic stressors may impact agricultural yields, and due to decreased output levels, there may be significant financial losses. Food safety, agriculture, and nutrition are all interrelated and significantly affect people’s well-being (Food safety, 2022). Also, it has an undesirable impact on the poor and underdeveloped world, causing problems with their economies and health.

Additionally, since the world’s population is continuously growing, there is a daily rise in the demand for food. A country where farming is still a key driver of economic growth understands the need to safeguard crops from the devastation of leaf illnesses. These are the main reasons for both amount and quality losses in agricultural productivity. These losses have a negative impact on the agricultural companies’ production costs as well as their revenue margins. There aren’t enough existing quick and precise identifying tools. The nation’s nutritional security, food supply, the welfare of farmers, and way of life are all gravely threatened by illness occurrences of any kind. Due to the late discovery of plant illnesses, food poverty will worsen. In demand to successfully avoid and cure plant infections, it is crucial to identify them as soon as feasible. Several studies are being done to protect plants against diseases, and integrated pest management techniques are also being used to supplement conventional pesticides. The automatic plant disease categorization method is crucial for locating plant illnesses. Plant diseases are also significant in the decision-making and supervision procedures related to agricultural production. Recently, it has become vital to identifying plant diseases automatically. The considerable danger to the global food supply is an illness in plants, and it is difficult to identify many conditions in time. The leaves and stems of damaged plants, as well as their flowers, stalks, and fruits, will typically have noticeable lesions or markings. In general, it is possible to discern anomalies from one another by using the distinctive visual pattern that each illness or pest scenario possesses. The bulk of disease symptoms may typically be found on a plant’s leaves, which are also the primary source of information for diagnosing plant illnesses (Ebrahimi et al., 2017).

Farmers and plant pathologists have traditionally depended on their eyes to diagnose illnesses and form opinions founded on their prior knowledge. Still, this method has occasionally been wrong and misinterpreted because numerous distinct conditions initially appear to be the same. Due to the diversity of plants, different crops also exhibit diverse disease features, which adds a great deal of complexity to the classification of plant illnesses. Also, the expertise of farmers and plant pathologists must be passed on from one generation to the next. Yet, visual analysis of the leaf crown structures and color patterns remains the primary tool in conventional field screening for plant disease. Humans need time, effort, and specialized knowledge to identify plant diseases based on their experience and careful observation of the disease’s signs on plant leaves (Sankaran et al., 2010). Due to the diversity of plants, different crops also exhibit diverse disease features, which adds a great deal of complexity to the classification of plant illnesses.

Moreover, the wrong prediction of plant diseases causes the overuse of pesticides, which raises manufacturing costs. Based on these facts, creating a reliable disease identification system connected to a dedicated database is crucial to help farmers, especially young and inexperienced farmers. Researchers have developed novel approaches to identify plant diseases utilizing image processing to address these issues. The research agenda now places this at the top.

Several works have concentrated on categorizing plant illnesses using machine learning (ML). Most of the ML research has focused on classifying plant diseases using characteristics of plant leaf images, such as type (Mokhtar et al., 2015), color (Rumpf et al., 2010), and texture (Hossain et al., 2019). The three main categorization methods are K-nearest neighbors (Hossain et al., 2019), support vector machines (SVM) (Rumpf et al., 2010), and random forests (Mohana et al., 2021). Following is a list of these techniques’ main drawbacks: ML-based methods did not work well (poor performance) and could not be employed for real-time categorization. They frequently need to manually develop and extract features, which calls for the professional skills of research employees. Manual feature extraction is also time-consuming and complex. Most conventional methods use fundamental feature extractors, including hand-crafted features, shape-based feature extraction, histogram of gradients, and scale-invariant feature transformation (SIFT). These customized elements must be extracted through a complex process that takes scale-invariant to complete. After training the features, various learning algorithms—including the SVM—are used to classify different information types. The quantity of image preparation required by conventional methods may be relatively high, adding to the required effort and time. This covers image scaling, denoising using a smoothing filter like a Gaussian, and other image processing techniques. These preprocessing steps increase the processing duration of the pipeline for disease detection.

The research was motivated by the fact that despite the large variety of studies on the categorization of plant leaf diseases, there is still interest in creating high-accuracy automated systems for this purpose. Although a few studies on the categorization of plant leaf diseases have lately been offered, this area of study is still not fully investigated. The most often used plant leaf diseases classification techniques in current research are transfer learning (TL) of pre-trained DL frameworks and support vector machines (SVM). The SVM machine learning technique, however, needs more time to train with bigger datasets. The constraints in TL that cause the most worry are overfitting and negative transfer. To solve these issues in this research work, we created the DeepPlantNet model for plant leaf diseases classification.

Plant leaf diseases classification has also benefited from applying deep learning (DL) techniques with promising outcomes in recent years. DL techniques are currently being used widely in the agricultural sector for applications, including weed recognition (Yu et al., 2019), crop pest categorization (Ullah et al., 2022a), and plant illness identification (Bansal et al., 2021). One of ML’s study focuses is DL. It has primarily addressed the issues with standard ML approaches’ segmented operation (Athanikar and Badar, 2016), poor performance, long processing time, and manual feature extraction. The key benefit of DL models is their ability to extract features without the need for segmented operations while still achieving acceptable performance. Automatic feature extraction from the underlying data occurs for each object. The development of CNNs has increased the efficiency and automation of plant disease classification technology. While being quite effective at identifying the disease, typical convolutional neural network models are more expensive to compute. This necessitates the creation of a model that is effective and involves the generation of fewer parameters. In this paper, inspired by the effectiveness and success of DL, we suggested the DeepPlantNet model for eight types of plant disease classification of eight plants. To the best our knowledge it is the first study which uses different datasets and perform three types of classification tasks i.e., eight-class, six-class, and three-class classification of plant leaves. Our model contains only 28 learned layers, i.e., 25 ConV and 3 FC layers. Improved detection performance can be attained using the filter-based feature extraction method in the proposed framework. This study developed a model that would identify plant leaf diseases with enhanced accuracy and efficiency compared to the current methodologies. Most of the convolution filters employed in our model are 1×1 since 1×1 kernels have fewer parameters than 3×3 filters, ultimately decreasing the number of parameters. The suggested model can categorize photos into many classifications. The proposed approach employs a convolutional layer and leaky relu (LReLU) AF to extract the high-level characteristics from images. We categorize the diseases of eight different types of plants (grape, apple, pepper, cherry, peach, potato, strawberry, and squash) into the following eight groups: ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS. Furthermore, we have performed three-class classifications to classify plant diseases, including bacterial tomato spots, an early blight on potatoes, and standard corn (maize) rust. We also performed six-class classification to incorporate the healthy leaf images as well. It merges low-level features to produce abstract high-level features to uncover generalized features and attributes of sample data. The study’s primary contributions are:

	We developed an efficient DeepPlantNet model to improve plant disease classification by automatically detecting plant diseases in various phases of development in different plants.

	The suggested novel end-to-end DeepPlantNet framework automatically extracts the most discriminative characteristics for accurate plant disease classification and recognition.

	We have performed eight-class, six-class, and three-class classification experiments to classify plant diseases into eight and three types.

	We evaluated the efficacy of the suggested approach against existing cutting-edge models for identifying and classifying plant diseases.



The article is separated into the following segments: The literature review is offered in Section 2. The DeepPlantNet framework’s operation is then thoroughly discussed in Section 3. The proposed work’s performance evaluation is provided in Section 4. Whereas, section 5 discusses our method and obtained results. Lastly, the overall conclusion is presented in Section 5 at the end.




2 Related work

Many studies in the area of machine vision in agriculture have been conducted recently, including studies on fruit disease diagnosis (Hariharan et al., 2019), quality rating and fruit maturity classification (Zhou et al., 2021), plant pest classification (Ullah et al., 2022a), plant species classification (P’ng et al., 2019), and weed control and recognition (Dadashzadeh et al., 2020). The plant leaf diseases classification has received some recent study attention. Mainly, ML and DL techniques are used to categorize numerous groups of plant illnesses in various plants. The most current and pertinent research on automatic plant disease detection and classification are highlighted below.

In (Sahu and Pandey, 2023), the authors created a new hybrid random forest Multiclass SVM (HRF-MCSVM) framework to detect plant foliar diseases. Before classification, the picture features are segmented and preprocessed utilizing spatial fuzzy c-means to improve computation accuracy. They used a dataset from the Plant Village dataset contains photos of both healthy and sick leaves. The system’s effectiveness was then assessed using performance indicators like F-measure, accuracy, sensitivity, recall, and specificity value. In (Ratnasari et al., 2014), the authors introduced a sugarcane leaf disease identification technique using RGB pictures. Only three categories of diseases—ring spot, rust spot, and yellow spot—have undergone verification using the suggested system. While SVM was employed for classification, feature extraction used a mixture of texture and color features. Four kernel types—quadratic, polynomial, linear, and radial basis functions—were examined for the SVM classifier, with the linear kernel outperforming the others in performance. In (Rastogi et al., 2015), the authors created a machine vision-based system for detecting and classifying maple and hydrangea leaf illnesses. Leaf RGB pictures were first subjected to preprocessing, and then Euclidean distance and K-means clustering techniques were used for segmentation. The GLCM matrix, in which energy, contrast, correlation, and homogeneity have been determined, is considered for extracting features. ANN has been utilized for categorization in this study. For grading, the proportion of infection has been estimated using the disease and total leaf area. Fuzzy logic has been used to grade once the infection has been determined.

Earlier investigations used models with hand-crafted characteristics built on plant leaf shape, color, and texture to categorize plant diseases. Extreme feature engineering was used in these investigations, which mainly focused on a few disorders and were often restricted to specific contexts. Approaches of ML rely on significant preprocessing procedures, including a manual area of interest trimming, color modification, scaling, filtering, and background exclusion, for successful feature extraction since the obtained features are sensitive to the environment seen in photographs of leaves. Traditional ML approaches could only classify a few diseases from limited data because of these preprocessing techniques’ increasing complexity, and they could not scale to more significant sizes (Ahmed et al., 2022).

Current TL-based methods utilizing the PlantVillage database for leaf disease prediction have evaluated the efficacy of several DL frameworks utilizing numerous hyperparameters in demand to decrease dependency on hand-crafted features and increase categorization performance with massive datasets. The authors used the conditional generative adversarial network (C-GAN) (Abbas et al., 2021) to make artificial images of the tomato plant leaves to identify tomato disease. This model was one of these experiments. Then, using TL, a DenseNet-121 framework is trained to categorize pictures of tomato leaves into five, seven, and ten illness groupings. The authors of (Vickers, 2017) employed the CNN framework for classification tasks and the VGG network for illness localization. When contrasted with the statistics compiled by the authors (Sharma et al., 2022), this model attained a reasonable level of accuracy. In (Kumari and Singh, 2018), the authors segmented data using the VGG16 framework and classified it using the AlexNet framework. Yet the categorization accuracy of this approach is poor.

In (Chen et al., 2020), the authors used an AlexNet framework built on deep transfer learning for classification tasks. However, this approach was unable to isolate the disease-affected area. In (Yang et al., 2020) the authors described how a U-Net segmentation and ANN were used to detect illnesses in various plant types, including tomato, mango, lemon, potato, jackfruit, beans, Sabota, and bananas. Because of the KMC process’ assistance in determining the location of the disease, this technique also offers a quicker segmentation procedure. The authors proposed a method for timely plant illness identification that combines ANN with a Gabor filter for feature extraction (Kulkarni and Patil, 2012). The ANN performed the categorization procedure using texture and color data. This study revealed a significant research gap in several methods: the need for larger datasets for accurate implementation. Several mixtures of data preprocessing, including Contrast Limiting Adaptive Histogram Equalization (CLAHE) on individual RGB channels, RGB to HSV adaptation of pictures, and log transformation, were reported in (Jasrotia et al., 2023) along with a customized CNN-based Maize Plant Illness Detection framework. These trained frameworks contrasted with the CNN and SVM models that were trained without preprocessing procedures. The studies were run on the PlantVillage Maize Crop Database to gauge the efficacy of the proposed effort.

In contrast to the current methods, the authors (Joshi and Bhavsar, 2023) proposed a model to more accurately and effectively diagnose the illnesses of plant leaves. The Night shed plant leaf, obtained from the plant village dataset, was utilized for training the proposed framework and the industry-standard models AlexNet, VGG, and GoogleNet. There are nine distinct categories of illnesses as well as healthy plant leaves. The effectiveness or accomplishment of the models was assessed using a wide range of variables, including dropout, AF, batch size, and learning rate.

According to current studies, the categorization of plant diseases is primarily done using ML and DL models. However, their increasing computing complexity is hampered these methods’ main issues. There is still room for improvement in the trade-off between accuracy and computing complexity. Yet, no effort is shown to design a lightweight framework for classifying plant diseases. As the goal of our work, we have suggested a simple framework for classifying plant leaf diseases that consider these gaps.




3 Methodology

The plant leaf diseases classification can be made utilizing digital image processing. Digital image processing has advanced thanks to DL, outpacing conventional techniques in recent years. We proposed the DeepPlantNet model for identifying plant leaf illnesses in this work. Employing plant leaf images from the publicly available database, we will locate diseases of eight different types of plants (apple, cherry, grape, peach, pepper, potato, squash, and strawberry) into the following eight groups: ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS. The general description of the proposed method is shown in Figure 1. We provided the framework with images of various sizes to put the proposed method into effect. Then, we applied some pre-processing to decrease the dimensions of the input images to 227×227 pixels to ensure uniformity and accelerate the procedure. A DeepPlantNet framework with only 25 ConV layers was developed to classify plant leaf images into eight classes. For all experiments, separate data sets are utilized for training and testing. Specifically, we used 20% of the plant leaf images for model testing and 80% of the plant disease images for training.




Figure 1 | General workflow of the suggested approach.





3.1 Dataset

We verified the effectiveness and robustness of the DeepPlantNet model by using images from the publicly available Kaggle “PlantVillage Dataset” dataset (Dataset: https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset). About 54,000 photos of healthy leaves and illness cases are included in the open-source PlantVillage collection, divided into 38 categories by 14 species and pathologies. Dataset images vary in lighting, angles, format, bit depth, dimensions, and size, among other factors. We have only used infected leaf images of eight species (cherry, apple, peach, grape, strawberry, pepper, squash, and potato) and considered only one significant disease of each class (species). We have utilized images of eight categories in this study, including ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS. We used 260 images of each type for testing and training our model in this study. Some representative samples of the dataset are given in Figure 2.




Figure 2 | Representative samples from the dataset, the first row contains images of ABR, CPM, GLB, and PBS, whereas the second row contains images of PBBS, PEB, SPM, and SLS.






3.2 Experimental setup and evaluation

On a Computer with an Intel (R) Core (TM) i5-5200U CPU and 8GB of Memory, all the trials (experiments) were run. MATLAB R2020a was used to carry out the approach. The database’s images are fragmented into training and testing sets for all experiments. We do several experiments to see how well our suggested framework classifies plant diseases (Table 1).


Table 1 | Information about the implementation system.






3.3 Image resizing

Images of plant leaves in the database are in a range of dimensions. We pre-processed the plant leaf images to resize down to 227×227 pixels in line with our classifier’s specifications (input image) to ensure uniformity and hasten the procedure.




3.4 K-fold cross validation

The K-fold, or 5-fold cross validation, is used to train our DeepPlantNet model, and the folding is carried out five times. The dataset will be divided into 5 equal parts due to the usage of K-fold cross validation, and the testing set will be modified each time. The testing will alter gradually for the third, fourth, and fifth testing sets of data as well. For the initial training, the testing set will be the first fold or first 20% of the data. Here it is important to note that 80% of the dataset will always be training data.




3.5 DeepPlantNet model architecture details

In this work, we proposed the DeepPlantNet model for categorizing eight different plant diseases in eight other plants. The DeepPlantNet model comprises just 28 learned layers, including 25 ConV and 3 FC layers. Our model consists of 90 layers in total: one for the image input, 25 for ConV, 27 for batch normalization (BN), 3 for maximum pooling, 27 for leaky relu (LReLU), 2 for dropout, 3 for FC, 1 for softmax, and 1 for classification. The LReLU AF comes after the ConV layers. The architecture consists of eight fire modules. The Fire module consists of three convolution layers: a squeezing convolution layer with several 1×1-kernel layers, followed by 1×1 and 3×3 convolution layers (expand layer). We selected 1×1 layers to lower the number of parameters. The total amount of parameters in the layer is determined by multiplying the quantity of input channels by the number of kernels and the dimensions of the kernels, i.e., 3. We employed fewer kernels in the squeeze layer than in the expanding layer to decrease the number of inputs (input channels) to filters of size 3×3. To generate the same size output of the 3×3 and 1×1 kernels, we employed one-pixel padding in the 3×3 convolution layers. Each convolutional layer in our architecture is followed by batch normalization and LReLU layers.

Table 2 reveals the DeepPlantNet framework’s details. In the DeepPlantNet framework, the first (top or initial) layer is an input layer. Its size is comparable to the dimension of the input features, and it comprises I × J units. Our model receives input photos with a length of 227×227-pixel for processing. Convolution layers with a filter of dimensions 3×3 and 1×1 are employed to perform convolutions for the feature map creation. The top or initial convolution layer extracts the feature from the plant leaf pictures (of size 227×227) by employing 64 kernels of 3×3 dimensions with a stride of 2×2. Following the use of ConV and filter, the feature map of the convolution layers (output) is derived as follows:


Table 2 | DeepPlantNet framework details.



The following formula denotes the convolution procedure between the filter and image:

 

  Symbolizes the ultimate feature map, and jd (r, s) symbolizes the plant leaves images which are multiplied by the   (v, w) index of the kth filter of the cth layer. After applying convolutions on the plant leaf pictures, the output of size   is formed. i stands for input, p for padding, f for kernel size, and s for shift (stride).

The AFs come after convolutional layers. In the past, the sigmoid and tanh AFs were the most common. Most DL applications now use the ReLU and its derivatives (LReLU, Noisy ReLU, and ELU). The weighted sum of the input is converted into output by a node in a layer using the AF. The ReLU deactivates all neurons with values less than 0, making a sizable chunk of the network inactive. Instead of specifying that the ReLU AF be 0 for negative input values, we used an improved ReLU AF (LReLU AF) to define the ReLU as a negligible linear percentage of x. This improved AF improved the model’s classification performance. This AF was determined as follows: In contrast to RelU, the LReLU also produces an output for negative values and does not deactivate the inputs. The following describes how the LReLU AF works:

 

The LReLU function returns x when input is positive but 0.01 times x when information is negative (small value).

We used the BN technique to normalize the convolution layer outputs. In addition to enabling regularization, BN speeds up neural network learning and aids in avoiding overfitting. After the first convolutional layer, we used the highest pooling layer with a stride of 2×2 for downsampling. This layer reduces the amount of space, computation, parameters, and calculations.

 

The best possible feature map is denoted by f(x). In our approach, the upper limit from the nearby pixels (in a plant leaf image) is chosen using maximum pooling, employing a filter of size 3×3 and a stride of length 2×2. After utilizing the AF, BN, LRelU, and max-pooling operation, the output feature of the primary ConV layer is directed to the next ConV layer (in the first fire module).

The ConV layer in the following fire module receives the output of the previous fire module as input. After the second fire module, we used the max-pooling procedure for downsampling. Similarly, following the pooling process, the output of the second fire module is sent to the third fire module. In the convolutional layer, 64 filters of dimension 3×3 with padding of 1×1 are also applied. The additional layer lies before the AF after this ConV layer. We employed the AF after the additional layer. Shortcut connections are used to link every fire module.

The first FC layer accepts the feature map of the last (i.e., 25th) convolution layer. The FC layer transforms the two-dimensional output from the convolution layers into a one-dimensional feature vector. The operations of an FC layer are as follows.

 

where i, n, m, b, d, and w denote the fully connected layer’s output index, height, width, bias, depth, and weights, respectively. The first two FC layers are also followed by BN and LReLU layers. After the first two FC, we utilized the dropout layer (to avoid overfitting). The 8-way softmax (in the event of an eight-class classification) or three-way softmax (in the case of a three-class classification) and classification layers come after the last FC layer. Because of our dataset’s eight classes, the output of the previous FC layer is routed to an 8-way softmax.




3.6 Hyper-parameters

The success of DL frameworks depends on the selection of hyper-parameters. We examined the efficacy of the proposed DeepPlantNet framework using a variety of hyper-parameter values in hopes of finding the optimum value for all hyper-parameters given the large variety of options present. To find the best hyperparameters (which provide high accuracy and little error) for the proposed DeepPlantNet framework, we used a grid search approach. We decided to test and evaluate the effectiveness of our DeepPlantNet framework using 25 layers due to the abundance of options for layer numbers, parameters, and kinds. The proposed method’s hyperparameters and additional layers are chosen after some initial tests on a smaller dataset. The actual hyperparameter values are displayed in Table 3. We choose the stochastic gradient descent optimization strategy because it is quick, memory-efficient, and works well for more extensive datasets. We trained the algorithm for 35 epochs to account for the potential for overfitting. We employed 80% of the entire data to train DeepPlantNet, and 20% of the images were used to test our model.


Table 3 | Hyperparameters of the proposed framework.







4 Results

This part carefully analyses the results of the many tests conducted to assess how well our framework performs. We describe the experimental approach and performance indicators we employed to evaluate the effectiveness of our approach for classifying plant diseases. This part additionally includes further details on the dataset. To assess the effectiveness of our plan, we used a Kaggle dataset available to the general audience.



4.1 Performance evaluation on plant disease classification (eight disease categories)

The significant goal of this experiment is to confirm the usefulness and worth of our approach in identifying and classifying plant diseases. In this experiment, we employed 2080, more precisely 260 infected leaf photos of eight species (apple, cherry, grape, peach, pepper, potato, squash, and strawberry) from the PlantVillage dataset. We have used images of one disease from each species, i.e., ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS. A total of 1664 images of plant diseases were utilized in training, whereas 416 images were utilized for testing our framework. On the similar experimental conditions shown in Table 3 for classifying eight categories of infected leaves illnesses photos, we trained our DeepPlamtNet model using the training set. Our DeepPlantNet model needed 2550 minutes and 56 seconds to train for plant disease identification. The loss function demonstrates how well our approach can forecast our dataset. We illustrated accuracy and loss in Figure 3 to illustrate the training performance of the proposed strategy, illustrating that we may get acceptable accuracy even at lesser classification epochs. The suggested framework successfully classified plant diseases into many classes, achieving the ideal average accuracy, recall, precision, and F1-score of 98.49%, 94.125%, 93.87%, and 94.00%. To precisely describe the classification performance of the suggested technique in terms of actual and expected classes, we additionally built a confusion matrix analysis.




Figure 3 | Accuracy and loss achieved by DeepPlantNet framework (eight class classification), the black line demonstrates the testing and training accuracy and loss, whereas the blue and red lines display training accuracy and activity loss, respectively.



Table 4 displays the proposed confusion matrix for the DeepPlantNet method. The confusion matrix is a tabular representation of our DeepPantNet model’s performance. Each entry in a confusion matrix indicates the number of predictions provided by the DeepPlantNet model that were accurately or inaccurately categorized by the classes. According to the confusion matrix (Table 4), the DeepPlantNet model can correctly classify the eight plant diseases (ABR, CPM, GLB, PBS, PBS, PEB, SPM, and SLS), as shown in Table 4. All 255 out of 260 GLB images are accurately identified by the proposed model, followed by PEB (251 out of 260 images of each disease are correctly classified by the proposed model). Nevertheless, the model accurately categorized only 239 out of 260 PBS photos, which fared worse when forecasting PBS illness. As the proposed framework correctly classified most of the disease categories image samples (Table 4), according to the confusion matrix, our technique attains the best outcomes with a high TP rate for all the plant disease categories in our dataset.


Table 4 | Confusion matrix obtained by DeepPlantNet framework for eight class classifications.



Accurate identification, detection, or classification of unhealthy plant leaves is necessary to determine the efficacy and validity of the suggested approach. To achieve this, we evaluate the DeepPlantNet approach’s usefulness in classifying each disease (class-wise performance). Table 5 displays the suggested DeepPlantNet approach’s performance in terms of precision, accuracy, F1-score, and recall for classifying plant leaf diseases. According to Table 5, the proposed method offers cutting-edge performance in every evaluation criterion. According to the results, most photographs are accurately categorized, increasing accuracy. The essential factor for the increased plant illness identification accuracy is the robustness of the newly proposed framework, which more accurately reflects each class.


Table 5 | Class-wise performance of the DeepPlantNet framework in the case of eight class classifications.



The DeepPlantNet framework’s Receiver Operating Characteristic (ROC) curve is depicted in Figure 4 and demonstrates how effectively it detects plant diseases. To determine the ROC, we utilized the MATLAB function per curve. The ROC uses threshold values to outputs in the [0,1] range. The FP Ratio and TP Ratio are computed for each threshold. The TP to FP ratio is shown on the ROC curve, demonstrating the algorithm’s sensitivity. The area under the curve (AUC) measures how distinct classes vary from one another, making it a key assessment criterion for algorithms. It determines how effectively the algorithm can distinguish between classes. The framework will be more effective at differentiating between various disease classes if the AUC value is close to 1. Our model’s AUC score was 0.9926.




Figure 4 | ROC plot of the DeepPlantNet model (eight class classification).



Our model includes convolutional layers with kernels of varying sizes (3 × 3, 1 × 1), so the proposed DeepPlantNet technique provides the best classification accuracy. It enables the network to pick up on distinct spatial patterns and identify traits at different scales. Patterns are found via 1×1 kernels through the depth of the input photos. At the same time, 3 × 3 filters discover spatial patterns across the three dimensions of the input (width, depth, and height). As a result, diverse convolutional kernel sizes learn varied spatial patterns at varying scales and more accurately extract distinguishing information from plant leaf images.




4.2 Performance evaluation on plant disease classification (three disease categories)

The significant objective of this experiment is to confirm the effectiveness and usefulness of the presented approach in identifying and classifying plant diseases (three categories). We validated our model using another common, publicly accessible Kaggle dataset, “Plant Disease Prediction Dataset,” to assess and estimate the generalizability and performance of the DeepPlantNet model (Dataset: https://www.kaggle.com/datasets/shuvranshu/plant-disease-prediction-dataset). The data includes three plant diseases: bacterial tomato spot, an early blight on potatoes, and common corn (maize) rust. The dataset has 300 infected leaves photos from each class for model training and is balanced. In this experiment, we employed 900, more precisely 300, infected leaf photos of three different species (maize, potatoes, and tomato) from the “Plant Disease Prediction Dataset” dataset. Seven hundred twenty images of plant diseases are utilized for framework training, and the outstanding 180 pictures are utilized for framework testing. On the undistinguishable experimental conditions listed in Table 3 (except the number of epochs) for the classification of three categories of infected leaves illnesses photos, we trained our DeepPlantNet model using the training set. Our DeepPlantNet model needed 727 minutes and 4 seconds to train for plant disease identification. We illustrated accuracy and loss in Figure 5 to illustrate the training performance of the proposed strategy, illustrating that we may get acceptable performance even at more minor classification epochs (i.e., epochs 6). The testing accuracy and loss almost remain the same after epoch 6. The suggested method successfully classified plant diseases into three classes, achieving the perfect average precision, accuracy, F1-score, and recall of 99.66%, 99.85%, 99.82%, and 100%. To precisely describe the classification performance of the suggested method in terms of actual and expected classes, we additionally built a confusion matrix analysis. Table 6 displays the proposed confusion matrix for the DeepPlantNet method—a confusion Matrix is employed to evaluate the accuracy of the prediction. The confusion matrix provides a comparison between predicted and actual values. The proposed DeepPlantNet framework successfully classified all images (60 out of 60 images) of bacterial tomato spot and common maize rust correctly, whereas misclassified only one image of the early potato blight disease as bacterial tomato spot (classified 59 potato early blight disease images correctly), according to the confusion matrix, which shows that the suggested method attains the best performance with a high TP rate for all the plant disease categories in our dataset.




Figure 5 | Accuracy and loss achieved by the proposed model (three class classification), the black line displays the testing and training accuracy and loss, whereas the red and blue lines show training loss and training accuracy, respectively.




Table 6 | Confusion matrix achieved by the proposed model in case of three class classification.



According to the results, most photographs are accurately categorized, increasing accuracy. The essential factor for the expanded plant disease classification accuracy is the robustness of the newly suggested framework, which more accurately reflects each class. The ROC AUC of our framework is shown in Figure 6. Our model is more effective at differentiating between various disease classes and achieved the AUC score of 0.9950.




Figure 6 | ROC plot of the proposed DeepPlantNet framework (three-class classification).






4.3 Performance evaluation on plant disease classification (six disease categories)

To further validate the effectiveness of our model we used both normal and infacted leaf images of three types of plants i.e., tomato, potato, and maize. The objective of this experiment is to check the validity and usefulness of the proposed approach in detecting and classifying plant three types of leaf diseases (three categories) as well as normal images of those particular plants. We validated our model using common, publicly accessible PlantVillage to assess and estimate the generalizability and performance of the DeepPlantNet model in the presence of normal and infected plant leaves. The data includes three plant diseases: bacterial tomato spot, an early blight on potatoes, and common corn (maize) rust and normal images of these three plants i.e., tomato, potato, and maize. In this experiment, we used 2906 leaf images of healthy plants (1592 images of tomatoes, 1162 images of maize, and 152 images of potatoes). And 900 leaf images of infected plants, more precisely 300, infected leaf photos of three different species (maize, potatoes, and tomato. We used 5-fold cross validation in which 20% of the data is used for the testing and 80% of the data is used for training of our model in each fold. On the undistinguishable experimental conditions listed in Table 2 for the classification of three categories of infected leaves illnesses photos, we trained our DeepPlantNet model using the training set. Our DeepPlantNet model needed 890 minutes and 8 seconds to train for plant leaf disease identification. The suggested method successfully classified plant diseases into three classes, achieving the perfect average accuracy of 99.85% and all precision, F1-score, and recall of 99.00%. To precisely describe the classification performance of the suggested method in terms of actual and expected classes, we additionally built a confusion matrix analysis. Table 7 displays the proposed confusion matrix for the DeepPlantNet method—a confusion Matrix is employed to evaluate the accuracy of the prediction. The proposed DeepPlantNet framework successfully classified most of the images (299 out of 300 images) of common maize rust correctly, whereas misclassified eight images of the early potato blight disease, according to the confusion matrix, which shows that the suggested method attains the best performance with a high TP rate for the three plant disease categories and healthy images in our dataset.


Table 7 | Confusion matrix achieved by the proposed model in case of six class classification.






4.4 Comparison with state-of-the-art deep learning models

This experiment evaluates the usefulness and success of the suggested DeepPlantNet framework for plant disease classification into eight classes over the different current DL-based frameworks. We used the dataset with eight types of plant diseases for comparison because we have achieved minimum results in this case. Therefore, we compared our proposed DeepPlantNet framework performance with these comparative models, i.e., ResNet18 (He et al., 2016), Denenet201 (Huang et al., 2017), Darknet19 (Redmon, 2016) and MobileNetv2 (Sandler et al., 2018, Ullah et al., 2023a). Using a transfer learning technique, these modern DL frameworks were trained on millions of photos from the ImageNet database. All pre-trained variants of the networks’ final layer were fine-tuned to divide the pictures into eight classes: ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS. Network input picture sizes vary depending on the network. For example, darknet19’s input image size is 227 by 227, whereas resnet18’s is 224 by 224. We resized the input image size to meet the requirements of each contrasting DL framework. For this test, 1664 pictures of plant diseases are utilized for the training phase, and the leftover 416 pictures are utilized for testing our framework. The DeepPlantNet framework is trained using the training set and the same experimental settings for classifying plant diseases as those listed in Table 2. Table 8 presents the findings. These outcomes demonstrate the efficacy of our suggested approach for classifying plant diseases into ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS. Our model obtained an accuracy of 97.89%, a precision value of 91.37%, a recall value of 91.5%, and an F-measure value of 91.43%, which is superior to all other four contemporary models in terms of all performance measures. The resenet18 framework had the lowest accuracy of all the models (95.24%), while the densenet201 model had the second-best accuracy (96.12%). These comparative outcomes prove our approach’s superiority over comparative frameworks for plant disease classification into ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS.


Table 8 | Plant disease classification into ABR, CPM, GLB, PBS, PBBS, PEB, SPM, and SLS comparison with state-of-the-art frameworks.







5 Discussion

Most researchers used ML-based approaches for plant disease classification in the past. But the critical drawback of using ML-based approaches for classifying plant diseases includes the lengthy codes that increase computer complexity, low efficiency, and prolonged processing times. Several approaches have been created to handle the problem of long codes. The trade-off is that the code is now more complex. Some recent publications propose DL-based algorithms and models for classifying plant leaf diseases, inspired by the enormous achievement of DL-based algorithms. This paper has created our new DL-based DeepPlantNet framework for plant disease classification. Our approach categorizes ten types of plant diseases. We have performed two experiments, i.e., eight-class classification and three-class classification of plant leaf diseases. The proposed model identified accurately and reliably plant diseases by achieving an average accuracy of 98.49and 99.85in the case of eight-class and three-class classification schemes, respectively. Our approach achieved remarkable performance even by using limited images of each class (250 images per class) for training and testing. Modern DL frameworks that may be discovered in the literature are compared to the suggested model.

We performed experiments on small dataset to find the number of layers in our model which can provide optimal results. Our study technique works well since the proposed DeepPlantNet framework incorporates the LReLU AF (Ullah et al., 2023b) rather than the ReLu AF. To overcome the issue of dying ReLU, we employed the LReLU AF. The DL network won’t function if ReLU (Ullah et al., 2022b) fails for whatever reason. We added an LReLU to the proposed DeepPlantNet method to fix this problem. The LReLU activation method permits a modest (non-zero) gradient when the unit is unused. As a result, it keeps learning rather than stopping or hitting a brick wall. Consequently, the LReLU AF’s increased feature extraction capabilities enhance the proposed DeepPlantNet model’s effectiveness in identifying plant illnesses. These results are also because we have used enough layers (25 convolutional layers) in our proposed technique which can successfully extract the most distinctive, robust, and detailed features to represent the plant leaf images for accurate and effective classification. The initial convolutional layers extract (low-level) characteristics like color, edges, etc. Deeper layers, in comparison, oversee extracting high-level information like an anomaly in the images of plant leaves. Moreover, BN is utilized to speed up training, standardize the inputs, stabilize the network, lessen the number of epochs, and offer regularization to stop the network from overfitting (Ullah et al., 2022c). Also, we used small filters of size 1×1 and 3×3 to extract more detailed features. The size of the feature maps is reduced by pooling layers. The fundamental benefit of pooling is the extraction of clean, angular features. Additionally, it is done to cut down on calculations, parameters, and variation. In order to extract low-level features like points, edges, etc., max-pooling is helpful. Moreover, we have used dropout layer to overfitting on training data.

Furthermore, an experiment was created to evaluate the DeepPlantNet model’s effectiveness in classifying plant diseases compared to other cutting-edge approaches. Because of variations in data pre-treatment, training and validation methods, datasets, type of plant diseases classified, and processing power used in the respective methodology, this is not a direct comparison. In (Bensaadi and Louchene, 2023), the authors presented a low-complexity CNN-based framework for automatic plant disease classification that allows for quicker online categorization. More than 57,000 tomato leaf pictures were used in the training procedure. The images of tomato leaves from nine classes captured in a natural setting were used in training without background subtraction. The developed model successfully classified the diseases with an accuracy of 97.04% and less than 0.2 errors, demonstrating its remarkable precision. A computerized technique was suggested for accurately recognizing and categorizing illnesses from a given image (Haridasan et al., 2023). The suggested scheme for identifying rice plant illnesses employs a computer vision-based method that uses the techniques of image processing, ML, and DL to safeguard rice plants against the five major diseases that regularly affect the Indian rice fields. This lessens the need for traditional techniques. Image segmentation was used to pinpoint the paddy plant’s affected region after image pre-processing. The aforementioned ailments can be identified only by their outward symptoms. An SVM and CNN were used to identify and categorize specific types of paddy plant illnesses. Using ReLU and softmax algorithms, the suggested DL-based approach achieved a maximum validation accuracy of 0.9145. Following diagnosis, a preventative strategy was put out to assist those involved in agriculture and organizations in effectively combating these illnesses. The authors (Nagi and Tripathy, 2023) developed a fuzzy feature extraction method based on probabilistic neural networks (PNN) recognition capability to identify plant leaf disease. They first extracted texture and color information from leaf images using fuzzy gray-level co-occurrence matrices and fuzzy color histograms and then used PNN for classification. The PlantVillage database obtained the tomato, grapevine, and corn leaf photos. The suggested model beats existing classifiers like RF, DT, and SVM and receives a recognition accuracy of 95.68%. Bi-linear CNNs were employed by the authors (Srinivasa Rao et al., 2022) for the detection and categorization of plant leaf diseases.

The model’s accuracy for 38 different classes was 94.98% when tested against industry-recognized categorization metrics. A novel DenseNet with multilayer perceptron (MLP)-based diagnostic for rice plant disease, DenseNet169-MLP, was created (Narmadha et al., 2022). The suggested model sought to categorize the three rice plant diseases, i.e., Brown Spot, Leaf Smut, and Bacterial Leaf Blight. The pre-trained DenseNet169 was employed as a feature extractor to accomplish rice plant disease identification, and the MLP was used in place of the final layer. With a high accuracy of 97.68%, the findings showed that the DenseNet169-MLP model performed better than the recently described approaches. A novel method for rapidly recognizing and classifying plant leaf diseases was proposed using the ELM DL algorithm on an actual database of plant leaf images (Aqel et al., 2022). For image segmentation, feature extraction, feature selection, and classification of plant leaf diseases, the suggested method employed the k-means clustering, GLCM, BDA optimization, and ELM algorithms, respectively. Seventy-three plant leaf photos from four disease classes—Alternaria alternata, Anthracnose, Bacterial blight, and Cercospora leaf spot—were included in the dataset utilized for this investigation. The testing findings demonstrated that the proposed technique had a heartening categorization accuracy of 94%. The outcomes of this experiment (comparison study) show that the proposed plant disease classification system is workable.

Regarding average accuracy, we discovered that the suggested framework worked reasonably well, obtaining the highest overall accuracy of 97.89% and 99.62% in the case of eight-class and we three-class categorization arrangements (Table 9). Notably, these models were computationally challenging and demanded considerable processing power and hardware. However, because of the end-to-end learning framework utilized in the suggested DeepPlantNet technique, our solution does not require further feature extraction, selection, or segmentation steps. This study suggested an automated system for the classification of plant leaf diseases. The proposed DeepPlantNet model is lightweight and has less parameters than the techniques utilized in the literature, which are based on CNN models that employ a lot of deep layers and many parameters.


Table 9 | Comparison with state-of-the-art approaches.



Although the proposed approach produced positive results, we identified shortcomings and offered suggestions for further investigation. The PlantVillage dataset is utilized to assess how well our DL model achieved. Despite many images of various plant species with their diseases in this dataset, the images were all taken in a lab. Consequently, a substantial dataset of plant diseases in actual environments is expected to be created. Because plant diseases can vary in intensity over time, DL algorithms should be enhanced or updated to recognize and categorize illnesses during their whole life cycle. Since the DL architecture should function well in various illumination conditions, the datasets should include images taken in varied field situations. It is essential to properly examine all the factors that may affect the discovery of plant illnesses, including the kinds and sizes of databases, learning rates, brightness, and other elements. Unfortunately, this study only investigates significant plant diseases. We want to enlarge the categorization size for the proposed DeepPlantNet framework to identify plant illnesses correctly. Moreover, we have trained our model on limited number of images which is not enough to capture the diversity and variability of plant diseases. So, in future we will validate the generalization ability of our proposed method by training it with large scale datasets both in agricultural and medical domains (Yousaf et al., 2023; Raza et al., 2023). This study may aid professionals and farmers in making more rapid and accurate plant disease identifications, minimizing financial and crop yield losses. Furthermore, a similar technique may be applied to identify and classify numerous diseases in other plants and categorize the different types of disease utilizing other parts of plants (such as stem or flowers, etc.).




6 Conclusion

Agriculture is essential to a nation’s economic development. However, plant disease is the main danger to agricultural output and quality. Early detection of plant diseases is crucial for the health and welfare of the entire world. Unfortunately, accuracy issues and a lack of personnel resources limit manual crop disease inspection. Automated approaches for identifying and categorizing plant diseases are needed to solve these problems. A DeepPlantNet framework for efficient plant disease detection and classification was provided in this paper. The suggested framework’s superiority over existing techniques has been demonstrated by the average accuracy of 97.89% and 99.62% for eight-class and three-class classification schemes, respectively, for plant disease recognition and classification. Additionally, experimental findings on datasets related to plant diseases have validated the efficacy and reliability of the suggested framework for detecting and classifying plant illnesses.
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Vigor is one of the important factors that affects rice yield and quality. Rapid and accurate detection of rice seed vigor is of great importance for rice production. In this study, near-infrared hyperspectral imaging technique and transfer learning were combined to detect rice seed vigor. Four varieties of artificial-aged rice seeds (Yongyou12, Yongyou1540, Suxiangjing100, and Longjingyou1212) were studied. Different convolutional neural network (CNN) models were built to detect the vigor of the rice seeds. Two transfer strategies, fine-tuning and MixStyle, were used to transfer knowledge among different rice varieties for vigor detection. The experimental results showed that the convolutional neural network model of Yongyou12 classified the vigor of Yongyou1540, Suxiangjing100, and Longjingyou1212 through MixStyle transfer knowledge, and the accuracy reached 90.00%, 80.33%, and 85.00% in validation sets, respectively, which was better or close to the initial modeling performances of each variety. MixStyle statistics are based on probabilistic mixed instance-level features of cross-source domain training samples. When training instances, new domains can be synthesized, which increases the domain diversity of the source domain, thereby improving the generalization ability of the trained model. This study would help rapid and accurate detection of a large varieties of crop seeds. 
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1 Introduction

Rice is one of the most important crops in the world, serving as the main food crop in many countries around the world and acting as a fundamental food source for mankind (Jin et al., 2022a). Seed vigor is a crucial indicator of seeds, directly affecting their yield (Song et al., 2018). Studying seed vigor before seed germination can help identify high-vigor seeds with higher germination rates and faster growth potential, ultimately improving seed utilization and yield (Du et al., 2017; Zhang J. et al., 2020). Additionally, seed vigor also plays an essential role in evaluating the strengths and weaknesses of different varieties. By studying the seed vigor of various varieties, it is possible to identify excellent varieties that display good vigor. This provides a theoretical foundation for selecting and breeding high-quality rice varieties (Wu et al., 2021), which is conducive to the continuation of excellent varieties. Therefore, it is important to detect the vigor of rice seeds. However, the traditional germination experiment to detect seed vigor is time-consuming and laborious, and other detection methods, such as staining (Carvalho et al., 2017) and electronic conductivity test (Barbosa et al., 2021), will more or less damage and damage seeds, rely on chemical reagents, complex operation, affect seed reuse, at the same time, these detection methods are inefficient, unable to detect rice seed vigor efficiently and non-destructively.

Near-infrared hyperspectral imaging technology is a light-based nondestructive testing technology. It can obtain the spectral information of the object by analyzing the near-infrared energy spectrum reflected or transmitted by the object, so as to achieve rapid quantitative detection of the corresponding parameters of the object (Zhang and Guo, 2019). The specific principle is to use the strong penetration characteristics of near-infrared light, near-infrared light irradiates through the surface of the sample, and the chemical composition, tissue structure and morphology of the sample will have an impact on the absorption, scattering, reflection and other aspects of light (Jin et al., 2022a; Jin et al., 2022b). Near-infrared hyperspectral imaging systems can capture these reactions and present the data in the form of a 3D cube that integrates spectral and spatial information to obtain high-precision imaging results (Zhang L. et al., 2020). In recent years, some scholars have applied NIR-HSI to the detection of rice seed vigor: Jin et al. (2022a) combined NIR-HIS with machine learning and deep learning to predict the seed vigor of different varieties of rice, and the accuracy of most models was more than 85%, in addition, they (Jin et al., 2022b) also used NIR-HSI with LeNet, GoogLeNet, and Residual network (ResNet) to identify rice seed varieties. Among them, the classification effect of the ResNet model was the best. The classification accuracy rate of the test set was 86.08%. In addition, some scholars have also applied NIR-HIS to the detection of rice seed vigor, He et al. (2019) utilized Savitzky-Golay preprocessed extreme learning machine model to detect seed viability in 3 different years, using only 8 bands of spectral data, the classification accuracy was as high as 93.67%. Hong et al. (2022) used models such as partial least squares (PLS) discriminant analysis, support vector machine (SVM), PLS-SVM, PLS-artificial neural network, and one-dimensional convolutional neural network (CNN) to predict vigor using averaging and hyperspectral images. The results show that in most models, about 90% accuracy and a high F1 score can be obtained. The experimental results have proved that the method is efficient, accurate and feasible. However, none of the aforementioned studies addressed the generalization ability of the models, and the models established in these studies were trained from scratch, specifically designed for particular learning tasks.

Deep learning (DL) is an important artificial intelligence method that enables machines to autonomously acquire knowledge from data (Jordan and Mitchell, 2015), and DL is gradually being applied to the field of spectral analysis (Jin et al., 2018; He et al., 2019). In practice, it is not recommended to train neural networks from scratch because it is time-consuming and the performance of the model is not guaranteed. In addition, DL often requires a large amount of data to participate in the training process, and when the amount of data in building the model is not enough, the model may overfit or fall into local optimum (Pan and Yang, 2010; Marmanis et al., 2016; Suh et al., 2018; Lu et al., 2019). Unfortunately, some seed samples are challenging to obtain during germination, leading to high labeling costs and a difficulty in creating large-scale, high-quality datasets. Additionally, data acquired at significant cost is hard to reuse in new tasks, posing challenges for DL, which relies on numerous labeled samples for effective training (Zhang and Zhao, 2021). Transfer learning mainly studies the transfer of knowledge from the source domain to the target domain, allowing the training data and test data to be located in different feature spaces, which has a unique advantage in accelerating the training of the model and improving the generalization performance of the model, with which it can solve the learning problem in the case of small samples, low resources, and few labeled samples (Wu et al., 2021). Transfer learning has been used for the identification of agricultural varieties: Wu et al. (2021) used deep transfer to transfer knowledge to four datasets of rice, oats, wheat, and cotton, and Accuracies of the deep transferred model achieved 95, 99, 80.8, and 83.86% on the four datasets, respectively. Zhu et al. (2019) fine-tuned the pre-trained models (AlexNet, ResNet18, Xception, InceptionV3, DenseNet201, and NASNetLarge) for transfer training, and the results showed that the accuracy of all six models in the validation set reached 91%. Transfer learning is also used in the detection of agricultural pests and diseases: Chen et al. (2020) initialized the weight of the pre-trained network on the large labeled dataset ImageNet to classify and predict the images of rice leaf diseases and pests, with an average accuracy of 92.00%. Some scholars have also obtained good results in the detection of diseased leaves of tomatoes and grapes (Paymode and Malode, 2022). However, the application of transfer learning in the detection of rice seed vigor is still less studied. The main chemical components contained in different rice seeds are similar, so the NIR-HIS based depth model constructed can transfer the knowledge from the model to other varieties of rice seed models (He et al., 2019). In summary, the non-destructive assessment of rice seed vigor through near-infrared hyperspectral imaging technology holds significant value for the preservation of invaluable seed resources and pre-sowing screening. The utilization of transfer learning also presents the potential to conserve both time and resources, as there is no need to commence training an entirely novel model from scratch. This research amalgamates the domains of transfer learning and hyperspectral imaging technology, both at the forefront of modern computer science and agricultural science. It thereby offers intriguing avenues for further exploration and innovation.

In this study, the collected rice seed hyperspectral images were extracted from one-dimensional spectra, the one-dimensional spectrum was used as the input of the machine learning model to train the model, and then the knowledge was transferred by deep transfer to achieve the purpose of rice seed vigor detection. The main tasks of this study are to: (1) establish deep learning models for detecting rice seed vigor with high accuracy based on NIR-HIS for different varieties of rice seeds; (2) apply deep model knowledge transfer to the vigor classification of rice seeds of other varieties by deep transfer technology; (3) compare advantages and disadvantages of multiple transfer learning techniques in the detection of rice seed vigor; (4) use Grad-CAM++ to visualize the CNN model to identify the important wavelengths for seed vigor detection under different situations.




2 Materials and methods



2.1 Sample preparation and dataset description

In order to ensure the wide range of rice seed vigor, four rice varieties, Yongyou12, Yongyou1540, Suxiangjing100, Longjingyou1212, were selected for experimental analysis. The rice seeds used in this study were obtained from three different types, with a total of 7100 rice seed samples. The detailed distribution of the samples can be found in Table 1. We divided the dataset according to a 4:1:1 ratio. The rice seeds used in this study were provided by the College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Zhejiang.


Table 1 | The number of different varieties of seeds.



Seeds aged under natural conditions are very rare, and the aging process is very long, which brings certain difficulties to the study of seed vigor. As a result, a growing number of studies have found that seeds can be artificially aged to mimic the natural aging process (Sena et al., 2017; Zhu et al., 2019; Yuan et al., 2022). In order to make a significant difference in seed vigor, the seeds were treated by high temperature and high humidity aging before the experiment. The rice seeds were placed in the LH-80 seed aging box (Top Cloud-agri Technology Co., Ltd., Hangzhou, China), the temperature was maintained at 45°C, the air moisture content was set to 100%, and the aging was 96 hours and 192 hours, respectively. Under high temperature and high humidity environment, a series of physiological and biochemical reactions such as membrane lipid peroxidation, soluble sugar and protein degradation, related gene expression disorders and nucleic acid degradation are accelerated, and the vitality of seeds is rapidly declining (Brar and Dudi, 2019).

In order to further verify the effect of artificial aging on seed vigor, standard germination experiments were performed on aged rice seeds (Seo et al., 2021). The seeds of the samples were placed on moist germination paper in the numbering order. The samples were subjected to a 14-day germination experiment under the conditions of 30°C light for 8 h and 20°C dark for 16 h every day. The experimental results showed that the number of not aged rice seeds after 96h aging was more than the number of not aged rice seeds after 192h aging, and the number of not aged seeds after 192h aging was the largest among the three aging gradients (not aged, aging 96h, aging 192h). In short, the seed vigor of rice after artificial aging was reduced, and the seed vigor decreased with the increase of aging time, which showed a linear negative correlation. The specific standard germination experiment results are shown in Table 2, where the non-viable rate is the ratio of the number of not aged seeds to the total number of seeds under this vigor gradient.


Table 2 | The number of non-viable seeds of different varieties of seeds.






2.2 Near-infrared hyperspectral image acquisition and correction

In this study, NIR-HIS was collected from four types of rice seeds. When acquiring hyperspectral images, the ambient room temperature was an average of 21°C and the average humidity was 73%. The ambient humidity and temperature at germination were similar to those when hyperspectral images were acquired. Images were acquired by the FX17 near-infrared hyperspectral camera (Specim, Spectral Imaging Ltd., Oulu, Finland) in conjunction with the hyperspectral image acquisition platform Lab Scanner (Specim, Spectral Imaging Ltd., Oulu, Finland). The FX17 near-infrared hyperspectral camera acquires a spectral range of 900-1700nm. Lab scanner is illuminated by two arrays of halogen lamps, each with a power of 35W. The sample stage on the stepper motor control Lab scanner pushes forward for imaging at a speed of 24.70mm/s and acquires spatial and spectral information of one row of data at a time; The sample stage surface is a high-gloss black surface with a white calibration whiteboard. The FX17 camera and Lab scanner are controlled by Lumo Scanner2020 (Specim, Spectral Imaging Ltd., Oulu, Finland) software. Hyperspectral images of 224 spectral channels were acquired per scan and then calibrated using the following equation:



where R is the corrected image, I is the original image, W is the white reference image, and D is the dark reference image. The white reference image is obtained by shooting a white calibration whiteboard; Dark reference images are taken after the lens is completely covered with a lens cap. To avoid the instability of the system and the influence of noise in the spectral data on this study, the head and tail bands are removed and the wavelength range from 998 nm to 1631 nm was retained (Jin et al., 2022a). In this study, the average spectrum of each seed was obtained in the range of experimental accuracy: each seed in the hyperspectral image was treated as a region of interest (ROI), and the spectra of all cells in the ROI were averaged to obtain a spectral vector representing the seed sample.




2.3 Classification methods



2.3.1 Logistic regression

Logistic regression is a classic machine learning algorithm. The idea of logistic regression is to first fit the decision boundary (not limited to linearity, but also polynomial), and then establish the probability of this boundary and the classification, so as to obtain the probability in the classification case (Jin et al., 2022b). Logistic regression typically uses the sigmoid function as the prediction function. Logistic regression has the advantage of avoiding inaccurate hypothetical distributions. In this study, L2 regularization was selected for LR and C was selected 1000.




2.3.2 eXtreme Gradient Boosting

XGBoost (eXtreme Gradient Boosting) is a machine learning algorithm that demonstrates exceptional performance and serves as an extension of gradient boosting trees (Friedman, 2001). It enhances model performance by integrating multiple weak classifiers, resulting in outstanding predictive accuracy (Chen and Guestrin, 2016). XGBoost introduces regularization terms to control model complexity and incorporates penalty functions in the objective function for assessing model complexity, thereby preventing overfitting (Qiu et al., 2021). XGBoost has achieved remarkable success in various domains and tasks within the field of machine learning. During the training process of the XGBoost model, the parameter “reg_alpha” was set to 0.1, “reg_lambda” was set to 0.1, and “max_depth” was set to 2.




2.3.3 Support vector machine

Support vector machine is a machine learning method proposed in the 90s of last century, which can be used for classification and regression tasks with superior performance and is widely used in research (Zhao et al., 2018; Cui et al., 2021). Support vector machines based on the principle of marginal maximization are used as a special linear classifier (Arun Kumar and Gopal, 2009). When the SVM is trained, it maps the data to a multidimensional space called decision space and finds the decision boundary in this space to complete the classification. When the data is linearly divisible, the decision boundary is a two-dimensional straight line; When the linearity is inseparable, the kernel function is used to map the feature data to the high-dimensional space, so that it becomes linearly separable in the high-dimensional space, and the decision boundary is a three-dimensional plane (Gopinath et al., 2020). SVM is an efficient nonlinear classifier that has strong robustness in processing classification problems under small sample conditions and can effectively handle high-dimensional data problems. In this study, the RBF and Poly kernel functions were selected and a grid search was performed to select the optimal parameters in ‘C’: [1,10,100,1000,10000], ‘gamma’: [1, 0.1, 0.01, 0.001].




2.3.4 Convolutional neural network

Convolutional neural network is a special feedforward neural network integrated into convolution operations (Jin et al., 2022b), which not only has the characteristics that the neural network is composed of a large number of neurons, but also has excellent feature extraction and mapping capabilities because of convolution operations work with activation functions and normalization methods (Jin et al., 2022a). CNN algorithms essentially achieve input-to-output mapping by extracting features and reducing dimensionality (Voulodimos et al., 2018). CNNs consist of convolutional layers, pooling layers, and fully connected layers. The unit of the convolution layer is the feature graph, and each unit is related to the block of the previous feature graph by the filter group (Jin et al., 2018), the downsampling technique of the convolutional layer can capture the main spectral information (Xie et al., 2021). The main role of the pooling layer is dimensionality reduction. In the gradient-based optimization method, the ReLU activation function can reduce the effect of gradient vanishing, which has the advantage of preventing overfitting. The batch normalization layer (BN) can improve the efficiency of model training (Xie et al., 2021). Therefore, in the self-built CNN of this study, the ReLU activation function and BN are used in it. In addition, to further prevent overfitting, a dropout layer is added after the fully connected layer. Use the Adam optimizer for training and accelerated convergence. CNNs are widely used, have the ability to automatically learn features in images (Moujahid et al., 2022), and the trained CNN model can perform transfer learning in different tasks, which is where this institute especially needs it. However, the generalization ability of CNN is weak. In order to comprehensively explore the generalization ability of CNN, researchers (Sun et al., 2021) had set up three different experimental conditions for evaluation. The experimental results demonstrated the weak generalization ability of CNN-based methods. Therefore, it is of great significance to enhance the generalization ability of CNN through transfer learning.

In this study, four CNN with different structures were designed for four types of rice seeds, with a maximum of 4 layers and a minimum of 2 layers, as shown in Figure 1. Convolution kernels of 1 × 4 were used in the four CNN to extract features hidden in spectral vectors. Also, BN and ReLU activation functions were used after each convolution to reduce the risk of overfitting and speed up the convergence process. A maxpooling layer with a kernel size of 1 × 2 was added after the partial convolutional layer to reduce the feature dimension. The parameter of the Dropout layer was set to 0.4. Different batch size and learning rates were set for the four CNN models, 32,0.005; 32,0.001; 32,0.0005; and 32,0.0005. Stride is all set to 1.




Figure 1 | CNN structure diagram for the detection of rice seed vigor by (A) Yongyou12, (B) Yongyou1540, (C) Suxiangjing100, and (D) Longjingyou1212.







2.4 Transfer learning strategy

Transfer learning is an emerging machine learning tool that is considered an important small-sample learning method (Xiao et al., 2019; She et al., 2021), and it has been proposed to alleviate the need for sufficient training data for the model by transferring the available knowledge in the relevant source domain to the target domain (Pan and Yang, 2010; Xie et al., 2021). For the detection of rice seed vigor in the agricultural field, transfer learning can greatly save time and resources, improve the generalization ability of the model, and also have obvious advantages in solving the problem of data scarcity. Transfer learning is expressed by the formula: let the source domain be  , and the target domain is  , where   and   represent data samples and their corresponding labels, respectively. Given the   and learning task  ,  , and learning task  , improve the performance of the prediction function   in the   by acquiring knowledge in the   and  ,  ,  . The transfer process is shown in Figure 2.




Figure 2 | Transfer learning process.





2.4.1 Fine-tuning

Fine-tuning is a simple and versatile strategy in transfer learning. The pre-trained depth models has been adapted to new tasks (Cetinic et al., 2018). It can effectively reduce modeling costs. Fine-tuning is: there is a pre-trained model   that has been trained on large-scale data with a set of parameters  , and now we have a specific task that aims to minimize a specific loss function  , where   represents the parameters of the model. The goal of fine-tuning is to fine-tune the parameters of a pre-trained model so that it performs well on specific tasks. The process of fine-tuning can be expressed as the following optimization problem:  . The initial layer of the CNN retains abstract, generic features, while the top layer retains more specific features related to the task (Vrbancic and Podgorelec, 2020). Considering the characteristics of the above CNN, there are two main ideas for fine-tuning: (1) only adjust the last few fully connected layers; (2) Adjust all network layers (Zhen et al., 2017). The outcome of knowledge transfer depends on the similarity between the trained CNN and the target task we want to transfer knowledge. In this study, the distribution and features between the source domain data and the target domain data were similar, and the convolutional layer before the fully connected layer may have extracted the important feature information of the seed spectrum and can be reused in the target domain (Wu et al., 2021), so the parameters of each layer before the pre-trained CNN fully connected layer were frozen, and the last few fully connected layers were fine-tuned.




2.4.2 MixStyle

As the role of deep transfer is discovered by more and more people, more deep transfer strategies are proposed, such as BNM (Cui et al., 2020), MCC (Jin et al., 2020) and V-REx (Krueger et al., 2021) and so on. In order to cope with the data distribution problem in different domains, the above deep transfer methods can be roughly divided into domain adaptation and domain generalization. Domain adaptation refers to the process of transferring information to one or more source domains in order to improve the learning performance of target learners (Pan and Yang, 2010). Domain generalization aims to improve the generalization ability of models by leveraging useful information from multidomain data (Du et al., 2022). In view of the relatively similar spectral data distribution between rice varieties, MixStyle belonging to domain generalization was selected in this study (Zhou et al., 2021).

The method was proposed by Zhou et al. in 2021, a novel method based on probabilistically mixing instance level feature statistics of training samples across source domains. The method mixes the feature statistics of two instances with a random convex weight to simulate the new style.

A batch of data is sampled from each of the   and the  ,   and the   form  , swap the position of the batch to obtain  , and then shuffle each batch along the batch dimension. After shuffling, MixStyle computes the mixed feature statistics by:





where   are instance-wise weights sampled from the Beta distribution,   with   being a hyper-parameter, we set   to 0.1. Finally, the mixed feature statistics are applied to the style-normalized  :







2.5 Visualization method

CNNs are a “black box” model in the field of deep learning, and in order to make it easier to interpret CNN results, Gradient-weighted Class Activation Mapping++ (Grad-CAM++) was used to visualize CNN models in this study. Grad-CAM++ is a generalized approach based on Grad-CAM that better provides visualization results for CNNs (Cai et al., 2023). It uses the gradient of any target concept flowing into the final convolutional layer to generate a coarse localization map that highlights important areas of the image for predicting the concept (Moujahid et al., 2022). It can be adapted to any CNN model (Afify et al., 2023).




2.6 Model evaluation and software

Figure 3 is the experimental flow chart of this article. using a 1D spectrum with 181 features after noise reduction as input. This study used classification accuracy to evaluate the performance of the model. The SVM, LR and XGBosst used in this study was based on Python 3.8 and scikit learn 1.0.2; the deep learning model was built on pytorch 1.10.2. The deep model was trained using the NVIDIA GeForce RTX 3060 Laptop GPU for acceleration. Data analysis was performed on computers configured with Intel (R) Core (TM) i7-11800H (2.3GHz) and 16G RAM. All data analysis was performed on Windows 10.




Figure 3 | Experimental flow chart.







3 Results



3.1 Spectral analysis

In this study, all the spectral data collected were averaged to obtain the average spectra and standard deviation of four types of rice seeds, as shown in Figure 4.




Figure 4 | The average spectra with the standard deviation of four rice seeds: (A) Yongyou12; (B) Yongyou1540; (C) Suxiangjing100; (D) Longjingyou1212.



In general, the shape of the spectrum and the location of the peak of the four types of rice seeds were very similar, which indicated that there may be more common characteristics between the four types of rice seeds, which was conducive to the transfer learning. The spectral difference between Yongyou12 rice seeds under different aging gradients was the largest among the four types of rice seeds, and the wavelength differences were most obvious at 1150-1300 nm and 1400-1650 nm. Suxiangjing100 rice seeds had minimal spectral differences. The wavelengths of the four types of rice seeds with different vigor spectra were concentrated at 1400-1650 nm, and the band could be attributed to the first overtone of amide A (N–H stretch), which might be the critical band for protein detection (Wu et al., 2019). The 1100 nm band were caused by the second overtone of carbohydrates (C–H stretch) (Wu et al., 2021). The peak near 1300 nm was reported to be associated with the combinations of the first overtone of amide B (N–H stretch) and the fundamental vibrations of amide II and III (C–N stretch and N–H in-plane bend) (Daszykowski et al., 2008).

Standard deviation is a measure of how dispersed or dispersed a set of data is. The introduction of standard deviation helps to understand the degree of change in multiple spectral curves. The small standard deviation indicates that their spectral curves are relatively close and have similar fluctuation patterns. As can be seen from Figure 4, the standard deviation of all four types of rice seeds in the 1350-1400 nm band was small.




3.2 Classification results on source dataset

In this study, LR, XGBoost, SVM and CNN were used to determine the vigor of four types of rice seeds with different aging gradients. In our investigation, True Positives (TP) were defined as instances where the model accurately categorizes not aged seed as not aged. True Negatives (TN) referred to cases where the model correctly classifies seeds aging 96 hours and 192 hours as not aged. False Positives (FP) represented erroneous classifications where the model incorrectly labels some seeds aging 96 hours or 192 hours as not aged. False Negatives (FN) denoted situations where the model incorrectly classifies some not aged seeds as aging 96 hours or 192 hours. The same definitions applied to the cases of seeds aging 96 hours and 192 hours as well. The parameters for LR, XGBoost and SVM were described in 2.3.1, 2.3.2 and 2.3.3, respectively. The number of CNN training epochs was 2000, we selected the best round of results as a showcase. The models started fitting around 1500 rounds.

The categorization of rice seed vigor among the four distinct types using the LR model resulted in suboptimal outcomes, with an accuracy rate of approximately 65.00%. Notably, LR demonstrated better performance in classifying Yongyou1540 rice seed vigor, achieving a commendable test set accuracy of 72.33%. However, LR’s performance was inferior to that of SVM and CNN. This could be attributed to LR being a linear model, which may not fit the data well for complex nonlinear relationships, such as one-dimensional spectral data. Furthermore, the small sample size may have also contributed to the lower performance.

The experimental results indicated that the performance of XGBoost was rather disappointing, as it exhibited the poorest overall performance among all classifiers. The accuracy on both the validation and test sets remained around 60.00%, with the occurrence of overfitting.

When using SVM and CNN models for vigor detection, there were slight instances of overfitting in the models. This phenomenon could potentially be linked to the relatively limited quantity of training samples available. Both SVM and CNN consistently achieved an accuracy rate surpassing 90% when applied to the training dataset. Notably, the Yongyou12 rice seed variety demonstrated the most congruent accuracy levels between SVM and CNN, exhibiting remarkable stability across both classifiers.

SVM and CNN exhibited remarkable proficiency when employed to categorize Yongyou1540 rice seeds. The classification accuracy across the training, validation, and test datasets demonstrated notable consistency, with CNN achieving the highest accuracy among the four seed types on the test set, reaching an impressive 90.33%. However, it is worth noting that the classifier’s performance was comparatively less impressive when dealing with Suxiangjing100 and Longjingyou1212, falling short of the performance demonstrated on Yongyou12 and Yongyou1540. Nevertheless, the overall classification accuracy remained commendable.

In summary, CNN consistently outperformed SVM in terms of classification accuracy, owing to the convolution operation’s ability to extract more intricate feature information from the abundant spectral data. The architectural framework of the CNN model employed is depicted in Figure 1, and detailed classification accuracy metrics can be found in Table 3.


Table 3 | The results of detection of seeds vigor.






3.3 Results of fine-tuning

In order to verify the feasibility of transfer learning in rice seed vigor detection, this study used the most common fine-tuning in the field of transfer learning to adjust the pre-training model to adapt it to the vigor detection of other rice seeds. Our main idea was to design 4 different CNN models for specific rice seeds, and then fine-tuned the CNN models, frozen the layer before the fully connected layer, adjusted the fully connected layer, and transferred to the vigor identification of the other three rice seeds. The feasibility of fine-tuning was verified by taking the accuracy rate as the criterion, and the specific experimental results are shown in Table 4.


Table 4 | The results of detection of seeds vigor using fine-tuning.



From Table 4, it can be concluded that the overfitting phenomenon of each model after fine-tuning had improved compared with before fine-tuning. The CNN model fine-tuning of Longjingyou1212 performs best when used for other rice seed vigor and was closest to the accuracy of each CNN model before fine-tuning. When it was transferred to the detection of Yongyou12 rice seed vigor, the accuracy rate was improved by 2.33% compared with the original model, reaching 90.00%. When the CNN model fine-tuning of Yongyou12 and Yongyou1540 was used for other rice seed vigor detection, the performance was average, but the accuracy was similar to that before fine-tuning. The CNN model fine-tuning results of Suxiangjing100 were poor and there was a large negative transfer (Wu et al., 2021), which may be due to the fact that compared with other rice varieties, the spectrum of Suxiangjing100 had its own unique characteristics, that was, the difference between the source domain data and the target domain data was large, resulting in poor results.

The results in Table 4 shows that the overall fine-tuning can meet the requirements of model generalization, but there was a certain gap between the accuracy rate and the accuracy of each model before fine-tuning, and this gap was most obvious in the micro-sculpting of Suxiangjing100. When there were large differences in the data sets, fine-tuning may not achieve the desired effect. Therefore, we needed to find a more effective transfer learning strategy.




3.4 Results of MixStyle

MixStyle is designed to normalize CNN training by perturbing the style information of the training instance in the source domain. It is designed to be plugged between CNN layers as a plug-and-play module. The essence of the MixStyle approach lies in utilizing a CNN as a feature extractor. The process begins by passing the input sample through the feature extractor, which generates a specific feature map. Next, multiple style samples are inputted into the feature extractor to generate corresponding style feature maps. During the training process, a hybrid style feature map is created for classification prediction. This is achieved through linear interpolation and synthesis of the style feature maps. This blending of style features enables the model to capture a diverse range of styles and improve its ability to classify different samples effectively. The potential superiority of MixStyle arises from its ability to synthesize “new” styles, thereby regularizing the network to become more resilient to domain shifts. When using MixStyle for transfer learning, the Aadm optimizer was used, and the learning rate of all models was set between [0.0005, 0.000001]. To mitigate overfitting, L2 regularization was used, set to 0.0005. The training process consisted of 20,000 epochs, and the best result was selected.

MixStyle involves mixing feature statistics for two instances with random convex weights to simulate the new style. A reference batch is generated by swapping the locations of instances from different domains and applying a shuffle operation. In this study, the training sets of two types of rice seeds were mixed, and the vigor prediction was carried out with one of the rice seeds as the target domain. We added the MixStyle layer after the last convolutional layer. The model structure used is shown in Figure 1. Taking the transfer of Yongyou12 rice seed knowledge to Yongyou1540 as an example, Yongyou12 rice seed data is the source domain and Yongyou1540 rice seed data is the target domain. During model training, the Yongyou12 rice seed training set data and the Yongyou1540 rice seed training set data were extracted by the Figure 1A model, then mixed by MixStyle, and finally the rice seeds in the source domain were predicted. After the model training is completed, the target domain seed is used as the validation set and the test set to test the model performance, that is, the model is applied to the prediction of the target domain Yongyou1540 rice seed vigor.

