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Intelligence and autonomy are among the most extraordinary capacities blossomed by 
human evolution. Yet, endowing humanoid robots with these two crucial capabilities 
is still one of the biggest problems for the robotics community, despite decades of 
research. On the software side, algorithms for artificial intelligence are still at an 
embryonic stage. On the hardware side, robotic actuators are a far cry from the 
muscular human system in terms of flexibility and adaptability, which in turn reduces 
autonomy and robustness. Underneath the nature of algorithms for intelligence and 
technology for autonomy, the importance of efficient, scalable implementations of 
robust software goes without saying.

Among the large variety of humanoid robots, the iCub has emerged as one of the 
most diffused research platforms. It has been developed as part of the RobotCub 
EU project and subsequently adopted by more than 35 laboratories worldwide. 
Collaborations across laboratories are encouraged by writing code and libraries 
openly available. As a consequence, iCub is considered to be the ideal platform for 
experimenting and advancing open-source software for research in several domains, 
ranging from motor control to cognitive systems.
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This article describes our open-source software for predicting the intention of a user
physically interacting with the humanoid robot iCub. Our goal is to allow the robot to infer
the intention of the human partner during collaboration, by predicting the future intended
trajectory: this capability is critical to design anticipatory behaviors that are crucial in
human–robot collaborative scenarios, such as in co-manipulation, cooperative assembly,
or transportation. We propose an approach to endow the iCub with basic capabilities of
intention recognition, based on Probabilistic Movement Primitives (ProMPs), a versatile
method for representing, generalizing, and reproducing complex motor skills. The robot
learns a set of motion primitives from several demonstrations, provided by the human via
physical interaction. During training, we model the collaborative scenario using human
demonstrations. During the reproduction of the collaborative task, we use the acquired
knowledge to recognize the intention of the human partner. Using a few early observations
of the state of the robot, we can not only infer the intention of the partner but also complete
the movement, even if the user breaks the physical interaction with the robot. We evaluate
our approach in simulation and on the real iCub. In simulation, the iCub is driven by the
user using the Geomagic Touch haptic device. In the real robot experiment, we directly
interact with the iCub by grabbing and manually guiding the robot’s arm. We realize two
experiments on the real robot: one with simple reaching trajectories, and one inspired by
collaborative object sorting. The software implementing our approach is open source and
available on the GitHub platform. In addition, we provide tutorials and videos.

Keywords: robot, prediction, intention, interaction, probabilistic models

1. INTRODUCTION

A critical ability for robots to collaborate with humans is to predict the intention of the partner.
For example, a robot could help a human fold sheets, move furniture in a room, lift heavy objects,
or place wind shields on a car frame. In all these cases, the human could begin the collaborative
movement by guiding the robot, or by leading the movement in the case that both human and robot
hold the object. It would be beneficial for the performance of the task if the robot could infer the
intention of the human as soon as possible and collaborate to complete the task without requiring
any further assistance. This scenario is particularly relevant formanufacturing (Dumora et al., 2013),
where robots could help human partners in carrying a heavy or unwieldy object, while humans could
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guide the robot without effort in executing the correct trajectory
for positioning the object at the right location.1 For example, the
human could start moving the robot’s end effector toward the goal
location and release the grasp on the robot when the robot shows
that it is capable of reaching the desired goal location without
human intervention. Service and manufacturing scenarios offer
a wide set of examples where collaborative actions can be initi-
ated by the human and finished by the robot: assembling objects
parts, sorting items in the correct bins or trays, welding, moving
objects together, etc. In all these cases, the robot should be able to
predict the goal of each action and the trajectory that the human
partner wants to do for each action. To make this prediction, the
robot should use all available information coming from sensor
readings, past experiences (prior), human imitation and previous
teaching sessions, or collaborations. Understanding andmodeling
the human behavior, exploiting all the available information, is the
key to tackle this problem (Sato et al., 1994).

To predict the human intention, the robot must identify the
current task, predict the user’s goal, and predict the trajectory
to achieve this goal. In the human–robot interaction litera-
ture, many keywords are associated with this prediction ability:
inference, goal estimation, legibility, intention recognition, and
anticipation.

Anticipation is the ability of the robot to choose the right thing
to do in a current situation (Hoffman, 2010). To achieve this goal,
the robot must predict the effect of their action, as studied with
the concept of affordances (Sahin et al., 2007; Ivaldi et al., 2014b;
Jamone et al., 2017). It also must predict the human intention,
which means estimating the partner’s goal (Wang et al., 2013;
Thill and Ziemke, 2017). Finally, it must be able to predict the
future events or states, e.g., being able to simulate the evolution
of the coupled human–robot system, as it is frequently done in
model predictive control (Ivaldi et al., 2010; Zube et al., 2016) or
in human-aware planning (Alami et al., 2006; Shah et al., 2011).

It has been posited that having legible motions (Dragan and
Srinivasa, 2013; Busch et al., 2017) helps the interacting partners
in increasing the mutual estimation of the partner’s intention,
increasing the efficiency of the collaboration.

Anticipation requires thus the ability to visualize or predict
the future desired state, e.g., where the human intends to go to.
Predicting the user intention is often formulated as predicting the
target of the human action, meaning that the robot must be able
to predict at least the goal of the human when the two partners
engage in a joint reaching action. To make such prediction, a
common approach is to consider each movement as an instance
of a particular skill or goal-directed movement primitive.

In the past decade, several frameworks have been proposed
to represent movements primitives, frequently called skills, the
most notable being Gaussian Mixture Models (GMM) (Khansari-
Zadeh and Billard, 2011; Calinon et al., 2014), Dynamic Move-
ment Primitives (DMP) (Ijspeert et al., 2013), Probabilistic
DynamicMovement Primitive (PDMP) (Meier and Schaal, 2016),

1Currently, this scenario is frequently addressed in manufacturing by robots and
lifters; in the future, we imagine that humanoid robots could also be used for such
task, for assisting workers in environments where robots cannot be installed on a
fixed base, such as in some aircraft manufacturing operations (Caron and Kheddar,
2016).

and ProbabilisticMovement Primitives (ProMP) (Paraschos et al.,
2013a). For a thorough review of the literature, we refer the inter-
ested reader to Peters et al. (2016). Skill learning techniques have
been applied to several learning scenarios, such as playing table
tennis, writing digits, and avoiding obstacles during pick and place
motions. In all these scenarios, the humans are classically provid-
ing the demonstrations (i.e., realizations of the task trajectories)
by either manually driving the robot or through teleoperation,
following the classical paradigm of imitation learning. Some of
them have been also applied to the iCub humanoid robot: for
example, Stulp et al. (2013) usedDMPs to adapt a reachingmotion
online to the variable obstacles encountered by the robot arm,
while Paraschos et al. (2015) used ProMPs to learn how to tilt a
grate including torque information.

Among the aforementioned techniques, ProMPs stand out as
one of the most promising techniques for realizing intention
recognition and anticipatory movements for human–robot col-
laboration. They have the advantage, with respect to the other
methods, of capturing by design the variability of the human
demonstrations. They also have useful structural properties, as
described by Paraschos et al. (2013a), such as co-activation, cou-
pling, and temporal scaling. ProMPs have already been used in
human–robot coordination for generating appropriate robot tra-
jectories in response to initiated human trajectories (Maeda et al.,
2016). Differently from DMPs, ProMPs do not need the infor-
mation about the final goal of the trajectory, which is something
that DMPs use to set an attractor that guarantees convergence
to the final goal.2 Also, they perform better in presence of noisy
measurements or sparse measurements, as discussed in Maeda
et al. (2014).3 In a recent paper, Meier and Schaal (2016) proposed
a method called PDMP (Probabilistic Dynamic Movement Prim-
itive). This method improves DMP with probabilistic properties
to measure the likelihood that the movement primitive is exe-
cuted correctly and to perform inference on sensor measurement.
However, The PDMPs do not have a data-driven generalization
and can deviate arbitrarily from the demonstrations. These last
differences can be critical for our humanoid robot (for example,
if it collides with something during the movement, or if during
the movement it holds something that can fall down due to a bad
trajectory, etc.). Thus, the ProMPsmethod ismore suitable for our
applications.

In this article, we present our approach to the problem of
predicting the intention during human–robot physical interaction
and collaboration, based on Probabilistic Movement Primitives
(ProMPs) (Paraschos et al., 2013a), and we present the associated
open-source software code that implements the method for the
iCub.

To illustrate the technique, the exemplifying problem we tackle
in this article is to allow the robot to finish a movement initiated
by the user that physically guides the robot arm. From the first
observations of the joint movement, supposedly belonging to a

2There may be applications where converging to a unique and precise goal could
be a desirable property of the robot’s movement. However, it is an assumption that
prevents us to generalize themethod for different actions, and this is another reason
why we prefer ProMPs.
3We refer the interested reader to Maeda et al. (2014) for a thorough comparison
between DMPs and ProMPs to be used for interaction primitives and prediction.
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movement primitive of some task, the robotmust recognize which
kind of task the human is doing, predict the “future” trajectory,
and complete the movement autonomously when the human
releases the grasp on the robot.4

To achieve this goal, the robot first learns the movement prim-
itives associated with the different actions/tasks. We choose to
describe these primitives with ProMPs, as they are able to capture
the distribution of demonstrations in a probabilistic model, rather
than with a unique “average” trajectory. During interaction, the
human starts physically driving the robot to perform the desired
task. At the same time, the robot collects observations of the task.
It then uses the prior information from the ProMP to compute a
prediction of the desired goal together with the “future” trajectory
that allows it to reach the goal.

A conceptual representation of the problem is shown in
Figure 1. In the upper part of this figure, we represent the
training step for one movement primitive: the robot is guided
by the human partner to perform a certain task, and several
entire demonstrations of the movement that realizes the task are
collected. Both kinematics (e.g., Cartesian positions) and dynam-
ics (e.g., wrenches) information are collected. The N trajectories
constitute the base for learning the primitive, that is learning
the parameters ω of the trajectory distribution. We call this
learned distribution the prior distribution. If multiple tasks are to
be considered, then the process is replicated such that we have
one ProMP for every task. The bottom of the figure represents
the inference step. From the early observations5 of a movement
initiated by the human partner, the robot first recognizes which
ProMP best matches the early observations (i.e., it recognizes the

4To avoid disambiguation, in our method, tasks are encoded by primitives that are
made of trajectories: this is a very classical approach for robot learning techniques
and in general techniques based on primitives. Of course this is a simplification,
but it allows representing a number of different tasks: pointing, reaching, grasping,
gazing, etc.
5 In this article, we denote by early observations the first portion of a movement
observed by the robot, i.e., from t = 0 to acurrent t.

primitives that the human is executing, among the set of known
primitives). Then, it estimates the future trajectory, given the
early observations (e.g., first portion of a movement) and the
prior distribution, computing the parameters ω* of the posterior
distribution. The corresponding trajectory can be used by the
robot to autonomously finish the movement, without relying on
the human.

In this article, we describe both the theoretical framework and
the software that is used to perform this prediction. The software
is currently implemented in Matlab and C++; it is open source,
available on github:

https://github.com/inria-larsen/icubLearningTrajectories
and it has been tested both with a simulated iCub in Gazebo and
the real iCub. In simulation, physical guidance is provided by the
Geomagic Touch6; on the real robot, the human operator simply
grabs the robot’s forearm.

We also provide a practical example of the software that realizes
the exemplifying problems. In the example, the recorded trajec-
tory is composed of both the Cartesian position and the forces
at the end effector. Notably, in previous studies (Paraschos et al.,
2015), ProMPs were used to learn movement primitives using
joint positions. Here, we use Cartesian positions instead of joints
positions to exploit the redundancy of the robotic arm in perform-
ing the desired task in the 3D space. At the control level of the
iCub, this choice requires the iCub to control its lower-level (joint
torque) movement with the Cartesian controller (Pattacini et al.,
2010) instead of using the direct control at joint level. As for the
forces, we rely on amodel-based dynamics estimation that exploits
the 6 axis force/torque sensors (Ivaldi et al., 2011; Fumagalli et al.,
2012). All details for the experiments are presented in the article
and the software tutorial.

6The Geomagic Touch is a haptic device, capable of providing force feedback from
the simulation to the operator. In our experiments with the simulated iCub, we did
not use this feature. We used the Geomagic Touch to steer the arm of the simulated
robot. In that sense, we used it more as a joystick for moving the left arm.

FIGURE 1 | Conceptual use of the ProMP for predicting the desired trajectory to be performed by the robot in a collaborative task. Top: training phase, where
ProMPs are learned from several human demonstrations. Bottom: inference phase (online), where from early observations, the robot recognizes the current (among
the known) ProMP and predicts the human intention, i.e., the future evolution of the initiated trajectory.
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To summarize, the contributions of this article are as follows:

• the description of a theoretical framework based on ProMPs for
predicting the human desired trajectory and goal during physi-
cal human–robot interaction, providing the following features:
recognition of the current task, estimation of the task duration,
and prediction of the future trajectory;

• an experimental study about how multimodal information can
be used to improve the estimation of the duration/speed of an
initiated trajectory;

• the open-source software to realize an intention recognition
application with the iCub robot, both in simulation and on the
real robot.

The article is organized as follows. In Section 2, we review the
literature about intentions in Human–Robot Interaction (HRI),
probabilistic models for motion primitives, and their related soft-
ware. In Section 3, we describe the theoretical tools that we
use to formalize the problem of predicting the intention of the
human during interaction. Particularly, we describe the ProMPs
and their use for predicting the evolution of a trajectory given
early observations. In Section 4, we overview the software orga-
nization and the interconnection between our software and the
iCub’s main software, both for the real and simulated robot.
The following sections are devoted to presenting our software
and its use for predicting intention. We choose to present three
examples of increasing complexity, with the simulated and real
robot. We provide and explain in detail a software example for
a 1-DOF trajectory in Section 5. In Sections 6 and 7, we present
the intention recognition application with the simulated and real
iCub, respectively. In the first examples with the robot, the “tasks”
are exemplified by simple reaching movements, to provide simple
and clear trajectories that help the reader understand the method,
whereas the last experiment with the robot is a collaborative object
sorting task. Section 8 provides the links to the videos showing
how to use the software in simulation and on the iCub. Finally, in
Section 10, we discuss our approach and its limitations and outline
our future developments.

2. RELATED WORK

In this article, we propose a method to recognize the intention
of the human partner collaborating with the robot, formalized
as the target and the “future” trajectory associated with a skill,
modeled by a goal-directed Probabilistic Movement Primitive. In
this section, we briefly overview the literature about intention
recognition in human–robot interaction and motion primitives
for learning of goal-directed robotic skills.

2.1. Intention during Human–Robot
Interaction
When humans and robots collaborate, mutual understanding is
paramount for the success of any shared task. Mutual under-
standing means that the human is aware of the robot’s current
task, status, goal, available information, that he/she can reasonably
predict or expect what it will do next, and vice versa. Recognizing
the intention is only one piece of the problem but still plays a
crucial part for providing anticipatory capabilities.

Formalizing intention can be a daunting task, as one may find
it difficult to provide a unique representation that explains the
intention for very low-level goal-directed tasks (e.g., reaching a
target object and grasping it) and for very high-level, complex,
abstract or cognitive tasks (e.g., change a light bulb on the ceil-
ing—by building a stair composed of many parts, climbing it
and reaching the light bulb on the ceiling, etc.). Demiris (2007)
reviews different approaches of action recognition and intention
prediction.

From the human’s point of view, understanding the robot’s
intention means that the human should find intuitive and non-
ambiguous every goal-directed robot movement or actions, and
it should be clear what the robot is doing or going to do (Kim
et al., 2017). Dragan and Srinivasa (2014) formalized the dif-
ference between predictability and legibility: a motion is legible
if an observer can quickly infer its goal, while a motion is pre-
dictable when it matches the expectations of the observer given
its goal.

The problem of generating legible motions for robots has been
addressed in many recent works. For example, Dragan and Srini-
vasa (2014) use optimization techniques to generate movements
that are predictable and legible. Huang et al. (2017) apply an
Inverse Reinforcement Learning method on autonomous cars to
select the robot movements that are maximally informative for
the humans and that will facilitate their inference of the robot’s
objectives.

From the robot’s point of view, understanding the human’s
intention means that the robot should be able to decipher the
ensemble of verbal and non-verbal cues that the human naturally
generates with his/her behavior, to identify, for a current task and
context, what is the human intention. The more information (e.g.,
measurable signals from the human and the environment) is used,
the better and more complex the estimation can be.

The simplest form of intention recognition is to estimate the
goal of the current action, under the implicit assumption that each
action is a goal-directed movement.

Sciutti et al. (2013) showed that humans implicitly attribute
intentions in form of goals to robot motions, proving that humans
exhibit anticipatory gaze toward the intended goal. Gaze was also
used by Ivaldi et al. (2014a) in a human–robot interaction game
with iCub, where the robot (human) was tracking the human
(robot) gaze to identify the target object. Ferrer and Sanfeliu
(2014) proposed the Bayesian Human Motion Intentionality Pre-
diction algorithm, to geometrically compute the most likely target
of the human motion, using Expectation–Maximization and a
simple Bayesian classifier. In Wang et al. (2012), a method called
Intention-Driven Dynamics model, based on Gaussian Process
Dynamical Models (GPDM) (Wang et al., 2005), is used to infer
the intention of the robot’s partner during a ping-pong match,
represented by the target of the ball, by analyzing the entire human
movement before the human hits the ball. More generally, mod-
eling and descriptive approaches can be used to match predefined
labels with measured data (Csibra and Gergely, 2007).

Amore complex formof intention recognition is to estimate the
future trajectory from the past observations. In a sense, to estimate
[xt+1, . . . , xt+Tfuture ] = f(xt, xt−1, . . . , xt−Tpast). This problem, very
similar to the estimate of the forward dynamicsmodel of a system,
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is frequently addressed by researchers inmodel predictive control,
where being able to “play” the system evolving in time is the
basis for computing appropriate robot controls.When a trajectory
can be predicted by an observer from early observations of it,
we can say that the trajectory is not only legible, but predictable.
A systematic approach for predicting a trajectory is to reason in
terms of movement primitives, in such a way that the sequence of
points of the trajectory can be generated by a parametrized time
model or a parametrized dynamical system. For example, Palinko
et al. (2014) plan reaching trajectories for object carrying that are
able to convey information about the weight of the transported
object. More generally, in generative approaches (Buxton, 2003),
latent variables are used to learn models for the primitives, both
to generate and infer actions. The next subsection will provide
more detail about the state-of-the-art techniques for generating
movement primitives.

In Amor et al. (2014), the robot first learns Interaction Prim-
itives by watching two humans performing an interactive task,
using motion capture. The Interaction Primitive encapsulates the
dependencies between the two human movements. Then, the
robot uses the Interaction Primitive to adapt its behavior to its
partner’s movement. Their method is based on Dynamics Motor
Primitives (Ijspeert et al., 2013), where a distribution over the
DMP’s parameters is learned. Notably, in this article, we did not
follow the same approach to learn Interaction Primitives, since
there is a physical interaction that makes the user’s and the robot’s
movements as one joint movements. Moreover, there is no latency
between the partner’s early movement and the robot’s, because
the robot’s arm is physically driven by the human until the latter
breaks the contact.

Indeed, most examples in the literature focus on kinematic
trajectories, corresponding to gestures that are typically used in
dyadic interactions characterized by a coordination of actions
and reactions. Whenever the human and robot are also inter-
acting physically, collaborating on a task with some exchange of
forces, then the problem of intention recognition becomes more
complex. Indeed, the kinematics information provided by the
“trajectories” cannot be analyzed without taking into account the
haptic exchange and the estimation of the “roles” of the partners
in leading/following each other.

Estimating the current role of the human (master/slave or
leader/follower) is crucial, as the role information is necessary
to coherently adapt the robot’s compliance and impedance at the
level of the exchanged contact forces. Most importantly, adapting
the haptic interaction can be used by the robot to communicate
when it has understood the human intent and is able to finish
the task autonomously, mimicking the same type of implicit non-
verbal communication that is typical of humans.

For example, in Gribovskaya et al. (2011), the robot infers
the human intention utilizing the measure of the human’s forces
and by using Gaussian Mixture Models. In Rozo Castañeda et al.
(2013), the arm impedance is adapted by a Gaussian Mixture
Model based on measured forces and visual information. Many
studies focused on the robot’s ability to act only when and how its
user wants (Carlson and Demiris, 2008; Soh and Demiris, 2015)
and to not interfere with the partner’s forces (Jarrassé et al., 2008)
or actions (Baraglia et al., 2016).

In this article, we describe our approach to the problem of rec-
ognizing the human intention during collaboration by providing
an estimate of the future intended trajectory to be performed by
the robot. In our experiments, the robot does not adapt its role
during the physical interaction but simply switches from follower
to leader when the human breaks contact with it.

2.2. Movement Primitives
Movement Primitives (MPs) are a well established paradigm for
representing complex motor skills. The most known method
for representing movement primitives is probably the Dynamic
Movement Primitives (DMPs) (Schaal, 2006; Ijspeert et al., 2013;
Meier and Schaal, 2016). DMPs use a stable non-linear attractor in
combination with a forcing term to represent the movement. The
forcing term enables to follow specificmovement, while the attrac-
tor asserts asymptotic stability. In a recent paper,Meier and Schaal
(2016) proposed an extension to DMPs, called PDMP (Proba-
bilistic Dynamic Movement Primitive). This method improves
DMP with probabilistic properties to measure the likelihood that
the movement primitive is executed correctly and to perform
inference on sensor measurement. However, the PDMPs do not
have a data-driven generalization and can deviate arbitrarily from
the demonstrations. This last difference can be critical for our
applications with the humanoid robot iCub, since uncertainties
are unavoidable and disturbances may happen frequently and
destabilize the robot movement (for example, an unexpected col-
lision during the movement). Thus, the ProMPs method is more
accurate for our software.

Ewerton et al. (2015), Paraschos et al. (2013b), and Maeda et al.
(2014) compared ProMPs and DMPs for learning primitives and
specifically interaction primitives. With the DMP model, at the
end of the movement, only a dynamic attractor is activated. Thus,
it always reaches a stable goal. The properties allowed by both
methods are temporal scaling of the movement, learning from a
single demonstration, and generalizing to new final position.With
ProMPs, we have in addition the ability to do inference (thanks to
the distribution), to force the robot to pass by several initial via
points (the early observations), to know the correlation between
the input of the model, and to co-activate some ProMPs. In our
study, we need these features, because the robot must determine a
trajectory that passes by the early observations (beginning of the
movement where the user guides physically the robot).

A Recurrent Neural Networks (RNN) approach (Billard and
Mataric, 2001) used a hierarchy of neural networks to simulate
the activation of areas in human brain. The network can be
trained to infer the state of the robot at the next point in time,
given the current state. The authors propose to train the RNN by
minimizing the error between the inferred position of the next
time step and the ground truth obtained from demonstrations.

Hidden Markov Models (HMMs) for movement skills were
introduced by Fine et al. (1998). This method is often used to
categorize movements, where a category represents a movement
primitive. This method also allows to represent the temporal
sequence of a movement. In Nguyen et al. (2005), they use
learned Hierarchical Hidden Markov Model (HHMMs) to rec-
ognize human behaviors efficiently. In Ren and Xu (2002), they
present the Primitive-based Coupled-HMM (CHMM) approach,
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for human natural complex action recognition. In this approach,
each primitive is represented by a Gaussian Mixture Model.

Adapting Gaussian Mixture Models is another method used to
learn physical interaction with learning. In Evrard et al. (2009),
they use GMMs and Gaussian Mixture Regression to learn, in
addition to the position (joint information), force information.
Using this method, a humanoid robot is able to collaborate in one
dimension with its partner for a lifting task. In this article, we will
also use (Cartesian) position and force information to allow our
robot to interact physically with its partner.

A subproblem of movement recognition is that robots need to
estimate the duration of the trajectory to align a current trajectory
with learned movements. In our case, at the beginning of the
physical Human–Robot Interaction (pHRI), the robot observes a
partial movement guided by its user. Given this partial movement,
the robot must first estimate what the current state of the move-
ment is to understand what its partner intent is. Thus, it needs to
estimate the partial movement’s speed.

Fitts’ law models the movement duration for goal-directed
movements. This model is based on the assumption that the
movement duration is a linear function of the difficulty to achieve
a target (Fitts, 1992). In Langolf et al. (1976), they show that by
modifying the target’s width, the shape of the movement changes.
Thus, it is difficult to apply Fitt’s law when the size of the target
can change. In Langolf et al. (1976) and Soechting (1984), they
confirm this idea by showing that the shape of the movement
changes with the accuracy required by the goal position of the
movement.

Dynamics Time Warping (DTW) is a method to find the cor-
relation between two trajectories that have different durations,
in a more robust way than the Euclidean distance. In Amor
et al. (2014), they modify the DTW algorithm to match a par-
tial movement with a reference movement. Many improvements
over this method exist. In Keogh (2002), they propose a robust
method to improve the indexation. The calculation speed of DTW
is improved using different methods, such as FastDTW, Lucky
Time Warping, or FTW. An explanation and comparison of these
methods are presented in Silva and Batista (2016), where they add
their own computation speed improvement by using a method

called Pruned Warping Paths. This method allows the deletion
of unlikely data. However, a drawback of this well-known DTW
method is they do not preserve the global trajectory’s shape.

In Maeda et al. (2014), where they use a probabilistic learning
of movement primitives, they improve the duration estimation
of movements by using a different time warping method. This
method is based on a Gaussian basis model to represent a time
warping function and, instead of DTW, it forces a local align-
ment between the twomovements without “jumping” some index.
Thus, the resulting trajectories are more realistic, smoother, and
this method preserves the global trajectories’ shapes.

For inferring the intention of the robot’s partner, we use Prob-
abilistic Movement Primitives (ProMPs) (Paraschos et al., 2013a).
Specifically, we use the ProMP’s conditioning operator to adapt
the learned skills according to observations. The ProMPs can
encode the correlations between forces and positions and allow
better prediction of the partner’s intention. Further, the phase of
the partner’s movement can be inferred, and therefore the robot
can adapt to the partner’s velocity changes. ProMPs are more
efficient for collaborative tasks, as shown in Maeda et al. (2014),
where in comparison to DMPs, the root-mean square error of the
predictions is lower.

2.3. Related Open-Source Software
One of the goals of this article is to introduce an open-source
software for the iCub (but potentially for any other robot), where
the ProMP method is used to recognize human intention dur-
ing collaboration, so that the robot can execute initiated actions
autonomously. This is not the first open-source implementation
for representing movement primitives: however, it has a novel
application and a rationale that makes it easy to use with the iCub
robot.

In Table 1, we report on the main software libraries that one
can use to learn movement primitives. Some have been also used
to realize learning applications with iCub, e.g., Lober et al. (2014)
and Stulp et al. (2013) or to recognize human intention. However,
the software we propose here is different: it provides an imple-
mentation of ProMPs used explicitly for intention recognition and
prediction of intended trajectories. It is interfaced with iCub, both

TABLE 1 | Open-source software libraries implementing movement primitives and their application to different known robots.

Software/library Method Code link Language Robot Reference

Dynamical System Modulation for
Robot Adaptive Learning via Kinesthetic
Demonstrations

GMR Hersch et al. (2008) Matlab Hoap3 Micha and Aude (2008)

pbdlib-matlab HMM, GMM, and others Calinon (2015) Matlab Baxter Calinon (2016)
DMP learning with GMR DMP and GMR Calinon et al. (2012a) Matlab or C Coman Calinon et al. (2012b)
Stochastic Machine Learning Toolbox Kernel Functions, Gaussian

Processes, Bayesian Optimization
Lober (2014) C++ or Python –

pydmps DMP DeWolf (2013) Python Sarcos Ijspeert et al. (2013)
Dynamical Systems approach to Learn
Robot Motions

GMM and SEDS Khansari (2011) Matlab iCub Khansari-Zadeh and Billard
(2011, 2012)

Function Approximation, DMP, and
Black-Box Optimization (dmpbbo)

DMP Stulp (2014) Python or C++ iCub Stulp et al. (2013), Lober et al.
(2014)

Learning Motor Skills from Partially
Observed Movements Executed at
Different Speeds

ProMP Ewerton (2016) Matlab or Python – Ewerton et al. (2015)

icubLearningTrajectories ProMP Dermy (2017) Matlab and C++ iCub –
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real and simulated, and addresses in the specific case of physical
interaction between the human and the robot. In short, it is a first
step toward adding intention recognition ability to the iCub robot.

3. THEORETICAL FRAMEWORK

In this section, we present the theoretical framework that we
use to tackle the problem of intent recognition: we describe the
ProMPs and how they can be used to predict trajectories from
early observations.

In Section 2, we formulate the problem of learning a primitive
for a simple case, where the robot learns the distribution from
several demonstrated trajectories. In Section 3.3, we formulate
and provide the solution to the problem of predicting the “future”
trajectory from early observations (i.e., the initial data points). In
Section 3.4, we discuss the problemof predicting the timemodula-
tion, i.e., predicting the global duration of the predicted trajectory.
This problem is non-trivial, as by construction the demonstrated
trajectories are “normalized” in duration when the ProMP is
learned.7 In Section 3.5, we explain how to recognize, from the
early observations, to which of many known skills (modeled by
ProMPs) the current trajectory belongs. In all these sections, we
tried to present the theoretical aspects related to the use of ProMPs
for the intention recognition application.

Practical examples of these theoretical problems are presented
and explained later in sections 5–7. Section 5 explains how to use
our software, introduced in Section 4, for learning one ProMP for
a simple set of 1-DOF trajectories. Section 6 presents an example
with the simulated iCub in Gazebo, while Section 7 presents an
example with the real iCub.

3.1. Notation
To facilitate understanding of the theoretical framework, we first
introduce the notations we use in this section and throughout the
remainder of the article.

3.1.1. Trajectories
• X(t) ∈ R3, X(t)= [x(t), y(t), z(t)]T: the x/y/z-axis Cartesian

coordinate of the robot’s end effector.
• F(t) ∈ R6, F(t)= [fx, fy, fz, mx, my, mz]T: the wrench contact

forces, i.e., the external forces and moments measured by the
robot at the contact level (end effector).

• ξ(t) ∈ RD: the generic vector containing the current value or
state of the trajectories at time t. It can be monodimensional
(e.g., ξ(t)= [z(t)]), or multidimensional (e.g., ξ(t)= [X(t),
F(t)]T), depending on the type of trajectories that we want to
represent with the ProMP.

• Ξ = Ξ[1:tf] = [ξ(1), . . . , ξ(tf)]T ∈ RD·tf is an entire trajectory,
consisting of tf samples or data points.

• Ξi[1:tfi] is the i-th demonstration (trajectory) of a task, consisting
of tfi samples or data points.

3.1.2. Movement Primitives
• k∈ [1 : K]: the k-th ProMP, among a set of K ProMPs that

represent different tasks/actions.

7 In some tasks, e.g., reaching, it is reasonable to assume that the difference of
duration of the demonstrated trajectories is negligible; however, in other tasks, the
duration of the demonstrated trajectories may vary significantly.

• nk: number of recorded trajectories for each ProMP.
• Sk = {Ξ{k,1}, . . . ,Ξ{k,nk}}: set of nk trajectories for the k-th

ProMP.
• ξ(t) = Φtω + ϵξ is the model of the trajectory with:

• ϵξ ∼ N (0, β): expected trajectory noise.
• Φt ∈ RD×D·M: radial basis functions (RBFs) used to model

trajectories. It is a block diagonal matrix.

– M: number of RBFs.

– ψji(t)= e
−(t−ci)2

2h∑M
m=1 e

−(t−cm)2

2h

: i-th RBF for all inputs j∈ [1 :D].

It must be noted that the upper term comes from a Gaussian
1√
2πh

e
−(t−ci)2

2h , where ci and h are, respectively, the center
and variance of the i-th Gaussian. In our RBF formulation,
we normalize all the Gaussians.

• ω ∈ RD·M: time-independent parameter vector weighting
the RBFs, i.e., the parameters to be learned.

• p(ω) ∼ N (µω,Σω): normal distribution computed from a
set {ω1, . . . ,ωn}. It represents the distribution of the modeled
trajectories, also called prior distribution.

3.1.3. Time Modulation
• s̄: number of samples used as reference to rescale all the trajec-

tories to the same duration.
• Φαit ∈ RD×D·M: the RBFs rescaled to match the Ξi trajectory

duration.
• αi = s̄

tfi : temporal modulation parameter of the i-th trajectory.
• α = Ψδno ωα + ϵα is the model of the function mapping δno

into the temporal modulation parameter α, with:

– Ψ: a set of RBFs used to model the mapping between δno and
α;

– δno is the variation of the trajectory during the first no
observations (data points); it can be δno = ξ(no) − ξ(1) if
the entire trajectory variables (e.g., Cartesian position and
forces) are considered, or more simply δno = X(no) −
X(1) if only the variation in terms of Cartesian position is
considered;

– ωα: the parameter vector weighting the RBFs of the Ψ
matrix.

3.1.4. Inference
• Ξo = [Xo, Fo]T = [ξo(1), . . . , ξo(no)]T: early-trajectory

observations, composed of no data points.
• Σo

ξ : noise of the initiated trajectory observation.
• α̂: estimated timemodulation parameter of a trajectory to infer.
• t̂f = s̄

α̂ : estimated duration of a trajectory to infer.
• Ξ∗ = [ξo(1), . . . , ξo(no), ξ∗(no+1), . . . , ξ∗(tf)]: ground truth

of the trajectory for the robot to infer.
• Ξ̂ = [X̂, F̂]T = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(̂tf)]

T: the
estimated trajectory.

• p(ω̂) ∼ N (µ̂ω, σ̂ω): posterior distribution of the parameter
vector of a ProMP using the observation Ξo.

• k̂: index of the recognized ProMP from the set of K known
(previously learned) ProMPs.
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3.2. Learning a Probabilistic Movement
Primitive (ProMP) from Demonstrations
Our toolbox to learn, replay and infer the continuation of trajec-
tories is written in Matlab and available at:

https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/MatlabProgram

Let us assume the robot has recorded a set of n1 trajectories:
{Ξ1, . . . ,Ξn1}, where the i-th trajectory is Ξi = {ξ(1), . . . , ξ(tfi)}.
ξ(t) is the generic vector containing all the variables to be learned
at time t, with the ProMP method. It can be monodimensional
(e.g., ξ(t)= [z(t)] for the z-axis Cartesian coordinate), or multi-
dimensional (e.g., ξ(t)= [X(t), F(t)]T). Note that the duration of
each recorded trajectory (i.e., tfi ) may be variable. To find a com-
mon representation in terms of primitives, a time modulation is
applied to all trajectories, such that they have the same number of
samples s̄ (see details in Section 3.4). Such modulated trajectories
are then used to learn a ProMP.

A ProMP is a Bayesian parametric model of the demonstrated
trajectories in the following form:

ξ(t) = Φtω + ϵξ, (1)

where ω ∈RM is the time-independent parameter vector weight-
ing the RBFs, ϵξ ∼ N (0, β) is the trajectory noise, and Φt is a
vector of M radial basis functions evaluated at time t:

Φt = [ψ1(t), ψ2(t), . . . ., ψM(t)]

with 
ψi(t) = 1∑M

j=1 ψj(t)
exp

{
−(t−c(i))2

2h

}
c(i) = i/M
h = 1/M2.

(2)

Note that all the ψ functions are scattered across time.
For each Ξi trajectory, we compute the ωi parameter vector to

have ξi(t) = Φtωi + ϵξ . This vector is computed to minimize
the error between the observed ξi(t) trajectory and its model
Φtωi+ϵξ . This is done using the LeastMean Square algorithm, i.e.:

ωi = (Φ⊤
t Φt)−1Φ⊤

t ξi(t). (3)

To avoid the common issue of the matrix ΦT
t Φt in equation (3)

not being invertible, we add a diagonal term and perform Ridge
Regression:

ωi = (Φ⊤
t Φt + λ)−1Φ⊤

t ξi(t), (4)

where λ = 10−11 · 1D·M×D·M is a parameter that can be tuned by
looking at the smallest singular value of the matrix ΦT

t Φt.
Thus, we obtain a set of these parameters: {ω1, . . . ,ωn},

upon which a distribution is computed. Since we assume Normal
distributions, we have:

p(ω) ∼ N (µω,Σω) (5)

with µω =
1
n

n∑
i=1

ωiii (6)

and Σω =
1

n − 1

n∑
i=1

(ωiii − µω)⊤(ωiii − µω). (7)

The ProMP captures the distribution over the observed trajec-
tories. To represent this movement primitive, we usually use the
movement that passes by the mean of the distribution. Figure 2
shows the ProMP for a 1-DOF lifting motion, with a number of
reference samples s̄ = 100 and number of basis functions M= 5.

This example is included in our Matlab toolbox as
demo_plot1DOF.m. The explanation of this Matlab script is
presented in Section 5. More complex examples are also included
in the scripts demo_plot*.m.

3.3. Predicting the Future Movement from
Initial Observations
Once the ProMP p(ω) ∼ N (µω,Σω) of a certain task has been
learned,8 we can use it to predict the evolution of an initiated
movement. An underlying hypothesis is that the observed move-
ment follows to this learned distribution.

8That is, we computed the p(ω) distribution from the dataset {ω1, . . . , ωn},
where each ωi is an estimated parameter computed from the trajectory demon-
strations.

FIGURE 2 | The observed trajectories are represented in magenta. The corresponding ProMP is represented in blue. The following parameters are used: s̄ = 100 for
the reference number of samples, M= 5 for the number of RBFs spread over time, and h= 0.04

(
= 1

M2

)
the variance of the RBFs.
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Suppose that the robot measures the first no observations of the
trajectory to predict (e.g., lifting the arm). We call these observa-
tionsΞo = [ξo(1),…, ξo(no)]. The goal is then to predict the evolu-
tion of the trajectory after these no observations, i.e., find {ξ̂(no +
1), . . . , ξ̂(̂tf)}, where t̂f is the estimation of the trajectory duration
(see Section 3.4). This is equivalent to predicting the entire Ξ̂
trajectory where the first no samples are known and equal to the
observations: Ξ̂ = {ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(t̂tf)}.
Therefore, our prediction problem consists of predicting Ξ̂ given
the Ξo observations.

To do this prediction, we start from the learned prior distribu-
tion p(ω), and we find the ω̂ parameter within this distribution
that generates Ξ̂. To find this ω̂ parameter, we update the learned
distribution p(ω̂) ∼ N (µ̂ω, Σ̂ω) using the following formulae:

{
µ̂ω = µω + K

(
Ξo − Φ[1:no] µω

)
Σ̂ω = Σω − K

(
Φ[1:no] Σω

)
,

(8)

where K is a gain computed by the following equation:

K = ΣωΦ⊤
[1:no]

(
Σo
ξ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
. (9)

Equations (8) and (9) can be computed through the marginal
and conditional distributions (Bishop, 2006; Paraschos et al.,
2013a), as detailed in Appendix A.

Figure 3 shows the predicted trajectory for the liftingmotion of
the left arm of iCub. The different graphs show inferred trajecto-
ries when the robot observed no = 10, 30, 50, and 80% of the total
trajectory duration. This example is also available in the toolbox as
demo_plot1DOF.m. The nbData variable changes the percentage
of known data. Thus, it will be visible how the inference improves
according to this variable. An example of predicted trajectories of
the arm lifting in Gazebo can be found in a provided video (see
Section 8).

FIGURE 3 | The prediction of the future trajectory given early observations,
exploiting the information of the learned ProMP (Figure 2). The plots show
the predicted trajectories after 10, 30, 50, and 80% of observed data points.

3.4. Predicting the Trajectory Time
Modulation
In the previous section, we presented the general formulation
of ProMPs, which makes the implicit assumption that all the
observed trajectories have the same duration and thus the same
sampling.9 That is why the duration of the trajectories generated
by the RBF is fixed and equal to s̄. Of course, this is valid only for
synthetic data and not for real data.

To be able to address real experimental conditions, we now
consider the variation of the duration of the demonstrated tra-
jectories. To this end, we introduce a time modulation parameter
α that maps the actual trajectory duration tf to s̄: α = s̄/tf. The
normalized duration s̄ can be chosen arbitrarily; for example it
can be set to the average of the duration of the trajectories, e.g.,
s̄ = mean(tf1, . . . , tfK). Notably, in the literature sometimes α is
called phase (Paraschos et al., 2013a,b). The effect ofα is to change
the phase of the RBFs, which are scaled in time.

The time modulation of the i-th trajectory Ξi is computed by
αi = s̄

tfi . Thus, we have α · t ∈ [1 : s̄]. Thus, the improved ProMP
model is as follows:

ξt = Φαtω + ϵt, (10)

where Φαt is the RBFs matrix evaluated at time αt. All the M
Gaussian functions of the RBFs are spread over the same number
of samples s̄. Thus, we have the following:

Φαt = [ψ1(αt), ψ2(αt), . . . ., ψM(αt)].

During the learning step, we record a set of α parameters:
Sα= {α1,…,αn}. Then, using this set, we can replay the learned
ProMP with different speeds. By default (e.g., when α= 1), the
speed allows to finish the movement in s̄ samples.

During the inference, the time modulation α of the partially
observed trajectory is not known. Unless fixed a priori, the robot
must estimate it. This estimation is critical to ensure a good
recognition, as shown in Figure 4: the inferred trajectory (repre-
sented by the mean of the posterior distribution in red) does not
have the same duration as the “real” intended trajectory (which
is the ground truth). This difference is due to the estimation
error of the time modulation parameter. This estimation α̂ by
default is computed as the mean of all the αk observed during the
learning:

α̂ =
∑
αk

nk
. (11)

However, using the mean value for the time modulation is
an appropriate choice only when the primitive represents goal-
directed motions that are very regular, or for which we can rea-
sonably assume that differences in the duration can be neglected
(which is not a general case). Inmany applications, this estimation
may be too rough.

Thus, we have to find a way to estimate the duration of the
observed trajectory, which corresponds to accurately estimating
the timemodulation parameter α̂. To estimate α̂, we implemented

9Actually, we call here duration what is in fact the total number of samples for the
trajectory.
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FIGURE 4 | This plot shows the predicted trajectory given early observations
(data points, in black), compared to the ground truth (e.g., the trajectory that
the human intends to execute with the robot). We show the prior distribution
(in light blue) and the posterior distribution (in red), which is computed by
conditioning the distribution to match the observations. Here, the posterior
simply uses the average α computed over the α1,…,αK of the K
demonstrations. Without predicting the time modulation from the
observations and using the average α, the predicted trajectory has a duration
that is visibly different from the ground truth.

four different methods. The first is the mean of all the αk, as in
equation (11). The second is the maximum likelihood, with

α̂ = argmaxα∈Sαk
{loglikelihood(Ξo, µωk , σωk , αk)}. (12)

The third is the minimum distance criterion, where we seek
the best α̂ that minimizes the difference between the observed
trajectory Ξo

t and the predicted trajectory for the first no data
points:

α̂ = argminα∈Sαk

{ no∑
t=1

|Ξo
t − Φαtµωk |

}
. (13)

The fourth method is based on a model: we assume that there
is a correlation between α and the variation of the trajectory δno
from the beginning until the time no. This “variation” δno can be
computed as the variation of the position, e.g., δno = X(no)−X(1),
or the variation in the entire trajectory, δno = Ξ(no) − Ξ(1), or
any other measure of progress, if this hypothesis is appropriate
for the type of task trajectories of the application.10 Indeed, the α
can be linked also to the movement speed, which can be roughly
approximated by Ẋ = δX

tf

(
Ξ̇ = δΞ

tf

)
. We model the mapping

between δno and α by the following equation:

α = Ψ(δno)
⊤ωα + ϵα, (14)

where Ψ are RBFs, and ϵα is a zero-mean Gaussian noise. During
learning, we compute the ωα parameter, using the same method
as in equation (3). During the inference, we compute α̂ =
Ψ(δno)

Tωα.

10 In our case, this assumption can be appropriate, because the reaching trajectories
in our application are generally monotonic increasing/decreasing.

A comparison of the four methods for estimating α on a test
study with iCub in simulation is presented in Section 6.6.

There exist othermethods in the literature for computingα. For
example, Ewerton et al. (2015) propose amethod thatmodels local
variability in the speed of execution. In Maeda et al. (2016), they
use a method that improves Dynamic Time Warping by imposing
a smooth function on the time alignment mapping using local
optimization. These methods will be implemented in the future
works.

3.5. Recognizing One among Many
Movement Primitives
Robots should not learn only one skills but many: different skills
for different tasks. In our framework, tasks are represented by
movement primitives, precisely ProMP. So it is important for the
robot to be able to learn K different ProMPs and then be able to
recognize from the early observations of a trajectory which of the
K ProMPs the observations belong to.

During the learning step of a movement primitive k∈ [1 :
K], the robot observes different trajectories Sk = {Ξ1,…,Ξn}. For
each ProMP, it learns the distribution over the parameters vec-
tor p(ω) ∼ N (µωk ,Σωk), using equation (3). Moreover, the
robot records the different phases of all the observed trajectories:
Sαk = {α1k,…,αnk}.

After having learned these K ProMPs, the robot can use this
information to autonomously execute a task trajectory. Since we
are targeting collaborative movements, performed together with a
partner at least at the beginning, we want the robot to be able to
recognize from the first observations of a collaborative trajectory
which is the current task that the partner is doing and what is the
intention of the partner. Finally, we want the robot to be able to
complete the task on its own, once it has recognized the task and
predicted the future trajectory.

Let Ξo = [Ξ1 . . .Ξno ]
T be the early observations of an initiated

trajectory.
From these partial observations, the robot can recognize the

“correct” (i.e., most likely) ProMP k̂ ∈ [1 : K]. First, for each
ProMP k∈ [1 : K], it computes the most likely phase (time
modulation factor) α̂k (as explained in Section 3.4), to obtain
the set of ProMPs with the most likely duration: S[µωk ,α̂k] =
{(µω1 , α̂1), . . . , (µωK , α̂K)}.

Then we compute the most likely ProMP k̂ in S[µωk ,α̂k] accord-
ing to some criterion.One possibleway is tominimize the distance
between the early observations and themean of the ProMP for the
first portion of the trajectory:

k̂ = arg min
k∈[1:K]

[
1
no

no∑
t=1

|Ξt − Φα̂kt µωk |

]
. (15)

In equation (15), for each ProMP k∈ [1 : K], we compute
the average distance between the observed early-trajectory Ξt
and the mean trajectory of the ProMP Φα̂ktµωk , with t= [1 : no].
The most likely ProMP k̂ is selected by computing the mini-
mum distance (arg min). Other possible methods for estimating
the most likely ProMPs could be inspired by those presented
in the previous section for estimating the time modulation, i.e.,
maximum likelihood or learned models.
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Once identified the k̂-th most likely ProMP, we update its
posterior distribution to take into account the initial portion of
the observed trajectory, using equation (8):

µ̂ωk̂
= µωk̂

+ K
(
Ξo − Φα̂k̂[1:no]µωk̂

)
Σ̂ωk̂

= Σωk̂
− K

(
Φα̂k̂[1:no]Σωk̂

)
K = Σωk̂

Φ⊤
α̂k̂[1:no]

(
Σξo + Φα̂k̂[1:no]Σωk̂

Φ⊤
α̂k̂[1:no]

)−1

(16)
with α̂k̂[1 : no] = α̂k̂ t (in matrix form), with t∈ [1 : no].

Finally, the inferred trajectory is given by the following equa-
tion:

∀t ∈ [1 : t̂f], ξ̂(t) = Φt µ̂ωk̂

with the expected duration of the trajectory t̂f = α̂k s̄. The robot is
now able to finish themovement executing themost likely “future”
trajectory Ξ̂ = [ξ̂no+1 . . . ξ̂tf ]

T.

4. SOFTWARE OVERVIEW

In this section, we introduce our open-source software with an
overview of its architecture. This software is composed of two
main modules, represented in Figure 5.

While the robot is learning the Probabilistic Movement Prim-
itives (ProMPs) associated with the different tasks, the robot is
controlled by its user. The user’s guidance can be eithermanual for
the real iCub, or through a haptic device for the simulated robot.

A Matlab module allows replaying movement primitives or
finishing a movement that has been initiated by its user. By using
this module, the robot can learn distributions over trajectories,
replay movement primitives (using the mean of the distribution),

recognize the ProMP that best matches a current trajectory, and
infer the future evolution (until the end target) of this trajectory.

A C++ module forwards to the robot the control that comes
either from the user or from the Matlab module. Then, the robot
is able to finish a movement initiated by its user (directly or
through a haptic device) in an autonomous way, as shown in
Figure 1.

We present the C++ module in Section 6.2 and the theoretical
explanation of theMatlabmodule algorithms in Section 3. A guide
to run this last module is first presented in Section 5 for a simple
example, and in Section 6 for our application, where a simu-
lated robot learns many measured information of the movements.
Finally, we present results on the real iCub application in Section 7.

Our software is available through the GPL license, and publicly
available at:

https://github.com/inria-larsen/icubLearningTrajectories.

Tutorial, readme, and videos can be found in that repository.
First, the readme file describes how to launch simple demon-
strations of the software. Videos present these demonstrations to
simplify the understanding. In the next sections, we detail the
operation of the demo program for a first case of 1-DOF primitive,
followed by the presentation of the specific applications on the
iCub (first simulated and then real).

5. SOFTWARE EXAMPLE: LEARNING A
1-DOF PRIMITIVE

In this section, we present the use of the software to learn ProMPs
in a simple case of 1-DOF primitive. This example only uses the
MatlabProgram folder, composed of:

FIGURE 5 | Software architecture and data flows. The robot’s control is done either by the user’s guidance (manually or through a haptic device) represented in blue,
or by the Matlab module, in purple. The C++ module handles the control source to command the robot, as represented in black. Moreover, this module forwards
information that comes from the iCub.
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• A sub-folder called “Data,” where there are trajectory sets used
to learn movement primitives. These trajectories are stored in
text files with the following information:

– input parameters: # input1 # input2 [. . .]
– input parameters with time step: # timeStep # input1 #

input2 [. . .]
– recordTrajectories.cpp program recording: See Section 6.3 for

more information.

• A sub-folder called “used_functions.” It contains all the func-
tions used to retrieve trajectories, compute ProMPs, infer tra-
jectories, and plot results. Normally, using this toolbox does not
require understanding these functions. The first lines of these
functions give an explanation of their functioning and precise
what are the input(s) and output(s) parameters.

• Matlab scripts called “demo_*.m.” They are simple examples of
how to use this toolbox.

The script demo_plot1DOF.m, can be used to compute a
ProMP and to continue an initiated movement. The ProMP
is computed from a dataset stored in a “.mat” file, called
traj1_1DOF.mat. In this script, variables are first defined to make
the script specific to the current dataset:

Variable assignation Commentary

DataPath=
‘Datatraj1_1DOF.mat’;

Can be either “.mat” or “.txt”. In the current
demo, you can also write DataPath= ‘Data/traj1’
if you want to use the text files of this dataset.

typeRecover= ‘.mat’ Or .txt, it depends on your choice of data file.

inputName= {‘z[m]’}; Label of your input(s). Here z represents the
z-axis Cartesian coordinate.

s_ref= 100; Number of samples used as reference to rescale
all the trajectories to the same duration.

nbInput= 1; Dimension of the generic vector containing the
state of the trajectory.

M= 5; Number of radial basis functions per input.

expNoise= 0.00001; Expected trajectory noise.

percentData=20; Percent of observed data during the inference.

The variables include the following:

• DataPath is the path to the recorded data. If the data are
stored in text files, this variable contains the folder name where
text files are stored. These text files are called “recordX.txt,”
with X∈ [0: n− 1] if there are n trajectories. One folder is
used to learn one ProMP. If the data are already loaded from
a “.mat” file, write the whole path with the extension. The
data in “.mat” match with the output of the Matlab function
loadTrajectory.

• nbInput=D is the dimension of the input vector ξt.
• expNoise= Σo

ξ is the expected noise of the initiated trajec-
tory. The smaller this variable is, the stronger the modification
of the ProMP distribution will be, given new observations.

We will now explain more in detail the script. To recover data
recorded in a “.txt” file, we call the function:

t{1}= loadTrajectory(PATH, nameT, varargin)

Its input parameters specify the path of the recorded data,
the label of the trajectory. Other information can be added by
using the varargin variable (for more detail, check the header
of the function with the help comments). The output is an object
that contains all the information about the demonstrated tra-
jectories. It is composed of nbTraj, the number of trajectory;
realTime, the simulation time; and y (and yMat), the vector
(and matrix) trajectory set. Thus, t{1}.y{i} contains the i-th
trajectory.

The Matlab function drawRecoverData(t{1},
inputName,'namFig', nFig, varargin) plots in a Matlab
figure (numbered nFig) the dataset of loaded trajectories. An
example is shown in Figure 2, on the left. Incidentally, the
different duration of the trajectories is visible: on average, it is
1.17± 0.42 s.

To split the entire dataset of demonstrated trajectories t{1}
into a training dataset (used for learning the ProMPs) and a test
dataset (used for the inference), call the function

[train, test]= partitionTrajectory(t{1},
partitionType, percentData, s_ref)

where if partitionType= 1, only one trajectory is in the
test set and the others are placed in the training set, and if
partitionType> 1 it corresponds to the percentage of trajec-
tories that will be included in the training set.

The ProMP can be computed from the training set by using the
function:

promp= computeDistribution(train, M, s_ref, c, h)

The output variable promp is an object that contains all the
ProMP information. The first three input parameters have been
presented before: train is the training set, M is the number of
RBFs, and s_ref is the number of samples used to rescale all the
trajectories. The last two input parameters c and h shape the RBFs
of the ProMP model: c∈ RM is the center of the Gaussians and
h∈ R their variance.

To visualize this ProMP, as shown in Figure 2, call the function:

drawDistribution(promp, inputName, s_ref)

For debugging purposes and to understand how to tune the
ProMPs’ parameters, it is interesting to plot the overlay of the basis
functions in time. Choosing an appropriate number of basis func-
tions is important, as too few may be insufficient to approximate
the trajectories under consideration, and too many could result in
overfitting problems. To plot the basis functions, simply call:

drawBasisFunction(promp.PHI, M)

where promp.PHI is a set of RBFs evaluated in the normalized
time range t ∈ [1 : s̄].

Figure S1 in Supplementary Material shows at the top the basis
functions before normalization, and at the bottom the ProMP
modeled from these basis functions. From left to right, we change
the number of basis functions. When there are not enough basis
functions (left), the model is not able to correctly represent the
shape of the trajectories. In the middle, the trajectories are well
represented by the five basis functions. With more basis func-
tions (right), the variance of the distribution decreases because
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the model is more accurate. However, arbitrarily increasing the
number of basis functions is not a good idea, as itmay not improve
the accuracy of the model and worse it may cause overfitting.

Once the ProMP is learned, the robot can reproduce the move-
ment primitive using the mean of the distribution. Moreover, it
can now recognize a movement that has been initiated in this
distribution and predict how to finish it. To do so, given the
early no observations of a movement, the robot updates the prior
distribution to match the early observed data points: through
conditioning, it finds the posterior distribution, which can be used
by the robot to execute the movement on its own.

The first step in predicting the evolution of the trajectory is
to infer the duration of this trajectory, which is encoded by the
time modulation parameter α̂. The computation of this inference,
which was detailed in Section 3.4, can be done by using the
function:

[expAlpha, type, x]= inferenceAlpha(promp,
test{1}, M, s_ref, c, h, test{1}.nbData,. . .
expNoise, typeReco)

where typeReco is the type of criteria used to find the expected
time modulation (“MO,” “DI,” or “ML” for model, distance or
maximum likelihood methods); expAlpha = α̂ is the expected
time modulation; type is the index of the ProMP from which
expAlpha has been computed, which we note in this article as
k. To predict the evolution of the trajectory, we use equation (8)
from Section 3.3. In Matlab, this is done by the function:

infTraj= inference(promp, test{1}, M, s_ref, c,
h,. . . test{1}.nbData, expNoise, expAlpha).

where test{1}.nbData has been computed during the
partitionTrajectory step. This variable is the number of
observations no, representing the percentage of observed data
(percentData) of the test trajectory (i.e., to be inferred) that
the robot observes. infTraj= Ξ̂ is the inferred trajectory.
Finally, to draw the inferred trajectory, we can call the function
drawInference(promp, inputName, infTraj, test1,
s_ref).

It can be interesting to plot the quality of the predicted tra-
jectories as a function of the number of observations, as done in
Figure 3.

Note that when we have observed a larger portion of the trajec-
tory, the prediction of the remaining portion is more accurate.

Nowwewant tomeasure the quality of the prediction. LetΞ∗ =
[ξo(1), . . . , ξo(no), ξ∗(no + 1), . . . , ξ∗(t∗f )] be the real trajectory
expected by the user. To measure the quality of the prediction, we
can use:

• The likelihood of having the Ξ* trajectory given the updated
distribution p(ω̂).

• The distance between the Ξ* trajectory and the Ξ̂ inferred
trajectory.

However, according to the type of recognition typeReco used
to estimate the time modulation parameter α from the early
observations, a visible mismatch between the predicted trajectory
and the real one can be visible even when a lot of observations
are used. This is due to the error of the expectation of this time

FIGURE 6 | The prediction of the future trajectory given no = 40% of early
observations from the learned ProMP computed for the test dataset
(Figure 2). The plots show the predicted trajectory, using different criteria to
estimate the best phases of the trajectory: using the average time modulation
(equation (11)); using the distance criteria (equation (13)); using the maximum
log-likelihood (equation (12)); or using a model of time modulation according
to the time variation (equation (14)).

TABLE 2 | Information about trajectories’ duration.

Traj. samples α = s̄
Iterations , s̄ = 100 Duration [s]

Min 83 1.2048 0.83
Max 115 0.8696 1.15
Mean 100 1 0.99
SD 9 11.1111 0.09

modulation parameter. In Section 3.4, we present the different
methods used to predict the trajectory duration. These methods
select the most likely α̂ according to different criteria: distance;
maximum likelihood; model of the α variable11; and average of
the observed α during learning.

Figure 6 shows the different trajectories predicted after
no = 40% of the length of the desired trajectory is observed,
according to the method used to estimate the time modulation
parameter.

On this simple test, where the variation time is little as shown
in Table 2, the best result is accomplished by the average of time
modulation parameter of the trajectories used during the learning
step. Inmore complicated cases, when the timemodulation varies,
the other methods will be preferable as seen in Section 3.5.

6. APPLICATION ON THE SIMULATED
iCub: LEARNING THREE PRIMITIVES

In this application, the robot learnsmultiple ProMPs and is able to
predict the future trajectory of a movement initiated by the user,
assuming the movement belongs to one of the learned primitives.

11 In this model, we assume that we can find the time modulation parameter
according to the global variation of the position during the no first observed data.
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FIGURE 7 | Left: the three colored targets that the robot must reach from the starting point; the corresponding trajectories are used to learn three primitives
representing three skills. Right: the Cartesian position information of the demonstrated trajectories for the three reaching tasks.

Based on this prediction, it can also complete the movement once
it has recognized the appropriate ProMP.

We simplify the three actions/tasks by reaching three differ-
ent targets, represented by three colored balls in the reachable
workspace of the iCub. The example is performed with the simu-
lated iCub in Gazebo. Figure 7 shows the three targets, placed at
different heights in front of the robot.

In Section 6.1, we formulate the intention recognition problem
for the iCub: the problem is to learn the ProMP from trajectories
consisting of Cartesian positions in 3D12 and the 6Dwrench infor-
mation measured by the robot during the movement. In Section
6.2, we describe the simulated setup of iCub in Gazebo, then in
Section 6.3, we explain how trajectories are recorded, including
force information, when we use the simulated robot.

6.1. Predicting Intended Trajectories by
Using ProMPs
The model is based on Section 3, but here we want to learn more
information during movements. We record this information in a
multivariate parameter vector:

∀t, ξt =
[
Xt
Ft

]
∈ R9,

where Xt ∈ R3 is the Cartesian position of the robot’s end effector
and Ft ∈ R6 the external forces and moments. In particular,
Ft contains the user’s contact forces and moments. Let us call
dim(ξt)=D, the dimension of this parameter vector.

The corresponding ProMP model is as follows:

ξt =
[
Xt
Ft

]
= Φαtω + ϵt,

where ω ∈ RD·M is the time-independent parameter vector,

ϵt =
[
ϵXt

ϵFt

]
∈ RD is the zero-mean Gaussian i.i.d. observation

12Note that in that particular example we do not use the orientation because we
want the robot’s hand to keep the same orientation during the movement. But
in principle, it is possible to learn trajectories consisting of the 6D/7D Cartesian
position and orientation of the hand, to make the robot change also the orientation
of the hand during the task.

noise, and Φαt ∈ RD×D·M a matrix of Radial Basis Functions
(RBFs) evaluated at time αt.

Since we are in the multidimensional case, this Φαt block
diagonal matrix is defined as follows:

Φαt = BlockdiagonalMatrix(ϕ1, . . . , ϕD) ∈ RD×D·M.

It is a diagonal matrix of D Radial Basis Functions (RBFs),
where each RBF represents one dimension of the ξt vector and it is
composed ofM Gaussians, spread over same number of samples s̄.

6.1.1. Learning Motion Primitives
During the learning step of each movement primitive k∈ [1 :
3], the robot observes different trajectories Sk = {Ξ1,…,Ξn}k, as
presented in Section 6.3.

For each trajectory Ξi[1:tfi] = [ξi(1), . . . , ξi(tfi)]
T, it computes

the optimal ωki parameter vector that best approximates the
trajectory.

We saw in Section 3.5 how these computations are done. In our
software, we use matrix computation instead of tfi iterative ones
done for each observation t (as in equation (3)). Thus, we have
the following:

ωki =
(
Φ⊤
α[1:tfi]Φα[1:tfi]

)−1
Φ⊤
α[1:tfi] ∗ Ξi[1:tfi] (17)

with Φα[1:tfi] = [Φα1,Φα2 . . . ,Φαtfi ]
T.

6.1.2. Prediction of the Trajectory Evolution from
Initial Observations
After having learned the three ProMPs, the robot is able to fin-
ish an initiated movement on its own. In Sections 3.3–3.5, we
explained how to compute the future intended trajectory given the
early observations.

In this example, we add specificities about the parameters to
learn.

Let Ξo =
[
Xo

Fo
]

= [Ξ1 . . .Ξno ]
T be the early observations of the

trajectory.
First, we only consider the partial observations: Xo =

[X1 . . .Xno ]
T. Indeed, we assume the recognition of a trajectory

is done with Cartesian position information only, because the
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same movement can be done and recognized with different force
profiles than the learned ones.

From this partial observation Xo, the robot recognizes the
current ProMP k̂ ∈ [1 : 3], as seen in Section 3.5. It also computes
an expectation of the time modulation t̂f, as seen in Section 3.4.
Using the expected value of the time modulation, it approximates
the trajectory speed and its total time duration.

Second, we use the total observation Ξo to update the ProMP,
as seen in Section 3.3. This computation is based on equation (18),
but here again, we use the following matrix computation:

µ̂ωk = µωk + K
(
Ξo − Φα[1:no]µωk

)
Σ̂ωk = Σωk − K

(
Φα[1:no]Σωk

)
K = ΣωkΦ

T
α[1:no]

(
Σξo + Φα[1:no]ΣωkΦ

T
α[1:no]

)−1
.

From this posterior distribution, we retrieve the inferred Ξ̂ =
{ξ̂1, ..., ξ̂̂tf} trajectory, with:

∀t ∈ [1 : t̂f], ξ̂t =
[
X̂t
F̂t

]
= Φαtµ̂ωk .

Note that the inferred wrenches F̂t, here, correspond to the
simulated wrenches in Gazebo. In this example, there is little use
for them in simulation; the interest for predicting also wrenches
will be clearer in Section 7, with the example on the real robot.

6.2. Setup for Simulated iCub
For this application, we created a prototype in Gazebo, where the
robot must reach three different targets with the help of a human.
To interact physically with the robot simulated in Gazebo, we used
the Geomagic touch, a haptic device.

The setup consists of the following:

• the iCub simulation in Gazebo, complete with the
dynamic information provided by wholeBodyDynamicsTree
(https://github.com/robotology/codyco-modules/tree/master/
src/modules/wholeBodyDynamicsTree) and the Cartesian
information provided by iKinCartesianController;

• the Geomagic Touch, installed following the instructions
in https://github.com/inria-larsen/icub-manual/wiki/
Installation-with-the-Geomagic-Touch, which not only
install the SDK and the drivers of the GeoMagic but also point
to how to create the yarp drivers for the Geomagic;

• a C++ module (https://github.com/inria-larsen/icubLearning
Trajectories/tree/master/CppProgram) that connects the out-
put command from the Geomagic to the iCub in Gazebo and
eventually enables recording the trajectories on a file. A tutorial
is included in this software.

The interconnection among the different modules is repre-
sented inFigure 5, where theMatlabmodule is not used. The tip of
the Geomagic is virtually attached to the end effector of the robot:

xgeo → xicub_hand.

When the operator moves the Geomagic, the position of the
Geomagic tip xgeo is scaled (1:1 by default) in the iCub workspace
as xicub_hand, and the Cartesian controller is used to move the iCub

hand around a “home” position, or default starting position:

xicub_hand = hapticDriverMapping(x0 + xgeo),

where hapticDriverMapping is the transformation applied by the
haptic device driver, which essentially maps the axis from the
Geomagic reference frame to the iCub reference frame. By default,
no force feedback is sent back to the operator in this application,
as we want to emulate the zero-torque control mode of the real
iCub, where the robot is ideally transparent and not opposing any
resistance to the human guidance. A default orientation of the
hand (“katana” orientation) is set.

6.3. Data Acquisition
The dark button of the Geomagic is used to start and stop
the recording of the trajectories. The operator must click and
hold the button during the whole movement and release the but-
ton at the end. The trajectory is saved on a file called recordX.txt
for the X-th trajectory. The structure of this file is:

1 #time #xgeo #ygeo #zgeo #fx #fy #fz #mx #my #mz #x_icub_hand
#y_icub_hand #z_icub_hand

2 5.96046e−06 −0.0510954 −0.0127809 −0.0522504 0.284382
−0.0659538 −0.0239582 −0.0162418 −0.0290078 −0.0607215
−0.248905 −0.0872191 0.0477496$

A video showing the iCub’s arm moved by a user through the
haptic device in Gazebo is available in Section 8 (tutorial video).
The graph in Figure 7 represents some trajectories recorded with
the Geomagic, corresponding to lifting the left arm of the iCub.

Demonstrated trajectories and their corresponding forces can
be recorded directly from the robot, by accessing the Cartesian
interface and the wholeBodyDynamicsTree module.13

In our project on Github, we provide the acquired dataset
with the trajectories for the interested reader who wishes to test
the code with these trajectories. Two datasets are available at
https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/MatlabProgram/Data/: the first dataset called “heights” is
composed of three goal-directed reaching tasks, where the targets
vary in height; the second dataset called “FLT” is composed of
trajectories recorded on the real robot, whose armsmove forward,
to the left and to the top.

A Matlab script that learns ProMPs with such kinds of datasets
is available in the toolbox, called demo_plotProMPs.m. It con-
tains all the following steps.

To load the first “heights” dataset with the three trajectories,
write:

1 t{1}= loadTrajectory('Data/heights/bottom', 'bottom', 'refNb',
s_bar, 'nbInput', nbInput, . . . 'Specific', 'FromGeom');

2 t{2}= loadTrajectory('Data/heights/top', 'top', 'refNb',
s_bar, 'nbInput', nbInput, . . . 'Specific', 'FromGeom');

3 t{3}= loadTrajectory('Data/heights/middle', 'forward',
'refNb', s_bar, 'nbInput', nbInput, . . . 'Specific',
'FromGeom');

13 In our example, we do not use the simulated wrench information as it is very noisy.
However, we provide the code and show how to retrieve it and use it, in case the
readers should not have access to the real iCub.
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Figure 7 shows the three sets of demonstrated trajectories. In
the used dataset called “heights,” we have recorded 40 trajectories
per movement primitive.

6.4. Learning the ProMPs
We need to first learn the ProMPs associated with the three
observed movements. First, we partition the collected dataset into
a training set and test dataset for the inference. One random
trajectory for the inference is used:

1 [train{i}, test{i}]= partitionTrajectory(t{i}, 1, percentData,
s_bar);

The second input parameter specifies that we select only one
trajectory, randomly selected, to test the ProMP.

Now, we compute the three ProMPs with:

1 promp{1}= computeDistribution(train{1}, M, s_bar, c, h);
2 promp{2}= computeDistribution(train{2}, M, s_bar, c, h);
3 promp{3}= computeDistribution(train{3}, M, s_bar, c, h)

We set the following parameters:

• s_bar= 100: reference number of samples, which we note in
this article as s̄.

• nbInput(1)= 3; nbInput(2)= 6: dimension of the generic
vector containing the state of the trajectories. It is com-
posed of 3D Cartesian position and 6D forces and wrench
information.14

• M(1)= 5; M(2)= 5: number of basis functions for each
nbInput dimension.

• c= 1/M;h= 1/(M*M): RBF parameters (see equation (2)).
• expNoise= 0.00001: the expected data noise.We assume this

noise to be very low, since this is a simulation.
• percentData= 40: this variable specifies the percentage of the

trajectory that the robot will be observed, before inferring the
end.

These parameters can be changed at the beginning of the
Matlab script.

Figure 8 shows the three ProMPs of the reaching movements
toward the three targets. To highlight the most useful dimen-
sion, we only plot the z-axis Cartesian position. However, each
dimension is plotted by the Matlab script with:

1 drawRecoverData(t{1}, inputName, 'Specolor', 'b', 'namFig', 1);
2 drawRecoverData(t{1}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'b', 'namFig', 2);
3 drawRecoverData(t{2}, inputName, 'Specolor', 'r', 'namFig', 1);
4 drawRecoverData(t{2}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'r', 'namFig', 2);
5 drawRecoverData(t{3}, inputName, 'Specolor', 'g', 'namFig', 1);
6 drawRecoverData(t{3}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'g', 'namFig', 2);

14Note that in our example wrenches are separated from the Cartesian position,
because they are not used to recognize the index of the current ProMP during the
inference.

FIGURE 8 | The Cartesian position in the z-axis of the three ProMPs
corresponding to reaching three targets. There are 39 trajectory
demonstrations per each ProMPs with M= 5 basis functions,
c = 1

M , h = 1
M2 and s̄ = 100.

6.5. Predicting the Desired Movement
Now that we have learned the different ProMPs, we can predict
the end of a trajectory according to the early observation no. This
number is computed from the variable percentData written at
the beginning of the trajectory by: no = | percentData100 ∗ tfi|, where i is
the index of the test trajectory.

To prepare the prediction, the model the time modulation of
each trajectory is computed with:

1 w= computeAlpha(test.nbData, t, nbInput);
2 promp1.w_alpha= w1;
3 promp2.w_alpha= w2;
4 promp3.w_alpha= w3;

This model relies on the global variation of Cartesian position
during the first no observations. The model’s computations are
explained in Section 3.4.

Now, to estimate the time modulation of the trajectory, call the
function:

1 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,
c, h, test{1}.nbData, expNoise, 'MO');

where alphaTraj contains the estimated time modulation α̂ and
type gives the index of the recognized ProMP. The last parameter
x is used for debugging purposes.

Using this estimation of the time modulation, the end of the
trajectory is inferred with:

1 infTraj= inference(promp, test{1}, M, s_bar, c, h,
test{1}.nbData, expNoise, alphaTraj);

As shown in the previous example, the quality of the prediction
of the future trajectory depends on the accuracy of the time
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modulation estimation. This estimation is computed by calling the
function:

1 %Using the model:
2 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'MO');
3 %Using the distance criteria:
4 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'DI');
5 %Using the Maximum likelihood criteria:
6 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'ML');
7 %Using the mean of observed temporal modulation during learning:
8 alphaTraj= (promp{1}.mu_alpha+ promp{2}.mu_alpha+ promp{3}.

mu_alpha)/3.0;

6.6. Predicting the Time Modulation
In Section 3.4, we presented four main methods for estimating
the time modulation parameter, discussing why this is crucial
for a better estimation of the trajectory. Here, we compare the
methods on the three goals experiment. We recorded 40 trajec-
tories for each movement primitive, for a total of 120 trajectories.
After having computed the corresponding ProMPs, we tested the
inference by providing early observations of a trajectory that the
robot must finish. For that purpose, it recognizes the correct
ProMP among the three precedently learned (see Section 3.5)
and then it estimates the time modulation parameter α̂. Figure 9
represents the average error of the α̂ during inference for 10 trials
according to the number of observations (from 30 to 90% of
observed data) and according to the usedmethod. These methods
are the ones we have just presented before that we called mean
(equation (11)), maximum likelihood (equation (12)), minimum
distance (equation (13)) or model (equation (14)). Each time,
the tested trajectory is chosen randomly from the data set of
observed trajectories (of course, the test trajectory does not belong
to the training set, so it was not used in the learning step). The
method that takes the average of α observed during learning is
taken as comparison (in black). We can see that other methods
are more accurate. The maximum likelihood is increasingly more
accurate, as expected. The fourth method (model) that models the
α according to the global variation of the trajectory’s positions
during the early observations is the best performing when the
portion of observed trajectory is small (e.g., 30–50%). Since it is
our interest to predict the future trajectory as early as possible, we
adopted the model method for our experiments.

7. APPLICATION ON THE REAL iCub

In this section, we present and discuss two experiments with the
real robot iCub.

In the first, we take inspiration from the experiment of the
previous Section 6, where the “tasks” are exemplified by simple
point-to-point trajectories demonstrated by a human tutor. In this
experiment, we explore how to use wrench information and use
known demonstrations as ground truth, to evaluate the quality of
our prediction.

In the second experiment, we set up a more realistic col-
laborative scenario, inspired by collaborative object sorting. In

such applications, the robot is used to lift an object (heavy, or
dangerous, or that the human cannot manipulate, as for some
chemicals or food), the human inspects the object and then
decides if it is accepted or rejected.Depending on this decision, the
object goes on a tray or bin in front of the robot, or on a bin located
on the robot side. Dropping the objects in two cases must be done
in a different way. Realizing this application with iCub is not easy,
as iCub cannot lift heavy objects and has a limited workspace.
Therefore, we simplify the experiment with small objects and two
bins. The human simply starts the robots movement with physical
guidance, and then the robot finishes themovement on its own. In
this experiment the predicted trajectories are validated on-the-fly
by the human operator.

In a more complex collaborative scenario, tasks could be ele-
mentary tasks such as pointing, grasping, reaching, and manipu-
lating tools (the type of task here is not important, as long as it can
be represented by a trajectory).

7.1. Three Simple Actions with Wrench
Information
Task trajectories, in this example, have both position and wrench
information. In general, it is a good idea to represent collaborative
motion primitives in terms of both position and wrenches, as
this representation enables using them in the context of phys-
ical interaction. Contrarily to the simulated experiment, here
the inferred wrenches F̂t correspond to the wrenches the robot
should perceive if the partner was manually guiding the robot
to perform the entire movement: indeed, these wrenches are
computed from the demonstrations used to learn the primitive.
The predicted wrenches can be used in different ways, depend-
ing on the application. For example, if the partner breaks the
contact with the robot, the perceived wrenches will be differ-
ent. If the robot is not equipped with tactile or contact sen-
sors, this information can be used by the robot to “perceive”
the contact breaking and interpret it, for example, as the sign
that the human wants the robot to continue the task on its
own. Another use for the demonstrated wrenches is for detecting
abnormal forces while the robot is moving: this use can have
different applications, from adapting the motion to new environ-
ment to automatically detecting new demonstrations. Here, they
are simply used to detect when the partner breaks the contact
with the robot, and the latter must continue the movement on
its own.

In the following, we present how to realize the experiment
for predicting the user intention with the real iCub, using our
software. The robot must learn three task trajectories represented
in Figure 10. In red, the first trajectory goes from an initial
position in front of the robot to its left (task A). In green, the
second trajectory goes from the same initial position to the top
(task C). In blue, the last trajectory goes from the top position to
the position on the left (task B).

To provide the demonstrations for the tasks, the human tutor
used three visual targets shown on the iCub_GUI, a basic module
of the iCub code that provides a real-time synthetic and aug-
mented view of the robot status, with arrows for the external
forces and colored objects for the targets. One difficulty for novice
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FIGURE 9 | (Top left) Error of α estimation; (top right and bottom) error of trajectory prediction according to the number of known data and the method used. We
executed 10 different trials for each case.

users of iCub is to be able to drive the robot’s arm making it
perform desired complex 3D trajectories (Ivaldi et al., 2017),
but after some practice in moving the robot’s arm the operator
recorded all the demonstrations. We want to highlight that having
variations in the starting or ending points of the trajectories is
not at all a problem, since the ProMPs are able to deal with this
variability.

We will see that by using the ProMPs method and by learning
the end-effector Cartesian position, the robot will be able to
learn distributions over trajectories, recognize when a movement
belongs to one of these distributions, and infer the end of the
movement.

In this experiment, the robot received 10 demonstrated tra-
jectories per movement primitive, all provided by the same
user. We recorded the Cartesian end-effector position and the
wrenches of the robot’s left arm. Data are retrieved using
the function used_functions/retrieveRealDataWithout
Orientation.m. The output parameters of this function are three
objects (one per ProMP) that contain all the required information
to learn the ProMPs.

In this function, the wrench information are filtered using a
Matlab function called envelope.m15: for each trajectory traj
and its subMatrix M= F([1: t]):

1 [envHigh, envLow]= envelope(traj.M);
2 traj.M= (envHigh+ envLow)/2;

These three objects are saved in 'Data/realIcub.mat'. A
Matlab script called demo_plotProMPsIcub.m recovers these
data, using the function load('Data/realIcub.mat'). This
script follows the same organization as the ones we previously
explained in Sections 5 and 6. By launching this script, the recov-
ered data are plotted first.

Then, the ProMPs are computed and plotted, as presented in
Figure 11. In this figure, the distributions are visibly overlaid:

• during the whole trajectories duration for the wrench informa-
tion;

15 Information about this function can be found here: https://fr.mathworks.com/
help/signal/ref/envelope.html?requestedDomain=www.mathworks.com.
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FIGURE 10 | Top left: the iCub and the visualization of the three targets in its workspace, defining the three tasks A–B–C. Top right: Cartesian position information of
the demonstrated trajectories for the three tasks. Bottom left and right: wrench (force and moment) information of the demonstrated trajectories.

• during the 40% first samples of the trajectories for the Cartesian
position information.
After this learning step, the user chooses which ProMP to test.

Using a variable that represents the percentage of observed data
to be used for the inference, the script computes the number of
early observations no16 that will be measured by the robot. Using
this number, the robot models the time modulation parameter
α17 of each ProMP, as explained in Section 3.4. Using this model,
the time modulation of the test trajectory is estimated, and the
corresponding ProMP is identified.

Then, the inference of the trajectory’s target is performed.
Figure 12 represents the inference of the three tested trajectories
when wrench information is not used by the robot to infer the
trajectory. To realize this figure, with the comparison between
the predicted trajectory and the ground truth, we applied our
algorithm offline. In fact, it is not possible at time t to have the

16 no is not the same for each trajectory test, because it depends on the total duration
of the trajectory to be inferred.

17 Since the model uses the no parameter, its computation cannot be performed
before this step.

ground truth of the trajectory intended by the human from t+ 1
to tf: even if we would tell to the human in advance the goal that
he/she must reach for, the trajectory to reach that goal could vary.
So, for the purpose of these figures and comparisons with the
ground truth, we show here the offline evaluation: we select one
demonstrated task trajectory from the test set (not the training
set used to learn the ProMP) as ground truth, and imagine that
this is the intended trajectory. In Figure 12, the ground truth is
shown in black, whereas the portion of this trajectory that is fed to
the inference, and that corresponds to the “early observations,” is
representedwith bigger black circles.We can see that the inference
of the Cartesian position is correct, althoughwe can see an error of
about 1 s of the estimated duration time for the last trial. Also, the
wrench inference is not accurate.We can assume that it is: because
the robot infers the trajectory using only position information
without wrench information, or because the wrenches’ variation
is not correlated to the position variation. To improve this result,
we can make the inference using wrench in addition to Cartesian
position information, as shown in Figure 13. We can see in this
figure that the estimation of the trajectory’s duration is accurate.
The disadvantage is that the inference of the Cartesian position
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FIGURE 11 | The ProMPs learned by the robot from the demonstrations of Figure 10.

is less accurate because the posterior distribution computation
makes a trade-off between fitting Cartesian position and wrench
early observations. Moreover, to allow a correct inference using
wrench information, the noise expectation must be increased to
consider forces.18

To confirm these results, we analyzed the trajectory infer-
ence and α estimation considering different percentages of each
trajectory as observed data (30–90%). For each percentage, we
performed 20 tests, with and without force information.

InFigure 14, each box-plot represents errors for 20 tests. On the
top, the error criterion is the average distance between the inferred
trajectory and the real one. We can see that the inference of
Cartesian end-effector trajectory ismore accurate without wrench
information. On the bottom, the error criterion is the distance
between the estimated α and the real one. We can see that using
wrench information, the estimation of the α is more accurate.
Thus, these two graphs confirmwhat we assumed fromFigures 12
and 13.

Median, mean, and variance of the prediction errors, com-
puted with the normalized root-mean-square error (NRMSE), are
reported in Table S1 in Supplementary Material. The prediction
error for the time modulation is a scalar: |αprediction −αreal|. The
prediction error for the trajectory is computed by the NRMSE of
|Ξprediction −Ξreal|.

In future upgrades for this application, we will probably use
the wrench information only to estimate the time modulation
parameter α, to have both the best inference of the intended

18 In future versions, we will include the possibility to have different noise models

for the observations, e.g., we will have Σo
Ξ =

[
ΣX 0
0 ΣF

]
. We will therefore set a

bigger covariance for the wrench information than for the position information.

trajectory and the best estimation of the time modulation param-
eter to combine the benefits of inference with and without wrench
information.

Table S1 in Supplementary Material also reports the average
time for computing the prediction of both time modulation and
posterior distribution. The computation was performed in Mat-
lab, on a single core laptop (no parallelization). While the com-
putation time for the case “without wrenches” is fine for real-time
application, using the wrench information delays the prediction
and represents a limit for real-time applications if fast decisions
have to taken by the robot. Computation time will be improved in
the future works, with the implementation of the prediction in an
iterative way.

7.2. Collaborative Object Sorting
We realized another experiment with iCub, where the robot has to
sort some objects in different bins (see Figure S2 in Supplementary
Material). We have two main primitives: one for a bin located on
the left of the robot, and one for the bin to the front. Dropping the
object is done at different heights, with a different gesture that also
has a different orientation of the hand. For this reason, the ProMP
model consists of the Cartesian position of the hand Xt = [xt, yt,
zt]∈R3 and its orientation At ∈R4, expressed as a quaternion:

ξt =
[
Xt
At

]
= Φαt ω + ϵt.

As in the previous experiment, we first teach the robot the prim-
itives by kinesthetic teaching, with a dozen of demonstrations.
Thenwe start the robotmovement: the human operator physically
grabs the robot’s arm and start the movement toward one of the
bins. The robot’s skin is used twice. First, to detect the contact
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A
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C

FIGURE 12 | The prediction of the future trajectory from the learned ProMPs computed from the position information for the 3-targets dataset on the real iCub
(Figure 11) after 40% of observations.
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FIGURE 13 | The prediction of the future trajectory from the learned ProMPs computed from the position and wrench information for the 3-targets dataset on the real
iCub (Figure 11) after 40% of observations.
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FIGURE 14 | Trajectory prediction error (top) and time modulation estimation error (bottom) of the future trajectory with and without wrench information, for the
3-targets dataset on the real iCub (Figure 11) with respect to the number of observed data points.

when the human grabs the arm, which marks the beginning of
the observations. Second, when the human breaks the contact
with the arm, which marks the end of the observations. Using the
first portion of the observed movement, the robot recognizes the
current task that is being executed, predicts the future movement
that is intended by the human, and then executes it on its own.
In the video (see link in Section 8), we artificially introduced a
pause to let the operator “validate” the predicted trajectory, using
a visual feedback on the iCubGui. Figure S3 in Supplementary
Material shows one of the predictions made by the robot after the
human releases the arm. Of course in this case, we do not have
a “ground truth” for the predicted trajectory, only a validation of
the predicted trajectory by the operator.

8. VIDEOS

We recorded several videos that complement the tutorials. The
videos are presented in the github repository of our software:
https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/Videos.

9. DISCUSSION

While we believe that our proposed method is principled and
has several advantages for predicting intention in human–robot
interaction, there are numerous improvements that can be done.
Some will be object of our future works.

9.1. Improving the Estimation of the Time
Modulation
Our experiments showed that estimating the time modulation
parameter α, determining the duration of the trajectory, greatly
improves the prediction of the trajectory in terms of difference
with the human intended trajectory (i.e., our ground truth). We
proposed four simple methods in Section 3.4, and in the iCub
experiment, we showed that the method that maps the time
modulation and the variation of the trajectory in the first no
observations provides a good estimate of the time modulation α
for our specific application. However, it is an ad hoc model that
cannot be generalized to all possible cases. Overall, the estimation
of the time modulation (or phase) can be improved. For example,
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Maeda et al. (2016) used Dynamic Time Warping, while Ewerton
et al. (2015) proposed to improve the estimation by having local
estimations of the speed in the execution of the trajectory, to
comply with cases where the velocity of task trajectory may not
be constant throughout the task execution. In the future, we plan
to explore more solutions and integrate them into our software.

9.2. Improving Prediction
Another point that needs further investigation and improvement
is how to improve the prediction of the trajectories exploit-
ing different information. In our experiment with iCub, we
improved the estimation of the time modulation using position
and wrench information; however, we observed that the noisy
wrench information does not help in improving the prediction of
the position trajectory. One improvement is to certainly exploit
more information from the demonstrated trajectories, such as
estimating the different noise of every trajectory component and
exploiting this information to improve the prediction. Another
possible improvement would consist in using contextual infor-
mation about the task trajectories. Finally, it would be interesting
to try to identify automatically the characteristic such as velocity
profiles or accelerations, which are renown to play a key role
in attributing intentions to human movements. For example, in
goal-directed tasks such as reaching, the arm velocity profile, and
the hand configuration are cues that helps us detect intentions.
Extracting these cues automatically, leveraging the estimation of
the time modulation, would probably improve the prediction of
the future trajectory. This is a research topic on its own, outside
the scope of this article, with strong links to humanmotor control.

9.3. Continuous Prediction
In Section 3.5, we described how to compute the prediction of the
future trajectory after recognizing the current task. However, we
did not explore what happens if the task recognition is wrong: this
may happen, if there are two or more task with a similar trajectory
at the beginning (e.g., moving the object from the same initial
point toward one of four possible targets), or simply because there
were not enough observed points. So what happens if our task
recognition is wrong? How to re-decide on a previously identified
task? And how should the robot decide if its current prediction
is finally correct (in statistical terms)? While implementing a
continuous recognition and prediction is easywith our framework
(one has simply to do the estimation at each time step), providing
a generic answer to these question may not be straightforward.
Re-deciding about the current task implies also changing the
prediction of the future trajectory. If the decision does not come
with a confidence level greater than a desired value, then the robot
could face a stall: if asked to continue the movement but unsure
about the future trajectory, should it continue or stop? The choice
may be application dependent. We will address these issues and
the continuous prediction in future works.

9.4. Improving Computational Time
Finally, we plan to improve the computational time for the infer-
ence and the portability of our software by porting the entire
framework in C++.

9.5. Learning Tasks with Objects
In many collaborative scenarios, such as object carrying and
cooperative assembly, the physical interaction between the human
and the robot is mediated by objects. In these cases, if specific
manipulations must be done on the objects, our method still
applies, but not only on the robot. It must be adapted to the new
“augmented system” consisting of robot and object. Typically, we
could image a trajectory for some frame or variable or point of
interest for the object and learn the corresponding task. Since
ProMPs support multiplication and sequencing of primitives, we
could exploit the properties of the ProMPs to learn the joint
distribution of the robot task trajectories and the object task
trajectories.

10. CONCLUSION

In this article, we propose a method for predicting the intention
of a user physically interacting with the iCub in a collaborative
task.We formalize the intention prediction as predicting the target
and “future” intended trajectory from early observations of the
task trajectory, modeled by Probabilistic Movement Primitives
(ProMPs). We use ProMPs because they capture the variability
of the task, in the form of a distribution of trajectories coming
from several demonstrations of the task. From the information
provided by the ProMP, we are able to compute the future tra-
jectory by conditioning the ProMP to match the early observed
data points. Additional features of our method are the estimation
of the duration of the intended movement, the recognition of the
current task among the many known in advance, and multimodal
prediction.

Section 3 described the theoretical framework, whereas
Sections 4–7 presented the open-source software that provides the
implementation of the proposedmethod. The software is available
on github, and tutorials and videos are provided.

We used three examples of increasing complexity to show how
to use our method for predicting the intention of the human
in collaborative tasks, exploiting the different features. We pre-
sented experiments with both the real and the simulated iCub.
In our experiments, the robot learns a set of motion primi-
tives corresponding to different tasks, from several demonstra-
tions provided by a user. The resulting ProMPs are the prior
information that is later used to make inferences about human
intention. When the human starts a new collaborative task, the
robot uses the early observations to infer which task the human
is executing and predicts the trajectory that the human intends
to execute. When the human releases the robot, the predicted
trajectory is used by the robot to continue executing the task on
its own.

In Section 9, we discussed some current issues and challenges
for improving the proposed method and make it applicable to a
wider repertoire of collaborative human–robot scenarios. In our
future works, our priority would be in accelerating the time for
computing the inference and finding a principled way to do con-
tinuous estimation, by letting the robot re-decide continuously
about the current task and future trajectory.
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APPENDIX

A. Detail of the Inference Formula
In this Appendix, we explain how to obtain the inference formulae
used in our software. First, let us recall the Marginal and Condi-
tional Gaussians laws.19 Given a marginal Gaussian distribution
for x and a Gaussian distribution for y given x in the following
form:

p(x) = N
(
x|µ,∆−1

)
p(y|x) = N

(
Ax + b, L−1

)
, (A1)

the marginal distribution of y and the conditional distribution of
x given y are given by the following equations:

p(y) = N
(
y|Aµ+ b, L−1 + A∆−1A⊤

)
, (A2)

p(x|y) = N
(
x|ΣA⊤L(y − b) + ∆µ,Σ

)
, (A3)

where
Σ = (∆ + ATLA)

−1
.

We computed the parameter’s marginal Gaussian distribution
from the set of observed movements:

p(ω) ∼ N (µω,Σω), (A4)

19 From the book (Bishop, 2006).

From the model Ξt = Φ[1:tf]ω + ϵΞ, we have the conditional
Gaussian distribution for Ξ given ω:

p(Ξ|ω) = N
(
Ξ|Φ[1:tf]ω,ΣΞ

)
. (A5)

Then, using equation (A2) we have the following:

p(Ξ) = N
(
Ξ|Φ[1:tf]µω,ΣΞ + Φ[1:tf]ΣωΦ⊤

[1:tf]

)
. (A6)

that is the prior distribution of the ProMP.
Let Ξo = [ξo(1), . . . , ξo(no)] be the first no observations of the

trajectory to predict with the first no elements corresponding to
the early observations.

Let Ξ̂ = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(t̂tf)] be the whole
trajectory we have to predict. We can then compute the posterior
distribution of the ProMP by using the conditional Gaussians
equation (A3):

p(ω|Ξo) = N
(
ω|µω + K(Ξo − Φ[1:no]µω),Σω

−KΦ[1:no]Σω

)
(A7)

with K = ΣωΦ⊤
[1:no]

(
ΣΞ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
. (A8)

Thus, we have the posterior distribution of the ProMP
p(ω|Ξo) = N (ω|µ̂ω, Σ̂ω) with:

µ̂ω = µω + K
(
Ξo − Φ[1:no]µω

)
Σ̂ω = Σω − K

(
Φ[1:no]Σω

)
K = ΣωΦ⊤

[1:no]

(
Σo
ξ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
.

(A9)
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This work provides a novel real-time pipeline for modeling and grasping of unknown 
objects with a humanoid robot. Such a problem is of great interest for the robotic 
community, since conventional approaches fail when the shape, dimension, or pose of 
the objects are missing. Our approach reconstructs in real-time a model for the object 
under consideration and represents the robot hand both with proper and mathematically 
usable models, i.e., superquadric functions. The volume graspable by the hand is repre-
sented by an ellipsoid and is defined a priori, because the shape of the hand is known in 
advance. The superquadric representing the object is obtained in real-time from partial 
vision information instead, e.g., one stereo view of the object under consideration, and 
provides an approximated 3D full model. The optimization problem we formulate for the 
grasping pose computation is solved online by using the Ipopt software package and, 
thus, does not require off-line computation or learning. Even though our approach is for 
a generic humanoid robot, we developed a complete software architecture for executing 
this approach on the iCub humanoid robot. Together with that, we also provide a tutorial 
on how to use this framework. We believe that our work, together with the available 
code, is of a strong utility for the iCub community for three main reasons: object mod-
eling and grasping are relevant problems for the robotic community, our code can be 
easily applied on every iCub, and the modular structure of our framework easily allows 
extensions and communications with external code.

Keywords: grasping, object modeling, real-time optimization, C++, superquadric functions

1. INTRodUCTIoN

Industrial robotics shows how high performance in manipulation can be achieved if a very accurate 
knowledge of the environment and the objects is provided. On the contrary, grasping of unknown 
objects or whose pose is uncertain is still an open problem. In this work, we present a novel frame-
work for modeling and grasping unknown objects with the iCub humanoid robot.

The iCub humanoid robot is provided with two 7DOF arms, 5 fingers human-like hands, whose 
fingertips are covered by tactile sensors and two cameras, as described in Metta et  al. (2010). 
Therefore, it turns out to be a suitable platform for investigating objects perception and grasping 
problem: the stereo vision system and the tactile sensors can be exploited together to get proper 
information for modeling and grasping unknown objects. The method and the code, we propose in 
this work, consist of reconstructing an object model through the stereo vision system of the robot 
and using this information to compute a suitable grasping pose. Once the robot reaches the desired 
grasping pose on the object surface, the tactile response of the fingertips is used to achieve a stable 
grasp for lifting the object.
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The iCub community put a great effort into the development 
of a sharable and reusable code. With this work, we want to 
contribute in this direction, detailing the code we designed for 
implementing our grasping approach for a possible user inter-
ested in executing our technique on the robot.

2. ModeLING ANd GRASPING VIA 
SUPeRQUAdRIC ModeLS

The superquadric modeling and grasping framework we make 
use of is based on the idea that low-dimensional, compact, math-
ematical representation of objects can provide computational and 
theoretical advantages in hard problems tackled in robotics, such 
as trajectory planning for exploration, grasping and approaching 
toward objects. This takes inspiration from theories conceived 
during the 90s and 2000s (Jaklic et al., 2013) where superquadric 
functions were proposed as a mathematical and low-dimensional 
model for representing objects.

In Vezzani et al. (2017), we proposed a novel approach that 
solves the grasping problem by modeling the object and the 
volume graspable by the hand with superquadric functions. The 
latter is represented by an ellipsoid and is defined a priori, because 
the shape of the hand is known in advance. The superquadric rep-
resenting the object is obtained in real-time from partial vision 
information instead, e.g., one stereo view of the object under 
consideration, and provides an approximated 3D full model. Both 
the modeling and the grasping problem are cast into an optimiza-
tion framework and solved in real-time with the software package 
Ipopt (Wächter and Biegler, 2006).

In this article, we do not go into the mathematical details 
(extensively reported in Vezzani et al. (2017)) whereas we focus 
on the description of the code designed for using the approach 
on the iCub, since we believe it to be useful for any user interested 
in object modeling and grasping tasks. A brief mathematical 
description of the methodologies is reported in the README.
md files of the Github repositories.1

3. Code STRUCTURe

We designed two modules, namely, superquadric-model and 
superquadric-grasp, which implement, respectively, the modeling 
and the grasping approached described in Vezzani et al. (2017).

Our leading idea is to develop a self-contained code that pro-
vides query services to the user. In this respect, our code handles 
only the information strictly necessary for the superquadric 
modeling and grasping approach and minimizes the dependen-
cies from external modules. The user is asked to write a wrapper 
code that communicates with the two modules and makes them 
properly interact. In this respect, we provide a tutorial code,2 
implementing a possible use case of our modules, that can be 
adapted by the user to fit in his own pipeline (see Section 3.3).

In the next paragraphs, we first describe the implementation of 
the superquadric-model and superquadric-grasp modules, which 

1 https://github.com/robotology/superquadric-model, https://github.com/robotology/ 
superquadric-grasp.
2 https://github.com/robotology/superquadric-grasp-example.

is based on the Yarp middleware (Metta et al., 2006). Then, we 
outline a possible use case implementing a complete pipeline for 
object modeling and grasping.

3.1. Superquadric-Model
The superquadric-model module computes the superquadric 
function best representing the object of interest given a partial 
3D point cloud of the object.

The module, whose structure is outlined in Figure 1, consists 
of the SuperqModule class, derived from the YARP RFModule 
class. The SuperqModule launches following two separate YARP 
Rate Threads:

•	 the SuperqComputation class, which manages the superquadric 
computation;

•	 the SuperqVisualization class, which can be enabled to show 
the estimated superquadric or the object 3D points overlapped 
on the camera image.

The SuperqModule also provides some Thrift IDL services3 
suitable for getting information on the internal state of the 
module and setting the thread parameters on the fly. Thrift is a 
software framework for scalable cross-language development, 
which allows to build services working efficiently with different 
programming languages.

While there are two threads to decouple the functionalities of 
computation and visualization, the threads share some variables 
(in particular the computed superquadric) to increase their speed.

3.1.1. SuperqComputation
The SuperqComputation thread includes the following steps:

•	 Once the object point cloud is provided (see Section 3.3 for 
a detailed description of how extract the object point cloud), 
the superquadric is estimated by using Ipopt (Wächter and 
Biegler, 2006), a C++ software package for large-scale nonlin-
ear optimization. The user can formulate its own optimization 
problem with the Ipopt C++ interface4 and, then, solve it 
through the Ipopt solver.

•	 A median filter with an adaptive window of width m can be 
enabled to stabilize the estimated superquadric over the time. 
Even if the object is not supposed to move during a grasping 
task, it may happen that the user, or anyone interacting with the 
robot, moves the object in a different location. In this case, the 
superquadric modeler should be able to track the object and the 
estimated superquadric should not be affected by previous esti-
mations in different poses. For this reason, the window width of 
the median filter changes according to the object velocity. If the 
object location changes (i.e., its velocity increases), the window 
width becomes smaller. On the contrary, if the object is not 
moved, the window width can be increased. In this way, when 
the object pose is constant, its superquadric estimation is more 
stable and accurate, while it is not affected by past estimations 
if the object pose changes. The median filter and the object 
velocity estimation are achieved by using, respectively, the iCub 
MedianFilter Class and the iCub AWLinEstimator Class.

3 https://thrift.apache.org/docs/idl.
4 https://www.coin-or.org/Ipopt/documentation/node23.html.

32

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://README.md
http://README.md
https://github.com/robotology/superquadric-model
https://github.com/robotology/
https://github.com/robotology/superquadric-grasp-example
https://thrift.apache.org/docs/idl
https://www.coin-or.org/Ipopt/documentation/node23.html


FIGURe 1 | Superquadric-model code structure. The class SuperqModule, derived from the YARP RFModule class, launches two threads, respectively for 
superquadric computation and visualization. The class provides some thrift services to the user for interacting with the module. More detail on the user box is 
provided in Section 3.3 and in Figure 2.
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•	 If prior information is available on the object shape (e.g., given 
by a classifier or a vision recognition system), the module can 
use it to speed up the superquadric estimation. Particularly, 
if the object is labeled as cylinder, box or sphere, specific con-
straints can be used for improving the accuracy and reducing 
the execution time of the optimization problem.

The user can communicate with the SuperqComputation 
thread, through the SuperqModule, in the two different modes:

•	 In streaming mode—the 3D point cloud of the object should 
be sent to the module through a YARP Buffered port as a YARP 
Property. The user can access the current estimated super-
quadric through a dedicated YARP Buffered port as a YARP 
Property, where the main components of the superquadric are 
grouped as: dimensions, exponents, center, and orientation.

•	 In one-shot mode—the user can ask the module to compute 
the object superquadric by sending a single point cloud through 
a YARP RpcClient Port and getting a YARP Property including 
the estimated superquadric parameters as reply. In case the user 
asks for the superquadric filtered by the median filter, he should 
send a set of point clouds of the object in the same pose.

The superquadric computation, together with the super-
quadric filtering process, takes 0.1 s in average on Intel®Core™ 
i7-4710MQ Processor @2.50 GHz. This values is compatible with 
our real-time requirements.

3.1.2. SuperqVisualization
The visualization thread overlaps the estimated superquadric or 
the 3D points used by the optimizer on the camera image, for 

real-time visual inspection by the user (see Figure  3 (4)). The 
average visualization time is equal to 0.01 s and can be enable or 
disabled by the user while the SuperqModule is running.

3.2. Superquadric-Grasping
The superquadric-grasp module implements the approach pro-
posed in Vezzani et al. (2017) for the computation of grasping 
poses by using a superquadric modeling the object.

The superquadric-grasp module consists of the GraspModule 
class, derived from the YARP RFModule class. The GraspModule 
splits pose computation and visualization and grasp execution in 
three different classes:

•	 GraspComputation class, computing the pose for grasping the 
object;

•	 GraspVisualization class, showing the object model and the 
main information about the computed poses;

•	 GraspExecution class, which allows executing the grasping task 
once the pose is computed and one of the robot hand is selected.

As for the superquadric-model module, the superquadric-grasp 
implementation provides several Thrfit IDL services to the user 
to interact with the module and for getting information on the 
state of the module. The superquadric-grasp module structure is 
similar to the superquadric-model one, shown in Figure 1.

3.2.1. GraspComputation
This class handles the pose candidates’ computation:

•	 Given the superquadric modeling the object, received as a 
YARP Property (see 3.1.1), the grasping poses for one or both 
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the hands (according to the user query) are computed together 
with a suitable trajectory by using the method proposed in 
Vezzani et al. (2017). The optimization problem is formulated 
and solved through the Ipopt C++ interface.

•	 The user can exploit some prior information for adapting 
the grasp computation to the desired scenario. In particular, 
the user can provide the module the height of the support on 
which the object is located (i.e., a table) to prevent the robot 
hand from hitting it. In addition, the constraints about the 
final hand pose can be modified according to the experimental 
scenario. For instance, the user can define the robot workspace 
by simply varying the variable upper and lower bounds of the 
optimization problem from the configuration files.

The pose computation process takes 2.0  s in average, 
which is consistent with the time requirements of a grasp task 
execution.

3.2.2. GraspExecution
The GraspExecution class controls the arm movements to accom-
plish the grasping task. In particular:

•	 The approaching step, i.e., the pose reaching through the 
trajectory waypoints, is executed through the YARP Cartesian 
Interface (Pattacini et al., 2010);

•	 Once the final pose is reached, the grasp is executed by using 
a precision grasp method described in Regoli et al. (2016) and 
available in the Tactile Control library.5 The hand fingers close 
until the tactile sensors on the fingertips detect contact. Then, 
each finger is controlled to find a stable grasp for the object. 
Alternatively, the grasp can be performed by simply closing the 
fingers until a minimum pressure of the fingertips is measured. 
However, such an approach does not guarantee stability while 
lifting the object.

3.2.3. GraspVisualization
The visualization thread overlaps the computed poses and the 
received object superquadric on the camera image, for real-time 
visual inspection by the user (see Figure 3 (5)). Some additional 
information, such as the volume graspable by the hand and the 
trajectory waypoints can be shown at the same time.

3.2.4. Communication with the Module
Unlike the superquadric-model framework, the user can com-
municate with the GraspModule only in one-shot mode. In 
particular, the user can query the module to:

•	 Compute the grasping poses and approaching trajectory, pro-
viding to the module the estimated superquadric of the object 
as a Yarp Property (as described in 3.1.1) and selecting one or 
both the hands. The solutions are given back to the user as a 
Yarp Property.

•	 Ask the robot to reach the final pose and grasp the object by 
selecting one robot hand. In the current code implementation, 

5 https://github.com/robotology/tactile-control.

the robot performs a simple lifting test to check the stability of 
the grasp.

The additional thrift services allows setting on the fly param-
eters for grasp computation, visualization, and execution.

3.3. How to Use the Superquadric 
Framework
To use our grasping approach, the user is supposed to design 
a wrapper code to combine together the outcomes of the  
superquadric-model and superquadric-grasp modules. In addi-
tion, the implementation of a complete modeling and grasping 
pipeline requires the use of external modules for point cloud 
computation. We provide a tutorial code, which takes advantage 
of modules developed by the iCub community to achieve the 
modeling and grasping task. Hereafter, we report the main steps 
of the complete pipeline. The entire commented code is available 
on Github,6 together with a detail description on how to run the 
code in the README.md file.

 1. The object is labeled with a name through a recognition 
system.7 The object label, together with information on its 
2D bounding box, are stored by the Object Property Collector8 
(Moulin-Frier et  al., 2017). The wrapper code is given the 
object name by the user (through a RpcPort) and uses it for 
asking the object property collector for the relative 2D bound-
ing box.

 2. The 2D blob of the object is computed by the lbpExtract  
module, once it is provided with the bounding box informa-
tion. This uses Local Binary Pattern (LBP) (Ojala et al., 1996) 
to analyze the texture of what is in the robot view (a table in 
our experimental scenario). This texture is used for getting a 
general blob information both as an image, containing general 
white blobs of where the objects are, and as a Yarp Bottle con-
taining lists of bounding box points. Then, the general blob 
information allow using grabCut algorithm (Rother et  al., 
2004) to properly segment all the objects on the table.

 3. Given the 2D blob, the wrapper code reconstructs the 3D 
point cloud by querying the Structure from Motion module 
(Fanello et al., 2014). This module uses a complete Structure 
From Motion (SFM) pipeline for the computation of the 
extrinsics parameters between two different views. These 
parameters are then used to rectify the images and to compute 
a depth map.

 4. Then, the wrapper code asks the superquadric-model to 
estimate the superquadric modeling the object by sending the 
acquired point cloud to the module.

Bottle cmd, superq_bottle;
//Fill the Bottle for querying  
superquadric-model.

6 https://github.com/robotology/superquadric-grasp-example.
7 https://github.com/robotology/iol/tree/master/src/himrepClassifier.
8 https://github.com/robotology/icub-main/tree/master/src/modules/
objectsPropertiesCollector.
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FIGURe 2 | Modules communication for the implementation of the modeling and grasping pipeline. The wrapper code manages the interaction between external 
modules and the superquadric-model and superquadric-grasp frameworks. Pipeline steps enumerated as in Section 3: (1) The wrapper code asks the object 
property collector for the bounding box information of the object. (2) Given that, lbpExtract module provides the 2D blob of the object. (3) The wrapper code sends 
the 2D blob of the object to the Structure From Motion module for getting the relative 3D point cloud. (4) The 3D point cloud is then sent to the superquadric-model 
for computing the superquadric modeling the object. (5) The wrapper code sends the estimated superquadric to the superquadric-grasp module, which computes 
suitable poses. (6) Finally, the superquadric-grasp is asked to perform the grasping task.
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cmd.addString(“get_superq”);
Bottle &bottle_point = cmd.addList();
for (size_t i = 0; i < points.size(); i++)
{
Bottle &in = bottle_point.addList();
in.addDouble(points[i][0]);
in.addDouble(points[i][1]);
in.addDouble(points[i][2]);

}
superqRpc.write(cmd, superq_bottle);
//Then, extract the estimated superqua-
dric from the Bottle superq_bottle.

 5. Once the superquadric is estimated, the user code asks the 
superquadric-grasp module to compute pose candidates for 
grasping the object.

Bottle cmd, reply;
//Fill the Bottle for querying  
superquadric-grasp.
cmd.addString(“get_grasping_pose”);
//hand_for_computation can be “right“, 

“left” or “both”
cmd.addString(hand_for_computation);
graspRpc.write(cmd, reply);

//Then, extract the grasping pose  
candidate from the Bottle reply.

 6. Finally, the user can ask the superquadric-grasp to perform the 
grasping task.

Bottle cmd, reply;
//Fill the Bottle for moving the arm.
cmd.addString(“move”);
cmd.addString(hand_for_moving);
graspRpc.write(cmd, reply);
//The grasp is executed.

Figure 2 outlines the structure of the entire pipeline, fol-
lowing the steps described in this section. In Figure  3, we 
show some typical outcomes of all the steps described above. 
In addition, in the README.md files of the superquadric-
model and superquadric-grasp repository, we provide two 
videos of the execution of the modeling and the grasping 
pipeline.9

9 superquadric-model demo: https://www.youtube.com/watch?v=MViX4Ppo4WQ& 
feature=youtube. superquadric-grasp demo: https://www.youtube.com/
watch?v=eGZO8peAVao.
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4. KNoWN ISSUeS

In this section, we report the limitations of our approach, together 
with possible solutions for facing them.

•	 Our approach is currently an open-loop approach. Once the 
object model and the grasping pose are computed, the robot 
reaches for the final pose without checking if the object pose 
changes. However, we could monitor the object pose, by 
estimating only the pose of the reconstructed superquadric - 
leaving its shape unchanged - with new point clouds while the 
robot is moving and until the object is in the robot field of view. 
This is a viable solution since our modeling approach is com-
patible with real-time requirements (as shown in Section 3.1).

•	 A further limitation caused by the open-loop nature of our 
approach is the missing compensation of errors between the 
robot stereo vision and system. To properly run the grasping 
pipeline, the user is required to properly calibrate the vision 
and the robot kinematics. In case errors between the two are 
still a problem for grasping the object, empirical offsets can 
be added for compensating for the errors. More information 
are provided in the README.md of the superquadric-grasp 
repository.

•	 A quite strong limitation of our approach is that it cannot 
automatically distinguish between good and wrong poses. For 
this reason, the user need to supervise the entire process and 
ask for a new model and pose in case the current outcome is 
not suitable for grasping the objects. In particular, this prob-
lem arises when the object cannot be represented with a single 
superquadric for its geometric shape. As future work, we aim 

at extend our approach for modeling more complex objects 
with multiple superquadrics.

5. CoNCLUSIoN

In this work, we detail the implementation of the modeling and 
grasping approach pipeline described in Vezzani et  al. (2017). 
We developed two modules, namely superquadric-model and 
superquadric-grasp, that respectively model objects through super-
quadric functions and computes suitable grasping poses for the 
iCub robot. Our leading idea was to develop a self-contained code 
that provides query services to the user. Our software handles only 
the information strictly necessary for the modeling and grasping 
approach and minimizes the dependencies from external modules. 
The user is supposed to design a wrapper code to combine together 
the outcomes of the two modules. We provide also an example of 
a external code in the superquadric-grasp-example repository for 
the implementation of a complete modeling and grasping pipeline.

In the next future, we would like to improve the approach 
we use for reaching the final grasping pose, which is a current 
limitation of our approach, as described in Section 4. The iCub 
proprioception is in fact affected by a number of impairments, 
mainly caused by elastic elements, which introduce errors in the 
computation of direct kinematics. Also, the iCub is provided with 
moving cameras for simulating the human oculomotor system. 
This makes the knowledge of extrinsic parameters and, thus, the 
object information estimation quite noisy. These sources of error 
might be crucial for grasping tasks, when a final pose is required to 
be reached with errors in order of 1 cm. We can solve this problem 

FIGURe 3 | Outcomes of the modeling and grasping pipeline. (1) The object is stored by the object property collector with the label object. (2) LbpExtract provides 
the 2D blob of the object. (3) The 3D point cloud is extracted from the disparity map, by querying the Structure From Motion module. (4) The superquadric modeling 
the object is reconstructed. (5) The grasping pose and approaching trajectory for the right hand are computed. (6) The robot grasps the object. (Steps (1), (2), (4), 
and (5) are represented by screenshots from the visualizers.).
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by using the approach described in Fantacci et  al. (2017), which 
provides a precise estimate of the robot end-effector pose over time 
and a visual servoing approach without the use of markers. Another 
extension of the modeling pipeline consists in using the recognition 
system10 described in Pasquale et al. (2016) to classify the objects 
of interest according to their geometric property for using some 

10 https://github.com/robotology/onthefly-recognition.

prior information on their shape for improving and speeding up 
the superquadric estimation process, as mentioned in 3.1.1.
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Connecting YARP to the Web  
with Yarp.js
Carlo Ciliberto*

University College London, London, United Kingdom

We present yarp.js, a JavaScript framework enabling robotics networks to interface and 
interact with external devices by exploiting modern Web communication protocols. By 
connecting a YARP server module with a browser client on any external device, yarp.js 
allows to access on board sensors using standard Web APIs and stream the acquired 
data through the yarp.js network without the need for any installation. Communication 
between YARP modules and yarp.js clients is bi-directional, opening also the possibil-
ity for robotics applications to exploit the capabilities of modern browsers to process 
external data, such as speech synthesis, 3D data visualization, or video streaming to 
name a few. Yarp.js requires only a browser installed on the client device, allowing for 
fast and easy deployment of novel applications. The code and sample applications to 
get started with the proposed framework are available for the community at the yarp.js 
GitHub repository.

Keywords: yarp, robotics, iCub, web, websocket, Internet of things

1. INTRodUCTIoN

Smartphones, tablets, and wearable devices have drastically changed human communication and 
are nowadays a key component of everyday life, enabling humans to connect with each other and 
other devices in real time, forming a dense network of complex and frequent interactions. In this 
revolution, the Internet and Web technologies in general are playing the key role of a “lingua franca,” 
establishing novel standards for modern communication protocols adopted by most platforms and 
operating systems. Indeed, as information technologies advance, we are steadily moving toward an 
“Internet of Things (IoT)” (Xia et al., 2012), where everyday object will be able to offer an interface 
for digital communication with humans and other devices.

In this scenario, robotic agents designed to operate in human environments will undoubtedly 
need to be well-versed in these new practices to seamlessly integrate within the IoT network. 
Towards this goal, in this paper we present yarp.js, a novel framework developed with the goal of 
connecting the YARP network with external devices using modern Internet protocols. YARP (Metta 
et al., 2006) is to date one of the most efficient and flexible robotics middlewares, adopted by many 
robotics laboratories worldwide and used as main communication tool for robotic platforms, such 
as the humanoid iCub (Metta et al., 2008) and R1 (Parmiggiani et al., 2017). In this sense, yarp.js 
provides a platform-independent approach to establish a two-way communication between YARP 
modules (e.g., the robot itself or other machines on the YARP network) and external systems whose 
only requirement is the ability to run an Internet browser.

Yarp.js decouples a server side, which must run on the YARP network, from a client side, which 
simply needs to be capable of tcp/ip communication with the server. The server side is built over a 
Node.js (Tilkov and Vinoski, 2010) abstraction layer wrapping the main YARP functionalities (e.g., 
opening/connecting ports, creating bottles or images, and writing/reading them via ports). Two 
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FIgURe 1 | Example of YARP network connected with non-YARP-capable 
devices on the Web via yarp.js.
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main benefits arise from this choice of server-side language: 1) 
the possibility to write YARP modules in Node.js and therefore, 
leverage the wide range of packages made available by the related 
community via the well-established Node Package Manager 
(NPM),1 and 2) the event-based philosophy of Node.js offers a 
different perspective for programming the robot cognitive skills, 
possibly allowing for novel and more reactive behaviors. Yarp.js 
server is supported on OSX 10.11.6+ and Ubuntu 16.04+.

The client side of yarp.js consists of a pure JavaScript library 
and runs on both Google Chrome2 and Firefox3 browsers. 
Communication is performed across WebSockets, which allow 
for real-time exchange of data between the device on which the 
client is running and the server. Yarp.js endows both client and 
server with same functionalities, allowing also clients on external 
device to open and write/read on a YARP port. This is particu-
larly useful to connect an external sensor, such as a smartphone 
microphone, inertial sensors, camera, etc., to the YARP network 
and allowing other modules to access its measurements. In this 
sense, yarp.js allows to effortlessly extend YARP functionalities 
to non-YARP devices by simply serving the required JavaScript 
library so that there is no need for custom installation, essentially 
making yarp.js automatically platform-independent on any 
browser-enabled device.

Yarp.js v1.0.04 is available for the community as a GitHub 
repository.5 We have provided a number of examples for new 
users to get started with the proposed framework.

2. BACKgRoUNd ANd MoTIVATIoNS

We introduce the necessary background and motivations to 
understand the main contributions of yarp.js.

2.1. YARP
Yet Another Robot Platform (YARP) (Metta et  al., 2006) is a 
framework developed to handle the low-level communication 
processes between different sensors, processors, and actuators 
in robotics applications. The main goal of YARP is to provide 
researchers and developers with a unifying cross-platform layer 
of communication in order to foster the diffusion and reproduc-
ibility of novel results in robotics. Figure 1 (left half) reports a 
pictorial representation of a YARP network, where a number of 
computational nodes (gray circles) communicate with each other 
by leveraging on the abstraction layer offered by YARP (blue lines). 
In a spirit similar to YARP, several robotics frameworks have been 
proposed in the recent literature, such as Player (Gerkey et al., 
2003), ROS (Quigley et al., 2009), OROCOS (Bruyninckx, 2001), 
MIRO (Utz et al., 2002), and LCM (Huang et al., 2010) to name 
a few. We refer to Fitzpatrick et al. (2014) for a discussion on the 
topic.

Unarguably, the most successful example of YARP application 
is the iCub (Metta et  al., 2008), a humanoid robot adopted by 

1 https://www.npmjs.com.
2 https://www.google.com/chrome.
3 https://www.mozilla.org. 
4 Yarp.js DOI: https://doi.org/10.5281/zenodo.1007786. 
5 https://github.com/robotology/yarp.js. 

more than 30 laboratories worldwide: Exploiting the flexibility 
of YARP functionalities, computational models developed by 
a number of different research groups to perform diverse tasks 
ranging from torque control (Fumagalli et  al., 2010, 2012; Del 
Prete et al., 2012) to grasping (Gori et al., 2014), balancing (Pucci 
et al., 2016), visual attention (Ruesch et al., 2008), visual or haptic 
object recognition (Ciliberto et al., 2013; Higy et al., 2016), super-
vised learning (Gijsberts and Metta, 2011), can be combined on 
the same platform, enabling the robot with advanced cognitive 
capabilities such as in Ivaldi et al. (2013); Fischer and Demiris 
(2016); Morse and Cangelosi (2017).

2.2. Robots, Modern Web APIs,  
and Node.js
With the diffusion of lightweight portable devices, such as 
smartphones and tables, in recent years it has become a necessity 
for web applications to efficiently access and process information 
acquired from diverse sensors, such as microphones, embedded 
cameras, or inertial sensors. To this end, most modern browser 
has designed a wide range of APIs that allow accessing such 
resources across most devices, platforms, and operating systems. 
This has significantly fostered the deployment and diffusion 
of many novel applications capable of running natively in the 
browser, such as image object recognition,6 GPS mapping and 
route planning,7 speech-based assistants,8 videoconferencing,9 
navigation in virtual reality environments10 to name a few.

Making these capabilities available to a robot is clearly 
appealing and indeed the potential benefits of such interaction 
have been thoroughly investigated in the literature (Taylor and 
Wright, 1995; Hu et  al., 2012; Kamei et  al., 2012; Kehoe et  al., 
2015). However, robotics application typically requires real-
time performance and deploying the necessary communication 
infrastructure to satisfy such requirements can be difficult or not 
possible due to compatibility issues. On the contrary, Web APIs 
are already designed to take care of the low-level communication 
with embedded sensors as well as the transmission of data across 

6 https://www.clarifai.com/. 
7 maps.google.com. 
8 https://sdkcarlos.github.io/sites/artyom.html. 
9 https://appr.tc/. 
10 https://playcanv.as/p/sAsiDvtC/. 
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a network (i.e., the Internet). In this sense, the yarp.js framework 
proposed in this work acts as an intermediate layer allowing 
YARP and a browser to communicate, essentially “assimilating” 
non-YARP capable devices within the robot’s network.

The above motivations are shared with recent work (Osentoski 
et  al., 2011; Toris et  al., 2015), where a JavaScript framework 
was developed to allow portable devices to communicate with 
the Robot Operating System (ROS) using Websockets and 
JavaScript. In this sense, the client side of yarp.js can be inter-
preted as the equivalent of the ros.js framework for the YARP 
environment, and one interesting byproduct of this work is the 
possibility to create applications that naturally bridge YARP 
and ROS frameworks by leveraging the two corresponding 
JavaScript libraries.

A second relevant byproduct of our work is the extension 
of standard YARP C++ routines to Node.js. This could be 
beneficial in developing robotics applications. Indeed, Node.
js (and more generally JavaScript) is based on a system of 
callbacks that are activated when the corresponding registered 
event occurs (Tilkov and Vinoski, 2010). While this approach 
can be equivalently implemented in more traditional languages 
used in robotics (indeed its core is based on a C++ engine), 
Node.js encourages a programming style that is asynchronous 
by design and in this sense could be helpful in speeding-up 
the development of high-level applications in robotics without 
the need for ad-hoc careful synchronization between multiple 
modules and threads. As a practical example, consider the 
ActionsRenderingEngine (ARE)11: this iCub module manages 
a number of possible behaviors for the robot, combining both 
visual cues and motor actions and requires several threads (e.g., 
a vision thread, a motor thread, a visuo-motor thread, etc.) to be 
carefully synchronized in order to avoid low-level errors (e.g., 
concurrent memory access). This module would be significantly 
easier to develop (and read/debug), if written in an event-based 
language where the low-level details related to asynchrony are 
taken care of by design.

In the rest of this paper, we describe yarp.js and present a 
number of sample applications highlighting the potential benefits 
of the proposed framework in robotics.

3. SYSTeM oVeRVIeW

Yarp.js is conceptually organized in two separate components: 
a server side, equipped with YARP communication capabilities 
and a client side, which is able to transmit and receive data from 
other nodes on the YARP network by exploiting the server side 
as a proxy. Figure 1 reports a pictorial representation of a yarp.
js network, where messages from non-YARP equipped devices 
(e.g., smartphones, tablets, etc.) are first sent via WebSockets 
(green lines) to the yarp.js server and then propagated through 
the YARP network (blue lines). The communication with YARP 
and WebSockets is bi-directional, allowing to transmit data from 
the network to the client.

The two-level structure of yarp.js is imposed by the nature 
of web technologies. Indeed, while on one hand browsers offer 

11 http://wiki.icub.org/brain/group__actionsRenderingEngine.html. 

flexible cross-platform solutions to the deployment of novel 
applications, they also need to cope with extremely critical 
security issues (e.g., handling of passwords or sensitive data over 
the Internet). As a consequence, code running in the browser 
is allowed very limited interaction with the rest of the machine 
hosting it, let alone other machines on the same local network. 
In this sense, the server side of yarp.js can be interpreted as a 
standard YARP module that is also able to communicate with the 
browser, effectively acting as the missing link between the client 
and the YARP network.

As a final note, we care to point out that YARP is already 
equipped with basic HTTP communication functionalities12 via 
Representation State Transfer (REST) (Fielding, 2000). However, 
RESTful interoperability is not suited for real-time two-way com-
munication between server and client; one of the main motiva-
tions that led to the design of the WebSocket standard (Lubbers 
and Greco, 2010).

3.1. Server Side: YARP in Node.js
The server side of yarp.js is written in Node.js (Tilkov and Vinoski, 
2010) and comprises two layers: first, a low-level library of C++ 
addons for Node.js 13 that allows to access and use YARP objects 
and functionalities from the Node.js environment. Second, a set 
of Node.js APIs offering easier management of the YARP addons 
(e.g., opening and connections of ports) as well as communica-
tion with client browsers. Below, we discuss these two layers in 
detail.

3.1.1. First Layer: Node.js Addons for YARP 
(Language C++ → Node.js)
This layer exposes the APIs to create the following YARP objects 
as Node.js objects: Bottle, Image, Sound, BufferedPort, RPCPort, 
and Network. It is written in C++ using the Native Abstraction for 
Node.js (NAN)14 library and provides a set of Node.js wrappers 
for the corresponding YARP objects. As an example, below we 
report the minimal Node.js code to open a YARP port and write 
a Bottle on it using yarp.js.

var yarp = require(’<yarp.js-folder>/build/Release/ 
Yarp JS’);

//get yarp.js 
var yarp_net = new yarp.Network();

//get the YARP network

var port = new yarp.BufferedPortBottle();
//create a port 

port.open(’/yarpjs/example’);
//open it on the YARP network

var bottle = port.prepare();
//prepare the Bottle to write

bottle.fromString(’hello yarp.js!’);
//fill the Bottle

port.write();
//write it over the network

12 http://www.yarp.it/yarp_http.html. 
13 https://nodejs.org/api/addons.html. 
14 https://github.com/nodejs/nan. 
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Note that these addons can be used as a standalone package 
to develop YARP modules in Node.js. This is extremely advanta-
geous that it allows to effortlessly import Node.js packages from 
NPM to YARP applications. As a matter of fact, the second layer 
of yarp.js leverages a number of NPM packages to manage the 
communication between YARP and the browsers.

Callbacks. Callbacks can be provided dynamically to YARP 
objects. Below, we report the minimal code for reading from a port 
and printing the content of the received message on the terminal.

port.onRead(function(yarp_object){
console.log(’Message received: ’+yarp_object.
toString());

});

Extending yarp.js. By leveraging on the NAN abstraction 
layer, it is possible to easily extend yarp.js addons with new 
functionalities or create new ones wrapping other YARP objects. 
However, one aspect of this process deserves particular care, 
namely the conceptual separation between the threaded nature of 
YARP applications and the event-based philosophy of Node.js. To 
this end, we provide the C++ class YarpJS_Callback, which 
stems a separate Node.js worker thread from the main one and 
runs the prescribed callback function when the required event 
occurs. This allows to dynamically provide callback functions to 
YARP objects as discussed above.

3.1.2. Second Layer: Yarp.js Server Manager 
(Language Node.js)
The second layer is a JavaScript module wrapping the yarp.js 
addons provided and offering (opinionated) management func-
tionalities: 1) a Port Manager handling operations on the YARP 
network, such as opening/closing/connection of ports and 2) a 
Browser Communicator in charge of the communication with 
the client via WebSocket. In particular, this latter component 
interprets messages from the browser as either messages to be 
propagated to the network or as YARP commands that cannot be 
executed directly from the browser (e.g., opening a port).

Port Manager. This component exposes a set of functions 
meant to simplify the management of the YARP network from 
the Node.js module. Specifically, it allows to recover ports by 
name, connect two ports, and offer fallbacks in case of name 
conflicts (e.g., more clients trying to open the same port). It also 
manages to close all hanging objects when the Node.js module 
ends, cleaning memory and the YARP network. The code snippet 
below shows the difference in using the manager rather than the 
rawNode.js addons.

var yarp = require(’<yarp.js-folder>/yarp.js’);
//get yarp.js

//no need to call YARP network

var port = new yarp.Port(’bottle’);
//create a port 

port.open(’/yarpjs/example’);
//open it on the YARP network

var bottle = port.prepare();
//prepare the Bottle to write 

bottle.fromString(’hello yarp.js!’); 
//fill the Bottle 

port.write();
//write it over the network

//alternatively, port.write(’hello yarp.js!’); would do 
the same

Browser Communicator. The browser communication 
component is based on the Socket.io package, which is designed 
to create webservers with robust WebSockets functionalities. To 
initialize the yarp.js manager it is sufficient to provide a Socket.
io object to the Browsercommunicator method. All the 
communication with client browsers is then automatically 
handled. The following code makes use of the standard HTTP15 
and Express16 packages to provide a minimal example on how to 
create a webserver offering yarp.js functionalities and listening on 
a port for incoming connections.

var http = require(’http’).Server(require  
(’express’)());

//create the web server
var io = require(’socket.io’)(http);

//create the Socket.io object 
http.listen(3000);

//Run the server on locahlhost:3000

var yarp = require(’<path to yarp.js>’);
//get the yarp.js addons layer

yarp.browserCommunicator(io);
//Initialize the yarp.js manager

Once the yarp.js manager is initialized with Socket.io, all 
messages coming from the client side of yarp.js are automatically 
captured and processed by it. In Section 3.2, we list the main 
functionalities offered by using this intermediate layer.

This component is in charge of communicating to the Port 
Manager in which YARP ports are to be opened instead of the 
browser clients. In particular, whenever such a port reads a mes-
sage in input, the Browser Communicator recovers it and pushes 
to the corresponding clients via WebSockets. This piping of the 
message is meant to create the “illusion” of having the brows-
ers directly reading from the port. This is extremely helpful to 
develop code for the client side of yarp.js, however, it is important 
to keep in mind that for computationally intensive applications 
the Browser Communicator could become a bottleneck through 
which all messages from YARP to the clients need to flow. Clearly, 
this issue could be mitigated by having more than one yarp.js 
server module running on the network.

3.2. Client Side: YARP in the Browser 
(Language JavaScript)
The client side of yarp.js is a lightweight JavaScript library that 
leverages the browser implementation of Socket.io to commu-
nicate with the server side described in Section 3.1. The only 
requirement in this sense is for the browser to have WebSocket 
functionalities. Yarp.js can be initialized using the following code, 

15 https://nodejs.org/api/all.html. 
16 https://expressjs.com. 
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which here is assumed to be placed in the HTML page served to 
the browser:

<script src = "/socket.io/socket.io.js"></script>
<script src = "/yarp.js"></script>
<script>

yarp.init(io());
yarp.onInit(function(){
//yarp.jscode

});
</script>

The yarp.js manager on the client side offers the same APIs 
of the Port Manager on the server side. Specifically, it exposes 
a Network object that can be used to create new connections 
among ports on the YARP network and also a Port object that 
can be used to create new buffered ports and open them. As 
explained before, these operations cannot be performed directly 
by the client but are rather executed on the server side of yarp.js 
after receiving the corresponding message via WebSocket. Below, 
we report a code sample showing how to open a port and write/
read messages which are automatically sent to the YARP network. 
All JavaScript code is to be assumed to be run within the onInit.

let port = new Port(port_type);
//port_type default: ’bottle’

port.open(port_name);
//if the port does not exist the server open 

ones.

port.write([1,2,3]);
//write a bottle containing 3 integers

port.onRead(function(yarp_object){
console.log(yarp_object.toString());

});

The functionalities of yarp.js in the browser allow to easily 
develop and deploy YARP applications on the hosting device as 
we describe in the following.

4. APPLICATIoNS

On the yarp.js repository we provide a number of sample applica-
tions to get new users started with the proposed framework. They are 
organized in a single bundle17 that can be run by executing the code

$>node examples/examples.js

on the machine, where the server side of yarp.js is installed. Then, 
from any other device on the same local network, the example 
bundle can be accessed by navigating with Firefox on Google 
Chrome browser on http://<ip.of.yarpjs.machineer:3000.

Figure 2 shows how examples are rendered to the user.

4.1. Reading and Transmitting Inertial data
This application shows how sensors on external devices (e.g., 
where YARP is not installed) can be accessed from the YARP 

17 https://github.com/robotology/yarp.js/tree/master/examples. 

network. We make use of the Web API18 to read from the inertial 
sensor of a smartphone and stream it through a port.

window.addEventListener("deviceorientation", 
function(event){

port_orientation_out.write([event.alpha,event.
beta,event.gamma]);

}, true);

Another client can read the inertial data streamed through 
the network and visualize the corresponding 3D orientation of 
the device using WebGL functionalities (a topic addressed in 
more detail in Section 4.4). Figure 2B shows a snapshot of this 
application.

4.2. Speech Recognition and Synthesis
This application uses the Web Speech API19 for speech recogni-
tion and synthesis. To simplify the access to the Web Speech API 
yarp.js provide a synthetizer

yarpSpeakPort.onRead(function(msg){
yarp.Synthetizer.speak(msg);

});

which allows to speak aloud text, read from a YARP port and 
Recognizer module

yarp.Recognizer.enableAutorestart();
\\starts the speech recognition module 

yarp.Recognizer.addEventListener(’yarp speech finished’, 
function (e) {

yarpSpeechRecPort.write(e.detail[0].transcript);
}, false);

which recognizes human speech from the embedded micro-
phone and emits the event “yarp speech finished” as 
soon as the Web Speech API consider the audio signal to have  
terminated.

4.3. Stream Video (a “yarpview” in the 
Browser)
YARP images can be read from a port on the yarp.js client and 
visualized in the browser. Ideally, the WebRTC protocol (Johnston 
and Burnett, 2012) should be adopted for the transmission of 
large amounts of data over UDP. Unfortunately, to this date a 
standard solution for server-to-browser WebRTC communica-
tion does not exist. To reduce the burden on the server/client 
communication, we compress the images in either PNG or JPEG 
before sending them over WebSockets.

Images can be then visualized in a <canvas> HTML ele-
ment using the following code.

let canvas = document.getElementByTag(’canvas’); 
let img = new Image();

18 https://developer.mozilla.org/en-US/docs/Web/API/Window/ondeviceorientation. 
19 https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html. 

42

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://<ip.of.yarpjs.machineer:3000
https://github.com/robotology/yarp.js/tree/master/examples
https://developer.mozilla.org/en-US/docs/Web/API/Window/ondeviceorientation
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html


FIgURe 2 | The bundle of yarp.js application examples available on the project repository. (A) Landing page of the examples bundle. (B) Reading and transmitting 
inertial data (Section 4.1). (C) Speech Recognition and Synthesis (Section 4.2). (d) Visualizing Yarp Images in the Browser (Section 4.3). (e) 3D Visualization of YARP 
data (Section 4.4). (F) Face tracking for robot teleoperation 4.5. All depicted individuals provided their consent for the publication of this image.

6

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

port_video_in.onRead(function(yarp_img){
img.src = yarp.getImageSrc(yarp_img.compres-
sion_type,yarp_img.buffer);  
canvas.getContext(’2d’).drawImage(img,0,0);

});

Figure  2D shows the yarp.js acting as a yarpviewer20 in 
the browser.

4.4. 3d Visualization of YARP data
WebGL21 is a standard Web API providing 3D graphics function-
alities on the browser. Exploiting the three.js-WebGL library22, 
we built a simple application to visualize point clouds read from 
YARP ports received as Bottles of one or more 3D array which are 
interpreted as 3D cordinates and rendered in a navigable virtual 
scene (Figure 2E).

Note that allowing the browser to directly interact with the 
graphic card of the hosting machine opens a wide range of 
possibilities. Indeed, recently there has been interest in develop-
ing applications to run Deep Learning models directly in the 
browser.23

4.5. Teleoperation with Face Tracking
We conclude by proposing a teleoperation application, where a 
face tracker running in the browser is used to actively control 
the head of the iCub robot. We used the Tracker.js24 library 
to capture images from the device camera, detect the face 

20 http://www.yarp.it/yarpview.html.
21 https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API. 
22 https://threejs.org. 
23 http://cs.stanford.edu/people/karpathy/convnetjs, https://github.com/transcra-
nial/keras-js, https://pair-code.github.io/deeplearnjs/, https://tenso.rs. 
24 https://trackingjs.com. 

of a user, and obtain the (u,v) position of the corresponding 
rectangle in the image. Then, the position was translated to a  
3D point

 ( ) ( )x y z u w v h, , = − , / − . , / − .1 0 5 0 3  

which is sent to the /xd:i port of the iKinGazeCtrl25 
(Roncone et al., 2016) to control the gaze of the robot to point 
toward it. See the following code.

let tracker = new tracking.Object Tracker 
(’face’);
tracker.on(’track’, function(event){

let rect = event.data[0]; 
let u = rect.x + rect.width/2; 
let v = rect.y + rect.height/2;

gazePort.write([-1, (u/w - 0.5), (v/h - 0.3)]);
});

where w and h, respectively denote the height and width of the 
device camera. Figure 2F shows an example of this application, 
where images streamed from the robot camera are send back to 
the browser are described in Section 4.3.

5. CoNCLUSIoN

We have presented yarp.js, a JavaScript framework to enable 
YARP-based robotics systems with modern Web APIs function-
alities. Yarp.js allows modules running on the YARP network 
to access sensors information on devices that are not equipped 
with the YARP communication layer by exploiting WebSocket 
communication. By leveraging on Web technologies, applications 

25 http://wiki.icub.org/brain/group__iKinGazeCtrl.html.
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based on yarp.js are easy to deploy and develop. We have presented 
a number of applications showing the benefit of the proposed 
approach.

Yarp.js is easy to extend and a main challenge in the future 
will be to enrich its capabilities with WebRTC functionalities, 
which would be the natural solution to the issues related to the 
transmission of large amounts of data between server and client. 
We will investigate this direction in future work.
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Event-driven (ED) cameras are an emerging technology that sample the visual signal 
based on changes in the signal magnitude, rather than at a fixed-rate over time. The 
change in paradigm results in a camera with a lower latency, that uses less power, has 
reduced bandwidth, and higher dynamic range. Such cameras offer many potential 
advantages for on-line, autonomous, robots; however, the sensor data do not directly 
integrate with current “image-based” frameworks and software libraries. The iCub 
robot uses Yet Another Robot Platform (YARP) as middleware to provide modular 
processing and connectivity to sensors and actuators. This paper introduces a library 
that incorporates an event-based framework into the YARP architecture, allowing event 
cameras to be used with the iCub (and other YARP-based) robots. We describe the 
philosophy and methods for structuring events to facilitate processing, while maintain-
ing low-latency and real-time operation. We also describe several processing modules 
made available open-source, and three example demonstrations that can be run on 
the neuromorphic iCub.

Keywords: iCub, neuromorphic engineering, event-driven vision, software, humanoid robotics

1. INTRodUCTIoN

Conventional vision sensors used in robotics rely on the acquisition of sequences of static images at 
fixed temporal intervals. Such a sensor provides the most information when the temporal dynamics 
of the scene match the sample-rate. If the dynamics are slower (e.g., a mostly static scene), only a 
small percentage of pixels change between two consecutive frames, leading to redundant acquisi-
tion and processing. Alternatively, if the scene dynamics are much faster (e.g., a falling object), 
information between images can be distorted by motion blur, or missed entirely.

A newly emerging technology, “event-driven” (ED) cameras, are vision sensors that produce 
digital “events” only when the amount of light falling on a pixel changes. The result is that the 
cameras detect only contrast changes (Lichtsteiner et al., 2008) that occur due to the relative motion 
between the environment and the sensor. There is no fixed sampling rate over time, instead, the sen-
sor adapts to the scene dynamics. Redundant data are simply not produced in slow dynamic scenes, 
and the sensor output still manages to finely trace the movement of any fast stimuli. Specifically, 
the camera hardware latency is only 15 μs (Lichtsteiner et al., 2008) and the temporal resolution 
at which an event can be timestamped is under 1 μs. Events are also produced asynchronously for 
each pixel, such that processing operations can start without the need to read the entire sensor 
array, and a low-latency processing pipeline can be realized.

ED cameras provide many potential advantages for robotics applications. The removal of redun-
dant processing can give mobile robots longer operating times and frees computational resources for 
other tasks. Fast-moving stimuli can always be detected, and visual dynamics estimated with more 
accuracy than with conventionally available cameras. This low-latency can enable extremely fast 

45

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00073&domain=pdf&date_stamp=2018-01-16
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00073
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:arren.glover@iit.it
mailto:chiara.bartolozzi@iit.it
https://doi.org/10.3389/frobt.2017.00073
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
http://loop.frontiersin.org/people/269413
http://loop.frontiersin.org/people/270549
https://loop.frontiersin.org/people/509776
http://loop.frontiersin.org/people/21102


FIGURe 1 | The (A) iCub robot performing ball tracking and gazing toward 
the ball position and (B) the corresponding stream of events over time 
superimposed with approximate frame-captures for a hypothetical 10 Hz 
frame-based camera.
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reaction times between environmental change and the response 
of the robot. In addition, each pixel has a high dynamic range 
(143  dB (Posch et  al., 2011)) which allows robots to operate 
in both bright and dark environments, and in conditions with  
widely varying intra-scene lighting. The sensor is low-power, 
promoting longer operation times for untethered mobile robots.

The neuromorphic iCub (Bartolozzi et al., 2011) is a humanoid 
robot that has a vision system comprised of two event cameras. 
The iCub robot is supported, in software, by the Yet Another 
Robot Platform (YARP) middleware (Metta et  al., 2006), upon 
which the iCub low-level and application-level modules have 
matured using standard cameras, and also utilized other freely 
available algorithms (e.g., using OpenCV). However, due to the 
asynchronous nature of the event-stream, and its fundamental 
differences from 2D frame sequences (see Figure 1), traditional 
computer vision algorithms and image processing frameworks 
cannot be directly applied.

This paper introduces the event-driven software libraries and 
infrastructure that is built upon YARP and integrates with the 
iCub robot. The library takes advantage of the YARP framework, 
which enables the distributed processing of events within multi-
ple interchangeable modules spread across multiple networked 
machines. Modules include pre-processing utilities, visualization, 
low-level event-driven vision processing algorithms (e.g., corner 
detection), and robot behavior applications. These modules can 
be run and used by anyone for purely vision-based tasks, without 
the need for an iCub robot by using: pre-recorded datasets, a 
“stand-alone” camera with a compatible FPGA, a “stand-alone” 
camera with the compatible USB connection, or by contributing 
a custom camera interface to the open-source library. As the 
processing is modular, the exact method of event acquisition 
is transparent to the remainder of the library. This paper also 
describes several iCub applications that have been built upon the 
ED cameras and library and highlights some recent experimental 
results. We begin with a brief description of the current state-of-
the-art in ED vision for robotics.

2. eVeNT-dRIVeN VISIoN FoR RoBoTS

Recent work using event cameras show promising results for fast, 
low-latency robotic vision. The latency of an event-based visual 
attention was two order less than frame-based one (Rea et  al., 

2013). Recognition of playing-card suit was achieved as a deck 
was flicked through (30 ms exposure) (Serrano-Gotarredona and 
Linares-Barranco, 2015). Detection of a moving ball by a moving 
robot was achieved at rates of over 500 Hz (Glover and Bartolozzi, 
2016). Visual tracking of features was shown at a rate higher than 
standard cameras (Vasco et al., 2016a) and also features position 
could be updated “between frames” of a standard camera (Kueng 
et al., 2016).

The extreme low-latency of event cameras enabled fast close-
loop control (e.g., inverse pendulum balancing (Conradt et al., 
2009) and goal keeping with 3  ms reaction time and only 4% 
CPU utilization (Delbruck and Lang, 2013)). High-frequency 
visual feedback (>1 kHz) enabled stable manipulator control at 
micrometer scale (Ni et al., 2012). On-board pose estimation dur-
ing flips and rolls of a quadrotor has been shown to be plausible 
using event-driven vision (Mueggler et al., 2015). Finally, robotic 
navigation and mapping systems include a real-time 2-DOF  
SLAM system for a mobile robot (Hoffmann et  al., 2013), and 
6-DOF parallel tracking and mapping algorithms (Kim et  al., 
2016; Rebecq et al., 2016).

Some of the above experiments used the Java-based jAER 
(Delbruck, 2008); however, Java is typically less suited to on-line 
robotics due to computational overheads. jAER is also designed 
to process events from a camera directly connected to a single 
machine; however, robotics platforms have come to rely on a 
middleware that distributes processing over a computer network.  
A middleware allows the modular connection of sensors, 
algorithms and controls, which are shared within the robotics 
community to more quickly advance the state-of-the-art. Perhaps 
the most well known is the Robot Operating System (ROS), in 
which some support for event cameras has been made available.1 
In this paper, we present the open-source libraries for event camera 
integration with the YARP middleware that is used on iCub.

3. THe eVeNT-dRIVeN LIBRARY

ED cameras encode information as a stream of asynchronous 
events with sub-μs resolution. When a pixel detects an illumi-
nation change beyond a threshold, it emits a digital pulse that 
can be assigned a timestamp and pixel address (using Address 
Event Representation (AER) (Mortara, 1998)) by a clock-based 
digital interface (e.g., FPGA or microcontroller). The entire visual 
information is, therefore, encoded within the relative timing and 
pixel position between events. An example event-stream is shown 
in Figure 1.

This event-driven library is designed to read events from the 
cameras, interface to communications for distributed processing, 
and provide event-based visual processing algorithms toward 
low-latency robotic vision. The library is written in C++, uses 
the ev namespace, and is integrated with the YARP middleware.

3.1. Representing an event
The basic element representing an event is a ev::vEvent, 
which only stores the timestamp, i.e., when an event occurred. The 

1 github.com/uzh-rpg/rpg_dvs_ros.
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FIGURe 2 | Event-types and inheritance, purple/dashed boxes show possible additions to the library to support the integration of other sensory modalities and 
information from additional computing modules.

LISTING 1 | Instantiating events using shared pointer wrappers and dynamic casting. The outcome of the code-snippet will be the allocation of v1 as an 
ev::AddressEvent and (an identical) v2 as a ev::labelledAE, while v3 and v4 will be pointers to v2, but interpreted as ev::AddressEvents.
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information about what occurred is instead stored in the member 
variables of classes that are inherited from a ev::vEvent, 
see Figure 2. Events produced by the event cameras are called 
ev::AddressEvent, which consist of pixel location (x,y) and 
pixel polarity (p: darker/lighter) in addition to the camera chan-
nel (c: left/right). Algorithmic processing of events can be used 
to append additional information to an event, such as adding the 
velocity from an optical-flow algorithm. Currently used additional 
event-types include optical-flow events (ev::FlowEvent), 
class-labeled events (ev::LabelledAE), and events with a 
spatial distribution (ev::GaussianAE).

An instantiated ev::vEvent is wrapped in a C++11 
shared_ptr such that memory is automatically managed, 
and events can be referenced in multiple threaded environments 
without duplicated memory allocation. The event-driven library 
provides a set of wrapper functions to ensure the shared_ptrs 
are correctly handled (see Listing 1).

These event-types can be easily extended through inherit-
ance, and by defining the required additional member variables. 
Packet encoding and decoding methods are also required for 
transmission (described below). The framework is designed to 
be fully future compatible with the integration of different event-
driven sensors (e.g., tactile and audio) by extending the base 
ev::vEvent class.

3.2. event-Packets in YARP
On the iCub robot, a Linux driver reads the events from the camera 
FPGA interface and the zynqGrabber module exposes the data 
on a YARP port. A packet of events is sent in a ev::vBottle 
(a specialized type of yarp::os::Bottle) such that the bit-
coding of the AER is preserved: to retain data-compression and 
compatibility with other AER-based hardware. A module that 
receives a ev::vBottle can decode the AER and instantiate 
a ev::vEvent easily, as event decoding is provided by each 
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LISTING 2 | An example class for reading, decoding, and structuring events. This code will produce a small “surface” of events decoded from the AER 
representation automatically using the ev::vBottle::get() command, and the ev::vBottle is read asynchronously as the packets arrive.
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event class. Encoding/decoding typically involves bit-shifts and 
a typecast to interpret a specific range of bits as the correct data 
type. The decoded events are stored in a ev::vQueue which 
wraps a std::deque<event<vEvent>>. The procedure to 
obtain the event-stream is, therefore, transparent to the process-
ing module. Reading ev::vBottle from a port is typically 
done using callback functionality (i.e., only where data is present) 
as the event-stream is asynchronous. An example code-snippet is 
provided in Listing 2.

Events can be saved and loaded from a file using the stand-
ard tools in YARP as an event-packet is fully interpretable as a 
standard yarp::os::Bottle. Therefore, it is easy to save a 
dataset using the yarpdatadumper and replay it using the 
yarpdataplayer. This is done externally to the event-driven 
library, simply by connecting the event-stream to/from the afore-
mentioned modules using YARP connections.

3.3. Structuring the event-Stream
The desired approach to ED processing is to perform a small, 
lightweight computation as each event is received; however, a 
single event (a single pixel) does not provide sufficient infor-
mation on its own for many complex visual algorithms. Often 
it is necessary to store a sequence of events in order to extract 
useful information from their spatiotemporal structure. The 
type of structure used depends on the conditions, limitations 

and assumptions of the task or algorithm. For example, the 
length (in time) of a ev::Temporal Window can be tuned to 
respond to a target object moving at a certain velocity, but 
may fail if the target’s velocity cannot be constrained. A 
ev::Fixed Surface of N events will be invariant to the speed of 
an object, but can fail if the target size and shape are unknown, 
a ev::Surface can access a spatial region-of-interest faster than 
a ev::Temporal Window, as long as the temporal order of events 
is not important. The event-driven library includes a range of 
methods to organize and structure the event-stream; an exam-
ple code-snippet that combines port-callback functionality, 
event-packet decoding and event data structuring is shown 
in Listing 2.

In a distributed processing network, network latency, packet 
loss, and module synchronization become relevant issues, 
especially when it is desirable to take advantage of the intrinsic 
low-latency of the sensor. Processing needs to be performed in 
real-time to ensure robot behavior is decided from an up-to-date 
estimation of the world. The ATIS cameras will produce ≈10 kV/s 
when a small object is moving in the field of view but will produce 
>1,000 kV/s if the camera itself is rotated quickly (e.g., when the 
iCub performs a saccade). These numbers double for a stereo 
camera set-up. Real-time constraints can be broken if processing 
algorithms are dependent on processing every single event and 
the processing power is not sufficient.
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A B

FIGURe 3 | The (A) tracking/detection accuracy of ev::vCircle (blue) and ev::vParticleFiler (green) compared to ground truth (black). Both algorithms 
can be used to control the iCub in gaze and grasping demonstrations. The (B) computation performance comparison between ev::vCorner and hypothetical 
frame-based Harris corner detection (red dashed line). A lower computational requirement is beneficial to resource contained on-line robotics. These figures can be 
generated using the scripts found in the datasets section.
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In the YARP event-driven library, a multi-threaded event 
structure is provided to de-couple the process of reading events 
into a data structure from that of running the algorithm. Modules 
are constructed such that the entire history of events is accounted 
for, but the processing algorithm runs only at the rate at which 
it maintains real-time operation. The result is that chunks of 
events are not randomly lost within the communication pipeline; 
instead the rate at which the algorithm can output a result is 
reduced under high event-load. Our algorithms still typically 
run at rates of 100 to 1,000 s of Hertz; higher than the frame-rate 
of a standard camera. Importantly, the algorithm update-rate is 
not bottlenecked by the sensor update-rate (e.g., a frame-based 
camera), and the update-rate can be increased by adding compu-
tational power. The library classes ev::queueAllocator, 
ev::tWinThread and ev::hSurfThread manage real-
time operation, and examples can be found in the documentation.

“Event-by-event” processing is also always possible in the YARP 
event-driven library and can be used to enforce a deterministic 
result to evaluate algorithm performance off-line, without the 
need to consider real-time constraints.

3.4. Low-Level Processing
Processing modules take the raw AER data and extract useful, 
higher-level information. The output of the modules will be a 
stream of events augmented with the additional information, as 
in Figure 2. The modules currently available in the event-driven 
repository are:

• Optical Flow—an estimate of visual flow velocity is given 
by the rate at which the position of events change over time. 
Local velocity can be extracted by fitting planes to the resulting 
spatiotemporal manifolds (Benosman et al., 2014). The vFlow 
module converts the ED camera output ev::AddressEv-
ent to ev::FlowEvent.

• Cluster Tracking—The movement of an object across the visual 
field of an ED camera produces a detailed, unbroken trace of 
events. This module tracks clusters of events that belong to 
the same trace (Valeiras et  al., 2015). The cluster center and 

distribution statistics is output from the vCluster module 
as a ev::GaussianAE event.

• Corner Detection—using an event-driven Harris algorithm, 
the event-stream is filtered to leave only the events on the 
corners of objects (Vasco et al., 2016a). Corner events provide 
unique features that can be tracked over time. Compared to a 
traditional camera, the ED corner algorithm requires less pro-
cessing, as shown in Figure 3B. Corner events are represented 
by ev::LabelledAEs.

• Circle Detection—detection of circular shapes in the event-
stream can be performed using an ED Hough transform. As the 
camera moves on a robot, many background events clutter the  
detection algorithm. The vCircle module reduces the 
false positive detections by incorporating optical-flow 
information (Glover and Bartolozzi, 2016). The detection 
results are shown in Figure 3A. Circle events are described by 
ev::GaussianAEs.

• Particle filtering—the particle filter achieves tracking that is 
robust to variations in the speed of the target, by also sampling 
within the temporal dimension (Glover and Bartolozzi, 2017). 
Ball tracking is implemented and the results are shown in 
Figure 3A.

The library also includes additional tools for:

• Camera Calibration—the intrinsic parameters of the camera 
can be estimated using a static fiducial and standard visual 
geometry techniques.

• Pre-processing—this module can apply a salt-and-pepper 
filter, flipping horizontal/vertical axes, applying camera dis-
tortion removal, and splitting a combined stereo event-stream 
into a left stream and a right stream.

• Visualization—the event-stream is asynchronous and does not 
inherently form “images” that can be viewed in the same way 
as a traditional camera. The vFramer uses a ev::Tempo-
ralWindow to accumulate events over time and produce a 
visualization of the event-stream. Different drawing methods 
exist for different event-types, which can be overlaid onto a 
single image (as shown in Figure 1).

49

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


6

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

4. deMoNSTRATIoNS, Code,  
ANd dATASeTS

The neuromorphic iCub and event-driven library have been 
used for several studies and robot demonstrations that can be 
run using yarpmanager. The modules are designed such that 
the robot begins performing the task once all required modules 
are running and the port connections have been made. Detailed 
instructions on how to run the demonstrations are provided in 
the online documentation2 available with the code3 on GitHub. 
An xml file is provided for each application to correctly launch 
and connect modules in yarpmanager. Known issues with the 
applications can also be found online. An overview of some of the 
applications is given below:

• Ball Gazing and Grasping—The module vCircle (desribed 
more in Glover and Bartolozzi (2016)) or vParticleFil-
ter (described more in Glover and Bartolozzi (2017)) can be 
used to produce events describing the visual position of a ball, 
e.g., see Figure 3A. The vGazeDemo uses the iKinGazeC-
trl (Roncone et al., 2016) to calculate the 3D position of the 
ball and the focus of the iCub’s gaze can be directed to the loca-
tion using the head and eye motors. Alternatively, the output 
of the ball position can be sent to the classic DemoRedBall4 
application to have the robot also move the arm to grasp the 
ball.

• Stereo Vergence—Automatic control of stereo vergence of 
the iCub to focus on an object within the field of view was 
implemented using biologically inspired methods (Vasco et al., 
2016b). The vVergence application accepts stereo ev::Ad-
dressEvents and moves the vergence to minimize the response 
of stereo Gabor filters.

• Attention and Micro-saccade—A simple, yet effective, atten-
tion module is demonstrated that only requires the presence 
of events to perform a saccade to gaze at an external stimulus. 
If the event-rate is instead below a threshold, the autosac-
cade application generates small eye movements to visualize 
the static scene.

The documentation includes a project overview, instructions 
to run demonstration applications, descriptions and parameters 
of processing modules, and class and function descriptions. The 
code is only dependent on YARP and uses the iCubContrib to 
install the project in a manner compatible with YARP and iCub 
environment.

2 http://robotology.github.io/event-driven/doxygen/doc/html/index.html.
3 https://github.com/robotology/event-driven.
4 https://github.com/robotology/icub-basic-demos.

Datasets of event-driven data can be found in the tutorials 
section of the online documentation. The datasets consist of the 
event-streams used in several of the experiments presented in 
this paper. The datasets enable the processing of event-driven 
algorithms if a physical camera is not available.

5. CoNCLUSIoN

This paper presents the YARP-integrated event-driven library, 
specifically toward enabling ED robotics using a robot middle-
ware. The data structures, multi-threaded approach and algorithm 
design are aimed toward real-time operation under a wide range 
of conditions and in uncontrolled environment, toward robust 
robotic behavior. The paper has presented the YARP interface, 
the low-level vision algorithms, and the applications on the iCub 
robot.

Event cameras are now available as an add-on plug-in and  
new iCub robots can potentially come equipped with neuromor-
phic hardware; alongside traditional cameras, or as the sole form 
of vision. Alternatively, the software package can be used through 
a USB interface to the ATIS camera, or through off-line datasets. 
The contribution of alternative camera interfaces is possible (and 
welcome) as the processing modules are transparent to the source 
of the events, and the package is provided as an open-source 
project.
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This paper describes open source software (available at https://github.com/robotology/
natural-speech) to build automatic speech recognition (ASR) systems and run them 
within the YARP platform. The toolkit is designed (i) to allow non-ASR experts to easily 
create their own ASR system and run it on iCub and (ii) to build deep learning-based 
models specifically addressing the main challenges an ASR system faces in the context 
of verbal human–iCub interactions. The toolkit mostly consists of Python, C++ code 
and shell scripts integrated in YARP. As additional contribution, a second codebase 
(written in Matlab) is provided for more expert ASR users who want to experiment with 
bio-inspired and developmental learning-inspired ASR systems. Specifically, we provide 
code for two distinct kinds of speech recognition: “articulatory” and “unsupervised” 
speech recognition. The first is largely inspired by influential neurobiological theories of 
speech perception which assume speech perception to be mediated by brain motor 
cortex activities. Our articulatory systems have been shown to outperform strong deep 
learning-based baselines. The second type of recognition systems, the “unsupervised” 
systems, do not use any supervised information (contrary to most ASR systems, includ-
ing our articulatory systems). To some extent, they mimic an infant who has to discover 
the basic speech units of a language by herself. In addition, we provide resources 
consisting of pre-trained deep learning models for ASR, and a 2.5-h speech dataset of 
spoken commands, the VoCub dataset, which can be used to adapt an ASR system to 
the typical acoustic environments in which iCub operates.

Keywords: automatic speech recognition, yarp, tensorflow, code:python, code:matlab, code:C++

1. INTRodUCTIoN

Several applications use speech to give instructions to iCub, often relying on proprietary software. 
However, the robot operates in specific conditions where those systems may perform poorly. An 
open and easy-to-use system that would reliably recognize commands in this context would thus be 
a very desirable tool. We present here a first codebase, henceforth iCubRec, which has been built to 
provide such services to the community of iCub users. It allows to train and run state-of-the-art deep 
neural network (DNN)-based automatic speech recognition (ASR).

As an additional contribution, a second codebase, henceforth bioRec, allows to experiment with 
novel DNN-based recognition systems that share the same bio-inspired and developmental learning 
view that gave birth to iCub (Lungarella et al., 2003). bioRec is self-contained and independent of 
iCubRec, however its DNN-based acoustic models can effortlessly be used within iCubRec.
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Finally, in addition to the code, we are also providing resources 
to facilitate the implementation of a command recognizer: (i) the 
VoCub dataset, a dataset of registered vocal commands and (ii) 
pre-trained Gaussian Mixture Model (GMM)- and DNN-based 
acoustic models to perform recognition.

Our code, as well as the resources, is released under GPLv3 
license. The code is available at https://github.com/robotology/
natural-speech (doi: 10.5281/zenodo.1064043).

2. iCubRec

2.1. Application and Utility
An ASR system for iCub typically operates in challenging condi-
tions. We have identified three specific factors which we want the 
system to be robust to:

•	 noise; the robot often operates in noisy environments  
(e.g., noisy servers and computers running, concurrent speak-
ers, the robot itself generating noise).

•	 accents; the teams working with iCub are international and 
the robot needs to recognize spoken commands uttered with a 
wide variety of foreign accents.

•	 distance and movement; distant speech recognition is an 
important research topic in ASR and has been the focus of 
many recent challenges (e.g., the Chime4 challenge1). When 
the speaker–microphone distance increases, the speech 
signal-to-noise ratio decreases and signal distortions due to 
reverberation (in indoor environments) increases. A non-fixed 
distance, due to a moving speaker and/or microphone, adds 
further complexity to the task.

Although deep learning has recently produced excellent results 
in ASR, it still suffers the training-testing mismatched conditions 
problem. Proprietary ASR systems may perform poorly in the 
aforementioned acoustic/speech conditions mainly because 
such conditions are not well covered by their training datasets. 
We have addressed this problem by building a dataset (VoCub 
dataset) that covers such conditions and by providing tools to 
easily adapt a DNN to it.

Other than robust, an ASR system for iCub should be easy-to-
use, open, and modular. Usability is necessary to allow all iCub 
mindware developers, who mostly have no ASR background, 
to train and run ASR on iCub. For this reason, we provide pre-
trained GMM- and DNN-based acoustic models that can be used 
out of the box with the existing code. At the same time, we want 
more advanced users to easily modify and adapt the code to their 
own needs. This can only be done if everything is open and well 
modularized.

2.2. Methods
To facilitate the understanding of the iCubRec module for non-ASR 
experts we provide here the definition of few basic ASR terms.  
A standard ASR system consists of 4 main parts: an acoustic fea-
ture extraction step which extracts spectral features from the input 
acoustic waveform; an acoustic model which relates the extracted 

1 http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/.

features to sub-words (e.g., phonemes, such as consonants and 
vowels) and then words (i.e., computes the likelihood that vectors 
of features are generated by a candidate word); a language model, 
which is independent of the acoustic signals and incorporates 
prior knowledge about a specific language (e.g., the probability 
that the word “barks” follows the word “dog”); and a speech 
decoder which performs word recognition by computing the most 
probable sequence of words of the utterance, given: (a) the acoustic 
model; (b) the language model; (c) the dictionary, which consists 
of all words the system has to recognize along with their phoneme 
transcriptions. Acoustic modeling is usually done using a Hidden 
Markov Model (HMM) which is well suited for sequential data 
like speech. HMMs combine transition probabilities (i.e., p(st | st–1) 
where st is a phone label at time t) with observation probabilities 
(i.e., p(ot | st), where ot is the input vector of acoustic feature at  
time t). The core difference between classical GMM-HMM vs. 
hybrid DNN-HMM acoustic models simply resides on whether 
GMMs or DNNs are used to compute the observation probabilities.

2.3. Code description
iCubRec code is based on the Hidden Markov Model Toolkit (HTK) 
(Young et al., 2015). However, as the training capabilities for DNNs 
are still quite limited in HTK, we also consider the alternative pos-
sibility to train a network with Tensorflow (Abadi et al., 2015) and 
convert it to HTK format for use in decoding. Although in the later 
case the DNN is still restricted to the architectures recognized by 
HTK (for now, only feedforward networks with a limited set of 
activation functions), this gives more flexibility and control over 
the training process. Additionally, the use of Tensorflow allows to 
easily adapt a pre-trained DNN to new adaptation data.

The code consists of scripts for:

•	 acoustic model training with GMMs
•	 acoustic model training with DNNs
•	 speech decoding
•	 integration within YARP for online speech decoding.

iCubRec is a combination of Python 3, Perl and shell scripts, 
and was written for HTK 3.5 and Tensorflow 1.0.

2.3.1. GMM-Based Acoustic Modeling
Before the advent of DNNs, GMM-HMM systems were state-of-
the-art for acoustic modeling in speech recognition. Although 
they are significantly outperformed by neural networks (Dahl 
et al., 2012; Seltzer et al., 2013), GMMs are still widely used if only 
to compute the phone labels/speech segments alignments needed 
to train a DNN (Dahl et al., 2012). The folder gmm_training 
provides a set of scripts to train GMM-HMMs using HTK. These 
scripts are based on Keith Vertanen’s code (Vertanen, 2006) and 
allow to build models similar to the ones described by Woodland 
et al. (1994). The recipe is originally intended for TIMIT (Garofolo 
et  al., 1993a) and Wall Street Journal (WSJ) (Garofolo et  al., 
1993b) datasets and has been adapted for the Chime4 challenge 
(Vincent et al., 2016) and VoCub datasets.

2.3.2. DNN-Based Acoustic Modeling
Once the speech signal has been aligned (presumably using 
GMM-HMMs), a DNN-based model can be trained. Two 
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TABLe 1 | Examples of the commands used in the VoCub dataset.

I will teach you a new object.
This is an octopus.
What is this?
Let me show you how to reach the car with your left arm.
Let me show you how to reach the turtle with your right arm.
There you go.
Grasp the ladybug.
Where is the car?
No, here it is.
See you soon.
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alternatives are available: (i) using the scripts in dnn_train-
ing/htk to train a model with HTK or (ii) using the code under 
dnn_training/tf to train the net with Tensorflow. The 
scripts proposed here are currently restricted to TIMIT and WSJ, 
but support for additional datasets will be added soon.

2.3.3. Speech Decoding
With a model trained with HTK (GMM-based or DNN-based), 
it is then straightforward to perform recognition on a new utter-
ance. The folder offline_decoding provides an example of 
decoding on pre-recorded data with HTK. Additionally, export 
for_htk.py shows how to easily extract the parameters of a 
net trained with Tensorflow and convert them into HTK format.

2.3.4. Integration with YARP
All the code presented so far is meant to train and test a system 
offline. yarp_decoding folder provides the modules neces-
sary to use an existing model within YARP and perform online 
recognition. A streaming service based on yarp.js2 allows to 
record sound from any device equipped with a microphone and 
a web browser. Two other modules are provided: rctrld_yar-
phear_asr which saves the recorded data in a file, and the 
decoder (based on HVite tool from HTK) for feature extraction 
and command decoding. The application speechrec.xml is 
available to easily run and connect all the modules.

2.4. Resources
2.4.1. The VoCub Dataset
Recording a dataset has two main advantages: (i) it allows to 
easily test the recognition system and to reliably estimate its 
performance in real conditions and (ii) can be used to adapt the 
system in order to reduce the training/testing mismatch problem. 
For this reasons, we have recorded examples of the commands 
we want to recognize within real-usage scenarios. That resulted 
in the VoCub dataset.3

The recordings consist of spoken English commands addressed 
to iCub. There are 103 unique commands (see Table 1 for some 
examples), composed of 62 different words. We recorded 29 
speakers, 16 males and 13 females, 28 of them are non-native 
English speakers. We finally obtained 118 recordings from each 
speaker: of the 103 unique commands, 88 were recorded once, 

2 https://github.com/robotology/yarp.js.
3 Freely available at https://robotology.github.io/natural-speech/vocub/.

and 15 twice (corresponding to sentences containing rare words). 
This results in about 2 h and 30 min of recording in total.

A split of the speakers into training, validation, and test sets is 
proposed with 21, 4, and 4 speakers per set, respectively. The files 
are organized with the following convention setid/spkrid/
spkrid_cond_recid.wav, where:

•	 setid identifies the set: tr for training, dt for validation and 
et for testing.

•	 spkrid identifies the speaker: from 001 to 021 for training, 
101 to 104 for validation and 201 to 204 for testing.

•	 cond identifies the condition (see below).
•	 recid identifies the record within the condition (starting 

from 0 and increasing).

The commands were recorded in two different conditions, a 
non-static (cond = 1) and a static condition (cond = 2), with an 
equal number of recorded utterances per condition.

In the static condition, the speaker sat in front of two screens 
where the sentences to read were displayed. In the non-static 
condition, the commands were provided to the subject verbally 
through a speech synthesis system, and the subject had to repeat 
them while performing a secondary manual task. This secondary 
task was designed to be simple enough to not impede the utter-
ance repetition task, while requiring people to move around the 
robot. The distance between the speaker and the microphone in 
this last condition ranges from 50 cm to 3 m.

We also registered a set of additional sentences for the test-
ing group (same structure but different vocabulary) to test the 
recognition system for new commands not seen during training. 
The sentences consist of 20 new commands, pronounced by 
each speaker of the test set twice: once in non-static condition 
(cond = 3) and once in static condition (cond = 4).

2.4.2. Trained Models
As not all the datasets used in our scripts are freely available, and 
in order to ease the use of our system, we provide pre-trained 
acoustic models that can be used out of the box. The models/
README.md file contains links to download GMM-based mod-
els trained on WSJ, Chime4 and VoCub datasets, and DNN-based 
models trained on TIMIT and WSJ. Additional DNN-based 
models will be added in the future. Further details about the 
different models and the precise training procedure can be found 
in the same file.

2.5. example of Use
A good demonstration of the capabilities of the code presented so 
far is given in the file icubrec/DEMO.md. In a few simple steps, 
the user is shown how to perform offline decoding on the VoCub 
dataset with a pre-trained model. This example is accessible to 
novice ASR users and does not require any proprietary dataset.

A more in-depth example is given in icubrec/TUTORIAL.
md, which provides detailed instruction on how to train a full 
ASR system on the WSJ dataset. This tutorial goes through all 
the main steps: training of a GMM-based acoustic model, com-
putation of the alignments, training of a DNN-based acoustic 
model using those alignments, and finally decoding of the test 
sentences.
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FIGURe 1 | An example of articulatory phone recognition. Here, the simplest strategy available in phonerec is shown. ot is a vector of acoustic features, while st is 
a phone state.
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3. bioRec

3.1. Application and Utility
Our module for bio- and cognitive science-inspired ASR is com-
posed of two distinct parts serving different purposes: Articulatory 
Phone Recognition and Unsupervised/Developmental ASR.

3.1.1. Articulatory Phone Recognition
This part includes modules phonerec and pce_phonerec, 
which build articulatory phone recognition systems. A phone 
recognition system recognizes the sequence of phones of 
an utterance. It can roughly be identified as an ASR system 
without language model and dictionary. Articulatory phone 
recognition uses prior information about how the vocal tract 
moves when producing speech sounds. This articulatory view 
is strongly motivated by influential neurobiological theories 
of speech perception that assume a contribution of the brain 
motor cortex to speech perception (Pulvermüller and Fadiga, 
2010) and have been shown to outperform strong DNN-based 
baselines where no prior articulatory information is used (see, 
e.g., Badino et al. (2016)).

3.1.2. Unsupervised/Developmental ASR
The second part of bioRec, zerorchallenge, builds “unsu-
pervised” ASR systems. Most recognition systems, including 
the articulatory systems, are trained on supervised data, where 
training utterances are associated to phonetic transcriptions, and 
the inventory of phones is given. This learning setting is far easier 
than the learning setting of an infant who has to acquire her native 
language and has to discover the basic units of the language on her 
own. In order to better understand how an infant can acquire the 
phone inventory during development from raw “unsupervised” 

utterances, we have created “unsupervised” ASR systems that 
were submitted and evaluated at the 1st Zero Resource Speech 
Challenge (ZRS challenge) (Versteegh et al., 2015).

3.2. Methods
3.2.1. Articulatory Phone Recognition
The articulatory phone recognition module consists of 2 parts 
depending on how speech production information is represented:

•	 phonerec; speech production is represented in the form 
of actual measurements of vocal tract movements, collected 
through instruments such as the electromagnetic articulo-
graph (Richmond et al., 2011);

•	 pce_phonerec; vocal tract movements are initially 
described by discrete linguistic features and actual measure-
ments are not used.

phonerec: in this module, prior information of speech 
production is built by learning, during training, an acoustic-to-
articulatory mapping that allows to recover vocal tract move-
ments, i.e., reconstructed articulatory features (AFs), from the 
acoustic signal (Badino et  al., 2012, 2016). The reconstructed 
AFs are then appended to the usual input acoustic vector of the 
DNN that computes phone state posterior probabilities, i.e., the 
acoustic model DNN (see Figure  1, which shows the simplest 
strategy). Additionally, our code allows to apply autoencoder 
(AE)-based transformations to the original AFs in order to 
improve performance. AEs are a special kind of DNN that attempts 
to reconstruct its input after encoding it, typically through a lossy 
encoding. More details and evaluation results can be found in 
Badino et al. (2016).

pce_phonerec: in this module, AFs are derived (through 
a DNN) from linguistic discrete features (referred to as phonetic 
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FIGURe 2 | Overview of the AE-based approach to sub-word learning.

5

Higy et al. Speech Recognition for the iCub Platform

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 10

context embedding). They are used as secondary target for the 
acoustic model DNN within a multi-task learning (MTL) strategy 
(Caruana, 1997). This strategy forces the DNN to learn a motor 
representation without the need for time-consuming collection 
of actual articulatory data. Our approach outperforms strong 
alternative MTL-based approaches (Badino, 2016).

3.2.2. Unsupervised/Developmental ASR
zerorchallenge is the module building the unsupervised/
developmental ASR systems we submitted to Task1 of the ZRS 
challenge at Interspeech 2015 (Versteegh et al., 2015). The goal 
of the challenge was to compare systems that create new acoustic 
representations that can discriminate examples of minimal pairs, 
i.e., words differing only in one phoneme (e.g., “hat” vs. “had”), 
while identifying as a single entity different examples of a same 
word. Specifically, we focused on extracting discrete/symbolic 
representations, which equals to automatically discovering the 
inventory of (phone-like) sub-words of a language. Our core 
strategy is based on AEs (Badino et  al., 2014), as shown in 
Figure 2. The provided scripts build 2 novel systems, one based 
on binarized AEs and one on Hidden Markov Model Encoders 
(HMM-Encoders) (Badino et al., 2015).

A binarized AE is an AE whose encoding layer nodes are 
binary. At each time step, it transforms a vector of real-valued 
acoustic features into a vector of binary units which in turn is 
associated to a positive integer corresponding to a discovered 
specific sub-word.

The HMM-Encoder combines an AE with a HMM.4 An 
approach solely based on AEs ignores the sequential nature of 
speech and inter-sub-word dependencies. The HMM-Encoder 
was proposed to specifically address these potential weaknesses.

3.3. Code description and example of Use
All code is written in Matlab and uses the Parallel Processing 
Toolbox to allow fast DNN training with GPUs. All modules were 
tested in Matlab 2013a and 2015a.

4 Our HMM training code is a modified version of code from K. Murphy’s 
BayesianNet toolbox, available at https://github.com/bayesnet/bnt.

3.3.1. Articulatory Phone Recognition
phonerec: the file ploclassify.m allows to train and 
test articulatory phone recognition systems. It requires the 
inivar.m configuration file where it is possible to define,  
e.g., the type of AFs through cmotortype (e.g., AE-transformed 
AFs or “plain” AFs), the hyperparameters of the acoustic model 
DNN (parnet_classifier), and of the acoustic-to-articula-
tory mapping DNN (parnet_regress).

The folder demo contains 2 examples to build and evaluate a 
baseline (audio1_motor0_rec0) and an articulatory phone 
recognition system (audio1_motor3_rec1) on the mngu0 
dataset (Richmond et al., 2011). The dataset used here (available 
at https://zenodo.org/record/836692/files/bioRec_Resources.tar.
gz, under /bioRec_Resources/phonerec_mngu0/) is a 
preprocessed version of the mngu0 dataset.

pce_phonerec: this articulatory phone recognition sys-
tem is trained and evaluated by running mtkpr_pce.m. It can 
be compared with an alternative MTL-based strategy proposed 
by Microsoft researchers (Seltzer and Droppo, 2013), by running 
the script mtkpr_baseline.m. All systems are trained and 
tested on the TIMIT dataset, which unfortunately is not freely 
available. Training on different datasets would require some small 
dataset-dependent modifications to the look-up table used to 
extract discrete linguistic features from phone names.

We have created a Python  +  Tensorflow implementation the 
DNN training proposed in this module which will be soon available.

3.3.2. Unsupervised/Developmental ASR
We provide scripts that receive as input one of the datasets provided  
by the ZRS challenge, train one of the unsupervised ASR systems 
(on the training utterances), and return the testing utterances in 
a new discrete representation with a positive integer at each time 
step. We additionally provide the 3 datasets from the ZRS chal-
lenge already transformed to be processed by our scripts (avail-
able at https://zenodo.org/record/836692/files/bioRec_Resources. 
tar.gz, under /bioRec_Resources/zerochallenge/). The 
output format allows to evaluate the output file with the tools 
provided for the challenge (Versteegh et al., 2015).

3.3.3. Utilities
All utilities used by the phonerec, pce_phonerec, and 
zerorchallenge are in:

•	 netutils: contains functions to train and run DNNs,  
e.g., standard DNN training, Deep Belief Network-based DNN 
pretraining (Hinton et al., 2006), MTL training, DNN forward 
pass (i.e., to evaluate a DNN), deep autoencoder training, 
including training of some AEs we have recently proposed 
specifically for speech.

•	 utils: this folder contains all utilities that do not pertain to 
DNNs. These include: data loading and normalization, phone 
language models computation, Viterbi-based phone decoding, 
phone error rate computation, and analysis of error.

4. CoNCLUSIoN

In this paper, we have described the codebase that allows to 
easily train deep neural network-based automatic speech 
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recognition systems and run them within YARP. As an addi-
tional contribution, we provide tools to experiment with rec-
ognition systems that are inspired by recent influential theories 
of speech perception and with systems that partly mimic the 
learning setting of an infant who has to learn the basic speech 
units of a language.
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YARP-RoS Inter-operation  
in a 2d Navigation Task
Marco Randazzo*, Andrea Ruzzenenti and Lorenzo Natale

iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

This paper presents some recent developments in YARP middleware, aimed to improve 
its integration with ROS. They include a new mechanism to read/write ROS transform 
frames and a new set of standard interfaces to intercommunicate with the ROS navi-
gation stack. A novel set of YARP companion modules, which provide basic navigation 
functionalities for robots unable to run ROS, is also presented. These modules are 
optional, independent from each other, and they provide compatible functionalities to 
well-known packages available inside ROS framework. This paper also discusses how 
developers can customize their own hybrid YARP-ROS environment in the way it best 
suits their needs (e.g., the system can be configured to have a YARP application sending 
navigation commands to a ROS path planner, or vice  versa). A number of available 
possibilities is presented through a set of chosen test cases applied to both real and 
simulated robots. Finally, example applications discussed in this paper are also made 
available to the community by providing snippets of code and links to source files hosted 
on github repository https://github.com/robotology.1

Keywords: YARP, autonomous navigation, SLAM, mobile robots, iCub, R1, RoS, C++ interfaces

1. INTRodUCTIoN

YARP is an open-source robotics middleware, specifically designed to be modular, non-invasive, 
and flexible. It promotes software re-usability by means of abstract interfaces and modular software 
paradigms, and it allows to distribute computational tasks across a system by offering multi-platform 
network communication primitives (Fitzpatrick et al., 2014).

YARP development is historically correlated to the iCub robot (Metta et  al., 2010; Natale 
et  al., 2016), a child-sized humanoid platform for the study of cognitive robotics. In these 
years, the iCub community focused its attention on topics such as human–robot interaction, 
visual attention, machine learning, object manipulation, and grasping. Balancing a bipedal walk-
ing robot like iCub is a problem that has been   addressed only recently by some research groups  
(Hu et al., 2016; Nava et al., 2016). This is the reason why a standard navigation interface was missing 
in YARP so far.

On the other side, ROS, an Ubuntu-based middleware developed around the PR2 wheeled robot, 
addressed the problem of making a mobile platform to navigate into a 2D environment from the 
very beginning (Quigley et al., 2009; Cousins, 2010). Over the past years, the ROS navigation stack 
has grown in comprehensiveness, wrapping or including bindings to basically all state-of-the-art 
algorithms and third-party libraries (Marder-Eppstein et al., 2010).

This paper has two goals. First, to provide the YARP community a way to re-use the massive 
amount of code that has been developed within the ROS community. Second, Yarp is a multi-
platform framework which can run on Windows, Linux and MacOs, while ROS is currently limited 

1 http://doi.org/10.5281/zenodo.1116278.
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FIgURe 1 | Typical scenario in which multiple YARP modules, each of them instantiating its own yarp::dev::transfomClient, communicate with a single 
yarp::dev::transformServer. The latter is responsible for synchronizing YARP transforms with ROS data, publishing and subscribing to /tf and /tf_static 
topics.
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to Ubuntu-based systems. Thus, Yarp can be used to interface 
applications belonging to the two different frameworks and run-
ning on different operating systems. This goal is accomplished 
through a set of dedicated YARP classes and interfaces, as shown 
in the following sections.

2. YARP/RoS INTeRFACe

2.1. YARP Ports and RoS Topics
YARP inter-module communication is traditionally imple-
mented through network objects called ports. In a typical usage 
scenario, a sender module opens an output port (identified by a 
symbolic name, registered onto a nameserver) and writes data 
to it. Analogously, a receiver module, which wants to perform 
a read operation, opens an input port with a different symbolic 
name. Sender and receiver are thus decoupled, and the user is 
responsible for making connections/disconnections between the 
two ports.

In ROS, inter-module communication is obtained through a 
publisher/subscriber paradigm, based on the concept of topic. The 
subscriber manifests its intention of receiving a specific stream of 
data by registering to a topic, without caring about the identity 
of the node (or nodes) that is actually publishing it. Connections 
are not managed by the user but by a central authority, called ROS 
Master, which also checks if publishers and receivers comply on 
the same data format. Indeed, ROS communication is strongly 
typed and it employs a set of standard formats defined in message 
(.msg) files.

The possibility to communicate natively with ROS has 
been recently integrated into YARP. Special classes such as 
yarp::os::Node, yarp::os::Publisher, and 

yarp::os::Subscriber have been introduced to allow a 
user to handle ROS topics. Additionally, a specialized converter, 
namely yarpidl_rosmsg, was developed to automatically generate 
C++ header files from ROS.msg files and to allow the usage of 
ROS data types inside YARP.

An example of a YARP module directly publishing data onto  
a ROS topic, without linking any external ROS library, is shown 
in Section I in Supplementary Material.

2.2. TransformServer and TransformClient
Tf is a ROS package which allows a distributed system to keep 
track of multiple coordinate frames over time. For example, a 
module may be able to compute and publish the transformation 
from reference frame /a to reference frame /b while a different 
module may be able to publish the transformation from frame 
/b to frame /c. By subscribing to the /tf topic, a third module can 
retrieve the broadcasted transforms and compute the resulting 
transformation from /a to /c.

This mechanism is pervasive in all ROS. Remarkable applica-
tion examples are move-it (a motion planning framework for 
mobile manipulation), Rviz (a 3D visualization tool), and the 
ROS navigation stack. In this latter case, tf is typically used to 
keep track of the estimated robot position with respect to an 
odometry reference frame or to a map origin. Thus, it is clear 
that it is not possible to obtain a complete YARP-ROS integration 
without implementing a mechanism that is able to handle ROS 
frame transforms in YARP.

To overcome this limitation, we developed a YARP device 
called transformServer. TransformServer collects and stores frame 
transforms by subscribing to /tf and /tf_static topics and makes 
these information available to a YARP transformClient instance 
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inside a user module (Figure  1). TransformClient is an entity 
which implements the yarp::dev::IFrameTransform 
interface (see Sections II and III in Supplementary Material). 
Available methods allow the user to query the server about the 
registered YARP and ROS transforms, to perform kinematic 
computations, and to register on the server new transforms 
computed by YARP modules.

3. YARP CLASSeS ANd INTeRFACeS  
FoR NAVIgATIoN

This section presents the new YARP classes and interfaces  
specifically designed for managing maps and controlling a robot 
during a navigation task. Detailed description of available meth-
ods and usage examples are shown in Supplementary Material.

3.1. Mapgrid2d
The class yarp::dev::MapGrid2D is the main YARP class 
used to store map data. Similar to ROS occupancy grid message 
(nav_msgs/OccupancyGrid.msg), data are organized in square 
cells of fixed size (e.g., 0.05 m × 0.05 m), each of them storing the 
probability of being occupied by a fixed obstacle (e.g., a wall). This 
information is typically used to localize the robot in an environ-
ment previously mapped by a SLAM algorithm. In addition to 
this property, map cells are also provided with an additional flag 
(Section IV in Supplementary Material), which can be used to 
control the robot behavior. For example, a user can choose to set 
keep-out areas, which should be avoided by the robot when it 
computes its path, or critical areas in which the robot should stop 
when an obstacle is encountered (instead of finding an alternate 
path). Finally, MapGrid2D is equipped with methods to save/load 
maps both in YARP and in a ROS compatible format.

3.2. Map2dLocation
A yarp::dev::Map2DLocation is a support class used to 
store user location information. A location is composed of the 
location name, the map name to which the location refers to, and 
the (x,y,θ) coordinates w.r.t. the map origin. Locations are typically 
stored together with maps in a map2DServer (see Section 4.1)  
so that a user can invoke the navigation APIs using the loca-
tion name instead of the corresponding coordinates. Locations 
are also used by map2DServer to define interconnection points 
between multiple YARP maps.

3.3. IMap2d
yarp::dev::IMap2D is a pure virtual interface dedicated to 
the management of MapGrid2D and Map2DLocation enti-
ties. A Map2DServer (Section 4.1) implements methods of this 
interface to satisfy the requests from a Map2DClient. The complete 
listing of the methods belonging to yarp::dev::IMap2D as 
well as an application example is shown in Sections V and VI in 
Supplementary Material.

3.4. INavigation2d
yarp::dev::INavigation2D is a pure virtual interface 
shared between all client/server modules, which performs 

navigation tasks. The most classical usage in a user applica-
tion requires the instantiation of a yarp::dev::INaviga­
tion2DClient to send navigation commands to the robot 
(e.g., “go to the entrance room”). On the other side, the server 
counterpart, which can be any module implementing the same 
yarp::dev::INavigation2D interface (e.g., robot-
PathPlanner, see Section 4.6), receives the goal command and 
computes the path required by the robot to reach the goal.

INavigation2D contains methods to start, pause, and resume 
navigation tasks, both in absolute (with respect to the map 
reference frame) or in relative coordinates (with respect to the 
robot reference frame) (Section VII Supplementary Material). 
Additionally, it allows the user to assign names to the current 
robot position and to important locations on the map. These 
names might be used instead of absolute coordinates when com-
manding a goal to the robot. Finally, the user can query the current 
status of the navigation task. The enum returned by the method  
INavigation2D::getNavigationStatus() can be 
used by the client application to know when the goal has been 
reached or if a problem occurred (Section VIII in Supplementary 
Material).

4. YARP ModULeS ANd TooLS  
FoR NAVIgATIoN

This section describes the YARP modules and tools which con-
stitute the core of the YARP navigation suite. They are provided 
inside robotology/yarp and robotology/naviga­
tion github repositories. A comparison between these YARP 
tools and similar ones provided by ROS is reported in Table 1.

4.1. Map2dServer
Map2DServer implements the methods of the YARP interface 
yarp::dev::IMap2D, and it allows a client application 
(such as the navigation module) to store and retrieve maps 
(yarp::dev::MapGrid2D) from memory. It can be initialized  
at startup by a map collection file which contains an index of all map 
files to be used in the session. It must be noticed that this module 
only behaves as a storage, and it contains neither information about 
the current robot position nor the name of the map in which the 
robot finds itself. These tasks are performed by other modules (e.g., 
localizationServer, Section 4.4) which interact with the map2Dser-
ver when they need to obtain map data. Finally, this module imple-
ments some methods of the yarp::dev::INavigation2D 
interface, allowing to store/retrieve user notable locations 
(yarp::dev::Map2DLocation) on a map.

4.2. BaseControl
BaseControl is the core YARP module used to control a mobile 
robot. It receives cartesian velocity commands ( x, y, θ) either 
from a navigation module or from a joystick device, and it 
computes the corresponding actuators actions required to 
achieve them. BaseControl is also responsible for computing 
robot odometry, i.e., estimating the robot position in the world 
using measured motions of robot actuators. Computed data 
are published on a YARP port both as a vector (x,y,θ) and, via 
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TABLe 1 | Similarities and correspondences between YARP and ROS modules with similar functionalities.

YARP RoS Notes

Map2DServer map_server map_server offers a single map via ROS latched topic/map. Map2DServer acts a storage for multiple maps and 
user-defined locations

BaseControl – In ROS, there is no equivalent module. Each kind of robot exposes its own specific control interface

Mapper2D gmapping gmapping performs loop closure detection and simultaneous localization and mapping. Mapper2D allows to set 
not only the occupancy value of the cell but also the YARP map flag

LocalizationServer – LocalizationServer does not have a direct correspondence in ROS. It acts as a bridge for a ROS localization 
module like Adaptive Montecarlo Localization (AMCL) adding the support for YARP map collections (not directly 
supported in ROS)

– AMCL YARP navigation suite currently does not provide any localization system for mobile robots. A YARP user may 
use a ROS module such as AMCL to estimate the robot position against a known map or use its own localization 
system

RobotGoto move_base-base_local_planner The two modules have similar functionalities although ROS base_local_planner supports multiple algorithms (e.g., 
Trajectory Rollout and Dynamic Window Approach) while RobotGoto artificial potential fields approach is more 
tailored to work together with YARP RobotPathPlanner

RobotPathPlanner move_base-global_planner The two modules have similar functionalities and use comparable algorithms
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transformClient, as a transform between the origin of the odom-
etry system (/odom) and the robot (/mobile_base). This allows 
a ROS module to interface with the robot by subscribing to the  
/tf topic.

4.3. Mapper2d
Mapper2D is a simple YARP module which registers laser scans 
to build an occupancy-based map. The module is not equipped 
with a loop closure detector, nor with an internal localization 
algorithm; thus, it is not suitable to perform stand-alone SLAM 
tasks. Instead, it is designed to receive accurate localization data 
from an external source (e.g., a Google Tango device) either via 
YARP port or via transformClient.

4.4. LocalizationServer
LocalizationServer is an auxiliary tool which acts as the server 
side of a Navigation2DClient for the INavigation2D:: 
getCurrentPosition() and INavigation2D::set
InitialPose()methods. Robotology/navigation repository 
does not provide a default localization system for a mobile 
robot. A YARP user may thus choose to employ a YARP-based 
localization system (such as Robust-View-Graph-SLAM), 
or a ROS-based one (e.g., AMCL, RTAB-Map, Tango-ROS-
Streamer). In this latter case, LocalizationServer acts as a bridge 
between the ROS world (which is single map) and the YARP 
world (which is multi-map). When the user sets an initial 
position to initialize the localization algorithm, it specifies 
a yarp::dev::Map2DLocation which is translated 
to a string (the map name, handled by the Map2DServer) 
and a (x,y,θ) vector. This latter is sent with a geometry_msgs/
PoseWithCovarianceStamped message to the ROS localization 
module as the estimated robot pose with respect to the origin 
frame of the current map.

4.5. Robotgoto
This module computes the cartesian velocities ( x, y, θ) of the 
mobile base required to reach the commanded goal, given the 

current robot position (provided through a transformClient) and 
a set of parameters that controls the trajectory generation (e.g., 
differential drive or holonomic robot kinematics, heading and 
goal tolerance, etc.).

RobotGoto does not use any map information, except for the 
local occupancy grid which is continuously updated according 
to sensor data. An artificial potential field algorithm is employed 
to allow the robot to avoid obstacles obstructing the path to the 
goal. Depending on the configuration parameters, if a deadlock is 
detected, navigation may be paused (waiting a human to remove 
the obstacle) or aborted. In this latter case, the high-level path 
planner is notified by a specific yarp::dev::INavigation­
2D::NavigationStatusEnum, as shown in Section VIII 
and Figure S1 in Supplementary Material.

4.6. RobotPathPlanner
This module is responsible for generating the navigation way-
points to be pursued by a local navigation module (e.g., robotGoto). 
By implementing the INavigation2D interface, robotPath-
Planner acts as the server counterpart of a Navigation2DClient 
instantiated by a user module. For example, when the user 
calls the INavigation2D::gotoAbsolutePosition() 
method to command the robot to reach a new goal, robotPath-
Planner becomes in charge of performing the navigation task, 
notifying the user about its current status (e.g., in progress, goal  
reached, etc.).

The algorithm acts as follows. RobotPathPlanner retrieves  
from a Map2DServer instance the current map of the area. A 
valid path from the current robot location to the goal is computed 
using A* algorithm. If the path does not exists, navigation is 
aborted. Otherwise the path, initially defined as a vector of map 
cells, is transformed into a sequence of navigation waypoints. 
To be accepted, these waypoints must satisfy some user-defined 
parameters (e.g., minimum distance between the cells etc.). 
Waypoints are then put in a queue and sent one by one to a local 
navigation algorithms (such as robotGoto) which will pursue 
them.
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FIgURe 2 | Two realistic application scenarios, in which different combinations of YARP (green) and ROS (blue) modules are employed. Solid lines represent YARP 
port connections. Dashed lines represent ROS topic connections (Rviz connections are omitted for diagram clearness). Colored markers indicate the YARP 
interfaces employed to interconnect the various client/server modules. Gazebo simulator is represented as a hybrid YARP/ROS module because its modular design 
allows to execute plugins belonging to both frameworks (Mingo Hoffman et al., 2014).
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RobotPathPlanner is also responsible for processing the 
YARP flags assigned to particular areas of the map. These flags 
may belong to two different categories. Those which alter the 
navigation trajectory (such as keep-out areas) are directly pro-
cessed by the module during the trajectory generation phase. 
Instead, flags which alter the robot behavior (e.g., areas in which 
the robot must proceed at a different speed or interrupt the 
navigation if an obstacle is detected on the path) are not directly 
processed. Indeed, since they affect the behavior of the local 
navigation task, a proper  set of commands is generated and 
sent to RobotGoto to modify the default navigation parameters.

Finally, RobotPathPlanner is able to show the computed robot 
trajectory by means of the standard YARP graphical visualization 
tool yarpview and, additionally, to receive navigation commands 
from it (dragging an arrow on the map will be interpreted as goal 
command).

5. NAVIgATIoN INTegRATIoN  
ANd eXAMPLeS

YARP and ROS may inter-operate in several ways to attain a 
navigation task. Different possibilities range from using a full 
YARP-based framework to using the complete ROS navigation 
stack. In between there exist a number of possible combinations: 
as shown in previous sections, most of the YARP components can 
be replaced by a ROS equivalent or vice versa, depending on the 
user needs and preferences.

Figure  2 shows two illustrative scenarios. The first example 
refers to a simulated wheeled robot in Gazebo, a generic, multi-
robot, physics simulator. The navigation task is carried out by 
robotGoto/robotPathPlanner modules. Since ROS map_server 
is used, robotPathPlanner employs only the occupancy grid 
information and no YARP map flags are available.

The second example refers to a real wheeled robot (i.e. R1 
(Parmiggiani et al., 2017)) controlled by yarpRobotInterface, the 
core YARP application which manages the low-level hardware 
control. In this case, navigation task is carried out by ROS naviga-
tion stack encapsulated inside move_base node.

It must be noticed that, in both scenarios, the final end-user 
is a YARP application which instantiate a yarp::dev::INa
vigation2DClient. Section IX in Supplementary Material 
shows a simple application which controls the robot to reach 
a location stored into the map server, unaware of which 
framework and control modules are employed underneath. 
The included sequence diagram (Figure S2 in Section X in 

Supplementary Material) shows the timing and the messages 
exchanged between the clients opened by the example and the  
connected external modules (i.e., LocalizationServer, Map2D-
Server, robotPathPlanner).

Finally, a set of examples of increasing complexity is included 
in the github repository (Figure S3 in Section X in Supplementary 
Material), as well as some skeleton applications which the user 
can exploit to develop its own navigation modules.

6. CoNCLUSIoN ANd FUTURe WoRK

In this paper, we showed latest developments to improve 
YARP interoperability with ROS. These improve-
ments allow a robotics developer to use YARP mid-
dleware without giving up popular and convenient ROS 
features, such as the /tf package. By introducing a brand new 
set of standard interfaces, such as yarp::dev::IMap2D and 
yarp::dev::INavigation2D, YARP is now capable of 
performing a 2D navigation task, natively or interacting with ROS.

Future work will be aimed to further improve YARP-ROS inte-
gration. YARP transformServer is currently unable to interpolate/
extrapolate frames over time, an advanced feature that is instead 
available in the ROS /tf package, which allows users to ask for 
the pose of a frame at a specific time instant, in the past or even 
in the future. Additionally, YARP is currently unable to manage 
octomaps or other 3D data types. Their introduction is thus a 
required step to allow foot planning of a bipedal robot on a highly 
structured terrain.
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iCub-HRI: A Software Framework  
for Complex Human–Robot 
Interaction Scenarios on the  
iCub Humanoid Robot
Tobias Fischer1*, Jordi-Ysard Puigbò2,3, Daniel Camilleri 4, Phuong D. H. Nguyen5,  
Clément Moulin-Frier2, Stéphane Lallée2, Giorgio Metta5, Tony J. Prescott4,  
Yiannis Demiris1 and Paul F. M. J. Verschure2,3,6

1 Personal Robotics Laboratory, Electrical and Electronic Engineering Department, Imperial College, London,  
United Kingdom, 2 Synthetic Perceptive Emotive and Cognitive Systems Group (SPECS), Universitat Pompeu Fabra, 
Barcelona, Spain, 3 Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 
Barcelona, Spain, 4Department of Computer Science, University of Sheffield, Sheffield, United Kingdom, 5 iCub Facility, 
Istituto Italiano di Tecnologia, Genova, Italy, 6 ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

Generating complex, human-like behavior in a humanoid robot like the iCub requires 
the integration of a wide range of open source components and a scalable cognitive 
architecture. Hence, we present the iCub-HRI library which provides convenience wrap-
pers for components related to perception (object recognition, agent tracking, speech 
recognition, and touch detection), object manipulation (basic and complex motor 
actions), and social interaction (speech synthesis and joint attention) exposed as a C++ 
library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In 
addition to previously integrated components, the library allows for simple extension to 
new components and rapid prototyping by adapting to changes in interfaces between 
components. We also provide a set of modules which make use of the library, such 
as a high-level knowledge acquisition module and an action recognition module. The 
proposed architecture has been successfully employed for a complex human–robot 
interaction scenario involving the acquisition of language capabilities, execution of 
goal-oriented behavior and expression of a verbal narrative of the robot’s experience in 
the world. Accompanying this paper is a tutorial which allows a subset of this interaction 
to be reproduced. The architecture is aimed at researchers familiarizing themselves with 
the iCub ecosystem, as well as expert users, and we expect the library to be widely used 
in the iCub community.

Keywords: robotics, iCub humanoid, human–robot interaction, YARP, software architecture, code:C++, 
code:Python, code:Java

1. INTRodUCTIoN ANd BACKGRoUNd

The iCub is an advanced humanoid robot, which is equipped with multiple sensors: encoders in all its 
53 joints, force/torque sensors, tactile sensors integrated in the artificial skin, and eye cameras (Metta 
et al., 2010). They allow for a coherent understanding of body configuration, motor capabilities, and 
the environment as well as an ability to show facial expressions, which makes it an ideal platform for 
studies of human–robot interaction and cognition.

65

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00022&domain=pdf&date_stamp=2018-03-12
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00022
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:t.fischer@imperial.ac.uk
https://doi.org/10.3389/frobt.2018.00022
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
http://loop.frontiersin.org/people/413847
http://loop.frontiersin.org/people/481944
http://loop.frontiersin.org/people/474367
http://loop.frontiersin.org/people/481933
http://loop.frontiersin.org/people/74698
http://loop.frontiersin.org/people/232953
http://loop.frontiersin.org/people/79905
http://loop.frontiersin.org/people/2373
http://loop.frontiersin.org/people/25952
http://loop.frontiersin.org/people/5803


2

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

The research community around the iCub humanoid robot is 
very active, with a large number of papers published every year. 
The source code leading to these publications is often made avail-
able to the public, which allows for the replication of the results 
and use of the code as a starting platform to tackle new research 
questions. However, despite YARP (Fitzpatrick et al., 2006) being 
typically used as the underlying middleware in these works, it 
remains challenging to combine these efforts in a coherent 
manner.

Here, we present iCub-HRI, which integrates several com-
ponents for perception, object manipulation, and social interac-
tion using two parts: (1) The iCub-HRI library, which facilitates 
the use of the aforementioned components by providing easy to 
use classes with suitable default parameters (called Subsystems) 
and a shared knowledge database as means to represent knowl-
edge which is employed across all components. (2) Modules 
which supply the shared knowledge database with input, as 
well as some modules tailored for human–robot interaction 
scenarios.

1.1. Background and Related Works
iCub-HRI has its origins in the Experimental Functional 
Android Assistant (EFAA) project,1 where most of the library 
was developed and employed in several works (e.g., Lallée et al. 
(2013, 2015), Petit et al. (2013), and Lallée and Verschure (2015)). 
EFAA targeted the development of a cognitive architecture to 
realize effective and psychologically plausible human–robot 
dyadic interaction. The code was then extended and matured 
further in the What You Say Is What You Did (WYSIWYD) 
project,2 and more papers based on iCub-HRI were published 
(e.g., Fischer and Demiris (2016), Martinez-Hernandez et  al. 
(2016), Petit et al. (2016), Puigbò et al. (2016), and Moulin-Frier 
et al. (2017)). WYSIWYD aimed at realizing robot human level 
language capabilities by augmenting this cognitive architecture 
with mechanisms for language acquisition, composition, and 
expression. The cognitive architecture in both projects is based 
on and elaborates the Distributed Adaptive Control theory of 
mind and brain (DAC, see for reviews Verschure (2012, 2016) 
and Section 4.3).

While reviewing robotics middlewares is out of the scope for 
this paper (we refer to Elkady and Sobh (2012) for an overview), 
we briefly introduce several other proposals detailing software 
frameworks for various robotics platforms. Natale et al. (2016) 
summarize recent developments of the iCub’s software archi-
tecture, including the compatibility with the Robot Operating 
System (ROS) and the introduction of a new testing framework. 
They find that ROS is being adopted rapidly by more and more 
robot developers, and indeed, there are several papers introduc-
ing human–robot interaction-related frameworks based on ROS. 
For example, Jang et al. (2015) propose a ROS-based framework 
where modules concerned with low-level control and service 
logic are separated from modules concerned with social behav-
iors. Lane et al. (2012) present a bundle of ROS modules which 

1 http://efaa.upf.edu/. 
2 http://wysiwyd.upf.edu/. 

allows the extension of existing projects for speech recognition, 
natural language understanding, and basic gesture recognition 
as well as gaze tracking. A toolkit which allows the evaluation 
of human–robot interactions in virtual reality environments and 
subsequent deployment on a real robot was presented by Krupke 
et al. (2017). The robot behavior toolkit (Huang and Mutlu, 2012) 
includes a ROS module which is based on the findings within 
the social sciences. While the authors conducted a large-scale 
study with humans, the evaluation was based on simulated sensor 
data. Finally, Sarabia et al. (2011) present a framework allowing 
to perceive the actions and intentions of humans, and show its 
application in a social context where a robot imitates the dance 
movements of a human.

1.2. design Principles
Here, we devise a set of guidelines and design principles which 
were adopted when coding the framework.

•	 Adaptability and ease of use: the framework should be easy to 
adapt by the community. Individual parts of the framework 
should only depend on other parts if necessary, and substitut-
ing components should be easy. Furthermore, all libraries and 
modules should be properly documented.

•	 Provision of overall framework: related to the previous goal, our 
aim is to provide an overall framework which can work “out of 
the box.” Hence, our framework contains modules related to 
perception, action execution, and social interaction.

•	 Extendibility: it should be easy to extend the framework with 
new modules. Rather than tailoring existing modules to work 
with the iCub-HRI framework, it should be possible to write 
wrapper code for the integration.

•	 Shared, centralized knowledge representation: each module 
should have access to the same knowledge database, and the 
contained knowledge should follow a standardized format. 
Within iCub-HRI, we call this knowledge database the working 
memory, and the contents are Entities or derivatives thereof. 
The working memory is the default means of communicating 
among modules.

•	 Open software: the code is released open source and made 
publicly available. All dependencies must be available as open 
source software too.

2. THe iCub-HRI LIBRARY

Due to the support of distributed computation within the YARP 
middleware, there are typically many modules running simul-
taneously when conducting research on the iCub. Typically, 
data are exchanged using YARP’s Bottle container, which can 
encapsulate data of arbitrary length and varying type. While 
this allows a high degree of flexibility, these containers are error 
prone due to the requirement of parsing the messages dynami-
cally. This makes verification of compatibility and versioning 
when used across a large number of modules hard (Natale 
et  al., 2016). Thus, within the iCub-HRI library, we introduce 
fixed data representations for knowledge (fully compatible with 
the Bottle container), similar to those used in ROS messages 
(Quigley et  al., 2009) and the Interface Description Language 
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(IDL) in YARP (Fitzpatrick et al., 2014). Contrary to ROS mes-
sages and IDLs, the same representations are used across all 
components of the iCub-HRI library. The representations and 
their exchange which is orchestrated by a working memory are 
detailed in Section 2.1.

The communication protocol with external modules is 
described within Subsystems. Each subsystem connects to a host 
(i.e., external module) and abstracts away the communication 
internals, as described in Section 2.2. Finally, the icubClient class 
is designed with additional convenience for end users in mind 
such that all subsystems and other higher level methods are avail-
able from within a single class.

2.1. Knowledge Representation and 
exchange
The basic representation type is an Entity, which is specified by 
an ID and an associated name. The ID is used when storing and 
retrieving the entity from the working memory. Several entities 
can be linked together by the means of a Relation, for example, the 
human “Paul” (subject) “holds” (verb) “duck” (object). For further 
details on relations, we refer to Lallée and Verschure (2015).

Other knowledge representations inherit the basic properties 
and methods of Entity and extend them further. The Object class 
has additional properties representing the pose, size, presence, 
and saliency of an object (see Section 3.1 for details how these 
properties are acquired). The Agent class represents a human 
partner, which additionally to all properties of an Object also 
stores the positions of all body parts and a list of beliefs. Another 
commonly used representation is that of a Bodypart, which 
represents a part of the robot’s body. A Bodypart also inherits all 
attributes of an Object, and additionally contains the related joint 
number, tactile patch identifier, and corresponding body part of 
the human. Zambelli et  al. (2016) have used these representa-
tions to anchor self-learned representations to those of a human 
interacting with the robot.

These representations must be shared across different modules 
(for example, between perceptual modules and the more abstract 
reactive layer as described later in this section), and we designed 
the OPCClient class to automate the exchange of representa-
tions with the working memory of the iCub ecosystem (Objects 
Properties Collector; OPC) (Lallée and Verschure, 2015). The 
OPC is an ontology-based knowledge representation system 
which is grounded on the need of humans and other social ani-
mals to interact in a physical, multi-agent world (see Lallée and 
Verschure (2015)). In this direction, the role of such knowledge 
representation should be to structure and distribute informa-
tion to different modules in an asynchronous (on-demand) and 
centralized way. The design is inspired by the repository pattern 
known from software engineering (Evans, 2004), and its usage is 
very similar to the centralised version control software Apache 
Subversion (known as SVN).3 For storage and retrieval, the 
OPCClient provides methods such as “checkout” to poll repre-
sentations from the shared memory, “update” to update existing 
representations, and “commit” to overwrite representations in the 

3 https://subversion.apache.org/. 

memory with the local version of the module. Altogether, this 
implementation provides a shared, centralized knowledge repre-
sentation (following our design principle outlined in Section 1.2), 
enabling asynchronous access to the information in a way similar 
to how brains work.

2.2. Subsystems
A Subsystem provides a wrapper between the representations 
used by external components and the ones used within iCub-
HRI, which compares to the façade software engineering pattern 
(Gamma et al., 1994). This has several advantages, including that 
the complexity of remote procedure calls is hidden from the user 
and that formerly “incompatible” components can now be used 
within the same project. Within this paper, we provide a brief list 
of the most commonly used interfaces of these subsystems, and 
we provide a complete list in the documentation on GitHub.4

This is especially evident in the subsystems for the Actions 
Rendering Engine (ARE; follow up work on Pattacini et  al. 
(2010))5 and KARMA (Tikhanoff et al., 2015)6 object manipula-
tion libraries, which are typically used by the iCub community to 
issue high-level motor commands. If directly called, they require 
the provision of complex parameters. Contrary, using iCub-HRI, 
one simply specifies the desired action and the name of the object 
to be manipulated, as further demonstrated in Section 4.1.

Other important subsystems are those for speech recognition 
and synthesis. Both are convenience wrappers for the function-
ality offered in the “speech” repository of the iCub ecosystem. 
The speech synthesizer allows for speech production from text 
using a single command “say(),” with the only parameter being 
the sentence to be spoken, while being agnostic to the underly-
ing synthesizer (Acapela,7 eSpeak,8 Festival,9 and SVOX Pico10 
are supported). The speech recognizer relies on the Microsoft 
Speech API,11 which allows recognition and extraction of words 
from spoken utterance given a grammar file (using the command 
“recogFromGrammarLoop()”).

The functionality of the different subsystems is aggregated in 
the icubClient class, which allows using the different subsystems 
from within a single class instance. A configuration file is used 
to specify which subsystems a module requires, such that no 
unnecessary resources are bound. Adding new subsystems is 
straightforward and we provide a tutorial to do so.12

4 https://robotology.github.io/icub-hri/ → iCub-HRI libraries  → Subsystems. 
5 The following interfaces are provided by the ARE subsystem: (1) “home()” to put 
the robot or a specified part in the home position, (2) “take()” to reach and grasp 
an object, (3) “push()” to laterally push an object, (4) “point()” to an object, (5) 
“expect()” to extend the hand and wait for an object, (6) “drop()” an object which 
is currently held, (7) “wave()” the robot’s hands, (8) “look()” at an object, and (9) 
“track()” a moving object.
6 The following interfaces are provided by the KARMA subsystem: (1) “pushKar-
maLeft()” and “pushKarmaRight()” to push an object to the left/right side with a 
specified target position, (2) “pushKarmaFront()” to push an object forwards, and 
(3) “pullKarmaBack()” to bring an object closer to the robot.
7 http://www.acapela-group.com. 
8 http://espeak.sourceforge.net/. 
9 http://www.cstr.ed.ac.uk/projects/festival/. 
10 https://github.com/robotology/speech/tree/master/svox-speech. 
11 https://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx. 
12 https://robotology.github.io/icub-hri/ → Tutorials → Create a new Subsystem.
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3. iCub-HRI ModULeS

The modules accompanying the iCub-HRI library can be grouped 
into four main areas: 1. perception, 2. action, 3. social interac-
tion, and 4. miscellaneous tools. All modules have access to the 
knowledge introduced in the previous section (as they use the 
iCub-HRI library) and none of them is required to run; i.e., one 
can choose which subset of modules to run for each experiment, 
if any.

3.1. Perception Modules
3.1.1. Agent Detector
The agentDetector module is responsible for detecting and 
tracking a human partner using a RGB-D camera mounted 
behind the robot. It converts the joint positions detected by the 
RGB-D camera in the reference frame of the iCub and continu-
ously updates the joint positions of the human partner in the 
working memory.

3.1.2. Default Speech Recognition
The Ears module allows for recognition of speech utterances from 
the human when no other module is trying to recognize speech. 
It takes the role of a central component to redirect the com-
mand extracted from the recognized sentence to the appropriate 
module, while still allowing other modules to access the speech 
recognition subsystem directly if needed.

3.1.3. Object Recognition
The object recognition module within iCub-HRI is based on the 
interactive object learning (IOL) pipeline (Pasquale et al., 2015). 
Given the two input images of the iCub’s eyes, the scene is first 
segmented into the background and the different objects. Each 
object is then classified and stereo vision (Fanello et al., 2014) is 
used to localize the objects. We rely on superquadric models to 
estimate the size and pose of objects (Vezzani et al., 2017), and we 
use the OpenCV object tracker (Kalal et al., 2012) to track them 
even if they are manipulated by the human.

3.1.4. Saliency
The module PASAR (Mathews et  al., 2012) detects the appear-
ance and disappearance of objects, and the saliency of an object 
is increased proportionally to its acceleration. This also allows 
simple detection of pointing actions by measuring the proximity 
of the human’s hand with each of the objects and increasing the 
saliency with inverse proportion to the distance.

3.1.5. Face and Action Recognition
To recognize faces and actions performed on objects, we use 
the Synthetic Sensory Memory module (Martinez-Hernandez 
et  al., 2016). It uses Gaussian Process Latent Variable Models 
(Damianou et al., 2011) to train classifiers for faces and actions, 
which can then be loaded during interaction to perform real-time 
classification.

3.2. Action Modules
3.2.1. Face Tracking
The face tracking module detects the face of a human based on 
Haar cascades implemented in OpenCV (Viola and Jones, 2001) 

and uses the velocity control of the iCub to follow the face. This 
module can be used in human–robot interaction scenarios for 
increased vividness of the robot.

3.2.2. Babbling
The babbling module allows the issue of pseudo random 
(sinusoids) commands to the iCub (either individual or several 
joints). It has been used to learn forward and inverse models 
for the iCub (Zambelli and Demiris, 2017), as well as to learn 
correspondences between the robot’s body parts and that of 
the human (Zambelli et  al., 2016). Within the scope of this 
paper, it is mainly used for body part learning, as described in  
Section 4.2.

3.3. Social Interaction Modules
3.3.1. Proactive Tagging
The proactive tagging module can be used to acquire the names of 
objects (robot), body parts, and human partners. As this module 
plays a central role in the knowledge acquisition tutorial, it is 
further detailed in the corresponding Section 4.2.

3.3.2. Reactive Layer
The reactive layer implements drive reduction mechanisms 
for self-regulating the robot’s behavior. A drive is defined as a 
control loop that triggers appropriate behaviors whenever an 
associated internal state variable goes out of its homeostatic 
range. These drives present a way to self-regulate value in a 
dynamic and autonomous way (Sanchez-Fibla et  al., 2010). 
This has been shown to positively influence the acceptance of  
the human-robot interaction by naive users (Vouloutsi et  al., 
2014; Lallée and Verschure, 2015).

In the social robotic context, we provide two examples of 
drives that allow the robot to balance knowledge acquisition 
and expression in an autonomous way. The drive for knowledge 
acquisition maintains a curiosity-driven exploration of the 
environment by proactively requesting information from a 
human about the present entities (e.g., their name). The drive 
for knowledge expression regulates how the iCub expresses the 
acquired knowledge through synchronized speech, pointing 
actions and gaze. It informs the human about the robot’s current 
state of knowledge and thus maintains the interaction.

3.4. Tools
Several tools provide preprocessing functionalities for the other 
modules or interact with other modules of the iCub ecosys tem 
so they can be easily used within iCub-HRI. The guiUpdater 
trans lates the representations of iCub-HRI to those used within 
the iCubGui. More specifically, it allows the display of location 
for objects and agents stored within the working memory along 
with certain properties, such as their color and name. The opc-
Populator can be used to spawn new entities in simulation and 
control their parameters. This allows testing new functionalities 
in a controlled environment, without the noise encountered 
when using the real robot. We further provide a touchDetector 
that connects to the iCub’s artificial skin, and clusters taxels 
belonging to the same body part. Finally, the referenceFrame-
Handler provides functionalities similar to that of the transform 
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library (TF; Foote, 2013), i.e., transforming a pose from one 
frame (e.g., that of the RGB-D camera) to another (e.g., that of 
the iCub root).

4. USING iCub-HRI

There is a variety of use cases for iCub-HRI. We first show the 
ease of use of iCub-HRI in a representative example related to 
the object manipulation subsystem. We then introduce a tutorial 
which demonstrates the interplay of various components in the 
context of human–robot interaction. Subsequently, we briefly 
describe how an extended version of this tutorial has been used to 
tackle the symbol grounding problem in the DAC-h3 framework 
(Moulin-Frier et al., 2017). This is followed by a description of 
the implications of this library for technical and non-technical 
users alike. Finally, we discuss the platform independence and 
dependencies of iCub-HRI and provide links to the documenta-
tion and repository.

4.1. example Usage of the object 
Manipulation Subsystems
The GitHub repository contains a range of examples, including 
examples of using the KARMA and ARE subsystems to manipulate 
objects, i.e., grasping, pushing, or pulling them, in C++, Python, 
and Matlab. Some examples use yarp::sig::Vector instances to 
specify the target location (important for users looking to employ 
iCub-HRI as a lightweight library), while others rely on the Object 
class introduced earlier (providing a seamless integration with 
the contained object recognition module). Listing 1 shows an 
example which uses the iCub-HRI library to pull an object using 
the KARMA Subsystem, while Listing 2 contains code directly 
communicating with KARMA, which is much less intuitive 
and likely distracts from the actually desired code related to the 
human–robot interaction.

LISTING 1 | Pushing an object using iCub-HRI is straightforward and requires 
the provision of just two parameters: the object to be pushed and the desired 
target position.

#include <yarp/os/all.h>
#include <icubhri/clients/icubClient.h>

int main() {
yarp::os::Network yarp;

icubhri::ICubClient iCub("KARMA_Simple");
if(!iCub.connect()) {return -1;}//connect to 
subsystems

std::string objectName = "octopus";//as recognized by 
object recognition
double targetPositionX = -0.45;

bool ok = iCub.pushKarmaFront(objectName, 
targetPositionX);
yInfo() << (ok ? "Success": "Failed");

return 0;
}

LISTING 2 | Pushing an object communicating directly with KARMA. Besides 
being less readable, this code is also more error prone as the Bottle’s 
components need to be provided with the right type and in the right order. 
Furthermore, many more parameters are involved.

#include <yarp/os/all.h>
#include <yarp/sig/all.h>

yarp::sig::Vector getPos(std::string name) {
//communicate with object recognition module to obtain 
object position
//this is not shown for brevity

}

int main() {
yarp::os::Network yarp;

yarp::os::RpcClient toKarma; toKarma.open("/example/
toKarma");
yarp::os::Network::connect(toKarma.getName(), "/
karmaMotor/rpc");

yarp::sig::Vector pos = getPos("octopus");
double targetPositionX = -0.45;
double radius = fabs(pos[0] - targetPositionX);

yarp::os::Bottle cmd, reply;
cmd.addString("push");
cmd.addDouble(pos[0]); cmd.addDouble(pos[1]); cmd.
addDouble(pos[2]);
cmd.addDouble(-90);//angle theta
cmd.addDouble(radius);//distance to be pushed
toKarma.write(cmd, reply);
bool ok = (reply.get(0).
asVocab() == yarp:os:Vocab:encode("ack"));
yInfo() << (ok ? "Success": "Failed");

return 0;
}

4.2. Knowledge Acquisition Tutorial
The robot can acquire knowledge in two different ways: pro-
actively, where a decaying drive to acquire knowledge triggers 
the behavior to obtain the name of an object or body part, or 
reactively, where the knowledge acquisition follows a human 
command. The demo for this paper is centered around the 
proactive tagging module, which makes use of several sub-
systems and connects directly to several other modules. For 
example, it uses the speech recognition subsystem to acquire 
the names of entities (objects in the vicinity, partners, and body 
parts), the speech synthesis subsystem to enable the robot to 
verbally express itself (in order to ask for object names), and 
the ARE subsystem to point at objects and make them salient. 
Furthermore, it makes use of the functionalities provided by 
a number of other modules presented within the previous 
section, including PASAR to detect which object the partner 
is pointing to, the face recognition module to recognize the 
partner, and the touchDetector to identify which skin patch was 
being touched by the human. An overview of the interaction 
between the modules is shown in Figure 1. All further details, 
including the necessary set-up, configuration files, modules to 
run, and supported interactions, are described in the dedicated 
tutorial. We provide a set of videos of this experiment which 
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FIGURe 1 | Temporal UML diagram for an interaction where a human gives a speech command to the iCub to push an object which is currently unknown to the 
robot. The diagram depicts the involved modules and subsystems, and shows the information flow. After converting the speech command in an action plan, the 
robot first asks the human to indicate the desired object, and subsequently pushes that object. The knowledge database is continuously being updated by the 
agent detector and object recognition system throughout the interaction, and the object name is updated after the human indicated the object by pointing to it.  
In our GitHub repository, we provide another diagram for the case that a drive threshold is hit, which triggers the behavior to tag an unknown object autonomously.
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demonstrates the robustness of the framework in various 
environments.13

4.3. Usage within dAC-h3 Framework
An extended version of the knowledge acquisition tutorial has 
been used to solve the symbol grounding problem, acquire lan-
guage capabilities, execute goal-oriented behavior, and express 
a verbal narrative of the robot’s experience in the world, using 
the DAC-h3 framework (Moulin-Frier et al., 2017). The work of 
Moulin-Frier et  al. (2017) also demonstrates that the software 
framework presented in this paper can be readily used to study 
human–robot interaction experiments with naive subjects.

From the engineering perspective, the library and modules 
of iCub-HRI have been embedded in the Distributed Adaptive 
Control architecture (DAC, mentioned in the Introduction). 
The DAC architecture proposes that the brain can be seen as 
a multi-layered control structure consisting of (1) the body 
(with its sensors, needs and effectors), (2) the reactive layer 
for reflexive predefined control, (3) the adaptive layer for state 
acquisition and model-free reinforcement learning, and (4) the 
contextual layer which acquires model-based goal-oriented poli-
cies. Across these layers, we can distinguish columns of systems 
that processes states of the environment, the self and action as 
depicted in Figure 2.

13 https://github.com/robotology/wysiwyd—“Demonstration 4,” up to the fourth 
minute of the video.

The implementation of iCub-HRI with its subsystems and 
working memory make it particularly suitable in any scenario 
where module integration is driven by a complex multi-layered 
control architecture, with heterogeneous modules communicat-
ing within and between the different control layers.

4.4. More Applications and Use Cases
The central advantage of iCub-HRI is that the library bypasses 
the requirement for obtaining a working knowledge of the opera-
tion of a large range of modules during the normal operation of 
the iCub and their interaction before starting to develop one’s 
specific application on top of these modules. Furthermore, iCub-
HRI’s modular subsystem architecture means that one can easily 
integrate applications developed on top of iCub-HRI to further 
abstract and accelerate the development of robotics applications.

The underlying design principles of iCub-HRI (see Section 
1.2) and the high-level abstractions of the robot’s basic input and 
output systems like speech, vision, and motor control allow a 
wide, varied range of use cases. For users with a non-technical 
background, it significantly reduces the learning curve to exploit 
the iCub robotic platform, with potential applications such as 
robotic art, research into the societal effects of robotics, investiga-
tions into human–robot collaboration and human–robot inter-
action studies investigating the psychological effects of such an 
interaction. For users more familiar with the iCub, the flexibility 
of the library allows them to focus on the core of their applica-
tions, where iCub-HRI provides a bridge to quickly integrate 
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implemented: iCub-HRI was easy to adapt and was extended with several 
other modules. Furthermore, the user study presented by Moulin-Frier et al. 
(2017) was directly based on the knowledge acquisition tutorial presented in 
Section 4.2.
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these applications with the sensory, motor, and affective systems 
of the robot. This reduces the implementation effort which leads 
to faster developments, and allows for accelerated prototyping of 
embodied artificial intelligence applications.

4.5. Platform Independence
This paper specifically aims to provide a software framework to be 
used on the iCub humanoid robot. However, due to the modular 
design of the framework, certain components could be used on 
other robotic platforms as well, as they do not directly interface 
with the iCub’s sensors and/or actuators and are hence robot 
agnostic. The following components are platform independent 
and can directly be used on other robots14:

•	 Working memory (Section 2.1).
•	 Perception modules: agent detector (Section 3.1.1), speech 

recognition (Section 3.1.2), saliency (Section 3.1.4), as well as 
face and action recognition (Section 3.1.5).

•	 Reactive layer (Section 3.3.2); the actions executed by the 
drives can be easily adjusted in a configuration file.

14 Provided they run on YARP, or can be interfaced with YARP through, e.g., the 
YARP-ROS interoperation.

•	 Tools (Section 3.4): the opcPopulator as well as the 
referenceFrameHandler.

All other components are tailored for the iCub and would need 
to be re-implemented or substituted with alternatives on another 
platform.

4.6. dependencies
The only hard dependencies of iCub-HRI are a C++ 11 compat-
ible compiler and YARP. Due to the aspiration to combine various 
components within a single architecture, there are a number of 
soft dependencies: OpenCV, IOL, and superquadric-model for 
object tracking, kinect-wrapper to track the human partner, the 
speech repository for speech synthesis and recognition, as well 
as (a modified version of) KARMA for object manipulation. All 
dependencies are released under free software licenses, specifi-
cally LGPLv2.1 for YARP, BSD-3-Clause in case of OpenCV and 
GPLv2 for all other dependencies.

The installation of these components is further detailed in the 
iCub-HRI repository and we provide a Python script to easily 
keep all dependencies up-to-date. It is also possible to download 
or compile a Docker image which contains all required and 
optional libraries pre-installed and configured.

4.7. download, Licensing, and 
Compatibility
The code is available for download on the designated GitHub 
repository15 alongside the documentation (including class 
diagrams) and tutorials. It is released under the free software 
license GPLv2. The build status is continuously monitored on 
Windows, Linux, and macOS. The code itself can be considered 
stable and has been in adapted from the code which was used in 
the EFAA and WYSIWYD projects for several years.

5. CoNCLUSIoN ANd FUTURe WoRK

We presented iCub-HRI, a software framework which integrates 
various components available within the iCub ecosystem and 
makes them easily accessible by the means of method calls. 
iCub-HRI can be used in various ways, from a very lightweight 
library up toan integrated platform for studies on human–robot 
interaction. While it is tailored for the iCub humanoid robot, 
many parts are platform independent and can be used on other 
robotic platforms as well. We provide a full documentation and 
various tutorials, allowing researchers to easily adapt iCub-HRI 
for their purposes.

One limitation of the presented framework is that while it 
facilitates communication between different modules, it does 
not have any means of manipulating the execution of indi-
vidual modules. This is a disadvantage in case of, e.g., monitor-
ing real-time constraints, which cannot be guaranteed on the 
framework level but only within individual components (this 
is the case for the low-level Cartesian controller employed by 
ARE and KARMA (Pattacini et al., 2010)). Furthermore, as a 

15 https://github.com/robotology/icub-hri. 
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central memory is being employed, there is a delay of the infor-
mation flow from one module to another. Another limitation 
of this work is that no test data are being provided. Providing 
a proper test-suite is beyond the scope of this research, as 
it would need to write test cases for several tens of modules 
(many of them being external), and their communication 
handled by over 100 YARP ports. Writing suitable test cases 
using the testing framework presented by Natale et al. (2016) 
is an interesting research idea which we would like to tackle 
in future works.

A key point for the future adaptation of iCub-HRI will be the 
integration of new components from within the iCub ecosys-
tem as well as state of the art software from related disciplines. 
For example, we intend to replace the current object tracking 
functionality with a state of the art object tracker (Choi et al., 
2017); and to embed the reaching-with-avoidance framework 
(Nguyen et  al., 2016; Roncone et  al., 2016) for safer robot 
actions.
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OCRA stands for Optimization-based Control for Robotics Applications. It consists of a
set of platform-independent libraries which facilitates the development of optimization-
based controllers for articulated robots. Hierarchical, weighted, and hybrid control
strategies can easily be implemented using these tools. The generic interfaces provided
by OCRA allow different robots to use the exact same controllers. OCRA also allows
users to specify high-level objectives via tasks. These tasks provide an intuitive way of
generating complex behaviors and can be specified in XML format. To illustrate the use of
OCRA, an implementation of interest to this research topic for the humanoid robot iCub
is presented. OCRA stands for Optimization-based Control for Robotics Applications. It
consists of a set of platform-independent libraries which facilitates the development of
optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid
control strategies can easily be implemented using these tools. The generic interfaces
provided by OCRA allow different robots to use the exact same controllers. OCRA also
allows users to specify high-level objectives via tasks. These tasks provide an intuitive
way of generating complex behaviors and can be specified in XML format. To illustrate
the use of OCRA, an implementation of interest to this research topic for the humanoid
robot iCub is presented.

Keywords: whole-body controller, iCub, optimization, tasks, hierarchical, code:c++

1. INTRODUCTION

Whole-body control (WBC) is a research direction in robotics, where humanoids are faced with the
problem of executing multiple tasks simultaneously. As stated by the IEEE Technical Committee on
Whole-Body Control:

A control system that is specifically designed to guarantee the execution of a single
task, even if it uses all the joints of a robot, cannot be considered WBC.

This is indeed the core of the software introduced in this work, but it goes further by drawing addi-
tional requirements from the identification of typical concerns in the control of articulated robots,
such as (1) standardization of the problem formulation, which is done in the form of an optimization
problem; (2) flexibility in the solver choice; (3) independence of tasks from the problem formulation
with user-friendlyways to introduce them; (4) addition of constraints, contactmodeling and support
for both fixed and floating-base robots. OCRA draws its origins from these design requirements.
It stands for Optimization-based Control for Robotics Applications and consists of a set of
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platform-independent libraries which facilitates the development
of optimization-based controllers. It builds on top of ORC which
was originally a framework developed by CEA-List,1 later used at
the Institute of Intelligent Systems and Robotics (ISIR) to develop
whole-body controllers with simulations on XDE (Salini et al.,
2013).

Examples of software addressing similar problems include the
Stack of Tasks (SOT) (Mansard et al., 2009), OpenSOT (Rocchi
et al., 2015), and CoDyCo2 controllers (Nori et al., 2015). Nev-
ertheless, they either lack the level of desired flexibility or do not
meet the proposed design requirements. SOT and OpenSOT use
strictly hiearchical methods, and while OpenSOT is intended for
torque-controlled robots similar to OCRA, SOT originally targets
velocity-controlled robots. When it comes to solvers, OpenSOT
relies solely on QPOases while SOT’s controller and solver are
tight together.

Another software that has been used in the formulation of
this type of controllers is Roboptim (2016). It is, however, an
optimization framework for robotics and it is up to the user to
formulate the control problem, workout the prioritization strategy
and address the different components to achieve a whole-body
controller.

CoDyCo’s controllers on the other hand, although aimed at
WBC, are tailored to be task-specific and do not constitute aWBC
library.

OCRA has been designed to exploit a client–server paradigm,
where the server is responsible for running the whole-body con-
troller, send control inputs to the robot and host user-defined
tasks, while the client is built by the user according to their needs
on task servoing, planning, or higher-level control.

OCRA contributes to the building of the iCub mindware
through the implementation of an iCub server along with com-
munication utilities for the construction of clients. It facilitates
the creation of a vast type of whole-body behaviors, with special
attention to interaction. It also addresses the needs of different
types of users, from the advanced one who desires to implement
particular low-level control laws, to the more practical one who
prefers to state at the metatask-level.

In Section 2, a generic overview of the main design require-
ments and features of OCRA, along with a list of software depen-
dencies is presented. Section 3 introduces the main concepts
involved in optimization-based control which allow the reader
to have a deeper insight in the inner workings of the software.
Concepts such as tasks, constraints, quadratic programming based
control (and motivations for its use), prioritization strategies,
and optimization solver are covered. Section 4 spans OCRA’s
structure, shedding light on its libraries and the main classes
they are composed of as well as how these were used for iCub
implementations. The same section continues with a more in-
depth description of the iCub server and a generic client through
sequence diagrams, as well as a brief explanation on how to
automatically build a template client. Finally, Section 5 draws final
conclusions.

1http://www-list.cea.fr/en/.
2European Project Whole-body Compliant Dynamical Contacts in Cognitive
Humanoids.

2. OCRA

OCRA is a set of libraries and tools for the implementation
of QP-based whole-body controllers for torque/force-controlled
articulated robots. Robots like the humanoid iCub or the KUKA
LightWeight Robot (LWR)manipulators (floating/fixed base) can
be controlled using this open source software. In particular, for the
iCub, the set of necessary libraries is implemented and distributed.

One main design requirement from OCRA’s inception is that
(1) it should be heavily task-oriented. This means, that a user can
specify a set of tasks to be performed by the robot, e.g., follow
a CoM trajectory, while maintaining balance and make one hand
follow another trajectory and (2) the specifications of these tasks
have to be easy to provide. This is achieved through an XML file
that we call the tasks set.

Features that make OCRA flexible include: the possibility to
choose between different types of tasks and their prioritization
strategies; two different optimization solvers; various types of con-
straints and the tools to create a client–server architecture, where
the server runs a reactive controller with the tasks and constraints,
and one or more clients perform the computation of the right
instantaneous tasks values through local trajectory controllers
(e.g., PIDs), motion planning, model predictive control, or any
higher-level control schemes.

The required dependencies of this software are given inTable 1.

3. OPTIMIZATION-BASED CONTROL

Traditionally, redundancy resolutions for robotic control prob-
lems find analytical solutions by ensuring that lower-priority tasks
are executed in the null-space of higher-priority tasks. In prior-
itized inverse kinematics, acceleration or torque based control,
the jacobian of low-priority tasks is projected onto the null-space
of higher-priority ones (Khatib, 1987; Sentis and Khatib, 2006;
Peters et al., 2008). Inequality constraints are, however, difficult to
deal with in these approaches. They are usually transformed into
avoidance tasks, which try to prevent the robot from hitting the
original constraint (Khatib, 1986; Padois et al., 2007). This type of
active avoidance (passive or active) method is doomed to fail as
the number of constraints is necessarily higher than the number
of DOF (2n joints limits for an n DOF robot) and it thus requires
tomake decision reactively about which avoidance tasks should be
used in order to guarantee the respect of all constraints while still

TABLE 1 | Required dependencies table for ocra and ocra-icub.

Dependency Minimum version ocra ocra-icub

YARP 2.3 X X
Eigen 3.2 X X
orocos_kdl 1.2 X X
iDynTree 0.4.0 X
yarpWholeBodyInterface 0.35 X
Boost 1.64 X X
CMake 2.8.11 X X
TinyXML 2.6.2 X
YCM 0.4.0 X

For the sake of clarity, it is not shown that ocra is naturally a dependency of ocra-icub.
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achieving the operational tasks in the most efficient way possible
(Padois, 2016).

OCRA resorts to convex optimization for the formulation of
the whole-body controller, as it has been stated multiple times
before this point. The controller is written as a linearly constrained
quadratic multi-objective optimization problem where strict or
soft hierarchies are used to express the priorities between the
tasks. Linearly constrained due to the constraints being strictly
linear (or linearized if not), quadratic because each objective is
the quadratic error of a task and multi-objective because multiple
tasks are combined. The result of this optimization are the optimal
actuation inputs to the system (i.e., joint torques) given the set
of prioritized tasks to be performed and the constraints that
have to be respected. Among these constraint, this optimization
problem includes inequality constraints, coming from control
input saturations or any other variable which should never cross
certain limits. Under these conditions, the solution space can be
proved convex and finding the optimal solution to the whole-
body control problem is equivalent to finding the set of active
constraints. In fact, methods in which optimization is avoided end
up using algorithms that pretty much search for this active set,
not explicitly and in a suboptimal way. It is then indisputable that
the strong background in convex optimization outruns analytical
methods used to heuristically activate constraints.

The primary concern of this section is to present the necessary
equations and relationships to understand the critical aspects of
the types of controllers which can be developed with OCRA.
Generally speaking, an optimization-based controller formulates
the control problem as one of minimizing control objective func-
tions while respecting the control constraints. Specifically, the
problem is formulated as a convex linearly constrained QP using
the second-order rigid body dynamics of the robot. Therefore,
the control objectives (Tasks) are expressed as either accelerations,
torques, or wrenches, allowing for complex dynamic interactions
with the environment, and the control constraints are expressed
directly in the QP as linear equalities and inequalities.

3.1. Tasks
Tasks allow users to decompose complex whole-body behaviors
into atomic control objectives, which can be planned by a user
or automatically with planners. Here, a task represents a control
objective for the robot, and more specifically, an error between
some desired task value and the current value of the task in terms
of the control variable. These tasks are expressed as the squared
norm of these errors in either accelerations, torques, or wrenches
and can be expressed in both joint and operational-space. In
Section 3.4, the expression of these tasks in terms of the control
variables is provided, but Table 2, below, shows their standard
formulations.

In Table 2, ν and ν̇ are the generalized velocities and accel-
erations of the robot. They can be more or less directly related
to the derivatives of the generalized coordinates q. Indeed, for
robots whose root link can float freely in Cartesian space, e.g.,
humanoids, it is necessary to consider the pose of the root link
w.r.t. the world reference frame. The primary method for doing
so is to account for the root link pose directly in the generalized
coordinates, q, of the robot (Sentis and Khatib, 2005; Mistry et al.,

TABLE 2 | Different types of tasks.

Task Definition

Operational-space acceleration T
(

ξ̈des
)

=
∥∥∥J(q)ν̇ + J̇(q, ν)ν − ξ̈des

∥∥∥
Joint-space acceleration T

(
ν̇des

)
=

∥∥∥ν̇ − ν̇des
∥∥∥

Operational-space wrench T
(
eωdes

)
=

∥∥∥eω − eωdes
∥∥∥

Joint torque T
(

τ des
)

=
∥∥∥τ − τ des

∥∥∥
Superscript “des” stands for desired.

2010). The terms J and J̇ are link Jacobians and their deriva-
tives. The variable eω represents an external wrench, and τ , the
system torques, while ξ̈ is operational-space acceleration. The
corresponding desired values of each term inTable 2 should not be
confused with the raw trajectory given by the user (subscript ref ).
These set-points are used as inputs to a task-level PD controller
in the case of operational-space acceleration tasks and a PI in the
case of wrench (eω) tasks, such that:

ξ̈des(t + ∆t) = ξ̈ref(t + ∆t) + Kpϵ(t) + Kdϵ̇(t), (1)
eωdes(t + ∆t) = eωref(t + ∆t) + Kpϵ(t) + Ki

∫
ϵ(t)dt, (2)

where ξ̈ref and eωref are feedforward terms, while ϵ and ϵ̇ are pose
error and its derivative (these being representation dependant).
Kp, Kd, and Ki are proportional, derivative, and integral gains and
by default, Kd = 2

√
Kp. Task servoing is necessary to compensate

for drift and tracking errors associated with using second-order
control techniques. Additionally, it is often the case that only
position values are specified by the user, and these must be con-
verted to accelerations—task servoing provides this service. For
joint-space accelerations the servoing is done in similar fashion as
for ξ̈des.

3.2. Constraints
As with all real world control problems, there are limits to what
the system being controlled can do. For example, the control input
is typically bounded, which for robots with revolute joints means
that the torque which can be generated by the actuators is limited
to plus or minus some value. Likewise, the joints themselves
generally have limited operating ranges for various mechanical
reasons. In addition to these common limiting factors, it may be
reasonable to maintain the robot in some region of its state space
that will ease control, e.g., avoid slipage of the contact points or
avoid contact with the environment.

In Table 3, the •min and •max values represent the lower and
upper limits of a variable. The term Ccj

eωj ≤ 0 represents
the linearized friction cone constraint for a point contact, and
eJ(q)ν̇+e J̇(q,ν)ν = 0, its coupled “nomotion” constraint, which
ensures that the contact does not move. For details on these
constraint expressions and the way to express them through lin-
earization as functions of joint torques or generalized acceleration,
the reader is directed to Salini et al. (2011). In addition to these
nearly universal robotic constraints, particular care must be taken
to ensure that the motions generated by the controller respect the
system dynamics, i.e., the equations of motion.
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TABLE 3 | Possible constraints in OCRA.

General constraint Equation

Actuator limits τmin ≤ τ ≤ τmax

Joint position limits qmin ≤q≤qmax

Joint velocity limits ν̇min ≤ ν̇ ≤ ν̇max

Contact constraints Ccj
eωj ≤ 0

eJ(q)ν̇+e J̇(q, ν)ν = 0

3.3. Dynamics
The principle constraint of the controllers in OCRA is that of the
system dynamics. This means that any solution found must be
dynamically feasible, and consequently, respect the equations of
motion,

M(q)ν̇ + C(q,ν)ν + g(q)︸ ︷︷ ︸
n(q,ν)

= S⊤τ+eJ⊤(q)eω (3)

M(q)ν̇ + n(q,ν) = S⊤τ+eJ⊤(q)eω. (4)

In (3), M(q) is the generalized mass matrix, C(q, ν)ν and
g(q) are the Coriolis-centrifugal and gravitational terms, S is a
selection matrix indicating the actuated degrees of freedom, eω is
the concatenation of the external contact wrenches, and eJ their
concatenated Jacobians. Grouping C(q, ν)ν and g(q) together
into n(q, ν), we can simplify the equations to (4). Additionally,
the variables ν̇ , τ , and eω, can be grouped into the same vector,

x =

 ν̇
τ

eω,

 (5)

forming the control variable, and allowing (4) to be rewritten as,[
−M(q) S⊤ eJ⊤(q)

]︸ ︷︷ ︸
A

x = n(q,ν)︸ ︷︷ ︸
b

. (6)

Equation 6 provides an affine equality constraint, Ax= b,
which can be used to ensure that the minimization of the control
objectives respects the system dynamics.

3.4. Quadratic Programming Based Control
Given the control objectives defined by the task errors from
Section 3.1, the control constraints from Section 3.2, and the
optimization variable defined by (5), we can now form a generic,
single task, optimization-based whole-body control problem as,

min
x

Ti(x)

s.t. Gx ≤ h (7)
Ax = b,

where the objective function, Ti(x), is the task error, representing
for example, the squared error between a desired acceleration or
wrench and the system’s (see Section 3.1). The inequality con-
straints, generically represented by, Gx≤ h, contain the concate-
nation of all of the affine inequalities defined in Table 3, while the

affine equality constraints, shown by Ax= b, obligatorily contain
the equation of motion constraints from (6), and possibly the
coupled “no motion” constraints of any contacts which might be
active.

The form of this problem will be referred to throughout this
work as the full problem, which is also the default formulation
used in OCRA. The user can choose to work with the reduced
problem, in which the dynamics are not explicit in the constraints,
but projected onto the different control objectives, and with the
optimization variable, x, in this case, consisting of the control
inputs, τ , and external wrenches eω, i.e., x = [τ⊤ eω⊤]

⊤.
The reduced problem has the advantage of having less optimiza-
tion variables, which can improve the solution time as shown in
Section 3.5 of Salini (2012), at the expense of complicating the
writing of the tasks and constraints in terms of the optimization
variable. The inclusion of the generalized joint accelerations, ν̇ , in
the full problem, yields clarity and simplicitywhenwriting the cost
functions and the constraints on the joint velocities, acceleration
and joint limits.

3.5. Prioritization Strategies
Up to this point, only one task objective function is considered in
the whole-body controller in Section 3.4. If multiple task objective
functions are combined (using operations that preserve convex-
ity) in the resolution of the control problem, then they can be
performed simultaneously. In these cases, it is important to select
a strategy for the resolution of the optimization problem. The
strategy will in turn, determine how tasks interact/interfere with
one another. The two prevailingmethods for dealingwithmultiple
tasks are hierarchical (Saab et al., 2013; Escande et al., 2014) imple-
mented as WOCRA and weighted prioritization (Bouyarmane
and Kheddar, 2011; Salini et al., 2011) implemented as HOCRA.
A hybrid scheme can also be used providing the best of the former
two methods (Liu et al., 2016).

4. SOFTWARE

4.1. Structure
4.1.1. OCRA Libraries
The main concepts introduced in previous sections are
materialized in the different interfaces, abstract, and concrete
classes OCRA is composed of. These are encapsulated in four
essential components or libraries. These are: ocra-optim,
ocra-control, ocra-coms, and ocra-utils.

The first of these libraries, ocra-optim, defines the lowest-
level data structures required to build an optimization problem
such as variables, functions, and constraints, as well as the basic
concept of a solver and prioritization strategies. Table 4 shows the
main classes in this library, their type, and a brief description.

The ocra-control library goes up one level of abstraction,
containing all the classes necessary to build the model of a robot,
implement a control law, account for the floating-base dynamics
and build the different types of tasks, constraints and trajectories.
The two main prioritization techniques described in Section 3.5
are, respectively, implemented through HOCRA and WOCRA. Again,
the main classes in this library along with their brief description
are collected in Table 5.
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TABLE 4 | Main classes composing the ocra-optim library.

ocra-optim

Main classes Features

Variable Represents the mathematical concept of
variable

Function Base for any type of function
Constraint Templated base class to build

equality/inequalities constraints
LinearizedCoulombFunction Builds a discretized cone representing a

Coulomb Friction cone
Solver Base class for optimization solvers
CascadeQPSolver Implements a hierarchical solver

OneLevelSolver Used for building solvers with one level of
importannce to all tasks. It also contains
specific implementations with QuadProg++
and QPOases. This is the solver used in wocra

Blue labels indicate abstract classes that can be later implemented. Orange labels are
assigned instead to concrete classes without particular inheritances, while green labels
stand for implemented classes.

TABLE 5 | Main classes composing the ocra-control library.

ocra-control

Main classes Features

Controller Used to implement control laws
Model Provides dynamic and static terms from

the equations of motion
FullDynamicEquationFunction Creates the dynamics equation as a

linear function of the optimization
variable

ModelContacts Concatenates the contact variables and
Jacobians for a model

ControlFrame Generic representation of a frame
Feature Used by tasks to compute errors and

Jacobians
Task –
TaskBuilder Builds task-specific features
*TaskBuilder Task-specific implementations of

TaskBuilder. “*” is replaced by Com,
FullPosture, Orientation, etc.

TaskConstructionManager –

*LimitConstraint (torque and joint limits)
Trajectory Helper class to build trajectories. These

can be minimum jerk, linearly
interpolated, gaussian processes or
time-optimal

WocraController QP-based controller using a weighted
prioritization strategy

HocraController QP-based controller using a hierarchical
prioritization strategy

Blue labels indicate abstract classes that can be later implemented. Orange labels
are assigned instead to concrete classes without particular inheritances. Red labels to
interfaces and green labels to implementations.

The last two libraries are agnostic to the paradigm suggested
by OCRA. That is, a client–server model. In order to implement
it, the ocra-coms library is provided and comes with the generic
classes to create a server and a client and tomanage the communi-
cation between them. Table 6 lists the main classes in this library
along with their description.

TABLE 6 | Main classes composing the ocra-coms library.

ocra-coms

Main classes Features

ControllerServer Must be inherited to implement the server
side

ServerCommunications Helps the server establish YARP-based
communication with the client

ClientCommunications Helps the client establish YARP-based
communication with the server

ClientManager Implements the functionalities of YARP
RFModule on the client side. Holds the main
client thread

ControllerClient Implements the functionalities of YARP
RateThread on the client side. Main thread
hosted by ClientManager

TaskConnection Used on the client side to connect and
communicate with the tasks started by the
server

TrajectoryThread Used to create trajectories on the client side

Blue labels indicate abstract classes that can be later implemented. Orange labels are
assigned instead to concrete classes without particular inheritances.

TABLE 7 | Main classes composing the ocra-icub library.

ocra-icub

Main classes Features

ModelInitializer Retrieves model configuration information
from the server to create a local copy of the
robot model

OcraWbiModel Implements the abstract Model class from
ocra-control for the iCub robot

IcubControllerServer Implements ControllerServer for the
iCub robot

Module Module that launches the controller thread,
parses controller options and the tasks set
XML. Basically a yarp:os:RFModule

Thread Main controller thread started. Created by
Module, contains the controller, tasks
manager, and solves the whole-body
control problem

Orange labels mean concrete class without any particular inheritance. Green labels are
for classes that implement some base class from the main OCRA libraries. Yellow labels
stand indicate classes that are used to build a client, while gray labels are for those used
to build a server.

Finally, the ocra-utils library as its name states, is a set of
utilities to aid the other libraries: helpers to perform file opera-
tions, xml parsing, data structure conversions, errors descriptors,
among others.

4.1.2. OCRA for iCub
The classes needed to implement a server for the iCub robot
and a generic client are present in the ocra-icub library. As
can be seen from the green implementation labels in Table 7,
most of the main classes are implementations of base classes from
ocra-control and ocra-coms. In the following section, two
main detailed explanations are provided: how to use these classes
to obtain a client–server architecture for iCub, and how objects of
the different classes interact.
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FIGURE 1 | A server (ocra-icub-server) and a client (icub-client) are here
represented in dark green as YARP modules. In light green, we see the
underlying OCRA libraries associated to their construction, as well as for the
communication between them and the parsing of the tasks set.

Given the classes involved in the construction of this task-
oriented, client-server paradigm for whole-body control, as well
as the particular implementations for iCub, we present for the
sake of clarity in Figure 1 an illustration of a typical server–client
architecture with the underlying OCRA libraries used to build
each component. This section proceeds with a time-based illus-
tration of the interaction logic between the different objects of our
system in the form of sequence diagrams (IEEE, 2009) as shown in
Figures 2 and 3. Given the amount of classes in the package, it
might be difficult to see the global interaction among them along
with the intended architecture. The next two sections attempt to
clear this out by showing the inner interactions of both client and
server, independently and between them.

4.1.3. iCub Server
Figure 2 depicts the sequence diagram for the ocra-icub-
server. The user starts by executing the server from terminal
issuing the command ocra-icub-server [options] (1).

The default options are specified in its initialization file
ocra-icub-server.ini or hardcoded in the source code. After
the execution of the server, an object of type ResourceFinder
is created, which is responsible for the parsing of the former
options. Right after, a yarp RFModule is created (3) and started
(4), whose first task will be to configure the server (6), ask
the ResourceFinder to find the desired type of controller (7),
i.e., WOCRA or HOCRA, the solver to be used, i.e., QUAD-
PROG or QPOASES, the XML file with the description of
the tasks that the client will manipulate, etc. At this point, a
yarpWholeBodyInterface object is created (8) and initialized.
This class serves as an interface to the robot, and as such will allow
us to set the control references obtained, as well as to obtain the
state of the robot. Now the module is ready to create (12) and start
(13) the main thread of the client.

Before entering the main loop of the thread, however, a cou-
ple of objects of interest are created. First, an object of type
IcubControllerServer (14), which during initialization (16)
will create the desired controller with its internal solver. At this
phase, also communication ports are opened with standardized
names that will be used by the cient for future connections.
IcubControllerServer is then asked by the thread to update
its internal model of the robot (17) and add the tasks specified
by the user via XML (18). This process involves the creation

(19) of an object of type TaskConstructionManager which
will create one or multiple instances (20) of TaskBuilder,
one per type of task found in the XML. These task objects
will then get added to iCubControllerServer (21). Notice
how the tasks are living in the server. The server will then ask
the yarpWholeBodyInterface object to set the torque con-
trol mode on the robot (22) for it to accept torque references.
The latter are computed every cycle of the Thread (24–27) by
iCubControllerServer.

The server will be constantly controlling the robot to achieve
default initial states of the specified tasks. As an example, if
one task is of COM type, it controls the robot to keep it at its
initial position, until a client connects to the server and tells it
to do otherwise. Finally, if the user decides to stop the server
(28), the sequence of object “destructions” is illustrated from (29)
to (37).

4.1.4. Generic Client
A client’s main goal is to connect to the server to provide reference
trajectories to the tasks it hosts. Let us show through Figure 3 the
main interactions within a client and the type of communication
it establishes with the server.

As done previously on the server side, we are going to follow the
sequence diagram in an orderly fashion. First, notice how before
the user can start a client, they need to start the server. This is
evident by the sequence number (2) next to example-client.
Thus, having a server properly started, the client is launched
and the first thing it does is to get model information of the
robot through the class ModelInitializer. This is the first
interaction between the client and the server (4-5), after which a
local model of the robot is built (6). Once the client has access
to the robot model, the main client thread is created (7). This is
of type ControllerClient which is a Yarp RateThread. The
creation of the thread is followed by a ClientCommunications
object (8), which creates and connects local ports to the server for
inter-process communications. Its role will become clearer later
on. The client thread is passed to a ClientManager object (10)
which will handle the life-cycle of the thread and its configu-
ration (11–12). The module subsequently starts (18) the client
thread, which afters initialization will spawn a couple of objects of
interest.

Given the tasks contained in the XML file (taskSet) and fed to
the server, the client will create one or more TaskConnection
objects (18) for each of those tasks that are to be manipulated.
Although not depicted in the diagram, for the sake of clarity, these
objects will open control ports that are then connected to their
corresponding tasks on the server side (19). It is through these
objects that the client will be able to send task-specific messages
to get or set their state.

As it is often the case, the user might want to create reference
trajectories (of even different types) for all or some of the tasks.
To this end one or more objects of type TrajectoryThread
are created (20). These, at the same time, will internally create
TaskConnection objects again to set the references to the tasks
on the server (21). The client thread can then start the trajectory
threads (23) and run in the background until it receives new
references (25–29).
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FIGURE 2 | UML sequence diagram displaying the typical interactions within the ocra-icub-server. The time evolution of interactions is followed from top to bottom,
while messages passed among objects are found in the horizontal dimension. The light yellow background of some lifelines indicates that these are threads.

Now that the client has created task connections and trajectory
threads, the client logic starts in the main thread (30–40). In this
main loop, the client can:

• Get or set task-specific states through the TaskConnection
objects (31–34).

• Add, remove or get tasks through the
ClientCommunications object (35–38).

• Set references to tasks trajectories through the
TrajectoryThread objects (39–40).

In order to stop the client, the user can send a SIGINT signal
(ctrl+ c) to kill the process and the sequence of “destructions”
will be as in (43–53).

In Section 5.2, a link to a short tutorial can be found where it is
explained how to launch a server and client.

4.1.5. Client Generator
Because each new iCub controller client requires the same basic
setup, a helper tool has been developed to automatically scaf-
fold out the minimum required code for a new client. Invoking
icub-client-generator [name-of-client] from the com-
mand line will produce a directory called name-of-client/, with
all of the minimum client requirements and a complete CMake
build. One then needs only to edit the name-of-client.cpp file
and add control logic. Therefore, anyone can write an iCub client
in just a few minutes.
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FIGURE 3 | UML sequence diagram displaying the typical interactions within a generic client. The time evolution of interactions is followed from top to bottom, while
messages passed among objects are found in the horizontal dimension. The light yellow background of some lifelines indicate that these are threads.

5. CONCLUSION

The development of intelligent and autonomous robots entails
many challenges, one of which is robust and flexible controllers.
The overall goal of any control software should be to abstract the
control of redundant robots, such as the iCub, to higher and higher

levels of logic in order to facilitate the generation of complex
overall behaviors—behaviors, which should ultimately render the
robot useful. Whole-body control was born from these require-
ments and lays forth the design criteria for OCRA presented
in Section 1. Through its various abstract and concrete classes,
and server–client structure, OCRA attempts to provide a solution
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which meets these needs but also balances ease of use with flex-
ibility. The design of OCRA allows users to interact with and
customize the control problem at virtually any level from the real-
time computation of joint torques to high-level controller clients.
This wide array of usability means that OCRA is suitable for any
user from control experts to control novices.We believe that this is
an important step toward improving the usability of such software
because the learning curve should be simple for those who only
want a functioning controller, but the software should also be
flexible enough to allow users to experiments with fundamental
concepts.

At the low-level, this is accomplished by abstracting the various
aspects of the control problem and providing concrete implemen-
tations for the most commonly reused concepts. Users interested
in low-level control concepts can, therefore, experiment with
customizing the abstract interface classes to their own needs, or
simply construct novel controllers using the concrete class imple-
mentations. Higher-level usage on the other hand, is easy to get
started with, thanks to the server–client architecture. If the robot
has been properly interfaced with the OCRA controller server,
then clients can be developed with little effort and most of all,
no deep understanding of the internals of the server side. Various
examples of the different manners in which one can interact with
OCRA are presented in the Supplemental Data Section and vali-
date the variety of ways OCRA can be used to study and develop
autonomy.

Ultimately, OCRA should serve as the basis for increasingly
complex logic, by robustly resolving progressively more complex
layers of the control problem. The server–client architecture is just
the beginning of this process and should be built upon by even
high-levels of problem reasoning, to create greater and greater
levels of robot autonomy.
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This work illustrates the design phases leading to the development of a new YARP

device interface along with its client/server implementation. In order to obtain a smoother

integration and a more reliable software usability, while avoiding common errors during

the design phases, a new interface is created in the YARP network when a new family of

devices is introduced.

Keywords: hardware abstraction, client server architecture, software design, depth sensor, YARP

1. INTRODUCTION

Depth sensors, such as the kinect (Zhang, 2012; Han et al., 2013), are very popular in the field of
navigation for mobile robots. OpenNI2 framework (Aksoy et al., 2011; RehemNeto et al., 2013), an
open source SDK used for the development of 3D sensing middleware libraries and applications, is
arising as a tentative standard for this type of devices, yet producers do not always comply with the
specifications. In a typical application, data are acquired by a robot but processed and visualized
on a remote machine. The device driver is in charge of acquiring data from the sensor while client
and server handles the transfer, optimizing both portability and performance. In general terms, we
believe that an effective solution to standardize data flow in a software framework is to provide the
device interface together with its client/server implementation.

1.1. YARP Device Interface
YARP (Metta et al., 2006) is a middleware specifically designed for robotics with a strong focus
on modularity, code re-usage, flexibility, and hw/sw abstraction. In order to achieve those goals,
the use of interfaces is fundamental because they allow to abstract from a specific producer. YARP
device driver interfaces are the ones devoted to generalize the capabilities and configurations of a
specific set of similar devices.

An interface is a class composed only by pure virtual function, data type definitions, and it is
the place where relevant measurement unit must be declared. The implementation of a new YARP
device interface is realized in the development of three C++ objects: (i) the device driver which
handles the real hardware, (ii) the network server which publish the data, and (iii) the network
client used by the application to remotely access the device. The objects are shown in the Figure 1A.

Note that by mean of an interface, the user application can connect directly to the device driver
bypassing the client/server architecture, as illustrated in Figure 1B. This is useful when higher
efficiency and low latency are required.

1.2. RGBD Device Family
An RGBD sensor is a device equipped with a standard RGB color camera and a depth image source.
The latter is producing a special image in which each pixel is providing the distance of closest object
in view.
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FIGURE 1 | How the application connects to an hardware device. (A) Via client/server. (B) Directly.

RGBD is the source data required to build a point cloud,
but they have distinct characteristics. The depth sensor produces
two separated image frames where the first one contains color
component and the second one distance information. A point
cloud instead is a specific data type where the point contains color
and depth components altogether and optionally other related
informationlikesurfacenormals,curvatures,histogram,andsoon.

While both RGB and depth frames shared the rectangular
width per height structure, a point cloud is an unordered list of
points of any size and shape. When dealing with this type of
sensors, a number of information is required in order to correctly
extract valuable data. Besides the image dimensions in terms of
pixels and the frames themselves, other useful parameters are,
the lens distortion model of RGB cameras and the measurement
range and its accuracy for the depth sensor. The designing of
the interface should thus include and provide all the previously
mentioned data.

In this work, the concept of RGBD device is extended to
include more cases than the physical sensor. All cases are shown
in the Figure 2.

1.3. Common Design Patterns
The quickest approach for designing an Hardware Abstraction
Layer (HAL) is proceeding bottom-up, starting from the
hardware capabilities and generalizing them. This approach tends
to fail when the device generates non-standard data or when the
underlying hardware varies significantly from sample to sample.

On one hand, bottom-up generated interfaces are
comprehensive of all device features whilst, on the other
hand those interfaces tends to be too tailored on the first
device they were built upon and difficult to be reused when the
underlying assumptions change.

The other most followed lead is the top-down approach
which is capable of providing a better abstraction, but usually
it fails being comprehensive. In this case, low level details or
configurations may be missing and users do not have access to
all the required data.

2. DESIGN PROCESS

An example of well-structured software design is illustrated in the
NEPOMUK project paper (Groza et al., 2007), described as an
iterative process starting from the user’s need, to design new code
in order to seamlessly fit into an existing software environment.
In order to overcome the before mentioned limitations, the
design process has been widened to a bigger-picture, real use
cases have been analyzed and generalized to extract relevant
functionalities. The latter information has been employed to
analyze the data flow and to design the resulting interface.

2.1. Identifying Data Flow and Device
Capabilities
Typically, an RGBD device is capable of producing a color image
and a depth image along with their respective parameters. The
interfaces are thus required to describe and provide equivalent
streams and parameters. YARP is often referred to as the robot
information piping system, because one of its main functions is
exchanging data between applications. Identifying the data to be
shared and their properties helps designing better interfaces and
client/server objects.

There are two main ways to exchange data in YARP, called
streaming and RPC. All the information the device streams are
sent to the client, whereas all the get/set requests originated by the
client are RPCs. Data are sent trough the network via an object
called port. A port is an abstraction of the operative system socket
and it is able to send any type of data, different protocols can be
used andmultiple consumer can read from a single producer. We
can identify the following desired data:

• Streaming

⇒ The RGB image
⇒ The depth image

• RPCs

⇔ Info about streaming: e.g., how big is the image being
published
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⇔ Controls: e.g., increase the saturation/brightness and other
camera parameters.

⇔ Info Visual: e.g., get the field of view of RGB/depth camera
⇔ Info about HW: e.g., this is a USB device

Each piece of information is required for both RGB and depth
separately because they may differ in availability and values. Note
that interfaces and data flow do not need to match. For example,
a single interface may include both streaming and RPC data
while a single RPC connection can handle requests frommultiple
interfaces.

2.2. Identifying Use Case Scenarios
The analysis result in four scenarios being comprehensive for all
foreseen real world uses of a RGBD sensor, shown in Figure 2.

Note: Each sensor can be a real or simulated one, they will be
handled in the same way.

Among existing applications, yarpview and camCalib are the
most important ones the new device has to be compatible with.
The first one is a GUI used to display images while the latter is
used to compensate lens distortion.

2.3. Additional Constraints and
Requirements
It is useful to explicit a few other characteristics the new
interface and its implementation shall have in order to cope

with the needs of an highly dynamic and innovative field like
robotics.

2.3.1. Need of a Standard
Different devices may provide the same data using incompatible
formats, for example the distance measure can be measured
in meters, millimeter, or other units while the binary
implementation can be an integer or a floating point number.
Furthermore, a lens distortion model can be described using
different set of parameters. In order for an high level application
to run on different robots, it must be able to get all information
at runtime and use them properly.

Relevant settings that are not available fromOpenNI API have
to be acquired from another source, for example distortionmodel
can rarely be retrieved from the OpenNI API.

2.3.2. Unique Traits of RGBD Device
This work has to deal with the intrinsic complexity of a device
composed by two different sensors with similar characteristics
whichmay be unclear. A large amount of parameters are required
to correctly identify the device properties.

2.3.3. Compliance With the YARP Ecosystem
This software is part of the YARP middleware, hence the new
interface has to fit into existing code and to be as much intuitive
as possible for both experienced and novice users. The RGB

FIGURE 2 | Use case scenarios. (A) Proper RGBD sensor: MicroSoft Kinect, Asus XTION, or similar. (B) Two local yet separated sensors. (C) Stereo vision: two RGB

sensor and a computed depth image. (D) Two separated sensors physically connected to two different machines.
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sensor is by all means a standard camera and, as such, it provides
options to configure color properties like saturation, brightness,
exposure etc... The ability to change the camera parameters at
runtime is widely used, so it must be accessible via the interface.
The optimal solution is to allow any software currently working
with standard camera to work also with RGB part of this device
without any changes.

2.3.4. Modularity
YARP heavily leverages on modularity and code re-use, therefore
the implementation of the depth sensor interface has tomaximize
these best practices. Furthermore, the client can read data
from multiple sources while the server can broadcast them
independently, as in use cases (Figures 2B,D).

2.3.5. Re-usability
Re-usability check has to be performed in two ways: first looking
for compatible code to re-use into this project and second
creating code that may be useful outside the scope of RGBD
device for future use.

3. ADOPTED SOLUTIONS

The design process resulted in a series of design considerations
and technical solutions adopted to best attain all the
requirements. Those solutions can be divided into “abstract”
design criteria and their relative “concrete” implementation.

All the requirements and solutions are summarized in the
Table 1.

The resulting structure is general enough to cover all the use
cases and flexible to allow both incremental implementation and
update of existing software. The current state is already able
to handle use case scenarios (Figures 2A,C) and can be easily
extended to handle also cases (Figures 2B,D).

3.1. Design Criteria
3.1.1. Definition of a YARP Standard
YARP uses international measurement system for all units
(except for angular degrees), therefore this convention has been
enforced also in this interface where the unit for the depth
measurement is set to be meters. The binary representations is
the float to allow fraction of meters.

TABLE 1 | Requirements and proposed solutions for new YARP interface.

Requirement Design criteria Implementation solutions

Need of a standard Definition of a YARP

standard

API compensation

Compatibility with the

YARP ecosystem

Re-use, not inherit Separated data flow

Modularity Isolation of capabilities Separated data flows

Re-usability Isolation of capabilities Three levels decoupling

Unique traits of this

device type

Isolation of capabilities Capabilities composition

3.1.2. Re-use, Not Inherit
The interface IFrameGrabberControls2 is an already
existing YARP interface describing how to set RGB color
sensor properties as saturation, brightness, exposure etc...
A possible way to include these functionalities in the new
interface would be to inherit from it, but this has some
implications. The new interface will be tightly coupled to
previous code and the maintenance will be more difficult.
Any change to IFrameGrabberControls2 will be
propagated to the new interface and all devices using
it. On the other hand, adding the same methods also
in the new interface will generate duplicated code and
confusion.

The best approach is to keep separated the two functionalities
and have the device implementation to use them where
required.

3.1.3. Isolation of Capabilities
Instead of defining an single interface covering all the device
functionalities or data types, the best solution is to define an
interface for each capability and then combine them into a bigger
one where appropriate. This way each interface is smaller and
cleaner, but most importantly each single interface can be re-
used more easily in different contexts. New interfaces created for
this device are the ones required to fill the gap between what’s
existing and what is required. They have been created separately
for RGB and depth part of the device. A snippet of code is shown
below.

class yarp::dev::IRgbVisualParams

{

int getRgbHeight();

int getRgbWidth();

bool getRgbConfigurations(Vector<Config> &c);

bool getRgbResolution(int &width, int &height);

bool setRgbResolution(int width, int height);

bool getRgbFOV(double &hFov, double &vFov);

bool setRgbFOV(double hFov, double vFov);

bool getRgbIntrinsicParam(Property &param);

bool getRgbMirroring(bool &mirror);

bool setRgbMirroring(bool mirror);

}

class yarp::dev::IDepthVisualParams

{

int getDepthHeight();

int getDepthWidth();

bool setDepthResolution(int width,int height);

bool getDepthFOV(double& hFov, double& vFov);

bool setDepthFOV(double hFov, double vFov);

bool getDepthIntrinsicParam(Property& param);

double getDepthAccuracy();

bool setDepthAccuracy(double accuracy);

bool getDepthClipPlanes(double &near, &far);

bool setDepthClipPlanes(double near, far);

bool getDepthMirroring(bool& mirror);

bool setDepthMirroring(bool mirror);

}

Interface snapshot 1. Example of interface methods.
Documentation: http://www.yarp.it/classyarp_1_1dev_1_1IRgbVisualParams.html
http://www.yarp.it/classyarp_1_1dev_1_1IDepthVisualParams.html
Git repository: https://github.com/robotology/yarp/tree/master/src/libYARP_dev/include/yarp/dev
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The two interfaces created are similar because the sensors have
similar features, but each method has the RGB/Depth prefix to
clearly state which sensor it is working with. This helps novice
users to understand what the function is supposed to do and
name clash between two sensors is avoided. There are some
differences however due to the sensors nature, for example in the
depth interface there are getter and setter methods for Accuracy
and clip planes which has no meaning for a standard RGB
camera.

3.2. Implementation Solutions
3.2.1. API Compensation
The information requested to be available are more then what’s
usually covered by the OpenNI2 API, hence another source of
information is needed. This has been achieved by mean of a
configuration file, subdivided in three main sections:

• General parameters: describe which device the YARP factory
shall create and how to manage it.

• Settings: these parameters describe the user’s desired initial
configuration of the device. These values will be set at startup
and if anyone fails, the device must be closed providing an
error. All the settings are also available for remote control
with getter/setter methods, therefore the configuration can be
verified and changed remotely by the user’s application at any
time.

• Hardware description: the listed parameters are read only .
Everything not available through device API can be listed here.
These values will be available to remote applications via getter
methods, but they cannot be set. This is also useful in case the
device returns wrong values; the data from configuration file
will be returned to the user instead.

3.2.2. Separated Data Flow
Defining how many sockets to create, the protocol to use etc...
is a trade-off between optimization of resources and granularity
of information. The more complex/custom the data is, the less
application will be compatible with. On the other hand, creating
many sockets to send small pieces of information is a waste of
resources.

The choice implemented is to create two separated streams
for RGB and depth images, to be back compatible with existing
application using color images only. All the RPC requests instead
can be handled by a single YARP port. There is no need in fact
for the client to know all the server’s capabilities. A client can
implement only the subset of RPC it requires, therefore a existing
client can freely work with a newer server using an extended set
of messages.

Only the 4th use case scenario will require the client to have
two separated RPC ports, as it requires to connect to two different
servers to collect all the required informations.

3.2.3. Three Levels Decoupling
Network messages, client/server implementation and hardware
device are separated between each-others. Usually when building
a client/server pair in YARP there are two levels of decoupling:
the first one is the YARP message which decouples the server
from the remote client. The second one is the interface itself

which decouples the server from the device driver and the user
application from the network client.

The implementation of an interface in the server/client
requires to write code devote to generate the YARP message
and parse it in order to provide the service and generate proper
response. Historically this job was always been implemented
by the client/server classes themselves, but this may lead to
duplicated code when more servers or clients uses the same
interface. Therefore a new decoupling level has been introduced
by implementing all the YARP message parsing into a specific
class for each interface, the client/server will then use these classes
to handle network communication.

This way, should a new server implement this interface,
adding the message parsing will require only three lines of code:

1) Add interface inheritance

Server : public NewInterface

2) Instantiate a parser class

yarp::dev::Implement_Interface_Parser rgbParser;

3) Configure the parser by giving access to the class

rgbParser.configure(NewInterfacePointer);

Interface snapshot 2. Example of usage, server side.

3.2.4. Capabilities Composition
Leveraging on the previously shown ideas “Isolation of
Capabilities” and “Three Levels Decoupling,” it follows that a
device can incrementally add capabilities by inheriting from
required interfaces and parsers. The whole RGBD interface will
be the sum of RgbVisualParams andDepthVisualParams, plus the
specific information which havemeaning only when both sensors
are available together.

class yarp::dev::IRGBDSensor : public

IRgbVisualParams

public IDepthVisualParams

{

bool getExtrinsicParam(Matrix &extrinsic) ;

string getLastErrorMsg(Stamp *timeStamp);

bool getRgbImage(FlexImage &rgbImage, Stamp

*timeStamp);

bool getDepthImage(ImageOf<PixelFloat>

&depthImage, Stamp *timeStamp);

bool getImages(FlexImage &colorFrame, ImageOf

<PixelFloat> &depthFrame, Stamp *colorStamp,

Stamp *depthStamp);

RGBDSensor_status getSensorStatus();

}

Interface snapshot 3. Extending capabilities by merging two
interfaces into a bigger one.
Documentation: http://www.yarp.it/classyarp_1_1dev_1_
1IRGBDSensor.html
Git repository: https://github.com/robotology/yarp/blob/
master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h

Each interface contains methods to get the sensor intrinsic
parameters, and since the RGBD interface includes the two
sensors together, amethod to get extrinsic parameters is included.
The client/server for this device will create its own message

Frontiers in Robotics and AI | www.frontiersin.org 5 April 2018 | Volume 5 | Article 4088

http://www.yarp.it/classyarp_1_1dev_1_1IRGBDSensor.html
http://www.yarp.it/classyarp_1_1dev_1_1IRGBDSensor.html
https://github.com/robotology/yarp/blob/master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h
https://github.com/robotology/yarp/blob/master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Cardellino et al. Design of a YARP Interface

sender/parser by extending the ones implemented for each single
interface as explained in “Three Levels Decoupling” section.
Furthermore, previous RGB-only image server has been easily
extended to implement also the RgbVisualParams interface by
adding the parser.

4. CONCLUSION AND FUTURE WORK

The design process successfully generated a set of interfaces both
flexible and comprehensive to handle all use cases identified
and satisfy all additional requirements. The interface and C++
objects shown in this work have been used with three models
of depth sensors from two different producers and with the
simulated device available within Gazebo. The new server is well-
integrated in the YARP framework, compatibility with existing
applications has been achieved and former device drivers specific
for RGB-only cameras have been extended to implement new
functionality, hence user application can benefit from additional
information.

The dataset acquisition pipeline shown in Pasquale et al.
(2016) and used in Maiettini et al. (2017) was developed for the
iCub robot using images acquired from stereo vision system and
then, using the interfaces resulting from the work presented, the
pipeline was easily integrated on the R1 robot, that mounts a
RGBD sensor.

The implementation will be extended to cover also use
scenarios (Figures 2B,D), also a synchronization mechanism for
the two image streaming will be integrated in the client. The
code can be verified using YARP test utilities or using simple
example code. Instruction how to run tests are in the in the
following github repository https://github.com/robotology/yarp/
tree/master/example/dev/RGBD/README.md.

AUTHOR CONTRIBUTIONS

AC: main contributor, designed the interfaces, and client/server
implementation; AR: contributed refining the interfaces, device
driver implementation, testing; LN: supervisor.

REFERENCES

Aksoy, E. E., Abramov, A., Dörr, J., Ning, K., Dellen, B., and Würgötter, F. (2011).

Learning the semantics of object-action relations by observation. Int. J. Robot.

Res. 30, 1229–1249. doi: 10.1177/0278364911410459

Groza, T., Handschuh, S., Moeller, K., Grimnes, G., Sauermann, L., Minack, E.,

et al. (2007). “The nepomuk project–on the way to the social semantic desktop,”

in Proceedings of I-Semantics’ 07, eds T. Pellegrini and S. Schaffert (Graz),

201–211.

Han, J., Shao, L., Xu, D., and Shotton, J. (2013). Enhanced computer vision

with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43, 1318–1334.

doi: 10.1109/TCYB.2013.2265378

Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2017). “Interactive data

collection for deep learning object detectors on humanoid robots,” in 17th

IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017

(Birmingham), 862–868.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform.

Int. J. Adv. Robot. Syst. 3:8. doi: 10.5772/5761

Pasquale, G., Mar, T., Ciliberto, C., Rosasco, L., and Natale, L. (2016). Enabling

depth-driven visual attention on the iCub humanoid robot: instructions for use

and new perspectives. Front. Robot. AI 3:35. doi: 10.3389/frobt.2016.00035

Rehem Neto, A. N., Saibel Santos, C. A., and de Carvalho, L.

A. A. (2013). “Touch the air: an event-driven framework for

interactive environments,” in Proceedings of the 19th Brazilian

Symposium on Multimedia and the Web (New York, NY: ACM),

73–80.

Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEEMultiMedia 19, 4–10.

doi: 10.1109/MMUL.2012.24

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer HC, and handling Editor declared their shared affiliation.

Copyright © 2018 Cardellino, Ruzzenenti and Natale. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 6 April 2018 | Volume 5 | Article 4089

https://github.com/robotology/yarp/tree/master/example/dev/RGBD/README.md
https://github.com/robotology/yarp/tree/master/example/dev/RGBD/README.md
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1109/TCYB.2013.2265378
https://doi.org/10.5772/5761
https://doi.org/10.3389/frobt.2016.00035
https://doi.org/10.1109/MMUL.2012.24
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


1 June  2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Code
published: 12 June 2018

doi: 10.3389/frobt.2018.00046

Markerless eye-Hand Kinematic 
Calibration on the iCub 
Humanoid Robot
Pedro Vicente 1*, Lorenzo Jamone 1,2 and Alexandre Bernardino 1

1 Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2 ARQ (Advanced 
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Humanoid robots are resourceful platforms and can be used in diverse application 
scenarios. However, their high number of degrees of freedom (i.e., moving arms, head and 
eyes) deteriorates the precision of eye-hand coordination. A good kinematic calibration 
is often difficult to achieve, due to several factors, e.g., unmodeled deformations of the 
structure or backlash in the actuators. This is particularly challenging for very complex 
robots such as the iCub humanoid robot, which has 12 degrees of freedom and cable-
driven actuation in the serial chain from the eyes to the hand. The exploitation of real-time 
robot sensing is of paramount importance to increase the accuracy of the coordination, 
for example, to realize precise grasping and manipulation tasks. In this code paper, 
we propose an online and markerless solution to the eye-hand kinematic calibration of 
the iCub humanoid robot. We have implemented a sequential Monte Carlo algorithm 
estimating kinematic calibration parameters (joint offsets) which improve the eye-hand 
coordination based on the proprioception and vision sensing of the robot. We have shown 
the usefulness of the developed code and its accuracy on simulation and real-world 
scenarios. The code is written in C++ and CUDA, where we exploit the GPU to increase 
the speed of the method. The code is made available online along with a Dataset for 
testing purposes.

Keywords: code:C++, humanoid robot, markerless, hand pose estimation, sequential monte carlo parameter 
estimation, kinematic calibration

1. IntRoduCtIon and Related WoRK

An intelligent and autonomous robot must be robust to errors on its perceptual and motor systems to 
reach and grasp an object with great accuracy. The classical solution adopted by industrial robots rely 
on a precise calibration of the mechanics and sensing systems in controlled environments, where sub-
millimeter accuracy can be achieved. However, a new emerging market is targeting consumer robots 
for collaboration with humans in more general scenarios. These robots cannot achieve high degrees of 
mechanical accuracy, due to (1) the use of lighter and flexible materials, compliant controllers for safe 
human-robot interaction, and (2) lower sensing precision due to varying environmental conditions. 
Indeed, humanoid robots, with complex kinematic chains, are among the most difficult platforms to 
calibrate and model properly with the precision required to reach and/or grasp objects. A small error in 
the beginning of the kinematic chain can generate a huge mismatch between the target location (usually 
coming from vision sensing) and the actual 6D end-effector pose.
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Eye-hand calibration is a common problem in robotic systems that 
several authors tried to solve exploiting vision sensing [e.g., Gratal 
et  al. (2011); Fanello et  al. (2014); Garcia Cifuentes et  al. (2017); 
Fantacci et al. (2017)]1.

2. PRoPosed solutIon

In this code paper, we propose a markerless hand pose estimation 
software for the iCub humanoid robot [Metta et al. (2010)] along 
with an eye-hand kinematic calibration. We exploit the 3D CAD 
model of the robot embedded in a game engine, which works as 
the robot’s internal model. This tool is used to generate multiple 
hypotheses of the hand pose and compare them with the real 
visual perception. By using the information extracted from the 
robot motor encoders, we generate hypotheses of the hand pose 
and its appearance in the cameras, that are combined with the 
actual appearance of the hand in the real images, using particle 
filtering, a sequential Monte Carlo method. The best hypothesis 
of the 6D hand pose is used to estimate the corrective terms 
(joint offsets) to update the robot kinematic model. The visual 
based estimation of the hand pose is used as an input, together 
with the proprioception, to continuously calibrate (i.e., update) 
the robot internal model. At the same time, the internal model 
is used to provide better hypotheses for the hand position in 
the camera images, therefore enhancing the robot perception. 
The two processes help each other, and the final outcome is that 
we can keep the internal model calibrated and obtain a good 
estimation of the hand pose, without using specialized visual 
markers on the hand.

The original research work [Vicente et al. (2016a) and Vicente 
et  al. (2016b)] contains: (1) a complete motivation from the 
developmental psychology point of view and theoretical 
details of the estimation process, and (2) technical details 
on the interoperability between the several libraries and the 
GPGPU approach for an increased boost on the method speed, 
respectively.

The present manuscript is a companion and complementary 
code paper of the method presented in Vicente et al. (2016a). We 
will not describe with full details the theoretical perspective of 
our work, instead we will focus on the resulting software system 
connecting the code with the solution proposed in Vicente et al., 
2016b. Moreover, the objective of this publication is to give a 
hands-on perspective on the implemented software which could 
be used and extended by the research community.

The source code is available at the official GitHub code repository:

https:// github. com/ vicentepedro/ 
Online- Body- Schema- Adaptation 

and the documentation on the Online Documentation page:

1 For a more detailed review of the state of the art, please check the article Vicente 
et al. (2016a)

http:// vicentepedro. github. com/ 
Online- Body- Schema- Adaptation

We use a Sequential Monte Carlo parameter estimation method 
to estimate the calibration error β in the 7D robot’s joint space 
corresponding to the kinematic chain going from each eye to the 
end-effector. Let us consider:

 θ = θr + β   (1) 

where θr are the real angles; θ are the measured angles; β are joint 
offsets representing calibration errors. Given an estimate of the 
joint offsets ( ̂β ), a better end-effector’s pose can be retrieved using 
the forward kinematics.

One of the proposed solutions for using Sequential Monte Carlo 
methods for parameter estimation2 (i.e., the parameters β in our 
problem), is to introduce an artificial dynamics, changing from a 
static transition model 

(
βt = βt−1

)
  to a slowly time-varying one:

 βt = βt−1 + wt    (2) 

where wt is an artificial dynamic noise that decreases when t 
increases.

3. softWaRe desIgn and 
aRCHIteCtuRe PRInCIPles

The software design and architecture for implementing the eye-hand 
kinematic calibration solution has the following requirements: (1) 
the software should be able to run in real-time since the objective 
is to calibrate the robot during a normal operating behaviour, and 
(2) it should be possible to run the algorithm in a distributed way, 
i.e., run parts of the algorithm in several computers in order to 
increase computation power.

The authors decided to implement the code in C++ in order 
to cope with the real-time constraint, and to exploit the YARP 
middleware [Metta et al. (2006)] to distribute the components of 
the algorithm in more than one machine.

The source code for these modules are available at the official 
GitHub code repository (check section 2).

The code is divided into three logical components: (1) the 
hand pose estimation (section 4.1), (2) the Robot’s Internal 
Model generator (section 4.2), and (3) the likelihood assessment 
(section 4.3), which are implemented, respectively, at the following 
repository locations:

•  modules/handPoseEstimation
•  include/handPoseEstimationModule.h
•  src/ hand Pose Esti mati onMain. cpp
•  src/ hand Pose Esti mati onModule. cpp

•  modules/internalmodel

2 See Kantas et al. (2009) for other solutions
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•   icub- internalmodel- rightA- cam- Lisbon. exe
•   icub- internalmodel- leftA- cam- Lisbon. exe

•  modules/likelihodAssessment
•  src/ Cuda_ Gl. cu
•  src/ likelihood. cpp

 
The software architecture implementing the proposed eye-hand 
calibration solution can be seen in Figure 1. The first component 
- Hand Pose Estimation - is responsible for proposing multiple 
hypotheses according to the posterior distribution. We use a 
Sequential Monte Carlo parameter estimation method in our work 
[check Vicente et  al. (2016a) Section 3.3 for further theoretical 
details]. The definitions of the functions presented in the architecture 
(Figure  1) can be found in the .cpp and .h files and will be 
explained in detail in Section 4.1. The Hand Pose Estimation is OS 
independent and can run in any computer with the YARP library 
installed.

The second component - Robot’s Internal Model - generates 
hypotheses of the hand pose based on the 3D CAD model of the 
robot and was build using the game engine Unity®. There are two 
versions of the internal model on the repository. One for the right-
hand (rightA) and another one for the left-hand (leftA). Our 
approach was to divide the two internal models since we have separated 
calibration parameters for the head-left-arm and for the head-right-
hand kinematic chains. The Unity platform was chosen to develop the 
internal model of the robot since it is able to generate a high number 
of frames per second on the GPU even for complex graphics models. 
The scripting component of the Unity game engine was programmed 
in C#. The bindings of YARP for C# were used in order to facilitate the 
internal model generator to communicate with the other components 
of the system. This component is OS-dependent and only runs on 
Windows and the build version available on the repository does not 
require a paid license of Unity Pro.

Finally, the likelihood assessment is called inside the Robot’s 
Internal Model as a Dynamic Link Library and exploits GPGPU 
programming to compare the real perception with the multiple 
generated hypotheses. The GPGPU programming, using the CUDA 
library [Nickolls et al. (2008)], allows the algorithm to run in quasi-
real-time. The .cpp file contains the likelihood computation method, 
and the .cu the GPGPU program.

Our eye-hand calibration solution exploits vision sensing 
to reduce the error between the perception and the simulated 
hypotheses, the OpenCV library [Bradski (2000)] with CUDA 
enabled capabilities [Nickolls et al. (2008)] was chosen to exploit 
computer vision algorithms and run them in real-time.

The interoperability between the OpenCV, CUDA and OpenGL 
libraries was studied in Vicente et al. (2016b). In the particular 
case of the iCub humanoid robot [Metta et al. (2010)], and to suit 
within the YARP and iCub architectures, we encapsulated part of 
the code in an RFModule3 class structure and use YARP buffered 
ports4 and RPC services5 for communications and user interface 

3 http://www.yarp.it/classyarp_1_1os_1_1RFModule.html
4 http://www.yarp.it/classyarp_1_1os_1_1BufferedPort.html
5 http://www.yarp.it/classyarp_1_1os_1_1RpcServer.html

(Check section 5.2.3). The hand pose estimation module allows 
the user to send requests to the algorithm which follows an event-
driven architecture: where for each new incoming information 
from the robot (cameras and encoders) a new iteration of the 
Sequential Monte Carlo parameter estimation is performed.

4. Code desCRIPtIon

4.1. Hand Pose estimation Module
4.1.1. Initializing the Sequential Monte Carlo parameter 
estimation - initSMC Function
In the function initSMC we initialize the variables of the 
Sequential Monte Carlo parameter estimation, i.e., the initial 
distribution p(β0) [Eq. (10) in Vicente et al. (2016a)], and the 
initial artificial dynamic noise. The Listings 1 contains the 
initSMC function where some of the variables (in red) are 
parametrized at initialization time (check sub-section 5.2.1 for 
more details on the initialization parameters). We use a random 
seed generated according with the current time and initialize 
each angular offset with a Gaussian distribution: N(initialMean; 
initialStdDev).

4.1.2 Read Image, Read Encoders, ProcessImages 
and SendData
The left and right images along with the head and arm encoders 
are read at the same time to ensure consistency between the several 
sensors.

The reading and processing procedure of the images are defined 
inside the function:

handPoseEstimationModule::updateModule() 

that can be found on the file: 

src/ hand Pose Esti mati onModule. cpp.

The function process Images (see Listings 2) applies a Canny 
edge detector and a distance transform to both images separately. 
Moreover, the left and the right processed images are merged, i.e., 
concatenated horizontally, in order to be compared to the generated 
hypotheses inside the Robot’s internal model.

The Hand pose estimation module sends: (1) the pre-processed 
images, (2) the head encoders and (3) the arm encoders (θ) along 
with the offsets (β) to the Robot’s internal model6. This procedure 
is defined inside the function: 

handPoseEstimationModule::runSMCIteration()

4.1.3. Update Likelihood
The Hand Pose Estimation module receives the likelihood vector 
from the Robot’s internal model and updates the likelihood value 
for each particle on the for-loop at line:

 hand Pose Esti mati onModule. cpp# L225

6 See Eq. 1 and handPoseEstimationModule.cpp#L214
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fIguRe 1 |  Architecture of the software. The hand pose estimation component (handPoseEstimation) initiates the Sequential Monte Carlo parameter estimation 
method (initSMC) and waits for a start command from the user. The perception and proprioception (cameras and encoders) of the robot are received and the 
parameter estimation starts. The real image and the particles are sent (sendData) to the Robot’s internal Model (icub-internalmodel-rightA-cam-Lisbon.exe or 
icub-internalmodel-leftA-cam-Lisbon.exe) in order to generate the hypotheses. The likelihood assessment of each hypothesis is calculated using a Dynamic Link 
Library (DLL) file inside the Robot’s internal model. The likelihood of each particle is saved and a Kernel Density estimation is performed to calculate the best 
calibration parameters. The Resampling step is performed and a new set of particles are saved for the next iteration of the Sequential Monte Carlo parameters 
estimation.
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4.1.4. Kernel Density Estimation
Although the state is represented at each time step as a 
distribution approximated by the weighted particles, our best 
guess for the angular offsets can be computed using a Kernel 
Density Estimation (KDE) to smooth the weight of the particles 
according to the information of neighbor particles, and choose 
the particle with the highest smoothed weight (ωʹ[i]) as our state 
estimate [Section 3.5 of Vicente et al. (2016a)].

The implementation of the KDE with a Gaussian kernel can 
be seen in Listings 3. The double for-loop implements the KDE 
accessing each particle (iParticle) and computing the influence 
of each neighbor (mParticle) according to the relative distance 
in the 7D-space between the two particles and the likelihood of 
the neighbor [cvmGet (particles, 7,mParticle)]. The parameters 
that can be fine-tuned are highlighted in red.

4.1.5. Best Hypothesis
The best hypothesis, computed using the KDE, is sent through 
a YARP buffered port from the module after N iterations. The 
port has the following name:

/hpe/bestOffsets:o

The parameter N (the number of elapsed iterations before 
sending the estimated angular offsets) can be changed by the user 
at initialization using the minIteration parameter (check 
Section 5.2.1 for more details) and the objective is to ensure the 
filter convergence before using the estimate (e.g., to control the 

robot). This is an important parameter since in the initial stages 
the estimation can jump a lot from an iteration to the next one 
(before converging to a more stable solution).

4.1.6. Update Artificial Noise, Resampling and New 
Particles
The artificial noise is updated according to the maximum likelihood 
criteria. See the pseudo-code on Listings 4, which corresponds to 
line 230 to 254 in the file:

src/ hand Pose Esti mati onModule. cpp

We update the artificial noise according to the maximum 
likelihood, i.e., if the maximum likelihood is below a certain 
threshold (minimumLikelihood), we do not perform the resampling 
step and we increase the artificial noise. On the other hand, if the 
maximum likelihood is greater than the threshold we apply the 
resampling and decrease the artificial noise. The objective is to 
prevent the particles to become trapped in a “local maximum” 
since the current best solution is not worthy of resampling the 
particles. Indeed, this approach will force them to explore the  
state space.

The trade-off between exploration and exploitation is 
measured according to the maximum likelihood in each 
time step of the algorithm. The idea is to exploit the low 
number of particles in a clever way. Moreover, the upper and 
lower bound ensure, respectively, that: (1) the noise will not 

listing 3  | Kernel density estimation with Multivariate normal distribu-
tion Kernel: modules/handPoseestimation/src/handPoseestimationMo-
dule.cpp

1. void handPoseEstimationModule :: kernelDensityEstimation ( )
2.{
3. // Particle i 
4. double maxWeight = 0.0; 
5. for (int iParticle = 0; iParticle <n Particles; iParticle ++) 
6. {
7.  double sum1 = 0.0;
8.  // Particle m 
9.   for (int mParticle = 0; mParticle <nParticles; mParticle++)
10.  {
11.   double sum2 = 0.0; 
12.   if ( (float) cvmGet (particles, 7, mParticle) > 0 )
13.   {
14.    // Beta 0.. to..6
15.    for (int joint = 0; joint <7; joint ++)
16.    {
17.     // || pi–pj ||^2 / KDEStdDev ^2
18.     sum2 += pow( ((float) cvmGet (particles, joint, mParticle)–
(float)  cvmGet (particles, joint, iParticle )) , 2) / pow(KDEStdDev, 2); 
//  Multivariate normal distribution
19.    }
20.    sum1 += s t d :: exp(–sum2/( 2) ) *cvmGet (particles, 7 ,  mParticle);
21.   }
22.  }
23.  sum1 = sum1 / ( nParticles*sqrt (pow(2*M_PI, 1) *pow(KDEStdDev,  7) ) ); 
24.  double weight = alphaKDE*sum1 + cvmGet (particles, 7 ,  iParticle); 
25.  if (weight>maxWeight)
26.  { 
27.   maxWeightIndex= iParticle; // save the best particle index
28.  }
29. }
30.}

listing 1  | HandPoseestimationModule::initsMC function. defined in 
handPoseestimationModule.cpp

1. bool handPoseEstimationModule :: initSMC ( )
2. {
4.  // Generate random particles
5.  srand((unsigned int)time(0)); // make sure random numbers are really 
random.
6.  rngState = cvRNG(rand());
7.  // initialize Beta1
8.  cvRandArr(&rngState, particles 1, CV_RAND_NORMAL, 
cvScalar(initialMean), cvScalar(initialStdDev));
9.  … … // similar for particles2 to particles6
10.  cvRandArr (&rngState, particles7, CV_RAND_NORMAL, 
cvScalar(initialMean) , cvScalar(initialStdDev));
11.  // Artificial Noise Initialization 
12.  artifNoiseStdDev = initialArtificialNoiseStdDev;
13. }

listing 2  | HandPoseestimationModule::processImages. defined in 
handPoseestimationModule.cpp

1. Mat handPoseEstimationModule :: processImages (Mat inputImage)
2. {
3.  Mat edges , dt Image; 
4.  cvtColor(inputImage, edges, CV_RGB2GRAY);
5.  // Blur Image 
6.  blur(edges, edges, Size (3, 3));
7.  Canny(edges, edges, 65, 3*65,3); 
8.  threshold(edges, edges, 100,255,THRESH_BINARY_INV); // binary Image 
9.  distanceTransform(edges, dt Image, CV_DIST_L2, CV_DIST_MASK_5); 
10.  return dtImage;
11. }
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increase asymptotically and the samples will be spread over 
the 7D state-space and (2) the particles will not end-up all 
at the same value, which can happen when the random noise  
is Zero.

On the resampling stage, we use the systematic resampling 
strategy [check Hol et al. (2006)], which ensures that a particle 
with a weight greater than 1/M is always resampled, where M is 
the number of particles.

4.2. Robot’s Internal Model generator
The Listings 5 shows the general architecture of the Robot’s Internal 
Model Generator using pseudo-code.

4.2.1. Initialization of the Render Textures
The render textures, which will be used to render the two camera 
images, are initialized for each particle for both left and right views 
of the scene.

4.2.2. Generate Hypotheses
The hypotheses are generated on a frame-based approach, i.e., we 
generate one hypothesis for each frame of the “game”. After we receive 
the vector with the 200 hypotheses to generate, we virtually move 
the robot to each of the configurations to be tested and record both 
images (left and right) in a renderTexture.

After the 200 generations, we call the likelihood assessment DLL 
function to perform the comparison between the real images and 
the generated hypotheses.

The available version of the Robot’s internal model generator is an 
executable compiled and self-contained which works on Windows-
based computers with the installed dependencies7. Moreover, this 

7 The list of dependencies can be seen on Section 5.1.2

does not require neither the Unity® Editor to be installed in the 
computer nor the Unity Pro license.

More details on the creation of the Unity® iCub Simulator for this 
project can be found in Vicente et al. (2016b) Sec. 5.2 - “The Unity® 
iCub Simulator”.

4.3. likelihood assessment Module
The likelihood assessment is based on the observation model 
defined in Vicente et al. (2016a) Section 3.4.2.

We exploit an edge-based extraction approach along with 
a distance transform algorithm computing the likelihood  
using the Chamfer matching distance [Borgefors and Bradski 
(1986)].

In our code, these quantities are computed in the GPU using the 
OpenCV and CUDA libraries, and the interoperability between 
these libraries and the OpenGL library. The solution adopted 
was to add the likelihood assessment as a cpp plugin called 
inside the internal model generator module. The  likelihood. cpp 
file, particularly the function CudaEdgeLikelihood, is where the 
likelihood of each sample is computed. Part of the code of the 
likelihood function is shown and analysed in Listings 6. Up 
to the line 21 of the Listings 6, we exploit the interoperability 
between the libraries used (OpenGL, CUDA, OpenCV) and after 
line 21 we apply our likelihood metric using the functionality of 
the OpenCV library, where GgpuMat is the generated Image of 
the ith sample and GgpuMat_R is the real Distance Transform 
image. In line 35, the lambdaEdge is a parameter to tune the 
distance metric sensitivity, which is initialized at the value 25 
in line 1 (corresponding to line 148 of the C++ file)8. When 
the generated image does not have edges (i.e., the hand is not 
visible by the cameras), we force the likelihood of this particle 
to be almost zero (line 37 and 39, respectively). The maximum 
likelihood (i.e., the value 1.0) is achieved when each entry of 

8 Check Vicente et al. (2016a) Eq (21) for more details on the lambdaEdge 
parameter

listing 4  | Pseudo Code updating artificial noise corresponding to part 
of the function runsMCIteration() within file: src/handPoseestimationMo-
dule.cpp

1. IN handPoseEstimationModule :: runSMCIteration ( )
2.{
3. …
4. // Resampling or not Resampling. That’s the Question 
5. if (maxLikelihood >minimumLikelihood) { 
6.  systematic_resampling ( ); // Check Section Resampling and New Particles
7.  reduceArtificialNoise ( );
8. } 
9. else { // do not apply resampling stage 
10.  increaseArtificialNoise ( );
11. } 
12. if (artifNoiseStdDev > upperBoundNoise) { // upperbound of artificial noise
13.  artifNoiseStdDev = upperBoundNoise;
14. }
15. if (artifNoiseStdDev < lowerBoundNoise) { // lowerbound of artificial noise 
16.  artifNoiseStdDev = lowerBoundNoise;
17. } 
18. addNoiseToEachSample ()
19.}

listing 5  | Pseudo-Code Robot's internal model.

1. InitRenderTextures ( ) // Initialization of the strutures to receive 
2.
3.for (each iteration) // for each iteration of the SMC
4.{ 
5. waitForInput ( ); // wait for input vector with particles to be generated 
6.
7. for (each particle) { 
8.  moveTheInternalModel ( ) // Change the robot’s configuration
9.  RenderAllucinatedImages ( ); // render left and right image on a render 
texture 
10.  nextFrame ( );
11. }
12. // After 200 frames call DLL function
13. ComputeLikelihood (AllucinatedImages (200), RealImage) // Call the DLL 
function (CudaEdgeLikelihood) to compare the hypotheses with the real image.
14.}
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the result image is zero. This happen when every edge on the 
generated image match a zero distance on the distance transform 
image. The multiplication by 1,000 and the int cast in line 42 is 
used to send the likelihood as a int value (the inverse process 
is made in the internal model when it receives the likelihood 
vector) and it is one of the limitations of the current approach 

due to software limitations the authors could not send directly 
a double value between 0 and 1.

5. aPPlICatIon and utIlIty

The Markerless kinematic calibration can run during normal 
operations of the iCub robot. It will update the joint offsets 
according to the new incoming observations. Moreover, one 
can also stop the calibration and use the estimated offsets so 
far, however, to achieve a better accuracy in different poses 
of the end-effector the method should be kept running 
in an online fashion to perform a better adaptation of  
the parameters.

The details of the dependencies, installation and how to run 
the modules can be found at Online Documentation page (check 
Section 2).

5.1. Installation and dependencies
The dependencies of the proposed solution can be divided 
in two sets of libraries: (1) the libraries needed to run the 
handPoseEstimation module, and (2) the libraries needed 
to run the Robot’s internal model and the likelihood  
Assessment.

5.1.1. Hand Pose Estimation Module
The handPoseEstimation depends on YARP library, which 
can be installed following the installation procedure of the 
official repository9. Moreover, it depends on the OpenCV  
library10.

We tested this module with the last release of YARP (i.e., 
June 15, 2017), version 2.3.70, with the OpenCV library V2.4.10 
and V3.3 and the code works with both versions. The authors 
recommend the reader to follow the official installation guides 
for these libraries.

To install theses modules, one can just run CMake using the  
CMakeLists. txt on the folder:

/modules/handPoseEstimation/

5.1.2 Robot’s Internal Model Generator and Likelihood 
Assessment
The Robot’s internal model and the likelihood assessment 
depend on YARP library for communication and on the OpenCV 
library with CUDA enabled computation (i.e., installing the 
CUDA toolkit) for image processing and GPGPU accelerated 
algorithms. A Windows machine should be used to install this 
module.

The tested version of the OpenCV library was V.2.4.10 with 
the CUDA toolkit 6.5. The C# bindings for the YARP middleware 
on a windows machine should be compiled. The details regarding 
the installations procedures can be found at the following URL: 

9 https://github.com/robotology/yarp
10 It is not mandatory the CUDA-enabled capabilities

listing 6  | likelihood assessment: modules/likelihoodassessment/src/
likelihood.cpp

 1. int lambdaEdge = 25;
 2. // For each particle i – line 149 modules / likelihoodAssessment / src / 
likelihood.cpp
 3. // Interopelability between the several libraries (OpenGL , CUDA, OpenCV) 
 4. gltex =(GLuint) (size_t) (ID[i]); // ID is a vector with pointers to the render 
textures 
 5. glBindTexture(GL_TEXTURE_2D, gltex);
 6. GLint width, height, internalFormat; 
 7. glGetTexLevelParameteriv(GLTEXTURE_2D, 0, GL_TEXTURE_
COMPONENTS, &internalFormat); // get internal format type of GL texture 
 8. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, 
&width); // get width of GL texture 
 9. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, 
&height); // get height of GL texture 
 10.
 11. checkCudaErrors( cudaGraphicsGLRegisterImage ( &cuda_tex_screen_
resource , gltex , GL_TEXTURE_2D, cudaGraphicsMapFlagsReadOnly ) );
 12. // Copy color buffer 
 13. checkCudaErrors( cudaGraphicsMapResources ( 1, &cuda_tex_screen_
resource , 0 ) ); 
 14. checkCudaErrors( cudaGraphicsSubResourceGe tMappedArray ( &cuArr , 
cuda_tex_screen_resource, 0, 0 ) );
 15. BindToTexture( cuArr); // BindToTexture Functions defined in Cuda_Gl.cu
 16.
 17. DeviceArrayCopyFromTexture( ( float3*) gpuMat.data, gpuMat.step, 
gpuMat.cols, gpuMat.rows );//DeviceArrayCopyFromTexture function defined on 
Cuda_Gl.cu 
 18.
 19. checkCudaErrors( cudaGraphicsUnmapResources ( 1, &cuda_tex_screen_
resource, 0 ) ); 
 20. checkCudaErrors( cudaGraphicsUnregisterResource (cuda_tex_screen_
resource) ); 
 21. cv::gpu::cvtColor(gpuMat, GgpuMat,CV_RGB2GRAY);
 22.
 23. // Apply the likelihood Assessment
 24. // GgpuMat – generated Image
 25. // GgpuMat_R – Real Distance Transform image 
 26. cv :: gpu :: multiply (GgpuMat, GgpuMat_R, GpuMatMul); 
 27. cv :: Scalar sumS = cv :: gpu :: sum(GpuMatMul);
 28.
 29. /* 
 30. Check the article:
 31. Online Body Schema Adaptation Based on Internal Mental Simulation and 
Multisensory Feedback, Vicente et al.
 32. In particular, Equation (21) 
 34. */ 
 35. sum = sumS [0]*lambdaEdge; // lambdaEdge is a tuning parameter for 
distance sensitivity 
 36. nonZero = (float) cv::gpu::countNonZero (GgpuMat); // generated image 
 37. if (nonZero ==0) { 
 38.  likelihood [i] = 0.000000001; // Almost Zero
 39. }
 40. else {
 41.  result = sum/nonZero; 
 42.  likelihood[i] = (int) ((cv::exp(– result)) *1000);
43. }
44.}
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http://www. yarp. it/ yarp_ swig. html# yarp_ 
swig_ windows.

The C# bindings will allow the internal model generator to 
communicate with the other modules.

The C# bindings will generate a DLL file that, along with 
the DLL generated from the likelihood assessment module, 
should be copied to the Plugins folder of the internal model 
generator. In the official compiled version of the repository 
this folder has the following path: internalmodel/icub-
internalmodel-rightA-cam-Lisbon_Data/
Plugins/

The complete and step-by-step installation procedure can 
be seen in the Online Documentation page on the Installation 
section.

5.2. Running the Modules
The proposed method can run on a cluster of computers connected 
with the YARP middleware. The internal model generator should 
run on a computer with Windows Operating System and with 
CUDA capabilities. The step-by-step running procedure guide 
can be found on the Online Documentation page. The rest of the 
section is organized with a high level perspective of running the 
algorithm. The YARP connections required between the several 
components can be connected through the XML file under the 
app/scripts folder.

5.2.1. Running the Hand Pose Estimation and its 
parameters
The Hand Pose Estimation can be initialized using the 
yarpmanager or in a terminal running the command:  

handPoseEstimation [--<parameter_name> 
<value > …] 

where, <value> is the value for one of the parameters 
(<parameter_name>) defined in the itemize list below:

•  name: name of the module (default =“hpe”)
•  arm: arm which the module should connect to. (default = right’)
•  initialMean: mean for the initial distribution of the particles 

[in degrees]. (default = 0.0°)
•  initialStdDev: StdDev of the initial distribution of the 

particles degrees
•  artificialNoiseStdDev: initial  Artificial Noise (StdDev) to 

spread the particles after each iteration (default = 3.0°)
•  lowerBound: artificial noise lower bound (StdDev). Should be 

greater than Zero to prevent the particles to collapse in one single 
value (default = 0.04°)

•  upperBound: artificial noise upper bound (StdDev). The artificial 
noise should have a upper bound to prevent the particles to diverge 
after each resampling stage (default = 3.5°)

•  minimumLikelihood: minimumLikelihood [0,1] in order to 
resample the particles (default = 0.55)

•  increaseMultiplier: increase the artificial noise of a certain value 
(currentValue*increaseMultiplier) if the maximum likelihood is 
lower than the minimumLikelihood (default = 1.15)

•  decreaseMultiplier: decrease the artificial noise of a certain 
value (currentValue*decreaseMultiplier) if the maximum 
likelihood is greater than the minimumLikelihood (default = 
0.85)

•  KDEStdDev: StdDev of each kernel in the Kernel Density 
Estimation algorithm (default = 1.0°)

•  minIteration: minimum number of iterations before sending 
the estimated offsets. The objective is to give time to the algorithm 
to converge, without this feature one can receive completely 
different offsets from iteration t to t + 1 during the filter 
convergence (default = 35)

fIguRe 2 |  Projection of the fingertips on the left camera on simulated robot experiments. The blue dot represents the end-effector projection (i.e., base of the 
middle finger), the red represents the index fingertip, the green the thumb fingertip, the dark yellow the middle fingertip and the soft yellow the ring and little 
fingertips. On the left image (a) is the canonical projection (i.e., with  ̂β = 0 ) and on the right image (B) the estimated offsets ( ̂β ).
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5.2.2. Running the Robot’s Internal Model
The internal model generator should run on a terminal using 
the following command:

 icub- internalmodel- rightA- cam- Lisbon. exe 
-force-opengl

The -force-opengl argument will force the robot’s 
internal model to use the OpenGL library for rendering purposes, 
which is fundamental for the libraries interoperability.

5.2.3. User interface
The user can send commands to the Hand Pose estimation 
algorithm through the RPC port hpe/rpc:i. The RPC port acts 
like a service to the user where the algorithm can be started, 
stoped or paused/resumed. It is also possible to request the last 
joint offsets estimated by the algorithm. The thrift file (modules/
handPoseEstimation/ handPoseEstimation. thrift) contains the 
input and output of each RPC service function (i.e., start, stop, 
pause, resume, lastOffsets and quit). More details about these 
commands can be seen in the use procedure on the documentation. 
Moreover, after connecting to the RPC port (yarp rpc hpe/rpc:i), 
the user can type help to get the available commands. The 
module also replies the input and output parameters of a given 
command if the user type help FunctionName (e.g., help start).

6. exPeRIMents and exaMPles of 
use

The experiments performed with the proposed method on the 
iCub simulator, with ground truth data, have shown a good 
accuracy on the hand pose estimation, where artificial offsets 
were introduced in the seven joints of the arm. The results on the 
real robot have shown a significant reduction of the calibration 
error [Check Vicente et al. (2016a) Section 5 for more results in 
simulation (Section 5.1) and with the real iCub (Section 5.2)].

For the reader to be able to test the algorithm, the authors 
collected a simulated dataset (encoders of the head and arms, and 
the left and right images) which can be used to test the algorithm. 

The simulation results of the present article were obtained 
running the above-stated code with the default parameters on 
the collected dataset.

The dataset11 was collected using a visual simulator based on 
the CAD model of the iCub humanoid robot adding artificial 
offsets in the arm joints. The artificial angular offsets β were the 
following:

β = { – 10.0, – 10.0, 6.0, – 7.0, – 1.0, – 20.0, 7.0}°.

The robot performed a babbling movement which consists in a 
random walk in each joint. The minimum and maximum values of 
the uniform distribution used to generate the babbling movement 
starts at [–5, 5]°, and is reduced during the movement to [– 0.5, 
0.5]°, respectively. Despite a great amount of errors in the robot’s 
kinematic chain, the algorithm was able to converge to the 
solution in Figure 2. Moreover, the cluttered environment on the 
background did not influence the filter convergence. The reader 
can see the projection of the fingertips on the left camera image: 
(1) according to the canonical representation on Figure 2A (where 
it is assumed an error-free kinematic structure, i.e., with  ̂β = 0  
and (2) the corrected kinematic structure using the algorithm 
implemented and documented in this code paper on Figure 2B.

The convergence of the algorithm along with a side-by-side 
comparison with the canonical solution can be seen in the 
following video: https:// youtu. be/ 0tzLFqZLbxc

On the real robot, we already performed several experiments 
in previous works, with different initial and final poses using 
the 320 × 240 cameras. In Figure 3 one can see one example of 
the hand estimation. While the image on the left (Figure 3A) 
shows the canonical estimation of the hand projected on the 
left camera image according to the non-calibrated kinematic 
chain, the image on the right (Figure 3B) shows the corrected 
kinematic chain which originates a better estimation of the 
hand pose. The rendering of the estimated hand pose was done 
taking into account the joint offsets on the kinematic chain before 
computing the hand pose in the image reference frame.

11 https://github.com/vicentepedro/eyeHandCalibrationDataset-Sim

fIguRe 3 |  Projection of the fingertips on left camera in real robot experiments. On the left image (a) the canonical projection (i.e., with  β̂ = 0 ) is shown, and on 
the right (B) the projection according with the corrected kinematic chain using the estimated offsets ( ̂β ).
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7. KnoWn Issues

There are some known issues or limitations in this algorithm and 
its software. The Windows dependency of the internal model 
generator module can be a problem for non-windows users. 
Moreover, the number of particles in the Sequential Monte Carlo 
is fixed (200 particles), which we found to be a good trade-off 
between accuracy and speed [check Vicente et al. (2016a) for more 
details on this matter].

The camera size is also fixed to the 320 × 240 resolution, 
which is sufficient to most of the experiments performed on the 
iCub. Indeed, to the authors’ knowledge, this is the most popular 
resolution in the iCub community. The camera resolution can 
be modified by changing the input resolution on the hand pose 
estimation module and on the internal structures of the internal 
model and the likelihood assessment. However, this demands for 
a recompilation of the internal model generator which could not 
be done without a Pro license of Unity®.

The limitation on the integration of the likelihood assessment 
and the int cast discussed in Section 4.3 should be investigated 
since we are truncating the likelihood and in the end we have, at 
most, three significant figures of the likelihood value.

Hand occlusions can also be problematic at this stage of the 
work since we are not dealing explicitly with them. If the hand is 
occluded for a long period, the filter can start to diverge since it 
does not find a good match of the hand model in its perception.

8. ConClusIon and futuRe WoRK

In this paper, we have shown how to calibrate the eye-hand 
kinematic chain of a humanoid robot – the iCub robot. We 

have provided a tutorial on how to execute the module and how 
it works, its inputs and outputs. Our proposed work could be 
beneficial for research works with the iCub humanoid robot, 
from manipulation related fields to human-robot interaction, for 
instance. The results have shown a good accuracy in simulation 
and in a real-world environment. For future work, we are planning 
to extend the architecture. A useful feature is to be able to predict 
if the hand is present or not in the image or if it is occluded in 
order to perform a better match between the perception and 
the generated hypotheses. We will investigate the possibility of 
running the internal model simulator on different platforms (i.e., 
Linux, macOS), which seems to be a new feature of the Unity game 
engine editor environment.
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One of the main advantages of building robots with size and motor capabilities close to

those of humans, such as iCub, lies in the fact that they can potentially take advantage

of a world populated with tools and devices designed by and for humans. However,

in order to be able to do proper use of the tools around them, robots need to be

able to incorporate these tools, that is, to build a representation of the tool’s geometry,

reach and pose with respect to the robot. The present paper tackles this argument by

presenting a repository which implements a series of interconnectedmethods that enable

autonomous, fast, and reliable tool incorporation on the iCub platform.

Keywords: tool use, code:cplusplus, tool incorporation, affordances, iCub, 3D reconstruction, humanoid, tool pose

1. OVERVIEW

A critical problem in most studies of tool use in developmental robotics is that actions are
performed without considering the geometry or pose of tools that the robot uses. Instead, most
experiments apply standard grasps and assume pre-defined kinematic end-effector extensions that
do not take into account the particular pose of the tool in the robot’s hand (Gonçalves et al.,
2014; Dehban et al., 2017). In order to overcome this limitation, this paper presents a repository
which implements a series of interconnected methods that enable autonomous, fast, and reliable
estimation of a tool’s geometry, reach and pose with respect to the iCub’s hand, in order to attach it
to the robot’s kinematic chain, thereby enabling dexterous tool use. Indeed, this methods have been
successfully applied in the study presented in Mar et al. (2017).

The repository can be found at:
https://github.com/robotology/tool-incorporation
We name this process tool incorporation because of its meaning referring to embodiment

(literally, in-corpore), as it enables iCub to build a representation of the tool with respect to,
and included in, its own body representation. The iCub is a full body humanoid robot with
53 Degrees of Freedom (DoF) (Metta et al., 2010), including head, arms, and torso. The iCub
software is structured as modules that communicate with each other using YARP middleware,
which enables multi-machine and multi-platform integration (Metta, 2006). Modules provide
specific functionalities, and work together in form of applications to achieve desired behaviors
on the iCub. Vision is provided by the cameras mounted in the robot’s eyes, from which stereo
matching can be applied to estimate depth (Fanello et al., 2014). Image processing is achieved with
the help of OpenCV and PCL libraries, for 2D and 3D processing respectively (Rusu and Cousins,
2011; Itseez, 2015). All the methods described in this paper are implemented as functions in the
toolIncorporationmodule.
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The remainder of this paper is structured according to the
main methods required to incorporate tools. Section 2 describes
the methods for tool recognition, or visual appearance learning
if the tool has not been seen before. Section 3 presents a method
that enables iCub to reconstruct a 3D representation of the tool in
its hand using its stereo-vision capabilities. Section 4 explains the
meaning and estimation of the tool’s intrinsic frame and of the
tooltip. Finally, section 5 details a method for faster estimation of
a tool’s pose when its model is available.

2. TOOL RECOGNITION

The first step for tool incorporation is to recognize the tool in
the robot’s hand, so that its model can be loaded if the tool is
known, or its visual appearance learned otherwise. To that end,
the method applied in this work builds upon the techniques
described in Pasquale et al. (2016). In that paper, a pre-trained
CNN (AlexNet trained on imageNet, Krizhevsky et al., 2012)
learned to associate a cropped image of an object presented by
the experimenter with a provided label. In this work, we extended
this approach in order to reduce the need of an external teacher,
so that it is only required to hand over the tool to the robot and
provide its label.

Once the iCub robot is grasping the tool in its hand,
exploration is performed by moving it to different poses, so that
it can be observed from different perspectives (implemented in
function exploreTool). These poses are predefined to utilize
the range of iCub’s wrist joints to achieve distinct perspectives.

On each of the considered poses iCub focuses on the tool’s
effector, understood as the part of the tool that interacts with
the environment. However, at this point the robot has no
information about the tool’s geometry or pose in order to estimate
where the effector might be (these are discussed in section 4.3).
Therefore, in order to locate the effector, iCub initially looks
just slightly over its hand (10 cm along the X axis and –10 cm
along the Y axis of the hand reference frame). Then, it locates
the tooltip on the image by iteratively extracting the tool outline
from the disparity map, and looking at the point in the blob
further away from the hand reference frame. This process, which
is implemented in function lookAtTool, is repeated until the
position of the estimated tooltip is stable, or a given number of
iterations has been surpassed.

Once iCub is correctly gazing at the tool effector, a series of
images of the tool are obtained by cropping a region around the
tool, which is determined by the bounding box of the closest blob
obtained with dispBlobber1, plus a margin of 10 pixels on
each side. Finally the cropped images are fed to a CNN whose
output feeds in turn a linear classifier which associates them to
the user provided tool label. This process is performed by the
onTheFlyRecognition application, which is called from by
the learn function provided with the tool label.

This sequence –tool effector location and subsequent cropping
of the tool region to feed the CNN– is repeated for all
the exploration poses considered, which provides enough

1https://github.com/robotology/segmentation/tree/master/dispBlobber

perspectives to recognize the tool in any future pose in which it
might be grasped in the future.

After the visual appearance of the set of available tools has
been learned, the process of classification is simple. After iCub is
given any tool, it observes it in any of the exploratory poses and
uses the same method to crop it from the rest of the image. The
cropped image is in turn sent to the trained classifier (in this case,
using the recognize function), which returns the estimated
label of the tool. It should be noted that tools can be learned in
either terms of instances or categories. In the first case, the user
should provide a distinct label for each individual tool given to
iCub, and an associated pointcloud model. In the second case,
tools of the same category (e.g., rakes, sticks, shovels), should be
given the generic label of that category, and a generic model of
the tool category provided.

3. TOOL 3D RECONSTRUCTION

In cases where a 3D model of the tool is not available, the robot
should be able to reconstruct it through exploration. In this
section we describe an approach that allows iCub to achieve this,
without the need of external intervention by the experimenter.
Essentially, it consists of iterative segmentation, reconstruction,
and merge of the tool’s partial views from different
perspectives.

Similar techniques have been presented in many different
papers in the recent years (Ren et al., 2013; Zhang et al., 2015).
However, most of these studies assume either a fixed camera
and an object being moved externally (by the user or on a
turning table), which could not be considered autonomous;
or a fix scene and a moving camera/robot navigating around
it, which is unfeasible on the current iCub setup. Therefore,
in the present work we implemented a method by means
of which iCub can reconstruct a tool’s complete pointcloud
representation by obtaining partial view reconstructions
from different perspectives and incrementally merging them
together.

The method applied to observe the tool effector is analogous
to the one described in the previous section for learning the
tool’s visual appearance, and in fact, both processes can be run
simultaneously (by calling the exploreTool function with the
2D and 3D flags active). For reconstruction, the steps performed
at each exploration pose are the following:

• Segmentation:
After the gaze is properly oriented toward the tool effector,

as described in section 2, instead of just cropping the bounding
box around the tool, the tool blob is segmented with the
dispBlobbermodule, which returns the pixels in the image
that correspond to the tool.

• Reconstruction:
This list of pixels is sent to the seg2cloud module,

which computes the 3D coordinates of each point in the
robot reference frame and returns them as a pointcloud.
This pointcloud is transformed from the robot frame to
the hand’s reference frame using the robot’s kinematics,
which greatly facilitates subsequent merging, as the hand
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FIGURE 1 | Planes and axes that determine the tool’s intrinsic reference frame. (A) Tool model divided by its three characteristic L planes. (B) Handle plane Lhan. (C)

Symmetry plane Lsym. (D) Effector plane Leff . The reference frame in all figures shows feff in red, fhan in green, and fsym in blue.

provides a coherent reference frame for all the partial
reconstructions.

Moreover, we can safely assume that the tool is connected
with the hand, and it does not extend beyond certain
boundaries. Therefore, in order to remove any points on
the reconstructed pointcloud that might belong to the
background, the pointcloud is truncated in all three axes of
the hand reference frame, removing all the points outside the
(0.0, 35)cm range in the X axis, (−30, 0.0)cm range in the Y
axis, and (−15, 15)cm range in the Z axis. Additionally, as
in many cases part of the hand might also be present in the
reconstructed pointcloud, it is removed by filtering out all
the points in the which are inside a radius of 8 cm from the
origin of the hand reference frame. Finally, the pointcloud is
smoothed by applying a statistical filter for outlier removal.
The described pointcloud reconstruction, transformation
and filtering are performed by the getPointCloud

function.
• Merging:

Although all the partial reconstructed pointclouds are
represented in a coherent reference frame, they are not
perfectly aligned due to errors in depth estimation and robot
kinematics. Therefore, a further refinement step is performed
using the Iterative Closest Point algorithm (ICP) (Besl and
McKay, 1992). We assume that the required refinement is
small and thus discard as unsuccessful those cases in which
the resulting roto-translation is larger than a given threshold.
Finally, in order to merge overlapping surfaces and reduce
noise, the resulting pointcloud is downsampled uniformly
using a voxelized grid.

As a result of this process, a complete pointcloud representation
of the explored tool is obtained, which also reflects the pose
with which the tool is being grasped by iCub. We refer to this
representation as an oriented pointcloud model, that is, the
available pointcloud model of the tool being held by the robot,
whose coordinates match the position of the actual tool with
respect to the robot’s hand reference frame.

4. TOOL REFERENCE FRAME AND
TOOLTIP ESTIMATION

Although the pose of the oriented pointcloud model corresponds
to that of the tool in the robot’s hand, its orientation is not readily
available for the robot, as it is only implicit in the pointcloud
representation. In the present section we present a method to
make this information explicit, based on the definition and
estimation of a reference frame intrinsic to each tool, applicable
to the vast majority of man-made tools that could be present in
a robotic tool use scenario. This frame of reference, referred to
as tool intrinsic reference frame, and denoted as f, identifies
the effector and handle of the tool, provides its orientation
with respect to the hand reference frame, and facilitates the
computation of the tooltip’s location.

4.1. Tool Reference Frame Definition
Given any radial tool2, generally we can define three orthogonal
characteristic tool planes as can be observed in Figure 1, denoted
together as a tool’s L planes:

• Handle plane (Lhan): It is perpendicular to the handle axis, and
divides the tool into the effector and the handle sides.

• Symmetry plane (Lsym): It is the plane with respect to which
the tool has the maximum symmetry. It runs along the handle
and divides the tool into two equal (or almost) longitudinal
halves.

• Effector plane (Leff ): Orthogonal to the two previous planes,
usually divides the “forward” and “back” sides of the tool,
forward being the side where the effector is.

The planes’ normal vectors can be chosen so that they define a
right-hand reference frame, whichwe refer to as the tool intrinsic
reference frame,(f). To this end, the origin and orientation of the

2We refer as radial tools to tools consisting of clearly distinct handle and effector,

which are grasped from the handle with the thumb toward the effector of the tool

(called radial grip).
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corresponding axes is chosen so that they preserve the following
characteristics:

• Effector axis (X) (feff ): It is positive in the direction of the
effector, i.e., toward the “forward” side of the tool.

• Handle axis (Y) (fhan): Is positive in the direction toward the
handle, and negative in the direction toward the effector side
of the tool.

• Symmetry axis (Z) (fsym): The symmetry basis vector is
obtained as the outer product of the other two to ensure
orthogonality, so it is positive on the “left” side of the tool, if
the effector is looking “forward”.

4.2. Tool Reference Frame Estimation
Based on the previous definitions, here we propose a method
to automatically estimate the tool intrinsic reference frame f

of a tool’s pointcloud representation W, relying solely on the
assumption thatW represents an oriented pointcloudmodel, that
is, it is expressed with respect to the hand reference frame of the
robot. The proposed procedure consists on the following steps,
which can be observed in function findSyms:

1. Find the pointcloud’s main axes: The estimation of f’s origin
and direction can be achieved by computing the covariance
matrix of the pointcloud W. The origin is determined at
the center of mass o, and the 3 eigenvectors v with larger
eigenvalues λ correspond to the pointcloud’s main axes:

C = cov(W), (1)

Cv = λv, (2)

L[i] ⊥ v[i], i ∈ {0, 1, 2}. (3)

Therefore, this set of orthogonal vectors v defines a set of
orthogonal planes that approximate the tool planes L, but
their correspondence with the specific planes defined above,
as well as their orientation, need to be determined to fully
characterize f.

2. Identify the planes:

a. Handle plane Lhan: The handle is situated along the
longest tool dimension. Thus, the eigenvector with largest
eigenvalue indicates the direction of the handle axis,
normal to the Handle plane. That is,

vhan = v[n], where n = arg max
i∈{0,1,2}

(λ[i]), (4)

accordingly, Lhan = L[n] (5)

b. Symmetry plane Lsym: The symmetry plane corresponds by
definition to the plane with respect to which the tool has
the maximum symmetry. Thus:

Lsym = L[m], wherem = arg max
j∈{0,1,2}6=n

(sym(L[j]). (6)

c. Effector plane Leff : The effector plane is computed in
relation to previous two planes, as the plane orthogonal to

both the Handle and the Symmetry plane:

Leff = L[k], where k ∈ 0, 1, 2 6= n,m (7)

Leff ⊥ Lsym ⊥ Lhan (8)

3. Find the axes orientations:

a. Handle axis fhan: Determines the side where the handle
of the tool is (opposite of the effector). Following the
assumption thatW is represented with respect to the hand
reference frame, it follows that the handle is on the side of
Lhan that contains the origin of the pointcloud reference
frame (i.e., the hand). Thus, the orientation of fhan is set so
that the positive values correspond to the side of Lhan that
contains the origin.

b. Effector axis feff : In order to determine the direction that
corresponds with “forward” in a tool, we consider the
saliency of the features on each side of the effector plane.
Specifically, the “forward” side of the pointcloud W is
defined as the side where the effector half of the tool
(determined in the previous step) contains points further
away from the tool’s intrinsic reference frame origin o.
Thus, the orientation of the effector axis feff (perpendicular
to the effector plane) is set such that the positive values are
located on the salient side of the effector plane.

c. Symmetry axis fsym: The orientation of fsym is chosen so
that the set of axes defined by v corresponds to a right-
handed coordinate system. Thus, it is computed as the cross
product between the handle and effector axes basis vectors:

fsym = fhan × feff (9)

The tool intrinsic reference frame f is actually expressed on the
same frame of reference that the pointcloud reconstruction from
which it is estimated, that is, the hand reference frame. Thus, the
equations of the frame’s axes represent explicitly the orientation
of the tool in any of its three axis.

One of the strengths of this approach to estimate the tool’s
frame of reference f is that it relies on very few and general
assumptions to be met in order to work successfully, namely, that
the tool’s handle axis is longer that any other axis, and that the
tool has a certain degree of symmetry along a plane that contains
that axis. Moreover, the method is also very robust to noise in the
3D representation of the tool, since all the computations required
throughout the process of determining f have a high tolerance
to noise. Indeed, as most of the decisions are made in terms
of comparison (symmetry between two sides of a plane, longest
axis, furthest away point), if noise affects the whole pointcloud
similarly, it would not modify their outcome.

4.3. Tooltip Estimation
As stated above, one of themain advantages of estimating the tool
reference frame f is that it enables to precisely locate the tooltip,
required to perform the extension of the robot’s kinematic chain
to the new end-effector provided by the tool. Thus, the tool tip is
defined in terms of the concepts defined and estimated above:

Tooltip: Location on the tool represented by the point on
the Symmetry plane of the tool, above the Handle plane (i.e., on
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FIGURE 2 | Results of the tooltip estimation process described in the text shown for a few example tools (top row), whose pointcloud has been achieved from from

CAD models (middle row), or autonomously reconstructed (bottom row).

the effector side), furthest away from the Effector plane, on the
positive side of the effector axis.

The estimated tool reference frame f and tooltip for a small
sample of tools can be observed in Figure 2, where it can be
observed that the estimated tooltip coincides to what most people
would consider to be the tooltip of those tools.

In our code, this definition is implemented by the function
findTooltipSym, which computes the tooltip location based
on the information from the tool planes provided by the previous
steps.

5. TOOL POSE ESTIMATION

The methods described in sections 3 and 4 allow the robot
to reconstruct a tool’s geometry and estimate its pose even in
the case of previously unseen tools. However, this is a time
consuming approach that is not necessary if a 3D pointcloud
model of the tool or tool category is already available, either from

a CADmodel or from a previous reconstruction. For these cases,
in this section we introduce a fast and reliable method for pose
estimation, based on the alignment of the available model with a
single partial view reconstruction to the tool in the robot’s hand,
implemented in the function findPoseAlign.

Qualitatively, the tool pose represents the way in which the
tool is being grasped with respect to the hand’s reference frame.
Numerically, we can express the tool pose in terms of the 4 × 4
roto-translation Pose Matrix P required to transform the hand
reference frame < H > frame to any reference frame intrinsic to
the tool < T >, that is,

< T > = P < H > (10)

The hand reference frame < H > is defined by the robot
kinematics. The tool reference frame < T > applied can be
arbitrarily chosen, as long as it is coherent among all the tools
that can be considered, as the Pose is expressed in relative terms.
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FIGURE 3 | Example of the tool pose estimation through alignment process. (A) Load 3D pointcloud model on canonical pose. (B) Extract partial reconstruction using

seg2cloud model (segmentation + depth estimation). (C) Find Pose Matrix P by aligning 3D model to partial reconstruction. (D) Obtain oriented pointcloud model

by applying P to the 3D model.

This means that P can also be understood as the required
transformation to align a tool 3D model from its canonical pose
to the pose in which is the tool is being held by the robot, given by
the oriented pointcloud model. In this work, this transformation
is estimated by aligning the available model of the tool with a
partial reconstruction obtained through iCub’s disparity.

To that end, iCub first applies the method described in
section 2 to identify the tool instance or category and load the
corresponding model. Then, it fixates the gaze on the tool’s
effector and extracts a partial pointcloud reconstruction, using
the same methods applied on each of the exploration poses
considered for tool reconstruction, as detailed in section 3. Then,
the ICP algorithm is applied in order to align the pointcloud
model loaded from memory to the partial reconstruction just
obtained. Finally, the alignment matrix returned by the ICP is
checked to assess whether it corresponds to a feasible grasp pose
in terms of translation from the origin and rotation in Z and X
axes. If the alignment estimated by ICP corresponds to a feasible
grasp, then the returned alignment matrix is assigned to P, and
applied to transform the canonical pointcloud model available in
memory in order to obtain the oriented pointcloud model. This
process can be observed in Figure 3.

Thereby, after the pose estimation process iCub has explicit
information about the precise geometry and pose of the tool in
its hand. Therefore, it can apply the method described in section
4.3 to determine the position of the tooltip with respect to the
robot’s hand reference frame, and hence extend the kinematics of
the robot to incorporate the tip of the tool as the new end-effector
for further action execution.

6. CONCLUSION

In the present paper we have introduced the concept of tool
incorporation, that is, the process whereby the iCub robot is able
to recognize a tool, estimate its geometry, pose and tooltip, and

use this information to use the tool as its new end-effector. In
particular, we have introduced a repository which implements a
set of interconnected methods to perform such tasks in a fast and
reliable way on iCub platform. By applying these methods, the
robustness of the desired tool use behaviors as well as the ease
of implementation can be substantially increased, by reducing
the necessity of applying predefined parameters to represent the
tools.

Despite its clear advantages, this approach does however suffer
from a few limitations. On the one hand, it only works properly
with radial tools where handle and effector are clearly distinct and
are grasped radially (in the direction of the iCub’s thumb). On
the other, the 3D reconstruction quality, while generally enough
to estimate the tool frame and the tooltip, does yield relatively
noisy models. These issues clearly demand further work on
tool incorporation mechanisms in order to facilitate robotic tool
use.

AUTHOR CONTRIBUTIONS

TM is the main author of the code and paper. VT provided
technical guidance and assistance, and reviewed both the code
and the paper. LN provided high-level supervision, and reviewed
the paper before submission.

REFERENCES

Besl, P., and McKay, N. (1992). A method for registration of 3-D shapes.

IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256. doi: 10.1109/34.

121791

Dehban, A., Jamone, L., and Kampff, A. R. (2017). “A deep probabilistic framework

for heterogeneous self-supervised learning of affordances,” inHumanoids 2017

(Birmingham).

Fanello, S. R., Pattacini, U., Gori, I., and Tikhanoff, V. (2014).

“3D Stereo estimation and fully automated learning of eye-hand

Frontiers in Robotics and AI | www.frontiersin.org 6 August 2018 | Volume 5 | Article 98105

https://doi.org/10.1109/34.121791
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Mar et al. A Framework for Tool Incorporation on iCub

coordination in humanoid robots,” in Humanoids 2014 (Madrid),

1028–1035.

Gonçalves, A., Abrantes, J., Saponaro, G., Jamone, L., and Bernardino, A. (2014).

“Learning intermediate object affordances: toward the development of a tool

concept,” in IEEE International Conference on Development and Learning and

on Epigenetic Robotics (ICDL-EpiRob 2014) (Genoa), 1–8.

Itseez (2015). Open Source Computer Vision Library.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification

with deep convolutional Neural Networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe, NV), 1–9.

Mar, T., Tikhanoff, V., and Natale, L. (2017). What can I do with this tool? Self-

supervised learning of tool affordances from their 3D geometry. IEEE Trans.

Cogn. Dev. Sys. 1. doi: 10.1109/TCDS.2017.2717041

Metta, G. (2006). Software Implementation of the Phylogenetic Abilities Specifically

for the iCub & Integration in the iCub Cognitive Architecture. Technical Report

004370.

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).

The iCub humanoid robot: an open-systems platform for research in cognitive

development. Neural Netw. 23, 1125–1134. doi: 10.1016/j.neunet.2010.

08.010

Pasquale, G., Ciliberto, C., Rosasco, L., and Natale, L. (2016). “Object identification

from few examples by improving the invariance of a deep convolutional neural

network,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Daejeon: IEEE). doi: 10.1109/IROS.2016.7759720

Ren, C. Y., Prisacariu, V., Murray, D., and Reid, I. (2013). “STAR3D: Simultaneous

tracking and reconstruction of 3D objects using RGB-D data,” in Proceedings

of the IEEE International Conference on Computer Vision (Sydney, NSW),

1561–1568.

Rusu, R. B., and Cousins, S. (2011). “3D is here: Point Cloud Library

(PCL),” in Proceedings - IEEE International Conference on Robotics and

Automation (Shanghai).

Zhang, Y., Gibson, G. M., Hay, R., Bowman, R. W., Padgett, M. J., and Edgar, M. P.

(2015). A fast 3D reconstruction system with a low-cost camera accessory. Sci.

Rep. 5, 1–7. doi: 10.1038/srep10909

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer JAG and handling Editor declared their shared affiliation.

Copyright © 2018 Mar, Tikhanoff and Natale. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 7 August 2018 | Volume 5 | Article 98106

https://doi.org/10.1109/TCDS.2017.2717041
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1109/IROS.2016.7759720
https://doi.org/10.1038/srep10909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org  |  +41 21 510 17 00 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Building the iCub Mindware: Open-source Software for Robot Intelligence andAutonomy
	Table of Contents
	Prediction of Intention during Interaction with iCub with Probabilistic Movement Primitives
	1. Introduction
	2. Related Work
	2.1. Intention during Human–Robot Interaction
	2.2. Movement Primitives
	2.3. Related Open-Source Software

	3. Theoretical Framework
	3.1. Notation
	3.1.1. Trajectories
	3.1.2. Movement Primitives
	3.1.3. Time Modulation
	3.1.4. Inference

	3.2. Learning a Probabilistic Movement Primitive (ProMP) from Demonstrations
	3.3. Predicting the Future Movement from Initial Observations
	3.4. Predicting the Trajectory Time Modulation
	3.5. Recognizing One among Many Movement Primitives

	4. Software Overview
	5. Software Example: Learning a 1-DOF Primitive
	6. Application on the Simulated iCub: Learning Three Primitives
	6.1. Predicting Intended Trajectories by Using ProMPs
	6.1.1. Learning Motion Primitives
	6.1.2. Prediction of the Trajectory Evolution from Initial Observations

	6.2. Setup for Simulated iCub
	6.3. Data Acquisition
	6.4. Learning the ProMPs
	6.5. Predicting the Desired Movement
	6.6. Predicting the Time Modulation

	7. Application on the Real iCub
	7.1. Three Simple Actions with Wrench Information
	7.2. Collaborative Object Sorting

	8. Videos
	9. Discussion
	9.1. Improving the Estimation of the Time Modulation
	9.2. Improving Prediction
	9.3. Continuous Prediction
	9.4. Improving Computational Time
	9.5. Learning Tasks with Objects

	10. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References
	Appendix
	A. Detail of the Inference Formula


	Real-time Pipeline for Object Modeling and Grasping Pose Selection via Superquadric Functions
	1. Introduction
	2. Modeling and Grasping Via Superquadric Models
	3. Code Structure
	3.1. Superquadric-Model
	3.1.1. SuperqComputation
	3.1.2. SuperqVisualization

	3.2. Superquadric-Grasping
	3.2.1. GraspComputation
	3.2.2. GraspExecution
	3.2.3. GraspVisualization
	3.2.4. Communication with the Module

	3.3. How to Use the Superquadric Framework

	4. Known Issues
	5. Conclusion
	Author Contributions
	References

	Connecting YARP to the Web 
with Yarp.js
	1. