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Editorial on the Research Topic

Integrative Computational Systems Biology Approaches in Immunology and Medicine

New technologies provide the ability to generate massive amounts of immunological data in health
and disease. However, this “Big data” trend is becoming more challenging and unfeasible by the
steep increase in the number of different pieces of information and the complexity of large datasets.
Thus, systematic and tractable approaches that integrate a variety of biological andmedical research
data at multiple scales into mathematical, statistical, and computational models are crucial to
harness knowledge and to develop new therapies.

A “Frontiers in Immunology” and “Frontiers in Microbiology” research topic was proposed to
address the current state of the art of bioinformatics and computational models covering processes
at multiple temporal and/or spatial scales (e.g., genes, molecular, cells, tissues, organs, individual,
and population) and in combination with animal experiments and clinical data. An additional
reason to prepare this research topic was to celebrate the 70th birthday of Alan Perelson, one of
the pioneers of mathematical modeling in virology and immunology.

A total of 23 papers were accepted for publication, which attests to the timeliness of the
topic. The papers included in this Research Topic reflect many of the open issues in theoretical
immunology and infectious diseases. Some of the papers address challenging questions—such as
the understanding of HIV and the immune system (Vaidya et al.; Móréh et al.; Hernandez-Vargas;
Yang and Ganusov; Cangelosi et al.; Ciupe et al.), the effect of parasites during a malaria infection
(Thakre et al.), how immune cells operate in germinal centers (Amitai et al.; Joslyn et al.) or in the
lymph nodes (Tasnim et al.); and the quantification of influenza viral dynamics (Smith et al.). Four
papers proposed a multiscale modeling approach with the main goal to bring together data from
different scales (Carruthers et al.; Quintela et al.; Lehnert and Figge; Zitzmann and Kaderali). The
problem of traditional fitting methods for ODEs applied to noisy problems was discussed in this
research topic (Romero-Severson et al.). Ultimately, numerical simulations (Pigozzo et al.; Timme
et al.; Prauße et al.) and bioinformatic tools (Pandey et al.; Naz et al.; Farías et al.; Garg et al.) show
the importance of systems biology in understanding experimental outcomes.

These papers provide a broad overview of current issues in systems biology and we would like
to thank the Frontiers editorial staff, all the authors who contributed excellent papers, and the
reviewers whose work has made publication of this research topic possible.
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Tuberculosis (TB) is the leading cause of death by an infectious agent, and developing

an effective vaccine is an important component of the WHO’s EndTB Strategy.

Non-human primate (NHP) models of vaccination are crucial to TB vaccine development

and have informed design of subsequent human trials. However, challenges emerge

when translating results from animal models to human applications, and connecting

post-vaccination immunological measurements to infection outcomes. The H56:IC31

vaccine is a candidate currently in phase I/IIa trials. H56 is a subunit vaccine that is

comprised of 3 mycobacterial antigens: ESAT6, Ag85B, and Rv2660, formulated in

IC31 adjuvant. H56, as a boost to Bacillus Calmette-Guérin (BCG, the TB vaccine

that is currently used in most countries world-wide) demonstrates improved protection

(compared to BCG alone) in mouse and NHP models of TB, and the first human study of

H56 reported strong antigen-specific T cell responses to the vaccine. We integrated NHP

and human data with mathematical modeling approaches to improve our understanding

of NHP and human response to vaccine. We use a mathematical model to describe

T-cell priming, proliferation, and differentiation in lymph nodes and blood, and calibrate

the model to NHP and human blood data. Using the model, we demonstrate the impact

of BCG timing on H56 vaccination response and reveal a general immunogenic response

to H56 following BCG prime. Further, we use uncertainty and sensitivity analyses to

isolate mechanisms driving differences in vaccination response observed between NHP

and human datasets. This study highlights the power of a systems biology approach:

integration of multiple modalities to better understand a complex biological system.

Keywords: tuberculosis, non-human primate, H56, mathematical modeling, bacillus calmette–guerin (BCG),

vaccination
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INTRODUCTION

Among infectious diseases, tuberculosis (TB) remains the leading
cause of death due to a single agent. Its infectious agent,
Mycobacterium tuberculosis (Mtb), kills approximately three
individuals perminute (WHO, 2016). Additionally, in 2015, there
were an estimated 480,000 incident cases of multi-drug resistant
TB. The morbidity and mortality due to tuberculosis, including
drug resistant strains, require renewed investment and research
for an effective vaccine.

While Bacillus Calmette-Guérin (BCG) is widely used to
prevent TB disease in infants, its efficacy amongst the adult
population is highly variable (Colditz et al., 1995; Fine, 1995;
Lanckriet et al., 1995; Mittal et al., 1996; Sterne et al., 1998;
Zodpey et al., 1998). Originally developed in the early 1900s, the
first clinical trials for BCG began in France in the 1920s and
proved its efficacy in children (Andersen and Doherty, 2005). By
1973, BCG was compulsory for South Africa (Fourie, 1987) and
emerged as the most widely used of all vaccines, due to ease of
testing for vaccination via the tuberculin skin test. However, BCG
efficacy fails to protect both infants and adults; with protection
varying from 0-80% (Andersen and Doherty, 2005; Tameris et al.,
2013). Thus, the search for a more effective vaccine continues.

Improved management of the TB epidemic could stem from
vaccinations that prevent infection, active disease, or reactivation
from latent infection, or ameliorate active infections. Currently,
more than 13 TB vaccine candidates have entered clinical
trials (Evans et al., 2016; Gonzalo-Asensio et al., 2017). These
candidates include attenuated versions of Mtb, mycobacterial
whole cell vaccines, viral vectored vaccines, and subunit vaccines
(Ahsan, 2015).

Subunit vaccination strategies emerged when theMtb genome
was sequenced in 1998 (Cole et al., 1998). One such promising
subunit vaccine candidate is H56 formulated with adjuvant IC31.
H56 is a multistage vaccine composed of three antigens: ESAT6,
Ag85B, and Rv2660c (Aagaard et al., 2011). ESAT6 and Ag85B are
early secreted antigens that have been used before as individual
vaccine antigens (Horwitz et al., 1995; Brandt et al., 2000; Olsen
et al., 2001, 2004; Langermans et al., 2005). Ag85B is an antigen
that is present in both BCG and H56 vaccine formulations. Both

Ag85B and ESAT6 have been shown to be highly immunogenic
antigens that are targeted by T cell populations (Mustafa et al.,
2000a,b). Rv2660c was included in the vaccine because of its
association with T cell responses from LTBI (Latent Tuberculosis
Infection) individuals and its expression under starvation or
hypoxic conditions, although its function has not yet been
determined (Betts et al., 2002; Govender et al., 2010; Lin et al.,
2012). Finally, all three antigens are thought to play a role in a
variety of methods that mycobacteria likely employs to survive
the intracellular environment (Ronning et al., 2000; Wilkinson
et al., 2001; Ganguly et al., 2008; Lin et al., 2012; Rohde et al.,
2012).

Common formulations of the H56 vaccine include the
adjuvants IC31 and Cationic Adjuvant Formulation (CAF01).
Human clinical trials used the IC31 adjuvant, a two-component
adjuvant that includes the KLK peptide (an anti-microbial
peptide) and oligodeoxynocleotide (a Toll-like receptor nine

agonist) (Luabeya et al., 2015). IC31 was used in an NHP study
that showed H56 limited reactivation of clinical latent TB (Lin
et al., 2012), while CAF01 has been used in NHP studies herein.
CAF01 is composed primarily of DDA (liposomes prepared in
dimethyl dioctadecyl ammonium) and TDB (a component of the
mycobacterial cell wall, trehalose dimycolate) (Agger, 2016). Both
adjuvants support a Th1 CD4T cell response (Luabeya et al.,
2015; Agger, 2016).

While H56 represents a new vaccine candidate, it also provides
an opportunity for a case study. Before evaluating the success of a
vaccine via challenge, can we compare vaccine immunogenicity
in humans and NHPs to further characterize the inherent
differences between each species? Furthermore, can we utilize
antigen specificity to explore the impact and role of prior BCG
vaccination on H56 immunogenicity?

We use a systems biology approach employing mathematical
modeling to relate pre-exposure vaccination dynamics in humans
and non-human primates. We describe T-cell responses in lymph
nodes and blood using a 2-compartment mathematical model,
demonstrate the impact of BCG timing on subsequent H56
vaccination, and reveal basic mechanisms that dictate vaccine
outcomes in NHPs and humans. We propose that timing of BCG
vaccination and inherent differences between species could play
an important role in the immune responses to the H56 vaccine
candidate. Having this knowledge could improve the vaccine
pipeline.

METHODS

Non-human Primate Data Collection and
Analysis
Animals
The Institutional Animal Care and Use Committee of the
University of Pittsburgh approved all experiments (protocol
number 12080653). The animals were housed and maintained in
accordance with standards established in the AnimalWelfare Act
and the Guide for the Care and Use of Laboratory Animals.

Vaccination
Cynomolgus macaques (Macaca fascicularis) imported from
China and in the United States for at least a year (Valley
Biosystems) were used for these studies (n=8). BCG and
H56:CAF01 animals were primed with 0.1mL BCG Danish
intramuscularly followed by two doses of the vaccine H56
(Ag85B-ESAT6-Rv2660c; 50 µg) mixed with CAF01 (625 µg
dimethyldioctadecyl-ammonium (DDA) and 125 µg trehalose-
6,6-dibehenate (TDB)) at weeks 10 and 14 after BCG priming.
Timing and doses of vaccination are based on previous studies
by our collaborators and others in the field who perform protein-
based boosting of BCG inmacaques (Langermans et al., 2005; Lin
et al., 2012).

Necropsy
For this study, macaques were euthanized approximately 44-48
weeks post-BCG prime (macaques received Mtb challenge 22
weeks following BCG prime, but Mtb-challenge data response
was not included in this study and is therefore not outlined in
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this section). All animals were euthanized with an intravenous
overdose of sodium pentobarbital (Beuthanasia) at 15mg/kg and
maximally bled.

ELISPOT
ELISPOT for IFN-γ was performed using 96-well opaque
multiscreen immunoprecipitation filtration plates (Merck
Millipore) that were hydrated, washed, and coated with
7.5µg/mL of anti-human/nonhuman primate IFN-γ (GZ-4:
Mabtech) for 2 h at 37◦C with 5% CO2. Plates were then blocked
with complete RPMI containing 10% human AB serum for
2 h at 37◦C with 5% CO2. Each stimulation condition was
performed in duplicate. Medium only was used as a negative
control, and phorbol dibutyrate/ionomycin (P&I) and anti-
CD3 were used as positive controls. CFP and peptide pools
of H56 vaccine antigens (ESAT-6, Ag85B, Rv2660c) were used
at 10µg/mL. PBMCs were then added, and the plate was
incubated for 48 h at 37◦C with 5% CO2. The plate was then
washed and detection antibody (7-B6: Mabtech) was added at
2.5µg/mL and incubated for 2 h at 37◦C with 5% CO2. The
plate was washed and streptavidin-conjugated horseradish
peroxidase was added at a 1:100 dilution and incubated for
45min at 37◦C with 5% CO2. The plate was washed and then
developed using AEC substrate. The plate was dried overnight
and read using an ImmunoSpot analyzer (Cellular Technologies
Limited).

Figure 1 shows the timeline of experimental protocol, with
blood draw events for NHP studies (bottom timeline). We
represent the data from Difazio et al. in a manner consistent with
the standardization of the phase I clinical trial data provided by
Luabeya et al. Like Luabeya et al., we analyzed the antigen specific
T cell response for CD4+ effector (CD27-CD45+), effector
memory (CD27-CD45-), and central memory (CD27+CD45-)
subtypes. ESAT6- or Ag85B-specific cellular concentrations were
calculated. Finally, we converted the antigen-specific responses
for each T-cell subtype to represent a percentage of total CD4+ T
cells in blood.

Phase I Clinical Trial Data Collection and
Analysis
For model calibration, we used data described previously
(Luabeya et al., 2015). Briefly, the data is from the first in-
human phase I clinical trial of candidate TB vaccine, H56 in IC31
adjuvant. The authors tested the safety and immunogenicity of
H56:IC31 in adults with or without Mtb infection. Across 112
days, eight individuals without evidence of Mtb infection were
injected with 3 doses of H56 (50 µg H56, 500 nmol IC31) at
56 day intervals. Blood was drawn from individuals on days 0,
14, 56, 70, 112, 126, and 210. Antigen-specific T-cell responses
were isolated and collected at each sample collection time point.
Every individual in the study received BCG vaccination as a
child (approximately 30 years prior to this study). Figure 1 shows
the timeline of experimental protocol for the human trial (top
timeline).

We standardized the results of Luabeya et al. in a manner
that allows for eventual comparison to NHP data. The study
revealed that the H56 vaccine does not induce a robust CD8+

T cell response. Therefore, we focused all data analysis, model
calibration, and results on individual subtypes of the CD4+
T cell response to vaccination. That is, we examined effector
(CD45RA+ CCR7−), effector memory (CD45RA−CCR7−),
central memory (CD45RA−CCR7+), and total CD4+ T cell
populations. Luabeya et al. also discovered that a dose of 50µg of
H56 was not optimal; however, we have selected the 50µg dataset
so that we can directly compare human responses to the NHP
studies described above.

For each T cell subtype, we normalized the response by
subtracting the number of unstimulated, cytokine-producing T
cells from the quantity of T cells that produced cytokines in
response to antigen. We converted this metric to represent a
percentage of the total number of CD4+ T cells. This calculation
was performed for responses to both the ESAT6 and Ag85B
antigens.

Note that the adjuvants used in these two studies (NHP and
human) are different and could contribute significantly to the
results observed. In this work, we do not examine adjuvant
differences but focus instead on the impact of BCG timing and
differences in T cell responses between species. See below for
further discussion of how we indirectly capture adjuvants.

Mathematical Model
In recent studies (Gong et al., 2014; Marino and Kirschner,
2016; Marino et al., 2016; Ziraldo et al., 2016), we captured
lymph node and blood dynamics in response to Mtb infection
using a mathematical model. We used a compartmentalized
system of 16 non-linear, autonomous ordinary differential
equations (ODEs) to track specific and non-specific CD4+
effector, effector memory, and central memory T cell responses.
In these previous works we represent Mtb-specific T-cells as
a generic class of antigen-specific cells; thus, it was simple to
retool this class of cells and track them as ESAT6- or Ag85B-
specific. We assume that all antigen-specific T cells are equally
immune responsive. Figure 2 displays the model schematic,
Supplementary Materials 1 details the system of ODEs,
and Supplementary Table 1 gives the list of all parameters,
definitions, and values.

Our key assumption is that the in silico, exogenous
introduction of antigen loaded, antigen-presenting cells (APCs)
will act as a reasonable proxy for vaccination. This is valid
for two reasons: First, it is well known that vaccine peptides
are presented to T cells by APCs. Second, while we did not
mechanistically model the impact of an adjuvant in this study,
this assumption indirectly evaluates the impact of an adjuvant
on T-cell responses. APCs require adjuvant to properly process
and present vaccine peptides (Kamath et al., 2008). Therefore, to
account for variability in individual response to an adjuvant and
to represent variability across adjuvants (IC31 vs. CAF01), the
quantity of APCs pulsed during vaccination events was assigned
to a single quantity within a range of values. Thus, we simulated
vaccination events by pulsing the APC equation in the system
of ODEs at a time point equal to the day of H56 vaccination,
according to each experimental protocol.

The non-linear ODE model system was implemented and
solved in Matlab (R2016b v 9.1). Experimental and simulation
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FIGURE 1 | Vaccination Experimental Protocol. Comparison of the Human (red) and Non-Human Primate (blue) study protocols. Dots along the respective timelines

represent blood sample data collection time points. BCG, Bacillus Calmette–Guerin; H56, vaccination with H56 and adjuvant (IC31 in Human, CAF01 in Non-Human

Primate).

FIGURE 2 | Schematic of the two-compartment model. Each equation

represents a concentration of a particular cell type, as outlined in the legend.

These concentrations are dependent on other cell concentrations and

interactions (as shown by arrows) between cells or compartments. Arrow

labels are defined in greater detail in Supplementary Materials 1. Briefly,

VprimeN and VprimeCM represents the impact of APCs on naïve and central

memory cell recruitment. VNdiffP and VCMdiffP shows the transformation of

naïve and central memory T cells to the precursor T cell population. Vprolif ,

VPdiffE , VPdiffCM, and VEdiffEM represents precursor proliferation and

differentiation to effector, central memory and effector memory cell types,

respectively. Finally, influx and efflux rates between LN and blood are shown as

VNinflux , VCMinflux , VCMefflux , VEefflux , and VEMefflux .

data cleaning, visualization, and post-processing was performed
in R (R version 3.4.0, RStudio version 1.0.143) using ggplot2
(Wickham, 2009), plyr (Wickham, 2011), and tidyr (Wickham
and Henry, 2017) packages. See Supplementary Materials 1 for
equations and model parameters.

Model Calibration and Sensitivity Analysis
We first sought to define the parameter space that best
represents each “immunogenicity dataspace” to calibrate to

Box 1 | Important terms.

Immunogenicity Dataspace: The space defined by experimental results

that contains the T-cell response to each antigen.

Parameter Range: The range of values for a parameter that are biologically

feasible and are assigned to represent values of the mechanism for which

that parameter represents. Values (and ranges) are assigned according to

biological observations, experimental results, or mathematical estimation.

Parameter Space: The set of all combinations of parameter values for a

particular model, as defined by the parameter ranges for each parameter.

Uncertainty and Sensitivity Analysis: A series of techniques used to

evaluate the influence a parameter has on model outcomes. Influence of

individual mechanism can be assessed (see Methods for more details).

Calibration: The process of varying parameters until the model behavior

reaches a preferred end state or predetermined goal (usually the dataspace).

Initial Conditions: The predefined initial values of each variable in a

mathematical model prior to simulating the model. In this work, initial

conditions were also varied during model calibration as initial condition could

represent pre-existing immune memory cells.

Radar Charts: A graphical visualization of multivariate data across multiple

axis. We use radar charts to display the parameter space of our simulations.

the human and NHP datasets (see Box 1 for a description
of several important terms for this section of our work).
The parameter space was identified by a two-step process.
First, for each immunogenicity space, we ran 1500 simulations
with a 50% range around the baseline parameters outlined
in our previous model construction (shown in Marino and
Kirschner, 2016). A Latin hypercube sampling (LHS) algorithm
was used to sample the multi-dimensional parameter space
(Marino et al., 2008). This wide range of simulations yielded
multiple candidates of baseline parameters that might best
represent each immunogenicity dataspace. In the second step,
we simulated 500 runs (sampling parameters in approximately
20% range) around these candidates’ baseline values, again
using LHS to sample the parameter space. We accepted
the candidate parameter sets if all 500 runs fulfilled two
criteria: (1) the simulations’ minimum and maximum run
must remain within the immunogenicity dataspace. That is,
all simulations from the parameter ranges needed to remain
within the logarithmic scale of the data. (2) the median
simulation run across all 500 runs must cross the interquartile
range of the majority of experimental time points (4 of 7 for
human data, 4 of 8 for NHP data). This ensured that our
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model mimics at least the majority of both experimentally-
determined dynamics. Supplementary Table 1 displays the
parameter range values after calibration to each immunogenicity
dataspace.

We quantify the importance of each host mechanism involved
in vaccination dynamics by finding correlations between model
parameters and outputs. Correlations between specific model
outputs and parameters were determined by using Partial Rank
Correlation Coefficient (PRCC), where−1 denotes a perfect
negative correlation between a model output and parameter (+1
denotes a perfect positive correlation between model output and
parameter). Marino et al. completed a review of the statistical
tests available to access significance of PRCC (Marino et al.,
2008). PRCC results performed a dual role: not only do they
reveal the relationship between model outcomes and parameters,
they also inform calibration of the model to the immunogenicity
dataspace. As the model is tuned, manipulations to the more
sensitive parameters ameliorate model fitting according to the
criteria above.

Since our model provides measurements in the form of
cell counts in lymph node and cells/mm∧3 in the blood, we
performed post-processing of the simulations to ensure that
units matched those provided by the H56 vaccination data (See
Supplementary Materials 1 for details).

Parameter Space Visualization
We utilized radar charts to illustrate parameter range
comparisons between species and the impact of BCG on
cellular responses. Radar charts are a graphical visualization
of multivariate data across multiple axis. In this work, we
plotted radar charts using R’s radarchart function in the
fmsb package (Nakazawa, 2017). Each axis represents a
parameter of interest in our ODE model. Points near the
center of each axis represent a lower value for that parameter
whereas points near the outer edges of each axis represent
larger values. To compare parameter ranges across species,
we calculate the minimum and maximum for each axis on
the charts as the minimum and maximum value for each
parameter across all species and antigen-specific fits (see
Supplementary Materials 2). To compare the impact of BCG
memory on the H56 immune response, we created the human
radar charts with a minimum and maximum for each axis
defined by the minimum and maximum parameter value across
human model fits to ESAT6 or Ag85B. We created the NHP
radar charts by displaying the parameter ranges within the
minimum and maximum values across NHP model fits to either
antigen.

RESULTS

Humans and Non-human Primates Exhibit
Different T-Cell Responses to ESAT6
Following H56 Vaccination
In response to H56 vaccination, humans and NHPs showed
large variability within and across species. While some of
this variability can be attributed to the different experimental

protocols used (Figure 1), the magnitudes of responses between
species still differ. Several differences in the magnitude and
timing of response across species are notable (Figure 3). The
total response of CD4+ ESAT6+ T cells in NHPs is larger
and more variable than the response in humans. For example,
an F test to compare variances between the two species at
day 14 reveals a significant difference (p = 0.0003; variance of
NHPs was approximately 25 times greater than the humans).
Day 14 is the final day that protocols follow the same
timelines. Therefore we selected day 14 for this statistical test
in order to exclude variability due to different experimental
protocols.

Furthermore, the magnitude of effector and central memory
population responses is larger in NHPs than humans. Between
species, the effector memory subpopulation responses are most
similar. The major contributors to the total NHP CD4+ ESAT6+
T-cell response are the effector T cell population during early
timepoints and the central memory T cell population at later
timepoints. The human response is dominated by effector
memory T cells. Interestingly, some data suggest that the dose
of H56 used in this study may also have contributed to this
exaggeratedmemory T cell response; current thinking will pursue
at least a 10-fold lower dose.

A Single Mathematical Model Describes
Both Human and NHP T Cell Responses to
ESAT6
Statistically, we have shown that there is a difference in
NHP and human responses to ESAT6. However, statistical
analysis could not answer the following questions: (1) Are the
data for both humans and NHPs consistent with the same
mechanisms for mounting an immune response? (2) If those
mechanisms are the same, can the rates of proliferation and
differentiation alone be responsible for the differences we observe
in ESAT immunogenicity? These questions require a method
that can address the dynamics of priming, proliferation, and
differentiation that are intrinsic to the development of an
immune response. InMethods, we present a mathematical model
that describes T cell priming, proliferation, and differentiation
in response to APCs in the blood and LN of primates. Here,
we hypothesize that this mathematical model can capture both
human and NHP T cell responses to ESAT6; however, it will
require the use of different sets of parameter values. In Figure 4,
experimental data from Figure 3 were replotted as box and
whisker plots (blue–NHP, red–human) and simulation curves
are shown by the cloud and median lines (blue and red,
respectively).

NHP simulation data recapitulates the variability in
the experimental data by capturing the dynamics of the
experimental data. In particular, the median simulation line
demonstrates how the model captures the general behavior
of the data, by traveling through the interquartile range of
at least 4 of the 8 timepoints for each subpopulation of T
cells. The human simulations capture the clinical data—our
maximum and minimum simulations include nearly all of the
outlying data points across the subpopulations of T cells. A
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FIGURE 3 | Experimental data show different responses to ESAT6 antigen following H56 vaccination. The percentage of blood CD4+ T cells that respond to ESAT6

by producing cytokines (cytokine+) is divided by the total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point shows the responses

of all 8 human (red) or all 8 NHPs (blue) subjects. Note that it can be difficult to perceive 8 individual dots–if the subject’s responses are similar or the same, as

individual dots overlap. For ease of comparison, we have placed both panels of data on the same y-axis. Arrows represent vaccination timepoints.

visual comparison of these parameter ranges is displayed in
Supplementary Materials 2. Altogether, we demonstrate that
our model captures the ESAT6 immunogenicity dataspace of

both NHPs and humans—suggesting that the mechanisms of
generating a primary immune response are the same for both
NHPs and humans.

Frontiers in Microbiology | www.frontiersin.org August 2018 | Volume 9 | Article 173412

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Joslyn et al. BCG Timing on H56 Vaccine Outcomes

FIGURE 4 | Model captures diverse response of both NHP and Humans to ESAT6 antigen following H56 vaccination. The percentage of blood CD4+ T cells that

respond to ESAT6 by producing cytokines (cytokine+) is divided by the total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point

shows the responses of all 8 human (red) or all 8 NHPs (blue) subjects using a box and whisker plot. These box and whisker plots provided a guide for the boundaries

of immunogenicity dataspace. Whiskers were created by extending from the edge of the box to the data point that is the closest, but does not exceed 1.5 times the

interquartile range (defined as the distance between the first and third quartiles) from the edge of the box. Any experimental points beyond the edge of the whisker are

deemed as outliers and plotted as black points. Simulation data are displayed as a blue or red cloud that outline the min and max of 500 runs for NHP or human

calibrations, respectively. The blue or red line represents the median of those simulations. Our goal when calibrating to cell levels in blood of both species was to

ensure that in silico simulations fell reasonably within these dataspaces, as outlined in the Methods section. Parameter ranges used to generate the simulation curves

are shown in Supplementary Table 1.
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Sensitivity Analysis Reveals Both Similar
and Distinct Outcome Drivers Across
Species in Response to ESAT6
Having calibrated our model to both ESAT6 human and ESAT6
NHP immunogenicity dataspaces, we next used these two model
fits to ask questions about important processes within the CD4+
T cell response. In particular, we wanted to better understand the
dual roles of proliferation and differentiation that drive immune
response magnitude and timing following vaccination in both
species. To investigate these processes, we performed uncertainty
and sensitivity analysis on 3 outcomes (ESAT6-specific central
memory, effector, and effector memory T cell subtypes) of
our model. Table 1 highlights processes (i.e., parameters) found
to be significantly associated with changes in T cell response
subpopulations for each species.

For both species, uncertainty and sensitivity analysis support
a key role for priming and proliferation within lymph nodes.
This is not a novel concept, but rather acts as a proper
control for the utility of our model, as it is accepted that
priming and proliferation within the lymph node underlies
immunogenicity of a vaccine (Moliva et al., 2017). Specifically,
uncertainty and sensitivity analysis revealed a crucial role for
CD4+ T cell precursor proliferation rates (k4) within the
lymph node compartment. The significant, positive association
between precursor T cell proliferation rates and 3 different T cell
subtypes in the blood represents an inter-compartmental effect–
not only does the parameter influence the dynamics within its
own compartment (lymph node), it drives the dynamics of the
compartment yielding experimentally validated results (blood).

There were also modest differences in the mechanisms driving
model fits for NHP and humans, (Table 1). For example, only the
human dataset showed significant negative correlations between
cellular responses in the blood and the half-saturation values of
precursor proliferation and differentiation in the lymph node
(represented as “likelihood of proliferation and differentiation”
in Table 1). We predict that humans and NHPs are generally
alike in response to ESAT6, but proliferation and differentiation
in humans is not quite as easily triggered as proliferation and
differentiation in the NHP. This could be in part due to the
influence of humans regularly exposed to many and diverse
environmental factors.

Humans and Non-human Primates Exhibit
Different T-Cell Responses to Ag85B
Following H56 Vaccination
While the immunological response between humans and
NHPs to the ESAT6 antigen in H56 vaccination can be
attributed to intrinsic similarities and differences between
species, the response to the Ag85B antigen offers an opportunity
to investigate the role of prior BCG vaccination on H56
immunogenicity (Figure 5). When we compare magnitude and
timing of responses across species, several differences emerge. As
observed for responses to ESAT6, the total response of CD4+
Ag85B+ T cells in NHPs is higher and more variable than the
response in humans. For example, an F test to compare variances
for the central memory T cell population at day 14 revealed
a significant difference (p = 3.984e-06; variance in NHPs is
about 96 times greater than humans). While the magnitude of
effector and central memory subpopulation responses were larger
in NHPs, it appeared that humans had a larger effector memory
subpopulation response.

A Single Mathematical Model Describes
NHP and Human T Cell Responses to
Ag85B
Using statistical analysis, we have revealed a difference between
species in immune response to Ag85B. However, statistical
analysis cannot answer the following questions: (1) what is the
impact of different BCG timing on H56 response? (2) is the
influence of BCG prime on H56 immune response the same for
both species—i.e., do the two species possess a similar secondary
response to an antigen? To mechanistically understand the role
and timing of BCG prime on H56 vaccination, we require
a mathematical modeling approach to predict dynamics of
the different T cell responses to Ag85B. As with ESAT6,
we tested whether our mathematical model can capture the
Ag85B immunogenicity dataspace for both NHPs and humans
(Figure 6). Our simulation data mimic the variability in the NHP
experimental data by tracking most outlier points and whiskers.
For example, simulations reflect a contraction of the central
memory population and follow expected logic—a percentage
of central memory cell populations will reactivate and become

TABLE 1 | Parameters with significant PRCCs for ESAT6 immune response outcomes.

ESAT6 Central memory Effector Effector memory

NHP central memory reactivation rate; precursor

proliferation and differentiation into central

memory cells; APC and precursor death rates

precursor proliferation and differentiation into

effector cells; effector, APC, and precursor

death rates

precursor proliferation and differentiation into

effector cells; APC and precursor death rates

Human Likelihood of proliferation; precursor

proliferation and differentiation to central

memory; central memory recruitment; APC,

and precursor death rates;

Likelihood of proliferation and differentiation;

Naïve T cell recruitment; Precursor proliferation

and differentiation to Effector; effector

differentiation to effector Memory; effector

Lymph efflux; effector, APC, and precursor

death rates;

Likelihood of proliferation and differentiation;

precursor proliferation; effector memory, APC,

and precursor death rates;

One row displays humans, the other displays NHPs. Columns list the 3 model outcomes of interest – ESAT6-specific central memory, effector and effector memory T cell phenotypes.

These outcomes were selected for analysis because the model was calibrated to their dataspace. Each table cell contains a general description of significant (i.e., p < 10−3) parameters

with respect to each output of the model.
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FIGURE 5 | Human and NHP experimental data show different responses to Ag85B antigen following H56 vaccination. The percentage of blood CD4+ T cells that

respond to Ag85B by producing cytokines (cytokine+) is divided by the total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point

shows the responses of all 8 human (red) or all 8 NHPs (blue) subjects (some responses overlap, so it might be difficult to see 8 distinct dots). For comparison, we

placed both panels of data on the same y-axis. Arrows represent vaccination timepoints.

precursor T cells in the LN. Thus, the percentage of central
memory T cells should contract within blood.

The human simulations also capture the variability of
the human dataset as well as the general trends, as shown
by the median red line. A visual comparison between the

parameter ranges is displayed in Supplementary Materials 2

using radar charts. Altogether, we show that our mathematical
model can capture the Ag85B immunogenicity dataspace
of NHPs and humans with species-specific parameter
ranges.
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FIGURE 6 | Model can fit diverse responses of both NHP and Humans to Ag85B antigen following H56 vaccination. The percentage of blood CD4+ T cells that

respond to Ag85B by producing cytokines (cytokine+) is divided by the total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point

shows the responses of all 8 human (red) or all 8 NHPs (blue) subjects as a box and whisker plot. Whiskers were created in the same manner as the ESAT6 datasets.

Simulation data are displayed as a blue or red cloud that outline the min and max of 500 runs for NHP or human calibrations, respectively. The blue or red line

represents the median of those simulations and demonstrates that the model captures the general behavior of the data, by traveling through the interquartile range of

at least 4 of the 8 timepoints for each subpopulation of T cells. Exact parameters ranges used to generate the simulation curves for NHP and human CD4+Ag85B+ T

cells are shown in Supplementary Table 1.

Differences in BCG Timing Between
Humans and NHPs Is Captured by Initial
Conditions
Throughout our calibration process, we were aware of the
potential for the timing of BCG priming events to influence the

immune response of each species to Ag85B (as NHPs received
BCG vaccination 70 days before H56 vaccination and humans
received their BCG vaccination roughly 30 years before the
clinical trial began – see Methods and Figure 1). Instead of
explicitly modeling a BCG vaccination event 70 days or 30 years
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TABLE 2 | Initial conditions represent the difference in BCG timing between experimental protocols.

Initial condition of cell type ESAT6 Ag85b

NHP Human NHP Human

Units Range of values Range of values Range of values Range of values

Naïve CD4+ specific Blood T cells cell/mm3 (0.1,0.25) (0.07, 0.6) (0.17,0.37) (0.04,0.27)

Effector CD4+ specific Blood T cells cell/mm3 (0.001,1.5) 0 (0.001,2.5) 0

Central Memory CD4+ specific Blood T cells cell/mm3 (0.0015,0.006) (0.00002, 0.03) (0.002,0.2) (0.02,0.3)

Effector Memory CD4+ specific Blood T cells cell/mm3 (0.001,0.5) (0.003, 0.15) (0.003, 0.9) (0.0016,2.6)

Naïve CD4+ nonspecific Blood T cells cell/mm3 (160,240) (100,600) (241,361) (59,272)

Effector CD4+ nonspecific Blood T cells cell/mm3 (200,800) (530,110) (445, 670) (358,875)

Central Memory CD4+ nonspecific Blood T cells cell/mm3 (1,3) (0.009,10) (1,100) (10,100)

Effector Memory CD4+ nonspecific Blood T cells cell/mm3 (1,150) (1,22) (1,300) (0.3,370)

Naïve CD4+ specific LN T cells cell count (91957, 322492) (8255,111806) (144500,546200) (5000,5720)

Precursor CD4+ specific LN T cells cell count 0 0 (6770, 10150) 0

Effector CD4+ specific LN T cells cell count 0 0 (22,34) 0

Central Memory CD4+ specific LN T cells cell count (1295,7878) (3.4, 5046) (2377,285871) (3132, 59431)

Effector Memory CD4+ specific LN T cells cell count 0 0 (828,1241) 0

Naïve CD4+ nonspecific LN T cells cell count (123430594,355639025) (11839508, 122029962) (177300481, 535316901) (7865162, 53811216)

Central Memory CD4+ nonspecific LN T cells cell count (775507,4253381) (1229, 1895598) (1219316, 134489106) (1401106, 19893946)

APC (Prime Vaccination of H56) cell count (150,800) (200,500) (350,500) (500,1000)

APC (Boost Vaccination 1 of H56) cell count (50, 150) (200,500) (250,500) (400,600)

APC (Boost Vaccination 2 of H56) cell count ***** ***** (200,500) ***** ***** (400,600)

The disparity between initial condition values that preceded the NHP response and those corresponding values for the human response represent the impact of prior presentation of

Ag85B via BCG on the system. ***** signifies that NHP experimental protocol did not give the NHPs a second boost of H56 vaccination.

TABLE 3 | Significant PRCCs for Ag85B immune response outcomes.

Ag85B Central memory Effector Effector memory

NHP central memory reactivation rate; Likelihood of

differentiation; precursor proliferation and

differentiation into central memory cells; APC

and precursor death rates

Likelihood of differentiation; precursor

proliferation and differentiation into effector

cells; effector, APC, and precursor death rates

precursor proliferation and differentiation into

effector cells; APC and precursor death rates

Human Likelihood of proliferation; precursor

proliferation and differentiation into central

memory; central memory recruitment rate; APC

and precursor death rates

Likelihood of proliferation and differentiation;

naïve T cell recruitment; precursor proliferation

and differentiation to effector; effector

differentiation to effector memory; effector

Lymph efflux; effector, APC, and precursor

death rates

Likelihood of proliferation; precursor

Proliferation; effector memory, APC, and

precursor death rates

One row represents humans, the other represents NHPs. Columns list the 3 model outcomes of interest–Ag85B-specific central memory, effector and effector memory T cell phenotypes.

These outcomes were selected for analysis because the model was calibrated to their dataspace. Each table cell contains a general description of significant (i.e., p < 10−3) parameters

with respect to outputs of the model.

prior to H56 vaccination, we varied initial concentrations of
memory cell types in the LN and blood as a proxy for these
BCG vaccinations. The initial cell concentrations represent the
value of memory antigen-specific T cells within the system.
That is, these T cells, prior to vaccination with H56, were
specific for the Ag85B antigen. The initial condition values
that led to the best model fits for both NHP and human T
cell response are shown in Table 2. Note that the abbreviated
time between BCG and H56 vaccinations for NHPs meant
that many precursor CD4+ T cells were present in the LN;
this population may well have waned in humans who were
vaccinated many years (to decades) prior. As a portion of these
precursor T cells differentiate into central memory T cells and
effector T cells, the BCG vaccination event enabled the model to
recapitulate the immunogenicity dataspaces for these two T cell

subpopulations and could also explain the larger NHP response
to the vaccine.

Sensitivity Analysis Reveals Both Similar
and Distinct Outcome Drivers Across
Species in Magnitude of T-Cell Responses
to Ag85B Antigen
We performed uncertainty and sensitivity analysis on the same
3 model outcomes as the ESAT6 response analysis to identify
important processes in CD4+ T cell response to Ag85B in
each species. We identified factors, such as CD4+ central
memory cell recruitment, to be significantly associated with
changes in T cell response subpopulations (Table 3). Uncertainty
and sensitivity analysis also revealed a crucial role for CD4+
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Precursor proliferation and half-saturation rates within the
lymph node compartment (Table 3).

Modest differences also exist in the mechanisms driving
model fits for NHP and human (see Supplementary Table 1).
In addition to the stark differences in initial conditions (from
BCG timing), uncertainty and sensitivity analysis predicts that
in NHPs, central memory reactivation rates were significantly
associated with the total CD4+Ag85B+ response outcome. The
importance of reactivation in the central memory population
supports not only the role of BCG memory in this system, but
could indirectly explain the late increase in Ag85B+ effector
cells around day 56 (as the central memory cells that reactivate
become precursor cells that, in turn, can become effector
cells). Overall, the human and NHP Ag85B responses differ in
values of initial conditions, central memory reactivation, and
T cell differentiation. Despite these differences, like the ESAT6
response, we predict that the Ag85B response in NHPs and
humans are generally alike–this similarity hints at a general
secondary response that is conserved across species.

Secondary Response to Ag85B Antigen Is
Characterized by the Upregulation of
Differentiation to Central Memory
Phenotype
If we consider the T cell response of NHP and humans to

ESAT6 as the epitome of each species’ primary response to an
antigen in vaccination, then we can view the parameter values
that recapitulate the Ag85B response (a secondary response
to the same antigen) as a BCG-induced modification to the
parameter values that captured the ESAT6 response. For NHPs
(blue) and humans (red), three parameters (k5, k6, k7) are
represented on each axis of the radar charts for ESAT6 andAg85B
(Figure 7). Notice that, for each species, the radar charts include
the maximum value for each parameter across the ESAT6 and
Ag85B response fits. In the ESAT6 radar charts, both NHPs and
humans skew toward the differentiation of effector and effector
memory T cell phenotypes. As neither species has encountered
ESAT6 prior to H56 vaccination, the relatively high rates of

differentiation to effector and effector memory T cell phenotypes
constitute a primary response that may be conserved across
species.

Ag85B is an antigen that was first presented in BCG
vaccination; if we compare the dynamics of ESAT6 responses
to the dynamics of Ag85B responses, we can predict the BCG-
induced modifications to T-cell differentiation during secondary
responses to the same antigen. In the Ag85B radar charts, both
species’ ranges for differentiation to effector and effector memory
become relatively smaller than the ranges that fit the ESAT6
response. Further, the ranges for the parameter that captures
differentiation to a central memory phenotype grow larger
relative to the ranges shown in ESAT6 response. We speculate
that this change in response is conserved across species – upon
secondary response to the same antigen, both species’ precursor
T-cell populations upregulate the production of a central memory
phenotype during differentiation.

DISCUSSION

In the pursuit of a vaccine that can confer long-term,
consistent immunity against TB, H56 is one new vaccine
candidate. However, the role of prior BCG vaccination on
H56 immunogenicity is unclear. In addition, the differences
between NHP–a useful model animal for vaccine studies
- and human responses to H56 has not been explicitly
characterized. Identifying the influence of BCG on H56
vaccination and characterizing the species-specific responses
to H56 will better facilitate our understanding of H56
immunogenicity and could potentially pave the way for more
effective therapies. In addition, we strive to elaborate how
computational modeling can assist with vaccine development
and testing.

In this work, we used a systems biology approach that
utilized mathematical modeling to explore both NHP
and human response datasets to H56. We calibrated our
two-compartment mathematical model to the ESAT6 and
Ag85B immunogenicity dataspaces for both NHPs and
humans. This calibration allowed us to study pre-exposure
vaccination dynamics such as antigen presentation, T cell
priming, and differentiation in both the lymph node and blood.
Specifically, we utilized antigen specificity to draw our main
conclusion: BCG similarly influences H56 immunogenicity
in both NHPs and humans by upregulating differentiation
to the central memory phenotype in the Ag85B-specific
CD4+ T cell response. While Lin et al. found that H56
boosts the effects of BCG and prevents reactivation of
latent infection (Lin et al., 2012), to our knowledge no one
has documented the direct impact of prior BCG on H56
immunogenicity.

Using mathematical modeling, we were also able to isolate
the impact of BCG timing differences on H56 immunogenicity.
We discovered that the narrow window between BCG prime
and H56 vaccination in NHPs promotes a larger quantity of
antigen-specific cells that reside in the lymph node prior to
H56 vaccination. Calibration to the Ag85B immunogenicity
dataspace for NHPs revealed a much larger initial number
of precursor T cells in the lymph node than the number

of initial precursor cells that were required for calibration to
the human data. The difference in timing of BCG for the
NHP experimental protocol (70 days prior to H56 vaccination)
and human experimental protocol (up to decades before H56)
explains the necessary differences required in model initial
conditions to capture these events. Experimental assessment of
vaccines in NHPs preclude the administration of BCG years
prior to boosting with a subunit vaccine, due to costs. However,
our data indicate that the timing of BCG and booster vaccines
strongly influence the subsequent immune responses. Whether
this also affects protection conferred by a vaccine remains to be
tested.

Using uncertainty and sensitivity analysis, we found that
each species’ response to H56 vaccination was generally similar.
While each species resides in a separate parameter space, the
general dynamics dictating the H56 immune response was
quite similar. This finding contrasts with previous findings
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FIGURE 7 | Radar charts reveal impact of immunological memory in response to Ag85B. We display 4 radar charts (see Supplementary Materials 2 and Methods)

that visually represent the parameter space for several key parameters (as identified by PRCC) in model fits for both species and antigens. Each chart includes the

maximum value of each parameter (for each species) on the diagrams. The top chart shows the parameter ranges that fit the ESAT6 immunogenicity dataspace. The

bottom radar chart displays the parameter ranges that fit the Ag85B immunogenicity dataspace. These parameters were picked as they represent T-cell differentiation

rates to central memory (k6), effector (k5), and effector memory (k7) T cell phenotypes. Each parameter space is represented by a blue (NHP) or red (human) band,

which represents the min and max parameter value for each model fit. Supplementary Table 1 shows the numerical values of the parameter ranges. To directly

compare the impact of BCG memory on the H56 immune response, we created the Human radar charts with a minimum and maximum for each axis defined by the

minimum and maximum parameter value across Human model fits to ESAT6 or Ag85B. We created the NHP radar charts by displaying the parameter ranges within

the min and maximum values across NHP model fits to either antigen. Viewers should not compare the charts from left to right, as the human charts display a

parameter range that is wholly distinct from that of the non-human primates. For each species, the maximum values for each parameter are displayed at the edges of

the radar charts.

that show the immune response of monkeys and humans
to SIV or HIV (respectively) differs (Davenport et al., 2004;
Yang and Ganusov, 2017), however, like many others in
the field of TB research, we conclude that NHPs are a
good model for human responses (Kaushal et al., 2012;
Scanga and Flynn, 2014; Flynn et al., 2015; Peña and Ho,
2015). However, one consistent difference between NHP and
human response were observed. Unlike the NHP response,
the humans’ central memory, effector, and effector memory
T cell phenotypes was significantly negatively correlated with
the half-saturation values of proliferation and differentiation
in both the ESAT6 and Ag85B immunogenicity dataspaces. As
the half-saturation values in our model measure the affinity
(or likelihood) of a cell to proliferate or differentiate upon
priming, our findings suggest that humans differ from NHPs
in the ability of T cells to quickly react to H56 vaccination
antigens within lymph nodes. Perhaps presentation of these
antigens to T cells is not as effective in humans as it is in
NHPs. We indirectly modeled adjuvant impact on vaccination

(see Methods); however, a more mechanistic approach may be
necessary to elucidate these species-specific differences in antigen
uptake and presentation.

Furthermore, uncertainty and sensitivity analysis revealed an
intriguing result regarding the human experimental protocol.
Throughout our analysis, the number of APCs that entered
the system via vaccinations (prime or boost events) was
significantly, positively, associated with cellular responses in
the blood. However, our analysis also showed that the number
of APCs that entered the system as a result of the second
boosting event (third H56 vaccination event) for humans
did not significantly impact the number of central memory
T cells within the blood compartment. This result agrees
with the previous finding that 50 ug of H56 is too high
of a dose (Luabeya et al., 2015), resulting in large effector
responses that may be suboptimal for long-term memory.
As one major goal of any vaccination is to provide long
lasting immunity in the form of immunological memory,
our computational analysis has revealed that the third dose
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was likely redundant and that optimization of dose using
computational predictions could have potentially improved
outcomes, especially prior to the clinical trial. In the future our
systems biology approach together with virtual clinical trials
could help investigate these issues and assist in improving the
vaccine pipeline.

One potential limitation of this study is that our current model
represents the complex processes of proliferation, differentiation,
and reactivation rates as a single parameter with a range of
values. We believe this suffices since our goal was to identify the
role of BCG in H56 vaccination response across humans and
NHPs. However, future investigations into the processes dictating
proliferation, differentiation, or reactivation could create a more
detailed mathematical model including those details. In fact, the
field of T-cell memory and the exact mechanisms of reactivation
have been extensively studied (Harrington et al., 2008; MacLeod
et al., 2010; Akondy et al., 2017; Youngblood et al., 2017).
Conversely, phenomenological modeling has provided insights
for T cell expansion (Davenport et al., 2004; Antia et al.,
2005; Akondy et al., 2015). Future work could discuss the
benefits of mechanistic or phenomenological models when
addressing distinct questions about proliferation, differentiation,
or reactivation.

In summary, we used a systems biology approach that
combined NHP and human datasets with mathematical
modeling to better understand the differences between NHP
and human immune response to H56 vaccination. Specifically,
we showed that each primate species had a similar response to
H56, identified the role of BCG timing on H56 vaccination, and
discovered that BCG similarly influences H56 immunogenicity
in humans and NHPs.

Beyond the scope of this paper, we could have characterized
other comparisons between humans and NHPs. For example,
future studies could identify the species-specific differences
during TB infection, identify the adaptive immune response
differences to other antigens, or capture the dissimilarities of
each species’ innate immune response to adjuvant. Further,

future studies could also model the cellular dynamics following
H56 vaccination before, during, or after TB infection in
an effort to evaluate the potential success of this vaccine
candidate. We argue that a systems biology approach that
melds mathematical modeling together with experimental and
clinical studies has the greatest potential to discover, predict,

and evaluate new vaccination strategies that could end the TB
epidemic.
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Supplementary Figure 1 | Radar charts reveal parameter space differences

between species. Each parameter space is represented by a blue (NHP) or red

(human) band, which represents the min and max parameter value for each model

fit. Each chart displays parameter names around its outside boundary, at each

axis. Parameter names are ordered alphabetically starting with ‘hs1’ and ‘ending

with xi6’. Points near the center of each axis represent a lower value whereas

points near the outer edges of each axis represent larger values. To compare

parameter ranges across species, we calculated the minimum and maximum for

each axis on the charts as the minimum and maximum value for each parameter

across all species and antigen specific fits.

Supplementary Table 1 | Parameter ranges for model fits of the ESAT6 and

Ag85B response in humans and NHPs. Parameter names, descriptions, units,

and ranges are listed.

Supplementary Table 2 | Parameter names in radar charts. The leftmost column

shows the name of each parameter. The rightmost column displays a short

description of each parameter.
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T cells play a vital role in eliminating pathogenic infections. To activate, naïve T  cells 
search lymph nodes (LNs) for dendritic cells (DCs). Positioning and movement of T cells 
in LNs is influenced by chemokines including CCL21 as well as multiple cell types and 
structures in the LNs. Previous studies have suggested that T cell positioning facilitates 
DC colocalization leading to T:DC interaction. Despite the influence chemical signals, 
cells, and structures can have on naïve T cell positioning, relatively few studies have used 
quantitative measures to directly compare T cell interactions with key cell types. Here, 
we use Pearson correlation coefficient (PCC) and normalized mutual information (NMI) to 
quantify the extent to which naïve T cells spatially associate with DCs, fibroblastic reticular 
cells (FRCs), and blood vessels in LNs. We measure spatial associations in physiologi-
cally relevant regions. We find that T cells are more spatially associated with FRCs than 
with their ultimate targets, DCs. We also investigated the role of a key motility chemokine 
receptor, CCR7, on T cell colocalization with DCs. We find that CCR7 deficiency does 
not decrease naïve T cell association with DCs, in fact, CCR7−/− T cells show slightly 
higher DC association compared with wild type T cells. By revealing these associations, 
we gain insights into factors that drive T cell localization, potentially affecting the timing 
of productive T:DC interactions and T cell activation.

Keywords: mutual information, T cells, dendritic cells, Frcs, ccr7, lymph nodes

1. inTrODUcTiOn

The adaptive immune response depends on T cell interactions with dendritic cells (DCs) in the 
paracortex, or T  cell zone, of lymph nodes (LNs). The rate at which naïve T  cells sample DCs 
determines how fast the immune system can mount a response to infection (1). The development 
of imaging methods such as two-photon microscopy (2PM) and histocytometry have enabled 
direct observation of cell locations in tissues. Many studies showing the relative location of T cells 
and DCs suggest that they are both positioned in the LN to maximize the likelihood of T:DC 
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interactions (2, 3). Despite advances in the ability to image and 
observe T  cells in LNs, few studies make direct quantitative 
comparisons of how closely T cells associate with multiple other 
cells types in LNs.

T cells enter the paracortex of the LN from small post-capillary 
blood vessels termed high endothelial venules (HEVs). T cells, 
DCs, and fibroblastic reticular cells (FRCs) occupy this region 
along with blood vessels (BVs). T cells move among DCs, FRCs, 
and other T cells to interact with DCs presenting antigen. FRCs 
are stromal cells that encapsulate a collagen fiber conduit network 
which allows for transport of lymph fluid carrying soluble antigen 
and chemokines (4–7). FRCs produce the chemokine CCL21, 
which has an established role in naïve T  cell homing into the 
paracortex from blood vessels (8, 9). FRCs also provide structural 
support required for efficient T cell activation (10). Bajenoff et al. 
showed the FRC network is closely associated with naïve T cells 
moving within the paracortex, suggesting that FRCs may provide 
a network on which T cells migrate (11).

There are several hypotheses regarding the role of individual 
cell types in mediating T:DC interactions. HEVs are the entry 
points for T cells entering the LN. Girard et al. suggests that DCs 
gather near HEVs to maximize their contact rate with incoming 
T cells (12). Others have suggested that DCs may congregate at 
the intersections of the FRC network, allowing T cells that travel 
along the edges of the network to encounter DCs at an increased 
rate (13–16). Spatial interactions between T  cells and blood 
vessels, FRCs, and DCs are important if they change how T cells 
move through the paracortex and the timing of encounters with 
antigen-presenting DCs, the key step in T cell activation and the 
initiation of the adaptive immune response.

In addition to structural and cellular cues, chemical media-
tors, including chemokines, contribute to T  cell motion and 
T:DC contacts in the LN. For example, the signaling molecule 
LPA produced by FRCs has been shown to mediate rapid T cell 
motion in LNs (17). In addition, C–C chemokine receptor type 7 
(CCR7), the receptor recognizing CCL21, is important for high 
speed T cell motility in the LN (18, 19). While CCR7 increases 
T  cell movement speed in LNs, whether CCR7 impacts T:DC 
contacts has not been investigated.

Understanding the contribution of cellular and structural 
LN components to T  cell localization requires a quantitative 
metric that allows direct comparisons of spatial associations of 
multiple cell types. Several other groups have reported spatial 
relationships between cells and structures using methods such 
as visual inspection (12, 20) and comparison of turning angles 
of T cell movements with structures (11, 21). However, none of 
these directly compare associations between multiple cell types or 
structures with a consistent quantitative metric.

In this study, we use both the Pearson correlation coefficient 
[PCC (22, 23)] as well as Mutual Information [MI (24)] to com-
pare the spatial association of multiple cell types and structures. 
PCC measures the covariance of homologous pixel intensities, 
and has been often used to determine colocalization, particularly 
of fluorescent proteins, in multiple biological systems including 
the study of T cells (25, 26). PCC and MI can be calculated with-
out the need to identify individual cell boundaries which can be 
difficult for 2PM images.

MI is an application of Shannon entropy (which measures 
the amount of uncertainty about the value of a random variable 
in bits) originally defined to understand limitations on signal 
processing and communication (27). MI quantifies the reduction 
in uncertainty about one variable when one knows the value of 
another variable. In analyzing spatial associations, we measure the 
reduction in uncertainty about the location of one cell type given 
the location of another cell type. MI has been successfully used 
in other biomedical image processing applications, particularly 
in measuring image similarity in X-rays and MRIs for automated 
image registration (28–31). Furthermore, MI and other informa-
tion theoretic measures are increasingly recognized as powerful 
tools for analysis of non-linear complex systems, including 
complex biological systems such as the immune system (32, 33). 
In this article, we use MI to quantify the spatial association of 
T cells with other cell types (e.g., DCs or FRCs). We use MI as 
a measure of spatial association that is independent of specific 
types of cells or structures. In addition, MI is theoretically insen-
sitive to coarse graining (34). Thus, MI can measure the amount 
of spatial dependence of one fluorescent marker on another while 
minimizing observational bias. MI, unlike distance measures 
such as nearest-neighbor analysis, is parsimonious, since it does 
not require extensive image processing to remove photon noise 
and determine cell boundaries. Instead, MI can operate on the 
image directly without the introduction of thresholds. In prelimi-
nary work we used MI to quantify the association of T cells and 
DCs and found less correspondence between T cell and DCs than 
expected (35).

However, MI is not comparable across images with different 
sizes and amounts of fluorescence. In this study, we use NMI 
to normalize MI to be between 0 and 1 (36–39), which allows 
quantitative comparisons of spatial associations between cells 
fluorescing in one color channel and another cell type fluorescing 
in a different color channel across experiments. Since PCC and 
NMI are both pixel-based methods that do not correspond to 
cell sizes, we create regions within the images that match cellular 
scales and apply PCC and NMI. Analyzing regions as well as 
pixels allows these methods to capture associations at biologically 
relevant scales. Both regional PCC and NMI analyses show T cells 
associate much less with their ultimate targets, DCs, than with 
FRCs. Our results also show that CCR7 does not increase T cell 
association with DCs.

2. MaTerials anD MeThODs

2.1. Mice and reagents
Experiments were performed with C57BL/6 mice (Jackson 
Laboratories), B6.Ubiquitin-GFP mice (Jackson Laboratories), 
B6.CCR7−/− mice (Jackson Laboratories) and B6.Cg-Tg(Itgax-
Venus)1Mnz/J mice (Jackson Laboratories). Both female and 
male mice were used between 8 and 20 weeks of age. Breeding, 
maintenance, and use of animals used in this research conform 
to the principles outlined by the Institutional Animal Care and 
Use Committee (IACUC). The IACUC at the University of New 
Mexico approved the protocol for animal studies (protocol num-
ber 16-200497-HSC). Anesthesia via ketamine and xylazine was 
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performed during mouse injections, and euthanasia was admin-
istered via isofluorane overdose followed by cervical dislocation. 
For blood vessel staining, DyLight 594 labeled Lycopersicon escu
lentum (tomato) lectin (Vector Laboratories) was used at a dose 
of 70 μg per mouse. To isolate naïve T cells, Pan T Cell Isolation 
Kit II (mouse, Miltenyi Biotec, 130-095-130) was used according 
to manufacturer’s instructions. To fluorescently label naïve T cells,  
CellTracker™Orange (5-(and-6)-(((4-chloromethyl)benzoyl)amino) 
tetramethylrhodamine) (CMTMR) Dye (ThermoFisher Scientific, 
C2927) was incubated with naïve T cells at a final concentration 
of 5 μm at 37°C for 30 min before being washed. Labeled naïve 
T cells were then immediately adoptively transferred into recipi-
ent mice.

2.2. Mouse Procedures
For all images: 107 naive T cells were adoptively transferred into 
mice 14–16 h prior to LN harvest for imaging by 2PM. For T:DC 
images: T cells from naïve wild type (WT) mice were labeled 
with orange vital dye CMTMR and adoptively transferred into 
naïve CD11c-yellow fluorescent protein (YFP) mice in which 
all CD11c+ DCs are YFP+. For T:BV images: T cells from naïve 
Ubiquitin-green fluorescent protein (GFP) mice were adop-
tively transferred into naïve C57Bl/6 recipient mice. DyLight 
594-labeled L. esculentum (tomato) lectin was injected intra-
venously into the recipient mice 5  min before harvesting the 
LNs for imaging. The fluorescent lectin binds to glycoproteins 
on blood vessel endothelial cells and emits red fluorescence. 
For T:FRC images: T  cells from naïve WT mice were labeled 
with CMTMR and adoptively transferred into Ubiquitin-GFP 
recipient mice that were lethally irradiated (10 Gy). The mice 
were reconstituted with C57Bl/6 bone marrow 4  weeks prior 
to T cell adoptive transfer. In this chimeric mouse model, the 
stromal cell populations fluoresce GFP while the hematopoietic 
cell populations are non-fluorescent.

2.3. Two-Photon Microscopy setup
Two-photon microscopy was performed using either a ZEISS 
LSM510 META/NLO microscope or Prairie Technologies 
UltimaMultiphoton microscope from Bruker.

Prairie Technologies UltimaMultiphoton microscope from 
Bruker: A Ti-Sapphire (Spectra Physics) laser was tuned to either 
820 nm for excitation of CMTMR or 850 nm for simultaneous 
excitation of YFP and CMTMR, GFP and DyLight 594, or GFP 
and CMTMR excitation. The Prairie system was equipped with 
Galvo scanning mirrors and an 801 nm long pass dichroic to split 
excitatory and emitted fluorescence. Emitted fluorescence was 
separated with a 550 nm long-pass dichroic mirror. Fluorescence 
below 550 nm was split using a 495 nm dichroic and filtered with 
460/60 and 525/50  nm filters before amplification by photo-
multiplier tubes. Fluorescence above 550  nm was split with a 
640 nm long-pass dichroic mirror before passing through 590/50 
and 670/50  nm filters before amplification by GaAsP photo-
multiplier tubes. AUMPlanFLN 20× water immersion objective 
(0.5 numerical aperture) was used. Prairie View 5.4 software 
(Prairie Technologies) was used to acquire time-lapse z-stacks.

ZEISS LSM510 META/NLO: Chameleon Ti:Sapphire laser 
tuned to 850 nm (Coherent) was used for excitation of either 

GFP and CMTMR, YFP and CMTMR, or Dylight 594 and 
GFP. A 560 nm dichroic mirror and 500–550 and 575–640 nm 
band pass filters were used for detection of fluorophores. 
Movies were captured with the ZEN user interface (Zeiss). 
In both imaging systems, z-stacks with step size of 4 μm were 
repeatedly imaged over time to obtain movies of 10–45 min in 
duration. All analyses were performed on 2D image z-stacks 
captured by 2PM.

2.4. lymph node Preparation  
for live imaging
After euthanasia, LNs from mice were surgically dissected and 
transferred to a Chamlide AC-B25 imaging chamber (Live Cell 
Instruments) with a customized coverslip platform to allow 
flow beneath the LN. The LN was stabilized with a tissue slice 
harp (Warner Instruments) and superfused with oxygenated 
Dulbecco’s Modified Eagle’s Medium (Gibco, 21063-045) and 
maintained at 37°C. For experiments in which blood vessels were 
imaged in conjunction with T cells or DCs, with 70 μg DyLight 
594-labeled lectin (from L. esculentum, Vector Laboratories) was 
intravenously administered by tail vein injection 5  min before 
euthanasia.

2.5. calculation of Mutual information
MI measures how much the value of one variable tells us about 
the value of another variable. In this study, MI is used to quantify 
how much the locations and color intensities of DCs, FRCs and 
blood vessels reveal about the locations and color intensities of 
T cells. We calculate the MI of color intensities resulting from 
2PM imaging of two cell types. Each image is composed of a 
sequence of 2-color 3D images. In these images one cell type is 
dyed red and another green. We calculate the MI of the red and 
green channels from every image to determine the association 
of the corresponding cell types for that image.

The 2PM images contain red, blue and green channels. For 
every time step, we extract the red and green channels into two 
separate 3D images r and g.

The MI calculation procedure can be summarized in the fol-
lowing 3 steps:

 1. We calculate the entropy of color intensities in image r and 
image g: H(r) and H(g). This measures the uncertainty of the 
color intensity in each image.

 2. We calculate the joint entropy H(r, g) which measures the 
uncertainty about the color intensities in corresponding posi-
tions in both images.

 3. We calculate MI as the sum of the entropies of the individual 
images H(r) and H(g) minus the joint entropy of the two 
images H(r, g). This reveals how much uncertainty about the 
color intensity and location of one cell type (i.e., T  cells) is 
reduced when we know the color intensity and locations of the 
other cell type.

2.5.1. Entropy
Entropy measures the amount of information in the prob-
ability distribution of a random variable (24). It indicates 
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the uncertainty in the outcome of an event. Entropy can 
be understood by considering a coin toss. The probability 

of heads is p x( ) = 1
2

 and the probability of tails is p y( ) = 1
2 .  

The entropy H is − × 




 + × 
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The formula for calculating entropy is:

 
H p( ) log p( )2( ) ,r r r= −∑

r  
(1)

where H(r) is the entropy of variable r and p(r) is the probability 
of r occurring. Here, we use log2 so that entropy is measured in 
bits, the unit of information. The expression is negated because 
the log2 of probabilities (which are always less than or equal to 1) 
is always negative or 0.

Entropy is maximized for a random event in which the 
probabilities of all outcomes are equally likely (all N possible 
outcomes have a probability of occurrence of 1/N) leading to an 
entropy of log2(N) bits. Entropy is minimized for a completely 
predictable event in which one outcome has a probability of 
occurrence equal to 1, and all other outcomes have 0 probability 
of occurrence, leading to an entropy of 0.

We calculate the entropy of color intensities in the red and 
green images. Each image has 256 possible color intensities for 
both the red and green images. Thus the maximum H(r) and the 
maximum H(g) is log2(256) = 8 bits which would occur if each of 
256 color intensities were equally likely.

2.5.2. Joint Entropy
We use joint entropy to measure the uncertainty in the outcome 
of two variables:

 
H p( ) log ( )2( ) ,r g

gr

, p= − ∑∑ r,g r,g
 

(2)

where p(r, g) is the joint probability distribution function of  
r and g.

The two variables may be unrelated. For example, the joint 
entropy in the outcome of tossing a fair coin twice is calculated 
from the probabilities of four possible events [heads, heads], 
[heads, tails], [tails, heads], and [tails, tails]. The probability of 
each event is 1/4, resulting in a joint entropy of 2 bits. Since the 
events are independent, the joint entropy is equal to the sum of 
the entropies of each individual coin toss.

Alternatively, two variables could be related. In the extreme 
case, two variables could be completely correlated so that the 
value of one variable gives perfect information about the value of 
the other variable. For example, if the second coin toss occurred 
by picking up the coin and placing it back on the table with the 
same face up as before, then the probabilities of events [heads, 
heads] and [tails, tails] are both 1/2, and the probabilities of 
[heads, tails] and [tails, heads] are both 0. The joint entropy is 1, 
and equal to either of the individual entropies.

In our analysis of fluorescent images we are interested in 
the co-occurrence of red and green colors. That is, we wish to 
know whether knowing the color intensity of green pixels tells 
us anything about the color intensity of red ones in the same 

location. We calculate the probabilities of all possible color 
intensities (0 –255) in all corresponding locations of the red and 
green images. We define the joint probability p(r, g) as the prob-
ability of each pair of color intensities (0–255) occurring in the 
corresponding location in the red and green images. There are 
256 ×  256 =  65,536 possible combinations of color intensities.  
We calculate the number of times every intensity combination 
occurs in corresponding locations in an image. Then, we divide 
by the total number of locations in the images to turn those 
occurrences into probabilities. These probabilities are entered in 
equation (2) to calculate the joint entropy.

The joint entropy is low when color intensities repeatedly 
co-occur. Note that, joint entropy can be low when either the 
same color intensities repeatedly overlap, or when different 
color intensities overlap. For example, if red systematically has 
lower intensity than green, joint entropy would still be low if a 
green intensity of, say, 220 was frequently co-located with a red 
intensity of 180. Joint entropy only depends on the frequency 
of pairs of values co-occurring in the same locations. Joint 
entropy is high when there is no association in color intensities 
between the red and green images. Thus, in Figure  2A where 
red and green cells are uniformly randomly distributed, there 
is minimal co-occurrence of the intensities, and therefore all 
values in the probability table are low and uniformly distributed. 
By contrast, when red and green cells co-occur with the same 
intensities in the same locations (Figure 2C), the probabilities 
on the diagonal are high leading to the minimum possible joint 
entropy. We observe these scenarios in Figures 2G,I which are 
the corresponding joint probability tables for Figures 2A,C. For 
illustration purposes, the 256 color intensity values are binned 
into 4 color intensities.

2.5.3. Mutual Information
MI is calculated from the entropy of each image and the joint 
entropy of the two images using equation (3).

 MI H( , )r g r g r g= ( ) H( ) H( , ).+ −  (3)

Intuitively, this formula calculates MI by subtracting the joint 
entropy of r and g from the total entropy in both r and g, which 
leaves the overlap in entropy of r and g.

In Figure 2, we illustrate how MI is calculated from a set of 
3 simulated images. The first case (Figure 2A) shows simulated 
red and green cells placed uniformly in random locations.  
In most cases, red and green do not overlap as shown in Figure 2D 
(although by random chance, there is some small co-occurrence 
of red and green cells that appear yellow). We calculate MI using 
equation (3). Because there is little or no co-occurrence of red and 
green pixels in Figure 2A, the joint entropy H(r, g) ≈ H(r) + H(g), 
so MI ≈ 0.

The second case, in Figure 2B, shows red cells placed within 
in a Gaussian distributed range of the green cells creating partial 
co-occurrence of red and green pixels. We can observe this region 
in Figure 2E (colored in yellow) which is the MI, calculated by 
summing the entropy of red and green images independently, 
and then subtracting the joint entropy (equation (2)). The process 
to calculate the joint entropy of the two images is described in 
Section 2.5.2 Joint Entropy.
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The third case (Figure 2C) is a special case where the red and 
green pixels are of same intensity residing in the same location. 
When separated as two images, red and green cells completely 
overlap, shown in Figure 2F. In this case, information about the 
location of red cells provides all the information about the loca-
tion of green cells. Because there is total correspondence between 
the intensity of red and intensity of green in the same location, the 
joint entropy H(r, g) = H(r) = H(g), and the MI therefore equals 
H(r) (and also equals H(g)).

2.6. normalized Mutual information
The MI analysis quantifies in bits the amount information shared 
by images showing the locations of two different cell types. 
However, the number of bits is influenced by the dimension of 
images and the numbers and sizes of cells. It does not provide 
us with a universal scale with which to compare the association 
of T cells with other cell types. For this, we define and calculate 
NMI as:

 
NMI MI( , )

=
r g
r gmin( ( ), ( ))

.
H H  

(4)

We normalize MI by the minimum entropy image. MI depends 
on both the joint entropy and the internal (marginal) entropies 
of each color channel. The internal entropies vary across experi-
ments, resulting in MI values that are not directly comparable. 
We normalize by dividing MI by the minimum of the internal 
entropies, since it provides an upper bound on MI, for a proof 
see Ref. (41).

The value of NMI is bounded between 0 and 1, where 0 indi-
cates no occurrence of the red and green cells in the same location 
as in Figure 2A, and 1 indicates complete colocalization of the red 
and green cells as shown in Figure 2C. NMI allows us to directly 
compare spatial association of cells, regardless of the cell types, 
cell sizes, and image dimensions in our experiments.

We validated the NMI metric on simulated data generated 
as 512  ×  512 RGB images shown in Figure  3A. Each cell is a 
square of 11 × 11 pixels with randomly chosen color intensities 
ranging from 0 to 255. In each image, 500 green cells are placed 
uniformly at random along with a number of red cells uniformly 
distributed between 100 and 500. We placed each red cell within 
a distance determined by a Gaussian distribution from each green 
cell with SDs (σ) ranging from 0 (generating complete correlation 
of the red and green pixels) to 10 (generating a low probability of 
overlap of red and green pixels). We treat the image as a torus to 
avoid edge effects when placing red cells. We also analyzed images 
in which both green and red cells are placed uniformly at random 
(u), and therefore with no spatial association and minimum MI.

NMI is designed to normalize for variations in cell numbers. 
To assess the potential effect of cell numbers on NMI, we simu-
lated images in which we varied the cell numbers from 100 to 
500 and calculated NMI for differing cell numbers with complete 
cell overlap (σ  =  0, increasingly spatially separated σ  =  1 or 
σ =  3 or cells placed in a uniform random distribution Figure 
S2 in Supplementary Material). We also calculated PCC as a 
comparison. We find that NMI is less sensitive to variations in 
cell numbers than PCC, particularly in cases in which there is 
spatial association.

2.7. regionalization of images
NMI is calculated from the intensity of pixels in correspond-
ing locations. However, cells comprise multiple pixels. A naïve  
T  cell has a diameter of approximately 5–7  μm whereas the 
approximate length of a pixel is 1.2  μm. Therefore, we created 
regions in the image and call this process “regionalization.” 
In regionalization, for each pixel (p), we calculated a region 
around it with a specified length; for example in a 5 ×  5 pixel 
(6 μm × 6 μm) region, p is the middle pixel. We replaced the value 
of p with the average color intensity of all cells in its region. We 
iterated over all pixels, discarding the regions along the image 
boundaries where complete regions could not be formed. This 
method produced new images where each pixel has the average 
intensity of its region. We calculated the MI, NMI, and PCC of 
these regionalized images. We used region sizes: 5  ×  5 pixels 
(6 μm × 6 μm), 15 × 15 pixels (18 μm × 18 μm), and 25 × 25 pixels 
(30 μm × 30 μm). We are most interested in region sizes between 
5 × 5 (6 μm × 6 μm) and 15 × 15 pixels (18 μm × 18 μm), since 
these scales are most relevant to our biological data.

We validated both NMI and PCC for regionalized images. 
For validation, we used 512  ×  512 simulated images that are 
constructed using the same method mentioned in Section 2.6 
Normalized Mutual Information. Analysis is performed on 500 
green cells and 500 red cells. These simulated images are then 
divided into regions using the regionalization method. The size of 
the regions is consistent with the ones we used for experimental 
data. Results from NMI and PCC analysis on these images are 
shown in Figure 4. NMI and PCC decrease with decreasing spa-
tial association, following a trend similar to that in the validation 
analysis shown in Figure 3, although region size influences PCC 
more than NMI.

3. resUlTs

3.1. Pcc shows T cells associate  
More With Frcs Than Dcs in ln
To ask whether naïve T cells associate with DCs in the LN, we 
used PCC, a standard colocalization measure. As a comparison, 
we also calculated the PCC of T cells and FRCs because it has 
been suggested that T  cells use FRCs as a network for migra-
tion through the LN (11). We transferred CMTMR-labeled 
T cells into CD11c-YFP mice, harvested LNs for 2PM imaging, 
and calculated PCC of T  cells and DCs from multiple images 
of T  cells and DCs. We imaged FRCs as previously described 
by Bajénoff et  al. (11) by irradiating Ubiquitin-GFP animals, 
reconstituting with whole bone marrow from non-GFP animals 
for 4–8 weeks, and co-imaged GFP+ FRCs with co-transferred 
CMTMR labeled T cells. We find the PCC of T:DC microscopy 
images was low (Figure 1A) (median = 0.1916, results given to 
four significant figures throughout). In fact, the PCC of T cells 
to DCs was significantly lower than PCC of T  cell with FRCs 
(T:FRC PCC median = 0.3810). In Figure 1, we use interquartile-
range notched box plots to visualize the statistical relationships 
between measurements (42). Non-overlapping notches indicate 
the measurements were drawn from different distributions at the 
95% confidence level. While previous studies have determined 
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association of T cells with FRC and DC subsets separately, we 
quantitatively compare the effect of FRCs relative to DCs on 
T cell positioning. These results suggest that FRCs show much 
higher correlation with naïve T cell locations in the T cell zone of 
LNs than the presumed intended targets of DCs.

3.2. application and Validation of nMi  
as a novel Method to assess T cell 
association With cell Types in ln
While PCC provides a quantitative metric to assess the cor-
relation among pixels in images, PCC assumes that these cor-
relations are linear (22, 26, 43, 44). We use NMI (a normalized 
version of MI) to quantitatively assess spatial relationships 
between cell types without assuming linearity. The principles of 
MI are illustrated using simulated images in Figure 2.

We calculated the entropy of fluorescence signals using 
equation (1) and then calculated the joint entropy using equa-
tion (2) (for detail see Methods). We then calculated the MI 
of the signals using equation (3). To validate our MI calcula-
tions, we created simulated images with fields of green and red 
“cells” in which there is no association (Figure  2A), partial 
association (Figure 2B), and complete association (Figure 2C) 
of fluorescent objects with sizes similar to that of cells. The 3 

cases can be simplified by observing the images in Figure 2D 
(no association), Figure  2E (partial association marked as 
yellow area), and Figure 2F (complete association marked as 
yellow area). The joint probability tables (simplified examples 
in 4  ×  4 color intensities shown in Figures  2G–I) are used 
to calculate the joint entropy. If there is no spatial associa-
tion, the joint probability table shows evenly distributed low 
values (Figure 2G). Given partial spatial association of cells, 
the joint probability table shows increased values across the 
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diagonal (Figure 2H). Given completely overlapping signals, 
the joint probability table shows high values across the diago-
nal (Figure  2I). Because MI is calculated from fluorescent 
images in which different images possess different internal 
entropies, we normalized the MI values to provide a universal 
scale (between 0 and 1) with which to compare one image to 
another. We calculated NMI by normalizing MI with the mini-
mum entropy of the two images, thus enabling quantitative 
comparisons across fields.

In Figure 3A, we show examples of simulated images cre-
ated for validating NMI (described in Section 2.6 Normalized 
Mutual Information) in which red cells were placed with SD (σ) 
of 0 and 5 as well as red cells placed uniformly at random. We 
expect the MI and NMI values to decrease as the SD increases, 
as shown in Figure 3B (MI) and Figure 3C (NMI). As expected, 
MI and NMI are maximum in the special case 0* where the 
intensity, size and location of the cells are all identical; MI 
and NMI decrease as the spatial association between the cells 
decreases. While the MI can be greater than 1 bit (Figure 3B), the 
NMI metric is normalized to be between 0 and 1 (Figure 3C), 
demonstrating that NMI can provide comparisons to account 
for differing levels of fluorescence across multiple fields on a 
common scale.

As a further validation, we tested whether NMI calculations 
on our experimental data range between 0 and 1. Figure S1 in 
Supplementary Material shows that the NMI of an image with 
itself is 1 (Matched Red:Red and Matched Green:Green). We cal-
culated NMI of two unrelated images from two different experi-
mental fields (Unmatched Red:Green). For example, the red cell 
image may be taken from a T:DC experiment and the green cell 
image from a T:FRC experiment. As expected, NMI in these cases 
is very close to 0 (Figure S1 in Supplementary Material). We then 
calculated the NMI of T:DC and T:FRC interactions using the 
same images on which we calculated PCC (Figure 1B). We find 
that similar to PCC analyses, NMI shows significantly higher 
association for T:FRC than T:DC (T:FRC NMI median = 0.08; 
T:DC NMI median = 0.01).

3.3. regional Pcc and nMi analyses
We first calculated both PCC and NMI using pixel-based 
comparisons (Figure  1). We find that PCC and NMI show a 
significantly higher association of T  cells with FRCs than 
DCs. However, NMI and PCC pixel-based metrics can be 
problematic. Intercellular interactions in 2PM images are chal-
lenging to quantify by existing colocalization analyses because 
individual cells occupy discrete physical space, but pixel-based 
colocalization methods measure the amount of fluorescence 
signal overlap in individual pixels. In fact, any actual overlap in 
cell signal as measured by PCC and NMI is likely artifactual in 
that cells do not physically overlap in space. Also, it is possible 
that true intercellular contacts would be underestimated due to 
image resolution and the inability to resolve smaller protrusions 
such as dendrites of DCs. To account for cell-cell association 
rather than actual signal overlap based on pixels, we regional-
ized our images using sliding windows of multiple pixels, the 
size of which matched approximate sizes of T cells (estimated 
5  μm diameter), DCs (estimated 10–15  μm diameter), and 

FRCs (estimated 5–7  μm diameter). The regionalized image 
has the same number of pixels as the original, but each pixel 
contains information drawn from the region surrounding it. 
Given that each pixel is approximately 1.2  μm in length, we 
created regions of 5 × 5 pixels (6 μm × 6 μm) and 15 × 15 pixels 
(18  μm  ×  18  μm) to account for potential extensions beyond 
the cell bodies. We also extended analysis to larger region sizes. 
Fluorescence in regions was determined by taking the average 
fluorescence of all the pixels within the region (for detail see 
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Section 2.7 Regionalization of Images). We used this method to 
generate new regionalized images and performed both PCC and 
NMI to take into account potential interactions of cells without 
directly overlapping fluorescent signals.

We first tested the “regionalization” effect by performing 
PCC and NMI on simulated images (as shown in Figures 2A–C  
and 3A) to determine the effect of cell density, degree of pixel 
overlap, and regionalization on co-association (Figure  4). 
We created simulated images that approximate the amount of 
fluorescence in our experimental images. We varied the distance 
between the simulated cells to model different amounts of 
spatial association. We applied our regionalization method to 
these simulated images and calculated NMI and PCC values. 
We found that larger regions produce higher NMI and PCC 
values. Compared with NMI, PCC is less sensitive to changes 
in spatial association but more sensitive to region size (compare 
Figures  4A,B). Despite these differences, both NMI and PCC 
provide a quantitative measure that can be used to detect varia-
tion in spatial association among cell types.

3.4. regional analyses confirm That  
T cells are More associated  
With Frcs Than With Dcs
After validating both the NMI metric and the regionaliza-
tion of images, we analyzed regionalized images to quantify 
spatial association of T  cells with DCs and FRCs using both 
PCC and NMI (for sample images see Figure 5A). Both PCC 
and NMI show that T cells associate less with DCs than FRCs 
(Figure 5B for NMI and Figure 5C for PCC). T cells are more 
associated with FRCs across all region sizes. In pixel-based 
comparisons (without regionalizing), the T:DC association 
was very low (Table  1, NMI =  0.0101; PCC =  0.1916) while 
T:FRC association was significantly higher (NMI  =  0.0798; 
PCC = 0.3810). Both NMI and PCC values for T:DC interac-
tions increased with increasing region sizes, T:FRC association 
also increased at each region size. Regionalizing PCC into 
18 μm ×  18 μm region (15 ×  15 pixels) resulted in the same 
trend among the compared cell types as NMI (Figure 5B NMI; 
T:DC median  =  0.1427, T:FRC median  =  0.3426; Figure  5C 
PCC T:DC median = 0.4396, T:FRC median = 0.7646, Table 1). 
Figures  5D,E compare physiologically relevant regions that 
approximate cell sizes and account for potential dendritic 
extensions with larger regions for DCs at 18 and 30 μm than 
FRCs at 6  μm. Again, T:FRC associations are greater than 
T:DC associations using both NMI and PCC. Thus, across 
region sizes, both NMI and PCC analyses show significantly 
higher T cell association with FRCs compared with DCs. These 
results suggest that despite the fact that DCs are considered the 
ultimate targets for T cell search, FRCs a greater determinant 
of naïve T cell positioning within the LN.

In addition to FRCs and DCs, structures such as blood vessels 
in the LN can be sources of chemokines (5, 45), and T cells may 
move along vessels in other tissues (21). Several studies suggest 
DCs are biased to localize near blood vessels and efficiently acti-
vate antigen-specific T cells (20, 46). We used NMI and PCC to 
ask whether vasculature can determine T cell localization in LN. 
We transferred GFP+ T cells for 16 h as previously described, 
then just prior to imaging, we injected animals with DyLight 
594-lectin which binds endothelial cells lining blood vessels. 
We then imaged T  cells in conjunction with vasculature in 
LNs. With the pixel-based PCC (Figure 1A) and NMI analyses 
(Figure 1B), T cell association with blood vessels appears higher 
than T cell association with DCs, and NMI shows higher T cell 
association with blood vessels than even FRCs. However, with 
increasing region size, PCC and NMI analyses of T:BV values 
stayed consistent while T:DC values increased, for example, in 
the 18 μm length region, NMI of T:DC was 0.1427 and T:BV 
was 0.1036. The same trend was seen for PCC (T:DC = 0.4396, 
T:BV = 0.2603). The consistent value of NMI and PCC analyses 
of T:BV across regions likely reflects the sharp resolution of 
the blood vessel fluorescence compared with the more blurred 
extensions of FRCs and DCs. With increasing region size match-
ing cellular scales, T  cells show lower association with BVs 
(Figures 5B,C). These results suggest that T cells likely do not 
use crawling along vessels as a means to migrate within T cell 
zones of LNs.
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FigUre 5 | (a) Sample images of T:DC (T cells labeled in red and DCs 
labeled in green), T:FRC (T cells labeled in red and FRCs labeled in green), 
and T:BV (T cells labeled in green and blood vessel labeled in red). (B,c) Line 
plots representing the NMI (B) and PCC (c) of T cells and DCs (T:DC, green 
line), T cells and FRCs (T:FRC, blue dashed line), and T cells and blood vessel 
(T:BV, black dotted line). NMI and PCC were calculated on pixels (region 
length = 1.2 μm), or regionalized images of increasing side length (6, 18, and 
30 μm). Red stars indicate medians for the corresponding region size, and 
error bars indicate the 95% confidence interval around the median (40). For 
NMI, Mann–Whitney p values for T:DC–T:FRC, T:DC–T:BV, and T:FRC-T:BV 
comparisons < e−4 for all region lengths except T:DC–T:BV (region 
length = 18 μm) p value = 0.0012. For PCC, Mann–Whitney p values for 
T:DC–T:FRC, T:DC–T:BV, and T:FRC-T:BV comparisons < e−4 for all region 
lengths except T:DC–T:BV (region length = 1.2 μm) p value = 0.0293.  
(D,e) Notched box plots comparing the NMI (D) and PCC (e) of T cells and 
DCs with T cells and FRCs at physiologically relevant region lengths of (6, 18, 
and 30 μm) for T:DC associations and 6 μm for T:FRC associations. Note 
different scales on the y-axis. Both NMI and PCC are greater for the 
physiologically relevant region sizes for T:FRC than for T:DC (comparing T:DC 
at 30 μm to T:FRC at 6 μm p = 0.0022; for all other comparisons p < e–4). 
T:DC images were from 6 image z-stacks consisting of 4,089 frames from 2 
mice and 4 lymph nodes. T:FRC images were from 12 image z-stacks 
consisting of 9,468 frames from 3 mice and 6 lymph nodes. T:BV images 
were from 4 image z-stacks consisting of 4,361 frames from 2 mice and 3 
lymph nodes.

TaBle 1 | Median NMI and PCC values among cell types with 95% confidence 
interval.

Data type Median 
nMi

95% confidence 
interval

Median 
Pcc

95% confidence 
interval

Random control 0.0008 [0.0007, 0.0008] 0.0008 [0.0005, 0.0010]
Same image 
control

1 [1, 1] 1 [1, 1]

1.2 μm × 1.2 μm (single pixel)
T:DC (WT) 0.0101 [0.0090, 0.0102] 0.1916 [0.1879, 0.1941]
T:DC (CCR7−/−) 0.0158 [0.0156, 0.0161] 0.1527 [0.1338, 0.1589]
T:FRC 0.0798 [0.0691, 0.0846] 0.3810 [0.3729, 0.3886]
T:BV 0.1355 [0.1348, 0.1381] 0.2447 [0.2281, 0.2610]

6 μm × 6 μm
T:DC (WT) 0.0588 [0.0524, 0.0685] 0.3467 [0.3427, 0.3808]
T:DC (CCR7−/−) 0.0857 [0.0808, 0.0886] 0.4252 [0.3720, 0.4334]
T:FRC 0.2377 [0.2207, 0.2427] 0.6175 [0.5392, 0.6283]
T:BV 0.1144 [0.1101, 0.1214] 0.2565 [0.2342, 0.2815]

18 μm × 18 μm
T:DC (WT) 0.1427 [0.1418, 0.1443] 0.4396 [0.4327, 0.4734]
T:DC (CCR7−/−) 0.2633 [0.2576, 0.2679] 0.5866 [0.5794, 0.5957]
T:FRC 0.3426 [0.3384, 0.3487] 0.7646 [0.6893, 0.7913]
T:BV 0.1036 [0.1002, 0.1093] 0.2603 [0.2302,0.2805]

30 μm × 30 μm
T:DC (WT) 0.1547 [0.1509, 0.1589] 0.5089 [0.5020, 0.5448]
T:DC (CCR7−/−) 0.3075 [0.2980, 0.3165] 0.6590 [0.6527, 0.6673]
T:FRC 0.3685 [0.3525, 0.3789] 0.8169 [0.7659, 0.8352]
T:BV 0.1080 [0.1034, 0.1159] 0.2816 [0.2514,0.2984]

Both NMI and PCC values increase with region size except for T:BV.
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3.5. ccr7 Does not enhance T:Dc 
association
The chemokine CCL21 plays an important role in driving rapid 
motility of naïve T cells in LNs, and this rapid motility has been 

suggested to enhance T cell interactions with DCs (3). We tested 
whether signaling through CCR7 might provide information to 
T cells to enable closer T:DC associations. To do this, we trans-
ferred CMTMR-labeled CCR7−/− T cells into CD11c-YFP mice, 
harvested LNs for 2PM imaging, and calculated NMI and PCC of 
CCR7−/− T cells and DCs (Figure 6A). Contrary to our hypoth-
esis, we found that in general, CCR7−/− T cells and DCs showed 
slightly higher NMI and PCC than WT T:DCs (Figure 6B, NMI 
WT: 0.0101; CCR7−/−: 0.0158 and Table 1). WT T cells showed 
higher co-association with DCs compared with CCR7−/− T cells 
in only one case, pixel-based PCC analysis, while with increasing 
region size and in all NMI analyses, CCR7−/− T cells were slightly 
increased in DC association over WT T  cells (Figures  6B,C; 
Table 1). Based on both NMI and PCC analyses, these data show 
that CCR7 does not promote increased T cell localization with 
DCs. Absence of CCR7 did not increase T:DC association to 
the level of T:FRC, as NMI and PCC values of T:FRC remained 
significantly higher than CCR7−/− T:DC association. These results 
suggest that high speed motility promoted by CCR7 signaling 
likely functions to promote T cell exploration of the LN paracor-
tex rather than increase T cell localization close to DCs.

4. DiscUssiOn

In this work, we analyze 2PM z-stacks to quantitatively compare 
T cell association with different cell types and structures in the 
naïve lymph node using both PCC and NMI. To account for the 
limitations of 2PM to resolve cell structures, we create regions 
that correspond to physiologically relevant cell sizes. Both PCC 
and NMI across multiple region sizes show that T  cells share 
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FigUre 6 | (a) Sample images of WT T:DC and CCR7−/− T:DC. T cells are 
labeled in red and DCs are labeled in green. In WT T:DC, T cells are wild-type 
naïve T cells and in CCR7−/− T:DC, T cells are from CCR7-deficient animals. 
(B,c) Line plots representing the NMI (B) and PCC (c) of WT T cells and DCs 
(T(WT):DC, green line) and CCR7−/− T cells and DCs (T(CCR7−/−):DC, blue 
dashed line). NMI and PCC were calculated on pixels (region length = 1.2 μm), 
or regionalized images of increasing side length (6, 18, and 30 μm). Red stars 
indicate medians for the corresponding region size, and error bars indicate the 
95% confidence interval around the median (40). For NMI, Mann–Whitney p 
values for T(WT):DC–T(CCR7−/−):DC comparisons < e−4 for all region lengths. 
For PCC Mann–Whitney p values for T(WT):DC–T(CCR7−/−):DC comparisons 
for region lengths 1.2, 6, 18, and 30 μm: Region length 1.2 μm p < e−4, 6 μm 
p = 0.9152, 18 μm p = 0.0021, 30 μm p < e−4. WT T:DC images were from 
6 image z-stacks consisting of 4,089 frames using 2 mice and 4 lymph nodes. 
CCR7−/− data are from 12 image z-stacks consisting of 11,294 frames using 4 
mice and 8 lymph nodes.
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more spatial association with FRCs than with DCs. Furthermore, 
CCR7−/− T cells do not associate less with DCs than WT T cells; in 
fact, our results suggest that CCR7−/− T cells may associate slightly 
more with DCs than WT T cells.

Many studies have investigated T cell search for DCs in the 
naïve LN since DCs are the key cell type that is required to present 
cognate antigen to T cells leading to the initiation of the adaptive 
immune response (3, 47). Westermann et al. suggest that cell 
positioning within the LN maximizes the likelihood of T  cell 
interaction with DCs (48). Other studies hypothesize that DCs 
are situated atop the FRC network to facilitate T cell interactions 
with DCs as the T cells move along the FRCs (49) and that T cells 
enter the paracortex from HEVs at specific entry points contigu-
ous with the FRCs network, enabling T cells to be “received” by 
a greeting line of DCs positioned on top of the FRCs near the 
HEV entry points (50). Furthermore, different subpopulations of 
DCs have been shown to localize to specific regions in the LN, 
suggesting that DC positioning relative to T cells may facilitate 
T cell activation (51). However, our quantitative analysis using 
NMI and PCC suggest that T cell association with FRCs does not 
necessarily lead to similarly high association with DCs. The lack 

of association between T cells and DCs suggests that T cells have 
no a priori knowledge of DC positions and that DCs are unlikely 
to attract T cells to DC locations prior to infection. While there 
is evidence that upon DC activation and infection, chemokines 
are important to mediate T  cell repositioning to DCs (52–54), 
our data suggests that chemokines CCL19/21 that bind to CCR7 
do not play a role in T cell positioning to DCs in the absence of 
infection. We previously demonstrated that T cells move with a 
lognormal correlated random walk (55), which aligns with several 
other studies in the LN (56, 57). Our results suggest that random 
movement, rather than guided movement, may be the strategy 
that naive T cells use to interact with DCs prior to infection.

Although T cells and DCs have low NMI and PCC, we find 
that unexpectedly, lack of CCR7 does not decrease association 
between T cells and DCs, in fact, CCR7-deficient T cells show 
slightly increased association with DCs. CCR7 mediates high 
speed motility in LNs (58). One possible explanation for our 
finding is that CCR7 deficiency in T cells results in slower T cells 
that cannot efficiently move away from DCs once they have made 
contact. Alternatively, CCR7 signaling might be important for 
T cells to move along FRCs where they receive chemokinetic and 
survival signals, including both CCL21 and other cytokines such 
as IL-7 so that in the absence of CCR7, T cells stay closer to DCs, 
which are not the primary source of CCL21 (59, 60). While it is 
known that CCR7-deficient T cells are less capable of activation, 
our quantitative analysis suggests that this may not be due to lack 
of T:DC contacts but rather may be due to CCR7 effects on overall 
motility or effects on cosignaling with T cell receptors.

We validated both NMI and PCC on simulated data where we 
directly manipulated the spatial association of cells and showed 
that both metrics decrease as spatial association decreases and as 
region size increases (Figure 4). We designed NMI to normal-
ize for differences in fluorescence between fields, and NMI can 
quantify non-linear relationships between variables (27) while 
PCC is based on correlation coefficients (22, 26). In addition, 
information based measures are theoretically insensitive to coarse 
graining (34). Our regional NMI analyses in both simulated and 
experimental images is consistent with this theoretical prediction 
in that NMI is less sensitive to region size than PCC (Figures 4 
and 5). We find that NMI is also less sensitive to variations in cell 
number than PCC, particularly in cases in which there is already 
spatial association (Figure S2 in Supplementary Material). 
Furthermore, NMI based on regions avoids problems associated 
with pixel-distance measures that arise from 2PM images con-
taining transient single pixel noise (61). Cell-distance measures 
are also problematic because they require the boundaries of cells, 
or their centroids, to be well defined. That is usually not the case 
in 2PM images, especially in the case of DCs and FRCs.

While both NMI and PCC consistently show that T cells are 
more spatially associated with FRCs than with DCs, we note 
several caveats in interpreting these results. We considered that 
T cells may share the highest NMI or PCC with the most numerous 
cells or structures that occupy the most volume in the paracortex, 
simply because they cannot move away from the abundant cell 
type or structure without encountering another cell or structure 
of the same kind. However, our simulations (Figure 3C) validated 
that NMI is insensitive to variation in cell number, with fivefold 
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variation in cell number causing much less effect on NMI than 
changes in spatial association. While the amount of background 
noise (low-level fluorescence of individual pixels) has some effect 
on NMI and PCC, that effect does not change the conclusion that 
NMI and PCC both indicate higher spatial association of T cells 
with FRCs than with DCs.

Similar to previous studies, our experimental method uses 
irradiation to image FRCs showing residual GFP+ hematopoeitic 
cells (between 5 and 10%). Thus, it is possible that T:DC can con-
tribute to the T:FRC NMI and PCC. However, because NMI and 
PCC of T cells with DCs are significantly lower, it is unlikely that 
the increase in T cell association seen with FRCs is due to residual 
DC signal. There may also be limitations in the use of two photon 
imaging as the primary mode of visualizing T cell interactions 
in the T cell zone as the T cell zone is usually deeper in the LN 
cortex. Thus, although many publications have used two photon 
imaging to understand T cell motion in LNs, T cell associations 
with FRCs and DCs may vary depending on the specific areas that 
are imaged. In addition, it is possible that staining specific subsets 
of T cells or DCs may reveal more or less spatial association than 
we see with total T cells and all CD11c+ cells.

In summary, our results show that NMI and PCC both pro-
vide quantitative methods to analyze the relationship between 
two sets of objects, validated in simulations. NMI and PCC 
show significant differences for different cell populations labeled 
with two different fluorescent markers, providing quantitative 
comparisons of fluorescent microscopy images across multiple 
fields (62). Thus, both NMI and PCC of physiologically relevant 
regions are useful tools to quantify the relationship between 
fluorescent cell types. Since MI is a general method for measur-
ing colocalization of fluorescence microscopy images including 
2PM signals, the NMI and regional analyses may be broadly 
applied to any colocalization study of differentially fluorescent 
objects.
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FigUre s1 | Illustration of the highest and lowest NMI that can be generated 
from the experimental data. The NMI of an image with itself is the maximum 
value of 1, shown for an example image of red cells and an example image of 
green cells. To obtain a minimum value, we calculate NMI between two 
images, one red and one green from two different fields so that the images are 
unrelated. We calculated NMI from 5,036 pairs of frames (Unmatched 
Red:Green). For this unmatched scenario, the NMI is very close to 0 (median 
is 0.008).

FigUre s2 | NMI is more robust than PCC to cell count. Simulated images were 
generated in which numbers of cells in the green and red channels are varied by 
number and positions varied as indicated. Apparent association of cell types 
based purely on the increased chance of two cells being near one another as the 
number of cells goes up is a concern. The normalization factor in NMI is intended 
to compensate for this artifact. Insensitivity to variation in cell number while 
preserving sensitivity to the underlying association between cell types 
distinguishes NMI from PCC. The number of cells in the green channel is kept 
constant at 500 while the number of cells in the red channel is varied. NMI results 
are shown in the left column and PCC in the right column. The spatial association 
between cell types in the model decreases from σ = 0 in the top row to uniform 
random placement in the bottom row.
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HIV superinfection (infection of an HIV positive individual with another strain of the virus)

has been shown to result in a deterioration of clinical status in multiple case studies.

However, superinfection with no (or positive) clinical outcome might easily go unnoticed,

and the typical effect of superinfection is unknown. We analyzed mathematical models

of HIV dynamics to assess the effect of superinfection under various assumptions. We

extended the basic model of virus dynamics to explore systematically a set of model

variants incorporating various details of HIV infection (homeostatic target cell dynamics,

bystander killing, interference competition between viral clones, multiple target cell types,

virus-induced activation of target cells). In each model, we identified the conditions for

superinfection, and investigated whether and how successful invasion by a second viral

strain affects the level of uninfected target cells. In the basic model, and in some of

its extensions, the criteria for invasion necessarily entail a decrease in the equilibrium

abundance of uninfected target cells. However, we identified three novel scenarios

where superinfection can substantially increase the uninfected cell count: (i) if the rate

of new infections saturates at high infectious titers (due to interference competition

or cell-autonomous innate immunity); or when the invading strain is more efficient at

infecting activated target cells, but less efficient at (ii) activating quiescent cells or (iii)

inducing bystander killing of these cells. In addition, multiple target cell types also allow

for modest increases in the total target cell count. We thus conclude that the effect of

HIV superinfection on clinical status might be variable, complicated by factors that are

independent of the invasion fitness of the second viral strain.

Keywords: HIV superinfection, AIDS, mathematical model, virus dynamics, invasion analysis

1. INTRODUCTION

HIV superinfection occurs when a person already infected with HIV acquires a second (unrelated)
strain of the virus. While estimates for the incidence of superinfection vary widely [from
virtually zero (Gonzales et al., 2003; Tsui et al., 2004) to rates comparable to that of initial
infection (Piantadosi et al., 2008; Redd et al., 2011; Kraft et al., 2012)], the ubiquitous imprint
of recombination on the global evolution of HIV diversity (Rambaut et al., 2004; Vuilleumier
and Bonhoeffer, 2015) indicates that superinfection cannot be very rare. At the population level,
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superinfection might affect the evolution of virulence (Nowak
and May, 1994; van Baalen and Sabelis, 1995; Alizon and van
Baalen, 2008), it might potentially contribute to the spread of
drug resistance (Chakraborty et al., 2004; Smith et al., 2005),
and, in the case of HIV, it also allows for recombination
between distant lineages, which might facilitate adaptation
and evolutionary innovation in the virus (Vuilleumier and
Bonhoeffer, 2015).

Superinfection can also have an impact on the health status
of the affected individual. A number of studies have reported
either abrupt deterioration of clinical status (a drop in the CD4+
T cell count and/or increase in the virus load), or accelerated
disease progression following superinfection (Altfeld et al., 2002;
Jost et al., 2002; Gottlieb et al., 2004, 2007; Yerly et al., 2004;
van der Kuyl et al., 2005; Clerc et al., 2010; Cornelissen et al., 2012;
Brener et al., 2018). However, there are also counterexamples,
where superinfection did not have a negative impact (Casado
et al., 2007) or the effect was only transient (Rachinger et al.,
2008). Furthermore, superinfection events with no (or, possibly,
beneficial) effects might often go unnoticed, as the detection
of superinfection requires the sequencing of the viral genome,
which is rarely done in unproblematic infections. This led the
authors of a comprehensive review on HIV superinfection to
conclude that “the full extent and potency of the detrimental
effects of superinfection remain unclear and might depend on
several viral and host factors” (Redd et al., 2013).

Here, following up on Fung et al. (2010), we use simple
mathematical models of HIV infection to analyze a set of
biologically relevant scenarios with respect to the possible
outcomes of superinfection. Mathematical modeling has been
used to study various aspects of the complexity of HIV infection
(Nowak and May, 2000; Perelson, 2002; Müller and Bonhoeffer,
2003), including within-host evolution (e.g., Iwasa et al., 2004,
2005) and some scenarios for superinfection (Fung et al., 2010).
From an ecological perspective, both cases can be regarded as
“invasion tests” (Chesson, 2000): is the second strain (the mutant
or the “invader”) able to spread in the steady state (chronic
infection) established by the first strain?We use invasion analysis
to determine under what conditions a second strain of the
virus can establish superinfection, either coexisting with, or
excluding the original strain. For the cases where superinfection
is successful, we assess the range of possible effects on the
uninfected target cell count, which serves as a proxy for the
clinical status (health) of the patient. We find that, contrary to
intuition, there are biologically plausible scenarios that allow
superinfection not only to decrease, but also to increase the target
cell count.

2. MODELS AND METHODS

The mathematical framework of virus dynamics describes the
interactions between relevant cell and virus types within an
infected individual (see e.g., Nowak and May, 2000). Models
consist of differential equations that describe the rate of change of
each cell and virus type (the variables of the model). We extended
the basic model of virus dynamics to explore systematically

a set of model variants incorporating various details of HIV
infection.

Exposure to superinfection can be implemented by adding
a low initial inoculum of a second viral strain to a chronic
(steady-state) infection established by the first strain in the
models (equivalent to modeling the outcome of within-host
mutation events Iwasa et al., 2004). Three outcomes are possible:
(i) successful invasion and exclusion of the resident strain;
(ii) successful invasion, followed by stable coexistence of both
strains; (iii) unsuccessful invasion, the system remains in the
original equilibrium with only the resident strain. The invasion
is successful (superinfection occurs) if the initial growth rate of
the new strain is positive when introduced into the established
steady state of the original strain. Exclusion of the original strain
occurs if the steady-state cell count of the original strain is zero in
the presence of the new strain. Finally, successful invasion results
in coexistence if both strains can grow when introduced into
a steady-state infection established by the other strain (mutual
invasibility).

The impact of superinfection on clinical status can be
approximated by comparing the steady-state level of uninfected
cells (corresponding to functional CD4+ T cells) before
and following the invasion of the superinfecting strain. The
possible range of outcomes can be determined by analyzing
whether and how the conditions for superinfection constrain
the relation of prior and subsequent steady-state target cell
levels. In particular, superinfection is strictly associated with
the deterioration of clinical status when the (mathematical)
conditions for superinfection unambiguously imply that the
stable steady-state level of the uninfected cells will be lower in
the presence of the invading strain. In this case, only strains that
reduce the steady state and thus have negative clinical impact will
be able to establish superinfection.

In some of the models, the steady states (equilibrium
points) of the system, and the conditions for invasion (and
superinfection) could be readily calculated and characterized
analytically. In the cases where the analytical approach was
impractical due to the complexity of the equations, we employed
numerical simulations. We selected credible intervals for all
parameter values (Table A5 in Appendix), and then sampled
the parameters from their respective intervals independently
for each simulation run. We integrated the set of equations
corresponding to the uninfected system until equilibrium, then
Strain 1 was added. After the system attained steady state (and
stable infection with Strain 1 was verified), Strain 2 was added
with a low concentration as an invader; the parameters for
Strain 2 were selected with the same procedure (including the
requirement to establish stable infection given its independently
generated set of both viral and host parameters). In case of
successful superinfection, we recorded the steady-state level of
uninfected target cells both before and after superinfection,
along with the corresponding parameter values. We repeated
the simulations until we obtained 20000 independent runs with
successful superinfection. Numerical integration was performed
with the SUNDIALS/CVODE package (Hindmarsh et al., 2005)
(C source code is available upon request). In each simulation, we
verified the local asymptotic stability of the final steady states by
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computing the leading eigenvalue of the corresponding Jacobian
matrix.

In the following we illustrate the analytical method on a
slightly simplified version of the basic model of virus dynamics,
then introduce the model variants that we have tested in our
analyses.

2.1. Basic Model
As a starting point, we use a two-strain variant of the established
model of virus dynamics, consisting of uninfected target cells (T)
and two types of infected cells (I1 and I2) that harbor the resident
and the invading strain of the virus, respectively. The dynamics
has the form:

Ṫ = σ − (β1I1 + β2I2)T − δTT (1)

İ1 = β1TI1 − δ1I1 (2)

İ2 = β2TI2 − δ2I2, (3)

where σ is the influx rate, δT is the death rate of uninfected cells,
respectively. βi denotes the infection efficiency of the ith viral
strain, and δi is the death rate of cells infected with strain i. This
is a slightly reduced form of the “basic model of virus dynamics”
(Nowak and May, 2000), as it does not explicitly follow the levels
of virus particles. This established simplification is justified by
the faster turnover of free virions (compared with infected cells),
which implies that the concentration of free virions follows (in a
quasi steady state) the level of virus producing cells, and the rate
of new infections can be made a function of the level of infected
cells without loss of generality (Nowak and May, 2000).

The equilibrium values of the target cells can be determined
analytically. If infected cells are not present, the system reduces
to Equation (1), and the equilibrium value of uninfected cells is
T̂()

=
σ
δT
, where empty brackets in the superscript denote the

absence of infection.
If only Strain 1 is present, the corresponding system is

Equations (1, 2), and the equilibrium values are: T̂(I1) =
δ1
β1

and

Î
(I1)
1 =

σ
δ1

−
δT
β1
. Substituting the uninfected steady state into

Equation (2), it follows that infection can be established only if
σ
δT

> δ1
β1
, implying

T̂() > T̂(I1). (4)

That is, infection always decreases the uninfected target cell
count. Because of the symmetry in the dynamics of infected cells,
the same result is obtained for the situation when Strain 2 is
present alone. Finally, because İ1 = 0 and İ2 = 0 are satisfied
at different target cell levels (except for the special case when
δ1
β1

=
δ2
β2
), there is no generic equilibrium point with both strains

present. The equilibrium values are listed in Table 1.
To illustrate the method, in the following we analyze the

possibility and the possible outcomes of superinfection in this
basic model. The criterion of successful invasion by Strain 2 is the
positivity of the growth rate of I2 (İ2 > 0) in a chronic infection

established by the first strain (ES2: T̂(I1), Î
(I1)
1 ). By substituting

T̂(I1) into Equation (3), it follows that the condition for successful

TABLE 1 | The equilibrium states (ES) of the basic model.

T̂ Î1 Î2

ES1 () σ
δT

0 0

ES2 (I1)
δ1
β1

σ
δ1

−
δT
β1

0

ES3 (I2)
δ2
β2

0 σ
δ2

−
δT
β2

The viral strain present in each state is indicated in brackets; empty brackets in ES1 ()

denote the absence of infection.

invasion is δ1
β1

> δ2
β2
, which can be rewritten in terms of the

equilibrium target cell counts as:

T̂(I1) > T̂(I2), (5)

implying that successful superinfection always decreases the
uninfected target cell count at steady state, because only strains
that lower the count can establish superinfection. The criterion
for the stable coexistence of both types of infected cells is
a positive growth rate of each type of infected cells in the
established population of the other. However, mutual invasibility
cannot be satisfied as Equation (5) and its reverse cannot be
satisfied simultaneously. As a consequence, successful invasion
results in the extinction of the resident strain, and the lower
steady-state cell count associated with the superinfecting strain
is attained.

In this simple system the coexistence of both strains in
not possible, and the impact of superinfection is unequivocal.
However, implementing some aspects of the complexity of HIV
infection can open up the possibility of more complicated
behavior in the models. In the following, we introduce extended
models of HIV dynamics that incorporate homeostatic target
cell dynamics, bystander killing (with or without inducible HIV-
specific immunity), interference competition in the infection
process, multiple target cell types, or the virus-induced activation
of quiescent target cells. The analysis of these models, following
the procedure described above, is presented in the Results.

2.2. Homeostatic Target Cell Dynamics
The basic model of virus dynamics assumes a constant rate of
influx for the susceptible target cells. However, at least some of
the new production is likely to arise from the division of existing
target cells, and this process must then inevitably be regulated to
maintain stable cell counts. Such homeostatic dynamics can be
described by a logistic growth term that is a decreasing function
of the current size of the cell pool, and we employed the following
equation to describe such self-limiting dynamics for the target
cells:

Ṫ = rT

(

1−
T

K

)

− (β1I1 + β2I2)T − δTT. (6)

Here r defines the maximal per capita growth rate of the
uninfected target cells, and K is the “carrying capacity” at which
divisions stop entirely. Note that we have retained the simple
exponential death term (δTT) for consistence with the basic
model, and the dynamics of the infected cells remain unchanged
(cf. Equations 2, 3).

Frontiers in Microbiology | www.frontiersin.org July 2018 | Volume 9 | Article 163438

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Móréh et al. Modeling Outcomes of HIV Superinfection

2.3. Models With Bystander Killing of
Uninfected Cells
Accumulating evidence indicates that the killing of uninfected
cells (induced, primarily, by pyroptosis (Doitsh et al., 2014; Ke
et al., 2017) might be a major mechanism of HIV-associated
loss of CD4+ T lymphocytes. Viral strains are likely to differ in
their ability to induce bystander killing, which gives rise to the
following model variant:

Ṫ = σ − [(β1 + γ1)I1 + (β2 + γ2)I2]T − δTT (7)

İ1 = β1TI1 − δ1I1 (8)

İ2 = β2TI2 − δ2I2. (9)

where the loss of target cells depends not only on the infection
efficiency of the strains (βi, cf. section 2.1), but also on the
strength of the bystander killing effect of the infected cells (γi).

In addition, inducible immunity that is activated proportional
to the level of the antigen can have a profound effect on the
equilibria and behavior of the models (De Boer and Perelson,
1998), and indeed on the competition of distinct viral strains
(Iwasa et al., 2004). To investigate whether strain-specific
immune responses can alter the invasion dynamics of viral strains
with varying levels of bystander killing, we combined the earlier
model of Iwasa et al. (2004) with bystander killing to obtain the
following set of equations:

Ṫ = σ −

∑

i = 1,2

(βi + γi)IiT − δTT (10)

İi = βiTIi − kiEiIi − δiIi (i = 1, 2) (11)

Ėi = αiIiEi − δEiEi (i = 1, 2). (12)

In this model, the two viral strains (i.e., the cells infected by them)
activate, and are targeted by, two different populations of effector
cells that are specific to the strains. The effector cells proliferate
proportional to the level of infected cells with rate constants αi,
die at rates δEi , and they kill infected cells in a concentration
dependent manner, with rate constants ki. The scheme of the
models is shown in Figure 1A.

We also tested model variants with alternative immune
effector mechanisms. Cytotoxic lymphocytes might be able to
kill newly infected cells before they could start producing virus
(Klenerman et al., 1996), which can be implemented by making
the fraction of newly infected cells that enter the virus-producing
cell population a decreasing function of the immune response:

İi =
βiT

1+ fiE(i)
Ii − δiIi (i = 1, 2). (13)

The same equation applies also if some effector cells exert a non-
cytotoxic effect that reduces the rate of new infections (Levy et al.,
1996); in this case the reduction in the infection terms involves
also the loss of uninfected cells:

Ṫ = σ −

∑

i = 1,2

βiIi

1+ fiE(i)
T − δTT (14)

FIGURE 1 | The schemes of the models with (A) bystander killing and (optional) strain-specific cytotoxic immunity, (B) saturating dynamics of new infections,

(C) multiple target cell types, and (D) HIV induced activation of target cells. New infections occur proportional to the level of infected cells in all models; the level of

infectious virions is assumed to follow that of the infected cells, with a proportionality constant implicit in the infection parameter (β). The processes and parameters

are explained in the text.
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2.4. Saturating Dynamics of New Infections
Two biological scenarios can be implemented by the following
formalism:

Ṫ = σ −

(

∑

i = 1,2 βiIi

1+
∑

i = 1,2 ǫiIi

)

T − δTT (15)

İi =
βiTIi

1+
∑

i = 1,2 ǫiIi
− δiIi (i = 1, 2), (16)

in which the rate of new infections increases slower than linearly
with increasing infectious titer, and saturates at high titers; ǫi
parameters characterize the strength of the effect. First, this
can be regarded as a “functional response” in the infection
term, acknowledging that the linear proportionality between
the rate of infections and the level of infected cells cannot be
valid indefinitely as the level of the infected cells increases: at
high levels, competitive saturation occurs due to interference
(crowding) effects (Schoener, 1978). Alternatively, the same
model structure applies also if the presence of the virus induces
innate antiviral mechanisms in the target cells (e.g., in the
context of abortive infections). HIV is known to be affected
by several cell-autonomous innate immune mechanisms (Zheng
et al., 2012), some of which are likely to be inducible. In this
setting, the effective infection ratemight decrease already at lower
levels of the infected cells. Figure 1B illustrates the scheme of this
model.

2.5. Multiple Target Cell Types
Strains of HIV can differ in their target cell tropism, which might
also have an effect on their competition dynamics. With regard to
the blood CD4+ T cell count (which we use as a proxy for clinical
status), the major distinction lies between cells expressing either
the CCR5 or the CXCR4 coreceptor (Bleul et al., 1997). Some viral
strains are specific for the former, but dual-tropic viruses often
evolve during the course of disease progression, with varying
levels of affinity for the two coreceptors (Connor et al., 1997).
For simplicity, we here investigate two target cell types that are
produced independently of each other at rates σi, and can be
infected by one or both viral strains with coefficients βij:

Ṫi = σi − Ti

∑

j = 1,2

βijIj − δTiTi (i = 1, 2; j = 1, 2) (17)

İj =
∑

i = 1,2

βijTiIj − δjIj (i = 1, 2; j = 1, 2) (18)

The total target cell level comprises
∑

i Ti; the scheme of the
model is shown in Figure 1C.

2.6. HIV-Induced T-Cell Activation
Our last scenario implements some of the complexity in the
dynamics of the target cells of HIV infection. While the majority
of CD4+ T cell cells in the body are in a quiescent state, HIV
infects only activated cells efficiently (Bukrinsky et al., 1991; Chiu
et al., 2005). In addition, the presence of the virus itself might
increase the rate of activation, which complicates the dynamics
and brings up the possibility that the impact of superinfection

might also be affected. Building on earlier models (e.g., Bartha
et al., 2008), we consider the following system of equations:

Q̇ = σ − δqQ− (α +

∑

i = 1,2

κiIi)Q+ rT (19)

Ṫ =



α +

∑

i = 1,2

κiIi



Q− (r + δT)T −

∑

i = 1,2

βiIiT (20)

İi = βiIiT − δiIi (i = 1, 2), (21)

where T now denotes activated CD4+ T cells (corresponding,
as before, to the susceptible target cells in the system), and Q
indicates quiescent CD4+ T cells that are in a resting state.
Quiescent cells are generated at a constant rate σ , and die
at a rate δQQ. They become activated at a rate composed of
an HIV-independent component, αQ, and an HIV-dependent
component that is proportional to the level of infected cells, κiIiQ,
where κi denotes the efficiency of activation mediated by the ith
viral strain. Activated target cells (T) revert to quiescent state
at the rate rT; the death and infection of target cells, and the
dynamics of infected cells are the same as in the basic model (see
Figure 1D).

Because the dynamics of infected cells is unchanged from
the basic model, here, too, coexistence of the two strains is
not possible, and successful superinfection always decreases the
count of susceptible target cells (T). However, in this model
the total CD4+ T cell count includes also the quiescent cells,
and for this total, the outcome can be different. For details, see
section 3.4.

In each scenario we followed the method introduced above,
i.e., we investigated the criteria for invasions (mutual invasibility)
and the positivity of the steady-state cell levels. We distinguished
the possible equilibrium states based on which cell types are
present with nonzero steady-state levels at the equilibrium point;
we present the distinct equilibrium states of all models in Table 2

for easy reference.

3. RESULTS

In Models and Methods we showed that in the basic model
of virus dynamics superinfection always entails a decrease in
the uninfected target cells. This followed because the criteria
for invasion in that model can be fulfilled only for strains that
ultimately establish a new steady state of the target cells that is
lower than the one set by the resident virus before the invasion.
In the following, we use the same methodology of invasion
analysis on multiple variants of the HIV dynamics model. The
model variants are extensions to the basic model, incorporating
various aspects of the complexity of HIV infection. The main
results are presented here, while the details of the calculations and
simulations are presented in the Appendix. We refer the non-
mathematical reader to the beginning of the Discussion, where
we summarize the main results in intuitive non-mathematical
terms.
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TABLE 2 | Summary of the possible equilibrium states in the analyzed models, showing the cell types that are present in each equilibrium point.

For analytical forms see Appendix 1–4. Note, that “homeostatic dynamics” refers to the self-limiting dynamics of uninfected target cells, whereas “saturating dynamics” refers to the

dynamics of new infections. In the case of multiple target cell types (denoted by ∗), T refers to the simultaneous presence of both target cell types T1andT2.

3.1. Models With Uniform Negative Effect
of Superinfection
We first briefly discuss the scenarios (model variants) where
superinfection either always decreases the uninfected target cell
count (as in the basic model), or it might leave the count
unchanged in some cases.

3.1.1. Homeostatic Target Cell Dynamics
The equilibrium points of the model are listed in (Table 3). The
target cell count in the absence of infection, and the steady
states of infected cells differ from those of the basic model of
virus dynamics. However, the criteria for successful invasion
by a second viral strain, and the steady-state target cell counts
before and after superinfection, are derived from the dynamical
equations of the infected cells, which are the same as in the
basic model. As a consequence, this model variant also predicts a
uniform negative impact of superinfection on the target cell level
(cf. Equation 5).

We also tested models that combined homeostatic target cell
dynamics with other extensions if the basic model, and found
that the effect of superinfection was generally independent of the
choice between homeostatic dynamics and constant influx of new
cells. In the following we therefore present models employing the
simpler approximation of constant influx for the uninfected cells,
consistent with the basic model.

3.1.2. Bystander Killing of Uninfected Cells
We then studied models that allow for the bystander killing of
uninfected cells, which appears to be a major factor in the loss of
CD4+ T cells in HIV infection (Doitsh et al., 2014). We aimed
to investigate whether differences in the rate of bystander killing
can influence the impact of superinfection on clinical status.

TABLE 3 | The equilibrium states (ES) of the basic model with homeostatic target

cell dynamics.

T̂ Î1 Î2

ES1 ()
K(r−δT )

r 0 0

ES2 (I1)
δ1
β1

(T̂ () − T̂ (I1 )) r
Kβ1

0

ES3 (I2)
δ2
β2

0 (T̂ () − T̂ (I2 )) r
Kβ2

TABLE 4 | Equilibrium states in the case of bystander killing of uninfected cells

without immune response.

T̂ Î1 Î2

ES1 () σ
δT

0 0

ES2 (I1)
δ1
β1

(T̂ ()−T̂ (I1) )δT
T̂ (I1) (β1+γ1 )

0

ES3 (I2)
δ2
β2

0
(T̂ ()−T̂ (I2) )δT
T̂ (I2) (β2+γ2 )

Without immune response the dynamics of the system is
described by Equations (7–9). The equilibrium points of the
system are easily computed (Table 4), revealing that the steady-
state counts of uninfected cells remain the same as in the basic
model, and only the steady states of the infected cells are different.
The relations determining the positivity of the infected cell
counts, and the criteria for successful invasion (superinfection)
are also unchanged: successful invasion always decreases the
uninfected target cell count in this implementation of bystander
killing of uninfected target cells.

3.1.3. Bystander Killing With Strain-Specific

Cytotoxic Immunity
We next investigated whether an inducible immune response
against the virus [which can change the equilibria and behavior
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of the models profoundly (De Boer and Perelson, 1998)] can
affect the outcome of superinfection. Because cross-reactive
immunity (that targets both strains) has already been shown
to allow for both increasing and decreasing target cell counts
after successful invasion (Iwasa et al., 2004), we combined
strain-specific immunity with bystander killing. Strain-specific
immunity, by itself, does not allow for increasing target cell
counts (Iwasa et al., 2004); we aimed to investigate whether
immune control by strain-specific immunity might allow for the
invasion of a viral strain with reduced bystander killing, possibly
increasing the target cell count.

In brief, we found that in models with bystander killing
of uninfected cells and strain-specific immunity, superinfection
imposed on a steady state with induced immunity always
decreases the target cell count (for details see Appendix 1).
In the case with an initial virus that is not able to elicit an
immune response, superinfection with a fitter virus can result in
a situation with stable coexistence, an immune response against
the second strain, and no change in the target cell level. Finally,
we also tested alternative action mechanisms for the immune
response (early cytotoxicity, non-cytotoxic immunity); however,
the results of the previous analyses remained robust irrespective
of the effector mechanism.

3.2. Saturating Dynamics of New Infections
We next explored whether implementing interference
competition between the viral strains can influence the outcome
of superinfection. Such competition arises from a “crowding
effect” that reduces the per capita rate of new infections at high
virus load, acknowledging that the rate of new infections cannot
increase indefinitely with the level of infected cells. Alternatively,
the same model applies also if innate antiviral mechanisms are
activated in the target cells proportional to the virus load they
are exposed to.

In this model variant there is no immune control and infected
cell originate from a single pool of target cells (see Figure 1B);
the coexistence of both strains is therefore not possible. The
dynamics of the system is described in Equations (15, 16), where
the rate of new infections increases slower than linearly with
increasing infectious titer, and saturates at high titers. The three
possible equilibrium points are listed in Table A2 in Appendix
2.1. In the case of successful superinfection the new strain
excludes the old one. The condition of successful invasion by the
second strain has the same form as in the basic model (for details,
see Appendix 2.2):

δ1

δ2
>

β1

β2
. (22)

However, in this model, the total target cell count can both
decrease and increase after successful superinfection. The count
increases if the following relation holds:

(δ1β2 − δ2β1)+ δT(δ1ǫ2 − δ2ǫ1)+ σ (ǫ1β2 − ǫ2β1) < 0. (23)

As the expression in the first pair of brackets must be positive
for superinfection to occur (c.f. Equation 22), the relation can
hold if the sum of the remaining two expressions is negative

and of greater magnitude. If σ ≫ δT (which is a realistic
assumption) the condition is mainly affected by the ǫi coefficients
of interference and the βi coefficients of infection efficiency,
yielding the following necessary (though not sufficient) condition
for an increase in the target cell count after superinfection:

ǫ1

ǫ2
<

β1

β2
. (24)

If σ≪δT the condition ismainly affected by the δi rates of infected
cell turnover, in addition to the coefficients of interference, and
an increase in the target cell count is possible only if

ǫ1

ǫ2
<

δ1

δ2
. (25)

In general, superinfection can increase the level of uninfected
target cells, if the relative difference between the two strains is
smaller with respect to the coefficients of interference than with
respect to the relative difference in the infection efficiency and/or
in the infected cell turnover. As interference by a “crowding
effect” is likely to be relatively invariable, this condition might
often be fulfilled under this scenario.

As the above calculations are only approximate, we also
carried out a series of numerical simulations to investigate the
effect of superinfection on the uninfected target cell count. We
fixed the parameters of the uninfected cells such that σ ≫ δT ,
when the condition for increasing target cell count is expected to

be approximated by ǫ1
ǫ2

<
β1
β2
; all other parameters were chosen

randomly from the intervals presented in Table A5 in Appendix.
Overall about 50% of the invasion tests resulted in successful
superinfection (from a random pair of strains, one can always
exclude the other, except for the degenerate case when β1/δ1 =

β2/δ2). In each run the increase/decrease of the uninfected
target cell counts after the superinfection and the ratios of βi

and ǫi parameters were recorded. Figure 2 shows the results
from a randomly selected subset of simulations with successful
superinfection (300 cases of both increasing and decreasing target
cell counts), confirming the validity of the approximate criterion;
the distribution of the relative change in the cell count is shown
for the whole set of 20,000 simulation runs with successful
superinfection.

3.3. Multiple Target Cell Types
This model variant was motivated by the observation that
different virus strains can differ in their target cell tropism (e.g.,
Bleul et al., 1997), which might influence their competition
dynamics by introducing multiple resources into the system. The
scheme of the model is shown in Figure 1C. With two target
cell types, exposure to a second strain can lead to three different
outcomes: unsuccessful invasion; successful superinfection with
exclusion of the original strain; and successful superinfection
followed by the coexistence of both strains. There are four
equilibrium states of the system, but the complexity of their
form (c.f. Appendix 3.1) precludes an analytical investigation of
the effect of superinfection. We therefore assessed the impact of
superinfection with numerical simulations of the model, using
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FIGURE 2 | The top panel shows the change in the uninfected target cell

count after superinfection as a function of the relative differences in the

interference (ǫ) and infection efficiency (β) parameters of both strains; results

from 600 randomly selected simulation runs of the saturating infection

dynamics model (300–300 runs with both increasing and decreasing cell

counts) are shown. Red circles represent runs with increasing uninfected

target cell count; green triangles represent runs with decreasing cell counts.

The blue dashed line of the diagonal corresponds to
ǫ1
ǫ2

=
β1
β2

; Equation (24) is

fulfilled above the diagonal. In all runs we set σ = 10 cells per day and

δT = 0.1 per day; all other parameters were drawn randomly with uniform

distribution from the intervals presented in Table A5 (Appendix). The lower

panel shows the histogram of the (log-transformed) ratios of the uninfected

target cell counts after and before superinfection, from 20,000 simulation runs

with successful superinfection.

parameters sampled randomly from credible intervals (see Table
A5 in Appendix), and recording the total number of target cells
(T1+T2) before and after a successful superinfection (seeModels
andMethods for details). The ratio of simulations with successful
superinfection was again, as expected, close to 50%. In 20,000
simulation runs with successful superinfection, themost frequent
scenario was the exclusion of the first strain accompanied by
a decrease in the total uninfected target cell count (T1 + T2);
however, amodest increase in the total count was also observed in
some of the cases (Table 5), and coexistence of the two strains was
also possible with both increasing and decreasing total uninfected
target cell counts. We found no parameters or simple parameter
combinations that could predict the increase or decrease of total
counts.

TABLE 5 | The observed frequencies of the possible outcomes of successful

superinfection, and the median and interquartile range of the ratio of change in the

uninfected target cell count for each case, calculated from 20,000 simulation runs

with successful superinfection (50% of the total number of runs) in the multiple

target cell types model.

Outcome Frequency Median ratio

of change (Q1–Q3)

Exclusion–increasing total count 0.005 1.029 (1.010− 1.062)

Exclusion–decreasing total count 0.815 0.467 (0.290− 0.672)

Coexistence–increasing total count 0.020 1.010 (1.003− 1.033)

Coexistence–decreasing total count 0.160 0.889 (0.759− 0.965)

3.4. HIV-Induced Activation of Target Cells
Our final extension of the basic model takes into account that
only activated CD4+ T cells are highly susceptible to HIV
infection, while the majority of the CD4+ T cells are in a resting
or quiescent state. By equating the susceptible target cells (T)
with activated T cells, the model can preserve much of the
basic architecture, while adding a new variable for the levels of
quiescent cells (Q) allows it to track the total CD4+ T cell count
with more realism. An important feature of the system is that
HIV itself contributes to the activation of quiescent cells. The
dynamics of the system is described by the set of differential
equations introduced in Equations (19–21); the scheme of the
model is shown in Figure 1D. The three equilibrium states (ES1,
ES2, and ES3; see Table 2, but note that Q is also present) and the
corresponding equilibrium values of different cell counts can be
found in Appendix 4.1.

As there is no immune control, and both strains of the virus
infect the same pool of (activated) target cells, coexistence of
strains is not possible, analogous to the basic model (cf. section
2.1). In the case of successful invasion, the original strain is
excluded, and the level of activated target cells decreases, in line

with the results of the basic model: T̂(I2) < T̂(I1), see Equation (5).
In the equilibrium states with infection, the steady-state values of
susceptible target cell levels, T, are the same in the basic model
and this model; however, the addition of quiescent cells allows
for a more complicated behavior of the total uninfected target cell
count (Q + T) in this case. From Equation (19), the steady-state
level of quiescent cells can be expressed in the following way:

Q̂(Ii) =
rT̂(Ii) + σ

δq + α + κi Î(Ii)
. (26)

While the complexity of the fully expanded formula of the steady
state (see Appendix 4.1) precludes a fully analytical study of
the possible consequences of superinfection, the possibility of
increasing cell count can be gleaned by expressing the increase

of the total CD4+ T cell count (Q̂(I2) + T̂(I2) > Q̂(I1) + T̂(I1)) in
the following form:

δ2

β2
+

r δ2
β2

+ σ

δq + α + κ2 Î(I2)
>

δ1

β1
+

r δ1
β1

+ σ

δq + α + κ1 Î(I1)
. (27)
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Although the level of activated target cells decreases, (i.e.,
δ2/β2 < δ1/β1), the inequality can be fulfilled if the invading
Strain 2 exerts a (sufficiently) lower level of virus-mediated
target cell activation (κ2 Î2 < κ1 Î1), which might be possible
for some parameter combinations. We tested this by numerical
integration of the set of differential equations Equations (19–
21), following the method used in the previous two scenarios
(for details see section 2). In about 10% of the cases, with
single infection the system attained stable oscillations with large
amplitude in all variables, which is biologically unrealistic; we
have therefore excluded these cases from further analysis. We
performed invasion tests with pairs of strains that both attained
stable equilibria in single infections; of these tests, about 11%
resulted in successful superinfection. This is considerably lower
than the “neutral” expectation observed in the other models, and
can be explained by the additional positive feedback of infected
cell levels on the supply of susceptible (activated) cells. The
second strain still has 50% probability to have higher replicative
fitness (β/δ) than the resident strain; however, in some of these
cases it has too low activation potential to sustain infection in the
new host. The results of 20,000 successful invasions are presented
in Figure 3.

In line with the qualitative predictions, the total target cell
count increased for some cases of superinfection where the
(κ1I1)/(κ2I2) ratio was greater than 1. The κ1/κ2 ratio was also
a good proxy: substantial increase in the total target cell count
seems to be possible only if κ1/κ2 > 1, i.e., when the invading
strain is less efficient at activating quiescent target cells. Based
on these numerical results, we conclude that the total uninfected
cell count can both decrease and increase after superinfection, if
the dynamics of target cell activation and quiescence is taken into
account.

Finally, we also tested a minor variant of this model, in which
quiescent cells affected by the virus die instead of entering the
pool of activated target cells [i.e., the κiIi terms appear only in the
equation of quiescent cells (Equation 19) but not in the equation
of activated cells (Equation 20)]. This formalism corresponds to
a mechanism of bystander killing that affects resting uninfected
cells, which might apply to the pyroptotic pathway in particular
(Doitsh et al., 2014). The behavior of this model was analogous
to the structurally similar case of HIV-induced T cell activation:
superinfection with a strain that has higher replicative capacity
but a lower rate of HIV-induced bystander killing of the quiescent
cells, compared with the resident strain, can increase the total
CD4+ T cell count.

4. DISCUSSION

Using simple models of HIV infections, we demonstrated
that superinfection with a second strain of HIV can, under
different assumptions, result in both a deterioration, but also
an improvement of clinical status (approximated by uninfected
target cell counts in the models). This runs counter to the
widespread view that associates superinfection with a negative
outcome. In our exploration of biologically motivated extensions
to the basic model of HIV dynamics, we have identified four new

FIGURE 3 | Relative change of the total uninfected target cell count (Q̂+ T̂ )

after and before successful superinfection, plotted against the total rates of

activation (κ1 Î1)/(κ2 Î2) (top) or the ratio of the activation parameters κ1/κ2

(bottom) of the two virus strains in the HIV-induced activation model. The

results of 20,000 simulation runs with successful superinfection are shown. In

each run, all parameters were drawn randomly with uniform distribution from

the intervals presented in Table A5 (Appendix); the cases with healthy

(uninfected) cell counts between 500 and 1,500 per µL were used for the

analyses. Both axes are logarithmic.

scenarios in which superinfection can also have a positive impact
on the level of uninfected target cells.

The first scenario assumed interference competition for the
susceptible target cells between the competing viral clones.
Such interference is almost inevitable at high densities of a
predator or infectious agent (Schoener, 1978): the rate of new
infections cannot grow indefinitely with increasing infectious
titer. Furthermore, the same model structure is applicable also
if inducible mechanisms of innate antiviral defense reduce the
susceptibility of uninfected cells upon exposure to the virus that
does not result in productive infection. Interference competition
(saturating infection dynamics) can therefore be expected to
occur, although the magnitude of the effect is unclear. In this
model, the total uninfected target cell count increased upon
superinfection when the relative difference between the two viral
strains was smaller with respect to the coefficients of interference
than with respect to the relative difference in the infection
efficiency and/or in the infected cell turnover.
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Variable tropism for multiple distinct cell types also allowed
for increasing total uninfected cell counts, although in this case
the increase was modest and it occurred in only a minority of the
simulation runs with randomized parameters. Larger increases
in the total count were possible in models that distinguished
between activated (susceptible) and resting (non-permissive)
target cells, and included an effect of the virus on the resting cell
pool (activation to susceptible state or bystander killing). In these
models, “invasion fitness” of a virus strain is independent of its
effect on quiescent cells, allowing for superinfection with strains
that induce less depletion of this cell pool, which constitutes the
dominant component of the total CD4+ T cell count.

In all scenarios that allow for increasing target cell level after
superinfection, this positive outcome is expected to arise (in some
of the cases) when there are independent sources of variability
in the relevant parameters, e.g., if the intensity of interference
effects, or the potential for immune activation can vary, at least
in part, independent of the components of replicative fitness
(production and infectiousness of virions, turnover rates of
infected cells and virus particles). Since a complete coupling is
not expected between the parameters, the possibility of increasing
target cell levels is likely if any of the relevant structural features
of these scenarios is indeed important in vivo. This is a robust
result, independent of the uncertainties in the parameters of both
viral and host immune dynamics.

Our results add to the earlier modeling work of Fung et al.
who found that HIV superinfection can occur with a less fit (and
virulent) strain if target cells can be multiply infected (which
reduces or eliminates competition for this resource) (Fung et al.,
2010). Furthermore, since exposure to superinfection is fully
analogous to the appearance of new virus strains by mutation,
earlier modeling results pertaining to the within-host emergence
and competition of new strains are also applicable in the context
of superinfection (e.g., Iwasa et al., 2004, 2005; Ball et al., 2007),
and vice versa. Altogether, there are now five mechanisms known
to allow for a positive impact of HIV superinfection on clinical
status (uninfected target cell count): in addition to the four
cases identified in this paper, the earlier work of Iwasa et al.
(2004) identified cross-reactive immunity as a mechanism that
is also compatible with a positive outcome – all of these scenarios
could, in principle, also allow for evolution toward decreasing
HIV virulence within the host. We summarize the predictions of
various mathematical models with regard to the impact of HIV
superinfection on clinical status in Table 6.

While modeling suggests that HIV superinfection could
have counterintuitive beneficial effects by several possible
mechanisms, the data are not sufficient to predict how often this
might occur. Elucidating the true distribution of outcomes might
be elusive in the era of broadly accessible antiretroviral therapy,
but it might be possible through the retrospective identification
of superinfection events from stored samples. Finding cases
where the CD4+ T cell count improved, at least temporarily,
after superinfection, would indicate that at least one of the
complicating factors that allow such an effect are indeed at
work in the infection. Insights from the models and a detailed
examination of these cases could narrow down the list of possible
mechanisms, and improve our understanding of the within-host
dynamics of HIV infection.

TABLE 6 | Possible outcomes of HIV superinfection on the total uninfected target

cell count.

Scenario After superinfection Source

the target cell count

Basic model Always decreases Iwasa et al.,

2004

Homeostatic target cell dynamics Always decreases This paper

Strain-specific immunity Decreases or unchanged Iwasa et al.,

2004

Cross-specific immunity Can decrease or increase Iwasa et al.,

2004, 2005

Multiple infection of target cells Decreases or unchanged∗ Fung et al.,

2010

Bystander killing

of susceptible target cells Always decreases This paper

of non-permissive target cells Can decrease or increase This paper

Saturating infection dynamics Can decrease or increase This paper

Multiple target cell types Can decrease or increase This paper

HIV-induced T-cell activation Can decrease or increase This paper

∗Fung et al. (2010) used a non-steady-state model of disease progression: when dual

infection of the target cells was allowed to occur unhindered, the rate of disease

progression was unaffected or slightly accelerated after superinfection.

Finally, our results might also have some relevance with
regard to the impact of superinfection on the evolution of HIV
virulence at the population level. The possibility of ambiguous
outcomes implies that superinfection might contribute to the
spreading of not only virulent, but also of attenuated strains
under some circumstances. We also note that even in the
scenarios when superinfection could spread only strains with
higher virulence, this predicted effect could be mitigated
by factors that were not incorporated in our models. For
example, the initial dissemination of the virus is likely to
be aided considerably by the large susceptible population of
CD4+CCR5+ T cells in the gut-associated lymphoid tissue
(Mehandru et al., 2004). This pool is quickly and irreversibly
depleted when an individual first becomes infected with HIV,
and the absence of this readily infectable cell population
might reduce the probability of successful superinfection upon
subsequent exposure to other viral strains. This and other factors
(e.g., cross-specific immunity) might inhibit superinfection,
which would constrain the spreading of strains with higher
within-host fitness also at the population level (Ferdinandy
et al., 2015). Furthermore, the current broad application of
antiretroviral therapy is likely to reduce also the incidence of
superinfection, especially considering that therapeutic guidelines
increasingly advise the treatment of all diagnosed individuals.
In principle, superinfection by drug resistant viruses could still
occur (Chakraborty et al., 2004; Smith et al., 2005), but currently
available evidence suggests that such events are extremely rare
(Bartha et al., 2013). Finally, the population-level dynamics
and evolution of HIV is also influenced by factors that act on
between-host transmission (Nowak and May, 1994; van Baalen
and Sabelis, 1995; Alizon and van Baalen, 2008), and trade-
offs between viral traits might also complicate the evolutionary
dynamics (Ball et al., 2007).
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In summary, we have shown that the effect of HIV
superinfection on clinical status is not straightforward: while
the simplest models predict that only a more virulent strain
can successfully establish superinfection, adding biologically
relevant details of HIV infection opens up the possibility that
superinfection might also improve clinical status in some cases.
The impact of superinfection at the population (epidemic) level
is likely to be modulated by further factors.
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Mathematical models play a central role in epidemiology. For example, models unify

heterogeneous data into a single framework, suggest experimental designs, and

generate hypotheses. Traditional methods based on deterministic assumptions, such as

ordinary differential equations (ODE), have been successful in those scenarios. However,

noise caused by random variations rather than true differences is an intrinsic feature

of the cellular/molecular/social world. Time series data from patients (in the case of

clinical science) or number of infections (in the case of epidemics) can vary due to

both intrinsic differences or incidental fluctuations. The use of traditional fitting methods

for ODEs applied to noisy problems implies that deviation from some trend can only

be due to error or parametric heterogeneity, that is noise can be wrongly classified as

parametric heterogeneity. This leads to unstable predictions and potentially misguided

policies or research programs. In this paper, we quantify the ability of ODEs under different

hypotheses (fixed or random effects) to capture individual differences in the underlying

data. We explore a simple (exactly solvable) example displaying an initial exponential

growth by comparing state-of-the-art stochastic fitting and traditional least squares

approximations. We also provide a potential approach for determining the limitations

and risks of traditional fitting methodologies. Finally, we discuss the implications of our

results for the interpretation of data from the 2014-2015 Ebola epidemic in Africa.

Keywords: stochastic, deterministic, epidemiology, panel data, random effects, fixed effects

1. INTRODUCTION

Mathematical models play an increasingly central role in the analysis of infectious disease data at
both the within-host and epidemiological levels (Perelson et al., 1996; Heesterbeek, 2000; Molina-
París and Lythe, 2011). The traditional modeling approach involves formulating a set of structural
assumptions about the processes involved, such as infection, recovery, death, etc. Often, these
structural assumptions are then implemented in terms of differential equations, predominantly
ordinary (ODE), but sometimes partial (PDE), or delayed (dODE) differential equations. The
advantage of this approach is its amenability for both analytical treatment and powerful numerical
and fitting algorithms even for non-linear problems. We will refer to those approaches collectively
as deterministic.
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However, stochasticity is an intrinsic feature of infections at
multiple levels from the cellular/molecular world to the level of
epidemics (Süel et al., 2006; Bressloff and Newby, 2013). The
deterministic framework conceptualizes all deviation from the
model prediction as error. For example, in a simple univariate
linear regression we say that the data are equal to a linear
predictor plus some error. Put another way, we can say that error
is the density of the data conditional on the model. However,
stochasticity generates intrinsic fluctuations in the underlying
dynamics of a system (for instance, in the number of secondary
cases an incident case generates), even when the process follows
the structural model envisaged. That is, stochasticity generates
noise, which we define as the set of outcomes that are consistent
with a fixed set of assumptions (i.e., a model).

One of the central challenges of using the deterministic
framework is to delineate its limitations (Roberts et al., 2015). If
the world and its data truly are stochastic, then how much of a
problem is it to conflate noise with error? Likewise, how much
information in the data are we neglecting by treating all deviation
as uninformative error? To what extent is the assumption of
deterministic dynamics plus error providing misleading results?

This question is not gratuitous as some parameters
estimated within the deterministic framework, such as the
basic reproduction number (R0), are often invoked to quantify
the aggressiveness of a pathogen and to determine the conditions
under which a pathogen will go extinct (Dietz, 1993; Heffernan
et al., 2005) or to create public health information such as risk
maps (Hartemink et al., 2011).

The potential problems in applying the deterministic
framework can become even more pronounced when we have
data that represent multiple realizations of a heterogeneous
stochastic process. For example, a set of viral load profiles
in different infected individuals (e.g., primary HIV infection;
Ribeiro et al., 2010) or epidemic curves in different regions (e.g.,
cases of Ebola in multiple counties of the same country ; Krauer
et al., 2016), that is, any data that can be represented as a panel
over discrete units. In those scenarios, an important question is
whether the variability seen between units can be attributed to a
genuine difference in the process that generated the data (e.g.,
some parameters of the dynamics are different for each unit),
simple stochastic fluctuation, or a mixture of the two, in addition
to measurement error. Given a common error model across the
units, the deterministic framework assumes that all deviation
that cannot be explained by error must be due to parametric
variability between units, that is the units are fundamentally
different from one another. For this reason, the deterministic
framework is ill-suited to tackle the question of stochastic effects.

We address in this paper two related questions regarding
modeling of panel data: (i) can we use a stochastic modeling
approach to partition variability into stochastic and parametric
components? and (ii) can we quantify the bias induced by
modeling the data by a deterministic approach with error? Put
in other words, is there a best and a good-enough fitting method

for the practitioner? In section 2.1, we consider two simple
structural models that will help us emphasize the essence of

the problem without having to invoke unnecessary complexities
that may cloud our main arguments. In section 3.1, we present

our approach to analyze those models, which will then be used
to benchmark comparisons between traditional (deterministic)
fitting methods and more sophisticated stochastic ones, that we
explore in section 3.2. As a case study, in section 4, we compare
deterministic and stochastic modeling approaches to data from
the 2014-2015 Ebola epidemic in West Africa. We use epidemic
data from multiple counties of those countries that were most
heavily affected. If one thinks of each county as a realization of
some epidemic generating process, then the relevant question
is whether differences between the counties can be accounted
for by stochastic variability or if it is possible to detect a signal
for different growth rates of the epidemic in different counties.
Finally, in section 5 we summarize our results and discuss the
implications of our work.

2. METHODS

2.1. Simulated Data
The general framework we employ is to simulate data in silico
from two structural models, birth-only or birth-death process
(see Karlin, 2014), by a discrete-time stochastic simulation and
then fit those data using both deterministic and stochastic
methods under a variety of assumptions.

The code used to generate the data and fit the models is
given in Appendix A. We simulate panel data according to the
following process

x1 :U,1 :O ← 0
a← Ŵ(µ = µA, σ = σA)
b← Ŵ(µ = µB, σ = σB)
j, k← 0
for j ≤ U do

j← j+ 1
I← 1
for k ≤ O do

φA← Poisson(Ia)
I← I + φA

I← I − Poisson(Ib)
xj,k ← φA

end for

end for

where U is the number of units in the panel, O is the number
of observations (time points) per unit, and xj,k is the number
of new infected cases in each time period k for unit j—this is
the output of the simulation used for the fits described below.
If the number of deaths exceeds the infected population size,
I, this variable is set to 0. These simple models capture both
the initial exponential growth phase when infected population
sizes are small and stochastic die out that is common in many
epidemiological processes. For simplicity, we focus only on the
early stages of the epidemic, i.e., the approximately exponential
phase in the growth of infected individuals. Note that throughout
we use arbitrary time units.

Each simulated data set is specified by 6 parameters: mean
growth rate, µA; standard deviation of the growth rate, σA; mean
death rate, µB; standard deviation of the death rate, σB; the
number of units in the panel, U; and the number of observations
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per unit,O. From this we consider 4 possible scenarios: birth-only
without parametric variability (µB = σB = σA = 0), birth-only
with parametric variability (µB = σB = 0), birth-death without
parametric variability (σA = σB = 0), and birth-death with
parametric variability. In all cases with parametric variability,
we assume a Gamma distribution for the respective parameter
(where µ and σ are the corresponding mean and standard
deviation). We chose the Gamma distribution because it can
easily be re-parameterized into its mean and standard deviation,
which makes interpreting the parameters straightforward.

We set up four sets of simulated experiments to explore
the effects of (1) model misspecification, (2) the number of
observations per unit, (3) the number of units in the panel, and
(4) the heterogeneity in parameters (growth rates) between units
(see Table 1 for reference).

In the first set of experiments, we simulate data from a
birth-only process without parametric variability (µA = 0.15),
birth-only with parametric variability (µA = 0.15, σA = 0.02),
birth-death without parametric variability (µA = 0.25, µB =

0.1), and birth-death with parametric variability (µA = 0.25,
σA = 0.02, µB = 0.1, σB = 0.01). In each case, we assume
(U =) 20 units per panel and (O =) 20 observations per unit,
at equal time intervals. We then fit each of these four data sets
using each of four possible models (birth or birth-death with and
without random effects) with both stochastic and deterministic
approaches for a total of 32 fits.

In the next three sets of experiments we use the birth-only
model with parametric variability and the default parameters
µA = 0.15, σA = 0.02, U = 20, O = 20. In the second
set of experiments, we vary the number of observations per unit
(O ∈ {10, 20, 30, 40, 50}), in the third set of experiments we vary
the number of units in the panel (U ∈ {10, 20, 30, 40, 50}), and in
the fourth set of experiments we vary the heterogeneity in growth
rates (σA ∈ {0.01, 0.02, 0.03, 0.04, 0.05}).

2.2. Parameter Inference
To infer the parameter values, we use a fitting scheme based on
simulations that can account both for the intrinsic stochasticity
of the process and the potential variation among individuals.
Here all model formulations (both stochastic and deterministic
versions) are fit using the iterated filtering method implemented

TABLE 1 | Summary of groups of numerical experiments, the aim of each

experiment and the figure summarizing the main results for each case.

Experiment # Description Model Results

1 Effect of model misspecification Birth only and

birth-death

Figure 3

2 Effect of number of observations Birth only Figure 4

3 Effect of number of units in the panel Birth only Figure 5

4 Effect of parametric variance Birth only Figure 6

In all cases (in particular in Experiment 4), we compare fitted parameters using the

stochastic and deterministic methods described in section 3.1. In all cases, we made use

of simulated data with and without random effects to account for the impact of parametric

variance.

in the R library pomp (King et al., 2016). This approach allows
us to fit all the models to the data using the same framework and
likelihood functions, such that the model fits are all comparable.
We specifically use the iterated filtering for panel data (IFPD)
formulation detailed in Romero-Severson et al. (2015). Code used
to specify the pomp process are given in Appendix A.

Models were fit using 5,000 or 15,000 particles for the
deterministic and stochastic models respectively. For stochastic
fits, the density of the number of incident cases in the kth time
period of the jth unit, xj,k, is assumed to be Poisson(xj,k|Ij,k−1α)
were Ij,k is the simulated number of extant infected cases in
the kth time period of the jth unit and α is the growth rate,
which itself may be sampled from a Gamma distribution. For the
deterministic fits, xj,k is simply xj,k = αIj,k−1.

To obtain confidence intervals (CIs) for the parameters, we
used a profile likelihood method (Romero-Severson et al., 2014)
where the parameter of interest was varied over a grid of values
and the likelihood was calculated, by refitting the data allowing
all other parameters to be free. We used the mif2method (King
et al., 2016) in pomp. A local regression (loess) curve was fitted
to the profile likelihood curve and both the MLE and CIs were
calculated from the interpolated curve (King et al., 2015, 2016).

2.3. Ebola Data and Analysis
The Ebola case count data was compiled from publicly available
datasets published by the World Health Organization (from
the “Ebola Data and Statistics” section of the WHO website).
Case counts were stratified by country and county of origin. All
descriptive analyses were done on the full data. However, to fit the
models to the data using the simulation-based method described,
we restrcited the data in the following way.

(i) For every county, we define time = 1 as the first week where
the total number of cases is larger or equal to 1.

(ii) We truncated the data at 10 weeks after that time, in order to
have homogeneous sets (same number of points) during the
approximately exponential initial growth of the epidemic.
To emphasize this latter point, we re-plot the data in linear-
log scale.

(iii) Finally, we removed those counties where the data does not
include at least 10 data points.

Note that in the simulated data, we assumed no measurement
error in time or in number of infected. However, this is not
a good assumption for real epidemiological data. Thus, for the
Ebola data, we fit amodified version of both the deterministic and
stochastic birth-only model accounting for measurement error
(e.g., missed cases and reporting delays) in a simple way, by
assuming that the number of new cases is distributed according
to a Negative Binomial, rather than a Poisson, conditional on
the simulated state of the system at the previous time. We re-
parameterize the typical NB(n, p) as NB(δ, µ

µ+δ
) where µ is the

mean of new cases and δ is an overdispersion parameter such
that limδ→∞NB(δ, µ

µ+δ
) = Poisson(µ). Therefore, the mass

of the data conditional on the simulated state of the system

is NB
(

yj,k
∣

∣δ,
xj−1,ka

xj−1,ka+δ

)

. The parameter δ controls the level of

overdispersion (smaller values, more overdispersion) in the data
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conditional on the simulated state and is free (estimated) for
each point in the likelihood profiles. This formulation puts the
stochastic and deterministic models on a level playing field in that
the deterministic model can model variance between epidemic
trajectories with increased overdispersion rather than increased
population-level heterogeneity. The deterministic and stochastic
models were fit with 5,000 and 15,000 particles, respectively, for
each value in the profiles (Figure 10).

3. RESULTS

3.1. Motivation: Noise as Parametric
Heterogeneity
Traditional inference is based on maximum likelihood estimates
of some well-defined functions. For instance, for the cases
considered here (pure birth and birth-death) an ODE-based
deterministic approximation provides differential equations that,
upon solving, can be fit to the data to determine the parameters
(µA = α and µB = γ ) that best describe the data (see Table 2,
and Appendix B for a succinct derivation for the pure birth case).
Similarly, the stochastic version of those models can be solved
and in that case one could also fit the mean and variance of a
given observable (last two rows in Table 2), and indeed higher
moments.

In these cases, as the models are linear, both deterministic
and stochastic predictions for the average are the same
(because averaging and integrating the evolution equation are
exchangeable operations). However, the latter has the benefit that
it also allows to fit the variance of the data (thus, in principle,
increasing the reliability of the inferred parameters).

The main point that we wish to address is how to interpret
different trajectories of an intrinsic stochastic process. To
illustrate this point, Figure 1 shows 100 realizations of the simple
stochastic pure birth model with rate parameter α = 0.1 time-
unit−1 measured without error at integer times. If we use a
naive deterministic approach (top of Table 2), we fit I(t) =
eαt to each trajectory (data set) and estimate α independently,
obtaining a distribution for this parameter (Figure 1, bottom

TABLE 2 | Number of infected, new cases and total cases for the birth and the

birth-death processes as defined in the deterministic (top part of the table) and

stochastic (bottom part) approaches.

Birth process Birth-death process

Differential equation
dI

dt
= αI

dI

dt
= (α − γ )I

Infected, I eαt e(α−γ )t

New cases per unit time, N αeαt αe(α−γ )t

New cases in 1t, Nt eαt (eα1t
− 1)

α

α − γ
e(α−γ )t (e(α−γ )1t

− 1)

Total cases, T eαt γ

α − γ
(
α

γ
e(α−γ )t

− 1)

Mean of infected, 〈I〉 eαt e(α−γ )t

Variance of infected, σ2
I

eαt (eαt
− 1)

α2 − γ 2

(α − γ )2
e(α−γ )t (e(α−γ )t

− 1)

In all cases, the epidemic starts with one infected case, namely, I(0) = 1. Here we only

consider models without parametric variability (σA = σB = 0).

panel). If this process were observed at time 25, it would be
tempting to conclude that there is a high degree of heterogeneity
in the growth rates of these epidemics. Even by time 75, when
the expected population size is over 1,000, we still see a large
heterogeneity in the estimated rates.

If we used the stochastic version of the pure birth process
(bottom of Table 2), by definition we would assume that there
was just one value for the α parameter and could fit the mean
and variance (and possibly other moments) of the trajectories to
estimate that growth rate.

Another possible deterministic fitting approach is to allow
for random effects, where we assume an underlying distribution
(e.g., normal) for the growth rate parameter (α) and allow each
trajectory to be the realization of a pure birth process with
parameter drawn from that distribution (Gelman and Hill, 2007).
In this case, the estimation method yields the parameters of the
distribution ( i.e., the mean and variance). This is a mixed effects
approach, where we still assume no stochasticity and that all
differences are due to parametric variability.

This approach of assuming parametric variability can also
be used with the stochastic version of the model. In fact, it is
instructive to analyze in more detail such situation by calculating
analytically the distribution of the number of infected accounting
both for the stochasticity of the process and the parameter
distribution for the pure birth process.

If we assume that the growth rate, α, is distributed according
to a normal, α ∼ N (µA, σA), then the probability of having I(t)
total infected is the product of the geometric distribution for fixed
α, which is the solution of the pure birth process, (see Allen,
2010), and the normal distribution for α, namely

P(I|µA, σA, t) = P(I|α, t)P(α|µA, σA)

= [p(1− p)I−1]
e−(α−µA)

2/2σ 2
A

√

2πσ 2
A

where p = e−αt . Therefore,

P(I|µA, σA, t) =

(

1− e−αt
)I−1

e
−

(α − µA)
2

2σ 2
A

−αt

√

2πσ 2
A

, I = 1, 2, . . .

(1)

From this expression, we can obtain the mean and variance of I,
including the contributions of both stochasticity and parametric
variability (see also Appendix C)

〈I〉 = e
µAt+

σ 2
At

2

2 (2)

and

σ 2
I = eµAt+

σ2At2

2

(

eµAt+
σ2At2

2

(

2eσ
2
At

2
− 1

)

− 1

)

(3)

(These expressions reduce to the forms in Table 2, when σA = 0).
It is worth noting that both themean and the variance of I depend
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FIGURE 1 | Stochastic realizations of a pure birth process and distributions of deterministic estimation of the growth rate at different times. Top figures show 100

trajectories from a continuous time pure-birthh process with parameter α = 0.1 over two time scales. The only difference between each trajectory is intrinsic

stochastic variability. The red line shows the expected population size assuming a deterministic process, which is also the mean number of infected of the stochastic

process if there is no parametric variability. The bottom plot shows the distribution of estimated growth rates obtained by fitting a linear model to the log10 of the

population size for each of the 100 trajectories from time 0 to times 25, 75, and 125. The red dots indicate the mean of the estimated growth rates, which are all close

to the true value of 0.1.

on µA and σA, suggesting that an ODE or stochastic fit to the
mean ignoring parametric variability would estimate the growth
rate incorrectly.

These four different ways to fit the same data set (e.g.,
Figure 1) beg the question of which one is the best approach and
whether that depends on the data containing actual parametric
variability or not. On the other hand, the explicit knowledge of
the stochastic form of σI , both in the presence of parametric
variability (expression 3) and pure stochastic variability (Table 2),
suggests the definition of a quantity,R2 (analogous to a coefficient
of determination) as

R2 =
σ 2
param

σ 2
param + σ 2

noise

= 1−
σ 2
noise

σ 2
I

(4)

For the pure birth process (see Appendix C for details):

R2 =
1
2σ

2
At

2eµAt
(

6eµAt − 1
)

eµAt
(

eµAt − 1
)

+
1
2σ

2
At

2eµAt
(

6eµAt − 1
)

(

≃
3σ 2

At
2

1+ 3σ 2
At

2

)

(5)

This expression helps us to determine (in a prescriptive way)
whether the process is governed by stochasticity (R2

→ 0)
or by parametric variability (R2 → 1). Also, as it can be
expected, the variance at shorter times is governed by pure

random fluctuations but as time proceeds, parametric variance,
if present, is increasingly more relevant. We plot R2 as a function
of time in Figure 2

To analyze these issues in more detail, we now use in
silico generated data fitted in multiple ways, with and without
stochastic effects and with and without assuming parametric
variability, to assess the quality of the parameter estimation.

3.2. Comparison of Fitting Methods With
Simulated Data
In Appendix D (Tables I to IV) we summarize the fitted
parameters discussed in the Sections 3.2.1 to 3.2.4.

3.2.1. Experiment 1: Model Misspecification
We fit 4 models (birth-only and birth-death, with and without
random effects) using both deterministic and stochastic model
formulations allowing us to consider the effect of both
model structure misspecification and other model assumptions.
Parameter estimates for each data set are given in Table I in
Appendix. Also, in Figure 3 we summarize succinctly the main
conclusions of this section.

3.2.1.1. Correct model
When the data are generated without population heterogeneity
(i.e., σA = σB = 0) and fit with the correct structural model, both
the deterministic and the stochastic fits have reasonable point
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FIGURE 2 | Plot of R2 as a function of time for heterogeneous stochastic

exponential growth. Each line shows R2 for the specified level of σA assuming

µA = 0.1. The horizontal gray line indicates 90% of the variance being due to

parametric heterogeneity; the dashed vertical gray lines indicate the time at

which each line reaches 90%.

estimates and their confidence intervals (CIs) contain the true
parameter value (shown in Table I in Appendix). However, CIs
on the death rates are very broad suggesting that the incidence
data are only weakly informative. When we introduce population
heterogeneity into both the data and fits, the stochastic fit still
contains the true parameter values in its CIs; although fitting
all 4 parameters leads to very broad estimates for the mean and
standard deviation of the death rate. The deterministic model,
however, is unable to estimate either the mean or standard
deviation of the growth rates correctly.

3.2.1.2. Random effects in the model but not the data
When the fit attempts to estimate random effects when no
parametric variability is actually present, the CIs for the estimated
standard deviation of the parameters in the stochastic fits contain
0, while the deterministic CIs do not. That is, the deterministic
model finds evidence for population-level heterogeneity when
none actually exists.

3.2.1.3. Random effects in the data but not the model
When there is population-level heterogeneity in the data but the
model assumes that there is none, the stochastic fit still obtains
correct point estimates and CIs of the mean effects for both the
birth-only and birth-death models. However, in the deterministic
fits the CIs for the mean effects did not contain the true values of
the growth rates.

3.2.1.4. Death in the data but not in the model
When fitting the birth-death data with a birth-only model, we
found that, in both the stochastic and deterministic fits, the
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FIGURE 3 | Results of fits when using mismatched structural models. The

symbols correspond to the estimates of the growth rate (circles) and death

rates (diamonds) under different scenarios. In the (Left) , the data was

generated without parametric variability and in the (Right) the data was

generated with parametric variability. Top row: results of fits with a birth-death

model to data generated by a pure birth process. In each case, we used

stochastic or deterministic fits, without (“No RE”) or with (“RE”) random effects.

The horizontal dashed blue lines indicate the value µA (birth rate) and the

dot-dashed red line the value of σA used in the data generation. Bottom row:

results of fits with a pure birth model to data generated by a birth-death

process. The horizontal dashed blue lines stand for µA and the dot-dashed

green lines for µB. In all cases, the vertical whiskers are the 95% CI obtained

in the fits. Note that the estimates of the death rate for the random effects fits

(in the top panel) are off the plot, and only the bottom segments of the

whiskers are visible).

estimate of the growth rate is close to the net growth rate
(i.e., birth rate minus death rate). However, if we allow random
effects on the growth rate, the deterministic fits finds a very high
level of heterogeneity in the growth rate when none actually
exists. The CI for the standard deviation of the parameter in the
stochastic fit correctly contains 0, suggesting limited evidence for
heterogeneity in growth rates.

3.2.1.5. Death in the model but not in the data
Conversely, if there is death in the model, but not in the data,
both the fixed effects stochastic and deterministic fits the CIs for
the death rate correctly contained 0. However the deterministic
fit overestimated the growth rate while the stochastic fit did not.

3.2.2. Experiment 2: Number of Units in the Panel
Results for data generated by a pure birth process, with different
number of units in the panel, are shown in Figure 4. Using the
stochastic or the deterministic fits resulted in point estimates for
the mean growth rates that were very close to the mean value
and the CIs contain the true value for all cases. Increasing the
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FIGURE 4 | Results of fits when there is a variable number of units. The data

in all cases was generated by a pure birth process with parametric variability

and fit with a birth-only model. The top row shows the estimates for the mean

growth rate with stochastic or deterministic fits, and the bottom row the

estimate of the standard deviation of the growth rate. The horizontal dashed

blue lines indicate the parameter values used in the data generation. The

vertical whiskers are the 95% CI obtained in the fits. In each case, the number

of observations per unit was O = 20, the growth rate was α = 0.15 and the

standard deviation of the growth rate was σ = 0.02.

number of units in the panel causes slightly narrower CIs for the
mean growth rate as well. The standard deviation of the growth
rates was correctly estimated in the stochastic model for all but
one case; however, the deterministic model overestimated the
population-level heterogeneity in all cases. Also, as the number of
units in the panel increases, the CIs narrow suggesting a higher
degree of certainty in an incorrect conclusion.

3.2.3. Experiment 3: Number of Observations Per Unit
The effects of increasing the number of observations per units
was similar to increasing the number of units in the panel.
For both the stochastic and deterministic fits, the mean growth
rates where correctly estimated. As before, the deterministic
fit consistently overestimated the standard deviation in the
growth rates and increasing the number of observations per
unit led to narrower but wrong CIs. Increasing the number of
observations per unit is more efficient at improving the accuracy
of the estimation compared to increasing the number of units
in the panel for the stochastic model. Results are shown in
Figure 5.

3.2.4. Experiment 4: Increasing Heterogeneity

Between Units
We also analyzed the effect of different values for the
heterogeneity of the parametric variability. As before, the

FIGURE 5 | Results of fits when there is a variable number of observations in

each unit. The data in all cases was generated by a pure birth process with

parametric variability. The top row shows the estimates for the mean growth

rate with stochastic or deterministic fits, and the bottom row the estimate of

the standard deviation of the growth rate. The horizontal dashed blue lines

indicate the parameter values used in the data generation. The vertical

whiskers are the 95% CI obtained in the fits. In each case, the number of units

was U = 20, the growth rate was α = 0.15 and the standard deviation of the

growth rate was σ = 0.02.

deterministic fit consistently overestimated the level of
heterogeneity regardless of the actual value of the standard
deviation of the growth rate, however, these estimates became
closer to the true value with increasing heterogeneity in the
data. In the stochastic fits, when the heterogeneity was less
than 0.04, the estimated CIs included the true parameter and
increasing heterogeneity led to a narrower CI. At the highest
heterogeneity levels the CI did not contain the true value;
we found that using a stochastic fit to data with high levels
of parametric heterogeneity leads to numerical instability
making estimation of the CIs difficult. Results are shown in
Figure 6.

3.3. Quantifying Parametric Variability
With R2

As shown in Figure 6, the deterministic CIs do not include
the real value of σA, albeit the estimate of µA is accurate
enough. To test the ability of different methods to quantify
the relevance of parametric variance vs. noise (through R2),
we use the estimation of σA from the different methods with
Equation (5), at the final observation, t = 20. The results
are shown in Figure 7. Note that the stochastic prediction,
at least, is able to include the real R2 inside the whisker,
especially at low values of parametric variability. This means
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FIGURE 6 | Results of fits with increasing standard deviation for the growth

rate. The data in all cases was generated by a pure birth process with

parametric variability. The top row shows the estimates for the mean growth

rate with stochastic or deterministic fits, and the bottom row the estimate of

the standard deviation of the growth rate. The horizontal dashed blue lines

indicate the parameter values used in the data generation. The vertical

whiskers are the 95% CI obtained in the fits. In the right panels, the red empty

squares are the estimated values obtained from standard linear mixed-effect

models (regression). In each case, the number of observations per unit was

O = 20 and the numbers of units was U = 20.

FIGURE 7 | Estimated R2 with increasing standard deviation for the growth

rate. The data in all cases was generated by a pure birth process with

parametric variability. The horizontal short dashed lines indicate the parameter

values used in the data generation. The left panel corresponds to the

stochastic fits and the right panel to the deterministic fits, where the vertical

whiskers are the 95% CI obtained in the fits. The red empty squares in the right

panel stand for the value of R2 calculated with Equation (5) at time t = 20 with

parameters estimated using standard linear mixed-effect models (regression).

The empty green diamonds are an alternative way to estimate R2 using the

empirical data variance and the theoretical (stochastic) noise variance,

Equation (8). In each case, the number of observations per unit was O = 20.

that this fitting method is able to capture (in a probabilistic
way) the cases where parametric variance is not as relevant as
fluctuations.

We have used throughout simulation-based inference,
because it allows us to compare directly likelihood profiles
between stochastic and deterministic implementations of the
models. Nevertheless, it is worth remembering that traditional
methods (based, loosely speaking, on regression) are usually the
preferred way to estimate parameters from the data. This is not
a matter of taste but of computational efficiency. Even for the
simple models in the present work, simulation-based inference
is computationally expensive (and, as such, not suitable as of
writing for models with many parameters). Thus, for the sake
of completeness we discuss briefly the role of regression-based
methods in our framework and fit the data in Experiment 4 using
a standard linear mixed-effect model (Gelman and Hill, 2007).
We find that this fit results in a systematic underestimation
of the mean, µA (red squares in Figure 6 top), and in an
overestimation of the standard deviation σA (red squares in
Figure 6 bottom).

While Equation (5) was derived under the assumption of
an unerlying stochastic process, and traditional methods ignore
the stochasticity of the underlying process, we can still use
hybrid information to obtain a rough estimate the relative
weight between noise and parametric variance. We can mix
both approaches (linear mixed-effect models and stochatic
predictions) in two ways: In the first one (corresponding to the
red empty squares in Figure 7) we use µA and σA from the linear
mixed-effects model fit to the data in Equation (5). The second
method, consists in calculating the empirical variance of the data
and the expected value of the noise variance from Equation (8)
and calculate R2 using Equation (4). Remarkably, inspection of
Figure 7 (green empty diamonds) suggest that using this second
method, the estimated value of R2 is sometimes closer to the
original one.

In summary, combining standard methods with analytical
results coming from the exact solution of the stochastic process
might be useful to estimate the level of noise in the data.
Notwithstanding, in all cases, this hybrid method used to
calculate R2 also overestimates the true value.

4. CASE STUDY: THE 2014-15 EBOLA
EPIDEMIC

4.1. Heterogeneity of Epidemic Spread of
Ebola
In Figure 8 we show the total number of cases reported for the
2014-15 Ebola epidemic in Guinea, Liberia and Sierra Leone. In
each case, the solid line is the fit of an exponential function to the
data for the first 29 weeks. Despite the fluctuations (specially in
the first days) the fit provides an (apparently) accurate account
for the growth during those early weeks. Note that the estimated
slopes are highly variable among countries. Since for simple
models, the slope in the exponential fit (α) is proportional to
the basic reproductive number minus one (R0 − 1) (Heffernan
et al., 2005), with this approach one would conclude that the
severity of Ebola in different countries is highly variable. Indeed,
this variability has been reported for the 2014-15 epidemic (with
R0 ranging between 1.51 and 2.53), see (Althaus, 2014; Kucharski
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FIGURE 8 | Number of Ebola cases (logarithmic scale) of the 2014-15 Ebola epidemic. (Top left) total number of cases in the three countries: Guinea (Top right),

Liberia (Bottom left), and Sierra Leone (Bottom right). The solid line represents the fit of an exponential function to the data in each panel over the first 200 days

(∼ 29weeks).

et al., 2015; Krauer et al., 2016) , as well as for earlier outbreaks
(Chowell et al., 2004).

From a traditional deterministic approach we might come
to two conclusions: (1) The Ebola epidemic is well described
by a deterministic model that predicts accurately the initial
exponential growth and (2) the epidemic was more aggressive
in Guinea, followed by Sierra Leone and Liberia. However, a
closer inspection of the data (collected by counties) before the
aggregation shows a different picture. In Figure 9, we plot the
same dataset (for Liberia and Sierra Leone) but separately for the
different counties.

Now, the conclusions that can be drawn are more nuanced
and perhaps contrary to the picture of uniform growth suggested
by Figure 8. On the one hand, the starting dates of the epidemic
in different counties are highly variable, and the initial slopes
(the plot is in logarithmic scale) also display a large variability.
This suggests that assigning a simple value per country (and,
consequently a single R0) can be misleading and lead to
erroneous interpretations and, more importantly, interventions
or policies. On the other hand, and this is what we are interested
in, this fine grained view of the data begs for a stochastic approach
to fitting. Even when the data is aggregated (which tends to
smooth the underlying stochasticity), the initial part of the curves
are reminiscent of the trajectories in Figure 1 (left panel).

4.2. Ebola Model Fits
We fitted both deterministic and stochastic versions of a birth-
only model with random effects to the Ebola data, allowing for
negative binomial measurement error (see section 2.3 for details).
The stochastic model was, in terms of the likelihood values,
objectively better than the deterministic model (−556.4 vs.
−565.0) despite being identical in all respects except stochasticity.
The estimate of the mean growth rate was nearly identical
in both models, 0.62, with CI (0.53, 0.73) deterministic and
0.59, with CI (0.52, 0.67) stochastic (Figure 10). However, the
deterministic model found a very high level of heterogeneity,
0.16 CI (0.11, 0.25), while the stochastic model found low levels
of heterogeneity, 0.03 CI(0, 0.15). In the stochastic model, the
profile likelihood for the standard deviation in growth rates,

σA, suggests that the likelihood surface is virtually flat around
very small values of σA (see Figure 10 right). However, in
the deterministic model—even when we allow variable levels
of overdispersion—the likelihood rapidly drops off as the
heterogeneity decreases from the MLE.

Overall, these results show that, while deterministic fitting is
as good as stochastic fitting to estimate the mean growth rates,
it performs poorly as a predictor of the parametric variability.
Specifically, using our definition of R2, and the MLE of σA =

0.03, obtained with the stochastic method, we can estimate the
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FIGURE 9 | Top: Total number of cases (logarithmic scale) per county in (A) Liberia and (B) Sierra Leone. Bottom: The same but aligning week 1 to the date of the first

event with I ≥ 1 and restricting to the first 10 observations (see text for details); (C) Liberia and (D) Sierra Leone.

contribution of parametric variability to overall variability in the
data. Using Equation (5) results in R2 ≃ 0.21. This analysis
would suggest that, in the case of Ebola, 10 weeks after the start
of the epidemic, around 79% of the measured variability could be
attributed to noise rather than to inter-county differences. Taking
into account that, as we showed in Figure 7, this empirical way
to calculate R2 overestimates the true coefficient, the conclusion
is even more substantiated. Doing the same calculation with the
value obtained in the deterministic fitting, σA = 0.16, we get
R2 ≃ 0.88, so we would conclude that 88% of the variability is
due to true differences among counties.

5. DISCUSSION AND CONCLUSIONS

The aim of modeling is not to capture every specific feature
of the system under consideration but, rather, to describe
succinctly the main mechanisms of the process and, ideally, to
be able to differentiate among competing hypotheses (Ganusov,
2016). The art of modeling involves balancing multiple levels of
complexity to achieve predictability, accuracy, and tractability.
In this context, here we have added another concern: is the

methodological approach suitable? Following an approach of
keeping things simple, we have shown that even for the most
basic cases, deterministic fitting methods, which assume that
all variability is either error or parametric, provide misleading
results. Although, not all aspects of the models were sensitive to
the assumption of determinism, since for example the mean of a
parameter was usually reasonably estimated.

This study is not a purely academic exercise on the role of
fluctuations for small populations because our results point to
important practical implications. A case in point is our example
of the initial spread of the Ebola epidemic. Although different
counties seem to have different growth rates, our fitting indicates
that the variability is also well explained by stochastic (i.e., non-
systematic) differences among the counties. This does not mean
that there are no differences in epidemic spread among the
counties, only that stochasticity alone is a statistically better and
more parsimonious explanation. That is, when stochasticity is
taken into account the evidence for differences in early growth
rates is negligible.

The ability to accurately detect and measure heterogeneity is
an important topic with practical implications. Take, for example,
the expanding field of personalized medicine, where individual
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FIGURE 10 | Profile likelihood plots for the parameter estimates for the Ebola data. The plot on the left shows the profile likelihood for the mean growth rate, µA, while

the plot on the right shows the profile likelihood for the standard deviation of growth rates over counties, σA. Horizontal dashed lines indicate the MLE and 95% CIs for

the parameter estimates. The overdispersion parameter was free to vary in the calculation of each point along the profile.

treatment plans may be designed under the potentially faulty
assumption that there is heterogeneity in response to treatment
regimes. Likewise, scientific resources may be wasted in a quest
to search for individual-level correlates of heterogeneity that may
not exist. Our results suggest that measuring heterogeneity in
panel data time series is prone to bias and misinterpretation and
that including more data in terms of additional observations per
unit or increasing the number of units will not alleviate this bias
caused by methodological misspecification.

In this regard, it is important to note that the simulation-based
stochastic fits, generally speaking, appropriately partitioned
variability into stochastic and parametric components even with
relatively short time series. This means that such methods should
be preferred for fitting data. However, there are practical issues
with implementing stochastic fitting methods when the models
are complex (e.g., multiple populations or many parameters)
or the populations involved are large. This is because the
computational resources needed and the time to fit a given model
would be, in most cases, prohibitive. As an alternative, if a fully
stochastic model is not possible, one could explore the possibility
of using stochastic models for a limited time window (for
instance, early on). Although, this will need the development of
hybrid fitting methodologies. Generally, one should be cautious
when interpreting the fit of deterministic models to panel
data, since the observation of parametric heterogeneity or even
structural heterogeneity in terms of model selection may be
the result of overfitting stochastic fluctuation. Also, the term
R2 can be estimated numerically for a given model to provide
a warning of potential problems based on deterministic model
fits.

In summary, here we analyzed the effect of neglecting
stochastic noise (i.e., in addition to the error term) in panel data

of biological time series. We found that deterministic approaches
usually overestimate the parametric variability, although (at least
in our simple models) the parameter average is less difficult
to estimate. On the other hand, stochastic fitting, in general,
did a good job of dividing variability between stochastic and
parametric.
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Viral infectious diseases are a global health concern, as is evident by recent outbreaks

of the middle east respiratory syndrome, Ebola virus disease, and re-emerging zika,

dengue, and chikungunya fevers. Viral epidemics are a socio-economic burden that

causes short- and long-term costs for disease diagnosis and treatment as well as a

loss in productivity by absenteeism. These outbreaks and their socio-economic costs

underline the necessity for a precise analysis of virus-host interactions, which would

help to understand disease mechanisms and to develop therapeutic interventions.

The combination of quantitative measurements and dynamic mathematical modeling

has increased our understanding of the within-host infection dynamics and has led

to important insights into viral pathogenesis, transmission, and disease progression.

Furthermore, virus-host models helped to identify drug targets, to predict the treatment

duration to achieve cure, and to reduce treatment costs. In this article, we review

important achievements made by mathematical modeling of viral kinetics on the

extracellular, intracellular, and multi-scale level for Human Immunodeficiency Virus,

Hepatitis C Virus, Influenza A Virus, Ebola Virus, Dengue Virus, and Zika Virus. Herein, we

focus on basic mathematical models on the population scale (so-called target cell-limited

models), detailed models regarding the most important steps in the viral life cycle, and

the combination of both. For this purpose, we review how mathematical modeling of

viral dynamics helped to understand the virus-host interactions and disease progression

or clearance. Additionally, we review different types and effects of therapeutic strategies

and how mathematical modeling has been used to predict new treatment regimens.

Keywords: mathematical modeling, viral kinetics, viral replication, human immunodeficiency virus, Hepatitis C

virus, Influenza A virus, antiviral therapy, immune response

INTRODUCTION

Viruses are small obligate intracellular parasites that are unable to reproduce independent of their
host. Outbreaks of infectious viral diseases are a major global health concern, a circumstance that
is evident by recent large epidemics of influenza, zika fever, Ebola virus disease, and the Middle
East Respiratory Syndrome (MERS). According to the United Nations, the recent zika outbreak
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caused socio-economic costs of approximately US$7-18 billion
in Latin America and the Caribbean from 2015 to 2017
(United Nations, 2017). A recent study estimated the socio-
economic costs for symptomatic dengue cases (58.40 million)
with US$8.9 billion in 141 countries in 2013 (Shepard et al.,
2016). This number is expected to rise further in the coming
years. Factors such as climate change and increasing air travel are
furthermore increasing the risk of global pandemic infections;
examples are recent global influenza outbreaks as much as
the emergence of tropical infections such as Dengue Virus
infections in previously unaffected regions in the United States
and Europe (Mackey et al., 2014). To control this global
threat, novel therapeutic and antiviral treatment approaches are
urgently needed. To amplify the development of such novel
drugs and to optimize treatment strategies, a comprehensive
understanding of the viral infection dynamics, their parasitic
interaction with their host, as well as host defense strategies
against the invader are of major importance. In recent years,
targeting viral agents that are essential for the viral replication
has proven highly effective (Asselah et al., 2016). However,
the emergence of resistance against these direct acting antiviral
compounds leads more and more to treatment failure and
multi-drug resistant viral strains (Poveda et al., 2014). In order
to circumvent drug-resistance, novel antiviral strategies focus
on the host by supporting the immune response or targeting
host factors required for the viral life cycle. The advantage
of these methods are higher barriers for the development of
resistance and novel opportunity of broad-spectrum antivirals
(Zeisel et al., 2013).

Mathematical modeling has proven to be a powerful
tool to study viral pathogenesis and has yielded insights
into the intracellular viral infection dynamics, the effect of
the immune system, the evaluation of treatment strategies,
and the development of drug resistance (Bonhoeffer et al.,
1997; Perelson, 2002; Rong and Perelson, 2009; Perelson and
Ribeiro, 2013; Boianelli et al., 2015; Perelson and Guedj,
2015; Ciupe and Heffernan, 2017). Modeling can deepen our
understanding on different scales: From the molecular scale
of intracellular virus-host interactions, extracellular cell-to-
cell infection at the population scale, to virus spread within
organs or whole organisms (Kumberger et al., 2016). In order
to quantitatively study the viral growth at a molecular level
and to investigate host requirements and limitations, first
intracellular models have been developed for bacteriophages
(Buchholtz and Schneider, 1987; Eigen et al., 1991; Endy
et al., 1997), Baculovirus (Dee and Shuler, 1997), and Semliki
Forest Virus (Dee et al., 1995). By studying cell-to-cell
infection, early models for Human Immunodeficiency Virus
(HIV) (Ho et al., 1995; Wei et al., 1995; Perelson et al.,
1996, 1997; Stafford et al., 2000) provided insights into the

Abbreviations: AIR, Adaptive Immune Response; ART, Antiretroviral Therapy;

CTL, Cytotoxic T lymphocytes; DAA, Direct-Acting Antiviral; DENV, Dengue

Virus; EBOV, Ebola Virus; HAART, Highly Active Antiretroviral Therapy; HCV,

Hepatitis C Virus; HIV, Human Immunodeficiency Virus; IAV, Influenza A Virus;

IFN, Interferon; IIR, Innate Immune Response; NS, Nonstructural Protein; ODE,

Ordinary Differential Equation; SVR, Sustained Virologic Response; WHO,World

Health Organization; ZIKV, Zika Virus.

pathogenesis, treatment strategies, and virus control by the
immune system.

On the population scale, the target cell-limited model
(Nowak and Bangham, 1996; Nowak et al., 1996; Bonhoeffer
et al., 1997; Perelson, 2002; Wodarz and Nowak, 2002) has
been extensively used to investigate the virus-host interaction
of HIV, Hepatitis C Virus (HCV), and Influenza A Virus
(IAV), which will be explained in this review in more detail.
Furthermore, we describe the latest achievements made by
modeling the dynamics of Ebola Virus (EBOV), Dengue
Virus (DENV), and Zika Virus (ZIKV) that caused the most
recent viral outbreaks. In addition, we give an introduction
into the target cell-limited model with its extensions and
applications to investigate the effects of direct antiviral therapy
and immune response and highlight the most important
achievements made by viral modeling of the intracellular,
extracellular and the integration of both, the multi-scale
level.

THE TARGET CELL-LIMITED MODEL AND
ITS EXTENSIONS

Target Cell-Limited Model
The first mathematical models described the HIV progression
by neglecting intracellular processes and taking only the key
players of the virus-host interaction into account (Perelson et al.,
1993, 1996, 1997; Ho et al., 1995; Bonhoeffer et al., 1997).
The target cell-limited model (Figure 1A) includes three species:
uninfected susceptible target cells (T), infected virus-producing
cells (I), and the virus load (V) and is formulated by the
following system of nonlinear ordinary differential equations
(ODEs):

dT

dt
= λ− dT − kVT,

dI

dt
= kVT − δI, (1)

dV

dt
= pI − cV .

Uninfected target cells (T) are produced at a constant rate λ
and die at rate d, corresponding to a target cell half-life of

tT1/2 =
ln(2)
d

. By the interaction of virus (V) with uninfected
target cells (T) at a constant infectivity rate k, the target cells
become infected cells (I), which in turn produce infectious
virus (V) with production rate p. Due to viral cytopathicity,
immune elimination and/or apoptosis, infected cells (I) die
at a rate δ [resulting in an infected cell half-life tI1/2 =

ln(2)
δ

]. Virus is cleared at rate c from the cells [virion half-

life tV1/2 =
ln(2)
c ] per virion by mechanisms such as immune

elimination (Nowak and Bangham, 1996; Nowak et al., 1996;
Bonhoeffer et al., 1997; Perelson, 2002; Wodarz and Nowak,
2002).

With average lifetimes of 1/d, 1/δ, and 1/c for uninfected
target cells, infected cells, and virus, respectively, the total
number of virus particles N produced by one infected cell during

Frontiers in Microbiology | www.frontiersin.org July 2018 | Volume 9 | Article 154661

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zitzmann and Kaderali Viral Dynamics and Treatment Strategies

FIGURE 1 | Schematic illustration of (A) the target cell-limited model, (B) the

target cell-limited model extended by antiviral inhibition, (C) the age-based

multi-scale model, and (D) the target cell-limited model extended by the innate

immune response.

its lifetime is calculated by p/δ. Therefore, the production rate p
of one infected cell is p = Nδ. Without a viral infection (I = 0
and V = 0), target cells are in equilibrium with λ/d (Nowak and
May, 2001; Perelson, 2002; Wodarz and Nowak, 2002).

The ability of a virus to develop an infection or to be cleared

is given by the basic reproductive ratio R0 =
λkp
dδc

. R0 represents
the number of productively infected cells newly generated by one
productively infected cell.With R0 > 1 the infection grows due to
an increase in virus-producing infected cells while R0 < 1 refers
to a decrease in productively infected cells and viral clearance
(Nowak and May, 2001).

Target Cell-Limited Model and Antiviral
Therapy
To analyze the effect of antiviral drugs that either block infection
(εk) and/or production of viral particles (εp), the target cell-
limited model is modified as follows (Figure 1B):

dT

dt
= λ− dT − (1− εk) kVT,

dI

dt
= (1− εk) kVT − δI, (2)

dV

dt
=

(

1− εp
)

pI − cV ,

with 0 ≤ εk,p ≤ 1 (Neumann, 1998). Here, εk,p = 0 describes no
drug effect while εk,p = 1 refers to the case of a 100% effective
treatment—a perfect drug. Note that before treatment εk,p = 0.
In simulating treatment, one assumes that the system is in steady
state at treatment initiation, at which point the infection and/or
production rates are modified depending on the type of antiviral
drug used (εk > 0 and/or εp > 0). The overall drug efficacy εtot
may be calculated as εtot = 1−(1− εk)

(

1− εp
)

, while the critical

drug efficacy εc is given by εc = 1 −
dδc
λkp

and determines the

transition from viral eradication to viral persistence. A successful
drug therapy would clear the virus with εtot > εc while the
infection becomes chronic when εtot < εc (Dahari et al., 2007a).

The relationship between a certain drug dose and the resulting
response can be integrated into the target cell-limited model by
the simple time-dependent pharmacodynamic equation

ε (t) =
εmax · C (t)

n

EC50
n
+ C (t)n

, (3)

where εmax describes the maximum of the drug effect, EC50

the drug concentration with 50% efficacy, and C(t) the drug
concentration or dose applied (Holford and Sheiner, 1982).
Depending on the shape and steepness of the underlying drug
effect, the Hill coefficient n describes either a sigmoidal curve for
n > 1 or a hyperbolic curve otherwise. By substituting C (t) by
C (t − τ), a pharmacodynamic delay τ for the drug effect can be
taken into account for t > τ (Holford and Sheiner, 1982; Guedj
et al., 2010; Canini and Perelson, 2014).

Age-Based Multi-Scale Model for Direct
Acting Antivirals
Age-based multi-scale models have been used in order to study
the modes of action of antivirals within a virus-infected cell
(Nelson et al., 2004; Guedj et al., 2013; Heldt et al., 2013;
Clausznitzer et al., 2015). To include the effect of direct acting
antivirals (DAAs), the target cell-limited model can be further
extended by more detailed intracellular processes of the viral life
cycle (Figure 1C). These multi-scale models that take the age
of infected cells into account allow a biologically more realistic
representation of intracellular processes with age-dependent
reaction rates (Quintela et al., 2017). The target cell-limited
model coupled to intracellular processes and an age-dependency
is formulated as follows:
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dT

dt
= λ− dT − kTV ,

∂I

∂a
+
∂I

∂t
= δI (a, t) , (4)

∂R

∂a
+
∂R

∂t
= (1− εα) α − κµR− (1− εs) ρR,

dV

dt
= (1− εs) ρ

∫

∞

0
R (a, t) I (a, t) da− cV ,

with boundary and initial conditions I (0, t) = kVT, I (a, 0) =

I0(a), R (0, a) = 1, and R (a, 0) = R0(a) (Guedj et al., 2013).
Here, the intracellular viral genome (R) is produced at constant
rate α and degraded at constant rate µ. The progeny virions are
assembled and secreted at constant rate ρ. The drug effects regard
intracellular processes or the viral genome replication: blocking
viral RNA production εα and virion assembly/secretion εs, as
well as increasing viral RNA degradation κ for κ > 1. Note that
the intracellular viral genome [R(a)] and infected cells [I(a)] are
dependent on the age a of the cell, measured as time elapsed
since infection, and viral RNA levels increase with the age of
the infected cell (Guedj et al., 2013; Canini and Perelson, 2014;
Perelson and Guedj, 2015).

Extended Target Cell-Limited Model by the
Immune Response
The innate and adaptive immune response provide various
mechanisms in fighting a viral infection. The innate immune
response (IIR) represents the first line of defense that recognizes
the virus and triggers the adaptive immune response (AIR)
(Braciale et al., 2013; Iwasaki and Medzhitov, 2013). In order to
study the effect of the immune response on the viral dynamics,
mathematical models incorporate key players of the immune
response which inhibit processes in the viral life cycle. A further
modification of the target cell-limited model has been developed
to take the effect of the cell’s IIR into account (Figure 1D). This is
done by including the effect of interferon (IFN) into the model:

dT

dt
= −kTV ,

dI1

dt
= kTV −

ω

1+ εωF
I1,

dI2

dt
=

ω

1+ εωF
I1 − δI2 − sI2 (t − τ) F, (5)

dV

dt
=

p

1+ εpF
I2 − cV ,

dF

dt
= sI2 (t − τ)− bF.

Herein, two populations of infected cells I1 and I2 describe a
time delay. Infected but not yet virus producing cells (I1) in the
eclipse phase become productively virus producing cells (I2) with
average transition time 1/ ω

1+εωF
. Note that I1 are not dying before

the transition into I2. Following a time delay τ for the IIR, IFN (F)
is secreted by I2 at constant rate s and degrades at constant rate b.

The effect of IFN has been modeled by decreasing the transition
rateω and/or the virus production rate p and effectiveness εω and
εp (Baccam et al., 2006).

Moreover, the effect of the IIR and the AIR can be coupled
with the target cell-limited model by simple assumptions:

dT

dt
= rD− kTV ,

dI1

dt
= kTV − ωI1,

dI2

dt
= ωI1 − δI2,

dD

dt
= δI2 − rD,

dV

dt
=

p

1+ εpRIIR
I2 − cV − γkTV − hVRAIR, (6)

dRIIR

dt
= ψV − bRIIR,

dRAIR

dt
= fV + βRAIR.

In this model, the IIR (RIIR) represent cytokines and recruited
cells of the IIR, e.g., neutrophils and macrophages while the AIR
(RAIR) is represented as humoral immune response via B-cells
and antibodies. With the free virus, the RIIR expands at constant
rate ψ and dies at constant rate b. Herein, the effect of the IIR
is modeled by blocking the virus production rate p. The RAIR is
triggered by the virus and recruited at constant rate f . By clonal
expansion at rate constant β , the RAIR is activated and neutralizes
the virus with constant rate h. Note that in this coupled model
the dead cells D are replaced by new target cells at constant rate r
that represents the regeneration of susceptible cells (Handel et al.,
2010).

MODELING HIV INFECTIONS

HIV infects cells of the immune system and causes AIDS
within 2–15 years post infection. In 2016, the World Health
Organization (WHO) estimated that globally 36.7 million people
were living with HIV with 1.8 million new infections in
2016. More than 19.5 million of these were treated with a
lifelong antiretroviral therapy (ART), the current standard of
care. Nowadays, the replication of HIV can be controlled and
suppressed by the combination of at least three antiretroviral
drugs, e.g., by reverse transcriptase inhibitors and protease
inhibitors (WorldHealth Organization, 2017b). These drugs have
to be taken live-long and treatment regimens need to be adapted
regularly to keep the infection under control. To date, no curative
drugs and no vaccine against HIV are available.

Viral Dynamics
In the majority of cases, the infection with HIV follows a typical
pattern of three different phases (Figure 2) (Simon and Ho,
2003; Munier and Kelleher, 2007). The first weeks post infection,
the acute phase, are characterized by an exponential increase in
viral load accompanied by a rapid depletion of CD4+ T cells,
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FIGURE 2 | Course of HIV and CD4+ T cell concentration of an untreated HIV infection. Based on Fauci et al. (1996).

the target cells of HIV. Soon after the infection, the immune
response kicks in and initiates a decrease in viral load until a
constant level, the so-called set point, is reached (Ho, 1996).
Within this second asymptomatic phase, the virus persists for
years while CD4+ T cells continuously and slowly decline. The
third and final phase is characterized by a gradual depletion in
CD4+ T cells that is correlated with a strong increase in the
viral plasma concentration leading to AIDS (Alizon andMagnus,
2012; Maartens et al., 2014).

During the asymptomatic phase, the viral set point is
maintained by a balance in viral clearance and the total virion
production rate (ptotal = cV). Therefore, a strong increase in
viral load that is associated with a lower viral clearance rate
indicates a stronger total viral production rate ptotal > cV , while
a decrease in viral load refers to a higher clearance rate, ptotal <
cV . Perturbations of this system equilibrium, e.g., by blocking
viral production, lead to information on the rate constants and
insights into the course of the viral infection and the potential
of antiviral interventions (Perelson, 2002). At steady state and in
the absence of ART, it has been estimated that HIV is a rapidly
replicating virus that produces 1010 virions per day. Furthermore,
a rapid virus replication also requires strong viral clearance to
maintain the equilibrium (Perelson et al., 1996; Ramratnam et al.,
1999).

HIV replicates in CD4+ T cells, which are represented by
the target and infected cells in the target cell-limited model.
With a modified target cell-limited model, Ribeiro et al. (2010)
investigated the very early plasma viremia post exposure to HIV
in 47 HIV-positive patients. After a time delay of 24 h where the
virus became detectable (>50 RNA copies per mL), simulations
have shown an initial viral doubling time of 0.65 days. Viral
load peaked at 106 HIV RNA copies per mL after 14 days. The
subsequent viral decline was characterized by a virion half-life

of 1.2 days (c = 0.6 day−1). Moreover, for this early infection
stage, the authors calculated the basic reproductive ratio of R0 ∼

8, indicating rapid viral spread and the necessity of an early
intervention in order to reduce viral spread and to prevent
development of chronicity (Ribeiro et al., 2010). By measuring
the viral load in 10 HIV-positive patients for on average the first
100 days during primary infection, Stafford et al. (2000) have
shown that the target cell-limited model is able to reproduce the
interpatient variability within the highly dynamic initial phase
post infection. The model simulations provided strong evidence
that the initial viral load decline is due to a limitation in target
cells with an estimated lifetime of 2.5 days (δ = 0.39 day−1) for
infected virus-producing cells. However, the target cell-limited
model was not able to mimic the data in all the patients equally
well. Therefore, the authors suggested that processes not included
in the model, such as an involvement of the immune response
by CD8+ T cells or destruction of infected cells by cytotoxic
T lymphocytes (CTL), might be associated with the stronger
than predicted decrease of viral load observed in some patients
(Stafford et al., 2000).

Antiretroviral Therapy
For more than 20 years, HIV-positive patients are treated with a
combination of antiretroviral drugs. To analyze the effects of an
antiviral treatment regimen, the target cell-limited model can be
modified to include the effects of reverse transcriptase inhibitors
(εk) that block viral infectivity (k) and protease inhibitors (εp)
which reduce viral production (p) (Neumann, 1998). The effect of
a protease inhibitor has been investigated within the first 7 days
after the oral administration of Ritonavir (Perelson et al., 1996).
Following a pharmacokinetic delay, the patients responded well
to the Ritonavir treatment with a continuous decline in plasma
viral load. In order to study the viral decline under ART,
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Perelson et al. (1996) modified the target cell-limited model by
the assumption that by the time of drug administration newly
produced virions are non-infectious. After a pharmacokinetic
delay of about 1.25 days, the model reproduced the strong decline
in plasma viremia according to the Ritonavir-treated patients
(Figure 3A). The model predicted lifetimes of 2.2 days for virus-
producing infected cells and 0.3 days for virions (Perelson et al.,
1996). Note that at the onset of ART, the system is assumed
to be in steady state. By studying the long-term combination
therapy of the protease inhibitor Nelfinavir and the reverse
transcriptase inhibitors Zidovudine and Lamivudine, all the
patients responded in a similar viral decline pattern (Figure 3B).
After initiation of ART, a biphasic viral decline has been observed:
a rapid initial reduction in viral load and productively infected
cells (phase 1) followed by a slower decrease (phase 2). Perelson
et al. (1997) integrated long-lived CD4+ T cells and latently
infected lymphocytes that become productively virus-producing
cells upon activation as second sources of virus into the target
cell-limited model. The authors identified long-lived infected
CD4+ T cells with a half-life of 14.1 days (compared to a half-
life of 1.1 days of short-lived infected cells) and the continuous
release of trapped virus as the main contributors for the second
phase (Perelson et al., 1997). Subsequent studies have foundmore
accurate estimates for the virion half-life with 28–110min in
HIV-positive patients under plasma apheresis (Ramratnam et al.,
1999) and productively-infected CD4+ T cell half-life of 0.7
days under combination therapy (Markowitz et al., 2003). The
continuous viral replication upon activation that is associated
with viral persistence represents the challenge in finding a cure
for HIV. Even highly active antiretroviral therapy (HAART)

does not stop viral production completely, but can achieve a
suppression of the viral load in plasma below levels of detection
(<50 RNA copies per mL). It is assumed that the main reason
for failure to achieve a cure is viral latency. At the same time,
the transmission of drug-resistant virus strains is increasing,
resulting in increasing treatment failure rates (Little et al., 2002).

In patients with multi-drug resistant virus, Raltegravir
represents a promising new antiviral drug that inhibits integrase
and hence prevents the strand transfer of proviral DNA into
the host-cell genome (Steigbigel et al., 2008). Andrade et al.
(2015) analyzed the effect of Raltegravir in monotherapy and in
combination with the reverse transcript inhibitors Emtricitabine
and Tenofovir Disoproxil Fumarate by an extended target cell-
limited model that discriminates between infected cells with and
without integrated viral DNA. The authors found a biphasic
decline within the first phase during the first 10 days after onset
of ART (Figure 3C). A loss in infected cells with integrated
viral DNA and a half-life of ∼0.8 days (in agreement with 0.7
days in Markowitz et al., 2003) has been identified as the main
contributor to the first sub-phase (phase 1a). Cell loss and in
addition the integration of provirus into pre-integrated infected
cells have been identified as key contributors to the slower decay
in the second sub-phase (phase 1b). Interestingly, the half-life
of unintegrated infected cells depended strongly on the provirus
integration rate and has been estimated to lie between 4 and 7
days (Andrade et al., 2015). Cardozo et al. (2017) generalized
the model of Andrade et al. (2015) by taking long-lived infected
cells and the effect of protease inhibitor into account in order to
investigate the viral decay in presence or absence of Raltegravir
therapy (Cardozo et al., 2017). Herein, the therapy containing

FIGURE 3 | Schematic illustration of viral load decline after onset of ART. (A) Viral decline following a pharmacokinetic delay, (B) characteristic biphasic decline (phase

1 and 2), (C) two sub-phases (1a and 1b) within the first phase, (D) two sub-phases (2a and 2b) within the second phase.

Frontiers in Microbiology | www.frontiersin.org July 2018 | Volume 9 | Article 154665

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zitzmann and Kaderali Viral Dynamics and Treatment Strategies

the integrase strand transfer inhibitor Raltegravir replaced as
well the first phase by two sub-phases. The traditional therapy
regimen without Raltegravir has shown the typical biphasic
decline in viral load. Under Raltegravir therapy, the first phase
was associated with the loss of short-lived cells while the second
phase corresponded to the loss of long-lived cells with a half-
life of ∼33 days. The decline of the short-lived cell population
within the first phase can be further separated by a loss of
productively virus-producing cells with a half-life of ∼0.8 days
in sub-phase 1a and by pre-integration cells that showed a half-
life of ∼1.8 days. Furthermore, long-lived cells showed a shorter
viral integration rate (0.05 day−1) compared to short-lived cells
with a viral integration rate of 2.6 day−1 (Cardozo et al., 2017).

Moreover, in patients under long-term ART, Palmer et al.
(2008) studied a second biphasic decline within the second phase
referring to two sources of viremia with persisting virus for more
than 7 years (Figure 3D) (Palmer et al., 2008). Kim and Perelson
(2006) introduced a model extended by the proliferation of
latently infected CD4+T cells without being activated (bystander
proliferation) and explained the persistence of a latent reservoir
(Kim and Perelson, 2006). Chomont et al. (2009) observed these
results experimentally and identified two different memory T
cells contributing to the long-lasting reservoir and thus the
persistence of HIV for decades (Chomont et al., 2009). Therefore,
an early antiretroviral intervention is necessary to limit the size of
the latent reservoir.

However, to understand the effect of ART within the host
cell, a comprehensive investigation of the viral life cycle is
necessary. Reddy and Yin (1999) described a detailed model of
the intracellular viral growth starting with reverse transcription
to particle production and maturation. Their simulation results
and sensitivity analysis predicted a highermonotherapeutic effect
of reverse transcription inhibitors (εk) than protease inhibitors
(εp). A 10-fold decrease in viral reverse transcriptase reduced
the overall viral replication to <1%. Moreover, they found that
the 10-fold inhibition of Rev—a regulator protein of virion
production—increased the viral production, whereas a 100-fold
inhibition decreased the production of virions (Reddy and Yin,
1999). These results indicate that incomplete inhibition might be
compensated that might lead to adverse and unwanted effects.

As with other RNA viruses, the HIV genome is highly variable,
posing its own challenges to treatment. For example, the trans-
activating regulatory protein Tat controls gene expression and
activates viral transcription by binding at the trans-activating
response element TAR (Karn and Stoltzfus, 2012). It has been
shown that point mutations in Tat may lead tomore virulent HIV
strains with higher stability and transcription efficiency which
aggravate the development of novel antiretroviral drugs (Ronsard
et al., 2014, 2017a; Ronsard, 2017b). On the other hand, Tat might
be a promising vaccine candidate and has shown potential in
the reduction of HIV plasma viremia associated with a reduced
immune activation (Gray et al., 2016). Taking genomic variability
and genetic drift of HIV under treatment into account is an
important issue, and several authors have modeled the within-
host evolution of HIV under selective pressure, see for example
(Ribeiro and Bonhoeffer, 2000; Wodarz and Lloyd, 2004; Ball
et al., 2007; Rong et al., 2007a,b; Xiao et al., 2013).

Role of CD8+ T Cells and the Latent
Reservoir
Interestingly, within HIV cohort studies [VISCONTI (Goujard
et al., 2012; Sáez-Cirión et al., 2013) and SPARTAC (Salgado et al.,
2011)] patients have been identified who were able to control
HIV infection (<50 RNA copies per mL) after ART cessation,
so-called post-treatment controllers. Moreover, there are HIV
infected patients (elite controllers) which are able to control and
suppress plasma viral load (<50 RNA copies per mL) naturally
without ART. In HIV long-term non-progressors, significantly
stronger and more complex CD8+ T cell responses associated
with higher HIV directed CD8+ proliferation and more effective
killing of infected CD4+ T cells have been observed (O’Connell
et al., 2009). Recently, Conway and Perelson (2015) extended the
target cell-limited model by CTL and latently infected CD4+
cells. Herein, for a very strong immune response, the same
dynamics as in elite controllers has been observed. With respect
to the size of the latent reservoir, an insufficient CTL response
resulted either in viral rebound or post-treatment control.
Therefore, post-treatment control after ART cessation depends
strongly on a small latent reservoir. The authors suggested
therapeutic vaccination to increase the strength of the CTL killing
rate and latent reversing agents to decrease the size of the latent
reservoir (Conway and Perelson, 2015).

Promising advances in the treatment of latent HIV have
been made by an induction and clearing strategy of the latent
reservoir, so-called “kick and kill.” Kick refers to the activation
of the HIV provirus replication of the latent reservoir, while kill
refers to the clearance of reactivated cells by the immune system
and/or ART (Barton et al., 2013). For example, vaccinating
HIV-positive patients under HAART has shown a transient
increase of CD4+ T cell killing and thus a temporary decrease
of the latent reservoir (Persaud et al., 2011). Another possibility
to activate HIV in latent CD4+ T cells may be achieved by
Vorinostat, a histone deacetylase inhibitor. Vorinostat has been
shown to be very effective in the induction of HIV transcription
in resting memory CD4+ T cells in patients under ART (Archin
et al., 2012). To understand the effect of Vorinostat on resting
CD4+ cells and the whole latent reservoir, Ke et al. (2015)
have developedmathematical models of latency under Vorinostat
therapy. They could show that Vorinostat transiently activates
HIV transcription but does not reduce the reservoir itself,
indicating the necessity of a combination therapy (Ke et al.,
2015). In 2015, HIV/AIDS disappeared from the list of the top
10 causes of deaths, indicating that substantial progress has been
made by extensively investigating HIV, both experimentally and
theoretically. Moreover, from 2000 to 2015 the number of people
receiving ART increased from 770,000 to 18.2 million, with a
projection of 30 million people on ART in 2020 (Boerma et al.,
2015).

HEPATITIS C VIRUS

The blood-borne HCV is a plus-strand RNA virus that causes
the acute hepatitis C infection, as well as life-threatening chronic
hepatitis C-related diseases like liver cirrhosis or hepatocellular
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carcinoma. Worldwide, ∼80 million people live with chronic
hepatitis C with annually 400,000 deaths. For decades, the
therapy of choice was based on standard or pegylated interferon
(IFN/peg-IFN) and achieved a sustained virologic responses
(SVR) between 30 and 60% for IFN and 40–65% for peg-
IFN, depending on the HCV genotype and disease progression.
Recently, DAAs were introduced to HCV treatment, and
increased cure rates to over 90% (World Health Organization,
2016b).

Viral Dynamics
During an acute HCV infection, the viral load increases in a
biphasic manner, reaching a peak of 105-107 IU per mL and is
then cleared by the host immune response. However, 55–85% of
HCV patients develop chronic hepatitis C with persisting virus
(Hoofnagle, 2002). Thimme et al. (2001) found that the outcome
of an acute infection and its correlation with HCV control is
associated with a sustained CD4+ and CD8+ T cell response
(Thimme et al., 2001). The biphasic increase in the plasma viral
load has been characterized by a rapid viral rise followed by a
slower increase, with viral doubling times in the two phases of
0.5 and 7.5 days, respectively (Major et al., 2004). In between
these two phases, Dahari et al. (2005) observed a transient
reduction in viremia and introduced a generalized model that
allows the inhibition of virus production. Model simulations
suggest that during that transient decrease of plasma viral load,
the endogenous type I IFN response blocks virion production,
but without controlling the HCV replication completely (Dahari
et al., 2005).

Antiviral Treatment
To estimate the absolute efficacy of IFN therapy, Neumann
(1998) integrated the effect of IFN-α into the target cell-limited
model by inhibiting the virus production rate (p) or the de
novo infection rate (k). After initiation of IFN-α therapy, plasma
viral load declined in a similar biphasic manner as has been
observed in HIV patients, with a strong first followed by a slower
second decrease, resulting in persistence of HCV. Following a
pharmacokinetic delay of ∼9 h, this biphasic viral decline could
be reproduced in the model by partial blocking of the viral
production rate with εp < 1. Furthermore, the clearance of
free virions (c) and therapy efficacy (ε) led to the initial rapid
decline while the loss of infected cells (δ) represented the second
slower phase. Due to a dose-dependent virus reduction, the
authors suggested to increase IFN dosage in treatment for a better
antiviral effect early in the infection. They estimated the virion
half-life to be∼2.7 h (c = 6.2 day−1) and the infected cell half-life
of 1.7–70 days (δ = 0.14 day−1). Before the initiation of therapy,
the estimated virion production and clearance rates were 1012

virions per day (Neumann, 1998).
In some patients, a triphasic decline with a more rapid third

phase has been observed under treatment with pegylated IFN-
α in monotherapy or in combination with Ribavirin. Herrmann
et al. (2003) suggested the possibility that the third phase decline
could be the result of an infected cell loss enhanced by immune-
mediated clearance of Ribavirin (Herrmann et al., 2003). In
some patients with the triphasic decline, the second phase

represented a 4–28 days lasting shoulder phase where HCV was
slowly decreasing or remained constant. With a modified model
concerning the proliferation of uninfected and infected cells,
Dahari et al. (2007b) could reproduce this triphasic pattern only if
the majority of hepatocytes were assumed infected. Furthermore,
an uninfected hepatocyte proliferation rate higher than the rate
of infected cell loss resulted in that almost balanced shoulder
phase. According to model simulations, the shoulder phase or
even a biphasic viral decline are not observed if Ribavirin effects
infected cell loss (δ) or inhibits the viral production rate (εp).
The authors suggested that the rapidly decreasing third phase
in patients with combination therapy of peg-IFN and Ribavirin
might be explained by a mutagenic effect (Dahari et al., 2007b).

Direct Acting Antivirals
Combination therapy of peg-IFN with Ribavirin achieves a SVR
in only around 50% of patients with HCV genotype 1 (Manns
et al., 2001; Fried et al., 2002). With DAAs a new era began by
targeting HCV-encoded proteins that are directly involved in the
viral life cycle (Figure 4; Scheel and Rice, 2013). A combination
of peg-IFN plus Ribavirin with the DAA Telaprevir—an HCV
NS3/4A serine protease inhibitor—increased the SVR to around
70% (Jacobson et al., 2011). By modeling the antiviral effect of
Telaprevir, Guedj and Perelson (2011) found a 4-fold higher viral
decline during the second phase of the biphasic decline with
Telaprevir (δ = 0.58 day−1) compared to the IFN-based therapy
[δ = 0.14 day−1; Neumann, 1998]. The authors suggested a
higher infected cell death as well as intracellular degradation of
viral RNA as modes of action for Telaprevir (Guedj and Perelson,
2011).

Age-Based Multi-Scale Modeling
In 2010, a promising HCV NS5A inhibitor BMS-790052
(Daclatasvir; Kim et al., 2016) has been associated with a 3-
log(10) reduction in viremia within the first 24 h, thus offering
a highly potent drug (Gao et al., 2010). To understand and
compare the mechanisms of action of Daclatasvir and IFN,
Guedj et al. (2013) introduced an age-based multi-scale model
by integrating intracellular processes, i.e., the antiviral effect
on viral RNA replication and particle assembly/secretion, into
the target cell-limited model (Equation 4, Figure 2C). For
Daclatasvir, the model predicted a 99.0% effective blocking
of viral RNA replication (εa) and 99.8% effective inhibition
of assembly/secretion (εs). The viral clearance rate has been
estimated as c = 22.3 day−1, corresponding to an HCV half-
life of 45min, while the intracellular viral RNA had a half-life
of on average 11 h. Compared to Daclatasvir, IFN showed a
dose-dependent efficacy of 77–96% in blocking intracellular viral
replication and only 39% in blocking assembly/secretion, which
confirmed the IFN-mediated viral replication inhibition as the
main mode of action. Interestingly, the strong antiviral effect
of Daclatasvir has been observed only when efficiently blocking
both, intracellular viral replication and assembly/secretion. If
Daclatasvir was assumed to inhibit only the intracellular viral
replication, the kinetics was comparable with that of IFN
monotherapy (Guedj et al., 2013).With a similar age-basedmulti-
scale model including intracellular viral RNA replication, viral
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FIGURE 4 | Schematic illustration of DAAs and their HCV target proteins. Based on Bartenschlager et al. (2011).

RNA degradation, and assembly/secretion, Rong et al. (2013)
investigated the antiviral effect of the HCV protease inhibitor
Danoprevir. They found that Danoprevir was more efficient in
inhibiting viral RNA replication (97%) and enhancing viral RNA
degradation than inhibiting assembly/secretion (57%). However,
for the Danoprevir monotherapy the viral clearance rate has
been estimated with c = 10.4 day−1, corresponding to a
virion half-live of 1.6 h (Rong et al., 2013). The age-based multi-
scale modeling strategy has shown huge potential in comparing
treatment regimens and identifying modes of action of new
DAAs.

IFN-Free Therapy
Regarding the severe side effects that have been reported with
IFN-based therapy (Heim, 2013) and the improved therapeutic
response to DAAs, an IFN-free therapy became more and
more desirable. Patients treated with the DAA Mericitabine,
a nucleoside NS5B HCV polymerase inhibitor, have shown a
slower initial viral decline (phase 1) compared to, e.g., the
IFN-based therapy, NS5A or non-nucleoside NS5B inhibitors.
However, in 40% of the patients, a slow but monophasic viral
decline has been observed within the 14 days of Mericitabine
treatment. Model predictions have shown that Mericitabine
blocks effective viral production whereas the efficacy increases
with the accumulation of intracellular phosphates (Guedj et al.,
2012). However, a faster initial decline compared to Mericitabine
but slower than for other DAAs has been found by evaluating
the efficacy of single and co-treatment with the nucleoside
HCV NS5B polymerase inhibitors Sofosbuvir and GS-0938. By
comparing mono and combination therapy of DAAs of the same
family, it was shown that both drugs alone were highly effective
and only minor more effective in combination, suggesting an
antiviral combination therapy with DAAs of different families
(Guedj et al., 2014).

Clinical trials investigating the combination of Sofosbuvir
with Ledipasvir (an HCV NS5A inhibitor) with and without
Ribavirin have proven highly effective and safe with a SVR

>90% (Afdhal et al., 2014a,b; Kowdley et al., 2014). Using a
mathematical model, Dahari et al. (2016) analyzed the curing
time of Sofosbuvir in combination with either Daclatasvir,
Simeprevir, or Ledipasvir within a 12-week treatment duration
in 58 patients with chronic hepatitis C. Their simulations show
that 98% of patients achieved a SVR with less than one remaining
hepatitis C virion. Interestingly, after 6 weeks of treatment, 100%
of patients have shown viral loads <15 IU per mL and no
detectable virions in 91% of patients. Additionally, the model
predicted that therapy could be shortened in more than 80% of
the patients, resulting in a reduce in medication costs by 16–20%
(Dahari et al., 2016).

Host Factor Targeting and Intracellular
Models
A limitation of the DAA-based therapy is the possibility of
developing viral resistance, i.e., emergence of drug-escaping
variants dependent on patient groups, HCV genotype, and
treatment regimen (Pawlotsky, 2016). In patients treated with
Telaprevir over a period of 14-days, Kieffer et al. (2007) found
not only an increase in plasma viral load, but also an increase
in drug-resistant variants, which replaced the wild-type HCV
almost completely at day 15 (Kieffer et al., 2007). Therefore,
attention must be paid to finding an effective therapy regimen
so that development of drug resistance is avoided. Another
alternative treatment strategy is to not directly target the virus,
but rather aim for cellular co-factors, since the virus depends
strongly on the living host cell for efficient replication. As an
example, Cyclophilin B has been identified as a cellular factor
modulating the RNA binding activity to HCV NS5B polymerase
and thus regulating the HCV replication (Watashi et al., 2005).
Liu et al. (2009) reported an interaction of Cyclophilin A and
the HCV NS5B polymerase, and predicted that Cyclophilin A
as a major key host factor for an active replicase (Liu et al.,
2009). Cyclophilin inhibitors such as Alisporivir (Gallay and Lin,
2013), SCY-635 (Hopkins et al., 2012), and NIM 88 (Lawitz
et al., 2011) have confirmed the potential in disrupting the HCV
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replication. This and other findings on host factors have proven
how important a detailed understanding of the HCV life cycle
and the host interaction is.

To characterize the intracellular viral replication in more
detail, Dahari et al. (2007c) developed a detailed mathematical
model investigating the single steps of intracellular RNA
replication. The model with cytoplasmic translation and RNA
replication within a replication compartment has shown that
HCV regulates the plus-strand to the minus-strand relation by
a strand-specific affinity of HCV NS5B polymerase. Additionally,
the authors have shown that the virus benefits from encapsulating
its genome replication inside membranous replication sites
(Dahari et al., 2007c). Using an extended model and based on
detailed measurements of the initial replication kinetics, Binder
et al. (2013) mimicked the highly dynamic initial phase within
the first hours post infection until steady state of minus-strand
RNA, plus-strand RNA, and protein activity. An important
finding of this model is the role of the protective replication
compartment in which HCV replicates its genome. On the
one hand, this compartment appears to protect the virus from
antiviral mechanisms and is required for the establishment of
a successful replication, on the other hand, this compartment
also seems to limit viral growth and thus exerts tight control
over the viral dynamics. By the integration of host factors into
the model, the authors showed that cellular co-factors that are
involved in the formation of the membranous replication sites
and the initiation of minus-strand synthesis are responsible for
differences in replication efficacy in different cell lines (Binder
et al., 2013).

Recently, Benzine et al. (2017) have estimated the half-
lives of the replicase complex (a complex of viral and cellular
proteins associated with viral genome synthesis) in slowly and
rapidly replicating HCV strains. Their mathematical model
distinguishes between different viral plus-strand RNA genomes—
RNA associated with translation, RNA responsible for RNA
synthesis in the membranous web and the replicase complex,
as well as RNA that is assembled and packed into virions.
The authors estimated replicase complex half-lives of 3.5 h for
the fast replicating strain and 9.9 h for the slow replicating
strain and speculated that differences in the amino-acids in
non-structural (NS) proteins that are responsible for replicase
complex formation as well as the interactions with each other
or host proteins are underlying the observed differences in half-
lives. Furthermore, the antiviral efficacy has been integrated by
the effect of the NS5A inhibitor Elbasvir, the NS5B inhibitor
Sofosbuvir, and Compound 23. Sofosbuvir inhibits the plus- and
minus-strand synthesis, Elbasvir blocks the formation of new
replicase complexes and the viral assembly while Compound 23
inhibits the formation of replicase complexes. For the slowly
replicating strains, the model predicted that by blocking viral
assembly, the RNA is increasingly used for translation while that
redirection was very low in fast replicating viral strains (Benzine
et al., 2017).

Clausznitzer et al. (2015) developed a multi-scale model
combining the target cell-limited model with detailed
intracellular replication to investigate the specific effect of
Daclatasvir that targets HCV NS5A within the first 2 days

post drug administration. For Daclatasvir, the exact mode of
action is still unknown. The authors compared different putative
mechanisms concerning the initial and long-term dynamics.
Blocking viral replication affected the long-term dynamics, while
blocking viral assembly/secretion had an effect on the initial and
the long-term dynamics. Interestingly, a complete inhibition of
viral assembly/secretion did not eradicate the virus. Additionally,
it has been shown that the host factor affected the long-term
dynamics and represented the main parameter in individual
differences in the viral replication efficacy (Clausznitzer et al.,
2015).

In a mouse model, Mailly et al. (2015) have shown that the
inhibition of Claudin1-mediated viral entry by Claudin1-specific
monoclonal antibodies has shown highly effective in preventing
HCV infection without the emergence of resistance. By using the
target cell-limited model that has been extended by the effect
of monoclonal antibodies which inhibit the de novo infection
rate (k), the model predicted the clearance of infected cells and
the prevention of new infection (Mailly et al., 2015). Thus, the
inhibition of cellular co-factors that mediate viral entry might be
a promising strategy to prevent and eradicate HCV.

INFLUENZA VIRUS

The seasonal influenza is an acute infection of the respiratory
tract caused by influenza virus of types A, B, and C. Annually,
on average 3–5 million people worldwide are infected. The
disease is often associated with severe symptoms and leads to
250,000–500,000 deaths per year. Two classes of antiviral drugs
are available against influenza: neuraminidase inhibitors and M2
proton channel blockers. However, the most effective strategy
against a seasonal influenza infection is the prevention by a
vaccination, which has been proven to be safe and effective for
more than 60 years (World Health Organization, 2017c).

Viral Dynamics and Immune Response
The course of infection with IAV is characterized by an
exponential growth of viral load, reaching its maximum 2 days
post infection (Figure 5). Within the following days, the viral
load declines until the virus becomes undetectable within 6–8
days post infection (Wright et al., 2013). Baccam et al. (2006)
modified the target cell-limited model, taking the rapid dynamics
of IAV into account. Their model neglects the regeneration and
death of target cells (Baccam et al., 2006). With the assumption
that progeny virus is undetectable within the first 6–8 h (Sedmak
and Grossberg, 1973), an eclipse phase was incorporated into
the model that characterized the time delay from cell infection
to virus production. In order to model the eclipse phase, the
authors introduced two different infected cell populations: not
yet virus producing infected cells that are in the eclipse phase
(I1) and actively virus producing infected cells (I2, Equation
5). With data of patients experimentally infected with IAV,
mathematical models with and without the eclipse phase have
been analyzed. The authors could show that both models fit
the patient data equally well, whereas the eclipse phase model
estimated biologically more reasonable parameters with a half-
life of free virion of 3.2 h. Furthermore, after a 6 h delay, the
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FIGURE 5 | Course of an IAV infection (viral load), the innate immune response (interferon), and the adaptive immune response (antibodies and CTL). Inspired by

Beauchemin and Handel (2011) and Wright et al. (2013).

infected cells are producing virus for about 5 h, leading to an
average lifetime of about 11 h for infected cells. Additionally,
the authors calculated the basic reproductive ratio R0 ∼ 22
indicating a rapid viral spread (R0 ≫ 1) where 1 cell infects∼ 22
other epithelial cells in the upper respiratory tract, suggesting that
an early initiation of treatment is crucial. Interestingly, in 50%
of the patients a second peak in viral load has been observed.
By extending the target cell-limited model by the effect of IFN
(Equation 5), the second peak might be explained by a decreasing
antiviral effect of IFN (Baccam et al., 2006).

During IAV infection, IFN is detectable 24 h post infection
reaching a maximum after 72–96 h (Roberts et al., 1979). IFN
plays a major role in the inhibition of viral infection and
establishing an antiviral state (Samuel, 2001). In turn, the IAV
protein NS1 has been identified as an IFN antagonist that
circumvent the IFN-mediated antiviral response and correlates
with pathogenicity (Garcia-Sastre et al., 1998). Saenz et al. (2010)
extended the target cell-limited model by the regulation of the
IIR. Herein, IFN is released by infected cells which induce an
antiviral state by turning target cells into refractory cells. Model
predictions demonstrated the major role of IFN in controlling
early infection by protecting target cells (Saenz et al., 2010).

To capture the interaction of IAV with the IIR and AIR,

Pawelek et al. (2012) included an antiviral state by refractory
cells, as well as an IFN-induced infected cell killing into the
target cell-limited model. The authors have shown that the early

viral infection might be controlled by target cell depletion. The

rapid viral post-peak decline could be explained by the enhanced
infected cell killing mediated by cytokines, natural killer cells,
or other cells activated by IFN. Moreover, the authors were able

to mimic the bimodal pattern with a rebound of plasma viral
load observed in 50% of the patients (Baccam et al., 2006). They
assume that this second peak is due to a loss of the antiviral
effect of IFN leading to a recovery of target cells (Pawelek
et al., 2012). By comparing the dynamics of four different
IAV strains in a mouse model, Manchanda et al. (2014) have

shown a strain-specific rebound in viremia leading to a second
peak. Furthermore, model predictions explained the rebound
by persistent inflammation that correlated with disease severity
(Manchanda et al., 2014).

The AIR is mainly mediated by CTLs and antibodies
which appear at day 5 after primary infection and at day 3
after reinfection, resulting in a faster memory cell-mediated
secondary response (Tamura and Kurata, 2004). Handel et al.
(2010) extended the target cell-limited model by simple defense
mechanisms of immune mediators, e.g., inflammatory cytokines,
as well as antibodies or CTLs (Equation 6). It has been shown
that the models with either antibody (killing of free virions) or
the CTL-mediated immune response (killing of infected cells) fit
the data equally well. A distinction of the underlying mechanisms
of the AIR was not possible with the available data (Handel et al.,
2010). Miao et al. (2010) combined CTL and antibodies, IgG and
IgM, within amathematical model and confirmed the necessity of
CTL and IgM in infection clearance, leading to average half-lives
for infected cells of∼0.5 days and for free virions of∼1.8min. In
the absence of an AIR (days 0–5), the half-lives for infected cells
have been estimated with ∼1.2 days and for free virions ∼4 h.
Furthermore, the model predicted the contribution of CTLs in
killing infected cells while mainly IgM cleared the viral load. Due
to a low contribution of IgG in primary infection clearance, the
authors suggested a role of IgG together with CD4+ T cells in
generating a memory and therefore a second immune response
(Miao et al., 2010).

Risk Factor Age
The recommended prevention of an influenza infection is a
vaccination that reduces severity, complications, and deaths
especially in elderly. However, due to a lower antibody response
in elderly (age >65 years) the vaccine efficacy is only 17–
53% compared with 70–90% in young adults (Goodwin et al.,
2006). Hernandez-Vargas et al. (2014) studied the impact of
age on the immune response to the course of IAV infection
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and have shown a limited stimulation of the adaptive immune
cells that led to a reduced viral growth with a 1.5 lower R0 in
immune naïve aged mice. Additionally, a delayed (1–2 days)
infection clearance correlated with a delayed increase of CD8+
T cells in aged mice, indicating a key role of CD8+ T cells in
infection clearance. Therefore, the 10-fold lower viral burden
might trigger the immune response insufficiently, explaining
the striking difference between infection control and viral titers
in elderly and young mice (Hernandez-Vargas et al., 2014).
However, these experimental results and modeling predictions
are valid for immune naïve aged mice. To study the efficacy of
vaccination in elderly, the validation of these results in humans
would be appropriate, but is obviously more complicated.

Modeling the effect of CD8+ T cell populations to recurrent
IAV infections, Zarnitsyna et al. (2016) have shown that an
increase in CD8+ T cell levels led to a decreased viral load and a
shorter recovery time. The model of Cao et al. (2016) confirmed
the relationship of a faster recovery with an increased level of
effector CD8+ T cells. Thus, the induction of CD8+ T cells
might be a promising vaccination strategy instead of boosting
the antibody response that might lead to antigenic mutations
and constantly evolving new influenza strains (Cao et al., 2016;
Zarnitsyna et al., 2016).

Antiviral Drugs
The effect of Amantadine, an antiviral agent acting as an
M2 ion channel blocker, has been included into the eclipse
model (Baccam et al., 2006) by affecting the infection rate
(k) of target cells by virions. The authors show that the
maximum drug efficacy for Amantadine is only 74%, this can
be explained by a possible rapid development of drug resistance.
For the characterization of the viral dynamics under Adamantane
treatment (e.g., Amantadine), it is therefore important to take the
emergence of drug-resistance into account (Beauchemin et al.,
2008).

Canini et al. (2014) investigated the effect of Oseltamivir
(a neuraminidase inhibitor) using a model combining antiviral
treatment regimen, IIR, and AIR, as well as a scoring system
for symptoms, and the emergence of drug resistance as a
random event. The authors show that the prophylactic use
(pre-symptomatic phase) of Oseltamivir in low doses may
cause a 27% higher emergence of drug resistance during the
incubation period, due to an insufficient AIR, e.g., by natural
killer cells. The initiation and duration of treatment, drug doses,
as well as treatment frequency have been identified as crucial
factors for the emergence of drug resistance (Canini et al.,
2014). Kamal et al. (2015) studied the time course of influenza
infection with and without Oseltamivir that had an effect on
the virion production rate by inhibiting the release of newly
produced virions (viral shedding). They have shown that a sooner
initiation of Oseltamivir treatment correlates with a decreased
viral secretion duration. By investigating the effect of a combined
treatment, they found that the effect of Oseltamivir together with
an antiviral drug affecting viral clearance had significant better
effects reducing viral load, regardless of the onset of therapy
(Kamal et al., 2015).

Heldt et al. (2013) developed an age-based multi-scale model
combining the viral life cycle with cell-to-cell transmission with
the aim to investigate the effect of DAAs. The authors found
the most promising antiviral strategy by interfering with viral
transcription, replication, protein synthesis, nuclear export, and
assembly/secretion, while inhibiting early steps in replication—
virus entry—caused only a delayed virus production. They
additionally showed that some drugs could in fact increase
the virus production, indicating how important a detailed
understanding of the dynamic events in the virus life cycle is
(Heldt et al., 2013). Schelker et al. (2016) investigated early events
in the viral life cycle within a 3D diffusion modeling approach
that identified the time point of endocytosis and the distance
of diffusion to the nucleus as a bottleneck, supporting cytosolic
degradation as limiting factors for efficient virus replication
(Schelker et al., 2016).

OTHER VIRUSES

Ebola Virus
From 2013 on, EBOV of the type Zaire has caused the largest
outbreak to date in West Africa with reported 29,000 disease
cases and 11,000 deaths. An untreated acute Ebola infection
causes severe illness with a fatality rate of on average 50% (World
Health Organization, 2017a). EBOV is a negative-stranded RNA
virus that replicates in immune cells, with the ability to persist in
immune-privileged sites such as the central nervous system and
may thus lead to viral relapse (Jacobs et al., 2016). No specific
treatment is currently available, but recently a clinical trial with a
newly developed vaccine (rVSV-ZEBOV) has shown to be highly
protective against the Ebola disease (Henao-Restrepo et al., 2017).

To capture the Ebola infection dynamics, Nguyen et al. (2015)
used the target cell-limited model and compared EBOV to
pandemic IAV. EBOV infection time is significantly slower than
IAV infection time (9.5 h vs. 30–80min) (Holder et al., 2011;
Pinilla et al., 2012; Nguyen et al., 2015). Furthermore, the viral
replication rate has been estimated as ∼63 ffu/mL day−1 cell−1,
EBOV is hence highly efficient with a virion half-live of ∼23 h
(c = 1.05 day−1) (Nguyen et al., 2015). Unfortunately, these
results are uncertain due to parameter identifiability problems.
Nonetheless, the target cell-limited model confirmed the viral
growth seen in experimental data, starting at day 3 post infection
with a complete target cell depletion at day 6. Madelain et al.
(2015) extended the target cell-limited model by an eclipse phase
(non-/virus-producing infected cells) and found a half-life for
virus-producing infected cells of 6.4 h and a basic reproductive
ratio of R0 ∼ 9. The authors furthermore studied the antiviral
effect in mice treated with Favipiravir, an antiviral drug that
blocks the RNA-dependent RNA polymerase in a broad spectrum
of RNA viruses (Furuta et al., 2013). By inhibiting the virus
production rate p, they found a sharp decrease in viral load
that was associated with an increasing drug efficacy of 95, 98.5,
and 99.6% at days 2, 3, and 6 after the onset of treatment.
Since Favipiravir achieves its maximal efficacy after 3 days, an
early treatment initiation is suggested (Madelain et al., 2015).
With patient data of survivors and fatalities from the Uganda
Ebola disease outbreak in 2000/2001, Martyushev et al. (2016)
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studied the relationship between virus replication and disease
severity. For this purpose, they extended the target cell-limited
model by two target cell populations: potential target cells (T2),
that are recruited via proinflammatory cytokines (e.g., recruited
macrophages, hepatocytes, splenocytes, and endotheliocytes),
which become susceptible target cells (T1), that are the primary
target for viral replication (e.g., macrophages and dendritic cells).
Ebola disease severity is described by a 2 log(10) higher plasma
viral load, that is correlated with an extensive recruitment of
potential target cells and a 2.2-fold higher basic reproductive
ratio; R0 ∼ 6 for fatal cases and R0 ∼ 2.8 for nonfatal
cases. Hence, the higher viral load in fatal cases and a massive
infection/hypersecretion of cytokines by active virus-producing
replication cells is associated with the potential severity of the
Ebola disease (Wauquier et al., 2010; Martyushev et al., 2016).
Additionally, antiviral intervention of (i) an antibody-based
therapy that affects the de novo infection (k), (ii) a siRNA-based
treatment that blocks viral production (p), and (iii) a nucleoside
analog-based therapy (e.g., Favipiravir) have been evaluated in
mono- and combination therapy. The combination of nucleoside
analog-based therapy and siRNA-based turned out to be most
efficient if initiated 4 days post symptom onset, while the
antibody-based therapy seemed insufficient (Martyushev et al.,
2016). The authors then demonstrated that a critical inhibition
rate of 80.5% in fatal cases and 58.5% in nonfatal cases is needed
to prevent fatal outcomes of the Ebola virus disease.

Dengue Virus
The DENV is a positive-stranded RNA virus, infecting annually
390 million people worldwide. DENV is spread mainly by
the mosquitos Aedes aegypty and Aedes albopictus, which
also transmit Chikungunya Virus, Yellow Fever Virus, and
ZIKV. There are four serotypes of DENV, causing flu-
like illness occasionally associated with severe complications
like hemorrhagic fever. A cleared dengue infection provides
a serotype-specific lifelong immunization, while secondary
infections with another serotype can result in severe dengue
disease. Currently, there is no antiviral treatment available,
but a recently developed dengue vaccine (CYD-TDV; Villar
et al., 2015) is suggested for endemic regions (World Health
Organization, 2016a).

To explain inter-individual differences in DENV infection
dynamics, Clapham et al. (2014) extended the target cell-
limited model by a simple AIR. Moreover, differences between
primary and secondary infection could be explained by the
variations in the immune response. For a secondary infection,
the immune response-related parameters have shown higher
values, e.g., the immune cell proliferation rate and the virus
clearance rate. Interestingly, the infectivity rate constant (k) has
also reached higher values in a secondary infection compared
to a primary infection, supporting the hypothesis of antibody-
dependent enhancement where antibodies mediate virus entry
and thus increase the viral infectivity in a secondary infection
(Clapham et al., 2014). In a subsequent study, Clapham et al.
(2016) investigated the antibody dynamics within a target cell-
limited model predicting the role of IgM and IgG in the course
of a dengue infection. They showed that a primary infection was

mainly cleared by IgM while a secondary infection was cleared
by IgG and IgM. These results refer to the key role of IgM in
DENV infection clearance. Furthermore, best fitting results have
been found by assuming that antibodies directly neutralize free
virus compared to a clearance of infected cells, e.g., via antibody-
dependent cell cytotoxicity. However, model predictions have
shown a short life-span of infected cells with 0.3 days referring to
additional immune-mediated clearance mechanisms (Clapham
et al., 2016).

Ben-Shachar and Koelle (2014) developed a series of within-
host dengue models integrating key players of the IIR and AIR
in order to investigate the viral dynamics and development of
severe dengue disease. They extended the target cell-limited
model only by the IIR and were able to reproduce the viral
dynamics in primary infection. Furthermore, they showed that
higher rate constants for infectivity (k; evidence for antibody-
dependent enhancement) and infected cell death (δ; evidence
for T cell response with increasing severity) were necessary to
mimic the viral dynamics of a secondary infection (Ben-Shachar
and Koelle, 2014). Recently, Ben-Shachar et al. (2016) refined
these results by investigating serotype-specific differences. The
higher infectivity rate constants (k) estimated for DENV-2 and
DENV-3 compared to DENV-1 in their model were consistent
with varying replication efficacy of different dengue serotypes
(Ben-Shachar et al., 2016).

With a population-based delay model coupled to the IIR,
Schmid et al. (2015) studied the attenuated viral spread of
a DENV mutant that is proposed as a vaccine candidate. In
their work, they show that the DENV mutant has a faster IFN
activation and production which establishes an antiviral state in
infected cells and leads to an 8-fold decreased viral production
and spread compared to the wildtype DENV. Furthermore,
their model shows a stronger impact of the autocrine IFN in
comparison to the paracrine effect on reducing viral spread
(Schmid et al., 2015).

Zika Virus
ZIKV is a plus-stranded RNA virus that is mainly carried and
transmitted by Aedes mosquitos, but sexual transmission has
as well been reported (Foy et al., 2011; Musso et al., 2015;
D’Ortenzio et al., 2016). Human infections with ZIKV usually
cause only mild disease with similar symptoms as seen in DENV
infections. However, during the recent outbreak in Brazil with
estimated 440,000–1,300,000 Zika cases (Heukelbach et al., 2016),
ZIKV has been associated with neurologic complications such as
Guillain-Barré syndrome and fetal microcephaly (World Health
Organization, 2017d).

Recently, Best et al. (2017) developed a series of models with
and without incorporation of the immune response and fitted
those to plasma viral load data of ZIKV-infected nonhuman
primates. Within that model series, the target cell-limited model
only extended by an eclipse phase that distinguishes between
non-actively and actively virus-producing infected cells was
the best-suited model to reproduce the data. Furthermore, the
incorporation of key players of the IIR or AIR, e.g., by IFN
or natural killer cells, respectively, did not improve the model
fitting and thus has been neglected. The simple eclipse phase
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model estimated an eclipse phase of ∼4 h (already observed via
modeling in Osuna et al., 2016) and a basic reproductive ratio
of R0 ∼ 10.7. The degradation rate of productively infected
cells was estimated with δ = 4.5 day−1, corresponding to a
lifetime of ∼5 h. The authors furthermore included the effect
of antiviral therapy by inhibition of the viral production rate.
With the broad spectrum RNA polymerase inhibitor Favipiravir,
the time to undetectable plasma viremia could be reduced by
2 days if the initiation of therapy starts at the time point of
infection (t = 0 days post infection). The therapy initiation
at day 2 post infection led to the same result compared to no
drug treatment, leading to undetectable plasma viral load after 5
days post infection (Best et al., 2017). By integrating the immune
response via IFN and neutralizing antibodies into the eclipse
phase model, Aid et al. (2017) found a positive effect of both
in controlling the viral infection in the periphery. The overall
best fit was achieved by initiating IFN response at day 1.5 while
the activity of neutralizing antibodies started at day 6 (Aid et al.,
2017).

CONCLUSION

For more than 20 years, the population-based target cell-limited
model has been used to describe the dynamics of a variety of
viruses. The interdisciplinary research combining experimental
measurements and mathematical modeling improved our

understanding of virus-host interactions and helped to quantify
key parameters of the viral life cycle. Simple mathematical
models allowed the investigation of the circumstances that lead
to viral eradication or the development of chronic infections
with an equilibrium of virus production and immune-mediated
clearance. Studying antiviral drug treatments with the target cell-
limited model enabled the identification of drug efficacy and
modes of action. Moreover, simple extensions of the model led
to insights into the different patterns of viral decline during drug
treatment and the evaluation of different treatment regimens. By
taking the immune system into account, mathematical modeling
helped to identify the key players for viral clearance.

A comprehensive and quantitative, dynamic understanding of
virus-host interactions is vital for advances in antiviral therapy,

and can be achieved by modeling the entire viral life cycle
from virus entry to particle production. This would support
not only the prediction of more precise modes of action of
DAAs, it would also help to identify and evaluate new treatment
opportunities or the potential of broad-spectrum antiviral drugs.
Drugs that interact directly with viral proteins have shown
enormous potential, but may lead to the emergence of virus
strain mutations, multi-drug resistance, and treatment failure.
Therefore, future research might focus more on resistance free
antiviral drugs, e.g., by targeting host factors or by the prevention
of viral diseases with vaccination. To support knowledge-based
design of such drugs and vaccines, a more comprehensive view of
the immune response to viral infections is necessary. Regarding
the complex interplay of the first line of defense by the IIR and
the establishment of an immune response memory by the AIR,
questions arise how the virus hides and circumvents the immune
response or why some patients are able to clear an infection
that would develop to chronic infection in the majority of
patients.

Furthermore, modeling techniques may consider not only
the time-dependent dynamics but focus as well more on the
spatial scale. By combining time and space scales, agent-based
models may help to characterize viral spread in tissue, within
organs or in the whole human body. Additionally, the complex
interplay between the virus and the immune system may be
studied by agent-based models with relatively simple rules
(Bauer et al., 2009; Graw and Perelson, 2015; Kumberger et al.,
2016). Mathematical modeling addressed important questions
concerning the virus-host interactions and may contribute to
answering open questions.
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Mathematical models that describe infection kinetics help elucidate the time scales,

effectiveness, and mechanisms underlying viral growth and infection resolution. For

influenza A virus (IAV) infections, the standard viral kinetic model has been used to

investigate the effect of different IAV proteins, immune mechanisms, antiviral actions,

and bacterial coinfection, among others. We sought to further define the kinetics of IAV

infections by infecting mice with influenza A/PR8 and measuring viral loads with high

frequency and precision over the course of infection. The data highlighted dynamics

that were not previously noted, including viral titers that remain elevated for several

days during mid-infection and a sharp 4–5 log10 decline in virus within 1 day as the

infection resolves. The standard viral kinetic model, which has been widely used within

the field, could not capture these dynamics. Thus, we developed a new model that

could simultaneously quantify the different phases of viral growth and decay with high

accuracy. The model suggests that the slow and fast phases of virus decay are due to

the infected cell clearance rate changing as the density of infected cells changes. To

characterize this model, we fit the model to the viral load data, examined the parameter

behavior, and connected the results and parameters to linear regression estimates.

The resulting parameters and model dynamics revealed that the rate of viral clearance

during resolution occurs 25 times faster than the clearance during mid-infection and

that small decreases to this rate can significantly prolong the infection. This likely

reflects the high efficiency of the adaptive immune response. The new model provides

a well-characterized representation of IAV infection dynamics, is useful for analyzing and

interpreting viral load dynamics in the absence of immunological data, and gives further

insight into the regulation of viral control.

Keywords: influenza virus infection, viral kinetics, mathematical model, density dependence, biphasic viral decay

1. INTRODUCTION

Influenza A virus (IAV) is a leading cause of lower respiratory tract infections and causes a
significant amount of morbidity and mortality (Simonsen et al., 2000; Taubenberger and Morens,
2008; Medina and García-Sastre, 2011), with over 15 million individuals infected and more
than 200,000 hospitalizations each year in the U.S. (Thompson et al., 2004). Vaccination against
influenza viruses remains the most effective measure to prevent infection, but the large number
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of antigenically distinct strains, the emergence of new strains,
and the low efficacy of antivirals make combatting the disease
challenging. New therapeutic strategies are thus necessary and
may require modulation of different viral control mechanisms,
which are not entirely understood for IAV infection. Thus, it is
critical to gain a deeper understanding of the infection kinetics,
including determining the time scales, magnitudes, contribution,
and interrelatedness of different control processes throughout
IAV infection.

Kinetic modeling of in vivo infection processes provides
important insight into viral growth and decay, host immune
responses, antiviral actions, and multi-pathogen interactions.
Remarkably, as few as 3–4 equations for target cells, infected
cells, and virus can accurately describe viral load dynamics for a
variety of virus infections [e.g., IAV, HIV, HCV, Zika virus, and
West Nile Virus (Perelson et al., 1996; Neumann et al., 1998;
Baccam et al., 2006; Banerjee et al., 2016; Best et al., 2017)]. For
IAV infections, numerous studies have used these simple models
with great success to elucidate mechanisms during IAV infection
and during IAV coinfection with bacterial pathogens (reviewed in
Smith and Ribeiro, 2010; Beauchemin and Handel, 2011; Smith
and Perelson, 2011; Smith and McCullers, 2014; Boianelli et al.,
2015). However, investigating mechanisms of immune control is
often inhibited by insufficient data, which limits effective model
calibration and selection. Further, it can be difficult to distinguish
between mechanisms because a viral kinetic model that excludes
equations and terms for specific immune responses can fit viral
load dynamics with ease.

To aid interpretation of model results and gain insight into
the mechanisms of infection, previous studies have used linear
regression and approximate solutions to the viral kinetic model
(derived by Smith et al., 2010) to identify how different processes
(e.g., virus infection, production, and clearance) contribute to
viral load dynamics throughout the course of infection (Miao
et al., 2010; Smith et al., 2010, 2011a; Holder et al., 2011a,b;
Halloran et al., 2012; Li and Handel, 2014; Kakizoe et al., 2015;
Pinky and Dobrovolny, 2016; Best et al., 2017; Palmer et al., 2017;
Smith, 2017). In the initial hours of infection, virus quickly infects
cells or is cleared. Following an eclipse phase, virus production
begins and virus increases exponentially for ∼2 d. This initial
growth can be approximated by a linear function of the log10
viral titers or by V(t) = eλt , where λ is a combination of
all infection processes and is equivalent to the log-linear slope
(Smith et al., 2010, 2011a). After this growth phase, virus peaks
and begins to decline until the infection is resolved. Virus decay
is typically exponential in nature and can be approximated in a
similar fashion as the growth phase. That is, V(t) = e−δt , where
δ is the infected cell death rate and the sole process dictating the
viral decay dynamics. Here, the log-linear slope is an estimate of
the infected cell death rate (Smith et al., 2010, 2011a).

Although these dynamics and approximations have improved
our knowledge of viral kinetics, some dynamical features, such as
the plateauing of virus following the peak (reviewed in Smith and
Perelson, 2011) cannot be explained by current kinetic models
that exclude equations for immune factors. One model could
reproduce the plateauing of virus through modeling interferon
and an interferon-induced adaptive immune response (Pawelek

et al., 2012). The study concluded that specific equations for
the innate and adaptive responses were necessary. However,
quantitative immunological data was not used to support model
selection, parameterization, and conclusions. This type of data
is scarce and has been a limiting factor of modeling studies.
With viral loads as the most prevalent type of data, models that
limit the number of parameters and equations remain desirable.
However, even most viral load data is insufficiently quantitative
to confidently detect features like a mid-infection plateau and
build appropriate mathematical models.

Here, we first sought to increase the quality and quantity
of viral load data in order to improve predictive power of
mathematical models and gain a deeper insight into the kinetics
of viral resolution. To do this, we measured viral loads daily
from groups of BALB/cJ mice infected with influenza A/Puerto
Rico/8/34 (H1N1) (PR8). In addition, we tightly controlled the
experimental conditions and repeated the experiment numerous
times to ensure reproducibility and identify data with meaningful
biological heterogeneity (i.e., due to an underlying mechanism)
vs. data with experimental heterogeneity (i.e., due to poor
technique). The high resolution of these data defined important
dynamical features, including a long plateau phase followed
by a rapid decay phase. Because current viral kinetic models
cannot reproduce these data, we developed a new model that
incorporated a density-dependent decay of infected cells and
could accurately describe the observed viral load dynamics. We
used a rigorous fitting scheme to estimate the model parameters
and infer important dynamics. Subsequent linear regression
analysis and sensitivity analysis aided effective interpretation of
the model results and direct comparison with published results.
The data, model, and analyses provide a robust quantification of
IAV infection kinetics and indicate that the rate of virus clearance
changes with respect to the density of infected cells.

2. MATERIALS AND METHODS

2.1. Use of Experimental Animals
All experimental procedures were approved by the Animal Care
and Use Committee at SJCRH under relevant institutional and
American Veterinary Medical Association guidelines and were
performed in a Biosafety level 2 facility that is accredited by
AALAAS.

2.2. Mice
Adult (6 week old) female BALB/cJ mice were obtained from
Jackson Laboratories (Bar Harbor, ME). Mice were housed in
groups of 5 mice in high-temperature 31.2 × 23.5 × 15.2 cm
polycarbonate cages with isolator lids. Rooms used for housing
mice were maintained on a 12:1 2-h light:dark cycle at 22 ± 2◦C
with 50% humidity in the biosafety level 2 facility at St. Jude
Children’s Research Hospital (Memphis, TN). Prior to inclusion
in the experiments, mice were allowed at least 7 days to acclimate
to the animal facility such that they were 7 weeks old at the time of
infection. Laboratory Autoclavable Rodent Diet (PMI Nutrition
International, St. Louis, MO) and autoclaved water were available
ad libitum. All experiments were performed under an approved
protocol and in accordance with the guidelines set forth by the
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Animal Care and Use Committee at St. Jude Children’s Research
Hospital.

2.3. Infectious Agents
All experiments were done using the mouse adapted influenza
A/Puerto Rico/8/34 (H1N1) (PR8).

2.4. Infection Experiments
The viral infectious dose (TCID50) was determined by
interpolation using the method of Reed and Muench (Reed
and Muench, 1938) using serial dilutions of virus on Madin-
Darby canine kidney (MDCK) cells. Mice were intranasally
inoculated with 75 TCID50 PR8 in 100 µl. Mice were weighed
at the onset of infection and each subsequent day for illness
and mortality. Mice were euthanized if they became moribund
or lost 30% of their starting body weight. Each experiment
was repeated numerous times to ensure reproducibility. Two
complete experiments (10 animals per time point) were used for
these studies. The raw data is shown in Figure 1A and is available
upon request.

2.5. Lung Titers
Mice were euthanized by CO2 asphyxiation. Lungs were
aseptically harvested, washed three times in PBS, and placed in
500 µl sterile PBS. Whole lungs were digested with collagenase
(1 mg/ml, Sigma C0130), and physically homogenized by syringe
plunger against a 40 µm cell strainer. Cell suspensions were
centrifuged at 4◦C, 500 × g for 7 min. The supernatants were
used to determine the viral titers using serial dilutions on MDCK
monolayers.

2.6. Mathematical Model
The standard viral kinetic model used to describe IAV infection
kinetics tracks 4 populations: susceptible epithelial (“target”) cells
(T), two classes of infected cells (I1 and I2), and virus (V) (Baccam
et al., 2006):

dT

dt
= −βTV (1)

dI1

dt
= βTV − kI1 (2)

dI2

dt
= kI1 − δ(I2)I2 (3)

dV

dt
= pI2 − cV (4)

In this model, target cells become infected with virus at rate βV
per cell. Once infected, these cells enter an eclipse phase (I1)
before transitioning at rate k per cell to produce virus (I2). Virus
production occurs at rate p per cell. Virus is cleared at rate c
and virus-producing infected cells (I2) are cleared according to
the function δ(I2). The standard viral kinetic model assumes that
infected cells are cleared at a constant rate (δ(I2) = δs) (Baccam
et al., 2006). The subscript s is used to denote “standard.” This
model could not recapitulate the data (see Table S1 and Figure S1)
and a modification of the model was necessary. Given that
the rate of infected cell clearance (δ(I2)) drives the virus decay

dynamics (Smith et al., 2010), we let the clearance rate vary with
the number of infected cells such that

δ(I2) =
δd

Kδ + I2
, (5)

where δd/Kδ is the maximum rate of infected cell clearance and
Kδ is the half-saturation constant. The subscript d is used to
denote “density-dependent.” Modifications to other terms were
examined, but none could replicate the data.

2.7. Parameter Estimation
Given a parameter set θ , the cost C(θ) =

∑

vi

(V(θ , ti) − vi)
2 was

minimized across parameter ranges using an Adaptive Simulated
Annealing (ASA) global optimization algorithm (details in the
Supplementary Material) to compare experimental and predicted
values of log10 TCID50/lung. A sample search pattern is shown
in Figure S2. Errors of the log10 data were assumed to be
normally distributed. To explore and visualize the regions of
parameters consistent with the models, we fit Equations 1–5
to 1,000 bootstrap replicates of the data. For each bootstrap
data set, the model was fit 10 times beginning from the best-fit
parameters estimate θ

best that was found by fitting the model
to the data then perturbing each parameter estimate uniformly
within ±50% of its best-fit value. If the three best bootstrap fits
were within χ2

= 0.05 of the best-fit, then the bootstrap was
considered successful (Smith et al., 2011a, 2013). For each best
fit estimate, we provide 95% confidence interval (CI) computed
from the bootstrap replicates. All calculations were performed in
MATLAB.

Estimated parameters included the rates of virus infection (β),
virus production (p), virus clearance (c), eclipse phase transition
(k), infected cell clearance (δd), and the half saturation constant
(Kδ). Bounds were placed on the parameters to constrain them
to physically realistic values. Because biological estimates are
not available for all parameters, ranges were set reasonably large
based on preliminary results and previous estimates (Smith
et al., 2011a). The rate of infection (β) was allowed to vary
between 10−6 TCID−1

50 d−1 and 10−1 TCID−1
50 d−1, and the rate

of viral production (p) between 10−1 TCID50 cell−1 d−1 and
103 TCID50 cell−1 d−1. Bounds for the viral clearance rate (c)
were 1 d−1 (t1/2 = 16.7 h) and 103 d−1 (t1/2 = 1 min).
Previous estimates of the eclipse phase rate (k) for IAV infection
in mice resulted in estimates that fell outside the biologically
feasible range of 4–6 h (Smith et al., 2011a). To insure biological
feasibility, the lower and upper bounds for the eclipse phase rate
(k) were 4 d−1 and 6 d−1. Limits for the half-saturation constant
(Kδ) were 10

2
−106 cells, and limits for the infected cell clearance

parameter (δd) were 1× 106 − 4× 106 cells/d.
The initial number of target cells (T0) was set to 107 cells

(Smith et al., 2011a, 2013). Because the initial viral inoculum
rapidly infects cells and/or is cleared within 4 h pi, as indicated
by the undetectable viral titers at this time point (Figure 1), the
initial number of infected cells I1(0) was set to 75 cells to reflect
an initial dose of 75 TCID50. This is an alteration from previous
studies, including our own, that either estimate the initial amount

Frontiers in Microbiology | www.frontiersin.org July 2018 | Volume 9 | Article 155480

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Smith et al. Density-Dependent Viral Infection Model

FIGURE 1 | Phases of viral kinetics and fit of the density-dependent viral kinetic model. (A) Fit of the density-dependent viral kinetic model (Equations 1–5) to viral

titers from the lungs of individual mice (10 mice per time point) infected with 75 TCID50 PR8. Each dot is an individual mouse and the solid black line is the optimal

solution of the model. Phases I–V of the viral kinetics are illustrated, where virus (I) quickly infects cells, (II) increases exponentially, (III) peaks, (IV) decays slowly, then (V)

decays rapidly and clears. (B) Optimal fit of the model (solid black line) shown with the model solutions using parameter sets within the 95% CIs (gray shading). Data

are shown as the mean ± standard deviation. Parameters are given in Table 1.

of virus (V0) or set its value to the true viral inoculum. Fixing
V(0) = 75 TCID50 or estimating its value did not improve the fit
and could not be statistically justified (see, for example, Table S1).
Further, fixing V(0) = 75 TCID50 yielded an unreasonably high
estimate for the rate of virus clearance (c) due to the attempt to fit
the sharp decay between 0–4 h pi. Estimating I1(0) could also not
be justified and did not improve the model fit (e.g., as in Table S1
and Figure S1). The initial number of productively infected cells
(I2(0)) and the initial free virus (V0) were set to 0.

2.8. Linear Regression
We used the function polyfit in MATLAB to perform linear
regression of the log10 values of viral titer during the growth
phase (4 h, 1 d pi) and the two decay phases (2–6 d pi and 7–8
d pi).

3. RESULTS

3.1. Phases of Viral Load Kinetics
Mice infected with 75 TCID50 PR8 have viral load kinetics that
can be separated into five distinct phases (Figure 1A). This is in
contrast to the three phases that we previously defined (Smith
et al., 2010). In the first phase, virus quickly infects cells and
is undetectable within 4 h pi. In the second and third phases,
virus increases exponentially and peaks after ∼2 d pi. Following
the peak, the viral decline can be separated into two phases.
In the first decay phase (2–6 d pi), virus decays slowly at a
relatively constant rate. In the second decay phase (7–8 d pi),
virus declines rapidly (4–5 log10 TCID50). Sixty percent of mice
had no detectable virus by 8 d pi. The remaining mice resolved
the infection by 9 d pi.

These data reduced the heterogeneity observed in a previous
data set from infection with the same virus (Smith et al., 2011a).
We discovered that the majority of heterogeneity in the previous
data set could be attributed to inconsistent infections and,
thus, inocula that varied. We further reduced heterogeneity by

normalizing the viral titer to the total lung volume, rather than
using units of TCID50/ml lung homogenate. As expected, some
heterogeneity remains at 1 d pi and at 8 d pi. These time points
correspond to when virus is rapidly increasing and decreasing,
respectively.

3.2. Kinetic Model With Density Dependent
Viral Clearance
We first fit the standard viral kinetic model, which is given by
Equations (1)–(4) and assumes only one mechanism of constant
clearance (δ(I2) = δs) (Baccam et al., 2006), to the viral load data
(see Supplementary Material). This model was unable to capture
the entire time course of viral load dynamics, but was able to fit
the data from infection initiation to 7 d pi (Figure S1). To more
accurately model IAV kinetics and simultaneously recapitulate
the two phases of viral decline, we modified the rate of infected
cell clearance (δ(I2)) so that the rate changes with respect to the
density of the infected cell population. That is, δ(I2) = δd/(Kδ +

I2) (Equation 5), where δd/Kδ is the maximum rate of clearance

and Kδ is the number of productively infected cells where the rate
is half of its maximum.

Fitting this new model to the viral load data illustrated that
the model can accurately reproduce the data and simultaneously
capture both phases of viral decline while excluding specific
immune responses. The resulting dynamics are shown in
Figure 1, the parameter values and 95% confidence intervals
(CIs) are given in Table 1, and the parameter ensembles are
shown in Figure 2 and Figure S3. For this model, the basic
reproduction number (R0) is given by

R0 =
βpT0Kδ

cδd
(6)

Given the parameters in Table 1, R0 = 8.8.
To understand how the addition of δ(I2) = δd/(Kδ + I2)

influences the other parameters during the fitting scheme, we
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TABLE 1 | Parameter values and 95% confidence intervals obtained from fitting the density-dependent viral kinetic model (Equations 1–5) to viral titers from mice infected

with 75 TCID50 PR8.

Parameter Description Units Value 95% CI

β Virus infectivity TCID−1
50 d−1 2.4× 10−4 [5.0× 10−5, 7.8× 10−2]

p Virus production TCID50 cell−1 d−1 1.6 [0.82, 125.3]

c Virus clearance d−1 13.0 [6.3, 943.1]

k Eclipse phase d−1 4.0 [4.0, 6.0]

δd Infected cell clearance cell−1 d−1 1.6× 106 [1.4× 106, 1.7× 106]

Kδ Half saturation constant cells 4.5× 105 [1.2× 102, 1.7× 105]

T (0) Initial uninfected cells cells 1× 107 -

I1(0) Initial infected cells cells 75 -

I2(0) Initial infected cells cells 0 -

V (0) Initial virus TCID50 0 -

plotted the resulting histograms and 2D parameter projections
(Figure 2). As expected, strong correlations exist between the
rates of virus production (p) and virus clearance (c) and between
the rate of infection (β) and the infected cell death rate (δd/Kδ).
The other correlations visible in Figure 2 were a consequence of
these two relations. Of note, δd was not strongly correlated with
any of the other model parameters (Figure S3). In addition, the
confidence interval was small, particularly compared to the other
parameters. Estimates for the other parameters (β , p, c, and Kδ)
with the exception of the eclipse phase rate (k) were well bounded
such that the 95% CIs fell within the upper and lower bounds
imposed in the estimation scheme. Similar to previous studies
(Baccam et al., 2006; Smith et al., 2011a), the eclipse phase rate
(k) was restricted to biologically realistic values and was not well
defined on the given interval. In support, the ASA algorithm
search patterns show a longer search time for k compared to the
other parameters (Figure S2).

To further determine how the addition of δ(I2) = δd/(Kδ +

I2) influences the sensitivity of the model solution to changes
in parameter values, we performed a one-at-a-time sensitivity
analysis (Figure 3). The infected cell clearance parameter (δd) is
the most sensitive parameter and largely dictates the viral decay.
Decreasing δd significantly delays viral clearance while increasing
δd leads to rapid viral resolution (Figure 3). In accordance with
previous results (Smith et al., 2010), all other parameters are less
sensitive and collectively affect the exponential growth phase and
peak.

As illustrated in Figure 4A, the rate of infected cell clearance
is rapid when these cells are in small numbers. Given the
parameters in Table 1, the maximum clearance rate is δ(I2) =

12.7 d−1, which corresponds to half-life t1/2 = 1.3 h. The rate
begins to slow when I2 > 104 cells and is minimal when I2 is at its
maximum (8× 106 cells). When I2 is maximal, δ(I2) = 0.21 d−1

and t1/2 = 78 h. In our previous work, we discovered that
linear regression analysis could be used to accurately estimate the
exponential growth rate, which was a combination of all model
parameters, and that the slope of the viral decay could provide
an estimate of δ(I2) (Smith et al., 2010, 2011a). To evaluate
how these relations correlate to parameters in the model with
density dependence, we performed a linear regression on the
data during the growth phase (4 h–1 d pi) and the two decay

phases (2–6 d pi and 7–8 d pi) (Figure 4B). The slope of the
growth phase is 4.7 log10 TCID50/d (red line in Figure 4B).
In accordance with the previous studies, this slope is a good
approximation to the model until shortly before the peak. The
model deviates slightly from this estimate and suggests that the
virus growth rate briefly increases prior to the peak and that
the decay phase begins prior to 2 d pi. This nonlinearity in the
growth can be attributed to the decreasing infected cell clearance
rate as the number of infected cells increases. These results are
in contrast to the standard viral kinetic model, which suggests
that the virus growth rate strictly decreases following exponential
growth (Smith et al., 2010, 2011a). In the first phase of decay, the
slope is −0.2 log10 TCID50/d (green line in Figure 4B), which
corresponds to δ(I2) = 0.4 d−1 (green diamond in Figure 4A).
In the second phase of decay, the slope is −3.8 log10 TCID50/d
(blue line in Figure 4B), which corresponds to δ(I2) = 8.7 d−1

(blue dot in Figure 4A).

4. DISCUSSION

Mathematical models have been widely used to investigate IAV
dynamics (reviewed in Smith and Ribeiro, 2010; Beauchemin and
Handel, 2011; Smith and Perelson, 2011; Smith and McCullers,
2014; Boianelli et al., 2015). The viral kinetic model given
by Equations (1)–(4) with δ(I2) = δs (Baccam et al., 2006)
has been the standard in the field for over 10 years. We
previously used this model together with data from murine
infection to gain insight into IAV virulence factors (Smith
et al., 2011a) and into coinfection with bacterial pathogens
(Smith et al., 2013; Smith and Smith, 2016; Smith, 2017).
Although some predictions made using this model have been
experimentally tested and deemed accurate (Ghoneim et al.,
2013; Smith and McCullers, 2014; Warnking et al., 2015; Smith
and Smith, 2016), the data here suggested that some dynamical
features could not be accounted for and thus a new model
was necessary. The model we introduced here includes density-
dependent infected cell clearance and better captures the entire
course of IAV infection dynamics, including the two-phase viral
decay following the peak (Figure 1). Importantly, the model
added only a single parameter (the half-saturation constant, Kδ)
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FIGURE 2 | Parameter ensembles and histograms. Parameter ensembles and histograms resulting from fitting the density-dependent viral kinetic model (Equations

1–5) to viral titers from mice infected with 75 TCID50 PR8. Two main correlations are evident between the rates of virus production (p) and clearance (c) and between

the rates of infection (β) and infected cell clearance (δd/Kδ ). The axes limits reflect imposed bounds (except k ∈ [4, 6]). All parameters except the eclipse phase rate (k)

are well bounded (i.e., the 95% CIs do not reach the imposed bounds). Additional ensemble plots (e.g., for R0) are in Figure S3.

while significantly improving the model fit to viral loads from
IAV infection without including additional equations detailing
immune responses

By sampling with high frequency and controlling for
experimental heterogeneity, we were able to obtainmore accurate
data (i.e., smaller standard deviations and better reproducibility)
that highlighted several important dynamics, some of which were
not previously observed. Our data showed that viral loads are
maintained at a high level between 2 d and 7 d pi (Figure 1).
Sustained viral loads have been observed in several studies (Jao
et al., 1970; Douglas et al., 1975; Larson et al., 1976; Reuman
et al., 1989; Bjornson et al., 1991; Toapanta and Ross, 2009;
Smith et al., 2011a). In some data sets, the peak appears more

pronounced and is often followed by the plateau phase or a
second, lower peak (Jao et al., 1970; Douglas et al., 1975; Larson
et al., 1976; Bjornson et al., 1991; Bender and Small, 1993;
Hayden et al., 1998; Baccam et al., 2006). Our murine data do
not indicate a second peak, although there is a subtle increase
in viral loads at 5 d pi that may be biologically significant.
Previous influenza modeling studies suggest that these dynamics
required equations/terms for the innate and adaptive immune
responses (Baccam et al., 2006; Pawelek et al., 2012; Cao et al.,
2016). However, HIVmodeling studies have used similar density-
dependent terms to achieve a two-phase viral load decay (Holte
et al., 2006; Burg et al., 2009). Importantly, the model here
provides a means for capturing the changes in viral load decay
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FIGURE 3 | Sensitivity of the density-dependent viral kinetic model. Solutions of the density-dependent viral kinetic model (Equations 1–5) for the best-fit parameters

(black line, Table 1) and with the indicated parameter increased (red) or decreased (blue) 50% from the best-fit value.

FIGURE 4 | Density-dependent infected cell clearance rate and correlation to linear regression. (A) The infected cell clearance rate (δ(I2), Equation 5) is plotted for

different values of infected cells (I2). The green diamond and the blue dot indicate the corresponding infected cell clearance rates during the slow and fast phases of

virus clearance, respectively. These correspond to linear regression estimates in (B). (B) Linear regression fits to the viral load data (white squares) during the growth

phase (4 h–1 d pi, red line), the first phase of virus decay (2–6 d pi, green line), or the second phase of virus decay (7–8 d pi, blue line). The dashed black line is the fit

of the density-dependent viral kinetic model (Equations 1–5) to the viral load data.

without complicating the model or inferring information about
specific immune mechanisms, which are not well understood.
However, the change in clearance rate could reflect the change
from innate to adaptive immunity. If this is the case, our
estimates would suggest that the adaptive response is 25 times
more effective than the innate response (−0.2 log10 TCID50/d
between 2–6 d pi vs. −3.8 log10 TCID50/d between 7–8 d pi;
Figure 4B).

It is well accepted that the rapid decline in virus during the
second decay phase is due to the infiltration of CD8+ T cells
(reviewed in McMichael et al., 1983; Kim et al., 2011; Grant
et al., 2016). These cells typically enter the infection site between
5–6 d pi and peak between 8–9 d pi (e.g., as in Toapanta
and Ross, 2009). The rapid rate of viral decline between 7–
8 d pi suggests that these cells are highly effective. However,

the initial infiltration begins at least 1–2 d before a change
in the rate of virus decay is visible. Thus, there may be a
nonlinearity to this response or it may reflect a simultaneous
increase in infections and killing of infected cells or a change
in effectiveness proportional to the density of infected cells
or to the density of CD8+ T cells. A handling-time effect,
which can represent the time required for immune cells to kill
each infected cell and/or the time for immune cells to become
activated (e.g., as in Pilyugin et al., 1997; Graw and Regoes,
2009; Smith et al., 2011b; Gadhamsetty et al., 2014; Li and
Handel, 2014; Le et al., 2015), can slow the per capita rate of
clearance. Spatial constraints (e.g., crowding effect), where the
number of immune cells within an area is limited, may also
play a role. In contrast, numerous clearance mechanisms (e.g.,
interferons, macrophages, neutrophils, natural killer (NK) cells)
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are thought to be important during early- and mid-infection, but
their contribution to the viral load kinetics is unclear. Using a
model to distinguish between these mechanisms is challenging
given the close fit of simple kinetic models to viral load data
(Figure 1 and Figure S1). Further, neither the data nor themodels
can discriminate whether the maintenance of high viral loads
is due to a lack of clearance of infected cells (i.e., long infected
cell lifespan/ineffective clearance) or to the balance of new
infections and clearance (i.e., short infected cell lifespan/rapid
clearance coupled with rapid virus infection/production).
Thus, new experimental designs and more diverse data are
necessary.

Viral titers remain the most frequently used data to calibrate
models and assess infection dynamics. This is because collecting
immunological data is more laborious and expensive. Thus,
we seek models that are simple yet accurate and that can be
used in the absence of immunological data. The standard viral
kinetic model includes the minimal number of parameters and
equations needed to recapitulate viral load dynamics. However,
viral load data is typically insufficient to uniquely define all 6
parameters (Miao et al., 2011; Smith et al., 2011a). Fortunately,
this has not limited our ability to make robust predictions
about the underlying biology or to estimate accurate parameter
values even when correlations are present (Gutenkunst et al.,
2007; Smith et al., 2013; Smith and Smith, 2016). Here, the
resulting parameter ensembles were well-bounded (i.e., the 95%
CIs did not include the imposed bounds) and correlations were
observed in two sets of parameters (Figure 2). The correlation
between the rates of virus production (p) and virus clearance
(c) indicates the balance of these processes. This is expected
because viral loads measure the amount of virus present and slow
virus production/clearance would be indistinguishable from fast
production/clearance. Similarly, the rates of infection (β) and
infected cell clearance (δd/Kδ) were correlated, which indicates
a balance of cells becoming infected and being cleared. This is
visible in Figure 4B, where the log-linear fit to the data in the
growth phase (red line) deviates from the model solution (black
dashed line).

Analyzing infection kinetics with mathematical models
provides a means to quantify different infection processes. By

modeling viral load data, we can make meaningful predictions
about the time scales, magnitudes, and rates of different
processes even if we cannot directly define specific mechanisms.
Further, having a well-characterized model allows us to design
new experiments and to perform in silico experiments that
evaluate situations where data is challenging to obtain. Here,
our data, model, and analyses suggest that the clearance rate
of infected cells is variable and depends on their density
such that clearance slows when infected cells are numerous
and is fast when they are in low numbers. Determining
what processes give rise to this density dependence remains
an open question. Understanding how and why the rate
changes should facilitate a deeper understanding of other viral
infections and of immunological data, as it becomes available.
Further establishing how the virus and host components work
together and how they can be manipulated will undoubtedly
aid the development of therapies that prevent or treat IAV
infections.
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We present a multi-scale model of the within-phagocyte, within-host and population-level

infection dynamics of Francisella tularensis, which extends themechanistic one proposed

by Wood et al. (2014). Our multi-scale model incorporates key aspects of the interaction

between host phagocytes and extracellular bacteria, accounts for inter-phagocyte

variability in the number of bacteria released upon phagocyte rupture, and allows one

to compute the probability of response, and mean time until response, of an infected

individual as a function of the initial infection dose. A Bayesian approach is applied to

parameterize both the within-phagocyte and within-host models using infection data.

Finally, we show how dose response probabilities at the individual level can be used

to estimate the airborne propagation of Francisella tularensis in indoor settings (such

as a microbiology laboratory) at the population level, by means of a deterministic zonal

ventilation model.

Keywords: Francisella tularensis, Markov process, multi-scale model, dose response probability, mean response

time, zonal ventilation model

1. INTRODUCTION

Francisella tularensis is a gram-negative, facultative bacteria and the causative agent of tularemia
(Oyston et al., 2004; Oyston, 2008). Due to its high infectivity and ability to cause a debilitating
disease with the inhalation of as few as 10 organisms, F. tularensis has been classified as a category A
bioterrorism agent by the Centers for Disease Control and Prevention (CDC). Following inhalation,
bacteria are deposited in the lungs where, to begin with, they are primarily taken up by alveolar
phagocytes through phagocytosis, as described by Hall et al. (2008). By escaping the Francisella-
containing phagosome (FCP), bacteria enter into the cytosol of the phagocyte. F. tularensis can
resist killing in the cytosol from reactive oxygen species (ROS) and can subsequently undergo
multiple rounds of division within the host cell. Following this intracellular bacterial replication,
the host phagocyte ruptures and dies, releasing its bacterial load back into the extracellular
environment (Cowley and Elkins, 2011). For up to 72 h post-infection, F. tularensis is capable of
preventing immune recognition. Therefore, it is important to understand how an individual may
react to the infection, and when they develop tularemia.

Dose response models have been developed in an attempt to quantify the risk to a population
associated with chemical and biological agents. However, unlike with chemical agents where the
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initial dose is the total amount available to cause a response,
the ability of biological agents to reproduce post-infection
means that the extent of replication within the host must be
taken into account (Huang and Haas, 2009). Furthermore, since
this timescale of infection is in the order of days, and since
the window of opportunity for effective medical treatment is
often limited, a better understanding of the infection timescale
could provide valuable information to guide optimal treatment
strategies. Attempts have therefore been made to incorporate
time into such dose response models. Many of these original
approaches involved adjusting existing dose response models,
such as the classical exponential and beta-Poisson models, or
probit analyses to allow for time dependency of the model
parameters (Chen, 2007; Huang and Haas, 2009). However, by
choosing convenient statistical distributions, the link between the
dose response model and the underlying within-host biological
mechanisms that govern the level of bacterial replication is
tenuous. A stochastic mechanistic model is proposed by Pujol
et al. (2009) for the within-host interaction dynamics between
immune effector cells and pathogens, which takes into account
both the total dose inhaled by the host and the total exposure
period during which this dose is inhaled. It is also worth
mentioning the work by Gillard et al. (2014), where a stochastic
within-host computational model is proposed for the infection
process, in the BALB/c mouse, following inhalational exposure to
Francisella tularensis SCHU S4. By focusing on a compartmental
agent based model, Gillard et al. (2014) consider the intracellular
dynamics of a single infected phagocyte, and model the stages
of bacterial replication and phagocyte rupture as a birth process
with catastrophe, where the number of bacteria released in a
single rupture event follows a geometric distribution. The average
number of bacteria released is then estimated using the mean of
this geometric distribution.

Another recent example is the Markov chain model described
by Wood et al. (2014), which addresses these issues by
considering the key interactions between F. tularensis bacteria
and host (human) phagocytes within the lung space. Using
the Markovian nature of the process, the probability and time
for the total number of bacteria to reach some threshold can
be computed, this threshold being identified as the necessary
amount of bacteria needed for host illness onset. Despite this,
fitting procedures are still used to obtain quantities, such as
the time until a single infected phagocyte ruptures, which are
required to parameterize the model. A particular limitation
suggested by Wood et al. (2014) is the consideration of a
deterministic (constant) time for the time to rupture of each
infected phagocyte. This does not allow for modeling the
experimentally observed variability in this time among different
phagocytes, where in fact a log-normally distributed rupture time
is predicted byWood et al. (2014), but not explicitly incorporated
into the model. Also, by using a deterministic approach to
modeling the intracellular growth of F. tularensis bacteria, Wood
et al. (2014) assume a constant number of bacteria released
on rupture of any infected phagocyte, not accounting for the
existing variability in the number of bacteria released by different
phagocytes.

In this paper, an extension to the model described by
Wood et al. (2014) is proposed. By incorporating a second,
within-phagocyte, model into the existing within-host model,
the stochastic intracellular dynamics of F. tularensis can be
replicated. This can account for the log-normally distributed
rupture time, leading to a rupture size probability distribution
(i.e., number of bacteria released upon phagocyte rupture) which
enables us to account for inter-phagocyte variability at the within-
host level. Thus, the within-phagocyte model can be linked with
the within-host model for the interaction between extracellular
bacteria and susceptible phagocytes by means of the distribution
of the number of bacteria released by a single infected phagocyte,
obtained from analyzing the within-phagocyte model, which
allows for varying phagocyte rupture sizes in the within-host
model. In summary, this multi-scale model allows us to relax
the assumption made by Wood et al. (2014) that a fixed number
of bacteria is released from every single infected phagocyte on
rupture. For both the within-host and within-phagocyte models,
analytical approaches to calculate the summary statistics (dose
response probability and mean time until response) defined
by Wood et al. (2014) are outlined. However, by exploiting
the structure of the resulting Markov processes, more efficient
approaches than the methods proposed by Wood et al. (2014)
are described here. Finally, a zonal ventilation model for the
indoor airborne spread of F. tularensis is presented in order to
illustrate how dose response probabilities at the individual level,
computed from the within-host model, can be used in order to
make predictions at the population level.

2. MATERIALS AND METHODS

In this section, our aim is to develop a multi-scale model for
the infection dynamics of F. tularensis bacterium, by linking a
within-phagocyte, a within-host and a population-level model. In
section 2.1 we develop a stochastic within-phagocyte model for
the infection dynamics of a single phagocyte by F. tularensis. We
show how the log-normally distributed rupture time estimated
by Wood et al. (2014) from experimental data (Lindemann et al.,
2011), can be incorporated into this model, while maintaining
the Markovian nature of the underlying stochastic process, and
how first-step arguments allow one to compute the probability
distribution of the total number of bacteria released by an
infected phagocyte upon rupture. This distribution is used in
section 2.2 to link the within-phagocyte model to the within-
host model for the interaction between extracellular bacteria and
phagocytes within the host. This within-host model accounts for
inter-phagocyte variability in the amount of bacteria released
upon rupture. The aim of the within-host model is to compute
the probability of host response (in terms of the onset of
symptoms), as well as the time to this response. Finally, we
illustrate in section 2.3 how these dose response probabilities
at the individual level might be used for predicting, at the
population level, the number of individuals showing symptoms
upon indoor release and airborne spread of F. tularensis,
by means of a zonal ventilation model and under different
ventilation settings in an hypothetical microbiology laboratory.
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2.1. Within-Phagocyte Model
The first level of the multi-scale model is a within-phagocyte
model, used to replicate the dynamics of an F. tularensis
bacterium after it has been ingested by a host phagocyte, assuming
that the bacterium escapes the FCP, entering into the cytosol and
starting replication. Phagocytosis leading to successful bacterial
killing will be considered in the within-host model, and is not
analyzed here. This includes the replication of bacteria within the
cytosol, and the subsequent rupturing and death of the phagocyte
(Cowley and Elkins, 2011). These stages of the intracellular life-
cycle can be modeled using a continuous-time stochastic process
X = {X(t) : t ≥ 0} that follows the structure of a birth-
and-death process with catastrophe (Karlin and Tavaré, 1982;
Di Crescenzo et al., 2008), where X(t) is the number of bacteria
within the phagocyte at time t ≥ 0. In particular, replication
and death of bacteria within the phagocyte can be modeled as
a stochastic logistic growth process over states in N = {1, 2, . . . },
representing the number of bacteria contained within the cytosol
(see Figure 1A). Birth and death rates for state n ∈ N are
obtained by following arguments by Allen (2003, section 6.8),
where we assume that each bacterium replicates independently
of all others at rate λ, so that:

λn =

{

λ(C−1)
C if n = 1 ,

λn otherwise,
γn =

{

0 if n = 1 ,
λn2

C otherwise .
(1)

We denote by λ [hours−1] the per bacterium birth rate, and
by C [bacteria] the carrying capacity of the population of
intracellular bacteria within a single phagocyte, which represents

limitation of nutrients necessary for replication, such as iron or
tryptophan (Jones et al., 2012). The decision to assume logistic
growth for the intracellular bacteria reflects the competition for
resources within the phagocyte. The rate γ1 is set to zero since
only phagocytes experiencing an effective long-term bacterial
infection (and within-phagocyte replication) are later considered
in the within-host model. The initial state of the process X

corresponds to the number of bacteria taken up by a phagocyte.
Experimental evidence by Golovliov et al. (2003) suggests that
the uptake of F. tularensis is relatively ineffective in monocytic
cells so that, during the initial phase of the infection, on average
only one or two intracellular bacteria per cell were observed.
Thus, we assume that a single phagocyte will take up a single
bacterium, hence the process X will always begin in state
X(0) = 1. Once infected, the possibility of the phagocyte
taking up more bacteria is neglected (Wood et al., 2014), and
an increase in its bacterial load is solely due to the replication
of the bacterium initially ingested. We refer the reader to the
Supplementary Material where the impact of this assumption is
further explored.

The number of bacteria released upon rupture of an infected
phagocyte will depend on the stochastic dynamics of this logistic
growth process, as well as on the actual time when this rupture
takes place. In order to describe this rupture event, we consider
additional transitions to an absorbing (rupture) state, B, from any
of the transient states in N, as shown in Figure 1B. The rate at
which this rupture event occurs is assumed to be independent of
the number of bacteria within the phagocyte. This is based on the
fact that bacterial escape into the cytosol has been shown to be

FIGURE 1 | Within-phagocyte model. (A) Logistic growth process for the within-phagocyte replication of bacteria; (B) logistic growth process with log-normally

distributed phagocyte rupture, moving the process to absorbing state B; (C) approximation of the process in (B) by using a PH(η, T) distribution for the rupture time.
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both essential and sufficient for triggering caspase-3 activation,
which is the mechanism thought to induce cell death (Santic
et al., 2010). In fact, a recent experimental study by Brock and
Parmely (2017) shows that cell death does not require high
bacterial burden, nor does a large number of intracellular bacteria
ensure that phagocyte rupture would result soon. This implies
that X can be thought of as a stochastic birth-and-death process
where t = 0 marks the start of a “clock” that counts up
toward the time of rupture of the phagocyte. At this moment,
X immediately transitions into state B, from whichever of the
transient states this may be, this state accounting for the number
of bacteria released upon rupture (i.e., the rupture size). By fitting
a deterministic model to experimental data, Wood et al. (2014)
found that the time Trupture taken for an infected phagocyte to
rupture is log-normally distributed, Trupture

∼ logN(3.72, 0.385),
so that the average rupture time is E[Trupture] = 44.4 h.
Instead of incorporating this log-normally distributed time in
the within-phagocyte model, Wood et al. (2014) consider a
deterministic logistic growth process for the amount of bacteria
within the phagocyte. Finally, Wood et al. (2014) set the number
of bacteria released to be equal to the amount of bacteria
in this logistic growth process at time Median[Trupture] hours
(i.e., by considering Median[Trupture] and neglecting the actual
distribution of the random variable Trupture), which leads to a
constant and deterministic number of bacteria released for any
infected phagocyte.

If a log-normal distribution of Trupture is used in our
model to compute the probability distribution of the number
of bacteria released upon phagocyte rupture, this leads to
the process described in Figure 1B. However, by considering
a log-normally distributed inter-event time in the stochastic
process, the resulting process X in Figure 1B is no longer
Markovian. In order to address this difficulty, we propose
to approximate this log-normally distributed rupture time
Trupture

∼ logN(3.72, 0.385) by a phase-type (PH) distribution,

Trupture
approx.
∼ PH(η,T), since the family of phase-type

distributions is dense within the family of continuous non-
negative distributions (He, 2014). This leads to the process shown
in Figure 1C. In the Supplementary Material, we explain in
detail how one can approximate this log-normal distribution
by an approximate phase-type distribution, which depends on
parameters η (a vector) and T (a matrix). The resulting estimated
parameters η and T obtained for a PH distribution which
approximates the logN(3.72, 0.385) distribution, as well as a
graphical representation of this approximation, are reported in
Figure 2.

Once the log-normal distribution for the rupture time has
been approximated by a PH distribution, the resulting within-
phagocyte stochastic process X in Figure 1C is Markovian, and
the probability distribution of the number of bacteria R released
upon rupture can be analytically computed (see Supplementary
Material). The probability distribution of R, defined in terms of
the following probabilities

Rk = P(R = k) = probability that the infected phagocyte

releases k bacteria upon rupture, (2)

is used in section 2.2 to incorporate inter-phagocyte variability
(in the amount of bacteria released upon phagocyte rupture) in
the within-host infection dynamics.

2.2. Within-Host Model
The within-host model proposed here is a birth-death-rupture
model that replicates the dynamics of F. tularensis within the
lung, following inhalation of some initial quantity of bacteria
(initial dose), and is largely based on the original model by
Wood et al. (2014). Within the lung, bacteria can be killed
by host immune cells or ingested by host phagocytes. In the
latter case, the phagocyte might kill the corresponding bacterium
(e.g., if the phagocyte is activated), or this bacterium can
escape the FCP and enter into the cytosol, resulting in rapid
proliferation of the bacteria and the subsequent rupture and
death of the phagocyte, as described by the within-phagocyte
model. Three events are therefore included in the within-host
model, as well as their effect on the total population of bacteria
and the number of infected phagocytes, and are detailed as
follows:

• Phagocytosis and bacterial survival (rate α > 0 [hours−1]):
this phagocytosis event refers to the phagocytosis and
intracellular survival of a bacterium; that is, to phagocytosis
resulting in bacterial escape from the FCP, and in the
subsequent events represented by the within-phagocyte
model.

• Extracellular bacterial death (rate µ > 0 [hours−1]):
host defense mechanisms such as the complement system,
antibodies, natural killer cells, activated phagocytes and
antimicrobial peptides directly contribute to the killing of
extracellular bacteria (Jones et al., 2012). These methods of
killing, including phagocytosis with successful intracellular
bacterial killing, are collectively represented in the within-host
model as this single event, with rate µ.

• Rupture of infected phagocytes (rate δ =

Median[Trupture]−1 [hours−1]): following phagocytosis of
bacteria that results in their survival and intracellular
proliferation, infected phagocytes rupture and die. The
distribution of the number of bacteria released, computed
by means of the within-phagocyte model, is incorporated
here in terms of probabilities Rk. This then accounts for
an addition to the original model by Wood et al. (2014),
allowing for inter-phagocyte variability in the rupture
size.

In this way, the within-phagocyte model in section 2.1
allows one to represent the intracellular bacterial dynamics
for bacteria surviving the phagocytosis event, escaping the
FCP and entering into the cytosol, eventually leading to
phagocyte rupture and bacterial release. Phagocytosis leading
to successful bacterial killing is one of the several mechanisms
described above leading to bacterial death at the within-
host level. Furthermore, intracellular bacterial replication is
not explicitly considered in the within-host model, since one
bacterium is considered per infected phagocyte. Once rupture
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FIGURE 2 | Phase-type approximation of the log-normally distributed rupture time. (Left) A depiction of the one-dimensional Markov process W (see Supplementary

Material) associated with the PH(η,T) distribution considered, so that the time to reach state B approximately follows T rupture
approx.

∼ logN(3.72, 0.385). (Right) Plot

showing how accurately the PH(η,T) distribution approximates the desired log-normal distribution.

of an infected phagocyte occurs, the number of bacteria
released to the extracellular environment is given by the
rupture size distribution computed from the within-phagocyte
model. Given that Rk is the probability that an infected
phagocyte, initially infected by a single bacterium, releases k
bacteria on rupture, the rate at which an infected phagocyte
ruptures releasing k bacteria in the within-host model is
then given by δRk. We note that since

∑

∞

k=1 Rk = 1, δ

can be interpreted as the total rate of rupture of a single
phagocyte.

The within-host model can be described using a continuous-
time two-dimensional Markov process Y = {Y(t) =

(B(t), P(t)) : t ≥ 0}, where B(t) denotes the total number of
extracellular bacteria and bacteria-containing phagocytes at time
t ≥ 0, and P(t) represents the number of infected phagocytes at
time t ≥ 0, B(t) ≥ P(t) for any time instant t ≥ 0. An initial state
of Y given by Y(0) = (k, 0) represents that k is the number of
bacteria initially inhaled by the individual (initial dose), and there
are 0 infected phagocytes. When the total population of bacteria
reaches a threshold M ∈ N, a response is assumed to occur and
reflects the onset of symptoms in the infected individual (Wood
et al., 2014). This state,M, referred to as the response state, is one
of two absorbing states ofY ; the other is state 0 and represents the
clearance of infection without reaching this response threshold. A
depiction of the model is provided in Figure 3.

Two summary statistics of interest in the within-host model
are the probability of response and the mean response time.
For each of these, an efficient analytic approach for their exact
computation can be found in the Supplementary Material. In
particular, we define π(i,j) as the probability of response given the
initial state Y(0) = (i, j)

π(i,j) = lim
t→+∞

P
(

Y(t) = M |Y(0) = (i, j)
)

, 0 ≤ j ≤ i ≤ M−1 .

(3)
By applying first-step arguments, the following recursive formula
for π(i,j) may be obtained

π(i,j) =
1

(i− j)(α + µ)+ δj



(i− j)
(

απ(i,j+1) + µπ(i−1,j)

)

+ δj





M−i
∑

k=1

Rkπ(i+k−1,j−1) +

∑

k≥M−i+1

Rk







 , (4)

for 0 ≤ j ≤ i ≤ M − 1, with the boundary condition π(0,0) = 0
representing that the probability of response is equal to zero if the
recovery state is reached. A detailed derivation of this expression,
as well as an algorithmic solution to the previous equations, are
provided in the Supplementary Material.

Onemay define themean time until the infected host responds
in terms of the onset of symptoms. This can be done by choosing
a threshold in the total number of extracellular bacteria equal
to M, and considering the time to get to M, T(i,j) = inf {t ≥

0 : B(t) = M | Y(0) = (i, j)}. Since absorption into the
response state M is not certain, there is no guarantee that the
time to response, T(i,j), will be finite (i.e., T(i,j) = +∞ if the
individual recovers without reaching the threshold stateM, while
T(i,j) < +∞ if this threshold is reached, leading to the onset of
symptoms). Thus, onemay compute the restrictedmean response
time, after which the conditioned mean response time can be
obtained. That is, if T(i,j) denotes the time to reach state M
provided that Y(0) = (i, j), then the restricted and conditioned
mean response times are given respectively by

r(i,j) = E
[

T(i,j)1T(i,j)<+∞

]

,

m(i,j) = E
[

T(i,j)|T(i,j)<+∞
]

=
r(i,j)

π(i,j)
0 ≤ j ≤ i ≤ M − 1, (5)

where 1A is equal to 1 if A is satisfied and 0 otherwise. Following
a first-step analysis, a recursive formula for the scalar quantities

Frontiers in Microbiology | www.frontiersin.org July 2018 | Volume 9 | Article 116592

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Carruthers et al. A Stochastic Multi-Scale Model of Francisella tularensis Infection

FIGURE 3 | Within-host model with inter-phagocyte variability. A depiction of the extended two-dimensional Markov chain with M = 4. State (i, j) represents i

extracellular bacteria and bacteria-containing phagocytes, and j bacteria containing phagocytes. The rates of rupture, phagocytosis, and death of extracellular

bacteria are δ > 0, α > 0 and µ > 0, respectively. In our model, each rupturing phagocyte releases k bacteria with probability Rk . Solid arrows represent the events

allowed in the original model (Wood et al., 2014), where each rupturing phagocyte always releases G = 3 (for illustrative purposes; G = 358 in the original model by

Wood et al., 2014) bacteria upon rupture. Dashed arrows are an addition in our model, and account for inter-phagocyte variability in the rupture size.

r(i,j) is given by

r(i,j) =
1

(α + µ)(i− j)+ δj



(i− j)(αr(i,j+1) + µr(i−1,j))+ δj

M−i
∑

k=1

Rkr(i+k−1,j−1)

+

(i− j)(απ(i,j+1) + µπ(i−1,j))+ δj
(

∑M−i
k=1

Rkπ(i+k−1,j−1) +
∑

k≥M−i+1 Rk

)

(i− j)(α + µ)+ δj



 ,

(6)

for 0 ≤ j ≤ i ≤ M − 1, with the boundary condition r(0,0) = 0
representing the restricted time to a response if the recovery state
is reached. Similar arguments to those used for computing the
dose response probabilities, and described in the Supplementary
Material, may be used for solving Equation (6) in an algorithmic
and matrix-oriented way.

2.3. Population-Level Model
With a multi-scale model of F. tularensis infection that captures
both the intracellular and within-host dynamics, we can now
formulate a population scale model. At the population level,
outbreaks of tularemia, as a result of infection by F. tularensis,
have been declared in microbiology laboratories (Shapiro and
Schwartz, 2002). This is directly related to the fact that diagnosis
of tularemia requires a high level of suspicion, since the
disease often presents with non-specific symptoms and non-
specific results of routine laboratory tests (Report, 2008). Because
F. tularensis is a risk to laboratory personnel, clinicians are
required to notify the laboratory when tularemia is suspected in a

given patient, and if this is not notified, an outbreak can occur
within the laboratory when manipulating the contaminated
samples, as in the outbreak reported by Shapiro and Schwartz
(2002). In particular, this notification allows for manipulation of
the corresponding samples to be carried out under strict control
measures, such as Biosafety Level 2 (BSL-2) or BSL-3 conditions
(Report, 2008). If proper control measures are not taken when
manipulating these samples, or if an accident occurs, F. tularensis
can be released to the air, triggering its airborne dispersal and
spread. Specific high-risk sample manipulation activities that
have been identified in the literature are centrifuging, grinding
or vigorous shaking (Report, 2008).

Recent work has been carried out for the indoor airborne
spread of pathogens while taking into account the ventilation
regime in place at the facility under analysis, such as the airborne
spread of bacteria in health care facilities (Liao et al., 2005).
For these scenarios, zonal ventilation models that are able to
link the airflow dynamics within the facility and the epidemic
dynamics at the population level are extremely useful (Noakes
and Sleigh, 2009; López-García et al., under review). We consider
here the scenario of a laboratory consisting of two rooms joined
by a corridor, and where a given ventilation setting, in terms of
the airflow dynamics, is in place (see Figure 4). We consider
that a fixed amount of bacteria is released at time t = 0 in a
given room. This could represent some high-risk manipulation
of a contaminated sample or any accident causing airborne
release of F. tularensis bacteria, which we assume here passes
unnoticed for the staff (Shapiro and Schwartz, 2002). Our aim
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FIGURE 4 | Zonal ventilation model for the airborne spread of bacteria within a microbiology laboratory. (Left) A diagram showing the setup of two rooms and a

corridor within a laboratory, split into six ventilation zones. Dotted lines represent the partitions of rooms, arrows between zones show potential airflow, which depends

on the particular ventilation setting v considered, and dashed lines represent potential extract ventilation systems within each zone. Individuals are represented by

circles, and the red and blue squares indicate two potential locations of the initial bacterial release. (Right) The system of ODEs that governs the airborne spread of

bacteria across the ventilation zones, and the inhalation of these bacteria by individuals, for a particular ventilation setting v. Concentration of bacteria at zone j, Cj (t),

increases with flow of air from neighboring zones (rates β
(v)
ij
) and decreases due to inhalation (rate ρ), flow of air to neighboring zones (rates β

(v)
ji
) and extraction (rate

Q
(v)
j
). The cumulative amount of bacteria inhaled by each individual at zone j is denoted by p

(v)
j
(t).

is to estimate, for any given ventilation setting and any possible
spatial position of the release location within the laboratory, the
total number of individuals who would develop symptoms in the
near future.

We propose here to follow the approach introduced byNoakes
and Sleigh (2009), recently extended by López-García et al.,
(under review), where a system of ordinary differential equations
(ODEs) is used to model the concentration of F. tularensis in
the air in the different spatial compartments of the laboratory.
In particular, a ventilation regime is defined by splitting this
laboratory into ventilation zones, where the main assumption
is that the air is well-mixed in each zone, but that airflow
imbalances across the different zones can lead to different
pathogen concentrations in the air at each zone (Noakes and
Sleigh, 2009). Therefore, individuals in the same ventilation
zone are assumed to have equal probability of inhaling the
F. tularensis bacteria. Airflow dynamics could be further refined
by considering a larger amount of ventilation zones. If Ci(t)
[bacteria · m−3] denotes the concentration of bacteria in the
air in zone i at time t, and pi(t) [bacteria] is the total amount
of bacteria inhaled by each individual in this zone up to time
t, then Ci(t) and pi(t) satisfy the system of ODEs given in
Figure 4. Here, Vi [m3] denotes the volume of zone i, Qi

[m3
· min−1] is the rate at which air is extracted from zone

i by the ventilation system, βij [m3
· min−1] is the rate at

which air flows from zone i to zone j, ni is the number of
individuals in zone i, and ρ [m3

· min−1] is the pulmonary rate,
or the rate at which individuals inhale air (Noakes and Sleigh,
2009). We set ni = 2 for i ∈ {1, 2, 4, 5} to represent two
individuals working in each of these zones during the bacterial
release, where the propagation occurs in the timescale of minutes

(see section 3), and ni = 0 for i ∈ {3, 6} (i.e., corridor
areas).

We propose to link the dose response probabilities obtained
from the within-host model with this zonal ventilation model,
by considering that the steady state value of pi(t) is equal to the
total dose that an individual in zone i inhales. Thus, we implicitly
assume that the timescale at which pi(t) reaches equilibrium
(minutes, see section 3), is significantly shorter than the timescale
of the within-host infection dynamics (days, see section 3), so that
limt→+∞pi(t) can be considered as the initial dose for individuals
in zone i. We note that the differential equations in Figure 4

depend on the rates of the ventilation setting under analysis,
and on the initial conditions Ci(0), 1 ≤ i ≤ 6 (related to
where the bacterial release occurs in the first place). In section 3,
we consider different ventilation settings and potential initial
locations of the bacterial release.

3. PARAMETER VALUES

In this section, we discuss how to calibrate our within-phagocyte
and within-host models from data. We also consider different
ventilation settings for the population model, according to values
reported by Noakes and Sleigh (2009) for the airborne spread of
bacteria within a health care facility.

3.1. Within-Phagocyte Model
In order to use the within-phagocyte model described in section 2
to compute the rupture size distribution of any given infected
phagocyte, parameters λ and C must first be estimated for the
logistic growth process in Figure 1 for the within-phagocyte
bacterial replication. We do so, making use of experimental
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data of the number of intracellular bacteria within a phagocyte
(Lindemann et al., 2011). In this experiment, measurements of
the number of intracellular bacteria were only considered for
phagocytes that were still alive and had not ruptured (Lindemann
et al., 2011). Therefore, we obtain estimations for λ and C
by calibrating the logistic growth process in Figure 1A, where
rupture events are neglected.

A sequential Approximate Bayesian Computation (ABC)
method is used to get estimations for these parameters. When
implementing the ABC method, unknown parameter values are
sampled from a prior distribution, and model predictions (e.g.,
number of intracellular bacteria at different time instants) are
obtained for these parameter values. Once these predictions
are in hand, one can compare these model predictions with
experimental data by using a particular distance measure, and
accept or reject these sampled parameter values depending on
this distance being below or above a given threshold ǫ. Accepted
sampled parameter values lead to a posterior distribution for the
corresponding parameters (Kypraios et al., 2017).

We consider as prior distributions for each parameter λ ∼

U(0.01, 1) and C ∼ U(100, 1500), which have been set
according to values previously estimated by Wood et al. (2014).
We sequentially implement the ABC algorithm by considering
successively smaller tolerances, ǫ, to refine the parameter space.
For each pair (λ,C) of parameters sampled from the priors,
the birth-and-death process is simulated using the Gillespie
algorithm to obtain the number of intracellular bacteria as
predicted by the model (Gillespie, 2007). Once this number is
predicted from our model, these values are compared with data
by Lindemann et al. (2011). In particular, if X(t) is the amount of
bacteria predicted by our within-phagocyte model at time t, and
Data(t) is the number of bacteria observed at that time instant
according to data by Lindemann et al. (2011), which are available
for a set of time instants T, we make use of the Euclidean distance

d(Model Prediction,Data) =

(

∑

t∈T

(X(t)− Data(t))2

)
1
2

, (7)

so that each corresponding parameter pair (λ,C) is accepted
only if d(Model Prediction,Data) < ǫ. At first the tolerance
is set to ǫ = 100, so that an estimate of where the true
parameters lie can be found. After this, the prior distributions
are adjusted accordingly and the ABC algorithm is repeated for
tolerances ǫ = 50, 25, 15, to converge around the posterior
distribution (Toni et al., 2009). We note that threshold values
ǫ = 100, 50, 25, 15 were chosen after a preliminary exploration
of the parameter space and the corresponding distance measures
between the model predictions and experimental measurements,
so that a posterior sample of size 105 could be obtained in
around 48 h, by using the high performance computing ARC3
facilities at the University of Leeds. A bivariate histogram
of the sample posterior distribution obtained in this way is
provided in Figure 5, with the median of the sample indicated.
Univariate histograms for each parameter are given on the
corresponding axes.

3.2. Within-Host Model
Estimated parameter values α and µ for the within-host model
proposed by Wood et al. (2014) were obtained using non-linear
least squares to fit their within-host model to experimental data
for the number of extracellular bacteria within the host during
the initial 48 h post infection. Since our within-host model is
part of a multi-scale model which incorporates a variable number
of bacteria released on rupture of any infected phagocyte, new
estimations for these parameter values are now required. Thus,
ABC is used to calibrate the parameters (α,µ) of the within-host
model depicted in Figure 3 by using within-host infection data
(Eigelsbach et al., 1962; White et al., 1964). We note that this
requires the distribution of the number of bacteria released on
rupture. This has been described in the Supplementary Material,
using the posterior median values of λ and C of Figure 5.
This same rupture distribution is used in each iteration of
the ABC algorithm at the within-host level. In keeping with
Wood et al. (2014), and to represent the heterogeneities at the
population level in individual susceptibility, M is not fixed and
is considered instead a random value M ∼ logN(26.2, 6.05),
according to data by Saslaw et al. (1961) and Sawyer et al.
(1966). These data report the amount of bacteria found within
infected individuals at the time of symptoms onset. For small
to moderate values of M, the exact analysis carried out in
the Supplementary Material can be applied to compute the
probability of response and themean response time in the within-
host model. On the other hand, stochastic simulation approaches
need to be implemented for large values of M. We note that
given the potential extremely large values of M, the Gillespie
algorithm is not a viable choice to simulate the within-host
infection dynamics for these values, and an approximate τ -
leaping procedure is used instead, with adaptive step size (Cao
et al., 2006).

Prior distributions assumed for each parameter are α ∼

U(0, 1) and µ ∼ U(0, 25). Because of the shorter intervals
considered in the priors of these parameters compared to those
in section 3.1, we carry out here a standard rejection ABC (i.e.,
not sequential) where 2 × 105 iterations of the ABC algorithm
were performed. Tolerance is set so that an acceptance rate of
1% is obtained, and a sample of size 2 × 103 is obtained for
the posterior distributions. Due to the large orders of magnitude
for the number of extracellular bacteria within the host observed
in the data by Eigelsbach et al. (1962) and White et al. (1964),
we propose here to use the Euclidean distance as for (λ,C) but
over the logarithm of the predicted values and the observed data
by Eigelsbach et al. (1962) and White et al. (1964). That is, we
consider the distance

d(Model Prediction,Data) =

(

∑

t∈T

(logX(t)− logData(t))2

)
1
2

.

(8)
The results of the ABC lead to the posterior bivariate histogram
of Figure 6, which clearly indicates a positive correlation between
parameters α and µ, where most of the learning occurs about
the ratio µ/α. We note that this positive correlation is directly
related to the fact that, intuitively, α and µ rates correspond
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FIGURE 5 | Within-phagocyte parameter estimation. (Left) A bivariate histogram of λ and C accepted values as a result of the ABC method, with median values

marked with a red circle. Values (λ,C) estimated by Wood et al. (2014) are reported with a red triangle. (Right) Number of bacteria within an infected phagocyte

through time, predicted from our model (blue curve) using median posterior values for (λ,C), and compared to the theoretical predictions by Wood et al. (2014) (red

curve), and experimental data by Lindemann et al. (2011) (circles).

FIGURE 6 | Within-host parameter estimation. (Left) A bivariate histogram for the parameters α and µ obtained as a result of the ABC procedure for the within-host

model. The posterior median values are indicated with a red circle, while values (α,µ) = (0.0939, 3) h−1 estimated by Wood et al. (2014) are indicated with a red

triangle. (Right) A posterior histogram for the ratio µ/α.

to within-host events which can be considered as opposite
events in this system (one representing bacterial escape from
the extracellular environment, facilitating disease, and the other
representing bacterial death, preventing disease). Thus, our
within-host model dynamics can replicate the experimental data
by either considering that both events occur, simultaneously,
at a slower or faster pace. However, we point out that since
the (α,µ) joint distribution in Figure 6 (left) does not have
the accepted sampled values homogeneously located all around
the elliptic shape, where more accepted values can be found
around the center of the ellipse than in the corners, one should
consider that these parameter values (near the corresponding
medians, given by the red circle) have larger posterior probability

than the estimated values obtained by Wood et al. (2014) (red
triangle). Final parameter values for the within-phagocyte and
the within-host models are reported in Table 1.

We can compare our within-host model predictions, in terms
of the number of bacteria throughout time, with the data by
Eigelsbach et al. (1962) and White et al. (1964). In Figure 7 we
plot the predictions made by our within-host model and compare
them with the bacterial load data by Eigelsbach et al. (1962) and
White et al. (1964), where the initial conditions are given as the
corresponding data values at time t = 0. Similarly to results
by Wood et al. (2014), our within-host model does better in
predicting the data by White et al. (1964), where larger amounts
of bacteria were measured within the host.
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TABLE 1 | Parameter values for the within-phagocyte and within-host models.

Parameter Event Parameter value

λ Intracellular bacterial

replication

Estimated in Figure 5: 0.2164 h−1

(median)

C Intracellular carrying

capacity

Estimated in Figure 5: 393 bacteria

(median)

µ Extracellular bacterial death Estimated in Figure 6: 8.63 h−1

(median)

α Phagocytosis with bacterial

survival

Estimated in Figure 6: 0.3325 h−1

(median)

M Threshold value for

symptoms onset

Randomly distributed

M ∼ logN(26.2, 6.05)

δ Phagocyte rupture δ = Median[T rupture]−1
= 0.0241

h−1

Rk Probability of rupture with k

bacteria

From within-phagocyte model

(Figure 10)

FIGURE 7 | Predicted values of bacterial load by within-host model.

Within-host model predictions (curves) obtained as mean values throughout

time from Gillespie simulations for different initial bacterial loads (blue and

orange) corresponding to the initial values measured by Eigelsbach et al.

(1962) and White et al. (1964), vs. data points by Eigelsbach et al. (1962) and

White et al. (1964). Median values of α and µ considered as computed in

Figure 6.

3.3. Population-Level Model
Four different scenarios A1, A2, C1, and C2 are considered
depending on two potential bacterial release locations (see
Figure 4). Two potential ventilation regimes (A and C) within
the microbiology laboratory have been chosen, as described
in Table 2: ventilation regime A (scenarios A1 and A2) and
ventilation regime C (scenarios C1 and C2) considered by
Noakes and Sleigh (2009) and López-García et al. (under
review). Regardless of the particular location where it occurs,
it is assumed that 105 bacterial counts are released at time
t = 0. In each scenario it is assumed that Vi = 36m3

for i ∈ {1, 2, 4, 5} and Vi = 12m3 for i ∈ {3, 6}. The
pulmonary rate is set to ρ = 0.01m3

· min−1 (Noakes and
Sleigh, 2009), while the remaining parameters in Figure 4 are
provided in Table 2, along with the steady state values p(k) =

limt→∞

(

p
(k)
1 (t), p

(k)
2 (t), p

(k)
4 (t), p

(k)
5 (t)

)

, k ∈ {A1, A2, C1, C2}. A

graphical representation of scenarios A1, A2, C1 and C2 is given
in Figure 8, and the time course of the variables Ci(t), 1 ≤ i ≤ 6,
and pj(t), j ∈ {1, 2, 4, 5}, are plotted for scenario A1 in Figure 9

for illustrative purposes.

4. RESULTS

The distribution of the number of bacteria released by an
infected phagocyte, for posterior median values of λ and C from
Figure 5, is provided in Figure 10. In order to compare with
results by Wood et al. (2014), let us note that the approach they
use involves evaluating a deterministic logistic growth process
at the median (log-normally distributed) time taken for an
infected phagocyte to rupture. The method here may instead
be interpreted as computing the distribution of the number of
bacteria generated by means of the analogous stochastic logistic
growth process, but when the actual log-normally distributed
rupture time is incorporated into the model (see Figures 1B,C).
Since the deterministic and stochastic processes have both been
parameterized using the same data set, they are comparable,
and the median number of bacteria released from our predicted
distribution in Figure 10 is approximately equal to the fixed
value of 358 bacteria released upon rupture estimated by Wood
et al. (2014), supporting the fact that the median number of
bacteria released had previously been estimated correctly. Despite
this, the method outlined here is more general, since it allows
to incorporate the log-normal distribution of rupture times,
and thus, a more comprehensive analysis of the number of
bacteria released can be conducted, and incorporated into the
within-host dynamics, by considering inter-phagocyte rupture
size variability. Moreover, we note that the mean number of
bacteria released on rupture is predicted to be 288, significantly
lower than the fixed value 358 considered by Wood et al.
(2014). This is directly related to the bimodal shape of our
predicted rupture size distribution, which suggests that some
phagocytes will likely rupture with just a few bacteria, and that
the total number of bacteria released by each single infected
phagocyte was slightly over-estimated by Wood et al. (2014)
on average. We note that our model is able to predict that a
significant amount of phagocytes might rupture releasing few
bacteria, which is something that the deterministic approach
followed by Wood et al. (2014) does not reflect. We also
note that the actual rupture size distribution, to the best
of our knowledge, has not been experimentally measured in
vitro yet, which would allow us to do model selection based
on predictions in Figure 10. However, it has been recently
experimentally observed by single-cell analysis (Brock and
Parmely, 2017) that a significant amount of phagocytes can
die releasing very few bacteria. While the deterministic amount
of bacteria proposed by Wood et al. (2014) cannot account
for this, our model predicts indeed a significant amount of
phagocytes releasing very few bacteria, which is represented
by the first mode in Figure 10. This suggests that this mode
is not an artifact caused by the stochastic within-host model,
but that phagocytes rupturing soon (according to the estimated
log-normally distributed rupture time) would not have enough
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TABLE 2 | Parameter values for four ventilation regimes.

Source

Scenario βij (m
3
/min) Qi (m

3
/min) room Steady state

A1 β12 = β23 = β36 = β63 Qi = 3, i = 1, .., 6 1 p(A1) = (145, 82, 13, 17)

= β56 = β45 = β21 = β32

= β65 = β54 = 9

A2 β12 = β23 = β36 = β63 Qi = 3, i = 1, .., 6 5 p(A2) = (17, 23, 82, 110)

= β56 = β45 = β21 = β32

= β65 = β54 = 9

C1 β12 = β23 = β36 = β63 Q1 = Q4 = 9 1 p(C1) = (102, 46, 9, 9)

= β56 = β45 = 9 Q2 = Q3

β21 = β32 = β65 = β54 = 18 = Q5 = Q6 = 0

C2 β12 = β23 = β36 = β63 Q1 = Q4 = 9 5 p(C2) = (18, 18, 92, 92)

= β56 = β45 = 9 Q2 = Q3

β21 = β32 = β65 = β54 = 18 = Q5 = Q6 = 0

Airflow parameters for the four scenarios considered, and steady state bacterial intake values representing initial dose for individuals at each zone. Airflow parameters have been chosen

according to those in the ventilation regimes A and C considered by Noakes and Sleigh (2009) and López-García et al. (under review).

FIGURE 8 | Ventilation scenarios considered in the microbiology laboratory.

Four scenarios A1, A2, C1, and C2 corresponding to two potential release

locations (zone 1, scenarios A1 and C1; zone 5, scenarios A2 and C2).

Ventilation regime in scenarios A1 and A2 represents a well-mixed ventilation,

where airflow (arrows, with βik rates given as red numbers) is well balanced

across zones and same extract ventilation (circled values) is considered in all

zones. Ventilation regime in scenarios C1 and C2 represents airflow occurring

from the corridor areas to the opposed side of the rooms, where extract

ventilation is in place.

time for substantial bacterial proliferation, leading to small
rupture sizes predicted by the model and being experimentally
observed.

By using this rupture size distribution, and the within-host
model in section 2.2, the probability of response and mean
response times can be computed for varying initial doses. In
Figure 11 (left), we plot the cumulative probability of response
(i.e., cumulative probability of the process in Figure 3 reaching
state M), as predicted from our model for different initial doses.
We note that the asymptotic values in Figure 11 (left) represent
the probabilities of response for each initial dose. We plot in
Figure 11 (right) the (conditioned) mean time until response
predicted for different initial doses, and compare this with the
predictions by Wood et al. (2014) and with data of the time
until symptoms onset observed in infected individuals (Saslaw
et al., 1961; Sawyer et al., 1966). Our predictions are obtained by
using the posterior median parameter values in Figures 5, 6. We
note that, once parameters (α,µ) are estimated as explained in
section 3.1, results obtained here for the probability of response
and the (conditioned) mean response time are very similar to
those previously found by Wood et al. (2014), indicating that the
multi-scale model is not only capable of reproducing their results,
but also corresponds well with the two experimental data sets by
Saslaw et al. (1961) and Sawyer et al. (1966). However, we note
that our multi-scale model only replicates well these results for
posterior distribution of (α,µ) in Figure 6, where our predicted
median values are far away from those parameters estimated by
Wood et al. (2014). In particular, although these parameters are
highly correlated and determining their individual true values
is difficult, the histogram in Figure 6 suggests that the ratio of
α and µ ranges from 24.69 to 27.54, which is lower than the
ratio of 31.95 found by Wood et al. (2014). Moreover, our results
in Figure 6 suggest that both α and µ were underestimated by
Wood et al. (2014) (see the red circle and triangle in Figure 6).

At the population level, one can use the probability of response
for each individual computed from the within-host model, where
their initial dose is given by the steady state values in Table 2, in
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FIGURE 9 | Predicted airborne spread and inhalation of bacteria in the laboratory. Time course of the variables Ci (t), 1 ≤ i ≤ 6, and pj (t), j ∈ {1, 2, 4, 5}, for scenario A1.

FIGURE 10 | Predicted rupture size distribution. The distribution of the

predicted number of bacteria released by a single phagocyte on rupture, as

computed from the within-phagocyte model, compared to the fixed value

assumed by Wood et al. (2014). The posterior median values for λ and C in

Figure 5 are used to compute this distribution.

order to compute the distribution of the number Z of individuals
within the laboratory showing symptoms after the bacterial
release, for each of the four scenarios considered in Table 2.
These distributions are plotted in Figure 12, together with the
corresponding expected values E[Z]. From this, it can be seen
that scenarios associated with smaller number of responses are
A1 and C1, that is, when the bacteria are released from zone
1 as opposed to zone 5. This might be expected since air can
flow from zone 5 into other areas more easily, whereas it only
flows into one other zone from zone 1. However, an interplay
between the ventilation regime (i.e., airflow dynamics) and the
bacterial release location can be observed, where the ventilation
regime in scenario C1 helps to decrease pathogen concentration
in the release zone (zone 1), due to significant extract ventilation
in place in this zone, while this same ventilation implies in

scenario C2 the airborne spread of pathogen from zone 5
toward zone 4, causing more infections at the population
level.

5. DISCUSSION

In this work, we propose a multi-scale model for the infection
dynamics of F. tularensis which covers the within-phagocyte,
within-host and population scales. The within-host model should
be considered an extension of the model originally proposed
by Wood et al. (2014), where inter-phagocyte rupture size
variability is incorporated in the distribution of the number
of bacteria released upon rupture by any infected phagocyte.
This distribution is computed by means of a stochastic
logistic growth process for the replication of bacteria at the
within-phagocyte level, but where the log-normally distributed
rupture time predicted by Wood et al. (2014) is explicitly
incorporated by means of a PH-type approximation. This
approximation allows us to consider a Markovian stochastic
process for the within-phagocyte infection dynamics. Once the
extended within-host model is set up, we provide analytical
approaches for computing the probability of response (in
terms of the number of extracellular bacteria within the host
to reach some response threshold M), and the mean time
until this response takes place (conditioned on this response
actually occurring). By calibrating the within-phagocyte and
within-host model parameters using experimental infection
data, our multi-scale model predictions are in agreement with
experimental data both at the within-phagocyte and within-host
level.

The main advantages of our multi-scale model are:

• The within-phagocyte model allows us to incorporate
the estimated log-normally distributed rupture time into
the bacterial proliferation dynamics, while keeping the
Markovian nature of the original process. This allows the
exact distribution of the rupture size to be computed.
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FIGURE 11 | Within-host model predictions. (Left) Predicted cumulative probability of response up to time t, vs. t ≥ 0, from our multi-scale model and different initial

doses. (Right) comparison between the conditioned mean time until response predicted by Wood et al. (2014) and by the multi-scale model developed here. Shaded

regions represent 95% quantiles.

FIGURE 12 | Predicted number of individuals showing symptoms in the laboratory. Distribution of the number Z of individuals suffering the infection upon bacterial

release, out of the eight individuals in Figure 8, for scenarios A1, A2, C1, and C2. That is, probabilities P(Z = z), 0 ≤ z ≤ 8.

We believe that our methodology, using phase-type
approximations for incorporating non-Markovian events in
these intracellular processes, as well as the first-step arguments

considered here for computing the rupture size distribution,
is applicable to other intracellular bacterial replication
systems.
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• The rupture size distribution computed by our model and
plotted in Figure 10 is able to capture the fact that a significant
amount of phagocytes might die releasing very few bacteria,
which has been recently experimentally observed (Brock and
Parmely, 2017).

• The stochastic nature of the within-phagocyte model
incorporates inter-phagocyte variability in the rupture size
in the within-host model, relaxing the assumption made
by Wood et al. (2014) that every phagocyte releases a fixed
amount of bacteria. Relaxing this assumption leads to different
predictions in the posterior estimated values of within-host
parameters (α,µ), as shown in Figure 6, with respect to
previous predictions made by Wood et al. (2014). This is
directly related to the fact that different behaviors can be
expected when the within-host model is simulated with the
actual rupture distribution (so that each phagocyte, upon
rupture, can release different numbers of bacteria with
different probabilities) instead of considering that every
phagocyte releases a fixed number of bacteria, even if this fixed
release is set equal to the median value of the distribution in
Figure 10.

• The zonal ventilation model is a simple but flexible way of
representing airborne spread of bacteria, and of linking this
spread with the initial doses infecting each of the individuals
in the laboratory under study. Our results suggest that there
is a clear interplay between the potential release location
and the ventilation in place within the laboratory, where an
appropriate ventilation regime can decrease the number of
individuals developing symptoms.

The original model by Wood et al. (2014), as well as the
extended model proposed here, should be considered as one of
the few and recent attempts to propose mechanistic models for
the computation of dose-response probabilities and the mean
time until individuals showing symptoms following bacterial
infection. Many of the original approaches in the literature
to this aim usually involve adjusting exponential and beta-
Poisson models to data (Chen, 2007; Huang and Haas, 2009).
These models are limited since the real within-host biological
mechanisms at play are not explicitly considered, and the
distributions are selected only due to their ability to approximate
the experimental or clinical data. Moreover, timescales for
the different within-host processes are usually not explicitly
considered in these models, where the final output of the model
is usually limited to the dose-response probability curve. Thus,
recent attempts are being made in order to explicitly consider
the biological mechanisms following bacterial infection, leading
to computational models which can analyse the timescales of
these intracellular and within-host processes, not only for F.
tularensis but also for other pathogens such as anthrax (Day et al.,
2011).

Developing new mathematical and computational models
that can explicitly account for biological mechanisms requires
a significant amount of quantitative experimental data,
and a balance between model complexity and experimental
information must always be struck. For example, in our

within-host model, all the mechanisms leading to extracellular
bacterial death, such as the complement system, antibodies,
natural killer cells, antimicrobial peptides or phagocytosis
leading to bacterial killing are represented as a single event
occurring at rate µ. If one were to distinguish all of these
events in the model, experimental measurements of the specific
contribution of each mechanism would be required, and a
new version of our multi-scale model could be proposed. An
additional limitation of our model, at the within-phagocyte
level, is the fact that the rupture time is modeled as a log-
normally distributed time which is independent of the bacterial
proliferation dynamics simultaneously occurring within the
phagocyte. Ideally, if we had enough experimental knowledge
about the effect that the bacterial load has on the rupture of
the phagocyte, one could consider that the rate of rupture from
any state n in Figure 1 (i.e., n bacteria within the phagocyte at
a given time) is a function δn of this bacterial load. Thus, using
the independent log-normally distributed time estimated by
Wood et al. (2014) should be seen as a compromise between
current experimental knowledge and model complexity, and
is based on the fact that bacterial escape into the cytosol has
been shown to be both essential and sufficient for triggering
caspase-3 activation, which is the mechanism thought to induce
cell death (Santic et al., 2010). This also agrees well with recent
experimental evidence (Brock and Parmely, 2017) showing
that cell death does not require high bacterial burden, nor
does a large number of intracellular bacteria ensure immediate
phagocyte rupture. Finally, at the population-level, we note that
more elaborated fluid dynamics simulations could be considered
for the airborne spread of F. tularensis in the microbiology
laboratory. We propose here a zonal ventilation model as a
simple but flexible way of linking the indoor airflow dynamics
with the initial dose of each individual after a bacterial release.
We note however that the imprecisions inherently caused by the
spatial discretisation in this zonal ventilation approach, where
the indoor setting is split in a number of zones and the air is
assumed to be well-mixed within each zone, can be reduced by
increasing the number of zones under consideration.

The development of a mathematical model of infection
dynamics at different scales is a challenging problem for which
few successful attempts have been made in the literature so far
(Bauer et al., 2009). To the best of our knowledge, this is the
first multi-scale model for F. tularensis trying to account for
the infection dynamics from the intracellular to the population
level. It is conceivable that the future of in silico modeling will
consist of a large number of interconnected models at different
scales, and where one of the main aims will be to predict the
effects that perturbations of model parameters along the different
scales can have in the global infection dynamics. Finally, the
approach presented in this article could also be readily applied
to investigate the potential casualty impacts resulting from a
deliberate bioterrorism or biological warfare attack in civilian
and military scenarios. For instance, our multi-scale model may
be used in conjunction with a larger-scale outdoor dispersion
model that produces F. tularensis concentration estimates over
large areas of terrain.
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In some bacterial infections, the immune system cannot eliminate the invading pathogen.

In these cases, the invading pathogen is successful in establishing a favorable

environment to survive and persist in the host organism. For example, S. aureus bacteria

survive in organ tissues employing a set of mechanisms that work in a coordinated

and highly regulated way allowing: (1) efficient impairment of the immune response;

and (2) protection from the immune cells and molecules. S. aureus secretes several

proteins including coagulases and toxins that drive abscess formation and persistence.

Unless staphylococcal abscesses are surgically drained and treated with antibiotics,

disseminated infection and septicemia produce a lethal outcome. Within this context,

this paper develops a simple mathematical model of abscess formation incorporating

characteristics that we judge important for an abscess to be formed. Our aim is to

build a mathematical model that reproduces some characteristics and behaviors that

are observed in the process of abscess formation.

Keywords: S. aureus infection, abscess formation, fibrin network, partial differential equation, computational

modeling

1. INTRODUCTION

In some Staphylococcus aureus infections, neutrophils cannot completely eliminate the invading
pathogen. In such cases, a lesion known as abscess may form, especially in skin or in soft tissue
organs. An abscess is characterized by an area comprising invading pathogens, fibrin, immune
cells (mainly neutrophils) and many types of dead cells, and it may be formed in response to
viral or bacterial infections in various organs. Abscess formation is often a defense mechanism
elicited by the host to prevent dissemination of pathogens. However, in some instances, such as
mycobacterial and staphylococcal infections, the pathogen appears to have subverted this defense
and paradoxically uses this environment to thrive and persist (Cheng et al., 2009, 2010; Graves et al.,
2010; Kim et al., 2011, 2012; McAdow et al., 2012).

Following intravenous infection of mice, S. aureus starts to leave the vasculature to colonize
the renal tissue a few hours later. In the vasculature, S. aureus begins to produce toxins1. Some,
like α-toxin, can target various cell types and lead to massive damage in infected sites. Other, like
the leukotoxins, are more specific and target mainly leukocytes (Kwiecinski, 2013). The function

1“Lysing toxins” or membrane-active toxins that interact with membranes of host cells and - under some conditions - can

cause lysis of those cells.
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of these toxins is thought to primarily kill immune cells, but
also to alter host responses. For example, interaction of α-toxin
with its receptor ADAMS10 causes tissue barrier disruption
that may facilitate dissemination from the vasculature to organs
(Berube and Bubeck Wardenburg, 2013). S. aureus also induces
the clotting of blood and plasma in the vasculature (Cheng
et al., 2009, 2010). Presumably this mechanism prevents immune
cells, in the bloodstream, to phagocytose the bacteria. Further,
this mechanism is responsible for the formation of bacterial
agglutinates or micro-emboli that may help to mechanically
disrupt the endothelial barrier and thereby allow the bacteria
to gain access into tissues. Despite these strategies, few bacteria
manage to survive in the vasculature and establish lesions in the
kidney successfully. Within 3 h of infection, the bacteria load in
both blood and kidneys are high (Cheng et al., 2009, 2010). Then
bacteria loads decrease until 12 h post inoculation (Cheng et al.,
2009, 2010). This is due to the fact that immune cells, mainly
neutrophils, are successfully eliminating the majority of bacteria.
Other host defense mechanisms, such as complement system,
also contribute to bacterial killing (Foster, 2005). Then after 12
h, we can clearly view a pattern of logistic growth of the bacteria
load. This pattern appears as a result of the abscess formation
dynamics (Cheng et al., 2009).

After 12 h, S. aureus starts to replicate forming a
Staphylococcus abscess community (SAC) inside the abscess
lesion. During this process, the bacteria employ a variety
of mechanisms to kill and evade immune cells. But equally
important is a mechanism used by S. aureus to isolate themselves
from immune cells conferring an even greater protection. This
mechanism is the result of the deposition of fibrin clots around
the SAC, and around the entire lesion (Cheng et al., 2009, 2010;
McAdow et al., 2012). S. aureus secretes coagulases, Coa and
vWbp, that bind to and activate prothrombin, thereby converting
fibrinogen to fibrin. The coagulases diffuse throughout the tissue
from the SAC, inducing the conversion of fibrinogen to fibrin
in the regions around the bacteria colonies. As a result, a fibrin
network is formed around the SAC (Foster, 2005; Cheng et al.,
2010; McAdow et al., 2012). S. aureus encodes a surface protein
called Clumping Factor A (ClfA) (Foster and Höök, 1998),
which is responsible for the recognition and binding to fibrin.
ClfA-mediated binding of fibrin delineates the first margin of
the SAC. The resultant fibrin polymer forms the structure of
fibrin around the staphylococci (Foster, 2005; Cheng et al.,
2010; McAdow et al., 2012), and S. aureus persists in the center
of abscess lesions protected from the immune system. Unless
staphylococcal abscesses are surgically drained and treated with
antibiotics, disseminated infection and septicemia produce a
lethal outcome (Kim et al., 2011). Therefore it is important
to gain a deep understanding of how an abscess is formed
in order to develop vaccines and treatments to S. aureus
infections. In vivo experiments have been performed to identify
the factors necessary for abscess formation, but the search for
its determinants is a complex task, since it requires studying the
interaction between hundreds or even thousands of components
that participate in the process and analyzing how observed
behavior emerges from these interactions. Mathematical and
computational modeling (Bender, 2000; Meerschaert, 2013;

Shiflet and Shiflet, 2014) can help in this search, contributing to
a better comprehension of some aspects of abscess formation as,
for example, the importance of different mechanisms employed
by pathogens to survive in the host.

A set of related works developed mathematical models
of the immune response with the objective of studying the
following subjects: (1) the innate immune response to a bacterial
infection, (2) the formation of bacteria colonies, and (3) the
dynamics of interaction between the host and the pathogen. The
related works bear some similarities to this paper, such as for
instance, the modeling of bacteria and neutrophil cells and the
modeling of processes such as bacteria replication, neutrophil
migration, phagocytosis and diffusion. However, none of them
are capable of reproducing the formation of a stable abscess
pattern.

In Keener and Sneyd (1998) a unidimensional model
developed by Alt and Lauffenburger (1987) is presented to
study under what conditions Polymorphonuclear leukocytes
(PMNs), more commonly called neutrophils, are successful in
controlling a bacterial infection. The model is comprised of
three variables: bacteria (b), cytokine (c) and neutrophil (n).
The authors performed a linear stability analysis of the model
[more details can be obtained in section 16.3 of the book
Mathematical Physiology Keener and Sneyd, 1998] and the
results obtained can be summarized in three cases: (1) bacteria
are completely eliminated and the neutrophil concentration
stabilizes to a normal value; (2) neutrophils cannot control
the growth of bacteria and bacteria grow without limitation;
(3) neutrophils control the growth of bacteria, but they cannot
completely eliminate them. In this case, there is a state of
persistent infection where both are present and maintain a
balance. These three behaviors are also obtained in the bacteria-
neutrophil model developed here. The paper concludes that
a bacterial infection can be controlled when the rate of
phagocytosis is sufficiently large and the immune response is
most effective when neutrophils are able to recruit more cells
and move chemotactically. As will be shown, the same behavior
is observed in this paper for models that consider the dynamics
of neutrophils. The model of Alt and Lauffenburger (1987) does
not consider the dynamics of fibrin as this paper does. Here, we
study and analyze the effects of fibrin in a mathematical model of
the abscess formation process.

Kawasaki et al. (1997) have developed a reaction-diffusion
system for bacterial and nutrient concentrations that reproduces
various observed growth patterns in colonies of bacteria. One of
the important elements of the model is a non-linear diffusion
term that depends on both concentrations of bacteria and
nutrients. The model simulates the fact that, in regions devoid
of nutrients, the bacteria cannot move, becoming more inactive.
They were able to produce highly branched patterns only with the
presence of a minimal anisotropy coming from the square lattice
used in simulations. In spite of reproducing several patterns, the
model was not able to reproduce the pattern of concentric rings
because, according to the authors, this pattern requires additional
mechanisms. The model of Kawasaki et al. (1997) does not study
the immune response to a bacterial infection, the dynamics of
fibrin and toxins as this paper does. Besides, the model does not
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consider diffusion to be dependent on the amount of available
space as the models presented in this paper do.

An additional mechanism was proposed by Lacasta et al.
(1999). They presented a model of reaction-diffusion for the
growth of colonies of bacteria of the species Bacillus subtilis.
The model is comprised of two equations for the concentrations
of bacteria and nutrients. Like the previous model of Kawasaki
et al. (1997), the model of Lacasta and co-authors was able to
reproduce different growth patterns of species B. subtilis, which
resulted in a rich variety of structures. Certain structures, such as
concentric rings, were only obtained because they considered in
the model a cooperative behavior among bacteria. This behavior
was modeled considering a global phenomenological variable
that represents the number of bacteria most active in the colony,
that is, the bacteria that move more in search of nutrients. In
addition, they considered a nonlinear diffusion coefficient that
depends on this variable.Lacasta et al. (1999) did not consider
the immune response, the dynamics of fibrin and toxins in their
model as this paper does.

Smith et al. (2011) developed a number of models to
gain a greater understanding of how different layers of host
defense in the lower respiratory tract, including resident cells
and recruited cells, combine to form a response against a
pneumococcal lung infection. In this study, the immune response
is divided into three stages: (1) the response given by resident
alveolar macrophages; (2) the response given by neutrophils; and
(3) the response given by macrophages derived from monocytes
from the bloodstream. Mathematical models that describe the
dynamics of each of these three stages were developed (Smith
et al., 2011). Smith and co-authors studied the relationship
between the inoculated concentration of bacteria and two
outcomes: (1) the establishment or (2) the eradication of an
infection. First, they used a single alveolar macrophage response
equation to study how a threshold dose determines whether the
result will be the establishment or eradication of the infection.
This model was then extended to incorporate pro-inflammatory
cytokine production accompanied by neutrophil recruitment.
Finally, they examined the possibility of elimination of the
bacteria given by an influx of monocyte-derived macrophages.
The authors argue that through these models it was possible
to better understand the contribution of each of the variables
considered for the initiation and resolution of pneumococcal
pulmonary infection and were able to capture the qualitative
behavior of the experimental data.The work of Smith et al. (2011)
does not consider the dynamics of fibrin formation and toxin
production by the bacteria and the interactions between fibrin,
toxin and neutrophils.

Other studies examine the dynamics of parasites in the
immune system. The first work (Antia et al., 1994) considers
the dynamics of parasites during an acute infection. The model
considers a generic population of parasites and it assumes that
the virulence of parasites is proportional to the rate of parasite
growth in the host. The results indicated that the transmission
would be more efficient if the parasite had an intermediate
growth rate (not as high as, for example, E. coli, and not as low as
M. tuberculosis). The authors argued that this would result in an
evolution and maintenance of an intermediate level of parasitic

virulence. A second work by Antia et al. (1996) considered a
different set of hypotheses for the dynamics of persistent parasitic
infections. This model predicts that initial persistence in the host
can be achieved by parasites that grow very slowly or by parasites
that have a niche that is inaccessible to the immune response.
In addition, the authors suggested that the evasion of immune
response by the pathogen at a time well after the onset of infection
may be a consequence of two processes: (1) deletion of T cells
in the thymus caused by the antigens; and (2) presence of a
maximum limit on the number of divisions of a T cell. In this
paper, we show that a refuge mechanism used by some bacteria
to persist in the host is the formation of a fibrin network that
confers protection against the immune response.

In our previous paper (Pigozzo et al., 2012), we were capable
of reproducing the initial formation of an abscess, but the abscess
pattern did not remain stable. One possible explanation is the
fact that S. aureus abscesses are encapsulated within a fibrin
capsule triggered upon secretion of two coagulases, Coa and
vWbp (Cheng et al., 2010; McAdow et al., 2012), which were not
modeled in our previous paper.

The objective of this paper is to construct a mathematical
model, based on partial differential equations (PDEs), that
essentially reproduces a pattern that is observed in histology
images of renal abscesses in mice (Cheng et al., 2009, 2010;
Graves et al., 2010; Kim et al., 2011; McAdow et al., 2012;
Kim et al., 2012). The pattern is comprised by the following
regions: )1) some region occupied by the bacteria colony (SAC);
(2) some region containing fibrin that forms a network around
a bacteria colony; and (3) surrounding the fibrin network, a
region comprised mainly of necrotic neutrophils and some live
neutrophils. Figure 1 shows these regions and how they appear
in the results of the computational simulations of this paper.
In addition, we study and analyze the characteristics of distinct
models involving the interactions between bacteria, the two
coagulases or coagulation factors, Coa and vWbp, fibrin and
neutrophils. This paper shows that it is possible to reproduce
some aspects of abscess formation through computational
models that are able to capture the spatiotemporal dynamics
of the fibrin network formation around the bacteria colony as
well as the neutrophil response to the bacterial infection. The
computational models were implemented using an explicit Euler
method for time discretization and, for the spatial discretization,
the Finite Volume Method (Versteeg and Malalasekera, 2011), as
will be described in the following section.

The rest of the text is organized as follow. First, we describe
the characteristics of the mathematical models developed in
this paper and the numerical methods employed in the
implementation. Then, we present the results of computational
simulations with the models and, finally, we discuss limitations
and future work and draw our conclusions.

2. MATERIALS AND METHODS

This paper introduces a mathematical model composed of a
system of Partial Differential Equations (PDEs) to describe the
abscess formation. PDE-based models usually include terms such
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FIGURE 1 | Histology image provided by the Laboratory of Microbiology of the University of Chicago. Adapted with permission of Dominique Missiakas and Olaf

Schneewind. The histology image shows a mouse renal tissue infected with S. aureus and the corresponding spatial distributions for each cell type. The spatial

distributions were obtained by the computational simulation that will be presented in this paper. The darker purple region is the colony of staphylococci and the pink

region around the staphylococci colony is the fibrin network. Some dark points around the fibrin are necrotic neutrophils and some points in the “periphery” of the

abscess are live neutrophils. These regions form the abscess. For each region highlighted in this figure, an example of a result obtained by the implementation of the

mathematical models presented in this paper is shown with a yellow arrow.

as growth, death and interaction terms and they have terms that
are responsible for modeling the movement of cells, molecules
and bacteria through the diffusion process. The majority of PDEs
presented in this paper have the following structure in common:

∂u

∂t
= f g + D∇ · (g ∇u),

u(x, 0) = u0,
∂u(., t)

∂En
|∂� = 0, (1)

where u is a variable that refers to a given population, the
term f is a function that models the growth of u and the term
D∇ · (g ∇u) models the nonlinear diffusion of u. Function g is
equivalent to the g function proposed in (Painter and Sherratt,
2003). This function was originally developed to model the
movement of interacting cell populations (Painter and Sherratt,
2003). We extended it to model interactions that also occur in
other cellular processes. For example, we use the g function

to model interactions that occur during bacterial growth or
neutrophil migration. The g function is used to account for
different interaction strengths between the populations and the
effects of these in processes of growth, phagocytosis, migration,
death and diffusion.

The g function is defined as the heaviside function of g:

g(w) =

{

g(w), 0 ≤ g(w) ≤ 1

0, otherwise.
(2)

Function g(w) is defined as:

g(w) = 1−
w

total
, (3)

where w is a term that models the interactions between distinct
populations and total is a parameter that denotes the maximum
population supported in a discretized region of the domain. In
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this work, we consider that the value of total is constant and is
equal to 1 for all discretized regions.

The interactions between the populations can be stimulatory
or inhibitory. In this paper, we consider only inhibitory
interactions in the w term. To illustrate the meaning of w,
consider, for example, a system with two types of populations:
u and v. The interactions that each population has with the other
one are modeled by the w term. Therefore, the w term is defined
for each distinct population in the system. For example, the w for
the u population is defined as:

wu = wuu u+ wvu v, (4)

wherewuu u is the inhibition that u exerts on itself andwvu v is the
inhibition that v exerts on u. These inhibitory relations will affect
all processes in u dynamics.wuu andwvu are constant parameters.
We call these parameters “weights” to refer to the fact that they
control the strength of the inhibition that one population exerts
on the other.

The g function for the u population is:

g(wu) = 1− wu. (5)

For the v population, we have:

wv = wvv v+ wuv u, (6)

wherewvv v is the inhibition that v exerts on itself andwuv u is the
inhibition that u exerts on v. These inhibitory relations will affect
all processes in v dynamics. wvv and wuv are constant parameters.
The g function for the v population is:

g(wv) = 1− wv. (7)

We can extend the definition of w for a system with n distinct
populations. Considering the u population again, wu is defined
as:

wu = wuu u+

∑

j∈C,
j 6=u

wju j, (8)

where C is the set of all distinct populations in the system
and j is one of these populations that is different from u. The
summation accounts for the inhibition that u suffers from all
other populations, with wju being the strength of the inhibition
that j population exerts on u.

We can also interpret the g function as a way to model the
effect that the lack of space has in the dynamics of a population
because its value can be seen as the amount of available space in
a discretized region of the domain. Considering that all regions
in the domain support a maximum number of cells, molecules
and/or bacteria (denoted by total), diffusion cannot occur for
fully occupied regions where there is no available space. In these
regions, we have w ≥ total which implies that w

total
≥ 1 and

g(w) ≤ 0 and, as a result, g(w) of Equation 2 is zero.
The diffusion of bacteria has another term, h(b), that models

their cooperative behavior. The bacteria diffusion term is defined
as:

Db∇ · (gb(wb) h(b)∇b), (9)

where gb(wb) is the bacteria g function and wb is the bacteria
interaction term. The function h(b) models a behavior where
the bacteria colony grows when conditions are favorable and the
colony density is high. The bacteria will only colonize nearby
regions when they were successful in establishing a colony in
their current location. As a consequence of this, in our model,
the diffusion of bacteria only occurs when bacteria concentration
is above a threshold. The function h(b) is defined as:

h(b) =
(α + 1) bγ

α + bγ
. (10)

This equation is a hyperbolic saturation function (Haefner, 2005)
and it is known as Hill equation in this form (Goutelle et al.,
2008). The Hill equation is used, for example, to model the
relationship between drug concentration and its effects (Wagner,
1968). In this equation, the term α + 1 scales the maximum
value to which the function is asymptotic, parameter α is a half
saturation constant and γ is a shape parameter (Haefner, 2005).
It is important tomention that the term h(b) is only present in the
diffusion of bacteria. If we consider that the cooperative behavior
is absent by doing h(h) = 1, we have a situation where, even
for a region with very few bacteria, the bacteria can diffuse to
neighboring regions with available space and, as a result, it is hard
for the bacteria to form a colony surrounded by fibrin because
some bacteria will always “escape.” Therefore, in our model,
such cooperative behavior as well as the nonlinear diffusion are
important to the formation of the abscess pattern.

In all models, the exchange between the vascular system
(arterioles and vessels) and the tissue was assumed to occur in
all points of the one-dimensional space. This is a reasonable first
approach because the kidney is highly vascularized.

The numerical methods used were the following: (1) explicit
Euler method for time discretization; and (2) for spatial
discretization, we used the Finite Volume Method (FVM)
(Versteeg and Malalasekera, 2011). The nonlinear diffusion was
implemented with a method based on FVM, where the calculus
of the divergent operator is based on the quantities calculated
at the two interfaces (left and right) of the finite volume. The
derivatives and the gradient operator are approximated with
numerical fluxes calculated at the interfaces. The quantities at
each interface are an average of the quantities on the neighboring
nodes. In summary, FVM is based on the evaluation of influx and
outflux in a control volume around each node in the mesh. The
code was implemented in C and the graphs were generated with
a script in Python.

3. RESULTS

In this paper, we incrementally build a mathematical model
of abscess formation. The interactions between the model’s
components are depicted in Figure 2. It is important to highlight
that the intensity of a particular inhibitory relation (in Figure 2,
inhibitory relations are represented by red arrows with the word
inhibition) depends on concentrations of the cellular types that
are exerting the inhibition. In the next sections, we will discuss
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FIGURE 2 | Interactions in the abscess formation model. In this figure, we use the notation of Causal Loop Diagrams (CLD) of System Dynamics. Bacteria are

represented by b, Coa/vWbp are represented by coa, fibrin is represented by f , neutrophils are represented by n, dead neutrophils are represented by nd and toxins

are represented by to. Bacteria have a replication process forming new bacteria. Bacteria produce Coa/vWbp and participate together with Coa/vWbp in fibrin

network formation. Bacteria are phagocytosed by neutrophils. In addition, bacteria produce toxins that cause neutrophil death and inhibit all processes in neutrophil

dynamics. The processes present in the bacteria dynamics are all inhibited by Coa/vWbp, fibrin and neutrophil. Coa production is inhibited by the neutrophil and by

the bacteria. Neutrophil migration depends on neutrophils and on bacteria. All processes in neutrophil dynamics are inhibited by bacteria, fibrin and Coa/vWbp. In this

diagram, we are not representing self-inhibitions that are also present in the mathematical models of this paper.

each of these relations and we will present the characteristics of
each submodel that is part of the abscess formation model.

3.1. Bacteria-Coa/vWbp-Fibrin Model
The first model accounts for the interaction between bacteria,
Coa/vWbp and fibrin. The objective of this model is to reproduce
the formation of a fibrin network around the bacteria colony.
In this model, we have the bacteria replicating and producing
two coagulation factors: coagulase (Coa) and von Willebrand
factor Binding Protein (vWbp). These coagulation factors are
responsible for converting fibrinogen into fibrin.

The model is comprised by the following system of equations:

∂coa

∂t
= k b gcoa(b, f , coa)+ Dcoa coa_diffusion(),

coa(x, 0) = coa0,
∂coa(., t)

∂En
|∂� = 0,

∂b

∂t
= r b gb(b, f , coa)+ Db b_diffusion(),

b(x, 0) = b0,
∂b(., t)

∂En
|∂� = 0,

f = b coa, (11)

where the term coa denotes the coagulation factors Coa and
vWbp, b denotes the bacteria and f denotes fibrin. The
functions gcoa(b, f , coa) and gb(b, f , coa) are the g functions of
Coa and bacteria, respectively. The functions coa_diffusion()
and b_diffusion() models Coa/vWbp and bacteria diffusion,
respectively. The diffusion is modeled in two ways: (1) with
the classic diffusion operator (diffusion terms in the System of
Equation 14); and (2) with the nonlinear diffusion given by
15 and 16. In the next section, we show the simulation results
with both diffusion operators. Diffusion is the net movement

of molecules or atoms from a region of high concentration (or
high chemical potential) to a region of low concentration (or low
chemical potential) as a result of randommotion of themolecules
or atoms.

The equation f = b coa models fibrin formation. We assume
that fibrin formation depends on the interaction between the
bacteria and the coagulation factors.

The term k.b.gcoa(b, f , coa) denotes the Coa/vWbp production,
where k is the production rate. The function gcoa(b, f , coa) is given
by:

gcoa(b, f , coa) = 1− (wbcoa b+ wfcoa f + wcoacoa coa). (12)

The parameterswbcoa,wcoacoa andwfcoa represent the influence of
bacteria, Coa/vWbp and fibrin in Coa/vWbp dynamics.

The Coa/vWbp production is limited by the available space
and is inhibited by bacteria and Coa/vWbp molecules that are
in the same discretized region. This inhibition is considered to
simulate the coagulation factors spreading from the border of the
bacteria colony and also to simulate the fibrin network formation
on this border.

The term r.b.gb(b, f , coa) denotes the bacteria replication,

where r is the replication rate. The function gb(b, f , coa) is given
by:

gb(b, f , coa) = 1− (wbb b+ wfb f + wcoab coa). (13)

The parameters wbb, wcoab and wfb represent the influence of
bacteria, Coa/vWbp and fibrin in bacteria dynamics.

The bacteria replication is limited by the available space and
is inhibited by Coa/vWbp molecules and the fibrin network. The
Coa/vWbp inhibition is justified by the fact that, when the colony
is being formed, the bacteria inside the colony will alter their
behavior and, consequently, will decrease replication and focus
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on protecting themselves with the fibrin network. The fibrin
network inhibition is considered to simulate that bacteria colony
cannot replicate and expand over fibrin to other regions after the
formation of the fibrin network.

3.1.1. One-Dimensional Simulations

With the objective of understanding the spatiotemporal behavior
of the bacteria-Coa/vWbp-fibrinmodel, the diffusion process was
added to the model (Equation 14) and numerical simulations
were carried out on a one-dimensional domain:

∂coa

∂t
= k b gcoa(b, f , coa)+ Dcoa

∂2coa

∂x2

coa(x, 0) = coa0,
∂coa(., t)

∂En
|∂� = 0

∂b

∂t
= r b gb(b, f , coa)+ Db

∂2b

∂x2

b(x, 0) = b0,
∂b(., t)

∂En
|∂� = 0

f = b coa (14)

Dcoa
∂2coa
∂x2

and Db
∂2b
∂x2

are the diffusion terms of Coa/vWbp
and bacteria, respectively, where Dcoa and Db are the diffusion
coefficients.

In spite of S. aureus not being a motile organism, we
considered a diffusion process for S. aureus to simulate the
bacterial expansion as the bacteria replicate and increase in
number, having as a consequence an increase in the region
occupied by the bacteria colony. We chose a small diffusion
coefficient for the bacteria (Db = 0.05) to simulate the
aforementioned aspect of S. aureus infections.

Themodel’s initial conditions and parameters are presented in
Tables 1, 2, respectively. In our simulations, we assumed a one-
dimensional domain of 10 mm length and a simulation time of
20 days. In fact, this one-dimensional model is a simplification
of a 3D block model in that we have assumed that the lengths
associated with y and z are much smaller than the length
associated with x. In all PDEs, the domain is homogeneous and
the boundary conditions are of Neumann type.

Bacteria are initially placed in the middle of the domain,
neutrophils and the coagulation factors are placed initially with
a small concentration all over the domain. The bacteria initial
location can be seen as the set of points (arterioles) where bacteria
extravasate from the vasculature to the kidney tissue.

In all computational simulations we used the parameters
values presented in Table 2, except when we vary some
parameters to simulate different scenarios and, in these cases, we
highlight what are the new values employed.

Due to the lack of experimental data and the difficult in
making a direct correlation between some measured biological
quantities and the parameters of the models, the parameters
values were chosen to illustrate the different behaviors that the
models are capable of reproducing.

We observe in Figure 3A that, with time, the bacteria replicate
and the bacteria colony increases in size. As a result, the
production of the coagulation factors Coa/vWbp increases. With
time, Coa/vWbp is converted to fibrin. The fibrin has some

TABLE 1 | Initial conditions.

Variable Value Unit

b0

{

0.6 : 4 ≤ x ≤ 6

0 : otherwise
amount/mm3

n0 0.01 : 0 ≤ x ≤ 10 amount/mm3

coa0 0.01 : 0 ≤ x ≤ 10 amount/mm3

f0 0 : 0 ≤ x ≤ 10 amount/mm3

nd0 0 : 0 ≤ x ≤ 10 amount/mm3

to0 0 : 0 ≤ x ≤ 10 amount/mm3

The amount refers to the amount of one particular population (e.g., in b0 it refers to

bacteria, in n0 it refers to neutrophils, and so on).

TABLE 2 | Set of parameters used in simulations.

Parameter Value Unit

r 1.3 1/day

α 0.1 dimensionless

γ 5 dimensionless

k 2 1/day

Dcoa 0.05 mm/day

s 10 1/((amount/mm3 ).day)

l 40 1/((amount/mm3 ).day)

Dn 3 mm/day

wbb 1 1/(amount/mm3)

wcoab 4 1/(amount/mm3)

wnb 1.1 1/(amount/mm3)

wfb 1 1/(amount/mm3)

wbcoa 1.5 1/(amount/mm3)

wcoacoa 1 1/(amount/mm3)

wncoa 1.2 1/(amount/mm3)

wfcoa 0 1/(amount/mm3)

wbn 1.2 1/(amount/mm3)

wcoan 0.5 1/(amount/mm3)

wnn 1 1/(amount/mm3)

wfn 2 1/(amount/mm3)

βto 0.5 1/((amount/mm3).day)

µto 0.5 1/day

Dto 2 mm/day

αto 0.7 1/((amount/mm3).day)

influence in bacteria’s growth but fibrin was not able to prevent
the spread of bacteria around the initial site of infection. We
believe this happened because fibrin is not influencing bacteria
diffusion as it influences bacterial growth. Therefore the bacteria
colony can spread to other areas of the tissue. The spatial pattern
seen in this result does not resemble the abscess pattern because
we cannot observe the formation of one or more colonies of
bacteria surrounded by fibrin.

In the simulated scenario described previously, we
implemented the classical diffusion operator that does not
consider any external influence in the diffusion of a population.
In some situations, this hypothesis that the diffusion of a cell
is not influenced by any other cell or molecule present in the
system is not true. In the human body, a cell can interact with
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FIGURE 3 | Spatial distribution of bacteria, Coa/vWbp and fibrin concentrations in the comparison between the classic (A on the left) and the nonlinear (B on the right)

diffusion scenarios. The y-axis (concentration) represents the fraction occupied by a particular population in a discretized region of the domain. The x-axis (x)

represents the space in mm. The simulated time correspond to 20 days. Each line represents a particular day. The simulation starts at day 0 and finishes at day 20. In

classic diffusion scenario (A), it is observed that the bacteria spread throughout the domain and cannot establish a colony surrounded by fibrin as in the nonlinear

diffusion scenario (B).

dozens of cells in a short period of time. Due to this fact, a cell
can have many of its processes influenced by these interactions.
Besides, space in the body is limited therefore the volume of
some part of a tissue supports a maximum concentration of cells,
molecules, liquids and other substances. The nonlinear diffusion
models the influence of a cell population in the diffusion of other
cell population. To represent the influence of both fibrin and
Coa/vWbp in bacteria diffusion, the diffusion term of bacteria is
defined as:

Db∇ · (gb(b, f , coa) h(b)∇b), (15)

where gb(b, f , coa) models the influence resulting from the
interactions between bacteria, Coa/vWbp and fibrin. The term

h(b) models the cooperative behavior of bacteria and was defined
in Equation 10. The diffusion of Coa/vWbp is defined as:

Dcoa∇ · (gcoa(b, f , coa)∇coa). (16)

The nonlinear diffusion simulates the fact that bacteria colonies
will be unable to expand to some points where fibrin
concentration is sufficiently high reproducing, in this way, the
formation of a fibrin network around the colonies. The fibrin
network acts like a barrier preventing any cell to cross it. We will
show that these hypotheses are important in the development of
a mathematical model of abscess formation.
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Incorporating the nonlinear diffusion terms in the PDEs, we
obtain the following system:

∂coa

∂t
= k b gcoa(b, f , coa)+ Dcoa∇ · (gcoa(b, f , coa)∇coa),

∂b

∂t
= r b gb(b, f , coa)+ Db∇ · (gb(b, f , coa) h(b)∇b),

f = b coa. (17)

The results obtained with numerical simulations of these
equations are shown in Figure 3B. We observe that, initially,
the bacteria colony grows and starts to expand. At the same
time, the bacteria produce the coagulation factors Coa/vWbp.
The concentration of these factors increases and they convert
fibrinogen, present in the body and that is not explicitly
considered here, to fibrin. In addition, the fibrin concentration
increases and we can see that fibrin is located around the bacteria
colony. Both coagulation factors and fibrin interacts with bacteria
preventing them to colonize other parts of the tissue. This process
reflects the quorum sensing behavior seen in S. aureus infections.

Quorum sensing (Painter and Hillen, 2002; Yarwood and
Schlievert, 2003; Le and Otto, 2015) is the process by which
microorganisms regulate population density through chemical
signaling. Chemical molecules secreted by microorganisms are
a form of intra- and interspecies communication that helps
bacteria coordinate their behavior. Quorum sensing allows to
modulate diverse characteristics of the microorganisms, such as
the motility, production of virulence factors and the formation
of biofilms. In staphylococci, the ability to sense the bacterial
density, or quorum, and to respond with genetic adaptations is
an important mechanism to bacteria survival in the host (Le and
Otto, 2015).

The nonlinear diffusion improved the model result, making it
possible to obtain a pattern more similar to an abscess. However,
abscesses are also composed by dead and live neutrophils. To
reproduce the complete pattern, it is necessary to include these
types of cell in the model.We will start including live neutrophils,
and then dead neutrophils and toxins will be included. We will
use the PDEs system given by Equations 17 as a base for further
developments of our mathematical model of abscess formation.

3.2. Bacteria-Neutrophil Model
The model of interaction between bacteria and neutrophil, called
bacteria-neutrophil model, is similar to the bacteria-Coa/vWbp-
fibrin model presented previously in section 3.1. The neutrophil
migration depends on bacteria concentration as the production
of Coa/vWbp. The neutrophil has also a g function that is present
in both growth and diffusion terms.

The bacteria-neutrophil model is comprised by the following
set of PDEs:

∂b

∂t
= (r − l n) b gb(b, n)+ Db∇ · (gb(b, n) h(b)∇b)),

∂n

∂t
= s b n gn(b, n)+ Dn∇ · (gn(b, n)∇n)). (18)

The variable n denotes neutrophil concentration and the variable
b denotes bacteria concentration. The term s.b.n.gn(b, n) models

neutrophil migration. Product b.n in term s.b.n.gn(b, n) can be
interpreted as the pro-inflammatory cytokine production. The
pro-inflammatory cytokines would have the effect of attracting
more neutrophils to the infection site. For the sake of simplicity,
these cytokines are not considered explicitly in this model.
The term r.b.gb(b, n) represents bacteria replication. Bacteria
phagocytosis is denoted by the term l.n.b.gb(b, n). The model
has two g functions: (1) gb(b, n) for bacteria; and (2) gn(b, n) for
neutrophils.

The g functions equations are given by:

gb(b, n) = 1− (wbb.b+ wnb.n),

gn(b, n) = 1− (wbn.b+ wnn.n). (19)

The model’s parameters are: (1) r is the bacteria replication rate;
(2) l is the phagocytosis rate; (3) wbb is the influence of bacteria
on its own dynamics; (4) wnb is the influence of neutrophils on
bacteria dynamics; (5) s is the neutrophil migration rate; (6) wbn

is the influence of bacteria on neutrophils dynamics; and (7) wnn

is the influence of neutrophils on its own dynamics.

3.2.1. One-Dimensional Simulations

With the objective of analyzing the spatiotemporal behavior of
bacteria-neutrophil model, one-dimensional simulations of the
Equation 18 were performed. In the simulations performed,
we observed three main behaviors: (1) the formation of a
bacteria colony when considering a small phagocytosis rate;
(2) a disseminated infection when small rates for phagocytosis
and for neutrophil migration are considered; and (3) infection
control with complete elimination of bacteria when considering
a “normal” immune response.

Values of parameters s (rate of neutrophil migration) and l
(rate of phagocytosis) were varied in three different scenarios:
(1) small phagocytosis rate: s = 10 and l = 20 (Figure 4A); (2)
small rates for phagocytosis and neutrophil migration: s = 5 and
l = 20 (Figure 4B); and (3) “normal” values for phagocytosis and
neutrophil migration: s = 10 and l = 40 (Figure 4C).

The first scenario is presented in Figure 4A. This scenario
simulates the mechanisms employed by bacteria to escape
phagocytosis by immune cells. We observe that neutrophils begin
to migrate to the tissue in an attempt to control the infection,
but they are not able to phagocytose bacteria efficiently. As a
consequence, the bacteria colony grows and expands around the
initial site of infection.

The second scenario (Figure 4B) simulates a deficient
immune response where it is considered an impairment in
neutrophil migration caused by bacteria, besides the impairment
in phagocytosis. It is observed that the bacteria colony can
rapidly expand to other areas of the tissue without the presence
of neutrophils. Neutrophil migration is impaired and there are
almost no neutrophils to fight the infection. Eventually, with
time, the bacteria will spread to larger areas of the tissue.

In the last simulated scenario (Figure 4C), we considered
a normal immune response. We observe that the bacteria
were completely eliminated by neutrophils. Neutrophils were
successful in controlling the infection due to rapid migration and
efficient killing of bacteria. After bacteria elimination, the spatial
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FIGURE 4 | Spatial distribution of bacteria and neutrophil concentrations in three distinct scenarios: (a) the scenario with small phagocytosis rate (A on the left), (b) the

scenario with small rates for phagocytosis and neutrophil migration (B on the middle), and (c) the scenario with “normal” values for phagocytosis and neutrophil

migration (C on the right). The y-axis (concentration) represents the fraction occupied by a particular population in a discretized region of the domain. The x-axis (x)

represents the space in mm. The simulated time correspond to 20 days. Each line represents a particular day. The simulation starts at day 0 and finishes at day 20. In

(A), we observe that the bacteria colony grows and infects other regions because the neutrophil response is very ineffective. The same occurs in (B) where, besides

an impairment in phagocytosis, there are very few neutrophils to fight the infection. A different situation occurs in (C) where neutrophils are capable of eliminating

bacteria completely, controlling the infection.

distribution of neutrophils tend to stabilize throughout the tissue
due to the fact that we have notmodeled the neutrophil apoptosis.

3.3. Bacteria-Coa/vWbp-Fibrin-Neutrophil
Model
The bacteria-Coa/vWbp-fibrin-neutrophil model is an extension
combining the two models presented previously: the bacteria-
Coa/vWbp-fibrin model and the bacteria-neutrophil model. The
objective of this model is to reproduce, in addition to the
formation of one or more colonies of bacteria surrounded by
fibrin, the spatial distribution of neutrophils inside the abscess
lesion. The model is comprised by the following PDEs system:

∂coa

∂t
= k b gcoa(b, f , coa, n)+ Dcoa∇ · (gcoa(b, f , coa, n)∇coa),

∂b

∂t
= (r − l n) b gb(b, f , coa, n)+ Db∇ · (gb(b, f , coa, n) h(b)∇b),

f = b coa,

∂n

∂t
= s b n gn(b, f , coa, n)+ Dn∇ · (gn(b, f , coa, n)∇n). (20)

The equation f = b coamodels fibrin formation. The g functions
now depend on four types of populations: bacteria, Coa/vWbp,
fibrin and neutrophil. The new g functions are given by:

gcoa(b, f , coa, n) = (1− wbcoa b− wfcoa f − wcoacoa coa− wncoa n),

gb(b, f , coa, n) = (1− wbb b− wfb f − wcoab coa− wnb n),

gn(b, f , coa, n) = (1− wbn b− wfn f − wcoan coa− wnn n). (21)

It is important to highlight that when choosing n = 0 in Equation
20, we obtain the bacteria-Coa/vWbp-fibrin model presented in

Equation 17. In addition, when we consider coa = 0 and f = 0 in
Equation 20, we obtain the bacteria-neutrophil model presented
in Equation 18.

The parameters of the model are: (1) k is the Coa/vWbp
production rate; (2) r is the rate of bacteria replication; (3) l is
the rate of phagocytosis; (4) s is the neutrophil migration rate; (5)
wbcoa, wfcoa, wcoacoa and wncoa are the influence of bacteria, fibrin,
Coa/vWbp and neutrophil, respectively, in Coa/vWbp dynamics;
(6) wbb, wfb, wcoab and wnb are the influence of bacteria, fibrin,
Coa/vWbp and neutrophil, respectively, in bacteria dynamics;
(7) wbn, wfn, wcoan and wnn are the influence of bacteria,
fibrin, Coa/vWbp and neutrophil, respectively, in neutrophil
dynamics; and (8) Dcoa, Db and Dn are the diffusion coefficients
of Coa/vWbp, bacteria and neutrophil, respectively.

In this model, we consider, besides fibrin influence in the
dynamics of bacteria, also their influence in the dynamics of
neutrophil. The influence is reflected in the fact that when fibrin
concentration is sufficiently high, fibrin prevents neutrophils
from getting closer to the bacteria colonies. It is important
to highlight that phagocytosis is also influenced by fibrin.
Depending on fibrin’s location in the domain, for example, if
fibrin is located around a bacteria colony it will protect bacteria
from being phagocytized by neutrophils outside the colony.
Neutrophils inside the colony are not capable of handling the
infection alone.

3.3.1. One-Dimensional Simulations

We first present and compare the results of two scenarios: (1) a
scenario with the coagulation factors production rate k equals to

Frontiers in Microbiology | www.frontiersin.org June 2018 | Volume 9 | Article 1355113

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Pigozzo et al. Development of a Computational Model of Abscess Formation

2; and (2) a scenario with the coagulation factors production rate
k equals to 0.4.

The first scenario is presented in Figure 5A. We can observe
that neutrophils have been able to enter the site of the colony of
bacteria, but were not able to eliminate them after saturation of
several points of the domain. The saturation ocurred also due to
the production of the coagulation factors and fibrin formation.
This scenario illustrates a limitation of the model: after saturation
of a domain position, neutrophils cannot phagocytose bacteria
there anymore. We observed that saturation occurred because
parameter wbn has a great impact in the model results together
with the initial condition. If the product wbn.b is sufficiently high,
in some points of the domain, few neutrophils can migrate to the
tissue before it saturates. As a consequence, these neutrophils are
not in sufficient number to eliminate all bacteria there. Another
limitation is the fact that we are not considering any mechanism
used by the bacteria to kill neutrophils. As a result, we have the

stabilization of cells populations with a considerable amount of
neutrophils inside the bacteria colony. These limitations were
the primary motivation for the development of an extension
of the current model by adding a variable that represents the
toxins produced by the bacteria. Toxins are also important for
the persistence of bacteria in the host. Basically, we can assume
that toxins interact with neutrophils causing their death.

The second scenario (Figure 5B) shows that when we decrease
the value of Coa/vWbp production (parameter k) to 0.4 and,
consequently, decreasing the fibrin formation, the bacteria are
completely eliminated. This scenario illustrates the importance
of fibrin in protecting the bacteria.

The simulations with bacteria-Coa/vWbp-fibrin-neutrophil
model allowed us to better understand the effect of each
parameter in the dynamics of the model. We have observed that,
for the immune response to be effective, the rate of neutrophil
migration cannot be so high because the regions with bacteria

FIGURE 5 | Spatial distribution of bacteria, fibrin and neutrophil concentrations in the comparison between the scenario with k = 2 (A on the left) and the scenario

with k = 0.4 (B on the right). The y-axis (concentration) represents the fraction occupied by a particular population in a discretized region of the domain. The x-axis (x)

represents the space in mm. The simulated time correspond to 20 days. Each line represents a particular day. The simulation starts at day 0 and finishes at day 20.

(A) shows that the neutrophils that migrate into the tissue phagocytose part of the colony of bacteria until saturation occurs in regions where there are neutrophils and

bacteria. At this time, no more phagocytosis occurs. In (B), the colony of bacteria cannot produce fibrin fast enough to protect itself and it is eliminated.
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could saturate rapidly and, in this case, neutrophils could no
longer eliminate the bacteria. We have also observed that the rate
of phagocytosis has an important role in model dynamics. The
elimination of bacteria was only obtained when we considered a
high phagocytosis rate combined with a moderate migration rate
and a small rate for Coa/vWbp production.

3.4. Bacteria-Coa/vWbp-Fibrin-Neutrophil-
Toxin Model
The previous model (Equation 20) can be modified to better
understand the effects of toxins produced by Staphylococcus
aureus. The toxins also contribute to the persistence of S. aureus
in the host (Cheng et al., 2009, 2010). The role of toxins is to
mantain cells of the immune system, mainly neutrophils, away
from the colony of S. aureus. Even after the formation of the
fibrin network, S. aureus bacteria continue to produce several
types of toxins, which, because of their small volume, are able
to pass through the fibrin network and reach the regions where
most living neutrophils are migrating to the infected tissue.

It is important to highlight that the immune system of wild
type mice as well as the immune system of humans is efficient in
eliminating dead cells from tissue, cleaning the infection site. This
cleansing would allow neutrophils and other immune system
cells to approach the fibrin network around the bacterial colony,
threatening to dissolve (to break down) this network to gain
access to the colony of bacteria, but the toxins may prevent this
process (Guggenberger et al., 2012; McAdow et al., 2012).

It was considered a simplifiedmodel of toxin’s dynamics based
on the following hypothesis:

• The production of toxins depends on bacteria concentration,
having a saturation. This production is not influenced by other
cells;

• The toxins cause the death of neutrophils at a rate that is
proportional to the concentration of both;

• It is considered that the diffusion of toxins is not influenced by
the presence of other cells;

• Both toxins and dead neutrophils do not influence the growth
and diffusion of other cell types.

It is assumed that the volume of toxins and of dead neutrophils
are negligible in relation to the volumes of other cells, therefore
they are not considered in the g functions.

The model is composed by the following PDEs system:

∂coa

∂t
= k.b.gcoa(b, f , coa, n)+ Dcoa∇ · (gcoa(b, f , coa, n).∇coa),

∂b

∂t
= (r − l.n).b.gb(b, f , coa, n)+ Db∇ · (gb(b, f , coa, n).h(b).∇b),

f = b coa,

∂n

∂t
= s.b.n.gn(b, f , coa, n)− αto.to.n+ Dn∇ · (gn(b, f , coa, n).∇n),

∂to

∂t
= βto.b.(1− to)− µto.to+ Dto.1to,

∂nd

∂t
= αto.to.n, (22)

where toxins represented by to and dead neutrophils represented
by nd are the new populations added to the model. Term

βto.b.(1 − to) denotes toxin production, where βto is the
production rate. Term µto.to denotes toxin decay and term
Dto.1to denotes toxin diffusion withµto being the decay rate and
Dto being the diffusion coefficient. Neutrophils in contact with
toxins die at a rate αto that is proportional to the concentration
of both (term αto.to.n). The g functions are the same as in the
previous model.

3.4.1. One-Dimensional Simulations

Simulations in one dimension were carried out to understand
the new behaviors that can be obtained after the introduction
of the toxin. In simulations with the toxin model, we have used
the parameter values of the “normal” immune response (s = 10
and l = 40) scenario (Table 2) with the exception of Coa/vWbp
production rate k which we varied in the two scenarios presented
here. The values of the new parameters that were incorporated
into the model are: βto = 0.5,µto = 0.5,Dto = 2, and αto = 0.7.

In the first scenario presented in Figure 6A, we considered
k = 2. We observe, in Panel A, that as the toxin diffuses through
the tissue, it causes a lot of death in the region occupied by
the bacteria colony. As a consequence, a concentration of dead
neutrophils is observed at the infection site. The toxins helped
bacteria to establish a favorable environment to persist.

One interesting result is observed when we consider a smaller
Coa/vWbp production rate (k = 0.5) in second scenario
(Figure 6B). In this case, we see the formation of two abscesses
next to each other. Neutrophils migrate in the middle of
the domain where the concentration of bacteria is high and
phagocyte bacteria there. Neutrophils start to die due to the
action of toxins. The toxins together with saturation after fibrin
formation prevent neutrophils to eliminate bacteria completely
and, as a result, there are the formation of two abscesses. In
histology images of mice kidneys infected with S. aureus, it
is also observed, in many situations, the formation of one or
more abscesses (Cheng et al., 2009, 2010; Kim et al., 2011,
2012)

4. DISCUSSION

In the mathematical models developed in this paper, we have
considered the influence of a population on the dynamics
of other population. This influence represents not only
the lack of available space due to the volume occupied
by distinct populations in a discretized region but also
represents other types of interactions such as inhibitory or
stimulatory interactions. These interactions are modeled through
the use of the g function presented first in section 2.
The interactions between different populations were modeled
through the product of their concentration by constant
parameters. We can also model these interactions by considering
some function of various parameters. However, in order to
avoid introducing complexity into the model and trying to
better understand its behavior, we have chosen more simplified
interactions.

Numerical simulations were important for us to understand
the effects of the g function not only on the growth terms but
also on the processes of movement. As shown in Figure 3A,
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FIGURE 6 | Spatial distribution of bacteria, fibrin, live neutrophil, dead neutrophil and toxin concentrations in the comparison between two scenarios: a scenario

where the bacteria persist forming one colony (A) and a scenario where the bacteria persist forming two colonies (B). The y-axis (concentration) represents the

fraction occupied by a particular population in a discretized region of the domain. The x-axis (x) represents the space in mm. The simulated time correspond to 20

days. Each line represents a particular day. The simulation starts at day 0 and finishes at day 20. (A) shows that bacteria rapidly produce toxins killing neutrophils, and

ensuring that they form a colony protected by fibrin. (B) shows a similar behavior, but, this time, neutrophils manage to phagocytose a great number of bacteria

located near the middle of the domain. This results in a separation of the initial colony in two. These newly formed colonies have time to produce sufficient fibrin to

protect themselves, surviving in the host.
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without considering the g function in the diffusion terms, it
was not possible to obtain a pattern similar to an abscess. This
happened because bacteria and fibrin could move freely through
the domain. There was nothing to stop them from moving
to a location already containing a large concentration of cells,
molecules and other substances. The incorporation of the g
function into the diffusion, in this case, allowed us to model a
behavior that is believed to be more real in this situation: an
adaptive behavior in which populations adapt to the environment
around them. This adaptation occurs due to the lack of space, but
it could be due to the lack of nutrients, for example. With the
g function, it is possible to react to changes in the environment
avoiding a situation where more populations are created in a
place where this creation would not be possible anymore.

We think that the effect of the g function on the movement
of populations contributes to stabilize their spatial distributions.
Studies on parasitoid–host interaction and on predator-prey
models (Briggs and Hoopes, 2004, and references therein) found
some spatial mechanisms resulting on stability or increased
persistence. One of these mechanisms is the limited dispersion of
populations. One of the effects of the g function, in this paper, is
to limit the diffusion at the cellular level. In the case of models
that consider patch dynamics, other important mechanisms
that contribute to persistence are: spatial heterogeneity and
asynchronous dynamics between patches (Briggs and Hoopes,
2004, and references therein).

It was possible to observe, with the simulations, that the
parameter wbn is important for the persistence of bacteria in the
host, because this parameter represents the influence that the
bacteria exert in neutrophil migration. The higher the value of
wbn, the lower the migration of neutrophils and the lower the
efficiency of neutrophil response. Another important parameter
is the rate of neutrophil migration s. We have observed that
this rate cannot be very high because a great concentration
of neutrophils would saturate rapidly the regions with bacteria
before eliminating them. But this rate cannot be small because
bacteria would spread throughout the domain. The model
results are also affected considerably by the rate of Coa/vWbp
production k. If this rate is below a threshold then we have a
scenario where bacteria are completely eliminated. Otherwise, we
have a scenario where bacteria persist in the host.

4.1. Limitations and Future Work
As limitations of this paper, we can note the fact that
the use of models based on differential equations requires
detailed knowledge about the parameters that are included
in the equations. Some of these parameters can be measured
experimentally, while others need to be estimated. In this paper,
we used parameter values for illustration purposes, they were not
estimated due to lack of sufficient experimental data.

As future work, we plan to better study the effects of toxins
and the different behaviors that could be obtained by considering
it. We also plan to study the effect of considering the migration
of cells ocurring only at some points of the domain, simulating
the presence of blood vessels at those points. Some numerical
simulations already performed using this specific scenario have
shown that the chemotaxis process of neutrophils has a major

impact in the result because the chemotaxis allows neutrophils
to reach the bacterial colony faster than when diffusion only
applies. This observation is in good agreement with our previous
observations (Pigozzo et al., 2013). Besides, we plan to add
pro-inflammatory cytokines to the model and to consider their
chemoattractant effect on immune system cells.

As a future work, we plan to build a more complete
model and validate it with distinct experimental data such as
histology images, values of bacteria load in the tissue, size
of abscess diameter, among others, obtained from various in
vivo experiments including the leukocyte depletion experiment
(Robertson et al., 2008; Navarini et al., 2009; Attia et al., 2013)
and the Coa/vWbp inhibition experiment (Vanassche et al., 2011,
2012; Flick et al., 2013). We plan to consider, in our model, the
use by the bacteria S. aureus of its sensory/regulatory systems
to adapt the production of virulence factors, specifically to a
triggering signal, e.g., neutrophils (Guerra et al., 2017). The
idea is to study how the interaction between S. aureus and
neutrophils provokes certain sensing and adaptive responses
used by S. aureus (Guerra et al., 2017).

In addition, we plan to extend the model to two and three-
dimensional domains, but we think that the behaviors that could
be obtained with two or three dimensions are the same that we
can obtain with the one-dimensional models because the spatial
mechanisms considered are not altered with the increase in the
number of dimensions.

5. CONCLUSIONS

In this paper, we have developed computational models based on
partial differential equations that were able to reproduce some
characteristics observed in the abscess formation process.

The study comprised the analysis of the spatiotemporal
behavior of bacteria, the coagulation factors Coa/vWbp, fibrin,
toxins and neutrophils. These analyses were important and
helped to understand how the modeled processes interact, the
effects of the incorporation of certain processes, among other
factors.

It was shown, in this paper, that the use of the g function
in the growth and diffusion terms of the populations was one
of the characteristics that allowed the mathematical models to
reproduce some key aspects of the abscess formation process.
Other important characteristic was the fibrin network formation.
The fibrin network protected bacteria from the immune
response given by the neutrophils. The formation of the fibrin
network was modeled considering the production of coagulation
factors and the interaction of these factors with the colony of
bacteria.

More tests and refinement of the model may be needed, but
this initial model was capable of reproducing some characteristics
found in the abscess pattern such as: the formation of a fibrin
network around the colonies of bacteria and an accumulation
of necrotic neutrophils and live neutrophils in the abscess
region.

Based on simulations results and on analyses done so far, we
believe that the fibrin network is essential for bacteria persistence
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inside the abscess lesion together with the mechanisms used by
the bacteria to kill neutrophils such as the production of toxins
and mechanisms used to evade phagocytosis.

The abscess pattern can also be obtained by models other
than those based on PDEs. For example, Cellular Automata
(Zorzenon dos Santos and Coutinho, 2001;Moreira andDeutsch,
2002; Xiao et al., 2006), Colored Petri Nets (Carvalho et al.,
2015; Pennisi et al., 2016) and models based on Agents
(Gopalakrishnan et al., 2013; Chiacchio et al., 2014; Abar et al.,
2017) can also be used to capture this pattern of formation.
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Recent experiments have suggested that the infectivity of simian immunodeficiency virus

(SIV) and human immunodeficiency virus type-1 (HIV-1) in plasma decreases over time

during primary infection. Because anti-gp41 antibodies are produced early during HIV-1

infection and form antibody-virion complexes, we studied if such early HIV-1 specific

antibodies are correlated with the decay in HIV-1 infectivity. Using a viral dynamic model

that allows viral infectivity to decay and frequent early viral load data obtained from 6

plasma donors we estimate that HIV-1 infectivity begins to decay after about 2 weeks

of infection. The length of this delay is consistent with the time before antibody-virion

complexes were detected in the plasma of these donors and is correlated (p = 0.023,

r = 0.87) with the time for antibodies to be first detected in plasma. Importantly, we

identify that the rate of infectivity decay is significantly correlated with the rate of increase

in plasma anti-gp41 IgG concentration (p= 0.046, r = 0.82) and the increase in IgM+IgG

anti-gp41 concentration (p = 8.37 × 10−4, r = 0.98). Furthermore, we found that the

viral load decay after the peak did not have any significant correlation with the rate of

anti-gp41 IgM or IgG increase. These results indicate that early anti-gp41 antibodies may

cause viral infectivity decay, but may not contribute significantly to controlling post-peak

viral load, likely due to insufficient quantity or affinity. Our findings may be helpful to devise

strategies, including antibody-based vaccines, to control acute HIV-1 infection.

Keywords: antibodies, primary HIV-1 infection, viral dynamics model, viral load, virus infectivity

INTRODUCTION

Primary human immunodeficiency virus type 1 (HIV-1) infection is associated with an initial
eclipse phase, during which the viral load remains below the limit of detection of conventional
assays, followed by a rapid viral load increase (Daar et al., 1991; Schacker et al., 1996; Fiebig et al.,
2003; Ribeiro et al., 2010; Cohen et al., 2011). After the viral load reaches its peak, it declines and
reaches a set-point level (i.e., a quasi-steady state). The early events during primary HIV-1 infection
not only have particular relevance for vaccine, microbicide and pre/post-exposure prophylaxis
(Chun et al., 1998; Pope and Haase, 2003; Shattock and Moore, 2003; Haase, 2005), they are also
important in defining the set-point viral load later in infection (Lifson et al., 1997) and the time
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period over which a successful vaccine needs to induce a
protective response prior to establishment of the latent pool
of HIV-1 infected CD4+ T cells (Wong and Siliciano, 2003;
Johnston and Fauci, 2007).

Based on a previous experiment involving simian
immunodeficiency virus (SIV) infection of macaques that
revealed a difference in infectivity between virus in plasma
obtained 7 days after infection and set-point virus (Ma
et al., 2009), we introduced an SIV dynamic model with time-
dependent viral infectivity (Vaidya et al., 2010). Also, preliminary
data comparing the ratio of the 50% tissue culture infectious dose
(TCID50) with HIV-1 RNA copy number suggests a decrease in
virus infectivity over time during primary infection in HIV-1
infected patients, although the magnitude of this effect varies
among subjects (Genevieve Fouda and David Montefiori, Duke
University School of Medicine, unpublished data). Although
the mechanisms responsible for the decay in viral infectivity
have not been established, it has been speculated that binding
of antibodies to HIV-1 might be in part responsible (Ma et al.,
2009). Consistent with this, during early HIV-1 infection it has
been shown that anti-gp41 antibodies are produced and form
virion-antibody complexes (Tomaras et al., 2008; Liu et al.,
2011).

Here we sought to determine whether these early anti-gp41
antibodies influence HIV infectivity by fitting a mathematical
model to frequently measured plasma viral loads obtained from 6
plasma donors. Themodel, which incorporates a time-dependent
infectivity rate, fits the acute infection HIV-1 data well. We
show the infectivity decay predicted by our model significantly
correlates with the anti-gp41 antibody response observed in these
plasma donors.

MATERIALS AND METHODS

Experimental Data
Sequential HIV-1 viral load data from 6 plasma donors was
obtained as previously described (Gasper-Smith et al., 2008;
Tomaras et al., 2008; Stacey et al., 2009). The study was approved
by the Duke Health Institutional Review Board, protocol number
Pro00006579. Each individual donated 600–800ml of plasma
which was frozen within 8 h to −20◦C or less. The plasma
samples were stored up to 2 months then sent in pools to
be serologically screened for HIV. Donors who were HIV-1
positive were notified and deferred from subsequent donation.
HIV-1 positive samples were aliquoted, and refrozen at −20◦C.
Aliquoted samples of plasma donors were quantified with
the Roche Amplicore HIV-1 RT PCR Ultra assay by Quest
Diagnostics (Lyndhurst, NY), with a lower limit of quantification
of 50 HIV-1 RNA copies/ml (Tomaras et al., 2008). There was a
median of 9 data points per donor with a median of 4 data points
before the viral peak. The median peak viral load was 6.0 (range
4.5–6.8) log10 viral RNA (vRNA) copies/ml. In these plasma
donors, the anti-gp41 IgG and IgM responses were also measured
and recorded as optical density (O.D.) (Tomaras et al., 2008).
In addition, circulating antibody-virion immune complexes were
measured (Tomaras et al., 2008; Liu et al., 2011). The data
analyzed below is provided in Table S1.

Viral Dynamic Model
To study the effect of antibody responses in decreasing viral
infectivity early during infection, we use the standard model of
viral infection (Phillips, 1996; Nowak et al., 1997; Little et al.,
1999; Perelson and Nelson, 1999; Stafford et al., 2000), but allow
the virus infectiousness to decay in time after a certain delay τ ,
which accounts for the time needed to generate an anti-HIV-1
response. The model is

dT

dt
= λ − dT − β (t)TV , T (0) = T0,

dI

dt
= β (t)TV − δI, I (0) = I0,

dV

dt
= pI − cV , V (0) = V0, (1)

where

β (t) =

{

β0, t ≤ τ ,

β∞ + (β0 − β∞) e−k(t−τ ), t > τ .
(2)

The model consists of target cells (CD4+ T cells), T, productively
infected CD4+ T cells, I, and free virus, V . We assume that
target cells are generated at a constant rate λ, have a per capita
net loss rate d, which is the difference between loss from cell
death and gain due to cell division, and become infected at a
rate proportional to the product of target cell density and virus
concentration with a time-dependent rate β(t). The parameters
δ, p, and c are the rate constants of infected cell loss, virus
production by infected cells and virus clearance, respectively. As
in Vaidya et al. (2010), we assume a simple exponential decay in
infectivity over time from the initial rate β0 to the final rate β∞

with a decay rate k, but for a more general formulation here we
include a time-delay τ before infectivity decay begins.

Data Fits and Parameter Estimation
We fit the model, Equations (1) and (2), to plasma viral load
data obtained from 6 HIV-1-infected plasma donors during the
acute phase of infection. Earlier studies have shown that the
percentage of proliferating CD4+ T cells in the peripheral blood
of healthy individuals, as measured by Ki-67 antigen expression,
is ∼1% (Sachsenberg et al., 1998). We use Ki-67+ CD4+ cells as
a surrogate for target cells and thus take the initial number of
target cells, T0, as 10

4 per ml (1% of 106/ml CD4+ T cell count).
We note that, as in Stafford et al. (2000), the model system (1)
becomes independent of T0 if the scaling p → p/T0 is performed.
This shows that taking the value of T0 different from 104 per ml
affects the estimates of only p, not the infectivity rate, β (t), and
thus, our conclusions will remain unaffected if one uses other
values of T0. Assuming CD4+ T cells were at equilibrium before
infection, we set λ = dT0. Because the route of infection of
the plasma donors is not known, we first assumed infection was
initiated by free virus particles rather than infected cells, and thus
we set I0 = 0 (Pearson et al., 2011). Then we also analyzed the
data assuming infection was initiated by an infected cell. Recent
estimates show that the virion clearance rate constant, c, varies
between 9.1 day−1 and 36.0 day−1, with an average of 23 day−1
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(Ramratnam et al., 1999). Thus, we take c = 23 day−1, although
other values in this range were also considered in a sensitivity
analysis.

It is difficult to obtain information about the initial virus
concentration that established infection. At least one virion, i.e.,
2 viral RNA (vRNA) copies, is needed to establish infection. A
70-kg person has about 15 L of extracellular body water and
about 3 L of plasma. Thus, the initial plasma viral load needed
to establish systemic infection is >2 vRNA copies per 3,000ml
or >2 vRNA copies per 15,000ml depending upon whether
the virus distributes throughout only the plasma or the total
extracellular body water before initiating infection. Here, we
present results withV0 = 10−3 vRNA copies perml assuming that
the virus distributes in the plasma and then study the sensitivity
of parameter estimates on the initial viral load (V0) by varying
V0 from 10-fold lower considering the possibility of virus being
distributed through extracellular body water to 1,000-fold higher
corresponding to the possibility of much higher levels of virus
initially entering the circulation.

The exact time of initial infection is not available for this data
set. However, the initial viral expansion rates for these subjects
have been estimated in a previous study (Ribeiro et al., 2010).
Using the slope of viral increase estimated in Ribeiro et al. (2010)
and the base value of V0, we calculated the time of infection and
then the time to the first measured viral load above the detection
limit for each of these subjects. This allowed us to associate a time
since infection with each data point. To estimate τ , we varied τ

in 1 day increments, and chose the one which provided the best
fit for each plasma donor. The other 6 parameters, β∞, β0, k, δ,
d, and p, were kept free and estimated by fitting the model to
the data from each plasma donor. We also performed fitting by
making τ a free parameter and obtained approximately the same
value as the best estimate from 1-day increment fitting. Since
the fit was not improved with τ as an extra free parameter, we
fixed τ as the best estimate obtained from the 1-day increment
fitting.

Parameter identifiability in HIV models, including those with
time-varying parameters, was discussed in Wu et al. (2008) and
Miao et al. (2011). As shown in Miao et al. (2011) and Wu et al.
(2008), with λ fixed as in our case, all the constant parameters
are structurally identifiable. Miao et al. (2011) showed that the
time-varying parameter (β (t) in our case) is also identifiable if
all the constant parameters are identifiable. Therefore, we expect
that the parameters of our model are identifiable for the number
of data points available in this study.

The data fitting protocol used to estimate parameters was
as described previously in Vaidya et al. (2010). We solved the
system of ordinary differential equations (ODEs) numerically
using a fourth-order Runge-Kutta in Berkeley Madonna. Using
Madonna’s “curve fitter” option, we obtain a set of initial
parameter estimates. The curve fitting method uses nonlinear
least-squares regression that minimizes the following sum of the
squared residuals:

J
(

β0,β∞, k, δ, p, d
)

=
1

N

N
∑

i=1

[

log10 V(ti)− log10 V(ti)
]2
. (3)

Here, V and V are virus concentrations predicted by the model
and those given by the experimental data, respectively. N is the
total number of data points.

Using the set of parameters obtained from Madonna as
initial guesses, we refined the fits by using “fmincon.m”
and/or “fminsearch.m” functions in MATLAB. For each best fit
parameter estimate, we provide a 95% confidence interval (CI),
which was computed from 500 bootstrap replicates (Efron and
Toibshirani, 1986). Since we analyze only 6 subjects, we present
results as medians and ranges, unless otherwise indicated.

Sensitivity Analysis
The viral load establishing systemic infection, V0, is not known.
To study the sensitivity of our results to the choice of V0, we
randomly selected 200 different V0 from 10-fold lower (i.e., 10−4

vRNA copies/ml) to 1,000-fold higher (i.e., 1 vRNA copies/ml)
and estimated parameters for each of the 6 donors.

Statistical Analysis
We performed linear regression to obtain the slope of the
IgG increase, the IgM increase and the IgG+IgM increase. We
then carried out correlation analyses using Pearson’s correlation
between these slopes and the decay slope of infectivity estimated
by our model. We also calculated the slope of the viral load decay
after the peak and performed correlation analyses of the viral
decay rate with the antibody response.

To evaluate the statistical significance of models comparisons,
we performed an F-test (Bates and Watts, 2007) as the models
considered in this study without and with infectivity decay are
nested.

RESULTS

Model Fitting to Data
We fitted Equations (1) and (2) to the HIV-1 data. We estimated
six parameters β∞, β0, k, δ, d, and p from the data fitting. The
estimated parameters along with their 95% confidence intervals
are summarized in Table 1. Using these estimated parameters,
we plotted the viral load dynamics predicted by the model along
with the data for each of the 6 HIV-1 infected plasma donors in
Figure 1. The predictions of our time-varying infectivity delay
model (solid curve) agree well with the data (filled circles).

For comparison, we also fitted these viral load data using a
constant infectivity (i.e., β(t) constant) model (Stafford et al.,
2000), and found that the delay model with time-dependent
infectivity provides statistically significant better fits (p = 0.001,
F-test with all the subjects combined as in Vaidya et al., 2010).
Moreover, we compared the data fitting using a time-dependent
model without delay (Vaidya et al., 2010) (i.e., τ = 0), and found
that including a delay in the model significantly improved the fits
(p= 0.008, F-test, Vaidya et al., 2010).

Virus Infectivity Decay
We estimated the median initial and late viral infection rate
constants to be β0 = 4.20 × 10−7 ml RNA−1 day−1 and
β∞ = 0.76 × 10−7 ml RNA−1 day−1, respectively (Table 1).
This suggests that infectivity decays during acute HIV-1 infection
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(p = 0.031, paired Wilcoxon Test). Such infectivity decay over
time was also observed previously in SIV infection (Ma et al.,
2009; Vaidya et al., 2010). Assuming that the decay of β(t) occurs
exponentially with rate k, we found that HIV-1 infectivity decays
with amedian rate of k= 0.049 day−1 (Table 1) (range: k= 0.013
day−1 to k = 0.249 day−1). Also, the time, th, to reduce the virus
infectivity to its mid-value, (β0 + β∞)/2, given by ln (2) /k, was
found to be 21 days (Table 1).

Correlation of Infectivity With Antibody

Response
It is known that antibodies bind to virions and form antibody-
virion complexes (Dianzani et al., 2002; Tomaras et al., 2008; Liu
et al., 2011). Such antibodies bound to virions might interfere
with the infection process (Ma et al., 2009). Therefore, we
examined if there is any correlation between the infectivity
decay and the earliest antibody responses detected during acute
infection, i.e., the anti-gp41 IgM and/or IgG response (Tomaras
et al., 2008; Liu et al., 2011).

While we acknowledge some uncertainty due to sparsity in
early Ab data, in general, as shown in Figure 2, the anti-gp41
IgM concentration (measured in optical density. i.e., O.D. units)
increases approximately linearly up to a maximum value and
then decays, whereas the anti-gp41 IgG concentration increases
monotonically over the time period studied. This pattern of IgM
increasing and then decreasing is consistent with the known
features of the IgM-IgG isotype switch (Murphy et al., 2008). We
performed a linear regression analysis to find the slope of the IgM
increase, of the IgG increase and of the IgM+IgG increase using
the antibody data to the time point where antibody levels saturate
or start to decay. The IgM and IgG concentrations increase by a
median rate of 0.19 day−1 and 0.09 day−1, respectively, while the
median rate of increase in the IgM + IgG concentration is 0.27
day−1 (Table S2).

While there was a positive association between the rate of
infectivity decay estimated by our model (k) and the slope of
IgM increase (Figure 3), this correlation was not statistically
significant (p = 0.33, r = 0.48). However, we found that the
rate of infectivity decay has a statistically significant positive
correlation with the slope of IgG increase (p = 0.046, r = 0.82)
and a very significant positive correlation with the IgM+IgG
anti-gp41 concentration with p-value = 8.37 × 10−4 and r-
value= 0.98 (Figure 3). This suggests that the antibody response
might contribute to the loss of virus infectivity. To check the
robustness of this finding, we performed correlation analysis by
iteratively excluding each donor one at a time, and found that the
correlation of infectivity decay with slope of increase of IgM+IgG
remained statistically significant (p< 0.01 in each case, Table S3).

The Delay Before the Start of Infectivity

Decay Correlates With the Time Until the

Antibody Response Is Detected
Our model predicts that the virus infectivity begins to decay
after a median time of 11 days (range: 5–24 days) of infection.
The exact delay from the time of infection to the initiation of
antibody increase is not known. However, from the experimental
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FIGURE 1 | Fitted viral dynamics curve using the delay model with time-varying infectivity to the observed viral load data (filled circle) during primary infection of 6

HIV-1 infected plasma donors.

data we estimated the time from infection (as estimated by our
calculation) to the time when the free IgM+IgG level begin
to increase in plasma. In the donated plasma, antibodies were
measured and, in every case, O.D. readings of both IgM and IgG
began to increase on the same day. Since the antibodies were
assayed in every sample, we defined the time when antibody
becomes detectable as the first time point for which the O.D. of
IgM+IgG level was above the limit of detection (i.e., O.D. > 0.5).
We found a statistically significant correlation (p = 0.0233,
r = 0.87) between the time that antibody became detectable in
plasma and the delay before infectivity decay began predicted by
our model (Figure 4). Furthermore, for three donors (CHID77,
CHID08, CHID79), the times for antibody-virion complexes to
be experimentally detectable in plasma were reported previously
as 13, 9, and 6 days, respectively, where this was measured

relative to the time at which the plasma viral load first reached
100 copies/ml (Tomaras et al., 2008). Using the eclipse phase
of acute infection in these plasma donors, calculated from the
slope of viral increase estimated in Ribeiro et al. (2010), these
times translate to 24, 18, and 14 days from the time of infection.
These values and their rank-order are consistent with the delay
for infectivity decay predicted by our model (24, 22, 10 days,
respectively, Table 1).

Correlation of Post-peak Viral Load Drop

With Antibody Response
To observe if antibodies have any significant impact on viral
load decay after the viral load peak, we performed a correlation
analysis between the slope of IgM increase, IgG increase,
IgM+IgG increase and the slope of the viral load drop after the

Frontiers in Microbiology | www.frontiersin.org June 2018 | Volume 9 | Article 1326124

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Vaidya et al. HIV-1 Infectivity and Specific Antibodies

FIGURE 2 | Anti-gp41 IgM, IgG and (IgM+IgG) antibody response data during primary infection from 6 HIV-1 infected plasma donors. The lines represent the best fits

used to estimate the upward slope of the antibody increase.

peak (Table S2). We did not find any significant correlation with
IgM, IgG or IgM+IgG indicating that this antibody response
might not be the primary cause for the drop of viral load after
the peak, consistent with previous findings (Tomaras et al., 2008).
In our viral dynamic model, Equation (1), viral load drop after
the peak is due to target cell limitation and death of productively
infected cells.

Sensitivity Analysis
Above we analyzed the correlation of two parameters, k and τ ,
with the antibody response. We estimated these parameters by
fitting our model to viral load data. Due to lack of information
about the actual number of virions initiating infection, V0, we
assumed V0 = 10−3 vRNA copies/ml. To ensure that the choice

of V0 did not bias our results, we re-fit the data taking 200
different values of V0 selected randomly from 10-fold lower to
1,000-fold higher (i.e., 10−4 to 1) than the base-case. We find
that the estimate of τ is not affected at all, and that the median
change in the estimates of k is below 5% (Figure S1). Therefore,
our results are not sensitive to the choice of V0.

We assumed that the infection was initiated with free virus
particles. To study how the estimates are affected if the infection
was initiated with infected cells, we compared the estimates
between an infection with one virus particle distributed in 15 L
body water (i.e., V0 = 2/15000 vRNA copies/ml) and an
infection with one infected cell distributed in 15 L body water
(i.e., I0 = 1/15000 cells/ml). We found that the estimates of k
are essentially the same in these two cases (Figure S2).
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FIGURE 3 | Correlation analysis of the slope of experimentally measured IgM, IgG and (IgM+IgG) antibody increase with the rate of infectivity decay predicted by our

model.

FIGURE 4 | Correlation analysis between the time for total antibody (IgM+IgG)

response to be experimentally detectable in plasma and the delay for the start

of infectivity decay predicted by our model.

We chose c = 23 d−1 based on the average of the
experimentally estimated range between 9 and 36 d−1. To test the
robustness of our results to this assumption, we refitted the data
with different values of c within this range. The only parameters
that is mainly affected is the viral production rate. Therefore, our
results regarding k and τ are not affected by the specific value of c.

DISCUSSION

During primary HIV-1 infection, a decay of virus infectivity
over time has been suggested by comparing the ratio of tissue
culture infectious dose (TCID50) with HIV RNA copy number
in sequential early viral load samples from a limited number of
subjects (Genevieve Fouda and David Montefiori, unpublished

data). In addition, HIV-1-specific anti-gp41 antibodies have been
detected in plasma amedian of 13 days after the viral load reaches
100 vRNA copies/ml (Tomaras et al., 2008). Moreover, anti-gp41
IgM-virion or IgG-virion complexes were found as early as 5
days after the viral load became detectable (Tomaras et al., 2008;
Liu et al., 2011). The presence of such antibodies might affect
the infectivity of HIV-1 (Tomaras et al., 2008; Ma et al., 2009).
Therefore, one of the main objectives of this study was to ask
if there is a correlation between the infectivity decay of plasma
virus and the anti-gp41 antibody response in HIV-1 infected
individuals.

Since there are delays before antibodies and antibody-virion
complexes become detectable in plasma (Tomaras et al., 2008),
we extended a previous infection model (Vaidya et al., 2010)
used to study acute SIV infection by incorporating a time-delay
before infectivity decay begins. We then used this delay model to
quantify the time-variation of HIV-1 infectivity during primary
infection. Our data fitting procedure reveals that both time-
dependent nature and delay of infectivity decay are necessary to
better describe the viral load data from primary HIV-1 infection.

According to our model estimates, plasma HIV-1 infectivity
decays exponentially with a median rate of 0.049 day−1 (Table 1),
and there is a time delay of about 2 weeks (range 5–24 days)
before virus infectivity begins to decay. The length of this delay
is consistent with the period from infection to the time when
the virion-antibody complexes were detected in plasma (Tomaras
et al., 2008), and is significantly correlated (p= 0.0233, r = 0.87)
with the time post-infection for anti-gp41 antibody (IgG+IgM)
to be detectable in plasma (Figure 4).

Our analyses also showed a statistically significant and strong
correlation between the rate of increase of the IgM+IgG anti-
gp41 antibody concentration and the rate of infectivity decay
estimated by the model (p= 0.0008, r= 0.98) (Figure 3). On the
other hand, we did not observe a significant correlation between
the slope of the IgM, IgG or IgM+IgG increase and the slope of
viral load drop after the viral load peak. Taken together, these
results indicate that the anti-gp41 (IgM+IgG) response might
contribute to the reduction of virus infectivity, but that these
anti gp41 antibodies have minimal effect on controlling post peak
viral load as seen in Tomaras et al. (2008). Thus other factors,
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such as target cell limitation (Stafford et al., 2000) and cytotoxic
T cell responses (Goonetilleke et al., 2009) may be playing a
role in determining the post-peak viral decline. Because cells
are not collected from plasma donors quantifying the change in
target cell levels and the magnitude of the CTL response was not
possible in this study.

A contribution of antibodies to reducing viral infectivity was
suggested by Ma et al. (2009), and supported by their observation
that mixing plasma obtained at set-point with plasma obtained
7 days after SIV infection reduced the infectivity of the 7-
day plasma. However, our inference that antibody affects the
infectivity of HIV-1 during early infection is derived from a
correlation based on limited viral load and antibody data from
only 6 individuals. We cannot rule out other possible causes
of infectivity decay such as the production of non-infectious
viral genomes that reduce infectivity, as the virus that founds
the infection diversifies due to mutation during early infection,
or other plasma proteins binding to virions and mediating
infectivity decay. Also, the correlation between the slope of
the infectivity decay and the up-slope of antibody responses
obtained in this study is for the early stages post-infection. Once
a plasma donor was identified as being HIV+ donations were
stopped and hence no long-term data were collected. Later in the
infection antibody responses saturate or decay. To capture the
long-term effect, the model needs to be extended to incorporate
such behavior and longer-term data is needed to validate such
extended models.

While this study supports the hypothesis that antibodies
reduce viral infectivity, we acknowledge that antibodies might
have other anti-HIV effects, such as enhanced virion clearance
and/or antibody-dependent cellular cytotoxicity (Tomaras and
Haynes, 2009, 2010). However, these effects were found to have
negligible contribution to HIV-1 viral dynamics (Tomaras et al.,
2008). In our previous study, we (Tomaras et al., 2008) also
investigated the effects of antibody in neutralizing virus by
reducing the infectivity rate in a mathematical model including
antibody data, but we did not find a significant antibody effect
in most patients. The difference with the current results could be
due to differences in the two modeling approaches: the delay in
the antibody effect in Tomaras et al. (2008) was entirely given
by the free antibody data, i.e., the delay corresponded to the
time delay for antibody to become detectable in plasma, while
the delay in our model (estimated to be much shorter, Figure 4)
corresponds to the delay for the formation of antibody-virion
complexes. Note that antibody-virion complexes are detectable
earlier than free antibodies in plasma (Tomaras et al., 2008).
The second difference in the two modeling approaches is the
functional form of the infectivity decay introduced into the
models (see Text S1). A study with more antibody data may

help to accurately and explicitly incorporate antibody effects
into viral dynamic models. While direct comparison between
these two models might not be appropriate as our model does
not have explicit dynamics for antibodies, clarifying these issues
might be important for future development of models that take
explicit antibody responses into account. We also acknowledge
uncertainty in the route of infection and the actual time of
infection; if the time of initial infection is different, then this may
imply a different dose of infecting virus, or even differences in
host immune response to the virus infection. However, we note
that it is very difficult to find HIV infected individuals so early
in infection. This complexity makes this data set unique and
highlights the importance of this study.

Although our model cannot conclusively address the causes
of decay in HIV-1 infectivity, the quantitative agreement
between our model’s predictions and the measured viral
load curves in all 6 subjects, and the correlation of the
rate of infectivity decay with the measured increase in
anti-gp41 antibody concentrations strongly suggest the
early anti-HIV-1 response, even though non-neutralizing
may still provide benefit. More data, especially on early
antibody responses (including IgA responses), the formation
of antibody-virion complexes, and the ratio of infectious
virus to total HIV-1 RNA are needed to provide a more
accurate picture of virus infectivity during primary HIV-1
infection.
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Experimental studies have shown that the size and infectious-stage of viral inoculum

influence disease outcomes in rhesus macaques infected with simian immunodeficiency

virus. The possible contribution to disease outcome of antibody developed after

transmission and/or present in the inoculum in free or bound form is not understood.

In this study, we develop a mathematical model of virus-antibody immune complex

formation and use it to predict their role in transmission and protection. The model

exhibits a bistable switch between clearance and persistence states. We fitted it to

temporal virus data and estimated the parameter values for free virus infectivity rate

and antibody carrying capacity for which the model transitions between virus clearance

and persistence when the initial conditions (in particular the ratio of immune complexes

to free virus) vary. We used these results to quantify the minimum virus amount in the

inoculum needed to establish persistent infections in the presence and absence of

protective antibodies.

Keywords: SIV, immune complexes, mathematical model, bistable dynamics, stochastic model

INTRODUCTION

The humoral immune response is one of the first barriers against infecting pathogens and forms
the basis for most vaccines that are currently in use (Plotkin, 2008; Deal and Balazs, 2015).
The rapidly mutating human immunodeficiency virus (HIV), however, evades humoral immune
responses in most human infections due to difficulties in eliciting neutralizing antibodies that are
effective against the enormous diversity of virus strains (Haynes, 2015). In a few cases broadly
neutralizing antibodies (bnAbs) are produced, but they appear 2–4 years following infection (Gray
et al., 2011; Tomaras et al., 2011), are ineffective against co-circulating virus strains, and have
unusual traits such as autoreactivity and high levels of somatic hypermutations (Mascola and
Haynes, 2013). Inducing protective antibodies in vivo is challenging (Mascola and Haynes, 2013;
Haynes, 2015), with the partially successful RV144 vaccine clinical trial offering a 31.2% decrease
in transmission through non-neutralizing antibody dependent cellular toxicity-mediated responses
(ADCC) (Rerks-Ngarm et al., 2009; Tomaras et al., 2013; Pollara et al., 2014).
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Animal models have proven useful in examining the
mechanisms of virus-antibody interactions that lead to
protection against HIV infections. Studies using the chimeric
simian-human rhesus macaque model (SHIV) have shown that
passive transfer of broadly neutralizing monoclonal antibodies
(bnMAbs) can induce protection against mucosal challenge
(Moldt et al., 2012). The protection is dependent on the ratio
between the challenge dose and the concentration of broadly
neutralizing antibodies in the serum (Mascola et al., 1999),
the breadth and potency of bnMAbs (Walker et al., 2011;
Moldt et al., 2012), as well as the timing of antibody infusion
(Nishimura et al., 2003). The potential for inducing neutralizing
antibodies that correlate with protection in vivo has been shown
during simian immunodeficiency virus (SIV) infections of ENV-
vaccinated rhesus macaques (Letvin et al., 2011), suggesting that
it may be possible to elicit antibody-mediated protection through
vaccination. Understanding the properties of antibodies, such as
concentration and avidity needed for protection based on known
virus count in the inoculum, is important information that can
guide vaccine design.

In 2009, Ma et al. used SIV infection in rhesus macaques
to examine the connection between infection outcome, the
size of the challenge inoculum and the disease stage in the
SIV infected animals used as donors (Ma et al., 2009). They
found that ∼20 viral RNA (vRNA) copies titrated from a
plasma pool containing virus collected during the ramp-up-
stage of infection in donor animals are needed to successfully
infect recipient animals. By contrast, ∼1,500 vRNA copies
titrated from a plasma pool containing virus collected during
the set-point-stage of infection in donor animals are needed
to establish infection in recipient animals. This led to the
conclusion that the virus infectivity decreases over time due
to a combination of virological and immunological factors. In
Vaidya et al. (2010) used mathematical models to quantify the
decrease in infectivity during the ramp-up and set-point infection
and found that the decrease happens during both acute and
chronic stages with a sharper decrease during acute infections.
They did not, however, examine the mechanisms underlying the
decrease.

In this study we investigate whether antiviral factors can
explain the change in virus infectivity observed in experiments.
Briefly, we hypothesize that donor’s ramp-up-stage plasma
transferred into the recipient animal contains mostly free virus.
By contrast, donor’s set-point-stage plasma transferred into
the recipient animal contain a large amount of antibody-virus
immune complexes in addition to free virus. If such immune
complexes can still infect, then their infectivity rate is reduced
compared to that of the free virus. To test this hypothesis, we
develop a mathematical model of antibody-virus dynamics that
assumes interaction between virus, recipient and donor antibody,
and the corresponding immune complexes. We fit the model
to viral load data from two recipient animals challenged with
donor’s ramp-up-stage plasma, three challenged with donor’s
set-point-stage plasma, and one infused with donor’s set-point
antibody and challenged with donor’s ramp-up-stage plasma.
The fits give us parameter estimates for long-run antibody
concentration, free virus infectivity rates, and the relation

between protection and free virus - immune complex ratio in the
inoculum.

METHODS

Data
We are using published data from the Ma et al. (2009) (all
information regarding approvals by IRB can be found in the
original study). Briefly, plasma samples from seven SIV infected
rhesus macaques were collected during the ramp-up and set-
point-stages of infections. Various amounts of vRNA were
titrated from the two plasma pools and used for intravenous
infection of SIV naive rhesus macaques (see Ma et al., 2009
for additional details). Animals 35036, 33815, and 3297 were
challenged with virus from ramp-up-stage plasma and animals
33952, 34846, and 34373 were challenged virus from set-
point-stage plasma. Lastly, animals 33681, 32350, 32970, and
36068 were challenged with virus from an aliquot of ramp-up-
stage plasma containing heat inactivated set-point-stage plasma.
Longitudinal virus load data (vRNA copies per ml) was collected
for all recipient animals that became viremic.

Model of Recipient-Virus Interaction
We develop a mathematical model of virus-antibody interaction
that investigates the connection between inoculum size and
disease outcome. We start with the basic SIV model (Perelson
et al., 1996; Bonhoeffer et al., 1997) which considers the
interaction between activated uninfected CD4 T cells T, infected
CD4 T cells I, and free virus V , as follows

dT

dt
= s− dT − βTV ,

dI

dt
= βTV − δI,

dV

dt
= NδI − cV .

(1)

Uninfected cells are produced at rate s, die at per capita rate d,
and become infected upon encountering virus at rate β . Infected
cells die at per capita rate δ and produce N virions throughout
their average lifespan. Free virus is eliminated at per capita rate c.

During challenge with donor’s plasma, we assume that donor’s
antibody AD and donor’s virus-antibody immune complexes
XD are transferred into the recipient animals. AD decays
exponentially at rate dA. We assume that donor’s immune
complexes XD can still infect target cells at rate β1. Their
infectivity rate, however, is smaller than that of free virus, β1 < β .
XD unbind to give rise to free virus

XD
km
⇋

kp
V + AD, (2)

where kp and km are binding and unbinding rates. Lastly, XD

are cleared faster than free virus. We model this in a density
dependent manner, with cAV being the maximum removal rate
andM the complexes at which the removal is half-maximal.
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We next assume that a de novo antibody response to the SIV
infection occurs in recipients. Recipient antibody, AR, binds free
virus, V , and forms antibody-virus immune complexes, XR

AR + V
km
⇋

kp
XR, (3)

with the same binding and unbinding rates as the those of
the donor antibody. Recipient antibody expands in an antigen
dependent manner at rate α. We account for immunological
memory by assuming that recipient antibodies persist in an
antigen independent manner with maximum proliferation r and
carrying capacity K. Recipient immune complexes have the same
infectivity rate, β1 < β , and the same removal rate, cAV > c, as
the donor’s immune complexes.

The model becomes

dT

dt
= s− dT − βTV − β1T(XD + XR),

dI

dt
= βTV + β1T(XD + XR)− δI,

dV

dt
= NδI − cV − kp(AR + AD)V + km(XR + XD),

dAR

dt
= αARV + rAR

(

1−
AR

K

)

− kpARV + kmXR,

dXR

dt
= kpARV − kmXR − cAV

XR

XR +M
,

dAD

dt
= −dAAD − kpADV + kmXD,

dXD

dt
= kpADV − kmXD − cAV

XD

XD +M
,

(4)

with initial values T(0) = s/d, I(0) = 0, V(0) = V0 > 0,
AR(0) = A0, XR(0) = 0, AD(0) ≥ A0 and XD(0) ≥ 0.

Parameter Values and Initial Conditions
We assume that we have T(0) = 106 per ml and I(0) = 0
per ml at the beginning of infection. Uninfected CD4 T cells are
produced at rate s = 104 per ml per day (Sachsenberg et al., 1998)
and die at rate d = 0.01 per day (Stafford et al., 2000). We use
previous estimates for the infected cells death rate, δ = 0.39 per
day (Markowitz et al., 2003), virus clearance rate, c = 23 per day
(Ramratnam et al., 1999), and virus production by an infected
cells, N = 2,000 per day (Ciupe, 2015). We fix the immune
complexes infectivity rate β1 = 10−8 ml per day per virion.

Since all donor and recipient animals were negative for
anti-SIV antibodies, we assume the antibodies are below their
limit of detection of 3.8 × 108 molecules per ml (0.1 ng/ml1).
Without loss of generality, AD(0) = AR(0) = 3.5 × 108

molecules per ml. The recipient immune complexes are absent
at the time of infection, XR(0) = 0 molecules per ml. Donor
antibodies decay at rate dA = 0.07 per day (Zalevsky et al.,
2010). Once infection occurs, recipient antibodies are produced
and expand in both virus-dependent and virus-independent

1IgG Human ELISA Kit ab100547. http://www.abcam.com/IgG-Human-ELISA-

Kit-ab100547.html.

manners, at rates α and r, respectively. Since α and r have
complementary functions (see Supplementary Material), we can
ignore one of them. For simplicity, we set α = 0. Immune
complexes dissociate at rate km = 100 per day (Schwesinger
et al., 2000; Zhou et al., 2007; Tabei et al., 2012). The IgG affinity
KA = kp/km in a humoral response frequently starts at 105

M−1 (Gopalakrishnan and Karush, 1975). For SIV, each virion
can have ten to hundreds of potential antibody binding sites and
affinity maturation may occur. Taking both effects into account
can increase the functional affinity KA to 108 M−1. Therefore,
we consider a binding rate kp = KA × km = 1010M−1/day=
1.6 × 10−11 ml per molecule per day, higher than in Tabei et al.
(2012), Ciupe (2015) and a carrying capacity K = 5 × 1013

molecules per ml. We assume that a maximum of cAV = 106

immune complexes are removed per day, and that the removal
rate is half-maximal forM = 500 immune complexes.

When an animal is challenged with SIV, the inoculum plasma
may contain both free virus or donor’s immune complexes.
As in Vaidya et al. (2010), we assume that the initial virus
distributes throughout the entire plasma volume of a 7 kg
macaque, approximately 300ml. Therefore, our initial conditions
are XD(0) + V(0) = D(0)/300 copies per ml, where D(0) is the
inoculum vRNA (Ma et al., 2009), and V(0) and XD(0) vary.

We assume that the free virus infectivity rate β(> β1) ml per
day per virion, antibody carrying capacity K molecules per ml,
and antibody independent expansion rate r per day are unknown
and we estimate them through data fitting. All fixed parameters
and initial conditions are presented in Table 1.

Data Fitting
We estimate parameters β and r by simultaneously fitting
VT(t) = V(t) + XD(t) + XR(t) given by model (4) with known
total virus initial conditions to both chronic and no-infection
virus data. Twomonkeys (35036 and 33815) were protected when
challenged with 2 ramp-up vRNA and chronically infected when
challenged with 20 ramp-up vRNA. We use these to get initial
concentrations of VT(0) = 2/300 and VT(0) = 20/300 copies
per ml, respectively. When a monkey is protected, no vRNA
data is collected. We create an artificial data set VTiterlow =

{2/300, 1/300} copies per ml at times τj ∈ {0, 30} days in
each animal that did not get infected. When a monkey gets
infected, total virus concentrations VTiterhigh(ti) above the limit
of detection were collected at ti ∈ {2, 5, 7, 9, 12, 14, 21, 28} days
post infection for each subject.

Similarly, three monkeys (33952, 34846, and 34373) were
protected when challenged with 1.5, 15, and 150 set-point vRNA
and chronically infected when challenged with 1500 set-point
vRNA. We therefore use initial concentrations VT(0) = 150/300
and VT(0) = 1,500/300 copies per ml for VT(0) in model (4).
When a monkey is protected, no vRNA data is collected. We
create an artificial data set VTiterlow = {150/300, 1/300} copies
per ml at times τj ∈ {0, 30} days in each animal that did not get
infected.When amonkey gets infected, total virus concentrations
VTiterhigh(ti) above the limit of detection were collected at ti ∈
{5, 7, 9, 12, 14, 21, 28} days post infection for subjects 33952 and
34373, and ti ∈ t̄ = {14, 21, 28} days post infection for subject
34846.
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TABLE 1 | Parameter values and initial conditions used in model (4).

Variables Description Initial values

T Target cells (cells ml−1) T (0) = 106

I Infected cells (cells ml−1) I(0) = 0

V Free virus (virion ml−1) V (0) varies

AD Donor antibody (molecules ml−1) AD(0) varies

AR Recipient antibody (molecules ml−1) AH (0) = 3.5× 108

XD Donor immune complexes (complexes ml−1 ) HD(0) varies

XR Recipient immune complexes (complexes

ml−1)

HX (0) = 0

Parameters Description Values

s CD4 T cell production rate (cells ml-day−1) 104

d Target CD4 T cells death rate (day−1) 0.01

β Free virus infectivity rate (ml day-virion−1) estimated

β1 Immune complexes infectivity rate (ml

day-virion−1)

10−8

δ Infected cells death rate (day−1) 0.39

N Burst size (virion) 2000

c Virus clearance rate (day−1) 23

α Antigen dependent expansion of antibodies

(ml day-virion−1)

10−9

r Antibody division rate (day−1) estimated

dA Antibody degradation rate(day−1) 0.07

K Antibody carrying capacity (molecules ml−1 ) 5× 1013

kp Binding rate (ml day-virion−1) 1.6× 10−11

km Unbinding rate (day−1) 100

cAV Immune complexes clearance rate

(complexes day−1)

106

M Immune complexes where clearance is half

maximal (ml−1)

500

We use the “fminsearch” algorithm in MATLAB R2016b [The
MathWorks Inc., Natick, MA] to minimize the functional

J(β ,K, r) =

(

n
∑

i=1

(

logVT(ti)− logVTiterhigh(ti)
)2

+

2
∑

j=1

(

logVT(τj)− logVTiterlow(τj)
)2





1/2

, (5)

where n is the number of data points. Finally, VT(ti) and VT(τj)
are the theoretical predictions for the total viral concentration as
given by model (4) at times ti and τj.

RESULTS

Antibody-Dependent Basic Reproduction

Number
The model exhibits bistable switch between a clearance state
S0 = (s/d, 0, 0,K, 0, 0, 0) and a positive chronic state S1 =

(T1, I1,V1,AR1,XR1, 0, 0). We can show analytically that steady

state S0 is locally asymptotically stable when Ra0 < 1 (see
Supplementary Material), where

Ra0 = R0
km +

cAV
M +

β1
β
kpK

km +
cAV
M +

cAV
cM kpK

< 1. (6)

Inequality (6) shows that even if viremia occurs in the absence

of antibodies, R0 =
Nβs
dc

> 1, viral clearance can be reached
when the combined contribution of the protective and/or infused
antibodies make Ra0 < 1. We name Ra0, the antibody-dependent
basic reproduction number, which represents the number of
virion produced in average by an infected cell in an otherwise
infection-free population throughout its lifetime when antibodies
are present.

Ra0 < 1 is a necessary but not sufficient condition for virus
clearance. Indeed, numerical results show that for Ra0 < 1, the
chronic state S1 is asymptotically stable as well. That means that
given Ra0 < 1 and appropriate initial conditions the chronic
steady state S1 can be reached. We numerically investigate the
relationship between the model’s initial conditions, animal data
and the model’s long-term behavior.

Infection With Ramp-Up-Stage Virus
Animals 35036 and 33815 were challenged with 20 vRNA copies
that were titrated from a plasma pool containing virus collected
from seven monkeys during the ramp-up-stage of infection
(defined as approximately 7 days after challenge). Following
challenge they became viremic. In contrast, animal 32970, who
was challenged 2 vRNA copies from the same plasma pool,
did not develop a persistent infection (Ma et al., 2009). Since
immune complexes are detected around 21 days post infection
(Tomaras et al., 2008; Liu et al., 2011), we assume that the
ramp-up inoculum contains only free virus. Therefore, our initial
concentrations are XD(0) = 0 and V(0) = 20/300 copies per
ml in animals 35036 and 33815; V(0) = 2/300 copies per ml in
animal 32970. The best estimates for β and r were obtained by
minimizing J given by (5) for the above initial conditions (see
Table 2).

Our model predicts a bistable switch in the virus dynamics
between persistence and clearance when the free virus initial
concentration changes from 20/300 to 2/300 copies per ml
(see Figure 1, left panels). For median estimates among the two
animals, we predict that for V(0) = 20/300 copies per ml, the
total virus load increases to a maximum of 2× 108 copies per ml,
before decreasing to equilibrium levels of 9 × 106 copies per ml,
three months after infection. By contrast, when V(0) = 2/300
copies per ml, the total virus concentration grows to 850 copies
per ml four days following infection, before it decays below the
limit of detection of 50 vRNA copies per ml.

The antibody populations do not depend of the initial viral
inoculum (see Figure 1, right panels). They reach maximum
carrying capacity 5 × 1013 molecules per ml (0.0125 mg per ml)
seven days after infection. When V(0) = 20/300 vRNA copies
per ml, free virions bind recipient antibodies to form recipient
immune complexes which, at equilibrium, exceed the free virus
concentration 7.8 times. When V(0) = 2/300 copies per ml,
immune complexes are formed, but they decay below limit of
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TABLE 2 | Parameter estimates and 95% confidence intervals from minimizing the likelihood function J given by (5) for the ramp-up data.

Animal β (ml day-virion−1) 95% CI r(day−1) 95% CI Ra
0

35036 1.58× 10−7 [1.57× 10−7, 1.59× 10−7] 2.32 [2.3, 2.33] 0.42

33815 1.34× 10−7 [1.33× 10−7, 1.35× 10−7] 1.95 [1.945, 1.952] 0.35

Median 1.46× 10−7 – 2.14 – –

FIGURE 1 | (Left) Basin of attraction for VT given by (4) vs. data; (Right) Free antibody (solid lines); recipient immune complexes (dashed lines) and donor immune

complexes (dotted lines) for V (0) = 20/300 vRNA copies per ml, XD(0) = 0 vRNA copies per ml (black) and V (0) = 2/300 vRNA copies per ml, XD(0) = 0 vRNA copies

per ml (gray). Note that antibody populations are identical regardless of initial conditions (solid black and gray lines overlap).

detection 7 days after inoculation. Model (4) assumed that B-
cell priming by the virus is followed by an antigen-independent
antibody expansion with a maximum per capita growth rate r.
We estimated a median per capita growth rate r = 2.14 per day,
corresponding to the doubling time of antibody population of
7.8 h.

We are interested in determining the largest initial virus
inoculum that allows for viral clearance under the ramp-up-
stage modeling assumptions. For the median r parameter in
Table 2we derived a bifurcation diagram showing the asymptotic
free virus concentrations three months following infection when
the infectivity rate β is varied (see Figure S1). The system
is displaying hysteresis. For the median infectivity rate β in
Table 2, we plotted the basins of attractions for the total virus
concentration VT when the inoculum concentration varies (see
Figure 2, left panel). We predict that VT is cleared for V(0) <

17.5/300 copies per ml and persists otherwise.

Infection With Set-Point-Stage Virus
Animals 33952, 34846, and 34373, were challenged with vRNA
copies titrated from a plasma pool containing virus collected

during the set-point-stage of infection (defined as the time several
months after the peak when plasma vRNA levels were relatively
stable, and antibody responses were well developed) of the seven
donor monkeys (Ma et al., 2009). The animals were protected
when challenged with set-point-stage plasma titrated to contain
1.5, 15, and 150 vRNA and became viremic when challenged
with set-point-stage plasma containing 1500 vRNA. We aim to
determine the parameter sets for which model (4) predicts a
switch between viral persistence for V(0) + XD(0) = 1500/300
copies per ml and clearance for V(0) + XD(0) = 150/300 copies
per ml (and consequently for 1.5/300 and 15/300 vRNA copies
per ml).

As before, we assume that the donor’s antibody concentration
is below the limit of detection. However, there are 7.8 times
more immune complexes than free virus in the inoculum plasma,
XD(0)/V(0) = 7.8, as predicted by the model (4) fitted to ramp-
up data and run to equilibrium values. We minimize functional
J given by (5) with XD(0)/V(0) = 7.8. The estimated parameters
are presented in Table 3.

We predict a bistable switch between persistent and cleared
virus populations based on initial conditions (see Figure 3,
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FIGURE 2 | VT given by (4) at steady state vs. i for: (Left) V (0) = i/300 vRNA copies per ml, XD(0) = 0 vRNA copies per ml and median parameters in Table 2;

(Right) V (0) = i/300 vRNA copies per ml, XD(0) = 7.8× i/300 vRNA copies per ml and median parameters in Table 3.

TABLE 3 | Parameter estimates and 95% confidence intervals from minimizing the likelihood function J given by (5) for the set-point data.

Animal β (ml day-virion−1) 95% CI r(day−1) 95% CI Ra
0

33952 9.3× 10−8 [9.23× 10−8, 9.33× 10−8] 1.37 [1.369, 1.375], 0.25

34846 4.09× 10−8 [4.07× 10−8, 4.1× 10−8] 0.515 [0.512, 0.518] 0.108

34373 1.07× 10−7 [9.51× 10−8, 1.07× 10−7] 1.66 [1.5, 1.8] 0.2673

Median 9.3× 10−8 – 1.37 – –

left panels). The median set-point virus infectivity rate is 1.5
times smaller than the median infectivity rate of the animals
infected with the ramp-up-stage plasma. Moreover, the median
set-point antibody antigen-dependent growth rate, r is 1.55
times smaller, corresponding to a median antibody population’s
doubling time of 12 h. We decided to compare median values,
rather than averages, since the set-point plasma results are
biased by the estimates in animal 34846 whose virus growth is
delayed.

We next quantified the largest initial virus inoculum that
allows for viral clearance when the initial inoculum is comprised
of 7.8 times more immune complexes than free virion. We
set all parameters at the median values in Table 3 and plotted
the basins of attractions for the total virus concentration three
months following infection as the inoculum concentration varies
(see Figure 2, right panel). We predict that VT is cleared when
VT(0) ≤ 42/300 vRNA copies per ml, XD(0)/V(0) = 7.8 and
persists otherwise.We also investigated the relation between viral
clearance, VT(0) and the ratio XD(0)/V(0). We note that when
the ratio between the immune complexes and free virus in the
initial plasma is low, even a small inoculum size can create virus
persistence. Conversely, when the immune complexes dominate
the initial plasma, a large initial virus inoculum is needed to
establish an infection (see Figure 4).

Infection With a Mix of Heat Inactivated

Set-Point-Stage Plasma Mixed With

Ramp-Up-Stage Virions
To determine whether antibodies play a role in reducing
virus infectivity, Ma et al. designed an aliquot of ramp-up
stage plasma containing 20 vRNA/0.5 ml mixed with 0.5 ml
of heat inactivated set-point-stage plasma (Ma et al., 2009).
The set-point-stage plasma contained antibodies capable of
in vitro neutralization. They used the aliquot on four animals:
33681, 32350, 32970, and 36068, with the first three animals
being protected and the last animal developing persistent
infection.

To address this experimental setting we assume the model

follows the dynamics given by median parameter values in the

ramp-up case with V(0) = 20/300 copies per ml and XD(0) =

0 copies per ml (see Tables 1, 2). However, we vary AD(0) to

account for donor’s antibody being present in the inoculum. We

find that a minimum of AD(0) = 7.4 × 109 donor antibody
molecules per ml (1.8×10−6 mg perml) are needed for clearance.

This value is above the antibody’s limit of detection, but more

than three orders of magnitude below the antibody’s equilibrium
values. This suggests that even low antibody levels may help
protect the host.
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FIGURE 3 | (Left) VT given by (4) vs. data; (Right) Free antibody (solid lines), recipient immune complexes (dashed lines) and donor immune complexes (dotted lines):

for V (0)+ XD(0) = 1500/300 vRNA copies per ml, XD(0)/V (0) = 7.8 (black) and V (0)+ XD(0) = 150/300 vRNA copies per ml, XD(0)/V (0) = 7.8 (gray). Note that

antibody populations are identical regardless of initial conditions (solid black and gray lines overlap) but the immune complexes differ.

FIGURE 4 | Asymptotic behavior for the VT solutions of (4) for median parameters in Table 3 as the initial vRNA and XD(0)/V (0) are varied. The blue region (left of the

curve) corresponds to extinction asymptotic concentrations VT = 0 copies per ml. The yellow region (right of the curve) corresponds to persistence asymptotic

concentrations VT = 6.9× 106 copies per ml.
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Wewant to determine the additional recipient-virus dynamics
that lead to infection in animal 36068. We fit VT given by model
(4) with V(0) = 20/300 vRNA copies per ml, XD(0) = 0 vRNA
copies per ml and AD(0) = 7.4× 109 molecules per ml to animal
36068’s virus data and found that virus persistence is due to the
recipient antibody dynamics (see Figure 5, right panel). Indeed,
for a good fit we need to decrease the recipient’s antibody carrying
capacity to K = 5 × 1012 molecules per ml, 10 times lower than
the previous carrying capacity in ramp-up infected animals. The
antigen-independent expansion rate r = 1.62 per day is 1.3 times
smaller than the median per capita antibody expansion rate in
the ramp-up infected animals, but similar to that of set-point
infected animals (see Table 4). This implies that animal’s 36068
immune response is not strong enough to prevent persistent
viremia. Moreover, for these antibody parameters bistability does
not occur (Ra0 = 2.26 > 1), and the virus reaches a positive
steady state level regardless of the size and structure of the initial
inoculum.

Can Random Infection and Clearance

Events Explain the Data?
To address whether the switch in virus dynamics is due to
random effects, we use the stochastic model of virus infection
and clearance developed in Pearson et al. (2011). Under the
parametrization of model (1), the burst stochastic model in
Pearson et al. (2011), is given by

V
βT
−→ I,

I
δ
−→ NV ,

V
c
−→ ∅.

(7)

Let n = (nV , nI) be the number of viruses and infected cells
starting the SIV infection,

ρV = Pr{Extinction|n = (1, 0)} and

ρI = Pr{Extinction|n = (0, 1)}, (8)

be the probabilities of extinction given an infection that is started
by one virus or one infected cell. Then the probability of virus
persistence given nV virion and nI infected cells, ǫ = 1−ρ

nV
V ρ

nI
I ,

can be computed analytically. Namely

ρV = min{1, ρ∗

V},

ρI = min{1, (ρ∗

V )
N
},

(9)

where ρ∗

V is the positive solution of the equation

γ (ρV )
N
− ρV + 1− γ = 0. (10)

Note that the probability of persistence ǫ is dependent on the
burst size N and on the probability that a virus infects a cell,

γ =
βT

βT+c (see Pearson et al., 2011 for a full derivation). For

fixed N = 300 virions per infected cell, T = 106 cells per ml, and
c = 23 per day, we determine the infectivity values β that can
explain the relationship between extinction/persistence and the
inoculum size in ramp-up/set-point vRNA cases when free virus
establishes the infection, i.e., nI = 0 (see Figure 6).

We find that a 99% probability of persistence for a ramp-
up-stage inoculum of 20 vRNA occurs when the infectivity rate
β > 8 × 10−6, while the same persistence probability for a set-
point inoculum of 1500 vRNA occurs for β > 1.15 × 10−7 (see
Figure 6, red circles). For these choices of β , the probability of
extinction for the lower 2 ramp-up stage and 150 set-point-stage
vRNA inoculum are 64% and 65%, respectively (see Figure 6,

FIGURE 5 | (Left) VT given by (4) vs. data; (Right) Free antibody (solid lines), recipient immune complexes (dashed lines) and donor immune complexes (dotted lines)

for V (0) = 20/300 vRNA copies per ml, XD(0) = 0 vRNA copies per ml and AD(0) = 7.4× 109 molecules per ml.
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TABLE 4 | Parameter estimates and 95% confidence intervals from fitting VT to animal data for V (0) = 20/300 vRNA copies per ml, XD(0) = 0 vRNA copies per ml and

AD(0) = 7.4× 109 molecules per ml.

Animal β (ml day-virion−1) 95% CI r(day−1) 95% CI Ra
0

363068 1.11× 10−7 [1.06× 10−7, 1.17× 10−7] 1.62 [1.5, 1.74] 2.26

FIGURE 6 | The probability of virus persistence for (Left) ramp-up-stage and (Right) set-point-stage vRNA data under the assumption of the burst stochastic model

(7). The red circles account for the probability of persistence for high inocula, while the blue stars account for the probability of persistence for low inocula.

blue stars). In order for the proposed stochastic process to
explain the experimental observations, there must be a 70-fold
reduction in the infectivity rate β between ramp-up and set-
point virus (8.75 times higher than estimated in Vaidya et al.,
2010). Moreover, the extinction probability for the lower inocula
is lower than ideal. While the stochastic explanation is still
conceivable, we conclude that the presence of immune complexes
in the inoculum is a compelling alternative explanation for the
experimental outcomes.

DISCUSSION

We developed a mathematical model of antibody responses to
SIV infection that shows a bistable switch between persistent
infection and virus clearance based on the composition of the
plasma used for intravenous inoculation.

We made several interesting observations. When the plasma
does not contain any free donor antibody, our model predicts
that the difference between infection with high inoculum
containing set-point-stage virus and infection with low inoculum
containing ramp-up-stage virus can be explained by the presence
of immune complexes in the inoculum that exceed free virus by
a factor of 7.8. Such immune complexes can still infect target
CD4 T cells, but have a 10-fold decrease in infectivity. Under
these assumptions, the model fits the data when the infectivity
of free virus is constant over time. There is a 1.5-fold decrease in

the set-point-stage free virus infectivity compared to ramp-up-
stage free virus infectivity, as reported in earlier studies (Ma et al.,
2009; Vaidya et al., 2010). Such decrease may be due to temporal
accumulation of non-infectious particles and to the emergence of
other immune factors such as CD8 T cell responses.

When the inoculum plasma contains neutralizing antibody,
our model predicts that infection is blocked even when free virus
infectivity rates are as high as in the ramp-up stage. In order for
virus to invade, antibody responses need to be 10 times lower at
equilibrium. Moreover, their growth needs 1.3-fold reduction.

We assumed that the recipient and donor antibody have high
avidity of 108 M−1 (as with infusion of broadly neutralizing
antibody), a high antibody carrying capacity K = 5 × 1013

molecules per ml and estimated the recipient antibody expansion
rate needed for protection. With our model, however, it is
difficult to separate out the effects of changing the avidity rate
KA = kp/km and changing the antibody carrying capacity K. For
example we can preserve the results by decreasing avidity and
increasing the carrying capacity. Similarly, the antibody antigen-
dependent and antigen-independent growth factors, r and α,
have synergistic effects. If we decrease r we can maintain the
overall virus-antibody dynamics by increasing α (as detailed in
the sensitivity Figure S2).

We have also assumed that the immune complexes infect at
rate β1 = 0.1 × β ml per day per virion. This was an arbitrary
choice, and the estimated infectivity rate β may change when the
β to β1 ratio is varied.
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An important variable in our study is the basic reproduction
number Ra0, which has to remain below one for viral clearance.
However, even when Ra0 < 1, a persistent infection can still occur
when either inoculum is composed of mostly free virion, free
virus infectivity rate is high, and/or equilibrium antibody levels
are low. The presence of bistable switch allows us to alter the
infection outcome in the model by changing the initial antibody
levels. Knowing the minimum antibody concentration needed to
prevent viremia under fixed parameter setting is important for
guiding vaccine design.

To address whether stochastic effects alone can explain
the data, we computed the probability of virus persistence
under the assumption of a burst stochastic model developed
in Pearson et al. (2011). We find that a 70-fold decrease in
virus infectivity rate β is needed between the ramp-up and
set-point-inoculum in order to obtain a 99% probability of
persistence for a ramp-up inoculum of 20 vRNA and a set-
point inoculum of 1500 vRNA occurs. This is higher than the
8-fold decrease reported in Vaidya et al. (2010). Furthermore,
the extinction probabilities for the lower ramp-up inoculum of
2 vRNA and a set-point inoculum of 150 vRNA, 64% and 65%,
are lower than ideal. While the stochastic explanation is still
conceivable, we conclude that the presence of immune complexes
in the inoculum is a possible alternative explanation for the
experimental outcome.

Our study uses data from an intravenous inoculation
experiment. It is not clear if a similar relationship exist
with mucosal virus inoculation or with non-neutralizing
antibody responses. In fact, some antibody responses were
associated with enhanced risk of heterosexual HIV acquisition in
RV144. Further, immune-complexed virus may be preferentially
transported across epithelial surfaces by the neonatal Fc
receptor (Haynes, 2012; Gorlani and Forthal, 2013; Gupta
et al., 2013, 2015). Our analysis focused only on the role of
antibody in infectivity after any epithelial barriers had been
crossed.

In summary, we have developed a model of virus-host
dynamics during SIV infection that gives insight into the relation
between the structure of infecting inoculum, virus infectivity and
disease outcomes. In particular, we showed that a large set-point-
stage inoculum is needed for persistent infection due to the excess
of immune complexes over the free virus. Moreover, we have
estimated the antibody levels and the free virus infectivity and
their relation to the disease outcome when the inoculum size and

structure are well understood. Such predictions are important for
vaccine design.
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The condition of neutropenia, i.e., a reduced absolute neutrophil count in blood,
constitutes a major risk factor for severe infections in the affected patients. Candida
albicans and Candida glabrata are opportunistic pathogens and the most prevalent
fungal species in the human microbiota. In immunocompromised patients, they can
become pathogenic and cause infections with high mortality rates. In this study, we use a
previously established approach that combines experiments and computational models
to investigate the innate immune response during blood stream infections with the two
fungal pathogens C. albicans and C. glabrata. First, we determine immune-reaction rates
and migration parameters under healthy conditions. Based on these findings, we simulate
virtual patients and investigate the impact of neutropenic conditions on the infection
outcome with the respective pathogen. Furthermore, we perform in silico treatments of
these virtual patients by simulating a medical treatment that enhances neutrophil activity
in terms of phagocytosis and migration. We quantify the infection outcome by comparing
the response to the two fungal pathogens relative to non-neutropenic individuals. The
analysis reveals that these fungal infections in neutropenic patients can be successfully
cleared by cytokine treatment of the remaining neutrophils; and that this treatment is more
effective for C. glabrata than for C. albicans.

Keywords: fungal infections, neutropenia, treatment strategies, bottom-up modeling approach, computer
simulations

INTRODUCTION

The human immune system protects the body against various environmental cues, such as microor-
ganisms. It covers mechanisms on different levels ranging from physical barriers, like the skin and
mucosal surfaces, down to cellular and molecular components of the innate and adaptive immune
system (1). However, congenital or acquired diseases as well as medical treatments may impair
proper functioning of the immune system, which can result in the loss of its protective ability.
Neutrophils constitute the highest fraction of blood leukocytes, as theymake up over 70%of all blood
leukocytes (2). Since they can migrate to sites of infection and clear the organism from pathogens,
they constitute an important part of the immune system.
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Candida spp. cause 5–15% of all bloodstream infections and are
associated with high mortality rates of 30–40% (3). A significant
proportion (>50%, depending on the study setting) of the human
population is colonized with Candida spp. The most prevalent
species are Candida albicans and Candida glabrata that are both
human commensals and reside predominantly on the human skin
andmucosal surfaces (4–6).C. albicans is amorphotype-switching
yeast, which in its commensal state exhibits the typical yeast form,
while it forms hyphae when switching to its pathogenic state (7, 8).
By contrast,C. glabrata does not form hyphae, neither in the com-
mensal nor in the pathogenic state and is smaller than C. albicans
(4, 9). In healthy people, both species usually stay in their com-
mensal state. However, in immunocompromised patients, these
human-pathogenic fungi can switch to their pathogenic state and
cause superficial as well as systemic infections that are associated
with high mortality rates.

To investigate host–pathogen interactions between the human
innate immune system and these fungal pathogens, we applied a
systems biology approach, where wet-lab experiments were com-
binedwith virtual infectionmodels (10–13). Such virtual infection
models have the great advantage of allowing for the identification
and quantification of essential parameters that govern the biolog-
ical system under consideration. This also makes them a powerful
tool for hypothesis generation and uncovering new mechanisms,
which consequently allows for minimizing the amount of animal
experiments (14).Depending on the purpose, such in silicomodels
can be built with different modeling techniques, such as differ-
ential equations, state-based models (SBMs) or spatial modeling
techniques such as cellular automata, cellular Potts models or
agent-based models (ABMs) (15). In a previous systems biology
study, we established a human whole-blood infection assay (16),
where blood was taken from healthy volunteers and infected
with C. albicans cells. Then, subpopulations of alive, killed and
extracellular fungal cells as well as fungal cells phagocytosed by
monocytes and neutrophils were measured by association assays
and survival assays. Based on these experimental data, we imple-
mented an SBM that allowed for the quantification of immune-
reaction rates, such as phagocytosis and killing rates, by fitting
the simulated kinetics to the experimental data. In a subsequent
study, we developed a bottom-upmodeling approach that enabled
not only quantification of immune-reaction rates but also the
investigation of spatial aspects (17). Since the SBM simulates the
temporal but not the spatial dynamics, we also developed an
ABM that was based on a previous ABM implementation (18, 19).
We combined both models in a bottom-up modeling approach
(17): the SBM was used to determine non-spatial rates that were
afterward transformed and used in the ABM to fit migration
parameters of immune cells in human whole blood. We found
that the in silico infection outcome for C. albicans was sensitive to
changes in the diffusion coefficient of neutrophils, whereas that
of monocytes had only minor impact on the system dynamics.
This result reflected the more prominent role of neutrophils over
monocytes in fightingC. albicans infection of humanwhole blood.
Furthermore, immune dysregulation was investigated using the
ABM, and the results showed that a reduced diffusion coefficient
for neutrophils resembled conditions of neutropenia (17). This
important observation is themainmotivation of the present study,

because it suggests how neutropenic patients may be treated to
cope with bloodstream infections. Thus, increasing neutrophil
activation in terms of phagocytic activity as well as migration
strength is hypothesized to have the potential of balancing neu-
tropenic conditions and clearance of infection. Based on this rea-
soning, we address infections in humanwhole blood byC. albicans
and C. glabrata under neutropenic conditions in this study.

Diseases or medical treatments can evoke a reduced absolute
neutrophil count (ANC) in blood and result into a condition
called neutropenia. Neutropenia may result from congenital or
acquired impairments, where the latter case is more frequent.
A reduced ANC may arise due to a disturbed development of
neutrophils in the bone marrow, a disturbed migration to the
blood stream or a rapid consumption during an infection (20).
In anti-cancer chemotherapy, neutropenia is the most abundant
disorder of the immune system due to the relatively short life-
span of these terminally differentiated cells (21). Neutropenia
emerges in different degrees of severity that are classified by the
Severe Chronic Neutropenia International Registry (SCNIR) (20).
The SCNIR distinguishes three degrees of severity: mild neu-
tropenia with an ANC of 1,000–1,500 neutrophils/μl, moderate
neutropenia with an ANC of 500–1,000 neutrophils/μl and severe
neutropenia with an ANC of <500 neutrophils/μl. In this study,
we focus on neutropenia treatment by stimulation and activation
of present neutrophils by inflammatory cytokines and quantita-
tively investigate the impact on fungal infections by computer
simulations. Thus, we aim to investigate a possible treatment
strategy where the neutrophil activity is increased by a higher
diffusion coefficient and/or phagocytosis rate. For this purpose,
we apply the previously established protocol for whole-blood
infection assays and perform the bottom-up modeling approach
for the two human-pathogenic fungi. As is schematically shown in
Figure 1, we first determine quantitative values for the immune-
reaction rates aswell as for diffusion coefficients ofmonocytes and
neutrophils as the key immune cells of innate immunity in whole
blood. Furthermore, we use this modeling approach to simulate
neutropenia in silico and compare effects on the infection outcome
between the different pathogens. To evaluate a possible treatment
strategy, we simulate virtual neutropenic patients (VNP) with
different degrees of severity and increase stepwise the phagocyto-
sis rate and/or the diffusion coefficient of neutrophils to classify
the infection outcome. Taken together, we could show that the
increase of the phagocytosis rate and/or the migration parameter
of neutrophils generally allowed balancing neutropenic condi-
tions and clearance of infection. Furthermore, we predict that
C. albicans compared with C. glabrata always requires stronger
increases in the phagocytosis rate and the diffusion coefficient for
the same conditions of neutropenia.

MATERIALS AND METHODS

Ethics Statement
This study was conducted according to the principles expressed
in the Declaration of Helsinki. All protocols were approved by the
Ethics Committee of the University Hospital Jena (permit num-
ber: 273-12/09). Written informed consent was obtained from all
blood donors.
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FIGURE 1 | Workflow for studying neutropenia in silico. First, whole-blood infection assays with Candida albicans and Candida glabrata were performed in wet lab.
Second, non-spatial immune-reaction rates were fitted using the state-based model. Third, the agent-based model (ABM) was used to estimate migration
parameters for neutrophils and monocytes. Based on the fitted non-spatial immune-reaction rates and the fitted migration parameters, virtual neutropenic patients
were simulated in the ABM by gradually reducing the neutrophil count. Eventually, a medical treatment of the virtual patients was simulated by increasing the diffusion
coefficient and/or the phagocytosis rate of neutrophils.

Fungal Strains and Culture
GFP expressingC. albicans strain [constructed as described in Ref.
(16)] was grown in liquid yeast extract–peptone–dextrose (YPD)
medium at 30◦C. C. glabrata expressing GFP (22) was incubated
at 37◦C in YPD. In preparation for the whole-blood assay, both
strains were reseeded after overnight culture in YPD medium
and grown at 30 and 37◦C, respectively, until they reached the
mid-log-phase and finally harvested in HBSS until use.

Whole-Blood Infection Assay
Human peripheral blood from healthy individuals was infected
with either of the two fungi C. albicans and C. glabrata, respec-
tively. The assay was performed as described previously (16). In
short, 1 × 106 Candida cells were added perml of anti-coagulated
blood and incubated at 37◦C with gentle rotation for time points
indicated. Following the incubation, cells were maintained at 4◦C
and analyzed immediately via flow cytometry. Flow cytometry
gating strategy to investigate the distribution of fungal cells in
human blood was performed as previously described (16) using
FlowJo 7.6.4 software. Survival of fungal cells was determined
in a plating assay by analysis of recovered colony-forming units
after plating appropriate dilutions of all time points on YPD agar
plates.

Bottom-Up Modeling Approach
We established a bottom-up modeling approach for simulation
and fitting of whole-blood infection assays in a previous study
(17). This bottom-up modeling approach incorporates models
with increasing complexity that build on one another, where each
model focuses on different aspects of the infection process.

SBM—Immune-Reaction Rates
First, we applied the SBM to quantify and characterize immune-
reaction rates for discrete entities of pathogens and innate immune
cells. Therefore, the populations of innate immune cells, i.e., neu-
trophils and monocytes, as well as the pathogens were modeled
by different states in the SBM. For the comparison with experi-
mentally measured cell populations, we identified five combined
units that are composed of specific states. The states representing
extracellular cells are combined in the combined unit PE that is
given by the following equation:

PE ≡ PAE + PKE + PAIE + PKIE, (1)

where the states PAE and PKE represent extracellular cells that are
alive and killed, respectively. The states PAIE and PKIE describe
pathogens that are either alive and evading the immune response
or killed and evading the immune response. Pathogens that are
in extracellular space and either alive (PAE) or killed (PKE) can be
phagocytosed by two different immune cells, i.e., neutrophils (N)
and monocytes (M). The combined unit PN comprises pathogens
that are phagocytosed by neutrophils and is given by the following
equation:

PN ≡
∑

i≥0

∑
j≥0

(i + j)Ni,j. (2)

Similarly, pathogens that are phagocytosed by monocytes are
combined in PM that is given by the following equation:

PM ≡
∑

i≥0

∑
j≥0

(i + j)Mi,j. (3)

In Eqs 2 and 3, the indices i and j refer to the immune cell
state that is defined by the number of internalized alive and killed
pathogens, respectively.

Furthermore, the states representing alive and killed pathogens
are combined in PK and PA, respectively, that are defined by the
following equations:

PK ≡ PKE + PKIE +
∑

i≥0

∑
j≥0

(Mi,j + Ni,j) j, (4)

PA ≡ PAE + PAIE +
∑

i≥0

∑
j≥0

(Mi,j + Ni,j) i. (5)

The total number of pathogens is given by P≡ PE + PN + PM
or P≡ PK + PA.

Transitions between these states are characterized by so-called
transition rates and allow for dynamic state changes over time. The
SBM of whole-blood infection comprises seven different transi-
tion rates that are given by the phagocytosis rate φM of mono-
cytes, the phagocytosis rate φN of neutrophils, the intracellular
killing rates κM and κN of both monocytes and neutrophils, the
transition rates γ and κ̄EK, which define the extracellular killing
by antimicrobial peptides, and the spontaneous immune evasion
rate ρ. Note that, in the previous study by Lehnert et al. (17),
a distinction between first and subsequent phagocytosis events
by neutrophils was made, where the first phagocytosis event was
assumed to activate the neutrophils and induce granulation. Since
this fact is not experimentally validated for whole-blood infection
with C. glabrata, we here did not distinguish between these two
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processes and used only one transition rate (φN) referring to both
first and subsequent phagocytosis events. To determine a priori
unknown transitions rates, the in silico data were fitted to the
experimental data by applying themethod of Simulated Annealing
based on the Metropolis Monte Carlo scheme (SA-MMC). For a
more detailed description of the model and the parameter estima-
tion method, we refer to Hünniger et al. (16) and Lehnert et al.
(17).

ABM—Immune Cell Migration
The ABM is based on a previous ABM implementation (18, 19)
andwas already used in the previous study by Ref. (17). In contrast
to the SBM, it allows studying spatial aspects, such as immune cell
migration, in whole-blood infection assays. The ABM simulates
all cell types, i.e., pathogens as well as immune cells, as individual
spherical objects that are referred to as agents. All agents migrate,
act and interact in a rule-based fashion within a spatially con-
tinuous, three-dimensional environment that represents 1 μl of
blood.

Furthermore, the ABM was fitted to the experimental data
to determine diffusion coefficients of neutrophils (DN) and
monocytes (DM). This was done by the bottom-up modeling
approach, where the previously determined transition rates from
the SBM were used in the ABM. However, space-dependent rates,
like phagocytosis rates, had to be adequately transformed (17).
Regarding the fitting procedure, we used an adaptive regular grid
search that scans the parameter space within reasonable ranges
and uses a more fine-grained grid in regions with relatively small
least squares errors (LSEs).

Simulation Workflow
The work flow of this study, comparing wet-lab and in silico
experiments with different models is displayed in Figure 1. First,
we performed whole-blood infection assays for the two fungal
pathogens C. albicans and C. glabrata. Afterward, we applied
for each of the two pathogens the following steps. The results
from association and survival assays were used to fit the model
parameters of the SBM to these data. The transition rates of the
fit with the lowest LSE were then appropriately transformed and
fed into the ABM. Subsequently, the grid search in the parameter
space was applied to fit the ABM to the experimental data and,
in this way, to estimate the diffusion coefficients of neutrophils
and monocytes. The determined transition rates and migration
parameters form the basis for all following investigations on neu-
tropenia and possible treatment strategies in virtual patients with
varying degree of neutropenia. In the following, each step of this
work flow is described in more detail.

Infection in Virtual Patients With Normal Neutrophil
Counts
For the quantification of the immune response against the human-
pathogenic fungi C. albicans and C. glabrata with normal neu-
trophil counts, we first determined the transition rates by fitting
the SBM to the corresponding data from whole-blood experi-
ments. These rates were used in the ABM and diffusion coeffi-
cients for neutrophilsDN and monocytesDM were determined by
fitting the ABM to the experimental data.

Infection in Virtual Patients Under Neutropenic
Condition
To examine the immune response of virtual patients under condi-
tions of neutropenia, we performed simulationswith the immune-
reaction rates and migration parameters that were identified
under non-neutropenic conditions and gradually decreased the
number of neutrophils. Subsequently, we compared the infection
outcome at 4 h post infection for varying degrees of severity of
neutropenia.

Patterns and Classification of Simulations
Since the health of a patient is critically determined by the amount
of killed pathogens PK as well as by the amount of alive and
immune-evasive pathogens PAIE, we used these measures to char-
acterize the infection outcome for the virtual patients.

We distinguish four different casesC for the infection outcome:
an infection outcome corresponding to non-neutropenic
immune conditions as well as the infection outcome under mild,
moderate or severe neutropenia, i.e., C= {non–neutropenic,
mild, moderate, severe}. To discriminate these classes, we
calculated the patterns ψ = (μ(PK)± σ(PK), μ(PAE)± σ(PAE),
μ(PAIE)± σ(PAIE)) at the transition between consecutive degrees
of neutropenia severity, in terms of themean and SD. This resulted
in the three patterns ψ = {ψnm, ψmm, ψms} at the transitions
between two neutropenia severity levels: non-neutropenic–mild
(nm), mild–moderate (mm), and moderate–severe (ms). For the
classification of a particular simulation, we calculated the class of
the values Psim

K and Psim
AIE at 4 h post infection. Then, we classified

each of the three values of v(PK)= (μ(PK)+ σ(PK), μ(PK),
μ(PK)− σ(PK)) and v(PAIE)= (μ(PAIE)+ σ(PAIE), μ(PAIE),
μ(PAIE)− σ(PAIE)) separately. Thus, for each of the three values
vi, we set:

C (vi (PK)) =
μ (Pnm

K ) − σ (Pnm
K ) ≤ vi ≤ 1, C = non-neutropenic

μ (Pmm
K ) − σ (Pmm

K ) ≤ vi ≤ μ (Pnm
K ) + σ (Pnm

K ) , C = mild
μ (Pms

K )−σ (Pms
K ) ≤ vi ≤ μ (Pmm

K )+σ (Pmm
K ) , C=moderate

0 ≤ vi ≤ μ (Pms
K ) + σ (Pms

K ) , C = severe

,

(6)
C (vi (PAIE)) =

0 ≤ vi < μ (Pnm
AIE) + σ (Pnm

AIE) , C = non-neutropenic
μ (Pnm

AIE) − σ (Pnm
AIE) ≤ vi ≤ μ (Pmm

AIE) + σ (Pmm
AIE) , C = mild

μ (Pmm
AIE)−σ (Pmm

AIE)≤vi≤μ (Pms
AIE)+σ (Pms

AIE) , C=moderate
μ (Pms

AIE) − σ (Pms
AIE) ≤ vi < 1, C = severe

.

(7)

The simulation’s infection outcome C is then assigned to the
class that received the highest number of votes from the nine
values of vi(PK) and vi(PAIE).

In Silico Treatment of Neutropenia and Identification
of Optimal Treatment Strategies
After the simulation of VNP, we simulated the medical treat-
ment of these patients. Therefore, we selected virtual patients
with certain degrees of severity of neutropenia. These are the
number of neutrophils that are specific for a transition between
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two degrees of severity as well as the number of neutrophils
between these transitions. Therefore, we simulate the following
five VNP that are characterized by specific ANC: VNP-1 with
1,250 neutrophils/μl, VNP-2 with 1,000 neutrophils/μl, VNP-3
with 750 neutrophils/μl, VNP-4 with 500 neutrophils/μl, VNP-
5 with 250 neutrophils/μl. Thus, the ANC of these VNP corre-
sponds to a decrease in neutrophil number from the standard
value by VNP-1: 75%, VNP-2: 80%, VNP-3: 85%, VNP-4: 90%,
and VNP-5: 95%. Since the treatment with different drugs might
improve the phagocytic activity and/or the migration parameter
of neutrophils, we performed simulations with the ABM where
the phagocytosis rate of neutrophils φN as well as their diffusion
coefficient DN was increased. In the following, we refer to these
parameters that are affected by the treatment as φT

N and DT
N.

For the sake of comparability of both values, we increased
both values in a stepwise fashion. The increase of these values
lead to an improvement in the infection outcome. For example,
a virtual patient with moderate neutropenia and a simulated
treatment might attain an infection outcome that corresponded
to that of a patient with mild neutropenia or even to an infec-
tion outcome for an individual with a non-neutropenic immune
status. Therefore, after simulating with a certain parameter set
(φT

N, DT
N) we classified the simulation outcome as described

earlier.
The stepwise increase of the parameters was continued until a

parameter configuration was found with an infection outcome for
non-neutropenic individuals. For quantification of the improve-
ment of the infection outcome, we fitted an exponential function
fφN = 1 + a · e−b ·fDN at the transitions between two consecutive
degrees of neutropenia severity. Here, the factors fφN and fDN are

given by fφN = φT
N/φmin

N and fDN = DT
N/Dmin

N , and denote the
ratios between the treatment parameter values (φT

N, DT
N) and the

parameter values (φmin
N , Dmin

N ) obtained fromminimizing the LSE
under non-neutropenic conditions.

RESULTS

Whole-Blood Infection Assays Differ for
C. albicans and C. glabrata
In this study, we performed human whole-blood infection assays
with C. glabrata and compared the measured data with exper-
imental measurements for C. albicans by applying a previously
established protocol (16). The kinetics of pathogens associated
with either neutrophils ormonocytes can be seen in Figures 2A,B,
respectively. In case of C. glabrata, 81.0± 8.1% cells were asso-
ciated with neutrophils, which is similar to C. albicans with
82.3± 7%. However, the experimental data show different kinet-
ics for the two species, since C. glabrata is phagocytosed by
neutrophils in a shorter time. By contrast, the association with
monocytes is higher for C. glabrata with 10.1± 2.7%, while only
2.7± 1.9% C. albicans cells were associated with monocytes 4 h
post infection. Due to the phagocytosis of the pathogens by
the immune cells, 4 h post infection, 8.9± 7.5% cells remained
extracellular for C. glabrata and 15.0± 5.8% for C. albicans (see
Figure 2C). The remaining extracellular cells are referred to as
immune-evasive cells, as already introduced in previous studies
(16, 17). Furthermore, 1.3± 1.5%C. glabrata cells remained extra-
cellular and alive 4 h post infection (seeFigure 2D), which is lower
compared with C. albicans with 6.5± 4.2%. In comparison with

FIGURE 2 | Experimental data of whole-blood infection assays for Candida albicans (light color) and Candida glabrata (dark color), respectively. After incubation
populations of extracellular cells (A), alive cells (B), as well as pathogens phagocytosed by either neutrophils (C) or monocytes (D), were measured by flow cytometry
and plating assays.
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C. albicans, the decrease in alive C. glabrata cells mainly occurred
during the first 2 h of the experiment exhibiting a much faster
kinetics than for C. albicans.

Quantification of Immune-Reaction Rates
Reveals Differences Between Pathogens
To quantify infection scenarios for the two pathogens, immune-
reaction rates of the SBM were estimated by fitting to the exper-
imental data as done previously for C. albicans in human whole
blood (17). As explained in detail in Section “Material and Meth-
ods,” this was done by computing the so-called combined units,
which are combinations of different pathogen states and were
directly accessible in experiment. In terms of these combined
units, we evaluated the quality of a simulation by calculating the
LSE between the experimental data and the in silico data. To
determine the immune-reaction rates representing the best fit to
the experimental data, i.e., that are associated with the lowest
LSE, we applied the method of Simulated Annealing based on the
Metropolis Monte Carlo scheme. The resulting immune-reaction
rates from the fitting procedure where used to simulate the infec-
tion with the pathogens in 1ml of blood, containing 5 × 106

neutrophils, 5 × 105 monocytes, and 1 × 106 cells, and are shown
in Figure 3 and in Table S1 in Supplementary Material.

The values of immune-reaction rates forC. albicans infection of
whole blood are in linewith our previous results (17). The reaction
rate values for C. glabrata infection mostly differ in comparison
to reaction rates for C. albicans infection (see Figure 3). The
phagocytosis rate of neutrophils in the infection scenario with
C. glabrata is φN = 10.11 × 10−2 min−1, which is 3.5 times higher
than forC. albicans infection. The phagocytosis rate formonocytes

FIGURE 3 | Transition rates obtained from the calibration of the state-based
model (SBM) to experimental data of the whole-blood infection assay for
Candida albicans (blue) and Candida glabrata (pink), respectively. The values
are compared for the phagocytosis rate for neutrophils (φN), and by
monocytes (φM), killing rate for neutrophils (κN) and monocytes (κM), the rate
at which the pathogens can evade the immune response with regard to
phagocytosis and/or killing (ρ) as well as the rates that define the extracellular
killing, i.e., γ and κ̄EK. Error bars correspond to SDs.

is with φM = 13.69 × 10−2 min−1 an order of magnitude higher
than in the case ofC. albicans infection. These higher phagocytosis
rates arise due to the faster kinetics measured for C. glabrata in
the experimental data (see Figure 2). Furthermore, the order in
the magnitude of phagocytosis rates is reversed in comparison
to C. albicans infection, because for C. glabrata the phagocytosis
rate of monocytes is 1.4 times higher than that for neutrophils.
The killing rate of neutrophils is for C. glabrata κN = 6.98 ×
10−2 min−1, which is only slightly higher than for C. albicans
infection. Furthermore, differences between the fungal pathogens
are again observed in the killing rate for monocytes, which is
1.5 times higher for C. glabrata with κM = 3.22 × 10−2 min−1

compared withC. albicans.Aswas previously observed forC. albi-
cans (16, 17), also C. glabrata was found to evade the immune
response and to remain even hours post infection alive and non-
phagocytosed in humanwhole blood (Figures 2C,D). The rate for
fungal cells becoming evasive against the immune response is for
both pathogens comparably low, i.e., ρ = 1.173 × 10−2 min−1 for
C. glabrata and ρ = 0.439 × 10−2 min−1 for C. albicans. A com-
parison of both rates that define the extracellular killing by antimi-
crobial peptides (κEK(t)) showed that the value of κ̄EKis similar for
both pathogens (see Table S1 in Supplementary Material) and γ is
2.5 times larger for infection scenarioswithC. glabrata (γ = 5.39×
10−2 min−1).

The time-resolved kinetics of the fits with the lowest LSE for
the two fungal pathogens can be seen in Figures S1 and S2 in
Supplementary Material, where the thickness of the simulation
curves reflect random variations within the SDs of the immune-
reaction rates. For both pathogens, the SBM adequately resembled
the experimental data. Since the SBM neglects all spatial aspects
of the infection scenarios, we performed a bottom-up modeling
approach by combining the SBM with the ABM (17).

Migration Parameters of Phagocytes in
Response to Various Pathogens Differ
Quantitatively
To determine themigration parameters of neutrophils andmono-
cytes in whole-blood infection scenarios with the respective
pathogens, we used the experimentally measured data as well
as the fitted immune-reaction rates from the SBM to perform
stochastic spatiotemporal simulations by the ABM in 1 μl of
blood. As a result of this bottom-upmodeling approach for whole-
blood infection assays, we obtained the diffusion coefficients of
the immune cells in response to C. albicans. This can be seen in
Figure 4A, where the best solution, i.e., the parameter configura-
tion of (DN,DM) that resulted in the smallest LSE, was identified to
be

(
Dmin

N , Dmin
M

)
=

(
425 μm2/min, 175 μm2/min

)
. In line

with our earlier findings (17), for C. albicans the LSE was sensitive
for variations inDN but not for variations inDM. The range ofDM
that still lead to comparably low LSE values spans from approxi-
mately 100 μm2/min up to 500 μm2/min, whereas the range with
comparably low LSE for DN was limited to 400–425 μm2/min. As
shown in Figure S3 in Supplementary Material, the fitting results
are in excellent agreement with the experimental data, and the
stochasticity of the in silico experiments still give rise to low SDs
in the simulation curves, as can be inferred from the thickness of
the curves representing 30 runs.
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FIGURE 4 | Result of the agent-based model (ABM) parameter estimation for whole-blood infection assays with Candida albicans (A) and Candida glabrata (B).
Adaptive regular grid search was applied to fit the ABM to the experimental data and diffusion coefficients for neutrophils (DN) and monocytes (DM) were determined.
At each grid point 1μl blood was simulated, and 30 realizations for each parameter configuration were performed. Three different refinement levels were performed:
simulations of the first level are represented as dots, simulations of the second level are represented as squares, and simulations of the third level are represented as
triangles. The best fit to the experimental data was found at (Dmin

N , Dmin
M ) = (425 μm2/min, 175 μm2/min) for C. albicans and at (Dmin

N , Dmin
M ) = (600 μm2/min,

425 μm2/min) for C. glabrata.

The best fit of the simulation curves to the experimental data
of whole-blood infection assays for C. glabrata was achieved for
diffusion coefficients for neutrophils and monocytes with values
(Dmin

N , Dmin
M ) = (600 μm2/min, 425 μm2/min) (see Figure 4).

We note that the range in which the diffusion coefficient of
monocytes can vary for comparable LSE values was found to
be much more restricted than in the case of C. albicans, i.e.,
this range for DM was from 350 μm2/min up to 575 μm2/min
for fitting results with comparable LSE. However, in the case of
C. glabrata, neutrophils were not found to be restricted to the
small range of only ±12 μm2/min as for C. albicans, but could
vary in a range of ± 80 μm2/min. As can be seen in Figure S4 in
Supplementary Material, the experimentally determined kinetics
of the infection scenario with C. glabrata is in excellent agreement
with the simulation curves of the ABM.

Immune Response in Virtual Patients With
Neutropenia Is Strongly Pathogen
Dependent
Our previous considerations reveal that immune cells exhibit a
qualitatively and quantitatively different response against C. albi-
cans and C. glabrata in human whole-blood infection assays.
Comparing C. glabrata to C. albicans infection, this is reflected
by (i) increased phagocytosis rates and (ii) increased diffusion
coefficients by factors of 1.4 and 2.4, respectively, for neutrophils
and monocytes. In line with our previous work on the com-
parison between C. glabrata with C. albicans by live-cell imag-
ing of phagocytosis assays (23–26), these quantitative differences
are accompanied with the qualitative variation in the immune
response that involves much stronger monocyte activation in
the case of C. glabrata. Nevertheless, a prominent role is played
by neutrophils that are quantitatively prevalent in cell number

and qualitatively important in differently directing the immune
response against these fungal pathogens (23).

To investigate the impact of neutropenia on the infection out-
come with a specific pathogen, we simulated VNP using the
ABM. Here, the optimal immune-reaction rates and diffusion
coefficients were used as previously determined for normal ANC
values. In the virtual patients, we stepwise decreased the number
of neutrophils to resemble different degrees of severity of neu-
tropenia and simulated the early immune response during 4 h
post infection. The contributions of the combined units—such
as killed, phagocytosed and immune-evasive Candida cells at 4 h
post infection—are shown in Figure 5.

The phagocytosis by neutrophils is for both pathogens quite
similar. For mild neutropenia the phagocytosis by neutrophils
ranges for both fungal pathogens between ~40 and 50%, for
mild neutropenia between ~25 and 40%, and is below ~25% for
severe neutropenia. Interestingly, despite these similarities, the
infection outcomes for the two pathogens under the condition of
neutropenia are predicted to be remarkably different. As shown
in Figure 5A, a stronger impact on the infection outcome can
be observed for C. albicans, where in the scenario of severe neu-
tropenia the number of killed fungal cells achieves only 10–45%.
By contrast, killing of C. glabrata in severe neutropenia is more
efficient, and the fraction of dead cells ranges between 45 and 60%
of total fungal cells (see Figure 5B).

This difference is governed by the behavior of monocytes in
response to the two fungal pathogens. Higher phagocytosis rates
in case ofC. glabrata compared withC. albicans enable monocytes
to partially compensate for the loss of neutrophils under condi-
tions of neutropenia. This compensatory effect is relatively low
for C. albicans, where the fraction of cells that were phagocytosed
by monocytes increased from 3% for normal ANC to only 12%
under the condition of severe neutropenia (see Figure 5A). For
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FIGURE 5 | In silico infections under neutropenic conditions with Candida albicans (A) and Candida glabrata (B) were performed by gradually decreasing the
absolute neutrophil count in the agent-based model. Plots show the fraction of killed cells (red), alive and extracellular cells (green), phagocytosed cells by neutrophils
(blue), and monocytes (yellow) as well as (alive) cells that are able to evade the immune system (turquoise) at 4 h post infection.

C. glabrata, this increase in monocyte phagocytosis rose from 10
to 46% of the C. glabrata cells (see Figure 5B). Furthermore, the
infection outcome is also characterized by the number of cells
that are able to evade the immune response. Immune evasion is
more pronounced for C. albicans, where also for normal ANC
15% of all fungal cells are able to evade the immune response (see
Figure 5A). However, with stronger degrees of neutropenia the
fraction of these cells even increases to about 60%. In the case of
C. glabrata, only 10% of the cells can evade the immune response
for normal ANC, while this fraction rises up to 50% under con-
ditions of severe neutropenia (see Figure 5B). As explained in
Section “Materials and Methods,” the infection outcome is mainly
characterized by the fraction of killed as well as the fraction of
alive and immune-evasive Candida cells. Therefore, we assigned
the values of PK and PAIE at the boundaries to pattern that charac-
terize the different degrees of severity of neutropenia (see Table
S2 in Supplementary Material). Subsequently, with the help of
these patterns, we were able to classify simulations of medical
treatments in neutropenic patients.

Simulation of Medical Treatment for VNP
After we simulated the infection with the pathogens C. albicans
and C. glabrata in VNP, we selected five types of VNP with
different severity degrees of neutropenia for in silico treatment.
The VNP-1 is characterized by an ANC of 1,250 neutrophils/μl
representing patients with mild neutropenia. At the transition
between mild and moderate, the ANC is 1,000 neutrophils/μl,
and the corresponding VNP is referred to as VNP-2. Similarly,

we defined VNP-3, VNP-4 and VNP-5 that are characterized,
respectively, by ANC of 750 neutrophils/μl (moderate neutrope-
nia), 500 neutrophils/μl (transition between moderate and severe
neutropenia), and 250 neutrophils/μl (severe neutropenia). The
in silico treatment involves the increase of neutrophil activation
in terms of their phagocytosis rate and/or diffusion coefficient
to quantitatively investigate its impact on the reduced numbers
of neutrophils in these patients. Thus, increasing the phagocy-
tosis rate and/or diffusion coefficient of neutrophils in a step-
wise fashion, we simulated the infection with either of the two
pathogens C. albicans and C. glabrata under neutropenic con-
ditions. Afterward, the infection outcome of the simulation was
classified according to the previously determined pattern (see
Patterns and Classification of Simulations). To find a formal
description of the increase of neutrophil phagocytosis rate and
diffusion coefficient required for reaching the infection outcome
for non-neutropenic individuals, we fitted an exponential func-
tion of the form fφN = 1 + a · e−b ·fDN at the transition
where the non-neutropenic infection outcome is reached. Here,
the factors fφN and fDN are defined as fφN = φT

N/φmin
N and

fDN = DT
N/Dmin

N , where φT
N and DT

N denote parameters that are
affected by the treatment, and φmin

N andDmin
N refer to the parameter

values obtained by minimizing the LSE under non-neutropenic
conditions. We varied φT

N and DT
N over one order of magnitude,

i.e., fφN , fDN ∈ [1, 10], and plotted the resulting curves for each
type of VNP in Figure S5 in SupplementaryMaterial for the fitting
parameters a and b as provided in Table S3 in Supplementary
Material.
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FIGURE 6 | In silico treatment of virtual neutropenic patients (VNP) infected with Candida albicans was simulated using the agent-based model. Stepwise increase of
phagocytosis rate and diffusion coefficient of neutrophils was performed for VNP with various severity degrees of neutropenia: VNP1–5: 1,250 (A), 1,000 (B), 750
(C), 500 (D), and 250 (E) neutrophils/μl. Simulated points are classified according to the previously determined patterns: green points show a non-neutropenic
infection outcome, yellow points show an infection outcome comparable to a mild neutropenia, orange points show an infection outcome comparable to a moderate
neutropenia, and red points show an infection outcome comparable to a severe neutropenia. Solid lines depict the fitted exponential function fΦN = 1 + a · e

−b·fDN

at the transition to the non-neutropenic infection outcome. For comparison the fitted curves for the five VNP with their severity degrees of neutropenia are shown in
panel (F).

The results for the in silico treatment of VNP with C. albicans
and C. glabrata infection are shown in detail in Figures 6 and
7, respectively. Performing more than 4× 104 simulations, we
generally found that all VNP do reach the infection outcome
of non-neutropenic patients by increasing neutrophil activation
in terms of phagocytosis rate and/or diffusion coefficient. As
could be expected, the required increase in neutrophil activation
depends on the severity degree of neutropenia in VNP. For VNP
with severe neutropenia (VNP-5), reaching the infection outcome
of non-neutropenic patients would require relatively high values
for φT

N with fφN > 10, whereas the treatment was always successful
for DT

N with fDN ≪ 10. To compare the two fungal pathogens
with each other, we first fixed either φT

N = φmin
N (fφN = 1)

or DT
N = Dmin

N (fDN = 1) and varied only one parameter,
respectively, DT

N or φT
N. As can be seen in Figure 8A, for both

fungal pathogens increasing the diffusion coefficient yields the
infection outcome of non-neutropenic patients at smaller factors
than increasing the phagocytosis rate, i.e., fDN < fφN . Interestingly,

increasing only the neutrophil diffusion, the in silico treatment
was found to be more effective for C. glabrata, whereas it turned
out to be more effective for C. albicans if only the phagocyto-
sis rate was increased. The combined impact of increasing φT

N
and DT

N yielded a pair (f ∗
φN

, f ∗
DN) of optimal values with minimal

distance from (fφN = 1, fDN = 1) where the infection outcome
of non-neutropenic patients was reached. The results are shown
in Figure 8B, where the comparison between C. albicans and
C. glabrata predicts that f ∗

φN
< f ∗

DN for the optimal in silico treat-
ment, i.e., the required relative increase of the diffusion coefficient
is larger than that for the phagocytosis rate. Moreover, the optimal
in silico treatment was reached for factors (f ∗

φN
, f ∗

DN) with lower
values for all VNP in the case of C. glabrata.

DISCUSSION

In this study, we investigated bloodstream infections with the
fungal pathogens C. albicans and C. glabrata in human whole
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FIGURE 7 | In silico treatment of virtual neutropenic patients (VNP) infected with Candida glabrata was simulated using the agent-based model. Stepwise increase of
phagocytosis rate and diffusion coefficient of neutrophils was performed for VNP with various severity degrees of neutropenia: VNP1–5: 1,250 (A), 1,000 (B), 750
(C), 500 (D), and 250 (E) neutrophils/μl. Simulated points are classified according to the previously determined patterns: green points show a non-neutropenic
infection outcome, yellow points show an infection outcome comparable to a mild neutropenia, orange points show an infection outcome comparable to a moderate
neutropenia, and red points show an infection outcome comparable to a severe neutropenia. Solid lines depict the fitted exponential function fΦN = 1 + a · e

−b·fDN

at the transition to the non-neutropenic infection outcome. For comparison, the fitted curves for the five VNP with their severity degrees of neutropenia are shown in
panel (F).

blood. Special focus was put on the infection scenario under
neutropenic conditions as well as possible treatment strategies.
These conditions are clinically relevant as it is well established
that neutropenia promotes dissemination of Candida spp. during
bloodstream infection and impairs prognosis. We used a previ-
ously established bottom-up modeling approach that combines
different mathematical modeling approaches of increasing com-
plexity based onwet-lab experiments (17). To investigate infection
by different fungal pathogens, we first performed whole-blood
infection assays using blood of healthy individuals. In the past,
these whole-blood infection models have already been success-
fully applied to analyze the early immune response to clinically
relevant pathogens (27–29) and to identify their virulence factors
(30, 31). Furthermore, the influence of genetic polymorphisms on
the immune response have been tested (32, 33) as well as potential
therapeutic approaches and vaccine efficacy (34–38). In this study,

we applied this experimental modeling approach to investigate
early immune responses to the two Candida spp. in blood. The
resulting experimental data showed that the immune response
followed a faster kinetics forC. glabrata than forC. albicans, which
is reflected by an earlier phagocytosis of this pathogen. In line
with our previous studies (16, 17, 23), monocytes were found
to contribute more to the immune response against C. glabrata
compared with C. albicans.

The system behavior was quantified by estimating values for
immune-reaction rates, such as phagocytosis and killing rates,
based on fitting a SBM to the experimentally measured data
(17). As expected from the observed difference in the kinetics
of the immune response between C. albicans and C. glabrata, we
found that the phagocytosis rates were orders ofmagnitude higher
for C. glabrata with monocytes reaching the highest values (see
Table S2 in Supplementary Material). Thus, for C. glabrata the
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FIGURE 8 | The increase in neutrophil activation required to reach the infection outcome of non-neutropenic patients depends on the severity degree of neutropenia
in VNP. (A) Comparison of Candida albicans (blue) and Candida glabrata (pink) infection for various VNP in terms of the factors fDN and fφN keeping either fφN = 1 or
fDN = 1 fixed. (B) The same as in panel (A) allowing both factors to vary to attain the optimal values (f∗φN , f∗DN ) with minimal distance from (fφN = 1, fDN = 1) at
which the infection outcome of non-neutropenic patients is reached.

phagocytosis rate for monocytes is higher than for neutrophils
and this relation is inverted for C. albicans. Applying a bottom-up
modeling approach (17), we used an ABM to estimate migration
parameters for neutrophils and monocytes in response to the two
fungal species. For C. glabrata these migration parameter were
higher than for C. albicans. As previously shown for C. albicans
the outcome of the immune response was restricted to a narrow
regime of migration parameters for the neutrophils (17), whereas
these migration parameters in the case of C. glabrata infections
could vary over a significantly wider range to fit the experimental
data. This is another indication for the observable fact that mono-
cytes play a more important role in the defense against C. glabrata
compared with C. albicans (23, 39).

Since fungal infections by Candida spp. are a major risk for
immunocompromised patients, we extended the computer sim-
ulations for normal ANC by numerically studying infection sce-
narios in virtual patients with different severity degrees of neu-
tropenia. Due to the pronounced importance of neutrophils in
the immune response against C. albicans, these computer simu-
lations predicted a strong negative impact on the infection out-
come for VNP depending on the severity degree of neutropenia.
Although the impact of neutropenia on the infection outcome
during C. glabrata infection was not as strong as for C. albicans,
the immune response was still to a large extent impaired. For
example, this was observed by the prediction that the fraction
of killed pathogens at 4 h post infection decreased from around
90% for both species under normal ANC to about 50 and 10%
for C. glabrata and C. albicans for severe neutropenic conditions,
respectively. Moreover, at 4 h post infection, a fraction of 30%
C. albicans cells are still alive and extracellular in humanblood that
could contribute to the dissemination to other body parts in real
patients. While the fraction of alive and extracellular C. glabrata
cells is negligible at 4 h post infection, a large fraction of about 50%

is phagocytosed by monocytes including a few percent of fungal
cells that are still alive andmay disseminate by eventually escaping
from the monocytes. These data again point toward different
virulence traits in the two Candida spp. (40).

The bottom-up modeling approach for the simulation of infec-
tion scenarios under neutropenic conditions was established to
simulate the effects ofmedical treatments. To date there exist three
different ways to approach neutropenia in the clinical setting,
which comprise (i) the stimulation and activation of remain-
ing neutrophils by medical treatment of the patient, (ii) the
internal stimulation of neutrophil maturation and release from
the bone marrow by medication of patients with granulocyte
colony-stimulating factor (G-CSF), and (iii) the transfusion of
G-CSF/steroid mobilized neutrophils from a donor. The latter
treatment of healthy donors leads to a vast increase of peripheral
blood neutrophils (41–44), which are subsequently extracted from
the donor by leukapheresis and administered to the patient to
increase the ANC in blood. This therapy shows higher rates of
patient survival in the context of bacterial infections (43), whereas
improvement in patient survival was not consistently observed for
fungal infections (45–47). In particular, Gazendamet al. (48) show
that the G-CSF/dexamethasone stimulation of donor neutrophils
leads to a change in their granular content, which impairs the
fungal killing capacity with regard to C. albicans. The cytokine
treatment with G-CSF to trigger the neutrophil release from the
bonemarrow in patients is mainly applied in congenital neutrope-
nia and causes a significant increase of the ANC in blood (49,
50). Before effective drugs were available, childrenwith congenital
neutropenia typically died in their first year of life due to bacterial
and fungal infections (51, 52). The G-CSF treatment makes use
of the emergency mobilization of neutrophils in response to an
inflammatory signal and the secretion of chemokines leading to
neutrophil migration into blood vessels (53). However, patients
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can be also low-responders or even non-responders exhibiting
reduced effects of G-CSF (49, 54). Finally, instead of increasing
the circulating number of neutrophils, the option to medically
treat neutropenia by inflammatory cytokines, such as interferon
γ and tumor necrosis factor α, yields a modulation of the immune
response by the stimulation and activation of neutrophils in blood
(41, 44). Both cytokines have been reported to enhance the neu-
trophil response against fungi, e.g., Candida spp. (55), Aspergillus
spp. (56), and Cryptococcus spp. (57).

In this study, we focused on investigating the treatment of neu-
tropenic patients by inflammatory cytokines to quantify the possi-
bility of balancing neutropenic conditions and clearance of infec-
tion. The simulations of this in silico treatment revealed that an
increase of the phagocytosis rate and/or the migration parameter
of neutrophils generally improved the infection outcome. For both
Candida spp. under investigation, conditions of mild neutropenia
can be compensated resembling an infection outcome of non-
neutropenic individuals by an increase in either the phagocytosis
rate or the diffusion coefficient, or a combination of both, by less
than 25% percent. The computer simulations allowed us to rigor-
ously quantify the relative change in these parameters needed for
any severity level of neutropenia. In the case of severe neutropenia,
medical treatments would need to increase these parameters by
at least 250% for the phagocytosis rate and at least 300% for
the diffusion coefficient to reach infection outcomes in VNP
comparable to individuals with normal ANC. It should be noted
that the modulation of parameters has to be combined, because
even a 10-fold increase of the phagocytosis rate alone would not
recover the infection outcome of non-neutropenic individuals.
Thus, the quantitative simulation of in silico treatments generates
concrete predictions regarding the relative impact that treatments
with inflammatory cytokines are required to exert on these two
parameters. Moreover, our numerical experiments predict that
C. albicans compared with C. glabrata always requires stronger
increases in the phagocytosis rate and the diffusion coefficient for
the same conditions of neutropenia.

Clearly, the underlying model assumptions (such as spatial
homogeneity and absence of external forces) cannot be 1:1 trans-
lated into the in vivo situation—neither in small vessels nor in
tissue. Despite this, several predictions resulting from the model
could be confirmed in vivo or are in line with clinical findings
(16). For this study, this also applies to the observations that (i)
neutropenia may result in poor prognosis and a higher ratio of
disseminated candidiasis [e.g., Ref. (58, 59)] and (ii) monocytes
play a more important role in C. glabrata infection (23). Even
though clinical studies will ultimately be required to validate
our hypotheses, the first step would be to test these treatment
strategies in whole-blood infection assays and our simulations for
VNP can be used for this testing.

Our study may be extended in different ways. For example,
computer simulations for various pathogens, such as Staphylo-
coccus spp. and Streptococcus spp., which were shown to cause
bacteremia and sepsis under conditions of neutropenia, could
be performed (52, 60). Moreover, treatment strategies that lead
to an increased ANC in neutropenic patients, like the transfu-
sion therapy as well as the G-CSF treatment, could be simu-
lated and compared with the cytokine treatment considered in

this study. Furthermore, the bottom-up approach provides the
possibility to investigate the impact of other immune disorders
on the infection outcome with the pathogens under considera-
tion. Moreover, the generated predictions of this study could be
examined in future wet-lab experiments. Therefore, whole-blood
infection assays with C. albicans or C. glabrata in human blood
with reduced ANC could be performed. Such neutropenic blood
samples could be taken from patients with neutropenia, where it
should be considered that primary diseases of the patient may
affect the experimental results. Another possibility may be to
generate neutropenic blood samples in the wet lab by a controlled
reduction of the neutrophil number. However, this poses a high
challenge, since the remaining blood constituents will be affected
by side effects that cannot be well controlled. Investigating such
host–pathogen interactions by combining wet-lab and dry-lab
studies is in the spirit of system biology. This approach provides
a powerful tool to investigate biological systems in a qualitative as
well as quantitative fashion and enables hypothesis generation in
dry-lab as well as hypothesis testing in wet-lab studies.
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The dynamics of hepatitis C virus (HCV) RNA during translation and replication within

infected cells were added to a previous age-structured multiscale mathematical model

of HCV infection and treatment. The model allows the study of the dynamics of

HCV RNA inside infected cells as well as the release of virus from infected cells and

the dynamics of subsequent new cell infections. The model was used to fit in vitro

data and estimate parameters characterizing HCV replication. This is the first model

to our knowledge to consider both positive and negative strands of HCV RNA with

an age-structured multiscale modeling approach. Using this model we also studied

the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular

replication and the release of new virions and fit the model to in vivo data obtained from

HCV-infected subjects under therapy.

Keywords: computational biology, HCV, RNA, DAAs, differential equations

INTRODUCTION

Chronic hepatitis C virus (HCV) infection affects about 130–150 million people worldwide and is
the primary cause of liver cirrhosis and liver cancer (WHO, 2016). HCV has a linear positive strand
RNA molecule with ∼9,600 nucleotides as its genome and has been classified as belonging to the
genus Hepacivirus in the Flaviridae family (Appel et al., 2006; Gastaminza et al., 2008). For many
years HCV replication was not completely understood due to the inability to culture virus in vitro.
However, the development of an HCV cell culture (HCVcc) system has allowed investigation of the
processes that govern HCV replication and other features of its life cycle (Appel et al., 2006; Elliot
et al., 2009; Afzal et al., 2015). Moreover, newmeans of distinguishing and quantifying both positive
and negative HCV RNA strands have been developed and improved (Bessaud et al., 2001; Craggs
et al., 2001).

HCV primarily infects liver cells, called hepatocytes. After entry into a hepatocyte, the positive
strand HCV RNA is uncoated and translated into a polyprotein from which all HCV proteins are
produced. The HCV NS5B RNA-dependent RNA polymerase copies the positive HCV RNA into
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one or more HCV RNA negative strands. The nonstructural
HCV proteins together with negative strand HCV RNA form
replication complexes, the molecular machines responsible for
producing more positive strands of HCV RNA (Quinkert et al.,
2005). The newly produced positive strands can either be used
for translation, replication or be assembled into virus particles
and exported from the infected cell. How the decision among the
options is made remains unclear (Appel et al., 2006; Elliot et al.,
2009; Bisceglie, 2010). HCV RNA replication depends not only
on HCV proteins but host factors also play an important role
(Scheller et al., 2009; Jangra et al., 2010).

Guedj et al. (2013) developed an age-structured multiscale
model of HCV infection and treatment including the dynamics
of intracellular viral RNA (vRNA). The model has been analyzed
mathematically and various approximate solutions derived
(Rong et al., 2013; Rong and Perelson, 2013).

Age-structured models have been widely used to study the
epidemiology of infectious diseases, such as HIV (Thieme and
Castillo-Chavez, 1993), hepatitis C (Martcheva and Castillo-
Chavez, 2003) and tuberculosis (Castillo-Chavez and Feng,
1997; Thieme and Castillo-Chavez, 2002). Nelson et al. (2004)
presented an age-structured model of the dynamics of within
host HIV. Gilchrist et al. (2004) used an age-structured model
to explore how the intracellular HIV production rate influenced
the virus’ fitness. One advantage of using such an approach
is the possibility of considering that individuals or cells with
distinct ages could behave differently (Li and Brauer, 2008).
Using that approach in modeling the dynamics of virus within
a host allows a realistic representation of infection biology in
which the rate of production and release of new virus is not
constant but rather depends on the length of time a cell has
been infected. Moreover, the model can also account for an
infected cell death rate that depends on the time the cell has been
infected.

The Guedj et al. (2013) age-structured multiscale model
of HCV infection only considered the dynamics of positive
strand HCV RNA. Guedj and Neumann (2010) studied the
intracellular dynamics of both positive- and negative-strand viral
RNA. They used ordinary differential equations to represent
the number of positive-strands of viral RNA, available for
transcription and translation, and the number of negative-
strands of viral RNA or “replication units.” Benzine et al. (2017)
developed a more detailed ordinary differential equation model
in which they distinguished positive strand HCV RNA used for
translation, replication and viral assembly. However, both Guedj
and Neumann (2010) and Benzine et al. (2017) did not consider
that the number of positive and negative strands of viral RNA
depend on how long a cell has been infected.

Here we used a three-equation age-structured model for
intracellular HCV RNA dynamics, introduced by Quintela et al.
(2017), which incorporated negative strand HCV RNA as well
as the positive-strand HCV RNA available for translation and
replication separately and validated the model by comparison to
in vitro experiments. We then coupled this intracellular model to
a well-established cell infection model and showed the model was
able to fit in vivo viral load data obtained from patients treated
with direct acting antiviral (DAA) therapy.

MATERIALS AND METHODS

Intracellular Model of HCV Replication
We developed a mathematical model to represent the
intracellular replication of HCV shown schematically in
Figure 1. The model allows the study of aspects such as
translation of positive-strand HCV RNA after cell entry, transfer
of the positive strand to the membranous web where it is used
for replication, production of negative- and positive-strand HCV
RNA within replication complexes and secretion of positive-
strand RNA as virions. The replication of HCV RNA has been
studied in detail c.f. (Chatel-Chaix and Bartenschlager, 2014; Li
et al., 2015).

The system of ordinary differential equations used to
represent the dynamics of intracellular infection over time is











d
da
Rt = θRc − (σ + ρ(a)+ µt)Rt ,

d
da
Rc = αRm + σRt − (θ + ρ(a)+ µc)Rc,

d
da
Rm = r(1− Rm

Rmax
)Rc − µcRm,

(1)

Rt(0) = Rt0 , Rc(0) = 0, Rm(0) = 0,

where Rt represents positive strand HCV RNA used for
translation, Rc represents positive strands within replication
complexes used for replication, Rm represents minus (or
negative) strand RNA and a represents the time a cell has been
infected. Positive strandHCVRNA forms the viral genome. After
cell entry, cellular machinery translates this positive strand RNA
into a polyprotein in the cytoplasm (Shi and Lai, 2006). However,

FIGURE 1 | Intracellular model scheme. After cell entry positive strand HCV

RNA is available for translation, represented by Rt. It can be exported at rate ρ

and decay at rate µt. Negative or minus strand HCV RNA (Rm) is produced at

maximum rate r and forms the replication complexes that produce more

positive strand RNA (Rc) at rate α. It is assumed that HCV RNA inside the

replication complex in both orientations have the same decay rate µc. The

positive strand HCV RNA available for translation is assumed to move into

replication complexes at rate σ and from replication complexes at rate θ . The

terms in red represent the action of therapy in blocking secretion and

production of viral RNA.
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after polyproteins are made the positive strand must also be used
for replication and must be copied into minus stand RNA. We
assume that the positive-strand HCV RNA used for translation
(Rt in Equation 1) moves from the cytoplasm into what is called
the membranous web and interacts with the proteins needed
for replication to become a species we call Rc at rate σ per
strand. We also assume the positive strand in the cytoplasm,
Rt has a natural decay rate of µt per strand. Lastly, positive
strands need to be assembled into virions which are then exported
from the infected cell. Virion assembly occurs in association
with cytosolic lipid droplets (Chatel-Chaix and Bartenschlager,
2014). As it is not clear whether the positive strand RNA in the
membranous web needs first to be transported into the cytosol
for viral assembly, we assume both Rt and Rc can be assembled
into virions and exported at rate ρ(a). The time-dependence of
ρ will be discussed below. Further, we assume positive-strand
HCV RNA in the replication complex (Rc) can move out of the
replication complex and membranous web and back into the
cytoplasm to become Rt at rate θ . More detailed models can be
developed that separate virion assembly from secretion and that
include a separate compartment of positive strand RNA used for
virion assembly (cf. Benzine et al., 2017), but here for simplicity
we have combined these steps.

Minus-strand HCV RNA (Rm) is formed in the replication
complex by copying the positive strand Rc at maximum rate r.
As in Guedj and Neumann (2010), it is assumed that host factors
limit the replication of negative-strand RNAs, so that as the
maximum number Rmax is reached replication slows according
to a logistic growth law. The positive strands in replication
complexes, Rc, are copied from the negative strand template at
rate α per template. We consider that both Rc and Rm are in the
replication complex and decay at the same per capita rate µc.

In order to have a positive equilibrium when the model
represents an established infection, the parameters need to satisfy
the relations: φ2 > σθ

φ1
and αr > (φ2 −

σθ
φ1
)µc in which φ1 =

θ + ρ + µt and φ2 = σ + ρ + µc.

Delay in Particle Assembly
Following translation and replication, positive-strand HCV RNA
is assembled into a virus particle that can then be exported out
of the cell (Lindenbach and Rice, 2013). Such assembly can not
begin immediately after infection as viral proteins are needed as
components of the virion and hence first need to be produced.
The release of virus by an infected cell in vitro is observed
approximately 12 h after infection (Keum et al., 2012).

To incorporate this biological delay, τ , we assume the viral
secretion rate is a function of the length of time a cell has been
infected, i.e., its age of infection. The function we use is

ρ(a) =

{

0, a < τ

(1− e−k(a−τ ))ρ, otherwise,
(2)

where a = 0 is the time of infection and the constant ρ is the
maximum secretion rate. This functional form was chosen to
avoid any discontinuities.

When we analyze in vitro experiments, the kinetics of secreted
HCV RNA, Rs can be represented by the differential equation

{

d
da
Rs = ρ(a)(Rt + Rc)− csRs

Rs(0) = 0,
(3)

where ρ(a) is the secretion rate and cs is the rate of clearance or
degradation of secreted HCV RNA, which is estimated from the
data.

Coupling of Multiple Scales
We also analyze in vivo data in which the effects of antiviral
treatment on kinetics of HCV RNA levels in plasma are
measured. To fit this data we introduced a new multiscale model
depicted in Figure 2.

The intracellular portion of the multiscale model with
treatment is represented by the following partial differential
equations (PDEs) in which t represents clock time and a the age
of an infected cell:























∂
∂tRt(a, t)+

∂
∂aRt(a, t) = θRc − (σ + (1− ǫs)ρ(a)+ κtµt)Rt ,

∂
∂tRc(a, t)+

∂
∂aRc(a, t) = (1− ǫα)αRm + σRt−

(θ + (1− ǫs)ρ(a)+ κcµc)Rc,
∂
∂tRm(a, t)+

∂
∂aRm(a, t) = (1− ǫr)r(1−

Rm
Rmax

)Rc − κcµcRm,

Rt(0, t) = Rt0 , Rt(a, 0) = Rt(a), (4)

Rc(0, t) = 0, Rc(a, 0) = Rc(a),

Rm(0, t) = 0, Rm(a, 0) = Rm(a).

We have assumed that intracellular infection is initiated by
the introduction of Rt0 positive HCV RNA strands into the
cytoplasm of a cell. Typically, we shall assume that infection
is the result of a single virion, carrying a single positive-
strand HCV RNA, entering a cell, so that Rt0 = 1.
Further, we shall assume that the individual’s being treated
with antivirals are chronically infected and have reached steady
state in which Rt(a), Rc(a) and Rm(a) are the steady state
distributions of positive-strand HCV RNA in translation and
in replication complexes and negative-strand HCV RNA in
replication complexes, respectively, in the absence of treatment
and are given by the steady state solutions of the ODEs in
Equation (1). Further, we let ǫα be the effectiveness of therapy
in decreasing or blocking positive-strand RNA replication, ǫr
the effectiveness of therapy in decreasing or blocking negative-
strand RNA replication, and ǫs the effectiveness of therapy in
decreasing or blocking secretion of positive-strand RNA, where
for each of the ǫ’s, ǫ = 1 corresponds to a 100% effective
drug and ǫ = 0 corresponds to a completely ineffective or
absent drug. Further κt is a factor by which therapy changes
the degradation rate of positive-strand RNA used for translation
and κc is the factor by which therapy changes the degradation
rate of both positive and negative strand RNA in replication
complexes.

To complete the multiscale model, we then coupled the
intracellular model to an established HCV cellular infection
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FIGURE 2 | Scheme representing the coupled multiscale model with therapy (parameters in red). T are target cells, I, infected cells and V, the HCV RNA concentration

in plasma. Target cells become infected at rate β.

model (Equation 5) (Neumann et al., 1998; Canini and Perelson,
2014).











d
dt
T(t) = s− βV(t)T(t)− dT(t),

∂
∂t I(a, t)+

∂
∂a I(a, t) = −δ(a)I(a, t),

d
dt
V(t) = (1− ǫs)

∫

∞

0 ρ(a)(Rt(a, t)+ Rc(a, t))I(a, t)da− cV(t),

T(0) = T0,

I(0, t) = βV(t)T(t), I(a, 0) = Ī(a),

V(0) = V0, (5)

in which, T are target cells, I, infected cells and V the HCV RNA
concentration in plasma. Target cells become infected at rate β ,
have a constant source rate s and a natural per capita decay rate
d. The parameter δ(a) represents the death rate of an infected
cell of age “a” and the effects of therapy on the virus export are
given by ǫs. Here for simplicity we shall only analyze the case in
which δ(a) is a constant, δ. Virus in the plasma is cleared from
the circulation at per capita rate c. Here we have assumed that
at t = 0, the time therapy starts, the system is in steady state,
where Ī(a) is the steady-state distribution of infected cells, which
can be shown to be Ī(a) = βV0T0e

−δa. T0 =
c

βN , where N is the

steady state total amount of virus secreted by an infected cell over

its lifetime, N = ρ
∫

∞

0 (Rt(a) + Rc(a)e
−δada, and V0 =

s−dT0
βT0

.

See Rong et al. (2013). The coupling between the intracellular
and extracellular models occurs through the equation for V , the
virus in the plasma. The amount of plasma virus depends on the
number of infected cells and number of virions being packaged
and exported per infected cell. This coupling has been used before
(Guedj et al., 2013; Rong et al., 2013; Rong and Perelson, 2013).

Numerical Algorithms
The model equations were discretized in space, i.e., age, and
integrated in time using the method of lines (MOL) approach
(Sadiku and Obiozor, 2000; Shakeri and Dehghan, 2008) where

the partial derivatives in age were approximated by finite-
differences and the solution at the grid points was integrated
along lines in time. We integrated the equations using the
Matlab R© ordinary differential equation Runge-Kutta solver
ode45.

The domain was discretized on a uniform grid of 201 mesh
points between ages 0 and 50 days, as it is unlikely for an
infected cell to live longer than this. The boundary of domain
at a = 50 was defined as a simple outflow boundary condition
and was incorporated into the numerical solution by linearly
extrapolating the solution to two buffer grid points outside the
domain. The partial derivatives in age were approximated with
fourth-order centered finite differences.

We verified the convergence of the numerical solution to an
accuracy of 10−3 by varying the number of spatial grid points and
the time integration error tolerance.

The simulation time was varied according to the length of time
that virus was detected in plasma after therapy initiation in the
data we analyzed. The computer run time were typically a few
seconds for a single simulation using a laptop computer.

We used the Matlab R© nonlinear optimization program
fmincon to fit the solutions of the model to the experimental data
by minimizing the L2 norm of the residual difference between
the model solution and the data. This routine was chosen due
to the possibility of specifying lower and upper bounds for the
parameters we wanted to estimate. The algorithm we used was
“interior-point” as it satisfies the bounds at all iterations.

The data we fit to validate the model was obtained from
different sources. We extracted in vitro data from Keum
et al. (2012) and Binder et al. (2013) using the on-line tool
WebPlotDigitizer (Rohatgi, 2016). We also fit clinical trial data
from Guedj et al. (2013) that we had access to.

Because our models have a large number of parameters we
numerically approximated the Hessian of the objective function
at the optimal parameter values. At a minimum, the gradient of
the objective function is zero. If an eigenvalue of the Hessian is
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zero at the minimum, then the gradient remains zero along the
direction of the associated eigenvector. That is, the solution is not
unique (identifiable) (Beck, 2014). Here, for each of the data sets
we fit, at the optimum, all of the eigenvalues of the Hessian were
positive, and the condition number was below 104, indicating
that the parameters were locally identifiable.

RESULTS

Calibrating Intracellular Parameters in the
Absence of Therapy
To validate the intracellular mathematical model, we first
compared the results of Equation (1) to transfection experiments
performed by Binder et al. (2013). In that paper the authors
used two distinct cell lines to assess HCV RNA replication
over 72 h: (a) Huh7-Lunet cells which are highly permissive
to HCV RNA replication and (b) Huh7 cells (Huh7-lp)
which presents lower levels of HCV RNA replication.
They measured positive-strand and negative-strand RNA
by strand specific quantitative Northern blotting. Binder
et al. (2013) developed a complex mathematical model
that included 13 molecular species with 16 parameters
in two compartments: the cytoplasm and a replication
compartment.

Using the three equation mathematical model, Equation (1),
we were able to fit the dynamics of both positive and negative
strand HCV RNA in both the high and low permissive cell lines
(Figure 3). Our model was able to replicate the initial decay seen
after transfection with both types of cells and the plateau during
the 72 h measured (Figures 3A,B).

In fitting the data, the parameters used to describe the age-
dependent virion export rate, ρ(a), were fixed at ρ = 0.1 d−1,
τ = 0.5 d−1 and k = 0.8 d−1. We set τ at 0.5 d−1 based on
the fact that Keum et al. (2012) could not detect any extracellular
virus until 12 h post-infection. We further tested different values
of τ and k and chose the values that gave the best fits to the data
in both the Binder and Keum experiments. Choosing the export
rate as a time-dependent function rather than a constant allowed
us to have an initial delay followed by a smooth transition to the
maximum export ρ. Regarding the maximum export rate, ρ, we
at first chose the value estimated by Guedj et al. (2013) based
on fitting in vivo data. However, using this value did not give
good fits to the in vitro data. We then scanned through different
values and chose the one giving the best fit. HCV uses the host
cell export machinery and thus it is not surprising that these
parameters differ between in vitro and in vivo systems.

The initial number of HCV positive strands introduced into
these cells to initiate HCV replication in this in vitro system was
Rt0 = 4,000 molecules cell−1. Other parameters of the model
were estimated using the fmincon routine in Matlab and are
shown in Table 1.

Another form of validation we performed was testing
the model predictions by comparing to positive-strand
measurements using a replication deficient replicon (Binder
et al., 2013). By setting the rate at which positive-strand RNA
goes from use in translation to use in replication (σ ) to zero

we could compare the results obtained with the model to
the measurements reported by Binder et al. (2013) Without
replication, the initial amount of transfected HCV RNA decays
exponentially and no negative-strand is formed. Further as
Binder et al. show the decay of positive strand RNA is similar
in both the high permissive and low permissive cell lines. We
simulated the intracellular model with the parameters that were
estimated for the highly-permissive cell line (Table 1) and the
results are shown in Figure 4. The results using the parameters
for the low permissive cell line are the same.

Sensitivity Analysis of the Intracellular Model
Forward sensitivity analysis was performed to estimate how the
model solution is affected by small perturbations to each model
parameter. The sensitivity index was defined as the ratio:

Si =
δJ/J

δp/p
, J, p 6= 0 (6)

in which, J denotes a model output that depends on a parameter
p, δ is some perturbation to the parameter p and δJ is the resulting
perturbation to the output J.

The sensitivity index is a measure of the percentage of change
in the output given a perturbation in each parameter. We varied
by 10% the value of each parameter, while other parameters
were kept the same, and calculated the sensitivity index of each
parameter to the resulting value of Rt , Rc and Rm at 72 h
(Figure 5). Positive values indicate an increase in the output
given the increase in the parameter and negative values indicate
that the output decreases as we increase the parameter.

The sensitivity index confirms that perturbing α, the positive-
strand RNA replication rate, increases by more than 10% the
amount of positive-strand RNA used for translation and in
replication complexes. µt represents the natural decay rate of
translated RNA and changes in that parameter decreases positive-
strand RNA in translation and µc, the natural decay rate for both
positive and negative strands in the replication complex, affects
mainly the positive-strand RNA.

Calibrating the Intracellular Parameters for
a Different in Vitro Experiment
We also compared the intracellular model to experiments in vitro
performed by Keum et al. (2012) in which a high multiplicity
of infection was used (MOI = 5 or 6) so that only one round
of infection occurred. Theoretically, with an MOI of 5, 99.3% of
cells should be infected with a least one infectious virion (Keum
et al., 2012). A cell culture adapted HCV, JFH-m4, was incubated
with Huh7.5.1 cells for 3 h to initiate infection. At subsequent
times cells and supernatant were harvested tomeasureHCVRNA
levels intra-cellularly and the amount secreted into the medium.
Keum et al. quantified the number of positive and negative HCV
RNA strands using real-time RT-PCR. As shown in Figure 6

the number of cell-associated positive strands initially decreased
reaching a minimum of about 1 positive strand per cell at 6 h
post-infection (pi). Intracellular negative strand, which serves as
a template for making new positive strands, was first detected at
6 h pi. Ourmodel was able to reproduce the observed intracellular
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FIGURE 3 | HCV RNA replication. Circles represent experimental data from Binder et al. (2013) and lines show the results obtained with the model described herein

with distinct sets of parameters for (A) high and (B) low permissive cells.

TABLE 1 | Model parameter values estimated for the in vitro transfection

experiments in Binder et al. (2013).

Name Huh7-Lunet Huh7-lp Unit Biological meaning

α 60 20 Day−1 Rc replication rate

µt 20 20 Day−1 Rt natural decay rate

r 2.1 1 Day−1 Rm replication rate

µc 3.4 1.7 Day−1 Repl. complex decay rate

σ 0.3 0.1 Day−1 Translation to repl. rate

θ 2.1 1.2 Day−1 Repl. to translation rate

Rmax 1000 200 Molecules cell−1 Max. number of Rm

HCV RNA dynamics (Figure 6) as well as the dynamics of
positive strand HCV RNA secreted into the media (Figure 7). As
before we fixed the export rate with ρ = 0.1 d−1, τ = 0.5 d−1,
and k = 0.8 d−1. The initial time t0 = 0, Rt0 = 12.8 and no
therapy was given (Figure 7). Other parameters were estimated
and were found to be α = 30 d−1, µt = 24 d−1, r = 3.18 d−1,
µc = 1.05 d−1, Rmax = 100 molecules, σ = 0.1 d−1 and θ = 1.2
d−1. As both the cell line and virus used in these experiments are
different than the ones used by Binder et al. (2013), it is surprising
that resulting parameters do not differ very much from those we
estimated in the previous section for high and low-permissive
cells.

In Vivo Effect of Therapy With an NS5A
Inhibitor
We validated the coupled multiscale model by fitting Equations
(4) and (5) to data obtained from patients treated with one
dose of 10 or 100 mg of daclatasvir (DCV) (Guedj et al., 2013).
DCV inhibits the action of the HCV NS5A protein, which has
been shown to play an important role in HCV RNA replication
and secretion (Lee, 2013; Scheel and Rice, 2013). This data was
previously analyzed by Guedj et al. (2013) using a much simpler
multiscale model that only considered HCV positive strand RNA
dynamics.

FIGURE 4 | Comparison to measurements of replication deficient HCV RNA in

high and low permissive cells. Model prediction setting σ = 0 for both sets of

parameters. Data taken from Binder et al. (2013).

We assumed that the parameters that represent in vivo
infection dynamics are different from those we estimated for in
vitro infection as both the virus and target cells are different.
We also assumed that there was no superinfection, so that only
one virus infects each cell. Using the same approach as for the
intracellular model, we performed a sensitivity analysis of the
coupled model parameters in order to determine how sensitive
the predicted viral load is to each parameter. We chose to vary
each parameter one at a time and compared how they affected
the predicted viral load at day 2 on therapy.

The sensitivity index was calculated using Equation (6) and
the results are shown in Figure 8. Intracellular parameters such
as the replication and decay rates of HCV RNA, α, r, µc are the
ones which the viral load is most sensitive to. The parameters that
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FIGURE 5 | Sensitivity analysis of the model at 72 h. The positive-strand RNA

replication rate, α, the natural decay rates for positive-strand RNA used for

translation and within replication complexes, µt and µc, repectively and the

rate at which positive-strand RNA goes from replication complexes to the

cytoplasm to be translated, θ , are the most sensitive parameters in the model.

FIGURE 6 | Comparison of model results to in vitro infection data. Data points

were extracted from Keum et al. (2012) and the lines were obtained by fitting

the intracellular model to the data where we assumed the measured positive

strands were the sum of the positive strands used for translation, Rt and in

replication complexes, Rc. As before we fixed the export rate with ρ = 0.1

d−1, τ = 0.5 d−1, and k = 0.8 d−1. The initial time t0 = 0. Based on the data

we set Rt0 = 12.8. Other parameters were estimated and were found to be

α = 30 d−1, µt = 24 d−1, r = 3.18 d−1, µc = 1.05 d−1, Rmax = 100

molecules, σ = 0.1 d−1 and θ = 1.2 d−1.

represents the export rate, ρ, and infected cell decay rate δ, are
also important to define the viral load.

A baseline in vivo set of parameters was fixed based on the
literature: α = 30 d−1, ρ = 8.18 d−1, δ = 0.14 d−1, and c
= 22.3 d−1 were taken from Rong et al. (2013) and ǫs = 0.998
was taken from Guedj et al. (2013). The remaining parameters
were estimated and their values are shown in Table 2.

Figures 9, 10 depict the results obtained with the multiscale
model for each patient. We fixed the replication rate of positive
strandHCVRNA α = 30 d−1 and considered no enhancement in

FIGURE 7 | Secreted HCV RNA. Data points from Keum et al. (2012) and lines

are the model prediction based on Equation (1).

FIGURE 8 | Sensitivity analysis of the model at 2 days. The figure shows how

much a perturbation of the parameters influence the viral load (V).

HCVRNAdecay with therapy, κt = κc = 1. Ourmodel predicted
that initiation of therapy affects the replication of both positive
and negative strands and that initially there is a slightly increase
in the number of positive strand HCV RNAs used for translation
(Figure 10). This increase is most likely due to the fact that
DCV effectively blocks secretion of positive strands thus allowing
them to accumulate in the cytoplasm. Therapy also blocks the
appearance of new replication complexes, which only decrease in
the presence of the drug (Figure 10).

DISCUSSION

HCV infection and treatment has been modeled using variants
of the basic model of viral infection starting with the work of
Neumann et al. (1998). This initial ordinary differential equation
model was followed by others and various clinical applications
were shown (Layden et al., 2003; Layden-Almer et al., 2003;
Powers et al., 2003; Ribeiro et al., 2003; Dixit and Perelson, 2004;
Dahari et al., 2005, 2006, 2007a,b; Shudo et al., 2008a,b; Dahari
et al., 2009; Reluga et al., 2009). These models were all based on
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TABLE 2 | Model parameters estimated from fitting in vivo patient data.

Param. PAT 8 PAT 42 PAT 68 PAT 69 PAT 83 Mean Range Std Conf.

δ 0.58 0.64 0.1 0.47 0.62 0.48 0.1–0.8 0.199 0.209

µt 0.89 0.89 0.88 0.89 0.89 0.89 0.8–1 0.004 0.004

r 1.49 1.1 5.08 2.24 1.61 2.3 1–6 1.435 1.506

µc 2.55 1.72 3.38 3.15 2.39 2.6 1–6 0.587 0.616

ǫα 0.928 0.909 0.992 0.936 0.924 0.937 0.9–0.99999 0.028 0.029

ǫr 0.47 0.12 0.61 0.36 0.29 0.37 0–0.99999 0.165 0.173

Mean values, range allowed for fitting, standard deviation and confidence interval (p = 0.05). We fixed α = 30 d-1 and κt = κc = 1. The parameters ǫα and ǫr are unitless, other

parameters units, per day.

FIGURE 9 | Fit of coupled multiscale model (solid line) to patient viral load data (squares) from Guedj et al. (2013). All 5 patients were treated with one dose of 10 or

100 mg of daclatasvir. The best-fit parameters are shown in Table 2.

FIGURE 10 | Predicted intracellular HCV RNA obtained from fitting the patient data from Guedj et al. (2013). The best-fit parameters are shown in Table 2.
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the standard treatment at the time using type I interferon alone
or in combination with ribavirin. When new small molecule
inhibitors of HCV replication, such as the protease inhibitor
telaprevir, were introduced parameters that were thought to
reflect the host response to infection, such as the loss rate of
infected cells (Guedj and Perelson, 2011) and the clearance rate
of free virus (Adiwijaya et al., 2009) were found to change with
the drug being used. To make sense of these findings a multiscale
model was introduced by Guedj et al. (2013) that showed that
the protease inhibitor telaprevir and the HCV NS5A inhibitor
daclatasvir affected both viral replication and viral production.
The Guedj et al. model only included postive strand HCV RNA
and did not distinguish between the various functions of this
RNA. However, the model showed that to fully understand the
modes of action of anti-HCV drugs one would need to develop
more detailed models of the viral lifecycle and couple them to
models of cellular infection. Here we have done just that.

As negative-strand HCV RNA is only synthesized during viral
replication, it should be considered a more reliable marker of
viral replication than positive-strand HCV RNA (Yuki et al.,
2005). In this work, the dynamics of negative-strand HCV RNA
during replication was added to a multiscale age-structured
model of HCV infection to better represent the steps of HCV
replication inside of infected cells. Moreover, the addition of
positive-strand RNA used for translation to the model is a
new feature that allowed us to understand the initial decay in
positive strand HCV RNA observed in in vitro experiments
(Keum et al., 2012; Binder et al., 2013) before viral replication
expanded the population of positive strands. This pool of HCV
RNA is also a possible target of therapy and hence it is valuable
to represent it in models. Another novel feature of our model
was that we modeled the rate of export of positive strand HCV
RNA not as a constant but rather as an increasing function
of the time a cell has been infected. In this way, the initial
positive strand RNA used to infect a cell has time to replicate
before it is assembled into virions. The intracellular model
was fit to two different in vitro experiments and was able to
account for the intracellular dynamics seen in both as well
as for the amount of positive strand HCV RNA secreted as
virions into the medium in the experiment by Keum et al.
(2012).

A sensitivity analysis of both the intracellular model and the
multiscale model was performed indicating that the results are
more sensitive to some parameters than others. In particular, the
viral load is sensitive to the choice of intracellular parameters.
The choice of parameters to be estimated or fixed was based
on the availability of their values in the literature and which
were more influential in determining the viral load during the
sensitivity analysis.

The multiscale model presented here was able to reproduce
the viral load during therapy and also the intracellular
concentrations of positive and negative strands of HCV RNA
observed during in vitro transfection experiments. Interestingly,
the estimates of some parameters made from in vitro experiments
were similar to estimates made from patient data. For example,
we estimated that the replication rate constant for negative
strand HCV RNA in the highly permissive Huh7-Lunet cells

was 2.1 d−1, whereas our in vivo estimates varied between
1.1 d−1 and 5.1 d−1 with a mean of 2.3 d−1. Similarly, we
estimated that the rate of decay of replication complexes,
µc in Huh7-Lunet cells was 3.4 d−1, whereas our in vivo
estimates ranged between 1.7 d−1 and 3.4 d−1, with a mean
of 2.6 d−1. The estimate of the rate of decay of positive
strands used for translation differed significantly between in
vivo and in vitro, possibly due to more efficient depletion
of positive strands in vivo by packaging into virions and
secretion.

The model allows the effects of therapy to be estimated in
terms of the targets: production of positive and negative stranded
HCV RNA, secretion of new virions, and the enhancement in
degradation of both strands of HCV RNA. Our estimate of the
effectiveness of daclatasvir (DCV) treatment in blocking positive
strand synthesis was between 0.91 and 0.99, whereas in Guedj
et al. the mean was 0.99. More strikingly, we estimated that DCV
was not nearly efficient in blocking negative strand synthesis,
with estimates of ǫr ranging from 0.12 to 0.61 with a mean of
0.37. Thus, our model predicts that the NS5A inhibitor DCV is
not very effective at blocking negative strand synthesis. This is
consistent with the in vitro finding of McGivern et al. (2014) that
NS5A inhibitors have no activity against preformed replication
complexes and only inhibit the formation of new ones. If this
is also true in vivo, then production of negative strand HCV
RNA from existing replication complexes would continue in the
presence of an NS5A inhibitor yielding a very low effectiveness
of DCV in blocking this step of the HCV life cycle. However,
preformed replication complexes also produce positive strands
and why this production seems to be efficiently inhibited remains
to be explained.

In summary, we have developed a new multiscale model of
HCV replication and spread by cellular infection. The model
is more realistic than the simple model developed by Guedj
et al. (2013) that only contained positive strand RNA and more
realistic than the prior model of Guedj and Neumann, which
tracked positive strand RNA and replication complexes (Guedj
and Neumann, 2010) but that was never fit to data. Here we
showed that a model with positive strands used for translation
separate from those used for replication as well as negative
strands could fit both in vitro and in vivo data. More tests and
refinement of the model may be needed, but it seems apparent
that one does not need to introduce the complexity of the Binder
model (Binder et al., 2013) or the earlier Dahari et al. model
(Dahari et al., 2007c), both of which modeled HCV replication
in enormous detail, in order to explain the in vitro and on vivo
data analyzed here.
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Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida 
glabrata increasingly occur in hospitalized patients and are associated with high mor-
tality rates. The early immune response against these fungi in human blood comprises 
a concerted action of humoral and cellular components of the innate immune system. 
Upon entering the blood, the majority of fungal cells will be eliminated by innate immune 
cells, i.e., neutrophils and monocytes. However, recent studies identified a population 
of fungal cells that can evade the immune response and thereby may disseminate and 
cause organ dissemination, which is frequently observed during candidemia. In this 
study, we investigate the so far unresolved mechanism of fungal immune evasion in 
human whole blood by testing hypotheses with the help of mathematical modeling. 
We use a previously established state-based virtual infection model for whole-blood 
infection with C. albicans to quantify the immune response and identified the fungal 
immune-evasion mechanism. While this process was assumed to be spontaneous in the 
previous model, we now hypothesize that the immune-evasion process is mediated by 
host factors and incorporate such a mechanism in the model. In particular, we propose, 
based on previous studies that the fungal immune-evasion mechanism could possibly 
arise through modification of the fungal surface by as of yet unknown proteins that are 
assumed to be secreted by activated neutrophils. To validate or reject any of the immune- 
evasion mechanisms, we compared the simulation of both immune-evasion models 
for different infection scenarios, i.e., infection of whole blood with either C. albicans or  
C. glabrata under non-neutropenic and neutropenic conditions. We found that under non- 
neutropenic conditions, both immune-evasion models fit the experimental data from 
whole-blood infection with C. albicans and C. glabrata. However, differences between the 
immune-evasion models could be observed for the infection outcome under neutropenic 
conditions with respect to the distribution of fungal cells across the immune cells. Based 
on these predictions, we suggested specific experimental studies that might allow for the 
validation or rejection of the proposed immune-evasion mechanism.

Keywords: Candida albicans, Candida glabrata, immune evasion, state-based model, innate immune response, 
polymorphonuclear neutrophils, whole-blood infection assay
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Figure 1 | Schematic depiction of two immune-evasion mechanisms. PMN 
(purple) with granula and fungal cells are either alive (green), killed (red), or 
immune evasive (gray). (a) Illustration of spontaneously evading fungal cells. 
(B) Illustration of the PMN-mediated immune-evasion mechanism, which is 
associated with degranulation on first-time phagocytosis of fungal cells by 
PMN. Degranulation is assumed to mediate the release of proteins into 
extracellular space that enables fungal cells to evade subsequent killing and 
phagocytosis by modification of their surface.
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inTrODucTiOn

Even though pathogenic microbes constantly colonize the 
human skin or are inhaled, the human immune system is usually 
able to protect the body against infections. Thus, immunocom-
promised individuals have an increased risk for infections by 
opportunistic pathogens (1). In case of injuries or disturbed 
cellular integrity, the pathogens can easily overcome physical 
skin barriers and/or mucosal surfaces, and enter the host tissue 
or the blood stream (2, 3). Innate immune responses defend 
the host against microbial invaders (4–6), however, the exact 
interplay between pathogens and the immune defense is in 
many cases not fully resolved (7, 8). In order to investigate such 
unknown mechanisms, mathematical modeling is an appropri-
ate approach to investigate complex biological systems at a 
quantitative level. Furthermore, mathematical models allow for 
hypothesis testing by varying single parameters or comparing 
various possible scenarios. This approach allows going beyond 
experimental limitations, for example, by quantifying biologi-
cal processes that are not amenable to a direct measurement in 
experiment. Moreover, ethical concerns and financial efforts of 
experimental studies can be considerably reduced by computer 
simulations, because systematic variations of model parameters 
allow narrowing down the number and kind of further experi-
mental investigations necessary to identify causal relationships 
responsible for experimentally observed effects (9). The iterative 
cycle of such a systems biology approach combines wet-lab and 
dry-lab experiments to their best advantage (10, 11).

In previous studies, we have applied a systems biology 
approach to investigate the complex interaction of the human-
pathogenic fungus, Candida albicans with innate immune cells 
in human whole blood (12, 13). Interestingly, we observed that 
a relatively high proportion of C. albicans can survive in human 
blood and evades the immune response by a so far unknown 
mechanism. The experimental part of this study comprised 
human whole-blood infection assays, where blood samples 
from healthy donors were infected with fungal cells to acquire 
time-resolved data on the interaction of C. albicans with immune 
cells as well as fungal survival over the course of infection. Based 
on these experimental results, a bio-mathematical model was 
developed using a state-based modeling approach (12, 13). The 
model is composed of states that represent different C. albicans 
cell populations of the biological system. These include alive and 
killed C. albicans cells, which are either in extracellular space 
or phagocytosed by the immune cells, i.e., PMN or monocytes. 
Moreover, the model represents a population of fungal cells 
that can evade the immune defense, since these cells appear to 
be neither phagocytosed by immune cells nor killed extracel-
lularly. Transitions between various states of cell populations 
can occur and these state changes represent biological processes 
like phagocytosis and killing. In the original state-based model 
(SBM), transition rates were defined to characterize the different 
transitions between the states, which represent the biological 
processes. The a priori unknown values for these transition rates 
were evaluated by applying the global parameter estimation 
algorithm Simulated Annealing that is based on the Metropolis 
Monte Carlo scheme (12, 13). This algorithm explores the space 

of transition rates and searches for the global minimum of 
the fitting error, i.e., the deviation between the simulated and 
experimentally measured kinetics, and by that yields values for 
the transition rates that together achieve optimal agreement 
between these kinetics. The resulting rates indicated that the 
larger number of C. albicans cells inside PMN, in comparison 
to the much smaller number of fungal cells inside monocytes, 
is not merely a consequence of the higher number of PMN 
than monocytes, but is also due to a larger phagocytosis rate of 
PMN compared to monocytes. This quantification, which is not 
directly accessible from the experimental data alone, allowed 
us to generally conclude that elimination of C. albicans cells in 
human blood is governed by PMN.

In the SBM, fungal cells that evaded the immune response 
were assumed to undergo a spontaneous process with a constant 
transition rate and we will refer to it as spon-IE model from 
now on (see Figure 1A). While the exact mechanism causing 
immune evasion of C. albicans in human blood has not been 
identified yet, our previous studies already allowed for the  
rejection of various hypotheses. In the work by Hünniger et al. 
(12) it has been shown that the non-filamentous efg1Δ, cph1Δ 
mutant of C. albicans, and even thimerosal-killed C. albicans 
yeast cells are both able to evade the immune response. These 
observations imply that the fungal cells do not play an active 
role in the acquisition of immune-evasive properties. Therefore, 
we addressed aspects of the host. However, we found that the 
addition of fresh blood of the same donor to an infected blood 
sample after 2 h did not result in higher elimination of fungal 
cells, implying that the hypothesis of early PMN exhaustion in 
the infection assay could be rejected. Additionally, we observed 
that during the 4  h of whole-blood infection the number of 
immune cells remained fairly constant. Thus, acquisition of 
immune evasion by fungal cells inside the phagocytes, which 
might then be followed by the destruction of phagocytic immune 
cells, appears to be unlikely. This lytic escape mechanism, which 
has been observed for macrophages (14), has not been reported 
for human PMN in C. albicans infection.
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In this study, we investigate the unresolved mechanism of 
immune evasion by pathogens in human whole blood. This 
is realized by making predictions based on mathematical 
modeling of the infection kinetics and by comparing various 
infection scenarios that may be tested in experiment. Based on 
our previously developed state-based virtual infection model 
(12, 13), we hypothesize that the immune-evasion process is 
mediated by host factors and incorporate such a mechanism 
in the model. Our hypothesis is motivated by the experimental 
observation that even thimerosal-killed C. albicans cells can 
acquire immune-evasive properties. Thus, pathogen immune 
evasion may be actively driven by the host. Although PMN are 
the main actors in the defense against C. albicans, immune cells 
also have been shown to cause remodeling of the C. albicans cell 
wall (15). However, while it is known that PMN degranulation 
is associated with the release of antimicrobial effector proteins 
that can kill C. albicans cells in extracellular space (16, 17), the 
consequences of the cell wall remodeling is yet not clear, e.g., 
whether or not it enables the immune evasion by the pathogen. 
We here consider the possibility that PMN degranulation is 
associated with the secretion of effector molecules that may 
cause immune evasion. We investigate the possibility that these 
PMN-derived molecules may change the pathogen surface 
and thereby render the pathogen undetectable for immune 
cells (see Figure 1B). We will refer to the model that assumes 
a PMN-mediated evasion mechanism as PMNmed-IE model in 
the following.

The PMNmed-IE model will be compared with the spon-IE 
model by simulating the immune response to pathogens in 
healthy individuals as well as in virtual patients with neutro-
penia. Furthermore, we also extend this analysis to the fungus  
C. glabrata, which attributes to the rise of microbial infection in 
the clinics, especially in elderly individuals and immunocom-
promised patients (18). The two fungal pathogens are part of 
the normal microbial flora of the majority of people and remain 
in a commensal state under healthy conditions (19). C. albicans 
and C. glabrata, respectively, rank first and second in isola-
tion frequency in humans (20) and in immunocompromised 
patients can switch into a pathogenic state, overcome physical 
barriers, enter the bloodstream, and disseminate throughout 
the body (4, 7). In blood, the microorganisms are attacked and 
cleared by the innate immune response. However, we find that 
both pathogens—albeit to a different quantitative extent—have 
the ability to evade the immune response. This emphasizes 
once more the importance of investigating immune-evasion 
mechanisms by mathematical modeling in order to generate 
testable hypothesis that may be checked in experiment and 
ultimately enable medical intervention that cuts the pathogen 
escape route in and subsequent dissemination from human 
whole blood.

MaTerials anD MeThODs

ethics statement
This study was conducted according to the principles expressed 
in the Declaration of Helsinki. All protocols were approved by 

the Ethics Committee of the University Hospital Jena (permit 
number: 273-12/09). Written informed consent was obtained 
from all blood donors.

Fungal strains and culture
The GFP expressing C. albicans strain was constructed as 
described in Hünniger et al. (12) and grown in liquid yeast extract-
peptone-dextrose (YPD) medium at 30°C. The GFP expressing 
C. glabrata strain (21) was incubated at 37°C in YPD medium. 
After overnight culture both strains were reseeded in fresh YPD 
medium followed by growing at 30 and 37°C, respectively, until 
they reached the mid-log-phase. Finally, the fungal cells were 
washed and harvested in HBSS until use.

human Whole Blood infection assay
Human peripheral blood samples from healthy individuals 
were infected with either C. albicans or C. glabrata. The assay 
was performed as described previously (12). In short, 1⋅106 
Candida cells were added per ml of anti-coagulated blood and 
incubated at 37°C with gentle rotation for indicated time points. 
Subsequent to the confrontation, samples were maintained at 
4°C and further analyzed by flow cytometry. Flow cytometry  
gating strategy was performed as previously described using 
FlowJo 7.6.4 software to investigate the distribution of fungal 
cells in human blood (12). Survival of fungal cells was determined 
in a plating assay by analysis of recovered colony forming units 
after plating appropriate dilutions of all time points on YPD agar 
plates.

sBM of Whole-Blood infection
Recently, we established a virtual infection model to simulate 
the immune response against the fungal pathogen C. albicans in 
human whole blood (12, 13). This enabled us to quantify innate 
effector mechanisms as well as C. albicans immune evasion 
based on experimental data as obtained by FACS analysis and 
survival assays during a time course of 4  h. The time-resolved 
data comprised C. albicans viability as well as its association to 
innate immune cells, i.e., monocytes and PMN. In the SBM, 
immune cells and fungal cells can populate specific states. We 
identified five combined units of these states that could be directly 
compared with the experimentally measured cell populations. 
The combined unit PE involves all extracellular pathogens and is 
given by

 P P P PE AE KE AIE KIE≡ ++ + P  (1)

Here, the states PAE and PKE represent extracellular cells 
that are alive and killed, respectively. The states PAIE and PKIE 
describe pathogens that are either alive and evade the immune 
response or kill and evade the immune response. Note that 
alive extracellular cells do not comprise alive immune- 
evasive cells and that these combined units are excluding each 
other.

Pathogens PAE and PKE can be phagocytozed by immune cells 
and in the SBM we account for phagocytosis by monocytes 
(M) and PMN (N), where the latter may also be referred to as 
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neutrophils and are, therefore, labeled with N. An intracellular 
pathogen is either phagocytosed by a PMN

 P i j NN i jji
≡ ,( )

≥
+∑∑ ≥ ,00  (2)

or by a monocyte

 P i j MM i jji
≡ .( )+

≥≥ ∑∑ ,00  (3)

Here, the indices i and j refer to the immune cell state that is 
defined by the number of internalized alive and killed pathogens, 
respectively. The combined unit of killed pathogens is given by

 P P P M N jK KE KIE i j i jji
≡ ( ) ,+ + +

≥≥ ∑∑ , ,00  (4)

whereas the combined unit of alive pathogens is defined by

 P P P M N iA AE AIE i j i jji
≡ + + +

≥≥ ∑∑ ( ) ., ,00  (5)

Note that the total number of pathogens is given by  
P ≡ PE+PN+PM+PKIE or P ≡ PK+PA.

The states are connected by transitions that indicate possible 
state changes and thereby enable to simulate the dynamics of 
the model (see Figure S1 in Supplementary Material). Transition 
rates characterize these state changes and are defined as the 
probability of a transition per simulation time step Δt. The SBM 
by Hünniger et  al. (12) and Lehnert et  al. (13) distinguished a 
rate for first and subsequent phagocytosis events by PMN, 
since it was assumed that a phagocytosis event activates the 
PMN and leads to a higher phagocytosis rate. Since this fact is 
not experimentally validated for whole-blood infection with  
C. glabrata, we here implement a single phagocytosis rate of PMN 
that accounts for both, first and subsequent phagocytosis events. 
Therefore, the SBM of whole-blood infection comprises seven 
different transition rates that are given by the phagocytosis rate 
ϕM of monocytes, the phagocytosis rate ϕN of PMN, the intracel-
lular killing rates κM and κN of both monocytes and PMN, the 
transition rates γ and κEK, which define the extracellular killing, 
and the spontaneous immune-evasion rate ρ (see Table S1 in 
Supplementary Material). As already noted in our previous study 
(12), occasional filamentation of fungal cells but no budding 
could be observed in samples of blood smears. Therefore, prolif-
eration of fungal cells is not included in the SBM. An overview 
of the SBM simulation algorithm is briefly described in Section 
S1 in Supplementary Material and schematically illustrated in 
Figure S1 in Supplementary Material. For a detailed description 
of the SBM, including the definition of rates for state transitions 
and their estimation by the Simulated Annealing algorithm that 
is based on the Metropolis Monte Carlo scheme (22, 23), we refer 
to our previous studies by Hünniger et al. (12) and Lehnert et al. 
(13). Here, we briefly mention that the values of the transition 
rates in the virtual infection model were estimated such that 
deviations from the kinetics of the combined units as obtained 
from the experiments are minimized. A brief overview of the 
parameter estimation algorithm is given in Section S2 and Figure 
S2 in Supplementary Material.

Our object-oriented framework combining the SBM simu-
lation algorithm and the parameter estimation is implemented 
in the programming language C++ and available for down load 

from https://asbdata.hki-jena.de/publidata/PrausseEtAl2018_ 
FrontImmunol/.

Modeling of immune evasion by 
Pathogens
As was observed in our previous analysis for C. albicans, patho-
gens can evade the immune response in the states alive (PAIE) 
or killed (PKIE), i.e., these cells can neither be phagocytosed nor 
killed by PMN and monocytes, and their total number is denoted 
by PIE ≡ PKIE + PAIE (12). Note that immune evasion of C. albicans 
in human whole blood was first predicted by our state-based vir-
tual infection model and then also verified experimentally. Since 
the mechanisms of the immune evasion could not be identified 
yet, this process was assumed to occur spontaneously with time-
independent transition rate

 ρ = constant (6)

and we refer to this model as spon-IE model. In this study, spon-
taneous immune evasion of pathogens (see Figure 1A) was com-
pared to an immune-evasion mechanism, which was assumed 
to be mediated by PMN. Since PMN secrete antimicrobial 
peptides upon initial phagocytosis of pathogens, we speculated 
that these pathogens may also secrete proteins that can mediate 
the immune evasion (see Figure 1B), e.g., inducing alterations 
of pathogens by modulating its molecular surface. We accounted  
for this mechanism in the SBM by replacing the constant tran-
sition rate of the spon-IE model with the time-dependent rate
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(7)

in the PMNmed-IE model. In close analogy to the rate of extracel-
lular killing of pathogens by antimicrobial peptide-release from 
PMN (1), Eq. 7 represents the rate of pathogen immune evasion 
at time t as mediated by the sum of PMN-released proteins upon 
first phagocytosis events (NNP) up to time point t. Note that the 
simulation algorithm performs n simulation steps with step size 
Δt to calculate the system dynamics at time point t = nΔt. The 
impact of secreted molecules is determined by the parameters 
ρ and γR, where the latter describes the half-life associated with 
the molecular degradation, such that the molecules’ immune-
evasive effect is exponentially decreasing after their release at 
time tʹ  =  mΔt. Therefore, the PMNmed-IE model comprises 
eight parameters, i.e., one more rate than the spon-IE model for 
spontaneous immune-evasion processes.

simulation of Virtual Patients With 
neutropenia
In order to study the difference between the two models, spon-IE 
and PMNmed-IE, we simulated infection scenarios in human 
whole blood under neutropenic conditions. More specifically, vir-
tual patients were considered with gradually decreasing amounts 
of PMN within the range of medically established severity levels of 
neutropenia (24) (see Table 1) and the impact of these conditions 
was compared with regards to the two mechanisms of immune 
evasion. The simulation algorithm described in Lehnert et  al. 
(13) was applied to human whole-blood samples of 1 ml contain-
ing 5  ⋅105 monocytes and 1  ⋅106 pathogens. For each infection 
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TaBle 1 | Number of PMN per ml blood for different severity levels of 
neutropenia.

state of disease PMn (1/ml)

Healthy 1.8 ⋅106–8 ⋅106

Mild neutropenia <1.5 ⋅106

Moderate neutropenia <1 ⋅106

Severe neutropenia <5 ⋅105

Prauße et al. Predictive Modeling of Fungal Immune Evasion

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 560

scenario, we performed 50 simulations with transition rate values 
that were randomly sampled within their respective SD.

resulTs

Whole-Blood infection show Pathogen-
specific immune response Kinetics
Whole-blood infection assays were performed for the two fungal 
pathogens, C. albicans and C. glabrata. At specific time points, 
whole-blood samples were analyzed using flow cytometry and 
survival assays to acquire time-resolved data for the association 
between pathogens and immune cells as well as viability of the 
pathogens. Figures  2A,B,D,E depict these experimental data 
(dashed lines) for C. albicans and C. glabrata, respectively.

Comparing the two pathogens, the fraction of extracellular 
fungal cells at 4  h post infection was highest for C. albicans 
with 15  ±  5.8%and lowest for C. glabrata with 8.9  ±  7.5%, 
where the sub-populations of alive and killed cells are com-
parable in size (see Figures  2A,B,D,E). In the case of an 
infection with C. albicans, a fraction of 6.5 ±  4.2% cells still 
remained alive at 4 h post infection, whereas survival assays 
revealed that 1.3 ± 1.5% of C. glabrata cells were not killed at 
that time point. Interestingly, the association of fungal cells to 
monocytes was markedly higher for C. glabrata with a frac-
tion of 10.1 ± 2.7% compared to C. albicans with a fraction of 
2.7  ±  1.9%. Furthermore, C. albicans showed only a slightly 
higher association of 82.3  ±  7.0% to PMN than C. glabrata 
(81.0  ±  8.1%), as was previously observed by Duggan et  al. 
(25). Nevertheless, for both pathogens, the fraction of asso-
ciation to PMN was dominant over association to monocytes, 
i.e., by a factor eight for C. glabrata and by a factor 30 for  
C. albicans. Furthermore, Hopke et al. showed that degranula-
tion of PMN has an impact on cell wall modulation in fungi, 
but whether this could enable pathogenic immune evasion is 
still unclear (15). These findings motivated our decision to 
focus on a PMN-mediated immune-evasion mechanism in 
comparison to spontaneous immune evasion.

spontaneous and PMn-Mediated  
immune evasion in agreement  
With experimental Data
We investigated the possibility that PMN secrete upon initial 
phagocytosis of pathogen proteins that can mediate immune 
evasion, e.g., inducing alterations of the surface of pathogens 
(15) (see Figure 1B). This mechanism was studied by applying 
mathematical modeling for hypothesis testing, i.e., we compared 

the impact of spontaneous versus PMN-mediated immune 
evasion on the infection outcome. To this end, we modified a 
previously implemented state-based virtual infection model  
(12, 13) to realize the PMN-mediated evasion mechanism. We 
refer to this model as PMNmed-IE model to distinguish it from 
the previously modeled spontaneous immune evasion, which we 
refer to as spon-IE model.

The transition rate values of the SBM were determined by 
the global parameter estimation algorithm Simulated Annealing 
based on Metropolis Monte Carlo scheme. This algorithm aims 
at searching for the optimal agreement between the simulated 
kinetics and the experimental data obtained from the whole-
blood infection assays. The resulting transition rate values of 
both models are given in the Tables S2 and S3 in Supplementary 
Material and the corresponding simulated kinetics are depicted 
in Figure  2. Here, the experimental kinetics correspond to 
the combined units introduced in the Section “Materials and 
Methods” plotted in Figure 2. The excellent agreement between 
experiment and simulation can be seen for the whole-blood 
infection assays with either C. albicans (see Figures  2A,B) or  
C. glabrata (see Figures 2D,E) with their transition rate values 
in Figures 2C,F.

For C. albicans infection, the comparison between the spon-
IE model and the PMNmed-IE model revealed comparable 
values for most transition rates, such as ϕN, ϕM, κN, and κEK (see 
Figure  2C; Table S2 in Supplementary Material). The largest 
differences were observed for intracellular killing in monocytes 
κ κM M
PMNmed IE spon IE− − = .1 66( ) and the decrease of the antimicrobial 

effect γPMNmed IE spon IE− −γ =( )1 26. . However, the whole-blood 
infection assay does not allow to directly measure differences in 
these values in order to distinguish between the two immune-
evasion models. Similarly, quantitative differences could also 
be observed for the kinetics of extracellular killing due to anti-
microbial peptides (see Figure 3A) as well as for the kinetics of 
immune evasion (see Figure 3B). However, these readouts of the 
simulations either yield only small quantitative differences (time-
dependent killing by antimicrobial peptides) or are, despite the 
qualitatively different time course, again not directly accessible in 
experiment (time-dependent immune-evasion rate). Thus, while 
it is possible to reconcile both models with the experimental 
data, differences in directly measurable quantities could not be 
identified (see Figures S3 and S4 in Supplementary Material for  
C. albicans).

While the experimental kinetics for C. glabrata infection were 
also found to be in excellent agreement with both the spon-IE and 
the PMNmed-IE models (see Figures 2D,E), differences between 
the estimated transition rate values were relatively large with up 
to 23% (see Figure 2F; Table S3 in Supplementary Material). The 
time-dependent extracellular killing due to antimicrobial factors 
was found to be strongly different between the two models, i.e., 
the peak values were six times higher for spon-IE model than 
PMNmed-IE model (see Figure  3A) and also the kinetics of 
immune-evasion were indicative for a larger effect in the spon-
IE model than the PMNmed-IE model (see Figure  3B). The 
amount of fungal cells that became immune-evasive increased 
until 45 min post infection and then leveled off at the predicted 
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Figure 2 | Kinetics of combined units and corresponding transition rate values of the spon-IE model and the PMNmed-IE model. Experimental data from 
whole-blood infection assays (dashed lines) with corresponding SDs are compared to the simulated data (solid lines) by the spon-IE model (left column) and the 
PMNmed-IE model (middle column). The thickness of solid lines indicates the mean ± SD of 50 simulations with transition rate values that were randomly sampled 
within their corresponding SD. Mean values (data points) and SDs (error bars) of transition rates (right column) were quantified by the global parameter estimation 
algorithm Simulated Annealing based on Metropolis Monte Carlo scheme for the spon-IE model (black data points) and PMNmed-IE model (gray data points). The 
transition rates are given by the phagocytosis rate ϕ N of PMN and the phagocytosis rate ϕM of monocytes, the intracellular killing rates κM and κN of both monocytes 
and PMN, the transition rates γ and κEK which define the extracellular killing, and the spontaneous immune-evasion rate ρ and the PMN-mediated immune-evasion 
rates ρ  and γR, respectively. The time-course of the relative number of killed pathogens (PK), which are indicated by red dashed lines, were experimentally measured 
by survival assays. The relative number of fungal cells that were associated with monocytes (PM), PMN (PN), or in extracellular space (PE) were measured by 
association assays and indicated by orange, blue, or green dashed lines, respectively. The experimental results were compared with the corresponding combined 
units calculated for the simulated data. Black solid lines refer to the simulated time-course of immune-evasive fungal cells (PIE). Kinetics of a Candida albicans 
infection simulated by (a) the spon-IE model and (B) the PMNmed-IE model. (c) Transition rates quantified by both models for a C. albicans infection. Kinetics  
of a Candida glabrata infection simulated by (D) the spon-IE model and (e) the PMNmed-IE model. (F) Transition rates quantified by both models for a C. glabrata 
infection.
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value 7.47 ± 0.58% in the spon-IE model and 4.09 ± 1.0% in the 
PMNmed-IE model.

The comparison of whole-blood infections with the two 
pathogens revealed the estimated phagocytosis rate values ϕN and 
ϕM to be in both immune-evasion models lower for C. albicans 
than the phagocytosis rates of C. glabrata. Furthermore, for  
C. albicans, we found that ϕN  >  ϕM, whereas this relation is 
reversed for C. glabrata, reflecting the observed higher association 

of this pathogen to monocytes. Interestingly, the spon-IE model 
for infection with C. glabrata in comparison to infection with  
C. albicans predicted a higher peak value of the antimicrobial effect 
by a factor three (see Figure 3A). In contrast, the PMNmed-IE 
model predicted a peak value of the antimicrobial effect that is 
lower by a factor 0.5 for infection with C. glabrata compared to  
C. albicans. Apart from these observations, the two immune-
evasion models could equally well explain the experimental 
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Figure 3 | Kinetics of the extracellular killing rate (a) and immune-evasion rate (B) predicted by spon-IE model and PMNmed-IE model. In both subfigures, purple 
lines represent results of infection with Candida albicans and blue lines depict results of infection with Candida glabrata. Predictions by the spon-IE model and 
PMNmed-IE model are indicated by dark colored lines and pale colored lines, respectively.
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kinetics of infection in whole-blood samples as obtained from 
the healthy blood donors. To work out differences between the 
two immune-evasion models, we addressed the question how 
the models differ in their predictions on the infection kinetics  
for virtual patients with varying severity levels of neutropenia.

simulations for Virtual Patients With 
neutropenia reveal Differences Between 
immune-evasion Models
The main difference between the spon-IE model and the 
PMNmed-IE model is that immune evasion in the latter is medi-
ated by PMN and, therefore, is directly associated with the number 
of PMN in whole blood. Although most patients with candidemia 
are non-neutropenic, it is well known that neutropenia results 
in an impaired prognosis and facilitates disseminated infection 
and organ manifestation (16). Taking the previously estimated 
transition rate values for healthy blood donors as a reference, we 
gradually decreased the PMN number in the simulations within 
the range of medically established severity levels of neutropenia 
(see Table 1) and kept the number of monocytes and fungal cells 
fixed at 5  ⋅105 cells and 1  ⋅106 cells per milliliter, respectively. 
The predictions of simulations at 4 h post infection for the two 
immune-evasion models and for each of the two fungal patho-
gens are shown in Figure 4. As could be expected, an increase in 
the severity level of neutropenia was accompanied by a decreased 
interaction of fungal cells with PMN.

Virtual infections with C. albicans cells under neutropenic 
conditions revealed clear differences between the spon-IE 
model (see Figure  4A) and the PMNmed-IE model (see 
Figure 4B) at 240 min post infection. Differences in the models 
could be observed at the transition from moderate to severe 
neutropenia, where the fraction of immune-evasive fungal cells 

increased to 25.2 ± 1.0% in the spon-IE model and decreased to 
10.4 ± 1.1% in PMNmed-IE model. These values for immune-
evasive cells changed to 42.7 ± 1.6% for the spon-IE model and 
0.24  ±  0.03% for the PMNmed-IE model in the simulations 
with the lowest PMN number (5  ⋅103 cells/ml). Even though 
the latter immune-evasion model predicted the number of 
immune-evasive C. albicans cells after 240 min post infection 
to be vanishingly small, the fraction of extracellular alive fungal 
cells was larger with 24.5  ±  5.6% for the PMNmed-IE model 
than for the spon-IE model with 9.7 ± 1.1%. In the simulations 
with the lowest PMN number, the spon-IE model predicted an 
association of 46.4  ±  1.9% fungal cells to monocytes, which 
is clearly lower compared to 73.3 ±  5.8% in the PMNmed-IE 
model. Furthermore, the number of killed C. albicans cells dif-
fers between the two models with being predicted as 41.2 ± 2.3% 
in the spon-IE model and 67.1  ±  5.5% in the PMNmed-IE 
model. In general, we observed that the differences in various 
fractions of C. albicans cells between the two immune-evasion 
models clearly increase with progressing simulation time 
under neutropenic conditions. This can be seen in Video S1 in 
the Supplementary Material showing the development of the 
various fungal cell fractions at specific time points between time 
point 0 and 240  min post infection. Furthermore, differences 
between the models were observed for the distribution of fungal 
cells in immune cells for the condition of severe neutropenia 
with 5 ⋅103 PMN per milliliter. As shown in (Figures 5A,B), the 
distribution of alive and killed fungal cells across immune cells 
revealed differences between the immune-evasion models. Here 
it can be seen that the maximum of the distribution refers to 
PMN that contain two C. albicans cells for the spon-IE model 
(see Figure 5A) and three C. albicans cells for the PMNmed-IE 
model (see Figure  5B). Regarding the distribution of fungal 
cells in monocytes, the spon-IE model and the PMNmed-IE 
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Figure 4 | Simulation results of the spon-IE model and of the PMNmed-IE model for different severity levels of neutropenia at the time point 240 min. The white 
region represents the physiological concentration of a whole-blood sample with 5⋅105 monocytes per milliliter and 5 ⋅106 PMN per milliliter. The PMN concentration 
declines with increasing severity levels of neutropenia: light gray area represents mild neutropenia (<1.5⋅106 PMN/ml), medium gray area represents moderate 
neutropenia (<1⋅106 PMN/ml), and dark gray area represents severe neutropenia (<5⋅105 PMN/ml). The error bars indicate SDs of 50 simulations with transition rate 
values that were randomly sampled within their corresponding SD. (a,B) Depict simulation results of a virtual Candida albicans infection, respectively, for the spon-IE 
model and of the PMNmed-IE model and (c,D) accordingly for Candida glabrata infection. The relative numbers of killed fungal cells (red), alive extracellular fungal 
cells (green), phagocytosed fungal cells by monocytes (yellow), and by PMN (blue), as well as fungal cells which evaded the immune defense (black) are depicted. 
Note that alive extracellular cells do not comprise alive immune-evasive cells and that these combined units are excluding each other.
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model predicted that the maximum number of monocytes 
which contained no fungal cells (see Figure 5C) and one fungal 
cell (see Figure 5D), respectively. These differences are accom-
panied by an overall shift of the distributions to higher numbers 
of phagocytes with more fungal cells in the PMNmed-IE model 
relative to the spon-IE model (see Figures 5A–D). In addition, 
the spon-IE model predicted a fraction of 7.0 ± 0.5% PMN that 
contain alive C. albicans cells (see Figure 5A), whereas this frac-
tion of PMN was predicted to be more than two times larger in 
the PMNmed-IE model (19.9 ± 1.5%) (see Figure 5B).

Simulations for C. glabrata infection revealed as well differ-
ences between the spon-IE model and the PMNmed-IE model 
(see Figures 4C,D). The fraction of immune-evasive cells attained 
the value 10.2 ± 1.6% for the spon-IE model and 0.02 ± 0.00% 
for the PMNmed-IE model in the limit of lowest PMN number 
(5 ⋅103 cells/ml). While these fractions reached different values, 
the fractions of extracellular alive cells were found to be vanish-
ingly small in both models. At the PMN number of 5 ⋅103 cells/ml, 
the spon-IE model predicted 84.1 ± 1.6% of C. glabrata cells to be 
killed and the majority of cells were phagocytosed by monocytes 
(89.2 ± 1.7%). Analysis of simulations of the PMNmed-IE model 
revealed that 70.6 ± 2.8% of C. glabrata cells were killed and the 
majority of cells were phagocytosed by monocytes (99.3 ± 0.06%). 

The time courses of each of these C. glabrata fractions at specific 
time points between 0 and 240 min post infection are shown in 
Video S2 in the Supplementary Material. Here it can be seen that 
at early time points post infection, the differences between the 
immune-evasion models is clearly visible. But with increasing 
simulation time these differences become smaller. While the 
distribution of killed and alive C. glabrata cells in PMN was 
similar for both immune-evasion models (see Figures  5E,F), 
differences in the distributions of fungal cells in monocytes, 
and their state of viability were observed (see Figures  5G,H). 
As can be seen in Figure  5G, the spon-IE model predicted 
that monocytes contained one to six fungal cells, where only 
a small fraction of fungal cells was alive, i.e., up to 7.1 ± 0.9% 
of monocytes contained alive fungal cells. This is in contrast 
to the PMNmed-IE model (see Figure 5H), which predicted a 
four times larger fraction of monocytes containing alive fungal 
cells (31.7 ± 1.0%). Thus, under severe neutropenic conditions, 
the most remarkable differences between the immune-evasion 
models were obtained with regard to the distribution of alive  
C. glabrata cells in monocytes.

Taken together, comparing the simulations of virtual patients 
under neutropenic conditions for the two immune-evasion 
models revealed, except for the number of immune-evaded cells,  
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Figure 5 | Continued
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Figure 5 | Distribution of total and alive fungal cells in PMN and monocytes for the most severe neutropenic condition 500 PMN/ml for the spon-IE model (left 
column) and PMNmed-IE model (right column). Relative numbers of PMN and monocytes are depicted corresponding to their association with fungal cells while 
each bar represents the immune cell type with the total number (0–11) of phagocytosed fungal cells. The error bars refer to SDs of 50 simulations with transition rate 
values that were randomly sampled within their corresponding SD. Gray-colored bars refer to “no alive” fungal cells, i.e., phagocytes contain killed cells only, bars in 
pink color refer to phagocytes with one alive fungal cell, orange bars refer to two alive fungal cells, green bars refer to phagocytes with three alive fungal cells, blue 
bars refer to phagocytes with four alive fungal cells, and purple bars refer to phagocytes with five alive fungal cells. (a–D) Candida albicans cell distribution for a 
virtual infection under the condition of severe neutropenia. (e–h) Candida glabrata cell distribution for a virtual infection under the condition of severe neutropenia.
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a qualitative agreement for both pathogens (see Figure  4). 
Comparing the infection outcome between the two pathogens 
for each immune-evasion models revealed qualitative agree-
ment, except for the alive extracellular fungal cells that increase 
(decrease) in the case of C. albicans (C. glabrata) with higher 
severity levels of neutropenia. As previously observed for whole 
blood from healthy donors, the fraction of immune-evasive 
cells for neutropenic patients was predicted to be higher for 
C. albicans than for C. glabrata in the spon-IE model. In con-
trast, the PMNmed-IE model predicted for both pathogens a 
quantitatively comparable fraction of immune-evasive cells that 
vanishes with the severity level of neutropenia. The phagocytosis 
by monocytes was found to be much lower for C. albicans than 
for C. glabrata, for both immune-evasion models, as previously 
observed for whole blood from healthy donors. This observation 
was also reflected by the distribution of fungal cells in immune 
cells (see Figure 5). C. glabrata was also represented by relatively 
large numbers of alive cells in monocytes at 4 h post infection. 
These findings indicate that infection in neutropenic whole 
blood could shed light on the mechanism of immune evasion 
by pathogens.

DiscussiOn

In this study, we applied mathematical modeling to investigate 
the yet unresolved mechanism of immune evasion by patho-
gens in human blood. The mechanism of immune evasion was 
first described in a systems biology study that quantified 
the immune response to C. albicans in human whole blood 
using a state-based virtual infection model (12, 13). Since the 
mechanism of immune evasion has not been identified so far, 
the immune evasion was assumed to occur spontaneously with 
a time-independent rate in the SBM (spon-IE model). In this 
study, we modified the spon-IE model by implementing a time-
dependent immune-evasion mechanism mediated by PMN and 
refer to this virtual infection model as PMNmed-IE model. This 
is based on experimental findings, which show that neutrophils 
can modulate the composition of the fungal cell surface (15). 
The state-based modeling approach enables realization of such 
a process by a transition rate that is time-dependent and reflects 
PMN dynamics of phagocytosis and release of neutrophilic 
peptides. In order to verify the PMNmed-IE model and the 
spon-IE model, we estimated the a priori unknown transition 
rates of these models by fitting the simulated kinetics to the 
experimental data from human whole-blood infection assays 
with either C. albicans or C. glabrata. To further work out 
differences between the immune-evasion models, we simu-
lated infection scenarios with reduced numbers of PMN that 

correspond to the range of medically established severity levels 
of neutropenia.

The comparison of the simulated kinetics for infections of 
blood with physiological and reduced numbers of PMN, the 
estimated transition rate values, as well as the pathogen distribu-
tion across immune cells revealed pathogen-specific differences 
between the two immune-evasion models. Based on these 
results, we suggest future experiments that could be performed 
to distinguish between the two immune-evasion mechanisms. 
While the kinetics of the experimental whole-blood infection 
assays for both pathogens could be reconciled with the virtual 
infection kinetics for both immune-evasion models, simula-
tions for reduced PMN numbers revealed differences between 
the two immune-evasion models. These differences were largest 
for C. albicans infection and relatively small for infections with 
C. glabrata. In particular, the fractions of fungal cells that were 
killed, associated with monocytes or that became immune-
evasive in simulations with reduced numbers of PMN, showed 
deviations between the two immune-evasion models most 
clearly for C. albicans (see Figures 4A,B). With decreasing PMN 
number, the PMNmed-IE model for this pathogen predicted 
that the fraction of immune-evasive pathogens remarkably 
decreased. Instead of becoming immune-evasive, C. albicans 
cells were mainly phagocytosed by monocytes and killed in 
this model. Furthermore, a significant fraction of fungal cells 
(24.5 ± 5.6%) was still alive and in extracellular space at 240 min 
post infection. In contrast to the PMNmed-IE model, the spon-
IE model predicted the fractions of C. albicans cells that are  
(i) phagocytosed by monocytes, (ii) killed, or (iii) remained viable 
in extracellular space to be notably smaller, whereas the fraction 
of immune-evasive C. albicans cells is larger, because the con-
stant rate of immune evasion does not depend on the decreasing 
number of PMN. Interestingly, both immune-evasion models 
predict even at 240 min post infection a remarkable fraction of 
C. albicans cells that are capable of dissemination. However, in 
the PMNmed-IE model these cells are mainly alive and extracel-
lular due to absent phagocytosis whereas in the spon-IE model 
they are mostly immune-evasive fungal cells. Thus, both models 
would explain the observation that dissemination of C. albicans 
is more frequent in a neutropenic setting, albeit with different 
mechanisms (26–28). In order to verify the predicted differences 
for the two immune-evasion models, we suggest studying whole-
blood infection assays either with depleted PMN numbers or 
with blood samples from neutropenic patients.

Regarding the pathogen distribution across immune cells, 
virtual infection scenarios for C. albicans with the low PMN 
number of 5 ⋅103 cells/ml revealed differences between the two 
immune-evasion models in the pathogen distributions within 
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PMN and monocytes as well as in the fraction of alive C. albicans 
cells in PMN (see Figures 5A–D). The experimental validation 
of the pathogen distribution in PMN and monocytes could be 
performed by Giemsa-stained blood smears obtained from  
C. albicans-infected blood samples of neutropenic patients. The 
overall distribution of C. albicans cells in PMN and monocytes 
could lead to further conclusions by comparing the experimen-
tal observations to simulated results, although information 
about viability cannot be obtained by Giemsa-stained blood 
smears. For the experimental validation of pathogen distribu-
tion across immune cells during infection of neutropenic 
blood samples it is necessary to differentiate between alive and 
killed fungal cells to unravel the immune-evasion mechanism 
of C. glabrata. The virtual infection of neutropenic blood by 
this pathogen showed clear differences between the immune-
evasion models with regards to the distribution of alive patho-
gen cells in monocytes (see Figures 5G,H). The PMNmed-IE 
model predicted a relatively large fraction of alive fungal cells in 
monocytes at 240 min post infection. With increasing infection 
time in neutropenic patients, the high amount of alive fungal 
cells in monocytes may result in higher amounts of fungal 
cells in macrophages, which are professional phagocytes of the 
monocytic lineage. Since it is reported that C. glabrata cells are 
able to proliferate within macrophages and subsequently can 
leave these phagocytes (21, 29), this process could contribute to 
the increased risk for disseminated candidiasis in neutropenic 
patients (30).

Another suggestion for the experimental investigation of 
the immune-evasion mechanisms is to measure the activity of 
antimicrobial effector proteins inducing extracellular killing, 
because these kinetics are predicted to be different for the two 
immune-evasion models. This difference was observed to be 
relatively high for virtual C. glabrata infection at physiological 
numbers of PMN: in the spon-IE model the maximum value 
for the extracellular killing rate was much larger for C. glabrata 
infection compared to C. albicans, whereas in the PMNmed-IE 
model this peak value was predicted to be much smaller for  
C. glabrata infection (see Figure  3A). We, therefore, suggest 
measuring and comparing the activity of antimicrobial effec-
tor proteins inducing extracellular killing, such as lactoferrin, 
elastase 2 and myeloperoxidase, for both pathogens. In a previ-
ous study by Duggan et al. (25), where the differential recogni-
tion of C. albicans and C. glabrata by PMN was investigated, the 
concentration of these proteins were measured in supernatants 
of confrontation assays of PMN with the fungi 4 h after infec-
tion. For each of these antimicrobial proteins, the concentra-
tion in confrontation assays with C. albicans was observed  
to be higher than in confrontation assays with C. glabrata. We 
now suggest measuring not only the concentration of these 
antimicrobial peptides but also their fungicidal effect on the 
different pathogens in a comparative fashion. Moreover, our 
analysis predicts the time-window, where the largest difference 
for the kinetics of extracellular killing between both pathogens 
occurs, i.e., at 10 to 50 min post infection.

In future studies, the predictive power of virtual infection 
modeling can be further exploited by simulating infection sce-
narios with modified models that enable generating predictions 

for other hypotheses. For example, while the present study 
focused on the role of PMN-mediated immune evasion, a 
similar mechanism could be studied for monocytes, as well as a 
combination of contributions from both types of immune cells. 
Future computational studies could also benefit from spatial 
agent-based modeling. By applying a bottom-up approach, as 
previously performed by Lehnert et al. (13), the transition rate 
values of the SBM could be used as input for an agent-based 
model, where also spatial system properties are captured, such 
as the cells’ morphology and/or migration pattern. This agent-
based virtual infection model could, for example, be applied to 
investigate the impact of the various immune-evasion models 
on a hyper- and hypo-inflammatory immune response in 
human blood. In addition, the impact of the spatial distribu-
tion of PMN-secreted proteins causing immune evasion could 
be investigated by advancing the cellular agent-based virtual 
infection model to a hybrid agent-based model that simulates 
diffusion at the molecular level by partial differential equations. 
For example, in previous studies related to fungal infections,  
a hybrid agent-based model enabled to investigate the immune 
response against Aspergillus fumigatus in the alveoli of the 
human lung (31, 32). It could be shown that the migration 
pattern of immune cells is of high importance for the timely  
infection clearance and this lead to the prediction that chemo-
tactic signaling molecules are essential for recruitment of 
phagocytes to the spatial position of fungal cells in the lung. 
Moreover, image-based systems biology approach combining 
mathematical modeling with microscopy experiments could 
be pursued (9, 33, 34). While imaging in whole blood is not 
performed today, host–pathogen interactions can be investi-
gated by microscopy experiments under controlled conditions 
in a Petri dish. Recently, we have developed algorithms for the 
fully automated analysis of host–pathogen confrontation from 
microscopic endpoint experiments (33, 35–38), as well as from 
live cell imaging (39, 40). Similar to our recent comparative 
studies on C. albicans and C. glabrata phagocytosis (16, 41), 
host–pathogen confrontation assays could be performed and 
analyzed by automated image analysis to visualize surface 
alterations of immune-evading fungal cells.
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ViDeO s1 | Time-course of simulation results of both immune-evasion models 
for C. albicans infection for different severity levels of neutropenia. The error 
bars indicate standard deviations of 50 simulations with transition rate values 
that were randomly sampled within their corresponding standard deviation. 
The white region represents the physiological concentration of a whole-blood 

sample with 5⋅105 monocytes per milliliter and 5⋅106 PMN per milliliter. The 
PMN concentration declines with increasing severity levels of neutropenia: 
light gray area represents mild neutropenia (<1.5⋅106 PMN/ml), medium gray 
area represents moderate neutropenia (<1⋅106 PMN/ml) and dark gray area 
represents severe neutropenia (<5⋅105 PMN/ml). (a,B) depict simulation results 
of a virtual C. albicans infection, respectively, for the spon-IE model and of 
the PMNmed-IE model. The relative numbers of killed fungal cells (red), alive 
extracellular fungal cells (green), phagocytosed fungal cells by monocytes (yellow) 
and by PMN (blue), as well as fungal cells which evaded the immune defense 
(black) are depicted. Note that alive extracellular cells do not comprise alive 
immune-evasive cells and that these combined units exclude each other.

ViDeO s2 | Time-course of simulation results of both immune-evasion models 
for C. glabrata infection for different severity levels of neutropenia. The error 
bars indicate standard deviations of 50 simulations with transition rate values 
that were randomly sampled within their corresponding SD. The white region 
represents the physiological concentration of a whole-blood sample with 5⋅105 
monocytes per milliliter and 5⋅106 PMN per milliliter. The PMN concentration 
declines with increasing severity levels of neutropenia: light gray area represents 
mild neutropenia (<1.5⋅106 PMN/ml), medium gray area represents moderate 
neutropenia (<1⋅106 PMN/ml) and dark gray area represents severe neutropenia 
(<5⋅105 PMN/ml). (a,B) depict simulation results of a virtual C. glabrata infection, 
respectively, for the spon-IE model and of the PMNmed-IE model. The relative 
numbers of killed fungal cells (red), alive extracellular fungal cells (green), 
phagocytosed fungal cells by monocytes (yellow) and by PMN (blue), as well as 
fungal cells which evaded the immune defense (black) are depicted. Note that 
alive extracellular cells do not comprise alive immune-evasive cells and that  
these combined units exclude each other.
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Research in the last decade has shown growing evidence of the gut microbiota influence

on brain physiology. While many mechanisms of this influence have been proposed

in animal models, most studies in humans are the result of a pathology–dysbiosis

association and very few have related the presence of certain taxa with brain

substructures or molecular pathways. In this paper, we associated the functional

ontologies in the differential expression of brain substructures from the Allen Brain

Atlas database, with those of the metaproteome from the Human Microbiome Project.

Our results showed several coherent clustered ontologies where many taxa could

influence brain expression and physiology. A detailed analysis of psychobiotics showed

specific slim ontologies functionally associated with substructures in the basal ganglia

and cerebellar cortex. Some of the most relevant slim ontology groups are related to

Ion transport, Membrane potential, Synapse, DNA and RNA metabolism, and Antigen

processing, while the most relevant neuropathology found was Parkinson disease. In

some of these cases, new hypothetical gut microbiota-brain interaction pathways are

proposed.

Keywords: gene ontology, microbiota-gut-brain axis, brain structures, brain physiology, metaproteome, gene

silencing, ion channel, Parkinson disease

1. INTRODUCTION

Recently, strong evidence has related the gut microbiota with almost all of the host physiology,
including the brain, behavior and cognition. Experiments with both, manipulation of the gut
microbiota in stress and germ–free animals, have disclosed a bidirectional communication system
between the gut microbiota and the central nervous system: the microbiota-gut-brain axis (MGBa)
(Dinan and Cryan, 2016, 2017). The gut microbiome handles hundreds of thousands of different
proteins and metabolites, some of which are neuroactive components, and thus can communicate
with the host brain, via the peripheral nervous system or through the Blood-Brain Barrier, affecting
various molecular pathways (Wall et al., 2014; Dinan and Cryan, 2017). Growing evidence in
humans strongly suggests that these microbial neuroactive components not only play an essential
role in regulating synaptic circuit activation and neurodevelopment, but they can influence the
host’s emotions, behavior and cognition (Borre et al., 2014; Rea et al., 2016; Sarkar et al., 2016;
Foster et al., 2017). These studies have also revealed that dysbioses, the gut micorbiota alterations
or insults, promotes brain-associated diseases and disorders like Parkinson’s disease (PD), anxiety
and many others (Dinan and Cryan, 2017; Wiley et al., 2017).
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Most of the human dysbiosis-associated neurological
conditions are the result of statistical approaches using
behavioral or cognitive variables, this is due to the complications
of performing molecular studies in viable human brains.
Although a few communication mechanisms have been
suggested within the MGBa (e.g., the metabolism of tryptophan
and gastrointestinal hormones microbiota dependent, and
the interaction of microbiota dependent signaling molecules
to the vagus nerve Wiley et al., 2017), many of them are still
unknown. Thus, the complex mechanisms underlying cognition
and behavior remain largely uncharacterized.

Here we hypothesize that gut taxa could be coherently
associated with regions of the human brain by using functional
annotations to provide a conceptual framework of putative
influence mechanisms of the microbiota with the brain. We
designed an in silico pipeline based on metaproteome (the set
of microbiotal proteins) and brain expression data processed by
sequence alignment tools and Gene Ontology (GO) functional
groups, or slims. To our knowledge, this is the first study where
whole metaproteome is functionally associated to differential
expression patterns in brain regions using a blind systems
approach.

2. RESULTS

2.1. Data Curation
We obtained 92 non-redundant metaproteome datasets: one
per taxon at the genus level. All protein sequences from each
dataset were PSI-blasted against the Human Protein Reference
Sequences (RefSeq-prot). The resulting non-redundant Blast hits
in each taxon were enriched with functional gene ontologies
(GOs). Statistically non-significant GOs were filtered-out. Table
S1 contains the number of metaproteins, their hits to the RefSeq-
prot and their ontologies found per taxon.

FIGURE 1 | Principal Component Analysis of brain distances obtained using the 500 most informative genes among substructures. The two principal components or

coordinates are plotted on the x– and y–axis. The entire component space (A) zooms the region of higher density, while (B) depicts all substructures, showing the

clear separation of a few substructures from the rest. Acronym-to-name relations are presented in Table 1.

The RNA-seq data from the Allen Brain Atlas, containing
22,318 genes, was filtered (detailed in the section 5) and
resulted in 16,242 genes (72.78%). Figure 1A shows the
leading log2–fold–change Euclidean distances between samples
by substructure abbreviation (see Table 1), where some
substructures are separated from the rest by their differential
expression patterns Figure 1B. Table S2 contains the log2
difference between the mean counts per million (CPM) from
all samples with the CPM of each sample, the F-value, p-value
and Bonferroni’s false discovery rate of testing for differential
expression between samples. We selected the genes differentially
expressed, according to the mean expression from all samples.
Expressed genes by brain substructure were enriched with
functional GOs, and only the statistically significant were
preserved. Table S3 contains both, the number of differentially
expressed genes and GOs found in enrichment per brain
substructure.

We found 4,599 taxa–to–brain substructure (T2BS) common
GOs (see Table S4). From these 108 were unique GOs, 92 taxa and
six brain substructures. Figures 2A,B show the Sorensen–Dice
coefficient of the GOs and genes found in each taxon vs. each
substructure respectively. To test if the number of proteins found
by Blast and subsequently the number of matching GOs are
biased by the number of metaproteins per taxon, we performed
a Pearson’s correlation between the latter. The resulting value
of −0.55 indicates that there is no direct correlation between the
number of metaproteins per taxon and the number of GOs (see
Figure S1).

2.2. GO Slims
We grouped the 108 unique GOs found, by calculating
their semantic similarity (see section 5) among all of them.
We applied hierarchical clustering (see Figure S2) to the
distances and manually grouped them into coherent clusters
with similar function, resulting in a total of 14 slims (see
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TABLE 1 | Brain substructure name and their abbreviations.

Abbreviation Substructure Abbreviation Substructure

AnG_i Angular gyrus inferior AnG_s Angular gyrus superior

Caudate Body of the caudate nucleus CbCx Cerebellar cortex

CgG Cingulate gyrus FuG_i Fusiform gyrus lateral

GP Globus pallidus GRe Gyrus rectus

Insula Long insular gyri ITG Inferior temporal gyrus

MFG Middle frontal gyrus MTG Middle temporal gyrus

OrbGyri Lateral orbital gyrus orIFG Inferior frontal gyrus orbital part

PCLa_i Paracentral lobule anterior inferior PCLa_s Paracentral lobule anterior superior

Pcu Precuneus pest_V2 Cuneus peristriate

PHG Parahippocampal gyrus PoG_cs Post-central gyrus central sulcus

PoG_l Post-central gyrus_lateral PrG Pre-central gyrus

Putame Putamen SFG_l Superior_frontal gyrus lateral

SFG_m Superior frontal gyrus medial SMG_i Supramarginal gyrus inferior

SPL Superior parietal lobule STG Superior temporal gyrus

str_V1 Lingual gyrus striate

FIGURE 2 | Sorensen–Dice (SD) coefficients heatmap of (A) common Gene Ontologies (GOs) and (B) genes across brain substructures and taxa. SD coefficient rage

values are zero to one, where zero means completely dissimilar and one means identical sets. Acronym–to–name relations are presented in Table 1.

Tables S4, S5). The ontological maps for each slim can be found at
Figure S3.

Figure 3 shows the number of common GOs between
taxon and brain substructure, colored by slims. We can
observe that the most frequent slim is Ion transport, followed

by Protein metabolism and DNA and RNA metabolism.
Also, the Globus pallidus is the substructure where more
associations were found, followed by the Cerebellar cortex.
Table 2 shows the GOs, taxa, and brain substructures count per
slim.
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FIGURE 3 | Stacked bar graphs with the quantity of common taxa–to–brain substruture Gene ontology labels on the y–axis and color-coded slims. The x–axis has

each of the 92 different genre analyzed. Each graph represent brain substructures (A) Postcentral gyrus central sulcus, (B) Lingual gyrus striate, (C) Body of the

caudate nucleus, (D) Putamen, (E) Globus pallidus and (F) Cerebellar cortex.
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TABLE 2 | Substructures and counts of GOs and taxa by slim.

Slim GOs Taxa Substructure

Ion transport 30 85 GP, Caudate, CbCx, Putame,

str_V1, PoG_cs

Membrane potential 6 86 Caudate, GP, Putame

Protein membrane transport 3 1 CbCx

Synapse 6 9 Caudate, GP, Putame

Synapse organization 3 27 GP

Transport (others) 7 89 Caudate, GP, Putame

Antigen processing 2 2 CbCx

Binding 4 85 CbCx, Putame, GP

Cellular component organization 4 31 CbCx, Caudate, GP, Putame

DNA and RNA metabolism 15 90 CbCx, Caudate, GP, Putame

Intracellular part 10 28 Caudate, CbCx, Putame, str_V1

Neurogenesis 2 28 Caudate, GP, Putame

Other 10 89 CbCx, Caudate, GP, Putame

Protein metabolism 6 84 CbCx, Caudate, GP

3. DISCUSSION

The comorbidity between dysbiosis and cognitive or behavioral
impairment has sparked a race to understand the mechanisms
of these associations. Since then, researchers have glimpsed the
influence of microbiota in behavior and cognition, and several
interaction pathways have been proposed via the Blood Brain
Barrier or the vagus nerve, involving neuropeptides (Holzer
and Farzi, 2014), inflammatory molecular signaling (Rook et al.,
2014), hormones (Rehfeld, 2014), microRNAs (miRNAs) (Hoban
et al., 2017a), among others (Wall et al., 2014). In our study, the
correlation between the brain proteins and the metaproteome
into functional ontologies supports these observations.

Advances in sequencing technology have paved the way for
the creation of reference databases in many fields of research.
The Human Microbiome Project has consistently sequenced the
microbiota from different body parts and created the Reference
GenomeDatabase body part-specific. On the other side, the Allen
Brain Atlas organization has performed RNA-seq (quadruplicate
at least) of 29 different brain substructures in two post-mortem
subjects. Despite this sampling being biased (due to post-
mortem) and underpowered, it enabled us to perform this work
as a “test drive.” Our aim was not to prove a direct link between
gene expression levels in the brain and the presence of specific
taxa but to strengthen the evidence of knownMGBamechanisms
as well as to uncover putative new avenues of research in the axis.

The analysis pipeline, being a data–driven approach, is prone
to false positives. Thus we have used multiple-comparisons
correction methods, to increase the proportion of true positives
(at the expense of false negatives, though). From the 29
substructures, only six of them were found to have common
GO annotations with those associated with microbiota. These
six substructures (Cerebellar Cortex, Globus pallidus, Putamen,
Body of the caudate nucleus, Lingual gyrus striate and Postcentral
gyrus central sulcus) appear distant from the rest (Figure 1),
which means that they have different and broader expression

patterns than most of the substructures and will have more
significant enriched GOs (see Table S3).

The tremendous complexity of the human brain has limited
the approaches to the MGBa. Most of such studies measure
behavioral responses involving different types of memory or
stress, while only a few associate cognition or behavior with
specific brain regions, circuits, pathways, and taxa. Assuming
that cognitive function is associated with structural micro-
connectivity and specific gene expression patterns (across cell
types) regulating input and output signals, this work is based
on the paradigm that cognition is the result of communication
patterns that emerge from the interaction of specialized brain
substructures connected in certain circuitry across several
molecular pathways. Our methodology is designed to find
common T2BS functional annotations, based on differential
expression of brain structures and the taxa metaproteome,
assuming that portions of the latter are expressed under certain
conditions.

Given that we cannot assume that homology of a metaprotein
with a human brain gene is only associated due to its
similarity, we have turned to a differential functional approach.
Gene enrichment method is used here to find groups of
genes overrepresented with a similar function. Such gene–
function association allows us to perform more robust T2BS
associations.

The resulting common GOs clustered naturally according
to their semantic distances in the ontology map. With these,
we performed a posteriori design of GO slims that coherently
clustered similar GO annotations. These slims enabled us to
analyze and discuss our results by functionally coherent groups.

3.1. Pyschobiotic and Slim Selection
Psychobiotics are microorganisms that have a positive influence
on the mental health when ingested in adequate amounts
(Dinan and Cryan, 2017). Several bacteria have been proposed
as such, and we have selected those genera with consistent
evidence of mental health influence or neurotransmitter-
producing capabilities.

There is evidence of Actinomyces, Bifidobacterium, and
Faecalibacterium having positive effects on anxiety and/or
depression (Messaoudi et al., 2011; Jiang et al., 2015; Kelly
et al., 2016; Zheng et al., 2016) and Bacteroides, Prevotella,
and Lactobacillus in autism spectrum disorder. Bifidobacterium
ameliorates the hypothalamic-pituitary-adrenal system under
stress in germ-free mice (Sudo et al., 2004). Tillisch et al. tested
a healthy women population found that increased abundance
of Prevotella showed differential response to negatively valenced
images and greater white matter connectivity in limbic–cortical–
striatal–pallidal–thalamic circuitry, and smaller hippocampal
volume in comparison with the Bacteroides-high group. The
Prevotella-high group was also found to have higher connectivity
in the temporal lobe (Tillisch et al., 2017). Sheperjans et al.
conducted a case–control study of 72 subjects with Parkinson’s
disease and found reduced Prevotella in the feces of case–subjects,
and the abundance of Enterobacteriaceae correlated with postural
instability and gait difficulty (Scheperjans et al., 2015). We
have also considered as psychobiotics those microorganisms
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able to produce neurotransmitters like Bacillus, Bifidobacterium,
Escherichia, Enterococcus, Lactobacillus, Staphilococcus, and
Streptococcus (Horiuchi et al., 2003; Bravo et al., 2011; Barrett
et al., 2012; Lyte, 2014; Wall et al., 2014; Desbonnet et al.,
2015; Dinan and Cryan, 2017). For example, Bravo et al., in
2011 studied mice with a Lactobacillus treatment and found

altered expression of GABA receptors, vagous nerve-dependent,
in cortical regions, hippocampus, amygdala and locus coerulus
and reduced anxiety and depression–related behavior (Bravo

et al., 2011). Based on the evidence here discussed, we have tagged
the mentioned bacteria as psychobiotics.

We have selected the slims that could be conceptually directly
related to brain activity or the cognition: Synapse, DNA and
RNA metabolism, Protein metabolism, Membrane potential and

Ion transport. These slims contained 541 GOs associating T2BS.
Figure 4 shows these relationships. Specific discussion of the
putative role of psychobiotics (and other microorganisms) within
the slims can be found below.

3.2. Gut Microbiota and Brain Cells
Membranes
Behavior and cognition are intrinsically dependent on the
communication within the brain, that is electrical impulses and
synapses. The flow of electrical impulses is given by the efficient
ion movement across the neuron cell membranes through
voltage-gated ion channels. Deficiencies in voltage-gated ion
channels and synapses have been related to several mental and
movement disorders (Baldessarini, 1996; Yogeeswari et al., 2004;
Sullivan et al., 2012; Imbrici et al., 2013; Vitaliti et al., 2014;
Mourre et al., 2017; Reig-Viader et al., in press; Roeper, 2017).
For example, epilepsy (Devergnas et al., 2012; Carecchio and
Mencacci, 2017) and PD (Mourre et al., 2017) are associated with
the basal ganglia, while ataxia has been observed with ion channel
dysfunction in the cerebellum (Waszkielewicz et al., 2013).

On the other hand, gut dysbioses have been previously
associated to most of these conditions (Parracho et al., 2005;
MacFabe et al., 2011; Rook et al., 2014; Maqsood and Stone,

FIGURE 4 | Psychobiotic–brain relationships represented by a colored edge corresponding to the slims of interest as indicated in the caption. Pink–colored circle

fractions correspond to brain sub-structure (Abbreviation) and blue–gray–colored circle fractions correspond to the following psychobiotics: Actinomyces, Bacillus,

Bacteroides, Bifidobacterium, Enterobacteriaceae, Enterococcus, Escherichia, Faecalibacterium, Lactobacillus, Prevotella, Staphylococcus, and Streptococcus.
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2016). Sudo et al., and Neufeld et al. reported a decreased
expression of subunits of the NMDA receptor (a glutamate and
ion channel protein) in both, cortex and hippocampus (Sudo
et al., 2004), and in central amygdala in GF-mice (Neufeld
et al., 2011). This suggests possible mechanisms of microbiota–
mediated synapses and ion channel regulation.

We report a high density of functional associations related to
electrical impulses and synapse communication (see Figure S3,
slims Ion transport, Membrane potential, Protein membrane
transport, Synapse, Synapse organization, and Transport (others)).
We have found four ontologies (GO:0005249, GO:0005267,
GO:0022843, and GO:0034705) present in more than 50% of the
T2BS relations (see Figure S3 and Table S4). Surprisingly these
four are part of the Ion transport slim, which is related to ion
voltage-gated channel activities (see Table S5). Also, more than
half of all of the T2BS GO relations are associated by the Ion
transport slim, especially at the Globus pallidus, Putamen and the
Body of the Caudate nucleus (substructures of the basal ganglia),
Cerebellum cortex and Striate. Our findings strongly support the
hypothesis of the influence of the metaproteome with mental
and movement–related neurological disorders by the direct
or indirect interaction with ion channels (slim Ion transport)
and regulation of membrane potential (slim Membrane
potential).

We have found 89 taxa that putatively influence the basal
ganglia at the level of neurotransmitter transport and other
chemicals (see the Transport (others) ontology map in Figure S3).
Also, we have found 27 taxa that could influence the structural
organization of synapse at the Globus pallidus (see the Synapse
organization ontology map in Figure S3). Our results agree
with the evidence of microbiota influencing neurotransmitter
receptors, like the serotonin receptor 1A (5HT1A) (Sudo et al.,
2004) and GABA receptors via the vagus nerve (Bravo et al.,
2011), and the altered neurotransmitter levels found in the
striatum of GF–mice (Diaz Heijtz et al., 2011).

Other approaches suggest that the gut microbiota can
influence synapse function and neurogenesis by influencing the
brain-derived neurotrophic factor (BDNF), a key regulator on
neurogenesis and synapses (Sudo et al., 2004; Bercik et al., 2011).
In this context, we found nine taxa within the Synapse slim and 28
taxa within the Neurogenesis slim, both associated with the basal
ganglia.

By selecting the taxa and slims mentioned in the psychobiotics
analysis, we observed that the seven most abundant GOs (all
within the Ion transport slim), represent 64% of the T2BSs, and
76% of those, are associated with the potassium ion channels (see
Figure 4). Also, the Globus Pallidus (34%) was found to share
most of mentions followed by the cerebellar cortex, the putamen
and the caudate. These results suggest that psychobiotics could
influence voltage-gated channels, especially those involved with
potassium channels in the basal ganglia. As discussed above,
there is evidence of movement disorders associated with basal
ganglia and ion channels (Devergnas et al., 2012; Carecchio
and Mencacci, 2017; Mourre et al., 2017) and with psychobiotic
dysbioses (Scheperjans et al., 2015; Hill-Burns et al., 2017; Li
et al., 2017). Also, we have found other GO labels within the
slims of Membrane potential and Synapse which suggests that

psychobiotics also play a role in the action potential and synaptic
membrane.

3.3. Gene Expression of the Host Brain and
the Influence of Gut Microbiota
Cognition and behavior disorders are also associated with
gene expression processes and their highly complex regulatory
mechanisms, which involve miRNAs (a product of splicing) and
epigenomic regulatory marks (e.g., DNA methylation, histone
modifications, non-coding RNAs). The slim of DNA and RNA
metabolism, which contains 12.3% of the total T2BS, associates 90
taxa with four brain substructures (see Table 2) through 15 GO
terms (GO:0016072, GO:0006399, GO:0006364, GO:0008033,
GO:0009451, GO:0004518, GO:0006402, GO:0000375,
GO:0000398, GO:0000184, GO:0019083, GO:0071013,
GO:0000956, GO:0006353, GO:0016570). Suggesting that
the microbiome is capable of regulating host’s nucleic acid
metabolism via the spliceosome, catabolic processing the RNA,
histone modification, RNA modification, rRNA and tRNA
processing or nuclease activity based on the GO terms found (see
Figure S3 and Table S4).

Methanobrevibacter, the most abundant archaea in the human
gut, appears in mentions of the spliceosome (GO:0000398,
GO:0000375, and GO:0071013) in the Globus pallidus, Putamen,
Body of the Caudate nucleus and Cerebellar cortex. The
spliceosome is the machinery that regulates transcript RNA
splicing, into various RNA functional products, including
mRNAs and miRNAs. Hasler et al. found evidence of the
microbiota influencing host-gene expression and RNA splicing
in host-mucosal cells (Häsler et al., 2016), which suggest the
involvement of miRNAs in regulatory mechanisms. These are
known to have a role in neuropsychiatric disorders (Alural
et al., 2017), anxiety-like behaviors (Hoban et al., 2017b) and
movement disorders (Tan et al., 2013). Increased miRNAs have
been reported in GF–mice at amygdala and prefrontal cortex
(Hoban et al., 2017a) and in the striatum (putamen and caudate)
(Diaz Heijtz et al., 2011) as well as in post-mortem humans with
PD compared to healthy controls (Nair and Ge, 2016).

There is also evidence of the microbiome influence on the
host’s epigenomics, which is known to influence gene expression,
in the context of patho-epigenomics (Bierne, 2017), infection
(Hamon and Cossart, 2008; Eskandarian et al., 2013), depression
(Tsankova et al., 2006) and drug addiction (Renthal et al.,
2007). We have found that Paenisporosarcina could influence
the epigenetics of the putamen by modifying its histones
(GO:0016570) (see Figure S3 and Table S4). Histone deacetylase
activity inmice has been observed during stress and depression in
the hippocampus (Tsankova et al., 2006) and nucleus accumbens
(Renthal et al., 2007). There is growing evidence of microbiota
influencing epigenetic changes outside brain tissue (Bierne, 2017)
and somemechanisms have been described (Hamon and Cossart,
2008; Eskandarian et al., 2013). Recent evidence has shown
dysbiosis associated with epigenetic alterations in cognitive
conditions and diseases like autism (Loke et al., 2015), PD
(Coppedè, 2012), and many others (Alam et al., 2017).

Eighty two taxa (including the 10 psychobiotics) presented
mentions in the cerebral cortex and putamen through the
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RNA modification/editing ontology (GO:0009451, see Figure S3
and Table S4). It has been found that an epitranscriptomic
modification, N6-methyladenosine (m6A), is highly enriched in
miRNAs targets in the mouse brain, and it has an important
role in neurodevelopment (Wahlstedt et al., 2009; Meyer et al.,
2012). RNA editing has been found to be a key regulator of
ion channels in the mouse (Seeburg et al., 2001). As discussed
above, these regions could have implications for movement
disorders. However, we have not found relevant literature directly
associating the MGBa to epitranscriptomics.

Within the DNA and RNA metabolism slim, we
have found three GOs related to mRNA catabolism
(GO:0006402, GO:0000956, and GO:0000184) that associates
Methanobrevibacter with the cerebellar cortex and the putamen
(see Table S4). One of these GOs, labeled “nuclear-transcribed
mRNA catabolic process, non-sense-mediated decay” refers
to the degradation of mRNAs with a premature stop codon,
a process that prevents the translation of potentially harmful
proteins (Hentze and Kulozik, 1999). This result suggests a novel
microbiota-mediated mechanism of mRNAs cleavage, affecting
the expression levels in the brain.

3.4. Gut Microbiota Influencing Brain
Immune System
Strong and consistent evidence has emerged on the association
between the host’s immune system and the microbiota,
which is given by inflammatory mediators. Persistent states
of inflammation are also associated with several neurological
conditions like depression and anxiety. Evidence shows that
inflammatory responses during pregnancy increase the risk of
neurodevelopmental conditions like autism spectrum disorders
and schizophrenia (Rook et al., 2014).

Dermabacter and Methanobrevibacter resulted mentioned
with the cerebellar cortex by the Antigen processing slim (see
Table S4). Within this slim, we can find two ontologies associated
with the process in which the Major Histocompatibility Complex
class I (MHC-I) interacts with a peptide antigen presented in
its cell wall (GO:0002474) by the Transporter associated with
antigen processing (TAP) pathway (GO:0002479) (see Table S5
and Figure S3). This pathway mediates the translocation of
cytosolic peptides into the endoplasmic reticulum that bind to
the MHC-I.

Consistent with our results, neuronal expression of MHC-I
has been reported in the cerebellum (Letellier et al., 2008; Shatz,
2009). Evidence shows that MHC-I could limit motor learning
in the cerebellum, have implications in long-term depression
(McConnell et al., 2009) and be associated with the visual
system’s development and maintenance in marmoset monkeys
(Ribic et al., 2011). The expression of this complex is involved
in the synaptic plasticity regulation during neurodevelopment
(Goddard et al., 2007) and axonal regeneration following injury
(Wu et al., 2011). Also, there is evidence of its involvement
in neuronal diseases (Pereira and Simmons, 1999; Friese and
Fugger, 2005; Chevalier et al., 2011; Kim et al., 2013; Prabowo
et al., 2013; Cebrian et al., 2014). A study performed by
Mulder et al. showed that lowmicrobiota (hygienic) environment

could increase gut expression of MHC-I and other chemokines
compared to “natural” environmental acquired microbiota in
piglets (Mulder et al., 2009). Our study implicates the microbiota
diversity with the expression of MHC-I.

3.5. Parkinson’s Disease
We have found multiple associations with PD (and other motor
disorders) through ion channel deficiencies (Mourre et al., 2017;
Roeper, 2017), miRNAs (Tan et al., 2013; Nair and Ge, 2016),
epigenetic alterations (Coppedè, 2012) and alterations in MHC-
I (Cebrian et al., 2014); some of them associating the same
cerebral structures like the ones we have found. Our results are
particularly interesting given that some of the latter hypothesis of
PD etiology has previously involved the microbiota as a relevant
and mechanistic factor (Parashar and Udayabanu, 2017).

Gut microbiota have been found altered in subjects with
PD, and evidence strongly suggests that it could cause PD
through different mechanisms. Reduced organisms found in
fecal samples of subjects with PD are Blautia, Coprococcus, and
Roseburia (Keshavarzian et al., 2015) and the psychobiotic
Prevotella (Scheperjans et al., 2015). Hill-Burns et al.,
recently reported altered abundances of the psychobiotics
Bifidobacterium, Lactobacillus and Faecalibacterium, and
non-psychobiotics Blautia, Roseburia and Akkermansia genus
(Hill-Burns et al., 2017). Another recent study found decreased
Blautia, Faecalibacterium and Ruminococcus, and increased
Escherichia-Shigella, Streptococcus, Proteus, and Enterococcus as
in comparison with controls (Li et al., 2017).

In this context, by considering the most abundant
GOs for each taxa, nine bacterial genera (Lactobacillus,
Bifidobacterium, Coprococcus, Prevotella, Ruminococcus,
Escherichia, Streptococcus, Proteus, and Enterococcus) are
associated with potassium ion channels; three of them
(Faecalibacterium, Blautia, Roseburia) are related to translational
termination and RNA modification, and two (Ruminococcus,
Roseburia) are also associated with axonogenesis. However, other
functional associations could be found at the Table S4.

TheMethanobrevibacter also have been found to influence the
spliceosome at PD-associated brain substructures. We have not
found any associations of this taxon with PD, however, most of
the microbiota profiling projects are 16S-rRNA-based, and they
missed archaea organisms.

Despite the extensive literature on PD and that we have found
many coincidences for this disease, the results presented here
could pave the way for novel hypotheses on PD pathophysiology.

4. CONCLUSIONS

In this work, we have presented an in silico framework to
associate metaproteins with brain expression data through
ontological labels. Also we have defined a posteriori GO slims
based on semantic similarity clustering. This data-driven study
suggests that microbiota could affect synapse and voltage-gated
ion channels in brain structures, which have been related to
movement disorders, like the basal ganglia. Beacuse of the GO
associations, we can suggest that microbiota have an influence
on DNA and RNA metabolism. Given the strong association
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of Methanobrevibacter with spliceosome GOs, we suggest that
mechanisms involving miRNAs and mRNA catabolismmay have
a role in several brain structures. This last taxon along with
Dermabacter were found associated with the MHC-I through the
TAP pathway in the cerebellar cortex. We also found associations
like Paenisporosarcina with histone modification, and with many
other taxa, including known psychobiotics, as RNAmodificators.
Parkinson’s disease was coincidently found associated to several
taxa, brain structures, and functional slims related with neuronal
communication, DNA/RNA metabolism and alterations in the
MHC-I.

This work is a novel systems approach based on T2BS
functional annotations, where we used large, specialized
databases to discover possible mechanisms where the
microbiota could influence specific brain regions. Our
results could also inspire germ-manipulation studies to
find therapeutic approaches on neurological movement
disorders.

5. MATERIALS AND METHODS

5.1. Data Curation
Gastrointestinal tract microbiota proteome (metaproteome)
of database (Reference Genome sequence data obtained from
300 subjects) was downloaded from the Human Microbiome
Project website1 as contigs (see Figure 5, database “HMPdb”).
The human protein reference sequences (RefSeq-prot)
database was downloaded from the NCBI ftp server2 (see
Figure 5, data “RefSeq-prot”). Also, post-mortem human brain
RNA-sequencing dataset (donor H0351.2001) was downloaded

1https://www.hmpdacc.org/hmp/
2https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/

from the Allen Brain Atlas web page3 (see Figure 5, data
“Allen exp.”), which contains three or four replicates per brain
substructure.

The metaproteome files were merged at the genus level to
generate a single non-redundant file per taxon. These files were
used as query for the Position Specific Iterative (PSI)-Blast local
and the RefSeq-prot was used as database (see Figure 5, process
“PSI-Blast”). PSI-Blast is an iterative version of protein blast
to find highly conservative relationships between proteins. PSI-
Blast parameters were set up to 10 iterations (maximum) and
e-value threshold ≤ 0.05. The PSI-Blast results by taxa were
obtained in one file each (see Figure 5, data “Human gene hits”).
The human protein hits of the last iteration were extracted from
the files and redundancies removed. Each list of non-redundant
proteins was annotated with its geneID by using the GCRh38
database.

The human RNA-seq database at the Allen Brain Atlas
contains normalized expression data on 22,318 genes. To
see the normalization methods used go to documentation at
brain-map.org. Genes not annotated in Entrez database or with
zero counts in all samples were eliminated. Genes with CPM
≤ 0.5 in at least two replicates of the same brain sub-structure
were also eliminated. We calculated the Euclidian distances
between samples by using a multidimensional scaling with the
function plotMDS of the edgeR library, scaling with the top
500 genes with larger log2-fold changes. Afterwards, we selected
those genes within each substructure with differential expression
compared to the mean across all samples by using the methods
explained in Lun and Smyth (2015) using the edgeR library
(McCarthy et al., 2012). For the latter step we first estimated
the biological and technical variability of the reads by using

3http://human.brain-map.org/static/download

FIGURE 5 | Flowchart of the methodology used. Dotted boxes indicate processing steps and regular boxes are data downloaded or resulted from a process.

HMPdb, Human Microbiome Project database; PSI, Position Specific Iterative; GO, Gene Ontology.
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the glmQLFit function, which performs a gene-wise negative
binomial generalized linear model with quasi-likelihood method
(Lun and Smyth, 2015). Afterwards, we used a quasi-likelihood
F-test (substructure CPMs vs. the mean CPMs) due to its rigid
error rate control at including the uncertainty in the estimation of
the dispersion. The multiple comparisons problem (which states
that when many hypothesis are tested, the chance of erroneous
conclusions increases) was corrected by Bonferroni method, and
only the genes with p ≤ 0.05 were preserved. Also, only genes
with absolute log-fold change≥ 1.5 were preserved (see Figure 5,
process “Filter” and Data “Diff. exp. genes”).

5.2. Gene Ontology Enrichment and
Common Ontology
Each gene list associated to taxa or brain substructure was
enriched using python’s goatools4 find_enrichment.py function
to find the GOs statistically associated to the list of genes
(α = 0.05) (see Figure 5, process “Enrichment”). Ontologies
with Bonferroni corrected p≤ 0.05 were selected. Statistically
significant underrepresented GOs were discarded in the taxon
associated gene lists. This resulted in a set of ontologies associated
to each taxon and each brain sub-structure (see Figure 5, data
“Gene Ontologies”).

We annotated the T2BS common ontologies. This resulted in a
T2BS association list of GOs with annotated genes (see Figure 5,
data “Common GOs”).

5.3. Analysis
For each pair of T2BS we calculated the Sorensen-Dice
coefficient (similarity measure between two samples) and applied
hierarchical clustering to observe the distribution of the common
GOs. Also we applied Pearson’s correlation (coefficient of linear
correlation) to the number of genes found in each taxon
to the number of common GO terms found in the same
taxon.

From all of the GOs obtained, we calculated its semantic
similarity by the goatools function semantic_similarity.py.
This measure is defined as the reciprocal of the minimal

4https://github.com/tanghaibao/goatools

number of branches (or edges) between two GO terms in
the GO topology. It can also be defined as the reciprocal
of the shortest path between two GO terms by using graph
theory argot. We grouped GO terms with similar functions by
manually curating clusters obtained by hierarchical clustering the
semantic similarities between all GOs; to refer to these groups
we use “slims” (see Figure 5, process “GO clustering into slims”).
From the set of taxa we selected those known as psychobiotics
according to literature to perform a deeper exploratory data
analysis (see Figure 5, process “Psychobiotics subset”).
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The blood-stage of the Plasmodium parasite is one of the key phases within its life

cycle that influences disease progression during a malaria infection. The efficiency of the

parasite in infecting red blood cells (RBC) determines parasite load and parasite-induced

hemolysis that is responsible for the development of anemia and potentially drives

severe disease progression. However, the molecular factors defining the infectivity of

Plasmodium parasites have not been completely identified so far. Using the Plasmodium

berghei mouse model for malaria, we characterized and compared the blood-stage

infection dynamics of PbANKA WT and a mutant parasite strain lacking a novel

Plasmodium antigen, PbmaLS_05, that is well conserved in both human and animal

Plasmodium parasite strains. Infection of mice with parasites lacking PbmaLS_05

leads to lower parasitemia levels and less severe disease progression in contrast to

mice infected with the wildtype PbANKA strain. To specifically determine the effect

of deleting PbmaLS_05 on parasite infectivity we developed a mathematical model

describing erythropoiesis and malarial infection of RBC. By applying our model to

experimental data studying infection dynamics under normal and drug-induced altered

erythropoietic conditions, we found that both PbANKA and PbmaLS_05 (-) parasite

strains differed in their infectivity potential during the early intra-erythrocytic stage of

infection. Parasites lacking PbmaLS_05 showed a decreased ability to infect RBC,

and immature reticulocytes in particular that are usually a preferential target of the

parasite. These altered infectivity characteristics limit parasite burden and affect disease

progression. Our integrative analysis combining mathematical models and experimental

data suggests that deletion of PbmaLS_05 affects productive infection of reticulocytes,

which makes this antigen a useful target to analyze the actual processes relating RBC

preferences to the development of severe disease outcomes in malaria.

Keywords: Malaria, Plasmodium, mathematical modeling, infection dynamics, parasite infectivity, erythropoiesis
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INTRODUCTION

Malaria caused by the Plasmodium parasite is one of the most
serious tropical diseases with a major impact on global health. In
2015,malaria was responsible for 212million clinical cases and an
estimated number of 429,000 deaths worldwide (World Health
Organization, 2016).

Within the host, Plasmodium parasites follow a complex life
cycle involving parasite replication and differentiation in liver
and blood (Portugal et al., 2011). Disease progression is mainly
associated with the blood-stage of the parasite, as parasite-
induced infection and lysis of red blood cells (RBC) leads to the
development of anemia (Dondorp et al., 1999), one of the main
symptoms characterizing a malaria infection.

Many Plasmodium parasite strains have been found to
differ in their infectivity during the blood-stage infection
phase by targeting RBC of different ages (McQueen and
McKenzie, 2004). Several parasite species express a preference
for immature RBC (reticulocytes) compared to mature RBC
(erythrocytes/normocytes). Estimates indicate a 34- to 180-fold
higher preference in Plasmodium vivax (Mons et al., 1988; Mons,
1990) and a 1.6- to 14-fold preference in Plasmodium falciparum
in humans (Wilson et al., 1977; Pasvol et al., 1980; Clough et al.,
1998), with the latter one being responsible for cerebral malaria,
a severe neuropathy resulting in death or severe neurological
sequelae in survivors (Seydel et al., 2015; Gupta et al., 2017). In
rodents, strains of Plasmodium chabaudi show such age-specific
targeting of RBC during the acute infection phase (Antia et al.,
2008), while Plasmodium berghei (Singer et al., 1955; McNally

et al., 1992; Sexton et al., 2004; Cromer et al., 2006, 2009) has an
estimated ∼150-fold preference for reticulocytes during the late
stages of infection (Cromer et al., 2006). It has been suggested that
high reticulocyte preference is responsible for the highest parasite
densities which in turn induce severe anemia (McQueen and
McKenzie, 2004), i.e., with anemia-induced production of novel
reticulocytes conversely fueling parasite replication. However,
which factors govern and influence the infectivity of parasites and
to which extent elevated parasite densities might also influence
faster disease progression have not been determined so far
(Beeson et al., 2016).

In this context, PbmaLS_05 was identified as a novel
Plasmodium antigen that plays an important role in the
development of experimental cerebral malaria (ECM)
(Fernandes et al., submitted manuscript), a neuropathology that
is characteristically similar to human cerebral malaria (de Souza
et al., 2010; Hoffmann et al., 2016). The gene is well conserved
in human and rodent Plasmodium strains and as it is expressed
during both late intra-hepatic and intra-erythrocytic stages of the
parasite, this cross-stage antigen represents a potential vaccine
target. The protein localizes to the apicoplast organelle—an
endosymbiotic relict of the parasite that is important for intra-
erythrocytic survival. Deletion of PbmaLS_05 was suggested to
influence parasite replication or viability in the blood (Fernandes
et al., submitted manuscript), but the effects on infectivity and
potential cell preferences are not known.

Determining a parasite’s infectivity potential during
the intra-erythrocytic stage requires the disentangling of

parasite replication dynamics and infection-induced changes to
erythropoiesis. Mathematical modeling has been an essential
tool to analyze these processes. In addition to detecting target
cell preferences and differences in infection profiles of various
pathogens, mathematical models allow us to specifically account
for the processes of erythropoiesis, parasite infection and
turnover, as well as disease-induced anemia (McQueen and
McKenzie, 2004; Cromer et al., 2006, 2009; Antia et al., 2008;
Fonseca and Voit, 2015). There have been various modeling
approaches describing the blood-stage infection dynamics of
different Plasmodium parasite strains in various levels of detail
(Antia et al., 2008; Mideo et al., 2008; Cromer et al., 2009; Li
et al., 2011).

In this study, we used a combination of different experimental
protocols and mathematical models to investigate parasite
blood-stage infection dynamics under physiological and drug-
induced altered erythropoietic conditions to elucidate the effects
of deletion of PbmaLS_05 (KO) on parasite infectivity. We
concentrated on the acute phase of infection, analyzing the
first 4 days after infection with parasitized RBC until the time
when mice infected by the PbANKA (WT) strain showed first
signs of ECM. Our age-structured model explicitly accounts
for RBC development and erythropoiesis and is thereby able
to determine possible target cell preferences for both parasite
strains. Our results indicate dynamic malaria-induced changes
to erythropoiesis during disease progression and suggest that
deletion of PbmaLS_05 has an effect on the productive infection
of reticulocytes.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were performed according to European
regulations concerning FELASA category B and GV-SOLAS
standard guidelines. Animal experiments were approved by
German authorities (Regierungspräsidium Karlsruhe, Germany),
§ 8 Abs. 1 Tierschutzgesetz (TierSchG) under the license G-
260/12 and were performed according to National and European
regulations. For all experiments, female C57BL/6 mice (6- to 8-
week-old) were purchased from Janvier laboratories, France. All
mice were kept under specified pathogen-free (SPF) conditions
within the animal facility at Heidelberg University (IBF).

Experimental Protocol and Data
In the first set of experiments, C57BL/6 mice were intravenously
infected with 106 infected red blood cells (iRBC) taken from
mice infected either with wild-type PbGFP Luccon (P. berghei
line 676m1c11) (WT), a GFP-luciferase transgenic derivative of
P. berghei ANKA (Franke-Fayard et al., 2005), or the mutant
PbmaLS_05 (–) parasites (KO) generated in the wild-type PbGFP
Luccon strain (Fernandes et al., submitted manuscript). An
additional group of age-matched mice was left uninfected and
treated as naïve controls. Daily blood samples of 10 µl were
taken from all mice from the day of infection until day 4 post
infection (p.i.). The total red blood cell count and reticulocyte
percentage were measured using a Coulter counter and FACS
analysis of CD71 (CD71-PE, eBioscience, Clone R17217) labeled
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reticulocytes, respectively. Parasitemia was determined by FACS
analysis of GFP positive infected red blood cells. A sketch of
the experimental protocol is shown in Figure 1A. Mice were
sacrificed at day 5 p.i., when mice infected with WT parasites
showed first symptoms of ECM.

A second set of mice were pretreated with two doses of
phenylhydrazine (PHZ, 40mg/kg), on two consecutive days prior
to infection with 106 iRBC using the same groups of mice as
before. Again, daily blood samples of 10 µl were taken from each
mouse and analyzed up to day 5 p.i. before sacrificing the mice
on day 6 p.i..

Mathematical Model for Erythropoiesis and

Blood-Stage Infection Dynamics
To describe the blood stage-infection dynamics of the murine
malaria parasite accounting for RBC age, we used a mathematical
model for erythropoiesis as described before (Mackey, 1997).
The age-structured model follows the population density of
RBCs of age τ at time t based on a system of coupled
ordinary differential equations that breaks the age ranges of

RBC into n = τRBC/h different compartments with h being the
compartment size and τRBC the maximal lifespan of RBCs. The
concentration of RBCs within each compartment is denoted
by xi(t), i = 1,. . . n. New RBCs are constantly produced by
the bone marrow that enter the population of RBCs after a
delay T, with the actual influx at each time point determined
by a Hill-function dependent on the maximal production rate
of RBCs in the bone marrow, F0, and the concentration
of RBCs at time t-T, X(t-T). Mathematically, the model is
then described by the following system of ordinary differential
equations:

dx1

dt
= F0

θk

θk + (X (t − T))k
−

1

h
x1 (t) −

1

τRBC
x1 (t) (1)

dxi

dt
=

1

h
(xi−1 (t) − xi (t)) −

1

τRBC
xi (t) , i = 2, . . . , n (2)

X (t) =

n
∑

i=1

xi(t) (3)

FIGURE 1 | (A) Experimental protocol: C57BL/6 mice were infected with 106 iRBC of PbANKA (WT), PbmaLS_05 (-) (KO) or left uninfected. Daily samples of 10µl

blood were drawn to measure the concentration of RBC (cells/µl), reticulocyte proportion and parasitemia (in % of RBC). (B) Sketch of the mathematical model

describing erythropoiesis and blood-stage infection dynamics of the parasite. For a detailed description of the model see section Materials and Methods.

(C) Measured concentration of RBC (cells/µl), reticulocyte proportion (in % of RBC) and parasitemia (in % of RBC) for each of the different groups analyzed. (D) The

plot shows the measured concentration of red blood cells for naïve mice (mean + SD, n = 3), as well as the dynamics predicted by our model (best fit-red solid line,

95%-confidence interval- shaded area) using parameter estimates for RBC turnover and reticulocyte production as given in Table 1. (E) Based on model predictions

and the measured proportion of reticulocytes on day 0, we consider a maturation time for reticulocytes of τReti = 36 h.
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Hereby, the parameter θ describes the concentration of RBC
where the production rate is half of the maximum and k the
Hill-coefficient (Mackey, 1997). In addition, we also assumed that
in each compartment xi RBCs are lost by an age-independent
loss-rate 1/τRBC to have at least 85% of RBC lost until their
assumed maximal lifespan τRBC. Equations (1–3) represent a
mean-field approximation of the originally developed system
relying on partial differential equations, thereby transforming
assumed fixed, constant lifespans of RBC into gamma-distributed
lifetimes (Mackey, 1997; Antia et al., 2008).

This basic model for erythropoiesis is then extended to
account for malaria blood-stage infection as done previously
(McQueen and McKenzie, 2004; Antia et al., 2008; Figure 1B).
Uninfected RBCs can get infected by free merozoites, z, at a
rate β (τ), which is dependent on the age-preference of the
infecting parasite strain. Each infected RBC releases a number
of merozoites, m, by bursting after having reached an infection
maturation time, tm. In addition, free merozoites are assumed
to have an average lifetime of 1/dm. As for uninfected RBC,
the concentration of infected cells, Y(t), is broken down into
g= tm/h different age compartments, yi(t), i= 1,. . . ,g leading to a
system of coupled ordinary differential equations with a gamma-
distributed maturation time with mean tm. The basic model for
erythropoiesis (Equations 1–3) is then extended to:

dx1

dt
= F0

θk

θk + (X (t − T))k
−

1

h
x1 (t)

−
1

τRBC
x1 (t) − β1z (t) x1 (t) (4)

dxi

dt
=

1

h
(xi−1 (t) − xi (t)) −

1

τRBC
xi (t)

− βiz (t) xi (t) , i = 2, . . . , n (5)

dy1

dt
=

n
∑

i=1

βiz(t)xi (t) −
1

h
y1 (t) (6)

dyi

dt
=

1

h

(

yi−1 (t) − yi (t)
)

, i = 2, . . . , g (7)

dz

dt
=

m

h
yg (t) −

n
∑

i=1

βiz (t) xi (t) − dmz (t) (8)

βi =

{

β0RF, i ≤ τReti /h
β0, i > τReti/h

(9)

Hereby, z(t) describes the concentration of merozoites at time
t and RF the so called reticulocyte factor, i.e., the fold-change
in infectivity of the parasite for reticulocytes compared to the
general infection rate assumed for normocytes, β0 (see Cromer
et al., 2006). The parameter τReti defines the maturation time of
reticulocytes into normocytes.

Calculating the Average Infectivity and

Reticulocyte Preference
In order to compare parasite strains with possible different
values for the infection rate, β0, and the reticulocyte factor
RF, we calculated an average infectivity β , which is defined as
the infection rate of a single merozoite when placed into the

erythropoietic system at the initiation of infection. In a naïve
mouse, on average 5.8% of the RBC are reticulocytes, thus the
average infectivity is calculated by β = β0(0.058RF + 0.942).

Besides the reticulocyte factor, RF, the reticulocyte preference,
RP, is calculated based on the ratio between the percentage
of infected reticulocytes (relative to all reticulocytes) and the
percentage of infected normocytes (relative to all normocytes).
Thus, if R and IR define the concentration of reticulocytes
and infected reticulocytes, respectively, and N and IN the
corresponding concentrations for normocytes, the reticulocyte
preference is calculated by RP = (IR/R)/(IN /N). In contrast to
the reticulocyte factor, the reticulocyte preference can be directly
calculated from experimental measurements.

Modeling the Effect of Phenylhydrazine

Treatment on Erythropoiesis
Treatment with Phenylhydrazine (PHZ) is used for experimental
induction of anemia in animal models to study hemolytic
anemia or anemia caused by destruction or removal of
RBCs from the bloodstream (Berger, 2007). Previous studies
developed mathematical models to determine and quantify
the effect of PHZ on the RBC age distribution and altered
erythropoiesis (Savill et al., 2009). However, these models were
inadequate to describe our experimental data suggesting that
they incompletely addressed the effects of PHZ. To this end,
we tested several different known hypotheses for the effect of
PHZ on erythropoiesis (Jain and Hochstein, 1980; Berger, 2007;
Savill et al., 2009; Moreau et al., 2012) by fitting them to the
data of the PHZ-control group (see Supplementary Material
Text S3). The models best explaining the experimental data
included the following drug effects: (i) Treatment by PHZ leads
to instantaneous lyses of a fraction ρ(τ ) of RBCs at the time
of treatment, tp. Hereby, the effect of lysis depends on the age
of the RBC, τ , with normocytes being more strongly affected
than reticulocytes (Jain and Hochstein, 1980). (ii) An additional
influx of reticulocytes from extra medullary sites is considered
at a constant rate Np with a time-delay Tp after the initiation
of treatment to account for stress-induced erythropoiesis. Under
severe anemia, such as that induced by PHZ-treatment, extra-
medullary sites of erythropoiesis such as the spleen and liver
are observed to show an increased contribution of RBCs to
circulation (Spivak et al., 1973; Ploemacher et al., 1977; Kim,
2010). Thus, under PHZ-treatment, Equations (1, 2) describing
RBC turnover are changed as follows:

dx1

dt
= F(t)−

(

1

h
−

1

τRBC

)

x1 (t)

−ρ1I(t = Tp) x1 (t) (10)

dxi

dt
=

1

h
(xi−1 (t) − xi (t)) −

1

τRBC
xi (t)

−ρiI(t = Tp) xi (t) , i = 2, . . . , n (11)

ρi =

{

ρ0γ , i ≤ τReti/h
ρ0, i > τReti/h

(12)

F (t) =







F0
θk

θk+(X(t−T))k
, t ≤ tp + Tp

F0
θk

θk+(X(t−T))k
+ Np, t > tp + Tp

(13)
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Hereby, ρ0 defines the fraction of normocytes lysed by PHZ
and γ represents the relative comparison of this fraction for
reticulocytes. In addition, I(t = Tp) defines the Indicator
function, i.e., with I(t = Tp) = 1 if t = Tp and 0 otherwise. A
sketch of the effects of PHZ treatment on erythropoiesis is shown
in Figure 4A. A detailed derivation of the model can be found
in the Supplementary Material. During infection, we assume that
malaria induced changes to RBC production affects both sources
of novel reticulocytes, i.e., bone marrow and extra medullary sites
alike.

Model Evaluation and Fitting Procedures
The mathematical models described above were implemented
and analyzed using the R language of statistical computing
(R Development Core Team, 2017). As indicated, the age of
uninfected and infected RBC was compartmentalized leading to
a tractable system of coupled ordinary differential equations with
gamma-distributed lifetimes and maturation times for RBC and
infected cells, respectively (Antia et al., 2008). In the following we
used a compartment size of 4 h.

The differential equations were solved using the deSolve

package and models were fitted to the experimental data using
the optim-fitting routine in R. In cases where a strong correlation
between parameters hindered convergence of fitting algorithms,
a parameter sweep was performed to find combinations of
parameters that fit the data. Proportion data (parasitemia levels
and proportion of reticulocytes) were logit- transformed to
allow for normally distributed residuals. Model performance
was assessed based on simultaneous fitting for all obtained
measurements including RBC concentration, reticulocyte
proportion and, where applicable, parasitemia. Blood stage
infection dynamics of parasites were determined in a stepwise
approach: Parameters describing erythropoiesis were fixed to
the indicated values obtained from the naïve control group
before analyzing infection dynamics (Table 1). Therefore,
measurements for the infection groups, i.e., reticulocyte
proportion and RBC count, were scaled relative to the naïve
group data when estimating parasite infectivity. To evaluate
model performance, the average residual sum of squares (aRSS)
was used which is the residual sum of squares divided by the
number of data points.

The 95%-confidence intervals, as well as identifiability of
parameter estimates were assessed by profile likelihood analysis
(Raue et al., 2009). For the measured data, we report mean and
standard error.

RESULTS

Characterizing the Dynamics of

Erythropoiesis and Determining

Reticulocyte Maturation Times in the Blood
To determine the dynamics of erythropoiesis in our experimental
system, we fitted a mathematical model describing RBC
production and subsequent aging (see Equations 1–3 inMaterials
and Methods; Mary et al., 1980; Mackey, 1997) to the observed
progression of RBC concentration in uninfected mice that were

sampled daily for 10 µl of blood (see Materials and Methods
and Figures 1A–C). In general, bleeding leads to a decrease
in the RBC concentration triggering the production of novel
RBCs in the bone marrow that will enter the blood circulation
after a time delay T. Thereby, the magnitude of the feedback
depends on the severity of the anemia, i.e., the larger the loss
of blood the larger the subsequent RBC production, which is
accounted for in our model by a Hill-type function (Mackey,
1997). Assuming a maximal lifespan for RBC of τRBC = 40 days
(Bannerman, 1983) and a Hill-coefficient of k = 7.6 (Mackey,
1997), we estimated a maximal RBC production rate in the bone
marrow of F0 = 5.95 × 104 cells µl−1 h−1 [4.02, 6.82] with half
of the maximal production rate reached at a RBC concentration
of θ = 6.65 × 106 cells µl−1[5.28, 6.84], which is approximately
95% of the RBC concentration at steady state. Newly produced
red blood cells are estimated to appear in the circulation after
a lag-time of T = 2 days, testing different possible lag-times
including T = 0, 1, 2, and 2.5 days. All our estimates are in
agreement to parameters that have been determined previously
for erythropoiesis in mice (Mary et al., 1980; Mackey, 1997;
Figure 1D and Table 1).

As we were especially interested in the dynamics of
reticulocytes, i.e., immature red blood cells, we compared model
predictions for the proportion of different RBC age classes to
the measured proportion of reticulocytes in order to determine
the time these cells spend in the blood. We found that a
maturation time for reticulocytes into normocytes in the blood
of τReti = 36 h best described our measured proportion of
reticulocytes (Figure 1E), which is in agreement to previous
calculations determining a maturation time for reticulocytes
between 1 and 3 days (Ganzoni et al., 1969; Gronowicz et al.,
1984; Wiczling and Krzyzanski, 2008). Thus, for the following
analyses we assume that after appearance in the blood, a
reticulocyte will take on average 1.5 days to develop into a
normocyte.

Parasite-Induced Cell Death Cannot

Explain the Observed Loss in Reticulocyte

Proportion
In order to compare the blood-stage infection dynamics of the
two Plasmodium berghei strains investigated, mice were either
infected with PbANKA (WT) or PbmaLS_05 (-) (KO) infected
red blood cells and sampled daily for 10 µl of blood. For
both strains, we observe a substantial loss in the proportion
of reticulocytes around day 3 post infection (p.i.) coinciding
with an increase in parasitemia (Figure 1C). At day 4 p.i., when
mice infected with WT show first signs of ECM, the parasitemia
was approximately twice as high as the one measured for mice
infected with the KO (0.63 ±0.05% WT compared to 0.29
±0.03% KO) (Figure 1C).

To determine systematic differences in the infection dynamics
between the two parasite strains, we extended our mathematical
model describing erythropoiesis to include malaria blood-stage
infection dynamics (see Equations 4–9). Hereby, RBCs get
infected by merozoites at an infection rate β and infected RBC
(iRBC) will release new merozoites m after a certain maturation
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TABLE 1 | Estimated parameter values describing erythropoiesis in mice based on the model as described in Equations (1–3) in section Materials and Methods.

Parameter Description Unit Value References/Comparison

ERYTHROPOIESIS

F0 RBC production rate in Bone marrow (×104)

cells µl−1 h−1
5.95

(4.02, 6.82)

Mackey, 1997

θ RBC concentration at which half of max. RBC production is reached (×106)

cells µl−1
6.65

(5.28, 6.84)

Mackey, 1997

T Delay in RBC production feedback days 2 Mackey, 1997

τReti Maturation time of reticulocytes in the blood hours 36 Gronowicz et al., 1984; Wiczling and

Krzyzanski, 2008

τRBC Lifetime of RBC days 40 Bannerman, 1983

k Hill-coefficient for RBC feedback 7.6 Mackey, 1997

DISEASE-INDUCED FEEDBACK MODULATION

λ Loss-rate of gene-expression day−1 2.22

(1.31, 3.05)

t0 Time at which half of the max. gene expression is reached days 3.70

(3.28, 4.23)

PARASITE INFECTION

tm Maturation time of iRBC days 1 Cox, 1988; De Roode, 2004

m Average number of merozoites released per burst 9 Cox, 1988; De Roode, 2004

dm Clearance rate of merozoites day−1 48 Garnham, 1966

Numbers in brackets represent 95%-confidence intervals of estimates obtained based on the profile likelihood method. In addition, the table contains the parameter estimates for the

disease-induced modulation of the RBC feedback dynamics (see Figure 2A), as well as the parameters that were fixed when analyzing the infectivity of the two different parasite strains.

time tm (see Figure 1B and Materials and Methods for a detailed
explanation of the extended model). Assuming the average
lifespan of a merozoite of 1/dm = 30min (Garnham, 1966), a
maturation time of an iRBC of tm = 24 h (Cox, 1988; De Roode,
2004) and that an infected RBC releases on average m = 9
merozoites after bursting (Cox, 1988; De Roode, 2004; Reilly
et al., 2007) we find that the observed loss in the proportion
of reticulocytes around day 3 p.i. cannot be explained by the
increased parasitemia when using the standard parameterization
for erythropoiesis (Table 1). This observation is independent of
the assumed infectivity of the parasite strain (Supplementary
Figure S1) and is also the case if we assume that the infectivity
for reticulocytes is substantially higher than for normocytes. This
indicates that the reason for the observed decrease in reticulocyte
proportion is not mainly due to reticulocytes being parasitized.

It is known that malarial-induced anemia causes
erythropoietic suppression, starting during the early stages
of infection (Villeval et al., 1990; Sexton et al., 2004; Thawani
et al., 2014). By analyzing the expression levels of previously
studied genes (Sexton et al., 2004), we found that the fold change
in the expression of the genes most strongly associated with
erythropoiesis, i.e., α-globin, β-globin major and β-1-globin,
can be described by a logistic-loss function given by

F(t) =
1+e−λt0

1+e−λ(t0−t)
(14)

where λ defines the loss-rate of gene-expression, i.e., the loss
of RBC production and t0 the time point at which half of the
maximal gene expression is reached. We estimate λ = 2.22 d−1

(95%-CI [1.31, 3.05]) and t0 = 3.70 d [3.28, 4.23] (Figure 2A,
Table 1). This parameterization is then used to account for
malaria-induced modulation of RBC production during the

analyses of blood stage infection dynamics in WT and KO
infected mice.

PbmaLS_05 (–) Merozoites Express a

Reduced Infectivity Compared to PbANKA

WT
To analyze the infectivity of both parasite strains, we fitted our
extended mathematical model (Equations 4–9 with Equation 14)
to the experimental data on RBC count, reticulocyte proportion
and parasitemia. Additionally accounting for a modulation of
RBC production due to infection (i.e., replacing F0 by F0F (t)
with λ = 2.22 d−1 and t0 = 3.70 d in Equation 3) improves
model predictions, especially regarding the substantial loss in
the proportion of reticulocytes starting 3 days p.i. (compare
Figure 2B and Supplementary Figure S1A).

By estimating the infectivity for each parasite strain
characterized by the rate of infection (β0) and the reticulocyte
factor (RF), our analysis indicates that the WT parasites have
a higher preference for infecting reticulocytes than normocytes
(Figure 2B and Table 2). During this early infection phase, we
estimate a more than 22-fold higher infectivity for reticulocytes
than for normocytes i.e., RF > 22 (Table 2). In contrast, a similar
preference for reticulocytes could not be found explicitly for
the KO parasite. Here, a model assuming equal infectivities for
reticulocytes and normocytes, i.e., RF = 1, performs equally well
as a model that assumes a reticulocyte preference (AIC 40.7 vs.
AIC 42.7). However, our time courses are too short to clearly
identify such a reticulocyte preference for both parasite strains.
As a high infection rate β0 can be compensated by a small value of
RF and vice versa, several combinations of β0 and RF can explain
the observed dynamics (Supplementary Figure S2).
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FIGURE 2 | (A) Fold change in expression levels of genes associated with erythropoiesis during malaria infection. Symbols represent gene-expression levels of

α-globin (1), β-globin major (◦) and β−1-globin (*) as measured in Sexton et al. (2004). Dynamics can be described by a logistic-loss function with

F (t) = (1-exp(-λt0))/(1+exp(-λ(t-t0))) (see main text). Red solid line indicates best fit with λ = 2.22 d−1 and t0 = 3.70 days based on 104 bootstrap replicates

simulated from the distribution given by the gene expression levels at each time point (shaded area – 95% confidence interval). (B) Dynamics of red blood cell

concentration, reticulocyte proportion and parasitemia for mice infected by either WT, n = 3 or KO, n = 6. The mean and standard deviation for each group (WT-

black, KO- gray) are shown. Model results simultaneously predicting the dynamics of all 3 measurements indicate a lower average infectivity for the WT (blue line)

compared to KO (green line). Shaded areas indicate 95%-confidence intervals. Corresponding parameter estimates are shown in Table 2. (C) Obtained parameter

combinations for reticulocyte factor RF and infection rate β0 indicate a lower average infectivity β per merozoite per hour for the KO parasite compared to the WT. KO

parasites have lower reticulocyte factors than the WT if similar infection rates β0 for both parasites are assumed (red dashed lines).

TABLE 2 | Parameter estimates for parasite infectivity comparing PbANKA (WT)

and PbmaLS_05(-) (KO).

Parameter Unit PbANKA

(WT)

PbmaLS_05(-)

(KO)

Infection rate, β0 ×10−8

mz−1
µl−1 h−1

(0, 4.84) 7.82

(7.36, 8.31)

Reticulocyte Factor, RF (22.5, ∞) 1

Average Infectivity, β ×10−7

mz−1
µl−1 h−1

1.13

(1.08, 1.16)

0.78

(0.74, 0.83)

Because for PbANKA (WT) only combinations of β0 and RF could be determined

(structural non-identifiability), only the ranges of the parameters are given. For

PbmaLS_05(-), there was no evidence for a reticulocyte preference, i.e., RF= 1. Numbers

in brackets represent 95%-confidence intervals of estimates obtained by the profile

likelihood method if boundaries could be determined.

To compare the infectivity of WT and KO parasites, we
calculated an average infectivity β based on the estimates of
β0 and RF, which is defined as the infection rate of a single
merozoite when placed into the erythropoietic system at the
start of infection (see Materials and Methods for a detailed
calculation). We find that KO parasites have a reduced average
infectivity compared to WT parasites leading to less productive
infections (β = 1.13 × 10−7 mz−1

µl−1 h−1 [1.08, 1.16] for WT
vs. β = 0.78× 10−7 mz−1

µl−1 h−1 [0.74, 0.83] for KO, numbers

in brackets represent 95%-confidence intervals; Table 2). This
reduced average infectivity can explain the slower increase in the
parasitemia observed for the KO strain (Figure 2B).

If we assume that the infection rate β0 does not differ
between the two parasite strains, we find a consistently lower
reticulocyte factor for the KO compared to the WT (Figure 2C
and Supplementary Figure S2). Thus, our analysis indicates
that KO parasites might have a particularly impaired ability to
productively infect reticulocytes in comparison to theWT during
the early erythrocytic stage of infection.

Parasite Infection Dynamics under Altered

Erythropoietic Conditions
To elicit possible differences in reticulocyte preferences between
the two parasite strains we pre-treated mice with the drug
Phenylhydrazine (PHZ) before infecting them with either WT
or KO parasites (Figure 3A). PHZ artificially induces anemia in
mice causing peroxidation of RBC lipids leading to hemolysis
and a change in RBC age distributions (Savill et al., 2009). In
uninfectedmice that were pre-treated with two doses of 40mg/kg
of PHZ on two consecutive days, we observe a substantial loss
in the concentration of red blood cells to roughly ∼1/3 of the
concentration under homeostatic conditions 2 days after the last
treatment with PHZ (2.5 × 106 cells/µl vs. 7.6 × 106 cells/µl,
mean values; Figure 3B). There was a corresponding increase in
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FIGURE 3 | (A) Experimental protocol: Mice were pre-treated with two doses of 40 mg/kg PHZ on two consecutive days before infection with 106 iRBC of WT or KO

parasites on the following day. Blood samples (10 µl) were taken daily and analyzed. (B) Measured concentration of RBC (cells/µl) and reticulocyte proportion for each

of the different groups. (C) Parasitemia (in % of RBC) above background was detected at day 5 post infection indicating equal levels between WT and KO-infected

mice despite a roughly 3-fold higher reticulocyte proportion in KO- compared to WT-infected mice. The percentage of infected reticulocytes was determined as well.

(D) The measured progression of normocytes and reticulocytes in PHZ-treated but uninfected animals (naïve) indicated an increasing net-influx of reticulocytes (blue

line) and a decreasing net-loss of normocytes (red line) up to 5 days post PHZ treatment (E). This corresponds to the assumed effects of PHZ leading to hemolysis

and stress-induced erythropoiesis (F).

the proportion of reticulocytes to up to 50% of the total RBC
count at 5–6 days after the last treatment with PHZ (Figure 3B).
Changes in RBC count and reticulocyte proportion of WT or KO
infected mice that were pre-treated with PHZ are visible on day
5 p.i. with RBC counts reaching 4.0 ± 0.32 and 3.6 ± 0.15 × 106

cells/µl for WT and KO, respectively, compared to 6.0 ± 0.29 ×
106 cells/µl in uninfected animals (Figure 3C). In addition, the
proportion of reticulocytes in infected animals is substantially
reduced compared to naïve mice; with KO infected mice still
having∼3-fold higher levels thanWT infected mice [42.6± 2.6%
(naïve), 4.8 ± 1.2% (WT), 15.6 ± 1.0% (KO); Figures 3B,C].
While parasitemia levels are comparable between both infection
groups (22.5 ± 1.2% vs. 21.0 ± 2.0%), the percentage of
infected reticulocytes is slightly higher for WT compared to
KO (24.3 ± 4.6% vs. 16.3 ± 0.8%; Figure 3C). Given these
measurements, the average reticulocyte preference RP, calculated

by the proportion of infected reticulocytes among reticulocytes
divided by the proportion of infected normocytes among
normocytes, is determined by RPWT = 1.46 and RPKO = 0.76,
respectively. In accordance with our previous results (Figure 2C),
these observations suggest that deletion of PbmaLS_05 has a
potential effect on the parasite’s ability to productively infect
reticulocytes.

Modeling the Effects of PHZ on

Erythropoiesis and Predicting Infection

Dynamics
To determine if the calculated infection characteristics for WT
and KO during normal erythropoietic conditions also apply
after PHZ treatment, we extended our previous model to
account for drug-induced changes to erythropoiesis. The exact
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mechanisms by which PHZ induces hemolysis and changes in the
RBC age distribution have not been determined so far. Several
hypotheses including faster aging of RBCs or direct lysis have
been suggested and corresponding mathematical models have
been proposed (Savill et al., 2009). However, these models fail
to fit our experimental data, partly because they are limited
to a particular PHZ treatment protocol (Savill et al., 2009).
Therefore, we performed a rigorous analysis, testing several
different assumptions for the effect of PHZ on erythropoiesis
and their ability to explain the observed changes in total RBC
count and reticulocyte dynamics in our data (see Materials and
Methods and Supplementary Material Text S3 for a detailed
description of the different models tested).

Our data indicate an increasing influx of reticulocytes, as
well as a decreasing net-loss in normocytes after the last PHZ-
treatment (Figures 3D,E). Thereby, the increased production
of reticulocytes cannot solely be explained by the anemia-
induced production from the bone marrow. We found that
the best models explaining the effect of PHZ treatment on
erythropoiesis assume (i) instantaneous hemolysis with ∼35–
50% of the RBC being lysed upon PHZ administration, and
(ii) stress-induced erythropoiesis with an additional production
of reticulocytes from different sources than the bone marrow
(Figure 3F). Thereby, this additional production starts around
4.5 days after the last PHZ-treatment has been given (Table 3
and Text S3). In addition, our analysis indicates that PHZ
leads to an increased death rate of RBC, reducing the average
lifetime of RBC from τRBC∼40 days to τRBC∼8 days (see
Figure 3E and Table 3). Besides a constant death rate, a linear
decreasing death rate, as indicated by our calculation of the
observed net-loss in normocytes (Figure 3E), could also be
possible as it shows similar explanatory power for the data
(Table 3). By incorporating these effects within our model, we
are able to provide a modeling framework that describes PHZ-
induced changes on erythropoiesis in our experimental system
(Figures 4A,B).

We then simulated the pre-treatment of mice with PHZ and
subsequent infection using different assumptions for parasite
infectivity, β0, and reticulocyte preference, RF, and predicted
the expected levels of parasitemia and reticulocyte proportion
on day 5 post infection (Figure 4C). For the KO strain, relevant
parameter combinations as determined previously (Table 2) lead
to reticulocyte proportions (∼13%) comparable to the ones
observed in the experimental data, but result in parasitemia
levels of less than 1%. In contrast, combinations of RF and
β0 within the determined ranges for the WT parasite predict
reticulocyte proportions that are twice as high as seen in the data
(Figure 3C), and parasitemia levels that are only one-tenth of
the observed level. However, neglecting previous knowledge and
directly estimating RF and β0 based on the observed parasitemia
and reticulocyte proportion under PHZ treatment, both groups
expect that nearly all reticulocytes are infected (80–100%), which
does not agree with our data (Figure 3C). These findings indicate
that there could be disease-induced changes to PHZ treatment
effects that cannot be explained by a simple combination of
separately determined processes of blood-stage infection kinetics,
erythropoiesis and PHZ dynamics.

TABLE 3 | Parameters describing the effect of PHZ treatment on erythropoiesis.

Model Parameter Unit Value

With extra-medullary

production of RBC

ρ0 – 0.52 (0.50, 0.54)

γ – 0.007 (0, 0.01)

Tp h 84.5 (83.2, 85.6)

Np × 104 cells µl−1 h−1 7.8 (7.5, 8)

r – 0.97 (0.92, 0.99)

With extra-medullary

production of RBC and

constant change in

RBC death rate

ρ0 – 0.38 (0.37, 0.39)

γ – 0.006 (0, 0.04)

Tp h 82.8 (80.2, 84.1)

Np ×104 cells µl−1 h−1 7.7 (7.2, 8.1)

r – 0.92 (0.90, 0.94)

η – 4.18 (3.91, 4.46)

For a detailed explanation of the different models tested to evaluate the different

hypotheses for the effect of PHZ see Supplementary Material Text S3. The parameters

describe PHZ induced hemolysis (ρ0, fraction of RBC lysed; γ , reduction in lysis of

reticulocytes) and stress-induced erythropoiesis (Tp, time delay after PHZ treatment

before onset of extra-medullary RBC production; Np, rate of RBC influx from extra-

medullary sites; r, fraction of Np being reticulocytes). The parameter “η” defines a factor

at which the lifespan of RBC produced after treatment is permanently reduced.

DISCUSSION

Parasite replication and invasion of red blood cells during the
pathological blood-stage of the Plasmodium life cycle is a critical
determinant of the severity of disease progression in a malaria
infection (Beeson et al., 2016). Determining the precise processes
and host factors regulating parasite’s infectivity is essential for the
identification of appropriate therapeutic targets. Mathematical
models have been widely used to understand within-host
infection dynamics of the Plasmodium parasite through analysis
of the complex life cycle and host-parasite interactions in various
levels of details (Cromer et al., 2006; Mideo et al., 2008; Li et al.,
2011; Kerlin and Gatton, 2013). In this study, we used an age-
structuredmodel based on partial differential equations similar to
previous approaches (Antia et al., 2008) to specifically determine
differences between PbANKA (WT) and PbmaLS_05 (-) (KO)
parasite strains in terms of age-preferences for RBC, and in
particular reticulocytes.

We focused our analysis on the early erythrocytic stage of the
parasite, i.e., studying the first 4 days post infection of mice with
iRBC. We found that malarial-induced changes to erythropoiesis
already play a role at this stage of infection. The observed
decrease in reticulocyte proportions could not be explained
solely by parasite-induced lysis of RBC (Supplementary Figure
S1; Chang et al., 2004), similar to observations for Plasmodium
berghei at later erythrocytic stages (Cromer et al., 2006). Several
factors, including bystander destruction of uninfected RBC
during infection (Cromer et al., 2006; Evans et al., 2006;
Fonseca et al., 2016) might contribute to the substantial loss
in reticulocytes. However, as total RBC counts are rather stable
(Figure 2), an age-independent loss of RBC seemed to be
insufficient to explain the observed decrease in reticulocyte
proportion. Therefore, the mathematical model by Antia et al.
(2008) used to describe blood-stage infection dynamics of
Plasmodium parasites was extended in order to account for
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FIGURE 4 | (A) Sketch of the mathematical model describing the main effects of PHZ treatment on erythropoiesis. For a detailed description see section Materials

and Methods. (B) Predictions of the best fit-mathematical model for the dynamics of RBC count and reticulocyte proportion under PHZ-induced changes to

erythropoiesis. Gray areas indicate time of PHZ treatment. A model assuming an increased death rate of RBC, 1/τ = 0.125 d−1, i.e., due to hemolysis, (blue line)

performs better than a model with unchanged RBC lifetimes, 1/τ = 0.025 d−1 (red line). (C) Predicted parasitemia and reticulocyte proportions after PHZ treatment

on day 5 post infection for different combinations of reticulocyte factors, RF, and parasite infectivity, β0. The right heat-map shows the relevant combinations for WT

(blue) and KO (green) leading to the average infectivity as determined during untreated infection (see Figure 2B and Table 1). While for the KO-group relevant

parameter combinations lead to matching reticulocyte proportions (∼13%) as in the experimental data (compare to Figure 3C), combinations of RF and β0 for the

WT-group predict reticulocyte proportions roughly twice as high as seen in the data.

altered RBC production dynamics during infection (Sexton et al.,
2004; Thawani et al., 2014).

By applying our extended model that disentangles
erythropoietic and parasite infection dynamics to the
experimental data, we found that PbANKA prefers to infect
reticulocytes. This preference has been observed for various
Plasmodium strains to different extents (Wilson et al., 1977;
Mons et al., 1988; Mons, 1990; Cromer et al., 2006; Antia et al.,
2008). We estimate a minimum 22-fold higher preference for
reticulocytes compared to normocytes in PbANKA parasites
relying on the early blood-stage of the parasite (Table 2).
However, a maximal limit for the RF could not be determined
(Table 2). As large values of RF can be compensated by lower
values of the infection rate β0, we can only identify combinations
of both parameters that would lead to similar levels of parasitemia
and reticulocyte proportion (structural non-identifiability) (Raue
et al., 2009). Thus, even substantially higher values of RF could
be possible for the WT if the age-independent infection rate β0

is accordingly lower (Figure 2C). Cromer et al. (2006) estimated
a value of RF ∼ 150 based on data from later stages of infection
with Plasmodium berghei, for which a particular reticulocyte
preference was found at later times (Singer et al., 1955). With
a RF ∼ 150 as estimated by Cromer et al. (Cromer et al., 2006)
our model would predict that infected reticulocytes account for
∼65% of the parasitemia at day 4 p.i. (Figure 5). Although this
is a slightly larger value than for previous observations in rats
infected with Plasmodium berghei (Singer et al., 1955), which

showed that reticulocytes represent ∼50% of the infected RBC
on day 4 p.i., such a high reticulocyte factor cannot be excluded
based on our analysis.

We also find different combinations of the infection rate β0

and the reticulocyte factor RF that could explain the observed
dynamics for the KO-parasite (Figure 2C). However, we estimate
that PbANKA parasites have a roughly 1.5-fold higher average
infectivity than parasites lacking the PbmaLS_05 gene (Table 2).
Although quite small, this difference is sufficient to explain
the observed reduced peripheral parasite load of KO compared
to WT infected mice on day 4 p.i.. Moreover, the differences
between both parasite strains might even be larger than currently
estimated. Since WT-infected mice were sacrificed after showing
signs of ECM, we were restricted in our analysis to the early
exponential growth phase of the parasite in the blood. This
could affect the identification of differing parasite infectivities for
several reasons: Firstly, parasite levels are still low during this
early phase (Figure 1B) and, hence, more prone to measurement
noise. Therefore, differences between strains could be masked
by the variation in the measurements. Secondly, by using our
model to simulate blood-stage infection dynamics assuming
various infectivity profiles, we find that differences between
infectivity profiles only start to become visible in the measured
parasitemia and reticulocyte proportion after 4–5 days p.i.
(Supplementary Figure S2). However, comparison of long-term
infection dynamics between both strains is hampered as mice
infected by PbANKAWT develop ECM around day 5 p.i..
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FIGURE 5 | (A) Development of infected normocytes and reticulocytes during

infection with WT parasites as predicted by the model using a reticulocyte

factor of RF = 150 as estimated by Cromer et al. (2006). The model predicts

that 4 days after infection around 65% of the infected red blood cells are

reticulocytes. (B) Using the estimated parameter combinations of the infection

rate β0 and RF for PbANKA (Table 2), the model predicts that 4 days after

infection in between 38 and 78% of the infected red blood cells are

reticulocytes.

Based on our analysis, the lower average infectivity for
KO compared to PbANKA WT can be explained by two
alternative hypotheses. On the one hand, KO-parasites could
have a comparable or larger reticulocyte factor RF than the
WT, but substantially lower infection rates β0 (Figure 2C and
Supplementary Figure S2). This would argue for a restriction
of the parasite’s infectivity to reticulocytes due to deletion of
PbmaLS_05 (Hopp et al., 2017). In this case, we would expect
that such a reticulocyte restriction is particularly visible in
mice pre-treated with PHZ, a drug that artificially induces
anemia and leads to an increased proportion of reticulocytes.
However, we observe a 3-fold higher proportion of reticulocytes
in KO- than WT-infected mice 5 days p.i. (Figure 3C). Given
comparable levels of parasitemia and total RBC counts, this
indicates enhanced reticulocyte survival during infection with
the KO-parasite.

Therefore, our analysis rather suggests that deletion of
PbmaLS_05 impairs the ability of the parasite to productively
infect reticulocytes during the early infection phase. The

estimated reticulocyte factor RF for the WT is around ∼1.4
times higher than the one estimated for the KO when assuming
similar infection rates (Figure 2C). Furthermore, the calculated
reticulocyte preference for KO-infected mice after treatment
with PHZ is roughly half the size of the one determined for
WT-infected mice. As reticulocytes are usually the preferential
targets of parasites (Mons et al., 1988; Mons, 1990), this impaired
ability to infect reticulocytes would explain the observed slower
increase in parasite burden in mice infected by the KO parasite.
In fact, several studies have characterized the need for parasites
to infect reticulocytes in order to spread infection. As shown
through metabolomic analysis of RBC, reticulocytes possess
a higher content of carbon sources and essential nutrients,
both of which have been proposed to contribute to the higher
reticulocyte preference of WT parasites during the early intra-
erythrocytic stages of development (Srivastava et al., 2015).
Furthermore, increased expression of CD47 on reticulocytes was
shown to prevent phagocytosis and clearance of infected cells
(Banerjee et al., 2015), thus allowing unchecked multiplication
and infection of new red blood cells. It is therefore plausible
that the reduced infectivity of PbmaLS_05 (-) parasites reflected
by the parasite’s inability to develop within reticulocytes is a
major contributing factor to the slower multiplication rates
in the blood. Moreover, PbmaLS_05 (-) infected mice do not
develop experimental cerebral malaria but only late stage anemia
(Fernandes et al., submitted manuscript), which is in line with
previous studies that have proposed a link between severe disease
progression and cell preference (McQueen and McKenzie, 2004;
Iyer et al., 2007).

In addition to parasite infectivity, we also investigated if the
reduced parasitemia in KO infected mice can be explained by
impaired merozoite production or altered maturation times for
infected RBCs. Assuming similar parasite infectivity for both
strains, we do not find evidence for a reduced production of
merozoites in KO infection compared to WT (Supplementary
Figure S4). However, a roughly 2-fold longer maturation time for
iRBC infected by the KO could provide an alternative explanation
for the observed differing dynamics (Supplementary Figure
S4). This supports the conclusion that deletion of PbmaLS_05
particularly leads to impaired parasite development and less
successful infections in reticulocytes during the initial blood-
stage phase.

To fully determine the impact of PbmaLS_05 deletion on
parasite infectivity during the intra-erythrocytic stage and, thus,
on disease progression, it remains to be investigated how
infection affects erythropoiesis during later phases. Since mice
infected with the KO-parasite do not develop ECM, they can
be observed for longer time periods. During progression of
infection, we observed a substantial increase in the proportion
of reticulocytes before mice develop severe anemia and die
∼21 days p.i., (Supplementary Figure S5). However, assuming
continuous malarial-induced reduction of RBC production,
our model is not able to explain the observed dynamics
in reticulocytes and parasitemia (Supplementary Figure S5).
These observations point toward a recovery of erythropoiesis
at later time points, and potentially altered infectivity profiles
of the parasite as has been observed for other Plasmodium
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strains. In fact, for the Plasmodium chabaudi strain it has
been shown that reticulocyte production increases quickly after
reaching a minimal production around 9 days after infection
with 106 iRBC (Chang and Stevenson, 2004; Chang et al.,
2004). In addition, Plasmodium berghei has been observed
to alter its targeted age range during the progression of
infection (Singer et al., 1955; Sexton et al., 2004). Understanding
the changes in the erythropoietic processes in the time
course of malaria infection remains critical to analyze long-
term infection data and to further elucidate the effect of
deleting maLS_05 on parasite infectivity and its importance for
reticulocyte invasion. This also includes the understanding of
the dynamics of infection and reticulocyte development under
PHZ treatment. Our analysis revealed that these dynamics
are more complex than a simple combination of altered
erythropoiesis and infection processes that were parameterized
independently.

In summary, our analysis based on a combination of
mathematical modeling and experimental data suggests
that deletion of PbmaLS_05 affects productive infection of
reticulocytes during the early blood-stage of the parasite’s
asexual development. Furthermore, our analysis supports
previous findings on malarial-induced changes to erythropoiesis
that also affect early blood-stage infection dynamics. Given
the suggested outcome of PbmaLS_05 on the productive
infection of reticulocytes, we propose that the PbmaLS_05
(-) mutant parasite strain can serve as a tool to study
how the preference of parasites to infect particular RBC
influences both disease progression and the development
of experimental cerebral malaria. This will ultimately aid
in revealing the factors that influence the activation of
immune responses and that might enable efficient parasite
control.
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Cytotoxic T lymphocytes (CTLs) have been suggested to play an important role in
controlling human immunodeficiency virus (HIV-1 or simply HIV) infection. HIV, due to
its high mutation rate, can evade recognition of T cell responses by generating escape
variants that cannot be recognized by HIV-specific CTLs. Although HIV escape from CTL
responses has been well documented, factors contributing to the timing and the rate of
viral escape from T cells have not been fully elucidated. Fitness costs associated with
escape and magnitude of the epitope-specific T cell response are generally considered
to be the key in determining timing of HIV escape. Several previous analyses generally
ignored the kinetics of T cell responses in predicting viral escape by either considering
constant or maximal T cell response; several studies also considered escape from
different T cell responses to be independent. Here, we focus our analysis on data from
two patients from a recent study with relatively frequent measurements of both virus
sequences and HIV-specific T cell response to determine impact of CTL kinetics on viral
escape. In contrast with our expectation, we found that including temporal dynamics
of epitope-specific T cell response did not improve the quality of fit of different models
to escape data. We also found that for well-sampled escape data, the estimates of the
model parameters including T cell killing efficacy did not strongly depend on the underlying
model for escapes: models assuming independent, sequential, or concurrent escapes
from multiple CTL responses gave similar estimates for CTL killing efficacy. Interestingly,
the model assuming sequential escapes (i.e., escapes occurring along a defined pathway)
was unable to accurately describe data on escapes occurring rapidly within a short-
time window, suggesting that some of model assumptions must be violated for such
escapes. Our results thus suggest that the current sparse measurements of temporal CTL
dynamics in blood bear little quantitative information to improve predictions of HIV escape
kinetics. More frequent measurements using more sensitive techniques and sampling
in secondary lymphoid tissues may allow to better understand whether and how CTL
kinetics impacts viral escape.

Keywords: HIV, CTL escape, multiple responses, mathematical model, model fitting, likelihood
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1. INTRODUCTION

In 2014, the number of people living with human immunode-
ficiency virus 1 (HIV-1 or simply HIV) was estimated as 36.9
million (1), with roughly 2 million new HIV infections and 1.2
million people dead of HIV-induced diseases (AIDS) (2). Cyto-
toxic CD8+ T lymphocyte (CTL) responses play an important
role in control of virus replication (3, 4) by modulating some
important predictors of disease progression (e.g., viral set-point
and the rate of CD4+ T cell loss (5)). Generation of HIV-specific
CD8+ T cells by vaccination is one of the current approaches in
developing HIV vaccines (6, 7). However, HIV is able to generate
mutants (termed “CTL escape mutants”) that are not recognized
by HIV-specific T cells, which may be one of the reasons for
failure of T cell based vaccines (8–10). Better understanding of
mechanisms of viral escape and principles governing CD8+ T cell
responses to HIV may allow us to evaluate in silico a potential
efficacy of T cell-based HIV vaccines.

Viral escape fromCTL responses follows a somewhat predictive
pattern with more dominant (larger magnitude) CTL responses
leading to earlier viral escape (11, 12). However, not every CTL
response elicits an escape and sometimes viral mutations occur in
regions predicted to be recognized by CTLs but in the absence of
detectable response (13). To understand the timing and kinetics
of CTL escape in HIV/SIV infection, mathematical models have
been proposed previously on the dynamics of viral escape from
a single CTL response (e.g., Ref. (14–20)). These initial models
made a strong assumption of independent viral escape—i.e., it was
assumed that viruses escaping from different CTL responses do
not compete. Recent work, however, suggested presence of clonal
interference and genetic hitchhiking among immune escape vari-
ants through reconstruction of HIV whole genome haplotypes
(21), and similar concurrent CTL escapes were observed in four
HIV-infected patients (22). Clonal interference was suggested to
impact the estimates of the escape rates (23, 24). Even though
several models have been developed to describe the dynamics of
escapes from multiple CTL responses (e.g., Ref. (17, 18, 23–26)),
many of these studies involved only model simulations and did
not use information on the actual kinetics of HIV-specific CTL
responses in predicting viral escape.

Here, we explored whether including experimentally measured
CTL kinetics improves description of the viral escape data. In
doing so, we compared predictions of three alternative models
of viral escape from CTL responses such as independent escapes,
sequential escapes, and concurrent escapes. In the first model
(independent escapes), we assumed that escape from any given
CTL response occurs independently of other escapes and directly
from the wild-type, i.e., we ignored the effects of clonal interfer-
ence—in essence assuming high effective population size and/or
high recombination rate. Of note, several recent experimental
papers also assumed independent escapes (11–13). In the second
model (sequential escape), we assumed that escapes fromdifferent
CTL responses occur along a defined pathway, generally set by the
sequences of escape occurrence in the data. This model assumes
strong clonal interference, which may arise at low effective pop-
ulation size or when recombination rate is low. Finally, in the
third model (concurrent escape), we tracked all escape variants

simultaneously, thus allowing for co-existence of multiple escape
variants (i.e., escapes could occur along multiple alternative path-
ways). Interestingly, we found that for well-sampled data on virus
evolution, the estimated CTL killing efficacies were independent
of the model for viral escape. Some escape data could not be
well described by the sequential escape model for biologically
reasonable parameters. Furthermore, explicitly taking CTL kinet-
ics into account did not improve the quality of fit of different
models to escape data. Our results suggest that CTL kinetics in
the blood as it is currently available may bear limited information
relevant to improve description of kinetics of HIV escape from
CTL responses.

2. MATERIALS AND METHODS

2.1. Experimental Data
Experimental details of patient enrollment and data collection
were described in detail previously (12, 13). In short, data from
17 patients in the Center for HIV/AIDS Vaccine Immunology
(CHAVI) infected acutely with HIV-1 (subtypes B or C) were
analyzed in great detail. All patients were infected with a sin-
gle transmitted/founder (T/F) virus as determined by the single
genome amplification and sequencing (SGA/S), and there were
enough samples to accurately quantify CTL response to the whole
viral proteome. In each patient, the kinetics of virus-specific
CTL (CD8+ T cell) responses were measured using peptide-
stimulated IFN-γ ELISPOT assay and/or intracellular cytokine
staining (ICS) 6months after enrollment using peptides matched
to the founder virus sequence (12, 13). For CTL responses mea-
sured by ELISPOT, the reported magnitude of the response was
the number of cells, producing IFN-γ, per 106 peripheral blood
mononuclear cells (PBMC). Multiple viruses were sequenced by
SGA/S, and all sequences were compared at cites coding for CTL
epitopes, and changes in the percentage of transmitted (wild-type)
sequenceswere followed over time (12). The dynamics of theHIV-
specific CTL responses and viral escape fromepitope-specificCTL
responses were measured longitudinally. Escape mutants were
identified as viral variants with mutations in regions recognized
by patient’s CTL responses with a reduced (or fully abrogated)
production of IFN-γ following T cell stimulation. In many cases,
mutation in a single positionwas responsible for the escape. In our
analysis, all viral variants, which did not have the wild-type amino
acid in the epitope region, were considered as escape variants.

Review of the virus evolution and CTL dynamics data in all
17 patients revealed some data limitations. In particular, data for
many patients lacked adequate temporal resolution to accurately
estimate virus escape rates. In the vast majority of viral escape
variants, escapes often occurred rapidly between two sequential
time points with the frequency of the escape variant jumping from
0 to 1. While previously it was suggested that such data may be
modified to provide an estimate of the escape rate (14, 15, 17), such
approaches may lead to biased parameter estimates (25). While
development of a method for unbiased estimation of escape rate
from sparse data was recently proposed (27), for this analysis,
we focused on patients CH131 and CH159 in which viral escape
rates could potentially be accurately estimated due to sufficiently
frequent sampling. While data from these patients were presented
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before (12), linking of escape and CTL response dynamics was not
yet performed.

2.2. Model of Viral Escape from a Single
CTL Response
Models describing the dynamics of viral escape from a single
cytotoxic T lymphocyte (CTL) response have been developed and
adopted by different researchers (e.g., Ref. (14–18)). Here, we start
with the basic model formulated earlier (18) and extend it to viral
escape dynamics frommultiple CTL responses. Themodel of viral
escape from a single CTL response can be extended from the basic
viral dynamics model (28) in the following way:

dT(t)
dt = s(T0 − T(t)) − βwT(t)Vw(t) − βmT(t)Vm(t),

dIw(t)
dt = βw(1 − µ)T(t)Vw(t) − δIw(t) − kIw(t),

dIm(t)
dt = βmT(t)Vm(t) + βwµT(t)Vw(t) − δIm(t), (1)

dVw(t)
dt = pwIw(t) − cvVw(t),

dVm(t)
dt = pmIm(t) − cvVm(t),

where T(t) is the density of uninfected target cells; Iw(t) and Im(t)
is the density of target cells infected by the wild-type or escape
variant viruses, respectively; Vw(t) and Vm(t) is the density of
wild-type or escape variant viruses, respectively; s is the turnover
rate of uninfected target cells; T0 is the preinfection level of
uninfected target cells; βw and βm is infection rate of wild-type or
escape variant viruses, respectively; µ is the probability of muta-
tion fromwild-type to escapemutant during reverse transcription
of viral RNA into proviral DNA; δ is the death rate of infected
cells due to viral pathogenicity; k is the killing rate of wild-type
virus infected cell due to CTL response; pw and pm is the rate
at which cells infected by wild-type or escape mutant viruses
produce viruses; and cv is the clearance rate of free viral particles.

In thismodel (equation (1)), we assume that target cells infected
by wild-type (Vw(t)) and escape viruses (Vm(t)) differ by two fac-
tors: viral infectivity (βw and βm) and the rate of virus production
(pw and pm). Given that in vivo viral particles are short-lived (29,
30), to a good approximation, we may assume a quasi steady state
for the virus particle concentration leading to V∗

w(t) = pw
cv Iw(t)

and V∗
m(t) = pm

cv Im(t). We define a fitness cost c = 1 − βmpm
βwpw ,

where c can be positive or negative. Positive c means true fitness
cost of escape mutations, which is escape variant and has a lower
replication rate (βmpm ≤ βwpw) (31), and negative c implies fitness
advantage of escape virus (31, 32). By straightforward calculation,
the system (equation (1)) can be written as

dV∗
w(t)
dt = [(1 − µ)r(t) − δ − k]V∗

w(t),

dV∗
m(t)
dt = [(1 − c)r(t) − δ]V∗

m(t) + µr(t)V∗
w(t)pmpw

. (2)

For convenience, we replace V∗
w(t) and V∗

m(t) by w(t) or m(t),
respectively, and assume that the wild-type and escape viruses

differ only in the rate of infectivity (that is βw ≥ βm and pw = pm)
(13), the system (2) can be simplified as

dw(t)
dt = [(1 − µ)r(t) − δ − k]w(t),

dm(t)
dt = [(1 − c)r(t) − δ]m(t) + µr(t)w(t), (3)

where r(t) = βwpw
cv T(t) is the replication rate of cells infected by

wild-type virus, and c = 1− βm
βw

is the cost of the escape mutation
defined as a selection coefficient. The frequency of the escape
variant in the whole population is given by f(t) = m(t)

w(t)+m(t) . This
is perhaps the simplest model for a viral escape from a single CTL
response. This is denoted as model 1 in the paper.

2.3. Models of Viral Escapes from Multiple
CTL Responses
Mathematical model given in equation (3) tracks changes in den-
sities of wild-type virus and a single variant that has escaped
recognition from a single epitope-specific CTL response. In acute
HIV infection, the virus can escape from recognition of multi-
ple CTL responses, which are specific to several viral epitopes
(13, 33). Several models have been developed to describe the
dynamics of escapes from multiple CTL responses (e.g., Ref., (17,
18, 26)). Our model is an extension of previous models (17, 18)
incorporating mutations from wild-type virus to different viral
escapes. In contrast with previous studies, in our analyses, here,
we used experimentally measured time courses of different CTL
responses (12).

To track the dynamics of viral escape from multiple responses,
we assume that there are in total nCTL responses that control viral
growth, and virus can potentially escape from all n responses. We
usemi to denote the density of variantswhere i is a vector i= (i1, i2,
. . ., in) denoting the positions of n epitopes, and we define ij = 0
if there is no mutation in the jth CTL epitope and ij = 1 if there
is a mutation leading to an escape from the jth (1≤ j≤ n) CTL
response. We denote the set of escape variant as I, which is i∈ I.
The wild-type variant is then denoted as (0, 0, . . . 0).

For our analysis, we neglect recombination and backward
mutation frommutant to wild-type.We use ki, ci, and µi to denote
killing rate due to ith CTL response, cost of escape mutation from
the ith CTL response andmutation rate for the ith epitope, respec-
tively. Due to a small rate of double mutation (34), we assume
that escape virus is generated with only one mutation in a single
generation. That is, for two escape variants mi = m(i1,i2,...,in) and
mj = m( j1,j2,...,jn), we define the mutation rate Mi ,j from mi to
mj as µk, if and only if mj has only one more mutation at position
k than mi and all other positions are exactly same. For example,
when there are 3 CTL responses, the mutation rate from m(1,0,0)
to m(1,1,0) is µ2, and the mutation rate from m(0,0,0) to m(1,0,1) is
0. Assuming multiplicative fitness (detailed deviation is given in
Section S2 in Supplementary Material), that is, the fitness cost of
a variant i= (i1, i2, . . ., in) is Ci = 1 −

∏n
j=1 (1 − cjij). The death

rate of the escape variant i= (i1, i2, . . ., in) due to remaining CTL
responses is given by Ki =

∑n
j=1 kj(1− ij), where we assume that

killing of infected cells by different CTL responses is additive.
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Similar to equation (3), the dynamics of the wild-type and
escape variants are given by

dmi(t)
dt =

r(1 − Ci)

1 −
∑
j∈I

Mi,j

 − Ki − δ

mi(t)

+
∑
j∈I

r(1 − Cj)Mj,imj(t), i ∈ I. (4)

We define M(t) =
∑

i∈I mi as the total density of all variants
in the population, and fj(t) (j= 1, . . ., n) is the fraction of viral
variants that have escaped recognition from the jth CTL response.
The frequency of a viral variant escaping from the jth response is
given by

fj(t) =
∑
i∈J

mi(t)/M(t), J = (i1, . . . ij, . . . , in) with ij = 1. (5)

Based on previous work (22, 25, 35), we assume that there
are two alternative ways to generate escape mutants (Figure 1).
The first way can be called “sequential” escape (model 2), that is
escape mutants are generated sequentially along a defined path
from wild-type viruses. This is likely to happen when the effective
population size of HIV is small and when the rate of recombi-
nation is negligible. The second way can be described as “con-
current” escape (model 3), in which the virus can escape from n
CTL responses simultaneously along multiple different pathways.
This is likely to happen when the HIV effective population size
is large. With n CTL responses, there are n escape variants for
“sequential” escape and 2n − 1 escape variants for “concurrent”
escape in addition to the wild-type variant. For example, with
n= 3 CTL responses, for “sequential” escape, there are 3 escape
variants: m(1,0,0), m(1,1,0), and m(1,1,1) with m(0,0,0) being the wild-
type virus. For “concurrent” escape, there are 7 escape variants:
m(1,0,0), m(0,1,0), m(0,0,1), m(1,1,0), m(1,0,1), m(0,1,1), and m(1,1,1) with
m(0,0,0) being the wild-type virus (Figure 1). Detailed equations
for both models with n= 3 CTL responses can be found in Sup-
plement (Section S2 in Supplementary Material). It is interesting
to note that “sequential” escape is a simplification of “concurrent”
escape when the effective population size is small. Previous work
did not fully resolve whether CTL escapes in HIV infection occur
sequentially or concurrently (22, 25);most likely the type of escape
varies by patient.

2.4. Models for CTL Response
The killing rate ki of the CTL response specific to the ith epitope
in all three models is composed of two parts: the per-cell killing
efficacy of CTLs (k′

i) and the number of epitope-specific CTLs (Ei)
(16). Previously the killing rates ki were often set to a constant
(e.g., Ref. (16, 18)), or were set to a certain form k′

ig(Ei(t)) where
g(Ei(t)) is a function of epitope-specific CTL responses Ei(t) (e.g.,
Ref. (24, 36)). With the measured epitope-specific CTL response
dynamics (13), we adopted two forms of killing rate: constant ki
(termed as “constant response”) or time-dependent killing rate
k′
iEi(t) (termed as “interpolated/fitted response”). We used the

“mass-action” killing term to describe effect of CTLs on virus
dynamics because it is the simplest form, it involves minimum
parameters, and it is supported by some experimental data (37).

Based on the available time course information of epitope-
specific T cell response Ei(t), we used the first-order interpolation
function (termed as “interpolated response”) or the fitted response
function (termed as “fitted response”) by the Ton–Toff model
(38) to quantify the kinetics of HIV-specific CTL responses. The
Ton–Toff model assumes that the response starts with E0 epitope-
specific CD8+ T cells that become activated at time Ton. Activated
T cells start proliferating at a rate ρ and reach the peak at time Toff.
After the peak, epitopes-specific CD8+ T cells decline at a rate α.
The dynamics of the CD8+ T cell response E(t) is given thus by the
following differential equation:

dE
dt =


0, if t < Ton,

ρE, if Ton ≤ t ≤ Toff,

−αE, if t > Toff

(6)

with E(0)=E0. Here the “precursor frequency” E0 is a general-
ized recruitment parameter, which combines the true precursor
frequency and the recruitment rate/time (38, 39). Our recent
work showed that this model (equation (6)) reasonably well
describes kinetics of HIV-specific CTL responses in acute HIV
infection (40). When fitting the model (equation (6)) to experi-
mental data of CTL dynamics, we changed all initial undetected
response values from 0 to 1; the latter was the detection limit in
the data.

2.5. Statistics
Previously, under the assumption that some mutants are present
initially, researchers (e.g., Ref. (16, 36)) fit a logistic model to
data on viral escape kinetics by the method of nonlinear least
squares (41). In essence, this is a maximum likelihood method,
which assumes normally distributed residuals. While this stan-
dard statistical method provides reasonable parameter estimates,
it assumes equal weights to different data points independently
of how many viral sequences were measured at every time point,
which is likely to be unrealistic for most experimental studies.
Here, we follow the method proposed recently (18) to use bino-
mial distribution (and thus different weights for different mea-
surements/time points) in the likelihood of the model given the
escape data. For HIV escape from a single CTL response, the
log-likelihood function is given by

L =
Ti∑
j=1

[ajln( f(tj)) + (Nj − aj)ln(1 − f(tj))], (7)

where aj is the number of escape variant sequences in a sample of
Nj sequences at the sample time tj, Ti is the number of measured
time points for a ith specific viral escape trajectory, and f (tj)
is the predicted frequency of a specific viral escape variant at
time tj. Model parameters were thus found by maximizing the
log-likelihood function (equation (7)).

To discriminate between alternative models under different
parameter constrains, we used corrected Akaike information cri-
terion (AIC) scores (42). The model fit with the minimum AIC
score among testedmodels was treated as the bestmodel; however,
a difference of less than 3 AIC units is generally viewed as not
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FIGURE 1 | Escape paths for models 1, 2, and 3 with 3 CTL responses. For model 1, there are 3 escape variants: m(1,0,0), m(0,1,0), and m(0,0,1). For model 2, there are
also 3 escape variants: m(1,0,0), m(1,1,0), and m(1,1,1). For model 3, there are 7 escape variants: m(1,0,0), m(0,1,0), m(0,0,1), m(1,1,0), m(1,0,1), m(0,1,1), and m(1,1,1). In each
case, m(0,0,0) is the wild-type virus.

significant (42). To test the statistical significance of the differ-
ences between parameters found by fitting different models, we
used a bootstrap approach (43). In this approach, we resampled
the data 1,000 times using the Random routine in Mathematica
assuming beta distribution for sequencing data (44), fittedmodels
to bootstrap samples, and recorded all estimated parameters. For
the same parameter, we use either paired and unpaired t-test to
compare the parameter averages for different models.

Both fitness costs of escape mutations and the killing efficacy
of the CTL response determine the kinetics of viral escape from
T cells (14–16), and that viral escape (sequence) data in most
cases are not sufficient to estimate both rates (16). Therefore, in
our analyses, to avoid overfitting, we set fitness cost of escape to
0 ci = 0. In all fits, we assumed that the rate of virus replication
r= 1.5/day (28).

While multiple models may be able to describe accurately
experimental data, some models may do so at biologically unrea-
sonable parameters. For example, estimated rate of mutation at
different epitopes may be unrealistically large. Thus, in our analy-
sis, we assume that mutation rates, which are above 10−3 are likely
to be unrealistic given that currently estimated HIV mutation rate
is about 3.2× 10−5 per bp per generation (34) and size of a CTL
epitope is 8–10 amino acids (3× 10× 3.2× 10−5 ≈ 10−3).

To fit the Ton–Toff model [equation (6)] to experimental data
using non-linear least squares, we log-transformed the model
predictions and the data.

When interpolating CTL response kinetics, there was often not
enough information on the starting point (day 0). In such situ-
ations, we set the initial CTL density as 1 (the detection level for
this data set) for simplicity. Other starting points (e.g., intersection
point of theCTL response axis and the reverse extension line of the
interpolation function) were also tested and led to similar results
(not shown). This was largely due to the fact that, in our models,
CTLs at low densities are not expected to exert large selective
pressure on the virus population due to assumed mass-action
killing term.

3. RESULTS

3.1. Statistical Model Impacts Estimation
of the Escape (Killing) Rate
Given virus evolution data, we may be often interested in quan-
tifying selecting pressures driving specific changes in the virus

population. Following HIV-1 infection, the virus escapes from
several cytotoxic T lymphocyte (CTL) responses (45), and mul-
tiple studies used mathematical models of various levels of com-
plexity to estimate the predicted efficacy at which CTLs recognize
and eliminate cells, infected with the wild-type (unescaped) virus
(14–18, 25). Many of these previous studies estimated the rate of
HIV escape from immunity using nonlinear least squares, which
explicitly assumes normal distribution of the deviations between
model predictions and data (14–17). However, the assumption of
normally distributed residuals is likely to be violated for data when
only a handful of viral genomes are sequenced—which is com-
mon in many studies involving single genome amplification and
sequencing techniques (SGA/S).We have recently proposed to use
a likelihood approach, which assumes virus genome sampling to
follow a binomial distribution (18). This binomial distribution-
based likelihood approach showed to impact the estimates of the
CTL killing rate (escape rate can be proportional to the killing rate
under an assumption of constant CTL response) when compared
to normal distribution-based likelihood approach (least squares)
(18). However, this previous comparison was done on data, which
were fairly sparse and comparison involved modifications of data
to allow for non-zero and non-one frequencies of the escape
variant (14, 15), and thus, it remained unclear if estimates of
escape rates are truly dependent on the statistical model for better
sampled data.

Unfortunately, in our cohort of 17 patients (12), very few
patients were sampled frequently enough to observe gradual accu-
mulation of escape variants in the population (i.e., data with
two sequential time points with mutant frequency in the range
0< f< 1 were rare). For the analysis, we, therefore, used the
escape data from two patients, CH131 and CH159, where CTL
and HIV sequence measurements were sufficiently frequent to
address our modeling questions. We fitted a simple mathemati-
cal model describing escape of the virus from a single constant
(non-changing) CTL response (equation (3)) to the data from
one patient CH159 (Figure 2) assuming two different statistical
models: with normally distributed residuals (least squares) or
binomial distribution-based likelihood (equation (7)). Consistent
with our previous observation, we found that the type of statistical
model impacts the estimate of the escape rate (k in Figure 2) with
difference being nearly twofold (k= 0.27/day vs. k= 0.51/day).
It is interesting to note that, visually, the least squares method
appear to describe the data better by accurately fitting the points
with intermediate frequency of the escape variant in 20–30 days
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A B

FIGURE 2 | Statistical model has a strong impact on the estimated killing rate. We fit model in equation (7) to the same data for HIV escape in the protein region
DREVLIWKFDSSLARRHL of Nef (Nef 177–194) in patient CH159, assuming normal distribution-based likelihood (normally distributed residuals or nonlinear least
squares (A)) or binomial distribution-based likelihood method (B). Data are shown as dots and bars represent the 95% confidence intervals calculated using beta
distribution (Jefferey’s intervals (44)). The fitted parameters are µ= 7.76×10−7 and k= 0.51 day−1 (A), or µ= 2.00×10−4 and k= 0.27 day−1 (B).

after the symptoms (but missing the another intermediate data
point (12, 0.08)). However, this visually better fit is not sup-
ported by the statistics: likelihood of the model for these data is
−12.64 or−10.53 for normal (Figure 2A) or binomial (Figure 2B)
distribution, respectively (and AIC scores being 31.0 vs. 26.8,
respectively). Interestingly, the main difference in the estimated
escape rates was driven by just one data point ((t, f )= (12, 0.08));
removing this data point from the data led to identical estimates of
the escape rate, k= 0.51/day, from two statistical models (results
not shown). This is not surprising because with this data point
removed, the information on escape rate is only coming from
two data points when the frequency of the escape variant is
intermediate (0< f < 1).

As discussed before, least squares may not allow to estimate
escape rates, e.g., in cases when mutant frequency jumps from 0
to 1 between two subsequent time points unless data are modified
(14, 15). Similarly, models assuming normally distributed residu-
als may not be able to fit other types of data, in which frequency
of the mutant has an intermediate value (0< f < 1) at one time
point only. In particular, in our analysis of another escape in
patient CH159 (Rev GRPTEPVPFQLPPLERLC, see Figure 3), we
could not obtain finite estimates of the escape rate using normally
distributed residuals (results not shown). Rather, the model fits
tended to describe accurately two data points (t= 22 days and
t= 29 days) and ignore another data point (t= 56 days) leading to
extremely high predicted escape rates (results not shown). Inter-
estingly, using binomial distribution-based likelihood allowed for
an accurate fit of the model to data and the fit compromised
between describing early and late data points (Figure 4A). The
reason for the compromise is that a fit predicting fast escape and
nearly 100% escape variant by 56 days since symptoms is highly
disfavored by the binomial distribution-based likelihood because
some wild-type variants were still present at day 56 (thus, the
weight for missing this point by the model fit was very high
in binomial distribution-based likelihood but not in the nor-
mal distribution-based likelihood). Taken together, these results
suggest that the type of the statistical model used to estimate
HIV escape rates influences the final estimates. Therefore, many
previous studies on HIV escape assuming normally distributed

residuals may need to be re-evaluated for the robustness of their
conclusions.

3.2. CTL Response Kinetics Do Not
Improve Description of the Escape Data
As CTL responses drive HIV escape from epitope-specific T cells,
it is expected that the magnitude of the CTL response should
naturally impact escape kinetics. Previous studies provided some
evidence that the relative magnitude of a given CTL response
in the total HIV-specific CTL response early in infection (%
immunodominance) predicts the timing of viral escape (11, 12).
Immune response was also shown to impact escape of simian
immunodeficiency virus (SIV) from T cell responses (19, 46, 47).
Immune response magnitude, and as a consequence, the overall
CTL killing efficacy is important in determining both timing and
speed of viral escape with the rate of viral escape being directly
related to the immune response efficacy (16, 17). In contrast, both
initial mutant frequency, virus mutation rate, and CTL killing
efficacy determine timing of viral escape (17). Whether inclusion
of the experimentally measured CTL dynamics impacts ability of
mathematical models to accurately describe viral escape data has
not been tested.

To test the benefits of using longitudinally measured CTL
responses in describing viral escape data, we considered several
alternative models for the CTL dynamics and viral escape. Our
model 1 describes the dynamics of viral escape from each CTL
response independently. Models 2 and 3 describe escape from
multiple CTL response that occurs sequentially or concurrently,
respectively (see Materials and Methods for more details). CTL
dynamics was either considered to be unimportant (i.e., killing
rate ki was set constant over time), orwhen killing ratewas propor-
tional to the experimentally measured CTL frequency (k′

iEi(t)),
respectively. To describe CTL dynamics, we either used the first
order interpolation function or the Ton–Toff model (equation (6)
and see Materials and Methods for more detail).

In patient CH159, four CTL responses were detected
(Figure 3B), and three of these responses were escaped within
nearly 4 years of infection. Interestingly, the response specific
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FIGURE 3 | Basic dynamics of CTL response and HIV escape for patient CH159. Data are from a previous publication (12); the data show four CTL responses in the
patient (B) and frequencies of corresponding escape variants (A). Based on the selection criteria described in the Materials and Methods, we focused our analysis on
CTL dynamics and escape in two regions: Rev GRPTEPVPFQLPPLERLC (65–82) and Nef DREVLIWKFDSSLARRHL (177–194) shown for the first 200 days in panels
(C,D). Dashed lines in panel (D) are the prediction of the Ton–Toff model to these data with the following estimated parameters for the Rev-specific T cell response:
E0 =1 IFNγ +SFC/106 PBMC, Ton =12day, Toff =29day, ρ= 0.23 day−1, α= 1.67×10−6 day−1; and for the Nef-specific T cell response: E0 = 73.59
IFNγ +SFC/106 PBMC, Ton =0day, Toff =126.05 day, ρ=6.98×10−3 day−1, α= 1.86×10−3 day−1.

to Gag TPQDLNTML was dominant (Figure 3B), but the
corresponding escapemutant Gag TPQDLNTMLNTVGGHQAA
did not appear up to 1,132 days since onset of symptoms
(Figure 3A).

Patient CH159 had two escape mutants in regions
Rev GRPTEPVPFQLPPLERLC (Rev 65–82) and Nef
DREVLIWKFDSSLARRHL (Nef 177–194) satisfying our
selection criteria (Figure 3C). Despite a relative small magnitude
of CTL responses specific to Rev65 and Nef177 early in infection
(up to 29 days since onset of symptoms), escapemutants appeared
early and their frequencies arose rapidly.

We fitted three alternativemathematicalmodels for viral escape
and three alternative models for the CTL dynamics to the data
on viral escape (Figure 3C) using binomial distribution-based
likelihood method (see Materials and Methods for more detail).
Surprisingly, we found that the models 1 and 3 with a constant
immune response described the data with best quality as judged
by the AIC (or likelihood). Parameter estimates in the model 1,
which assumes independent escape were nearly identical to the
parameters in the model 3, which assumed concurrent escape
(Figure 4;Table 1). Importantly, adding experimentallymeasured
CTL response dynamics (as interpolated function or by using
parameterized Ton–Toff model) did not improve the quality of the
model fit to escape data (Table 1). Even worse, for models 1 and

3, the fits with a fitted response were of lower quality as judged
by the large increase in AIC (Table 1). Models that included an
interpolated CTL response provided better fits than models with
a fitted response (Table 1).

The exact reasons of why including experimentally measured
CTL response dynamics led to worse fits of the escape data are
unclear but perhaps rapid change in magnitude of CTL responses
in this patient—if response directly impacts killing of infected
cells—was simply not reflected in the kinetics of viral escape
(Figures 4D,G). Specifically, CTL kinetics-driven escape would
predict non-monotonic rise in the escape variant frequency, which
was not observed in the data, thus, favoring a model with a
constant killing rate by CTLs.

Interestingly, the model 2 fits of the data resulted in unphysi-
ologically large estimates for the mutation rate µ2 (Table 1). As
we elaborate later (see below), this failure of the model to describe
these data stems from the fact that escapes in the data occur nearly
at the same time and assuming that escapes are sequential led to
an unrealistic mutation rate in the second epitope. This suggests
that the observed dynamics of viral escape in patient CH159 is not
consistent with sequential escape.

Models 1 and 3 also predicted slightly higher than expected
mutation rate µ1 (bigger than 10−3) for the peptide Rev 65–82.
Constraining this parameter to remain µ1 ≤ 10−3 led to fits of
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FIGURE 4 | Including CTL response dynamics worsened model fits of HIV escape data in patient CH159. We fitted model 1 (independent escapes, equation (3),
panels (A,D,G)), model 2 (sequential escape, equation S6 in Supplemental Material, panels (B,E,H)), and model 3 (concurrent escape, equation S8 in Supplementary
Material, panels (C,F,I)) to escape data in patient CH159 with different response inputs (constant, interpolated, or fitted response, see Materials and Methods for
more detail). Adding direct time-dependent response (interpolated or fitted response) did not improve the quality of the model fit to data (see Table 1 for parameter
estimates). Model 2 was not able to accurately describe these data for biologically reasonable mutation rates (see Table 1).

significantly lower quality (likelihood ratio test, p< 0.05). Due to
large length of the peptide, the overall mutation rate in this region
could indeed be slightly higher than our calculated high bound
for the mutation rate (see Materials and Methods for more detail).
Furthermore, since peptide Rev 65–82 is the epitope in which
first escape occurred, it was possible that the high estimate of the
mutation rate could be due to late sampling of viral sequences. In
these, data sampling was done after patients were diagnosed with
infection; however, viral escape could have started earlier and for
escapes starting earlier, it may be possible to describe the data with
a lower mutation rate (18, 48).

Therefore, to test whether the timing of the start of the escape
influences the estimate of the mutation rate we did the following.
We shifted the data for two escapes forward by adding some initial
zeroes to data and reverse extended the predicted CTL response

curves. Then we refitted models 1 and 3 to the data under the
constrain µ ≤ 10−3. We found shifting the data did not improve
the quality of themodel fits as compared to unmodified data when
CTL dynamics is explicitly taken into account as interpolated or
fitted response (results not shown). However, assuming a constant
response allowed to obtain lower, more physiological estimates
of the mutation rate. These results suggest that inability of the
models, which explicitly incorporate CTL dynamics to explain
kinetics of first escape with physiologically reasonable mutation
rate is due to late appearance of the CTL response. Indeed, escape
can only accumulate when CTL response is present and extending
the time window for virus evolution but not having CTL response
active will not significantly impact estimates of the mutation rate.

Given our results for one patient, we next sought to investigate
whether our conclusions will remain robust when looking at
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TABLE 1 | Parameters for the three models fitted to escape data from patient CH159.

Peptide Model 1 Model 2 Model 3

Mutation rate Killing rate Mutation rate Killing rate Mutation rate Killing rate
(µi, i= 1, 2) (ki, i= 1, 2) (µi, i= 1, 2) (ki, i=1, 2) (µi, i= 1, 2) (ki, i= 1, 2)

Constant Rev 65–82 1.68×10−3 0.17 9.71×10−4 0.20 1.68×10−3 0.17
response Nef 177–194 2.02×10−4 0.27 0.11 6.29×10−12 2.0×10−4 0.27

L= –25.25, AICc= 62.14 L= –25.66, AICc= 62.95 L= –25.25, AICc= 62.14

Mutation rate Killing rate Mutation rate Killing rate Mutation rate Killing rate
(µi, i= 1, 2) (k′

i , i= 1, 2) (µi, i= 1, 2) (k′
i , i= 1, 2) (µi, i= 1, 2) (k′

i , i= 1, 2)
Interpolated Rev 65–82 8.88×10−3 2.12×10−3 1.64×10−3 2.03×10−10 8.88×10−3 2.12×10−3

response Nef 177–194 4.94×10−4 3.23×10−3 697.77 2.32×10−3 4.93×10−4 3.23×10−3

L= –27.21, AICc= 66.05 L= –26. 10, AICc=63.84 L= –27. 21, AICc= 66.05

Mutation rate Killing rate Mutation rate Killing rate Mutation rate Killing rate
(µi, i= 1, 2) (k′

i , i= 1, 2) (µi, i= 1, 2) (k′
i , i= 1, 2) (µi, i= 1, 2) (k′

i , i= 1, 2)
Fitted Rev 65–82 1.43×10−2 1.39×10−3 1.13×10−3 8.50×10−18 1.43×10−2 1.39×10−3

response Nef 177–194 2.46×10−4 3.25×10−3 13,004.84 2.29×10−3 2.47×10−4 3.25×10−3

L= –29.68, AICc= 70.99 L= –26.61, AICc= 64.86 L= –29.68, AICc= 70.99

Fits of the model to data are shown in Figure 4. L and AICc are the log-likelihood and the corrected Akaike information criterion value, respectively. In bold, we show maximum L and
minimum AICc reached by the models 1 and 3 with constant response. There are some unrealistic mutation rates given by model 2 (much bigger than 10−3, highlighted as italic), and
models 1 and 3 also led to slightly unrealistic mutation rates at the peptide Rev 65–82 (slightly bigger than 10−3). Units for ki and k′

i are day
−1 and µi is dimensionless (same for all

tables below).

data from another patient. Patient CH131 had 6 CTL responses,
and there was escape from at least 5 of these responses in
2 years since symptoms (Figure 5). One escape, Nef EEVGF-
PVKPQV (Nef 64–74), occurred very early in infection, and
two escapes, Env RQGYSPLSFQTLIPNPRG (Env 709–726) and
Gag VKVIEEKAFSPEVIPMFT (Gag 156–173), occurred late
(Figure 5). In this patient, the pattern of escape followed the
ranking of immunodominance of CTL responses (12): Nef64-
specific CTLs were dominant at symptoms and drove earlier
escape, while Env 709- and Gag156-specific CTLs arose later with
escapes occurring later in infection (Figures 5A,B). However,
there were apparently discrepancies such as two escapes in Tat
epitopes (Tat DPWNHPGSQPKTACNNCY, that is Tat 9–26 and
Tat FQKKGLGISY, that is Tat 38–47) occurred at the same time
while CTL responses specific to these different epitopes were
of different sizes (Figures 5A,B). Because escapes in these two
Tat epitopes occurred rapidly and did not have two intermediate
measurements of themutant frequency, our following analysis was
only restricted to escapes in three CTL epitopes: Nef64, Env709,
Gag156 (Figures 5C,D).

We thus fitted 3 different models of viral escape combined with
3 differentmodels for theCTLdynamics to the data on viral escape
(Figure 6). Importantly, as with the analysis of data from patient
CH159, we found that including the data-driven CTL dynamics
in the escape models did not improve the quality of the model
fit to the escape data (Table 2). In contrast with the previous
results, though, the assumption of the constant and time-variable
killing efficacy (i.e., due to variation in the immune response
magnitude) did not strongly impact the quality of the model fit as
judged by the AIC or likelihood (Table 2). Importantly, however,
models 1 and 3 gave nearly identical estimates of the CTL killing
efficacy, suggesting that for data with good temporal resolution
model estimates of theCTLkilling efficacy (or by inference, escape
rates) are not strongly dependent on the specific mechanisms
used to describe escape (independent vs. concurrent escape). This
observation also suggests that exclusion of the data on escape
occurring at intermediate times after symptoms in Tat should not

influence the accuracy of estimation of the killing rates of CTLs
specific to other epitopes in CH131.

Extending the observation made with the patient CH159 data,
we found that model assuming sequential escape (model 2) could
not accurately describe the dynamics of viral escape for bio-
logically reasonable parameter values specifically for the third
escape in Gag156 although this inability was significant only for
a constant killing efficacy (Table 2). Allowing time-dependent
killing efficacy resulted in small yet larger values for the mutation
rate than that expected from basic calculations. Forcing the
mutation rate µ3 to be constrained (µ3 ≤ 10−3) significantly
reduced the quality of the model fit to data (likelihood ratio test,
p≪ 0.001). Furthermore, estimates for the CTL killing efficacy
differed between model 2 and models 1 and 3 suggesting that
model choice (sequential vs. concurrent) may indeed influence
estimates of the killing efficacy.

3.3. No Difference in Predicted Killing
Efficacy of CTLs, Specific to Different
Epitopes
Our analyses, so far, demonstrated that several different mathe-
matical models were capable of accurately describing the escape
data, but this ability was dependent on the specific pathway of how
escape mutants were generated and the assumption on whether
data-driven CTL dynamics was included in the model. In cases,
when a model was able to accurately describe the data, we gen-
erally observed different estimates for the parameters for HIV
escape in different epitopes; for example, for the data in patient
CH131 estimated CTL killing rate in the model 1 (indepen-
dent escapes) with interpolated response different nearly 100-fold
between k′

1 and k′
3 (Table 2). Knowing which immune responses

may be more efficient on a per cell basis in killing virus-infected
cellsmay be beneficial for inducing such responses by vaccination.
We, therefore, investigated how robust these differences in esti-
mated per capita killing rates are. For that, we fitted mathematical
models assuming equal killing efficacies to the data on escape.
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FIGURE 5 | Basic dynamics of CTL response and HIV escape in patient CH131. Patient CH131 had 6 CTL responses (B) and 5 responses were escaped by
700days since infection (A). Based on our selection criteria (see Materials and Methods), we focused our analysis on escape in three epitopes: Nef 64–74, Env
709–726, and Gag 156–173 (C) with the corresponding CTL dynamics (D). Dashed lines in panel (D) denote fits of the Ton–Toff model (equation (6)) to these data
resulting in the following estimates for the model parameters for Nef-specific T cell responses: E0 = 808.59 IFNγ +SFC/106 PBMC, α= 4.55×10−3 day−1; for
Env-specific T cell responses: E0 = 82.97 IFNγ +SFC/106 PBMC, Ton =0day, Toff =202.02 day, ρ= 0.017 day−1, α= 9.23×10−3 day−1; for Gag-specific T cell
responses: E0 = 1.67 IFNγ +SFC/106 PBMC, Ton =0day, Toff =80.76 day, ρ= 0.084 day−1, α=−1.04×10−3 day−1.

As expected, reducing the number of fitted parameters led to fits
of lower quality (as judged by the log-likelihood); however, this
reduction in complexity of the model was favored by the AIC
and in most cases by the likelihood ratio test (Tables S2 and S4
in Supplementary Material). Visually, the reduction in the quality
of the model fit to data was also relatively small (Figures S2 and
S4 in Supplementary Material). Thus, for these data, we found no
strong evidence in the difference in the estimated per capita killing
efficacy of the CTL response specific to different viral epitopes.

3.4. Identifying Conditions When the Model
2 (Sequential Escapes) Fails
In analysis of data from both patients, we found that model 2,
describing sequential escape from CTL responses, was not able
to accurately describe experimental data for biologically reason-
able parameter values; these model fits predicted extremely high
mutation rates (e.g., see Tables 1 and 2). Additional analyses
demonstrated that fitting the models with constrained mutation
rates, µi ≤ 10−3 led to fits of significantly lower quality (based on
increased AIC, results not shown).

A closer look at the experimental data for which model 2
provided unreasonably high mutation rates revealed that the
trajectories of two subsequent escapes in the model 2 were too

close to each other, which naturally required a high mutation rate
from one variant to another. Therefore, only when trajectories are
separated in time mutation rate µ2 is expected to be biologically
reasonable. Indeed, by simulating virus dynamics using model
for sequential escapes by varying model parameters, we found
that CTL killing rate has the major impact on the time delay
between two escapes (Figure 7). This analysis thus suggested that
for the model 2 (sequential escape) to be consistent with the data,
escapes from 2 responses must be separated in time by about
20–50 days.

4. DISCUSSION

CTL responses play amajor role inHIVwithin-host evolution (45,
49). Recent studies suggested that a relative magnitude of the CTL
response (relative immunodominance) plays an important role in
determining the time of viral escape fromT cell responses (11, 12).
These previous studies, however, only utilized a maximum value
of the CTL response early in infection, in general, within 50 days
since the onset of symptoms, and thus impact of the kinetics of
CTL response on the rate of virus escape remained undetermined.
Furthermore, the pathways of HIV escape from CTL responses
were not fully resolved as escapes occurring sequentially and
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FIGURE 6 | Including CTL response dynamics did not improve model fits of HIV escape data in patient CH131. We fitted model 1 (independent escapes, panels
(A,D,G)), model 2 (sequential escape, panels (B,E,H)), and model 3 (concurrent escape, panels (C,F,I)) to escape data in patient CH131 with different CTL response
inputs (constant, interpolated, or fitted response). Adding data-derived time-dependent CTL response (interpolated or fitted response) does not improve the fitting
results in most cases (Table 2). Notably, model 2 was unable to accurately describe late escape for biologically reasonable mutation rate µ3. Model parameters
providing the best fit are given in Table 2.

concurrently have been proposed (21, 22, 25), and several previous
studies assumed that escapes occur independently fromeach other
(14, 15, 17). Here, by using experimental data on evolution of HIV
sequences from acute infection into chronic phase and temporally
resolved dynamics of HIV-specific CTL responses, we tested the
hypothesis that CTL dynamics plays an important role in virus
escape.

Perhaps, in contrast with our initial expectations (e.g., due to
Ref. (11, 50)), we found that including experimentally measured
dynamics of epitope-specific CTL responses did not lead to a
better description of the kinetics of viral escape from T cells (e.g.,
in patient CH131, Table 2), or even reduced the quality of the
model for viral escape fit to data (e.g., in patient CH159, Table 1).
This was not because we assumed that killing of virus-infected
cells was dependent on the absolute magnitude of epitope-specific
CTL responses; assuming frequency-dependent killing, that is,
when killing of infected cells expressing ith epitope was given by
kiEi(t)/

∑n
j=1 Ej(t) (1≤ i≤ n), led to similar conclusions (results

not shown). Because previous work suggested that kinetics of

escape was independent of the specific mechanism of how CTLs
suppress wild-type virus (e.g., killing of infected cells or virus
production by infected cells) (16), we did not investigate non-
lytic control of HIV by T cells. It is interesting that the lack of
correlation between the rate of viral escape and CTL response
magnitude was highlighted previously (17).

Reasons of why a model with time-variable CTL response
did not describe experimental data better than a model with a
constant response remain unclear but several hypotheses could
be generated. First, frequency of sampling of the viral sequences
may not be high enough to detect change in the speed at which
mutant viruses accumulate in the population. Indeed, in mathe-
matical models, CTL dynamics has a direct impact on the rate of
escape (e.g., see equation (3)), and the observed changes in CTL
densities may not be reflected in escape data if measurements are
infrequent. Second, virus sequence data could simply be noisy.
Because only handful of viral sequences were analyzed by the
SGA/S, measurements of frequencies of viral variants have in
general large expected error (e.g., Figure 2). Third, CTL dynamics
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TABLE 2 | Parameters estimated by fitting different models of viral escape to escape data in patient CH131 assuming constant killing rates ki (panels A–C), or time-varying
killing rates due to interpolated CTL response (panels D–E) or CTL response in the Ton–Toff model (panels G–I).

Peptide Model 1 Model 2 Model 3

Mutation rate Killing rate Mutation rate Killing rate Mutation rate Killing rate
(µi, i =1, 2, 3) (ki, i =1, 2, 3) (µi, i =1, 2, 3) (ki, i =1, 2, 3) (µi, i =1, 2, 3) (ki, i =1, 2, 3)

Constant Nef 64–74 1.75×10−3 0.25 1.72×10−3 0.25 1.78×10−3 0.25
response Env 709–726 1.03×10−7 0.031 3.18×10−5 5.45×10−3 9.91×10−7 0.031

Gag 156–173 1.49×10−4 5.16×10−3 433,780.63 0.010 1.49×10−4 5.19×10−3

L= –34.09, AICc= 84.38 L= –36.54, AICc= 89.27 L= –34.09, AICc= 84.38

Mutation rate Killing rate Mutation rate Killing rate Mutation rate Killing rate
(µi, i= 1, 2, 3) (k′

i , i= 1, 2, 3) (µi, i= 1, 2, 3) (k′
i , i=1, 2, 3) (µi, i= 1, 2, 3) (k′

i , i= 1, 2, 3)
Interpolated Nef 64–74 4.33×10−4 1.97×10−4 3.95×10−4 2.00×10−4 4.30×10−4 1.96×10−4

response Env 709–726 7.07×10−6 3.01×10−5 8.76×10−5 1.56×10−5 7.17×10−6 3.00×10−5

Gag 156–173 1.56×10−4 4.59×10−6 3.33×10−3 7.48×10−14 1.55×10−4 4.61×10−6

L= –34.02, AICc= 84.24 L= –36.79, AICc= 89.77 L= –34.02, AICc= 84.24

Mutation rate Killing rate Mutation rate Killing rate Mutation rate Killing rate
(µi, i= 1, 2, 3) (k′

i , i= 1, 2, 3) (µi, i= 1, 2, 3) (k′
i , i=1, 2, 3) (µi, i= 1, 2, 3) (k′

i , i= 1, 2, 3)
Fitted Nef 64–74 3.25×10−3 3.38×10−4 2.99×10−3 3.46×10−4 3.16×10−3 3.41×10−4

response Env 709–726 1.38×10−6 2.59×10−5 8.90×10−5 1.05×10−5 1.12×10−6 2.66×10−5

Gag 156–173 1.73×10−4 2.82×10−6 3.41×10−3 6.90×10−14 1.73×10−4 2.83×10−6

L= –33.94, AICc= 84.07 L= –36.98, AICc= 90.17 L= –33.94, AICc= 84.07

Alternative models assume independent escape (model 1, panels A, D, and G), sequential escape (model 2, panels B, E, and H), or concurrent escape (model 3, panels C, F, and I). Fits
of models 1 and 3 gave very close parameter values, but there were some unrealistic parameter values (italicized in the table) from fits of the model 2. L and AICc give the log-likelihood
score and the correlated Akaike information criterion value, respectively. Models 1 and 3 fit almost equally with three types of response inputs and the lowest L and AICc are shown in
bold.

A B

FIGURE 7 | Model, assuming sequential escape (model 2), can be consistent with escape data when the trajectories for two sequential viral escape are separated in
time. We illustrate that separation of trajectories by ∆t50 = 409.8−344.2≃66days is sufficient for the mutation rate to be realistically small (A). Here, ti50 is the time
by which the ith variant reaches 50% of the viral population, so, ∆t50 = t250 − t150. Parameters used in simulations are µ1 =µ2 =10−5A, k1 = k2 =0.02 day−1A,
r=1.5 day−1, δ = 1day−1. The distance between trajectories needed for small predicted mutation rates is reduced for higher CTL killing rates (B) and the time is
only weakly dependent on the mutation rate assumed in simulations.

in the blood may not reflect CTL dynamics in tissues such as
secondary lymphoid organs (lymph nodes and spleen). While it is
well known that T cells recirculate in the body (51), how quickly
CTLs in the tissues migrate into the blood and then back to the
tissues during HIV infection is not known. Finally, it is possible
that the measured CTL responses were not the drivers of escape.
While the ability of CTLs to recognize the wild-type virus and
inability of the sameCTLs to recognizemutant viruses is generally
interpreted as evidence that these CTLs drove viral escape, such
observations are correlational in nature, and thus cannot fully
establish the causality of escape, at least in humans.

Our results may be interpreted as contradictory to several
previous studies that found a strong correlation between the time

of viral escape (time when an escape variant reaches frequency
of 50% in the viral population) and a relative magnitude of
CTL response (relative or “vertical” immunodominance) (11, 12).
However, our studies are not directly compatible because this
previous work focused on the timing of escape while we pri-
marily focused on the rate of viral escape. These two parame-
ters are differently impacted by the CTL response (17) and may
have different clinical importance. In our simple mathematical
model (e.g., equation (3)), CTL responsemagnitude is expected to
directly impact the rate at which an escape mutant accumulates in
the population, independently of when this escape may occur. In
contrast, timing of viral escape also depends on the mutation rate.
Biologically, however, timing of escape may be more important
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than the rate because it may be more beneficial to the patient if
viral escape occurs 5 years after infection but rapidly as compared
to slow escape in just 1 year. This conjecture clearly depends on the
premise that HIV escapes from CTL responses are detrimental to
patients.

In our analysis, we generally found that for well sampled data,
the pathway of generation of escape mutants played a minor
role in predicting overall CTL killing efficacy; assuming escapes
that occur independently (model 1) or concurrently (model 3)
gave nearly identical estimates of the CTL killing efficacy (e.g.,
Tables 1 and 2). In contrast, the model assuming sequential
escape (model 2) often failed to accurately explain experimental
data; this was due to some escapes co-occurring at nearly the
same time, which obviously violated the model assumption of
sequential escape. This inability of the sequential escape model
to describe the data may be the result of the way we compared
models to data: by using deterministic model approach and by
ignoring recombination. Using deterministic model may be jus-
tified because, in acute infection, the effective population size of
HIV may be sufficiently large and ignoring recombination may
again be appropriate because very few cells in HIV infection are
generally infected by 2 or more viruses (52, 53). However, further
work is needed to demonstrate whether our conclusions regarding
inability of sequential escape model to accurately explain some
escape data is due to some of the assumptions made in the model
by running stochastic simulations and by allowing some degree of
recombination.

Many of our model fits predicted a high mutation rate for
the first epitope to be escaped by the virus (e.g., Table 2). This
model prediction could not be changed by shifting the experi-
mental data to allow for more time to generate escape mutant;
in part, this test failed because in the absence of epitope-specific
T cells escape variants accumulate rather slowly mainly driven
by mutations. It may indicate that immune pressure on the virus
population starts much earlier than it is reflected in the blood,
echoing our concerns of whether CTL dynamics in the blood
is an accurate reflection of T cell response in lymphoid tissues.
Currently, it is believed that lymphoid tissues and not the blood
are the major places of interactions between the virus and CTLs
(50, 54).

Our analysis further highlights the importance of choosing
the appropriate statistical model for the analysis of the escape
data–assuming normally distributed residuals, and therefore,
using least squares approach, may not be appropriate for some
escape data with very few sequences analyzed. Importantly, we
confirm that the type of statistical model has an impact on the
estimate of the escape rate (18).

We found that experimental data on HIV escape can be
explained well if we assume identical per capital killing efficacy
of CTLs, specific to different viral epitopes. This suggests that
individual per capita killing rates not accurately estimated from
these data.While it is possible that this result was the consequence
of assuming additive killing of virus-infected cells by different

CTL responses, we currently do not have any in vivo data to
support more complex killing terms.

Overall, analyses of data from two patients suggested that
models assuming independent escape of HIV from different
CTL responses (model 1) or models assuming concurrent escape
from multiple CTL responses (model 3) fit the data well and
provide very similar (often nearly identical) estimates for the
killing efficacy of CTL response. Thus, for well sampled data,
assumption of independent escapes may be sufficient to accu-
rately estimate HIV escape rates. Also, the model with data-
driven time-dependent CTL response (interpolated or fitted
response input) did not improve the quality of the model fit
to data, so, at present, it appears to be unnecessary to incor-
porate the experimentally measured CTL response dynamics in
the model describing viral escapes. Yet, because our results were
found only for two patients, whether similar conclusions will
be reached in other studies/patients remains to be determined.
Our analysis nevertheless demonstrates how mathematical mod-
eling may help to quantify HIV evolution in presence of CTL
responses and to highlight potential limitations with experimental
measurements.
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Analysis of previously published target-cell limited viral dynamic models for pathogens

such as HIV, hepatitis, and influenza generally rely on standard techniques from dynamical

systems theory or numerical simulation. We use a quasi-steady-state approximation to

derive an analytic solution for the model with a non-cytopathic effect, that is, when the

death rates of uninfected and infected cells are equal. The analytic solution provides time

evolution values of all three compartments of uninfected cells, infected cells, and virus.

Results are compared with numerical simulation using clinical data for equine infectious

anemia virus, a retrovirus closely related to HIV, and the utility of the analytic solution is

discussed.

Keywords: quasi-steady-state approximation, viral dynamics, equine infectious anemia virus, HIV, dynamical

systems, matched asymptotic expansion

1. INTRODUCTION

Mathematical models have proven valuable in understanding the dynamics of viral infections
in vivowithin host cells andwere originally devised to examineHIV infection (reviewed by Perelson
and Ribeiro, 2013). For interactions of that sort, a basic three-component dynamical systemsmodel
consisting of an uninfected target-cell population, an infected cell population, and the free virus
population was proposed (see Figure 1). This model implied that the propagation of the virus
was limited by the availability of susceptible target-cells and hence is now characterized as target-
cell-limited (Phillips, 1996). Assuming a rapid enough time-scale for the free virus dynamics so
that a quasi-steady-state approximation could be employed, Tuckwell and Wan (2004) formally
reduced this basic target-cell-limited viral model system to a two-component one consisting of the
uninfected and infected target-cells. They then showed that there were no periodic solutions for the
two-component model and that the trajectories of both systems remained quite close. DeLeenheer
and Smith (2003) and Prüss et al. (2008) studied the global stability of the biologically relevant
equilibrium points for this basic target-cell-limited viral model system and found that its behavior
depended upon the size of a particular non-dimensional parameter R0, the basic reproductive
number, to be defined in the next section. If R0 < 1, they demonstrated that the virus-free
equilibrium point was globally asymptotically stable, while if R0 > 1, this property shifted to the
disease-persistence equilibrium point.

The results cited above use either standard techniques of dynamical systems theory or numerical
simulations. Defining α as the ratio of the death rates of the infected to the uninfected cells,
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FIGURE 1 | Schematic diagram of the basic target-cell-limited viral dynamics

model illustrating cell-virus interactions. Uninfected target-cells (T) can be

infected by the virus (V) to create productively infected cells (I) (see e.g.,

Perelson and Ribeiro, 2013). In the case of a non-cytopathic virus ρ ≈ δ. The

associated mathematical model (Equation 1) is described and analyzed in

section 2.

Burg et al. (2009) classified such viral interactions to be either
cytopathic or non-cytopathic depending upon whether α > 1
or α = 1, respectively. During cytopathic viral interactions
the infected cells are killed by the virus during the course of
infection. Some viruses are intrinsically non-cytopathic because
they replicate in a relatively benign manner while others actively
maintain such a state by shutting down all destructive processes,
activating non-destructive mechanisms, or inducing alternate
non-damaging replication programs (Plesa et al., 2006).

In what follows, we shall consider non-cytopathic retroviral
interactions; that is, interactions that satisfy α = 1, which is
believed to be the case for the equine infectious anemia virus
(EIAV) (Schwartz et al., 2018). EIAV shows many characteristics
similar to other retroviruses, including a very rapid replication
rate and high levels of antigenic variation. It, however, is
unusual among retroviruses in that most infected animals,
after a few episodes of fever and high viral load, progress
to a stage with low viral load and an absence of clinical
disease symptoms. The horses effectively control viral replication
through adaptive immune mechanisms. Given that this differs
from the retroviruses human immunodeficiency virus (HIV)
and simian immunodeficiency virus (SIV), in which the infected
develop immunodeficiency and disease, EIAV is especially
interesting to study in clinical research as well as by using
mathematical models. When adopting the mathematical model
depicted in Figure 1, the viral clearance rate γ captures these
adaptive immune system response mechanisms. In section 2, we
shall employ a systematic two-time method (Matkowsky, 1970)
to deduce a quasi-steady-state asymptotic closed-form analytic
solution of that basic target-cell-limited viral dynamics model.

Although such non-linear problems can be solved numerically
the computation must be performed sequentially for each
different set of parameter values. The advantage of this
asymptotic approach is that it yields an analytic representation,
involving the parameters as well as time, required for
least-squares parameter-identification curve-fitting procedures

to experimental data. We conclude by applying this approach to
an experimental data set on EIAV infection.

2. THE BASIC TARGET-CELL-LIMITED
MODEL

The basicmodel for viral dynamics (see Anderson andMay, 1992;
Tuckwell and Wan, 2004; Burg et al., 2009; Stancevic et al., 2013)
that describes the interactions of a virus with target-cells is given
by

dT

dt
= λ − ρT − βTV (1a)

dI

dt
= βTV − δI (1b)

dV

dt
= bI − γV (1c)

where T represents the uninfected target-cell population, I is the
population of infected cells, and V is quantity of free virus while
t, as usual, represents time. It is assumed that the target-cells are
produced at a constant rate λ and die at a rate ρT. Free virus
infects target-cells at a rate βTV and infected cells die at a rate δI.
New virus particles are produced at a rate bI and are cleared at a
rate γV . For the model under consideration, we assume that the
viral interaction is non-cytopathic and therefore take ρ = δ in
the analysis which follows.
We begin by introducing the dimensionless quantities

x(τ ; ε) =
ρ

λ
T(t), y(τ ; ε) =

ρ

λ
I(t), v(τ ; ε) =

β

ρ
V(t), τ = ρt,

ε = ρ/γ and R0 =
λβb

ρδγ
,

which upon substitution in Equations (1) yields the
dimensionless system

dx

dτ
= 1− x− xv (2a)

dy

dτ
= xv− y (2b)

ε
dv

dτ
= R0 y− v. (2c)

2.1. The Method of Matched Asymptotic
Expansions
The parameter, ε in Equations (2) is negligible when compared
to terms of O(1) if the intrinsic death rate of the target-cell
population is small when compared to the clearance rate of the
virus. We proceed under this assumption and seek a solution of
the form

[x, y, v](τ ; ε) = [x0, y0, v0](τ )+ O(ε). (3)

Upon substituting Equation (3) into the dimensionless system
(Equations 2) and retaining terms of order O(1), we obtain the
differential-algebraic system
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dx0

dτ
= 1− x0 − x0v0 (4a)

dy0

dτ
= x0v0 − y0 (4b)

v0 = R0y0. (4c)

We now construct the inner (or boundary layer) solution, the
outer (or quasi-steady-state) solution, and the uniformly valid
additive composite.

2.1.1. The Inner or Boundary Layer Solution
The presence of ε in Equations (2) suggests that the system
contains interactions that occur on two widely different time
scales—one fast and one slow. In light of this, we introduce the
“transient time” variables

η = τ/ε = γ t, X(η; ε) = x(τ ; ε), (5)

Y(η; ε) = y(τ ; ε), V(η; ε) = v(τ ; ε).

Upon substituting these into Equations (2) and noting that
d/dη = ε d/dτ we obtain the boundary layer equations

dX

dη
= ε(1− X − XV), (6a)

dY

dη
= ε(XV − Y), (6b)

dV

dη
= R0Y − V. (6c)

The ratio of the time scales ε = ρ/γ << 1, is both a consequence
of the fact that the virus acts on a fast time scale η = γ t and
the target-cells, on a slower time scale τ = ρt, and a necessary
condition for the employment of a quasi-steady-state approach.

Seeking a solution of Equations (6) of the form

[X,Y,V](η; ε) = [X0,Y0,V0](η)+ O(ε)

we find that

dX0

dη
=

dY0

dη
= 0,

dV0

dη
= R0Y0 − V0,

which upon integration yields

X0(η) ≡ x(0), Y0(η) ≡ y(0),

V0(η) = R0y
(0)

+ [v(0) − R0y
(0)]e−η, (7)

where x(0), y(0) and v(0) are the O(1) values as ε → 0 of the
prescribed initial conditions

X(0; ε) = x(0), Y(0; ε) = y(0), V(0; ε) = v(0).

2.1.2. The Outer Solution or the Quasi-Steady-State

Approximation
We determine the proper initial conditions to impose for the
one-term outer solution functions satisfying Equations (4) by
employing the one-term matching rule

x0(0) = lim
η→∞

X0(η), y0(0) = lim
η→∞

Y0(η), v0(0) = lim
η→∞

V0(η),

which in conjunction with the results of Equation (7) yields

x0(0) = x(0), y0(0) = y(0), v0(0) = R0y
(0),

where the target-cell initial values can be normalized to satisfy

x(0) + y(0) = 1.

Since the target-cell populations for both their infected and
uninfected states have been non-dimensionalized by employing
the same scale factor, this may be accomplished if that common
scaling is identified with the initial value of the sum of these
populations.

Now returning to Equations (4) and taking the sum of its
differential equations, we find that

d(x0 + y0)

dτ
+ (x0 + y0) = 1 (8)

with initial condition just determined of

x(0) + y(0) = 1. (9)

Solving this differential equation problem (Equations 8 and 9),
we obtain

x0(τ )+ y0(τ ) ≡ 1 or y0 = 1− x0, (10)

which from Equation(4c) implies

v0 = R0y0 = R0(1− x0). (11)

Finally, substituting Equation (11) into Equation (4a) yields the
Ricatti equation for x0 = x0(τ ;R0):

dx0

dτ
= 1− (R0+1)x0+R0x

2
0, τ > 0; 0 ≤ x0(0;R0) = x(0) ≤ 1,

(12)
where the initial condition follows from Equation (9). We note
that x0 = 1 is a particular solution of Equation (12), thus we
introduce the variable

z ≡ x0 − 1 (13)

which upon substituting into the above Riccati equation yields
the Bernoulli equation

dz

dτ
+ (1− R0)z = R0z

2 (14)

that can be solved by introducing the variable w = z−1 to obtain

z−1
=

R0

1− R0
+ ce(1−R0)τ . (15)

Making use of Equation (13) and the initial condition x0(0) =

xi ≡ x(0), we arrive at the quasi-steady-state approximation for
the uninfected target-cell population

x0(τ ) =

{

f (τ ) if R0 = 1,

g(τ ) if R0 6= 1,
(16)
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where

f (τ ) =
xi + (1− xi)τ

1+ (1− xi)τ

and

g(τ ) = 1+
(1− R0)(xi − 1)

R0(xi − 1)+ (1− R0xi)e(1−R0)τ
.

Note that expressions for y0(τ ) and v0(τ ) follow directly from
Equations (10) and (11), respectively. For ease of exposition in
what follows we set yi ≡ y(0) and vi ≡ v(0). Many similar three-
component model systems assume that initially the target-cells
are free of the viral infection. If an assumption of that sort were
made for our model by taking yi = 0 or equivalently xi = 1 then
Equation (16) would yield the unrealistic result that x0(τ ) ≡ 1.
Hence, we shall approximate that situation by adopting the initial
condition yi = a or equivalently xi = 1 − a instead where the
perturbation infected population density a satisfies the condition
0 < a << 1. Specifically, for the relevant plots of Figures 2, 3,
we shall take a = 0.0001 which implies that xi = 0.9999.

2.1.3. The Uniformly Valid Additive Composite
Constructing the one-term uniformly valid additive composites
defined by

x(0)u (τ ) = x0(τ )+ X0(τ/ε)− xi,

y(0)u (τ ) = y0(τ )+ Y0(τ/ε)− yi,

v(0)u (τ ) = v0(τ )+ V0(τ/ε)− R0yi;

we obtain, from the results of sections 2.1.1 and 2.1.2, that

x(0)u (τ ) = x0(τ ), y(0)u (τ ) = y0(τ ),

v(0)u (τ ) = v0(τ )+ [vi − R0yi]e
−τ/ε , (18)

where

y0(τ ) = 1− x0(τ ) and v0(τ ) = R0y0(τ ) = R0[1− x0(τ )].
(19)

Observe, for the target-cell variables, the outer solution is actually
uniformly valid to this order.

3. RESULTS

In this section we examine the qualitative behavior of the quasi-
steady-state approximation given by Equations (18) and (19).
We then compare the quasi-steady-state approximation with a
numerical simulation of Equations (2) using equine infectious
anemia virus (EIAV) data (Schwartz et al., 2018).

From the form of x0(τ ), it is readily seen that when R0 = 1,
x0(τ ) = f (τ ) → 1 as τ → ∞. If R0 < 1 then x0(τ ) = g(τ ) → 1
while if R0 > 1, x0(τ ) = g(τ ) → 1/R0 as τ → ∞, where x0(τ ) is
expressed as a percent of its initial population. This is consistent
with the global stability results mentioned in section 1.

Figure 2 is a plot of the three uniformly valid composite

functions x
(0)
u (τ ), y

(0)
u (τ ), and v

(0)
u (τ ). Parameter values used are

median values reported in Schwartz et al. (2018) for the equine
infectious anemia virus. Specifically, we take

λ = 2019 cells/(ml ∗ day),

β = 3.25× 10−7ml/(viral RNA copies ∗ day),

b = 505 viral RNA copies/(cell ∗ day),

ρ = δ = 1/21 per day, and γ = 6.73 per day.

Given that a dimensionless time unit (τ = 1) corresponds to 21
days, we see that the uninfected cell population remains relatively
constant for approximately 7 days (τ = 0.33). This is followed by
a period of eight to ten days of rapid infection of the uninfected
cell population at the end of which approximately 95% of the
population has been infected by the EIAV.

Figure 3A provides a comparison of the one-term
asymptotic representation of the cell population (solid
black curve) given by Equation (16) with a numerical
simulation (dashed curve) of Equation (2) using the parameter
values given above. Figure 3B provides a comparison of
the one-term asymptotic representation of the free virus
population (solid black curve) with its numerical simulation
(dashed curve). The initial virus population was taken to be
450×β/ρ ≈ 0.00307 viral RNA copies/ml. We note the excellent
agreement between the analytic asymptotic representation and
numerical simulations.

4. DISCUSSION

Researchers that employ the basic viral dynamics model now
have an analytic representation involving the parameters that
provides a vehicle for least-squares parameter-identification
curve-fitting procedures to experimental data. In particular,
given a time series population data set {(tn,Tn)}

N
n=1 and our

analytic solution for uninfected target-cells in dimensional
variables denoted by T(t; λ, ρ,β , b, γ ), a parameter identification
residual least squares fit to that data is determined by defining
(Torres-Cerna et al., 2016)

E(λ, ρ,β , b, γ ) =

N
∑

n=1

[T(tn; λ, ρ,β , b, γ )− Tn]
2

and minimizing this function by solving for λc, ρc,βc, bc, γc such
that

∂E

∂λ
(λc, ρc,βc, bc, γc) =

∂E

∂ρ
(λc, ρc,βc, bc, γc)

=
∂E

∂β
(λc, ρc,βc, bc, γc)

=
∂E

∂b
(λc, ρc,βc, bc, γc)

=
∂E

∂γ
(λc, ρc,βc, bc, γc) = 0.

employing the appropriate algorithm. This procedure can be
accomplished much more efficiently if one has a closed form
representation for T(t; λ, ρ,β , b, γ ) as in our case.

We note that for the basic target-cell-limited viral
dynamics model, the deduction of an analytic solution for
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FIGURE 2 | Plots of the uniformly valid additive composite solutions. (A) Uninfected cell population, x
(0)
u (τ ) , (B) infected cell population, y

(0)
u (τ ), and (C) free virus

population, v
(0)
u (τ ). Populations are expressed as a percent of their initial population values. One dimensionless time unit (τ = 1) corresponds to 21 days. Parameters

used to create the plots are given in the text and correspond to R0 = 21.7 and ε = 0.007.

FIGURE 3 | Comparison of the asymptotic solution of the cell population (solid black line), (A), and EIAV population (solid black line), (B), with a numerical simulation

(dashed line) of Equations (2). Parameters used to create the plots are given in the text and correspond to R0 = 21.7 and ε = 0.007.

the quasi-steady-state approximation is crucially dependent
on the non-cytopathic condition α = δ/ρ = 1 and we have
selected parameter values relevant to this scenario for EIAV.
If this were the only non-cytopathic virus, our development
restricted to the spread of infection in horse populations might
not be representative enough to enlist general interest from
virologists. Besides EIAV, however, it has been shown that this
non-cytopathic assumption is reasonable for a fairly wide class
of important viral interactions in human and other animal
populations as well, for example, Hepatitis B and C viruses
(Wieland and Chisari, 2005). In addition, non-cytopathic
enteroviruses such as the coxsackie virus B, one of the agents
suspected to be responsible for chronic fatigue syndrome
(Landay et al., 1991), cause persistent infections in their host’s
cells. Another non-cytopathic virus infecting human populations
is the Newcastle disease virus (Carver et al., 1967). Finally,
Table II in Marcus and Carver (1967) lists a collection of similar
non-cytopathic viruses inducing intrinsic interference, among
which is the hemadsorption simian virus.

We have been investigating the non-cytopathic interaction
of EIAV infection. While similar to human immunodeficiency

virus (HIV), EIAV differs from the latter in that it is not

fatal, partially because the horses’ immune systems help to
effectively control the virus. Thus, studies of EIAV infection
are of importance since they serve as useful prototypes of viral
dynamics and immune control, which may have implications
in the development of vaccines for HIV and other retroviral
infections.
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Mathematical modeling and computer simulations have become an integral part of
modern biological research. The strength of theoretical approaches is in the simplification
of complex biological systems. We here consider the general problem of receptor–ligand
binding in the context of antibody–antigen binding. On the one hand, we establish a
quantitative mapping between macroscopic binding rates of a deterministic differential
equation model and their microscopic equivalents as obtained from simulating the
spatiotemporal binding kinetics by stochastic agent-based models. On the other hand,
we investigate the impact of various properties of B cell-derived receptors—such as
their dimensionality of motion, morphology, and binding valency—on the receptor–ligand
binding kinetics. To this end, we implemented an algorithm that simulates antigen
binding by B cell-derived receptors with a Y-shaped morphology that can move in
different dimensionalities, i.e., either as membrane-anchored receptors or as soluble
receptors. The mapping of the macroscopic and microscopic binding rates allowed us to
quantitatively compare different agent-based model variants for the different types of B
cell-derived receptors. Our results indicate that the dimensionality of motion governs the
binding kinetics and that this predominant impact is quantitatively compensated by the
bivalency of these receptors.

Keywords: agent-based model, ordinary differential equations, antibody–antigen binding, receptor–ligand interac-
tion, dimensionality of motion, binding valency

1. INTRODUCTION

In recent decades, computational biology has developed into an autonomous scientific discipline
that has become indispensable for contemporary biological research. Major contributions of com-
putational biology comprise: (i) directing studies by providing insights that cannot otherwise be
obtained in wet-lab experiments, (ii) advancing biological research toward a quantitative science
through large-scale computations, and (iii) generating experimentally testable hypotheses through
simulations of mathematical models.

The strength of mathematical modeling is actually in the simplification of complex processes
by focusing on the most relevant aspects of a system. The art of modeling is in the appro-
priate choice of a mathematical approach that describes all existing experimental data and still
can make relevant predictions. At this point a reasonable compromise has to be made between
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the level of system complexity that is transferred into the math-
ematical model and the feasibility of simulations with regard to
computational resources.

Models based on ordinary differential equations (ODE) are
presumably most frequently applied in biological research, even
though this modeling approach is only valid if the system under
consideration consists of large amounts of constituents, e.g.,
molecules, that are homogeneously distributed or well stirred in
some spatial environment (1). This is because ODE models do
not explicitly account for any spatial aspects of a system and
changes in system variables, e.g., concentrations of molecules, are
consequently described by functions of time that are continuous
and deterministic. However, these assumptions, which may be
typically appropriate for chemical systems, are for biological sys-
tems at best applicable from a macroscopic point of view. In these
macroscopic models the biological processes are characterized by
two specific types of parameters, which are referred to as rates
or reaction rates. Rates characterize unimolecular processes that
occur spontaneously and have unit 1/time. Reactions involving
two types of molecules, i.e., bimolecular processes, are character-
ized by reaction rates with unit 1/(concentration× time). Typical
experimental assays to determine these macroscopic rates for uni-
and bimolecular processes are the adhesion frequency assay and
the surface plasmon resonance assay (2). The advantage of ODE
models is that they are based on a minimal set of parameters
and can be formulated with relative ease (1, 3), which makes
them belonging to the so-called simple modeling approaches (4).
Deterministic ODE models may be extended to account for the
stochasticity of chemical reactions in solution. Various numer-
ical schemes have been introduced by Gillespie to sample the
underlying master equation for the probability to find the system
in a particular state at a given time (5). These are referred to
as the direct method (6) and the first reaction method (7) and
were later advanced for computational speed-up with the next
reaction method by Gibson and Bruck (8). Albeit more detailed
than deterministic ODE models, all these approaches have in
common that a macroscopic viewpoint on the system is taken.

In contrast, agent-based models (ABMs), which belong to the
so-called detailed modeling approaches (4), consider biological
systems from a microscopic viewpoint by taking details of their
individual constituents in space and time into account. A sys-
tem’s constituents, e.g., molecules and/or cells, are represented by
agents in the model and their motion in a specific spatial envi-
ronment as well as their stochastic interactions with other agents
are monitored in the simulations. In this microscopic modeling
approach, all reactions are performed with a specific probability
per time-step. This implies that not only the rates for unimolecular
processes are measured in unit 1/time, but also the reaction rates
for bimolecular processes, because the microscopic reactions are
between two single molecules and not between concentrations of
molecules as is the case for macroscopic ODE models. The micro-
scopic rates for molecular interactions could be experimentally
measured using thermal fluctuation assays (2). However, the level
of detail represented byABMcomes at the price of a relatively large
number of model parameters, which may be unknown and/or
even inaccessible to experiment (1, 9), and simulations of ABM
are typically associated with a high computational load (10, 11).

In this study, we focus on specific receptor–ligand (RL) bind-
ing, i.e., antibody–antigen binding as a central part of the adap-
tive immune response, and model this process in a comparative
fashion by ODE models and by ABM. Binding between receptors
and ligands represents an essential process in the immune system
by which important information is transferred. For example, in
the process termed opsonization, pathogen-derived antigens can
be neutralized and labeled by antibodies for removal from the
organism. Antibodies are soluble molecules that play a key role
in the humoral response of adaptive immunity (12), because they
can bind antigens with high affinity and can provide life-long
protection against specific antigens. Of interest, antibodies do also
exist as membrane-anchoredmolecules on B lymphocytes and are
then referred to as B cell receptors (BCR). Binding of cognate
antigen by BCR activates naïve B cells in lymphoid organs, such
as spleen and lymph node (13), and this may initiate a germinal
center (GC) reaction for antibody affinitymaturation (12). During
aGC reaction, B cells are proliferating andmutating their BCR fol-
lowed by the selection of B cells with BCR that have high affinities
to presented antigens. B cells with BCR that successfully accom-
plished the selection procedure differentiate into plasma cells that
produce large amounts of these BCRas soluble antibodies. TheGC
reaction has been the subject of various interdisciplinary studies
combining experimental and theoretical investigations (5, 14–17).
In particular, it could be shown that the GC reaction is not only
initiated by antigen binding to BCRonB cells, but that its termina-
tion is as well regulated by the high-affinity antibodies produced
in soluble form (18). Taken together, antibodies represent a prime
example for this study because of three reasons: (i) they exist as
soluble as well as membrane-anchored receptors, (ii) they have
a peculiar Y-shaped morphology that raises the question on its
impact on RL binding as compared to spherically shaped recep-
tors, and (iii) they have two binding sites and can bind antigen
mono- or bivalently. The computational biology approach that is
pursued in this study allows investigating the relative importance
of receptor morphology, binding valency and dimensionality of
motion that depends on receptors being soluble or membrane
anchored on a cell. Applying different modeling approaches, e.g.,
ODE models and ABM, in a comparative fashion enables a quan-
titative mapping of the macroscopic and microscopic viewpoint
on RL binding dynamics.

2. MATERIALS AND METHODS

2.1. Microscopic Modeling of
Receptor–Ligand Binding
Agent-based models (ABMs) are widely used in computational
biology to simulate processes at the microscopic scale (9–11,
19). The individual constituents of the biological system under
consideration are represented as agents that canmove in a defined
spatial environment and can interact with each other according
to specific rules. We studied receptor–ligand (RL) binding and,
in particular, the impact of specific receptor properties on the
dynamics of the binding process. While ligands were modeled
as molecules in solution with spherical shape, we considered
receptorswith differentmorphologies, i.e., being either spherically
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shaped (O) or Y-shaped (Y), and in settings with different dimen-
sionality of motion, i.e., receptors in solution (SOL) or membrane
anchored (MEM) on the surface of a cell. The four combinations
of receptor properties are depicted in Figures 1 and 2, and give
rise to four different ABM variants. These are denoted by their
receptor properties, respectively, as O-SOL (see Figures 1A and
2A), O-MEM (see Figures 1B and 2B), Y-SOL (see Figures 1C
and 2C), and Y-MEM (see Figures 1D and 2D). Simulations of
the different ABM variants are shown in Videos S1–S5 in Supple-
mentary Material. While in what follows we describe the general
setup of the ABM, a detailed overview of the model parameters
and of their corresponding values is provided in the Table S1 in
Supplementary Material.

2.1.1. Model System
In this study, we considered the model system of a B cell with
Y-shaped B cell receptors (BCR), because these receptors do as
well exist in a soluble form as antibodies. In the ABM, BCR
with their Fab-fragments as binding sites are represented by a
cylindrical stem with two cylindrical arms and spherical binding
regions at the distal sides, which are hereafter referred to as binding
spheres. A schematic representation of the BCR in soluble and
membrane-anchored form is shown, respectively, in Figure 2C for
ABM variant Y-SOL and in Figure 2D for ABM variant Y-MEM.
The binding spheres on top of each arm represent the active

binding sites of the BCR, whose surface areas are estimated from
the size of Fv-regions, i.e., the variable parts of the BCR Fab-arms.
Thus, the binding spheres implicitly account for the attractive
short-range interactions between the binding sites of receptors
and ligands (20–23). For the reason of comparison between BCR
and spherically shaped receptors, we set the values of binding radii
such that the effective area of all binding spheres are of compa-
rable size, as can be inferred from the relative receptor sizes in
Figures 2A,B for ABMvariants O-SOL andO-MEM, respectively.
For the same reason, when comparing Y-shaped and spherically
shaped receptors, we impose the condition that receptors can only
bind one ligand at a time. In addition, we also compared Y-shaped
receptors that can bind mono- and bivalently.

2.1.2. Molecular Diffusion and Interaction
Receptors and ligands perform diffusive motion in the ABM. The
corresponding diffusion coefficients can vary by orders of mag-
nitude for soluble and membrane-anchored receptors. Diffusion
coefficients were estimated based on the Stokes-Einstein equation
(24) and the values for the corresponding ABM variants (see
Table S1 in Supplementary Material) were calculated as outlined
in Supplementary Material. In this study, we aim to investigate
the impact of the dimensionality of motion for different receptor
morphologies during the process of RL binding. In the ABM,
molecules with diffusion coefficient D move per time step ∆t

FIGURE 1 | Schemes of ABM variants for receptor–ligand binding. The ABM variants are composed of the same spherical environment (large gray sphere) containing
a spherical cell (small gray sphere) at the center. Ligands (orange) are always soluble, whereas receptors (blue) are studied in the variants: spherical receptor
morphology in (A) soluble (O-SOL) or (B) membrane-anchored (O-MEM) form and Y-shaped receptor morphology in (C) soluble (Y-SOL) or (D) membrane-anchored
(Y-MEM) form.
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FIGURE 2 | Detailed representation of receptor morphologies. Two-dimensional projection of three-dimensional receptors in ABM variants (A) O-SOL, (B) O-MEM,
(C) Y-SOL, and (D) Y-MEM. Each receptor consists of binding spheres and collision spheres that may be overlapping in position and size. Ligands can bind by
encountering a receptor’s binding sphere but are prohibited to penetrate receptors by the collision spheres. Details on the parameter values are provided in Table S1
in Supplementary Material.

the specific distance ∆s =
√

2dD∆t in a direction of the
d-dimensional space that is chosen from a uniformly random
distribution. This motion involves also a random rotation of
Y-shaped receptors around their two axes in a spherically uniform
fashion.

Two types of interaction processes are possible in the ABM:
binding of receptor and ligand to form a molecular complex
and dissociation of such a complex into individual receptor and
ligand. The latter process occurs with rate kmicro

off and translates
into the probability pmicro

off = kmicro
off ∆t that a complex dissociates

during one time step ∆t. In this study, we set the microscopic and
macroscopic dissociation rates to be equal, i.e., kmicro

off = kmacro
off .

As analyzed in detail in Supplementary Material, this approach is
valid for typical parameter values of antibody–antigen dissocia-
tion rates, implying that dissociation and rebinding are relatively
rare processes. On the other hand, binding of diffusing receptor
and ligand requires that thesemolecules first encounter each other
in the spatial environment. Then, upon contact of the ligand
with the respective binding sphere of a receptor, binding occurs
with probability pmicro

on = kmicro
on ∆t, where kmicro

on denotes the
microscopic binding rate with unit s−1. Note, that this rate is

conceptually different from the macroscopic reaction rate kmacro
on

with unit μm3 s−1, because the latter incorporates the process of
encounter of molecules in a spatially homogeneous system by
their concentrations. In this study, we establish a relation between
kmicro
on and kmacro

on by mapping the microscopic and macroscopic RL
binding kinetics onto each other.

2.1.3. Implementation and Simulation
We implemented the ABM in a spherical environment with the
cell positioned at its center and for reasons of comparison this
was the same in all four ABM variants. The boundary condition at
the outer boundary of the environment was chosen to be random-
periodic for molecule motion, i.e., a molecule leaving the system
at one point was entering the system at another random position
of this boundary, where the newly added molecule was given
an entirely new identity. At the inner boundary of the cell sur-
face, reflecting boundary conditions were imposed. By applying
these realistic boundary conditions, we ensure that the number of
molecules in the system is constant during the simulation time.

For a highly realistic implementation of RL binding dynamics,
a continuous space representation was used and combined with
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the neighbor-list method (25, 26) to speed up the detection of
interaction partners in this off-lattice approach. Molecules in
motion may approach each other and become overlapping. We
implemented a push-back procedure, such that the overlap by the
moving molecule was reduced to a point contact with the other
molecule. Thus, we imposed the condition that molecules cannot
penetrate each other and this choice impacts on the effective
reaction volume between the molecules.

For reasons of comparison between the different ABMvariants,
we use the same time step∆t in each simulation, such that changes
in the simulation results can be clearly attributed to differences
in the receptor morphology, the dimensionality of motion and/or
binding valency. To this end, we determine the time step

∆t = min
(
min

(
kmicro
off

−1
, kmicro

on
−1)

,min(∆tR, ∆tL)
)
, (1)

from the smallest considered rate of binding (kmicro
on ) and disso-

ciation (kmicro
off ) as well as the smallest time step associated with a

diffusion step in space that does not exceed the radius of receptors
(∆sR) and ligands (∆sL). The time steps of receptors (∆tR) and
ligands (∆tL) are given by

∆tR,L =
∆s2R,L

2dDR,L
. (2)

The simulation algorithm for RL binding dynamics is based on
random selection dynamics (5). Each molecule is updated per
time step with regard to its diffusion and interaction that are
performed in random order applying the acceptance-rejection
method (27). A flowchart of the algorithm is shown in Figure 3.
For the model system under consideration, i.e., a B cell with a
number of BCR in the order 105 and an equal amount of ligands,
simulation run times would exceed all limits. In fact, it can be
estimated that the ratio of the typical simulation time over the
simulated real time becomes as large as 109. Therefore, since the
size of the time step is determined by the accurate resolution of
molecular motion and interaction, we down-scale the number of
molecules and decrease the system size while keeping themolecu-
lar concentration constant. The details of the down-scaling proce-
dure are described in Supplementary Material and the associated
values are summarized in Table S2 in Supplementary Material.
All simulations were performed after down-scaling the number
of molecules by a factor s= 10−2, i.e., reducing the B cell size by a
factor 10 and the number of BCR to the order 103.

The ABM framework was implemented in the object-oriented
programming language C++.

2.2. Macroscopic Modeling of
Receptor–Ligand Binding
Modeling RL binding from a macroscopic point of view can
be done in a straightforward fashion using ordinary differential
equations (ODE). This approach is appropriate to describe chem-
ical processes where reaction partners occur in large amounts
and are homogeneously distributed in the spatial environment.
Consequently, ODE models represent time-dependent changes
of molecule concentrations in a continuous and determinis-
tic fashion. We considered the binding of receptors (R) and

FIGURE 3 | Flow chart of the ABM simulation algorithm for receptor–ligand
binding kinetics. The gray boxes represent operations and are connected by
directive arrows depicting the sequence of the ABM simulation algorithm. In
each time step ∆t, all agents perform diffusive motion and undergo
interactions with other agents in random order until simulation time t∞ is
reached. Simulations of all ABM variants are shown in Videos S1–S5 in
Supplementary Material.

ligands (L) to form a molecular complex (C) as well as their
unbinding:

R + L
kmacro
on�
kmacro
off

C. (3)

Here, kmacro
on is the reaction rate for binding, kmacro

off is the dissocia-
tion rate and the corresponding association constantKa is defined
by their ratio: Ka = kmacro

on /kmacro
off .

The reaction equation (3) was then translated into the coupled
system of ODE:

dR
dt = −kmacro

on RL + kmacro
off C, (4)

dL
dt = −kmacro

on RL + kmacro
off C, (5)

dC
dt = +kmacro

on RL − kmacro
off C. (6)
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Assuming that initially no molecular complexes exist,
C (t= 0)= 0, it follows from the relations R(t)=R(0) –C(t)
and L(t)= L(0) –C(t) that it is sufficient to solve the non-linear
equation for C(t):

dC
dt = αC2 − βC + γ, (7)

where we defined the constants

α = kmacro
on , (8)

β = kmacro
off + kmacro

on [R(0) + L(0)], (9)

γ = kmacro
on R(0)L(0). (10)

The ODE for C(t) can be solved by the separation of variables and
yields the analytical solution:

C(t) = C− C+
1 − eα(C+−C−)t

C− − C+ eα(C+−C−)t (11)

with

C± =
β

2α
±

√
β2

4α2 − γ

α
. (12)

Note that the concentration C(t) is associated with the number
of receptor–ligand (RL) complexes in the microscopic model (see
Materials and Methods section 2.1.2).

2.3. Mapping Microscopic and
Macroscopic Binding Kinetics
A relation between the macroscopic and microscopic viewpoint
on the binding kinetics of receptors and ligands can be established
via the corresponding reaction rates for RL binding kmacro

on and
kmicro
on . Given the concentration of molecular complexes C(t) (see

equation (11)), we fit this analytical solution from macroscopic
binding kinetics to the numerical results of simulations obtained
from ABM at the microscopic level. This yields the desired
relation kmacro

on (kmicro
on ) that can be compared for different ABM

variants.
The fitting procedure was performed within the open source

programming language R (28). We used the function nls() that
returns optimal parameter values of non-linear model equations
by least-squares fitting. In particular, we used the fitting algorithm
option “port” that refers to the adaptive non-linear least-squares
algorithm NL2SOL (29) provided by the Port library. The algo-
rithmadaptively switches between theGauss-Newtonmethod and
an augmented Hessian approximation (30).

In practice, we applied the fitting procedure in two different
respects: (i) The macroscopic binding rate kmacro

on in equation
(11) was estimated from fitting to the data points obtained from
numerical simulations with the ABM over time. (ii) The values
determined for kmacro

on were used as data points to fit the optimal
parameter values of the Hill equation kmacro

on (kmicro
on ) (see equation

(13)) in order to map the microscopic and macroscopic binding
kinetics.

3. RESULTS

In this section, we present our simulation results on recep-
tor–ligand (RL) binding by comparing the dynamics of individual
receptors and ligands at the microscopic level with the population
kinetics at the macroscopic level. The population kinetics can
be straightforwardly described by a coupled system of ordinary
differential equations (ODE), whereas agent-basedmodels (ABM)
resolve spatial structures of receptors and ligands and account
for the dimensionality of the spatial environment in which these
molecules diffuse and interact. In particular, we studymonovalent
receptorswith differentmorphologies, i.e., being either spherically
shaped (O) or Y-shaped (Y), and in settings with different dimen-
sionality of motion, i.e., in solution (SOL) or membrane anchored
(MEM). While ligands are throughout considered as being in
solution and as having spherical shape, the four combinations of
receptor properties give rise to four different ABM variants that
are denoted by their receptor properties, respectively, as O-SOL,
O-MEM, Y-SOL, and Y-MEM. These are schematically depicted
in Figure 1 and the differences between receptors are shown
in Figure 2. In addition, videos of simulations for the different
ABM variants with monovalent receptors are provided in Videos
S1–S5 in Supplementary Material, where Videos S1-S4 represent
down-scaled systems with factor s= 10−2, while Video S5 shows
a simulation of ABM variant Y-MEM with s= 1. A flow chart of
the simulation algorithm is provided in Figure 3 and details on
the implementation of the ABM and on the model parameters are
given in the Materials and Methods section.

3.1. Binding Kinetics for Different Receptor
Properties Qualitatively Comparable
The binding kinetics at the macroscopic level, which can be
determined from the analytical solution of the ODE model (see
Materials and Methods section), was observed to be in qualitative
agreement with the simulation results of all four ABM variants
with monovalent receptors at the microscopic level. This can be
seen from the ABM simulation results in Figure 4, where the
microscopic rate for RL dissociation was fixed at kmicro

off = 0.1 s−1,
while the microscopic rate for RL binding was set to kmicro

on =
106 s−1 (Figure 4A) and kmicro

on = 107 s−1 (Figure 4B). Note
that we provide the concentration of molecular complexes in
units 1/μm3 to enable the comparison of the binding dynamics
simulated byODE andABMvariants with soluble andmembrane-
anchored receptors. Since the initial numbers of receptors and
ligands as well as the system volumes are identical in all models
and simulations, we basically perform a comparisonwith regard to
the number of complexes in each system. In general, we observed
that the impact of the stochasticity on RL binding dynamics in the
ABM is small, e.g., the relative standard deviation in the number
of RL complexes was found to be around 1% for equilibrated
systems (see the thickness of curves in pale colors in Figure 4).
This is due to the large number of molecules in each simulation,
such that five repetitions—involving in total the simulation of 104

molecules—yielded vanishingly small standard deviations.
We generally found a decrease in the concentration of free

receptors and ligands with time, which was naturally associated
with an increase in the concentration of RL complexes. This

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1692229

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Lehnert and Figge Agent-Based Model of Receptor–Ligand Interaction

FIGURE 4 | Receptor–ligand binding kinetics for the four ABM variants.
Time-dependent concentration of RL complexes with monovalent receptors
as obtained from simulations of all four ABM variants with dissociation rate
kmicrooff = 0.1 s−1 and binding rate (A) kmicroon = 106 s−1 or (B) kmicroon =
107 s−1. Dark and pale lines in different colors represent, respectively, mean
values and standard deviations of five simulation runs per ABM variant.
Dashed lines indicate the corresponding ODE models after fitting the
macroscopic reaction rate kmacro

on .

observation was robust against variations in the receptor prop-
erties, i.e., all four ABM variants—O-SOL, O-MEM, Y-SOL, and
Y-MEM—showed the same qualitative behavior. Thus, the qual-
itative agreement with the macroscopic binding kinetics based
on the ODE was not limited to the ABM variant O-SOL as its
direct microscopic counterpart. Therefore, in what follows, the
analytical ODE solution can be used to fit the simulation results
of all four ABM variants and to characterize them by their quan-
titative differences in the macroscopic binding rate kmacro

on . Note
that this is the only free model parameter, since the dissociation of
RL complexes occurs spontaneously at both the microscopic and
macroscopic level implying that the corresponding rates are iden-
tical: kmacro

off = kmicro
off . Arguments for this relation between macro-

scopic and microscopic dissociation rates are provided based on
the analysis in Supplementary Material.

3.2. Receptor Properties Have Quantitative
Impact on Binding Kinetics
At the quantitative level, we observed differences in the binding
kinetics depending on the receptor properties as well as on the
microscopic binding rate kmicro

on . As could be expected, formation
of RL complexes occurred slower for smaller kmicro

on = 106 s−1

(Figure 4A) than for larger kmicro
on = 107 s−1 (Figure 4B). More-

over, for a fixed value kmicro
on , the ABM variants with monovalent

receptors in solution—O-SOL (red lines) and Y-SOL (blue
lines)—exhibited quantitative agreement in the binding kinet-
ics. While for the corresponding ABM variants with membrane-
anchored receptors—O-MEM (orange lines) and Y-MEM (green
lines)—this quantitative agreement was also observed, a quan-
titative difference in the binding kinetics between receptors in
solution and membrane-anchored receptors was clearly visible
(see Figure 4).

Using the analytical ODE solution of the binding kinetics, we
fitted the simulation results of all four ABM variants to character-
ize themby their quantitative differences in themacroscopic bind-
ing rate kmacro

on . The fitted curves are shown in Figure 4 and yielded
for kmicro

on = 106 s−1 (Figure 4A) the values kmacro
on ≈ 1.9μm3 s−1

for the ABMvariants O-SOL andY-SOL and kmacro
on ≈ 0.6 μm3 s−1

for the ABM variants O-MEM and Y-MEM. For kmicro
on = 107 s−1

(Figure 4B), we obtained the values kmacro
on ≈ 10.5 μm3 s−1 for

the ABM variants O-SOL and Y-SOL and kmacro
on ≈ 1.7μm3 s−1 for

the ABM variants O-MEM and Y-MEM. It should be noted that
the goodness of the fit, which was evaluated by the error of least
squares fitting, was comparable for all simulations with micro-
scopic binding rates in the range 104 s−1 ≤ kmicro

on ≤ 106 s−1.
Even though for kmicro

on > 106 the error of least squares fitting
for ABM variants with membrane-anchored receptors can be up
to two orders of magnitude larger than for those with receptors
in solution (see Figure S1 in Supplementary Material), all fitted
curves still represented a fair representation of the simulation
results (see Figure 4B).

These results were the first indication that the receptor mor-
phology plays a relatively minor role in the binding kinetics com-
pared to the dimensionality of motion of receptors, i.e., whether
receptors diffuse in three-dimensional solution or on the surface
of a cell. To further analyze these findings, we decided to establish
a detailed quantitative mapping between the macroscopic and
microscopic binding rates.

3.3. Quantitative Mapping of the
Macroscopic and Microscopic Binding
Rates Reveals Impact of Dimensionality of
Motion
We performed numerical simulations to quantify the difference
in monovalent RL binding as a function of receptor properties.
All four ABM variants were applied using the fixed dissociation
rate kmicro

off = kmacro
off = 0.1 s−1 and varying the microscopic

binding rate in the range 104 s−1 ≤ kmicro
on ≤ 2.5 × 107 s−1. The

corresponding macroscopic binding rate kmacro
on was determined

for each numerical experiment from the best fit of the analytical
solution of the ODE model to the simulation result of the ABM.
The resulting function kmacro

on (kmicro
on ) is shown in Figure 5 for each

ABM variant. The steady state concentrations of complexes and
receptors obtained by fitting the ODE kinetics to the dynamics of
the four various ABM variants are summarized in Tables S3–S6 in
Supplementary Material.

As expected from our previous considerations, the quantita-
tive difference between morphologies of monovalent receptors is
negligible compared to the dimensionality of motion, i.e., whether
receptors were diffusing in solution or within the membrane on
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the surface of a cell. Moreover, the numerical results kmacro
on (kmicro

on )
in Figure 5 resemble Hill functions,

kmacro
on

(
kmicro
on

)
=

a kmicro
on

b + kmicro
on

, (13)

with parameters a and b that are specific for given receptor prop-
erties. Here, a denotes the upper limit for themacroscopic binding
rate, kmacro

on (kmicro
on ≫ b) → a, and b is a constant that determines

the slope of the Hill function, kmacro
on (kmicro

on ≪ b) → (a/b)kmicro
on ,

while at intermediate value kmicro
on = b the Hill function attains

half of its maximal value: kmacro
on (kmicro

on = b) = a/2. The
two parameters can be determined from a fit to the numerical
simulations and the resulting curves are shown in Figure 5 as solid
lines. The corresponding values are summarized in Table S7 in
Supplementary Material for the four ABM variants.

The observed functional dependence of kmacro
on on kmicro

on is in
agreement with theoretical considerations by Collins and Kimball
on binding reactions of diffusing receptors and ligands in three
spatial dimensions (31–33). They arrived at the expression

kmacro
on (κ) =

ks κ
ks + κ

, (14)

where ks = 4π(rL + rR)(DL + DR) denotes the diffusion-
controlled reaction rate that was previously introduced by Von
Smoluchowski (34) and that depends on the radii of receptor
(rR) and ligand (rL) as well as on the diffusion coefficients of
receptor (DR) and ligand (DL). This rate refers to the frequency
at which diffusing receptors and ligands come into contact, i.e.,
have the distance rR + rL. Furthermore, κ denotes the intrin-
sic reaction rate, κ = Vr kmicro

on , which is directly related to
the microscopic binding rate kmicro

on and the reaction volume

Vr = (4/3)π(rL + rR)3 (35, 36). Combining equations (13) and
(14) yields the following relationships:

a = ks, (15)

b =
ks
Vr

. (16)

It should be stressed that this correspondence can strictly speaking
only be applied to monovalent receptors with spherical mor-
phology and to RL binding in three-dimensional solution with
receptor and ligand being allowed to penetrate each other. In
other words, equations (15) and (16) could only be expected to
hold for the ABM variant O-SOL, however, even this scenario
is different from the theoretical considerations in that molecules
are not allowed to penetrate each other in our ABM. In the
ABM, we generally do not allow for molecular penetration in
RL interactions, which reduces their possible overlap to a point
contact. The implementation of push-back collisions between
molecules effectively reduces the reaction volume Vr, i.e., we set
Vr → frVr with scaling factor fr ≤ 1. This parameterwill only affect
the slope of the Hill function, while it was observed in Figure 5
that the upper limit of the macroscopic binding rate, ks, does
as well depend on the receptor properties. To account for these
observations, we set ks → fsks with scaling factor fs. It then follows
that fr and fs can be computed from the equations

fs =
a
ks

, (17)

fr =
fs ks
bVr

(18)

in terms of the two fitting parameters a and b (see Table S7
in Supplementary Material). The resulting scaling factors are
summarized in Table S8 in Supplementary Material.

FIGURE 5 | Mapping of microscopic and macroscopic binding rates for different ABM variants. Simulation of all four ABM variants for varying kmicroon and the fitted
reaction rate kmacroon of the ODE models. Solid lines represent Hill functions with parameters fitted to the data points kmacroon (kmicroon ). Results for ABM variants are similar
for the same dimensionality of motion for receptors, i.e., either in solution (O-SOL, Y-SOL) or membrane anchored (O-MEM, Y-MEM), but are distinct for ABM variants
with soluble and membrane-anchored receptors. The dotted line represents the binding rate as determined by Collins and Kimball (see equation (14)) that is, as
expected, comparable to the simulation result for ABM variant O-SOL.
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FIGURE 6 | Quantitative difference in the scaling factors of ABM variants
relative to O-SOL. The scaling factors fs and fr are calculated from equations
(17) and (18) for parameters specific to the considered ABM variant. ABM
variant O-SOL resembles the conditions of the theoretical considerations by
Collins and Kimball (31–33) most of all. Scaling factors of ABM variants with
membrane-anchored receptors that are either spherically shaped (O-MEM) or
Y-shaped (Y-MEM) exhibit similar but clear differences to ABM variant O-SOL,
whereas ABM variant Y-SOL is most similar to O-SOL.

As could be expected, for the ABM variant O-SOL we found
the scaling factor f O−SOL

s = 1.02 to be close to 1, implying that
the upper limit for the macroscopic binding rate as predicted
by Collins and Kimball was quantitatively recovered (31–33).
Regarding the increase of kmacro

on as a function of kmicro
on , we found

the difference in the underlying assumptions onRL interactions to
be reflected by a decrease in the reaction volume Vr with scaling
factor f O−SOL

r = 0.79.
We compared the scaling factors for the other ABM variants

and present the results relative to ABMvariant O-SOL in Figure 6.
The scaling factor f Y−SOL

r of ABM variant Y-SOL was found to
be similar to f O−SOL

r with a relative decrease of only 4%, whereas
this scaling factor for the ABMvariants withmembrane-anchored
receptors, i.e., f O−MEM

r and f Y−MEM
r , was decreased by 74 and 61%,

respectively. Furthermore, as shown in Figure 6, the scaling fac-
tors fO−MEM

s and f Y−MEM
s for membrane-anchored receptors were

found to be decreased from f O−SOL
s by 77 and 69%, respectively,

indicating a significant change in the upper limit of the macro-
scopic binding rate. On the other hand, this scaling factor was
always somewhat higher for membrane-anchored receptors, i.e.,
ABM variants O-MEM and Y-MEM, compared to their respective
counterparts with soluble receptors.

We checked the dependency of the mapping between macro-
scopic and microscopic binding rates (see Figure 5) as well as the
scaling factors fs and fr (see Figure 6) on the down-scaling factor
s of the simulated ABM variants. It was generally observed that
simulations for soluble receptors were not affected by the system
down-scaling, whereas in simulations for membrane-anchored
receptors increasing the down-scaling factor s resulted into lower

values for kmacro
on as a function of kmicro

on . This implies that the
difference between ABM variants with soluble and membrane-
anchored receptors as observed in Figure 5 as well as the distances
between the respective scaling factors in Figure 6 represents a
lower limit.

Since the diffusion coefficients of receptors in the soluble
(DR = 90 μm2 s−1) andmembrane-anchored (DR = 0.05 μm2 s−1)
variant differed by orders of magnitude, we checked whether
differences in the upper limit of themacroscopic binding rate were
indeed merely a consequence of the dimensionality of motion
rather than of themagnitude of the diffusion coefficient itself. This
was done by running simulations with interchanged diffusion
coefficients, i.e., ABMvariant O-SOLwithDR = 0.05 μm2 s−1 and
ABM variant O-MEM with DR = 90 μm2 s−1. However, even this
dramatic modification of diffusion coefficients did not eliminate
the significant difference in the dependence of kmacro

on on kmicro
on

between the ABM variants (see Figures S2 and S3 in Supplemen-
tary Material).

Taken together, our quantitative analysis of monovalent RL
binding kinetics revealed the impact of receptor properties on the
macroscopic binding rate and by that on the association constant
of the RL binding. It was shown that the diffusion coefficients
of receptors and their morphology have minor effects, whereas
the strongest impact was due to the dimensionality of motion.
Compared to soluble receptors in three dimensions, RL binding
kinetics of membrane-anchored receptors on a cellular surface
were retarded and could not achieve comparably high association
constants. In what follows, we consider the impact of the binding
valency by taking into account that the Y-shaped receptors can
bind a ligand at each receptor arm.

3.4. Binding Valency Reduces Differences
in the Binding Kinetics of BCR and
Antibodies
To investigate the influence of the receptor binding valency on
the binding kinetics for monovalent receptors (see Figure 5),
we modified ABM variants Y-MEM and Y-SOL as to allow for
bivalent binding of the Y-shaped receptors, i.e., a ligand can bind
at each of the two receptor arms. Thus, in these ABM variants the
term complex refers to receptors that are bound to either one or
two ligands. The simulations were performed with varied bind-
ing rate kmicro

on between 5× 106 and 2.5× 107 s−1. The temporal
course of the binding kinetics for simulations of the bivalent and
monovalent ABM variants is shown in Figure 7. The simulations
of kmicro

on = 1 × 107 s−1 exhibit the typical relations between
the binding kinetics of the ABM variants. As could be expected,
both ABM variants with bivalent receptors showed a faster bind-
ing kinetics and also reached higher association constants than
their monovalent counterparts. In Figure 8, we show the relative
difference in receptor-bound ligands for ABM variant Y-MEM
relative to ABM variant Y-SOL and for different values of kmicro

on .
This difference is significantly smaller (down to 72%) for bivalent
receptors compared to monovalent receptors, and in the limit
of long times this difference vanishes only for bivalent but not
for monovalent receptors. These results indicate that the binding
valency makes a clear difference for RL binding: In the case of
monovalent receptors, the dimensionality of motion induces a
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FIGURE 7 | Kinetics of bound ligands for Y-MEM and Y-SOL ABM variants with either monovalent or bivalent receptors. Time-dependent concentration of bound
ligands for ABM variants Y-MEM and Y-SOL for models with either monovalent receptors or bivalent receptors. All models were simulated with dissociation rate
kmicrooff = 0.1 s−1 and binding rate kmicroon = 107 s−1. Dark and pale lines in different colors represent, respectively, mean values and standard deviations of five
simulation runs per ABM variant.

significant difference in the binding kinetics, whereas this differ-
ence is largely compensated by the bivalency of receptors. Thus,
it turns out that membrane-anchored BCR and soluble antibodies
do reach comparable association constants for bivalent receptors.

In order to investigate whether these observations are caused
by the effectively twofold number of binding sites for the bivalent
receptors, we performed simulations with ABM variants that have
twice as much monovalent receptors than the so far applied phys-
iological number of receptors (NR

p ). The binding kinetics of ABM
variants withNR = 2×NR

p monovalent receptors turned out to be
even faster as the binding kinetics of bivalent ABM variants with
NR = NR

p (see Figure S4 in SupplementaryMaterial). Additionally,
the relative differences between binding kinetics of ABM vari-
ants with soluble and membrane-bound receptors vanishes with
increasing time, and this occurs slightly faster as for ABM variants
with bivalent receptors (see Figure S5 in SupplementaryMaterial).
These results indicate that comparable association constants of
membrane anchored and soluble receptors can be observed for
systems with higher amounts of binding sites at receptors.

4. DISCUSSION

The focus of this study on receptor–ligand (RL) binding was
twofold. Firstly, we established a quantitative mapping between
macroscopic binding rates of an ordinary differential equation
(ODE) model and their microscopic equivalents as obtained from
simulating the spatiotemporal binding kinetics by agent-based
models (ABM). Secondly, we investigated the impact of various
properties of B cell-derived receptors—such as their dimension-
ality of motion, morphology and binding valency—on the RL
binding kinetics.

Regarding the quantitative mapping of binding rates, we recov-
ered for fixed dissociation rates kmicro

off = kmacro
off = 0.1 s−1 the non-

linear relationship between the binding rates kmacro
on and kmicro

on . This
resembles a Hill-type function (see Figure 5), which is in line with
theoretical predictions by Collins and Kimball (31–33). Scanning

kmicro
on over more than four orders of magnitude, we obtained

upper limiting values for kmacro
on in the range 100–101 μm3 s−1,

which corresponds to 108–109 M−1 s−1 using Avogadro’s num-
ber. For kmacro

off = 0.1 s−1, the resulting association constant is
Ka = 1010 M−1. This is in agreement with experimentally mea-
sured values for BCR-antigen binding, where typical values up to
Ka = 1010 M−1 are reached (37, 38), which is a strong indication
for our ABM variants to be realistic and quantitative to-scale
representations of RL binding.

The ABM variants were implemented in three-dimensional
representations of continuous space and RL binding was sim-
ulated by the random selection method (5). We implemented
different ABM variants where binding of spherical ligands occurs
either with soluble receptors or with membrane-anchored recep-
tors. The receptors are either spherically shaped or Y-shaped and
can be mono- or bivalent. We simulated RL binding in identical
environments to allow for quantitative comparisons of the dif-
ferent scenarios. In particular, we considered the Y-shaped and
bivalent antibodies in solution and the B cell receptors (BCR) as
their membrane-anchored counterparts on a spherical cell to be
an appropriate example. In previous work on BCR binding, ABM
implementations typically involved simplifications with regard
to the spatial representation, i.e., using a planar cell surface and
imposing a spatial grid for molecule diffusion (39, 40) and have
been applied to simulate the immunological synapse involving B
cells (41–45) or T cells (46, 47). Besides this work on immune
cell receptor–ligand interaction, there exist software packages for
the simulation of various type, such as Smoldyn (48) and MCell
(49, 50). Even though these simulators represent molecular dif-
fusion in lattice-free continuous space, they lack features that are
essential in the present study. For example, Smoldyn represents
molecules in a point-like fashion (48, 51–53), while MCell does
only allow to determine an upper limit of the simulation time step
∆t (54) implying that simulations with different model systems
may differ in the time step ∆t. Therefore, we did not consider
these simulators suitable for the investigation of morphological
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FIGURE 8 | Relative differences between ABM variants Y-MEM and Y-SOL with either monovalent or bivalent receptors. Temporal evolution of the relative differences
of bound ligands between ABM variants Y-MEM and Y-SOL for models with either monovalent receptors (monovalent ABM variant) or bivalent receptors (bivalent
ABM variant). The colors refer to ABM variants with varying binding rates kmicroon .

aspects of receptors and for comparing models at the microscopic
and macroscopic scale. Moreover, the RL binding of soluble and
membrane-anchored receptors was previously also investigated
by non-spatial ODE models (55, 56). These two-step ODE mod-
els comprise the process of encounter formation by molecule
diffusion and the reaction process itself, so that molecular param-
eters, like diffusion constant and size, could also be incorpo-
rated. However, several simplifications were made, such as the
derivation of the binding rate of membrane-bound receptors from
cell–ligand interaction rate, which turned out to be not applicable
in general (55, 56).

To study the impact of various receptor properties on RL bind-
ing kinetics, we compared scenarios that differ in the dimension-
ality of motion, morphology and binding valency of receptors.
These receptor properties were investigated since they are char-
acteristic for B cell-derived receptors that play a key role in the
adaptive immune response. Interestingly, the RL binding kinetics
for monovalent Y-shaped receptors was observed to be quanti-
tatively comparable to that of spherical receptors (see Figure 5),
i.e., the difference in the morphology of monovalent receptors did
not reveal a substantial impact. In contrast, the dimensionality
of motion for BCR compared to soluble antibodies did reveal
a clear difference in the binding kinetics, i.e., the association
constants were found to be significantly lower for membrane-
anchored receptors compared to soluble receptors (see Figure 5).
Furthermore, our results show that the diffusion constant of recep-
tors, which is much smaller for membrane-anchored molecules
as for soluble molecules, does not strongly influence the observed
differences in the binding kinetics. This suggest that the difference
in the association constants for soluble and membrane-anchored
monovalent receptors originate from the difference in the dimen-
sionality of motion. However, this difference was largely compen-
sated by taking into account that BCR and soluble antibodies are

bivalent (see Figure 8), i.e., the relative difference in the binding
kinetics of membrane-anchored and soluble receptors vanished
only in the case of bivalent receptors. It is generally known that
the bivalency of BCR supports cross-linking in the binding to
multivalent ligands. However, the current findings suggest that
the bivalency of BCR does also compensate the difference in the
association constant that exist for monovalent receptors between
the soluble and membrane-anchored variants.

In the future, the extensibility of the current simulation frame-
work can be exploited to study more complex scenarios. For
example, antigens may be represented by multivalent ligands that
do not only allow for cross-linking of BCR but also binding to
coreceptors required for B cell activation. This enables to study the
important process of BCR clustering on the cell surface (57–59)
that has also been the subject of theoretical investigations (39, 40,
60, 61). We envisage that such studies will strongly benefit from
an image-based systems biology approach, for example, as applied
by Mech et al. (62) and conceptionally reviewed by Medyukhina
et al. (63). Recently, we took the first steps toward an image-
based investigation of B cell activation that requires the concerted
action of various receptors and ligands (64). Based on these data,
our ABM can be extended by various agent types with specific
properties to predict prerequisites for experimentally observed
molecular patterns. Moreover, the ABM variants could be mod-
ified to represent various receptor properties of different antibody
isotypes and/or subclasses, which would allow investigating the
impact of specific receptor properties on the RL binding kinetics.
Based on this modification, the impact of naturally occurring
antibody complexes, such as IgA dimers and IgM pentamers,
could be investigated. Furthermore, extending the ABM to rep-
resent arbitrarily shaped cells that are brought in close contact,
it can be used to simulate the molecular patterns during synapse
formation involving B cells, T cells as well as phagocytes (65–68).
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This would enable to investigate the impact of the dimensionality
of motion of ligands that is reported to be an important parameter
for regulating B cell activation and signaling (69).
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VIDEO S1 | Simulation of down-scaled scaled O-SOL ABM variant. ABM sim-
ulation with monovalent receptors (blue objects) that are spherically shaped and
move in solution by performing three-dimensional diffusion. Upon contact between
receptors and ligands (red objects) these may bind and form RL complexes (green
objects) depending on the binding rate kmicroon =2.5×107 s−1. The system is down-
scaled with factor s = 0.01 (see Supplementary Material) and values of model
parameters are provided in Tables S1 and S2 in Supplementary Material. The video
is composed of 15 frames s−1 and the simulation time between two consecutive

frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S2 | Simulation of down-scaled O-MEM ABM variant. ABM simulation with
monovalent receptors (blue objects) that are spherically shaped and move in the
cell membrane by performing two-dimensional diffusion. Upon contact between
receptors and ligands (red objects) these may bind and form RL-complexes (green
objects) depending on the binding rate kmicroon =2.5×107 s−1. The system is down-
scaled with factor s = 0.01 (see Supplementary Material) and values of model
parameters are provided in Tables S1 and S2 in Supplementary Material. The video
is composed of 15 frames s−1 and the simulation time between two consecutive
frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S3 | Simulation of down-scaled Y-SOL ABM variant. ABM simulation with
monovalent receptors (blue objects) that are Y-shaped and move in solution by per-
forming three-dimensional diffusion. Upon contact between receptors and ligands
(red objects) these may bind and form RL-complexes (green objects) depending on
the binding rate kmicroon =2.5×107 s−1. The system is down-scaled with factor s =
0.01 (see Supplementary Material) and values of model parameters are provided
in Table S1 in Supplementary Material and Supplementary Material. The video is
composed of 15 frames s−1 and the simulation time between two consecutive
frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S4 | Simulation of down-scaled Y-MEM ABM variant. ABM simulation
with monovalent receptors (blue objects) that are Y-shaped and move in the
cell membrane by performing two-dimensional diffusion. Upon contact between
receptors and ligands (red objects) these may bind and form RL-complexes (green
objects) depending on the binding rate kmicroon =2.5×107 s−1. The system is down-
scaled with factor s = 0.01 (see Supplementary Material) and values of model
parameters are provided in Tables S1 and S2 in Supplementary Material. The video
is composed of 15 frames s−1 and the simulation time between two consecutive
frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S5 | Simulation of Y-MEM ABM variant. ABM simulation with monovalent
receptors (blue objects) that are Y-shaped and move in the cell membrane by
performing two-dimensional diffusion. Upon contact between receptors and ligands
(red objects) these may bind and form RL-complexes (green objects) depending
on the binding rate kmicroon =2.5×107 s−1. The system is down-scaled with factor
s = 0.01 (see Supplementary Material) and values of model parameters are provided
in Table S1 in Supplementary Material. The video is composed of 15 frames s−1

and the simulation time between two consecutive frames is 6.8×10−8 s. A
high-resolution video is available for download from https://asbdata.hki-jena.de/
LehnertFigge2017_FrontImmun/.
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Autoimmune diseases emerge due to several reasons, of which molecular mimicry i.e.,

similarity between the host’s and pathogen’s interacting peptides is an important reason.

In the present study we have reported a database of only experimentally verified peptide

sequences, which exhibit molecular mimicry. The database is named as miPepBase

(Mimicry Peptide Database) and contains comprehensive information about mimicry

proteins and peptides of both host (and model organism) and pathogen. It also provides

information about physicochemical properties of protein and mimicry peptides, which

might be helpful in predicting the nature of protein and optimization of protein expression.

The miPepBase can be searched using a keyword or, by autoimmune disease(s) or by

a combination of host and pathogen taxonomic group or their name. To facilitate the

search of proteins and/or epitope in miPepBase, which is similar to the user’s interest,

BLAST search tool is also incorporated. miPepBase is an open access database and

available at http://proteininformatics.org/mkumar/mipepbase.

Keywords: autoimmune disease, molecular mimicry, database, peptide, cross-reactivity

INTRODUCTION

Mimicry is a very common phenomenon in which a living being pretends to be what it is not. By
adopting mimicry, an animal get protection by not hiding, rather being mistaken for something a
predator will avoid because either it look dangerous or tastes bad. Hence, it is not surprising that
similar strategy has been exploited at the molecular level as well. The obvious benefit molecular
mimicry confers to pathogens is to fool the host’s defenses and survive. The presence of a molecule
in a pathogen that is similar with a host antigen could inhibit the immune response of the
host against the pathogen because of the immune tolerance toward self-antigens (Davies, 1997;
Gowthaman and Eswarakumar, 2013). For example,Helicobacter pylori infection in human triggers
two autoimmune diseases namely autoimmune gastritis and pernicious anemia. It occurs because
activated CD4+ Th1 cells infiltrates into gastric mucosa and they cross-recognize the self-epitopes
of H+K+ ATPase and H. pylori antigens (D’Elios et al., 2004).

There are number of well documented molecular mimicry events, using which bacteria, viruses,
or parasites evade the host’s immune response (Oldstone, 2005). The pathogen’s protein having
similar epitope to that of the host results in cross-reactivity that generates immunological response
against self (i.e., host), which ultimately leads to autoimmune diseases (Oldstone, 1998; Cusick et al.,
2012). The peptides, which display this property, are called mimicry peptides and the phenomenon
is called molecular mimicry (Davies, 1997). The role of molecular mimicry in autoimmune disease
was getting strengthen when it was observed that the antibody against the phosphoprotein of
measles virus and Herpes simplex type I can cross-react with human intermediate filament protein
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vimentin (Fujinami et al., 1983). Molecular mimicry can cause
several immune-mediated disease such as Grave’s disease (Kohn
et al., 2000; Chen et al., 2001), Insulin-dependent diabetes
(Rose and Mackay, 2000; Hiemstra et al., 2001), Multiple
sclerosis (Banki et al., 1994; Wucherpfennig and Strominger,
1995; Appelmelk et al., 1996; Talbot et al., 1996; Rose and
Mackay, 2000), Peptic ulcer (Appelmelk et al., 1996), Rheumatoid
arthritis (Tiwana et al., 1999; Balandraud et al., 2004; Bridges,
2004), Systemic lupus erythematosus (Rönnblom and Alm, 2001;
Kaufman et al., 2003; McClain et al., 2005), Myocarditis (Neu
et al., 1987; Huber et al., 1994; Gauntt et al., 1995; Schulze
and Schultheiss, 1995; Ang et al., 2004), and cancer as well,
by modulating key signaling pathways, such as those involving
Ras (Guven-Maiorov et al., 2016). A number of studies have
deciphered various prospects and aspects of molecular mimicry,
but these are scattered in numerous research papers. Compilation
of the available information from literature can greatly facilitate
the researchers who work in this domain. At present there is
no data repository, which contains all the information related
to autoimmune diseases caused due to molecular mimicry
because piecing, together of this scattered data and discerning
the accompanying details is complicated and tedious. To the
best of our knowledge, only one database namely mimicDB
(Ludin et al., 2011) is available which provides information about
proteins or epitopes involved in host-pathogen interactions. But
mimicDB is restricted to information pertaining to only a few
human parasites. Also, the mimicry candidates of mimicDB were
predicted through a computational pipeline.

In the present study we have reported a freely accessible
database, which can serve as a comprehensive and high quality
resource of peptides involved in molecular mimicry. We have
also incorporated the information related to autoimmune
diseases as well as in-depth information about mimicry
peptide and proteins. The database is named, miPepBase

(Mimicry Peptide Database), which is available at http://
proteininformatics.org/mkumar/mipepbase. All molecular
mimicry based autoimmunity events compiled in miPepBase
were experimentally verified by the respective researchers and
are supported by peer-reviewed publications. MiPepBase is an
open access database that provides comprehensive information
about the mimicry proteins and peptides of both host (and
model) and pathogen. The information includes the names
of host and pathogen proteins, sequences of mimicry peptide,
autoimmune disease caused due to mimicry peptide, gene
ontology information of the protein, PDB ID of the structure of
protein (if present), type of immunological response generated by
mimicry peptide and much more. We anticipate that miPepBase
will help researchers to generate new hypothesis about different
aspects of molecular mimicry and also act as a unified resource
of information about molecular mimicry. The miPepBase can
be searched using keyword(s) or by autoimmune disease(s) or
by a combination of host and pathogen taxonomic groups or
their names. The database also includes BLAST search tool to
facilitate sequence similarity search against the mimicry proteins
and/or peptide contained in it. Each miPepBase entry is also
linked to many popular global repositories such as UniProt
(Apweiler et al., 2004), PDB (Berman et al., 2000), EMBL-EBI

QuickGO (Binns et al., 2009), and PubMed. MiPepBase also
provides information about physicochemical properties of
proteins containing mimicry peptides, which might be helpful
in predicting the nature of protein and optimization of its
expression. The basic architecture of miPepBase is shown in
Figure 1. The data of miPepBase can also be downloaded in
text file. Overall, mimicry peptides which are compiled in
miPepBase might help in opening new gateways to explore the
role of molecular mimicry in autoimmune diseases that are yet
unaddressed. It is anticipated that miPepBase would be helpful
in understanding the details of molecular mimicry and expedite
the process of disease detection, diagnosis, prognosis, and even
deciding the therapeutic regimen of autoimmune diseases.

MATERIALS AND METHODS

Data Collection and Compilation
The main aim of miPepBase was to collect, compile and curate
all the information related to autoimmune disease caused by
molecular mimicry. Therefore, experimentally verified data was
collected after an extensive search of published research papers
with the help of PubMed and Google Scholar using keywords
“molecular mimicry,” “host-pathogen cross-reactivity,” and
“autoimmune diseases.” We also mined other additional relevant
information such as gene and protein names, mimicry peptide
sequence, name of autoimmune diseases, and immunological
response by T-cells or antibodies. The information regarding
proteins, taxonomic classification of pathogen, gene ontology
information, PDB ID, annotation status of protein (review status)
and protein sequences was obtained from the UniProt protein
repository. The miPepBase also provides PubMed link with
each entry from which the molecular mimicry and autoimmune
disease information was extracted.

Web Interface and Database Architecture
The inner framework of miPepBase is built using MySQL (http://
www.mysql.org), Perl (http://www.perl.org), and Apache (http://
www.apache.org) on Cent OS Linux platform. The interface
component consists of webpages designed in HTML/CSS in
a Linux environment. To provide convenience in usage, the
database was developed in a user-friendly manner. The “Browse”
and “Search” options were provided to search and access the
information content of miPepBase. The home page of miPepBase
has a very short introduction about molecular mimicry based
autoimmune diseases. It also provides a brief description of the
database content and clickable icons with direct links to the
database and its different utilities.

Database Accessibility
The miPepBase provides interactive access to the data and the
users can connect and access the database using any one among
different search options. The search options have been designed
in a simple and intuitive manner so that the users can search the
database either by keyword or predefined combinations of fields
(advanced search).

Keyword search assists users to search the database by
following fields: database ID or organism’s name or protein’s
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FIGURE 1 | Architecture of miPepBase.

name or entry or autoimmune disease or UniProt ID or
taxonomic classification or gene ontology ID or PDB ID or
peptide sequence or PubMed ID. It also permits free-floating
Google like search over entire database.

Advanced search provides three different types of search
options for users to access the data: First, search by one
or multiple autoimmune disease(s) caused due to molecular

mimicry. Second, search on the basis of host and pathogen
taxonomic group, which allows users to explore one or multiple
host(s) and pathogen taxonomic group(s) involved in molecular
mimicry. The third and last option of advanced search is a drop
down menu of host and pathogen name, which allows searching
restricted to a specific set of host and pathogen. Irrespective of
the mode of search chosen to query the miPepBase, the search
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result will be displayed in the tabular format. In the search result,
the ID (shown in red color) is a clickable link and can display
detailed information of corresponding entry. All the information
can be downloaded in the text format, using the “download
button” in result table. Additionally, different information related
to protein sequence, structure, gene ontology and source of
article, were linked to UniProt, RCSB PDB, EMBL-EBI QuickGO,
and PubMed, respectively. A detailed step-by-step manual is also
provided to assist users in smooth and efficient searching of
miPepBase.

Tools Integrated in miPepBase
Different tools are also incorporated in the miPepBase to help
users to search related proteins and/or peptides and analyze their
different physicochemical properties. BLAST searches similar
sequence(s) with in the database (Altschul et al., 1997, 2005)
while pepstats and pepinfo utilities of EMBOSS package provides
information about physicochemical properties of protein and
peptides (Rice et al., 2000). The information derived from these
tools might be helpful in predicting the nature of protein and
optimization of protein expression.

Pepstats was used to calculate physicochemical properties of
amino acids (such as molecular weight, number of residues)
present in mimicry protein.

Pepinfo was used to calculate properties of mimicry peptide
which include two types of plots: (i) Hydrophobicity plot (on
the basis of Kyte and Doolittle parameters) and (ii) Histogram
of presence of amino acid with the physico-chemical properties
such as tiny, small, aliphatic, aromatic, non-polar, polar, charged,
positive, and negative.

Basic Local Alignment Search Tool (BLAST): It is
incorporated to find homologous sequence(s) and similar
peptide(s) present within miPepBase database. User has to
simply paste the sequence in the text box or upload sequence
in the FASTA file to find similar sequence(s). Option to specify
search parameters like database, E-value cutoff and alignment
scoring matrix value is also present. The default cut-off E-value
is 100 and alignment-scoring matrix is BLOSUM62. In the
miPepBase BLAST tool, four different types of databases namely
Host protein, Host peptide, Pathogen protein, and Pathogen
peptide are present. Hence, similarity search can be carried out
against any of the four databases.

RESULTS

Data Statistics and Content
In the miPepBase, only experimentally verified mimicry peptides
from published papers are incorporated. The first release of
miPepBase has 261 entries in total. It does not mean that
miPepBase contains 261 host-pathogen peptide pairs. This is due
to existence of multiple mimicry peptides in a single protein.
Analysis of the miPepBase data shows that in both host and
pathogen proteins more than one stretch of amino acids might
be involved in molecular mimicry. The following information is
associated with each entry:

ID: It is a unique identifier assigned to each entry of
the miPepBase database. Each ID is linked to the detailed

information of that entry, which includes details of host and
pathogen proteins, their gene ontology information, PDB
ID of structure (if known), gene name, annotation status of
protein (reviewed/not reviewed), PubMed ID, and remark (if
any).
Organism’s name: With each event of molecular mimicry
two different organisms are associated. Organism in which
autoimmune response is generated was designated as
host. Organism, which encodes the mimicry peptide, was
designated as pathogen.
Protein names: Two different proteins are associated with
each event of molecular mimicry. One that is encoded by the
host and second which is encoded by the pathogen. Names of
both the proteins are present with each entry.
Peptide sequence: This contains the stretch of amino acids
(the peptide) present in both host’s and pathogen’s protein that
actually leads to molecular mimicry.
Pathogen taxonomic group: Organisms from all taxonomic
groups such as bacteria, viruses, fungi, and protozoa exhibit
molecular mimicry. MiPepBase contains information of
molecular mimicry based autoimmunity events caused by
organisms from all taxonomic groups.

Broadly, pathogens are divided into four taxonomic
groups namely bacteria, fungi, protozoa, and viruses.
Bacteria is further subcategorized into gram-positive,
gram-negative, and others i.e., diderms. Further, viruses
are categorized according to the classification system
purposed by David Baltimore (reviewed in Baltimore, 1971),
namely retro transcribing virus, dsDNA virus, dsRNA
virus, and ssRNA virus. The total numbers of entries
belonging to pathogens of different categories is shown in
Figure 2A.
Autoimmune disease: This field provides the information
about disease caused due to molecular mimicry. Our analysis
revealed that very diverse types of autoimmune diseases might
occur due to molecular mimicry. Data content of miPepBase
shows total 23 types of autoimmune diseases are associated
with molecular mimicry. Multiple sclerosis was the most
frequent disease followed by encephalomyelitis. The different
types of autoimmune diseases and the number of times
they were associated with molecular mimicry is shown in
Figure 2B.

How to Search Query into miPepBase?
Using a Keyword
Any data in miPepBase can be search and access by five different
ways. It is illustrated here using one protein (UniProt accession
number P10809). Users can get the information associated to
this protein by querying miPepBase submission of UniProt
accession number as a keyword to the “Keyword search option”
(Figure 3A) and click the search button (Step a1). The search
result page showed a single hit and the information related to
P10809 protein was presented in tabulated form. The search
result contains following information: unique miPepBase ID
(1217), host name (human), host protein name (HSP60), host
mimicry peptide sequence (HRKPLVIIAEDVDGE), pathogen
name (Mycobacterium bovis), pathogen protein name (HSP65),
pathogen taxonomy (Gram positive bacteria), pathogen mimic
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FIGURE 2 | Data statistics (A) Based on pathogen taxonomic group, (B) Based on autoimmune disease.

sequence (AGKPLLIIAEDVEGE), and autoimmune disease
(Rheumatoid arthritis) caused due to host and pathogen cross
reactivity. All these details can also be downloaded as text file
(Step a2). More detailed information related to P10809 can be
retrieved through miPepBase ID of P10809 (i.e., 1,217, displayed
in red font in the search table) (Step a3). Further, it will give
more information about the host’s and pathogen’s: protein entry
(host-P10809 and pathogen-P0A521), gene ontology (available
for both), PDB ID (host- 4PJ1 and pathogen-NA), gene name
(host-HSPDI, HSP60 and pathogen-groL2, groEL2, groEL2,
hsp65, Mb0448), protein reviewed (host-yes and pathogen-yes),
immunological response (Helper T cell), PubMed ID (1577070),
and remark (NA). In addition to these details the miPepBase
also provide direct link to UniProt, EMBL-EBI, RCSB PDB,
and PubMed. All information described above can also be
downloaded as “Text File” (Step a6).

Apart from above described information users can also get the
amino acids composition profiles for P10809 (host’s protein) and
P0A521 (pathogen’s protein) entries and their hydrophobicity
graph and other physico-chemical information for mimicry

peptides through “View amino acids composition profile” (Step
a4) and “View peptide properties” (Step a5), respectively. All
graphs and text file related to physico-chemical properties of
protein and peptide can be downloaded in text format.

By Disease
To retrieve the information related to mimicry proteins involved
in a particular set of autoimmune diseases, users could use
an advanced search option i.e., “Search by Diseases.” This
option lists a set of disease caused due to molecular mimicry
and whose information is present in miPepBase. Here, it
is demonstrated using Rheumatoid arthritis as an example
(Figure 3B). On selection of rheumatoid arthritis as the disease
whose information is desired (Step b1 and b2), search result
page (Step b3) would be displayed. The search page would list
the information related to proteins involved in the rheumatoid
arthritis in a tabulated form. The information content and
ways to navigate different sections remain same (Step a3–a6)
as explained above for P10809 protein using Keyword search
option.
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FIGURE 3 | Process of stepwise data retrieval and analysis in miPepBase. The user can search query with following options: (A) Keyword search, (B) Search by

disease, (C) Search by host and pathogen taxonomic group, (D) Search by host and pathogen name. The search from (A–D) options display search result table and

from that user can select the entry/displayed result for further detailed analysis. Sequence based search can also be searched by (E) BLAST search option and each

hit is further linked to its details information page. The detail of result obtained from search options (A–E) is displayed by corresponding small case (the number

indicates step number). From example a1–a6 denotes the results that can be obtained using keyword search option (A).

By Host and Pathogen Taxonomic Group
This option provides a list of pathogens and host taxonomic
group within which the search will be restricted. This search
option gives an easy way to do comparative analysis among
mimics encoded by different pathogens of same or different

taxonomic group(s) (Figure 3C). Searching (Step c3) with
“Human” as host (Step c1) and “Gram-positive bacteria” as

pathogen taxonomic group (Step c2), total 19 entries related
to gram-positive bacteria group (Step C4). Here also the
presentation of search result data and further information (from
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Step a3 to a6) were remaining same as discussed for above two
searching methods.

By Host and Pathogen Name
The information related to event of cross reactivity between a
specific host and pathogen that leads to autoimmune disease(s)
can be achieved using another advanced options i.e., “Select host
and pathogen.” The names of host and pathogen can be selected
from the dropdown menu present in this section. Here, it is
exemplified (Figure 3D) using Human as host (Step d1) and

Mycobacterium bovis as pathogen (Step d2). After submission
of query (Step d3) a result page would be display that contains
the search result information in tabulated form. The information
content of search page will remain same as explained earlier for
keyword search (Step a3–a6).

By Blast Search
This is not a direct way to search the data content of
miPepBase. Rather it searches similar sequences and peptides in
the miPepBase. The BLAST search option is available at menu
bar (Figure 3E). The query sequence in FASTA format can either
be pasted in the text box or uploaded as sequence file (Step
e1). Three parameters have to be optimized for efficient BLAST
search (i) the database in which related sequence will be searched;
(ii) E-value, and (iii) Scoring Matrix. The default e-value and
scoring matrix are 100 and BLOSUM 62, respectively (Step e2).
As shown in section E, when P10809 protein sequence was
searched against host protein database, total 13 hits were obtained
which are arranged on the basis of ascending e-value (Step e3).
Also every BLAST hit protein entry is further linked (in blue
color) to detailed information page, which provide tabulated
detailed information of corresponding BLAST hit (Step e4).
These information are the same as described above for keyword
search option (Step a4–a6).

DISCUSSION

During the last few years, much active research and experimental
verification has shed light on various aspects of molecular
mimicry and it’s role in autoimmune diseases. With the passage
of time, number of autoimmune diseases caused due tomolecular
mimicry is increasing. Since, a unified repository of the available
information related to molecular mimicry based autoimmune
diseases is not available, hence we have built a database
(miPepBase) which not only contains the information regarding
proteins and peptides associated with the process, but several
other important details also. In-depth analysis of this information
might lead to the elucidation of mechanisms of autoimmune
diseases controlled by mimicry peptides. Each entry in the
miPepBase database is linked to many other molecular biology
data repositories. Further, the database also includes inbuilt tools,
which can help to fetch other relevant information related to the
mimicry proteins and peptides. As more data will accumulate by
the use of high throughput molecular, genomic andmetagenomic
methods, we anticipate that the release of miPepBase will
facilitate comprehensive analyses of different factors involved
in autoimmune diseases caused by the mimicry peptides. We

also hope that miPepBase would be helpful for the scientific
community in understanding the host-pathogen interactions, as
well as how the pathogens evade host immune systems.

COMPARISON WITH OTHER AVAILABLE
DATABASE OF ANTIGENIC PEPTIDES

Several web-based antigen/epitope databases are available the
content of which is freely available to the users. A brief
description ofMimicDB along with comparison with miPepBase
is as follows:

MimicDB
mimicDB (Ludin et al., 2011) is a database of linear amino
acid epitopes derived from a comparative genomics approach.
These epitopes were predicted to be a potential molecular
mimicry peptide and derived from a computational prediction
pipeline. Further mimicDB is focused on a few selected human
endoparasites namely Brugia malayi, Schistosoma mansoni,
Plasmodium falciparum, Leshmania major, Cryptosporidium
parvum, Trichomonas vaginalis, and Trypanosoma cruzi. In
miPepBase the information is not restricted to any particular
class of pathogen and/or disease. It contains information related
to all autoimmune diseases caused by pathogens, which may
belong to viruses, or prokaryotes, or eukaryotes. miPepBase
host’s and pathogen’s mimicry peptides were curated from
literature. The respective researchers have already experimentally
established the role of these mimicry epitopes in generating
autoimmune disease.

LIMITATIONS AND FUTURE PROSPECTS

Although, we have made outmost effort to compile all available
data at one place, it cannot be claimed that miPepBase contains
information about each and every peptide/protein involved in
molecular mimicry based autoimmune diseases. It is certainly
possible that few peptides might have been missed and not
included in the miPepBase. In future, we would make our best
efforts to include the missing as well as newly added data in
miPepBase. The motivation behind establishment of miPepBase
was to establish a knowledgebase for proteins/peptides involved
in molecular mimicry. We will continue to add new information,
which may include but not limited to interaction partners of
mimicry proteins and their role in disease. This will enable us
to provide a platform for study of the mimicry peptides and
pathways through which they trigger autoimmune diseases. We
believe the miPepBase database would helpful to the scientific
community in exploring the various prospect and aspects of
molecular mimicry.

DATABASE UPDATE

An important aspect of any database is to keep it up to date by
adding new data. We would constantly add information about
newly discovered peptides, which exhibit molecular mimicry and
cause autoimmune diseases.
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ACCESSIBILITY AND DATA DOWNLOAD

The database and its contents are freely accessible without any
restriction at http://proteininformatics.org/mkumar/mipepbase.
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Germinal centers (GCs) are micro-domains where B cells mature to develop high

affinity antibodies. Inside a GC, B cells compete for antigen and T cell help, and

the successful ones continue to evolve. New experimental results suggest that, under

identical conditions, a wide spectrum of clonal diversity is observed in different GCs, and

high affinity B cells are not always the ones selected. We use a birth, death and mutation

model to study clonal competition in a GC over time. We find that, like all evolutionary

processes, diversity loss is inherently stochastic. We study two selection mechanisms,

birth-limited and death limited selection. While death limited selection maintains diversity

and allows for slow clonal homogenization as affinity increases, birth limited selection

results in more rapid takeover of successful clones. Finally, we qualitatively compare our

model to experimental observations of clonal selection in mice.

Keywords: germinal center reaction, population dynamics, modeling and simulations, clonal evolution, affinity

maturation

INTRODUCTION

Upon natural infection or vaccination, antibodies develop in domains within secondary
lymphoid organs called germinal centers (GC), which appear shortly after infection (Victora and
Nussenzweig, 2012). B cells with some threshold affinity for the antigen can seed GCs and, with help
from several other types of immune cells, undergo affinity maturation (AM) (Eisen and Siskind,
1964), which is an evolutionary process of mutation, competition and proliferation, that ultimately
generates high affinity antibodies.

At the initial stage of the GC reaction (GCR), naïve B cells are recruited. During AM, the AID
protein induces randommutations in the gene coding for the BCR at a high rate (Muramatsu et al.,
2000). A GC is not histologically uniform but divided roughly into two areas: a dark zone (DZ)
and a light zone (LZ). After proliferating and mutating in the DZ, B cells migrate to the LZ, where
they consume antigen displayed on the surface of follicular dendritic cells, and display antigen-
derived peptide-MHC complexes on their surface. These B cells then compete for limiting amounts
of T follicular helper cells (TfhCs). Following a proliferation signal from TfhCs (Rolf et al., 2010),
the majority of B cells migrate back to the DZ, while a few differentiate in to antibody-producing
plasma cells and memory cells (Oprea and Perelson, 1997). Iterative cycles of such hypermutation
and selection result in both an increase in B cell affinity over time, and the loss of B cell clones in the
competition process, such that a few successful clones are thought to remain at the end of the GCR
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(Jacob et al., 1993). After roughly 2 weeks, although this time can
vary significantly, the process stops and the GC collapses.

The number of founding clones of a GC was traditionally
thought to be between 1 and 6 (Kroese et al., 1987; Liu et al.,
1991; Jacob et al., 1993). However, a recent study has shown
that the initial number of clones is much higher, of the order
of 50–200 initial clones, and that the clonal number variability
after 3 weeks remains high (Tas et al., 2016). The experimental
system uses the “brainbow” allele for multicolor fate mapping
to permanently tag individual B cells and their progeny with
different combinations of fluorescent proteins (Livet et al., 2007),
resulting in up to 10 different colors. Thus, a number of distinct
observable sub-clonal lineages emerge when a cell belonging
to a certain clone chooses a color. The sub-clonal lineages are
observed at different time points of the GCR (Tas et al., 2016).
This method underestimates the number of clones in very diverse
GCs (Tas et al., 2016) as not all clones choose a color, and
multiple clones can choose the same color. Since recombination
occurs after the initial clone has proliferated, multiple colors
may represent the same clone. However, the method provides a
high throughput estimate of GC clonality. Moreover, GC clonal
diversity was also estimated by sequencing B cells, which allows
for exact reconstruction of the lineages, and both methods point
to the same qualitative behavior. Surprisingly, it was found that
while clonal diversity is lost with time, the number of remaining
clones varied significantly between GCs, even ones from the same
lymph node that shared many clones.

AMhas beenmodeled extensively over the last 30 years (Brink,
2007; Chan et al., 2013), dating back to the seminal work of
Perelson et al., showing that cycling of B cells between the DZ
and the LZ is optimal for affinity gain (Kepler and Perelson,
1993; Oprea and Perelson, 1997). Meyer-Hermann et al. (2012)
developed very detailed simulations capbable of reproducing the
dynamics and interactions of individual B and T cells within a
GC. More recently, several computational studies (Chaudhury
et al., 2014; Luo and Perelson, 2015; Wang et al., 2015; Shaffer
et al., 2016) have investigated the effect of different immunization
strategies with multiple variant antigens on the development
of cross-reactive antibodies. Many of these models assume that
selection is done by eliminating cells with low affinity BCR (Figge,
2005; Zhang and Shakhnovich, 2010). However, new evidence
suggests that the extent of B cell proliferation in the DZ is
proportional to the strength of the signal the B cell has received
in the LZ (Victora et al., 2010; Gitlin et al., 2014, 2015) which
can lead to rapid expansion of the progeny of a selected cell. We
denote these two scenarios “death-limited” and “birth-limited”
selection respectively. Since there is a minimum threshold for
any response, and proliferation is related to BCR affinity, we
suggest that both are needed to explain AM. We use here tools
from population dynamics and stochastic processes to show
that the AM process and clonal selection can be understood in
terms of stochastic clonal competition, leading to an inherently
probabilistic selection of fitter clones.

We estimate numerically clonal loss (homogenization) in a
GC and show that the magnitude by which affinity changes per
single mutation is the determinant factor in explaining clonal
homogenization rate. Because clonal selection is a stochastic

process, we show that clonal diversity has a large variability
between different GCs.While we do not include spatial resolution
of B cell LZ-DZ migration (Figge et al., 2008), recycling of
antibodies (Zhang et al., 2013), the model captures qualitatively
the essence of clonal selection with effective rates of birth,
death and mutation. We suggest that the basic aspects of clonal
diversity in the GC can be captured using simple population
dynamics models.

MODEL DESCRIPTION

AM as a Birth-Death-Mutation Process
We model B cell proliferation and death during the GCR using
a birth-death (BD) process (Renshaw, 1991). AID mutates the
gene encoding for the BCR (Muramatsu et al., 2000) and as
a consequence, affinity for the antigen changes. The resulting
increase (or decrease) in affinity translates to a higher (lower)
fitness of the B cell. Regarding the stochastic variation of BCR
in affinity space as a form of diffusion, the model resembles a
“birth-death-diffusion process” (Adke and Moyal, 1963).

Growth Phase
In the first days following immunization, while the GC is still
coalescing, B cells proliferate without competition, creating a
pool of cells on which AMmay operate. Few or no mutations are
introduced to the BCR sequence at this early stage. We start from
a simple birth/death (BD) process using an agent-based model.
Each cell is associated with a birth rate λ and a death rate µ (see
Figure 1A). We assume that a GCR starts withM different clones
and the system evolves for a period of 6 days, which we denote by
Tgrowth (Jacob et al., 1991; see Figure 1B).

During the growth phase, the probability distribution Pni (t)
of the number of cells ni that belong to clone i evolves in time
according to the master equation (Bailey, 1990):

∂Pni (t)

∂t
= λn−1Pni−1 (t) + µn+1Pni+1 (t)

− (λn + µn) Pni (t) for ni = 1, ..,∞,

∂P0i (t)

∂t
= µ1P1i (t) , (1)

where (in the absence of interactions): λn = nλ andµn = nµ and
P0i is the probability of extinction of clone i. The average number
of cells 〈ni〉 in clone i, after time t is given by (Bailey, 1990).

〈

ni(t)
〉

= ni(t = 0)e(λ−µ)t . (2)

The time dependent extinction probability of a clone is

p0i (t) =
µ(e(λ−µ)t

− 1)

λe(λ−µ)t − µ
, (3)

and the size distribution of a clone lineage is

pni (t) = (1− p0)(1− λp0/µ)(λp0/µ)
ni for ni ≥ 1. (4)

Both equations are the solution of Equation (1). After Tgrowth,
there is a supply of cells on which AM can work, while some
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FIGURE 1 | Germinal Center reaction as a birth-death-mutation process. (A)

Schematics representation of the agent based model. Each cell has a birth

rate (λ), a death rate (µ). Upon division the BCR affinity changes according to

Equation (9) with a constant D. (B) Example of a single simulation. The free

growth phase lasts for 6 days, followed by a competitive phase lasting 16

days. Each colored curve represents a different clone. The parameters used in

the simulation are detailed in Table 1 but with D = 0.01.

TABLE 1 | Values of the parameters used in the simulation presented in

Figure 2A.

Parameters Value

Number of initial clones: M 50

Basal death rate µ0 1 day−1

Birth rate λ0 1.5 day−1

Germinal center capacity N 2, 000

Diffusion coefficient D 0.001

Initial affinity w0 1.5

Growth phase Tgrowth 6 days

Competitive phase Tcomp 16 days

clones disappear. This distribution function is the starting point
for the competitive phase of the GCR.

For our parameter choices (see Table 1), which represents a
GC development, the average lineage size of a clone at the end
of the growth phase (6 days) is

〈

ni(6 days)
〉

= 20 cells, the total
number of surviving cells is

〈

N(6 days)
〉

= 1000 cells, while
p0(6 days) ≈ 2/3 corresponding to an average of 50 × 1/3 ≈

17 surviving clones. This number is lower than the number of
surviving clones in Tas et al. (2016) which was 50–200 but as we
are interested in the qualitative behavior of the system, we choose
a smaller number to facilitate the numerical calculations.

Competition Phase
After day 6, B cells survival depends on TfhC signals that are
a shared resource. Indeed, it has been shown (Victora et al.,
2010; Gitlin et al., 2015) that TfhCs have a role in regulating the
duration of cell cycle in B cells during AM and controlling their
behavior in the GC. To mimic B cell competition over the limited
resource of TfhCs, we used the stochastic logistic growth process
(Nåsell, 2001), which constrains the B cell population size. The
death rate decreases with the population size, from a basal rate of

µ0, to roughly the birth rate λ0 for a mature population:

µ(n) =

(

µ0 + (λ0 − µ0)

∑

M
i=1ni

N

)

, (5)

where N is the population capacity. Here n = (n1, n2, ..., nM) is
the vector of cell number ni for the M lineages. The competitive
phase continues for a period (Tcomp), which we take to be 16
days (Tas et al., 2016). The total number of cells in the GC
grows gradually until reaching the capacity N, where it remains
approximately fixed.

Birth Limited Selection
Occasionally, B cells undergo a proliferative burst that is
proportional to the amount of presented antigen and thus to
the BCR affinity (Victora et al., 2010; Gitlin et al., 2015). B cells
move then to the DZ, remain there and divide multiple times (4–
6) before going back to the LZ to go through another round of
selection (Gitlin et al., 2014, 2015; Tas et al., 2016). We model
this process as an increase in the birth rate (see Supplementary
Information “Heterozygosity of a Moran process”). Since cell-
cycle is modified (shortened) in this process, we take the birth
rate of cell i as

λi = λ0
wi

〈w〉Population
, (6)

where wi is the affinity of cell i, 〈w〉Population is the mean affinity
of the population and λ0 is the basal birth rate. Indeed, the
average birthrate of B cell clones in a GC, was found to be similar
(Anderson et al., 2009) in B cell clones with different affinities.
The normalization serves to keep the average population birth
rate constant at λ0. Since the clone birth rate λi is related to
the clone affinity wi, we designate this scenario “birth limited
selection.”.

Death Limited Selection
During the GCR, cells with poor affinity do not receive a
survival signal from T helper cells because they do not display
a sufficient amount of peptide-MHC molecules. Previous studies
model this process by noting that the probability of a B cell
being able to successfully compete with other B cells that have
internalized antigen and receive T cell help, grows monotonically
with the affinity of its BCR for antigen (Zhang and Shakhnovich,
2010; Wang et al., 2015), with surviving cells proliferating at
approximately the same rate (Batista and Neuberger, 1998).
Additionally, it was found (Anderson et al., 2009) that on average,
B cell clones with different affinities differ in their death rate,
where the low affinity clone dies at a higher rate than ones
with intermediate affinity. Such a scenario is considered “death
limited selection” in our scheme with a death rate µ that depends
inversely on the affinity. To study the consequences of such a
selection mechanism, we constructed the following model

µn
i = µi(wi)+ (λ − 〈µ〉population)

∑

i
ni

N
,

µi = A exp(−αwi), (7)

Frontiers in Microbiology | www.frontiersin.org September 2017 | Volume 8 | Article 1693249

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Amitai et al. Modeling Clonal Diversity in GCs

where α is a constant, µi is the death rate of a cell with affinity
wi and µn

i is the GC-size dependent death rate keeping the
population size fixed. Thus, higher affinity is related to a lower
death rate.

We also examine a model where the birthrate is normalized
over the population and as a result, the average of affinity
dependent element of death rate, is constant.

µn
i = µ0

µi(wi)

〈µ〉population
+ (λ − µ0)

∑

i
ni

N
. (8)

Affinty Change following BCR Mutation
During AM B cells mutate their BCR encoding genes. The
effect of a single mutation on fitness in models of Wright-
Fisher-like selection is often taken to be small (Park and Krug,
2007; Hallatschek, 2011; Goyal et al., 2012; Tas et al., 2016),
which allows analytical treatment of the population dynamics
as a diffusion problem. In this spirit, we modeled the effect of
mutation as a change in the affinity upon cell division, where
one of the daughter cells has the parent affinity and for the other
daughter:

wdaughter = wparent +N(0,
√

2D), (9)

where N is a normal distribution with zero mean and standard
deviation of

√
2D, withD akin to an effective diffusion coefficient

determining the magnitude of affinity change. Within this model,
affinity can increase or decrease with equal probability at every
division.

RESULTS

We performed numerical simulations of our model where we
started with 50 different clones all having the same initial affinity
(w0 = 1.5) and progressed the reaction in a GC with capacity
N = 2, 000, which is the characteristic size of GCs in mice (Jacob
et al., 1991). We track the fraction of the GC occupied by the
different clonal lineages and observe a gradual homogenization
of clonal diversity (Figure 2A). We qualitatively compare our
results to in vivo measurements of clonal diversity, where we
track the clones and their respective lineages. In the experiment,
each initial clone is colored during the formation of the GC
with a specific color by the recombination of the confetti allele.
Subsequently, the subclonal lineage has the same color (the
details of the experiment are explained in the introduction).
Using two-photon microscopy, the size of subclonal lineages
formed by the descendants of a cell that is permanently
fluorescently labeled is measured (Figure 2B). We observe that
with time, fewer clones survive in a GC. Additionally, the fraction
of the GC occupied by the most dominant clone has a large
variability. A similar behavior is observed experimentally as the
fraction of the dominant sub-clonal lineage increase over time.
The variability of this fraction across different GCs increases as
well (Figure 2B; Tas et al., 2016). By sequencing the BCR region
of B cells, the linages of the clones could be reconstructed. From
these lineages we estimated the fraction of GC occupied by the

dominant clone (Figure S1) and found that it is qualitatively
similar to the results obtained with the coloring technique.

Diversity Loss Depends on the Rate of
Affinity Increase
At the end of the growth phase we are left with 17.2 clones on
average, consistent with the stochastic simulations (Figure 2C).
At this point, the size of remaining lineages has a large variability
according to Equation (4). We find that changing the “diffusion
coefficient” D has a strong impact on the homogenization rate
(Figure 2D). For larger values ofD, fewer clones survive to be part
of a mature GC (Figures 2C,D). The participation ratio, which
is the probability that two randomly chosen B cells belong to the
same clone, also suggests rapid loss of diversity for large value of
D (Figure S2). Surprisingly, we find that the variability of different
GC realizations increases with time (Figures 2A,E). Naturally, at
long times diversity is lost and only a few clones are left, and the
variation in the fraction of the most dominant clones decreases
(Figure 2E). Thus, the highest number of possible outcomes, in
clonal variability, occurs at an intermediate time, which for high
values ofD, happens at day 11 of the competitive phase.

The case of a GCR without mutation was also studied
experimentally, in a setting in which multiple clones all having
the same BCR seeded the GC and the AID gene was genetically
deleted (Tas et al., 2016). Interestingly, even with no changes in
affinity, there is a gradual and slow homogenization (Figure 2B,
empty circles). To study this scenario, we performed numerical
simulations in the absence of mutation (D = 0) and saw a
gradual take over by the dominant clone (Figures 2C–E), as seen
experimentally. As all clones have the same affinity, clonal loss
and homogenization in this case is due to random drift (Renshaw,
1991). To gain intuition regarding the selection and fixation
process, we recall known results for a case where the population
size is fixed, corresponding to a Wright-Fisher process (Bailey,
1990). When affinity differences between the clones are neglected
and a starting group of M clones all occupy the same fraction of
the population size, the mean time to fixation of a single clone is
given by τfixation = 2(M − 1) log (M/M − 1). With non-uniform
initial numbers of clones, the probability of a clone to fix is equal
to its initial fraction in the population (Bailey, 1990), which in
our model is the probability distribution at the end of the growth
phase (Equation 4).

GC Clonal Diversity Negatively Correlates
with Affinity
A clone whose affinity is relatively higher than that of the other
clones in the GC has a better chance of being selected and
becoming dominant (Equation 6). Since all clones had the same
initial affinity, during the first few days of the competitive phase
the affinity distribution of the population relaxes from a delta
function (δ(w−w0)) (Figure 3A). A GC reaches its capacity only
a few days after the beginning of the competitive stage (Figure
S3A). Before that, diversity loss continues at the same rate of
the growth phase and is D independent (Figure 2C). Beyond a
certain threshold, the homogenization rate is independent of the
birth-rate (Figure S3B).
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FIGURE 2 | Loss of diversity in a GC. (A) The fraction of the GC of size N = 2000 occupied by the most dominant clone during the competitive phase. Red diamonds

are the mean of 200 independent runs while each black asterisk is the result of a single simulation. The parameters of the simulation are listed in Table 1. (B) Fraction

of a GC occupied by the dominant sub-clonal lineage, which adopts a unique color upon Tamoxifen-induced recombination (adopted from Tas et al., 2016,

Figure 3F). Tamoxifen triggers recombination of one or both Confetti alleles in individual GC B cells, independently of clonal origin. Mice were immunized with chicken

gamma globulin at day-5, and GC where B cells participate in the AM process were extracted and analyzed (black circles). Each circle represents one GC. In the

control experiment (white circles) all B cells had the same BCR and SHM was prevented by the absence of a functional AID allele. Clonal size distribution in a GC.

(C) Mean number of surviving clones representing loss of clonal diversity during the competitive phase of the GC reaction. The average (D) and standard deviation (E)

of the fraction of the GC of size occupied by the most dominant clone lineage during the competitive phase, for different values of D. The simulation started with

M = 50 at day 0 of the growth phase that lasted 6 days. The parameters used are detailed in Table 1. The results represent 200 independent simulations.

At later times, the affinity distribution moves as a traveling
wave (Tsimring et al., 1996; Hallatschek, 2011; Figure 3A), as
fitter strains at the higher end of the affinity distribution function
constitute the moving edge while the cells on the other end die.
The velocity of the affinity wave depends on D (Cohen et al.,
2005; Figure 3B) and since affinity changes upon cell division, it
depends also on λ (Figure S3D). As expected for a traveling wave
solution, the average affinity grows linearly with time. During this
period in the GCR, since the affinity of all clones change due to
the same stochastic process, a clone which after a single mutation
has an affinity larger than the mean, is likely to outperform
the other clones. Such deviations from the mean affinity, are
governed by large jumps, which are related to the value of D.

To study if loss of clonal diversity in a GC is the result of

homogenizing selection toward high affinity clones, we computed

the correlation between the number of surviving clones in a GC

and the average affinity of the most dominant clone at the end

of the selection phase (Figure 3C). On day 16, the affinity of
the dominant clone is a good proxy for the average affinity in
the population. Interestingly, while we observe a weak negative
correlation (r = −0.53), many GCs maintained diversity in spite
of having high affinity clones.

We can consider the width of the affinity distribution of a
GC population to be a proxy for its clonal diversity. It was
shown that the ratio of the mean affinity to its standard deviation
(STD) grows during AM when the amount of antigen used in
the immunization was relatively low (Kang et al., 2015). Indeed,
the STD of a stochastic variable grows with time (Schuss, 2009),
while the growth of the average affinity is evidence of selection
(Desai and Fisher, 2007). When the mean grows faster than
the STD it is a sign of strong selection. We estimated this
ratio from our simulations. Initially, as the affinity distribution
spreads from a delta function and before the GC reaches its
capacity, the ratio decays, but following the initial relaxation
phase, the mean affinity increases faster than the spread of
the distribution (Figure 3D). Thus, our system operates in the
strong selection limit as in the experimental system studied in
Kang et al. (2015).

Dependence of the Final Number of Cells
on the Initial Growth Phase
To what extent does the initial growth phase determine the
later state of the GCR? We define the state of a GC as the
vector of proportions of clonal lineages at time t; n(t) =
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FIGURE 3 | Fitness growth during the competitive phase. (A) Affinity

distribution of a GC cell population at different days of the competitive phase.

Affinity gradually increases as a traveling wave phenomena. The simulation

was performed with D = 0.005. (B) Mean affinity as a function of time for the

most dominant clone. Similar parameters were used as in Figures 2C–E. (C)

Scatter plot of the number of clones in a GC vs. the affinity of the most

dominant clone. (D) The ratio of the mean affinity of a GC population and its

standard deviation.

(n1(t), n2(t), ..., nM(t))/Ntot(t). The correlation with the initial
state of the GC is quantified by

C(t) =
1

Ntot(t)

∑

i
ni(Tgrowth)ni(Tgrowth + t), (10)

and is observed to decay with time (Figure 4A). The initial
fractions of clones change when stochastic increases or decreases
in the affinity of cells give relative advantages or disadvantages to
particular clones (Equations 6, 9). Thus, for larger values of D, C
decays faster. Similarly, the decay rate of correlations is inversely
proportional to the basal birth rate (Figure S3C) and to N, since
the fixation probability of a species in a population is inversely
proportional to population size (Desai and Fisher, 2007) (data not
shown). This result raises the question of whether a GC effectively
filters the best clones, as the system has a finite probability to be
“stuck” in an unfavorable state.

To further explore the relation between clonal competition
and affinity we performed numerical simulations where each B
cell of theM initial ones had different initial affinityw0. Following
growth, we studied clonal dominance in the competitive phase.
Interestingly, while the clone with the highest initial affinity
(w0 = 1.5) had the highest probability of becoming the dominant
clone, the clone with w0 = 1.25 still had a chance of becoming
dominant (Figure 4B). This exemplifies the stochastic nature
of the selection process. The effect of the initial affinity w0 in
determining the second, third and fourth dominant clone is
smaller (Figure 4B).

We addressed the relation between affinity and dominance
by estimating the correlation between the average clonal affinity

FIGURE 4 | GC content depends on the initial conditions. (A) Following

growth phase of 6 days, we estimate the occupancy correlation C(t) Equation

(10) during the competitive phase. (B) The dominance probability depending

on the initial affinity w0. In the growth phase all cells proliferate with the same

rate λ0. w0 determines the birth rate in the competitive phase according to

Equation (6) (D = 0.02). (C,D) The dominance probability is shown for the

most dominant clone (blue), second dominance (red), third (yellow) fourth

dominance (purple), and fifth (green).

and the fraction occupied by the first to fifth dominant clones.
Interestingly, we see that often clones with high affinity compose
a small fraction of the GC at the end of the GCR (Figure 4C).
We also see that this depends on the value of D, and for a larger
value the positive correlation between dominance and affinity is
stronger (Figure 4D).

Death Limited Selection
To study the effect of a death-limited model on the progression
of the GCR we preform stochastic simulations using an affinity-
dependent death rate (Equation 7). The GC population’s affinity
continues to increase throughout the simulation (Figures 5A,B).
We assume that clones with higher affinity have a smaller
probability of dying, as they are likely to receive a survival
signal from the TfhCs. Thus, in our death-limited model, affinity
increase results in decrease of the death rate (Equation 7). Thus,
we observe a gradual decrease of the death rate distribution of
the cell population (Figure 5C). We found two homogenization
regimes (Figure 5D). While the GC has not yet reached its
capacity and death rate distribution of the cell population relaxes
from a delta function, which was the initial condition (w(t =

0) = δ(w − w0)), to steady state, homogenization is slow.
Indeed, for D = 0 the homogenization rate remains constant. In
this case, diversity loss is related to random drift only. At later
times, homogenization occurs at a fixed rate, dependent on D
(Figure 5D). The exponential relation between affinity and death
rate in this death-limited selection model acts to modulate large
affinity jumps. Thus, homogenization occurs at a slower rate than
that of the birth-limitedmodel we studied in the previous section.
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FIGURE 5 | Death limited selection of B cells. (A) Affinity distribution of a GC

cell population at different times of the competitive phase in the death-limited

model Equation (7). The parameters used were: N = 2000,D = 0.01,

λ0 = 1.5 day−1,α = 1,A = exp(1) day−1,w0 = 1. (B) Average affinity of

dominant clone in the death-limited model. (C) The death rate distribution

corresponding to (A). (D) The fraction of the GC occupied by the most

dominant clone.

To investigate if the difference between the death and birth
limit selection model is due to normalization of the birth-
rate (Equation 6), we performed simulations where the death
rate of cell i was given by Equation (8). When the average
affinity dependent death rate remains µ0, the homogenization
rate increases (Figure S4) with respect to the un-normalized case,
but still remains slower than that for the birth-limited model.
There are experimental evidences that the average birthrate
is constant in the GC, independent of the affinity of B cells
(Anderson et al., 2009). However, such is not the case for
death limited selection, since no survival signal is given to
B cells by T cells when no Ag is captured. This presumably
will occur when the affinity is small. Thus, it is likely that a
dependence of death rate and affinity (Equation 7) exists in the
GC.

DISCUSSION

In this study, motivated by recent experimental results, which
allowed imaging of AM in GCs over time, we explored
simple models to understand the observed phenomenology of
clonal selection. The main experimental observation is that
clonal selection and homogenization is heterogeneous in a GC
population. It appears that the selection of B cell clones, while
correlated to the BCR affinity, is probabilistic and lower affinity
cells are often selected for proliferation.

We find large variability in the fraction of a GC occupied
by different clone lineages. Since selection is a stochastic
process, GCs have varying resulting clonal fractions starting
from the same founding clone composition. Interestingly, this

variability reaches a maximum at intermediate times during
the GCR, before decreasing. Our numerical simulations show
that the relevant parameter determining homogenization
dynamics is the magnitude of affinity modification per
single mutation. A large single-mutation change in affinity
allows a cell to gain fitness advantage in the population.
We find that a fast increase in affinity leads to rapid
diversity loss.

Clonal competition can be understood using classical concepts
in population dynamics. When the selection pressure is very
strong, the fittest variant will survive, that is, the cell with
the highest affinity BCR. However, when selection is weaker
or when variants compete for different resources, multiple
clones or variants can co-exist. The first case is called selective
sweep, where one clone dominates over the population (Desai
and Fisher, 2007). Alternatively, when selection forces are
weaker or mutation rate is fast, clonal interference (Desai
and Fisher, 2007) is apparent, where at any time, several
clones can coexist. While the first case would result in a
relatively homogeneous GC, the second one would appear
as a dynamically heterogeneous GC. Interestingly, it appears
that both phenomena are possible in different GCs, even
ones residing in the same lymph node that have similar
initial clonal populations (Tas et al., 2016). This suggests
that the GCR lives close to the transition line between
the two limiting cases and can stochastically converge in a
manner that may depend on the initial conditions, or on
fluctuations in the different parameters. We hypothesize that
the proliferation boost given to a high affinity (or lucky) B
cell can result in a selective sweep. This can presumably occur
at any stage of the GC reaction, when a B cell with high
affinity manages to capture a lot of Ag and receives multiple
proliferation signals from TfhCs leading to multiple divisions
in the DZ.

The selection mechanisms we have studied (birth-limited
vs. death-limited) result in different homogenization rates and
affinities. B cells divide multiple times in the DZ before going
back to the LZ. We have shown in the SI that this selection
mechanism is equivalent to having a birth rate which is
proportional to affinity. This progeny will replace other cells
in the GC, thus diversity loss is accelerated. In death-limited
selection however, cells with poor affinity are removed one by
one. Thus, as a rule, diversity loss in death-limited selection is
slower than that of a birth-limited one. For medium and low
affinity clones, it was found (Anderson et al., 2009) that they
will have approximately the same proliferation rate, while the
death depends on the affinity. This could reduce the rate of
death-limited selection at later times in the GC, when affinity is
higher.

The GCR likely uses these two approaches intermittently.
When the fitness landscape of an antibody is very rugged, an
optimization algorithm (Bornholdt, 1998) to find a local or
global maximum is not effective, as each mutation is likely to
greatly decrease the cell fitness. It is possible that the GCR has
evolved an approach to use death-limited selection in the LZ
as the basal mechanism that would not lead to rapid clonal
expansion and GC takeover by a single clone. The second, a
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birth-rate affinity-dependent selection mechanism, gives a strong
proliferation boost to a very successful clone, or to ones that
due to random fluctuations managed to capture a large quantity
of Ag. Such events may be rarer than death-limited selection,
allowing a clone to take over the GC. Thus, diversity is kept as
long as no clone distinguishes itself.

We model here selection as a stochastic process using a
simple population dynamics model, leading to the gradual
homogenization and the variability in GC state. Current
experimental results can be recapitulated qualitatively by
our coarse-grained model (Figure 2). This suggests that the
features we consider are sufficient to recapitulate the qualitative
experimental observations regarding diversity loss. Of course,
quantitative detailed predictions would require more detailed
models including Ag recycling, model of Ag concentration
dynamics over time (Tam et al., 2016), explicit description
of B-T cells interactions (Meyer-Hermann et al., 2012) can
explain the termination of a GCR and interaction between
separated GCs in the same lymph node (Figge et al.,
2008). Our model could be extended to study complex
affinity landscapes and describe AM for multiple antigens
and epitopes. It would be interesting to estimate in a
high-throughput manner the spectrum of affinities for an
antigen and measure the respective selection. Such data
could be used to infer the affinity-selection mechanism
in a GC.
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Tight junctions help prevent the passage of digestive enzymes and microorganisms

through the space between adjacent epithelial cells lining. However, Helicobacter pylori

encoded virulence factors negatively regulate these tight junctions and contribute to

dysfunction of gastric mucosa. Here, we have predicted the regulation of important

tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in

the presence of pathogenic proteins. Molecular events such as post translational

modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation

and methylation are explored which may compromise the integrity of these tight junction

proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases,

proteins and post-translational modifications are reviewed to design an abstracted

computational model showing the situation-dependent dynamic behaviors of these

biological processes and entities. A qualitative hybrid Petri Net model is therefore

constructed showing the altered host pathways in the presence of virulence factor

cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The

model is qualitative logic-based, which does not depend on any kinetic parameter and

quantitative data and depends on knowledge derived from experiments. The designed

model provides insights into the tight junction disruption and disease progression.

Model is then verified by the available experimental data, nevertheless formal in vitro

experimentation is a promising way to ensure its validation. The major findings propose

that H. pylori activated kinases are responsible to trigger specific post translational

modifications within tight junction proteins, at specific sites. These modifications may

favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

Keywords:Helicobacter pylori, gastric cancer, post translational modifications (PTMs), tight junction (TJ) proteins,

phosphorylation sites, petri net (PN) models
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INTRODUCTION

Highly organized intercellular tight junctions (TJ) are crucial
structural components of the intact epithelium architecture
and provide protection against intruding pathogens. Disruption
of these epithelial barriers is an important hallmark of
Helicobacter pylori-dependent inflammation and neoplastic
tissue transformation (Wessler and Backert, 2008). Helicobacter
pylori is known for selectively colonization of the hostile
environment such as gastric mucosa. The mucus layer within
gastric mucosa remains in close contact with the epithelial cells
at the apical side of the intercellular contacts. H. pylori actively
interferes the host cells and exerts an astounding set of strategies
to manipulate these epithelial cell-to-cell junctions. This negative
interaction between the pathogen and host results into major
consequences such as altered cell polarity, migration and invasive
growth as well as pro-inflammatory and proliferative responses
(Ashida et al., 2012).

The H. pylori through type IV secretion system (T4SS)
inject the virulence factor cytotoxin-associated gene A (CagA)
(Terradot and Waksman, 2011). However, to take charge of
host cell it adapts other techniques as well to intrude the cells;
mostly by loosening the TJ in the epithelial lining (Amieva et al.,
2003). Normally, post translational modifications (PTMs) can
affect the structure and function of these TJ proteins. There
are many reports showing the role PTMs of in dysregulation of
normal genes and their promotors for initiation and progression
of infection and diseases (Parsonnet et al., 1991; Akhtar et al.,
2001; Blaser and Berg, 2001; Perri et al., 2007). Pathogens alter

the behavior of proteins to change the dynamics as per its
desire. Thus, exploiting these facts the detail mechanism of action
behind de-/regulation of these changes within host cells could be
determined by integrative approaches.

The significant TJ proteins in epithelial lining include
claudins, occludins, connexins, junction-adhesion molecules
(JAMs) as well as membrane associated proteins such as
zonula occludens (ZO-1, -2, -3) (Alberts et al., 2002). Claudins,
connexins and occludins along with their adapter proteins are
mostly targeted by the pathogen for dysregulation, therefore,
factors regulating the normal functioning of these proteins were
explored to elucidate the possible reasons of their disruption.
These proteins have been previously reported to play important
roles in tight junction barrier deficits induced by H. pylori
(Amieva et al., 2003; Song et al., 2013; Wang et al., 2014).
Claudin-2 (CLDN2), Connexin32 (CX32), and ZO-1 are focused
in current study to evaluate for their possible modifications by
PTMs and hence the negative regulation of their functions

CLDN2, usually located in gut epithelia, helps in pore
formation, thus regulates paracellular transport through
epithelial cells (Rosenthal et al., 2010). Its over expression has
also been linked to H. pylori-induced inflammatory bowel
disease, ulcer and carcinoma (Randall et al., 2016). Similarly,
a gap junction protein CX32, found in the epithelium of the
gastrointestinal tract (GIT), when mislocalized or having altered
function could lead to gastric carcinoma (Jee et al., 2011).
ZO-1 has already been found at mature tight junctions with
altered function and structure causing serious barrier defects

specifically by H. pylori as explored by Fiorentino et al. (Fasano,
2000; Fiorentino et al., 2013). Similarly, dysregulated claudin-
1/-2/-4 are also found to be involved in a number of benign
bowel inflammatory disorders characterized by mucosal barrier
dysfunction (Wardill et al., 2014). Besides that, pathogen also
targets specific kinases, cytokines and enzymes to induce specific
PTMs within TJ proteins for their survival and reproduction
within the host cells (Maeda et al., 2000; Rad et al., 2004; Amieva
and El–Omar, 2008). These modifications also contribute to
On and Off the intracellular signaling, among modifications
the kinase specific phosphorylation is the most wide spread
and well-studied fact (Awan et al., 2014). Increased tyrosine
phosphorylation of ZO-1 and decreased expression leading
to TJ disruption and allowing the entry of foreign particles
to enter the cell (Martin and Jiang, 2009). Similarly, occludin
tyrosine phosphorylation has been found to be related with its
disassociation with ZO-1 leading to the disturbed junctional
complex (Lee, 2015). The dysregulated phosphorylation of many
host signaling proteins (MLC, CLDN4, CLDN5) have also been
reported to be linked with gastritis and even gastric carcinoma
(Martin and Jiang, 2009). Similarly, aberrant methylation of
promoters and genes plays a biologically significant role in
carcinogenesis. Methylation of some promoters of genes has
already been reported in progression of H. pylori infection
and even gastric carcinoma (Niwa et al., 2010). Methylation
is one of the significant modifications that can alter the
expression, function and effect of proteins within signaling
pathways, which can lead to the disease onset when modulated
by pathogens. Thus, the overall importance of these barrier
proteins along with potential PTM sites has been realized to
maintain the cell integrity, polarity and normal growth. The
study also focuses on the prediction of potential kinase targeted
sites for phosphorylation within TJ proteins, which can be
earmarked by the pathogen to alter junction mechanism for its
entry.

The most important CagA mediated infection pathway is
modeled through Hybrid Petri Nets (HPNs) to understand the
dynamics of infection and disease progression. The changes in
the behavior of key entities (such as kinases, cytokines: NF-
κB, ILs, TJ proteins, etc.) and difference in their relative levels
(expression/concentration) before and after infection have been
observed through a step-wise simulation experiments. Our study
focuses on developing a qualitative integrated model to decipher
the detail mechanism triggered by over-expression of IL1β and
IL8 leading to dysregulated kinase specific phosphorylations
within TJ proteins. HPNs was adopted because of its high
level of integration and recognition as a powerful modeling
tools for efficient modeling and analysis of biological pathways
(David and Alla, 2010). This formal basis combined with
the nice graphical representation makes it possible to argue
about processes, and thereby enables the possible establishment
of certain patterns. Moreover, they can represent the system
behavior even when the biological mechanism is not fully
understood, by combining different levels of abstraction in
a single model and enable users to verify system properties,
verify system soundness, and simulate the dynamic behaviors
(Matsuno et al., 2003). To verify and evaluate the effect
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of H. pylori proteins on host cells and pathways, we have
modeled both the normal and diseased conditions and to
look for difference in the expression of proteins in both
cases. The predicted behavior outcomes from the models are
in line with experimental findings of others (Table 1), thus
predicted the dynamic behavior of proteins without extensive
wet lab experiments and computationally expensive parameter
estimation.

We propose here the mechanism of action behind these
alteration of epithelial barrier (TJ proteins) induced by H. pylori
through specific PTMs. Also, a comprehensive pathway model
built effectively illustrated the key regulatory mechanisms of TJs
and how they respond to H. pylori infection. The integrated
structural and mathematical modeling approach applied here
helped in establishing the bacterial and host epithelial interaction
and the constituents involved in improvising the epigenetic
changes via PTMs in TJ proteins which ultimately leads to gastric
epithelial cell barrier dysfunction.

MATERIALS AND METHODS

The study has been broadly categorized into two main parts:
(1) Protein analysis, where all three target proteins (CLDN2,
CX32, and ZO-1) were analyzed using their sequences and
structures. Proteins were then scrutinized for potential PTM sites
regulated by important epigenetic mechanisms, which can be
induced by the pathogen during infection. Subsequently, specific
kinase proteins were prioritized that can be triggered by the
pathogen and their targeted residues. (2) The signaling pathways
disrupted by dysregulated kinases and PTMs were studied. Based
on these altered pathways, an abstracted mathematical model
was designed as a baseline for further in silico experimentation.
Applying PN approach, a dynamic model was constructed which

TABLE 1 | Summary of comparison between reported experimental observations

and simulation results.

Observed

proteins

Experimental

observations

Model

predictions

References

CLDN2 + + Aung et al., 2006; Song et al.,

2013

CX32 − − Jee et al., 2011; Wang et al., 2014,

2015

ZO-1 − − Amieva et al., 2003; Ma et al.,

2004; Ashida et al., 2012

IL8 + + Noach et al., 1994; Nagashima

et al., 2015; Ferreira et al., 2016

IL1B + + Noach et al., 1994; Harris et al.,

1996

NF-κB + + Keates et al., 1997; Ma et al., 2004

ERK + + Meyer-ter-Vehn et al., 2000; Lee

et al., 2010

MAPK + + Churin et al., 2003; Nishioka et al.,

2003

P38 + + Takahashi et al., 2001; Nakayama

et al., 2004

provides biological insights for H. pylori related TJ disruption
and dynamic regulation of various signaling proteins during
infection. An overview of the approach followed in the current
study has been shown in Figure 1 and each step is explained
accordingly.

Proteins’ Analyses
Sequences, Structures and Conservation Analysis of

TJ Proteins
FASTA sequences of human proteins ZO-1, CLDN2 and CX32
were retrieved from Swiss-Prot database (Boeckmann et al.,
2003) with primary accession numbers of Q07157, P57739
and P08034, respectively. To get the homologs of the selected
proteins, BLASTp (Altschul et al., 1997) was performed against
few organisms with higher bit scores, and E ≤ 0 avoiding any
synthetic constructs, isoforms and unnamed proteins to get
conserved sites among these proteins across species. Homologs
of ZO-1 from Mus musculus (P39447) and Canis familiaris
(O97758) are collected. Selected sequences for CLDN2 were
from Canis familiaris (Q95KM6), Mus musculus (O88552),
and Bos taurus (Q765P1). For CX32, homologs were retrieved
from Rattus norvegicus (P08033), Mus musculus (P28230),
Cavia porcellus (Q8K4M7) and Bos taurus (O18968). Homologs
for each protein were then aligned using CLC workbench
(Workbench, 2010) to get conserved regions and sites amongst
them. In order to predict membrane spanning regions and their
orientations within CLDN and CX32 TMHMM Server v. 2.0
(Krogh et al., 2001) and TMPred Server (Hofman, 1993), were
employed. The 3D models were constructed to explore regions
having potential to form helices embedded within themembrane,
as they seal the intracellular space to maintain TJ integrity (Van
Itallie and Anderson, 2013).

Prediction of Sites Prone to Post-translational

Alterations
Various modification sites including kinase specific
phosphorylation, methylation, palmitoylation and O-GLcNAc
were predicted within CLDN2, CX32, and ZO-1. Methylation
sites among them were estimated using PMes program which
predicts the potential methylation sites by analyzing protein
sequence, position of residues and their physicochemical
properties with structural characteristics (Shi et al., 2012).
This feature increases the robustness and accuracy of this
tool as compared to other methylation prediction methods.
CSS-PALM 4.0 (Ren et al., 2008), an online tool following a
robust clustering and scoring strategy (CSS) algorithm was
used to identify palmitoylation sites within candidate proteins.
O-GlcNAc and Yin-Yang sites were predicted using YinOYang
1.2 program (Gupta and Brunak, 2002). Phosphorylation
sites for each serine (Ser) and threonine (Thr) and tyrosine
(Tyr) residues were predicted using Netphos 2.0 (Blom
et al., 1999), based on artificial neural network programs,
out of which exposed kinase specific sites were retrieved
using NetphosK (Blom et al., 2004), KinasePhos 2.0 (Wong
et al., 2007), and GPS 2.1 (Xue et al., 2010). Sites verified
by two or more databases were selected. Obtained results
were then scanned manually for experimentally verified sites
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FIGURE 1 | Overview of methodology: Summary of steps followed in this study has been shown in the form of flow diagram. Major steps include literature view,

prioritization of target proteins, and identification of PTM sites within selected TJ proteins, identification of dysregulated proteins/kinases after infection and modeling of

infection pathway leading to barrier disruption.

within literature and Phospho. ELM database (Diella et al.,
2004) was also consulted to identify experimentally validated
phosphorylation sites. To prioritize sites exposed (Surface
accessibility) for kinases NetSurfP (Petersen et al., 2009) and
TMHMM server (Krogh et al., 2001) were employed. Finally,
surface exposed kinase specific phosphorylation sites were
prioritized which have not been previously reported in case of
H. pylori induced infection which were then checked for kinases
action.

Prioritization of Modification Sites Targeted by

Disease Specific Kinases
Identifying kinase substrate and their cognate phosphorylation
sites is fundamental to reveal themolecular mechanism of disease
progression. Thus, to particularize the selected phosphorylation
sites in previous steps, we manually listed those kinases
that are specifically targeted by H. pylori infection exploring
published experimental data. Sites targeted by these specific
kinases were then prioritized for further analysis. Dysregulation
of some specific kinases lead to PTMs resulting in crucial
epigenetic changes within TJ proteins and also alter important
signaling pathways that ultimately regulate epithelial cell
polarity.

Disease Induced Signaling Pathway
Analysis
Identification of H. pylori Induced Signaling Pathways

Targeting Disease Specific Kinases
TJs are modulated by intra cellular signaling pathways (Matter
and Balda, 2003) which when dysregulated in response to H.
pylori infection, affects the epithelial barriers. Literature survey
was performed to investigate how phosphorylation can influence
a series of biological pathways to regulate TJ molecules in
human epithelial cells under normal and pathological conditions.
Possible mechanisms targeted by pathogen are mapped to
predict routes adapted by pathogen leading to gastric carcinoma
(Figure 2).

One of the important factor to reveal the regulation
of signaling pathways and major protein functions is the
identification of kinases, enzymes and their precise targeted
phosphorylation sites. Computational predictions include
selection of protein sequence, prediction of the phosphorylations
sites, cellular context of kinases and signaling pathways
affected by them. Based on these considerations, we propose a
probabilistic model to predict a pathway induced by H. pylori
infection to stimulate PTMs within TJ proteins and resultant
altered behavior.
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FIGURE 2 | Possible mechanisms adapted by H. pylori and its virulence

factors to induce gastric carcinoma.

Mathematical Modeling of Proposed Mechanism

Adopted by H. pylori to Induce Barrier Dysregulations

Modeling approach
The current study employs PN approach already explained by
Obaid et al. (2015) to study the dynamics of signaling pathways
followed byH. pylori during infection (Ruths et al., 2008). Hybrid
Petri Nets (HPNs) can be defined as a type of PNs that describe
the level of activation and inhibition of a particular gene/protein
activity and even the dynamics of whole network governing
their concentrations. Within HPNs thresholds can be maintained
to define the activation and deactivation of entities, thus can
demonstrate both continuous and discrete elements. Therefore,
it is an efficient modeling approach able to handle all types
of biological factors. Thus, in our study, we also demonstrated
HPNs to translate biological facts involved in regulation of
tight junction proteins by kinases qualitatively, without explicit
knowledge of quantitative network dynamics.

A HPN is a directed bipartite graph, which is a 3-tuple (P, T,
W), with Places (resources/entities), Transitions (processes), and
Weighted arcs (Directed arrows are arcs or edges which connect
only places to transitions and vice versa). In a model, circles
show places, whereas boxes or bars represent the transitions. Arcs
weights usually represent the multiplicity and by default its value
remain 1. Model simulates by firing a transition which represents
the withdrawal of tokens from the input place and following
the arc multiplicities deposits it to the output places (David and
Alla, 2010). The steps involved in the HPNmodel generation are;
(1) literature survey to extract the possible route for activation
of particular kinases; (2) iterative abstraction of the extracted
pathway; (3) construction of model, (4) analysis of the model and
verification of the predictions.

HPN model generation
In this study, a qualitative HPN model was designed using
SNOOPY v 2.0 (Rohr et al., 2010) tool to study the regulation

(upstream and downstream) of TJ proteins based on kinase
specific actions. Generated simulations actually determine the
relationship between continuous and discrete entities. Two
models have been generated to compare and validate the
behaviors during normal conditions and diseased condition.
Places in both models represent receptors, proteins and kinases
whereas transitions illustrate the processes (e.g., gene enhancing,
biological reactions, de-/activation, complex formation, PTMs,
epigenetic changes, etc.). As comprehensive knowledge of kinetic
parameters is mostly unavailable for networks, therefore, because
of limited applicability, quantitative models are quite complex
to model. We here applied Prior knowledge network (PRN)
approach to construct the model, based on non-parametric
strategy. As the network connectivity is sole determinant of
signal flow through the system, our model relies on relative
concentrations of the proteins (up-/down-regulation) and not
the absolute values. As the model is qualitative and abstracted
in nature, it potentially limits the complex transcriptomics data,
only indicating the occurrence of interactions between proteins.

Model verification
Biologically, a reaction can occur if its reactants and conditions
fit certain criteria, similarly, in PN models a transition can
be fired to get activated with a certain transition speed based
on defined parameters (tokens, arch weights, inhibition, etc.).
The designed models are therefore verified for both normal
and disease conditions by comparing the obtained simulation
results with the already available expression data of protein and
kinases activation. In brief, the activity levels of each entity within
our models and changes in their level over time correlate with
the concentration of active entities within a cell. Correlation of
designed models with experimental studies verified the reliability
of our model and hence it can further provide biological insights
related to H. pylori infection, disruption of TJ proteins and entry
of pathogen within host cell. Following this methodology various
other aspects of disease prevalence, host-pathogen interactions,
factors aiding pathogen survival and hijacking of immune
system can also be explored prior to expensive and time taking
experimental methods.

Abstraction of the Altered Signaling Pathways
Various studies have been abstracted to design a pathway
leading to some important PTMs responsible for modulating
the activity of TJ proteins. The cell-cell intersection is sealed
by the members of the claudin family, whose extracellular
loops connect the transmembrane domains thus forming the
paracellular barrier. The C-terminal of claudin binds to the
zonula occludens through their PDZ domains to seal the TJ
(Nomme et al., 2015). Dysregulation of these proteins along
with another gap junction protein CX32 expressed in gastric
mucosa has been reported in delayed healing of gastric ulcer
thus leading to gastritis or carcinoma (Wang et al., 2015).
Activation or deactivation of these proteins under various stimuli
is studied in this study. In the HPN model, each of these
proteins is represented by a continuous entity activated by
the flow of tokens passing through a series of transitions.
Once H. pylorus breaches the gastric mucousal lining, it injects
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CagA through the type IV secretion system into epithelial cells
leading to cell elongation and scattering. CagA has already
been reported to mimic host cells by inhibiting kinase activities
to elicits junctional and polarity defects (Amieva et al., 2003;
Nishikawa et al., 2016). Kinases responsible for PTMs, especially
for phosphorylation of TJ proteins, when disrupted by CagA lead
to leaky gut barrier, thus aiding bacterial invasion. CagA works
within host cell in both phosphorylated and non-phosphorylated
forms to mediate pathogenicity. H. pylori-induced mutagenesis
takes advantage of enhanced NF-κB in inflammation-associated
carcinogenesis (Chiba et al., 2008) which modulates various
cell functions majorly activation of IL-1 β and IL-8 (Noach
et al., 1994; Maeda et al., 2000; Ferreira et al., 2016; Kameoka
et al., 2016). The biological effects on activation on these
inflammatory cytokines lead to the recruitment and activation of
kinases favoring the phosphorylation-dependent disruption of TJ
proteins (Figure 3). Other major mediators of H. pylori-induced
pathogenesis include Protein kinase C (PKC) (Tohidpour, 2016),
mitogen-activated protein kinase (MAPK) (Ding et al., 2008),

p38, extracellular signal-regulated kinases (ERK) (Seo et al.,
2013), and myosin light chain (MLC) (Khan et al., 2015).
Interplay of these modulators has been shown in the designed
model and thus their overall inhibitory effect on TJ proteins has
been revealed.

RESULTS

Sequence and Structural Features of
Crucial Tight Junction Proteins: CLDN2,
CX32, and ZO1
CLDN2, CX32, and ZO-1 protein sequences retrieved from
SWISS-PROT have average lengths of 230, 283, and 1,748 amino
acids, respectively. Sequence homologs of CLDN2, CX32 and
ZO-1 from Mus musculus, Rattus norvegicus, Canis familiaris,
Cavia porcellus and Bos taurus were aligned to find the

conservation status. Results of alignment from CLC workbench
(Supplementary Figure 1) revealed that all three proteins are well

FIGURE 3 | Regulation of tight junction permeability by H. pylori: Virulence factors of H. pylori CagA interact directly with junction proteins or modulate the signaling

pathways to promote changes within their structure or function. Phosphorylated and non-phosphorylated forms of CagA induce inflammation and activates specific

kinases to phosphorylate junction proteins along with other induced modifications. This leads to the epithelial barrier disruption and aids the entry of pathogen within

cell easily.
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conserved among vertebrates. The conserved blocks were later
checked for the sites having potential for epigenetic changes via
PTMs (Supplementary Table 1).

Predicted secondary structures of CLDN2, CX32 and ZO-
1 help to determine the presence of transmembrane domains
and loops at particular locations. CLDN2 and CX32 have four
trans-membrane domains and two extracellular loops along with
cytosolic N- and C-terminals (Figure 4) The adapter protein ZO-
1 binds with TJ proteins at cytoplasmic side and is targeted
by various transcription factors to modulate cell growth and
permeability. It has three PDZ domains, a Src Homology-3
(SH3) domain and guanylate kinase (GK) domain along with a
unique ZU5 domain at the C-terminal which is not possessed by
other members of zona occludens’ family (Haskins et al., 1998).
Structural features of these proteins along with the predicted
potential PTM sites have been shown in Figure 4.

Methylation and Palmitoylation Sites
Exploited by Pathogen to Mediate
Signaling Pathways
Methylation sites identified within TJ proteins may be targeted
for therapeutic interventions in diseased condition. In CLDN2,
two arginine residues at location 112 and 210 are estimated to
be potential methylation sites using PMes program (Figure 4).
These sites are highly conserved and located within intracellular
cytoplasmic loop, thus can easily alter protein binding and loop
conformations. Within CX32, five sites (R: 164, 215, 219, 223
and 264) showed potential for methylation. All sites are highly

conserved except R-223, therefore excluded from further analysis.
In ZO-1, 22 conserved arginine residues (28, 107,174, 251, 265,
302, 339, 341, 419, 579, 635, 677, 752, 1,077, 1,117, 1,143, 1,151,
1,170, 1,172, 1,210, 1,267, 1,637, and 1,714) were found to be
potential methylation sites.

CLDN2 did not reveal any palmitoylation site whereas
CX32 was found to have two cysteine residues (280 and
283) as potential palmitoylation sites (Figure 4). Both sites
are located at the C-terminal of protein and remained 100%
conserved among vertebrates that might affect the gap junction
function by modulating the assembly, trafficking, disassembly
and degradation of protein. In ZO-1, three sites (C: 744, 1,718
and 1,740) were predicted as conserved palmitoylation sites.

Dynamics of the Interplay Amongst
O-Linked Glycosylation and Yin-Yang Sites
Reveal Their Role in H. pylori Induced
Infection
Employing neural network based tools sites within CLDN2,
CX32, and ZO-1, which can be targeted by O-linked
glycosylation, were predicted. Only 2 exposed sites (Ser at
208 and 219) (Figure 4) were predicted within CLDN2 having
potential to be an O-(beta)-GlcNAc site, among which S-219
showed high potential for O-linked glycosylation. These 2 sites
also came out to be Yin-Yang sites also.

In CX32, five sites (T: 176, 269, and S: 225, 229, 277)
showed their potential for O-GlcNAc, among them, three (S:
225, 229, and 277) had equal potential for phosphorylation thus

FIGURE 4 | PTM sites identified within CLDN2, CX32, and ZO-1. (A) CLDN2 has two ECLs, one intracellular loop, four transmembrane domains, a short N-terminal,

and a tail at C-terminus. Important PTM sites have been shown at their particular locations. (B) Structure of Cx32 (two ECLs, one intracellular loop, four

transmembrane domains, a short N-terminal, and a tail at C-terminus) and predicted PTM sites at their particular locations have been shown. (C) ZO-1 has three PDZ

domains, one SH3 and GK domain, and a long proline rich tail.
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designating them as Yin-Yang sites. O-GlcNAc sites of CX32 are
also found to be highly conserved among other vertebrates. In
ZO-1, 48 Ser, and Thr sites have potential for O-linked beta-
glycosylation and among them 28 were found to be Yin-Yang
sites (Supplementary Table 1). However, only five sites locating
at reside number 709, 926, 936, 1,444, and 1,519 (Figure 4) were
exposed and highly conserved among other species.

Mapping Evolutionary Conserved
Kinase-Specific Phosphorylation Sites
Having Potential to Augment Disease
Progression
The possible Ser, Thr, and Tyr residues having potential to
be phosphorylated were predicted among CLDN2, CX32, and
ZO-1. 28 phosphorylation sites were predicted in CLDN2
and when analyzed for their location, only 12 sites being
exposed were prioritized, as they are easily accessible to kinases.
Among predicted sites only 9 sites (Ser: 3, 68, 192, 223,
225 Tyr: 195,198, 224, and Thr at 227) have potential for
kinase specific phosphorylation (Figure 4). Another important
aspect to consider these prioritized phospho-residues was their
evolutionary conservation. All the exposed kinase specific
phosphorylation sites are found to be highly conserved among
vertebrates except Ser at position 192. In CX32, only Ser residues
at position 50, 225, 229, 233, 240, 258, 266, and 281 are
exposed and conserved kinase specific potential phosphorylation
sites. Among these residues, Ser at position 229 and 233 are
experimentally validated, verified by Phospho.ELM database
(Diella et al., 2004) and S240 has already been predicted in
a study to be a potential phosphorylation site (Locke et al.,
2006). The other five sites are novel and needs to be evaluated
experimentally. ZO-1, being a large protein, possess 167 residues
capable to undergo kinase specific phosphorylation but only 76
residues were found to be novel and 100% conserved among
vertebrates (Supplementary Table 1).

Mathematical Model Reveals Imperative
Route Adapted by H. pylori to Induce
Epigenetic Changes within Host TJ
Proteins
Regulation of TJ proteins has been modeled using HPNs
as shown in Figures 5A,B. The changes in the behavior of
some important regulatory entities after H. pylori infection
and difference in their relative levels (expression/concentration)
have been observed through step-wise simulations experiments.
Simulations were executed for 100 time blocks with the refresh
rate of 5,000 ms and 500 runs (Figures 6A,B). Currently, our
model is truly qualitative and the rates of reactions are assumed
by applying deductive reasoning (explained in Supplementary
Data File 1) on the basis of biological role and interactions of
proteins during normal and diseased conditions, affecting the
expression of other proteins in the network (Supplementary
Table 2 and Supplementary Data file 2). There are total
19 transitions (t0-t18) and 16 places in the normal model,
whereas, 25 transitions (t0–t24) and 18 places in infection model
(Figures 5A,B). The analysis and results of the simulations are
discussed accordingly:

Activation of Inflammatory Cytokines Induced after

Infection
During H. pylori infection, NF-κB is activated rapidly to induce
inflammation and the binding to transcription factors sites
also regulates the functional opening of TJs (Ma et al., 2004).
Simulation results of NF-κB obtained through designed HPN
has been shown in Figure 7A, which clearly shows that before
infection the expression level is low, as shown in blue curve. As
infection persists within host cells, NF-κB expression elevates up
to 2-folds as shown in the Figure 7A (red curve). The model also
shows almost 2-fold increase in the production of NF-κB after
infection (Figure 7A) which then leads to the activation of IL1β
and IL8. Through our model, we evaluated this situation during
infection, where production of both IL1β and IL8 increases up
to 4 times than that of normal (Figures 7B,C), thus leading to
inflammation induced epigenetic changes for the development
of gastric ulcer and carcinoma. Graphs generated by HPN
simulations depict the elevated behavior of IL1β and IL8 in such
a manner that after infection there is a sudden increase in the
production of both cytokines and a stable production throughout
the infection is observed which may leading to inflammatory
response in the real time.

Over-expression of Kinases after H. pylori Infection

Dysregulate Other Proteins and Contribute toward

Pathogenesis
Targeted proteins duringH. pylori infection mainly include ERK,
AKT (Figure 7D), Ras-Raf (Figures 7F,G), MAPK (Figure 7J),
MLCK (Figure 7I), p38 (Figure 7K), PI3K (Figure 7H) and
PKC (Figure 7L). Non-phosphorylated CagA stimulated the
production of Ras and Raf (appx. 2-fold) that in turn induces
ERK production. whereas, phosphorylated CagA also stimulates
ERK resulting up to 5-fold increase in its production during H.
pylori infection (inferred from PN model - Figure 7E), leading
to chronic inflammation. After infection, MLC concentration
almost doubles as shown by red curve in the graph (Figure 7I)
as compared to the normal conditions shown by blue curve.
Such an elevated level of MLC in gut barriers subsequently
results in barrier dysfunction aiding bacterial translocation across
damaged epithelial lining. Furthermore, in response to cytokine
production, overexpression of IL8 and IL1β also elevates the
MAPK and p38 approximately four times than the normal cells
(Figures 7J,K). An increased level of these kinases lead to altered
cell proliferation (down regulation of TJ proteins such as CX32),
cell survival rate and apoptosis.

Dysregulation of TJ Proteins Leading to Leaky

Epithelial Barrier
CagA directly attacks ZO-1 to attenuate its integrity thus altering
the cell polarity (Ashida et al., 2012). Whereas, activation of
MLCK also leads to dysregulation of ZO-1, thus exposing the
basolateral surface (Yu et al., 2010). Almost 3-fold decrease
has been observed in ZO-1 concentration at epithelial barriers
after being infected by H. pylori (simulated results). As seen in
Figure 7O, before infection, ZO-1 shows a gradual increase in its
production (shown by blue curve) which stabilizes at a certain
level to maintain its production necessary for cell integrity.
Whereas, after infection, red curve shows suppressed expression
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FIGURE 5 | Illustration of proposed HPN models before and after H. pylori infection: (A) HPN model representing the normal behavior of proteins before infection. (B)

HPN model representing the activation or deactivation of proteins/kinases after infection.

of ZO-1, which clarify the outcome of pathogenic mechanism to
disrupt TJ barrier function.

H. pylori infection induces hyper-methylation and other
modifications within CX32 promoter and protein which
suppresses the gene transcription (Wang et al., 2014) and
reduces its expression. Simulation results of CX32 expression, as
shown in Figure 7N, depicts a clear difference between normal
and pathological conditions, where blue curve indicating state
before infection shows almost 6 times more expression level as
compared to the diseased condition (shown by red curve). HPN
model also depicts almost 4-fold increase in the expression of
CLDN2 in infected cells (shown by red curve in Figure 7M) as
compared to normal physiological conditions (shown by blue
curve).

DISCUSSION

H. pylori has evolved a wide range of stratagems to colonize
and invade the distal parts of the stomach to induce diverse

gastric pathologies, ranging from chronic gastritis and ulceration
to neoplastic changes in the stomach (Wroblewski et al., 2009).
Many studies have revealed some mechanisms adapted by the
pathogen to affect host cells. In our study, we have focused on TJ
disruption mediated by H. pylori infection. Theories explaining
this phenomenon are yet not able to derive a consensus on the
exact mechanism adapted by the pathogen (Shin et al., 2006; Al-
Sadi et al., 2009; Wardill et al., 2014). The major target of H.
pylori virulence factors are some specific host proteins (especially
kinases), which can be stimulated to introduce site directed
PTMs within TJ proteins. PTMs have potential to modulate
and stimulate many life processes that is why they are hijacked
by pathogens to strengthen their localization within host cells.
It can be achieved by various ways such as phosphorylation,
methylation, glycosylation, palmitoylation or modifications of
amino acid side chains. Although some bacteria and virus attacks
cell extracellularly but some pathogens invade the host cell to
take refuge and escape immune response. To facilitate their
entry and survival within host cells, effector proteins of pathogen
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FIGURE 6 | Simulation results derived from HPN model: (A) Simulation results of all entities showing their behavior before infection. (B) Collective simulation results of

all entities after infection. x-axis represents time blocks which can be mins/hrs/days depending on the nature of experiment and y-axis represents relative expression

level of proteins. Simulations were executed for 100 time blocks with the refresh rate of 5,000ms and 500 runs.

stimulate some specific PTMs by modulating the host proteins
thus targeting structural and regulatory barriers (Ribet and
Cossart, 2010).

PTM sites identified within CLDN2, CX32, and ZO-1 in
this study have highlighted some crucial and important sites
which can be targeted by the pathogen to dysregulate the normal
functioning of barrier proteins, thus defecting the cell polarity.
These sites may be targeted for therapeutic interventions in
diseased condition. All predicted sites are highly conserved,
emphasizing on their evolutionary importance. Whereas, the
location of these sites also play significant role in their targeted
function. H. pylori infection has also been reported to be linked
with regulation and dysregulation of genes, proteins and their
promoters via various modifications, especially methylation,
initiating gastric carcinoma (Parsonnet et al., 1991; Akhtar et al.,
2001; Blaser and Berg, 2001; Perri et al., 2007). Their ability
to induce methylation has also been confirmed within animal
model (Niwa et al., 2010). Thus, we found it quite crucial to
target important methylation sites within TJ proteins. Some
methylation sites of TJ proteins lie within functional domains,
thus, predicting their effective roles in maintaining the cell
integrity. R164 predicted within ECL2 of CX32 can be of great
importance as these loops are maintaining the cell integrity
by docking with neighboring connexins. Whereas, other four
predicted sites lying on C-terminal of protein may also trigger
major functions, as tail of connexins have been reportedly
involved in modulating gene expression and cell-cycle control
via binding proteins (Giepmans, 2004). Similarly, R-28 within
PDZ1 domain and R-251 in PDZ2 domain of ZO-1 might be
of great interest as these domains are responsible for anchoring
ZO-1 with claudins and connexins (Thévenin et al., 2013). R-579
lies within Src Homology-3 (SH3) domain much important for
protein interactions. Modification of residues in this domainmay
lead to disrupted protein-protein interactions, thus, modulating
signaling pathways (Thévenin et al., 2013). R-635, 677 and 752 are

within Guanylate kinase (GK) domain of ZO-1, where occludins
and adherens junction proteins can bind.

Phosphorylation, one of the most common PTM is
also triggered by pathogens to influence some significant
pathways. H. pylori also targets TJ proteins for unwanted
phosphorylation/dephosphorylation modifications to loosen
the cell to cell junction. Effect of modification truly depends
in number and location of PTM sites. Phosphorylation sites
identified within CLDN2, CX32, and ZO-1 also revealed
some crucial points that can be targeted by H. pylori during
infection. Tyr-224 of CLDN2 has already been studied as
potential phosphorylation site which modulates the binding
of CLDN2 with ZO-1, as it has already been identified as key
factor for regulating affinity between claudins and PDZ domain
(Nomme et al., 2015). Presence of such a crucial site makes
adjacent amino acids (S-223 and S-225) more significant to
be tested experimentally as they have also been identified as
potential curated phosphorylation sites by PhosphoSite Plus
(Hornbeck et al., 2015) and also in our data set. As CLDN2
is involved in barrier leakiness and PTMs use to influence
its pore forming ability, therefore, it should be systematically
analyzed for its phosphorylation and other modification sites
to unravel the mechanism of its regulation or dysregulation.
Similarly, in CX32 Ser at position 229 and 233 are experimentally
validated, verified by Phospho.ELM database (Diella et al., 2004)
and S240 has already been predicted in a study to be a potential
phosphorylation site (Locke et al., 2006).Whereas, other five sites
may be novel and would needs to be evaluated experimentally.
The prediction of experimentally validated residues among our
data set validates the potential of phosphorylation for selected
residues. Most of these phosphorylation sites harbor C-terminal
of CX32 except Ser at 50th position that lies within ECL1.
C-terminal of connexins is a major influential part for protein
trafficking and studies have reported that phosphorylation of
some amino acids at the tail can also alter the protein half-life
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FIGURE 7 | Comparison of relative changes in the response of entities before and after infection. Relative expression levels of (A) NF-kB, (B) IL1B, (C) IL8, (D) AKT,

(E) ERK, (F) RAS, (G) RAF, (H) PI3K, (I) MLCK, (J) MAPK, (K) P38, (L) PKC, (M) CLDN2, (N) CX32, and (O) ZO1 have been shown on y-axis, whereas, the x-axis

shows 100 time blocks. Entities are simulated after 500 runs with the refresh rate of 5,000 ms, in both models. Blue curve shown the activity level before infection and

red curve represents the activity level of proteins after infection.

and gap junction assembly (Johnstone et al., 2012). Sites having
potential to be phosphorylated within ZO-1 are also found within
crucial domains directly involved in the binding with occludins,
important TJ proteins. Modification in such domains may lead
to disassociation of ZO-1 from TJ proteins, hence, loosening
the epithelial barriers and facilitate the entry of pathogen. H.
pylori alters the expression of different kinases, proteins which
catalyze phosphorylation events, to infer normal modifications
through their virulence factors (Ribet and Cossart, 2010). All
predicted phosphorylation sites when checked for their kinases,
reveal some specific kinases triggered during infection. Kinases
affected especially by H. pylori and its virulence factors were
dug out through extensive literature search. The regulation in
expression of these kinases by CagA are then modeled using
HPNs, which presents the possible route adopted by CagA to
induce PTMs in TJ proteins. The model designed in this study
helps us to investigate the downstream effect of injected CagA
within host cells under pathophysiological conditions. For now,

we ignored the effect of other factors or proteins modulating the
expression of H. pylori specific kinases. Our model was refined
using experimental data and current knowledge of protein
interactions and their influence on each other’s expression both
in normal and diseased states. One of the major key factor in
the regulation of kinases is activation of cytokines IL1β and IL8.
Production of these proinflammatory cytokines is one of the
hallmarks of the gastric mucosa infection by H. pylori which
plays significant role in disease progression. Usually CagA+
strains promote higher production of IL1β and IL8 resulting
in an increased risk of peptic ulcer and gastric cancer (Noach
et al., 1994; Harris et al., 1996; Nagashima et al., 2015; Ferreira
et al., 2016). The increased level of IL1β and IL8 during infection
is stimulated by both phosphorylated and unphosphorylated
CagA, as it triggers the production of NF-κB to almost double.
Elevated expression of NF-κB I turn activates various kinases like
MLCK, MAPK, PKC, P38 etc., which induce phosphorylations
at different sites of TJ proteins. Phosphorylation of MLC by
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myosin light chain kinase (MLCK) causes distension in TJs thus
affecting the cell permeability. Increased IL1β also stimulates
the activation of MLCK during H. pylori infection (Ashida
et al., 2012). Phosphorylation and activation of these kinases
thus induce specific PTMs within TJ proteins which help the
pathogen in cellular vacuolation, loss of membrane integrity and
apoptosis leading to gastric atrophy or intestinal metaplasia.
Pattern of all these changes have been predicted through our
model under the influence of CagA. Simulation results of this
model (of disease condition) are validated by comparing it by
modeling expression of these proteins under normal conditions.
Simulation results of our proposed HPN models are in complete
agreement with the experimental results (Table 1), thus verifying
the predictions of our model.

In conclusion, our HPN model of intracellular signaling after
H. pylori infection provides insight on the mechanism adopted
by pathogen to induce PTMs within TJ proteins. Model clearly
shows that, as a result of action of specific kinases, expression
of CX32 and ZO-1 decreases up to significant levels whereas
CLDN2 gets overexpressed to promote paracellular cation leak.
Despite the limitation of being adapted from previous literature,
our model reflects the sequence of events and captures the logical
interactions among entities through various mechanisms. Such
models can further be expanded to unveil the altered or adapted
mechanisms by pathogen during or before the induction of
infection and pathogenesis.

CONCLUSION

We believe that H. pylori significantly modulate the host TJ
proteins and their interactions to direct its entry within host

epithelial cells via PTMs. To induce specific PTMs, pathogen
disrupts the signaling pathways to express or suppress specific
proteins and kinases leading to alteration within the barrier
proteins. Specific PTM sites have been predicted within selected
TJ proteins, these can be further targeted to infer their
potential impact in vitro and in vivo models. The HPN model
proposed in this study was interesting and revealed a possible
mechanism adapted by the H. pylori to promote the leaky
barrier. The results presented here are truly qualitative, hence
need experimental validation, which can help to improve the
model by inclusion of quantitative data. Similar approaches
can also help to infer specific targets for specific interventions
such as drugs and vaccines or their combinations to combat
the H. pylori infection. The approach can be extended to
other host-pathogen interactions model for understating the
progression of diseases and prediction of potential therapeutic
targets.
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Although combinatorial antiretroviral therapy (cART) potently suppresses the virus, a 
sterile or functional cure still remains one of the greatest therapeutic challenges world-
wide. Reservoirs are infected cells that can maintain HIV persistence for several years in 
patients with optimal cART, which is a leading obstacle to eradicate the virus. Despite 
the significant progress that has been made in our understanding of the diversity of 
cells that promote HIV persistence, many aspects that are critical to the development of 
effective therapeutic approaches able to purge the latent CD4+ T cell reservoir are poorly 
understood. Simultaneous purging strategies known as “kick-kill” have been pointed 
out as promising therapeutic approaches to eliminate the viral reservoir. However, long-
term outcomes of purging strategies as well as the effect on the HIV reservoir are still 
largely fragmented. In this context, mathematical modeling can provide a rationale not 
only to evaluate the impact on the HIV reservoir but also to facilitate the formulation of 
hypotheses about potential therapeutic strategies. This review aims to discuss briefly 
the most recent mathematical modeling contributions, harnessing our knowledge 
toward the uncharted territory of HIV eradication. In addition, problems associated 
with current models are discussed, in particular, mathematical models consider only 
T cell responses but HIV control may also depend on other cell responses as well as 
chemokines and cytokines dynamics.

Keywords: Hiv infection, Hiv cure, reservoirs, mathematical modeling, LRA, ART, vaccination

1. inTRODUCTiOn

According to UNAIDS estimates for the year 2015, 36 million persons are infected with the HIV 
worldwide, and there are approximately 2.3 million new infections and 1.6 million AIDS-related 
deaths that occurred that year (1). Combined antiretroviral therapies (cART) are not able to eradi-
cate the virus and HIV rebounds if therapy is discontinued. Upon HIV infection, a subset of latently 
infected cells carrying transcriptionally inactive integrated proviral DNA (the HIV reservoir) is 
rapidly established (2, 3). These cells are the main force behind HIV persistence under cART and, 
therefore, the main obstacle for an HIV cure (4–6). Thus far, there is only one reported case of a 
potential cure, known in the popular press as the Berlin patient (7). Unfortunately, the unique 
circumstances of the Berlin patient case would make it highly implausible to achieve a cure on 
large scales (8).

Two different approaches are envisaged for curing HIV infection: a sterilizing cure if there is 
a complete eradication of the virus and infected cells; and a functional cure if there is permanent 
control of viral replication without therapy (2). There was a growing recognition that a cure for HIV 
infection could be feasible (4, 8, 9). Recent clinical observations have hypothesized that an early 
initiation of cART is crucial to a progressive contraction of the latent HIV reservoir (“shrink”). This 
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FigURe 1 | Shrink-kick-kill strategies toward an HIV cure. HIV undergoes three phases after cART initiation. The first phase describes the rapid decay of 
productively infected cells, e.g., activated CD4+ T cells. The second phase is led by cells that possess a half-life of about 14 days, which are not completely 
identified but are possibly macrophages and dendritic cells. The third phase is a low but stable level of residual viremia giving a plateau phase, which contains 
occasional viremic episodes (called blips). This third phase has been attributed to long-term reservoirs maintained by activation of latently infected memory CD4+ 
T cells. Recently, it has been hypothesized that tailoring a kick-kill strategy after cART cessation could lead to a sterilizing cure or a functional cure, i.e., achieving a 
controlled viremia below detection. This figure is a modification from Ref. (11).
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could possibly be accomplished with simultaneous strategies that 
activate (“kick” or “shock”) the latent reservoir and increase the 
clearance of virus-infected cells (“kill”), known as a “kick-kill” or 
“shock-kill” strategy (10, 11). The time window to intervene at 
an early stage of infection, while reservoirs are limited, is envis-
aged to be narrow but critical to the performance of an effective 
“shrink-kick-kill” strategy (Figure 1).

Disentangling the leading mechanisms of HIV reservoirs 
is essential for the design of optimal therapeutic strategies. 
Although there are animal models such as the non-human 
primate and the BLT humanized mouse available to recapitulate 
HIV infection or even eradication, they are not perfect (12). 
Mathematical models can serve as a framework to interpret 
data of ongoing clinical trials, to evaluate the long-term of 
new therapeutic interventions, and to tailor future clinical tri-
als. HIV modeling research twisted in a new dimension when  
the two works from Perelson et al. (13) and Nowak and Bangham 
(14) obtained a mathematical interpretation of viral decay 
data presented in HIV patients treated with anti-HIV drugs. 
Since then, modeling HIV infection has been a very active 
research topic over the past decades. Most of these modeling 
works initially aimed to represent the basic relation between 
the host cells and virus (15–21). In addition, significant efforts 
were invested to understand HIV disease progression (22–29), 
viral persistence (30–34), drug resistance (35–39), and optimal  
cART scheduling (40–46) among many others. Mathematical 
modeling was also pointed out as a tool to assess the potential 
of “kick-kill” strategies on long-term outcomes from short-term 
studies (47).

This short review focuses on discussing briefly the uncharted 
territory of HIV eradication as well as the most recent math-
ematical modeling contributions aiming to shed light on major 
clinical implications toward an HIV cure, see Table 1.

2. “SHRinKing” THe ReSeRvOiRS

A very debatable question in HIV research has been if the 
existence of an HIV latent cellular reservoir is maintained by 
long-lived resting memory CD4+ T  cells or through residual 
virus replication that replenishes the HIV reservoir (2, 56).  
Till now, latently infected resting memory CD4+ T cells are the 
only cell type in which it has been clearly demonstrated that 
replication-competent virus can persist for several years in 
patients (4, 57–59).

Memory CD4+ T  cells represent the largest lymphocyte 
population in the adult human body and play critical roles 
in maintaining a life-long immune defense against specific 
pathogens (60). Reservoir maintenance is disputable, it has been 
mainly attributed to the replenishment of the pool, presumably 
by homeostatic or antigen-driven clonal proliferation and de 
novo infection of memory CD4+ T  cells, ensuring the con-
tinuous replenishment of the HIV reservoir (57). Recent works 
from different labs (4, 57–59) revealed a progressive reduction 
of the size of the blood latent reservoir around a core of less-
differentiated memory subsets (central memory and stem cell-
like memory CD4+ T cells). These works indicated an extreme 
stability of different sub-reservoirs, the size of which is directly 
related to cumulative plasma virus exposure before the onset 
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TAbLe 1 | Mathematical models discussing an HIV cure.

Aim Source Modeling approach Prediction

Posttreatment control Hill et al. (48) Branching Process •	 A 5.8-log reduction in the reservoir size is necessary to prevent  
viral rebound for 95% of cases with cART interruption.

•	 Approximately 2,000-fold reduction in the reservoir size is required  
for 1 year cART interruption without viral rebound.

Posttreatment control Pinkevych et al. (49) Exponential model •	 Viral replication is initiated on average every 6 days.
•	 Only 50–70-fold reduction in the reservoir size is required for 1 year  

cART interruption without viral rebound.

Posttreatment control Conway et al. (50) ODEs •	 Viral rebound depends on the size of the latent reservoir and CTL strength.

Vorinostat treatment Ke et al. (51) ODEs •	 A multistage delay activation model can recapitulate the UsRNA changes  
induced by vorinostat.

•	 Vorinostat may not induce killing of transcriptionally activated cells  
leading to a minimal reservoir reduction.

Romidepsin treatment Policicchio et al. (52) ODEs •	 The slopes of plasma viral load increase after romidepsin treatment  
are related to the intensification in viral replication attributed to romidepsin.

•	 The estimated slope was 0.418 log10/day.

Relation between HIV reactivation  
and reservoir reduction

Petravic et al. (53) ODEs •	 The half-life of cells reactivated with panobinostat is >1 month while  
with romidepsin is 2 days.

•	 The increase in reactivation rate baseline by panobinostat is  
approximately 8% and around 2.5-fold increase for romidepsin.

Immunization Luo et al. (54) Markov process •	 Competitive exclusion by autologous antibodies may prevent the  
appearance of broadly neutralizing antibodies.

Immunization Wang et al. (55) Agent-based model •	 Sequential immunization with different antigens is better than a cocktail  
for induction of cross-reactive antibodies.

•	 Antigen variants can impair antibody maturation.
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of cART (58, 59), stressing the importance of early initiation of 
effective cART. Nevertheless, very recent studies demonstrated 
that the viral reservoir is seeded rapidly after SIV infection of 
rhesus monkeys, even before detectable viremia (61). Therefore, 
the multifactorial mechanisms of HIV reservoirs and their 
establishment according to the time of optimal cART are still a 
matter of debate.

The VISCONTI study (9) dissected for the first time that the 
initiation of cART at very early stages of infection could decrease 
the size of the HIV reservoirs. In this study, cART was provided 
for 3 years after primary infection (PHI) to 14 patients and then 
interrupted. This study revealed that the 14 patients presented 
a sustained control for a median of 7 years named as posttreat-
ment controllers (PTCs), implying that perhaps the nature of 
the viral reservoir (levels of TCM cells) could play an important 
role in controlling the infection in the absence of cART. Note 
that PTCs are not the only ones that can control HIV infection,  
a small group of individuals identified in 2005 showed the ability 
to control HIV infection in the absence of cART named as “Elite 
controllers (ECs)” (62). Although both ECs and PTCs can control 
the HIV infection, ECs can naturally maintain undetectable viral 
loads mainly attributed to a measurably stronger CTL response 
than non-controllers. Note that ECs undetectable viral loads are 
not only due to strong CTL but also other cell types, HLA type, 
and cytokines and chemokines (63).

Although the VISCONTI study revealed crucial information 
for a successful therapeutic strategy inducing viral remission, it 
left open several questions, in particular, how can we increase 
the probability of HIV-infected patients becoming PTC? The 
answer is not intuitive, in this direction, Hill et al. (48) proposed 

a mathematical model based on a two-type branching process 
assuming only four types of events: a latently infected cell can 
either activate or die, an actively infected cell can either die or 
produce a collection of virions that results in the infection of other 
cells. The model provided a relevant prediction that it might not 
be necessary to deplete completely the reservoir pool to prevent 
viral rebound, representing a PTC. The reasoning behind these 
predictions is that the high variability in viral progeny gener-
ated from actively infected cells increases the probability that 
the progeny of an activated provirus will go extinct because of 
stochastic diffusion. Hill et al. (48) results suggested that in order 
to achieve the goal of eradication for 95% of patients, a 5.8 logs 
reduction in the reservoir size may be necessary. Alternatively,  
to reach 1 year average without rebound, approximately 2,000-
fold reduction would be required (48).

Controverting Hill et  al. (48) predictions, Pinkevych et  al. 
(49) combined data from four independent clinical cohorts of 
patients with cART interruption together using a simple model 
with exponential phase with a “shoulder” that represents the 
time for drug “washout” and viral growth. Pinkevych et  al. 
(49) estimated that viral replication is initiated on average once 
every 6 days approximately, which is about 24 times lower than 
previous estimations. Furthermore, the model indicated that a 
modest 50–70-fold reduction of the reservoir would be required 
for 1  year without viral rebound after cART interruption. Six 
months later, Hill et al. (64) questioned the estimation approach 
by Pinkevych et al. (49). Mathematical models including modest 
interpersonal variations in Ref. (64) were also able to explain the 
observed variation in rebound times, rejecting the simplifying 
assumption of homogeneity in Ref. (49). In response to the critic 
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of Hill et  al. (64), Pinkevych et  al. (65) derived an analytical 
approximation incorporating multiple reactivation events and 
consequently fitted to four datasets. Overall, fitting results in 
Ref. (65) indicated similar results to their original work (49). 
Furthermore, Pinkevych et al. (65) argued back to the work in 
Hill et al. (48) for using reactivation rates from previous publica-
tions that were not based on data on reactivation from latency 
after treatment interruption.

In a separate modeling lab, Conway et  al. (50) tested the 
immune system response led by cytotoxic T cell (CTL) would be 
sufficient to control the infection due to the rate of new produc-
tively infected cells is small. To this end, using ordinary differen-
tial equations (ODEs), numerical simulations in Ref. (50) pointed 
out that for very strong CTL responses, HIV infection would be 
controlled in a similar fashion as with the ECs. Moreover, within 
the first 6 months of cART interruption, the model represented 
qualitatively similar the viral rebound to those reported in some 
individuals in the VISCONTI study. Interestingly, the model 
analysis reveals that not only a very low latent reservoir size is 
necessary to guarantee PTCs but also the CTL strength. A short-
coming of the Conway et  al. model is the missing quantitative 
information to precise CD8+ T response leading to a subjective 
selection of the model and parameters.

3. “KiCKing” THe LATenT ReSeRvOiRS

The central dogma for an HIV cure is to reverse latency of resting 
CD4+ T cells that harbor replication competent proviruses (30), 
but at the same time, a major challenge in “purging” treatment 
strategies is the reduction of the virus without causing global 
T cell activation (66). The ability to induce HIV viremia or at least 
cell surface expression of viral proteins and presentation of viral 
antigens is a fundamental requirement for enabling the immune-
mediated killing of latently infected cells and, thus, defines the key 
goal of latency-reversing agents (LRAs) in eradication strategies 
(11). These agents include histone methyltransferase inhibitors 
and histone deacetylases (HDAC) inhibitors (67). The potential 
to activate HIV production from latently infected cell lines and 
resting CD4+ T cells from HIV-infected patients on suppressive 
cART is under large debate last 5 years (11, 68). Thus far, multiple 
HDAC inhibitors can potently activate viral production in vitro, 
however, results of initial clinical trials in HIV-infected patients 
are just very recently published (10, 69, 70).

Essential steps in the life cycle of HIV within host cells, 
cell-associated HIV RNA markers, have been identified and 
currently used in several clinical trials as a surrogate to measure 
the degree of HIV persistence (71). Among HIV RNA mark-
ers, unspliced RNA (UsRNA) also referred as cell-associated 
unspliced (CA-US) is more easy to detect and thus several 
studies have linked to virus persistence (71).

For vorinostat, a promising LRA, 20 HIV-infected individu-
als on suppressive cART were treated with 400 mg of vorinostat 
for 14 days and then followed by 70 days (69). Although highly 
variable outcomes among the participants, vorinostat induced a 
significant and sustained increase UsRNA. Ke et al. (51) proposed 
three different models based on ODEs to further understand how 
latently infected cells respond dynamically to vorinostat: a direct 

activation model, a delay activation model, and a multistage 
delayed model. The model analysis in Ref. (51) revealed that 
a multistage delayed activation model could recapitulate the 
short-term and the long-term changes induced by vorinostat 
in UsRNA in most of the participants. This can be interpreted 
as latently infected cells may need to go through several stages 
before becoming sustainably activated. Clinically relevant for 
HIV persistence, parameter estimates by Ke et  al. (51) evoked 
the idea that vorinostat treatment may not induce killing of 
transcriptionally activated cells leading to a minimal or absent 
reduction in reservoir size.

Another important LRA is romidepsin, Søgaard et  al. (70) 
reported in a small clinical trial of six HIV-infected individuals 
who received romidepsin once weekly for 3 weeks while keeping 
cART. In contrast to vorinostat that did not induce plasma HIV 
RNA, romidepsin treatment promoted in five patients an increase 
of plasma HIV RNA to detectable levels ranging from 46 to 
103 copies/ml. However, romidepsin and vorinostat did not alter 
the size of the HIV reservoir (72). To demonstrate that romidep-
sin may successfully activate the latent reservoir, Policicchio et al. 
(52) developed a non-human primate (NH) model to capture the 
characteristics of PTCs. Unexpectedly, stopping cART 7 days after 
romidepsin administration showed that viral rebound occurred 
as early as 3 days after cART interruption. Note that the average 
time of viral rebounds in humans is approximately 8 weeks (73). 
Employing a simple mathematical model of viral production, 
Policicchio et al. (52) indicated that the slopes of plasma viral load 
increase after romidepsin treatment are related to the intensifica-
tion of viral replication attributed to romidepsin. Fitting results 
showed that the estimated slope was 0.418 log10/day.

Thus far, in clinical trials, HDACs have demonstrated an 
increase of UsRNA in total but a minimal reduction in reservoir 
size. Based on simple mathematical models assuming “direct 
activation,” Petravic et al. (53) suggested that several mechanisms 
such as maintenance and clearance of the reservoirs as well as 
other mechanisms may significantly impact the relationship 
between HIV reactivation and the reduction of latently infected 
cells. In particular, Petravic et al. (53) considered the impact of 
panobinostat and romidepsin, both drugs revealed 3–4 increased 
of CA-RNA in clinical trials. On one hand, cells reactivated with 
panobinostat have a long life span (half-life >1 month) suggesting 
a modest increase in reactivation rate (approximately 8%). On the 
other hand, cells activated with romidepsin have a short life span 
(2 days), implying that HIV reactivation rate may have doubled 
with romidepsin (53).

Overall, it is envisaged that additional interventions will 
be needed to eliminate efficiently latently infected cells (69).  
It is, therefore, very likely that HDACs will form part of a mul-
tipronged strategy (74). Consequently, mathematical models 
merging dynamics from different HDAC inhibitors may help to 
propose “kick” strategies to eliminate latently infected cells to 
achieve the ultimate goal of HIV eradication.

4. “KiLLing” THe ACTivATeD ReSeRvOiR

Purging strategies reached a new level of complexity due to 
recently published works addressing the frequency of CTL escape 
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mutations in archived proviruses, indicating an unexpected 
and exceptionally dynamic nature of the latent reservoir (75). 
Although cART is started early, the vast majority of latent viruses 
carry CTL mutations that render infected cells unrecognizable 
by CTLs directed at common epitopes. While the non-protective 
responses may not be harmful per  se, they may dominate and 
suppress the true protective ones. Thus, it is critical to (re)
focus T-cell responses on the protective, biologically conserved 
epitopes of the HIV-1-proteome by effective vaccination (76). 
However, the biggest obstacle for vaccine development is the 
HIV-1 variability and escape from mounted responses. T-cell 
strategies focus on vaccine-elicited responses on the most con-
served regions of the HIV-1 proteome are very promising, due to 
these are common to most variants and cause replicative fitness 
loss if mutated (76, 77). In this context, the best “kill” strategy 
could be based on innovative vaccines aiming to induce CD8+ 
T cell responses in conserved regions of the HIV-1 proteome.

To the best knowledge of the author, there is not any math-
ematical work to evaluate vaccines aiming to induce CD8+ T cell 
responses. Till now, mathematical models have focused on incor-
porating affinity antibody maturation (54, 55). Using agent-based 
simulations of the Germinal Center (GC) reaction, simulation 
results from Wang et  al. (55) suggested that the induction of 
cross-reactive antibodies occurs with low probability because 
of conflicting forces by different antigens, ultimately frustrating 
affinity maturation. Wang et al. (55) provided a critical prediction 
that sequential immunization with different antigens would be 
preferred over a cocktail for induction of cross-reactive antibod-
ies. In a similar vein, Luo et al. (54) proposed a Markov process 
model to simulate coevolving multi-type virus and antibodies 
populations. Simulations results provided also the hint that 
competitive exclusion by autologous antibodies could avoid the 
appearance of broadly neutralizing antibodies.

5. A ROADMAP FOR Hiv MODeLing

HIV modeling is on uncharted territory. Modeling “kill” strate-
gies aiming to induce CD8+ T cell responses in cooperation with 

a combination of HDAC inhibitors has the potential to advance 
understanding toward HIV eradication. There are at the moment 
several clinical trials based on “kick-kill” therapies such as the 
RIVER study (78), for which a long-term follow-up out to 5 years 
is envisaged. Furthermore, several mechanisms may be underes-
timated in mathematical modeling research. Recent experimen-
tal evidence revealed that clonal proliferation of infected cell may 
play a central role maintaining the reservoirs (79). On the other 
hand, viral control may not be only associated with restoration 
of CD8+ T cells (80). Mathematical models presented till now 
assume only T  cell responses as a main component. However, 
further modeling efforts including host factors and immune 
responses responsible for the HIV elite status may uncover clues 
for the design of therapeutic vaccines and functional cures (63). 
Ultimately, mathematical models of HIV compartments (e.g., 
different places where the virus is present) and sanctuaries (e.g., 
limited penetration of drugs that maintains persistent replica-
tion) are needed to weight HIV persistence.

Above all, the difference in opinion of modeling approaches 
between Pinkevych et  al. and Hill et  al. points out that there 
is a great need to unify the efforts in modeling practices such 
as develop good practice guidelines for reporting parameter 
fitting results. Although assuming there exists a model that 
represents properly the problem at hand, model fitting to 
experimental data is subject to a large number of factors that 
can distort parameter estimates (81). Efforts in dealing with 
errors in parameter estimation shall be well documented in 
next mathematical models to strengthen and support further 
development toward HIV eradication.
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Peste des petits ruminants (PPR) is one of the highly contagious viral disease,
characterized by fever, sore mouth, conjunctivitis, gastroenteritis, and pneumonia,
primarily affecting sheep and goats. Reports suggested variable host response in goats
and sheep and this host response vis-a-vis the expression of microRNAs (miRNAs)
has not been investigated. Here, miRNAs were sequenced and proteomics data were
generated to identify the role of differentially expressed miRNA (DEmiRNA) in PPR virus
(PPRV) infected lung and spleen tissues of sheep and goats. In lungs, 67 and 37
DEmiRNAs have been identified in goats and sheep, respectively. Similarly, in spleen,
50 and 56 DEmiRNAs were identified in goats and sheep, respectively. A total of 20
and 11 miRNAs were found to be common differentially expressed in both the species
in PPRV infected spleen and lung, respectively. Six DEmiRNAs—miR-21-3p, miR-1246,
miR-27a-5p, miR-760-3p, miR-320a, and miR-363 were selected based on their role in
viral infections, apoptosis, and fold change. The target prediction analysis of these six
selected DEmiRNAs from the proteome data generated, revealed involvement of more
number of genes in lung and spleen of goats than in sheep. On gene ontology analysis
of host target genes these DEmiRNAs were found to regulate several immune response
signaling pathways. It was observed that the pathways viz. T cell receptor signaling,
Rap1 signaling, Toll-like receptor signaling, and B cell receptor signaling governed
by DEmiRNAs were more perturbed in goats than in sheep. The data suggests that
PPRV-induced miR-21-3p, miR-320a, and miR-363 might act cooperatively to enhance
viral pathogenesis in the lung and spleen of sheep by downregulating several immune
response genes. The study gives an important insight into the molecular pathogenesis
of PPR by identifying that the PPRV—Izatnagar/94 isolate elicits a strong host response
in goats than in sheep.
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INTRODUCTION

MicroRNAs (miRNAs) are an important part of the host’s
regulatory system, involved in post-transcriptional regulation
of gene expression in animals, plants, and some DNA viruses
(Sevignani et al., 2006). They regulate gene expression by
recognizing partial complementary sites, typically within the 3′
untranslated region (3′UTR) of specific mRNAs. Evidence also
supports that miRNAs may regulate gene expression by binding
to 5′UTR or coding region (Tay et al., 2008; Roberts et al.,
2011a). miRNAs are shown to be involved in different biological
processes, including reproduction, development, pathogenesis,
apoptosis, and signal transduction (Ambros, 2004; Bartel, 2004;
Sahu et al., 2015). It has also been suggested that miRNAs may be
the effectors in controlling immune regulation, including cellular
differentiation and immune response (Rodriguez et al., 2007;
Thai et al., 2007; Johnnidis et al., 2008). They are considered as
the centered factors in the interaction network between viruses
and host. Studies demonstrated that numerous cellular miRNAs
(host miRNAs) play a regulatory role in the host–virus interaction
network (Scaria et al., 2006; Grassmann and Jeang, 2008).

Cellular miRNAs can greatly influence viral replication and
pathogenesis by promoting or inhibiting virus replication (Guo
et al., 2013; Li et al., 2014; Mizuguchi et al., 2015). Viral infection
also exerts a profound impact on cellular miRNA expression
profile, by altering the expression of cellular miRNAs, thereby
regulating host or viral RNA targets (Skalsky and Cullen, 2010). It
has been observed that miR-142 suppresses replication of Eastern
Equine Encephalitis virus (Trobaugh et al., 2014) and miR-122
enhances replication of Hepatitis C virus (Chang et al., 2008).
HIV-1, boosts the expression of several host miRNAs, including
miR-122, miR-370, miR-373, and miR-297 and suppresses the
expression of the miR-17-92 cluster via an unknown mechanism
(Roberts et al., 2011b). The emergence of deep sequencing
technology has overcome the limitations of miRNA research.
Several studies have explored this technology to evaluate global
changes in miRNAs expression in response to virus infection
(Wang et al., 2009; Cui et al., 2010).

Peste des petits ruminants (PPR) is an acute, highly contagious
viral disease of sheep and goats characterized by fever, sore
mouth, conjunctivitis, gastroenteritis, and pneumonia. Goats
have been found to be more susceptible with severe form of
clinical disease than sheep (Lefevre and Diallo, 1990; Nanda
et al., 1996; Dhar et al., 2002; Singh et al., 2004a; Delil et al.,
2012; Truong et al., 2014). It has also been observed that
the rate of recovery is lower in goats than in sheep (Singh
et al., 2004a). However, severe outbreaks of PPR in regions
having large sheep populations have also been reported (Singh
et al., 2004a; Raghavendra et al., 2008; Maganga et al., 2013).
Recently, host–virus interaction studies in PPR have uncovered
transcription factors modulating immune response to Sungri/96
live attenuated vaccine strain and predicted an immune signaling
pathway that induces immune response (Manjunath et al., 2015,
2017). However, the host miRNAome in PPR has not been
explored till date. In the present study, miRNAs were sequenced
and proteomics data were generated to examine the effect of
PPR virus (PPRV) on host miRNAs expression vis-a-vis protein

expression in lung and spleen tissues of sheep and goats infected
with PPR.

MATERIALS AND METHODS

Ethics Statement and Animal Experiment
The vaccine potency testing experiment was carried out at
ICAR-Indian Veterinary Research Institute Mukteshwar Campus
as per the guidelines of Indian Pharmacopoeia-2014. The study
was done after obtaining permission from Indian Veterinary
Research Institute Animal Ethics Committee (IVRI-IAEC) under
the Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA), India. The protocols were
approved vide letter no 387/CPCSEA. Animals (ca. 1 year of
age) for the experiment were initially tested to be negative for
the presence of PPRV antibody by competitive ELISA (Singh
et al., 2004b) and serum neutralization test (SNT; Dhinakar Raj
et al., 2000). The animals were also found negative for PPRV
antigen in nasal, ocular, buccal, and rectal swabs by sandwich
ELISA (Singh et al., 2004c). A highly virulent PPRV (Izatnagar/94
- lineage IV) isolate maintained at PPR Laboratory, Division
of Virology, Indian Veterinary Research Institute, Mukteshwar
was used as a challenge virus (Sreenivasa et al., 2002). The
accession number of this isolate is (KR140086.1; Sahu et al.,
2017). Splenic suspension (10%) of virulent virus was inoculated
subcutaneously (4 ml suspension, 2 ml each at two different
sites). The unvaccinated infected group animals were monitored
diurnally for, rectal temperature, any secretion from natural
orifices, and feeding habit throughout the experimental period.
The unvaccinated animals infected with the PPRV, developed
symptoms characteristics of PPRV. The infected animals in which
the temperature dropped subnormal were euthanized at 10 days
post-infection. As PPRV is epitheliotropic and lymphotropic
virus, the tissue samples—lung (epithelial) and spleen (lymphoid)
were collected from PPRV infected sheep and goats (n = 2 for
each of the species). The counterpart healthy tissues (control)
were collected from nearby slaughter house from apparently
healthy animals that were screened for the absence of PPRV
antigen by sandwich ELISA and antibodies by competitive ELISA
and SNT.

Confirmation of PPRV Infection
PPRV infection was confirmed in lung and spleen tissues by,
RT-PCR, qRT-PCR, and sandwich ELISA.

Small RNA Library Construction
Total RNA from each of the collected samples (lung and
spleen) was isolated using the RNeasy Mini kit (Qiagen
GmbH, Germany) according to the manufacturer’s protocol.
The integrity and quantity of isolated RNA were assessed on
a Bioanalyzer (Agilent Technologies, Inc). The RNA integrity
number (RIN) value of all the samples was found greater than 8,
which is considered suitable for further processing (Kukurba and
Montgomery, 2015). The library was prepared using NEBNext
Multiplex Small RNA Library Prep Kit (New England Biolabs
Inc.) following the manufacturer’s protocol. Hundred nanograms
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of total RNA from each sample was used for small RNA
library preparation. The quality of the libraries was assessed
on Bioanalyzer. Libraries were quantified using a Qubit 2.0
Fluorometer (Life Technologies) and by quantitative real-time
PCR (qPCR; Robin et al., 2016). The high-throughput sequencing
was performed on Illumina – NextSeq500 (75 bp single-end)
(manufacturer’s protocol).

miRNAs Prediction and Analysis
The cattle genome sequence was obtained from ftp://ftp.
ensembl.org/pub/release-89/fasta/bos_taurus/dna/ The genome
was indexed using Bowtie short read aligner program (Langmead
et al., 2009). miRNAs are conserved across species (Altuvia
et al., 2005). Since there is no complete sheep and goats
miRNAs dataset available in miRBase, known mature miRNAs
and precursor sequences for cattle were obtained using a Perl
script from miRBase database. Data were further processed
using miRDeep2 software (Friedlander et al., 2008, 2012). After
filtering (read length≥18 nt) the set of collapsed, non-redundant,
clean reads were mapped to the indexed cattle genome using
a mapper module. To identify known miRNAs, clean reads
were aligned against miRNA precursor sequences reported in
the miRBase database using quantifier.pl module. Read counts
for each miRNA identified using miRDeep2 were further used
for the downstream analysis. The relative expression levels of
miRNAs were normalized as TMM (trimmed mean of M-values)
using edgeR R/Bioconductor package (Robinson et al., 2010) to
identify differentially expressed miRNAs (DEmiRNAs) in lung
and spleen.

Proteomics Data Generation and Data
Analysis
Protein Extraction and Analysis
Approximately, 1 g of tissue—spleen and lung, from PPRV
infected/apparently healthy goats and sheep was taken in 10 ml
lysis buffer (50 mM Tris buffer+ PIC+ PMSF), homogenized on
ice, centrifuged at 14,000 rpm and the supernatant was collected
into a separate tube (Tris buffer extract). The cell pellet was
further added with urea lysis buffer, centrifuged at 14,000 rpm
and the resultant supernatant was collected. Supernatants from
Tris and urea extractions were run on an SDS-PAGE for quality
check (QC) and for further downstream processing. Protein
concentration was determined by using Bradford assay and
100 µg of the samples was taken for digestion. Protein samples
were treated with 100 mM dithiothreitol at 95◦C for 1 h, added
with 250 mM iminodiacetic acid and kept at room temperature
for 45 min in dark. Samples were then digested with trypsin
and incubated overnight at 37◦C. Further, 1% of formic acid
was added and incubated at 37◦C for 45 min. The resulting
samples were vacuum dried and dissolved in 10 µl of 0.1% formic
acid and centrifuged at 10,000 g. The supernatant was injected
on C18 Nano-LC column for separation of peptides followed
by analysis on the Waters Synapt G2 Q-TOF instrument for
MS and MSMS. The raw data was processed by MassLynx 4.1
WATERS. The individual peptides MSMS spectra were matched
to the database sequence for protein identification on PLGS

software, WATERS. Based on the m/z values and their probability
to match with a specific peptide present in proteins cleaved
at arginine (R) or lysine (K) the protein identification was
carried with thresholds, minimum number of peptides to be
found for a protein—2; minimum number of fragments (MSMS)
ions in a peptide—3; minimum number of fragments (MSMS)
ions in a protein—7; peptide mass tolerance—30 ppm; and
fragment ion mass tolerance—70 ppm. The identified proteins
in the three runs of each sample were compared with each
other as control (healthy) and infected samples. Expression
Analysis package of the PLGS software was then used for
quantification. The ion counts matching with the peptides of a
specific protein corresponding between the two samples in the
three runs, were averaged and the ratio was calculated for the
whole protein.

Target Prediction of miRNAs
To better understand the biological function of DEmiRNA,
TargetScan tool (Aggarwal et al., 2015) with default parameters
was used to predict target genes of the selected DEmiRNAs (six
miRNAs selected based on their role). From these predicted
genes, the dysregulated genes from the proteomics data were
identified for the miRNA selected (downregulated proteins for
upregulated miRNA and upregulated proteins for downregulated
miRNA). These common target genes from TargetScan and
proteomics data were considered for further analysis. The
miRNA–protein network was created based on the expression
profile of target genes and miRNAs using Cytoscape (ver. 3.1.1;
Shannon et al., 2003).

Gene Ontology Enrichment and Pathway
Analysis
Functional annotation of the selected DEmiRNAs in each tissue
was performed using target genes governed by them in ClueGO
(ver. 2.1.4; Bindea et al., 2009) in Cytoscape (ver. 3.1.1; Shannon
et al., 2003). Immune system processes and KEGG pathways were
selected to generate a functionally organized GO/pathway term
networks.

Validation Using qPCR
Total RNA, including small RNA from the lung and spleen
of control and infected sheep and goats were isolated using
mirVanaTM miRNA isolation kit (Invitrogen). Reverse
transcriptase reactions were performed using RT specific
primers of miR-363, miR-760-3p, miR-21-3p, and U6snRNA by
TaqMan R© MicroRNA Reverse Transcription Kit. Real-time PCR
was performed using a standard TaqMan PCR kit protocol on
an Applied Biosystems 7500 fast Sequence Detection System.
The 10 µl PCR included 5 µl of 2× TaqMan Gene Expression
Master Mix (Thermo Fisher Scientific Inc., Wilmington, DE,
United States, Cat. No. 4369016), 0.5 µl of 20× TaqMan probe,
2 µl (0.134 ng) of RT product and 2.5 µl of NFW. The reactions
were incubated in a 96-well plate at 95◦C for 10 min, followed by
40 cycles of 95◦C for 15 s and 60◦C for 1 min. All reactions were
run in triplicate. The threshold cycle (Aad et al., 2015) is defined
as the fractional cycle number at which the fluorescence passes
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the fixed threshold. The expression of the selected miRNAs
described above was assayed taking the expression of U6snRNA
as an internal control. The relative expression of each miRNA
was calculated using the 2−11CT method with a control group
as calibrator (Schmittgen and Livak, 2008).

RESULTS

Confirmation of PPRV Infection
Viral infection in the lung and spleen of sheep and goats
infected with PPRV was confirmed by RT-PCR of 351 bp N gene
amplicon in lung and spleen (Supplementary Figure S1). The
viral infection was further confirmed by sandwich ELISA and
qRT-PCR in both lung and spleen of goats and sheep (data not
shown).

miRNAs Prediction and Identification of
DEmiRNAs
In goats, miRDeep2 identified 298 and 283 miRNAs in control
and PPRV infected lung, and 277 and 274 miRNAs in control and
PPRV infected spleen. In sheep, 290 and 298 miRNAs in control
and PPRV infected lung, and 274 and 256 miRNAs in control and
PPRV infected spleen, respectively, were predicted. DEmiRNAs
[FDR≤ 0.05 and fold change (log2FC)≥ 1] in lung and spleen of
PPRV infected sheep and goats are presented in Table 1. A total
of 67 miRNAs (34 downregulated and 33 upregulated) were
dysregulated in the lungs of PPRV infected goats. However, a
relatively small number of DEmiRNAs—37 miRNAs (16 miRNAs
downregulated and 21 miRNAs upregulated) were identified
in the lungs of sheep (Table 1). In infected goat’s spleen, 50
miRNAs were dysregulated with 26 of them downregulated and
24 upregulated. In spleen of sheep, 56 miRNAs were differentially
expressed after PPRV infection and of these, 26 miRNAs were
downregulated and 30 miRNAs were upregulated (Table 1).

On comparing tissues across species, 20 and 11 miRNAs
were found to be commonly differentially expressed in PPRV
infected spleen and lung, respectively, in both sheep and goats.
Among these 20 common DEmiRNAs in spleen, 11 DEmiRNAs
(miR-199b, miR-1271, miR-217, miR-2887-1, miR-2887-2, miR-
6119-3p, miR-221, miR-744, miR-30c, let-7a-5p-2, and miR-211)
were downregulated and nine DEmiRNAs (miR-17-3p, miR-
486, miR-146b, miR-363, miR-451, miR-193a-3p, miR-760-3p,
miR-144, and miR-21-5p) were upregulated in goats, and in

TABLE 1 | Differentially expressed (log2FC ≥ 1 and FDR ≤ 0.05 up/down
regulated miRNAs in goats and sheep spleen and lung.

Differentially

expressed with Down- Up- Common

Sample log2FC > 1 and
FDR ≤ 0.05

regulated regulated DEmiRNAs

Sheep lung 37 16 21 11

Goats lung 67 34 33

Sheep spleen 56 26 30 20

Goats spleen 50 26 24

sheep, nine DEmiRNAs (miR-199b, miR-1271, miR-217, miR-
6119-3p, miR-221, miR-744, miR-30c, let-7a-5p-2, and miR-211)
were downregulated and 11 DEmiRNAs (miR-2887-1, miR-2887-
2, miR-17-3p, miR-486, miR-146b, miR-363, miR-451, miR-193a-
3p, miR-760-3p, miR-144, and miR-21-5p) were upregulated
(Figure 1A and Table 2). Of these 20 common DEmiRNAs, miR-
21-5p was the most upregulated (log2FC = 2.35) and miR-199b
was the most downregulated DEmiRNA (log2FC = −3.03) in
the spleen of goats. While in infected spleen of sheep the most
upregulated DEmiRNAs were miR-451 (log2FC= 2.75) and miR-
144 (log2FC = 2.63) and the most downregulated DEmiRNAs
were miR-217 (log2FC=−4.08) and miR-221 (log2FC=−2.60).

The expression profile of the 11 common DEmiRNAs in
the lung tissue varied in sheep and goats. miR-328 was found
downregulated in goats but upregulated in sheep; two miRNAs—
miR-2285f-2 and miR-27a-5p were found upregulated in goats
but downregulated in sheep; six miRNAs—miR-320a-1, miR-
320a-2, miR-1246, miR-363, miR-760-3p, and miR-21-3p were
upregulated and two miRNAs—miR-34b and miR-150 were
downregulated in both species (Figure 1B and Table 3). Among
these 11 common DEmiRNAs, the expression of miR-21-3p, miR-
760-3p, and miR-27a-5p was more abundant in lungs of PPRV
infected goats with log2 fold change of 5.82, 3.79, and 3.07,
respectively, while miR-34b (log2FC = −2.53) and miR-2285f-
2 (log2FC = −2.53) were found least abundant in lungs of goats
and sheep, respectively.

Among these 31 commonly DEmiRNAs, six DEmiRNAs were
selected based on their role in viral infections, apoptosis, and
fold change (Table 4). These miRNAs include miR-21-3p, miR-
320a, miR-27a-5p, and miR-1246—expressed in lung of both
species; miR-760-3p and miR-363—expressed in lung and spleen
of both species (Figure 2). The miRNAs—miR-363 and miR-
760-3p commonly present in PPRV infected lung and spleen
of both species were identified to be upregulated. In lung, the
expression of miR-363 and miR-760-3p was higher in goats with
log2 fold change of 2.42 and 3.79, respectively, than in sheep
(miR-363, log2FC = 1.04 and miR-760-3p, log2FC = 1.24) after
PPRV infection. In spleen, the expression profile of miR-363 was
higher in goats (log2FC = 1.55) than in sheep (log2FC = 1.28),
however, no difference in expression of miR-760-3p was observed
in goats (log2FC= 1.63) and sheep (log2FC= 1.67) infected with
PPRV.

Target Prediction and miRNA–Protein
Regulatory Network Analysis
A total of 1149 (714 downregulated, 435 upregulated) and
1565 (1041 downregulated, 524 upregulated) differentially
expressed proteins were identified in lung of sheep and goats,
respectively, and 944 (281 downregulated, 663 upregulated)
and 909 (590 downregulated, 319 upregulated) differentially
expressed proteins were identified in spleen of sheep and goats,
respectively. The number of dysregulated proteins identified
through mass spectrophotometry by each of these six miRNAs
is shown in Figure 2. The miRNA–protein interactions for each
species and tissue are represented in a network (Figure 3).
In the miRNA–protein network of lung tissue of goats, three
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FIGURE 1 | Commonly differentially expressed miRNAs (log2FC > 1). (A) Commonly differentially expressed miRNAs (log2FC > 1) in spleen tissue of sheep and
goats. (B) Commonly differentially expressed miRNAs (log2FC > 1) in lung tissue of sheep and goats.

miRNAs—miR-21-3p, miR-363, and miR-320a mutually regulate
EGFR (epidermal growth factor receptor), which is involved
in immune response. Similarly, IGF1R (insulin like growth
factor 1) protein, involved in regulation of immune response
was the target of miR-27a-5p, miR-363, miR-320a, and miR-
760-3p. The TRIM (tripartite motif family) family members
TRIM24, TRIM36, and TRIM45 were identified to be modulated
by miR-1246, miR-320a, and miR-21-3p, respectively. The
expression level of NF-κB signaling-related molecules IRAK2
and TRAF4 was regulated by miR-1246 and miR-320; and miR-
1246 and miR-760-3p, respectively (Figure 3A). In PPRV infected
sheep lung, the upregulated miRNAs—miR-21-3p and miR-320a
govern immune genes—TRAF6, EGFR, and ERBB4 and the
downregulated miR-27a-5p potentially modulates the expression
of genes—MAP3K7 and MAPK8IP3, involved in JNK signaling
pathways (Figure 3B).

In PPRV infected spleen of goats, miR-363 and miR-760-
3p regulate apoptotic molecules (NFATC2, NOX5, and MYO6)
and target genes involved in immunological processes (NFATC2,
IGF1R, KLHL21, and NOX5) (Figure 3C). The immune effector
molecules IFIT5 and TRIM33 were targeted by miR-363, and
CD244 and NFKBIE were regulated by miR-760-3p in infected
spleen of sheep (Figure 3D).

Gene Ontology and KEGG
Pathway-Based Network Analysis
Functional annotation of a total of 770 and 1226 target
proteins governed by selected six miRNAs in infected sheep and
goats infected lung, respectively, resulted in higher number of
significantly enriched pathways and GO terms in goats than in
sheep (Figure 4). The highly enriched common GO terms and
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TABLE 2 | DEmiRNAs commonly identified in PPRV infected spleen tissue of
sheep and goats.

Log2FC Log2FC Downregulation/

S. no. miRNAs (goats) (sheep) upregulation

1 miR-199b −3.03 −2.13 Down

2 miR-1271 −1.74 −1.32 Down

3 miR-217 −1.67 −4.08 Down

4 miR-2887-1 −1.29 1.51 Down (goats) Up (sheep)

5 miR-2887-2 −1.29 1.51 Down (goats) Up (sheep)

6 miR-6119-3p −1.26 −1.36 Down

7 miR-221 −1.15 −2.60 Down

8 miR-744 −1.10 −1.87 Down

9 miR-30c −1.06 −1.47 Down

10 let-7a-5p-2 −1.00 −1.62 Down

11 miR-211 −2.79 −2.19 Down

12 miR-17-3p 1.168 2.20 Up

13 miR-486 1.32 2.39 Up

14 miR-146b 1.46 1.15 Up

15 miR-363 1.55 1.28 Up

16 miR-451 1.57 2.75 Up

17 miR-193a-3p 1.63 1.67 Up

18 miR-760-3p 1.63 1.67 Up

19 miR-144 1.98 2.63 Up

20 miR-21-5p 2.35 1.44 Up

TABLE 3 | DEmiRNAs commonly identified in PPRV infected lung tissue of sheep
and goats.

Log2FC Log2FC Downregulation/

S. no. miRNAs (goats) (sheep) upregulation

1 miR-34b −2.53 −1.07 Down

2 miR-150 −1.68 −1.20 Down

3 miR-328 −1.46 1.29 Up (goats) Down (sheep)

4 miR-320a-1 1.08 1.30 Up

5 miR-320a-2 1.08 1.30 Up

6 miR-1246 2.10 2.31 Up

7 miR-2285f-2 2.34 −1.89 Up (goats) Down (sheep)

8 miR-363 2.42 1.04 Up

9 miR-27a-5p 3.07 −1.57 Up (goats) Down (sheep)

10 miR-760-3p 3.79 1.24 Up

11 miR-21-3p 5.82 1.75 Up

pathways targeted by the miRNAs in the lung tissue of sheep and
goats includes T cell receptor signaling pathway, Rap1 signaling
pathway, Toll-like receptor TLR6:TLR2 signaling pathway, etc.
(Figures 4A,B).

Similarly, functional annotation of 84 and 173 target proteins
governed by two out of selected six miRNAs in infected sheep and
goats spleen, respectively, identified enrichment of B cell receptor
signaling and FC epsilon RI signaling pathways in both the
species (Figures 4C,D). Furthermore, targets of DEmiRNAs in
sheep spleen were also found enriched in FC-gamma R mediated
phagocytosis and myeloid leukocyte mediated immunity. The
targets of DEmiRNAs of goat’s spleen were found involved in
NF-κB signaling pathway, alpha–beta T cell differentiation, ErbB

TABLE 4 | Six selected DEmiRNAs.

miRNAs Role Tissue Reference

miR-27a-5p Repression of viral
replication

Lung Roberts et al., 2011b

miR-21-3p Induce apoptosis Lung Lo et al., 2013

miR-320a Inhibit virus infection Lung Sun et al., 2014

miR-1246 Promotes virus
cytotoxicity

Lung Sheng et al., 2014

miR-363 Induced apoptosis Lung and spleen Zhang et al., 2014

miR-760-3p Very highly upregulated Lung and spleen –

signaling pathway and regulation of B cell activation. In addition,
the number of significantly enriched pathways and GO terms
were higher in lung and spleen tissue of goats than in sheep.

Validation of DEmiRNAs by qPCR
To further validate the expression of DEmiRNAs from high-
throughput sequencing, qPCR was performed on three
DEmiRNAs—miR-21-3p, miR-363, and miR-760-3p. The
expression of miR-363 and miR-760-3p in sheep and goats in
both the tissues was in concordance with small RNA sequencing
results. The expression of miR-21-3p was found to be in
concordance with the sequencing results in PPRV infected spleen
of both the species. However, in infected lung miR-21-3p was
found upregulated on qPCR though not found in small RNA
sequencing data in both the species (Figure 5 and Table 5).

DISCUSSION

PPR is a major threat to livestock keepers in developing countries,
causing a severe disease in goats and sheep. Host encoded
miRNAs have been demonstrated to be key regulators of host–
virus interactions, and their expression is often affected by viral
infection (Hussain and Asgari, 2010; Skalsky and Cullen, 2010).
Currently there is no report available suggesting PPRV infection-
induced changes in expression of cellular or host miRNAs. In
the present study, we investigated the expression pattern of host
miRNAs in spleen and lung of sheep and goats infected with
PPRV vis-a-vis protein expression.

Detailed analysis revealed many differences in the global
expression profile of miRNAs among lung and spleen, suggesting
common and unique miRNA transcriptome landscape against
PPRV. PPRV infection altered the expression of host miRNAs
in lung and spleen. Under PPRV infection, a total of 37 and
67 DEmiRNAs were identified in lung of sheep and goats;
and, 56 and 50 DEmiRNAs in the spleen of sheep and goats,
respectively. PPRV infection in spleen and lung triggered the
expression of many immune-related miRNAs, including, miR-
21, miR-150, miR-146b, and let-7 family as reported in Japanese
encephalitis virus infection (Cai et al., 2015). Moreover, 20 and
11 common DEmiRNAs expressed in spleen and lung of both
species, respectively, suggested variable tissue response to PPRV
infection. Among these 31 DEmiRNAs, six DEmiRNAs—miR-
21-3p, miR-320a, miR-27a-5p, miR-1246 (expressed in lung of
both species), miR-760-3p and miR-363 (expressed in lung and
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FIGURE 2 | Overview of the miRNA prediction and identification of miRNAs that regulated dysregulated proteins.

spleen of both species) were selected based on their role in
viral infection, apoptosis and fold change. In infected goat’s
lung all these six DEmiRNAs were found to upregulated.
However, in infected sheep’s lung, miR-27a-5p was found to
be downregulated and the rest of the five DEmiRNAs were
upregulated.

miR-21-3p induce apoptosis (Lo et al., 2013) and PPRV is also
reported to cause apoptosis of host cells (Mondal et al., 2001).
The upregulated miR-363 is also known to induce apoptosis
(Zhang et al., 2014; Zhou et al., 2014; Hu et al., 2015; Li et al.,
2015). The upregulation of miR-21-3p and miR-363 in PPRV
infections suggests synergistic effect of these miRs along with
the virus in inducing apoptosis. The upregulation of miR-363
has also been reported in Human papillomavirus (HPV)+ and
HPV− pharyngeal squamous cell carcinoma and in HPV16+
HNSCC cell lines (Lajer et al., 2011; Wald et al., 2011). Recently,
miR-27a-5p was found to be highly expressed in vaccinia virus
infection (Buck et al., 2010). Under PPRV infection miR-27a-
5p was found to be upregulated in infected lung of goats but
downregulated in sheep suggesting a species-specific response.
Further, miR-320a is known to inhibit mink enteritis virus

infection by downregulating its receptor, transferrin receptor
(TfR; Sun et al., 2014). Significant upregulation of miR-320a
expression in PPRV infected lung tissue of sheep and goats
suggests that miR-320a might serve in triggering antiviral
response against PPRV infection. Sheng et al. (2014) reported
that the upregulated miR-1246 decreased the expression of
cell adhesion target genes and hence promotes the cytotoxicity
induced by Ebola virus glycoprotein. Similarly, upregulated miR-
1246 was found to promote cell death pathway by reducing
the expression levels of DLG3 protein during HEV71 infection
in human neuroblastoma cells (Xu et al., 2014). The increased
expression of miR-1246 in the PPRV infected lung of goats
and sheep in our study, could be a factor contributing to the
pathogenesis of PPRV.

For miRNA studies, it is critical to identify targets for
understanding its biological function and molecular mechanism
(Tang et al., 2015). The miRNA–protein network analysis suggests
that one miRNA could participate in several biological processes
by targeting different mRNAs, and one biological process could
be influenced by multiple miRNAs. The upregulated miR-27a-
5p, miR-363, miR-320a, and miR-760-3p were observed to bring
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FIGURE 3 | miRNA-mRNA regulatory network. (A) Network of upregulated miRNAs (miR-21-3p, miR-27a-5p, miR-1246, miR-320a, miR-363, and miR-760-3p) and
their downregulated genes in the lung tissue of goats. (B) Network of upregulated miRNAs (miR-21-3p, miR-1246, miR-320a, miR-363, and miR-760-3p) and their
downregulated genes and the downregulated miRNA (miR-27a-5p) and its upregulated genes in the lung tissue of sheep. (C) Network of upregulated miRNAs
(miR-363 and miR-760-3p) and their downregulated genes in the spleen tissue of goats. (D) Network of upregulated miRNAs (miR-363 and miR-760-3p) and their
downregulated genes in the spleen tissue of sheep. Blue nodes indicate upregulation and red nodes indicates downregulation. Color intensity denoted the level of
gene expression.

about the downregulation of IGF1R in the PPRV infected lung
of goats. IGF1R, is a multifunctional receptor that plays an
important role in the regulation of immune response, including
cell differentiation and proliferation (Smith, 2010). Similarly,
TRIM24, tripartite motif containing 24, which is involved in
cytokine signaling and secretion (Tisserand et al., 2011) was
downregulated by miR-1246 and miR-320a in lung tissue of goats.
miRNAs play an important role in regulation of NF-κB signaling
pathway during viral infections (Gao et al., 2014) and activation
of NF-κB is important for immune defense (Hoesel and Schmid,
2013). NF-κB signaling-related molecules IRAK2 were found
modulated by miR-1246 and miR-320a, and TRAF4 was found
modulated by miR-1246 and miR-760-3p in PPRV infected lung
of goats in the present study. Interferon (IFN)-mediated pathway
is a crucial part of the cellular response against viral infection (Wu
et al., 2015). TRAF6, a major element in IFN production (Yoshida
et al., 2008) was suppressed by PPRV-induced miR-21-3p and
miR-320a in the lung of sheep. Similarly, the expression of IFIT5,

which is involved in stimulating anti-viral response (Zhang
et al., 2013) was suppressed by miR-363 in the spleen of sheep.
This suggests that PPRV-induced miR-21-3p, miR-320a, and
miR-363 might act cooperatively to enhance viral pathogenesis
in the lung and spleen of sheep by downregulating several
immune response genes. Further, this could be corroborated by
the GO and pathway analysis of the potential targets of all the
six DEmiRNAs. It was observed that the pathways governed
by DEmiRNAs were more perturbed in goats than in sheep,
thereby reflecting on the severity of disease in goats than in
sheep.

CONCLUSION

This study demonstrated for the first time DEmiRNAs in sheep
and goats under PPRV infection. The DEmiRNAs identified in
this study govern genes involved in immune response processes.
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FIGURE 4 | Gene ontology of immune-related KEGG pathways. (A) Gene ontology of immune-related KEGG pathways in sheep lung visualized in ClueGO (ver.
2.1.4) plugin of Cytoscape (ver. 3.1.1). (B) Gene ontology of immune-related KEGG pathways in goats lung visualized in ClueGO (ver. 2.1.4) plugin of Cytoscape (ver.
3.1.1). (C) Gene ontology of immune-related KEGG pathways in sheep spleen visualized in ClueGO (ver. 2.1.4) plugin of Cytoscape (ver. 3.1.1). (D) Gene ontology of
immune-related KEGG pathways in goats spleen visualized in ClueGO (ver. 2.1.4) plugin of Cytoscape (ver. 3.1.1). Color from red to green of the nodes in the
network depicts increase in significance. The diameter indicates the percent associated genes to a particular node.

FIGURE 5 | qPCR validation of sequencing data. The change in the miRNA expression of miR-21-3p, miR-363, and miR-760-3p was calculated with U6snRNA as
reference gene for normalization. Fold change is represented as log2FC.

TABLE 5 | qPCR validation of small RNA sequencing data.

Lung (goats) Lung (sheep) Spleen (goats) Spleen (sheep)

qPCR (log2 miRNA-seq (log2 qPCR (log2 miRNA-seq (log2 qPCR (log2 miRNA-seq (log2 qPCR (log2 miRNA-seq (log2

miRNAs fold change) fold change) fold change) fold change) fold change) fold change) fold change) fold change)

miR-21-3p +6.619 +5.826 +4.344 +1.753 +0.189 – +0.097 –

miR-363 +5.823 +2.425 +0.345 +1.049 +0.618 +1.555 +0.474 +1.286

miR-760-3p +5.433 +3.798 +0.629 +1.242 +2.199 +1.637 +1.784 +1.679
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It was observed that PPRV elicits a strong host response in
goats than in sheep as evident from the number of significantly
enriched immune system pathways and genes perturbed. This
study revealed that PPRV-induced miR-21-3p, miR-320a, and
miR-363 might act cooperatively to enhance viral pathogenesis,
which warrants further research.
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