As can be seen from Table 5, after MixStyle mixing, the performance of each model in the training set and the validation set was better, and the accuracy rate was generally higher than 80.00%. Among them, when the Yongyou12 rice seed data was used as the source domain, the performance of the model was the best. When mixed with other varieties, the accuracy rate was 86.00%, 84.07% and 81.33% on the test set, respectively. When Yongyou12 knowledge transfer was used to predict Yongyou1540 rice seed vigor, the model had the best performance, with 94.47%, 90.00% and 86.00% accuracy on the training set, validation set and test set, respectively, and the model performance was also better when Longjingyou1212 was used as the source domain for transfer. In conclusion, MixStyle can significantly improve the generalization performance of CNN in detecting rice seed vigor.


Table 5 | The results of detection of seeds vigor using MixStyle.






3.5 Model visualization

To demonstrate the model training process, we took the example of Yongyou1540 rice seeds. In Figures S1 (in Supplementary Materials), we showcased the variations in loss and accuracy during the training process of the original CNN model, fine-tuned CNN model, and the CNN model with MixStyle incorporated. These figures clearly depict a consistent decrease in loss and a progressive increase in accuracy, ultimately converging to indicate a good fit.

Figure 5 shows the visualization of each band when using CNN classification after transferring Yongyou12 to Yongyou1540 using Fine-tuning and MixStyle, with three top-to-bottom Grad-CAM++ plots of (A) not aged, (B) aging 96h, and (C) aging 192h. Among them, the curve represents the weight of each spectral wavelength on the model, and the higher the weight of the wavelength, the greater the contribution to the model classification result. The shaded area with the same color as the curve represents the corresponding standard deviation of the weight value for each wavelength. The weight values and standard deviations of each wavelength of the CNN using Fine-tuning and MixStyle were compared to the weight values and standard deviations of each wavelength of the original CNN. It could be seen from the figure that for the vigor classification of Yongyou12 knowledge transferred for Yongyou1540 rice seeds, the weight distribution of CNNs after transfer was similar to that of the original CNN classification, and the wavelengths with larger weights were mainly distributed in the 1100-1200 nm and 1400-1450 nm ranges. Compared with the weight distribution of CNNs after fine-tuning, the weight distribution of CNNs after knowledge transfer through MixStyle was more similar to that of the original CNNs, and the weights assigned by CNNs after Fine-tuning were higher in the wavelength range of 1450-1550 nm, which was far from the region where the original CNN assigns weights. Figures S2, S3 shows the knowledge transfer of Yongyou12 rice seeds for Suxiangjing100 and Longjingyou1212 rice seed vigor classification, respectively, with weight distribution similar to Figure 5, with higher weighted regions concentrated in the 1100-1200 nm and 1400-1450 nm intervals. Figures S4–S6 is the CNN visualization result of Yongyou1540 knowledge transfer for the vigor classification of other rice varieties, and it can be seen that the weight assigned in the wavelength range of 1400-1450 nm was higher, and the weight distribution of CNN after MixStyle knowledge transfer was closer to the weight distribution of the Fine-tuning. The wavelengths with higher weights in were also mainly distributed in the 1100-1200 nm and 1400-1450 nm ranges, and the transfer ability of MixStlye was similar to Fine-tuning from the wavelength weight distribution in Figures S7–S9. The weight distribution of CNN after knowledge transfer of Longjingyou1212 is shown in Figures S10–S12, the original CNN assigned higher weights in the wavelength range of 1100-1150 nm, but the CNNs after transfer learning did not assign higher weights in this interval. In the remaining interval, the weights assigned by the transfer-learned CNN and the original CNN were extremely similar, so when Longjingyou1212 was used for the vigor classification of Yongyou12, Yongyou1540 and Suxiangjing100, the classification accuracy was also higher in all cases.




Figure 5 | Grad-CAM++ of each vigor gradient of CNN: Yongyou12 transfer to Yongyou1540: (A) the weights of not aged; (B) the weights of aging 96h; (C) the weights of aging 192h.







4 Discussion

The identification of rice seed vigor plays a crucial role in improving germination rates, increasing yields, reducing pests and diseases, and optimizing resource utilization. In this study, near-infrared hyperspectral imaging was utilized to detect the vigor of artificially aged rice seeds. Furthermore, transfer learning was employed to transfer knowledge and enhance the model’s generalization ability. The findings indicate that NIR-HIS is an effective method for detecting rice seed vigor. Moreover, employing transfer learning significantly improves the model’s ability to generalize. Previous research mainly focused on training models from scratch (Jin et al., 2022a; Wang et al., 2022), which is time-consuming and labor-intensive, especially for deep models that require a substantial number of samples. In this study, we adopted traditional machine learning methods and developed custom CNN to discriminate rice seed vigor. Transfer learning was then utilized to transfer knowledge to pre-trained models, enabling rice seed vigor detection across different varieties. While many scholars have explored transfer learning (Zhen et al., 2017; Cetinic et al., 2018; Wu et al., 2021), their approaches were limited to basic Fine-tuning, which often yielded unsatisfactory results. In contrast, our study not only employed Fine-tuning but also utilized the MixStyle transfer strategy to transfer knowledge between different rice seeds. The results demonstrate that the deep model outperformed the traditional machine learning model in terms of classification performance, highlighting the superior generalization ability offered by the deep transfer strategy. In the future, we plan to include more rice varieties in the study, with more generalized models adapted to more rice variety vigor detection. In addition, crop pest and disease data are also difficult to obtain, so in the future, we will also apply near-infrared hyperspectral imaging technology and transfer learning to pest detection to detect pests and diseases early and take corresponding control measures.




5 Conclusion

In this study, the potential of near-infrared hyperspectral imaging in seed vigor detection was discussed, and remarkable results were achieved by combining transfer learning methods, and the CNN model of Yongyou12 classifies the vigor of Yongyou1540, Suxiangjing100 and Longjingyou1212 through MixStyle transfer knowledge, and the accuracy reaches 90.00%, 80.33% and 85.00%, respectively. NIR hyperspectral imaging is a non-invasive means to capture the absorption and reflection properties of rice seeds at different wavelengths, providing useful information about the internal chemical composition of the seeds. Transfer learning effectively improves the generalization performance of the model by sharing similar spectral characteristics between different seed varieties, thereby improving the performance and robustness of the model. In the future, we plan to apply near-infrared hyperspectral imaging techniques and transfer learning to the field of crop diseases and pests. This study provides a viable approach to detect rice seed vigor and enhance the generalization ability of the model in situations with limited sample sizes. It also reduces the cost of seed testing, thereby contributing to the promotion of sustainability in agricultural products. These advancements hold positive and long-term implications for the agricultural sector and food production.
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Cotton plays a significant role in people’s lives, and cottonseeds serve as a vital assurance for successful cotton cultivation and production. Premium-quality cottonseeds can significantly enhance the germination rate of cottonseeds, resulting in increased cotton yields. The vitality of cottonseeds is a crucial metric that reflects the quality of the seeds. However, currently, the industry lacks a non-destructive method to directly assess cottonseed vitality without compromising the integrity of the seeds. To address this challenge, this study employed a hyperspectral imaging acquisition system to gather hyperspectral data on cottonseeds. This system enables the simultaneous collection of hyperspectral data from 25 cottonseeds. This study extracted spectral and image information from the hyperspectral data of cottonseeds to predict their vitality. SG, SNV, and MSC methods were utilized to preprocess the spectral data of cottonseeds. Following this preprocessing step, feature wavelength points of the cottonseeds were extracted using SPA and CARS algorithms. Subsequently, GLCM was employed to extract texture features from images corresponding to these feature wavelength points, including attributes such as Contrast, Correlation, Energy, and Entropy. Finally, the vitality of cottonseeds was predicted using PLSR, SVR, and a self-built 1D-CNN model. For spectral data analysis, the 1D-CNN model constructed after MSC+CARS preprocessing demonstrated the highest performance, achieving a test set correlation coefficient of 0.9214 and an RMSE of 0.7017. For image data analysis, the 1D-CNN model constructed after SG+CARS preprocessing outperformed the others, yielding a test set correlation coefficient of 0.8032 and an RMSE of 0.9683. In the case of fused spectral and image data, the 1D-CNN model built after SG+SPA preprocessing displayed the best performance, attaining a test set correlation coefficient of 0.9427 and an RMSE of 0.6872. These findings highlight the effectiveness of the 1D-CNN model and the fusion of spectral and image features for cottonseed vitality prediction. This research contributes significantly to the development of automated detection devices for assessing cottonseed vitality.
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1 Introduction

China occupies a prominent position in the realm of cotton production and processing, with its cotton planting area having surpassed 3,000 hectares over the past five years. Notably, the cotton planting area in the Xinjiang region constitutes a substantial 90% of China’s total cotton cultivation (Lu et al., 2022). The quality of cottonseed holds immense significance in the realm of cotton production, as superior-quality cottonseed exhibits a heightened germination rate, ultimately contributing to amplified cotton yields. Cottonseed quality encompasses both intrinsic and extrinsic aspects, with vitality serving as a crucial metric for gauging intrinsic quality. Elevated vitality levels are indicative of improved cottonseed germination rates (Bai et al., 2020). Currently, the management of cottonseed quality within the industry primarily relies upon manual selection. This approach, however, is limited to identifying surface defects such as breakage or mold presence (Du et al., 2023). While manual selection effectively eliminates cottonseeds with apparent cosmetic imperfections, it falls short in evaluating the inherent viability of these seeds, a factor not discernible to the naked eye. The vitality of cottonseeds holds paramount significance, as it directly impacts their potential to germinate successfully. Inadequate seed vitality precipitates suboptimal germination rates post-planting, subsequently undermining overall cotton yield and the financial returns for cotton cultivators. Consequently, there is an urgent need for techniques that can accurately ascertain the vitality of cotton seeds. To ensure the robustness of cotton production, it has become imperative to develop methodologies capable of evaluating the vitality of cottonseeds.

The research into cottonseed analysis can be classified into three main categories: cottonseed appearance assessment, variety identification, and determination of genetic modification status. Regarding appearance detection, Zhang et al. (2022) used air-coupled ultrasound with sound-to-image encoding for microcrack detection in cottonseeds, achieving a 90.7% accuracy. Wang et al. (2023) applied machine vision technology with the YOLOV5 framework to detect damaged and mold-infested cottonseeds with over 99% accuracy. Du et al. (2023) harnessed machine vision with the ResNet50 architecture for damaged cottonseed identification, reaching a 97.23% accuracy. For variety detection, Soares et al. (2016) employed near-infrared hyperspectral imaging to classify cottonseed varieties with 91.7% accuracy. Building upon this foundation, Zhu et al. (2019) introduced deep learning algorithms to further enhance cottonseed variety identification. In the context of genetically modified detection, Qin et al. (2017) employed terahertz spectroscopy for genetic modification status, achieving a 95% accuracy. Li and Shen (2020) identified noteworthy spectral peaks within the spectral ranges of 1.0~1.2 THz and 1.3~1.5 THz in genetically modified cottonseeds. Rocha et al. (2021) utilized near-infrared hyperspectral imaging to distinguish transgenic from conventional cottonseeds.While previous research has not specifically addressed cottonseed viability assessment, the studies mentioned earlier in different areas of cottonseed analysis collectively emphasize the potential use of hyperspectral technology for evaluating cottonseed quality. Hyperspectral technology excels at capturing comprehensive image data across various wavelength bands and acquiring essential optical absorption or reflection information across different wavelength ranges (Gao and Xu, 2022). The utilization of hyperspectral technology has garnered substantial traction within the realm of cotton and seed (Feng et al., 2019). For instance, Zhang et al. (2016) used it to detect foreign fibers in cotton, Li et al. (2023) to measure nitrogen levels in cotton leaves, Yan et al. (2021) to identify cotton aphid infection, and Lee et al. (2017) to detect bacterial infection in watermelon seeds. Zhou et al. (2020) achieved 89% accuracy in classifying beet seed viability, while Xu P. et al. (2022) reached 89.76% accuracy for maize seed germination. Cheng et al. (2023) applied hyperspectral detection to analyze vegetable seeds with 91% accuracy.

In summary, hyperspectral technology has been instrumental in assessing the viability of various plant seeds. Its successful implementation has been demonstrated within the realm of cotton and cottonseed cultivation. Utilizing hyperspectral technology for cottonseed vitality detection has the potential to address existing research gaps in this field. With this context in mind, a hyperspectral data acquisition system was employed to gather hyperspectral data from cottonseeds. The primary objectives encompass the acquisition of spectral and image data from cotton seeds, individualized extraction of spectral and image features inherent to cotton seeds, subsequent fusion of these extracted features, and ultimately, the construction of a predictive model for assessing the vitality of cottonseeds. This predictive model shall be devised through the utilization of both machine learning and deep learning methods.




2 Methods and materials



2.1 Sample preparation

200 seeds of the Xinluzao-57 cotton variety, sourced from Tahe Seed Company in Aral City, were chosen for this study. All cottonseeds underwent a delinting process to remove cotton fibers. The selected 200 cottonseeds were numbered. Subsequent to the comprehensive acquisition of hyperspectral data from the cottonseeds via the dedicated hyperspectral acquisition system designed for assessing the vitality of cottonseeds, all cottonseeds were earmarked for germination to ascertain their vitality. The germination experiment was executed as follows: Initially, the cottonseeds were subjected to a 15-minute scalding with boiling water. Following this, the cottonseed shells were allowed to rupture and fluff. Once this preparation was completed, the treated cottonseeds were evenly positioned within a 100 mm ×100 mm ×100 mm germination box, adhering to the pre-established sequence. A layer of loose sand, approximately 15~20 mm in thickness, was evenly distributed over the samples. Subsequently, the germination boxes were introduced into a GXZ-300A cottonseed incubator.

This process required sand grains within the box to be uniform in size, ranging from 0.05 to 0.80 mm in diameter. The sand was washed meticulously for at least 10 hours and sterilized at a high temperature of 130°C. The moisture content of the sand bed within the germination box was maintained at 80% of its saturation point. The incubation conditions were set as follows: A cycle of 12 hours for both day and night, with a daytime temperature of 27°C and light intensity at 1250 Lx. For the nighttime period, the temperature was adjusted to 20°C with no light (0 Lx). After 15 days from sowing the cottonseeds, the seedling’s height was measured using a straightedge and documented. In this study, the height of cotton seedling growth 15 days after sowing was employed as a metric for assessing the viability of cottonseeds.




2.2 Hyperspectral data acquisition system

The cottonseed hyperspectral data acquisition system is comprised of several essential components, illustrated in Figure 1, including a dark box, a hyperspectral camera, two identical tungsten halogen light sources, a mobile console, and a computer. The hyperspectral camera, specifically the Zolix HyperSIS-VNIR-CL model (manufactured by Zolix Hanguang in Beijing), exhibits a wavelength range spanning from 391 nm to 1043 nm, with a remarkable resolution of 1.25 nm. Accompanying this, the tungsten halogen light sources (manufactured by ocean optics), each possessing a power output of 50 W, operate within the wavelength range of 350 nm to 2500 nm. The dark box serves a critical purpose in averting external ambient light from interfering with the spectral camera’s operation, ensuring precision in data acquisition. The dark box is constructed from 3mm thick stainless steel with a painted surface. Concurrently, the mobile console plays a pivotal role in maneuvering the cottonseed specimens into direct alignment beneath the hyperspectral camera, facilitating optimal data capture. This orchestrated system of components collectively contributes to the meticulous acquisition of hyperspectral data from the cottonseed samples.




Figure 1 | Hyperspectral data acquisition system.



In the process of gathering hyperspectral data from cottonseeds, a methodical arrangement was employed. The cottonseeds were positioned in a sequential manner upon the testing plate. On each of these testing plates, a grouping of 25 cottonseeds was arranged, leading to a cumulative arrangement across 8 distinct testing plates. These plates were then situated atop the mobile console, which played a pivotal role in facilitating data collection. The acquisition parameters were configured through the SpectraSENS software interface. These parameters encompassed an exposure time of 0.20 seconds for the camera, a mobile console moving speed of 1 mm/s, and a predefined mobile console displacement range of 150 mm. The orchestrated interplay of these parameters was crucial in ensuring optimal data capture fidelity. Upon completion of the data acquisition procedure, the resulting hyperspectral data was preserved in raw file format. Each of these raw files encapsulated both spectral and image particulars associated with the 25 cottonseeds featured on the respective testing plate.




2.3 Dataset preparation

Sample set partitioning plays a pivotal role in influencing the efficacy and reliability of machine learning and deep learning models. The proportion of the training set to the entire dataset significantly impacts model performance, with both excessively high and overly low ratios having potential repercussions. Striking a balance is essential. A prevailing convention suggests that a ratio of 7:3 between the training set and the test set is reasonable (Shao et al., 2021). The SPXY (Sample Set Partitioning Based on Joint X-Y Distance) algorithm stands as a widely adopted approach for sample set partitioning, and at its core lies the concept of identifying similarity among samples within the feature space to allocate them to either the training set or the test set. In the context of our study, the SPXY algorithm was employed to partition a total of 200 cottonseeds into dedicated training and test sets. The training set comprised 140 cottonseeds, while the test set encompassed 60 cottonseeds.




2.4 Extraction of hyperspectral data

The hyperspectral camera’s imaging band range is notably narrow, rendering it susceptible to noise interference during the collection of hyperspectral images of cottonseeds. If the original hyperspectral information of the cotton seeds is utilized for analysis without proper correction, it can significantly undermine the reliability of the analysis outcomes. Consequently, a crucial step in ensuring the credibility of the analysis results is to implement a correction process on the hyperspectral data (Benelli et al., 2021). The calibration procedure is outlined as follows: Position the empty test plate atop the mobile console and capture the complete white image denoted as. Subsequently, deactivate the light sources and capture the complete black image represented as  . By substituting these images into formula (1), the corrected hyperspectral image of the cotton seed can be obtained.

 

Where,   represents the original image of the cottonseed, and   corresponds to the black and white corrected image of the cottonseed.

The corrected hyperspectral data of the cottonseeds necessitate the extraction of their spectral and image information prior to analysis and subsequent processing. In this study, the ENVI software was employed to undertake this information extraction from the rectified hyperspectral data of the cottonseeds. More specifically, this encompassed the spectral extraction of the designated region of interest (the cottonseed region within the experimental plate), as well as the extraction of images for each individual wavelength point. The hyperspectral images of the cottonseeds were obtained, with each cotton seed serving as a distinct region of interest. Notably, a total of 520 images corresponding to varying wavelength points were extracted for each individual cotton seed. Each cottonseed corresponds to a single line of spectral data.




2.5 Processing of spectral data



2.5.1 Pretreatment for spectral data

When acquiring hyperspectral data for cottonseeds, the temperature fluctuations resulting from the heat emitted by the light source and the interference from visible light within the laboratory environment introduce additional noise to the collected data. Although the application of black-and-white correction partially mitigates this noise, its effectiveness is limited. In order to systematically diminish the detrimental influence of this noise on the subsequent data analysis processes, this study employed a combination of methodologies, including the SNV (Standard Normal Variate Transformation) algorithm, SG (Savitzky-Golay) convolutional smoothing, and MSC (Multiplicative Scatter Correction), to process the spectral data obtained from cottonseeds. Through these approaches, not only is the noise reduced, but the subsequent modeling tasks are also rendered more straightforward and user-friendly.

The SNV is primarily employed to mitigate the influence of light scattering on spectral data. This approach functions by transforming the original spectral data into standardized normal distribution variables, thereby rectifying any inherent distortions (Panda et al., 2022). The SG algorithm, rooted in the principle of least squares, operates as a polynomial smoothing technique. It leverages data points confined within a defined window to construct a polynomial curve. By doing so, this process effectively eliminates stochastic noise while preserving pertinent information intrinsic to the analyzed signals. The consequence is the enhancement of signal characteristics within the smoothed data (Yao et al., 2023). The MSC algorithm operates on the foundational premise of nullifying the ramifications of multiple scattering. This is accomplished by rectifying the spectrum of the target sample through division by a scattering reference spectrum. This corrective procedure heightens the accuracy and dependability of the spectral data. Typically, the scattering reference spectrum is an amalgamation of spectra extracted from a collection of standard samples. It is imperative that the spectral attributes of this reference align with the multiple scattering phenomena intrinsic to the target sample (Xu M. et al., 2022).




2.5.2 Feature selection for spectral data

In this research, the cottonseed spectra were extracted from hyperspectral data, resulting in a data dimension of 520. However, utilizing the complete set of spectral data for modeling purposes introduces a considerable volume of redundant information, subsequently yielding suboptimal modeling outcomes. Hence, within the scope of this study, the SPA (Successive Projections Algorithm) and CARS (Competitive Adaptive Reweighted Sampling) algorithms were applied to discern the feature wavelengths within the spectral data of cottonseeds. This endeavor aimed to identify a set of pivotal wavelength positions that not only encapsulate the essence of cottonseed vitality but also expunge extraneous information.

The SPA serves as a forward feature selection technique employed to address spectral covariance quandaries. SPA operates by subjecting wavelengths to vector projection, wherein one set of wavelengths is projected onto another. Subsequently, the magnitudes of these projection vectors are juxtaposed, and the wavelength boasting the most substantial projection vector is chosen. This preliminary selection serves as the basis for further feature wavelength selection, facilitated through a corrective model. SPA effectively assembles a subset of variables that minimizes both redundancy and covariance, thus optimizing information content (Tang et al., 2018). The CARS algorithm employs a strategy of adaptive reweighted sampling to pinpoint wavelength positions characterized by substantial absolute regression coefficients within the partial least squares model. This approach involves eliminating wavelength positions with minor weights and leveraging cross-validation to identify a subset with the least cross-validated mean squared deviation values. Consequently, this methodology streamlines the search for an optimal amalgamation of variables, enhancing overall efficiency (Lin et al., 2019).





2.6 Extraction of image features

Two prevalent techniques for hyperspectral image analysis deserve mention: Firstly, the conversion of hyperspectral imagery into a color representation allows for the extraction of features like chromatic attributes and color-based morphological characteristics. The second approach involves decomposing the high-dimensional image data into individual single-channel images. Subsequently, the texture intricacies within these single-channel images are subjected to extraction. Given the subtle differentiations in color and morphological attributes within cottonseed images, this study opted to harness texture features for prognosticating cottonseed vitality. However, it’s important to note that each individual cottonseed image in this study comprises 25 distinct cottonseeds, thus necessitating individual segmentation for accurate analysis. The segmentation task was executed using the U-Net architecture, which comprises a compression path and an expansion path. Within the compression path, four blocks were incorporated, each consisting of three convolutions and a max pooling downsampling operation. The number of feature maps was consistently doubled post each downsampling operation. Correspondingly, the expansion path, also comprised of four blocks, initiated with three successive convolutional downsampling operations, succeeded by an additional Max Pooling downsampling step. In each block, the feature map’s size was magnified twofold, subsequently halving its count through inverse convolution. This augmented map was then amalgamated with the feature map from the symmetrical compression path on the left, as shown in Figure 2 (Beeche et al., 2022).




Figure 2 | U-Net.



Upon accomplishing the segmentation of individual cottonseeds, the ensuing step involves the extraction of texture features for each isolated cottonseed. This process entails the application of the gray-scale co-occurrence matrix, grounded in the concept that each pixel’s frequency of occurrence within a specific range of neighboring pixels, all possessing identical gray levels, is tallied. The resultant counts are subsequently employed as elements within the Gray-Level Co-occurrence Matrix (GLCM) corresponding to the given pixel (Hussain et al., 2022). The mathematical formulation for its implementation is as follows:

 

This formula, G(i, j) represents the frequency of co-occurrence of a pixel possessing a gray level   alongside a pixel at a distance   with the same gray level. Meanwhile,   signifies the normalized GLCM, effectively capturing the proportional distribution of such co-occurring instances.

The features extracted from the GLCM encompass several fundamental attributes: Contrast (This descriptor encapsulates the disparity between distinct gray levels within the image texture, thereby delineating texture contrasts); Correlation (By characterizing the interconnectedness of pixel gray levels in the image texture, correlation offers insights into the interrelationships within the texture); Energy (Reflecting the extent of textural intricacy, energy gauges the presence and intensity of detailed textural patterns within the image); Entropy (This facet captures the intricacy and ambiguity present within the image texture, signifying its level of uncertainty and complexity). In this study, individual cottonseed comprises 520 images spanning various spectral bands. Each of these images is associated with four distinctive metrics for texture attributes. Consequently, a cumulative total of 2080 texture features are derived for each cottonseed.




2.7 Modeling methods



2.7.1 PLSR and SVR

Within this study, the prognostication of cottonseed vitality was pursued through the application of two distinct regression models: Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR). PLSR stands as a statistical analytical technique primarily employed for establishing regression connections among multiple variables. This method finds frequent application in addressing regression challenges arising from high-dimensional data and multicollinearity. PLSR employs a decomposition strategy, breaking down both the predictor and response variables into latent variables. Subsequently, it establishes a linear association between these latent variables, achieved by minimizing the covariance existing between them (Cheng and Sun, 2017). At the core of SVR lies the principle of minimizing the dissonance between predicted and actual outcomes, achieved by determining an optimal hyperplane that seamlessly maps input data to corresponding output data (Sun et al., 2020). This procedural journey encompasses the following steps:

1. Input data undergoes the transformation into a feature space with an elevated dimensionality.

2. Within this augmented feature space, a foundational hyperplane is erected, serving as the bedrock for prediction-making and facilitating the regression endeavor.

3. The procedure includes the identification of support vector data points residing in close proximity to the hyperplane within the feature space. These vectors play a pivotal role in establishing the hyperplane’s placement.

4. The optimization of hyperplane parameters is accomplished by minimizing a designated objective function.




2.7.2 1D-CNN

Convolutional neural networks exhibit robust feature extraction capabilities and have demonstrated notable achievements in both classification and regression tasks (Guo et al., 2022). Given the distinctive characteristics intrinsic to cottonseed spectral and image texture data, this research employed a one-dimensional convolutional neural network (1D-CNN) to prognosticate the vitality of cottonseeds. To enhance the adaptability of the 1D-CNN model for cottonseed vitality prediction, a tailored 7-layer architecture was constructed, depicted in Figure 3. This architecture encompasses two sequential 1D convolutional layers, supplemented by two average pooling layers and two fully connected layers. The initial 1D convolutional layer incorporates 64 convolutional kernels, while the second layer integrates 128 convolutional kernels. These convolutional layers are pivotal in extracting essential characteristics from the cottonseed data. The incorporation of average pooling layers expedites model convergence and serves as a preventive measure against overfitting. Within the fully connected layers, the first layer accommodates 256 neurons, while the subsequent layer is composed of a single neuron, which specifically signifies cottonseed vitality.




Figure 3 | 1D-CNN for Cottonseed.



The selection of a suitable loss function profoundly influences model performance, as it guides the continual refinement of network parameters throughout the training phase by quantifying the disparity between predicted and actual values. By acting as a yardstick for this discrepancy, the choice of an appropriate loss function holds the potential to expedite convergence while enhancing model efficacy. Within this study, the mean square error function was adopted to quantify the disparity between predicted and actual cottonseed vitality values. The computational formulation for this function is as follows:

 

Where   signifies the predicted cottonseed vitality value,  denotes the actual cottonseed vitality value.  corresponds to the count of cottonseed samples.





2.8 Performance evaluation of models

In the process of employing the U-Net for cottonseed segmentation, this study evaluates the model’s segmentation performance using two widely employed metrics in image semantic segmentation tasks: Pixel Accuracy (PA) and Mean Intersection Over Union (MIoU). These metrics are applied to compare and analyze the model’s semantic segmentation outcomes against manually annotated cottonseed images. The formulas for both metrics are presented below:

 

 

In these formulas,  represents the count of semantic categories, which, in this study, is set to 2.   denotes the tally of accurate pixels corresponding to category  semantics. Similarly,   signifies the count of pixel points in which category  semantics is erroneously identified as category  , while   indicates the count of pixel points where category  semantics is erroneously identified as category  .

The assessment metrics for the regression model encompass the correlation coefficient and the root mean square error. Generally, a model’s predictive efficacy is deemed higher when the correlation coefficient approaches 1 and the root mean square error approaches 0. The computation of these metrics is outlined below:

 

 

Where,   denotes the count of samples within the dataset.  signifies the predicted value for the “ith” sample,  represents the actual value of the same “ith” sample. Additionally,   stands for the mean value computed from the actual values across all samples encompassed by the dataset.





3 Results and discussion



3.1 Analysis results of spectral data



3.1.1 Sensitive band analysis of cottonseed

After extracting hyperspectral data, a dataset comprising 200 cottonseed samples was compiled, encompassing both spectral and image data. This section is dedicated exclusively to harnessing spectral data for predicting cottonseed vitality. Before selecting feature wavelengths, the cottonseed spectral data undergoes pretreatment via three distinct algorithms: SNV, MSC, and SG. These algorithms are employed to counteract the effects of noise and scattering on the modeling outcomes. Illustrated in Figure 4, observations discern that following SG pretreatment, the distribution of cottonseed spectral data exhibits similarities to the original distribution, albeit with heightened smoothness. With MSC pretreatment, the distribution of cottonseed spectral data becomes more concentrated in contrast to the original dataset. Conversely, the values of cottonseed spectral data undergo modification after SNV pretreatment, resulting in a distribution akin to that achieved through MSC pretreatment.




Figure 4 | Spectral data after pretreated.



Following the pretreatment of cottonseed spectral data, the SPA and CARS algorithms were employed to select feature wavelengths. This procedure aimed to identify essential sets of wavelength points that effectively encapsulate cottonseed vitality. The progression of feature wavelength selection via the SPA is depicted in Figure 5, utilizing the cottonseed spectral data following SG pretreatment as an illustrative example. The fundamental tenet of the SPA algorithm for feature wavelength selection in cottonseed spectral data is rooted in the minimization of the root mean square error (RMSE), as depicted in Figure 5A. Notably, the RMSE reaches its minimum value when 10 features are chosen. The specific feature wavelengths selected in this process are illustrated in Figure 5B. The selection of feature wavelength points following MSC and SNV pretreatment mirrored that of SG. Ultimately, we identified 10 characteristic wavelength points after SG preprocessing, 8 after MSC, and 6 after SNV, distributed across both the visible and near-infrared wavelength ranges.




Figure 5 | Feature wavelength selection based on SPA. (A) RMSE (B) Index of selected variables.



To elucidate the process of extracting feature wavelengths using the CARS algorithm, the same SG-pretreated cottonseed spectral data serves as an illustrative example. This study implements 100 Monte Carlo sampling iterations and employs a 5-fold cross-validation approach. As evidenced in Figure 6A, the count of selected variables gradually diminishes as the number of sampling iterations progresses. Figure 6B reveals the behavior of the Root Mean Square Error of Cross Validation (RMSECV), depicting a gradual decline followed by an eventual increase. The decrement in RMSECV indicates the removal of extraneous information from the cottonseed spectral data, while the subsequent rise in RMSECV suggests the elimination of vital information. The point at which RMSECV reaches its minimum value is accompanied by the presentation of regression coefficients for each variable along the vertical line in Figure 6C. At this juncture, the number of sampling iterations is recorded as 20. The choice of feature wavelengths post MSC and SNV pretreatment closely resembled that of SG. Ultimately, we identified 45 feature wavelength points after SG pretreatment, 64 after MSC, and 53 after SNV, distributed across both the visible and near-infrared wavelength bands.




Figure 6 | Feature wavelengths selection based on CARS. (A) Number of sampled variables (B) RMSECV (C) Regression coefficients path.






3.1.2 Regression prediction based on PLSR, SVR

Following the identification of feature wavelengths capable of indicating the vitality of cotton seeds, we employed PLSR and SVR techniques to formulate a robust predictive model for cotton seed vitality assessment. Within the framework of this investigation, three principal components were chosen for PLSR modeling, while the radial basis function emerged as the optimal choice for SVR analysis. Detailed outcomes of these models are presented in Table 1. Among the discriminant models for cottonseed vitality developed through PLSR, the model constructed utilizing the synergistic integration of SG pretreatment and SPA treatment exhibited unparalleled predictive prowess. This model showcased exceptional predictive efficacy, boasting a correlation coefficient of 0.8709 and an impressively low RMSE of 0.8027 when evaluated against the test dataset. In contrast, the model generated by applying SNV pretreatment in conjunction with SPA treatment demonstrated a comparatively suboptimal predictive performance. This model was characterized by a correlation coefficient of 0.6970 and a relatively higher RMSE of 1.0685 when scrutinized against the same test dataset. Amidst the suite of SVR models crafted, the model fashioned through the amalgamation of SG pretreatment and SPA treatment emerged as the apex performer. This exemplary model exhibited a correlation coefficient of 0.8917 and an RMSE of 0.7435 when subjected to evaluation against the designated test dataset. In contrast, the model devised by employing SNV pretreatment in conjunction with SPA treatment displayed comparatively less favorable performance metrics. Specifically, this model registered a correlation coefficient of 0.8064 and an RMSE of 0.9606 when assessed against the same comprehensive test dataset.


Table 1 | The results of PLSR, SVR.






3.1.3 Regression prediction based on 1D-CNN

In this study, we employed a 1D-CNN to construct a robust predictive model for assessing cottonseed vitality. The model training was executed within a hardware framework comprising an i9-12900K CPU, NVIDIA GeForce RTX 3090Ti GPU, and operating on the Windows 10 platform. The software environment encompassed Pytorch 1.12 coupled with CUDA 11.7 for efficient computational acceleration. Network parameter optimization was achieved through the SGD optimizer, with an initial learning rate established at 0.0001 and a predefined maximum training iteration of 50. Notably, a batch size of 4 was employed during the training process. The preprocessed cottonseed data, following pretreatment and feature wavelength selection, were harnessed as inputs for the 1D-CNN. The dynamics of network training reflected through the progression of loss, are visually illustrated in Figure 7. Evidently, following 20 epochs of training, the loss values across the spectrum of six distinct treatments have substantially converged to a low magnitude. This convergence underscores the attainment of model stability. Notably, the model attained its lowest loss value subsequent to the application of MSC in conjunction with CARS preprocessing. Conversely, the highest loss value was observed following the utilization of SNV pretreatment accompanied by SPA treatment.




Figure 7 | Loss curves.



The modeling results for the 1D-CNN are summarized in Table 2. It is evident that the model constructed after applying MSC+CARS preprocessing exhibits the most outstanding performance in predicting the vitality of cottonseed. This is supported by a test set correlation coefficient of 0.9214 and an RMSE of 0.7017. Conversely, the model developed after employing SNV+SPA preprocessing demonstrates the poorest performance, as indicated by a test set correlation coefficient of 0.8215 and an RMSE of 0.9451. These findings are also consistent with the results obtained during the training of the 1D-CNN model, where the convergence of loss values further validates the observed trends.


Table 2 | The results of 1D-CNN.







3.2 Analysis results of image data



3.2.1 Cottonseed segmentation

In this study, we employed the Labelme annotation tool to annotate cotton seeds from six test plates. Subsequently, the cottonseed images were segmented using the U-Net network. Given the limited number of cotton seed images available for this study, we initialized the U-Net network with pre-trained weights from the COCO Stuff dataset. The hardware and software platforms utilized for training the U-Net network included an Intel i9-12900K CPU, NVIDIA GeForce RTX 3090Ti GPU, PaddlePaddle 2.5, and CUDA 11.7. The segmentation results of the model are presented in Figure 8. It is evident that U-Net achieves results for cottonseed segmentation, with a PA of 97.88% and an MIoU of 88.53%. Moreover, the model demonstrates efficient performance with a single-image detection time of 320ms. These findings indicate a superior segmentation capability that fully meets the segmentation requirements for this study.




Figure 8 | Cottonseed segmentation results.






3.2.2 Texture feature extraction from cottonseeds

The segmentation of cottonseed images corresponding to feature wavelength points selected by six distinct processing methods was conducted using the pre-trained U-Net network described earlier. Following the completion of segmentation, four texture features (Contrast, Correlation, Energy, Entropy) were individually extracted for each cottonseed using the GLCM. For instance, when considering the feature wavelength point of 711nm for the cottonseed, the U-Net network was utilized to segment the corresponding image at 711nm. Subsequently, four texture features were extracted for each segmented cottonseed, as illustrated in Figure 9. After completing the extraction of texture features from cottonseeds, we employed PLSR, SVR, and 1D-CNN to construct prediction models for cottonseed vitality. The results are presented in Table 3. For PLSR, the images corresponding to the feature wavelength points selected with SNV+SPA exhibited the best performance in predicting cottonseed vitality, achieving a test set correlation coefficient of 0.7743 and an RMSE of 0.9936. Similarly, for SVR, the SNV+SPA preprocessing outperformed others, yielding a test set correlation coefficient of 0.7524 and an RMSE of 1.0184. On the other hand, when employing 1D-CNN, the SG+CARS preprocessing demonstrated superior performance in predicting cottonseed vitality, with a test set correlation coefficient of 0.8032 and an RMSE of 0.9683.




Figure 9 | Texture feature extraction from cottonseeds.




Table 3 | The results of PLSR, SVR and 1D-CNN.







3.3 Analysis results of fused spectral and image data

In hyperspectral data analysis, the fusion of image and spectral data typically involves two methods: one is the direct fusion of spectral feature wavelengths with all image features, and the other is the fusion of a feature wavelength point with its corresponding image features. In this study, the first method results in image features with 2080 dimensions, which can potentially lead to overfitting of the model if applied directly. Hence, we integrated the extracted spectral feature wavelength point data with the corresponding image texture features. Following feature fusion, this study employed PLSR, SVR, and 1D-CNN to construct prediction models, and the outcomes are presented in Table 4. From the tables, it is evident that all three models constructed after the SG+SPA preprocessing exhibited the highest performance in predicting cottonseed vitality. They achieved a test set correlation coefficient of 0.8892, 0.9056, and 0.9427, with corresponding RMSE of 0.7904, 0.7349, and 0.6872 for PLSR, SVR, and 1D-CNN, respectively. Notably, this performance improvement was notable when compared to the utilization of spectral data or image texture features in isolation.


Table 4 | The results of PLSR, SVR and 1D-CNN.






3.4 Comparison of optimal models for spectral, image, and spectral-image fusion

Among the predictive models for cottonseed vitality based on spectral data, the 1D-CNN model, established after applying MSC+CARS preprocessing, demonstrated the highest performance. It achieved a test set correlation coefficient of 0.9214 and an RMSE of 0.7017, as illustrated in Figure 10. In the case of predictive models for cottonseed vitality constructed using hyperspectral image data, the 1D-CNN model, developed following SG+CARS preprocessing, exhibited the best performance, with a test set correlation coefficient of 0.8032 and an RMSE of 0.9683, as depicted in Figure 11. Furthermore, among the models that integrated both spectral and image data, the 1D-CNN model, established after SG+SPA preprocessing, outperformed others, boasting a test set correlation coefficient of 0.9427 and an RMSE of 0.6872, as illustrated in Figure 12. The optimal performance of the cottonseed vitality prediction model, incorporating both spectral and image features, is evident.




Figure 10 | Predicted values based on spectral data.






Figure 11 | Predicted values based on image data.






Figure 12 | Predicted values based on fused spectral and image data.






3.5 Discussion

To address the challenge of effectively assessing the vitality of cottonseeds during the cotton cultivation process, this study employed hyperspectral technology to develop a data acquisition system dedicated to cotton seeds. Subsequently, prediction models for cottonseed vitality are established using spectral data, image data, and fused spectral-image data. The modeling techniques encompass both machine learning and deep learning methodologies. Notably, while there are existing studies focusing on various qualities of cottonseed, such as Wang et al. (2023) achieving a 99% accuracy in detecting broken and mold-infested cottonseeds using YOLOV5, and Du et al. (2023) achieving a 97.23% accuracy in detecting broken cottonseeds, and also research on the identification of genetically modified cottonseeds (Li et al., 2020; Qin et al., 2017), no prior research has addressed cottonseed vitality detection. This study fills this research gap and additionally compares the application of hyperspectral detection for assessing the vitality of other plant seeds, such as vegetable seeds (Cheng et al., 2023), maize seeds (Xu P. et al., 2022), and beet seeds (Zhou et al., 2020). Furthermore, we successfully maintained consistency in achieving predictions even with thicker and harder seed shells, as demonstrated in cottonseed vitality predictions.





4 Conclusions

In this study, hyperspectral data of cotton seeds was collected, and we conducted separate extractions of spectral data and corresponding image data from different bands. The identification of feature wavelength points for cottonseeds was achieved through a combination of SG, SNV, and MSC pretreatment algorithms in conjunction with SPA and CARS techniques. Subsequently, we developed distinct models for predicting the vitality of cottonseeds using the following datasets: spectral data alone, image data alone, and a fused dataset combining spectral and image data. In terms of spectral data analysis, the 1D-CNN model, constructed following MSC+CARS preprocessing, demonstrated the highest performance, boasting a test set correlation coefficient of 0.9214 and an RMSE of 0.7017. Turning to image data, the U-Net network exhibited remarkable capabilities with a PA of 97.88% and an MIoU of 88.53%, ensuring precise cottonseed segmentation. Leveraging the four texture features extracted from the images, corresponding to the wavelength points of interest, the 1D-CNN model, established after SG+CARS preprocessing, yielded the most effective results for predicting cottonseed vitality, attaining a test set correlation coefficient of 0.8032 and an RMSE of 0.9683. For fused spectral and image data, the model’s optimal performance was observed after SG+SPA preprocessing, delivering a test set correlation coefficient of 0.9427 and an RMSE of 0.6872. Image information primarily portrays the external attributes of cottonseeds, whereas spectral data can reveal crucial insights about the internal composition of the cottonseed. The vitality of cottonseeds is influenced by both the shell and kernel. Therefore, the fusion of spectral and image information leads to improved cottonseed vitality prediction. Furthermore, it’s worth noting that the 1D-CNN model’s performance in this study surpassed that of SVR and PLSR, indicating its suitability for cottonseed vitality prediction. These findings hold significant promise in providing crucial technical support for the development of future automated cottonseed vitality detection devices.
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The timely and precise prediction of winter wheat yield plays a critical role in understanding food supply dynamics and ensuring global food security. In recent years, the application of unmanned aerial remote sensing has significantly advanced agricultural yield prediction research. This has led to the emergence of numerous vegetation indices that are sensitive to yield variations. However, not all of these vegetation indices are universally suitable for predicting yields across different environments and crop types. Consequently, the process of feature selection for vegetation index sets becomes essential to enhance the performance of yield prediction models. This study aims to develop an integrated feature selection method known as PCRF-RFE, with a focus on vegetation index feature selection. Initially, building upon prior research, we acquired multispectral images during the flowering and grain filling stages and identified 35 yield-sensitive multispectral indices. We then applied the Pearson correlation coefficient (PC) and random forest importance (RF) methods to select relevant features for the vegetation index set. Feature filtering thresholds were set at 0.53 and 1.9 for the respective methods. The union set of features selected by both methods was used for recursive feature elimination (RFE), ultimately yielding the optimal subset of features for constructing Cubist and Recurrent Neural Network (RNN) yield prediction models. The results of this study demonstrate that the Cubist model, constructed using the optimal subset of features obtained through the integrated feature selection method (PCRF-RFE), consistently outperformed the RNN model. It exhibited the highest accuracy during both the flowering and grain filling stages, surpassing models constructed using all features or subsets derived from a single feature selection method. This confirms the efficacy of the PCRF-RFE method and offers valuable insights and references for future research in the realms of feature selection and yield prediction studies.
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1 Introduction

Winter wheat holds tremendous significance in agriculture as one of the most widely cultivated and consumed food crops across the globe. It plays a pivotal role in providing a substantial portion of food and energy to the world’s population and constitutes an integral part of people’s daily diets (Liu et al., 2023). The production of winter wheat also carries great importance for a nation’s food supply and the overall food security of its citizens (Li et al., 2022). In recent years, the rise in climate-related disasters, marked by frequent extreme weather events such as severe droughts and excessive precipitation, poses a substantial threat to the stability of agricultural yields (King et al., 2015; Lesk et al., 2022; Wu et al., 2022). Therefore, the timely and precise monitoring of crop yields holds the key to empowering farmers and agricultural producers to make well-informed decisions based on yield data. Furthermore, it aids governments and policymakers in comprehending the food supply status and implementing preemptive measures to ensure food security for their populations.

Traditional methods of monitoring crop yields typically necessitate labor-intensive and costly procedures involving destructive sampling and measurements. Moreover, these conventional techniques are constrained by their limited capacity to obtain samples, often leading to incomplete and non-real-time yield data. They can also inadvertently cause soil compaction and damage (Ma et al., 2023). The emergence of drone remote sensing technology has revolutionized agricultural practices. UAV remote sensing offers the capability to swiftly cover vast farmland areas and deliver high-resolution spectral images and data, including multispectral imagery (Su et al., 2023). This innovative technology significantly mitigates long-term operational costs and provides timely, accurate, and comprehensive crop monitoring data, thereby driving progress in the field of agriculture. Multi-spectral sensors, as one of the sensors in UAV remote sensing, are used in yield prediction (Shafiee et al., 2023), environmental monitoring (Lo et al., 2023) and pest and disease monitoring (Barreto et al., 2023). Multispectral sensors are adept at capturing spectral information across multiple bands, typically including the visible and near-infrared ranges, each with distinct reflective characteristics on vegetation. Simultaneously, these sensors can detect finer surface details such as crop rows and vegetation plots.

Drawing from the findings of prior research(Wang et al., 2016; Zheng et al., 2019), it became evident that vegetation indices derived from UAV multispectral imagery exhibited varying performance across different crop types and environmental settings. Hence, it becomes imperative to select these features judiciously to eliminate redundancies. For instance, Zhang et al. (Zhang et al., 2020) employed the PC method within a filtering approach to calculate correlation coefficients between the Absorbance Difference Vegetation Index (ADVI) and conventional vegetation indices and their association with Cu content in soil and leaves. Their findings revealed that ADVI exhibited a significantly stronger correlation compared to other vegetation indices, showcasing its effectiveness in distinguishing between Cu and Pb stress. In a similar vein, Chen et al. (Chen et al., 2022) adopted the random forest importance method as a screening technique within the embedding process to optimize variables for leaf Na+ extraction. Their study observed significant enhancements in both models, with the Support Vector Machine (SVM) model emerging as the most effective choice. Leo et al. (Leo et al., 2021) employed RFE within the packing method to choose spectral indices. This led to an improved prediction accuracy for the model when assessing the correlation between predicted and observed scores. It’s noteworthy that all three of the aforementioned feature selection methods have consistently displayed strong performance in previous studies. They have proven to be instrumental in obtaining feature sets that are both reliable and highly effective. Cubist models have found applications in a wide range of fields, including forestry (Ou et al., 2019), soil science (Sarkodie et al., 2023), crop research (Xiao et al., 2020), environmental studies (Azizi et al., 2022), and more. Presently, RNN models have demonstrated strong performance in tasks such as sound activity detection (Mihalache and Burileanu, 2022), image retrieval, natural language processing (Mao et al., 2014), and crop yield prediction (Khaki et al., 2020). Drawing from the collective insights of prior studies, it becomes evident that the majority of research tends to follow one of two approaches. In most cases, studies either exclusively rely on a single feature selection method (Abdel-Rahman et al., 2013; Cabezas et al., 2016), or they engage in comparative analyses involving multiple feature selection methods (Bai et al., 2022; Li et al., 2022). Unfortunately, what’s often missing is the integration and synergistic utilization of diverse feature selection methods to leverage their unique strengths and yield a more rational and dependable subset of features. This, undoubtedly, presents a challenge and an opportunity for further research in our field.

Hence, in this study, we will integrate a combination of feature selection methods, including the filtering method (PC), embedding method (RF importance), and the packing method (RFE), all applied to the selection of features from a pool of 35 multispectral indices. Subsequently, we will employ these different feature subsets to construct Cubist and RNN models for yield prediction. Our aim is twofold: first, to generate feature subsets through the application of various feature selection methods; and second, to establish an integrated feature selection approach that effectively derives these subsets. Ultimately, we intend to evaluate the accuracy of yield prediction models, offering a theoretical foundation for the utilization of multispectral remote sensing in wheat yield monitoring.




2 Materials and methods



2.1 Experimental area and design

This experiment was conducted in 2023 at the Xinxiang Comprehensive Experimental Base of the Chinese Academy of Agricultural Sciences, located in Xinxiang City, Henan Province, at coordinates 113°45′38″E and 35°8′10″N (Figure 1), This region boasts extensive plains and a moderate climate that is particularly well-suited for the cultivation of winter wheat. It is recognized as a national high-quality specialty wheat production base.




Figure 1 | Test area and plots.



The experiment consisted of 120 plots. To investigate the impact of extreme weather conditions, specifically extreme rainfall and severe drought, on winter wheat yields in the Xinxiang area, four distinct treatments were established throughout the reproductive stage. These treatments were as follows: low water stress treatment 1 (W1, with 0% full water, 0 mm), low water stress treatment 2 (W2, with 30% full water, 72 mm), full water treatment 3 (W3, with 100% full water, 240 mm), and high water stress treatment 4 (W4, with 200% full water, 480 mm). Each experimental treatment consisted of 30 plots, 3 m long and 1.4 m wide, with an area of 4.2 m2 and a row spacing of 20 cm. Ten wheat varieties suitable for cultivation in the Yellow and Huaihe wheat regions were selected as experimental materials. To ensure the objectivity of the experiment, three replications were established for each treatment. The experiment was initiated with planting in early November 2022 and concluded with the harvest on June 10, 2023. In the production area, pesticides and fertilizers are applied in accordance with local management practices. Prior to planting, a basal fertilizer is applied at a rate of 750 kg·ha-1. Wheat is sown at a density of 500 plants per acre of land. Subsequently, each plot’s harvested wheat was encapsulated in numbered bags within the laboratory, where it was dried to a constant mass. The weight of winter wheat in each plot was then recorded and converted to yield based on the plot’s area.




2.2 UAV multispectral data acquisition

In this experiment, a DJI M210 (Shenzhen DJI Technology Co., Ltd., Shenzhen, China) UAV equipped with a Micasense RedEdgeMX multispectral camera was used to collect multispectral data from winter wheat. The DJI M210 is a high-performance quadcopter known for its exceptional stability and precise flight control. The RedEdgeMX sensor is equipped with five bands: red, green, blue, near-infrared (NIR), and red-edge, making it particularly well-suited for agricultural and environmental monitoring. Each band has a precisely designed center wavelength and bandwidth to meet diverse application requirements. The red band’s center wavelength is 668nm, the green band’s center wavelength is 560nm, the blue band’s center wavelength is 475nm, the NIR band’s center wavelength is 840nm, and the red-edge band’s center wavelength is 717nm. Importantly, each channel offers high resolution at 1280×960 pixels with a wide field of view.

The data collection process involved two flights on May 8, 2023, coinciding with the flowering stage, and May 20, 2023, corresponding to the grain-filling stage. These flights were conducted between 11:00 and 14:00, benefiting from clear and cloudless weather conditions that minimized shadows and ensured optimal image quality. Both UAV flights were maintained at a constant altitude of 30 meters throughout their missions. To enhance data coverage and overlap, a heading overlap rate of 85% and a side overlap rate of 85% were established. These settings were chosen to maximize the comprehensiveness and accuracy of the imagery, ultimately improving the reliability of subsequent data processing and analysis. Moreover, the RedEdgeMX sensor is furnished with Global Navigation Satellite System (GNSS) technology, ensuring millimeter-level accuracy. When coupled with Ground Control Points (GCPs), this technology facilitates precise geo-correction during the post-processing phase. Notably, the sensor operates in the vertical ground equal time interval photo mode, systematically capturing images at regular time intervals. This mode is essential for ensuring uniform spacing of images throughout the flight, enabling the capture of intricate details and changes within the target area.




2.3 UAV image preprocessing

The data collected from each of the two stages underwent a systematic process. It commenced with the transfer of the collected data to a computer and its subsequent import into Pix4DMapper Pro software (version 4.4.12) (Pix4D SA, Switzerland), two distinct projects were created, and the necessary project parameters were configured. The alignment of images was achieved through the utilization of the feature point matching algorithm, as illustrated in Figure 2. In more detail, the initial step involved generating a sparse point cloud representing the flight area, which was based on the UAV imagery and corresponding position data. Subsequently, a spatial grid was created using the sparse point cloud, and spatial coordinate information was incorporated. This transformation resulted in the creation of a sparse point cloud with precise positions. Following this, the surface geometry of the flight area was generated. Finally, the process culminated in the creation of both a high-resolution digital orthophoto (DOM) and a digital surface model (DSM) encompassing the entire flight area. ArcMap (version 10.8) (Environmental Systems Research Institute, Inc., USA) was used to divide the multispectral high-resolution digital orthophotos into 120 regions with neighbourhood IDs. Using the Zonal Statistics as Table function in the ArcMap software, the average value of each plot was calculated for each of the five bands, and the five spectral bands corresponding to each plot were identified and exported.




Figure 2 | Research framework and flow chart.






2.4 Vegetation index acquisition

Drawing from previous research findings, we compiled a comprehensive set of 35 yield-sensitive multispectral vegetation indices. These indices were derived from the acquired reflectance data spanning five bands within the multispectral spectrum. They serve as the primary input feature set for our prediction model. A detailed listing of all the vegetation indices utilized in this study is provided in Table 1, including simple vegetation indices, modified vegetation indices, and functional vegetation indices.


Table 1 | Information about the MS features.






2.5 Modeling framework

In this section, we provide an overview of our proposed modeling framework, as depicted in Figure 2. The set of 35 yield-sensitive vegetation indices, constructed within this study, may potentially contain redundant features. Utilizing all these indices as direct input features can be detrimental to the performance of our yield prediction model. Consequently, a data pre-processing approach is imperative to select and refine the features within the dataset. Feature selection methods include filtering, embedding and packing methods. Our proposed modeling framework primarily consists of two key steps. First, we employ an integrated feature selection method that leverages the PC and RF importance to filter and screen the vegetation indices, ultimately identifying the features crucial for yield prediction. Subsequently, based on the refined feature subset obtained through feature selection, we proceed with recursive feature elimination to further optimize the feature subset. Upon the completion of feature selection, both the full feature subset and the subsets obtained through various feature selection methods are used as input features for both the Cubist and RNN models. To assess model performance, the feature subset is randomly divided using the 10-fold cross-validation method. In this approach, each of the 10 folds serves as the validation set, while the remaining 9 folds constitute the training set for ten iterations. The results obtained across these iterations are consolidated, and the mean value is considered as the final accuracy measure for the model.



2.5.1 Pearson correlation coefficient and random forest importance

PC falls under the category of filtered feature selection methods. It stands as one of the most commonly employed statistical tools for quantifying the relationships between linearly correlated variables. This coefficient provides a numerical measure of the strength of the relationship between variables. In the context of feature selection, the PC proves valuable in assessing the linear correlation between each feature and the target variable. This information aids in the selection of highly correlated features with the target variable, thereby enhancing the performance and explanatory capacity of the model (Zhang et al., 2020). Its formula is as follows:

 

Where Cov (X, Y) represents the covariance of X and, Y VAR(X) is the variance of X, and VAR(X) is the variance of Y.

The RF is a potent machine learning algorithm widely used for feature selection and predictive tasks. By integrating multiple decision trees (Chen et al., 2022), it enables more accurate and robust predictions. In a RF, feature importance is a crucial concept used to assess each feature’s contribution to the model’s predictive performance. This model is composed of several decision trees, each constructed using random subsets of data and features, which enhances generalization and mitigates overfitting.To quantify a feature’s importance, the model computes the difference in prediction error when the feature is included versus when it is excluded in all decision trees. These differences are averaged to determine the feature’s importance. Features with higher importance values play a more significant role in the model’s predictive power. These importance scores offer insights into which features have a greater impact on the target variable, aiding in feature selection and model interpretation. The RF is a comprehensive model that combines various decision trees, each constructed using bagging, and calculates the cumulative importance score for each feature based on their impurity reduction values across all the trees. This score provides an overall measure of a feature’s impact on the model’s predictive performance. We utilized R (version 4.3) for computing the importance scores in the Random Forest model.




2.5.2 Integrated feature selection based on Pearson correlation coefficient and random forest importance

The integrated feature selection method, which combines the PC and RF importance, constitutes the first step of our proposed feature selection approach. In this initial phase, we exclusively utilize the 35 vegetation index features spanning the five bands of the multispectral data to ensure the retention of crucial spectral information. Subsequently, we calculate the importance of each feature independently using both the PC and RF techniques. The importance scores are then ranked and visualized, facilitating the selection of a threshold that distinguishes obviously less important features from others. Features with importance scores exceeding the chosen threshold are retained, while those falling below are eliminated. We posit that there may be significant features present within the subset selected through both the PC and RF metrics. Hence, we use their union as a foundation for further feature optimization.

The second step in our integrated feature selection method involves the RFE technique. RFE, a wrapper-type feature selection method, progressively identifies the features that have the most substantial impact on model performance by iteratively removing less important features (Li Y. et al., 2023). This method operates by constructing a model and selecting and eliminating features based on their importance within the model, continuing until a predetermined number of features or a stopping condition is met. In our approach, we employ the subset of union features obtained from the PC and RF importance methods as input features for RFE. The RFE method utilizes all available features to train the base model, which encompasses both the Cubist and RNN models. Within this base model, the importance of each feature is assessed, and less important features are systematically eliminated through iterative steps. This process culminates in the identification of the subset of features that most effectively enhance the performance of both the Cubist and RNN models.




2.5.3 Cubist model

Cubist model is an integrated learning method that combines the advantages of decision tree. It serves as a versatile machine learning model designed for regression tasks and excels at capturing complex non-linear relationships. This is achieved through the fusion of regression trees and the identification of interactions between features, making it less susceptible to the influence of outlier noise. The Cubist model often demonstrates robust performance (Ou et al., 2019). In addition, the Cubist model requires less scaling and normalisation of the data. This can save time and effort in data pre-processing in practical applications. The basic principle of Cubist is to first divide the dataset into regions based on similarity and then use ordinary least squares regression to predict the variables of interest within each region. The Cubist model is as follows:

	

The continuous and categorical variables can be used in conditions, but only continuous variables can be used in regression equations (Han et al., 2023).




2.5.4 RNN model

RNN is a deep learning model well-suited for handling sequential data. Its standout feature lies in its inherent memory, allowing it to consider prior information, which influences present predictions or outputs. RNN is typically trained via backpropagation algorithms. RNN is composed of three key components: the input layer, the hidden layer, and the output layer, with its essential cyclic structure facilitating the transfer of information across different time steps (Murata et al., 2023). The structure of RNN is depicted in Figure 3.




Figure 3 | RNN structure.







2.6 Model accuracy assessment

To gauge the predictive performance of our model, we have chosen two key parameters for evaluation: R-squared (R2) and Root Mean Square Error (RMSE). A higher R2 value, closer to 1, signifies a better fit of the model to the data. Conversely, a lower RMSE value, closer to 0, indicates greater accuracy in the model’s predictions. In essence, these parameters provide essential metrics for assessing the model’s effectiveness. Conversely, if the R2 is low and the RMSE is high, it implies that the model lacks accuracy and fails to deliver the anticipated predictive power. The formulas for these parameters are as follows:

 

 

where   is the observed value, is the predicted value, where   is the predicted value, is the mean of the observed values, and N is the sample size.   is the mean of the observed values, and N is the sample size.





3 Results



3.1 Descriptive statistics

Figure 4 and Table 2 present the descriptive statistics for wheat yield across 120 plots subjected to four different treatments. The average yield across all sampled plots in this experiment stood at 8.31 t·ha-1. It’s noteworthy that wheat yield exhibited variations among the three extreme climate treatments and the treatments with sufficient water. Treatment W3 boasted the highest average wheat yield at 8.97 t·ha-1, whereas treatment W1 had the lowest average yield at 7.77 t·ha-1. Interestingly, the mean yield under treatment W4 was slightly lower than that of treatment W2, but significantly higher than the yield in treatment W1. This observation suggests that, in this experiment, the extreme drought treatment (W2) had a more pronounced impact on yield compared to the extreme rainfall treatment (W4). Analyzing the range, standard deviation (SD), quantitative statistics, and coefficient of variation (CV) for all plots and plots under each water treatment reveals significant differences in yields among the various experimental treatments, with distinct data separation.




Figure 4 | Observed yield distribution in 2023.




Table 2 | Descriptive statistics of observed yield(t·ha-1).



The yield data for ten wheat cultivars under varying water treatments is presented in Table 3. We observed that the highest yields were achieved in the W3 treatment, with the exception of Denghai202, Bainong207, Jimai22, and Shannong36. Denghai202 performed best in the W1 treatment, while Shannong36 excelled in the W2 treatment. These results indicate that Denghai202 and Shannong36 exhibit notable drought tolerance. Additionally, Bainong207 and Jimai22 produced the highest yields in the W4 treatment, suggesting their high water tolerance.


Table 3 | Yield data for ten wheat cultivars across four different water treatment conditions(t·ha-1).






3.2 Feature screening combination

PC and RF importance were employed to rank the importance of vegetation indices at the two fertility stages. The rankings indicated that the NLI was the most important feature during the flowering stage, while the ATSAVI, NLI, and OSAVI were the most significant during the grain filling stage according to the PC ranking. In contrast, the RF importance ranking identified ATSAVI as the primary feature during the flowering stage and GSAVI as the most important during the grain filling stage. However, there were some features with low importance rankings in both the PC and RF importance, which could potentially impact the model’s performance negatively. The significance of the correlation between vegetation indices and yield was also considered (Table 4). To mitigate the potential impact of these less important features on the prediction accuracy of the model, we introduced thresholds of 0.53 and 1.9 for the two feature selection methods to filter the importance of features. As demonstrated in Figures 5 and 6, this approach retained features with importance coefficients exceeding 0.53 in the PC ranking and features with coefficients exceeding 1.9 in the RF importance ranking. Features that fell below these thresholds were removed from consideration, resulting in the creation of four feature subsets. During the flowering stage, the PC method retained 16 features, while the RF importance method retained 20 features. The intersection of these methods, as seen in Figure 7A, identified 10 common features. The union of features from both methods totaled 25 features. Similarly, during the grain filling stage, the PC method retained 24 features, and the RF importance method retained 15 features. The intersection of these methods, as shown in Figure 7B, revealed 13 common features. The union of these features resulted in a total of 26. This comprehensive feature subset obtained by combining results from both fertility stages serves as a foundation for the subsequent step of feature selection and refinement.


Table 4 | Statistical significance testing of features (p-value).






Figure 5 | Ranking of importance of PC features at flowering and grain filling stages. (A) flowering stage, (B) grain filling stage.






Figure 6 | Ranking of importance of RF importance features at flowering and grain filling stages. (A) flowering stage, (B) grain filling stage.






Figure 7 | Feature union set of PC and RF feature selection. (A) flowering stage, (B) grain filling stage.



In the PCRF integration step, we obtained two feature subsets containing 25 and 26 features for the vegetation indices during the flowering and grain filling stages, respectively. Subsequently, we performed wrapper-based RFE feature selection on each of these two feature subsets individually. The feature selection was carried out using the same random seeds in the experiment and a patience parameter of 10. In other words, the RFE process was terminated if there was no improvement in performance over a cumulative span of 10 iterations. Following the feature selection process, we had subsets of features for both the Cubist and RNN models. The subset derived from the flowering stage contained 13 features for Cubist and 11 features for RNN. Meanwhile, the subset obtained during the grain filling stage comprised 15 features for Cubist and 18 features for RNN (Table 5). These feature sets were utilized for the final construction of the yield prediction model.


Table 5 | Number of features included in the subset.






3.3 Model validation analysis

Cubist and RNN yield prediction models were constructed based on all the features at the flowering and filling stages, the feature subsets selected by the PC and the RF importance method, and the feature subsets selected by the PCRF-RFE method proposed in this study, respectively. The accuracies of the prediction models are shown in Table 6. The accuracy of the Cubist yield prediction model constructed based on the feature subset selected by the PCRF-RFE method at the flowering stage was the best (R2 = 0.635, RMSE = 0.681 t·ha-1) (Figure 8A). This was followed by the accuracy of the RNN yield prediction model constructed based on the feature subset obtained by the PCRF-RFE method, with an R2 of 0.607, slightly higher than that of the Cubist model constructed based on the feature subset obtained by the PC method. During the grain filling stage, the Cubist yield prediction model constructed based on the subset of features selected by the PCRF-RFE method had the best performance (R2 = 0.667, RMSE = 0.661 t·ha-1) (Figure 8B). In contrast, the RNN yield prediction model constructed based on all features had the worst accuracy, with an R2 of 0.512. The Cubist and RNN yield prediction models constructed based on the subset of features obtained by the same feature selection method at the grain filling stage had higher accuracy than those at the flowering stage. The performance of the Cubist and RNN prediction models could be significantly improved by using the feature selection method. When using the intersection or union of the feature subsets obtained by the PC and RF importance methods as the feature subsets to construct the Cubist and RNN yield prediction models, the accuracy of the model was also greatly improved compared to that of all the features used as input variables. The R2 could reach 0.606 at the highest, but it was still lower than that of the yield prediction model constructed based on the feature subsets selected by the PC or RF importance methods. A comparative analysis between the observed and predicted yields from the Cubist model, conducted at both the flowering and grain filling stages, demonstrated that the grain filling stage exhibited greater consistency with the observed yields and outperformed the flowering stage (Figure 9).


Table 6 | Model accuracy of different feature selection methods.






Figure 8 | Distribution of observed and predicted yields for the optimal yield prediction model during the flowering and grain filling stages. (A) flowering stage, (B) grain filling stage.






Figure 9 | Observed and predicted yields for the optimal yield prediction model during the flowering and grain filling stages. (A) flowering stage, (B) grain filling stage.



To assess the adaptability of our integrated feature selection method in diverse environments and the applicability of our predictive model, we have chosen the best-performing models from two distinct fertility stages (Figure 10). We intend to construct a Cubist model using the optimal variable combination derived from the PCRF-RFE integrated feature selection method. Specifically, we will use data from the W1 and W2 treatments as the training set, and data from the W3 and W4 treatments as the validation set. The accuracy of the Cubist model consistently demonstrates strong performance, with R2 exceeding 0.59. Furthermore, the lowest RMSE achieved is as low as 0.849 t·ha-1. Notably, the model’s accuracy at the grain filling stage surpasses that at the flowering stage. In summary, the PCRF-RFE feature selection method exhibits its superiority by consistently delivering high accuracy, even when dealing with data from distinct environmental settings for training and validation. This also underscores the robust adaptability of the Cubist model in various scenarios.




Figure 10 | Distribution of observed and predicted yields for the Cubist yield prediction model. (A) flowering stage, (B) grain filling stage.






3.4 The results of best prediction models

In this study, a diverse set of vegetation indices was selected at both the flowering and grain filling stages. The yield prediction accuracy of the Cubist model, constructed using our developed PCRF-RFE method with different feature subsets as input variables, showed the best performance at both the flowering and grain filling stages. These models were used to generate predicted yield distributions (Figure 11). The results of the t-test distribution of yield between treatments at the flowering stage are presented in Table 7. The p-values between W1 and W3, W2 and W3, and W4 and W3 were all less than 0.01, indicating highly significant differences among these treatments. Furthermore, the p-values between W1 and W4, and W1 and W2 were less than 0.05, signifying significant differences between these treatment pairs. However, the p-values between W2 and W4 were greater than 0.05, suggesting that there was no significant difference between the effects of W2 and W4 on wheat yield. This observation indicates that the W2 and W4 had similar effects on wheat yield. Moreover, the p-value between W1 and W2 was significantly smaller than that between W1 and W4, indicating a greater difference between W2 and W1. The yield ranking between treatments was found to be W3 > W2 > W4 > W1. The results of the t-test distribution of yield between different treatments at the filling stage are shown in Table 8, and the significance of the treatments was similar to that at the flowering stage. The yield ranking between treatments remained W3 > W2 > W4 > W1.Based on the observed yield results, W3 had the highest yield between 7.184-13.117 t·ha-1, followed by W2 and W4 treatments, with the lowest observed yield in W1. These results align with the predicted yield distribution of the Cubist model, constructed using the PCRF-RFE method to select feature subsets at the flowering and grain filling stages. The consistent predicted yield distribution further affirms the utility of the feature selection method proposed in this study for winter wheat yield prediction.




Figure 11 | Distribution of predicted yields from the optimal yield prediction model. (A) flowering stage; (B) grain filling stage.




Table 7 | Results of t-test for flowering stage.




Table 8 | Results of t-test for grain filling stage.







4 Discussion

Their importance for yield prediction was ranked during both the flowering and grain filling stages using the PC and RF importance methods. To enhance the model’s robustness and reduce complexity, we applied thresholds of 0.53 and 1.9 to filter out low-importance features. This approach aligns with a previous study (Marques Ramos et al., 2020) and proved effective in feature selection. We introduced a novel step in the form of PCRF integration to select features from subsets obtained via PC and RF importance methods. This integrated approach minimizes potential bias resulting from a single selection method. Subsequently, we utilized the wrapper-based RFE feature selection technique to further refine the model’s input features, enhancing predictive performance. Our integrated feature selection method encompasses three distinct types: filtering, wrapping, and embedding, thereby capitalizing on the strengths of each. The PC method, as a filtering approach (Pocas et al., 2015), efficiently assesses linear relationships between features and target variables, making it computationally fast. However, its performance may be limited when dealing with nonlinear relationships. In contrast, the RF importance method, classified as an embedding method (Ma et al., 2018), excels at capturing nonlinear feature-target interactions, exhibits greater resilience to outliers and noise, and enhances model robustness. The RFE method (Koc et al., 2022), a wrapper technique, excels at modeling intricate feature-target relationships, offers high interpretability, and can identify feature interactions. Therefore, we employed the RFE method as the second step in our integrated feature selection approach.

We have considered the union of feature subsets identified by both PC and RF Importance methods as the set of features most sensitive to yield. The correlation between these sensitive features is showed in Figure 12. During the flowering stage, a strong correlation is observed among NDVI, TVI, CCCI, DVI, TNDVI, WDRVI, MRVI, RVI, and NormNIR. Notably, the feature subset obtained through the PC method encompasses more features exhibiting robust autocorrelation, leading to a more accurate model construction. However, it is worth mentioning that this may be partly due to potential overfitting resulting from the data screening process employed by the PC method. Conversely, the RF Importance method can simultaneously consider multiple features, effectively capturing non-linear relationships between the features and the target variable (AlSagri and Ykhlef, 2020), thus improving overall model performance. Despite the PC feature subset comprising 16 features at this point, a significant portion of them displays strong autocorrelation, rendering the RF Importance approach more reliable in terms of performance. During the filling period, a substantial number of sensitive features exhibit autocorrelation. As a result, the feature subset derived from the RF Importance method contains only 15 features, while the PC method achieves higher predictive accuracy due to the inclusion of more autocorrelated features. Although the intersection of the PC and RF Importance methods yields a feature subset with the fewest number of features, containing numerous autocorrelated features, it remains a challenge to achieve a significantly improved prediction accuracy.




Figure 12 | Correlation matrix between sensitive features. (A) represents flowering stage, (B) represents grain filling stage.



In our study, we conducted a comprehensive comparison of Cubist and RNN yield prediction models using various feature subsets. The results consistently demonstrated that models constructed with feature subsets obtained from the PCRF integration step outperformed other methods in terms of accuracy for both the flowering and grain filling stages. This underscores the effectiveness of the PCRF integrated feature selection method in optimizing feature selection and model construction, which is in line with a previous study (Yin et al., 2023). We systematically compared and contrasted the Pearson correlation coefficient method, the random forest importance selection method, and the PCRF-RFE integrated feature selection method in yield prediction models at both flowering and filling stages. The results revealed that the constructed yield prediction models, whether based on the PCRF-RFE method or on a single feature selection method, consistently achieved higher accuracy compared to models using all features. This underscores the substantial improvement brought about by feature selection methods on model performance and reaffirms the critical role of feature selection in enabling models to better capture yield-related features and enhance prediction accuracy (Kohavi and John, 1997; Jeon and Oh, 2020; Yin et al., 2023). We examined the performance of models using feature subsets obtained from different feature selection methods. During both the flowering and grain filling stages, the model constructed using the feature subset derived from the PCRF-RFE method demonstrated superior performance. This underscores the effectiveness of our proposed integrated feature selection method and its capacity to enhance the accuracy of prediction models across different fertility stages. Additionally, we explored the construction of predictive models using the intersection or union of feature subsets obtained from the PC method and the RF importance selection method as input variables. The results indicated that the use of intersection or union as feature subsets could also significantly improve model performance, although the accuracy was slightly lower compared to models based on a single feature selection method.

The Cubist model employed in this study is an integrated machine learning algorithm designed for regression tasks. It leverages regression trees to efficiently capture feature relationships by considering multiple features simultaneously during node splits. This characteristic is particularly advantageous when used in conjunction with RFE methods (Zhang et al., 2023). Moreover, the Cubist model is relatively less affected by outliers and noise, rendering it more robust when applied to real-world data. Within the RFE process, this robustness helps mitigate the impact of outliers, resulting in a more accurate subset of features (Xiao et al., 2022; Zhang et al., 2023). Using the Cubist model as the base for the RFE method enhances its ability to discern the relationship between the model itself and the subset of features through iterative training and feature selection. This iterative process increases the likelihood of identifying an optimal subset of features. These findings align with the conclusions drawn in a previous study (Zhou et al., 2022), which highlighted that the combination of the Cubist model and the RFE method yielded the highest accuracy and the lowest uncertainty. This validates our choice of the RFE method and is consistent with the results of a previous study (Xiao et al., 2022).

Our research offers valuable insights in the field of crop yield prediction, particularly in the development and implementation of integrated feature selection methods. Our study not only enhances our comprehension of the significance of feature selection methods in crop yield prediction but also provides practical guidance for agricultural applications. Furthermore, there is potential for exploring additional feature selection techniques and model combinations, as well as their application to diverse crops and environmental conditions in future research.




5 Conclusion

In this study, we utilized a UAV remote sensing platform to capture multispectral images during both the flowering and grain-filling stages of winter wheat. After processing these images, we calculated 35 vegetation indices known for their sensitivity to crop yield. Subsequently, we applied the Pearson correlation coefficient and random forest importance methods to select the most relevant indices among the 35. We then derived feature subsets through these two feature selection methods and combined them to create the input feature set for the RFE method. We used Cubist and RNN models as base models to identify the most optimal feature subsets for each growth stage. The results were clear: the Cubist yield prediction model, based on feature subsets obtained through the PCRF-RFE feature selection method, demonstrated remarkable performance in both the flowering stage (R2 = 0.635, RMSE = 0.681) and the grain filling stage (R2 = 0.667, RMSE = 0.661). Notably, the model’s accuracy was consistently higher during the grain-filling stage compared to the flowering stage. These findings provide compelling evidence supporting the practicality and viability of our proposed PCRF-RFE method, offering valuable insights for future research in the field of yield prediction.
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Introduction

The escalating challenge of climate change has underscored the critical need to understand cold defense mechanisms in cultivated grapevine Vitis vinifera. Temperature variations can affect the growth and overall health of vine.





Methods

We used Self Organizing Maps machine learning method to analyze gene expression data from leaves of five Vitis vinifera cultivars each treated by four different temperature conditions. The algorithm generated sample-specific “portraits” of the normalized gene expression data, revealing distinct patterns related to the temperature conditions applied.





Results

Our analysis unveiled a connection with vitamin B1 (thiamine) biosynthesis, suggesting a link between temperature regulation and thiamine metabolism, in agreement with thiamine related stress response established in Arabidopsis before. Furthermore, we found that epigenetic mechanisms play a crucial role in regulating the expression of stress-responsive genes at low temperatures in grapevines.





Discussion

Application of Self Organizing Maps portrayal to vine transcriptomics identified modules of coregulated genes triggered under cold stress. Our machine learning approach provides a promising option for transcriptomics studies in plants.
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1 Introduction

Vitis vinifera is a species of grapevine plant that has been cultivated for thousands of years. Its fruit is used both in the production of wine and as a table grape. It is one of the most economically important fruit crops globally. Of the thousands of varieties of grapes, only a few are of commercial significance for wine and table grape production. The European grapevine is adapted to various climatic conditions, but its performance is best in temperate regions with mild winters and warm summers. The greatest challenge that climate change brings to winemaking is unpredictability. Producers used to know which varieties to grow, how to grow them, when to harvest the berries and how to ferment them to produce a consistent, quality wine – but today, every step is subject to uncertainty. In response to these challenges, winemakers are finding ways to preserve traditional as well as economically beneficial grape varieties and their unique qualities under the shifting conditions of global warming, and researchers are integrating knowledge, resources, and services regarding the grapevine (Navarro-Payá et al., 2022).

Temperature studies in vine are crucial as they help understand how variations in temperature affect vine development (de Rességuier et al., 2020; Merrill et al., 2020). Changes in temperature trigger shifts of ripening, which affect grape composition (Leeuwen and Darriet, 2016). For instance, higher temperatures have been found to correlate with flower abortion, potentially leading to decreased wine grape yields (Merrill et al., 2020). Another major challenge faced by grape growers is cold temperature damage, especially during the winter season. In many regions, grapevines are exposed to extreme cold, which can result in injury or death of the plants. Cold tolerance is a critical trait essential for the survival and productivity of grapevines in cold regions. However, the plant resistance to very cold and freezing temperatures has not been extensively studied yet despite recent advances in sequencing and molecular biotechnology (Ren et al., 2023). Also, not much is known about the impact of different temperatures on the gene expression patterns of Vitis vinifera (Han et al., 2023). Experiments done under various cold stress conditions showed that the freeze-shock damages plant leaves more than long-term freezing (Londo et al., 2018). The researchers found that the freeze-shock stress limits the sustainability and productivity of grapevines. The transcriptional landscape contrasts observed between low temperature and freezing stresses demonstrate quite different activation of candidate pathways impacting grapevine cold response. Genes from the ethylene signaling, abscisic acid signaling, the AP2, WRKY, and NAC transcription factor families, and starch/sucrose/galactose pathways were among the most observed to be differentially regulated. In response to cold stress, plants possess activation of specific metabolic pathways (including sugar accumulation and biosynthesis of prolines), changes in cell membrane rigidity, activation of calcium signaling and several ice-responding genes (like ICE1 and CBFs), and epigenetic regulation, to protect cells from ice nucleation, control cell membrane stability, scavenge reactive oxygen species, and adapt to cold stress, respectively (reviewed in Theocharis et al., 2012; Satyakam et al., 2022).

In Arabidopsis, the transcription factors AP2/ERF, WRKY, NAC, and MYB are known to enhance plant response to cold stress through various signaling pathways (reviewed in Abdullah et al., 2022). They are involved in the regulation of cold-responsive genes and contribute to increased cold tolerance. Specifically, MYB transcription factors are crucial in cold response due to their influence in regulation of cold-responsive genes, like CBF genes (Wang et al., 2023). Overexpression of certain MYB transcription factors can lead to enhanced tolerance to abiotic stress. Although the specific functions of these transcription factors in the cold acclimation of Arabidopsis are well-studied, there is only limited knowledge about their exact role in cold acclimation of grapevine.

Epigenetic modifications, such as DNA methylation and post-translational modifications of histone proteins, play a crucial role in plant responses to cold stress (Sharma et al., 2022; Rehman et al., 2023). It is widely accepted that grapevine DNA methylation variability is primarily influenced by genotype. However, recent findings suggest that the environment where the grapevine grows can also significantly alter the methylome (Xie et al., 2017; Baránková et al., 2021). Epigenetic mechanisms are also associated with the regulation of metabolite biosynthesis and the accumulation of phenolic compounds in grapevines (He et al., 2010; Marfil et al., 2019). Thiamine, or vitamin B1, acts as a cofactor for several enzymes involved in metabolic pathways. It is crucial for plant health, particularly in defending against pathogens (Subki et al., 2018) and its role is known also in wine production (Bataillon et al., 1996). Thiamine has been found to boost the immunity and defense system of plants, playing a key role in their protection against biotic and abiotic stresses (Subki et al., 2018; Jaiwal et al., 2019). The exposure to abiotic stresses in the plant model organism Arabidopsis thaliana results in an upregulation of thiamin biosynthetic gene expression and the thiamine accumulation leading to enhanced tolerance to oxidative stress (Tunc-Ozdemir et al., 2009). However, the relationship between thiamine metabolism and temperature control in grapevines is not known. Our study aims to elucidate the expression of thiamin-biosynthetic genes in grapevines during cold acclimation and freezing stress.

Moreover, transcriptome-wide gene expression studies on larger sample sets are challenging because they aim at extracting relevant biological information such as affected pathways and related marker genes from a multidimensional data landscape with a co-variance structure much more complex than simple case-control settings. A series of machine-learning based methods such as weighted correlation network analysis (WGCNA) (Langfelder and Horvath, 2008) or non-negative matrix factorization (NMF) (Frigyesi and Höglund, 2008) have been developed to solve the problem via appropriate dimension reduction. Self-Organizing Maps (SOM) provide another option for knowledge mining in complex data to extract hidden covariance relations of reduced dimensionality.

The SOM machine learning method was developed by Kohonen over 30 years ago (Kohonen, 1982). It provides a very effective clustering algorithm which can be adapted to a wide range of applications (Loeffler-Wirth et al., 2020). We here make use of the “omics-portrayal” variant of SOM which combines supervised clustering of gene expression profiles into a two-dimensional grid of metagenes with unsupervised clustering into modules of co-regulated genes. These modules reflect the intrinsic co-variance landscape of the system in gene space. SOM portrayal possesses a series of advantages compared with alternative methods such as NMF or WCGNA (Wirth et al., 2011). Particularly, SOM-portrayal offers a comprehensive downstream analysis pipeline including different options for class discovery in sample and gene space, differential gene expression analysis, function and knowledge mining using gene set analysis with an implemented repository of more than five thousand gene signatures (Löffler-Wirth et al., 2015). SOM portrayal considers the multidimensional nature of gene regulation and pursues a modular view on co-expression, reduces dimensionality and, most importantly, supports visual perception in terms of individual, case-specific expression portraits. The pipeline has been applied to a series of data types and issues, e.g., in the context of molecular oncology (Binder et al., 2022; Loeffler-Wirth et al., 2022; Ashekyan et al., 2023) and health-related population studies (Nikoghosyan et al., 2019; Schmidt et al., 2020a), which all have proven the analytic strength of the methods in complex, multi-dimensional omics data. In the context of vine genomics, oposSOM has been applied so-far as “SOMmelier” to microarray SNP data to discover the dissemination history of Vitis vinifera as seen by vine genomes (Nikoghosyan et al., 2020). The main obstacle for applying the program to transcriptomic data of vine is the lack of gene annotations of their functional context. We here provide the first adaptation of oposSOM to vine transcriptomic data. We employed the SOM algorithm to uncover associations among the cold acclimation mechanisms that have not been characterized before.

In the context of grapevine species grown under different temperature conditions, SOM could help to identify differentially expressed genes of the thiamine biosynthetic pathway in response to temperature changes, providing valuable insights into molecular-level adaptations. Our analysis of transcriptomic mechanisms of temperature adaptation is in line with major questions that must be answered in the context of modern breeding practices nicknamed as Breeding 4.0 (Wallace et al., 2018), namely how do we adapt crops to better fit agricultural environments and what is the nature of the diversity upon which breeding can act?




2 Materials and methods



2.1 Gene expression data

The analysis was performed on normalized gene expression data as Counts Per Million (CPM) published in Londo et al., 2018 (this data can be found here: https://static-content.springer.com/esm/art%3A10.1038%2Fs41438-018-0020-7/MediaObjects/41438_2018_20_MOESM4_ESM.xlsx; downloaded on 6th February 2023). The data was collected from leaves of five Vitis vinifera L. cultivars (Cabernet Franc - CabFra, Chardonnay - Chard, Riesling - Riesl, Sangiovese - Sangio, and Tocai Friulano - Tocai), each treated by four different temperature conditions: 21 °C referenced as “warm”, 4°C referenced as “acclim” or chill/cold, 4°C to -3°C referenced as “accfreeze” or freeze-shock, and -3°C referenced as “freeze” (see Materials and Methods of Londo et al., 2018). Each sample was obtained in up to three replicates, thus overall providing 59 RNAseq data sets (one Riesling replicate was not analyzed). Each sample provides transcript abundance values as CPM for 18,367 genes. These represent 52.28% of the 35,134 annotated coding genes of Vitis vinifera that were found in Ensembl database (Kinsella et al., 2011; Yates et al., 2022) on 16th of May 2023. Gene IDs were converted from the Grape Gene Reference Catalogue format (V1) to the INTEGRAPE gene annotation format (V3). For the conversion, the publicly available genome annotation file VCost.v3_28_INTEGRAPEv2.gff3 (Canaguier et al., 2017; downloaded on 6th February 2023) was used. After the conversion, cleaning, and filtering for relevant data, the final dataset was shortened by 220 genes to 18,147 genes.




2.2 Application of SOM algorithm

SOM, based on the Kohonen map described in the 1980s, is an unsupervised machine learning technique for analyzing covariance patterns in large multidimensional data (Kohonen, 1982). The input data is linked to neurons on a 2-dimensional map via synapses of varying weights connecting it with the neighboring neurons on the map. The algorithm aims to find synaptic values for each neuron and its adjacent neurons that best fit the input data. The synaptic values are adjusted repeatedly until each neuron on the map represents a portion of the input with similar characteristics, and similar neurons cluster together in proximity based on their similarity to the input data. This allows the neurons to establish their position on the map that accurately represents the input data. The interactions between neighboring neurons “self-organize” the map in a way that neighboring neurons show correlated profiles of the input data forming clusters of coregulated genes appearing as “spots” in the two-dimensional images visualizing the map. Hence, once the map is visualized, it reveals the structure of the input data and identifies correlations in gene expression regulation. We utilized the 18,147 gene expression values in log_10-scale after quantile normalization and centralization of 59 samples as input data for SOM training which distributes the gene expression values over 1,600 neurons, also called metagenes. They are arranged in a quadratic lattice of size 40 x 40. SOM-derived expression portraits were obtained by coloring the metagene expression values from blue (low expression) via green (intermediate) to maroon (high) for each sample. Modules of co-expressed genes were extracted as spots from the individual maps. We applied an adjusted version of the program called “oposSOM” with default settings for SOM training and spot detection (Löffler-Wirth et al., 2015). Mean SOM portraits were obtained by averaging metagene expression values over all individual SOM portraits of a certain group such as replicates of each accession or samples referring to one temperature condition.




2.3 Functional interpretation of SOM spots and Vitis vinifera genes

The spot modules identified from SOM analysis represent clusters of co-expressed genes, which turns SOM portrayal into an unsupervised clustering method because their number as well as the genes per cluster are selected by the segmentation algorithm in dependence on the intrinsic co-variance structure of the expression data. According to the guilt-by-association principle (Quackenbush, 2003), we estimated the functional impact of the spot modules by applying gene set overrepresentation analysis (via oposSOM) and gene ontology (GO) enrichment analysis via the Overrepresentation Test of PANTHER (Thomas et al., 2022, accessed in February 2023; with default settings), followed by the Semantic similarity reduction feature of REVIGO (Supek et al., 2011; accessed in February 2023; with default settings). Gene sets were visualized by CirGO (Kuznetsova et al., 2019). Lists of genes employed in subsequent analyses were retrieved from BRITE (Biomolecular Relationship Information Transfer Encyclopedia) of KEGG (Kanehisa and Goto, 2000; accessed from February to July 2023) and from “All Pathways” dataset of VitisNet (Grimplet et al., 2009; accessed in February 2023). Genes referred to as epigenetic factors were extracted from BRITE 03036 “Chromosome and Associated Proteins” (Eukaryotic type).





3 Results



3.1 Gene expression changes as a function of temperature conditions

The SOM algorithm generated sample-specific “portraits” of the normalized gene expression data obtained in triplicate from the leaves of five grapevine cultivars each treated by four different temperature conditions (Figure 1A). The different cultivars and the replicates revealed four distinguishable patterns related to the temperature conditions applied (see replicate-averaged portraits in Figure 1B and the tree in Figure 1C). However, three distinct samples stand out from the others based on their temperature conditions, namely Tocai in the freeze condition (replicate 1), and Riesling in the accfreeze condition (replicates 1 and 3). Surprisingly, the latter two samples do not cluster together with the other samples that share the same temperature condition, but instead, they cluster with the group of samples from the acclim condition. The Tocai “outlier freeze” sample clusters with samples from the warm conditions. Notably, the SOM portraits not only visualize the gene expression changes between the different stress conditions in terms of characteristic spot patterns but also characterize the nature of the outlier samples: The portraits of the two Riesling accfreeze replicates 1 and 2 resemble replicate 3 but in addition show a spot characteristic for the acclim portraits. The portrait of the Tocai freeze replicate 1 clearly agrees with the three warm condition replicates. This way SOM portrayal identifies outlier samples and provides an idea about the affected gene expression programs suggesting transition states, e.g., due to incomplete equilibration (Riesling) or other unknown factors (Tokai).




Figure 1 | SOM portrayal and sample similarity analysis reveal clearly distinct patterns among the different temperatures. (A) Individual SOM portraits of all replicates (red color = overexpressed gene, blue color = underexpressed gene). (B) Replicate-averaged SOM portraits. (C) The neighbor joining tree splits into four major branches referring to the four temperature-based clusters. Out-grouped samples are in black rectangles.



Next, we calculated mean portraits for each of the four temperature conditions averaged over the respective cultivars and replicated samples to extract the respective condition-specific expression patterns (Figures 1B; 2A). The red spot-like areas represent modules of co-expressed genes activated at the respective condition. One sees that overexpression modules rotate in counterclockwise direction from the right edge of the map (up at warm condition) via the upper edge (up at acclim and accfreeze) towards the left lower corner (up in freeze). For further downstream analysis we make use of the spot selection function implemented in the oposSOM package which has identified eleven distinct spot modules labeled A-K as indicated in Figure 2A and in detail present in Supplementary Table S1. The organization of spots within the portrait’s is governed by the temperature conditions and can be characterized by their mutual correlation network: For example, spot modules A-C, activated at warm and acclim conditions, mutually correlate but anti-correlate with the expression of spot-modules I, G and H up at freeze conditions (Figure 2B). The spot-module expression across all cultivars, conditions and replicates is summarized in Figure 2C. Each spot module contains between 151 (spot H) and 1125 (spot G) single genes. For functional characterization we applied gene set analysis provided by more than 400 sets from VitisNet and BRITE (Figure 2C).




Figure 2 | Description of metagenes. (A) Group overexpression spots (A-K) and four portraits merged by temperature; Gray arrow indicates spot assignment to the temperature portraits; Numbers inside spots (for H = 151) represent numbers of genes. (B) Spot correlation identified by weighted topological overlap algorithm. (C) Group overexpression spots patterns among samples with the top three gene sets characteristic for each spot.



The spots A to F that were assigned with warm and acclim conditions contain genes that are intrinsically associated with a multitude of normal physiological processes, for instance photosynthesis, flavonoid biosynthesis, linoleic acid biosynthesis, phenylpropanoid biosynthesis, amino acid metabolism, circadian rhythm regulation, DNA transcription, replication, repair mechanisms, and a variety of enzymatic reactions. In spots G through K, assigned with accfreeze and freeze conditions, there is a prevalence of genes that are primarily involved in processes indicating plant response to stress, such as pathogen response mechanism, carbohydrate metabolism, nitrogen metabolism, and hormonal signaling pathways.

Two spots, B and G, contain the most genes per spot. Given that spot B contains the samples grown in the warm and acclim conditions and the samples occupying spot G represents accfreeze and freeze conditions, a comparative analysis of gene functions within these two spots could yield significant insights. Spot B is characterized by processes such as electron transport, cell growth, cell wall formation, porphyrin metabolism, thylakoid pathway regulation, and auxin signaling. Additionally, genes involved in chlorophyll binding and the establishment of the cytoskeleton are also present. Many of the processes in spot B are tightly bound to photosynthesis and normal plant growth. Conversely, spot G, which is specific to samples grown under freezing conditions, activates genes coding for AP2, WRKY, NAC, and MYB transcription factors. Other overexpressed genes of the spot G relate to the ethylene and auxin signaling pathways, energy metabolism, and plant-pathogen interaction. This suggests that the plant employs an enhanced resistance system to mitigate the damaging effects of freezing stress.

It is important to highlight that the majority of processes in warm and acclim conditions are fundamentally linked to the photosynthetic processes and in general to the standard developmental trajectory of plants. On the other hand, most of the processes in the samples subjected to freezing temperatures are directly or indirectly related to the plant’s stress response. This is particularly evident in the activation of pathogen-responsive genes which play a crucial role in the plant’s defense mechanism against external stressors.

SOM discerned a distinct dichotomy in gene expression patterns across varying temperature conditions in the studied samples. Specifically, spots A-F and G-K, representative of warm and freeze conditions respectively, exhibited a high specificity of processes integral to either photosynthesis and plant growth (warm), and stress response mechanisms (freeze), thereby providing a comprehensive characterization of plant adaptation strategies to temperature stress.




3.2 Plant response to cold stress activates thiamine biosynthesis

In the samples derived from acclim and accfreeze plants, a significant portion of overexpressed genes was found in spot J (Figure 3A). To gain a deeper understanding of the biological functions of these genes, we conducted gene ontology enrichment analysis (Figure 3B). Plants employ various mechanisms to cope with low temperature stress, and as expected, the most enriched gene ontology terms in the samples were related to biological processes involved in plant response to temperature changes and associated processes, such as response to biotic and abiotic stress, transmembrane transport, circadian rhythm, hormonal regulation, and starch metabolism (Bieniawska et al., 2008; Maruyama et al., 2009; Eremina et al., 2016).




Figure 3 | Chill shock-stressed plants involve thiamine metabolism in their response to temperature change. (A) Top 20 overexpressed genes description (left) and Z-scores (right) of all overexpressed genes in the spot J (indicated by arrow). (B) The most enriched GO terms in a set of 518 genes from the spot J; arrow indicates enrichment by the thiamine biosynthesis GO. (C) Z-scores of the thiamine metabolism gene set (22 genes) in each sample.



Among the enriched GO terms, we made an unexpected observation of an association with the thiamine biosynthetic process. Considering this finding, we shifted our focus to explore the potential link between temperature control mechanisms and thiamine metabolism and biosynthesis. Furthermore, we noticed that the gene expression of some thiamine biosynthetic enzymes, like THIAMINE THIAZOLE SYNTHASE 1 and 2 (THI1-1 and THI1-2), PHOSPHOMETHYLPYRIMIDINE SYNTHASE (THIC), or probable 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE (DXS), are elevated in the acclim and accfreeze plants when compared to the freeze and warm conditions (Figure 3C), which aligns with our hypothesis.

The thiamine biosynthetic pathway in plants, reviewed in Guan et al., 2014, begins with the enzyme THIC, followed by CYSTEINE-DEPENDENT ADENOSINE DIPHOSPHATE THIAZOLE SYNTHASE (THI1), which is encoded by two genes, THI1-1 (Vitvi19g00441) and THI1-2 (Vitvi10g00027). The product of THI1 activity is synthesized after certain precursors from glycolysis are catalyzed by DXS. The pathway continues with the enzyme THIAMINE BIOSYNTHETIC BIFUNCTIONAL ENZYME (TH1), which carries out multiple functions critical to thiamine biosynthesis. The synthesis of thiamine is completed with the involvement of the enzyme THIAMINE PHOSPHATE PHOSPHATASE/AMINO-HMP AMINOHYDROLASE (TH2), encoded by two distinct genes. Finally, the enzyme THIAMINE PYROPHOSPHOKINASE (TPK1; also referred as THIN) converts thiamine into its active form, thiamine diphosphate. To gain insights into the regulatory mechanisms governing the biosynthesis of thiamine, our investigation centered on an in-depth analysis of the genes orchestrating the catalysis of pivotal reactions within the thiamine biosynthetic pathway (Figure 4A). Genes THI1-1, THI1-2, THIC (Vitvi06g01739), and DXS (Vitvi05g00372) are crucial as they encode enzymes that catalyze the initial steps of the pathway (Figure 4D). Therefore, any changes in their expression levels can significantly impact the overall production of thiamine. The gene expression data revealed that the activity of these four genes is elevated in the accfreeze and acclim samples (Figure 4A).




Figure 4 | Thiamine metabolic genes and biosynthesis pathway. (A) Clustering of genes (by CPM values across samples) involved in thiamine metabolism; highlighted genes code for known enzymes of thiamine biosynthesis. (B) Positions of the thiamine biosynthetic genes in the SOM portrait; gray squares = Group Overexpression Spots; gray arrows = direction of the thiamine biosynthetic pathway. (C) Distribution of the normalized expression of the thiamine metabolism genes; the three most expressed biosynthetic genes have their names written on top of each violin plot. (D) Simplified scheme of the thiamine biosynthesis pathway (including the side branch with DXS); heatmaps display normalized gene expression; legend and color bar are at the bottom right corner; color scaling is normalized to all heatmaps.



Next, we endeavored to shed light on the intricate interplay of these enzyme-coding genes, which are fundamental for shaping the production of thiamine. Utilizing SOM modularization of the expression landscape, we have unraveled a captivating phenomenon in the realm of thiamine biosynthesis, where the selection of specific enzymes crucial for this process is intricately linked to prevailing temperature conditions (Figure 4B). These highly expressed genes are in spots A/B and J, indicating two metabolic origins (Figures 4B, D). Notably, we observed a higher level of gene expression of THI1-1 (spot J) during the freeze and warm conditions, while the THI1-2 (spot A/B) gene takes precedence in acclim and accfreeze conditions (Figures 4A, C). The genes TH1 (Vitvi12g01973), TH2 (Vitvi04g00909/Vitvi07g00688), and TPK1 (Vitvi07g00306), downstream of the thiamine metabolic pathway, continue the path in the portrait either from the spot A/B (“warm origin”) or from the spot J (“cold origin”), converging in a spotless midpoint between the acclim and accfreeze areas of the portrait, and ending nearby the spot I area (Figure 4B). Interestingly, such topology as described in Figure 4B also resembles the hierarchical structure of the thiamine pathway (Figure 4D), with the reactions catalyzed either by THIC, THI1-2, and DXS (“warm origin”-based) or THI1-1 (“cold origin”-based), both converging at the step of synthesis of thiamine phosphate.

Hereby, SOM reveals that acclimated and freeze-acclimated plants overexpress genes related to temperature changes, including an association with thiamine biosynthesis. The expression of key thiamine biosynthetic enzymes was found to be elevated in the accfreeze samples, indicating a link between thiamine and temperature control. Additionally, SOM provided an exclusive insight into the “temperature cascade”-like gene topology derived purely from the gene expression data.




3.3 Temperature shapes activity of genes coding epigenetic factors in Vitis vinifera

Epigenetic mechanisms, encompassing DNA and/or histone modifications and the modulation of chromatin accessibility, have been compellingly demonstrated to regulate the expression of stress-responsive genes in the face of abiotic challenges, including the response to low temperatures (Xie et al., 2017).

We filtered genes encoding epigenetic factors in the gene lists of the different expression spots, plotted their number across the spots and mapped them into the SOM (Figures 5A, B). Among the spots containing genes upregulated in warm conditions, most factors related to chromatin condensation, gene silencing, heterochromatin formation, and nucleosome assembly accumulate in spot C and B, while the number of genes for histone modification factors is the highest in the spot F. Spots that are activated in accfreeze, and acclim samples contain less epigenetic factors than the warm samples, while epigenetic factors are absent in the spot modules activated under freeze conditions. In other words, this overall decaying amount reflects a decaying impact of epigenetic regulation under stress and especially at freezing conditions.




Figure 5 | Expression topology of genes related to epigenetics. (A) The abundance of genes encoding epigenetic factors from different spots related to different temperatures. Spots that do not contain any overexpressed epigenetic genes are not shown. (B) Distribution of genes encoding epigenetic factors involved in chromatin remodeling, chromosome condensation, gene silencing, heterochromatin formation, histone modifications, or nucleosome assembly across the spots in the SOM hatch indicates overlapping epigenetic processes at the same position. A full list of epigenetic factors across the spots is provided in Supplementary Table S2.



Epigenetic regulation modes play a certain role also at accfreeze conditions (spot J and partly K). Some genes coding for gene silencing, histone modification proteins, chromatin remodeling factors, and nucleosome assembly factors are overexpressed in at least one of those spots. On the other hand, genes coding for histone modification proteins are spread among spots F, B, C, K, and J, showing that such genes must be highly expressed not only in warm conditions, but also in the cold (acclim) and freeze shock (accfreeze).

Hence, the data confirms elevated activity of various genes involved in epigenetic regulation across temperature conditions which highlights the remarkable adaptability of plants to temperature changes, modulated by epigenetic mechanisms. The information about epigenetic genes in spot J suggests their potential roles in plant response to low temperatures.





4 Discussion

In this study, we reanalyzed the data from Londo et al., 2018 by SOM (Kohonen, 1982; Löffler-Wirth et al., 2015), which is a machine learning technique that allows the visualization and clustering of high-dimensional data. Our objective was to identify the clusters of genes that were associated with specific temperature conditions (namely warm, acclim, accfreeze, and freeze) and to investigate the gene ontology terms associated with the overexpression of genes in the samples grown under such conditions with the special focus on stressed accfreeze.

Analysis of gene expression data, typically containing information about thousands of genes expressed under varying conditions, poses significant challenges due to their high-dimensional nature. Traditional methods often struggle with the visualization and interpretation of such complex data. Moreover, identifying clusters of genes with similar expression patterns across different temperature conditions can be a daunting task. The SOM portrayal method, an artificial neural network algorithm, addresses these issues effectively. It offers dimensionality reduction, enabling a low-dimensional representation of the high-dimensional gene expression data. SOM also provides a topological visualization of the data, preserving the original data’s metric relationships, which helps to identify complex patterns in gene expression data. As a non-supervised clustering method, SOM identifies clusters of genes with similar expression patterns. These clusters can be further analyzed to comprehend their functional roles.

Here, for the first time in the analysis of plant gene expression data, we applied SOM portrayal approach. Our analysis revealed specific responses of the gene expression patterns in Vitis vinifera to temperature, as demonstrated by the clustering of genes into four major groups, each associated with one of the specific temperature conditions. The SOM algorithm allowed us to visualize the gene expression patterns in a two-dimensional space, where genes with similar expression patterns were grouped together. This “portrayal” of individual expression landscapes identified some replicates, namely Tocai freeze replicate 1 and Riesling accfreeze replicates 1 and 3, showed different SOM portraits than expected according to the other replicates and samples by unknown reasons. Our SOM portrayal approach, on the other hand, confirms previous results of Londo and colleagues, namely that the genes related to hormonal signaling, secondary metabolism, sugar and starch synthesis, and transcription factors from various families (NAC, WRKY, and AP2) were upregulated in the accfreeze samples, compared to the acclim conditions.

Interestingly, we identified another group of genes that were overexpressed in the accfreeze condition. These genes are related to thiamine biosynthesis. The upregulation of thiamine biosynthesis might serve the grapevine plants not only as pathogen protection but also as a crucial mechanism that aids the plants in coping with cold stress, allowing them to better withstand such conditions. This novel information may drive future efforts to improve vine acclimation to cold stress and significantly enhance the viticulture with novel strategies of vine growth. For example, the identification of genes, like THIC, THI1-1, or THI1-2, related to thiamine biosynthesis that are upregulated in the accfreeze condition may provide targets for the development of new treatments or interventions aimed at enhancing plant growth and protection.

Arabidopsis controls the levels of THIC transcripts through various regulatory mechanisms. These include responses to light (Raschke et al., 2007), interactions with the circadian clock (Bocobza et al., 2013), and the presence of a riboswitch located in the 3′-UTR of THIC mRNA (Sudarsan et al., 2003; Bocobza et al., 2007; Wachter et al., 2007; Bocobza et al., 2013). All these factors are crucial in regulating the biosynthesis of thiamine. According to the currently accepted model, the riboswitch undergoes alternative splicing in the 3′-UTR region, leading to the formation of transcripts with varying 3′-UTR lengths. This splicing event has a direct impact on the stability of the THIC mRNA (Bocobza et al., 2007; Wachter et al., 2007). In cassava, the THIC and THI1 genes are expressed at very low levels in storage roots (Mangel et al., 2017). In leaves, vitamin B1 content is negatively correlated with THIC and THI1 expression levels, suggesting post-transcriptional regulation of THIC accumulation by a riboswitch present in the 3′-UTR of the THIC mRNA and regulation of THI1 by promoter activity or alternative post-transcriptional mechanisms. The potential involvement of these mechanisms in determining the dynamic changes in the overexpression of certain thiamine biosynthetic genes and preferential activation of either THI1-1 or THI1-2 in Vitis vinifera remain to be determined.

Londo and colleagues also showed that the ability of grapevine plants to cope with freezing temperatures (-3°C) when pretreated by 4°C for 48 hours is limited. Physiological differences between non-pretreated (freeze) and freeze-pretreated (accfreeze) plants were vast, the latter condition produced more damaged plants (Londo et al., 2018). We also sought to identify genes coding for epigenetic factors in cold/freezing stress conditions, providing valuable information about the activation of epigenetic mechanisms in different temperatures. The numbers of genes coding for epigenetic factors varied in each spot. This finding suggests different activation of epigenetic genes in changing temperatures. The warm samples, assigned by SOM to the spot C, contain many genes involved in accumulation of nucleosome assembly factors, chromosome condensation, and heterochromatin formation; such processes are important for nucleosome formation, chromatin compaction, and genome stability. This might suggest that such epigenetic processes favor the standard temperature conditions. Nevertheless, this would imply that either the downregulation of the respective genes in cold/freezing stress is required or the regulation of their expression might be sensitive to the stress originating from freezing conditions. In summary, the overexpression of such genes is either not demanded under stress or cannot be upregulated due to freezing conditions.

On the other hand, there is a decent number of the overexpressed genes with epigenetic function in the freeze-shocked (accfreeze) samples. The PROTEIN ARGININE N-METHYLTRANSFERASE 10 (PRMT10) protein, catalyzing the asymmetric di-methylation of arginine 3 on histone 4 which is associated with a more accessible chromatin structure and thus higher levels of transcription, is known to be important for maintaining pleiotropic development and adaptation to abiotic stresses in plants (Niu et al., 2007). By indirectly regulating FLC (FLOWERING LOCUS C), PRMT10 exerts its influence on floral transition. FLC is a MADS-box transcription factor gene that plays a role in the regulation of cold stress in plants. Vernalization is an example of somatic stress memory where changes in the chromatin structure of the FLC gene maintain cold stress memory during mitosis. FLC expression suppresses flowering at high levels during winter, and during vernalization, B3 transcription factors, cold memory cis-acting element and POLYCOMB REPRESSIVE COMPLEX 1 and 2 silence FLC activation (Kim, 2023). Unfortunately, we did not find any evidence that PRMT10 or any other histone methyltransferase would affect directly or indirectly the production of any of the thiamine biosynthetic enzymes. RNA helicases and their role in cold stress response in plants are known. For example, REGULATOR OF CBF GENE EXPRESSION 1 is a cold-inducible RNA helicase with crucial role in cold tolerance in Arabidopsis (Guan et al., 2013). However, the role of the RNA helicase CHROMATIN REMODELING 10 (CHR10) in plant response to cold stress has not been identified. In Arabidopsis, the transcript level of HIGH MOBILITY GROUP B PROTEIN 1 remains unchanged when exposed to cold temperatures (Kwak et al., 2007). The ENDORIBONUCLEASE DICER HOMOLOG 1 enzyme, catalyzing RNA cleavage, influences the cold response indirectly via its role in regulating miRNA biogenesis (Huo et al., 2022). However, there is no information about its direct involvement in response to cold stress. Additional experimental investigation at molecular level might elucidate the significance of epigenetic mechanisms in regulation of cold/freeze temperature stress response in Vitis vinifera. Such research would contribute to a deeper understanding of the molecular processes involved in the plant’s adaptive response to environmental challenges.

Overall, the use of machine learning-based SOM portrayal pipeline (Binder & Wirth, 2014) in vine omics data analyses represents a promising advancement in the field of plant molecular biology and genetics. It allows for the visualization and clustering of high-dimensional omics data and their “portrayal” in gene space, making it possible to identify complex patterns reflecting pathway activation and transcriptional trajectories describing temperature response in a topology aware manner (see Figures 1-3, and Schmidt et al., 2020b for the concept). This can lead to the detection of novel associations and insights previously hidden in the data’s complexity due to the high resolution and sensitivity of the method to detect modules of co-regulated genes (Loeffler-Wirth et al., 2019). Notably, SOM portrayal provides an expression landscape of all genes under study which improves functional interpretation because this approach also considers the effect of weak expression changes (Figure 4). Importantly, SOM-portrayal visualizes the dimension-reduced gene state space while other methods such as principal component analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP) and related methods typically apply to sample state space (Supplementary Image S3; Gardner et al., 2020; Gorgoglione et al., 2021). SOM portrayal therefore provides an orthogonal, gene-centric view on high dimensional omics data complementing sample-centered dimension reduction methods (Hopp et al., 2013).

The identification of genes related to thiamine biosynthesis that are upregulated in cold stress conditions could provide targets for the development of new treatments or interventions aimed at enhancing plant growth and protection. This could lead to improved plant acclimation to cold stress, significantly enhancing viticulture with novel strategies of vine growth. Moreover, understanding the role of epigenetic mechanisms in regulating the expression of stress-responsive genes in response to low temperatures could provide valuable insights into the plant’s adaptive response to environmental challenges. This knowledge could be harnessed to develop new strategies for improving the resilience of grapevines to temperature stress, thereby contributing to sustainable viticulture practices in the face of climate change.
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The maintenance of ion balance in closed hydroponic solutions is essential to improve the crop quality and recycling efficiency of nutrient solutions. However, the absence of robust ion sensors for key ions such as P and Mg and the coupling of ions in fertilizer salts render it difficult to effectively manage ion-specific nutrient solutions. Although ion-specific dosing algorithms have been established, their effectiveness has been inadequately explored. In this study, a decision-tree-based dosing algorithm was developed to calculate the optimal volumes of individual nutrient stock solutions to be supplied for five major nutrient ions, i.e., NO3, K, Ca, P, and Mg, based on the concentrations of NO3, K, and Ca and remaining volume of the recycled nutrient solution. In the performance assessment based on five nutrient solution samples encompassing the typical concentration ranges for leafy vegetable cultivation, the ion-selective electrode array demonstrated feasible accuracies, with root mean square errors of 29.5, 10.1, and 6.1 mg·L-1 for NO3, K, and Ca, respectively. In a five-step replenishment test involving varying target concentrations and nutrient solution volumes, the system formulated nutrient solutions according to the specified targets, exhibiting average relative errors of 10.6 ± 8.0%, 7.9 ± 2.1%, 8.0 ± 11.0%, and 4.2 ± 3.7% for the Ca, K, and NO3 concentrations and volume of the nutrient solution, respectively. Furthermore, the decision tree method helped reduce the total fertilizer injections and carbon emissions by 12.8% and 20.6% in the stepwise test, respectively. The findings demonstrate that the decision-tree-based dosing algorithm not only enables more efficient reuse of nutrient solution compared to the existing simplex method but also confirms the potential for reducing carbon emissions, indicating the possibility of sustainable agricultural development.
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1 Introduction

In the application of closed hydroponic solutions, the maintenance of ion balance in nutrient solutions is fundamental not only to ensure the productivity and quality of crops but to prolong the recycling period of the nutrient solution. This helps reduce the water and nutrient discharge, thereby providing economic and environmental benefits (Bamsey et al., 2012; Sambo et al., 2019). However, most soilless cultivation systems replenish the nutrient solution based on the pH and electrical conductivity of the solutions, without considering the varying concentrations of individual ions (Geoffrey et al., 1997; Domingues et al., 2012; Katsoulas et al., 2015; Kozai et al., 2018; Son et al., 2020). Furthermore, nutrient uptake rates vary with the growth and development of plants, adding complexity to the management of nutrient composition in recycled nutrient solutions (Sambo et al., 2019; Ahn et al., 2021). Consequently, the ion concentrations in the nutrient solution may deviate from the optimal composition, potentially compromising the crop yield and quality. In addition, excessive nutrient solution application may lead to inefficient carbon emissions.

Despite variations in the uptake speed of each nutrient ion, the average nutrient uptake can be estimated by monitoring changes in water and nutrients in the recirculated nutrient solution through a mass balance equation (Neocleous and Savvas, 2016). Achieving nutrient balance in the recycled nutrient solution involves supplementing deficient ions to reach the target concentration for each nutrient (Neocleous and Savvas, 2022). Consequently, the timely measurement and replenishment of the nutrient solution are crucial tasks for optimizing closed hydroponic systems.

Recently, ion-specific nutrient management based on ion-selective sensors has been investigated, and its potential in hydroponic applications has been demonstrated (Rius-Ruiz et al., 2014; Vardar et al., 2015; Jung et al., 2019; Xu et al., 2020). Furthermore, several researchers have developed automated nutrient management systems using ion-selective electrodes (ISEs) that can measure the concentrations of individual ions in hydroponic solutions and then adjust the nutrient dosages according to deficient ions (Gieling et al., 2005; Jung et al., 2015; Cho et al., 2017; Jung et al., 2019; Xu et al., 2020). However, it remains challenging to realize ion-specific management for all nutrient ions using ion sensors due to the scarcity of robust ISEs for crucial ions such as P and Mg. Consequently, the existing research on automated ion-specific nutrient management has been limited to only certain major ions. Furthermore, these studies have seldom considered the possibility that nutrient salts may include other ions that cannot be measured by sensors or that are not consumed by plants.

For example, Xu et al. (2019) recommended the introduction of a concentrated KCl solution when the K concentration measured by a K ISE dropped below a certain threshold. Although this approach is simple and cost-effective, it does not consider the coupled injection of Cl ions, which may be harmful for crop growth (Shiyab et al., 2013). Later, Xu et al. (2020) improved their system by using additional ISEs of K, NO3, and H2PO4 for managing the nutrient solution. However, Na or SO4 ions were still introduced during the replenishment based on NaNO3, NaH2PO4, and K2SO4. In this context, the ion coupling must be comprehensively examined for alleviating the adverse effects on plants in closed hydroponics.

A simplex algorithm, which simultaneously calculates the injection volumes of stock solutions subject to certain constraints, can facilitate the accurate injection of nutrient ions (De Rijck and Schrevens, 1994; Gieling et al., 2005; Jung et al., 2015). Specifically, this algorithm computes the amounts of fertilizer solutions to be added by performing matrix calculation that consider the contribution ratios and concentrations of the nutrient ions contained in the fertilizer solutions. It can theoretically obtain the complete solution for given constraints. However, in practical hydroponic applications, the solution may include negative values that cannot be achieved by nutrient dosing systems.

As an alternative, Cho et al. (2017) and Jung et al. (2019) proposed a sequential calculation method based on predetermined priorities of the ions to minimize the inevitable injection of nutrient ions. This approach used six fertilizers to mitigate the problem of decoupled replenishment among nutrients, with the P and Mg ions managed by applying linear concentration ratios related to NO3 and Ca ions, respectively. However, this algorithm did not account for NH4; micronutrients, such as Fe, Zn, and Cu; and the water volume. In addition, the control logic of injecting fertilizer solutions after water replenishment resulted in inaccurate and inefficient supplementation. Thus, the development of an improved fertilizer dosing algorithm that can robustly maintain individual ion concentrations at the required levels while minimizing accumulations or deficiencies of unmeasurable ions is imperative.

Considering these aspects, in this study, NO3, K, and Ca ISEs were used for monitoring the ion concentrations in recycled nutrient solutions, and a decision-tree-based dosing algorithm was established to determine the proper amounts of fertilizers while minimizing the coupled injection of nutrient ions. Variable ion-specific replenishment was achieved by controlling the operation time of individual fertilizer pumps. These procedures were automated through an ion-specific nutrient management system capable of both ion-specific monitoring and replenishment. The ion-monitoring performance was evaluated by comparing the determined concentrations with those obtained using standard analytical methods. The decision-tree-based dosing algorithm was validated through a five-step replenishment simulation test. The fertilizer injections and resulting concentrations were compared with those obtained using the simplex method using the same ion monitoring and fertilizers. Additionally, carbon dioxide emissions from both methods were compared to assess the environmental impact.




2 Materials and methods



2.1 Decision-tree-based dosing algorithm

The relative proportion of these ions must be considered because fertilizer salts can dissolve into more than two ions. Although the use of various fertilizers can enable flexible control of individual ion concentrations, practical challenges exist. For example, the supply of Ca ions cannot be decoupled from NO3 ions owing to the absence of alternative fertilizer salts (Resh, 2016). In addition, the use of multiple fertilizers would require larger tank spaces and increase the complexity of the calculation and system operation. Therefore, in this study, seven fertilizers, including Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, MgSO4·7H2O, and K2SO4, were selected as stock solutions to ensure that at least two salts are available for each ion, except for Ca and Mg. Subsequently, the priority of ions was determined based on the universal nutrient-solution calculation method, i.e., Ca > P = K > NO3 > NH4 (Sonneveld et al., 1999). In practice, various physical-chemical phenomena can affect nutrient availability for plants, especially precipitation and complexation, which are closely related to pH and nutrient solution temperature (De Rijck and Schrevens, 1994; Sambo et al., 2019). However, this study assumes that the pH and the temperature of hydroponic solutions are maintained consistently in controlled environment, concentrating solely on mass balance considerations.

To calculate the appropriate mass of the fertilizer salts based on the given ion concentrations and priority, a decision tree was used. The decision tree method is a machine‐learning method for constructing a series of dichotomous classifications (Namazkhan et al., 2020). The algorithm creates tree-shaped diagrams with a number of branches with decision and leaf nodes. Each decision node has a predictor variable to obtain a more accurate response for the given variable, and the leaf node represents the final optimized result within the decision tree model. The decision-tree-based dosing algorithm consists of three parts. The first part involves the calculation of the amounts of major ions considering the current nutrient solution volume, target nutrient solution volume, and ion compositions in water (Equations 1–6). SO4 is not considered because it is not harmful to crops (Sonneveld et al., 1999).

 

 

 

 

 

 

where

Nx = amounts of ions (x = Ca, K, NO3, NH4, Mg, or P) to be replenished (mg).

Tx = target concentrations of ions (x = Ca, K, NO3, NH4, Mg, or P).

Dy = concentrations of ions (y = Ca, K, or NO3) determined by ISEs (mg·L-1).

Wx = concentrations of ions (x = Ca, K, NO3, NH4, Mg, or P) in water determined by standard analyzers (mg·L-1).

Vtarget = target volume of the nutrient solution in the mixing tank (L).

Vcurrent = current volume of the nutrient solution in the mixing tank (L).

Cz = concentrations of ions (z = Mg or P) determined by standard instruments.

RN-N, RCa-Mg, RN-P = absorption ratios of NO3 to NH4, Ca to Mg, and NO3 to P, respectively.

The second part is the decision-tree-based calculation of the required amounts of fertilizer salts while minimizing over-injection. Figure 1 illustrates the calculation process, in which the algorithm contains two trees.




Figure 1 | Decision tree model for calculating the amounts of the fertilizer salts to be replenished, for Mg(SO4)2·7H2O (A) and other salts (B). The Xinjected (X: NH4, H2PO4, K, or NO3) represents the injected amount of the ion by the previously injected salt. The node including ‘final’ indicates the leaf node, and the higher number behind the ‘final’ means the result would be a more appropriate amount of the salt.



The first tree calculates the proper mass of Mg(SO4)2·7H2O. Given that there exists only one salt for Mg replenishment and the injection of Mg(SO4)2·7H2O does not affect the other nodes, this tree operates independently (Figure 1A).

The second tree calculates the amounts of the other salts, i.e., Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, and K2SO4. These salts are interconnected with one another, and thus, the tree categorizes the salts according to predetermined priorities. Next, the amounts of salts are sequentially calculated. For example, if NH4 is required to be replenished, the amount of NH4H2PO4 is calculated based on the required mass of NH4. The subsequent node assesses the effect of the calculated amount of NH4H2PO4 in H2PO4. If H2PO4 is not overdosed, NH4H2PO4 is injected as calculated. If not, the amount of NH4H2PO4 to be supplied is re-calculated based on the required amount of H2PO4 because the priority of P is higher than that of NH4. In this case, the second final amount of the NH4H2PO4 is administered rather than its first final amount. Similarly, the decision-tree-based approach is used to calculate the amounts of other salts (Figure 1B).

After determining the amounts of salts to be supplied, the runtime of the pump corresponding to each fertilizer salt is obtained using Eq. 7.

 

where

x = Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, MgSO4·7H2O, or K2SO4.

Px = runtime of metering pump for stock solution of fertilizer salt x (s).

Mx = mass of stock solution of fertilizer salt x (mg).

Cx = concentration of stock solution of fertilizer salt x (mg·L-1).

Dx = discharge volume of metering pump for seven stock solutions of fertilizer salts (L·s-1).

The third part of the dosing algorithm focuses on micronutrients and water replenishment. At present, only a few ionophores are commercially available for micronutrient ions. Therefore, micronutrients are replenished by injecting micronutrients proportional to the difference between the target and current volumes of the nutrient solution (Eq. 8).

 

where

Pm = runtime of metering pump for concentrated solution of micronutrients (s).

Cm = multiple of concentrated solution of micronutrients to the final working concentration (dimensionless).

Dm = discharge volume of metering pump for concentrated solution of micronutrients (L·s-1).

Then, the volume of water to add can be obtained by subtracting the total volumes of the stock solutions and concentrated micronutrient solution from the difference between the target and current volumes of the nutrient solution (Eq. 9).

 

where

x = Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, MgSO4·7H2O, or K2SO4.

Pw = runtime of metering pump for water (s).

Vstock solution for x = volume of stock solution of fertilizer salt x to be added (L).

Vm = volume of concentrated solution of micronutrients to be added.

Dw = discharge volume of metering pump for water (L·s-1).




2.2 Development of an ion-specific nutrient management system

The ion-specific nutrient management system must be able to automatically measure the ion concentrations of the nutrient solution, replenish the nutrient solution considering the ion balance, and supply the optimal nutrient solution to the growing bed. Figure 2 shows a schematic and an image of the ion-specific nutrient management system.




Figure 2 | Schematic (A) and picture (B) of the ion-specific nutrient management system.



For the solutions used by the system, a nutrient mixing tank and twelve reservoirs were introduced. These reservoirs corresponded to the seven fertilizer stock solutions, one micronutrient stock solution, one pH control solution, water, and two-point normalization solutions (Figure 2). For two-point normalization, two mixed solutions containing NO3, K, and Ca ions at two different concentrations, i.e., 100 and 1,000 mg·L−1, 30 and 300 mg·L−1, and 26 and 260 mg·L−1, respectively, were prepared based on the composition of the modified Hoagland’s hydroponic nutrient solution to minimize the background effects from the real hydroponic solutions (Hoagland and Arnon, 1950; Cho et al., 2019). The ion concentrations of the prepared stock solutions, pH control solution, and two-point normalization solutions are presented in Table S1.

To monitor the volume of the nutrient solution tank, a reflective ultrasonic water-level transmitter (EchoPod UG01, Flowline, Inc., CA, USA) was installed on the mixing tank (Figure 2).

For the two-point normalization process, as well as for sampling, drainage, and administration of stock solutions, peristaltic pumps were employed due to their advantages, such as ability of ensuring sanitized transport of the fluid, self-priming operation, absence of backflow, and high repeatability (Klespitz and Kovács, 2014). In general, the flow rate of each peristaltic pump determines the minimum injection volume, which is important as it directly affects the accuracy of replenishment. Therefore, the flow rates of the pumps for stock solutions and water were determined to maintain relative errors from the minimum injection volume of less than 0.1%. This value was set considering that the stock solutions were prepared with concentrations of 20,000 mg·L-1, and the multiple of the concentrated minor element solution was 200. To ensure chemical resistance, novoprene tubing was used for the injection pumps (SR10/50, ASF THOMAS, Puchheim, Germany) of fertilizer salts (i.e., Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, MgSO4·7H2O, and K2SO4), micronutrients, and acid, considering their high concentrations. Similarly, PharMed BPT tubing was applied to the pumps for the two-point normalization solutions. The drainage, sampling, and water pumps used silicone tubing owing to the lower concentrations of ions.

To quantify the NO3 and K ions, ISEs using two different polyvinyl chloride (PVC)-based ion-selective membranes were fabricated according to chemical compositions and procedures reported in previous studies (Kim et al., 2013; Jung et al., 2015; Cho et al., 2017). A commercially available Ca ISE (Orion 9320BN, Thermo Fisher, MA, USA) was used to measure the Ca ion concentrations. Finally, an array of ISEs composed of three ISEs for NO3, three ISEs for K, two ISEs for Ca, and one reference electrode was installed in a sample chamber for measuring the ion concentrations in the nutrient solutions. A double-junction electrode (Orion 900200, Thermo Fisher, MA, USA) was used as the reference electrode. To minimize the presence of residual solutions following drainage, which could induce measurement errors, the bottom of the sensor array chamber was designed to have a slope of 15° to facilitate drainage.

An isolation circuit board (NI SCC-AI13, National Instruments, TX, USA) was used to buffer the impedance of each electrode, and the buffered signals were collected using a data acquisition board (NI PCI-6221, National Instruments, TX, USA).

The system specifications are listed in Table S2.




2.3 Sensor performance test

The performance of the ion sensors in the system was validated through a measurement test involving five nutrient solution samples that encompassed the typical concentration ranges for leafy vegetable cultivation. Specifically, the test solutions were derived from real hydroponic solutions used during lettuce cultivation, prepared based on the modified Hoagland’s hydroponic nutrient solution recipe (Hoagland and Arnon, 1950).

During the test, the system conducted a series of measurements following the sampling and measurement processes. The two-point normalization solutions were prepared to have NO3, K, and Ca ions at two different concentrations (100 and 1,000 mg·L-1, 30 and 300 mg·L-1, 24 and 240 mg·L-1, respectively) with the same background components as the nutrient solution.

After each measurement, the nutrient solution was sampled and analyzed using a commercial soil and water quality analysis center (NICEM, Seoul, South Korea) to determine actual concentrations using standard analyzers, i.e., ion chromatography for NO3 and inductively coupled plasma (ICP) spectrophotometry for K and Ca measurements. Subsequently, the performance of the ion sensors was evaluated by comparing the concentrations determined by the sensors and standard methods.




2.4 Dosing algorithm validation

The system performance was validated through a five-step management test. Specifically, the test began with a mixture of the modified Hoagland’s hydroponic nutrient solution (Hoagland and Arnon, 1950). Next, the system conducted a series of nutrient adjustments according to the given target concentrations of NO3, K, and Ca, with increasing levels of the target nutrient solution volume. The target concentrations were randomly established at three levels: 80%, 100%, and 120% of the standard concentrations. The target values for the stepwise management test are summarized in Table 1. After each replenishment, the nutrient solution was sampled and analyzed by the commercial soil and water quality analysis center (National Instrumentation Center for Environmental Management, Seoul, South Korea) to determine actual concentrations using standard analyzers, i.e., ion chromatography for NO3 and ICP spectrophotometry for K and Ca measurements. Subsequently, the performance of the replenishment sequence was evaluated by comparing the target and actual concentrations determined by standard methods.


Table 1 | Target values of hydroponic solutions to be supplied in the stepwise test.



The automated ion-specific nutrient management was executed with lower limits of 20% and 10% for the ion concentrations and nutrient solution volume, respectively, to facilitate closed-loop control. The two-point normalization solutions were prepared to have NO3, K, and Ca ions at two different concentrations (100 and 1,000 mg·L-1, 30 and 300 mg·L-1, 24 and 240 mg·L-1, respectively) with the same background components as the nutrient solution.

To evaluate the performance of the proposed dosing algorithm, simulated calculations for the ion concentrations during the stepwise test were conducted based on the conventional simplex matrix method (Gieling et al., 2005; Jung et al., 2015).




2.5 Evaluation of carbon dioxide emissions

Carbon dioxide emissions from fertilizer salts vary according to the region and fertilizer type because fertilizer companies typically use different fertilizer production technologies and stocks (Brentrup et al., 2018). Therefore, it is challenging to accurately determine carbon dioxide emissions from fertilizers unless all the production details are available. Thus, in this study, the carbon dioxide emissions were assumed for comparing the environmental impact of two types of fertilizer dosing algorithms. From the injected amounts of fertilizer salts, the potential of CO2 equivalent (g CO2eq/g) was calculated according to the results of Wang et al. (2017) for N (1.526 g CO2eq/g), K (0.6545 g CO2eq/g), and P (1.631 g CO2eq/g).





3 Results



3.1 Sensor performance test

The feasibility of the ion concentration measurements obtained by the system using the ISEs were assessed through a comparison with those determined using standard analyzers (Figure 3). The measured ion concentrations were examined at five-step validation solution levels for Ca, K, and NO3. Formed based on the concentration range of the nutrient solution composition commonly used, NO3, K, and Ca ISE all exhibited measured values closely resembling the actual values. As a result, the measured and actual values were close to unity. In terms of the root mean square errors (RMSEs), the accuracies of the ISE array measurements were 29.5, 10.1, and 6.1 mg·L-1 for NO3, K, and Ca, respectively. Although the RMSE for NO3 was higher compared to other ISEs, this can be attributed to the higher tested range of NO3 concentrations than other ions. Moreover, considering that NO3 has a higher equivalent weight than other ions (i.e., NO3: 62 mg/me, K: 39 mg/me, Ca: 40mg/me), the ISEs applied in the system demonstrated sufficient applicability for the ions in the hydroponic nutrient solution.




Figure 3 | Comparison of ion concentrations in the resulting solutions of the stepwise test predicted by standard analysis and ISEs.






3.2 Five-step replenishment test

Considering the target concentrations for the five steps, the system realized replenishment based on the developed dosing algorithm, and the NO3, K, and Ca ions in the resulting solutions were measured by the system and standard analyzers (Figure 4). These replenishments began with an initial solution having higher concentrations than the target values. The system trajectory indicated the ion concentrations measured by the ISEs of the system.




Figure 4 | Changes in ion concentrations and nutrient solution volume for the stepwise test: (A) Ca; (B) K; (C) NO3; (D) Nutrient solution volume. Error bars denote the standard deviation of the multiple ISEs for NO3, K, and Ca.



In the case of the Ca concentration, over-injection occurred in the 3rd step, resulting in a 13.6% higher concentration in the 4th step (Figure 4A). When the Ca concentration was accurately measured in the 4th step, it closely followed the target concentration in the next step. Moreover, the high K concentration in the 3rd step helped maintain the high concentration level in the 4th step (Figure 4B). The K concentration and volume measured by the system in the 3rd step were 155.7 mg·L-1 and 22.52 L, respectively. This led to an 11% underestimation of the K concentration in the 5th step. Except for these cases, the NO3 concentrations and nutrient solution volumes closely followed the target values (Figures 4C, D).

Overall, the Ca, K, and NO3 concentrations and volume of the nutrient solution were controlled with average relative errors of 10.6 ± 8.0%, 7.9 ± 2.1%, 8.0 ± 11.0%, and 4.2 ± 3.7%, respectively, during the stepwise test.




3.3 Comparative analysis of the dosing algorithms

The decision-tree method and simplex method were used to calculate the amounts of fertilizer salts to be added, based on the time log of the fertilizer pumps and measured ion concentrations. These values were then compared (Table 2).


Table 2 | Amounts of the fertilizer salts to add determined by the simplex method and the decision-tree method for the five-stepwise test.



The required volumes of the concentrated solution for minor elements were identical because they were determined according to the water volume to be added. Similarly, the determined amounts of Ca(NO3)2·4H2O and MgSO4·7H2O were also identical for the simplex method and decision tree method. The algorithms yielded different values for the required amounts of KH2PO4, NH4H2PO4, KNO3, NH4NO3, and K2SO4. Specifically, although the simplex method recommended the use of less KNO3 than the decision tree method, it recommended the use of more KH2PO4, NH4H2PO4, NH4NO3, and K2SO4 salts compared with the decision tree method. Consequently, the total amounts of the fertilizer salts to be added were 14.7% higher in the simplex method than the decision tree method. Zeros in the injected salts indicate situations where the salts were not necessary, or the calculated injection mass was less than zero.

Figure 5 shows the resulting amounts of NO3, K, and Ca ions to be added, as determined by the simplex method and decision tree method, in comparison with the actual required ion mass. The calculated amounts for Ca ions were identical to the required amounts, indicating that both methods could achieve a complete solution (Figure 5A). A notable difference was observed in the case of K ions (Figure 5B). Both methods reduced the overdose of K ions, as the K ions present in the 3rd step solution were comparable to the expected K ions in the 4th step solution. However, the decision tree method could more accurately control the K ions than the simplex method at other steps, thereby reducing 22% of the total K injection for the test. Over-injections of NO3 ions were observed in both methods due to the coupling of NO3 with Ca (Figure 5C). Specifically, the amounts were 1.7% higher in the simplex method due to NH4NO3 injections (Table 2; Figure 5C).




Figure 5 | Amounts of the three nutrient ions required for the five-stepwise replenishment: (A) Ca; (B) K; (C) NO3.






3.4 Evaluation of carbon dioxide emissions

Figure 6 presents the calculated carbon dioxide equivalents for the two dosing algorithms. Differences were observed in the carbon dioxide emissions from two ion-specific dosing algorithms. Specifically, the carbon dioxide equivalents for N, P, and K from the simplex method were 9.4%, 182.5%, 27.3% higher than those from the decision tree method, respectively.




Figure 6 | Carbon dioxide emissions from different types of fertilizer dosing algorithms.







4 Discussion

Various researchers have focused on ion-specific management in closed hydroponic solutions. Improving the accuracies of ion-specific nutrient management can promote more efficient and sustainable agricultural practices. Accordingly, in recent studies, there have been reports on attempts to apply spectroscopy-based monitoring technologies for accurate and rapid measurement of ion concentrations in nutrient solutions (Stevens et al., 2023; Sulaiman et al., 2024). The developed technologies can measure ions that are currently challenging to measure with ISE. However, there is still much room for improvement in terms of cost and lifespan. Moreover, there is a scarcity of information on how to adjust the dosage of fertilizers using the measured ion concentrations, despite efforts to predict concentrations through artificial intelligence (Tuan et al., 2021). Until the latest researches, researchers have, for the most part, conducted fertilizer dosing calculations through simplex method, considering only limited ion scenarios (Gieling et al., 2005; Jung et al., 2015; Xu et al., 2020; Chowdhury et al., 2021). Although the simplex method is a simple and powerful method for finding solutions with various combinations of nutrient salts, it may yield negative solutions. Even when the solutions are restricted to positive ranges, inaccurate nutrient supplementation may occur. These issues may aggravate when the reliabilities of the ion sensors and pumps are inadequate, or a limited number of fertilizer salts are used.

In this study, the performance test demonstrated that the ISEs equipped in the system can provide accurate information regarding the individual ion concentrations in the hydroponic nutrient solutions (Figure 3). The performance of the ISEs in the hydroponic solutions is consistent with those reported previously (Kim et al., 2013; Vardar et al., 2015; Cho et al., 2017; Jung et al., 2019; Kim et al., 2023). However, the accuracy is not ideal and has remained largely unchanged for decades. Therefore, more advanced dosing algorithms for ion-specific nutrient management must be established.

Notably, the decision tree algorithm proposed in this study does not compute the exact solution but rather determines appropriate solution considering the correlations among single-nutrient fertilizers. It effectively minimizes the under- or over-injection of nutrient ions based on the preset priority of nutrient ions. This effectiveness was confirmed through the five-stepwise test (Figure 4, Table 2). The decision tree algorithm variably controlled the individual fertilizers for attaining the target concentration levels. By assessing various combinations of fertilizer injection, the algorithm computed the appropriate mass to be added for each fertilizer salt, thereby preventing unnecessary salt injections (Table 2). For example, in the 3rd step, Ca(NO3)2·4H2O fertilizer was not used because there were sufficient Ca ions for the next target level. Similarly, the algorithm used Ca(NO3)2·4H2O, K2SO4, and NH4H2PO4, to supply NO3, K, NH4, and H2PO4 ions for the 1st, 2nd, and 4th steps, instead of KH2PO4, KNO3 and NH4NO3. However, in the 3rd stage, a completely different combination was used. These results support that the proposed dosing algorithm is more efficient compared with the conventional algorithm that cannot prevent unnecessary ion injections (Ko et al., 2013; Moon et al., 2019).

Although several instances of under- or over-injection were observed, it is considered acceptable for management performance to remain within a 10% margin, given that practical hydroponic ion concentrations may fluctuate by more than 50% (Ahn et al., 2021). Furthermore, the ion-specific nutrient management system can be improved by adopting more accurate ion sensors, pumps, and agitators for mixing the nutrient solution. Additionally, the closed-loop control logic can be further improved (Li and Dixon, 2016).

The decision tree method and simplex method yielded different fertilizer dosages (Table 2). The dosing amounts calculated using the simplex method sometimes included negative values to formulate a complete solution for the given target concentrations (Kitahara and Mizuno, 2013). However, negative dosing for specific ions is not feasible because nutrient ions cannot be selectively removed in general hydroponic systems. Therefore, the pump operation times were merely indicated as zero. However, the other salts, including those with the same ions as the nutrient salts, had negative dosing amounts, necessitating larger replenishments to compensate for the ion deficits. Although the simplex method could be modified to calculate an approximate solution consisting of only positive values, it would induce more unbalanced injections. In contrast, the decision-tree method could effectively minimize over-injection by adjusting the injection mass based on the preset nutrient priority. Specifically, the decision tree method enabled more accurate control of K ions than the simplex method at other steps because of the negative values yielded by the simplex method, as discussed (Figure 5B). Moreover, when the simplex method was used, KH2PO4 and NH4H2PO4 were over-injected to offset the negative values of ions from the complete solution (Table 2). Consequently, N, P, and K were administered in larger quantities using the simplex algorithm compared with the decision-tree-based algorithm. Such inefficient fertilizer injections ultimately lead to the generation of more greenhouse gases.

Although it is in the early stages, to the best of my knowledge, this paper is among the first to propose the possibility of reducing greenhouse gas emissions by improving the fertilizer dosing algorithm. The equivalent emissions computed in this study may vary across countries or companies (Brentrup et al., 2018), but they can be easily adjusted by incorporating the CO2 equivalents into the conversion formula. The findings of this study demonstrate that the proposed dosing algorithm can not only enhance the nutrient composition of recycled hydroponic solutions but also contribute to sustainability (Figure 6). However, this study has several significant limitations. Firstly, the algorithm validation was conducted not in an actual crop cultivation environment but rather focused on accurately tracking specific ion concentration settings. Secondly, the stability of nutrient management was not verified for ions not measured by the sensors. Lastly, the study did not address whether ion-based control leads to actual fertilizer savings and a subsequent reduction in carbon emissions compared to conventional EC-based closed hydroponic solution management. In future research, our objective is to conduct crop cultivation experiments using the decision-tree-based nutrient solution control system. The focus of future research efforts will be on comparing the performance and stability of the algorithm with the conventional recirculating cultivation method based on EC. Additionally, we plan to verify fertilizer usage efficiency and assess the consequent reduction in carbon emissions.




5 Conclusions

A decision-tree-based dosing algorithm for closed hydroponic solution was developed and applied to an automated ion-specific nutrient management system with an array of NO3, K, and Ca ISEs. The performance of the proposed algorithm was evaluated through a five-step replenishment test and compared with that of the conventional simplex algorithm in terms of the replenishment accuracy and carbon dioxide emissions. From the results, the proposed algorithm exhibited high fertilizer efficiency and reduced carbon emission.

The results highlighted the proposed algorithm effectively controlled individual ion concentrations in the nutrient solution by using the ion concentrations measured by an array of ISEs and the decision-tree-based nutrient dosing algorithm. Specifically, the proposed system minimized the overdose of fertilizers if specific ion levels were higher than the target values. Although the simplex algorithm performed well when no negative values were present in the complete solutions, the fertilizers were sometimes over-injected when negative values were present. Consequently, the decision tree method led to more effective dosing than the simplex method by reducing approximately 13% of the total fertilizer inputs during the stepwise replenishment test. Furthermore, efficient fertilizer application led to an 8.6% reduction in carbon dioxide emissions for N, a 64.6% reduction for P, and a 21.4% reduction for K.

These findings suggest that the decision tree algorithm is an efficient alternative for managing closed hydroponic solutions while reducing carbon dioxide emissions, thereby promoting sustainable crop production.





Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.





Author contributions

W-JC: Conceptualization, Formal Analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. M-SG: Investigation, Methodology, Writing – original draft, Writing – review & editing. D-WK: Data curation, Formal Analysis, Writing – review & editing. JK: Data curation, Formal Analysis, Writing – review & editing. D-HJ: Conceptualization, Formal Analysis, Methodology, Writing – review & editing. H-JK: Funding acquisition, Supervision, Writing – review & editing.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by the Technology development Program(G21S325921402) of the Ministry of SMEs, Rural Development Administration (PJ01385203202001), the BK21 SNU Global Smart Farm Educational Research Center (I20SS7602056), and Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader of Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Project No. 320001-4), Republic of Korea.




Acknowledgments

The authors are grateful to Seoul National University and Gyeongsang National University for the provision of experimental places and the fund of research promotion program.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1301490/full#supplementary-material




References

 Ahn, T. I., Shin, J. H., and Son, J. E. (2021). Theoretical and experimental analyses of nutrient control in electrical conductivity-based nutrient recycling soilless culture system. Front. Plant Sci. 12, 656403. doi: 10.3389/fpls.2021.656403

 Bamsey, M., Graham, T., Thompson, C., Berinstain, A., Scott, A., and Dixon, M. (2012). Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems. Sensors 12, 13349–13392. doi: 10.3390/s121013349

 Brentrup, F., Lammel, J., Stephani, T., and Christensen, B. (2018). Updated carbon footprint values for mineral fertilizer from different world regions. Proc.11th Int. Conf. on Life Cycle Assess. of Food. (Bangkok, Thailand: KU-JGSEE-NSTDA-FTI) 17–19.

 Cho, W.-J., Kim, H.-J., Jung, D.-H., Han, H.-J., and Cho, Y.-Y. (2019). Hybrid signal-processing method based on neural network for prediction of NO3, K, ca, and mg ions in hydroponic solutions using an array of ion-selective electrodes. Sensors 19, 5508. doi: 10.3390/s19245508

 Cho, W. J., Kim, H. J., Jung, D. H., Kang, C. I., Choi, G. L., and Son, J. E. (2017). An embedded system for automated hydroponic nutrient solution management. Trans. Asabe 60, 1083–1096. doi: 10.13031/trans.12163

 Chowdhury, M., Islam, M. N., Reza, M. N., Ali, M., Rasool, K., Kiraga, S., et al. (2021). Sensor-based nutrient recirculation for aeroponic lettuce cultivation. J. Biosyst. Eng. 46, 81–92. doi: 10.1007/s42853-021-00089-8

 De Rijck, G., and Schrevens, E. (1994). Application of mixture-theory for the optimisation of the composition of the nutrient solution". Acta Hortic. 401, 283–292. doi: 10.17660/ActaHortic.1995.401.34

 Domingues, D. S., Takahashi, H. W., Camara, C., and Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput. Electron. Agric. 84, 53–61. doi: 10.1016/j.compag.2012.02.006

 Geoffrey, R., Dixon, M. A., and Arnold, K. E. (1997). Evaluation of sensor technologies for automated control of nutrient solutions in life support systems using higher plants. Proc. 6th European Symp. on Space Environ. Control Syst. (Noordwijk, Netherlands: European Space Agency), 851–858.

 Gieling, T. H., Van Straten, G., Janssen, H. J. J., and Wouters, H. (2005). ISE and chemfet sensors in greenhouse cultivation. Sensors Actuators B-Chemical 105, 74–80. doi: 10.1016/S0925-4005(04)00113-3

 Hoagland, D. R., and Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. Circular. California Agric. Experiment Station 347 (2nd edit). p.32.

 Jung, D.-H., Kim, H.-J., Cho, W.-J., Park, S. H., and Yang, S.-H. (2019). Validation testing of an ion-specific sensing and control system for precision hydroponic macronutrient management. Comput. Electron. Agric. 156, 660–668. doi: 10.1016/j.compag.2018.12.025

 Jung, D. H., Kim, H. J., Choi, G. L., Ahn, T. I., Son, J. E., and Sudduth, K. A. (2015). Automated lettuce nutrient solution management using an array of ion-selective electrodes. Trans. Asabe 58, 1309–1319. doi: 10.13031/trans.58.11228

 Katsoulas, N., Savvas, D., Kitta, E., Bartzanas, T., and Kittas, C. (2015). Extension and evaluation of a model for automatic drainage solution management in tomato crops grown in semi-closed hydroponic systems. Comput. Electron. Agric. 113, 61–71. doi: 10.1016/j.compag.2015.01.014

 Kim, H. J., Kim, W. K., Roh, M. Y., Kang, C. I., Park, J. M., and Sudduth, K. A. (2013). Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Comput. Electron. Agric. 93, 46–54. doi: 10.1016/j.compag.2013.01.011

 Kim, J., Kim, H.-J., Gang, M.-S., Kim, D.-W., Cho, W.-J., and Jang, J. K. (2023). Closed hydroponic nutrient solution management using multiple water sources. J. Biosyst. Eng. 48, 215–214. doi: 10.1007/s42853-023-00182-0

 Kitahara, T., and Mizuno, S. (2013). A bound for the number of different basic solutions generated by the simplex method. Math. Programming 137, 579–586. doi: 10.1007/s10107-011-0482-y

 Klespitz, J., and Kovács, L. (2014). Peristaltic pumps—A review on working and control possibilities. Proc. IEEE 12th Int. Symp. on Appl. Machine Intelligence and Inform. (Herl'any, Slovakia: IEEE), 191–194. doi: 10.1109/SAMI.2014.6822404

 Ko, M. T., Ahn, T. I., and Son, J. E. (2013). Comparisons of ion balance, fruit yield, water, and fertilizer use efficiencies in open and closed soilless culture of paprika (Capsicum annuum L.). Korean J. Hortic. Sci. Technol. 31, 423–428. doi: 10.7235/hort.2013.13028

 Kozai, T., Tsukagoshi, S., and Sakaguchi, S. (2018). Toward nutrient solution composition control in hydroponic system. In: T. KozaiSmart Plant Factory (Singapore: Springer), 395–403. doi: 10.1007/978-981-13-1065-2_24

 Li, Z., and Dixon, S. (2016). A closed-loop operation to improve GMR sensor accuracy. IEEE Sensors J. 16, 6003–6007. doi: 10.1109/JSEN.2016.2580742

 Moon, T., Ahn, T. I., and Son, J. E. (2019). Long short-term memory for a model-free estimation of macronutrient ion concentrations of root-zone in closed-loop soilless cultures. Plant Methods 15, 1–12. doi: 10.1186/s13007-019-0443-7

 Namazkhan, M., Albers, C., and Steg, L. (2020). A decision tree method for explaining household gas consumption: The role of building characteristics, socio-demographic variables, psychological factors and household behaviour. Renewable Sustain. Energy Rev. 119, 109542. doi: 10.1016/j.rser.2019.109542

 Neocleous, D., and Savvas, D. (2016). NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake. Agric. Water Manage. 165, 22–32. doi: 10.1016/j.agwat.2015.11.013

 Neocleous, D., and Savvas, D. (2022). Validating a smart nutrient solution replenishment strategy to save water and nutrients in hydroponic crops. Front. Environ. Sci. 10, 965964. doi: 10.3389/fenvs.2022.965964

 Resh, H. M. (2016). Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower (7th ed). (Boca Raton, FL: CRC Press).

 Rius-Ruiz, F. X., Andrade, F. J., Riu, J., and Rius, F. X. (2014). Computer-operated analytical platform for the determination of nutrients in hydroponic systems. Food Chem. 147, 92–97. doi: 10.1016/j.foodchem.2013.09.114

 Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., et al. (2019). Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00923

 Shiyab, S. M., Shatnawi, M. A., Shibli, R. A., Al Smeirat, N. G., Ayad, J., and Akash, M. W. (2013). Growth, nutrient acquisition, and physiological responses of hydroponic grown tomato to sodium chloride salt induced stress. J. Plant Nutr. 36, 665–676. doi: 10.1080/01904167.2012.754037

 Son, J. E., Kim, H. J., and Ahn, T. I. (2020). “Chapter 20 - hydroponic systems,” in Plant factory, 2nd ed. Eds.  T. Kozai, G. Niu, and M. Takagaki (London: Academic Press), 273–283. doi: 10.1016/C2018-0-00969-X

 Sonneveld, C., Voogt, W., and Spaans, L. (1999). A universal algorithm for calculation of nutrient solutions. Acta Hortic. 481, 331–340. doi: 10.17660/ActaHortic.1999.481.38

 Stevens, J. D., Murray, D., Diepeveen, D., and Toohey, D. (2023). Development and testing of an ioT spectroscopic nutrient monitoring system for use in micro indoor smart hydroponics. Horticulturae 9, 185. doi: 10.3390/horticulturae9020185

 Sulaiman, R., Azeman, N. H., Mokhtar, M. H. H., Mobarak, N. N., Abu Bakar, M. H., and Bakar, A. (2024). Hybrid ensemble-based machine learning model for predicting phosphorus concentrations in hydroponic solution. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc. 304, 123327. doi: 10.1016/j.saa.2023.123327

 Tuan, V. N., Dinh, T. D., Zhang, W., Khattak, A. M., Le, A. T., Saeed, I. A., et al. (2021). A smart diagnostic tool based on deep kernel learning for on-site determination of phosphate, calcium, and magnesium concentration in a hydroponic system. RSC Adv. 11, 11177–11191. doi: 10.1039/D1RA00140J

 Vardar, G., Altıkatoğlu, M., Ortaç, D., and Cemek, M. (2015). Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables. Biotechnol. Appl. Biochem. 62, 663–668. doi: 10.1002/bab.1317

 Wang, Z.-B., Chen, J., Mao, S.-C., Han, Y.-C., Chen, F., Zhang, L.-F., et al. (2017). Comparison of greenhouse gas emissions of chemical fertilizer types in China's crop production. J. Cleaner Production 141, 1267–1274. doi: 10.1016/j.jclepro.2016.09.120

 Xu, K., Kitazumi, Y., Kano, K., and Shirai, O. (2019). Construction of an automatic nutrient solution management system for hydroponics-adjustment of the K+-Concentration and volume of water. Analytical Sci. 35, 595–598. doi: 10.2116/analsci.18A003

 Xu, K., Kitazumi, Y., Kano, K., and Shirai, O. (2020). Automatic management of nutrient solution for hydroponics-construction of multi-ion stat. Anal. Sci. 36, 1141–1144. doi: 10.2116/analsci.20A002




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2023 Cho, Gang, Kim, Kim, Jung and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 22 December 2023

doi: 10.3389/fpls.2023.1304962

[image: image2]


SCGNet: efficient sparsely connected group convolution network for wheat grains classification


Xuewei Sun 1, Yan Li 1, Guohou Li 1*, Songlin Jin 1, Wenyi Zhao 2, Zheng Liang 3 and Weidong Zhang 1


1 School of Information Engineering, Henan Institute of Science and Technology, Xinxiang, China, 2 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China, 3 School of Internet, Anhui University, Hefei, China




Edited by: 

Yuriy L. Orlov, I.M.Sechenov First Moscow State Medical University, Russia

Reviewed by: 

Parvathaneni Naga Srinivasu, Prasad V. Potluri Siddhartha Institute of Technology, India

Zhaoyu Zhai, Nanjing Agricultural University, China

Chu Zhang, Huzhou University, China

*Correspondence: 

Guohou Li
 ligh@hist.edu.cn


Received: 30 September 2023

Accepted: 01 December 2023

Published: 22 December 2023

Citation:
Sun X, Li Y, Li G, Jin S, Zhao W, Liang Z and Zhang W (2023) SCGNet: efficient sparsely connected group convolution network for wheat grains classification. Front. Plant Sci. 14:1304962. doi: 10.3389/fpls.2023.1304962






Introduction

Efficient and accurate varietal classification of wheat grains is crucial for maintaining varietal purity and reducing susceptibility to pests and diseases, thereby enhancing crop yield. Traditional manual and machine learning methods for wheat grain identification often suffer from inefficiencies and the use of large models. In this study, we propose a novel classification and recognition model called SCGNet, designed for rapid and efficient wheat grain classification.





Methods

Specifically, our proposed model incorporates several modules that enhance information exchange and feature multiplexing between group convolutions. This mechanism enables the network to gather feature information from each subgroup of the previous layer, facilitating effective utilization of upper-layer features. Additionally, we introduce sparsity in channel connections between groups to further reduce computational complexity without compromising accuracy. Furthermore, we design a novel classification output layer based on 3-D convolution, replacing the traditional maximum pooling layer and fully connected layer in conventional convolutional neural networks (CNNs). This modification results in more efficient classification output generation.





Results

We conduct extensive experiments using a curated wheat grain dataset, demonstrating the superior performance of our proposed method. Our approach achieves an impressive accuracy of 99.56%, precision of 99.59%, recall of 99.55%, and an F1-score of 99.57%.





Discussion

Notably, our method also exhibits the lowest number of Floating-Point Operations (FLOPs) and the number of parameters, making it a highly efficient solution for wheat grains classification.





Keywords: wheat grains classification, feature multiplexing, sparsely connected, 3-D convolution, the number of parameters




1 Introduction

Wheat, being one of the most extensively cultivated crops globally (Li et al., 2019; Zhou et al., 2021), holds vital genetic and morphological information within its seeds. The distinct characteristics and values exhibited by different wheat grain varieties underscore the importance of selecting high quality varieties. This selection is not only pivotal for augmenting wheat yields and enhancing quality but also crucial for safeguarding crops against pests and diseases (Mefleh et al., 2019; Saeed et al., 2022).

The purity of wheat grain varieties is of paramount importance to breeding specialists, wheat cultivators, and consumers at large (Hussain et al., 2022). Unfortunately, the integrity of seed markets faces challenges from unscrupulous traders who engage in deceptive practices. They market low-quality seed varieties as high-quality ones, posing a threat to consumers and disrupting the seed market. To counteract such issues, accurate classification techniques are imperative (Fanelli et al., 2023).

Historically, professionals relied on traditional methods for varietal identification of wheat grains. However, these methods are slow, labor-intensive, and susceptible to subjective biases. The inherent similarity in the characteristics of various wheat grains further complicates the identification process.

In recent years, the integration of computer vision techniques into wheat grain recognition has witnessed significant advancements (Li et al., 2019). Researchers have explored two primary types of approaches for feature extraction and classification: machine learning-based methods and deep learning-based methods.

Machine learning methods, while effective, require substantial agricultural knowledge, manual feature selection, and classifier design (Lu et al., 2022). This process demands significant human effort and may not match the recognition speed achieved by deep learning approaches.

Deep learning methods offer notable advantages, automating feature extraction and achieving superior classification accuracy. They exhibit strong generalization capabilities, streamlining model training and significantly enhancing recognition speed. However, challenges such as the need for extensive training data and the high number of parameters in deep learning models can impede deployment on resource-constrained devices. For instance, the computational intensity associated with these models can overwhelm devices with limited resources, leading to frequent crashes during usage. The sheer volume of computations required may exceed the processing capacity of these devices, compromising their stability and usability. Moreover, resource-constrained devices may lack the storage capacity necessary to accommodate the extensive parameters of these models, rendering deployment infeasible.

To address these challenges, we propose the Sparsely Connected Group Convolution Network (SCGNet) for efficient and accurate wheat grain classification. Our model is designed to offer a non-destructive, efficient, and rapid classification solution, aligning with the overarching goal of addressing the complexities associated with wheat grain identification and classification. We highlight the key contributions of this paper as follows:

	We introduce a novel approach known as “Group Mixing(GM)”, which involves splitting and rearranging group convolutions based on a strategic criterion. This innovative technique resolves issues related to information exchange among groups, enhances feature multiplexing, and simultaneously reduces the Floating-Point Operations (FLOPs) of the convolutional layers.

	We present a method for connected group convolutions, called “Sparsely Connected(SC)”, facilitating the cascading transfer of feature information between groups without compromising vital details. This advancement further decreases the computational demands of the convolutional layers.

	We incorporate 3-D convolution and revamp the convolutional classification layer within SCGNet. This novel approach replaces traditional layers like pooling and fully connected layers commonly found in conventional convolutional neural networks (CNNs). The result is a reduction in the overall number of model parameters, leading to a more streamlined architecture and faster recognition.



The structure of this paper is organized as follows: Section 2 provides a brief review and summary of various methods employed for wheat grain recognition, along with the challenges they address. In Section 3, we present comprehensive details regarding the proposed SCGNet architecture. Section 4 encompasses our creation of a wheat grains dataset, outlines our experimental procedures, and presents the experimental results. We also perform an in-depth analysis and comparison of classification outcomes generated by various network models using the wheat grain dataset. Finally, in Section 5, we summarize the primary contributions of this paper and engage in a discussion regarding potential directions for future research.




2 Related works

Currently, various identification methods have been gradually applied to wheat grain classification, and in the following, we provide an overview and summary of these studies and summarize the advantages and disadvantages of all methods in Table 1.


Table 1 | Advantages and disadvantages of different methods.





2.1 Machine learning-based methods

Machine learning-based methods leverage digital image processing techniques to preprocess data acquired from collected images, followed by manual feature design, feature extraction, and ultimately, classification and recognition employing suitable classifiers like Support Vector Machine (SVM). For instance, Delwiche et al. (Delwiche et al., 2013) employed optical-grade reflectors to capture wheat grain images for assessing surface damage. They parameterized kernel morphology and texture features from both main and reflected views, employing parametric (Linear Discriminant Analysis, LDA) and non-parametric (k-Nearest Neighbors, KNN) classification models, respectively. This approach achieved a recognition accuracy of up to 94%. Güneş et al. (Güneş et al., 2014) proposed a method for recognizing wheat varieties using digital image processing techniques. Their system extracted image features using the Gray Level Covariance Matrix (GLCM) and Linear Binary Pattern (LBP) methods, classifying them with a k-nearest neighbor classifier. Kurtulmuş et al. (Kurtulmuş et al., 2016) introduced a recognition method combining machine vision and neural networks. They calculated features from different color components and constructed a feature database using chili pepper seeds as the study object. Sequential feature selection methods with various criterion functions were employed to select effective features, achieving variety classification of eight pepper seeds with a Multilayer Perceptron (MLP) accuracy of 84.94%. Sabanci et al. (Sabanci et al., 2017) extracted four shape features, three color features, and five texture features, inputting these features into an artificial neural network (ANN) constructed as a multilayer perceptron (MLP), resulting in improved classification results. Ni et al. (Ni et al., 2019)designed an automatic maize surface defect inspection system. Initially, they pre-processed touching kernels using a novel k-means clustering guided curvature method, enhancing the identification of broken kernels and system robustness. Subsequently, they integrated a deep convolutional network into the system for detecting maize surface defects, achieving an accuracy of 98.2%.




2.2 Deep learning-based methods

Deep learning-based methods typically involve the construction of specialized deep learning models for recognition and classification tasks (Huang et al., 2017; Zhang et al., 2022b; Zhang et al., 2023). In these approaches, the deep learning model takes the original image data as input, processes it at the pixel level, and automatically extracts contextual information and global features from the image by employing various combinations of convolution and pooling operations. Finally, the model produces classification and recognition results through specific functions. For instance, Kozłowski et al. (Kozłowski et al., 2019) conducted a comparison of nine different CNNs for wheat grain classification. They used reference performance indicators such as training time, inference speed, and accuracy rates and compared them with traditional machine learning methods. The results showed that traditional methods achieved a relatively low classification accuracy of around 75%, whereas CNN methods achieved an accuracy exceeding 93%. Javanmardi et al. (Javanmardi et al., 2021) proposed a method that utilizes CNNs as generalized feature extractors, combined with artificial neural networks, for feature extraction and classification. They tested this approach on 2250 test samples, achieving a correct classification rate of 98.1% with a total processing time of 26.8 seconds. Deep learning-based methods can achieve satisfactory results in terms of accuracy metrics, but it is worth noting that these high-precision CNNs are accompanied by a high number of parameters and FLOPs, and thus some scholars have focused on how to thin the models.

One noteworthy approach is MobileNet (Howard et al., 2017), which introduces depth-wise separable convolutions, which split standard convolutions into depth-wise convolutions and point-wise convolutions, this reduces the number of parameters and computations significantly. ShuffleNet (Zhang et al., 2018) employs group convolutions and channel shuffling to enhance the fusion of channel information while reducing computational cost, group convolutions split the input channels into separate groups, reducing the complexity of convolutions. MobileNetV2 (Sandler et al., 2018) utilizes the inverted residuals structure, which helps in maintaining a balance between computational efficiency and representational power, it uses linear bottlenecks and shortcut connections to improve information flow. Moreover, BiSeNetV2 (Yu et al., 2021) presented a branching network where the detail branch focused on underlying details using a larger spatial dimension, while the semantic branch captured advanced semantics with large convolutional kernels, these branches were then fused through an aggregation layer, enhancing the model’s capabilities. Inspired by these innovations, Yang et al. (Yang et al., 2021a) devised a branch network by modifying the VGG16 model. By removing the fully connected layer and adjusting the position of the Batch Normalization (BN) layer, they crafted a novel network capable of classifying peanut varieties. This tailored model exhibited remarkable accuracy improvements over the original design while maintaining a reduced parameter count. Zhao et al. (Zhao et al., 2022) employed YOLOv5 for detecting the quality of wheat grains and introduced a lightweight wheat grain detection network, WGNet, based on YOLOv5. WGNet utilized the FPN neck module and hybrid attention module to address performance degradation issues and reduced network parameters through network pruning. This approach significantly improved inference speed while maintaining high detection accuracy.




2.3 Methods based on hyperspectral imaging combined with deep learning

Neural networks have demonstrated outstanding performance, prompting some scholars to explore their combination with hyperspectral imaging techniques. For instance, Weng et al. (Weng et al., 2021) aimed to characterize the degree of Fusarium head blight (FHB) infestation on wheat grains. They extracted reflectance spectra from hyperspectral images of healthy and FHB-infected wheat grains with varying levels of infestation (light, moderate, heavy). Five effective wavelengths (EWs) were randomly selected from the spectra, and different combinations of EWs were used to generate reflectance images (RIs) with LeNet-5. Additionally, a residual attention convolutional neural network (RACNN) was constructed, increasing width and depth, and incorporating channel attention and residual modules to recognize varying degrees of FHB infection in wheat grains. Shen et al. (Shen et al., 2021) proposed a spectral imaging-based method for detecting impurities in wheat. They employed spectral imaging to study the spectral features of the target data and converted them into frequency domain spectra for terahertz pseudo-color imaging of wheat and its impurities. This was combined with a CNN to create a model called Wheat-V2, designed for identifying impurities in wheat images. Zhang et al. (Zhang et al., 2022a) utilized 2D convolution with an attentional mechanism to extract spatial and textural features, while 3-D convolution was used for spatial and inter-spectral information extraction in maize cultivar identification. This combination of 2-D and 3-D convolution showed good feature extraction complementarity. However, classification methods based on hyperspectral imaging often require a substantial amount of data and high-quality equipment for data acquisition. This instrument-dependent nature can be a burden for economically underdeveloped regions where the high cost of multispectral and hyperspectral cameras is prohibitive for widespread adoption. To address this, some scholars (Yang et al., 2021b) designed the Spectrogram Generative Adversarial Network (SPGAN) to expand the wheat grain dataset. SPGAN utilizes a generative adversarial network to generate synthetic datasets based on a small set of real datasets. These synthetic datasets serve as the foundation for the Progressive Neural Structure Search (PNAS) generative network structure, which classifies three types of wheat grains. The SPGAN-PNAS framework achieved an F1-score of 96.2%, outperforming traditional neural networks.

To summarize, machine learning-based methods do not require much data to have better performance although they need to extract features manually, while deep learning-based methods require a large amount of data to support them, at the same time, deep learning-based methods eliminate the need to manually design and extract features, which means that researchers do not need to have a richer background in agricultural knowledge. Hyperspectral-based methods combined with deep learning can extract richer feature information but require sophisticated data acquisition equipment.





3 Proposed SCGNET

Figure 1 provides an exhaustive overview of the proposed innovative SCGNet architecture. The left segment of the figure illustrates the overall structure of SCGNet, while the central part delves into the constituent sub-modules, namely the Downsample layer and SCG block. The right-hand portion zooms in further to unveil the sub-components of the SCG block. SCGNet is a comprehensive network composed of various elements, including a conventional convolutional layer, multiple repetitively stacked Downsample layers, SCG blocks, and a 3-D classification convolutional layer. The primary objective of these components is to capture and process the intricate features of the input image data.




Figure 1 | Given a 224×224×3 image of wheat grain, it passes through an initial convolutional layer to extract the coarse-grained features. Following that, we stack four successive SCG blocks to obtain the fine-grained features of the image and reduce the parameters. In addition, we add down sampling modules before each SCG block module to ensure image size consistency in the computation process. Finally, the output classification result is determined by a 3-D convolutional classification layer that we have constructed.



The Conventional Convolutional Layer utilizes a 3×3 convolutional kernel with a stride of 1. Its role is to perform an initial extraction of the coarse-grained features inherent in the image data.

The Downsample Layer is crucial in reducing image size and controlling channel dimensionality. It consists of two convolutional layers: one using a 1×1 kernel with a stride of 1, and the other utilizing a 2×2 kernel with a stride of 2. This combination enables control of image size and channel simultaneously.

The SCG block represents the core of our architecture, consisting of a series of repetitively stacked down sampling layers and SCG block components(GM module and SC module). More details about the important sub-modules of the SCG block: the GM module and the SC module, will be elaborated upon in subsections 3.1.1 and 3.1.2. Additionally, it incorporates two 1×1 ordinary convolutional layers to regulate channel dimensions. The primary purpose of the SCG block is to extract fine grained features from the image and simultaneously reduce the overall parameter count of the entire SCGNet, thereby enhancing efficiency.

The 3-D Convolutional Classification Layer is specifically designed for classification tasks and employs 3-D convolutions to produce the final classification results.

In Table 2, we present a detailed breakdown of each module within SCGNet, offering a comprehensive reference for the configuration and specifications of our network’s components.


Table 2 | Detailed specifications for each module within SCGNet.





3.1 SCG block

The SCG block serves as the main module of the entire network. Within the SCG block, we integrate the Group Mixing module and the Sparsely Connected module, along with two convolutional layers using 1×1 kernel sizes, to constitute the SCG block. These two 1×1 kernel convolutional layers play distinct roles: one for increasing and the other for decreasing the channel dimensionality. The GM module and SC module serve as the core components within the SCG block. Following the Depthwise Convolution (DW Conv), we introduce a BN layer to normalize the data, thus contributing to the potential acceleration of CNN training. The 1×1 Group convolution (G-Conv) primarily serves the purposes of parameter sharing and feature interaction among subgroups.

This aids in reducing the model’s parameter count while facilitating mutual feature learning among subgroups. After the G-Conv layer, we not only apply the BN layer but also opt for the Swish activation function over the traditional ReLU. The Swish activation function has a smoothness that enhances the forward propagation optimization, in addition, the function exhibits a high saturation threshold, which remains unsaturated even when the inputs converge to 0, thus facilitating the flow of gradients during the training process.

In various deep learning architectures, the concept of feature fusion is crucial. Such as ResNet (He et al., 2015) and FPN (Lin et al., 2017), these architectures often employ the element-wise Add operation for feature fusion.

The Add operation directly combines the matrix information from input features and output features without altering the image’s dimensionality. The number of channels remains the same, but the operation increases the amount of information along each dimension. However, in certain cases, such as ShuffleNet (Zhang et al., 2018), a Concat operation is used instead of Add during feature fusion.

The Concat operation, unlike Add, applies different weights to feature maps and then merges them based on the number of channels in the input matrix. This can increase the image’s dimensionality while preserving information along each dimension. The Concat operation aligns input features with the output feature map and leverages the semantic information from feature maps of different scales to achieve superior performance by expanding the number of channels. Therefore, to leverage semantic information from feature maps of different scales and increase dimensionality, we employ the Concat for feature fusion.



3.1.1 Group mixing

Traditional CNNs primarily consist of convolutional layers, activation functions, pooling layers, and fully-connected layers (Krizhevsky et al., 2012). The trainable layers within CNNs typically comprise convolutional layers and fully-connected layers (Gao et al., 2018). Among them, the main role of the convolutional layer is to perform feature extraction on the input image. Each neuron in a convolutional layer is connected to multiple neurons in spatially proximate regions of the preceding layer. The convolution operation involves sequentially applying a convolution kernel to the input features through element-wise matrix multiplication and aggregating the results while incorporating biases.

The presence of a large number of convolution operations in convolutional layers leads to a substantial increase in the number of parameters and FLOPs. To illustrate this, let’s define the input feature map as F ∈ ℝh×w×c, and the convolution kernel as K ∈ ℝh×w×c, with Kn representing the number of convolution kernels. A standard convolutional operation is performed between the feature map and Kn convolutional kernels, with a default stride of 1. The number of parameters for this operation is calculated as Equation 1:



At this point, the FLOPs are determined as Equation 2:



Here, Fh and Fw represent the height and width of the input feature map, respectively. Kh and Kw denote the height and width of the convolution kernel, Fc is the number of channels in the feature map, and Kc is the number of channels in the convolution kernel. in which case, Kc = Fc. To address this computational complexity, MobileNet (Howard et al., 2017) introduced depthwise separable convolution. This technique divides the convolution operation into two steps: depthwise convolution and pointwise convolution. In the depthwise convolution, a single convolution kernel is applied independently to each channel in the depth direction of the feature map. The outputs are then concatenated to generate the same number of output channels, followed by pointwise convolution using a 1×1 unit convolution kernel. With this decomposition, the number of convolutional parameters as Equation 3:



And the FLOPs as Equation 4:



Clearly, there is a significant reduction in both parameters and FLOPs after applying depthwise convolution and pointwise convolution. However, constrained by the computational power of GPUs, there is a need to further reduce parameters and FLOPs. To address this, AlexNet (Krizhevsky et al., 2012) introduced group convolution. This technique involves grouping different feature maps of the input layer and applying different convolution kernels to each group. Group convolution has been successfully employed in various networks, including Xception (Chollet, 2017), MobileNet (Howard et al., 2017), ResNeXt (Xie et al., 2017), and others, demonstrating excellent performance.

Group convolution is a technique used in CNNs to reduce the computational cost of convolutional layers. It divides the input feature map into mutually exclusive groups based on channels, where each group operates with a 1×1 convolution kernel. This division results in each group having a subset of the input channels, with a proportionate reduction in the number of parameters. The number of parameters and FLOPs are reduced to 1/G of the original values, where G is the number of groups.

However, group convolution also brings an Issue of Independence. While group convolution significantly reduces computational requirements, it has a drawback. The feature information in each subgroup is relatively independent, and there is limited interaction between the groups. This can lead to a lack of effective information exchange between channels.

To address the issue of independence and enhance information exchange between the groups, we propose a “Group Mixing” approach. First, group convolution is divided into G primary groups (Gi). Each primary group contains a subset of the channel’s feature information. Then, each primary group (Gi) is further divided into j subgroups ( ), where j ranges from 1 to i. This secondary division allows for a more fine-grained separation of channel information within each primary group. Finally, the critical step in Group Mixing involves taking one subgroup ( ) from each primary group (Gi) and combining them in an ordered manner. These subgroups are concatenated to create new subgroups ( ) in a way that disrupts and recombines the feature information.

By using the Group Mixing method, feature information from each primary group is mixed in an orderly manner to generate new groups ( ). For example, G1 contains information from all  . This process enhances the interaction and information exchange between different groupings and channels. For the new G1, it comprises each   component, and each new   mixed group is defined as Equation 5:



Group Mixing is a strategy to balance computational efficiency (achieved through group convolution) with the need for information exchange and interaction between feature channels, particularly in the context of group convolution. This helps in maintaining the representational power of the network while reducing computational complexity. It disrupts and recombines feature information in an ordered manner, allowing for more effective interaction between subgroups, thus addressing the issue of independence observed in group convolution. Figure 2 provides a visual representation of our proposed method.




Figure 2 | Schematic diagram of Group Mixing transformation.






3.1.2 Sparsely connected

Traditionally, in CNNs, the output of group convolutions is connected to the subsequent layer in a manner that resembles a fully connected layer, as depicted in Figure 3A. This design choice is made to ensure that most of the feature information is preserved since there is typically no information exchange among individual subgroups. As a result, dense connections are used to pass feature information to the next layer. However, with the introduction of “Group Mixing” as discussed in Section 3.1.1, the problem of information exchange between group convolutions has already been addressed to a significant extent, making the dense connections unnecessary. In the essence of convolutional operations, where a feature map is convolved with a kernel, the operation spans both height and width dimensions, constituting a spatial convolution. The 1×1 convolution operation, often utilized in CNNs, is equivalent to a fully connected operation. Building on this understanding, Sparsely Connected offers an alternative perspective on the convolution operation, specifically in the channel dimension.




Figure 3 | Difference between Fully Connected and Sparsely Connected. (A) Fully Connected, (B) Sparsely Connected.



Building on our previous discussion, when the input feature map F ∈ ℝh×w×c is convolved with the convolution kernel K ∈ ℝh×w×c, this convolution is equivalent to a fully connected operation in both the spatial dimensions and the channel dimension. With this understanding, we introduce “ Sparsely Connected,” a method primarily aimed at reducing the number of fully connected operations. When the input feature map F ∈ ℝh×w×c is convolved with the convolution kernel K ∈ ℝh×w×c in the channel dimension, we no longer perform a fully connected operation. Instead, we adopt a sparsely connected approach in the channel dimension by employing a certain stride. Simply put, the feature map is convolved with only a part of the convolution kernels. For instance, with stride=3, 2 convolution kernels after one convolution operation are discarded. Regarding the choice of stride, we conducted a series of comparative experiments in the ablation study in Section 4.5, as shown in Table 3, verifying that the best performance is achieved when stride = 3. Also, as the stride gets larger, the model exhibits worse performance.


Table 3 | Results of the sparsely connected method when different strides are taken for ablation studies of SC modules.



By implementing Sparsely Connected, we eliminate the necessity for Fc to be multiplied by Kn, thereby significantly reducing the computational burden associated with convolution operations while preserving the essential information required for subsequent processing.

Based on the previous description, we can integrate “Sparsely Connected” with “Group Mixing”.

In the after of Group Mixing, we obtain Kn feature maps following group convolution. Subsequently, we partition these Kn feature maps into g groups and employ g independent convolution kernels K ∈ ℝh×w×c. The step size between feature maps and convolution kernels for each convolution operation is set to g, and Kc ≤ Fc. By performing convolution on the entire input Kn/g times, the number of feature maps is reduced to Kn/g. At this juncture, the parameter count for convolutional computation is calculated as Equation 6:



The FLOPs are determined as Equation 7:



Clearly, by incorporating the “Sparsely Connected” approach, we further reduce the number of parameters in the CNN, enabling it to operate more efficiently. Moreover, this approach facilitates the seamless transfer of feature information from one layer to the next without compromising the effectiveness of the feature information. Figure 3B nicely illustrates our proposed sparsely connected approach.





3.2 3-D convolutional classification layer

The classical structure of a CNN typically includes convolutional layers, pooling layers, and fully connected layers. Traditionally, these networks used average pooling and multiple fully connected layers. Earlier networks like AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2015), and GoogLeNet (Szegedy et al., 2015), for instance, featured three consecutive fully connected layers. However, these fully connected layers contained a large number of parameters due to their fully connected nature. In fact, in the case of AlexNet (Krizhevsky et al., 2012) on the ImageNet dataset, the three fully connected layers accounted for approximately 96% of the total number of parameters in the entire network, which is nearly the sum of all parameters in the network. Importantly, experimental results demonstrated that this design did not substantially compromise the classification performance of the CNN.

Many studies have revealed that the weight matrix of these fully connected categorization layers is often very sparse, suggesting that only a few features are essential for category prediction. The problem of excessively large fully connected layers has garnered attention from researchers. Consequently, in recent works, (Tan and Le, 2020; Dai et al., 2021; Liu et al., 2022), the last two fully connected layers in the network structure were replaced with a global average pooling layer followed by a single fully connected layer. This modification significantly reduced the total number of parameters in the CNN. For example, in the case of the lightweight network MobileNet (Howard et al., 2017) on the ImageNet dataset, the fully connected layer accounted for approximately 24% of the total network parameters.

In the initial design of SCGNet, we also adopted this approach: replacing the last two layers with a single global pooling layer and a single fully connected layer. However, during the design process, we discovered that even with only one fully connected layer, it still accounted for a significant portion of the CNN’s parameters. This means that the number of parameters in the fully connected layer is still a large percentage of the overall CNNs. To address this, we propose a novel classification layer based on 3-D convolutional operations. This new layer completely replaces the traditional global pooling and fully connected layers, resulting in a reduction in the number of parameters and FLOPs in the network.

In a typical CNN, several convolutional layers are employed to progressively extract features essential for image recognition and classification through convolution operations. These convolutional layers output larger-sized feature maps. Subsequently, these feature maps are passed through a Global Average Pooling layer, which serves the purpose of further downsizing these large feature maps. After traversing multiple pooling layers, these feature maps are then used as inputs for the fully connected layer. The role of the fully connected layer is to connect each node to all nodes in the previous layer and ultimately output a one-dimensional vector. The classification result is obtained by applying the softmax classification function.

Based on our prior description of global pooling and fully connected layers, we can simplify the process when an input feature map F ∈ ℝh×w×c passes through the global pooling layer as follows:

Firstly, we can streamline this step by employing Fc convolution kernels, each with dimensions Fh ×Fw ×1. This implies that Fh and Fw remain consistent with Kh and Kw, respectively, while maintaining uniform weights set at 1/Fh ×Fw.

Secondly, to facilitate the seamless connection between the output of the pooling layer and the input of the fully-connected layer, we approximate the fully-connected layer by substituting it with a convolutional layer. The size of the convolutional kernel in this context becomes 1×1×Kc.

Subsequently, we amalgamate these two convolutional operations, yielding a 3-D convolution operation with a convolutional kernel size of Fh × Fw × Kc. This 3-D convolution layer is predominantly utilized in constructing the entire classification layer. This approach simplifies both the pooling layer and the fully connected layer into a single 3-D convolutional layer, as eloquently depicted in Figure 4.




Figure 4 | 3-D convolutional classification layer.



When this integrated layer performs the classification task, assuming the number of categories to be classified is denoted as i, we adjust Kc to be Fc − i +1. In other words, the prediction for each category necessitates only Fc − i +1 input feature maps. This disambiguation strategy optimally conserves computational resources within the CHANNEL dimension, thereby reducing parameters and computational complexity while preserving the essential category connections for accurate prediction and ensuring efficient categorization output.

Our proposed method combines global pooling and fully connected layers into a unified 3-D convolutional layer, resulting in significant computational efficiency gains without compromising classification accuracy. By implementing this approach, we significantly reduce computational resources in the CHANNEL dimension. This reduction aids in lowering the number of parameters and computations while preserving the connectivity necessary for category prediction and maintaining efficient categorization output.





4 Experimental results and analysis

In this chapter, we begin by introducing the wheat grains dataset that we have utilized, as well as detailing the preprocessing procedures it underwent. Subsequently, we delve into an exploration of the impact of specific parameter settings on the classification capabilities of SCGNet. Following that, we conduct a comprehensive comparison with a series of CNNs commonly employed for image classification. Our objective is to evaluate and highlight the advantages of our proposed SCGNet, with a focus on key metrics such as accuracy, parameters, FLOPs, and other relevant factors.



4.1 Dataset description

The dataset samples we utilized were sourced from the experimental field of the School of Life Science and Technology at Henan Institute of Science and Technology. These samples were generously provided by our colleagues at the School of Life Science and Technology. Following a careful evaluation, we specifically selected the following wheat varieties for inclusion in our dataset: “Bainong 419,” “Bainong 207,” “Bainong 307,” “Luomai 28,” “Xinmai 26,” “Hengshui 6632,” “Nongda 3416-18,” and “Neile 288.” These varieties represent commonly cultivated wheat types in China and serve as a comprehensive representation of wheat diversity.

To capture high-quality images of these wheat samples, we employed a stereo microscope, as depicted in Figure 5.




Figure 5 | Image acquisition device: stereo microscope.



To minimize any potential external environmental interference, we utilized black light-absorbing flannel as the background for capturing wheat grains images. The image collection process was conducted under natural indoor lighting conditions. For each wheat grain, we captured three images from different angles. It’s important to note that when assembling the dataset, wheat grains from the same variety but with varying angles were categorized together.

To ensure the quality and consistency of our dataset, a meticulous data collection process was employed. Initially, all wheat grains were subjected to a drying procedure in a well-ventilated indoor environment. Subsequently, a total of 8,000 seeds, with 1,000 grains selected from each wheat variety, were carefully handpicked. We chose three specific shooting angles for image capture: Ventral groove downward, Ventral groove toward the front, and Ventral groove upward. These images were saved in PNG format with a pixel resolution of 2688×1520. This comprehensive approach to data collection ensured the richness and completeness of our dataset, contributing to the robustness of our study. Consequently, we amassed a total of 24,000 images. The correspondence between each wheat variety and its corresponding number is detailed in Table 4.


Table 4 | Correspondence between number, quantities and species name of wheat grains of different varieties in the dataset.






4.2 Data pre-processing

After the initial dataset collection, we diligently undertook a comprehensive dataset preprocessing pipeline. Our approach encompassed several crucial steps which are briefly described below (Zhuang et al., 2022).

Background Removal: In Figure 6, noticeable artifacts such as small white dots and lines were discernible in the original images. These imperfections arose from the inherent characteristics of the stereo microscope, capturing minute particles like lint and dust during the imaging process. To mitigate the influence of these extraneous elements on the subject matter, we employed sophisticated keying algorithms known as Background Matting and Background Matting V2 (Sengupta et al., 2020; Lin et al., 2021) to effectuate background removal across our dataset. The image with the background removed is shown in Figure 7.




Figure 6 | The presentation of the same sample in the dataset with different shooting angles, the image has high clarity and the interference of the background on the subject content is obvious. (A) Ventral groove upward, (B) Ventral groove toward the front, (C) Ventral groove downward.






Figure 7 | Using the advanced keying algorithm (Sengupta et al., 2020) (Lin et al., 2021) results. (A–C) correspond to (A–C) in Figure 6, respectively.



Image Resizing: The original images, as captured by the stereo microscope, featured dimensions of 2688×1520 pixels. Following the background removal in the previous step, we uniformly resized the images to 800×800 pixels, specifically focusing on isolating wheat seed grains. Subsequently, we further scaled down the image dimensions to 224×224 pixels, maintaining proportional scaling.

Standardization: To ensure consistency and facilitate convergence during training, we are based on experience standardized each image by setting the mean and standard deviation to (0.485, 0.456, 0.406) and (0.229, 0.224, 0.225), respectively. This standardization process was pivotal in optimizing the numerical properties of the images.

Dataset Split: For proper model evaluation, we randomly partitioned the dataset into the training set, validation set, and testing set with 7:1:2 ratio. This division allowed us to validate the model’s performance on unseen data, adhering to best practices in experimental design.

Transfer Learning: During the training phase, we employed transfer learning techniques by loading weight files pre-trained on the ImageNet dataset into our training model and the comparative models used in our experiments. This practice leveraged knowledge acquired from a large-scale dataset to enhance the performance of our models on the specific task at hand.




4.3 Evaluation criteria

In our evaluation of the network models, we employ several key metrics, including accuracy, precision, recall, and the F1-score, to assess the recognition performance of each model. The mathematical expressions for these metrics are provided in Equations 8–11.





 



Here, let’s clarify the definitions of the variables used in these equations. True Positive (TP) represents the instances that truly belong to a category and are correctly recognized by the classifier, while False Negative (FN) represents instances that belong to a category but are incorrectly categorized. On the other hand, False Positive (FP) signifies instances that do not belong to a category but are incorrectly recognized as belonging to that category, and True Negative (TN) corresponds to instances that do not belong to a category in reality and are correctly recognized as such. In addition, we show the confusion matrix (Srinivasu et al., 2022)of the experimental results in Figure 8.




Figure 8 | Confusion matrix of SCGNet for eight wheat grains classification results, Among them, the correspondence between number and type is detailed in Table 4.






4.4 Comparison experiment

Throughout our experiments, when assessing the performance of different networks, we consider not only recognition accuracy but also other critical metrics, such as the number of parameters, average recognition time, and FLOPs. These metrics hold particular importance in our work, as our primary focus is on reducing these values to enhance the feasibility of deploying these models on mobile devices, thus improving their speed and efficiency in mobile applications. To quantify these metrics, we utilized the open-source project torchstat, which allowed us to calculate parameters, FLOPs, and other relevant statistics for each network.

To assess the efficacy of our proposed SCGNet, we present a comprehensive analysis of nine deep learning models for image classification to assess their effectiveness and suitability for various practical applications. We employ a consistent training, validation and testing dataset to ensure a fair and robust comparison, focusing on evaluating key performance metrics such as accuracy, precision, recall, F1-score, FLOPs, the number of parameters, and average recognition speed.

Our analysis covers a spectrum of network architectures, including traditional models with classical design principles models such as ResNet50, EfficientNet and RegNetX, lightweight models optimized for resource-constrained environments such as MobileNetV3, and ShuffleNetV2, network models with a transformer structure such as Vision Transformer and Swin Transformer, as well as deep models aimed at achieving SOTA accuracy such as RepLKNet and MAGE.

Figure 9 visually presents the accuracy results obtained during training for each of these network models, providing an intuitive overview of their performance. Additionally, Figure 10 reports the training loss, validation loss, training accuracy, and validation accuracy for SCGNet. Tables 5, 6 present a comprehensive summary of the results from the comparative experiments in the testset, encompassing various evaluation metrics.




Figure 9 | Histograms of different methods in the same data set during training.






Figure 10 | The SCGNet training loss (A), training accuracy (B), validation loss (C), and validation accuracy (D).




Table 5 | Differences between SCGNet and other comparison methods in terms of Accuracy, Precision, Recall and F1-Socre under the same testset.




Table 6 | Differences between SCGNet and other comparison methods in terms of FLOPs, Parameters and Average recognition speed.



For comprehensive reference, we have meticulously documented all parameter settings utilized in the training of SCGNet. We use the validation set to evaluate the performance of the model with different parameter settings and finalize all the hyperparameters. These settings are presented in Table 7, allowing for a clear understanding of the experimental setup and facilitating reproducibility. In the comparative experiments involving different networks, since there are different versions of baseline and various improvements, we adhered to officially recommended parameter settings for these models to ensure consistency and fairness in our evaluations.


Table 7 | SCGNet hyperparameter settings.



For Traditional Network Models, while foundational in the field, displayed suboptimal performance compared to more recent innovations. ResNet50, with its increased depth and residual connections, improves recognition accuracy but still falls short due to its relatively shallow architecture. If the depth of the network is increased without restriction, although the model is able to achieve better performance, the number of parameters of the model will also increase dramatically. EfficientNet-B0 incorporated Neural Architecture Search (NAS) principles to amalgamate depth, width, and channel scaling, achieving formidable recognition capabilities but at the expense of increased parameter complexity. RegNetX-200MF refined the NAS approach, achieving substantial parameter reduction while maintaining accuracy, albeit with a slight deficit compared to SCGNet.

For Lightweight Network Models, including MobileNetV3, and ShuffleNetV2, demonstrated a harmonious balance between accuracy and computational efficiency. MobileNetV3, building upon its predecessor, introduced NetAdapt and various NetPruningVersions (NPVs) alongside an algorithm to optimize convolutional kernels and channels, further enhancing its performance. ShuffleNetV2 adopts a split-and-concatenate strategy to reduce overall computational demands.

For the Transfomer Network Models, namely Vision Transformer and Swin Transformer, their performance is already very close to that of SCGNet, and, Swin Transformer is capable of suboptimal performance in the precision rate metric. However, it should not be overlooked that they possess a huge number of parameters.

For the SOTA Network Models, include RepLKNet and MAGE. MAGE exhibits the highest accuracy, recall and F1-Socre, while RepLKNet displays the highest recall. They both exhibit exceptional precision performance. However, they place excessive emphasis on metrics such as accuracy, neglecting the balance between speed and precision, average recognition speed is relatively slow. Moreover, they have a large number of parameters, FLOPs, with RepLKNet and MAGE’s FLOPs being 384 and 614 times higher than that of SCGNet, respectively.

For SCGNet, the proposed SCGNet exhibits commendable performance in resource utilization metrics such as FLOPs, average recognition speed and the number of parameters, surpassing alternative models in these aspects. Despite its sub-optimal performance in accuracy and F1-Socre compared to the MAGE model, the marginal 0.02% difference in accuracy is deemed negligible. We maintain that sacrificing such a small improvement in accuracy for the reduction in FLOPs, average recognition speed and parameter count makes SCGNet highly cost-effective. This is especially favorable for the model’s deployment on mobile devices with limited resources.

This strategic trade-off in favor of resource efficiency positions SCGNet as a compelling candidate for deployment in practical scenarios, where considerations of computational cost are pivotal. Such efficiency gains can contribute significantly to the feasibility and scalability of deploying deep learning models in resource-constrained environments.




4.5 Ablation study

To ascertain the individual contributions of each module within the SCGNet model to its overall performance, we conducted a series of ablation studies. These studies encompass the following scenarios: (1) SCG block without the GM module (-w/o GM), (2) SCG block without the SC module (-w/o SC), (3) Instead of applying a 3-D convolutional classification layer, a traditional classification layer is used instead, and (4) Replacing the Swish activation function with the traditional ReLU activation function(-w/o Swish).

The impact of each ablation study on the model’s performance is summarized in Table 8.


Table 8 | Discriminatory results of different modules for the implementation of ablation studies on test samples.



Specifically, (1) -w/o GM exhibits a pronounced effect on recognition performance. This is attributed to the GM module’s role in facilitating the exchange of feature information among group convolutions. The absence of the GM module impedes individual group convolutions from effectively learning additional features from one another.

Contrastingly, (2) -w/o SC demonstrates minimal impact on recognition performance. However, it results in an increase in the number of parameters, along with metrics such as FLOPs, due to the use of fully connected.

Moreover, (3) -w/o 3-D Conv yields a tiny effect on recognition performance. However, the number of parameters and FLOPs are dramatically increased due to the large number of fully connected computations involved in the traditional classification layer.

Finally, (4)-w/o Swish, the Swish activation function has a smoothness that enhances the forward propagation optimization, and replacing ReLU with Swish brings about a lesser drop in FLOPs without any loss of accuracy. In addition, our investigation delves into the impact of varying strides on the model’s performance within the sparsely connected methodology. We systematically evaluate the effects of strides set at 2, 3, 5, 7, and 9, employing three key metrics: accuracy, FLOPs, and the number of parameters. The results, summarized in Table 3, elucidate the influence of each stride value on model performance.

Remarkably, when the stride is set to 3, the model demonstrates optimal recognition performance. As the stride increases, the computational load of the model diminishes. Simultaneously, however, there is a discernible and precipitous decline in the recognition accuracy of the model. This decline is particularly pronounced when the stride is set to 9, resulting in a precipitous drop akin to a cliff.





5 Conclusion

In this research, we introduce a specialized CNN for precise wheat grain classification. We propose “Group Mixing” to address information flow issues in group convolution, and “Sparsely Connected” methodology to reduce parameter redundancy, minimizing FLOPs and parameters. In addition, we have innovatively devised a new classification output layer predicated on 3-D convolution, supplanting the conventional maximum pooling layer and fully connected layer, replacing traditional classification layers without sacrificing accuracy. Drawing from the foregoing advancements, we have conceived an efficient Sparsely Connected Group Convolution Network, custom-tailored for the high-resolution classification of wheat grains.

Numerous rigorous experimental evaluations substantiate the prowess of our proposed SCGNet, which attains an impressive accuracy rate of 99.56%. Moreover, our approach is notably characterized by a parsimonious parameter count and reduced FLOPs, rendering it exceptionally suitable for deployment on mobile devices.

However, we acknowledge limitations in our dataset and SCGNet architecture. The dataset lacks diversity in wheat varieties, necessitating the acquisition of more varied datasets. SCGNet, tested in controlled high-resolution conditions, needs validation for low-resolution images from mobile devices.

The amalgamation of computer vision techniques with the automated non-destructive classification of individual wheat grains portends significant potential across diverse applications. In forthcoming endeavors, our research trajectory will encompass the collection of images representing a broader spectrum of wheat varieties and possibly other crop seeds. Building upon these comprehensive datasets, we endeavor to enhance the efficacy of the SCGNet architecture, with a particular focus on bolstering its robustness, reducing its parameter count and FLOPs, and venturing into deployment on mobile terminals. The latter imposes stringent constraints on model size, an exigent challenge we are poised to tackle.
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This study aimed to identify the most influential soil and environmental factors for predicting wheat yield (WY) in a part of irrigated croplands in southwest Iran, using the FAO-Agro-Climate method and machine learning algorithms (MLAs). A total of 60 soil samples and wheat grain (1 m × 1 m) in 1200 ha of Pasargad plain were collected and analyzed in the laboratory. Attainable WY was assessed using the FAO method for the area. Pearson correlation analysis was used to select the best set of soil properties for modeling. Topographic attributes and vegetation indices were used as proxies of landscape components and cover crop to map actual WY in the study area. Two well-known MLAs, random forest (RF) and artificial neural networks (ANNs), were utilized to prepare an actual continuous WY map. The k-fold method was used to determine the uncertainty of WY prediction and quantify the quality of prediction accuracy. Results showed that soil organic carbon (SOC) and total nitrogen (TN) had a positive and significant correlation with WY. The SOC, TN, normalized different vegetation index (NDVI), and channel network base level (CHN) were recognized as the most important predictors and justifying more than 50% of actual WY. The ANNs outperformed the RF algorithm with an R2 of 0.75, RMSE of 400 (kg ha−1), and RPD of 2.79, according to statistical indices. The uncertainty analysis showed that the maximum uncertainty of the prediction map [400 (kg ha−1)] was very low compared to the mean value [4937 (kg ha−1)] of WY map. Calculation yield gap using the FAO-agro-climatic model showed that the average yield gap of the region was about 50% of actual yield. The findings of this study demonstrated that integrating simulated attainable crop growth using crop model and a set of soil and environmental covariates with the ANNs algorithm can effectively predict WY gaps in large areas with acceptable and reasonable accuracy. The study emphasizes that the implementation of efficient management practices has the potential to enhance agricultural production in the study area and similar regions. These results represent a significant advancement of sustainable agriculture and provide valuable insights for ensuring global food security.
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1 Introduction

The accurate prediction of wheat yield (WY) is essential for ensuring global food security and supporting sustainable agricultural practices (Ruan et al., 2023). Wheat is one of the most widely cultivated crops worldwide, serving as a staple food for a significant portion of the global population. Therefore, it is imperative to understand the multifaceted factors that influence WY and to develop reliable prediction models. These models can optimize productivity and inform decision-making processes in the agricultural sector (Pant et al., 2021).

Soil and environmental factors play a crucial role in determining WY (Araus et al., 2003; Jahandideh Mahjenabadi et al., 2022). Factors such as soil nutrient content [exchangeable potassium, total nitrogen (TN), etc], pH levels, and organic matter composition affect soil fertility and nutrient availability, ultimately impacting the growth and health of wheat plants (Norouzi et al., 2010; Zhang et al., 2022). In Addition, crop yield is also influenced by a range of factors, including the spatial variability of soil, nutrient availability, landscape characteristics, and management practices. These factors contribute to the genetic potential of the soil-landscape component and the biophysical environment, ultimately affecting crop yield both directly and indirectly (Bobryk et al., 2016). Recent research has highlighted the significant role of field topography in the variation of WY, because it affects soil moisture content and soil properties, which both have a direct impact on crop productivity (Ajami et al., 2020). Various studies have emphasized the importance of integrating terrain attributes with soil and crop variables when modeling yield and soil parameters (Brown et al., 2004; Beaudette et al., 2013).

Traditional WY mapping and measurement are often reliant on intensive field and labor activity, which can be time consuming, expensive, and require the experience of scientists, especially for large areas (Taghizadeh-Mehrjardi et al., 2020; Mousavi et al., 2023). Also, conventional digital soil mapping employs geostatistical approaches that have been widely employed to model the soil or WY relationships between one or several covariates. Kriging model assumes a linear relationship among WY and, covariates, is difficult to model when using a huge number of covariates (Wadoux et al., 2019).

On the other hand, machine learning algorithms (MLAs), as an alternative, have demonstrated great potential for overcoming these limitations (Elavarasan et al., 2018; Wadoux et al., 2019). They have the ability to handle high-dimensional datasets, capture nonlinear relationships, and discern intricate patterns in the data (Van Klompenburg et al., 2020). Over the years, numerous ML algorithms have been employed for crop detection and yield prediction across different locations. By applying these MLAs, researchers have aimed to enhance accuracy and enable informed decision making in agricultural practices (Drummond et al., 2003; Mishra et al., 2016). Among the ML models, random forest (RF) and artificial neural networks (ANNs) have emerged as popular choices for predicting crop yields. RF models leverage an ensemble of decision trees to make robust predictions, while ANNs models simulate the interconnectedness of neurons in the human brain to capture complex relationships (Liu et al., 2012). These algorithms have been successfully applied in various agricultural contexts, such as digital soil mapping (Rostaminia et al., 2021; Mousavi et al., 2022; Khosravani et al., 2023; Rezaei et al., 2023), showcasing their effectiveness in predicting crop yields based on environmental factors and soil properties (Taghizadeh-Mehrjardi et al., 2020; Wang et al., 2020; Basir et al., 2021). As regards, Boori et al. (2023) indicate that the rapid advances in satellite technologies and MLAs, particularly ANNs, have the potential to offer affordable and comprehensive solutions for accurate grain prediction. By utilizing ANNs and other ML models, satellite data can be analyzed to make precise predictions regarding crop yields. A study conducted by Roell et al. (2020) applied the RF model to estimate maps of the winter WY in Denmark by incorporating soil variables, climate factors, and topography attributes. They revealed that the RF model used in the study performed well in predicting WY in the study area. Also, Alvarez (2009) conducted a study focusing on WY prediction in Argentine grassland with the aid of environmental parameters and soil physical properties. The research findings indicated that the ANN outperformed the technique in predicting WY. Similar finding was reported by other researchers, Basir et al. (2021) and Jahandideh Mahjenabadi et al. (2022), which focused on predicting crop yield, that is, wheat and rice by using ANN and RF MLA and found the highly accurate performance for yield prediction.

To meet the growing food demand, global agricultural productivity needs to increase. By 2050, an additional 1 billion tons of cereals will be required, which means increasing production from 2.1 to 3.0 billion tons. This can be achieved by closing the yield gap or increasing the potential yield of crops (Alexandros and Bruinsma, 2012; Hatfield and Beres, 2019). As regards, Fischer et al. (2014) found that increasing potential yield is an important factor in increasing actual yield; therefore, increases in actual yield are a result of improved agronomic practices and would require the implementation of multiple practices. Moreover, when it comes to crop modeling, it is crucial to consider the yield gap calculation as well as the management of nutrients and water supply. By doing so, we can accurately predict crop yields and identify areas where improvements in nutrient and water management can be made to reduce the yield gap and increase productivity.

To the best of our knowledge, there has been limited investigation into modeling actual and gap WY by incorporating the three components of climate, soil, vegetation, and topographic attributes. Jahandideh Mahjenabadi et al. (2022) conducted a study that solely focused on soil biological properties and neglected wheat potential production by crop modeling, or FAO-agro-climatic model, as well as the consideration of yield gap. The impact of environmental covariates and soil physio-chemical properties on the prediction of actual WY was not evaluated. Furthermore, they failed to take into account the uncertainty of the actual WY prediction map, which could be useful in assessing the performance of ML algorithms. As a result, there is still a gap in knowledge regarding the influence of other factors on the actual and potential attainable WY amount in the Pasargad plain. To solve this lack of information and knowledge, this study was conducted with the aim of identifying (i) the primary factors that control actual WY; (ii) investigating the quality of two MLAs, RF, and ANNs in the prediction of actual WY; and (iii) calculating the potential production of WY to achieve the yield gap map in the agricultural lands. The ultimate goal of this research is to prepare a spatial prediction map of the actual, uncertainty, and yield gap of wheat and identify areas with high and low production capability. This information will be useful for future land use planning and agricultural management.




2 Materials and methods



2.1 Study area description

The study area covers 1200 ha in the Pasargad plain, located in Fars province in the southwest of Iran (Figure 1). Based on climatology data from the closest meteorological station, the area is classified as semiarid with an average rainfall of 350 mm and temperature of 12.5°C. The coldest month is January, and the hottest is July. The study area is situated on the Piedmont and plain landscape with an average slope gradient of 3% and an altitude range of 1747–1780 m. a. s. l. The soils in the study area are classified according to the U.S. soil classification system. They fall under the order of Inceptisols, specifically the Typic Haplocambids and Typic Haplocalcids subgroups (Soil Survey Staff, 2022). The Pasargad plain is a key agricultural zone in Iran that has been under continuous cultivation and exploitation for a long time. The dominant land use in the area is irrigated agriculture, with wheat being the main crop in the crop pattern schedule (Jahandideh Mahjenabadi et al., 2022). So, according to this background, quantifying the production gaps of lands seems to be a very important plan for optimizing agricultural management and future land use planning.




Figure 1 | (A) Worldwide, (B) Iran country, and (C) boundary of the study area and sampling soil–wheat yield plots 1 m × 1 m.






2.2 Research workflow

This research was designed in five main steps, which were carried out in the following order: (1) field survey: soil sampling was conducted from the surface layer (0 cm–30 cm) and WY plots were established at 1 m × 1 m intervals, laboratory analysis was performed to determine physio-chemical properties, and WY (kg ha−1) was calculated. In parallel, environmental covariates such as topographic attributes were extracted from DEM and RS data from the Sentinel-2 product. The most important soil variables were selected using Pearson correlation analysis, (2) confusion matrix: the dataset was randomly split into calibration (80%) and validation (20%) sets, and WY was spatially modeled using RF and ANN MLA, (3) validation of MLA performance, (4) determination of the relative importance (RI) of soil and environmental covariates, and (5) preparation of spatial prediction and its uncertainty map using the best ML model and k-fold cross-validation method, respectively (Figure 2).




Figure 2 | The research work flow of modeling WY (kg ha−1).






2.3 Soil sampling and laboratory analysis

The soil survey and sampling were done at 60 spatial locations in the study area (Figure 1C). All soil samples were gathered from 0-cm to 30-cm depth based on a semi-regular method with an average of 500-m interval from 5 May to 15 May 2019. Along with soil sampling, the actual WY (kg ha−1) was recorded by using a 1 m × 1 m plot (Figure 1C) at four repeats to gather a sample with a representative of WY at each point (same location as the sampling points). Afterward, the soil samples were transferred to the laboratory and were air dried, passed through a 2-mm sieve, and then physical and chemical properties were determinedusing the standard method. The measured soil properties include the soil texture component, that is, sand, silt, and clay (Gee and Bauder, 1986), SOC (Walkley and Black, 1934), TN (Page et al., 1982), cation exchange capacity (CEC) (Sumner and Miller, 1996), pH, and electrical conductivity (EC).




2.4 Environmental covariates

The WY predictor variables are composed of three sources: topographic attributes, RS indices, and soil variables. The best set of soil variables was selected based on Pearson correlation analysis. Environmental factors were chosen based on expert opinion and literature (Dedeoğlu and Dengiz, 2019; Wang et al., 2020). For more information, Table 1 presents the list of soil and environmental covariates used to predict WY. The RS covariates were SAVI (soil-adjusted vegetation index), WDVI, and wetness, which were prepared from the band ratio of sentinel-2 images in SNAP software version 9.0. Additionally, topographic attributes such as texture, convexity, elevation, and CHN were included. These attributes were extracted from the digital elevation model (DEM) in SAGA GIS software version 4.7.


Table 1 | List of environmental covariates were applied for predicting WY.






2.5 Machine learning algorithms

The prediction of irrigation WY was accomplished using ANN and RF algorithms, along with auxiliary variables such as topographic attributes, remotely sensed indices, and soil variables. We chose these algorithms due to their success in digital soil mapping, as demonstrated in previous studies (Saeed et al., 2017; Rostaminia et al., 2021; Rezaei et al., 2023). More detailed information about the performance of utilized ML algorithms is given below.



2.5.1 Random forest

RF is a popular algorithm for digital mapping, because it can handle high-dimensional data, nonlinear relationships, and interactions between features. It is also robust to over-fitting and missing values, making it suitable for noisy and incomplete data (Breiman, 2001). The RF utilizes a collection of decision trees, where each tree is created using a randomly selected subset of the training data and variables. Decision trees were introduced by (Breiman et al., 1984) and consist of binary bifurcations that recursively split the training data by selecting the variable and threshold at each split, which creates two subsets with the highest degree of homogeneity possible. One of the advantages of RF models is that they select both the training data and candidate variables for each split of each tree, which reduces overfitting and improves prediction accuracy. Additionally, RFs provide information about the importance of each variable used in the prediction. Here, the RF is impeded by the “random forest” package, and it was tuned by mtry and ntree hyperparameters by the “caret” package for predicting WY.




2.5.2 Artificial neural network

ANNs are dynamic computational networks that are capable of describing intricate nonlinear relationships among related variables (Ripley, 1996; Were et al., 2015). ANNs are essentially a collection of functions that can be used to fit algorithms without making any assumptions about the distribution of errors (Gahegan, 2003). This makes ANNs a highly flexible and powerful technique, offering the potential advantage of abstraction when applied to large-scale domains. When running an ANNs model, two parameters, size and weight decay coefficient, must be optimized. Size refers to the number of neurons in the hidden layer, and the weight decay coefficient is a tuning parameter to prevent over-fitting of the model so that the weights are multiplied by a coefficient less than 1 at each update. This prevents the weights from growing too large, which usually changes logarithmically. In this study, the values of 0.1, 0.01, and 0.001 were evaluated by the caret package and ultimately optimized with a weight coefficient of 0.1 and 5 hidden layer neurons.





2.6 Model validation and uncertainty analysis



2.6.1 Model validation

To validate the model, a random holdback cross-validation procedure was used by randomly partitioning the dataset into 80% for training and 20% for testing. This allowed us to train our models on a subset of the data while reserving a portion of the data for model evaluation to ensure the robustness of our results. Also, 10-fold cross-validation method with 10 repetitions during the model training process, where the dataset is divided into 10 equal parts, with each part used as the validation set once, while the remaining nine parts are used as the training set. The purpose of this approach is to ensure that the model is trained on a representative sample of the data and to minimize the risk of overfitting. Finally, model hyperparameters were fine-tuned the using grid search and cross-validation techniques to optimize the model’s performance (Kumar, 2018; Meier et al., 2018). For evaluating the model’s accuracy, the coefficient of determination (R2), Lin’s concordance correlation coefficient (CCC), root-mean-square error (RMSE), and relative percent difference (RPD) were calculated. When RPD is less than 1.0, the prediction performance is poor; when RPD is between 1.0 and 1.4, the prediction performance is only useful for determining high and low data; when RPD is between 1.4 and 2.0, prediction performance is fair; when the RPD is between 2.0 and 2.50, the results of prediction and applied models are strong, and if RPD is more than 2.5, the prediction performance is excellent (Chang et al., 2001). The accuracy metrics were calculated as follows (Equations 1–4):





 

 

where, ai and bi are the observed and predicted values,   and  , are the average of the observed and predicted values, r is the correlation coefficient between the observed and predicted values, and  , and   are the variance of the observed and predicted values. To assess the accuracy of the results and model performances, the Kruskal–Wallis (KW) test was used to identify any statistically significant differences in performance among MLAs (Demir and Citakoglu, 2023; Rezaei et al., 2023).




2.6.2 Uncertainty analysis

There are various approaches for quantifying the uncertainty of model outputs, and one of these methods is the empirical approach that uses residuals between modeled outputs and observed data to quantify the prediction interval. k-fold cross-validation is a statistical technique used to evaluate the performance of a ML model. It involves splitting the data into k subsets, or folds, where k is a positive integer. The model is then trained on k-1 of these folds and evaluated on the remaining fold. This process is repeated k times, with each fold serving as the test set exactly once. The results are averaged across the k iterations to produce a more robust estimate of the model’s performance. k-fold cross-validation is a commonly used method for assessing the uncertainty of prediction maps, as it provides a measure of how well the model generalizes to new data. In this study, uncertainty was estimated using 10-folds (Vanwinckelen and Blockeel, 2012). The implementation of this method involved the use of ML models and coding in the open-source statistical software R.





2.7 Attainable potential of wheat and yield gap

Calculating the potential production of crops is of utmost importance in agricultural planning and management. Yield potential is defined as the yield of a cultivar when grown in environments to which it is adapted, with non-limiting nutrients and water supplyand pests, diseases, weeds, lodging, and other stresses effectively controlled (Evans and Fischer, 1999). By determining the potential production of different crops, farmers can allocate their resources, such as land, water, and fertilizers, more efficiently. This helps maximize yields and minimize waste (Taghizadeh-Mehrjardi et al., 2020). The estimation of the potential yield of irrigated wheat is a crucial aspect of crop management. The FAO-agro-climatic model is a widely used approach that incorporates genetic potential plant and climate data, including radiation, temperature, and land potential, to determine the expected production. Researchers can refer to Sys et al. (1991); Mousavi et al. (2017), and Taghizadeh-Mehrjardi et al. (2020) for a more comprehensive understanding of the calculation process involved in determining the potential yield of irrigated wheat using the FAO model. Furthermore, for quantifying the yield gap the relation proposed by Fischer et al. (2014) yield gaps was applied and the value is expressed as a percentage of actual and potential yield as (Equation 5):

 





3 Results



3.1 Summary statistical of wheat yield

The summary statistics of WY and soil-environmental covariates are presented in Table 2. The minimum and maximum WY are varied from 2500 kg ha−1 to 7430 kg ha−1, with a mean value of 4937 kg ha−1. From the variability of WY and soil-environmental covariates according to their CV (%), the results demonstrated that SOC, TN, elevation, and CHN are in the low variability class, WY, WDVI, wetness, and convexity are in the moderate, and SAVI and NDVI are in the high-variability class according to the category defined by Wilding (1985).


Table 2 | Summary statistics of WY and environmental covariates at 60 point and plot observation.






3.2 Correlation analysis of WYS and soil variables

The results of relationship between soil variables and WY are presented in Figure 3. According to the correlation results, only soil organic carbon (SOC) (r = 0.30) and TN (r = 0.30) had a positive and significant correlation with WY. Other soil variables (CCE, pH, Silt, Clay, and Sand) did not show a significant correlation in this analysis.




Figure 3 | Pearson correlation coefficient test between WY (kg ha−1) and soil physico-chemical properties. Underlined correlation values between WY and soil variables are significantly different from zero (p = 0.05).






3.3 Comparison of machine learning models

The ability of two MLA (ANNs and RF) to predict actual WY in the study area was validated based on fivefold with 10 times cross-validation. Results for the R2, CCC, RMSE, and RPD for each MLA are presented in Table 3. The R2, RMSE, and RPD for WY using the ANNs algorithm (0.75, 0.80, 400, and 2.79, respectively) were better than the RF algorithm (0.68, 0.72, 500, and 2.20, respectively). Therefore, both algorithms performed well in predicting actual WY, while from a statistical point of view, the ANNs algorithm performed better than RF. The results of the KW test (p = 0.05) indicated that the models’ predictions were robust with minimal errors, and there was no statistically significant difference in the prediction performance between the ANN and RF models (Table 4).


Table 3 | Model prediction performance statistics for RF and ANN models applied to actual WY prediction.




Table 4 | The results of the Kruskal–Wallis (KW) test of accuracy of predictions.






3.4 Relative importance of predictors

Given the fact that the ANN model outperformed in predicting actual WY, the RI results were discussed based on the output of ANNs. In total, nine soil and environmental covariates were utilized for modeling and generating a prediction map of actual WY, as demonstrated in Table 1. For illustrative purposes, the maps corresponding to the top four covariates are presented in Figure 4. The results of the RI analysis indicated that SOC, TN, NDVI, and CHN were found as the most influential covariates, and account for 13.5%, 13%, 12.5%, and 12% of the total variance of WY, respectively (Figure 5). Furthermore, the combination of these top four covariates covers more than 50% of WY. It is worth noting that SOC and TN are related to soil properties (Figures 4A, B), NDVI is associated with vegetation indices (Figure 4C), and CHN serves as a proxy for topography (Figure 4D). NDVI was the third important factor in the prediction of WY. Based on the field observations, the WY recording was done among ripening and harvesting dates, so it is revealed that the NDVI can be a powerful vegetation index for predicting/monitoring crop yield in this period of the wheat growth cycle. CHN, as a proxy of topography, was identified as the fourth top important covariate in the prediction of WY by affecting the movement of water across the landscape, which in turn influences soil moisture and nutrient availability for the crops. From the source of utilized covariates, the quantitative results of RI demonstrated that topographic attributes (41.23%) followed by soil variables (32.70%), and vegetation indices (26.07%) had the largest potential for predicting actual WY in the study area.




Figure 4 | Four important covariates based on RI analysis. (A) SOC (soil organic carbon), (B) TN (total nitrogen), (C) NDVI (normalized difference vegetation index), (D) CHN (channel network base level).






Figure 5 | The RI (%) of soil, topography and vegetation indices for predicting actual WY in the study area. WY, wheat yield; SOC, soil organic carbon; TN, total nitrogen; SAVI, soil-adjusted vegetation index; WDVI, weighted difference vegetation index; NDVI, normalized difference vegetation index; CHN, channel network base level; wetness, wetness index; texture, terrain surface texture; convexity, terrain surface convexity.






3.5 Spatial prediction, uncertainty map, and wheat yield gap

According to Figure 6 and previous sections, the prediction map of actual WY was created using the spatial distribution described by ANNs. Based on the prediction map, the minimum and maximum values varied from 2500 (kg ha−1) to 7000 (kg ha−1) of WY in the area, and the trend of the prediction map also revealed that more than 60% of the study area, mostly in the northern, western, southwest, and part of the central, had the highest actual wheat production in the range of 5000 to 7000 (kg ha−1). For instance, the trend of WY prediction maps strongly corresponds to SOC, TN, and then NDVI (Figures 4, 5). The lower actual WY content was mostly observed in the eastern part of the area (Figure 6A). These areas are consistent with the CHN pattern shown in Figure 4D, where higher values of CHN are related to erosion and the loss of soil nutrients. According to the field observations, the area with a high-actual WY content has better management by the farmer, in addition to fertilizer and soil organic matter.




Figure 6 | Spatial prediction of (A) actual (kg ha−1), (B) uncertainty (kg ha−1), and (C) yield gap (%) maps of WY by ANN model.



The uncertainty analysis by the k-fold method showed that the maximum uncertainty of the prediction map [400 (kg ha−1)] was very low compared to the mean value [4937 (kg ha−)] of the WY map (Figure 6B). The identification of the areas with the highest uncertainty, particularly in the east and northeast zones with the lowest WY values, is significant as it draws attention to the need for more focused and effective soil fertility management and crop system strategies in these areas.

The calculated potential WY by the FAO-agro-climatic method (Sys et al., 1991) was equal to 10350 kg ha−1. This result is comparable with Zeynadini et al. (2020) findings in the Sepidan plain, adjacent to the study area, with a yield of 9846 kg ha−1. This indicates a significant range yield gap of 32.3% to 73.2% between the maximum and minimum of actual WY production according to potential yield content (Figures 6A, C). These results justify the variability and potential for improvement in WY production within the study area. So, by identifying the factors that contribute to the variability in WY production and implementing targeted interventions to address these factors, it may be possible to increase WY production and narrow the range of the gap between the limits of actual WY production. Based on the RI analysis (Figure 5), it was found that TN and SOC are the most significant factors affecting the prediction of actual yield. Therefore, it appears that a significant portion of the current yield gap can be attributed to soil fertility (i.e., physical, chemical, and biological properties) and water supply. It is acknowledged that little information about soil profiles is available, however, the RI and Pearson correlation analysis illustrated that the most important land suitability assessment indices, for example, salinity, alkalinity, CEC, particle size distribution, and slope gradient, were not limiting factors in the Pasargad plain.





4 Discussion

In this study, the importance of accurately predicting actual WY has been underscored for ensuring global food security and fostering sustainable agricultural practices. The primary objective was to discern the key soil and environmental factors influencing WY in a specific segment of irrigated croplands in southwest Iran. This investigation has employed the FAO-agro-climate method in conjunction with machine learning algorithms (MLAs) to achieve a comprehensive understanding of the factors influencing WY in the designated region.

Low to moderate variability in the topographic attributes seems to be more related to the physiography of the study area, with a mean slope gradient close to 3%. For soil properties, similar results were reported by Mosleh et al. (2016) and Mousavi et al. (2022) in areas with similar topographic conditions. High variability of vegetation indices, for example, NDVI and SAVI indicate the wheat heterogenic of cultivation schedule by farmers in the study area.

NDVI and SAVI are commonly used to assess vegetation health and vigor, and their variability can be indicative of differences in crop growth stages, health, or even the implementation of various agricultural practices (Pettorelli et al., 2014). It is possible that farmers in the study area do not follow uniform cultivation practices for wheat. This diversity in cultivation schedules could be influenced by climate variations, individual farming practices, or socio-economic considerations (Laso Bayas et al., 2017). It highlights the complexity of agricultural activities in the region and emphasizes the need for a nuanced understanding of the interactions between topography, soil, and vegetation in the context of agricultural practices. The discussed findings underscore the importance of considering the physiographic characteristics of a region when studying its topography, soil properties, and vegetation dynamics. The observed patterns in the study area suggest a connection between the landscape features and the agricultural practices employed by farmers. This insight contributes to a more comprehensive understanding of the intricate relationships between natural elements and human activities in the context of agricultural landscapes.Correlation analysis showed that an increase in SOC and TN content in the soil can increase actual WY (Grant et al., 2001; Fan et al., 2005). Similar results were observed by Zhang et al. (2009), who indicated that both wheat and corn grain yields are significantly correlated with SOC, TN, and phosphorus. As regards, Kumhálová et al. (2008) observed a positive and significant correlation coefficient among SOC and TN with winter rape. For instance, applying SOC and soil fertilizer (e.g., TN) can lead to an increase in water holding capacity, soil porosity, aggregate stability, and a decrease in soil compaction and surface crusting, which can result in high crop production (Kanchikerimath and Singh, 2001). Therefore, the SOC and TN were known as representatives of soil in the spatial modeling of the actual WY.

The variations in soil physical, chemical, and biological properties are largely influenced by changes in SOC and TN (Monaco et al., 2008), which have a great impact on crop productivity (Sainju et al., 2008). SOC and TN play a crucial role in shaping soil structure and influencing various soil properties. Increased organic matter content resulting from these components enhances soil aggregation and stability, thereby impacting soil texture (Smith et al., 2008). This, in turn, affects important soil functions such as water retention, drainage, and aeration. High levels of SOC contribute to improved soil porosity, enhancing water infiltration, root penetration, and the movement of gases within the soil (Six et al., 2000). Furthermore, SOC and TN act as significant sources of nutrients for plants. Microbial decomposition of organic matter releases essential nutrients such as nitrogen, phosphorus, and sulfur, directly influencing plant growth and soil fertility (Bardgett and van der Putten, 2014). SOC also serves as a buffer for soil pH, with organic acids produced during decomposition mitigating changes in pH and contributing to a more stable and favorable pH range for plant growth (Richter and Markewitz, 1995). Additionally, SOC is a substrate for soil microorganisms, and the availability of SOC and TN influences the diversity and activity of soil microbes (Fierer et al., 2012; Khoshru et al., 2020a). A rich microbial community supported by organic matter enhances soil biological activity, promoting symbiotic relationships with plants, disease suppression, and overall ecosystem resilience (Ens et al., 2009; Khoshru et al., 2020b). The water-holding capacity of soil is improved by SOC acting as a sponge, aiding in water retention during dry periods and providing a steady water supply to plants (Nimmo, 2004). Moreover, SOC contributes to the binding agents (glues) that hold soil particles together in aggregates, thereby enhancing soil structure and stability, reducing erosion, and promoting better water infiltration (Tisdall and Oades, 1982). The C:N ratio in organic matter is a crucial factor affecting the rate of decomposition. A balanced C:N ratio promotes efficient decomposition, ensuring a steady release of nutrients without causing nitrogen imbalances (Moorhead and Sinsabaugh, 2006). Understanding the intricate interplay between SOC, TN, and various soil properties is essential for sustainable soil management. Practices that enhance organic matter content, such as cover cropping, crop residue incorporation, and organic amendments, can positively influence soil physical, chemical, and biological attributes, contributing to improved soil health and agricultural productivity (Paul and Clark, 1996).

Upon further analysis and consideration, we hypothesize that the absence of significant correlations for some soil variables (CCE, pH, Silt, Clay, and Sand) could be attributed to their indirect effects on the measured outcome. Soil processes are complex and interconnected, and certain soil variables may influence the outcome indirectly through their impact on other mediating factors. Soil properties rarely act in isolation. Instead, they often interact with each other and with other environmental factors. For instance, while CCE, pH, and soil texture (silt, clay, and sand) may not directly impact WY, they could influence nutrient availability, water retention, or soil microbial activity, which in turn affect crop growth and productivity (Brady and Weil, 2008). Soil pH, for example, can influence the availability of essential nutrients to plants (Neina, 2019). If the pH is within an optimal range, nutrient uptake may be adequate, even if a direct correlation with pH is not observed. Similarly, CCE can influence nutrient exchange capacity, indirectly affecting nutrient availability. Soil texture, which includes the proportions of sand, silt, and clay, influences water retention. While these variables may not directly correlate with WY, they can indirectly impact crop productivity by influencing water availability to plants. Certain soil properties can influence microbial communities, and these microorganisms play a crucial role in nutrient cycling and organic matter decomposition. The indirect effects of soil microbial activity on nutrient availability can impact crop yield (Fierer et al., 2012). EC is often an indicator of soil salinity. While it may not directly correlate with WY, salinity can have indirect effects on plant water uptake and nutrient absorption, affecting overall crop health and productivity (Munns and Tester, 2008). Soil conditions can vary spatially and temporally. The lack of a direct correlation in a specific study may be influenced by the specific conditions and the timing of data collection. Similarly, (Nabiollahi et al., 2020) observed that the lack of significant correlations for some soil properties (CCE, pH, Silt, and EC) with the measured WY may not directly impact the WY in their study area.

Several studies have highlighted the effectiveness of ANNs in predicting crop yield based on various factors such as weather, soil quality, and management practices. As regards, Miao et al. (2006) emphasized the importance of ANNs in modeling complex nonlinear relationships between input and output variables for crop yield prediction. Similarly, Ayoubi and Sahrawat (2011) and Norouzi et al. (2010) successfully utilized ANNs to predict grain yield based on soil properties collected and analyzed through traditional lab methods in Iran. These findings confirm the capability of ANNs in predicting crop yield, which is particularly significant given that crop yield depends on a variety of factors. Kadir et al. (2014) demonstrated the promising potential of ANNs predict WY, suggesting that this approach can be applied to other crops as well. Other studies, such as Irmak et al. (2006), Drummond et al. (2003), and Liu et al. (2001), also reported successful outcomes in using ANNs for data mining, crop yield prediction based on soil properties, and determining target corn yields, respectively. However, Taghizadeh-Mehrjardi et al. (2020) found that RF outperformed support vector machines in land suitability prediction for wheat and barley yields. Additionally, Jahandideh Mahjenabadi et al. (2022) found that the RF model was effective in predicting winter WY when considering only soil biological properties as predictors.

Jahandideh Mahjenabadi et al. (2022) conducted a comprehensive study in the Southwest of Iran, employing ML algorithms to predict the spatial distribution of soil biological properties and WY. The investigation involved collecting topsoil samples from 60 locations, recording wheat grain yield at each site, and measuring various soil properties, including urease, alkaline phosphatase, basal respiration, microbial biomass carbon, SOC, MBC : SOC ratio, and metabolic quotient. They utilized the RF model in the initial phase to predict soil biological properties. They were employedsix ML algorithms to model wheat grain yield. These models were optimized and evaluated using 10-fold cross-validation with the Caret package. Results revealed varying prediction accuracies among soil biological properties, with qCO2 demonstrating the highest accuracy (R2 adj = 0.80) and BR the lowest (R2 adj = 0.23). Soil covariates played a significant role in modeling urease (Ur), qCO2, microbial biomass carbon (MBC), and the MBC : SOC ratio. Specific environmental predictors, such as bands 6 and Chanel Network Base Level, were identified as crucial for alkaline phosphatase (AP) and basal respiration (BR), respectively. Regarding wheat grain yield prediction, both Stochastic Gradient Boosting (SGB) and RF models outperformed other algorithms, achieving impressive R2 adj values of 0.89 and 0.88, respectively. The study underscored the significance of urease (Ur) and alkaline phosphatase in predicting wheat grain yield and elucidating its spatial variability.

The emphasis on soil biological properties suggests that indicators of soil health, such as microbial biomass, enzymatic activity, and microbial diversity, are integral to understanding and predicting winter WY. Healthy soil biology can contribute to nutrient availability, organic matter decomposition, and other processes that impact crop growth (de Faria et al., 2021). Soil microorganisms play vital roles in nutrient cycling, disease suppression, and overall plant health. The finding suggests that the activity and diversity of these microorganisms, as reflected in soil biological properties, are important factors influencing WY (Philippot et al., 2013).

The effectiveness of the RF model implies that the relationships between soil biological properties and winter WY are likely complex and nonlinear. Traditional linear models may struggle to capture these intricate relationships, and ensemble methods like RF are well suited for handling such complexities (Breiman, 2001). It is crucial to assess the model’s performance across different datasets or geographic locations to validate its generalizability. This would help determine whether the observed effectiveness of the RF model holds true under various conditions.The average wheat production in the country has values of around 3000 (kg ha−1) (Jahandideh Mahjenabadi et al., 2022). In contrast with country records, Khosravi et al. (2023) in the vicinity of the study area, observed an average yield of 6750 (kg ha−1) for winter wheat. It can be inferred that the spatial prediction of actual WY is highly dependent on a combination of various factors in the surrounding environment, such as soil and vegetation. Similarly, these results correspond to what Monaco et al. (2008) indicated in this context.

The contrast between the average wheat production values reported is indicative of significant spatial variability in wheat production. This discrepancy underscores the influence of local factors on crop yield and the importance of considering the specific conditions of a region when assessing agricultural productivity. This spatial variability can be attributed to diverse environmental conditions, including variations in soil properties, climate, and land management practices (Lobell et al., 2009). The inference that spatial prediction of actual WY is highly dependent on a combination of various factors in the surrounding environment aligns with the understanding that local conditions play a crucial role in determining crop outcomes. Factors such as soil quality, water availability, temperature, and topography can vary significantly from one location to another, contributing to differences in crop performance (Lobell et al., 2009). Tailoring agricultural practices to the specific characteristics of each location can optimize productivity and resource use efficiency. Precision agriculture, where technologies such as remote sensing, GPS, and data analytics are employed to customize farming practices at a finer spatial scale allows farmers to adapt their strategies based on the specific conditions of different field areas (Tao et al., 2021).

Ren et al. (2021) confirmed in their crop modeling study that winter WY can be accurately estimated before harvesting dates, provided that adequate NDVI data are available. This capability has also been demonstrated by Boori et al. (2023) for rice. The NDVI is known for its ability to indicate green biomass or nitrogen content, particularly in the plant canopy. In the case of wheat, studies have found a strong correlation between the peak of NDVI and yield, which was closely related to the crop reproductive stage (Skakun et al., 2017). Similarly, a study conducted by Panek and Gozdowski (2020) investigated the relationship between NDVI and cereal grain yield, finding a strong correlation between NDVI and grain yield, specifically during the period from March to May (similar to our research). Even a slight increase in NDVI (e.g., 0.1) during the spring season resulted in a substantial rise in grain yield, ranging from approximately 1.1 to 2.6 tons per ha. Topography attributes also impact crop production by affecting microclimate and related soil factors such as temperature, which in turn influence germination, tiller production, and overall crop growth (Godwin and Miller, 2003). Topographical data in combination with soil information are useful for explaining yield variability on an agricultural field scale (Kravchenko and Bullock, 2000). Moreover, terrain attributes such as elevation, plan, and profile curvatures, and relative slope position influence soil properties and classification (Beaudette et al., 2013). The spatial variability of texture and other soil properties at the field scale concerning terrain attributes links the nature of the variability with water movement and nutrient dynamics within the soil (Bobryk et al., 2016; Kokulan et al., 2018).

Land managers and farmers may need to pay closer attention to the factors that are contributing to the low WY values and high uncertainty levels, such as soil type, land use, and management practices. Baltensweiler et al. (2021) believed that the effect of the number of observations on model uncertainty was significant. Therefore, additional field observations/records and monitoring systems are necessary to reduce uncertainty levels in large-scale areas. Our findings are supported by Mueller et al. (2012) and Sinclair and Rufty (2012), who concluded that nutrient and water management, are crucial in closing the yield gap. Therefore, fertilizer use, irrigation, and climate significantly affect yield variability, and crop yield increases are more closely associated with nitrogen and water management than plant genetics. Actual yield is sensitive to growth-reducing factors such as disease, pests, and weeds in humid areas (Grassini et al., 2015). Furthermore, Shimoda et al. (2022) demonstrated that the yield gap is caused by humidity damage and can be reduced through breeding improvement.




5 Conclusion

The study was conducted with the global aim of preparing a spatial prediction maps of the actual WY and yield gap and identifying the most important factors in the study area.

The study emphasizes the significance of considering multiple covariates when predicting WY. The findings suggest that SOC, TN, NDVI, and CHN are the most important predictors for actual WY and can be used to enhance the precision of spatial predictions. In terms of RI, the quantitative results showed that topographic attributes had the greatest potential in actual WY prediction, followed by soil variables and vegetation indices.

The performance of MLA showed that the ANNs algorithm outperformed the RF algorithm with higher R2, CCC, and RPD values and lower RMSE values, although both considered algorithms had acceptable accuracy in digital mapping of actual WY. The results of the uncertainty analysis also confirmed the high potential of the applied methodology for mapping crop production in other parts of the country and areas with similar environmental conditions.

The prediction map of actual WY revealed that more than 60% of the study area, mostly located in the northern, western, southwest, and part of the central regions, had the highest actual wheat production in the range of 5000 to 7000 (kg ha−1), which is higher than the average wheat production in the country and vicinity of the region with values around 3000 and 6750 kg ha−1, respectively. We showed that there is a high yield gap between the potential yield production and the actual WY, particularly in areas with low actual yield.

It is recommended that management focus their efforts on these areas to decrease the yield gap and increase farmer income. By mitigating the underlying factors that lead to diminished crop yields, including but not limited to soil composition, irrigation techniques, pest control measures, and the careful selection of cultivars that are tolerant to high salinity and drought conditions, there exists a potential path for enhancing the overall efficiency of wheat cultivation and augmenting the economic returns reaped by farmers. However, this research has provided valuable insights into predicting WY using a ML and DSM framework. The results can be utilized by stakeholders and land managers to plan and increase the productivity of WY in areas with low actual WY and a high production gap.
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Introduction

Pubescence is an important phenotypic trait observed in both vegetative and generative plant organs. Pubescent plants demonstrate increased resistance to various environmental stresses such as drought, low temperatures, and pests. It serves as a significant morphological marker and aids in selecting stress-resistant cultivars, particularly in wheat. In wheat, pubescence is visible on leaves, leaf sheath, glumes and nodes. Regarding glumes, the presence of pubescence plays a pivotal role in its classification. It supplements other spike characteristics, aiding in distinguishing between different varieties within the wheat species. The determination of pubescence typically involves visual analysis by an expert. However, methods without the use of binocular loupe tend to be subjective, while employing additional equipment is labor-intensive. This paper proposes an integrated approach to determine glume pubescence presence in spike images captured under laboratory conditions using a digital camera and convolutional neural networks.





Methods

Initially, image segmentation is conducted to extract the contour of the spike body, followed by cropping of the spike images to an equal size. These images are then classified based on glume pubescence (pubescent/glabrous) using various convolutional neural network architectures (Resnet-18, EfficientNet-B0, and EfficientNet-B1). The networks were trained and tested on a dataset comprising 9,719 spike images.





Results

For segmentation, the U-Net model with EfficientNet-B1 encoder was chosen, achieving the segmentation accuracy IoU = 0.947 for the spike body and 0.777 for awns. The classification model for glume pubescence with the highest performance utilized the EfficientNet-B1 architecture. On the test sample, the model exhibited prediction accuracy parameters of F1 = 0.85 and AUC = 0.96, while on the holdout sample it showed F1 = 0.84 and AUC = 0.89. Additionally, the study investigated the relationship between image scale, artificial distortions, and model prediction performance, revealing that higher magnification and smaller distortions yielded a more accurate prediction of glume pubescence.
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1 Introduction



1.1 Glume pubescence in wheat

Pubescence, an important phenotypic trait in vegetative and generative plant organs (Johnson, 1975; Karabourniotis et al., 2020; Shvachko et al., 2020), provides increased resistance to drought, pests, and various environmental factors (Fahmy, 1997; Bickford, 2016; Moles et al., 2020). This trait serves as a crucial morphological marker and is actively studied in genetic and breeding research aimed at developing crop varieties with enhanced resistance to stressful environmental factors (Papp et al., 1992; Du et al., 2009; Doroshkov et al., 2014).

Wheat is one of the most significant crops thriving in a wide ecological range (Volis et al., 2015; Sadras, 2021), exhibiting pubescence as an important adaptive trait on leaves, leaf sheath, glumes, and nodes (Dobrovolskaya et al., 2007). Similar to leaf pubescence (Pshenichnikova et al., 2019), glume pubescence in wheat is linked to the plant’s adaptive properties seemingly contributing favorably to drought or cold tolerance (Threthowan et al., 1998)—for instance, analysis of floret temperatures in freezing conditions indicated higher temperatures in pubescent florets compared to their glabrous counterparts (Maes et al., 2001). Studies of landrace populations of tetraploid wheat collected at various altitudes in Ethiopia revealed that up to 20% of accessions above 2,300 m have pubescent glumes, while glume hairiness was completely absent in accessions from lower altitudes (Eticha et al., 2005). However, studies on bread wheat cultivars and crosses with pubescent and glabrous glumes indicated similar agronomic traits, showing no significant influence on productivity in these accessions governed by the genes controlling glume pubescence (McNeal et al., 1971). Glume pubescence emerges as an important trait in wheat genetic studies (Tsunewaki, 1966; Khlestkina et al., 2006; Luo et al., 2016; Hu and Zuo, 2022), demonstrating linkage to several important genes/loci such as resistance to Blumeria graminis (DC) Speer f. sp. tritici Marchal (syn. Erysiphe graminis DC f. sp. tritici Marchal) (Briggle and Sears, 1966) and spikelet size and number (Echeverry-Solarte et al., 2015) among others (Hu and Zuo, 2022). Furthermore, glume pubescence serves as a classification trait, adding in the determination of wheat species and varieties (Goncharov, 2011; Yen et al., 2020)—for example, in Triticum timopheevii (Zhuk.) Zhuk. and T. vavilovii Jakubz., all accessions have haired glumes (Goncharov, 2011).




1.2 Image analysis for plant pubescence evaluation

Determining pubescence and assessing its characteristics usually necessitate a visual analysis of plants conducted by an expert. Methods devoid of a binocular loupe tend to be subjective. Recent developments include automatic techniques for analyzing pubescence primarily in leaves. These methods are based on analyzing 2D images obtained via a microscope (Genaev et al., 2012; Pomeranz et al., 2013; Mirnezami et al., 2020) or 3D images (Kaminuma et al., 2008; Bensch et al., 2009; Failmezger et al., 2013). They not only identify trichomes on plant organs but also estimate their number and size, employing machine vision algorithms and demonstrating high accuracy and swift data processing. This demonstrates the potential of using image analysis to assess pubescence characteristics across various plant organs.




1.3 Deep machine learning for plant image analysis

Remarkable strides in image analysis has been achieved through the utilization of deep machine learning neural networks. Deep learning networks are characterized by a multilayered architecture where subsequent layers utilize the output of the previous layer as input to extract features related to the analyzed objects (Ubbens and Stavness, 2017; Singh et al., 2018; Demidchik et al., 2020; Alzubaidi et al., 2021; Xiong et al., 2021). These approaches enable the automatic extraction of image features with regression or classification in a single pipeline, trained simultaneously from end to end (LeCun et al., 2015).

Deep learning algorithms are categorized based on how input data is prepared (Alzubaidi et al., 2021; Wang et al., 2021; Yan and Wang, 2022): supervised learning, semi-supervised learning, and unsupervised learning. Supervised learning demands all input data to be expert-labeled, requiring an image training dataset to derive network parameters. This technique, popular in solving plant phenotyping image analysis tasks (Ubbens and Stavness, 2017; Singh et al., 2018), can tackle image segmentation, classification, and object detection (Jiang and Li, 2020; Sanaeifar et al., 2023).

Supervised learning has found success in plant phenomics for disease recognition (Barbedo, 2019; Liu and Wang, 2021), plant stress detection (Azimi et al., 2021), morphometrics (Kurbanov et al., 2020; Gibbs et al., 2021), weed detection (Hasan et al., 2021; Rai et al., 2023), and plant classification into different species (Dyrmann et al., 2016; Sundara Sobitha Raj and Vajravelu, 2019; Liu et al., 2022). However, it requires large labeled datasets, involving substantial expert effort in preparation and labeling (Minervini et al., 2016; Barbedo, 2018). Consequently, semi-supervised and unsupervised learning methods have gained recent traction (Yan and Wang, 2022).

Semi-supervised learning involves training samples with labeled and unlabeled images, where unlabeled images can receive pseudo-labels or be assigned negative labels based on trained networks. This approach has been utilized in plant disease analysis (Zhou et al., 2023), counting cotton balls (Adke et al., 2022), and plant shoot counting (Karami et al., 2020).

Contrarily, unsupervised learning techniques for image analysis do not rely on labeled datasets and are akin to solving clustering problems without known object classes (Alzubaidi et al., 2021; Yan and Wang, 2022). These methods have been employed for tasks such as image denoising, reconstruction, generation, clustering, and dimensionality reduction (Raza and Singh, 2021; Akçakaya et al., 2022). They have found applications in plant phenomics, including plant image generation (Madsen et al., 2019), disease recognition (Nazki et al., 2020; Benfenati et al., 2023), leaf segmentation (Al-Shakarji et al., 2017), weed recognition (Hu et al., 2021), and plant development prediction (Drees et al., 2021). Some studies propose modifying neural network structures to transform original unsupervised problems into supervised ones using predefined kernels and only patches from the input test image (Yan et al., 2024).

In supervised learning problems for image analysis, various deep convolutional neural network (CNN) architectures have gained immense popularity (Toda and Okura, 2019; Jiang and Li, 2020). CNNs encompass convolutional layers—sets of repetitive image filters convoluted to images or feature maps—alongside pooling layers. These networks interpret images by converting them into numerical values, successfully addressing plant image analysis tasks such as segmentation, object detection, and classification (Duong et al., 2020; Saleem et al., 2020; Seki and Toda, 2022).




1.4 Related works

This paper proposes a method to classify wheat spikes based on their digital images according to the presence or absence of glume pubescence. Notably, no previous work has specifically addressed the pubescence of wheat glumes. However, in a study by Grillo et al. (2017), 138 descriptors of glume shape, size, and color were used for classifying wheat landraces using the linear discriminant analysis (LDA) algorithm. The classification performance was 100% for distinguishing T. aestivum L., T. durum Desf., and T. turgidum L., achieving 100% correct classification for five landraces belonging to T. aestivum species and 89.7% for 39 landraces of durum wheat (Grillo et al., 2017).

One of the intriguing tasks in spike image analysis is detecting and counting spikes in field images (Li et al., 2022; Wen et al., 2022; Zhang et al., 2022; Sanaeifar et al., 2023). However, several studies focus on identifying spikes in laboratory conditions or greenhouses, where plants or ears are imaged against a uniform background, facilitating ear identification through segmentation. Bi et al. (2010) utilized 2D images of wheat spikes against a black background to assess various characteristics, such as spike length and awn number and length, and classified the spike shape type according to its length-to-width ratio. Segmentation was performed using the Otsu algorithm. The backpropagation neural network was designed to classify spike images into four wheat varieties using spike morphometric parameters as input. The recognition accuracy rate was 88%.

Qiongyan et al. (2017) implemented a neural network-based method using Laws texture energy for spike detection in the images of plants in the pot obtained in glasshouse conditions. Image segmentation was performed before the spike detection into background and plant regions using five color indices. These indices depended on the R, G, B and hue channel intensities. The performance of the segmentation method was not reported. The accuracy of spike detection varied from 86.6% (single plant in the pot) to 81.5% (four plants in the pot).

Narisetti et al. (2020) modified the algorithm proposed by Qiongyan et al. (2017) by using the wavelet amplitude as an input to the Laws texture energy-based neural network. They also suppressed non-spike structures on the image (leaves and stems) by combining the result of the neural network prediction with a Frangi-filtered image. As a result, the accuracy of spike detection in the images increased to 98.6% on the test dataset.

In the work by Ullah et al. (2021), spikes were detected and counted in images of wheat plants obtained in greenhouses using detection and segmentation algorithms. Several deep learning neural network architectures were tested for ear detection: SSD with Inception resnet v2 as a backbone, Faster-RCNN with Inception v2 as a backbone, YOLOv3 with Darknet53 as a backbone, and YOLOv4 with CSPDarknet53 as a backbone. Networks were trained using 234 images. The performance of spike detection measured as the AP0.5 value on the set of 58 test images varied from 0.78 for SSD to 0.95 for Faster-RCNN models. Three network models were used for spike segmentation: shallow artificial neural network (ANN), U-net with a VGG-16 backbone, and DeepLabv3+ with ResNet101 were used for spike segmentation. The Jaccard index (IoU parameter) varied for these methods from 0.610 (ANN) to 0.922 (DeepLabv3+).

The work by (Qiu et al., 2022) is aimed at the problem of spikelet detection on images of spikes against a white background. Before spikelet detection, the images were segmented into spike and background. This procedure was performed using the watershed algorithm. The authors do not provide an estimate of the accuracy of image segmentation but report that it was successfully used to identify candidate spikelets.

A number of approaches were developed for counting spikelets in the images without spike segmentation. In the work by Pound et al., the problem of detecting spikelets in an ear was addressed for wheat images acquired in a greenhouse (Pound et al., 2017). In this work, no spikelet segmentation was performed, but the whole spike region could be distinguished due to closely spaced spikelets on the processed images. Hammers et al. (2023) detected spikelets based on VGG16, the ResNet152V2, and the EfficientNetV2L deep learning models. Shi et al. (2023) detected spikelets in wheat images captured in the field. The authors implemented YOLOv5s-T network model to count spikelets and obtained R2 between manual and deep learning counts from 0.85 to 0.97 depending on the plant development stage.

In a previous work, the authors of this paper performed spike segmentation on images acquired in laboratory conditions against a blue background (Genaev et al., 2019). Spike segmentation was performed based on a thresholding algorithm in HSV space. Both the spike body and awns were identified in the image. The Jaccard coefficient (IoU) for spike segmentation was 0.932 and for awns 0.634. The shape and size of the spike body were described by a geometric model. Its parameters made it possible to classify spikes by three types (compact, normal, and spelt) by ML algorithms. The best performance was achieved for the random forest model (F1 = 0.85). The spike geometric parameters were later used to compare the spike shape for hexaploid and tetraploid wheat accessions (Pronozin et al., 2021).

Deep learning was applied to solve tasks related to plant pubescence detection and analysis. It was used to classify soybean crops according to the type of leaf pubescence on multispectral aerial images (Bruce et al., 2021). The authors used a support vector machine classifier with a radial basis function to classify multispectral images of soybean plots into three classes by pubescence. The overall classification accuracy was 83.1%.

Neural networks of various architectures were applied to identify and count trichomes on cotton leaves. Rolland et al. (2022) implemented the deep learning neural network HairNet to classify cotton leaf images obtained using a handheld microscope into nine classes by the intensity of trichome occurrence on their veins and surface. Five ResNet architectures were tested. They demonstrated different performance depending on the accuracy measurement method. ResNet34 demonstrated the best performance (84.85% for accuracy of all images and 91.36% for leaf accuracy). The authors used different dataset stratification strategies (leaf-based splits, year-based splits, and environmental-based splits).

Luo et al. (2023) developed a deep learning approach to detect and quantify trichomes on cotton leaves and stems. The trichomes on the stem edge and leaf edge were photographed using an Olympus szx10 stereoscope with ×12.5 magnification. The authors evaluated three network models: YOLOv3, YOLOv4, and YOLOv5 with different backbones and Mask R-CNN. The work demonstrated that the YOLOv5 network outperformed other YOLO models (F1 = 83% for single trichomes and 97% for clustered trichomes), and Mask R-CNN outperformed YOLOv5 on the images without separation of the single/clustered trichomes dataset (mAP@0.5% 96.18 vs. 74.45).

In the current work, classification approaches were implemented to attribute spike images into classes with haired or hairless glumes. This paper makes the following contributions:

	The phenotyping of the novel wheat trait, glume pubescence, was proposed on the basis of the spike image classification.

	The multistep deep learning approach was applied to solve this task. First, image segmentation is performed to detect the spike region; second, spike images are classified by glume pubescence into haired and hairless classes.

	The deep learning segmentation model outperformed the previous method of spike and awns detection based on machine vision algorithms. The classification model based on the EfficientNet-B1 architecture demonstrated high performance (AUC parameter from 0.86 to 0.96 depending on the dataset stratification method) and robustness with respect to small image distortions in the classification of the whole spike by glume hairiness.







2 Materials and methods



2.1 Methods overview

An integrated approach using deep machine learning neural networks to classify spike based on glume pubescence relies on images obtained through a standard laboratory protocol. The ear occupies a relatively small area in the image, with the rest being uninformative. Hence, the approach initially involves image segmentation to extract the spike body region from the image, followed by glume pubescence prediction for the spike image fragment. Figure 1 summarizes the methods employed in this work.




Figure 1 | Overview of the integrated approach for analysis of wheat spike images to classify them based on glume pubescence. (A) Image dataset preparation, (B) image segmentation pipeline, and (C) spike image classification pipeline.



The analysis included three steps: preparation of image datasets to train and test neural networks for segmentation and classification tasks (Figure 1A), development of an image segmentation method for identification of the spike region (Figure 1B), development of a method for the classification of spike body images by the type of glume pubescence (pubescent or glabrous) (Figure 1C). Special algorithms were developed for dataset preparation and stratification, taking into account wheat species diversity and the proportion of spikes of the studied accessions with pubescent/glabrous glumes. In developing deep machine learning methods, various neural network topologies were investigated.




2.2 Biological material and spike imaging

Material from the collection of N.P. Goncharov (Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences) was used in the study. It included 239 accessions of 19 wheat species. Their list is given in Supplementary Table S1. Wheat accessions included species of different ploidy (three diploid, eight tetraploid, and seven hexaploid). Hybrids of different wheat species were also used for analysis (see Supplementary Table S2). The analysis was performed for the main spike of the plants.

Spike images were obtained in laboratory conditions using two protocols, “table” and “clip”, as described in the previous work (Genaev et al., 2019). For the “clip” protocol, images were obtained in four projections with 90° of rotation around the spike axis. The spikes on the table were imaged in the natural position at one image per spike. All images contained a ColorChecker Mini Classic target (https://xritephoto.com/camera) for scale determination. The resolution of the images was either 5,184 × 3,456 px (18 Mp) or 3,168 × 4,752 px (15 Mp). Examples of several typical spike images obtained using the “clip” protocol are shown in Figure 2.




Figure 2 | Examples of the spike images obtained using the “clip” protocol. The species names are indicated in the top-left part of the images. (A, B) 18 Mp images; (C, D) 15 Mp images.



A holdout dataset of 40 spike images of wheat hybrids obtained by the “clip” protocol supplemented the dataset for classification (see Supplementary Table S2). These images (as well as wheat accessions) were not used in the network training, validation, or testing. Spikes in 20 images from the holdout dataset had haired glumes, and 20 had hairless glumes. All preprocessing steps of the holdout dataset before classification were the same as for the main image dataset.




2.3 Image markup

To develop the automatic image segmentation model, a sample of 1,245 spike images for 249 plants was used, representing different accessions obtained using both “table” and “clip” protocols. This image dataset was described in a previous work in (Genaev et al., 2019). As a test sample, additional 30 images segmented manually were used. This dataset for testing is also identical to that from the previous work (Genaev et al., 2019). Initially, each image from the dataset was segmented automatically into four regions (background, ColorChecker target, awns, and spike body) using the program WERecognizer (Genaev et al., 2019). This program uses machine vision algorithms to segment spike images. Segmentation is performed into background and spike regions based on binarization in the HSV color space. After identification of the spike with its awns, the algorithm uses partial skeletonization of the spike image to extract the awns regions. For some images, the algorithm resulted in errors noticeable to the eye (violation of the integrity of the spikelet contour, misclassification of awns if they were densely spaced or touched together). Such images can be easily identified in the image preview mode and corrected manually in the raster graphic editor Gimp (https://www.gimp.org/). The fraction of images with correction was about 1%.

When labeling images by glume pubescence type, it was taken into account that glume hairiness is a classification trait at the level of varieties, which is characteristic of most wheat species (Goncharov, 2012; Yen et al., 2020). Therefore, the types of pubescence of each wheat species were used in labeling images. As an additional control, for a part of the images, glume pubescence was determined on the basis of visual analysis with a magnifying glass.




2.4 Image dataset stratification for segmentation and classification

For the segmentation task, the set of 1,245 images was randomly divided into training (70%) and validation (30%) parts. The test sample included 30 images as described in the previous section.

The dataset of spike images included plants of different species, images of the same spike in different protocols/projections, and was unbalanced by glume hairiness classes (there were k = 1.77 times more images of spikes with hairless glumes than haired ones). In addition, the glume hairiness trait is a characteristic of the plant belonging to a wheat species/variety (Dorofeev et al., 1979). Varieties within the same species are often very similar in glume hairiness. These factors had to be taken into account during image dataset stratification in order to maintain the proportions of different classes of images for the training, validation, and test subsamples.

Two methods of image dataset stratification were generated. These methods were aimed at keeping the proportion of the images in the training, validation, and testing subsamples as much as close to 80%:10%:10%, respectively. The first method, Str_TrainMaxDiversity, is to stratify the dataset by manual partitioning to obtain the maximum diversity of species represented in the training subsample. At the same time, the proportion k between the number of images with hairless glumes and the number of images with haired glumes is maintained only approximately in the validation/testing subsamples.

The second stratification method, Str_BalancedByClass, was aimed at minimizing the deviation of the k ratio in the three subsamples. For this purpose, the following steps of dataset stratification were implemented (Supplementary Figure S3):

	(1) Images of a species presented in a fraction greater than 0.1 + epsilon of the total number of images were included in the training sample (lines 2–11).

	(2) A species is randomly selected from the list of remaining species and a subsample type (training, test, or validation) (lines 40 and 41).

	(3) If the selected subsample is training, then images of this type are added to it (lines 48–50).

	(4) If the selected subsample is validation or testing and adding images of a species to it will result in the subsample fraction being less than the threshold (0.1 + epsilon), then images of this species are added to the subsample (lines 45–47). Otherwise, these images are added to the training sample (lines 49 and 50).

	(5) If the fraction of testing and validation subsamples deviates from the target values within the epsilon value, all remaining species are added to the training subsample. The algorithm proceeds to step 6. Otherwise, steps 1–5 are repeated (lines 35–39).

	(6) The maximum deviation of the parameter k between the three subsamples for the obtained partitioning, dev, is estimated (line 52).

	(7) If dev is smaller than it was for the previous partitioning, this value and stratification (dev_max) are memorized, and best_index parameter is updated by the iteration index with the smallest dev value. Otherwise, the iteration counter is increased by 1, and current image split is added to the list of splits obtained previously. The algorithm proceeds to step 8 (lines 53–57).

	(8) The algorithm is terminated if at least one of the following conditions is fulfilled: the number of iterations is more than 10,000; the dev value is less than 0.01. Otherwise, the iterating process is repeated from step 1 (line 28).



The proposed algorithm converged in less than 300 iterations, with a dev_max value of 0.009. The lists of species in the training, validation, and test samples for the two types of stratifications, class balance coefficients k, and the percentage of images in these samples are represented for both stratifications in Supplementary Table S3.




2.5 Image segmentation method



2.5.1 Neural network model

The U-Net model (Ronneberger et al., 2015; Falk et al., 2019) was used for spike image segmentation. This model was developed for biomedical image analysis. The network contains two main parts: an encoder and a decoder. The encoder has a typical architecture of a CNN. The decoder part increases the dimensions of the feature maps, performs a deconvolution, which increases the number of feature maps, and combines them with the corresponding feature map from the compression part. The structure of the U-Net makes it possible to use different backbones represented by modern neural network models that have proven their effectiveness in image processing instead of the original version of the U-Net model (Konovalenko et al., 2022).

Here the EfficientNet-B2 encoder was used in the U-Net network architecture. The EfficientNet network was proposed to solve the classification task (Tan and Le, 2019). It has a lightweight architecture based on AutoML. The main building block is the mobile inverted bottleneck (MBConv) (Sandler et al., 2018). Initially, a baseline network was developed, EfficientNet-B0. A family of topologies was obtained, differing by depth, width, and resolution of the network layers depending on the compound coefficient determining the total FLOPs for the network and varying from 0 (the most compact architecture) to 7 (the largest architecture) (Tan and Le, 2019). This architecture has also been successfully used as an encoder for segmentation tasks (Abedalla et al., 2021; Konovalenko et al., 2022; Jin et al., 2023). The images were segmented into four regions: background, ColorChecker target, spike body, and awns. The input data for the network were fragments of the original image of 512 × 512 pixels. For each pixel of the image, four weights from 0 to 1 were defined in the output of the network, according to the four specified classes. Figure 3 shows the architecture of the U-Net network used for the segmentation of spike images with the EfficientNet-B2 encoder.




Figure 3 | The U-Net architecture with the EfficientNet-B2 encoder used for the segmentation of spike images. The encoder part is shown on the left, and the decoder part is shown on the right. Gray rectangles indicate multichannel feature maps. The number of channels is given above the rectangles. The feature map size is indicated below the rectangles, on the left. Arrows indicate the type of operation and its direction.



The EfficientNet-B2 includes seven types of sequential blocks built on the basis of the Conv and MBConv layers (Sandler et al., 2018; Tan and Le, 2019). In MBConv, the blocks consist of a layer that first expands and then compresses the channels, so direct connections are used between bottlenecks that connect much fewer channels than expansion layers. This architecture has in-depth separable convolutions that reduce calculation compared to traditional layers (Howard et al., 2017).




2.5.2 Image pre-processing for segmentation and accuracy assessment

The preprocessing of images for segmentation consisted of the following steps:

(1) The image was split into 512 × 512 px tiles that overlapped each other in the 256 × 256 px area horizontally and/or vertically.

(2) An augmentation procedure was applied to the resulting tiles using the Albumentations library (Buslaev et al., 2020):

Transformations for the training subset:

 - HorizontalFlip (p = 0.5).

 - ShiftScaleRotate (shift_limit = 0.0, scale_limit = (0., 0.1), rotate_limit = 5, interpolation = cv2.INTER_LINEAR, p = 0.75).

 - ColorJitter (brightness = 0.4, contrast = 0.4, saturation = 0., hue = 0., always_apply = False, p = 0.75.).

 - Normalize.

Transformations for validation and test subsets:

 - Normalize.

(3) Tiles form the batches that the model receives as input.

Since tiles were obtained with overlap, one pixel in this analysis corresponded to the class prediction in several tiles. To obtain the final class prediction for a single pixel, the weight of each class was averaged over several overlapping tiles and the class with the maximum weight was selected as the predicted pixel class.

The IoU metric was used to evaluate the quality of class prediction (Everingham et al., 2010):

	

where A denotes the pixels of the image region generated by segmentation using the segmentation algorithm and B denotes the manually marked pixels of the image region.





2.6 Image classification method



2.6.1 Neural network models

To classify images according to the type of pubescence of glumes, ResNet-18 (He et al., 2016) and two networks of EfficientNet architecture (Tan and Le, 2019) were studied. The structure of the ResNet-18 neural networks is shown in Supplementary Figure S1. For the EfficientNet topology, two implementations were used: EfficientNet-B0 and EfficientNet-B1. The architecture of the EfficientNet-B1 network is shown in Figure 4 and that of the EfficientNet-B0 network in Supplementary Figure S2. Estimates of the number of parameters and operations for these described networks are given in Supplementary Table S4. The abovementioned neural network architectures have previously demonstrated their effectiveness in solving plant image classification problems (De Camargo et al., 2021; Dourado-Filho and Calumby, 2021; Kanna et al., 2023).




Figure 4 | EfficientNet-B1 model architecture used to classify wheat spike images by glume pubescence. Rectangles indicate Conv and MBConv layers of various architectures.



The network models for image segmentation and classification were implemented using PyTorch v1.7.1 (Paszke et al., 2019). Initial weights for all models used in this work were obtained by training the network on the ImageNet dataset.

The Gradient-weighted Class Activation Map (Grad-CAM) algorithm from the TorchCAM package (https://github.com/frgfm/torch-cam) was used for the visualization of the network activation map. This technique assigns each neuron a relevance score for the class prediction in the output layer. GradCAM backpropagates this information to the last convolutional layer.




2.6.2 Image preprocessing for classification and neural network parameters

The image preprocessing procedure for further classification is shown in Figure 5. The original image (Figure 5A) was segmented, and the spike body was extracted along with the bounding rectangle using the OpenCV library (Bradski and Kaehler, 2008). In this rectangle, the background pixels were assigned a black color (Figure 5B). Several methods were used to yield images of spikelet fragments of different sizes (Figure 5C): (1) resizing of the full bounding rectangle to 512 × 512 px, (2) small (128 × 128 px) crops containing random fragments of the spike body, (3) medium (512 × 512 px) crop of the spike central fragment, and (4) large (864 × 864 px) crop of the spike central fragment.




Figure 5 | Main steps of the preparation of spike body image fragments for recognition of the glume pubescence. (A) Original spike image, (B) segmented spike body image in the bounding rectangle, and (C) images of the spike body or its fragments obtained as a result of resizing small, medium, and large crops.



In the case of small crops, images in which the proportion of spike pixels was less than 30% were discarded. In case a medium or large crop exceeded the width of the bounding rectangle, pixels outside the bounding rectangle were assigned black color.

Input image preprocessing for the classification neural networks was implemented by randomly changing the brightness, saturation, and contrast using the Albumentations library (Buslaev et al., 2020).

The following parameters were used to train the classification neural networks: learning rate = 1e-7, weight decay = 1e-6, number of the epochs = 150, and training batch size = 16.




2.6.3 Assessing the accuracy of spike classification

To assess the accuracy of the spike classification method on a sample of images, the authors compared the predicted class and its true value for each image and calculated the true positive (TP) values and true negative values (TN) as well as the total number of positive (pubescent, 1, P) and negative (glabrous, 0, N) values. Using these values, the accuracy was calculated for the set of images according to the formula: ACC = (TP + TN)/(P + N); the precision, PR = TP/(TP + FP); the F1 = 2·TP/(2·TP + FP + FN) (Alzubaidi et al., 2021); and the area under the curve (AUC) for the receiver operating characteristic (Huang and Ling, 2005).

The accuracy of glume hairiness detection was evaluated based on visual image analysis by an expert on a test dataset of the Str_TrainMaxDiversity stratification and in a holdout image dataset. In this case, no information about the spike belonging to a particular wheat variety was used. This analysis was performed to compare the accuracy of scale pubescence detection by eye and machine learning.






3 Results



3.1 Generating an image dataset

A total of 9,679 spike images were obtained, including 3,499 with haired glumes and 6,180 with hairless glumes. The histogram of image distribution by species and by type of glume pubescence is presented in Figure 6.




Figure 6 | Distribution of the number of images of wheat spikes by species and glume pubescence.



The histogram shows that the distribution of spikes by glume pubescence differs significantly for different wheat species. There are species in which the samples are homogeneous in terms of glume pubescence: in T. compactum Host, all accessions in the sample have glabrous glumes, and in three species T. timopheevii (Zhuk.) Zhuk, T. vavilovii Jakubz, and T. petropavlovskyi (Udacz. et Migusch.) N.P. Gontsch., all accessions have pubescent glumes. There are species for which accessions with hairless glumes prevail: T. monococcum L., T. urartu Thum. ex Gandil, T. aestivum L., T. spelta L., T. macha Dek. et Men., T. turgidum L., T. dicoccum Schrank. ex Schublel, T. aethiopicum Jakubz., and T. polonicum L. There are species for which the ratio of accessions with pubescent and glabrous glumes does not differ much: T. beoticum Boiss., T. yunnanense (King ex S.L. Chen) N.P. Gontsch., T. sphaerococcum Perciv., T. durum Desf., T. diccocoides (Körn. ex Aschers. Et Graebn.) Schweinf., and T. carthlicum Nevski. Thus, the obtained data indicate that, even for a single species, accessions with both pubescent and glabrous glumes are quite frequently observed. The results obtained suggest taking into account both the species diversity of wheat accessions studied and their differences in the occurrence of pubescent/glabrous glumes during image dataset stratification.




3.2 Evaluation of the accuracy of image segmentation

The authors adapted and trained a U-Net architecture network with an EfficientNet-B2 encoder to segment images into the background, ColorChecker target, spike body, and awns. Estimates of the IoU parameter were obtained on a test sample of images. The ColorChecker target region is identified with the lowest error (IoU = 0.980), which can be explained by its simpler shape, close to a rectangle, with smooth edges. The spike body is identified with a lower but comparable accuracy (IoU = 0.947). The lower accuracy can be explained by the more complex shape of the spike and the presence of a large number of protrusions. For awns, the recognition performance is the lowest (IoU = 0.777). The awns occupy a smaller area in the image, which leads to the fact that errors will have a greater impact on the IoU score compared to the spike body and ColorChecker target. On the other hand, awns have a small thickness and a large boundary relative to the total area. The blurring of the boundary can introduce a significant uncertainty in the definition of awn contours.

Since the test images were the same as in the previous work (Genaev et al., 2019), we can directly compare the segmentation results. In the previous work, the authors obtained IoU (Jaccard’s coefficient) values for the spike body, 0.925, and for the awns, 0.660. This is lower by ~2.5% for the spike and by ~10% for the awns compared to the method from the present work.

Figure 7 shows examples of segmentation of one of the spike images performed using the WERecognizer program (Genaev et al., 2019) and using the U-Net model from this paper. The segmentation using the U-Net model yields smoother contours of the spike body compared to the WERecognizer method. The segmented regions are cohesive, while for the WERecognizer method, some of the pixels of the awns are marked as the spike body. At the same time, in the U-Net-segmented image (Figure 7C), one can notice the erosion of the ColorChecker target contour in the area where the ruler is placed on it. Other examples of segmented images are shown in Supplementary Figure S3. The results presented in these figures are consistent with general estimates of the accuracy of spike and awns recognition compared to WERecognizer. They demonstrate the higher accuracy of spike and especially awn image segmentation using the U-Net model.




Figure 7 | Example of spike image segmentation by the WERecognizer program and the U-Net model from the current work. (A) Initial spike image. (B) Image segmentation by the WERecognizer program. (C) Image segmentation by the U-Net. In (B, C), the blue color represents the ColorChecker target, the green color represents the spike body, the red color represents awns, and the black color represents the background.






3.3 Evaluating the accuracy of image classification

A preliminary analysis for the EfficientNet-B1 topology network using Str_TrainMaxDiversity training dataset stratification showed that the best accuracy on the test images was achieved using medium-sized spike body crops (Supplementary Table S5). Based on these results, input images of medium-sized crops were used in predicting the type of glume pubescence.

The authors trained and tested the accuracy of three neural network models on test and holdout datasets. The performance of the models on different stratification methods and on the holdout sample, respectively, are presented in Table 1. The last row of the table shows the performance estimates for recognizing glume pubescence by an expert.


Table 1 | Evaluation of the performance of the EfficientNet-B0, EfficientNet-B1, and ResNet18 models and expert classification using test and holdout image datasets. Best performance metrics for each stratification method shown in bold.



The results presented in the table demonstrate that, for Str_BalancedByClass stratification (balanced by classes), the accuracy estimates on the test sample are slightly higher than for Str_TrainMaxDiversity stratification. At the same time, for the holdout dataset, no noticeable differences were observed for the different training samples. Among the models, the EfficientNet-B1 model demonstrates the highest accuracy. Its advantage is observed both for different stratification methods and for both subsamples. At the same time, the performance estimates for this network on the holdout dataset when training on data stratified by different methods differ only slightly.

The results of the performance estimation for recognizing pubescence by an expert show that, on the test dataset (Str_TrainMaxDiversity), the expert classification performance (F1 = 0.95) is noticeably higher than for the best neural network model (0.74). On the holdout dataset, the results are quite comparable: F1 for the expert and the best model are 0.78 and 0.84, respectively.

Examples of the activation map for the spike image fragments are shown in Figure 8. The figure demonstrates that the network focuses either at the edges of glumes or at the border between the spike body and background (Figure 8A), in the central part of the spike image (Figures 8A, B), or at the central part of glumes (Figure 8C). The location of the activation regions on the glume edges is well explained: the hairs at the edges are most clearly visible in the image.




Figure 8 | Activation maps of the EfficientNet-B1 model for classifying spike images by glume pubescence evaluated on the image dataset with Str_BalancedByClass stratification. (A) Activation regions are located at the boundary between spike and background (top) and at the edges of glumes in the central part of the spike body. (B) Activation regions are located at the edges of glumes in the central part of the spike. (C) Activation regions are located in the central part of glumes.






3.4 Effect of image magnification and distortion on classification performance

The spike images obtained in this work vary in magnification due to different distances between the camera and the spike in various series of images. This distance was the same in one series of images. Since the size of the ColorChecker target was the same, the magnification can be characterized by its area expressed in pixels. It is, however, necessary to take into account that, in terms of resolution, the images were of two types: 15 Mp and 18 Mp. Therefore, for each resolution, the distribution of images was plotted by the ColorChecker target area expressed in pixels. The results are summarized in Figure 9. A threshold of 2.25 × 106 px was chosen for the ColorChecker target area: image magnification was considered large if the ColorChecker target area was larger than this threshold and small if smaller.




Figure 9 | Histogram of relative areas of the ColorChecker target in the images of the test subsample (Str_TrainMaxDiversity stratification method) for 15 Mp (A) and 18 Mp (B) images. The X-axis is the ColorChecker target area size, in px. The Y-axis is the number of images.



The accuracy estimates of the EfficientNet-B1 model trained on the dataset obtained by the Str_TrainMaxDiversity stratification method were calculated.

It was found that, for images of higher magnification, the performance estimates were ACC = 0.81, PR = 0.70, and AUC = 0.91. For images of smaller magnification, the values of accuracy parameters were ACC = 0.80, PR = 0.55, and AUC = 0.80. The difference in the AUC parameter was 10% in favor of the higher-magnification images. However, it is important to note that the ratio of images with pubescent glumes to those with glabrous glumes differed in these two sets. Specifically, it was 0.14 for the images with large magnification and 0.86 for the images with small magnification. This discrepancy might also influence the performance of glume pubescence recognition in these two subsamples.

The results show that imaging conditions affect the accuracy of pubescence detection in the images. This issue was investigated in more detail. For this purpose, a sample of 35 images of the T. beoticum/321-329 accession (hairless glumes) and 46 images of the T. vavilovii/271-280 accession (haired glumes) was generated from the Str_TrainMaxDiversity stratification test sample. The EfficientNet-B1 model for these images classified the type of pubescence without error. Using the Albumentations library, blurring was applied to these images with kernel sizes of 3, 4, 5, and 6 pixels. After each transformation, the method was applied to recognize the pubescence of scales, and its accuracy was evaluated. The results are summarized in Table 2. It can be seen from the table that the accuracy of glume pubescence recognition decreases as the distortion increases, but it is still quite high for the kernel size of 3 and 4 pixels. It can be assumed that a slight blurring of the spike image (due to its deviation from the lens focus) does not significantly affect the accuracy of pubescence recognition. It should also be noted that the errors in this experiment were solely due to the misclassification of spikes with pubescent glumes.


Table 2 | Effect of image blurring on the accuracy of ear classification by scale pubescence.



Additionally, the effect of changing the image brightness on the accuracy of spike classification was investigated. For this purpose, the RGB channel intensities for each pixel were changed upward and downward by 20%, 40%, and 60% for the abovementioned set of images. The classification accuracy was evaluated for the distorted images. The results are summarized in Table 3. The results appear similar: the greater the image distortion, the lower the accuracy of the method (due to errors in classifying ears with haired glumes). Note, however, that the decrease in brightness affects the accuracy to a lesser extent than its increase.


Table 3 | Effect of image brightness on the accuracy of ear classification by scale pubescence.







4 Discussion

This paper proposes an integrated method to assess glume pubescence in images of wheat spikes obtained under laboratory conditions. It is suggested that this image format may be typical when digitizing genetic collections for further phenotyping (Fu, 2017; Nguyen and Norton, 2020). The images (Figure 2) include the entire spike body, awns that can occupy a fairly large area, and a ColorChecker target for scaling and color normalization. For the optimal processing of a large number of images, the camera and the spike are at a constant distance in the image series, regardless of the size of the spikelet. This leads, however, to the fact that, for small-sized spikes, the quality of its representation in the image may decrease. Note that obtaining more detailed images required varying the distance from the camera to the spike depending on the size of its body and awns. However, this would significantly slow down the imaging process. The analysis showed that, for these images, it was possible to determine the pubescence of the glumes with good accuracy, even without using a magnification that allowed obtaining images containing fine details of the glume hairs. Nevertheless, the analysis of the accuracy of pubescence detection for images at different magnifications showed (10% difference in AUC parameter) that this was an important factor affecting the accuracy of the method. A similar conclusion was obtained earlier in the spike segmentation task (Genaev et al., 2019): the accuracy of spike body and awn region identification was higher for images with higher magnification. Note that the analysis of activation maps demonstrates that the most informative regions in the image are those in which hairs are most distinguishable (edges and central regions of scales).

The first step of the proposed method was to identify the spike body in the image in order to use only its contour for classification. This segmentation step was chosen to exclude irrelevant regions in the image, such as the ColorChecker target, awns, and background. For this purpose, a network based on the U-Net topology was used. The results demonstrated high segmentation accuracy. It is comparable to the performance of other deep learning methods—for example, Ullah et al. (2021) segmented spikes in the image with the IoU parameter from 0.610 to 0.922 depending on the segmentation algorithm, with higher values for CNN methods. Note that the segmentation based on the neural network developed in this work can also be used also for spike morphometry.

When training the neural network, two stratifications were used for image sampling. They differed in the ratio of samples with haired and hairless glumes in the training/validation/test subsamples from 1.574 to 1.98. Note that this ratio can vary greatly in samples of different wheat accessions—for example, in Börner et al. (2005), the proportion of T. aestivum accessions with haired glumes varied quite strongly among populations with different geographical origins—for example, in accessions from Poland, Kenya, Tunisia, and some others, haired glumes were not represented at all. In accessions from Turkey, Cyprus, and India, their fraction reached ~30%. In accessions from Libya, their fraction was at a maximum, 65%. On average, the proportion of samples with pubescent glumes for bread wheat representatives was 13%. In the dataset considered in this study, the fraction of accessions with pubescent glumes is generally higher (from ~40% to 30%). However, the considered sample contains different wheat species. Note that for bread wheat T. aestivum in our dataset (Figure 6), this ratio is consistent with the data of Börner et al. (2005).

The conducted analysis demonstrated that the best network performance was observed for the EfficientNet-B1 architecture, which is probably due to the optimal ratio between the number of network parameters and the size of training data in the considered case. For data in which all three types of subsamples are balanced equally in terms of the proportion of spikes with pubescent glumes (Str_BalancedByClass stratification method), the accuracy is maximized (F1 = 0.85, AUC = 0.96). At the same time, for the holdout sample, the differences in which stratification was used for training are small. The obtained estimates are typical in solving image-based plant classification problems—for example, Rolland et al. (2022) classified cotton images by the intensity of pubescence (nine classes) using the ResNet model and obtained 84.85% for the accuracy of all images and 91.36% for leaf accuracy, which were close to the estimates of the present study (Table 1). The obtained estimates are typical in solving image-based plant classification problems.

The most common classification of plants into varieties and landraces is based on image analysis of grains. In the work of Landa et al. (2021), grape seeds were classified as belonging to a certain variety on the basis of image analysis and LDA. Depending on the type of stratification, the accuracy varied from 79% to 93%. Artificial neural networks were used to classify grains into bread or durum wheat based on 21 features obtained from the image analysis (Sabanci et al., 2020). The classification accuracy was about 99%. The CNN model of wheat grain image classification into 15 varieties was used in Lingwal et al. (2021) and yielded an accuracy of 0.97 on the test dataset.

The proposed method for analyzing spike images operates relatively quickly. A computer with a GPU Nvidia RTX 2080ti was used to train and evaluate CNN models. On average, processing one image to predict glume pubescence took 50 s, with segmentation taking up 25 s of this time. Thus, the proposed method offers rapid and accurate phenotyping of wheat genetic collection images, enabling the characterization of glume pubescence trait diversity.




5 Conclusion

An integrated method based on the use of CNN to classify wheat spike images by glume pubescence was proposed. The method includes two stages of analysis: image segmentation based on the U-Net network with an EfficientNet-B2 encoder and classification of spike body images by glume pubescence (pubescent or glabrous). The proposed approach allows distinguishing spikes in the image with high accuracy and can be used in various downstream spike analyses.

The classification of images based on glume pubescence achieved the highest performance using the network featuring the EfficientNet-B1 architecture. This network proved highly effective when trained on both balanced and unbalanced image datasets, demonstrating results comparable to those obtained via expert classification. The analysis underscores the effectiveness of deep machine learning networks in extracting crucial classification features from spikes, thereby establishing the utility of these methods in large-scale phenotyping of wheat genetic collections.
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Introduction

In the actual planting of wheat, there are often shortages of seedlings and broken seedlings on long ridges in the field, thus affecting grain yield and indirectly causing economic losses. Variety identification of wheat seedlings using physical methods timeliness and is unsuitable for universal dissemination. Recognition of wheat seedling varieties using deep learning models has high timeliness and accuracy, but fewer researchers exist. Therefore, in this paper, a lightweight wheat seedling variety recognition model, MssiapNet, is proposed.





Methods

The model is based on the MobileVit-XS and increases the model's sensitivity to subtle differences between different varieties by introducing the scSE attention mechanism in the MV2 module, so the recognition accuracy is improved. In addition, this paper proposes the IAP module to fuse the identified feature information. Subsequently, training was performed on a self-constructed real dataset, which included 29,020 photographs of wheat seedlings of 29 varieties.





Results

The recognition accuracy of this model is 96.85%, which is higher than the other nine mainstream classification models. Although it is only 0.06 higher than the Resnet34 model, the number of parameters is only 1/3 of that. The number of parameters required for MssiapNet is 29.70MB, and the single image Execution time and the single image Delay time are 0.16s and 0.05s. The MssiapNet was visualized, and the heat map showed that the model was superior for wheat seedling variety identification compared with MobileVit-XS.





Discussion

The proposed model has a good recognition effect on wheat seedling varieties and uses a few parameters with fast inference speed, which makes it easy to be subsequently deployed on mobile terminals for practical performance testing.





Keywords: wheat, seedlings, variety identification, scse attention, visualized, feature fusion




1 Introduction

Wheat, one of the three major staple grains, is essential in ensuring food security and stabilizing the country’s economic development (Kiss, 2011). China is a predominantly agricultural country, a populous country, a global wheat producer and consumer (He, 2001), and to maximize yields, growers choose the right combination of varietal duration and sowing time to ensure that the crop blooms at the optimum period (Liu et al., 2023). However, in the actual planting, affected by environmental factors, some fields will appear to lack seedlings; when this situation occurs, it is necessary to use the same variety of wheat to make up for the lack of seedlings to avoid the reduction of wheat yield (Zhu, 2021).

Traditionally, there are many ways to identify wheat seedling varieties, and one of the most reliable methods is the molecular identification of wheat varieties (Gupta et al., 1999). However, the timeliness of detection using this method is poor and not suitable for real-time classification detection. With the development of science and technology, deep learning techniques are increasingly used in wheat variety identification and disease detection. Long M et al (Long et al., 2023). proposed CerealConv classification model for healthy plants and four foliar diseases of wheat, yellow rust, brown rust, powdery mildew, and seven-leaf spot with 97.05% classification accuracy. Zhao X et al (Zhao et al., 2022). proposed a hybrid convolutional network based on hyperspectral images to classify wheat seed varieties with an accuracy of 95.65%. Goyal L et al (Goyal et al., 2021). used an improved deep learning approach to classify ten diseases of wheat spikes and leaves with a final accuracy of 97.88%. Velumani K et al (Velumani et al., 2020). used a convolutional neural network to predict the date of wheat tasselling and compared the results obtained with the actual date of tasselling, finding it to be more effective.

These studies have shown promising results in disease identification, seed variety classification, and tassel date prediction in wheat, but fewer studies use convolutional neural networks to classify grain at the seedling stage. This study aimed to classify wheat seedlings using the improved MobileVIT-XS method to aid identification.

Before VIT (Dosovitskiy et al., 2020), self-attention (Vaswani et al., 2017) had limited application in CV, used with convolution or by replacing specific modules inside a CNN with self-attention, but the overall architecture remained the same. The emergence of VIT shows that it is possible to get good results in image classification tasks using only a simple Vision Transformer structure, opening a new era of CV. VIT networks still have problems, such as a high number of parameters and slow inference speed compared with traditional CNN networks in practical applications. MobileViT (Mehta and Rastegari, 2021) is mainly designed and proposed to solve the defects of the ViT network, incorporating the advantages of CNN into the structure of the Transformer to solve the shortcomings of the Transformer network, such as difficulty in training, migration, and adjustment, and to accelerate the inference and convergence speed of the network, which makes the network more stable and efficient.

MobileViT has been applied to agriculture by more and more researchers due to its lightweight network structure and high recognition accuracy. Sheng X et al (Sheng et al., 2022). used a MobileVit-based convolutional block to replace the traditional convolutional block for feature extraction, thus proposing a cascaded backbone network for fruit tree leaf disease recognition with an accuracy of 96.76. Long C et al (Long et al., 2023). used MobileViT_v2 as a backbone network to identify wild mushroom species by introducing CA (Hou et al., 2021) blocks and introducing jump connections between the blocks, and the classification accuracy of the obtained Top1 was 97.39%. Liu Z et al (Liu et al., 2022a). used KNN (Cover and Hart, 1967), SVM (Schölkopf and Smola, 2002), and MobileViT-xs methods to identify moldy peanuts with improved accuracy of 3.55%, 4.42%, and 5.9%. Sun Q et al (Sun et al., 2022). proposed SADNet to segment orchard UAV images by introducing DIC, ASPP, and scSE modules with a final pixel accuracy of 93.61%. Deng H et al (Deng et al., 2022). achieved a final segmentation model PA of 95.5% by adding the scSE attention module to the DeepLabv1+ encoder’s backbone network to improve the model’s ability to extract fine features of the paddy field. Dai M et al (Dai et al., 2023). detected chili leaf diseases by optimizing the network depth and width of the Inception module with an accuracy of 97.87%.

The above study improved the MobileVit model to achieve better recognition results for specific targets. In this study, to achieve real-time, highly accurate, and low-cost wheat seedling variety identification by piggybacking the model on a mobile phone and thus, inspired by the Inception (Szegedy et al., 2015) module and the scSE (Roy et al., 2018) module applications in agriculture, the MobileVit-XS model was improved and MssiapNet was proposed. The main contributions of this work include the following:

	(1) A new lightweight model for accurately identifying wheat seedling varieties is presented. Based on the MobileVit-XS model, the scSE attention mechanism was first introduced to the MV2 module to improve the sensitivity to the nuances of the wheat seedlings of each variety and suppress the background’s influence on recognition accuracy. Secondly, by improving the Inception V1 module, the IAP module is proposed, which is introduced to perform multi-feature fusion recognition of the results obtained from the MobileVit block to improve the overall recognition accuracy of the model.

	(2) To meet the requirements of the data needed in conducting the training, we collected 29,020 wheat seedling images of 29 varieties at the Comprehensive Experimental Station of the National Wheat Industry Technology System in Tianshui City, Gansu Province, China, for evaluating the performance of the model.

	(3) The results obtained after fully training the model and loading it onto the test set for recognition show that the model has a high recognition accuracy and a low number of parameters, which is conducive to subsequent deployment on mobile to test in the field.



The structure of this study is as follows: firstly, images of wheat seedlings of different varieties are collected from the field to form an image dataset; secondly, the effectiveness of the proposed MSSE2 module, IAP module, and MssiapNet is verified on the developed dataset; and finally, the experimental results are elaborated.




2 Materials and methods



2.1 Data set establishment and segmentation

The wheat seedling image dataset in this experiment was collected from the Comprehensive Experimental Station of the National Wheat Industry Technology System located in Tianshui City (35°44′N, 106°08′E, average elevation 1413 m, average annual rainfall 570 mm, annual sunshine hours 2012 h). Photographed outdoors under natural light conditions with a Nikon COOLPIX B700 digital camera, the format of the captured pictures was JPG. The original images of seedlings of some varieties are shown in Figure 1. The 29 wheat varieties selected were all mainstream winter wheat varieties in Gansu Province (Lu Q et al., 2022), such as Jimai 19, Lantian 15, Zhoumai 19, etc. About 30 plants of each variety were selected, and the images were taken at multiple angles. The seedling dataset has 29,020 images. The storage space of a single image in the original image is about 600 kb; the specific information of this dataset is shown in Table 1. 90% of the data is selected as the training, and 10% of the data is selected as the test.




Figure 1 | Images of Jimai19 (A), Lantian15 (B) and Zhoumai19 (C) seedlings.




Table 1 | Wheat seedling image dataset.






2.2 Image pre-processing

When performing model training, the dataset first needs to be preprocessed to improve the performance and effectiveness of the model. For the training set, firstly, the given image is randomly cropped to different sizes and aspect ratios using the transforms.RandomResizedCrop(224) method, then the cropped image is scaled to 224X224; secondly, the image is flipped using the transforms.RandomHorizontalFlip() method; finally, transforms.ToTensor() is used to convert the read image to Tensor format, and the converted image is normalized using transforms.Normalize() method. For the test set, the given image is first randomly cropped to different sizes and aspect ratios using the transforms.RandomResizedCrop(224) method, and then the cropped image is scaled to 224X224; finally, the read image is converted to Tensor format using the transforms.ToTensor() and the converted image are normalized using the transforms.Normalize() method. To normalize the training and test images, the mean = [0.57, 0.61, 0.62] and std = [0.21, 0.21, 0.26] were calculated for the entire dataset.





3 Our proposed method



3.1 scSE Attention Mechanisms

The scSE module is a parallel combination of spatial attention and channel attention, as opposed to the serial form of CBAM. In Spatial Attention: The input data is firstly passed through Conv2d to get b * 1 * h * w structure. Secondly, it goes through sigmoid to amplify focus and suppress non-focus, and finally, the obtained data is multiplied with the original data. In Channeled Attention: Firstly, an adaptive pooling layer is used to get the data in b * ch * 1 * 1 dimensions; secondly, the channels are first Dimensionality Boost and then Dimensionality Reduction, and finally, the weights are obtained using a sigmoid, which is multiplied with the original data to get the channel attention results. The results of spatial attention and channel attention obtained above are summed to form the final result of the scSE module. This attention mechanism is shown in Figure 2.




Figure 2 | SCSE Attention.






3.2 MSSE2 module

To improve the model’s sensitivity to the subtle differences between seedlings of different wheat varieties and to suppress the influence of the background on the recognition accuracy, the scSE attention module was added to the MV2 module, and the module after the addition of the attention was named MSSE2. The module is shown in Figure 3.




Figure 3 | MSSE2 module.






3.3 IAP module

To have an interest in further improving the recognition accuracy of the model, the model is considered to be extended in terms of width, thus the IAP module is proposed. This module adds a layer of MaxPool convolution to Inception V1. To learn more features, the number of channels is upscaled to 128 and 256 dimensions before performing 3x3 and 5x5 convolution and then downscaled to the input dimension size after convolution. The module structure is shown in Figure 4, and the parameters of each parallel structure are shown in Table 2.




Figure 4 | IAP module.




Table 2 | IAP module configuration.



The mathematical expression for this module is shown in Equation 1.

 

After adding this module to the original model layer3, layer4, and layer5, the features obtained from the shallow layers of the model are fused to improve the recognition accuracy.




3.4 MssiapNet

The MssiapNet model consists of MSSE2, IAP, and MobileVit modules, and the MobileVit-XS structure is shown in Figure 5, and the MagcepNet structure is shown in Figure 6.




Figure 5 | MobileVit-XS.






Figure 6 | MssiapNet.



As shown in Figure 6, the attention mechanism and the fusion of multi-channel features are added to the MssiapNet model compared to MobileVit-XS. MssiapNet consists of a 5-layer structure that downsamples the feature map using a 3x3 convolutional block before performing image recognition. Subsequently, feature extraction is performed using MESSE2 blocks and MobileVIT blocks stacked alternately. At the end part of the network, the recognition result of the network is output using Conv and Classifer. The detailed configuration of MssiapNet is shown in Table 3.


Table 3 | Detailed configuration of MssiapNet.






3.5 Experimental procedure

The specific procedure of the experiment is shown in Figure 7.




Figure 7 | Experimental procedure.



As shown in Figure 7, data collection is first performed. The collected data is divided into a training set and a test set in 9:1. Secondly, MobileVit-XS, MSSNET, IAPNET, MssiapNet, and other mainstream networks are trained on the training set. Finally, the model weights obtained from the above models on the training set are loaded to the corresponding models and then tested on the test set, comparing the results obtained to arrive at the optimal model.




3.6 Experimental environment

In the local environment, the model is built using the PyTorch framework, the Python version is 3.8, the CPU is Core i5-1135G7, and the graphics card is NVIDIA GeForce MX450. Training with the Dawning Supercomputing Platform of Zhongke Shuguang, the processor used is the HaiGuang 7185, with 128 GB of RAM and a default configuration of 200GB for the compute network.




3.7 Experimental details

The hyperparameter settings used for training are shown in Table 4.


Table 4 | Hyperparameter settings for training.






3.8 Performance evaluation indicators

This experiment’s model performance evaluation metrics include accuracy, precision, recall, F1, number of floating-point operations, specificity, parameters, and heat map after visualization of the model. Accuracy, precision, recall, sensitivity, specificity,and F1 were calculated as shown in Equations 2–6.

 

 

 

 

 

TP is the number of positive samples correctly identified; FP is the number of negative samples misreported; TN is the number of negative samples correctly identified; and FN is the number of positive samples missed.





4 Experimental results and analyses



4.1 Ablation experiments

To investigate whether the accuracy of wheat seedling variety recognition is improved by adding the MSSE2 and IAP modules to the MobileVIT-XS model, the network after adding the MSSE2 module is named MssNet, and the network after adding the IAP module is named IapNet. In the supercomputing platform, 400 rounds of training on the training set using MssNet, IapNet, and MssiapNet, respectively, and the results obtained after testing on the test set are shown in Tables 5, 6.


Table 5 | Results of ablation experiments.




Table 6 | Results of ablation experiments.



As shown in Table 5, after adding the MSSE2 and IAP modules, the recognition accuracy of wheat seedling varieties gradually increases, reaching 93.86%, 94.61%, and 96.85%, but the parameters and floating-point operations also rise. As shown in Table 6, the single image execution time of MssiapNet is 0.16s, and the single image latency of MssiapNet is 0.05s, which indicates that the execution time and latency of the model are within the acceptable range.




4.2 Model performance exploration

The confusion matrix obtained after MssiapNet was tested on the test set is shown in Figure 8, and the precision, recall, and F1 values obtained after recognition of each seedling variety are shown in Table 7.




Figure 8 | Confusion matrix.




Table 7 | Identification results of wheat varieties.



As shown in Table 7, after the improved model recognized 29 different varieties of wheat seedlings, except for jimai20, the other varieties’ precision, recall, and F1 values were more than 90%, indicating that the model has a better recognition effect on different wheat seedlings.




4.3 Model visualization

The heat map obtained by visualizing the original model and the improved model based on the pytorch_grad_cam visualization method is shown in Figure 9.




Figure 9 | Visualization results.



It is clear from the visualization pictures that the improved model focuses more on wheat seedlings and is less disturbed by background information compared to the original model.




4.4 Comparison of models

The results after training MobileVIT-XS (Mehta and Rastegari, 2021), MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard et al., 2019), EfficientNetV1 (Tan and Le, 2019), EfficientNetV2 (Tan and Le, 2021), ResNet34 (He et al., 2016), RegNet (Radosavovic et al., 2020), ConvNext_tiny (Liu et al., 2022b), ConvNext_small (Liu et al., 2022b) and MssiapNet on the training set for 400 rounds are shown in Table 8.


Table 8 | Comparison of models (the FPS indicator is calculated on the supercomputing platforms).



As shown in Table 8, the bolded parts are the optimal values of each evaluation indicator of the model. Compared to the other nine models, MssiapNet has a higher accuracy of 96.85%. Although the accuracy is only 0.06% higher compared to Resnet34, but parameters are only 1/3 of that. MssiapNet FPS is 6.64img/s, which is relatively low among the compared models, indicating that the model sacrifices some of the FPS to improve the recognition accuracy. RegNet model has the highest FPS of 11.12img/s, but its recognition accuracy is only 74.25%.





5 Discussion and conclusions



5.1 Discussion

In wheat planting, because of the external environment or some human factors will always lead to wheat planting, such as lack of seedlings, broken ridges, etc. When this happens, wheat growers need to use the same cultivated wheat seedlings as the planted variety to make up for the lack of seedlings and broken ridges to avoid unnecessary economic losses to the growers due to lower wheat yields. Variety identification of wheat seedlings using traditional methods is not suitable for popularisation, although the accuracy of identification is high, the efficiency is low. Deep learning technology allows for rapid identification of wheat seedlings and is simple to operate after mobile phone deployment, making it easy to promote popularity.

A self-constructed wheat seedling dataset, including 29,020 photographs of 29 varieties, was created for this manuscript. Based on this dataset, the MssiapNet model suitable for recognizing wheat seedlings was proposed by improving the lightweight model MobileVIT-XS. Specific areas of improvement are as follows: the scSE module has been added to the original MV2 module to improve the model’s attention to subtle differences between seedlings and to reduce the interference of other information in the identification; A layer of IAP module was added after layer3, layer4 and layer5 of the original module to increase the width of the model and thus improve the accuracy of recognition of wheat seedlings.

The experimental results show that MssiapNet has high recognition accuracy for all varieties of wheat seedlings, with an average recognition accuracy of 96.85%. Highest recognition accuracy compared to other mainstream classification models. After visualizing it, the improved model focuses more on the wheat seedling and is less disturbed by other information than the original model.

The number of MssiapNet parameters is 29.70MB. The single image Execution time of MssiapNet is 0.16s, and the single image Delay time of MssiapNet is 0.05s. The inference speed is fast and meets the needs of daily life, which is convenient for subsequent deployment on mobile to test the model’s actual performance.




5.2 Conclusions

This manuscript presents the MssiapNet wheat seedling variety recognition model by improving the MobileVit-XS. After training it on self-constructed wheat seedling data, the average accuracy was 96.85%, the average precision was 96.91%, the recall was 96.91%, and the F1 was 96.89%. Further visualization of the model revealed that compared to the original model, it focused more on wheat seedling information and was less influenced by other factors, such as the background. Compared to MssiapNet with the other nine mainstream classification models, it has the highest recognition accuracy but requires higher Flops, and has a low FPS, requiring further step improvements. The MssiapNet parameter is 29.70MB, which uses a small number of parameters but has a high recognition accuracy. The execution time and Delay time for a single image are 0.16s and 0.05s, which meets the requirements of practical applications deployed on mobile phones.
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Peanut is a critical food crop worldwide, and the development of high-throughput phenotyping techniques is essential for enhancing the crop’s genetic gain rate. Given the obvious challenges of directly estimating peanut yields through remote sensing, an approach that utilizes above-ground phenotypes to estimate underground yield is necessary. To that end, this study leveraged unmanned aerial vehicles (UAVs) for high-throughput phenotyping of surface traits in peanut. Using a diverse set of peanut germplasm planted in 2021 and 2022, UAV flight missions were repeatedly conducted to capture image data that were used to construct high-resolution multitemporal sigmoidal growth curves based on apparent characteristics, such as canopy cover and canopy height. Latent phenotypes extracted from these growth curves and their first derivatives informed the development of advanced machine learning models, specifically random forest and eXtreme Gradient Boosting (XGBoost), to estimate yield in the peanut plots. The random forest model exhibited exceptional predictive accuracy (R2 = 0.93), while XGBoost was also reasonably effective (R2 = 0.88). When using confusion matrices to evaluate the classification abilities of each model, the two models proved valuable in a breeding pipeline, particularly for filtering out underperforming genotypes. In addition, the random forest model excelled in identifying top-performing material while minimizing Type I and Type II errors. Overall, these findings underscore the potential of machine learning models, especially random forests and XGBoost, in predicting peanut yield and improving the efficiency of peanut breeding programs.
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1 Introduction

Peanuts (Arachis hypogaea) are a legume crop of immense economic and nutritional importance worldwide (Fletcher and Shi, 2016; Variath and Janila, 2017). They are a crucial component of the agri-food system, contributing significantly to global food security due to their rich nutritional composition (Valentine, 2016). Primarily, peanuts are renowned for their high protein content, providing about 25.8 grams of protein per 100 grams, which contributes substantially to dietary protein intake (Davis and Dean, 2016). Additionally, they are a rich source of healthy fats, particularly monounsaturated fats, which are associated with cardiovascular health benefits (Kris-Etherton et al., 1999; Settaluri et al., 2012). Peanut agroecosystems have been shown to likely increase the below ground metabolic activity in semi-arid systems (Laza et al., 2023) and show high levels of physiological adjustments under elevated CO2 conditions, which may increase drought resilience in future climates (Laza et al., 2021). Despite the substantial value of peanuts and their significance in global food security, there are considerable challenges associated with their genetic improvement. Although reliable, traditional peanut breeding methods are time-intensive processes that often require multiple selection cycles to develop improved cultivars (Chamberlin, 2019). This slow rate of progress in peanut breeding is a hurdle for the industry, particularly in the face of evolving challenges such as changing climate conditions and emerging pests and diseases (Faye et al., 2018; Obasa and Haynes, 2022; Haerani et al., 2023; Puppala et al., 2023). Peanuts have seen great improvements over the past decades; however, as is the case in other crop species, phenotyping remains a considerable bottleneck in peanut breeding pipelines and a chief limiting factor for overall rates of genetic gain in the crop (Furbank and Tester, 2011; Yang et al., 2020).

It is particularly difficult to directly estimate yield in peanuts using proximal and remote sensing methodologies. This difficulty stems from the unique growth characteristic of the peanut plant, wherein the gynophores, or “pegs,” grow downward into the soil after pollination (Boote, 1982; Moctezuma and Feldman, 1999). This subterranean growth, while advantageous for the plant in terms of accessing vital soil nutrients, makes non-invasive yield estimation incredibly challenging. Traditional methods for estimating yield typically require destructive sampling, which may not be efficient or desirable in many cases (Marshall and Thenkabail, 2015). Thus, developing feasible, non-destructive methods to model and predict potential yield in peanuts is a pressing need in the context of modernizing and streamlining peanut improvement systems.

In recent years, high-throughput phenotyping (HTP) via remote and proximal sensing has emerged as an important field for modern plant breeding, enabling crop improvement scientists to screen vast populations of plants rapidly and efficiently (Huang et al., 2019; Virnodkar et al., 2020; Tao et al., 2022). Traditional field-based phenotyping methods often involve manual measurements, which can be time-consuming, expensive, labor-intensive, and subject to human error (Pauli et al., 2016). Remote sensing, in contrast, utilizes state-of-the-art imaging technology to collect plant data in a non-destructive and automated manner, significantly reducing the time and cost associated with phenotypic data collection (Lobos et al., 2017; Araus et al., 2018; Janni and Pieruschka, 2022). Unmanned Aerial Vehicles (UAVs), or “drones” equipped with Red-Green-Blue (RGB) and multispectral cameras, can capture a wide array of data at both the individual plant and crop canopy levels (Thorp et al., 2018). Red-Green-Blue imagery can be processed using structure-from-motion (SfM) to estimate structural traits such as plant height and canopy width or leaf area index (Shi et al., 2016; Qi et al., 2020; Sarkar et al., 2020). The data obtained from remote sensing technologies can also be processed to derive a plethora of vegetation indices, which serve as critical tools in crop phenotyping and stress detection. Vegetation indices such as Excess Green Index (EG or ExG) and Normalized Difference Vegetation Index (NDVI) are often used to assess plant vigor, photosynthetic activity, and stress responses in a variety of crops, including peanuts (Rouse et al., 1974; Nijland et al., 2014; Zerbato et al., 2016). Perhaps most importantly, UAVs and other remote sensing technologies allow for efficient, repeated collection of data for the traits they measure, allowing researchers to produce multitemporal growth curves.

Multitemporal growth curves are derived from repeated, high-resolution remote sensing measurements taken throughout the crop growing season, enabling researchers to track the temporal progression of plant development and health with detail (Pugh et al., 2018; Bustos-Korts et al., 2019; Shammi and Meng, 2021). The high temporal resolution of repeated measurements allows the capture of physiological transitions such as the onset of flowering or maturity, which are critical growth stages that strongly correlate with final yield (Awal and Ikeda, 2003; Carneiro et al., 2019). The successful application of growth curves in yield modeling and prediction has been demonstrated in a variety of crops. For example, multitemporal measurements have been used to establish growth curves in tomatoes, employing these curves to predict yield prior to harvest (Chang et al., 2021). In Ashapure et al. (2020), multitemporal UAV data were used to develop a yield estimation framework in cotton. The successful application of this approach in these and other crops suggests a promising future for the application of similar methodologies in peanut yield prediction. The immense power of these growth curves lies in their ability to reveal latent phenotypes, which refer to traits or characteristics that are not directly observable but can be derived or inferred from the data (Ubbens et al., 2020; Lane and Murray, 2021). This concept stems from the premise that plant development is a dynamic process influenced by a multitude of factors, many of which may not be readily apparent in a singular, static snapshot of a crop field. Latent phenotypes could include characteristics derived from growth-rate trends, onset of key phenological stages, response to environmental stressors, and countless others (Gage et al., 2019; Feldmann et al., 2021). Once latent phenotypes are extracted, artificial intelligence (AI) can be used to predict traits of interest in peanuts, such as yield.

The integration of Artificial Intelligence (AI) in crop improvement programs has shown promising advancements in recent years. Machine learning (ML) models, such as Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), have emerged as powerful tools in predicting various crop attributes (Thilakarathne et al., 2022; Zheng et al., 2022; Nazari et al., 2023). Both models are decision tree-based models that are commonly applied toward regression tasks, particularly for the prediction or modeling of key quantitative traits. Random Forest is an ensemble method that uses multiple decision trees during the training process where each “tree” makes its own prediction, and the final output is usually the mean of these predicted values (Breiman, 2001; Belgiu and Drăguţ, 2016). EXtreme Gradient Boosting is an advanced implementation of gradient boosting algorithms that builds trees sequentially, so that each new tree can correct the errors made by each previous tree, resulting in reduced error (Chen and Guestrin, 2016). Recent research in peanuts has shown that ML models can potentially be used to estimate various important traits via the use of the values of visual bands in RGB and multispectral imagery (Bagherian et al., 2023; Shahi et al., 2023). However, AI powered by remote sensing data has not yet been used across multiple years and a diverse set of material to assess models for their robustness in peanut (Bagherian et al., 2023; Shahi et al., 2023). Therefore, it is imperative that ML models to predict yield in peanut are built that are highly robust and remain applicable to unseen data; that is, data that have not yet been encountered by the models (Yoosefzadeh Najafabadi et al., 2023). To that end, the inclusion of multiple, varied environments and a population that has a large degree of heterogeneity is critical to ensure that ML models perform acceptably in this role.

Guided by the recent advancements in HTP and AI and an increasing need to accelerate the rate of genetic gain in peanut, the primary focus of this study revolves around harnessing the power of overt and latent phenotypes as well as ML methodologies for the accurate prediction of peanut yield. We hypothesize that ML models, incorporating an array of carefully extracted and selected traits in the form of latent phenotypes, will offer a robust prediction of yield in peanuts that plant breeders can implement into their programs. Therefore, the first objective of this study was i) to create high-resolution sigmoidal growth curves for important phenotypes, a mathematical representation of the peanut plant’s life cycle. Furthermore, we intended to derive growth-rate curves from these sigmoidal growth curves. Growth-rate curves, representing the first derivative of the sigmoidal curve and a visualization of the rate of change of growth over time, will offer valuable insights into the growth dynamics and vigor of the crop. As such, the second objective of this study was ii) to delve into the realm of hidden growth parameters by analyzing the generated growth curves and growth-rate curves to identify and extract latent phenotypes. The third and final objective of this study was iii) to select and use latent phenotypes in RF and XGBoost ML models to predict yield in peanuts and compare model performance.




2 Materials and methods



2.1 Germplasm and experimental design

The germplasm used for this experiment consisted of variable material from four different experiments that shared a field location. There were 16 genotypes in an advanced breeding trial, 12 genotypes in a commercial variety trial, 12 genotypes from a population intended to study drought tolerance, and 40 top selections from a Recombinant Inbred Lines (RIL) population. However, because several genotypes were represented within multiple trials, the actual number of unique genotypes in the study was 73 rather than 80. Nonetheless, this population was quite diverse and was suitable for a yield prediction study due to how variable the material was. Each genotype within a test was represented across three replications in a randomized complete block design (RCBD), for a total of ~202 - 240 field plots each year. All phenotype extractions and yield predictions were conducted at the individual plot-level rather than across genotypes, with the exception of confusion matrices, which used the means for each genotype. The planted area for each plot measured approximately ~4.0m long by ~1.0m wide, and each plot consisted of two adjacent rows. The experiment was planted in a center pivot-irrigated field at the USDA-ARS Crop Stress Research Laboratory in Lubbock, TX (33°34′40′′ N, 101°53′24′′ W) in the summer of 2021 and 2022 (Figure 1). Standard agronomic practices for peanut were used while managing the plots as per the farm’s guidelines. Planting was done in May, and harvesting occurred approximately 130 days after sowing. Each entry in the trial was individually dug when it was considered to be at optimum maturity, determined using the hull-scrape method (referenced from Williams and Drexler, 1981). Peanut pods from each plot were dried using forced warm air to achieve a moisture level of around 10%. Subsequently, pod samples were cleaned before being weighed to determine yield.




Figure 1 | Maps of Experiment Area. These maps show an overview of the area of the experiments in Lubbock, TX in 2021 and 2022. The experiments were planted on the eastern and western sides of the same pivot-irrigated field. The red and purple regions indicate the 2021 and 2022 trials, respectively.






2.2 Unmanned aerial vehicle flight missions and georeferencing

A standard photogrammetry and machine learning workflow was used to produce the data used in this study (Figure 2). First, a series of unmanned aerial vehicle (UAV) flight missions were conducted throughout the summer of 2021 and 2022. The flight missions were conducted using a DJI Mavic 2 Pro equipped with the original payload, a (OEM) 20-megapixel RGB camera (DJI Industries, Shenzhen, China). At the 20-megapixel resolution, the ground sample distance (GSD) at 50m above ground level (AGL) was approximately 1.37 cm/pixel.




Figure 2 | Flowchart for Peanut Yield Estimation Pipeline. This flowchart shows the general methodology used to derive yield estimates in this study. Steps have been simplified so that they can be visually presented, but detailed descriptions of each step are included in the text of this study.



Flight missions were conducted at numerous time points throughout the season to generate high-resolution multitemporal growth curves. The 2021 season consisted of 12 UAV flights conducted over research plots that were made at an altitude of 50m AGL with 75% front image overlap and 65% - 70% side image overlap. The flight missions conducted in the 2022 season consisted of 18 UAV flights at a height of 50m with 75% front image overlap and 70% side image overlap. Unmanned aerial vehicle flights were conducted at or near solar noon (10AM-2PM CST). Flights were conducted on either cloudy or sunny days, and partly cloudy days were avoided since that could result in inconsistent cloud cover throughout a flight. Flights were corrected for brightness to account for differences between the cloudy and sunny days. After flight missions were conducted, raw image tiles were imported into Agisoft Metashape Professional for orthographic map image composition. Ground control points (GCPs) were collected using two paired Emlid Reach RS2+ (Emlid Tech Korlátolt, Budapest, Hungary) devices, where one device was placed on a fixed, permanent base location and the other was used as a rover to collect the GPS data for each GCP. Because prior research has demonstrated that four accurate and precise GCPs near the corners of each flight mission are sufficient to georeference photogrammetry projects, that is the number that was used in this study (Pugh et al., 2021).




2.3 Flight processing and feature extraction

Prior to processing and extraction, raw image tiles from each flight were examined to ensure that tiles erroneously collected before or after the flight mission(s) were removed. The imagery was processed in Agisoft Metashape Professional v. 2.0.1 (Agisoft, St. Petersburg, Russia). To estimate plant heights and derive 3-dimensional canopy volume, SfM was used to reconstruct the field. First, photograph alignment was conducted at the Highest quality setting, with a key point limit of 50,000 and a tie point limit of 25,000. The four GCPs were then added to each flight and cameras were optimized to ensure that projects were georeferenced. Point clouds were then constructed on the High-quality setting, which were used to produce the digital elevation maps (DEMs). Once High-quality DEMs were generated, high-resolution orthomosaics were constructed and exported for downstream feature extraction alongside the DEMs.

High-resolution orthomosaics and DEMs were imported into QGIS v. 3.22.4 software (QGIS Development Team, 2023), an open-source geographic information system (GIS) software package, for further plot-level analysis and extraction. The orthomosaics were aligned using a series of GCPs in the imagery that anchored them geographically, reducing the marginal error between scenes to ±5 cm. This precision allows for sequential time series-based image extractions using areas of measurement (AOMs) over plot-level image data (Young et al., 2020). These AOMs covered the plot area of the peanuts planted and had some slight border between the plots. The AOMs were rectangular, and their dimensions were approximately ~5m x 1m (~5m2) in 2021 and ~4m x 1m (~4m2) in 2022. After AOMs were placed over the orthomosaic layer, plot-level imagery was extracted from the final orthomosaic image for each plot and flight. This was accomplished using an iterative extraction process within QGIS. This was accomplished using the “Clip Raster by Mask Layer” tool. This brings up a selection menu for an “Input layer” encompassing the orthomosaic from each UAV flight and a “Mask layer” consisting of the plot-level AOMs. This iterative process then produced image extractions based on the plots that were placed over the orthomosaic images. This extraction workflow was used for each flight mission in 2021 and 2022.




2.4 Photogrammetric image processing

Plot-level imagery was extracted from 12 UAV flights in the 2021 season, resulting in approximately 6,000 plot-level images, while 18 UAV flights from the 2022 season resulted in approximately 14,000. These images consisted of RGB image data and ranged from ~100-400 kb in size each. The processing of this image data was done with Python (Python ver. 3.8.16) and the ‘OpenCV’ (OpenCV ver. 4.7.0) library (Bradski, 2000). Prior to any image analysis and extraction of the images, a method known as Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied to the imagery (Reza, 2004). The flights were conducted under different lighting conditions, and the CLAHE method helped to correct the white balance in the images, particularly if the brightness varied across a single image. The imagery was then analyzed using the binary image masking threshold described by Young et al. (2020) and was used to separate the plants from the soil background. The binary image masking method was combined with the HSV (Hue, Saturation, Value) image threshold method to improve peanut plant masking. Hue, Saturation, and Value image thresholding takes the RGB image and converts it into the HSV color space, where Hue is the color, Saturation is the intensity of color, and Value is the brightness of the color. The next step in this process was to set an upper and lower HSV boundary representing the material in the imagery. The lower and upper boundaries used for the peanut plots in this study were (20, 0, 0) and (170, 255, 255), respectively; these values were determined on the range that the peanut plots reside in based on observation of the imagery and comparison of hue values with canopy pixels. This technique was combined with the binary image threshold to make an image mask that set any plant material in this range to 255 (white) and 0 (black) for the soil background. After the binary image mask was made, the relevant material in the image that was set to 255 was extracted from the original image and saved for further analysis. The resulting image from this operation was visible, segmented objects (peanut plants), and the rest was left blank (soil). The primary focus of this image extraction technique was to use the sequential plot imagery to develop plant canopy cover estimates (CC), canopy height estimates (CH), canopy volume estimates (CV), and to calculate an excess green index (ExG) (Chang et al., 2021). Canopy cover refers to the amount of each field plot taken up by the plant material, which has been shown to be valuable in prior studies (Lu et al., 2021). Plant height, or CH, has been shown to have excellent repeatability when estimated using UAV as compared to ground-based, conventional measurements using meter sticks (Pugh et al., 2018). Canopy volume is another parameter that has been shown to be valuable when estimated via UAV data, as it is simply the CH multiplied by the CC (Chang et al., 2021). Excess green index (ExG) is a vegetation index that has been demonstrated to work particularly well in the absence of multispectral data (Soontranon et al., 2014; Chang et al., 2021).




2.5 Calculation of crop phenotypes from processed photogrammetry products

The calculation of the plant-based features from the processed UAV imagery was accomplished using image analysis features provided in Python and the ‘OpenCV’ library. The Canopy Cover (CC) estimates were calculated using the methodology described in Chang et al. (2021). Canopy height (CH) estimates were produced using data that were extracted from the DEM map files processed from the UAV imagery data. This was accomplished by taking the modified images and applying the plant-level threshold to the DEM maps. Digital elevation map data were sequentially extracted using the plot-level extraction method described previously for each plot within each flight mission. After DEM data were extracted and the images were processed, the DEM data were segmented into deciles to be processed. Ultimately, the mean (CH) and 90th percentile (CH90) of the DEM data were used for the CH estimates to determine which was most effective to use when including CH in a model.

Canopy volume (CV) estimates were calculated using the CC and CH estimates. The calculation was performed by simply multiplying the CC by the CH for each field plot. The CV was not indicative of a solid mass, due to the realities of canopy architecture, which mostly consists of open space. Nonetheless, CV estimates provided a usable metric for downstream analyses of crop growth. Because the mean and 90th percentile data were extracted for CH, CH and CH90 were used to calculate CV, resulting in CV and CV90 metrics. The image data were RGB in this study due to a lack of multispectral sensors, thus a vegetation index was calculated with just the red and green spectral bands as an indicator of overall plant health. Excess Green Index (ExG) was calculated using the segmented image data for the image calculations as described in Chang et al. (2021). The ExG estimates were extracted from the images and then normalized to fit them to a simplified scale ranging from 0 to 1. The normalized mean ExG calculated from the image was extracted and used for subsequent analyses.




2.6 Data analysis, machine learning, and statistics

The photogrammetric data were systematically categorized based on the corresponding flight mission dates. Subsequent analyses were conducted to identify statistical anomalies, such as outliers; however, there was no obvious reason to remove the rare outlier cases and they were ultimately left in the dataset. Upon completion of this data structuring and cleaning process, Pearson’s correlation coefficients (r) were employed to determine the interrelationships between the four principal parameters (CC, CH, CV, and ExG) and the ultimate yield. These operations were executed using the ‘pandas’ library in Python (Van Rossum and Drake, 1995; McKinney, 2011).

Once Pearson’s correlations within each flight mission date were complete, high-resolution multitemporal growth curves as a function of each of the parameters vs DAP were generated for each field plot using the ‘SciPy’ and ‘matplotlib’ Python libraries (Barrett et al., 2005; Virtanen et al., 2020) (Figure 3A). Where necessary, due to rare situations where there were a few occluded plots on certain flight dates, imputations were made using the respective parameter means. This procedural step was imperative to ensure that each field plot possessed measurements corresponding to every flight mission date, thereby enabling the generation of congruent growth curves. Logistic and Gompertz sigmoidal functions were constructed so that they could be tested for their effectiveness in yield prediction; in addition, the first derivative of the sigmoidal curves, the growth rate curves, were also produced (Figure 3B) (Zwietering et al., 1990; Van Impe et al., 1992; Kucharavy and De Guio, 2015). Once these growth curves were generated and latent phenotypes could be extracted from them, the ML models could subsequently be executed with the extracted phenotypes. The equation for the logistic growth curve was:




Figure 3 | Growth Curves and Latent Phenotype Extraction. Demonstration of a representative sigmoidal growth curve (A) and a representative growth rate curve (B) as measures of traits vs. days after planting (DAP). The numbers denote latent phenotypes that were extracted from the curves. The array of features, in order, are: 1. Value of the Inflection Point, 2. DAP at 50% of Inflection Point, 3. DAP at 80% of Inflection Point, 4. DAP at Inflection Point, 5. Maximum Value, 6. DAP at Maximum Growth Rate, 7. Maximum Growth Rate, 8. DAP at First Half-maximum Growth Rate, 9. DAP at Last Half-maximum Growth Rate, 10. DAP Between Half-maximum Growth Rate, 11. Area under the Growth Rate Curve, 12. Mean Growth Rate, 13. Rate of Growth Rate Increase, and 14. Rate of Growth Rate Decrease.



	

where N(t) is the value of a metric at time t, K is the maximum value of the metric the plant(s) can sustain, N0 is the initial value of the metric at t = 0, r is the intrinsic growth rate, and e is the base of natural logarithm. Gompertz sigmoidal growth curves were generated using the equation:

	

where N(t) is the value of a metric at time t, N0 is the initial value of the metric at t = 0, α is the growth rate parameter, β is related to the initial displacement of the growth curve, and e is the base of the natural logarithm. From the entire array of sigmoidal curves and their derivatives, a set of 14 latent phenotypes were extracted that were to be tested for their use in a yield prediction model. These latent phenotypes had either been used in previous, similar studies or were new features that we hypothesized could potentially be useful in a machine learning model (Chang et al., 2021).

Following latent phenotype extraction from the growth curves, an analysis using variance inflation factor (VIF) was conducted on the data using the ‘statsmodels’ library in Python (Seabold and Perktold, 2010; Akinwande et al., 2015). This is a commonly used metric which is calculated using the equation:

	

where R2 is the coefficient of determination when a linear regression is performed between one variable upon all the other variables. Variance inflation factor can be included in regression analyses to determine if there is multicollinearity present in the data (Kim, 2019). Any latent phenotypes that had VIF scores greater than 5 were removed from the data before downstream analyses were conducted, to ensure that features with high multicollinearity would not fruitlessly be included in ML models (Kim, 2019).

After feature extraction using the growth models and feature exclusion via VIF, the remaining latent phenotypes were used to perform recursive feature elimination (RFE) using the ‘Scikit-learn’ library in Python (Pedregosa et al., 2011; Hao and Ho, 2019). This is a feature selection method which functions by recursively removing the least important features based upon a relative ranking of their importance. Through this process, RFE identifies and retains the most informative features for a given model. In this case, RFE was used to select features that were potentially useful for estimating final yield. To determine which configuration of latent phenotypes could best predict final yields, various limits of maximum selected features were specified from 1 – 30 and the various resulting feature configurations were tested in the ML scripts (Tunca et al., 2023). This iterative process ensured that an effective model could be built while minimizing complexity (Demir and Sahin, 2023).

Advanced machine learning techniques were employed to predict yield based on features identified through RFE. The Random Forest algorithm was the first ML method that was utilized via the ‘Scikit-learn’ library in Python (Pedregosa et al., 2011; Liu et al., 2012; Belgiu and Drăguţ, 2016). This algorithm generates an ensemble of decision trees during its training phase and subsequently predicts outcomes based on the average values derived from these individual trees (Dang et al., 2021; Guan et al., 2022). The unique characteristic of RF is its ability to train each decision tree on a distinct subset of the data, while also considering a randomized subset of features during each split. Such inherent randomness enhances the model’s resilience and reduces its susceptibility to overfitting (Liu et al., 2012). The collective outputs from all trees within the Random Forest are aggregated to yield the final prediction. The second ML algorithm that was tested in this study was eXtreme Gradient Boosting, or XGBoost, using the ‘Scikit-learn’ and ‘xgboost’ libraries in Python (Pedregosa et al., 2011; Chen and Guestrin, 2016). EXtreme Gradient Boosting is an advanced ensemble learning technique within a broader ecosystem of machine learning methodologies. Central to XGBoost is its iterative approach, wherein subsequent models are incorporated into the ensemble with the intent of rectifying inaccuracies present in prior models. This iterative refinement is facilitated by gradient boosting, wherein new models are tailored to the gradient of the loss function relative to the predictions of the current ensemble. Extreme Gradient Boosting is distinguished by its array of computational optimizations, encompassing regularization to mitigate overfitting, adept handling of absent data, and the capability for parallel tree construction, enhancing its computational efficiency (Herdter Smith, 2019). The workstation used to build these models was equipped with an Intel® Xeon® Gold 5218R CPU with 64.0 GB of installed RAM and an NVIDIA® RTX A5000 GPU.

Hyperparameter optimization was conducted for RF and XGBoost using the grid search method via ‘Scikit-learn’ (Pedregosa et al., 2011; Belete and Huchaiah, 2022). This systematic approach allows the user to examine model performance when using various combinations of hyperparameter settings via a specified “grid” of potential values, which allows users to efficiently identify and optimize hyperparameter settings for their data (Belete and Huchaiah, 2022). Once the grid search was performed, the optimal hyperparameters to use for each model were identified and used to execute the algorithms. For the RF model, the maximum depth of the decision trees was set to 10 and the number of estimators was set to 400. For the XGBoost model, the optimal learning rate was determined to be 0.06, the maximum depth was 3, and the minimum child weight was set to 5. Then, 1000 different random states, or iterations, were executed using Monte Carlo Cross-Validation (MCCV) for each model. Monte Carlo Cross-Validation was conducted to assess the models when using varying sizes for training and test sets and avoid the use of a non-robust model. As such, for each iteration, all the data were randomly separated into either the training set or the test set. To further assess the models, K-Fold Cross-Validation was performed with 10 splits so that multiple methods of cross-validation were tested. In addition, 70% and 30% of the data were randomly chosen for the training and test sets, respectively, and 1000 iterations were executed again for the 30 configurations obtained from the RFE processing described earlier. From these results, the best configuration and overall random state according to the training and test adjusted R2 scores was used for the predicted yield values present in the rest of this study.

Upon discerning the most refined RF and XGBoost models—characterized by their mean test and training adjusted R2 values—the model from the random state that had the highest training and test adjusted R2 values was used to algorithmically estimate yield for each plot. These yield predictions were subjected to regression analysis against the empirically measured yield from the field. This analytical step was important to gauge the precision and accuracy of the model’s predictions across the entirety of the dataset, beyond the confines of merely the test and training subsets, as demonstrated by Tunca et al. (2023). Consequently, the regression R2 was anticipated to have a value intermediary to the test and training metrics (Tunca et al., 2023). Regressions were also performed within each year of the study to determine model consistency, since years with vastly different mean yields and levels of variance could lead to inflation of coefficients of determination across years, i.e., two general “groupings” of the data resulting from highly variable environments could serve to anchor one another and artificially increase linear regression R2 values. To further evaluate the ability to increase the genetic gain rate for peanut yield using ML, repeatability (R) estimates were calculated within each year for each ML model. Because there was no familial structure across the material used for this study, it was not technically correct to calculate broad-sense heritability (H2) for the traits; however, repeatability is calculated in a similar fashion and can be used as a reasonable alternative metric for evaluation purposes. Repeatability estimates were calculated using the same all-random model and methodology as the one presented in Pugh et al. (2018). Next, to further evaluate the practicality and relevance of the predictions rendered by the machine learning algorithms, confusion matrices were constructed for each model, both intra-annually and inter-annually. This was accomplished using the ‘Scikit-learn’ and ‘matplotlib’ libraries within the Python framework (Barrett et al., 2005; Pedregosa et al., 2011).

Confusion matrices serve as a statistical tool designed to assess the efficacy of classification algorithms. These matrices facilitate the discernment of accurate classifications and serve to identify and estimate the degree of Type I and Type II errors, known colloquially as “false positives” and “false negatives”, respectively (Ruuska et al., 2018; Sharif et al., 2018). Notwithstanding its conventional application to classification endeavors, specifically pertaining to categorical variables, this method was employed to evaluate the prospective utility of Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) within crop improvement programs. To investigate this, a quartet of categorical yield data, or “bins”, were devised, wherein “Excellent” encompassed the uppermost 10% of genotypes, “Good” spanned the 11th to 25th percentile, “Mediocre” covered the 26th to 50th percentile, and “Poor” encapsulated genotypes that did not achieve yields within the top half and would be likely to be excluded from being advanced within a breeding program. The mean yield for each genotype, aggregated across its respective plots, was computed, and subsequently allocated to one of the categories. These constructed yield categories were used to ascertain the extent to which plant breeders and other scientists might leverage RF and/or XGBoost for selection within their programs.





3 Results



3.1 Pearson’s correlation coefficients for yield vs. extracted phenotypes

In the analysis, the Pearson’s correlation coefficients (r) delineating the relationship between directly procured phenotypes and yield exhibited analogous trends across both observational years (Figure 4). A notable increase in correlation magnitudes was observed within the temporal window of 20 to 60 days after planting (DAP). After this accelerated phase, the correlation coefficients largely stabilized, albeit with a minor decrement as the growing season approached its conclusion. Intriguingly, the canopy height parameter manifested a comparatively subdued correlation with yield relative to canopy cover, canopy volume, or ExG across both years. Among the evaluated traits, canopy cover consistently demonstrated the most robust correlation with yield over the years, mirroring the canopy volume and ExG performance in 2021, and surpassing both metrics in 2022.




Figure 4 | Pearson’s Correlations for Basic Extracted Traits vs. Yield. Depiction of Pearson’s correlation coefficients in 2021 (A) and 2022 (B) between Canopy Height, Canopy Cover, Canopy Volume, and Excess Green Index (ExG) with final yield at individual time points, shown as days after planting (DAP).






3.2 Feature selection and correlations between selected features and yield

The analysis systematically evaluated feature sets extracted from multitemporal growth trajectories and corresponding growth rate curves, encompassing a range of 1 to 30 features. Comparative assessments of these feature sets, when integrated with both the eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, yielded analogous outcomes (Figure 5). An examination of the models allowed for the identification of a threshold wherein the apex of mean adjusted training and test R2 values was attained with the least number of features. Interestingly, both algorithms required nearly identical optimized feature counts: 15 for the RF model and 14 for XGBoost. Furthermore, features extracted from the Gompertz growth model were discerned to exhibit superior predictive abilities compared to those extracted from the logistic model, because the RFE process always chose Gompertz-derived latent phenotypes over those derived from the logistic model. This consistently led to the exclusion of features derived from logistic growth curves in the finalized models. In addition, the RFE process determined that mean plant height was not valuable in the models and favored the use of the 90th percentile of plant height estimates, instead. Consequently, these optimized feature configurations were employed in comparing yields estimated in silico by machine learning algorithms with the empirically measured yields recorded in situ.




Figure 5 | Feature Selection Using Recursive Feature Elimination. This is a visual depiction of feature selection using Recursive Feature Elimination (RFE). The graph shows the mean training and test adjusted Coefficient of Determination (R2) vs. the Number of Features. The R2 values derive from running numerous random states of the XGBoost (XGB) and Random Forest (RF) machine learning models.



The 15 chosen features showed varying levels of independent correlation with the final yield (Figure 6). It is also important to note that there were strong correlations between several of the latent phenotypes with each other; indeed, in several cases Pearson’s correlations were approaching r = 1.00. Nonetheless, the features selected by RFE were used for this study due to potential relationships that may exist even between highly correlated traits that humans cannot feasibly anticipate or recognize. Since traits previously identified by VIF as collinear were already removed prior to these analyses, it was not determined that any remaining strongly correlated features needed to be removed from the ML models. The results of the MCCV analyses mirrored those seen when conducting the refinement via RFE. For the RF model, the MCCV adj. training and test R2 values were 0.96 and 0.72, respectively. For the XGBoost model, the MCCV adj. training and test R2 values were 0.91 and 0.72, respectively. Similarly, the K-fold CV adj. test R2 was 0.63 for both models. The Last DAP at Half Maximum Canopy Volume (CV) had the strongest relationship with yield on its own). Although there were strong positive correlations between many of the derived features with each other, the correlations between latent phenotypes and yield were overwhelmingly negative. No solitary latent phenotypes could be used to reliably predict yield on their own when comparing the entirety of the data across both years, and the data demonstrated that a model that incorporates multiple traits to arrive at predictions was necessary, corroborating the need for more complex ML models.




Figure 6 | Correlation Heatmap for Latent Phenotypes. This is a visual representation of the Pearson’s correlation coefficients for the latent phenotypes selected via RFE vs yield. Values range from deep red (-1.00) to deep blue (1.00).






3.3 Regressions between estimated and measured yield and repeatability scores

In an evaluation across all field plots and years, the Random Forest algorithm exhibited an impressive training adjusted R2 of 0.95, complemented by a test adjusted R2 of 0.84, signifying an optimal fit to the training dataset and alignment with the test data. Upon scrutinizing the regression between the algorithmically predicted yield values and the empirically measured yield in the field, the estimated data showed a robust relationship with the measured yield, evidenced by an R2 of 0.93 (Figure 7A). The eXtreme Gradient Boosting algorithm, while delivering a respectable performance in yield prediction, had a marginally reduced training R2 of 0.89 (Figure 7B). Furthermore, the relationship between its estimated and actual yield values, with an R2 of 0.88, was somewhat reduced compared to the yield estimates derived from the RF model.




Figure 7 | Overall Regression for Estimated and Measured Peanut Yield. These are linear regressions between plot-level yield values (Tons ha-1) predicted by machine learning models (Estimated Yield) and actual yield measured in the field (Measured Yield) when both years of the study were combined. The machine learning models used include random forest (RF, A) and XGBoost (XGB, B). Blue points represent field plots belonging to the training set and red dots represent plots that were used in the test set for each model. The adjusted training (blue) and test (red) adjusted R2 values for each model are included.



When analyzing the annual datasets independently, the RF algorithm exhibited relatively consistent performance across the two consecutive years under study, in contrast to the XGBoost algorithm. Specifically, the RF algorithm yielded an R2 of 0.85 in 2021, slightly decreasing to 0.70 in 2022 (Figures 8A, B). While these values were marginally reduced compared to the combined annual analysis, they remained reasonably high, underscoring the model’s robustness across diverse environmental conditions. Similarly, the XGBoost algorithm’s predicted yield values showed a strong performance in 2021 with an R2 of 0.78 (Figure 8C). However, its effectiveness substantially diminished in 2022, registering an R2 of only 0.47 (Figure 8D). Extreme Gradient Boosting was less consistent in this study when compared to RF. Repeatability (R) estimates were higher in 2021 when using both models than in 2022 (Figure 8). Notably, predicted yield values produced by XGBoost had higher R values and were closer to the R scores for actual yield when compared to the R estimates for predicted yields produced by the RF algorithm.




Figure 8 | Annual Regressions for Estimated and Measured Peanut Yield. These are linear regressions between plot-level yield values (Tons ha-1) predicted by machine learning models (Estimated Yield) and actual yield measured in the field (Measured Yield) within the years 2021 2022. The machine learning models used include random forest (RF) in 2021 (A) and 2022 (B), and XGBoost (XGB) in 2021 (C) and 2022 (D). Blue points represent field plots belonging to the training set and red dots represent plots that were used in the test set for each model, and repeatability (R) scores are provided for the measured yield (purple) and estimated yield (green).






3.4 Confusion matrices for estimated and measured yield

In 2021 and 2022, the RF model performed better than the XGBoost model at separating the four different classes of yield data (Figures 9A, B). EXtreme gradient boosting performed much worse in 2022, with numerous strong misclassifications compared to RF (Figure 9E). In 2021, the two models performed more similarly; nonetheless, the Xgboost model still underperformed compared to RF due to larger number and severity of misclassifications (Figures 9A, D). This trend was slightly altered when examining classifications across both years as the amount and degree of Type I and II errors were reduced with both models. The RF model was able to identify Excellent and Good yielding genotypes more reliably than XGBoost, but both were reasonably effective at identifying Poor-yielding genotypes (Figures 9C, F).




Figure 9 | Confusion Matrices for Estimated and Measured Peanut Yield. These confusion matrices show the number of correct and incorrect categorizations of yield using Random Forest (RF) and XGBoost (XGB) models within and across 2021 and 2022. Shown, in order from left to right, are RF in 2021 (A), RF in 2022 (B), RF with the years combined (C), XGB in 2021 (D), XGB in 2022 (E), and XGB with the years combined (F). All genotypes were separated into four yield categories: Poor = bottom 50%, Mediocre = top 51 – 26%, Good = Top 25 – 11%, and Excellent = top 10% of genotypes. Genotypes were placed in each category using predictions from machine learning models (Estimated Yield) and estimates of yield collected in the field (Measured Yield). The number and shade of each square represents how many genotypes were placed in each category by each method. Genotypes placed in the exact same category by both methods will appear along the diagonal from lower left to upper right, and other squares represent varying degrees of incorrect classification.







4 Discussion



4.1 Overview and comparison to similar studies

For machine learning models to be useful in agricultural research, they must be able to reliably provide robust estimates of yield and other key parameters. Phenotypes extracted at an elementary level from field plots in this study and others have been directly correlated with yield, but none of these showed a strong or consistent enough correlation to be reliably predictive on their own, indicating the need for more sophisticated ML methodologies (Manley et al., 2023). Across the entire dataset, the performance of the RF and XGBoost models constructed in this study was superior to those seen in previous studies in peanut (Balota and Oakes, 2016; Bagherian et al., 2023; Shahi et al., 2023). In Balota and Oakes (2016), the R2 for yield was significantly lower than in the present study, ranging from 0.26 – 0.39. In Bagherian et al. (2023), the highest R2 achieved for estimating yield with Deep Learning (DL) and ML models was 0.61. Shahi et al. (2023) achieved similar R2 values to those reported in this study via RF; however, that study only considered one environment and had fewer field plots than the current study. Larger and more varied datasets have previously been demonstrated to lead to more accurate and robust ML predictions (Weitkamp and Karimi, 2023). Therefore, it is difficult to ascertain if the model(s) reported in Shahi et al. (2023) are as applicable to unseen data as the models presented here. In addition, it is important to note that several of these previous studies had the advantage of having access to spectral bands beyond the basic RGB. In contrast, this study only used an RGB camera while still achieving excellent results, which could be an important consideration for researchers and producers with limited access to multispectral sensors or who lack the requisite knowledge of how to use them (Sanches et al., 2018; Acorsi et al., 2019; Zeng et al., 2021). Indeed, the workflow presented here is achievable with widely accessible technology, as the latent phenotypes derived from Gompertz growth models produced using RGB data are the only variables used in the ML models (Borra-Serrano et al., 2020; Chang et al., 2021; Varela et al., 2021).




4.2 Random forest vs eXtreme gradient boosting

In this study, the Random Forest model was superior to eXtreme Gradient Boosting when examining the regressions between estimated and measured yield values, showing greater R2 values and more consistency across both years of the study. However, it is important to note that there was a large discrepancy in mean yields between 2021 and 2022; indeed, 2022 had much lower maximum yields and reduced variability between the top and bottom-yielding genotypes, which could partially explain the reduced effectiveness of the two models in that year. It is also critical to acknowledge that XGBoost had higher repeatability scores than RF in both years, which indicates that XGBoost may be better for actually capturing variation between genotypes and reducing the amount of unpartitioned error in the data. Because crop improvement efforts depend on the ability for the breeder to maximize genotypic variation and reduce error by accounting for different sources of error in the model, XGBoost may potentially be superior to RF when used as tool in a peanut breeding program in practice. In addition, XGBoost was developed and tailored to be computationally efficient to execute whereas RF does not place as much focus upon efficiency (Chen et al., 2015). In this study, the RF algorithm required a substantial amount of time to execute compared to XGBoost, often taking up to ~1 – 1.5 hours to execute its 1000 iterations on a high-end workstation intended for GIS and ML applications, whereas XGBoost could generally be completed in a matter of minutes. Nonetheless, the high degree of computational efficiency of XGBoost appears to have come at a significant cost to its raw predictive capabilities in this study, as demonstrated in the data. Therefore, it will be imperative that peanut breeders test various models and determine which ones will provide the best efficiency within their program; in the current study, there are legitimate cases to be made for either RF or XGBoost depending upon the situation.

It is also possible that XGBoost may improve at a faster rate than RF as additional, variable environments are added, since the performance of the two models was much more comparable when combining both years of data together. Once more environments and populations are added to the training data, it is likely that the higher repeatability of XGBoost will begin to emerge as a clear winner. However, this is speculation and would require additional environments to be added to test this hypothesis. With the presented data, RF is superior for producing consistently accurate yield estimates that produce high adjusted R2 values when regressed with yield collected in the field. These findings contrast with Tunca et al. (2023), where XGBoost was shown to be slightly more effective at predicting sorghum crop water content than RF. Perhaps more relevantly, these results also dispute the findings of Shahi et al. (2023), which showed that XGBoost was the ML model that produced the best predictions in peanut on its own. These discrepancies could be due to differences in the study population, the environments, the hyperparameters used, or a host of other potential factors. There are also studies where an RF algorithm effectively predicted traits of interest, corroborating these findings. In Joshi et al. (2023), RF performed better than XGBoost and Support Vector Machine (SVM) at predicting final wheat yields regardless of the input variable used. In Khan et al. (2022), maize yield prediction was most effective when using an RF model, outperforming the other methods tested. The variability in results across these studies indicates that the optimal model to use may be dependent on the population being studied, the environments the material is grown in, and the parameters being estimated (Bali and Singla, 2022). It is illogical to assume that there is a single “optimal” model across all conceivable situations. Testing a suite of different ML models may be necessary when attempting to build phenomic prediction algorithms to use within a peanut breeding program. Familiarity with the subject material, often referred to in the ML community as “domain knowledge,” will also be critical, and users will need to be cautious so that they do not become entirely reliant upon parameters estimated by ML algorithms without considering their context (Lischeid et al., 2022).




4.3 Machine learning for performing selection within a breeding program

One of the primary objectives of this study was to assess the value of RF and XGBoost for use within a peanut breeding program. While the regressions and repeatability scores demonstrate strong relationships between predicted and actual plot yields and a strong potential for improvement of yield using the ML outputs, the confusion matrices reveal more about the power of AI to enhance breeding programs. Perhaps one of the most important criteria for these models is to ensure they do not result in catastrophic selection errors, e.g., estimating Poor yield in an Excellent genotype, or vice versa. In this study, the only model that produced these selection errors was XGBoost, wherein one genotype was predicted to have Excellent yield (top 10% of genotypes) but was Poor (bottom 50% of genotypes) in actuality, and another genotype was identified as Excellent but was Poor. If we set the Excellent category as material that will be retained and the Poor category as material that will be excluded from a competitive peanut improvement program, this presents a clear problem. Effective rates of genetic gain require accurate phenotyping and prediction, and it is unlikely that repeated errors of this magnitude will be considered acceptable by most plant breeders (Dwivedi et al., 2020; Chen et al., 2022). Of course, such a prediction failure may be the result of damage to the crop in the field, accidental incomplete harvests, mistakes during data collection that lead to overestimated yields, and other errors. This could lead to predicted yields in an experiment failing to match final harvested yield through no fault of the ML models. Regardless, for simplicity, harvest yields should be the standard upon which we evaluate yield estimates generated in silico. In this case, XGBoost failed to match that standard in at least those two specific instances, despite its higher repeatability scores.

Fortunately, the ML models performed quite well outside of these two errors. While there were some occasional misidentifications, the models were reasonably able to correctly separate the genotypes into the four distinct yield categories. Remarkably, both models improved once the two years were combined. Once the years were considered together, the differences between RF and XGBoost greatly diminished, and both models could conceivably be implemented within a breeding program. Both models were able to reliably identify Poor genotypes that should be marked for removal from a program, one of the most important tasks for plant breeders. Inconsistencies in performance between 2021 and 2022 could be due to a host of factors, although the correlations of overt canopy characteristics and yield demonstrate that the correlations were overall much weaker in 2022 (Figure 4). This would naturally impair the function of ML models that predict yield based upon those canopy characteristics. It is well understood that ML models are much more robust and reliable when they have multiple, variable sets of data, e.g., environments, to train them (Ren et al., 2023). Thus, it is reasonable to hypothesize that both models would be further improved if additional locations were added to the data. In addition, the latent phenotypes presented in this study do not remotely encompass the multitude of variables that affect crop yields. One of the most important predictive components for crop yields that is absent in this study is direct quantitative information about the environment (Sudduth et al., 1996; Liliane and Charles, 2020). While the predicted yield values obtained in this study indirectly incorporate environment effects as a result of replication of genotypes within the field, no quantitative environmental or spatial data at the plot-level could be incorporated into the models as there were none of these data collected. Spatial soil and environmental data may be key elements that could greatly increase the efficacy of ML models (Pandith et al., 2020). Data for the presence of pests, the weather, the soil, and many other biotic and abiotic factors could assist ML models in producing reliable predictions (Sudduth et al., 1996; Pugh et al., 2019). Despite the absence of these data in the present study, our results demonstrate that peanut breeders and researchers can use RF and XGBoost models to make program selections if they use appropriate training data.





5 Conclusions

The fusion of remote sensing techniques with sophisticated machine learning (ML) algorithms promises transformative advancements for plant breeding programs. Once ML-driven workflows achieve sufficient accuracy and precision in yield predictions, the traditional practice of harvesting experimental plots to obtain yield measurements may become obsolete. Bypassing this labor-intensive step not only reduces financial inputs but also diminishes the reliance on resources, such as fossil fuels, required to obtain conventional yield measurements. The construction of resilient ML frameworks tailored for crops like peanuts mandates their calibration using data spanning diverse germplasm and an array of environmental contexts. The richness of training data directly amplifies ML algorithms’ universality and predictive prowess, enhancing their adaptability to novel and unforeseen scenarios.

Looking toward the horizon, it is imperative for scientists to explore a broader spectrum of ML architectures and to develop models that estimate vital parameters beyond yield. Such an endeavor requires a multidisciplinary confluence of experts from remote sensing, data analytics, plant breeding, among many other fields. Given the dynamic nature of machine learning as a discipline, a relentless pursuit of model evaluation and comparison is critical. Yet, the potential dividends from using these techniques in a crop improvement program eclipses the associated investment in model development and validation. In summary, this investigation demonstrates the profound potential of predictive machine learning frameworks in peanut breeding programs.
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Introduction

The study addresses challenges in detecting cotton leaf pests and diseases under natural conditions. Traditional methods face difficulties in this context, highlighting the need for improved identification techniques.





Methods

The proposed method involves a new model named CFNet-VoV-GCSP-LSKNet-YOLOv8s. This model is an enhancement of YOLOv8s and includes several key modifications: (1) CFNet Module. Replaces all C2F modules in the backbone network to improve multi-scale object feature fusion. (2) VoV-GCSP Module. Replaces C2F modules in the YOLOv8s head, balancing model accuracy with reduced computational load. (3) LSKNet Attention Mechanism. Integrated into the small object layers of both the backbone and head to enhance detection of small objects. (4) XIoU Loss Function. Introduced to improve the model's convergence performance.





Results

The proposed method achieves high performance metrics: Precision (P), 89.9%. Recall Rate (R), 90.7%. Mean Average Precision (mAP@0.5), 93.7%. The model has a memory footprint of 23.3MB and a detection time of 8.01ms. When compared with other models like YOLO v5s, YOLOX, YOLO v7, Faster R-CNN, YOLOv8n, YOLOv7-tiny, CenterNet, EfficientDet, and YOLOv8s, it shows an average accuracy improvement ranging from 1.2% to 21.8%.





Discussion

The study demonstrates that the CFNet-VoV-GCSP-LSKNet-YOLOv8s model can effectively identify cotton pests and diseases in complex environments. This method provides a valuable technical resource for the identification and control of cotton pests and diseases, indicating significant improvements over existing methods.
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1 Introduction

Cotton is one of the vital fiber crops in China, extensively employed in textile production and the manufacturing of cotton goods. However, the cotton industry in China has been severely jeopardized by the pervasive threats of diseases and pests, leading to adverse impacts on the yield (Chohan et al., 2020; Abbas et al., 2021). Traditional methods of pest and disease detection often rely on seasoned experts who gauge the health of cotton leaves through visual inspection. Despite its widespread use, this conventional approach suffers from multiple shortcomings. First, these methods are labor-intensive and time-consuming, requiring significant human resources, especially in large-scale cotton cultivation. Second, the manual inspections depend on the subjective assessments of experts, introducing variability and compromising the consistency and accuracy of the results.

With the advent of advancements in computer vision technology and deep learning algorithms (Wang C. et al., 2023), the agricultural sector has witnessed new avenues for pest and disease detection (Meng et al., 2023; Ye et al., 2023). These technologies not only automate the identification process but also enhance the speed and accuracy of detections. Notably, the YOLO (You Only Look Once) algorithm (Jiang et al., 2022; Zhang Y. et al., 2023) has achieved remarkable success in this context, acclaimed for its real-time processing, multi-scale support, automation, and efficient data handling, thus providing a robust tool for pest and disease monitoring and management in agriculture.

Several researchers have made notable advancements in the field of cotton disease identification and monitoring. Caldeira, R. F. et al (Caldeira et al., 2021)used the convolutional neural network learning models GoogleNet and Resnet50 to monitor the health status of cotton crops, and obtained accuracy rates of 86.6% and 89.2% respectively.

Nannan Zhang et al. (Nannan et al., 2020) presented the CBAM-YOLO v7 algorithm, an improved attention mechanism YOLO v7, with a mAP of 85.5%, providing a strong theoretical foundation for real-time cotton leaf disease monitoring. Yuanjia Zhang et al. (2022a) developed a real-time, high-performance detection model based on an enhanced YOLOX algorithm. The comparative results also demonstrated that the improved model achieved mAP values 11.50%, 21.17%, 9.34%, 10.22%, and 8.33% higher than the other five algorithms, meeting real-time speed detection requirements. According to Liu and Wang (2020), the feature layer of the Yolo V3 model using an image pyramid to achieve multi-scale feature detection, resulting in improved accuracy and speed for the detection of diseases and pests in tomatoes. Zhenyang Xue et al. (2023) proposed YOLO-Tea, an enhanced model based on You Only Look Once version 5 (YOLOv5), outperforming YOLOv5s by 0.3% to 15.0% across all test data. Furthermore, Liu et al. (2023) introduced MRF-YOLO, a deep learning method with multi-receptive field extraction based on YOLOX, integrating a small target detection layer to enhance precision. Jajja et al. (2022) proposed a Compact Convolutional Transformer (CCT)-based approach is to classify the image dataset, achieving an impressive accuracy of 97.2% and proving its effectiveness compared to state-of-the-art approaches. Additionally, Patil and Patil (2021) developed a deep CNN model that accurately collected images throughout the complete process of training and validation in image pre-processing, ensuring high efficiency and accuracy for cotton disease detection. Liang, X (Liang, 2021) proposed a metric learning method for extraction and classification of cotton leaf spot characteristics. By constructing a metric space and using KNN as a point classifier, common models such as Vgg, DenseNet and ResNet were compared. The spatial structure optimizer (SSO) is introduced to perform local optimization of the model. Experimental results show that the average classification accuracy of S-DenseNet is 7.7% higher than the other two networks, and DenseNet shows the highest classification accuracy. Tao, Y et al (Tao et al., 2022). proposed an automatic detection method for cotton diseases, using ConvNeXt to combine the convolutional neural network architecture with the inherent advantages of Transformer. The Multi-Scale Spatial Pyramid Attention (MSPA) module can help ConvNeXt focus on important areas of feature maps. The results show that the model performs well in terms of recognition accuracy and detection speed.

In the realm of identifying pests, diseases, and behaviors using YOLO algorithms, extensive research has been conducted, highlighting their current significance. However, when applied to cotton pests and diseases identification, conventional YOLO algorithms encounter challenges in detecting cotton leaf diseases under natural conditions, difficulty in extracting features from small targets, and low efficiency (Terven and Cordova-Esparza, 2023). To overcome these challenges, this study presents an enhanced method for cotton peat and disease identification, built upon YOLOv8s (Xie and Sun, 2023). This method involves replacing the C2F modules in the backbone network with CFNet modules (Zhang G. et al., 2023) and substituting all C2F modules in the YOLOv8s header with VoV-GCSP modules (Li et al., 2022). It also integrates the LSKNet attention mechanism (Li et al., 2023) into the small target layers of both the backbone network and header. Furthermore, the XIoU loss function is introduced to streamline the model while preserving accuracy, ultimately enhancing the model’s convergence performance.




2 Materials and methods



2.1 Experimental data

The data used in this study were sourced from six publicly available cotton pest and disease datasets on KAGGLE (https://www.kaggle.com/datasets/saeedazfar/customized-cotton-disease-dataset; https://www.kaggle.com/datasets/paridhijain02122001/cotton-crop-disease-detection). Images that were blurry or had indistinct features were removed during data cleaning, resulting in a total of 4,703 images for pests and diseases, as illustrated in Figure 1. Due to data imbalance, data augmentation techniques such as rotation, brightness adjustment, and random cropping were applied (Tang et al., 2020), expanding the dataset to 5,927 images. The training and test datasets were then divided in an 8:2 ratio using random sampling, as shown in Table 1 below. During training, the image size was set to 640×640 pixels.




Figure 1 | Examples of Images of (A) Nocturnal moth larvae (B) Cotton angular leaf spot (C) cotton boll rot (D) Cotton hoarfrost (E) Health and (F) Alternaria leaf spot of cotton.




Table 1 | Information on cotton pest and disease data sets.






2.2 Cotton pest and disease identification



2.2.1 YOLOv8 network structure

YOLOv8 is a state-of-the-art (SOTA) model that builds upon the successes of previous YOLO versions, incorporating novel features and enhancements to further improve performance and versatility. Specific innovations include a new backbone network, a new Anchor-Free detection head, and a novel loss function. Anchor-Free Detection Head: Traditional object detection models utilize anchor boxes to determine the position and size of targets. In contrast, the Anchor-Free detection head learns the key-points or bounding boxes of the targets, thus eliminating the need for anchor boxes. This approach enables the model to better adapt to targets of varying sizes and shapes while reducing the complexity associated with tuning anchor boxes. Novel Loss Function: The loss function serves as feedback during training, assisting the model in fine-tuning its parameters for better target approximation. Currently, the YOLOv8 series has introduced five different versions, namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The model’s parameter and computational complexity increase with the depth and width of the model. Users can choose the appropriate network structure based on their application scenarios. The YOLOv8s version employs a lighter network structure and fewer training data, aiming to maintain relatively fast detection speed and high accuracy while efficiently deploying on embedded devices and small applications (Wang G. et al., 2023). This makes YOLOv8s an ideal choice for real-time object detection applications. Therefore, this paper adopts the YOLOv8s model to meet the demand for efficient object detection. The YOLOv8 model detection network structure, as illustrated in Figure 2 below, comprises the Backbone, FPN, and Head.




Figure 2 | YOLOv8s Network Architecture.



The Backbone serves as YOLOv8’s primary feature extraction network. Images fed into this network initially undergo feature extraction to produce what is commonly referred to as feature layers, a comprehensive set of features derived from the input images. These Feature Pyramid Network (FPN) in YOLOv8 is an augmented feature extraction component. Three significant feature layers obtained from the backbone network are further integrated in this section. The objective of this feature fusion is to combine feature information from various scales. The FPN continues to extract features from the already obtained significant feature layers. YOLOv8 still employs the Panet architecture, which not only up-samples the features for fusion but also down-samples them for an additional fusion. The Head in YOLOv8 serves as the classifier and regressor. Through the Backbone and FPN, we can obtain three enhanced, significant feature layers.




2.2.2 CFNet-VoV-GCSP-LSKNet-YOLOv8s network structure

The network structure of the cotton pest and disease identification model based on CFNet-VoV-GCSP-LSKNet-YOLOv8s proposed in this paper is illustrated in Figure 3.




Figure 3 | CFNet -VoV-GCSP-LSKNet-YOLOv8s network structure.



YOLOv8 is a state-of-the-art (SOTA) model, further categorized into YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The YOLOv8 detection network structure consists of Backbone, FPN, and Head. While the Backbone has a large number of parameters and a long training time, it falls short in the detection of small objects. To address these limitations, we propose a cotton pest and disease identification model based on CFNet-VoV-GCSP-LSKNet-YOLOv8s. Firstly, the CFNet module replaces all C2F modules in the YOLOv8s Backbone. Then, a feature integration operation is inserted in the Backbone, effectively utilizing a large proportion of the Backbone to fuse multi-scale features, thereby improving the model’s recognition rate. Secondly, in the Head of YOLOv8s, the VoV-GCSP module replaces all C2F modules, enhancing the features extracted by the Backbone while also reducing the model size without sacrificing accuracy. Additionally, the LSKNet attention mechanism is incorporated into both the Backbone and Head to improve the detection of small objects. Lastly, the XIoU loss function is introduced to enhance model convergence, thereby achieving accurate identification of cotton pests and diseases.




2.2.3 Cascaded fusion network

In the YOLOv8 Backbone, the C2F module attempts to fuse shallow feature maps with high resolution but limited semantic information with deep feature maps that have low resolution but rich semantic content. However, we argue that this approach might be insufficient for effective multi-scale feature fusion, especially when compared to heavy classification backbones where the parameters allocated for feature fusion are limited. To address this issue, we propose a new architecture named Cascaded Fusion Network (CFNet). Apart from the initial high-resolution feature-extracting Backbone and several blocks, we introduce multiple cascading stages to generate multi-scale features within CFNet. Each stage consists of a sub-backbone for feature extraction and an extremely lightweight transformation block for feature integration. This design allows for a more in-depth and effective fusion of features, leveraging a large proportion of the Backbone’s parameters. By replacing all C2F modules in the Backbone with CFNet and then inserting feature integration operations, we achieve effective fusion of multi-scale features across a significant portion of the Backbone.

The core design philosophy of CFNet involves introducing multiple cascading stages, each stage consisting of a specialized feature extraction sub-backbone and an extremely lightweight transformation block, effectively capturing and merging multi-scale features from fine-grained to coarse-grained. These cascading stages not only process the output from the previous stage but also deeply interact with the corresponding features of the main backbone network, achieving complex feature integration. The feature maps produced by each cascading stage are optimized and merged through specifically designed transformation blocks, enhancing the model’s ability to represent features. This structure is especially suitable for object detection tasks that require efficient multi-scale feature fusion. By optimizing and deeply integrating features at different levels, CFNet improves model performance while maintaining relatively low computational costs.

Suppose   represents the output feature map of the ith cascading stage of the input image, where i represents the sequence number of the cascading stage. F represents the feature extraction function, and T represents the feature transformation function (lightweight transformation block). Thus, each cascading stage can be formally represented as shown in Equation 1:

 

In CFNet, M represents the total number of cascading stages.   is the initial high-resolution feature map (as shown in Equation 2). For feature fusion, suppose   denotes the j fused feature map, corresponding to different spatial resolutions, such as   etc. Each   can be calculated through the output of the cascade and the corresponding transformation function  .

 

In CFNet,. refers to the output of the final cascading stage. The network architecture of CFNet is illustrated in Figure 4.




Figure 4 | CFNet network architecture.



The CFNet architecture commences by inputting an image with spatial dimensions of H × W through a neck and N successive blocks, extracting high-resolution features with dimensions of  . These features are subsequently directed into M cascaded stages for the extraction of multi-scale features. Prior to entry into the M cascaded stages, the extracted high-resolution features are downscaled using a 2×2 convolution kernel with a stride of 2. The network’s architecture at each stage maintains a consistent structural format but varies in scale, comprising differing numbers of processing blocks. Each stage consists of a sub-backbone network and an ultra-lightweight transition block, both dedicated to the extraction and integration of features. For clarity, the assemblage of blocks within each stage, addressing features of the same scale, is termed a block group. The three block groups within the ith stage encompass  ,  , and   blocks, respectively. In the final block group of each stage, a so-called focal block is implemented to enhance feature processing. Each stage outputs features P3, P4, P5 with strides of 8, 16, 32, respectively, of which only P3 features are utilized for input into the subsequent stage. In the network’s final stage, features P3, P4, and P5 are amalgamated, serving dense prediction tasks. By substituting all C2F modules in the backbone with CFNet and incorporating feature integration operations, effective fusion of multi-scale features is achieved throughout a significant portion of the backbone. Figures 5 and 6 provide more details about transition blocks and focus blocks.




Figure 5 | Transition block.






Figure 6 | Focal NeXt block.



As depicted in Figure 5, When given C3, C4, and C5 as inputs, the transition block produces outputs P3 and P4. The term “Conv -dx” refers to a 1×1 convolution operation that outputs a channel number of dx, where dx matches the channel number of the input feature Cx. The circles marked with “+” and “C” represent element-wise addition and concatenation operations, respectively. Additionally, the notation “2x” is used to indicate the upsampling of features by a scaling factor of 2.

This design facilitates the effective integration of multi-scale features. By adjusting the channel dimensions through 1×1 convolutions and managing the spatial resolutions via addition, concatenation, and upsampling operations, the transition block efficiently processes the varied scales of the input features (C3, C4, C5) and transforms them into the desired output formats (P3, P4), which are then suitable for subsequent stages of the network’s processing pipeline.

As shown in Figure 6, N is the number of channels of the output feature. d7×7 represents the 7×7 depth convolution, a7×7 represents the window size, and R is the expansion rate of the additional convolution. GELU is the activation function. Each d7×7 or a7×7 is followed by a LayerNorm layer and a GELU unit. This paper proposes a novel focus block to enlarge the receptive fields of neurons in the last block group of each stage as an effective alternative strategy. The design of the focus module introduces extended depth convolution and two skip connections in the ConvNeXt module, thereby achieving the integration of fine-grained local interaction and coarse-grained global interaction.




2.2.4 VoV-GCSP network structure

The YOLOv8 network employs a substantial number of C2F modules in its neck for feature extraction. However, this structure results in an increase in computational complexity and the number of parameters, leading to significant time consumption. Lightweight networks like Exception and ShuffleNet address the time-consuming issue of standard convolutions by utilizing depth-wise separable convolutions (DSC), albeit at the cost of sacrificing accuracy. The GSConv convolution module is an innovative approach that combines Standard Convolution (SC), Depth-Wise Convolution (DWConv), and channel shuffle operations. The core idea involves partitioning the input channels into multiple groups, performing independent depth-wise separable convolutions on each group to reduce computational complexity. This design aims to mitigate the issue of low recognition accuracy due to insufficient feature extraction and fusion capabilities. The groups are then recombined through channel shuffling. GSConv combines SC, DSC, and Shuffle, exhibiting performance similar to SC but with lower computational costs. The depth layer calculation is shown in Equation 3, and the GSConv layer calculation is shown in Equation 4.

 

 

W and H represent the width and height of the feature map, respectively, and m×n is the size of the convolution kernel. Pin and Pout represent input and output function channel numbers. In scenarios where the input feature channel count escalates, the computational demand of the GSConv convolution diminishes, yet it retains a feature extraction proficiency analogous to its contemporaries. The integration of GSConv has been instrumental in the strategic simplification of the model’s complexity. To augment the inference velocity of the network model, while concurrently preserving its precision in detection, we have implemented the VoV-GSCSP module, building upon the foundational GSConv module. The VoV-GSCSP represents a sophisticated hybrid network architecture, which skillfully merges the attributes of GSConv with the essence of VoVNet, supplemented by the incorporation of (Squeeze-and-Excitation, SE) blocks. This architectural design is meticulously tailored to enhance both the quality and efficiency of feature extraction. By segmenting the convolutional layers into discrete groups, the Grouped Separable Convolution effectively minimizes the parameter count and computational complexity. The Squeeze-and-Excitation blocks intensify the network’s representational prowess by concentrating on salient channel features. This innovative structural design endows the VoV-GSCSP module with the capability to sustain high computational efficiency while simultaneously elevating the feature representation and overall performance of the network. The module, engineered with a one-off aggregation methodology, markedly amplifies the inference speed of the network model, all the while maintaining its superior detection accuracy. The configurations of the GSConv convolution and the VoV-GCSP network are exemplified in Figure 7 and Figure 8.




Figure 7 | GSConv.






Figure 8 | VoV-GSCSP.






2.2.5 Attention mechanism LSK

Attention mechanisms serve as a straight forward effective approach yet to enhance neural representations. Channel attention modules like SE blocks utilize global average information to re-weight feature channels, while spatial attention modules such as GENet, GCNet, and SGE enhance the network’s capability to model contextual information via spatial masks. Techniques like CBAM and BAM amalgamate channel and spatial attentions, leveraging the strengths of both. Beyond channel/spatial attention mechanisms, kernel selection is another adaptive and effective technique for dynamic contextual modeling. LSKNet is designed based on attention mechanisms and kernel selection technologies to better model the features of different targets in remote sensing scenarios. It also boasts advantages like relatively fewer parameters and computational complexity, thereby facilitating improved computational efficiency and speed in practical applications. LSKNet is a novel neural network architecture specifically aimed at remote sensing object detection tasks. It enhances contextual modeling and feature extraction through selective mechanisms and adaptive spatial aggregation, consequently improving the performance in small object detection. A detailed structural comparison is shown in Figure 9.




Figure 9 | Conceptual diagram of the LSK module.






2.2.6 XIoU

The Loss Function is a metric that measures the difference between the predicted values of a model and the actual values. During training, the model attempts to minimize the value of the loss function to improve its accuracy. YOLOv8s adopts the CIoU loss function, composed of position, confidence, and class functions. This traditional loss function generally relies on the aggregation of bounding box regression indicators, without considering the mismatch in direction between the required ground truth boxes and predicted boxes, leading to slow convergence and low efficiency. The XIoU loss function plays a crucial role in object detection tasks by emphasizing varying degrees of overlap between targets. By combining the regression of predicted boxes with real boxes, this loss function prevents issues such as overlapping center points and identical aspect ratios that would degrade into the IOU loss function. This ensures the effective completion of boundary box regression, improving the robustness of the bounding boxes. Therefore, in this study, the XIoU loss function is introduced as an improvement to the model. Compared to the original CIoU loss function, the penalty term gradient of XIoU is smoother, resulting in smaller regression errors and better regression performance. It also effectively enhances the recognition accuracy of cotton leaf diseases and pests.

XIoU calculation formula is as shown in Equation 5:

 

 

 

The penalty term is defined as shown in Equation 8:

 

As shown in Equations 5–8, IoU stands for the traditional regression loss.   represents the squared Euclidean distance between the two rectangular bounding boxes.   represents the square of the diagonal distance between two rectangular boxes. b and bgt denote the central points of the two bounding boxes.   weight coefficient.v is used to measure the consistency of the relative proportions between the two boxes. wgt, hgt, w and h are the width and height of the two boxes, respectively. The primary goal of XIoU is to improve the IoU metric by considering the intersection area between the boxes, offering a better representation of their overlap. The parameter α is used to adjust the difference between XIoU and IoU, thereby reflecting the similarity between the boxes more accurately and accelerating the network’s convergence.






3 Results and discussion



3.1 Improve model identification results and analysis



3.1.1 Experimental setup and evaluation metrics

The model was trained using the PyTorch framework on a laboratory server equipped with an Intel Core i9-10900KF processor, 16 GB of CPU memory, and an NVIDIA GeForce RTX 3080 GPU. The operating environment was Windows 10, with Python 3.8, PyTorch 1.11.0, and CUDA 13.0 used for algorithmic optimization. Training parameters included 150 epochs, a batch size of 8, and an image input resolution of 640×640 pixels. All other settings were kept at their default values.

Performance metrics used for model evaluation included Precision (P), Recall (R), Mean Average Precision (mAP), and model size. Precision is defined as the fraction of true positives among the predicted positives, while Recall measures the fraction of actual positives correctly identified by the model. Mean Average Precision (mAP) serves as a comprehensive performance metric. The above indicators such as Equations 9–12 shown.

 

 

 

 

In the equations, TP represents the number of true positives, FP stands for false positives, and FN signifies false negatives.




3.1.2 Cotton pest and disease recognition results

To validate the superior performance of the proposed CFNet- VoV-GCSP -LSKNet -YOLOv8 architecture for the identification of six types of cotton pests and diseases, we compared our model with the original YOLOv8s algorithm, as shown in Table 2.


Table 2 | Comparison of average precision mean values for cotton pests and diseases.



From Table 2, it can be observed that the method proposed in this paper for identifying six types of cotton pests and diseases—namely, noctuid larvae, cotton angular leaf spot, cotton boll rot, cotton powdery mildew, healthy cotton, and cotton black spot—achieves an average precision mean (mAP@0.5) improvement compared to the original model of 0.9%, 0.6%, 0.1%, 2.4%, 1.1%, and 2.2%, respectively.

Among the six types of cotton pests and diseases, the average precision mean (mAP@0.5) for cotton black spot is the lowest, with only 74.3%. Analysis indicates that the blurriness of the original data images led to this subpar performance. However, with the application of our method, there is a 2.2% improvement over the original model, resulting in an overall average precision mean (mAP@0.5) of 93.7%, an increase of 1.2% compared to YOLOv8s. This demonstrates that our model’s feature extraction capability has been enhanced for images with suboptimal quality. The results of the method proposed in this paper for identifying cotton pests and diseases are shown in Figure 10:




Figure 10 | Recognition results of this paper’s method: (A) Nocturnal moth larvae (B) Cotton angular leaf spot (C) cotton boll rot (D) Cotton hoarfrost (E) Health and (F) Alternaria leaf spot of cotton.






3.1.3 Ablation study results

To validate the efficacy of the improvements made to the original algorithm by the cotton pest and disease identification method based on the CFNet-VoV-GCSP-LSKNet-YOLOv8s network structure proposed in this paper, an ablation study was designed. The original network and the network improved with various modules were tested on a test dataset. The results are shown in Table 3:


Table 3 | Ablation test results.



	Model 2, the first improvement, replaces all C2F modules in the backbone with CFNet modules, resulting in a 2.7% increase in Precision (P), a 0.3% increase in Recall (R), and a 0.8% increase in Mean Average Precision (mAP). This indicates that the CFNet module effectively fuses multi-scale features and improves model recognition accuracy.

	Model 3 replaces all C2F modules in the YOLOv8s head with VoV-GCSP modules, leading to a 1% increase in R and a 0.4% increase in mAP. However, P decreased by 0.5%, but the overall performance is still better than the original model, suggesting that the neck structure composed of VoV-GCSP modules enhances the features extracted by the backbone.

	Model 4 adds the LSKNet attention mechanism compared to YOLOv8s, resulting in a 1% increase in P and a 0.2% increase in mAP, suggesting that the LSKNet attention mechanism strengthens the model’s ability to recognize small objects.

	Model 5 incorporates both CFNet and VoV-GCSP modules, leading to a 1.2% increase in P, a 0.1% increase in R, and a 0.9% increase in mAP.

	Model 6, based on the improvements in Model 5, further incorporates the LSKNet attention mechanism and replaces the loss function with XIoU. It turns out that Model 6 has the highest precision among all the models. Compared to the original model, it increases P by 2%, R by 1%, and mAP by 1.2%, demonstrating that the improved model outperforms YOLOv8s in recognition performance and effectively enhances cherry detection capabilities.



To further validate the effectiveness and practicality of the method proposed in this paper, the location loss values of CFNet-VoV-GCSP-LSKNet-YOLOv8s and YOLOv8s are shown in Figure 11 after 150 training iterations. As can be seen from Figure 11, the convergence speed of the proposed method is faster, and its convergence performance is superior to that of the YOLOv8s model.




Figure 11 | Comparison of positional loss values.






3.1.4 Comparison of different models

To verify the effectiveness of the cotton pest and disease identification method based on the CFNet-VoV-GCSP-LSKNet-YOLOv8s model proposed in this paper, we compared it with YOLO v5s (Jiang et al., 2022), YOLOX (Ge et al., 2021; Zhang et al., 2022b), YOLOv7 (Cao et al., 2023; Wang C-Y. et al., 2023), Faster R-CNN (Li, 2021; Qiao et al., 2021).

YOLO v8s, YOLOv8n, YOLOv7-tiny, CenterNet and EfficientDet. Among them, YOLOv8s, YOLO v5s, YOLOv7, YOLOv8n, YOLOv7-tiny, CenterNet and EfficientDet are currently mainstream object detection algorithms, while YOLO X and Faster R-CNN have shown better performance in other studies. To validate the superiority of the proposed method, all model training processes maintained consistent parameter settings. The comparison results are shown in Table 4.


Table 4 | Comparison of recognition effect of different models.



As delineated in Table 4, the proposed method demonstrates marked improvements in performance metrics over existing methods. Specifically: When compared with YOLO v5s, YOLO v7, YOLOv8n, YOLOv7-tiny, EfficientDet and YOLOv8s, the precision of our model improved by 1.4%, 11.4%, 5.5%, 2.2%, 2.1% and 2% respectively. Additionally, recall rates saw increases of 1.9%, 11.6%, 5.4%, 49.2%, 20% and 1%, and the mean average precision (mAP) advanced by 2.3%, 12.5%, 3.7%, 21.8%, 12.1% and 1.2%. While our method registers a slight decline in precision relative to YOLOX, it compensates with a 4% increase in recall and a 5% boost in mAP. As for Faster R-CNN, although the recall rate was marginally lower by 0.5%, the model achieved a substantial enhancement in precision by 29.1%, along with a 9% improvement in mAP. Compared with CenterNet, although the precision is 5.9% lower, the mAP is 4.9% higher and the recall rate is 25.6% higher. In terms of computational resource consumption, our model is second only to YOLO v5s, YOLOv8n and YOLO v8s. The detection time of the improved algorithm is 8.01ms. Although slightly lower than the fastest detection speed YOLOv8n and YOLO v8s, other performance indicators of the detection algorithm are better than this model. Therefore, based on the overall detection performance indicators of the model, the algorithm in this paper has great advantages in both recognition accuracy and speed. Collectively, these results validate the effectiveness of the proposed method, positioning it as superior in object detection performance. Figure 12 offers further insights into the comparative performance of various models. While the proposed method slightly lags behind YOLO v5s in terms of convergence speed during the initial 17 iterations, it surpasses all competing models in both convergence speed and mAP following the 17th iteration.




Figure 12 | Variation curves of mAP for different models.








4 Discussion

In order to verify the robustness and effectiveness of the model, the YOLOv8s original model and the Proposed Method were tested on datasets collected from the Kaggle website, which include grape and coffee disease datasets. The grape disease dataset consists of four types of diseases (Black Rot, Grape Esca, Grape Healthy, and Leaf Blight), totaling 3330 images. The coffee disease dataset consists of ten types (Coffee White Stem Borer, Citrus Mealybug, Coffee Berry Borer, Coffee Root-knot Nematode, Coffee Berry Moth, Coffee Leaf Miner, Coffee Twig Borer, Coffee Seedling Sudden Collapse Disease, Coffee Seedling Damping-off Disease), totaling 4500 images. The experimental results are shown in the table below.

As shown in the table above, the precision, recall rate, and mAP of Proposed Method have improved in grape disease identification, increasing by 0.1%, 0.1%, and 0.15% respectively. The precision, recall rate, and mAP of Proposed Method in identifying coffee diseases have been greatly improved, increasing by 1%, 2.8%, and 1.8% respectively. It shows that the Proposed Method has a good recognition effect on public plant disease data sets, thus proving that the model has good robustness and effectiveness. In the future, the Proposed Method can be applied in various fields.




5 Conclusions

This paper proposes a cotton pest and disease recognition method based on CFNet-VoV-GCSP-LSKNet-YOLOv8s. By replacing all C2F modules in the backbone of YOLO v8s with CFNet modules and incorporating feature fusion operations, the method effectively utilizes a significant proportion of the backbone network to fuse multi-scale features. In the head of YOLOv8s, we replaced all C2F modules with VoV-GCSP modules. This enhances the features extracted by the backbone while reducing the model’s complexity and maintaining its accuracy. We also introduced the LSKNet attention mechanism in both the backbone and the head to improve the model’s ability to recognize small targets. Finally, the XIoU loss function was introduced to improve the model’s convergence performance. As shown in Table 5: experimental results show that the proposed method can effectively identify cotton pests and diseases with an average accuracy of 93.7%, demonstrating its effectiveness.


Table 5 | Comparison of results for different diseases.



Compared with YOLO v5s, YOLOX, YOLO v7, Faster R-CNN, YOLOv8n, YOLOv7-tiny, CenterNet, EfficientDet and YOLOv8s, the average accuracy improved by 2.5%, 5%, 12.5%, 9%, 3.7%, 21.8%, 4.9%, 12.1% and 1.2% respectively, indicating that the method proposed in this paper performs better in recognizing cotton pests and diseases. In addition, the model in this article was applied to grape and coffee diseases, which greatly improved the disease identification rate, indicating that the model has good robustness and effectiveness.

While CFNet-VoV-GCSP-LSKNet-YOLOv8s demonstrates considerable prowess in numerous domains, there is still potential for advancement in its efficacy in detecting cotton leaf spot disease. Looking forward, our ambition is to enrich YOLOv8s’s backbone network with a sophisticated multi-channel scale attention mechanism, aimed at enhancing the precision in capturing the characteristics of plant diseases. Concurrently, by refining the final prediction bounding box optimization and the Adam optimizer within YOLOv8s, we aspire to elevate the model’s recognition proficiency. Moreover, in tandem with real-world application demands, our objective includes the development of mobile applications. This endeavor is geared towards translating our research findings into pragmatic tools, offering robust and practical solutions in the realms of agriculture and plant protection, thereby facilitating the deployment of this technology in real-world scenarios.
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In commercial forestry and large-scale plant propagation, the utilization of artificial intelligence techniques for automated somatic embryo analysis has emerged as a highly valuable tool. Notably, image segmentation plays a key role in the automated assessment of mature somatic embryos. However, to date, the application of Convolutional Neural Networks (CNNs) for segmentation of mature somatic embryos remains unexplored. In this study, we present a novel application of CNNs for delineating mature somatic conifer embryos from background and residual proliferating embryogenic tissue and differentiating various morphological regions within the embryos. A semantic segmentation CNN was trained to assign pixels to cotyledon, hypocotyl, and background regions, while an instance segmentation network was trained to detect individual cotyledons for automated counting. The main dataset comprised 275 high-resolution microscopic images of mature Pinus radiata somatic embryos, with 42 images reserved for testing and validation sets. The evaluation of different segmentation methods revealed that semantic segmentation achieved the highest performance averaged across classes, achieving F1 scores of 0.929 and 0.932, with IoU scores of 0.867 and 0.872 for the cotyledon and hypocotyl regions respectively. The instance segmentation approach demonstrated proficiency in accurate detection and counting of the number of cotyledons, as indicated by a mean squared error (MSE) of 0.79 and mean absolute error (MAE) of 0.60. The findings highlight the efficacy of neural network-based methods in accurately segmenting somatic embryos and delineating individual morphological parts, providing additional information compared to previous segmentation techniques. This opens avenues for further analysis, including quantification of morphological characteristics in each region, enabling the identification of features of desirable embryos in large-scale production systems. These advancements contribute to the improvement of automated somatic embryogenesis systems, facilitating efficient and reliable plant propagation for commercial forestry applications.
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1 Introduction

The propagation of conifers, such as Pinus radiata D. Don., holds significant importance for meeting global timber demands, reforestation efforts, and the preservation of natural ecosystems. With the growing need to ensure sustainable and efficient conifer propagation, advanced techniques for mass propagation of high-quality genetics are of high importance.

Somatic embryogenesis (SE) is an advanced developmental method by which plants can regenerate bipolar structures from a somatic cell (Méndez-Hernández et al., 2019). These bipolar structures in their development and morphological features resemble their zygotic counterparts (von Arnold et al., 2020). In conifers, SE is the preferable method of propagation due to the possibility of long-term cryo-storage of the embryogenic tissue. It is a multi-step process, starting with induction of embryogenic tissue, followed by proliferation and formation of early somatic embryos in the presence of auxins and cytokinins. The development continues with the change of nutrient media. Addition of abscisic acid enhances the maturation of somatic embryos which is followed by germination and regeneration of the intact plantlet (Stasolla and Yeung, 2003). The success of plantlet regeneration is dependent on the proper execution of each step and several chemical and physical stimuli may be employed (Filonova et al., 2002; von Arnold et al., 2020). In the end of the maturation process a population of somatic embryos is obtained consisting of a mixture of pre-cotyledonary and cotyledonary somatic embryos and remains of the proliferating tissue as the maturation process is unsynchronized (Stasolla and Yeung, 2003).

The selection of high quality mature somatic embryos and the transfer into germination conditions is traditionally done manually by trained personnel. A trained tissue culturist will select embryos from the population based on qualitative assessment of morphological features such as size, shape, and the number of cotyledons. Since this is a very labour-intensive process, the latest advances in the tissue culture technologies focus on the automation of this process, either by using fluidics systems or picking robots for the isolation of individual mature embryos from the surrounding tissue (Find and Krogstrup, 2008; Egertsdotter et al., 2019). Selection of high-quality somatic embryos requires fast decision making based on morphological criteria, with the somatic embryo either being accepted or rejected. The basis of this process is the accurate quantification of mature somatic embryo characteristics from imagery, providing the foundation for subsequent analysis. Several studies have used morphological features related to shape and size derived from images to assess germination potential or somatic embryo quality (Uozumi et al., 1993; Zhang et al., 1999; Le et al., 2021). The crucial first step in quantifying such characteristics is the automated delineation of the embryo boundary, including any specific regions of interest. The extracted data can provide valuable insights into the development of the embryos, as well as help improve the efficiency and success rates of the SE process.

For the past three decades, artificial intelligence techniques have been increasingly used in the tissue culture space; previously explored AI models have included artificial neural networks, neurofuzzy logic, support vector machines, decision trees and random forest (Hesami and Jones, 2020). Their applications include prediction of length, number of microshoots and roots, biomass prediction, optimization of environmental conditions, as well as automated somatic embryo and micro-shoot classification (Prasad and Gupta, 2008; Osama et al., 2015; Hesami and Jones, 2020).

Previous studies perform segmentation of somatic embryos using binary image thresholding to automatically segment mature somatic embryos in greyscale images and as a result can obtain the embryo area and boundary (Hamalainen and Jokinen, 1993; Hamalainen et al., 1993; Uozumi et al., 1993; Chi et al., 1996; Find and Krogstrup, 2008; Le et al., 2021). Binary image thresholding involves converting a greyscale or colour image into a black and white (binary) image, then selecting a threshold value and assigning pixel values based on whether they are above or below the chosen threshold. Le et al. (2021) use binary image thresholding in greyscale images of Norway spruce in their use of the fluidics system (Le et al., 2021). Similarly, Hamalainen et al. (1993) used a binary threshold in high contrast bottom view greyscale images of birch (Betula pendula Roth) somatic embryos (Hamalainen et al., 1993). Likewise (Find and Krogstrup, 2008), used a binary threshold on images of nordmanns fir (Abies nordmanniana) and sitka spruce (Picea sitchensis) somatic embryos. Uozumi et al., 1993 used the same for segmenting celery embryos (Uozumi et al., 1993). Chi et al. (1996) used a binary threshold to distinguish carrot somatic embryos from the background, followed by a thinning algorithm to remove open contours and noise generated in the acquisition process. These approaches achieved satisfactory segmentations as the images had very high levels of contrast between the objects and background. However, thresholding techniques are unable to distinguish between different regions containing similar spectral values such as the upper and lower part of the embryo or between cotyledons with almost identical spectral intensities. Additional challenges for pine somatic embryos included the size of the embryos, the wide variations in the number of cotyledons per embryo and the overlapping nature of the cotyledons, making them difficult to distinguish in a single lateral view image. These factors make our tasks challenging for traditional image processing methods and make our data a good candidate for more sophisticated methods which utilise deep learning.

Advancements in deep learning and computer vision have opened new possibilities for automating the analysis of somatic embryo images. Deep learning is a form of machine learning where a model is typically trained on a set of examples related to the specific task (Janiesch et al., 2021). In the task of image segmentation, training examples are provided in the form of images and their corresponding annotations, also known as masks in the computer vison community. Deep learning methodologies utilising convolutional neural networks (CNNs) are revolutionising the way various image-related tasks are solved. These networks are capable of automatically extracting complex spatial and structural information from images, enabling them to accurately differentiate between different objects, regions, or categories within an image (Yamashita et al., 2018). These capabilities provide several advantages over traditionally used somatic embryo image segmentation techniques such as pixel thresholding with size filtering. Thresholding methods strongly rely on pixel intensities being different between classes and ignores the spatial component of neighbouring pixels. Therefore, as we are interested in delineating regions belonging to the same pixel intensities, we have opted to not use thresholding-based methods which rely purely on differences in intensities. The complexity of CNNs allow them to consider clusters of pixels to learn relevant shapes, patterns, and structures at different levels of abstraction, similar to the way humans use vision. This enables them to distinguish different objects or categories in regions of similar spectral intensity. It also allows them to be far more robust to regions containing noise such as reflections, shadows, and out of focus areas. As a result, CNNs have achieved state-of-the-art performance in image classification, object detection, and segmentation tasks (Taye, 2023).

In biological microscopy, deep learning has demonstrated promising performance in a range of segmentation applications including semantic segmentation of human oocyte (Targosz et al., 2021), semantic and instance segmentation for cell nuclei (Caicedo et al., 2019) and semantic segmentation potato tuber (Biswas and Barma, 2020). Examples of plant phenotyping applications include semantic and instance segmentation for plant leaf detection and counting (Aich and Stavness, 2017; Giuffrida et al., 2018; Itzhaky et al., 2018; Jiang et al., 2019; Fan et al., 2022), semantic and instance segmentation for crop phenotyping (Jiang and Li, 2020), grapevine leaf semantic segmentation (Tamvakis et al., 2022), barley seed detection from instance segmentation (Toda et al., 2020) and many other applications (Kolhar and Jagtap, 2023).

In this work, we focus on two widely used variations of CNN based segmentation networks: semantic segmentation and instance segmentation. Semantic segmentation is a computer vision technique used to assign a class label to each pixel in an image, while instance segmentation distinguishes individual instances of the same class by using a box detection step followed by pixel-level segmentation. Both techniques enable automated delineation of class boundaries as well as the area of the image they occupy, therefore, we evaluate and compare them as potential solutions to this pixel-level segmentation task. However, as instance segmentation allows for the delineation of individual instances, we additionally evaluate its’ ability to predict the number of cotyledons. In deep learning, the categories of interest within the image are referred to as classes, which, for our images, are the hypocotyl and cotyledon regions. Long et al. (2015) proposed the Fully Convolutional Network (FCN) a variant of CNN, which significantly increased segmentation accuracy over previous segmentation approaches (Long et al., 2015). In the following years, FCNs paved the way for deep-learning-based semantic segmentation. Residual Network (ResNet) is the variant of FCN we employ in this work for both semantic and instance segmentation, for its proven ability to learn fine-grained segmentation tasks (He et al., 2016).

Several techniques exist for counting overlapping objects including deep learning approaches such as CNN instance segmentation networks (Toda et al., 2020) and CNN based regression networks (Giuffrida et al., 2018; Itzhaky et al., 2018), and non-deep learning approaches such as distance transform combined with the watershed algorithm (Itakura and Hosoi, 2018). We chose instance segmentation for its’ ease of implementation and proven ability to perform multi-class detection and segmentation, allowing for counting of objects and enabling us to obtain semantic segmentations of cotyledon and hypocotyl regions. Instance segmentation provides an additional level of information to semantic segmentation and can distinguish individual instances of regions belonging to the same class. Instance segmentation does this by using an initial box detection step, which assigns an ID to each individual instance before proceeding to segment pixels inside that box to obtain the instance boundary. This allows for a more detailed further analysis enabling for counting and, if desired, individual measurements per instance.

The number of cotyledons in coniferous species is a distinctive feature for discrimination and serves as a valuable parameter for assessing the efficacy of maturation protocols in somatic embryogenesis, a biotechnological method applied for the propagation of these species (Chandler, 2008; Wang and Ran, 2014). The variation in cotyledon number within a given gymnosperm species correlates with embryo size, which alters from year to year (Butts and Buchholz, 1940). In somatic embryos, there is a greater degree of variation in cotyledon number compared with zygotic embryos (Harrison and Von Aderkas, 2004), and this number is an indicator of maturity (Zhang et al., 1999). For instance, normally developed Douglas fir somatic embryos typically have 4 to 7 cotyledons, with numbers outside this range considered abnormal (Zhang et al., 1999). Somatic embryo development is regulated by timed applications of exogenous plant growth regulating substances (PGRs), and the germination potential is notably influenced, as only embryos possessing a sufficient number of cotyledons demonstrate successful germination.

There has been limited research on delineating the cotyledon region or individual cotyledons from the rest of the embryo in mature somatic embryo image analysis. Timmis et al. (2015) considered both cotyledon count and length from segmented images of Douglas-fir SE. Barry-Etienne et al. (2002) digitized coffee somatic embryo cotyledons in a scanner, then manually obtained cotyledonary area and filtered them into small, medium, and large categories based on area, before correlating sizes with conversion into plantlets. They found embryos with large cotyledons to have a significantly lower conversion rate compared to the smaller categories (Barry-Etienne et al., 2002). Delineating the cotyledon region allows for measuring morphological features such as cotyledon region length, width and area, as well as computing the ratio of cotyledon to hypocotyl area. These findings underscore the crucial role that the number of cotyledons plays in shaping the outcomes of somatic embryogenesis and highlight the need for further research in this area.

In this study we use convolutional neural networks for the automated analysis of mature somatic embryo for two key image analysis tasks. The first aim was to compare and investigate the potential of semantic segmentation and instance segmentation for automated segmentation of the hypocotyl and cotyledon regions in Pinus radiata mature somatic embryo images. Our second aim was to accurately predict the number of cotyledons per embryo from instance segmentation by obtaining individual cotyledon detections from instance segmentation. To the best of our knowledge, this is the first work using deep learning for the automated annotation of somatic embryo images of conifers and the first to use instance segmentation to detect individual cotyledons as a way of obtaining cotyledon counts.




2 Materials and methods



2.1 Plant material

A total of 658 mature somatic embryos from six embryogenic cell lines of P. radiata were included in this study. 275 were annotated and used in training and testing from cell lines A, B, and C, with the remainder 383 from cell lines D, E, and F used as an independent set. Mature somatic embryos were produced on semi-solid culture media as previously described (Poovaiah et al., 2021; Reeves et al., 2023). All somatic embryos were collected manually with forceps and placed on germination medium (Reeves et al., 2023) in a regular pattern as illustrated in Figure 1. A range of morphologically normal (good) and abnormal (bad) embryos were included in this study.




Figure 1 | Arrangement of mature Pinus radiata somatic embryos on Petri plate with germination medium on the day of collection.






2.2 Image acquisition

On the day of collection, lateral view images of individual mature somatic embryos were captured with a LEICA MZ FLIII stereomicroscope under 1x objective lens, and 0.8x ocular tube magnification, with an Axiocam 105 colour camera. Raw image size was 2560 x 1920 pixels, with a resulting pixel size of 4.8µm.




2.3 Image annotation

The training of CNNs based models requires a variety of manually annotated images to provide the network with examples of what cotyledon and hypocotyl regions look like. Computer Vision Annotation Tool (CVAT) was used for manual image annotation of hypocotyl and individual visible cotyledons (CVAT.ai, 2022). Figure 2 depicts an annotated embryo. For instance segmentation the annotations were exported as a CVAT COCO JSON 1.0 format. In the case of semantic segmentation, cotyledon instances were merged into a single class called cotyledon, and annotations were exported as Segmentation Mask 1.1 format which provides an individual PNG file per image with pixels coloured by their class.




Figure 2 | Annotated image of a Pinus radiata somatic embryo. The individual cotyledon instances make up the cotyledon region for semantic segmentation (outlined in green). The entire lower region is classified here as hypocotyl (outlined in pink).



The dataset of 275 colour images was randomly split into a ratio of 70:15:15 for training, validation and testing sets, respectively, resulting in 42 images in the test set (Table 1). 1866 polygons were annotated in total which included 1591 individual visible cotyledons (Table 1).


Table 1 | Number of instances and Pinus radiata somatic embryo images for cotyledon and hypocotyl classes for training, validation, and testing sets.



For an additional 383 embryo images, across three different cell lines (D, E, F), we recorded the number of visible cotyledons to evaluate the model’s ability to detect cotyledons from cell lines the model had never seen before.




2.4 Deep learning

Deep learning instance segmentation was used to automatically segment the individual instances of hypocotyl and cotyledons allowing for automated cotyledon detection and counting. The Mask R-CNN model (He et al., 2017) was trained using open-source python library Detectron2 (Wu et al., 2019). ResNet-101 (He et al., 2016) was used as the feature extractor and Feature Pyramid Network (FPN) (Lin et al., 2017) as the decoder. We utilized a pre-trained network trained on the ImageNet dataset to help account for the relatively small dataset size. Transfer learning from ImageNet was employed to leverage the feature representations learned from this large dataset, enhancing the network’s ability to capture meaningful features on our specific task with a relatively small dataset. Fine-tuning on our target task of hypocotyl and cotyledon detection allows the model to adapt its learned features for this objective. ResizeShortestEdge, a widely used Mask R-CNN transformation, was used to train the model on different input size images with the short edge length set value to 1100 and max size value set to 1500 for model training. The network was trained on an NVIDIA RTX 3090 GPU with 24GB of memory with a batch size of 2 for 100,000 iterations (equivalent to 260 epochs) with the default learning rate of 0.001. The model which gave the highest segmentation mask mean average precision (MAP) on the validation set was used for inference on the testing set. The stochastic gradient descent optimizer was used for the network optimization. To enable a direct comparison with semantic segmentation predictions, the individual instance predictions were merged according to their class and converted to multiclass segmentation masks (Figure 3). In cases where there was overlap between cotyledon and hypocotyl instances, we set the hypocotyl pixels to foreground to override the cotyledon pixels as this represents a delineation between the two regions more similar to that of the data annotation method.




Figure 3 | Deep learning workflow for Pinus radiata somatic embryo segmentation. Images are captured under a high-resolution microscope before being manually annotated to train and evaluate the two neural networks. For Mask R-CNN instance segmentation, cotyledon instance predictions are combined to derive a segmentation mask for direct comparison of pixel-wise metrics with ResNet semantic segmentation. Additionally, individual instances detected in boxes allow for cotyledon counts to be derived and a range of performance metrics are evaluated.



Mask R-CNN detection metrics

	

where C is equal to the number of classes AP is the average precision per class. It is obtained by computing the area under the precision-recall curve to get AP for both classes. The mean of the APi values across all classes gives the final mean average precision (MAP) score. This metric was only used to select the best performing instance segmentation model.

Deep learning semantic segmentation was used to automatically identify pixels belonging to the hypocotyl and cotyledon regions. The model was trained using open-source Segmentation Models PyTorch python library (Yakubovskiy, 2021). To match the encoder-decoder architecture of the Mask R-CNN network, we used ResNet-101 as the segmentation encoder and FPN as the decoder, also pretrained on the ImageNet database. Dice loss was used as the loss function to train the network and Adam was used as the network optimization function with a learning rate of 0.0001. The network was trained for 100 epochs with a batch size of 2 and the final model used for inference on the test set was the one which gave the highest IoU score on the validation set. For both models, the data augmentation techniques of horizontal flip, random crop, and random rotate were used. Data augmentation involves creating different transformations of the image-mask pairs and providing them as additional examples for the model to learn from. This forces the model to learn additional patterns and information that was not present in the raw images, improving the model’s ability to generalise to embryo or genotypes it has never seen before. Images were converted to greyscale for training both models. For a comparison with the ability of instance segmentation to do the same, the predicted cotyledon instances were merged to form the single cotyledon region mask for evaluating segmentations (Figure 3). Figure 3 shows the end to end workflow of the two approaches from data annotation to testing and comparing the approaches on the test images.

Commonly used image segmentation metrics, intersection over union (IoU), precision, recall, and F1 score were used to evaluate the segmentation performance of both models. To evaluate the performance of cotyledon count predictions, we adopt similar regression metrics as the previously mentioned studies on leaf counting and compute the following regression metrics: the mean squared error (MSE), along with the difference in counts (DiC) and absolute difference in counts (ADiC) which are equivalent to the more widely known mean error (ME) and mean absolute error (MAE) respectively. A final metric, agreement percentage, was also computed, which quantifies the percentage of embryos where the model correctly detected the exact number of cotyledons. These metrics were calculated as follows:




2.5 Semantic segmentation metrics

Precision quantifies the proportion of true positive predictions among all positive predictions:

	

Recall quantifies the proportion of actual positive instances that are correctly identified:

	

where TP represent the True Positives which are the correctly predicted positive observations, FP represents the False Positives which are the incorrectly predicted positive observations and FN represents the False Negatives which are the incorrectly predicted negative observations. These are computed for every pixel.

F1-score is considered the harmonic mean of both precision and recall:

	

  represents the ratio of intersected area (TP) to the combined area (TP+FP+FN) of the predicted and ground truth masks (Figure 4):




Figure 4 | Examples of ground truth segmentation mask, predicted mask, and both together applied to images of mature somatic embryos of Pinus radiata. False Positive (FP), True Positive (TP) and False Negative (FN) were used to compute IoU.



	




2.6 Cotyledon counting metrics

Mean Error (ME) calculates the average of the differences between predicted and ground truth values. 

Mean Absolute Error (MAE) calculates the average of the absolute differences between predicted and ground truth values.

	

where n is the total number of embryo, yi is the ground truth value for embryo i and   is the predicted value.

Mean Squared Error (MSE) calculates the average of the squared differences between the predicted values and ground true values.

	

Agreement percentage computes the ratio of the number of embryo where the predicted cotyledon count is equal to the actual value out of all embryo.

	





3 Results



3.1 Semantic segmentation

The per-class segmentation results from semantic segmentation are reported in Table 2. For the cotyledon class, the segmentation model achieved precision of 0.942, recall of 0.915, and F1-score of 0.929. The hypocotyl class segmentation demonstrated a precision of 0.922, recall of 0.942, and F1-score of 0.932. We also evaluated the overall segmentation accuracy using the Intersection over Union (IoU) metrics. The IoU scores for the cotyledon, and hypocotyl classes were 0.867, and 0.872 respectively. It is common for the IoU score to be lower than the other metrics due to the formula penalizing the prediction for both false positives and false negatives.


Table 2 | Semantic segmentation evaluation metrics for each class on the test dataset of Pinus radiata somatic embryos.



The per-class semantic segmentation results from the instance segmentation approach are reported in Table 3. For the cotyledon class, the segmentation model achieved precision of 0.963, recall of 0.896, and F1-score of 0.928. The hypocotyl class segmentation demonstrated a precision of 0.915, recall of 0.959, and F1-score of 0.937. The IoU scores were similar to semantic results, with values of 0.866, and 0.881 for the cotyledon and hypocotyl classes respectively.


Table 3 | Instance segmentation evaluation metrics for each class on the test dataset of Pinus radiata somatic embryos.



Figure 5 illustrates the manual annotation and both the semantic and instance segmentation prediction masks for six embryos, with two from each of the three cell lines. The semantic segmentation approach resulted in better masks (region boundaries) from a visual perspective, while the instance segmentation approach resulted in gaps between and within regions. Both approaches generally did well at segmenting the lower end of the hypocotyl (Figure 5 B1, B2, C1 and C2). Results for both methods showed they were able to ignore residual proliferating embryogenic tissue attached to the embryo, with segmentations of embryo in A1, A2, B1 and C2 demonstrating this. Segmentation performance in the cotyledon-hypocotyl boundary was notably less accurate for instance segmentation when compared with the manual annotation, e.g. in A1 where there is a significant curve in the upper hypocotyl predicted mask. Similarly, instance segmentation commonly displayed gaps between these two regions (A1, B1, B2, C1). Apart from this, both methods showed good ability to ignore bright non-embryo noise containing regions in the image, with the left side of A2 being a clear example of this. Row C2 shows instance segmentation incorrectly detecting an artifact (a label on the petri plate lid) as a cotyledon. In one image, the instance segmentation model confused the whole embryo as being a cotyledon which results in a significantly worse segmentation mask compared to the semantic segmentation prediction. However, for this long narrow embryo, the hypocotyl region was segmented more accurately compared to the semantic segmentation mask. Row B2 highlights another image where semantic segmentation resulted in a significantly better segmentation, this time for the cotyledon region with instance segmentation resulting in gaps in the cotyledon region. Attached residual proliferating embryogenic tissue appeared on a small number of embryos, as shown at the bottom part of the embryos A1 and A2 in Figure 5, and the model was still able to correctly ignore these as not belonging to the embryo.




Figure 5 | Examples of segmentation mask predictions compared with manual annotation of Pinus radiata somatic embryos (on original colour images) for both semantic segmentation and postprocessed instance segmentation masks for two embryos from each of the three cell lines (A–C) respectively.






3.2 Instance segmentation for detection of individual instances

Figure 6 shows a visual evaluation of instance segmentation predicted instances of the hypocotyl and cotyledons per embryo for three examples from the test set. For embryo A and C, the exact number of cotyledons were detected, and for embryo B, an error value of one was seen, as seven cotyledons were detected when there were eight manually identified. For embryo B, the network demonstrated the ability to detect small and barely visible cotyledon instances shown by the small blue and grey instances on the far side of the cotyledon region. The cotyledon that was not detected by the network is barely visible to the human eye unless zooming in. It is a small tip located on the far-right hand side of embryo B and is almost fully occluded by another cotyledon.




Figure 6 | Raw images of Pinus radiata somatic embryos and corresponding instance segmentation masks derived from Mask R-CNN. Displaying the manually identified number of cotyledons as green text and the model detected number as orange text, for embryos from three different cell lines (A-C). Different region colours represent different instances detected. The largest instance represents the hypocotyl in each image.






3.3 Cotyledon counts

Figure 7 shows the visual distribution of cotyledon counts per cell line were not skewed towards high or low counts, with four to seven cotyledons being most common. This depended on cell line with cell lines B and C having similar distributions compared to cell line A where the average cotyledon count was a little lower. Cell lines A, B, and C had a median of five, six, and six cotyledons per embryo, respectively (Figure 7). Overall, the minimum number per embryo was 1 and the maximum number was eleven. This shows a wide variation in the number of cotyledons for Pinus radiata somatic embryos. Cell lines D, E and F had median cotyledon counts of six, five, and five respectively, with non-skewed distributions and almost all embryo having at least one cotyledon and less than ten (Figure 8).




Figure 7 | Boxplots of the number of manually identified cotyledons of Pinus radiata somatic embryos for cell lines (A-C) from microscope images.






Figure 8 | Boxplots of the number of manually identified cotyledons of Pinus radiata somatic embryos for cell lines D, E and F which were not used to train the model.



Table 4 shows the validation and test set counting results from the cotyledon instances detected by the Mask R-CNN approach. The network achieved an ME of -0.19 (0.88), MAE 0.48 (0.76), and MSE of 0.81 for the validation set. For the test set, an ME of -0.31 (0.83) MAE 0.60 (0.66), and MSE of 0.69 was obtained. Small negative values for the ME show that the network had a small bias to underpredict the number of cotyledons. The test MAE score of 0.60 is a promising performance as it shows that on average, the networks error was less than 1 cotyledon per embryo. The agreement percentage was 50%, meaning exactly half of the embryos had the cotyledon count predicted correctly.


Table 4 | Cotyledon count metrics for the 42 Pinus radiata somatic embryos in the validation and test datasets from cell lines A, B and C.



For the cotyledon counts of the three unseen cell lines, the network performed similarly well, demonstrating ME scores of 0.01 (0.70), 0.05 (0.77) and -0.18 (0.91) for cell lines D, E, and F respectively (Table 5). MAE scores were 0.43 (0.55), 0.47 (0.61), and 0.51 (0.78), respectively. The network returned MSE scores of 0.49, 0.60 and 0.86, respectively. Agreement scores obtained were 59.4, 58.1 and 61.5, respectively, which suggests the counting approach performed better on unseen cell lines than on the test set. This could be due to the larger sample size allowing for a more comprehensive evaluation of the approach’s performance.


Table 5 | Cotyledon count metrics for predicting cotyledon count on Pinus radiata somatic embryo from three cell lines which were not used to train the model.







4 Discussion



4.1 Embryo segmentation

Results from the convolutional neural network approaches investigated in this study have shown strong suitability for both segmentation and detection of hypocotyl and cotyledons of somatic embryos of Pinus radiata. Their ability to consider shape and textural visual features, in addition to the traditionally used pixel intensity information, has yielded promising results for these segmentation-based tasks.

Semantic segmentation demonstrated strong quantitative performance in segmentation of the hypocotyl and cotyledon regions as indicated by precision, recall, and F1 scores above 0.91 for all three classes on the test set. IoU values of 0.867 for cotyledon and 0.872 for hypocotyl indicate a good level of performance, but also suggests room for improvement. This is backed up by visualisation of the segmentation predictions, as we can see that sometimes the model struggles with where to segment the boundary between these two regions. This is a challenging area even for humans as it is sometimes not obvious where the cotyledons end and the hypocotyl region begins, so it is not surprising that there is a degree of confusion when the neural networks segment this region.

Visualisation of the semantic segmentation predictions on the test set show the model’s performance is comparable to the expert human annotator. The strong segmentation performance will allow for accurate automated measurements of morphological features which can be used in subsequent techniques, such as selection of high-quality embryos. Previous studies (Hamalainen and Jokinen, 1993; Chi et al., 1996; Find and Krogstrup, 2008; Le et al., 2021) performing image segmentation of somatic embryos using pixel intensity-based thresholding methods do not report segmentation metrics, nor do they distinguish between different regions of the embryo, so we are unable to provide a comparison to our results.

Instance segmentation gave similarly strong performance metrics for pixel segmentation of the regions of interest. However, performance was not as accurate as semantic segmentation when inspecting the visualized predictions, particularly in the cases showing separation between the hypocotyl and cotyledon regions. In semantic segmentation, the model learns what a general cotyledon region looks like from the training images, which is a likely reason why it performs better in the cotyledon metrics compared to instance segmentation. The instance segmentation approach is learning to detect individual cotyledon regions and thus is not able to consistently segment a smoothed lower cotyledon region as in the semantic segmentation approach. If relying on instance segmentation alone for the region identification, postprocessing steps such as filling holes within the cotyledon regions could improve accuracy by a small margin but they will not address the observed gap regions between the cotyledon region and hypocotyl. As a result, the semantic segmentation network is more suitable for embryo segmentation if accurate identification of hypocotyl and cotyledon boundaries without any gaps or holes is desired. Overall, the segmentation approaches show the ability for improved accuracy and consistency over previous approaches (Uozumi et al., 1993; Chi et al., 1996; Find and Krogstrup, 2008; Le et al., 2021) increasing the potential for large scale production of mature somatic embryos.

Although great care was taken by expert annotators, we acknowledge that there is potential for a small degree of annotation error. These labelling errors are due to the sometimes-objective task of deciding where the bottom of the cotyledon region finishes, and where the bottom of the hypocotyl region finishes. These errors can cause small confusions when training the model and are likely to be a contributor to pixel misclassifications, contributing to the performance metrics.




4.2 Cotyledon counts

Cotyledon counting test results (MAE=0.60, MSE=0.79) from the Mask R-CNN approach showed strong ability to count individual cotyledons. Agreement percentage score on the test dataset of 50 illustrates similar techniques can be as effective for somatic embryo when compared with previous studies in a related field, leaf counting, which achieved scores below 45 percent using deep learning (Aich and Stavness, 2017; Giuffrida et al., 2018). Additionally, similarly strong metrics on unseen cell lines highlights the model’s ability to generalize to embryos from cell lines that it has never seen before. The low degree of error, averaging less than one cotyledon per image, indicates that the number of cotyledons can be confidently used as an additional feature when performing subsequent analysis such as correlating germination success with cotyledon count, or when investigating cotyledon counts by genotype.

A limitation of our experimental approach is that microscopic image collection is laborious compared with standard lower resolution cameras. These lower resolution cameras can often be combined with robotics or fluidics to fully automate the acquisition as in Le et al. (2021). However, the network is likely to require fine-tuning or retraining to work well on images from a lower resolution source. Lower resolution cameras could reduce costs while increasing acquisition speed, allowing for large scale quantification of somatic embryos in an automated system such as the fluidics system or a robotics system with vision cameras.

In addition, we noticed the model sometimes failed to detect very small or partially occluded cotyledons, suggesting lower resolution lateral view images could be more challenging as it will reduce the area of those smaller or occluded cotyledons. In such a case, an apical view, as in Timmis et al. (2015) and Hirahara and Spencer (2007), would provide a clearer view of the cotyledons and their structure (Hirahara and Spencer, 2007). This would also allow for accurately estimating the true number of cotyledons instead of the visible number of cotyledons, which is a limitation of using lateral view images. If lower error is desired, future work could explore use of regression based CNNs for automating cotyledon counting which has proven highly successful in the plant counting literature on the CVPPP Plant Leaf Challenge dataset (Giuffrida et al., 2018; Itzhaky et al., 2018). These networks are trained to directly predict counts, and often don’t require manually annotated regions, instead, only requiring a count per image as input to train the network. This can save hours of manually labelling cotyledon instances in images.

Although instance segmentation allows for both segmentation and counting, the counts are not directly estimated and learnt by the network and are instead obtained by postprocessing the instances detected. Overall, our results indicate benefits to using both approaches with semantic segmentation enabling more complete prediction masks with less gaps and holes, and instance segmentation having the unique ability to infer accurate cotyledon counts. Future work could consider a fusion approach which combines segmentation and counting into a single neural network, with the goal of achieving accurate results for both tasks. Fan et al. (2022) used such an approach for binary image segmentation and counting of mature Arabidopsis plant leaves, achieving good results. Learning both the counts and the pixelwise segmentations in the same network has the potential to achieve optimal performance in both tasks, without having to train two separate CNNs.

Despite using less than 200 images to train the networks, we have demonstrated robust performance on an independent test set of 42 images, as well as on a further independent test set comprising 380 images from unseen cell lines. This strong performance on unseen data, which is considered the gold standard in data science, underscores the validity of our approach. Our use of ‘transfer learning’, a widely accepted and popular technique in the field, further bolsters the credibility of our methodology and its performance highlights that thousands of images are not required to achieve results similar to that of a human. However, a larger training dataset has potential to improve predictions as it provides the neural network with more examples to learn from. It would also allow for training the model from scratch instead of using a pre-trained network. These adjustments have the potential to improve both semantic and instance segmentation results, potentially boosting instance segmentation mask prediction performance to a similar level as semantic segmentation and therefore removing the need for implementing both approaches.





5 Conclusion

In this study we tested, for the first time, the performance of convolutional neural networks for the segmentation of P. radiata somatic embryos into cotyledon and hypocotyl regions. We also evaluated instance segmentation for the first time to distinguish individual cotyledons to allow for automated counting. The results demonstrated promising performance for both tasks, and highlight advantages over previous approaches, such as the ability to accurately delineate regions of similar spectral intensity by using shape and structural features learnt by the CNN. The ability to count cotyledons with a low degree of error removes the need for manual counting of cotyledons for any type of analysis such as genotype comparison, assessment of maturation protocols, unusual phenotype detection, and automated embryo sorting. Similarly, the ability for deep learning to automate the separation of the hypocotyl and cotyledon regions removes the need for manual image annotation to obtain these regional boundaries for further embryo analysis. Our approach of separating the embryo into two distinct regions provides added information for subsequent analysis such as quantification of morphological characteristics which are crucial variables for embryo sorting or predicting germination success.

Our work marks a crucial step in automating the classification of somatic embryos based on criteria like morphology, developmental stage, and genetic characteristics. By developing germination prediction models using these criteria, we can potentially reduce the cost of regenerated plantlets, making high-quality varieties more accessible to forestry owners. Automated sorting not only expedites the process but also minimizes human error, ensuring greater accuracy in selecting desired embryos. Beyond automation, these technologies reveal intricate patterns in large datasets, providing insights into factors influencing embryo development. This understanding can optimize culture conditions, enhancing success rates in somatic embryogenesis and biotechnologies. The integration of machine learning and automation accelerates traditional processes, fostering innovation in biotechnology.

Applying knowledge to automated systems for image acquisition and sorting (fluidic systems or robotics) is crucial. Further research should investigate the performance on images from lower resolution imaging systems which can easily be embedded into automated sorting systems for somatic embryogenesis. We believe these techniques could be successfully used for other coniferous species if species specific images are collected. Alternative and more recently developed neural networks, such as vision transformers (Thisanke et al., 2023) or networks which jointly learn segmentation and regression e.g (Fan et al., 2022) should also be considered as they may allow for greater accuracy and remove the need for using two separate approaches. Additionally, deep learning for computer vision is a rapidly progressing field and researchers should keep up to date with recent advancements, not limited to other applications.
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Plants intricately deploy defense systems to counter diverse biotic and abiotic stresses. Omics technologies, spanning genomics, transcriptomics, proteomics, and metabolomics, have revolutionized the exploration of plant defense mechanisms, unraveling molecular intricacies in response to various stressors. However, the complexity and scale of omics data necessitate sophisticated analytical tools for meaningful insights. This review delves into the application of artificial intelligence algorithms, particularly machine learning and deep learning, as promising approaches for deciphering complex omics data in plant defense research. The overview encompasses key omics techniques and addresses the challenges and limitations inherent in current AI-assisted omics approaches. Moreover, it contemplates potential future directions in this dynamic field. In summary, AI-assisted omics techniques present a robust toolkit, enabling a profound understanding of the molecular foundations of plant defense and paving the way for more effective crop protection strategies amidst climate change and emerging diseases.
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1 Introduction

Plant defense against both biotic (living organisms like pathogens and pests) and abiotic (environmental factors such as drought, salinity, and extreme temperatures) stress is of paramount importance in ensuring global food security. With the world’s population steadily growing, the demand for crops is increasing, making efficient plant protection strategies a critical need. The ability to safeguard crops from the ravages of diseases, pests, and adverse environmental conditions is essential to maintain agricultural productivity and secure the global food supply. The substantial impact of these stressors is underscored by the extensive economic losses, as evidenced by the multi-billion-dollar reductions in crop yields (FAO 2017 report).

Biotic stressors, such as pathogens and pests, pose a constant threat to crop health. Pathogens, including fungi, bacteria, and viruses, can devastate entire plant populations, leading to substantial economic losses and food shortages. Likewise, pests, ranging from insects to nematodes, have the potential to decimate crops, leading to decreased yields and quality.

Food crops around the world face substantial yield reductions due to microbial diseases and pest infestations. These losses are significant, with rice experiencing an average loss of 30.3%, maize at 22.6%, wheat at 21.5%, soybeans at 21.4%, and potatoes at 17.2% (Savary et al., 2019). Plant diseases can be especially devastating, leading to yield reductions of up to 50% in specific regions, particularly impacting small-scale farmers and posing substantial economic challenges. Additionally, plant diseases negatively influence species diversity, increase the costs associated with disease control measures, and even have repercussions on human health (Ristaino et al., 2021). The emergence of new plant diseases and pest outbreaks carries substantial economic implications for agriculture, posing threats to food security, national stability, and public health (Anderson et al., 2004). In the coming years, it is expected that the changing distribution of pathogens due to climate variations and increased global trade will result in a higher prevalence and greater severity of emerging plant diseases (Bebber et al., 2013). A notable recent example is the outbreak of coffee rust, caused by Hemileia vastatrix, in Central America, which led to significant crop losses and economic crises (Avelino et al., 2015).

On the other hand, abiotic stress factors are non-living elements that challenge plant growth and survival. These include prolonged droughts, extreme temperatures, soil salinity, and heavy metal contamination. The impacts of abiotic stressors are often subtle and insidious, affecting crop yields, nutritional content, and overall plant health. Efforts to combat both biotic and abiotic stressors have traditionally relied on a combination of methods, including conventional breeding, chemical treatments, and agronomic practices. However, these approaches are often reactive and may not provide effective protection, especially in the face of emerging pathogens or rapidly changing environmental conditions.

Recently, advanced omics techniques, have revolutionized the exploration of molecular-level stress mechanisms in plants (Shen et al., 2022). These methods provide extensive information, revealing intricate networks involving genes, proteins, and metabolites during plant defense against biotic stress. However, the substantial data generated by these omics technologies poses a significant challenge in terms of analysis and interpretation, necessitating the development of highly effective computational tools.

Artificial Intelligence (AI) has emerged as a potent instrument for unraveling vast omics datasets and understanding intricate mechanisms underlying plant responses to stress. These techniques offer a deeper understanding of the genetic, molecular, physiological, and phenotypic aspects of plant defense, enabling the development of novel strategies to bolster crop resilience and mitigate stress-induced damage. In traditional plant defense research, the complex networks of genes, proteins, and metabolites involved in stress responses posed challenges due to the high volume and complexity of biological data. However, the advent of AI-assisted omics techniques has ushered in innovative solutions to tackle and interpret this vast data landscape. These techniques encompass diverse AI methodologies, efficiently unraveling and modeling the intricate relationships between molecular components and stress responses.

In this review, we intend to provide an overview of different omics studies involving various stress factors in plants. As we navigate through the intersection of AI and plant omics, we explore cutting-edge developments in the realm of plant defense against both biotic and abiotic stressors and confront its challenges. This review critically explores the advantages of AI over traditional methods, delves into the challenges of AI in plant omics, and future directions in plant defense research, highlighting the potential for sustainable agricultural practices that enhance crop protection, stress tolerance, and global food security.




2 Different omics in plant defense research

Plant defense research encompasses various “omics” technologies, each offering unique insights into the molecular mechanisms underlying plant responses to pathogens and environmental stresses. In the following sections, we’ll provide a brief overview of the primary types of data each omics approach can provide when applied to research on plant stress.



2.1 Genomics

Plants, as stationary organisms, have evolved sophisticated defense mechanisms against various stressors, including biotic and abiotic factors. The combination of genomics and AI has become a potent tool for unraveling the genetic foundations of plant defense. This review explores the current and future applications of AI-assisted genomics in understanding both biotic and abiotic stress responses in plants. It covers the identification of resistance genes, characterization of defense pathways, and improvement of stress tolerance. The challenges, ethical considerations, and potential breakthroughs in this evolving field are also discussed.

Genome-wide association studies (GWAS) play a crucial role in genomic strategies to enhance crop resilience against abiotic stress. Mangin et al. (2017) illustrate the significance of GWAS in evaluating abiotic stress impacts on sunflower oil content. Previous studies identified Quantitative Trait Loci (QTLs) associated with maize yield under heat and water stress (Millet et al., 2016). Environmental variables in GWAS investigations revealed Single Nucleotide Polymorphisms (SNPs) linked to sorghum drought stress, with 213 genomic regions associated with drought tolerance (Lasky et al., 2015; Spindel et al., 2018).

Epigenetics, involving heritable modifications beyond DNA sequences, combines with genomics in the emerging field of epigenomics. This integration unveils genetic regulation in cellular responses to stress, with epigenomic processes responding to environmental conditions and stressors. Genome-level investigations are necessary to scrutinize these phenomena across developmental stages or assess deviations due to plant diseases (Callinan and Feinberg, 2006; Muthamilarasan et al., 2019). The revolutionary CRISPR-Cas9 technology, originating from bacteria as a defense mechanism against viruses, has transformed genome editing. CRISPR-Cas systems extensively edit eukaryotic genomes, providing opportunities to engineer crop plants for enhanced resilience against both abiotic and biotic stresses (Kumar and Jain, 2015).




2.2 Transcriptomics

Transcriptomics, the study of an organism’s complete set of RNA transcripts within specific cells or tissues (transcriptome), is a dynamic field with potential for analyzing gene expression responses to various stimuli over defined timeframes (Raza et al., 2021). Transcriptome profiling, the approach used in this field, allows the investigation of gene expression differences, providing insights into the functions of specific genes.

In various crops like sorghum and rice, transcriptome studies have identified gene sets with altered expression in response to stressors such as drought, heat, osmotic stress, and hormonal treatments (Dugas et al., 2011; Jin et al., 2013; Johnson et al., 2014). These analyses are crucial for understanding gene expression changes during growth and stress responses, offering valuable insights for functional studies. Transcriptomics has proven significant in unraveling stress responses and developmental processes in crops, as demonstrated in RNA-seq studies in foxtail millet and sweet potato, revealing tissue-specific gene expression responses to abiotic and biotic stress (Li et al., 2017). The application of RNA-seq in rice, maize, and rapeseed oil research has aided in identifying genes responsive to drought stress (Bhardwaj et al., 2015). Comparative transcriptomic analysis enables exploration of distinct gene expression profiles across diverse crop species facing stress, identifying shared genes and revealing intricate cross-talk pathways (Li et al., 2013; Zhu et al., 2013). These findings emphasize the significance of regulatory networks governing stress tolerance genes, offering potential for enhancing crop traits through genetic improvement.




2.3 Proteomics

Proteomics, as a comprehensive approach to studying proteins, plays a crucial role in understanding how plants respond to both biotic and abiotic stresses. The four main aspects of proteomics—sequence, structural, functional, and expression proteomics—offer a holistic view of the complex interactions within plant cells (Aizat and Hassan, 2018). In sequence proteomics, scientists identify amino acid sequences using advanced techniques like high-performance liquid chromatography, providing insights into the building blocks of proteins (Twyman et al., 2013). Structural proteomics focuses on understanding the three-dimensional structures and functions of proteins, employing various methods like computer-based modeling, NMR, crystallization, electron microscopy, and X-ray diffraction (Woolfson et al., 2018). Functional proteomics delves into the roles of proteins, employing methodologies such as Y2H assays and protein microarray profiling to decipher the specific functions of different proteins within the cellular context. Quantitative proteomics, exemplified by the iTRAQ method, allows researchers to measure changes in protein expression levels in response to stresses, providing valuable information about how plants react to environmental challenges (Liu et al., 2015; Zhu et al., 2018; Yang et al., 2020).

In the context of plant responses to biotic stress, proteomics has proven pivotal. Studies involving Vitis species and other crops showcase the ability of proteomic analyses to identify stress-responsive proteins and uncover translational modifications like phosphorylation and ubiquitination. This information aids in understanding the intricate molecular dynamics underlying plant defense mechanisms and pathogen virulence (Mosa et al., 2017). Similarly, in the realm of abiotic stress, such as drought, proteomics reveals proteins associated with stress response in crops like wheat. The integration of proteomics and phosphoproteomics explores diverse functions in response to various stressors, contributing to the identification of both resistant and susceptible crop cultivars against these challenges. Additionally, the combination of proteomics with other omics disciplines like metabolomics and functional genomics enhances our understanding of stress biology, facilitating the identification of molecular markers for breeding programs (Margaria et al., 2013; Yang et al., 2013; Zhang et al., 2014). The various proteomic techniques, including LC-MS/MS, MALDI-TOF, SDS-PAGE, and iTRAQ, are extensively applied in different crops to investigate their responses to both biotic and abiotic stress conditions (Mohammadi et al., 2012; Ramalingam et al., 2015). The insights gained from proteomic studies significantly contribute to unraveling the molecular mechanisms by which plants adapt to environmental challenges, ultimately leading to advancements in crop yield improvement and stress resilience.




2.4 Metabolomics

Metabolomics, a study of metabolites in biological systems, is crucial for understanding the plant metabolome and revealing regulatory mechanisms under stress conditions. This field, integrated with next-generation sequencing, provides insights into molecular responses in crops, offering a broader perspective on biochemical processes influencing gene functionality.

In plant defense against stress and pathogens, metabolites play a vital role, identified through gas chromatography-mass spectrometry as biomarkers in rice varieties facing the GMB1 pathogen. Similar strategies reveal metabolite accumulation in response to other pathogens in rice and barley, showcasing the importance of metabolomics in understanding plant responses to biotic stress.

Wheat crops also exhibit the presence of phenylpropanoid and phenolic metabolites in response to biotic stress. Metabolomics is particularly vital in plant systems due to the abundant production of metabolites. Secondary metabolites like polyamines, identified in rice crops under drought stress, highlight the relevance of environmental metabolomics in understanding plant responses to abiotic stresses. Various metabolomics techniques, including LC/GC-MS, GC/EI-TOF-MS, HPLC, and NMR, have been widely employed in crops like rice, tomato, maize, and soybean, providing valuable insights into their responses to both abiotic and biotic stress conditions.




2.5 Phenomics

Plant phenomics involves systematically acquiring and analyzing multi-dimensional traits across various crop growth stages, from cellular to field levels. This process relies on a three-step approach: trait identification, data conversion into quantifiable measurements, and computational methodologies for analysis. High-throughput phenotyping platforms are crucial in the initial phase, while computational strategies, particularly machine learning (ML) algorithms, play a pivotal role in subsequent stages. The performance of crop phenotypes is intricately linked to genetic factors and environmental conditions. The continuous evolution of sensors, imaging technologies, and analytical methodologies has led to the development of numerous dedicated infrastructure platforms for phenotyping.

Abiotic stresses such as drought, salinity, and nutrient deficiencies pose significant challenges to crop production, eliciting complex plant responses. Phenotyping for stress resistance is imperative for breeding resilient crops. Drought stress, marked by reduced water availability, can be evaluated using ground-based platforms equipped with thermometer sensors and RGB cameras. Unmanned Aerial Vehicles (UAVs) integrated with thermal cameras facilitate quicker scanning of larger plots for identifying drought-resistant genotypes. Salinity stress, impacting stomatal conductance, is observed through visible to near-infrared spectral reflectance images. Scanalyzer3D aids in characterizing salinity tolerance mechanisms. Image-based methods, encompassing RGB and fluorescence imaging, assess tissue ion concentrations to gauge salinity tolerance. Hyperspectral imaging, coupled with ML, predicts traits associated with salinity stress. Crop nutrient deficiencies, especially nitrogen, affect chlorophyll content, growth, and disease susceptibility, with monitoring conducted through sensors like RGB, multispectral, and hyperspectral sensors. Mobile platforms incorporating these sensors estimate nitrogen content efficiently. Agriculture confronts threats from diseases and pests, and the integration of resistance genes presents a cost-effective strategy. Biotic stress induces changes in various plant characteristics, and advanced phenotyping platforms utilizing optical sensors effectively detect and manage biotic stress factors in crops.





3 Basics of AI techniques

AI involves creating computer systems to perform tasks associated with human intelligence, such as learning, problem-solving, and decision-making. ML, a subset of AI, focuses on developing algorithms and statistical models that enable computers to perform tasks without explicit programming. DL, a specialized field within ML, involves training artificial neural networks to mimic the human brain’s structure, utilizing deep architectures with multiple layers for automatic hierarchical feature extraction.

The initial phase of ML includes data collection, especially in sequencing data like RNA sequencing studies (Figure 1). Denoising methods enhance expression recovery. Supervised ML uses diverse features for training data representation, including amino acid sequence information and physicochemical properties (Sperschneider et al., 2018). Feature selection is crucial, and methods fall into three categories: filter, wrapper, and embedding methods (Guyon and Elisseeff, 2006; Guyon et al., 2008; Khalid et al., 2014).




Figure 1 | (A) Basic steps involved in the development of machine learning models. Types of machine learning: (B) supervised and (C) unsupervised techniques.



Algorithm selection is pivotal, and ML algorithms can be categorized into supervised, semi-supervised, and unsupervised. Supervised methods establish relationships between input factors and outcomes based on training examples. Unsupervised methods, primarily clustering, identify data patterns without relying on known outcomes. Practical algorithms include SVM, DT, RF, ANN, and NB for supervised learning, while k-means, independent component analysis, and hierarchical clustering are used for unsupervised learning. Semi-supervised learning handles input data with both labeled and unlabeled information, with examples like the label propagation algorithm.



3.1 Unsupervised ML

Unsupervised ML methods fulfill two primary functions: clustering, which groups data based on similarity, and dimension reduction, generating representative features from numerous variables. A widely utilized clustering method is k-means, aiming to create non-overlapping clusters of observations. Principal Component Analysis (PCA) is a common technique for dimension reduction, transforming high-dimensional observations into a smaller set of uncorrelated principal components (PCs) to simplify subsequent analyses.




3.2 Supervised ML

Support Vector Machine (SVM) is a supervised learning method created by Vapnik (1999) for binary classification tasks. It operates in an n-dimensional space, forming a hyperplane to maximize the margin between distinct data classes. The choice of kernel functions, such as linear or nonlinear options like polynomial or radial basis, significantly influences its performance.

The k-nearest-neighbor (KNN) algorithm, introduced by Altman (1992), is another supervised learning technique that classifies data points by identifying the ‘k’ nearest neighbors with known labels. The classification is based on a majority vote among these neighbors. While user-friendly, traditional KNN methods may have longer computation times (Borah et al., 2020).

The Decision Tree (DT) classifier, developed by Quinlan (1986), follows a branch-test approach. It recursively partitions data based on attributes until a specified stopping condition is met, creating a tree-like structure. The classification path can be traced from the root node to each leaf node (Schietgat et al., 2010).

Random Forest (RF), introduced by Breiman in 2001, is an ensemble algorithm utilizing a group of DTs to achieve a consensus on accurate classification. Classification trees are constructed by randomly selecting from training datasets, and the predictions from each tree are combined to provide an overall prediction for each observation (Breiman, 2001).




3.3 Major deep learning architectures

ML has gained widespread popularity, and DL methods, particularly associated with Artificial Neural Network (ANN) architectures, are gaining increasing attention. DL autonomously learns from raw input data, capturing intricate patterns without extensive domain expertise. Unlike traditional ML, which relies on discrete or continuous output predictions based on data counts or measurements, DL excels in direct feature learning from input datasets, eliminating the need for conventional feature engineering (Bonetta and Valentino, 2020).

ANNs, dating back to McCulloch and Pitts (1943), mimic biological neurons and feature a learning process facilitated by synaptic connections. Deep Neural Networks (DNNs) encompass multiple hidden layers, effectively forming a complex structure. Recurrent Neural Networks (RNNs), introduced by Sperduti and Starita (1997), are suitable for supervised learning with feedback loops for cyclic data processing. Convolutional Neural Networks (CNNs), introduced by Lecun et al. (1998), excel in identifying relevant features without human supervision, while Graph Convolutional Networks (GCNs), introduced by Schaffer (1989), handle intricate problems through complex architectures (Zhou et al., 2022).

Transformers, rooted in a self-attention mechanism, find application in natural language processing tasks like text translation, improving task parallelization (Vaswani et al., 2017). Ensemble classifiers enhance decision-making by combining outputs from different models, introduced by Dietterich (2000). Clustering-based methods, like the k-means algorithm, provide an unsupervised approach for predicting protein functions by exploiting direct and indirect interactions (Hou, 2017; Yan and Wang, 2022).

Each algorithm, including ML and DL models, offers unique capabilities catering to the complexities of omics datasets. Understanding their distinctive strengths and weaknesses is crucial before exploring their applications. Table 1 provides a concise overview summarizing the key attributes defining their performance.


Table 1 | Strengths and weaknesses of different AI-methods.






3.4 Validation strategies

ML predictions in plant genomics research can be validated through a variety of methods. Xavier (2021) emphasized the importance of cross-validation in comparing different algorithms for genomic prediction. K-fold cross-validation, a widely used method, involves randomly dividing training samples into k subsets, reserving one for validation, and using the others for training (Sun et al., 2020). Evaluation metrics, derived from the confusion matrix, include sensitivity, specificity, accuracy, precision, F1-score, and Matthews correlation coefficient (MCC). Sensitivity gauges correctly predicted positives, specificity assesses correctly predicted negatives, accuracy reflects overall correct predictions, and precision measures correctly predicted positives among TP and FP. The F1-score combines precision and recall, while MCC is valuable for imbalanced datasets (Jiao and Du, 2016). The receiver operating characteristic (ROC) curve, evaluated with false positive rate (FPR) and true positive rate (TPR), and the area under the ROC curve (AUC) serve as performance measures, with higher AUC indicating superior predictor performance (Xu-Hui et al., 2009).

Individual-based models demand a context-oriented approach due to their complex and variable interaction structure (Leye et al., 2009; Kubicek et al., 2015). This approach involves separately assessing different model levels and employing various techniques, including visual inspection, statistical comparison, expert involvement, and experimental validation. In the realm of engineering and scientific models, a proposed statistical validation approach links validation experiments to the target application and considers the importance of measurements (Hills and Leslie, 2003). When applied context-dependently, these strategies enhance the support for hypotheses generated by the model. Maron et al. (2014) underscored the necessity of experiments exploring the role of abiotic factors in plant-animal interactions. Wang et al. (2018) introduced pattern-oriented modeling as an effective means to verify and validate functional-structural plant models, showcasing its predictive capabilities in plant growth. Abele et al. (2013) introduced an ontology-based approach to validate plant models, ensuring their accuracy through Semantic Web reasoning. Bylesjö et al. (2007) discussed the O2PLS method for integrating transcript and metabolite data in plant biology, providing a means to validate and interpret models. Together, these studies emphasize the significance of experimental and computational validation strategies in plant omics research.

For ML models applied to plant omic data, context specificity is crucial, as highlighted by Isewon et al. (2022), especially for improving agronomic traits and developing resilient crop varieties. Silva et al. (2019) further emphasizes the necessity of ML approaches in plant molecular biology, particularly in the analysis of pathogen-effector genes. Fukushima et al. (2009) underscores the importance of integrating multiple omics data, including metabolomics, to reconstruct complex networks in plant systems. Collectively, these studies support the use of context-specific ML models and the integration of omics data for a more comprehensive understanding of plant biology.

The effectiveness of ML prediction in plant stress omics research finds objective validation through various methods. John et al. (2022) compare classical and ML-based phenotype prediction methods, noting the varying performance of different models in real-world data. Ghosal et al. (2017) enhance the interpretability of ML models by applying a ML framework to identify and classify foliar stresses in soybean plants, isolating visual symptoms for each stress. Singh et al. (2018) emphasize the importance of standardizing visual assessments, deploying imaging techniques, and using ML tools for data assimilation and feature identification in plant stress phenotyping. Together, these studies underscore the potential of ML in accurately predicting and identifying plant stress, with a focus on interpretability and standardization.





4 Why choose machine learning for plant-omics data over traditional methods?

ML is increasingly preferred over traditional methods in plant-omics data analysis due to its adept handling of large, complex datasets. High-throughput sequencing technologies have ushered in a wealth of information, enabling biologists to explore intricate associations, decode stress responses in plants, and unravel complexities in genomic responses (Singh et al., 2016). However, challenges such as high dimensionality, uncertainty, and non-independence among variables in plant omics data have emerged. Traditional statistical models face limitations in handling this complexity (Altman and Krzywinski, 2018; Niazian and Niedbała, 2020).

ML, especially DL, has proven efficient in overcoming these challenges, providing accurate analyses of plant characteristics affected by genotype and environment interactions (Arsenovic et al., 2019). Unsupervised and semi-supervised ML algorithms have been applied to plant systems biology, facilitating big data analysis without the need for large labeled training sets (Yan and Wang, 2022). ML’s application extends to improving plant agronomic traits through the integration of large omics data (Isewon et al., 2022). Studies by Farooq et al. (2022), Isewon et al. (2022), and Silva et al. (2019) highlight the superiority of ML methods, particularly decision tree-based ensemble models (Gokalp and Tasci, 2019), in genomic prediction and integrative analysis of plant omics data. ML’s potential in deciphering complex interactions in plant molecular biology, including pathogen effector genes and plant immunity, is underscored (Silva et al., 2019).

In transcriptomics, ML methods stand out for enhancing the sensitivity of differential expression gene identification (Wang et al., 2018). However, the use of non-linear ML models in differential expression analysis may have limitations, leading to the recommendation of eXplainable Artificial Intelligence for model interpretation and gene set identification (Sabbatini and Calegari, 2023). The integration of ML with traditional biological information is emphasized for learning biological dynamics from large datasets, complementing traditional modeling approaches (Xu and Jackson, 2019; Gilpin et al., 2020). Various ML tools, including tree-based methods, Bayesian models, network-based fusion methods, kernel methods, matrix factorization models, and deep neural networks, play a crucial role in connecting multi-view biological data (Li et al., 2016).

ML’s proficiency in multivariate analysis is advantageous for considering numerous variables simultaneously, leading to the discovery of new biomarkers and predictive model development (Reel et al., 2021). Its application in improving agronomic traits in plant omics research is evident, although challenges in fully realizing the potential of integrating multiomics data remain, with scaling difficulties being a major obstacle (Noor et al., 2019). The complexity of high-dimensional omics data necessitates sophisticated methods for feature selection and information extraction. ML’s advantage lies in its ability to discern and prioritize the most relevant features, as demonstrated by Du et al. (2019) in the analysis of RNA-sequencing data related to salt stress response in rice. The use of ML-based feature selection methods, including principal component analysis and LASSO, effectively revealed submodules associated with observed traits.

ML excels in prediction and classification tasks, allowing researchers to forecast phenotypic outcomes and identify potential biomarkers. Its scalability is crucial for large-scale omics data, setting it apart from traditional methods facing computational challenges. In conclusion, the shift towards ML in plant omics research is driven by its unique strengths in addressing data intricacies, enabling predictive modeling, and facilitating an exploratory approach to data analysis.

Pattern recognition is another strength of ML, enabling the discovery of intricate patterns and associations within complex datasets. In omics research, where uncovering subtle patterns may provide novel insights into biological mechanisms, this capability is highly valuable. Moreover, ML is adaptable to the heterogeneity often observed in omics datasets due to biological variability and technical differences. Its flexibility and generality, with less reliance on assumptions about data distribution, make it suitable for various data types and experimental designs. The exploratory nature of ML, facilitating the uncovering of hidden patterns and relationships, is crucial in omics research. This aspect allows researchers to generate hypotheses and identify novel avenues for further investigation.

In the realm of multi-omics analysis, the primary objective is constructing Gene Regulatory Networks (GRNs). While ChIP-seq experiments for profiling Transcription Factors’ (TFs) binding sites are limited in plants, the inference of GRNs heavily relies on expression data (Bubb and Deal, 2020). Traditional correlation-based methods and the Mutual Information (MI) algorithm face challenges in distinguishing regulatory direction and considering temporal delays between gene expressions (Banf and Rhee, 2017; Redekar et al., 2017; Haque et al., 2019). To overcome these limitations, Probabilistic Graphical Models (PGM), such as GENIST and JRmGRN, have been introduced, though they require high spatiotemporal resolution in expression data (de Luis Balaguer et al., 2017; Deng et al., 2018).

ML has revolutionized the inference of GRNs, integrating multi-omics data to enhance accuracy (Walley et al., 2016; Ko and Brandizzi, 2020). iDREM (interactive dynamic regulatory events miner), employing a hidden Markov model, reconstructs temporal GRNs in response to biotic and abiotic stresses using transcriptomic, proteomic, and epigenomic datasets (Ding et al., 2018). With the emergence of single-cell RNA sequencing (scRNA-seq), tools like GRNBoost2, based on the GENIE3 framework, facilitate cell-specific GRN inference (Moerman et al., 2019). The SCENIC analytical pipeline, incorporating multiple tools, efficiently analyzes datasets within 2 hours comprising of 50,000 cells and 10,000 genes (Van de Sande et al., 2020).

In summary, the shift towards ML in plant omics research is driven by its unique strengths in addressing the intricacies of omics data, accommodating multiple variables, integrating diverse datasets, providing predictive modeling and classification capabilities, and facilitating an exploratory approach to data analysis.




5 Application of AI in plant omics against stress

AI-assisted omics techniques in plant defense research represent a cutting-edge approach, combining advanced molecular technologies with AI for a deeper understanding of how plants respond to stresses (Figure 2). Traditional research faced challenges in deciphering complex gene, protein, and metabolite networks, but AI-supported omics methods provide innovative solutions. These techniques rapidly identify crucial components in defense pathways, discover biomarkers, and reveal hidden patterns, enhancing our comprehension of plant defense processes. Integrating multi-omics data sources offers a holistic understanding, and as AI techniques evolve, they hold promise for developing stress-resistant crops, optimizing agricultural practices, and ensuring sustainable food production (Arabnia and Tran, 2011; Yan and Wang, 2023).




Figure 2 | Different omics in plant defense research.





5.1 AI-assisted genomics

Machine learning (ML) algorithms play a pivotal role in identifying stress resistance genes, aiding breeders and researchers in enhancing crop production. Liang et al. (2011) utilized a variant of the Support Vector Machine (SVM) algorithm to identify key genes associated with drought resistance in A. thaliana. Shikha et al. (2017) demonstrated the superior performance of Bayes algorithms, identifying critical SNPs for drought resistance in maize. ML algorithms have been applied beyond drought resistance, with Wang et al. (2013) using an SVM-based model to predict salt resistance genes in rice. Ravari et al. (2015) assessed salt tolerance in Iranian wheat genotypes, identifying effective indices for predicting salt-tolerant varieties using artificial neural network (ANN) analysis. Schwarz et al. (2020) employed ML techniques to explore the cis-regulatory code governing the response to iron deficiency in Arabidopsis roots.

In the realm of plant disease resistance, SVM and its variants are widely employed, as demonstrated by Pal et al. (2016), achieving high accuracy in predicting disease resistance proteins. ML has also been instrumental in predicting pathogen effector proteins, with Sperschneider et al. (2016) developing EFFECTORP, the first ML classifier for fungal effectors. Despite the focus on disease resistance genes, ML algorithms hold promise in understanding genes susceptible to plant diseases, contributing significantly to agricultural practices (Yang and Guo, 2017). The application of ML in exploring plant single-cell genomic data offers opportunities to unravel cellular heterogeneity, decode regulatory networks, and identify novel cell types. Recent studies (Silva et al., 2019; Raimundo et al., 2021) highlight ML’s potential in tasks such as generating low-dimensional representations, classifying cell types, inferring trajectories, deducing gene regulatory networks, and integrating multimodal data. Challenges related to low sequencing coverage and amplified artifacts in single-cell RNA (scRNA) sequencing are addressed by ML approaches, such as the SIMLR algorithm (Wang et al., 2017) and neural network models (Lin et al., 2017), providing more reliable insights into the intricate landscape of single-cell genomics. Despite these advancements, further research is needed to fully unlock the potential of ML in plant single-cell genomics. The current application of ML in identifying stress resistance genes is limited to a few plant species, urging the extension of ML utilization to other economically significant plants for a comprehensive understanding of stress resistance mechanisms and accelerated breeding efforts.




5.2 AI-assisted transcriptomics

In a comprehensive exploration of miRNAs and their roles in plant stress responses, Asefpour Vakilian (2020) conducted a study focusing on both biotic and abiotic stresses. The research employed feature selection algorithms to delve into the contributions of individual miRNAs in Arabidopsis thaliana responses to various abiotic stresses, including drought, salinity, cold, and heat. Utilizing information theory-based feature selection, key miRNAs, such as miRNA-169, miRNA-159, miRNA-396, and miRNA-393, were identified as significant contributors to the plant’s reactions to these stressors. The study harnessed regression models, including DT, SVMs, and NB, revealing the exceptional predictive capabilities of SVM with a Gaussian kernel, achieving a high coefficient of determination (R² = 0.96) for plant stress based on miRNA concentrations.

Contrary to the traditional belief in separate signaling pathways for abiotic and biotic stresses in plants, a study on rice by Shaik and Ramakrishna (2014) shed light on the intricate relationship between these stress responses. Through a meta-analysis of microarray studies, the researchers identified shared stress-responsive genes in rice, revealing conserved expression patterns across both types of stresses for approximately 70% of the common differentially expressed genes. Advanced data analysis techniques and ML models, including recursive-support vector machine and random forests decision tree, effectively distinguished between abiotic and biotic stress responses based on gene expression profiles. The recursive-support vector machine achieved a perfect 100% accuracy in classifying these stress types, identifying 196 genes that significantly contributed to the accurate classification.

In a study led by Meng et al. (2021), supervised classification models were employed to identify genes responding transcriptionally to cold stress. Surprisingly, models trained solely with features derived from genome assemblies displayed modest reductions in performance compared to those incorporating a wider range of data. Notably, models trained with data from one plant species demonstrated remarkable success in predicting gene responses to cold stress in related species, even when transferring predictions between cold-sensitive and cold-tolerant species. Multi-species models, trained using data from multiple species, outperformed single-species models when it came to cross-species prediction accuracy. This approach, driven by ML, shows promise in accelerating the understanding of gene expression responses to environmental stresses across diverse plant species.

In response to abiotic stress, such as heat or cold, plants undergo significant changes in gene expression to adapt and survive. In a study conducted by Zhou et al. (2022), transcriptome profiling of maize genotypes exposed to heat or cold stress revealed extensive alterations in transcript abundance. Motifs near the transcription start sites (TSSs) of genes responsive to thermal stress were found to be enriched. Predictive models developed using these motifs could forecast gene expression responses to stress, with enhanced accuracy focusing on motifs within unmethylated regions near the TSSs. However, challenges emerged when applying these models across different maize genotypes, indicating reduced performance when transferred between genotypes.

In a recent study, Pradhan et al. (2023a) employed artificial intelligence, specifically ML, to tackle the challenge of identifying long non-coding RNAs (lncRNAs) associated with abiotic stress responses in plants. Abiotic stresses significantly impact crop yields, emphasizing the importance of developing stress-resistant crop cultivars. The researchers devised a novel computational model capable of predicting abiotic stress-responsive lncRNAs. They utilized a dataset comprising stress-responsive and non-stress-responsive lncRNA sequences for binary classification. Various ML algorithms, including SVM, were applied, and the representation of lncRNAs was numeric based on Kmer features. Through effective feature selection strategies, the SVM model demonstrated impressive cross-validation accuracy at 68.84%. Further validating its robustness, the model exhibited an accuracy of 76.23% on an independent test dataset. To enhance accessibility, the researchers also introduced an online prediction tool called ASLncR.

In a parallel study, Pradhan et al. (2023a) directed their focus towards predicting microRNAs (miRNAs) associated with specific abiotic stresses, such as cold, drought, heat, and salt. Given the vital role of miRNAs in plant responses to these stresses, their identification holds significance for breeding stress-resistant crops. Leveraging ML, specifically SVM, the researchers developed a computational model for predicting stress-responsive miRNAs. They utilized pseudo-K-tuple nucleotide compositional features to numerically represent miRNAs. The SVM model achieved high cross-validation prediction accuracies ranging from 87.71% to 90.15% across different stress conditions. To facilitate the utility of this computational tool, an online prediction server named ASmiR was established.

Similarly, Meher et al. (2022a) contributed to the field by developing a ML-based method for predicting miRNAs responsive to abiotic stresses. They worked with three types of datasets: miRNA, pre-miRNA, and pre-miRNA + miRNA. Using pseudo-K-tuple nucleotide compositional features, sequence data was transformed into numeric feature vectors. SVM was employed for prediction, and the model achieved respectable results. The area under the receiver operating characteristics curve (auROC) and area under the precision-recall curve (auPRC) percentages ranged from 65.64% to 77.94%. Overall prediction accuracies for the independent test set ranged from 62.33% to 69.21%. To facilitate the application of this approach, the researchers provided an online prediction server named ASRmiRNA. The method shows promise in advancing the identification of abiotic stress-responsive pre-miRNAs and miRNAs.




5.3 AI-assisted proteomics

Meher et al. (2022a) employed computational methods and machine learning (ML) to streamline the identification of abiotic stress-responsive genes (SRGs) across various stress conditions, achieving accuracy levels of 60% to 78% with the SVM model. They introduced an online prediction application, ASRpro, for broader accessibility. In the realm of plant-pathogen protein-protein interactions (PPIs), Yang et al. (2019) utilized Random Forest to predict known plant-pathogen PPIs, showcasing enhanced accuracy by incorporating sequence data and network attributes. The InterSPPI web server was introduced to support ongoing research. Karan et al. (2023) focused on plant-microbe interactions, predicting PPIs for rice and blast fungus interactions with ML models achieving up to 95% accuracy on experimental datasets. The specificity of the model to O. sativa and M. grisea was confirmed through assessments against other pathogen-host datasets. Ahmed et al. (2023) introduced a novel activation function, Gaussian Error Linear Unit with Sigmoid (SIELU), in a deep learning model for classifying unknown abiotic stress protein sequences, outperforming other models with high accuracies ranging from 80.78% to 95.11%.




5.4 AI-assisted metabolomics

Liu et al. (2017) conducted a study focusing on the classification of 216 plants based on their incomplete metabolite content. Their research employed a network clustering algorithm to group metabolites with similar structures. Plants were represented as binary vectors, and hierarchical clustering was used for classification. Despite working with incomplete data, the approach successfully clustered plants in accordance with known evolutionary relationships, underscoring the significance of metabolite content as a taxonomic marker. Furthermore, the study discussed how metabolite content could serve as a predictor for nutritional and medicinal properties in plants, revealing previously unknown species-metabolite relationships.

In Fürtauer et al.’s study (2018), the emphasis was on understanding how abiotic stress influences the metabolic regulation of plants. The researchers utilized Arabidopsis wild-type plants and mutant lines with deficiencies in sucrose or starch metabolism, subjecting them to cold and high-light stress conditions. Through quantifying changes in the primary metabolome and proteome, they trained a machine-learning algorithm to classify mutant lines under control and stress conditions. This innovative approach identified a core module consisting of 23 proteins that reliably predicted combined temperature and high-light stress conditions. Importantly, 18 of these proteins were associated with protein-protein interactions, providing insights into the intricate biochemical regulation occurring in response to changing environmental conditions.




5.5 AI-assisted phenomics

DL techniques have proven remarkably effective in the realm of crop management, spanning various crops like rice, wheat, tomato, and potato. Li et al. (2020) pioneered a DL-based video detection system aimed at addressing plant diseases and pests in crops. Their primary goal was the swift identification of plant diseases and pests through comprehensive video analysis, utilizing advanced models such as Faster R-CNN and YOLO v3 for real-time video detection systems. The approach involved transforming videos into individual frames, analyzed using a Faster R-CNN framework for detection. Video-based evaluation metrics were introduced to assess detection quality, demonstrating that their custom backbone system outperformed existing systems in detecting untrained rice videos. Focusing on wheat stripe rust, a prevalent disease affecting wheat yields, Mi et al. (2020) introduced a novel DL network called C-DenseNet. This network incorporated the Convolutional Block Attention Module (CBAM) into a densely connected convolutional network (DenseNet), surpassing classical DenseNet and ResNet models in wheat stripe rust severity grading with a test accuracy of 97.99%.

Wang and Liu (2021) presented an early recognition method for tomato leaf spot using the MobileNetv2-YOLOv3 model. They enhanced recognition accuracy by introducing the GIoU bounding box regression loss function. This lightweight model demonstrated significant improvements in recognition performance compared to other models, achieving an F1 score of 94.13% under specific conditions. Addressing virus diseases in seed potatoes, Polder et al. (2019) proposed a hyperspectral imaging approach for field detection. They designed an imaging setup with a hyperspectral line-scan camera, training a convolutional neural network (CNN) on field data. The method achieved high precision and recall, showcasing its potential for real-world disease detection in potato crops. Chen and Yuan (2019) developed a deep-learning pipeline for localizing and counting agricultural pests in images. Their method integrated a convolutional neural network (CNN) and a region proposal network (RPN) with Non-Maximum Suppression (NMS) to remove overlapping detections. The model demonstrated high precision (0.93) with a low miss rate (0.10), showcasing its effectiveness in pest detection.

Feng et al. (2020) addressed plant defense against salinity stress using image processing and DL algorithms. They utilized high-throughput plant phenotyping technologies for non-destructive monitoring of plant traits. Employing hyperspectral imaging (HSI), the researchers assessed the phenotypes of 13 okra genotypes following salt treatment. Advanced plant and leaf segmentation techniques, coupled with DL algorithms, achieved outstanding results in accurately delineating plant and leaf structures. Salinity stress was found to have deleterious effects on okra’s physiological and biochemical processes, leading to significant alterations in spectral information. Leveraging this data, the study constructed predictive models for various traits, yielding promising results with correlation coefficients ranging from 0.588 to 0.835.

An overview of dedicated ML-based tools designed for addressing both abiotic and biotic stresses in plants are enlisted in Table 2. These specialized tools cater to specific types of stressors, offering a comprehensive resource for researchers and practitioners in the field of plant defense.


Table 2 | AI-based tools for plant defense against abiotic and biotic stress.



Supervised ML and DL have been extensively applied in various plant biology studies, but there are situations where unsupervised and semi-supervised approaches are crucial. In the field of plant systems biology, unsupervised and semi-supervised learning algorithms play essential roles in diverse areas such as data clustering, dimensionality reduction (DR), visualization, gene regulatory network inference, cross-species prediction, and single-cell omics data analysis (Rai et al., 2019). PCA is widely used for DR and visualization of genotypic and multi-omics data (Yan et al., 2020). Hierarchical clustering is extensively employed for clustering genes with similar expression patterns in transcriptomic and proteomic research (Xu et al., 2012; Klepikova et al., 2016). Algorithms like t-sne and optics contribute significantly to the analysis of genotypic data, enhancing visualization of large-scale maize hybrid populations’ structures (Yan et al., 2021). Non-negative matrix factorization (NMF) proves valuable in breaking down expression matrices with thousands of genes into a small number of metagenes in Arabidopsis and maize (Wilson et al., 2012; Ma et al., 2022). The multifactor dimensionality reduction (MDR) algorithm is employed for identifying multiple pairwise epistatic effects and gene–environment interactions affecting agronomic and quality traits in rice and barley (Xu et al., 2015; Xu et al., 2018).

Semi-supervised and transfer learning strategies have emerged to overcome the scarcity of annotated genes and pathways in plants. Transfer learning was employed to predict specialized/general metabolism-related genes in Solanum lycopersicum (tomato) by leveraging well-annotated Arabidopsis genes (Moore et al., 2020). Another innovative approach, ‘evolutionarily informed machine learning,’ used an xgboost model trained on transcriptomic data in Arabidopsis to predict nitrogen-use efficiency (NUE) and related genes in maize (Cheng et al., 2021). With the advent of single-cell sequencing technology, challenges arise due to higher dimensionality and complexity (Bobrovskikh et al., 2021). Advanced algorithms like t-sne, umap, magic, phate, Saucie, and Beeline have been proposed to address these challenges and are prevalent in both human and plant studies (Van Dijk et al., 2018; Amodio et al., 2019; Becht et al., 2019; Pratapa et al., 2020; Wu and Zhang, 2020; Marand et al., 2021).





6 Challenges

The rapid advancements in biological data generation and ML development have opened up significant possibilities for unraveling complex biological information. However, integrating ML into plant molecular studies poses notable challenges. ML approaches, similar to traditional plant molecular methods, are highly context-specific, underscoring the importance of meticulous experimental design. It’s essential to recognize that while ML aims to create predictive models, each ML algorithm comes with distinct strengths and weaknesses, influencing predictive efficiency under specific conditions. Consequently, an ML model crafted for one dataset may struggle to generalize well to others due to inherent biological and technical variations.

The abundance of omics datasets provides a treasure trove of information. However, a notable portion of these datasets is marked by characteristics such as noise and sparsity. This poses a substantial challenge when it comes to accurately identifying biological features, especially during the integration of various omics data sources (Joyce and Palsson, 2006). The challenge of imbalanced datasets, where sample sizes vary across categories, is pervasive in ML. Researchers address this through resampling strategies such as oversampling and undersampling (Maimon and Rokach, 2005). For instance, Li et al. (2021) employed the synthetic minority oversampling technique (SMOTE) to bolster the representation of minority cases, a crucial step in the identification of effector proteins. The presence of noise and sparsity in these datasets introduces uncertainty and complexity, potentially hindering the identification of meaningful patterns or features within the biological data. Researchers must grapple with the task of distinguishing genuine biological signals from the background noise, emphasizing the need for robust analytical approaches to ensure the reliability of findings. Additionally, the issue of overfitting looms prominently, particularly in the domain of DL. Overfitting occurs when a model becomes overly tailored to the intricacies of a specific dataset to the extent that it struggles to generalize well to new, unseen data. This phenomenon can compromise the model’s predictive capabilities and hinder its applicability to real-world scenarios. In addressing this concern, techniques like dropout have been employed (Scholz et al., 2004).

Dropout is a regularization technique that involves randomly “dropping out” or deactivating a subset of neurons during the training of a neural network. By doing so, dropout helps prevent the neural network from becoming overly reliant on specific features or relationships present in the training data, thereby enhancing its ability to generalize to new and unseen data. This technique acts as a safeguard against overfitting, promoting a more robust and adaptable model. Various factors, including data preprocessing, user-defined parameters, and domain knowledge, significantly influence the effectiveness of ML models. ML practitioners play a pivotal role in decision-making throughout the process, underscoring the importance of incorporating prior knowledge and domain expertise to unveil meaningful patterns.

Dealing with big data characteristics in plant system biology studies, encompassing volume, variety, veracity, value, and velocity, presents its own set of challenges. ML methods must adapt to handle multi-omics data, considering the unique insights each omics layer provides. Challenges include addressing high-dimensional data issues such as sparsity, multicollinearity, and overfitting, necessitating tailored methods and collaborative efforts in data integration.

Interpreting complex models, particularly in advanced ML approaches like DL, remains challenging due to their ‘black box’ nature. Researchers often prioritize understanding the biological significance of a predictive model over its accuracy, requiring careful processing and correlation with existing biological knowledge.

Despite these challenges, the studies discussed in this context represent success stories in the application of AI in plant omics. To fully harness the potential of AI, robust and scalable algorithms that uncover meaningful biological insights are crucial. Ensuring accuracy and reliability through experimental validation is essential for translating computational findings into practical applications. Bridging collaboration gaps between omics researchers, data scientists, and agricultural experts is vital for realizing the full potential of AI in plant defense and practical applications.




7 Future directions

Integration of AI and Omics Data in Early Disease Detection: One promising future direction is the seamless integration of AI with various omics data (genomics, transcriptomics, proteomics, and metabolomics) to enable the early detection of plant diseases. Advanced AI algorithms can analyze multi-dimensional omics datasets to identify subtle changes in plant molecular profiles associated with disease onset, even before visible symptoms emerge.

High-Throughput Phenotyping with AI-Omics Fusion: Combining AI-assisted omics techniques with high-throughput phenotyping methods offers an exciting avenue. This fusion can enable real-time monitoring of plant health by linking molecular responses to observable phenotypic traits. The integration of phenomics data into AI-driven analysis pipelines enhances our understanding of plant defense mechanisms.

Predictive Modeling of Disease Dynamics: Leveraging AI and omics data, predictive modeling can be developed to forecast disease dynamics in plant populations. ML and DL models can factor in genetic, molecular, and environmental variables to predict disease outbreaks and assess the impact of preventive measures.

Customized Crop Breeding: Future research may focus on using AI-assisted omics techniques to tailor crop breeding programs for enhanced disease resistance. By pinpointing specific genetic markers and pathways associated with resistance, breeders can design crops with improved defense mechanisms.

AI-Guided Sustainable Disease Management: AI can assist in optimizing disease management strategies. Integrating AI-powered recommendations with omics data allows for precision application of pesticides, reducing environmental impact and lowering costs while effectively controlling plant pathogens.

Addressing Combined Stressors: With climate change and evolving agricultural practices, plants often face the challenge of multiple stressors simultaneously. Future research should focus on understanding how plants respond to combined biotic and abiotic stress, as this represents a significant real-world scenario. AI-assisted omics techniques can play a pivotal role in unraveling the intricate interactions between different stress factors and their cumulative effects on plant defense mechanisms. This knowledge is essential for developing holistic and resilient strategies to protect crops in complex stress environments, ensuring sustainable food production.

Integration of Remote Sensing Data with AI-Omics Fusion: The integration of remote sensing technology with AI-assisted omics techniques offers a powerful approach to monitor and mitigate plant stress. Remote sensing provides valuable spatial and temporal data on plant health, stress factors, and environmental conditions. By merging remote sensing data with omics information, researchers can gain a comprehensive understanding of the interplay between genetic responses and environmental stressors. This integrated approach enables more precise and timely interventions to enhance plant defense and reduce crop losses.




8 Conclusion

In conclusion, this comprehensive review explores the landscape of omics studies in plant defense against biotic and abiotic stress, and the transformative role of ML techniques in various omics domains. From genomics to metabolomics, AI-assisted techniques showcase their prowess in extracting meaningful insights from expansive datasets, surpassing traditional methods. While emphasizing the advantages of ML, the review also addresses the challenges associated with its implementation in plant omics, paving the way for future developments. Progress in computational frameworks facilitates the seamless application of modern methods. With the increasing volume of plant sequencing data, ML emerges as a catalyst in accelerating various facets of plant genomic research. This includes pinpointing genes associated with resistance against biotic and abiotic stress, as well as enhancing our comprehension of gene regulation mechanisms. These strides are poised to aid agricultural researchers in enhancing crop yield and quality, fostering improved resilience to biotic and abiotic stressors.
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ML models P-value Critical value Ho*

ANN-RF 0.62 0.05 Rejected

HO0*: There is no statistically significant difference in the prediction performance
between MLAs.
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ML models

Statistical indices

ANN
R2 0.68 075
cce 072 0.80
RMSE (kg ha™) 500 ‘ 400

RPD 220 2.79





OPS/images/fpls.2024.1292054/fpls-15-1292054-g001.jpg
(e
I

o preracain
I

Festoe extacion o
ieton

© Unopenise learing

Ran s
DB

i | it i
iy | | Homogecty B

ey e





OPS/images/fpls.2023.1309171/table2.jpg
Parameters Unit Min Max Mean Median SD ABS CV (%)

wy kgha™! 2500 7430 4937 4750 1117 226
Nelo) % 0.79 1.38 » 1.08 1.07 0.12 11.0
TN % 0.08 0.14 0.11 0.11 0.01 11.1
SAVI = —0.04 1.07 0.51 0.36 0.33 65.0
‘WDVI - 1036 4666 2688 2495 762 284
NDVI - -0.03 0.71 0.34 024 022 65.0
Elevation m 1754 1770 1762 1761 4.12 023
CHN m 1753 1767 » 1760 1760 340 0.19
Wetness - 4453 -1509 -3296 -3354 547 16.6
Texture = 0.00 45.8 7.48 244 103 137
Convexity - 9.82 54.2 35.16 36.03 10.05 28.6

Min, minimum; Max, maximum; SD, standard deviation; ABS CV, absolute coefficient of determination; WY, wheat yield; SOC, soil organic carbon; TN, total nitrogen; SAVI, soil-adjusted
vegetation index; WDV], weighted difference vegetation index; NDVI, normalized difference vegetation index; CHN, channel network base level; Wetness, wetness index; Texture: terrain surface
texture; Convexity, terrain surface convexity.
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Cell Line ME (DiC) MAE (ADIC) MSE

D ‘ 96 0.01 (0.70) 043 (0.55) 0.49
E ‘ 191 0.05 (0.77) 047 (0.61) 0.60 58.1
F ‘ 96 -0.18 (0.91) 0.51 (0.78) 0.86 61.5

Standard deviations are shown in brackets.
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Classes Precision Recall loU

Cotyledon 0.963 0.896 0.866 0.928

Hypocotyl 0.915 0.959 0.881 0.937
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Classes Precision Recall loU F1
Cotyledon 0.942 ‘ 0915 0.867 0.929

Hypocotyl 0.922 ‘ 0.942 0.872 0.932
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Cotyledons Hypocotyl Images

Train 1094 191 191
Validation 254 42 42
Test 242 42 42
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Pa eters ymbol
Soil organic carbon SOC (%)
Total nitrogen TN (%)
Soil-adjusted vegetation index SAVI
Weighted difference vegetation index WDVI
Normalized difference vegetation index NDVI
Wetness index Wetness
Terrain surface texture Texture
Terrain surface convexity Convexity

Elevation Elevation (m)

Channel network base level CHN (m)

‘The abbreviations of all covariates are describe in this table.

Description
Soil organic carbon content
Soil total nitrogen content
(NIR—R) / (NIR +R)* (1 + S)
WDVI = NIR — (g x R)

NIR - RED/NIR + RED

0.0315 (Blue) + 0.2021(Green) — 0.3102 (Red) + 0.1594 (NIR) -

0.6806(SWIR1) — 0.6109 (SWIR2)

The variations in elevation and roughness of the terrain surface
Is a measure of the convexity or concavity degree of a terrain surface
Elevation from sea level

Difference between
the DEM and a
surface interpolated
from the channel

Source

Lab analysis
Lab analysis
Sentinel-2 images
Sentinel-2 images

Sentinel-2 images

Sentinel-2 images

Digital elevation model
Digital elevation model

Digital clevation model

Digital elevation model
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Data ME (DiC) MAE (ADiC) MSE Agreement

Validation

-0.19 (0.88) ‘ 0.48 (0.76) 081 ‘ 64.3

Test ‘ -0.31 (0.83) ‘ 0.60 (0.66) 0.79 ‘ 50.0

For mean error (ME), mean absolute error (MAE) and mean squared error (MSE), values
close to zero are best. Standard deviations are shown in brackets.
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R, G, B channel int ACC PR AU
+20 ‘ 091 1 097
+40 ‘ 0.67 1 094
+60 ‘ 046 | 1 084
20 ‘ 0.93 1 0.99
40 ‘ 0.83 1 0.99
-60 ‘ 0.58 1 0.99

The first column shows the value of the relative change in the intensity of the R, G, B channels
for the image pixels.
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Blur kernel size, px

3 0.86 1 0.99
4 0.58 1 0.96
5 0.46 1 0.86
6 0.46 1 0.73

The first column shows the size of the blurring kernel, and the following columns show

estimates of the pubescence identification accuracy.
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Model Processi VN Rc RMSEc Rp
SG + SPA 50 09396 0. 6851 0.8892 07904
SG + CARS 225 09782 03643 0.8539 08612
MSC + SPA 30 0.9214 0.7011 0.8607 0.8301
PLSR
MSC + CARS 320 0.9805 0.3428 0.8596 0.8317
SNV + SPA 40 0.8571 0.8439 0.8033 0.9608
SNV + CARS 265 0.9065 07392 0.8104 09563
SG + SPA 50 0.9688 06493 0.9056 07349
SG + CARS 225 0.9806 03425 0.8512 0.8693
SVR MSC + SPA 30 0.9329 0.6896 0.8704 0.8167
| MSC + CARS 320 I 0.9863 0.3209 0.8805 0.7973
SNV + SPA 40 0.9017 0.7420 0.8439 0.9016
SNV + CARS 265 09733 03922 0.8531 08688
SG + SPA 50 0.9667 06415 0.9427 0.6872
SG + CARS 225 0.9704 0.3729 0.9069 0.7356
MSC + SPA 30 0.9376 0.6802 0.8674 0.8682
ID-CNN
MSC + CARS 320 0.9865 03368 0.9295 06987
SNV + SPA 40 09582 0.6690 0.8544 0.8613
SNV + CARS 265 09732 03704 0.8629 0.8701

Re, Correlation coefficient of the training set; RMSEc, RMSE of the training set; Rp, Correlation coefficient of the test set; RMSEp, RMSE of the test set; VN, number of variables.
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Stratification method Model Test dataset Holdout dataset

PR F1
Str_BalancedByClass EfficientNet-B0 0.79 0.93 0.60 0.87 0.63 0.78 0.55 0.76
| EfficientNet-B1 ' 0.89 ' 0.81 ' 0.85 ' 0.96 ' 0.83 0.78 0.84 0.89
ResNet18 0.87 0.88 0.81 0.92 0.73 0.77 0.55 0.77
Str_TrainMaxDiversity EfficientNet-BO 0.73 0.61 0.30 0.72 0.75 0.86 0.71 0.78
EfficientNet-B1 0.85 0.75 0.74 0.86 0.85 0.82 0.84 0.86
ResNetl18 0.79 0.63 0.65 0.82 0.83 0.84 0.74 0.87

Expert by an eye 0.92 1.00 095 = 0.80 088 078 =
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Model

PLSR

SVR

1D-CNN

Processing VN Rc RMSEc Rp RMSEp
SG + SPA 40 0.8237 09402 07539 1.0164
SG + CARS 180 0.8069 09601 0.6753 12767
MSC + SPA 24 07958 09968 06568 13984
MSC + CARS 256 0.7012 1.0482 0.5914 1.6323
SNV + SPA 32 0.8369 09201 07743 09936
SNV + CARS 212 0.8058 09678 06288 15108
SG + SPA 40 0.8491 0.8967 07392 11573
SG + CARS 180 0.8236 0.9389 0.6647 13372
MSC + SPA 24 0.7792 10127 0.6329 1.4736
MSC + CARS 256 0.6218 1.5789 0.4788 17729
SNV + SPA 32 0.7965 09693 0.7524 10184
SNV + CARS 212 07284 1.2635 0.6342 1.4628
SG + SPA 40 08316 09179 0.7906 09755
SG + CARS 180 0.8527 0.8566 0.8032 0.9683
MSC + SPA 24 0.8033 0.9705 0.6734 1.2982
MSC + CARS 256 0.8939 07493 0.5983 1.6024
SNV + SPA 32 07748 1.0194 07632 0.9983
SNV + CARS 212 0.8247 09397 06346 1.4623

Re, Correlation coefficient of the training set; RMSEc, RMSE of the training set; Rp, Correlation coefficient of the test set; RMSEp, RMSE of the test set; VN, number of variables.
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Pre-Proces: VN Rc MSEc Rp
SG + SPA 10 0.9532 06704 ‘ 09047 0.7386
SG + CARS 45 0.9459 06783 ‘ 0.8637 0.8269
MSC + SPA 6 0.9478 0.6724 ‘ 0.8503 0.8715
MSC + CARS 64 0.9728 0.3927 ‘ 0.9214 0.7017
SNV + SPA 8 0.9259 0.6990 ‘ 0.8215 0.9451
SNV + CARS 53 » 0.9644 06497 0.8459 0.9002

R, Correlation coefficient of the training set; RMSE, RMSE of the training set; Rp, Correlation coefficient of the test set; RMSEp, RMSE of the test set; VN, number of variables.





OPS/images/fpls.2023.1336192/fpls-14-1336192-g009.jpg
>

Number of images

500 4
450
o]
350 4
300 4
250
200

150]
100 4
50 4

15 Mp

(0 S | ,.l { -

0025 050751 12515 1.75 2 225 25275 3
ColorChecker target area, px x10°

Number of images

450
400
350
300
250
200
150
100

50

18 Mp

0025 050751 12515 1.75 2 22525275 3
ColorChecker target area, px x108





OPS/images/fpls.2023.1298483/table1.jpg
Model Processi VN Rc SEc RMSEp
SG + SPA 10 09285 0.6972 0.8709 08027
SG + CARS 45 09456 06783 0.8517 08645
MSC + SPA 6 09157 0.7137 0.8461 0.9014
PLSR
MSC + CARS 64 0.9582 0.6624 0.8583 0.8352
SNV + SPA 8 0.7159 1.0216 0.6970 1.0685
SG + SPA 10 09637 06521 0.8917 07435
SG + SPA 10 09637 06521 0.8917 07435
SG + CARS 45 0.9563 0.6689 0.8422 0.9160
SVR MSC + SPA 6 0.9088 0.7356 0.8632 0.8274
MSC + CARS 64 09257 06997 0.8816 07952
SNV + SPA 8 0.8562 0.8456 0.8064 09606
SNV + CARS 53 09146 07204 0.8347 09231

Rg, Correlation coefficient of the training set; RMSEc, RMSE of the training set; Rp, Correlation coefficient of the test set; RMSEp, RMSE of the test set; VN, number of variables.
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Work Method Classification sche Sample Accuracy (%) Date
Bensaadi and Louchene (2023) Low-cost CNN Nine-class 57,000 97.04 2023
Haridasan et al. (2023) CNN + SVM Five-class 91.45 2023
Nagi and Tripathy (2023) Fuzzy feature and PNN 17-class 95.68 2023
Srinivasa Rao et al. (2022) bi-linear convolution neural network 38-class 54,305 94.98% 2023
Narmadha et al. (2022) DenseNet169-MLP 3-class 120 97.68% 2022
Aqel et al. (2022) Extreme learning machine 4-class 73 94% 2022
This study i DeepPlantNet framework Eight-class 2080 and 900 97.89% and 99.62% 2023
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Model Precision
‘ Resnet18 89.66
‘ Mobilenetv2 91.0
‘ Densenet201 ‘ 90.66
‘ Darknet19 90.0

‘ DeepPlantNet 9137

Accuracy
95.24
97.34
96.12

95.47

97.89

Recall

91.33
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(Create Shapefile and Extract Plot-level Images from the Orthomosaics |

( Use the OpenCV Library and Python to Extract Plot-level Pixel Dataj

[ Calculate Plot-level Estimates for Relevant Phenotypes |

LConstruct Sigmoidal Growth Curves and Their First Derivatives |

( Extract Latent Phenotypes from the Growth Curvesj

[ Perform Feature Selection using Recursive Feature Elimination |

[ Execute Random Forest and XGBoost Models and Obtain Yield Estimates |

LAssess the Performance of Each Model |
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Predicted Class

Disease class Maize common rust Maize healthy Potato early blight Potato healthy Tomato bacterial spot Tomato healthy
Maize common rust 299 0 0 0 0 0
Maize healthy 1 1162 1 0 0 0
True Class Potato early blight 0 0 292 0 1 1
Potato healthy 0 0 4 150 2 0
Tomato bacterial spot 0 | 0 2 2 295 0
Tomato healthy 0 0 1 0 2 1590
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Feature
W1 vs W2
W1 vs W3
W1 vs W4
W2 vs W3
W2 vs W4

W3 vs W4

48.693

56.716

53.703

53.007

56.255

56.912

p-Value
0.041
0.000
0.044
0.002
0.916

0.005
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Feature t p-Value
W1 vs W2 54.457 0.04
W1 vs W3 52423 0.000
W1 vs W4 57.664 0.13
W2 vs W3 57.653 0.009
W2 vs W4 56.134 0.646
W3 vs W4 54.426 0.005
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Models Average accuracy(%) Flops Params(MB) Recall S(img/s) (4]
MobileVIT-XS 92.17 7.43x10° 742 9227 7.87 9223
MobileNetV2 93.43 326x10° 1337 9341 10.79 93.47
MobileNetV3-large 88.81 6.11x107 5.90 88.76 10.84 88.85
EfficientNetV1-b0 94.31 4.11x10* 1543 94.26 9.23 94.37
EffcientNetv2s 95.91 2.89x10° 7711 96.10 471 96.07
ResNet34 96.79 3.67x10° 83.15 96.82 774 96.87
RegNet 74.25 2.07x10° 8.87 74.13 11.12 74.21
ConvNext-tiny 93.42 4.45x10° 106.19 93.54 493 93.51
ConvNext-small 94.61 8.68x10° 188.69 9437 341 94.45
MssiapNet 96.85 2.63x10° 2970 96.91 6.64 96.89

The meaning of the bolded position indicates that the value is optimal in each comparison network.
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Predicted Class

True Class

Disease class Maize common rust Potato early early blight ‘ Tomato bacterial spot
Maize common rust 299 0 ‘ 0

Potato early early blight 0 299 ‘ 0

Tomato bacterial spot 1 1 ‘ 300
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Class N (classified) Accuracy Recall

ABR 265 260 98.41 95.0 93.0

CPM 258 260 98.75 95.0 95.0 95.0
GLB 267 260 99.18 98.0 96.0 97.0
PBS 256 260 98.17 92.0 93.0 925
PBBS 252 » 260 97.02 87.0 89.0 775
PEB 263 260 98.99 97.0 95.0 96.0
SPM 261 260 98.8 95.0 95.0 95.0
SLS 258 260 98.65 94.0 95.0 945
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Flowering Grain Filling

Models Subsets
RMSE/(t-ha™) R2 RMSE/(t-ha™)

All Features 0.509 0.795 0.541 0.782
PC 0.601 0.801 0.641 0.73
RF 0.586 0.772 0.614 0.787

Cubist T
PC&RF Uni. 0.596 0.685 0.602 0.736
PC&REF Inter. 0.580 0.797 0.606 0.656
PCRF-RFE 0.635 0.681 0.667 0.661
All Features 0.492 0.893 0.512 0.961
PC 0.578 0.829 0.598 0.788
RF 0.561 0.825 0.587 0.883

RNN +

PC&RF Uni. 0.555 0.961 0.571 1.020
PC&REF Inter. 0.552 0.819 0.562 1.091
PCRF-RFE 0.607 0.793 0.628 0.872
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Predicted Class

Plant disease ABR CPM GLB PBS PBBS PEB SPM SLS
ABR 48 0 0 1 3 0 0 | 0
CPM 2 47 0 1 1 0 1 0
GLB 0 0 52 0 0 0 0 0
True class PBS 1 0 0 47 3 0 0 1 |

PBBS 4 1 1 1 40 5 0 0
PEB 1 0 1 0 2 47 0 1
SPM 0 0 0 1 Il 0 0 50 | 1
SLS 0 0 0 0 0 0 2 50
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Number

PC&RF Uni. PC&RF Inter. PCRF-RFE(Cubist) PCRF-RFE(RNN)

Flowering 16 20 25 | 10 13 1

Grain filling 24 15 26 ‘ 13 15 18
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Validation frequency 30
Optimization algorithm SGDM
Learning rate 0.001
AF LReLU
Verbose False
Train Size 0.8
Test Size 0.2
Iterations per epoch 13
Dropout 0.5
Maximum Epochs 35
Shuffle ‘ Every epoch
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Influencing factors

Models Execution time(s) Delay time(s) Specificity(%)
MSS2
MssNet v Null 013 0.02 99.74
TapNet Null ‘ v 015 003 ‘ 99.73
MssiapNet v ‘ v 0.16 0.05 ‘ 99.83

+/ means that the module was applied to the specific model.
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S No Opera Layers No of filters Filter
1 Input
2 Convolution Convolution (BN, LReLU) 64 3x3 2x2
3 Pooling Maximum pooling 3x3 2x2
Convolution (BN, LReLU) 16 1x1
4 Fire module Convolution (BN, LReLU) 64 3x3 1x1
Convolution (BN, LReLU) 64 1x1
Convolution (BN, LReLU) 16 1x1
5 Fire module Convolution (BN, LReLU) 64 3x3 1x1
Convolution (BN, LReLU) 64 1x1
‘ 6 Pooling Max-Pooling 3x3 2x2 0101]
‘ 7 Fire module Convolution (BN, LReLU) 32 1x1
‘ Convolution (BN, LReLU) 128 1x1
Convolution (BN, LReLU) 128 3x3 1x1
Convolution (BN, LReLU) 32 1x1
8 Fire module Convolution (BN, LReLU) 128 3x3 1x1
Convolution (BN, LReLU) 128 1x1
9 Pooling Max-Pooling 3x3 2x2 0101
Convolution (BN, LReLU) 48 1x1
10 Fire module Convolution (BN, LReLU) 192 1x1
Convolution (BN, LReLU) 192 3x3 1x1
Convolution (BN, LReLU) 48 1x1
11 Fire module Convolution (BN, LReLU) 192 1x1
Convolution (BN, LReLU) 192 3x3 § b §
Convolution (BN, LReLU) 64 1x1
12 Fire module Convolution (BN, LReLU) 256 3x3 1x1
Convolution (BN, LReLU) 256 1x1
Convolution (BN, LReLU) 64 1x1
13 Fire module Convolution (BN, LReLU) 256 3x3 1x1
Convolution (BN, LReLU) 256 1x1
14 FC FC + BN + LReLU + Dropout
15 FC FC + BN + LReLU + Dropout
16 Classification FC + Softmax + Classification
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Treatment = Denghai202  Bainong207  Jimai22  Shannong36  Letu808  Dunmai88 = Yannong1212  Bainong58  Zhongmai578 | Luyuan502

w1 9.78 8.14 8.36 7.86 7.07 7.35 5.00 8.09 8.41 823
w2 845 7.55 8.11 9.13 8.70 9.07 717 8.36 7.06 9.58
w3 826 8.56 878 8.63 871 10.70 8.86 845 8.87 8.85

w4 812 9.39 9.04 7.46 849 9.40 7.11 7.90 7.90 8.71
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Influencing factors

Average
MSSE2 IAP Accuracy(%)
MssNet v Null 93.86
TapNet ‘ Null v 94.61
MssiapNet ‘ v v 96.85

+/ means that the module was applied to the specific model.

Average
Precision(%)

93.93
94.73

96.91

7.38x10%
2.63x10°

2.63x10°

Recall(%)

93.88
94.68

96.91

F1(%)

93.89
94.66

96.89





OPS/images/fpls.2023.1212747/table1.jpg
Experiment parameters

1 System type Windows 10, 64 bit
2 CPU Intel (R) Core (TM) i5-5200U
3 RAM 8GB

HDD 500GB

Development tool MATLAB R2020a
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Category

All datasets

W1 dataset

‘W2 dataset

‘W3 dataset

W4 dataset

Observatio
120 335
30 335
30 5.08
30 7.18
30 434

13.11

1191

1113

13.11

10.17

1.39

L19

1.26

8.36

7.34

8.43

8.06

8.62

8.68

821

8.48

8.98

9.40

9.29

16.9%

20%

16.7%

13.3%

15.4%
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Name
Epochs
Batch size
Optimizer

Learning
rate

Loss
function

Value
400
8

SGD

0.001

Cross
Entropy

scription
Number of times the model was trained
Number of samples selected for one training

Tool used to bootstrap network update parameters
Tunes parameters in optimization algorithms

Evaluates the gap between the predicted value and
the true value
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Features

Normalized
difference
vegetation

index

Normalized
Difference
Red-Edge

Green NDVI

Canopy
chlorophyll
content index

Green ratio
vegetation
index

Red-
Green Ratio

RedEdge Ratio
Index 1

RedEdge Ratio
Index 2

Adjusted
transformed
soil-adjusted

Formulas

NDVI = (NIR - R)/(NIR + R)

NDRE = (NIR - RE)/(NIR + RE)

GNDVI = (NIR - G)/(NIR + G)

CCCI = (NIR - RE) /(NIR + RE)/

(NIR - R)/(NIR + R)

GRVI = NIR/G

RGR =R/G

RRI1 = NIR/RE

RRI2 = RE/R

ATSAVI = 1.22(NIR - 1.22R - 1.22)/

(Li Z.
et al,, 2023)

(Li Z.
et al., 2023)

(Hancock and
Dougherty,
2007)

(LiZ
et al., 2023)

(Nguyen
et al,, 2023)

(Gamon and
Surfus, 1999)

(Ehammer
et al,, 2010)

(Ehammer
et al., 2010)

(He et al., 2007)

Vegetation (1.22NIR + R — 1.22+0.03 + 0.08+
Index
(1+1.22%)
Chlorophyll (Jr. Hunt
CIg=(NIR/G) -1
Index Green &= (NIR/G) et al,, 2011)
Chlorophyll (Jr. Hunt
Ire = (NIR/RE) - 1
IndexRedEdge Clre= (NIR/RE) et al., 2011)
Ideal
. tati IVI = (NIR - 0.03)/(1.22R) (Main
vegetation = i 5 etal, 2011)
index
Difference
vegetation DVI = NIR- R (Tucker, 1979)
index
Weighted
Dlﬂ'erex?ce WDVI = NIR — 1.22R (Ehammer
Vegetation et al., 2010)
Index
Transformed
5 (Tran
Vegetation TVI = VNDVI +0.5
et al,, 2022)
Index
Wide
Dynamic
Ahamed
Range WDRVI = (0.1NIR - R)/(0.1NIR + R) (harme
. et al., 2011)
Vegetation
Index
Transformed \/h_ﬁ._____ (LUO
NG TNDVI = \/(NIR = R)/(NIR + R + 0.5) et al, 2006)
Soil-adjusted wz
. i%
ve.getatlon SAVI = 1.5 x (NIR - R) /(NIR + R +0.16) et al., 2023)
index
Green
dlﬂ”erer?ce GDVI=NIR-G (Tucker
vegetation et al., 1979)
index
Green soil
adjusted (Da Luz
vegetation GSAVI = 1.5 x (NIR- G)/(NIR + G +0.5) et al, 2022)
index
(Abdollahi and
Norm G NormG = G/(NIR + R + G) Zakeri, 2022)
(Abdollahi and
Norm NIR NormNIR = NIR/(R + G + NIR) Zakeri, 2022)
(Abdollahi and
Norm R NormR = R/(R+ G + NIR) Zakeri, 2022)
Normalized
green red . (Ahamed
difference NGRDI = (G- R)/(G+R) et al, 2011)
index
(Tran
Redness Index RI=(R-G)/(R+G) et al, 2022)
hl hyll
< g CVI = NIR(R/G? (Pae
v =
cgeiauon ®/G) et al., 2003)
index
Ratio
Haboud:
Vegetation RVI = NIR/R (Haboudane
et al., 2004)
Index
Nonlinear (Rouje: d
Vegetation NLI = (0.12NIR = R)/(0.12NIR + R) odjean an
Breon, 1995)
Index
Modified
Nonli = 2
onlinear MNLI = (1.5NIR - 1.5G)/ (ordan, 1969)
Vegetation
Index (NIR® + R +0.5)
Optimized
,P mvze (Thuoma and
Soil-Adjusted
A OSAVI = (NIR- R)/(NIR + R + 0.16) Madramootoo,
Vegetation 2019)
Index
Transformed
Chlorophyll = —R)-
OLORY TGARI=3((RE=R) (Bagheri, 2020)
Absorption

Ratio Index

Modified
Chlorophyll
Absorption
Ratio Index

Green
Chlorophyll
Index

Red Edge
Chlorophyll
Index

Modified Ratio
Vegetation
Index

0.2(RE - G)(RE/R))

MCARI = ((RE - R)-

0.2(RE - G))(RE/R)

GCI = (NIR/G) - 1

RECI = (NIR/RE) - 1

MRVI = (NIR/R - 1)/(NIR/R + 1)

(Li et al,, 2019)

(Raper and
Varco, 2015)

(jang
et al., 2008)

(Baret and
Guyot, 1991)
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Output feature

Configuration

map size
Conv2d 128 x 128
bn, SiLu 128 x 128
MSSE2 128 x 128
MSSE2 64 x 64
MSSE2 64 x 64
MSSE2 32 x32
MobileVit x 2 32x32
IAP 32x32
MSSE2 16 x 16
MobileVit x 4 16 x 16
IAP 16 x 16
MSSE2 8x8
MobileVit x 3 8x8
IAP 8x8
Conv 8x8
Classifier 1x1

|:kernelsize = 3}

stride = 2

kernelsize =3

stride = 1
Conv2d

padding = 1

groups = inchannels
scSE
Conv2d|kernelsize = 1]
[ker nelsize = 3
stride = 1
Conv2d
padding = 1

| groups = inchannels

scSE
[ kernelsize = 3 1
stride = 1
Conv2d
padding = 1
| groups = inchannels
scSE

Conv2d|kernelsize = 1]

[ kernelsize = 3

stride = 1
Conv2d
padding = 1
| groups = inchannels
scSE

transformer _ channels = 96
patch _h = 2,patch_w =2

ffn_dim =192

num _heads = 4

Conv2d|kernelsize = 1]

kernelsize = 3

stride = 1
Conv2d

padding = 1

groups = inchannels
scSE

transformer _ channels = 120
patch _h =2,patch_w =2
Jfn_dim = 240

num _head = 4

Conv2d|kernelsize = 1]

kernelsize = 3

stride = 1
Conv2d

padding = 1

groups = inchannels
ScSE

transformer _ channels = 144
patch _h =2,patch_w =2
ffn_dim =288

num _heads = 4

ker nelsize = 1

AdaptiveAvgPool2d, Flatten, Liner

The configuration of the IAP module is detailed in 2.3.3.
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Module
name

Input
channels

Output
channels

Configure

MaxPool

3x3Conv

5x5Conv

Input _channel

128

256

Output _ channel

128

256

rrr e . X

Kernel _size = 3
Stride = 1
Padding = 1
Kernel _size =3
Stride = 1
Padding = 1
Kernel _size =5
Stride = 1

Padding = 2

l
l
l

AvgPool

Input _ channel

Output _channel

Kernel _size = 3
Stride = 1

Padding = 1

Input_channel = Output_channel, the number of input channels obtained from 1x1Conv
before 3x3Conv, 5x5Conv are Input_channel and output channels are 128, 256; the number of
input channels obtained from 1x1Conv after 3x3Conv, 5x5Conv are 128, 256 and the number
of output channels Output_channel.





OPS/images/fpls.2023.1212747/M2.jpg
f(x) = max(0.01 x x, x)
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Nam Classes mber Name Classes umber Name Classes

Jimail9 1 969 Lantian34 11 999 Lantian53 21

Jimai20 ) 988 Lantian35 12 917 Lantian54 2 973
Jimai2l 3 999 Lantian36 13 999 Lantian55 23 597
Jimai22 4 999 Lantian37 14 979 Lantian56 24 997
Jimaid4 5 989 ‘ Lantian39 15 999 Zhoumail9 25 981
Jimaid7 6 999 Lantian40 16 999 Zhoumai20 26 990
Lantianl5 7 999 Lantian42 17 968 Zhoumai2l 27 999
Lantian19 8 982 ‘ Lantiand3 18 989 Zhoumai22 28 999
Lantian26 9 979 Lantian45 19 999 Zhoumai23 29 977

Lantian33 10 808 Lantian48 20 977
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Accuracy (%) Comparison with

Variety Mixstyle with
Training Validation Training Validation

Yongyoul2 Yongyoul540 94.50 90.00 86.00 0.22 133 433
Suxiangjing100 | 8975 ‘ 80.33 84.00 -9.63 | 342 v 227
Longjingyoul212 96.50 85.00 81.33 1.33 3.00 334
‘ Yongyoul540 Yongyoul2 94.92 82.33 83.33 0.67 -4.67 434
Suxiangjing100 89.42 82.33 77.33 -9.96 -1.42 -8.94
Longjingyoul212 91.58 79.67 78.33 -3.59 23 » -6.34
Suxiangjing100 Yongyoul2 86.33 80.67 79.67 | -7.92 -6.33 -8.00
Yongyoul540 84.25 82.00 8333 -15.67 6.67 v -7.00
Longjingyoul212 88.75 79.33 76.00 -6.42 267 -8.67
Longjingyoul212 Yongyoul2 93.25 81.33 80.67 -1.00 567 -7.00
Yongyoul540 94.67 84.67 83.67 -5.25 -4.00 -6.66
Suxiangjing100 93.75 80.33 79.33 -5.63 342 » -6.94
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Accuracy (%) Comparison with

Variety Fine-tuning to
Training Validation Training Validation

Yongyoul2 Yongyoul540 96.58 87.67 87.67 -3.34 -1.00 -2.66
Suxiangjing100 9532 80.57 82.04 -4.06 -3.18 v -423
Longjingyou1212 8425 80.60 82.33 -1092 -1.40 234
‘ Yongyoul540 Yongyoul2 97.08 82.67 87.33 +2.83 -4.33 -0.34
Suxiangjing100 95.50 77.39 81.28 -3.88 -6.36 -4.99
Longjingyoul212 95.42 75.33 77.00 +0.25 -6.67 » -7.67
Suxiangjing100 Yongyoul2 94.92 76.67 82.33 +0.34 -10.33 -5.00
Yongyoul540 95.00 83.67 83.00 -492 -5.00 v 7.33
Longjingyoul212 97.17 7133 73.33 +2.00 -10.67 1134
Longjingyoul212 Yongyoul2 92.50 86.67 90.00 -1.75 -0.33 +2.33
Yongyoul540 92.58 89.67 89.33 -7.34 +1.00 -1.00
Suxiangjing100 90.56 84.10 85.56 -8.82 +0.35 » 071
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Accuracy(%)

Variety
Training Validation

Yongyoul2 LR 69.92 65.00 65.67
XGBoost 93.08 61.00 63.00
NYe 94.58 87.00 87.33
CNN 94.25 87.00 87.67

Yongyoul540 LR 71.67 70.67 72.33
XGBoost 94.25 60.67 6433
NYe 96.33 91.33 89.67
CNN 99.92 88.67 9033

Suxiangjing100 LR 64.99 6230 60.65
XGBoost 95.74 60.12 60.84
svC 91.09 84.10 83.45
CNN 99.38 83.75 8627

Longjingyoul212 LR 6333 63.00 64.67
XGBoost 93.17 59.00 61.00
NYe 90.17 83.00 81.67
CNN 95.17 82.00 84.67
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Variety Aging time = Number

Yongyoul2 Not aged 103 0.1717
Aging 96h 291 0.4850

| Aging192h 424 0.7067

Yongyoul540 Not aged 112 0.1867
Aging 96h 194 0.3233

Aging192h 406 0.6767

Suxiangjing100 Not aged 93 0.1860
Aging 96h 353 05883

Aging192h 542 0.9033

Longjingyoul212  Not aged 117 0.1950
Aging 96h 270 04500

Aging192h 345 05750
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The number

Variety of seeds
Yongyoul2 indica japonica Not aged 600
hybrid rice
Aging 96h 600
Agingl92h | 600
Yongyoul540 indica japonica Not aged 600
hybrid rice
Aging 96h 600
Agingl92h | 600
Suxiangjing100 regular japonica Not aged 500
rice
Aging 96h 600
Agingl92h | 600
Longjingyoul212  hybrid indica rice Not aged 600
Aging 96h 600
Agingl92h | 600
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Methods Accuracy 1 Precision ¢
ResNet50 (He et al, 2015) 92.38% 92.58% 92.12% 92.35%
ShuffleNetV2 (Ma et al., 2018) 96.40% 96.21% 96.41% 96.31%
MobileNetV3 (Howard et al., 2019) 95.63% 9531% 95.79% 95.55%
EfficientNet-B0 (Tan and Le, 2020) 97.77% 97.58% 98.02% 97.80%
RegNetX-200MF (Radosavovic et al., 2020) 97.71% 98.13% 97.51% 97.82%
ViT-B/16 (Dosovitskiy et al, 2020) 99.48% 99.45% 99.57% 99.51%
Swin Transformer-T (Liu et al., 2021) 99.50% 99.48% 99.56% 99.52%
RepLKNet-3/7 (Ding et al., 2022) 99.54% 99.43% 99.67% 99.55%
MAGE (Li et al., 2023) 99.58% 99.50% 99.67% 99.58%
SCGNet 99.56% 99.59% 99.55% 99.57%

(Optimal: red Suboptimal: blue).
1 means that the larger the value of the item, the better.
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Feature wavelength points were selected using
the following six methods: SG + SPA, SG +
CARS, MSC + SPA, MSC + CARS, SNV +
SPA, and SNV + CARS

For each feature v;avelength point, the
corresponding image is segmented using U-
Net, encompassing both the training and test
datasets, to yield an individual cottonseed
image

Extraction of texture features, including
Contrast, Correlation, Energy, and Entropy,
for each cottonseed was carried out using the
GLCM.

U-Net

Feature wavelength points

200 single cottonseeds Q

GLCM

Contrast, Correlation, Energy, and Entrop
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Species name uantities
1 Bainong-207 3000
2 Bainong-419 3000
3 Hengshui-6632 3000
4 Luomai-28 3000
5 Neile-288 3000
6 Nongda-3416-18 3000
7 Xinmai-26 3000

8 Xunong-14084 3000
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Methods Parameters|
SC, stride=2 ‘ . 1.06 M
SC, stride=3 1 99.56% ‘ 3443 M ] 103 M
SC, stride=5 97.08% ‘ 3391 M 101 M
SC, stride=7 94.27% ‘ 30.18 M 0.94 M
SC, stride=9 86.25% ‘ 2867 M 0.89 M

(Optimal: red Suboptimal: blue).
1 indicates that the larger the value of the item, the better, and | indicates that the smaller the
value of the item, the better.
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Input Layers Channel Repeat
224x224 Conv2d 3x3 3 i
112x112 Downsample 2x2 3 1
56X56 SCGNet-block 3x3 96 3
56X56 Downsample 2x2 9 1
28x28 SCGNet-block 3x3 192 3
28x28 Downsample 2x2 192 1
14x14 SCGNet-block 3x3 384 9
14x14 Downsample 2x2 384 1
7x7 SCGNet-block 3x3 768 3
7x7 3-D Conv Classification 3x3 768 1

Total Trainable Parameters: 1,078,091.
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Machine (Kurtulmug computationel.
. resource
learning et al.,, 2016) N
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(Sabanci
et al, 2017)
(Ni
et al., 2019)
(Koztowski It can A large amount of
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| extract features, and the number of high-
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et al,, 2022)
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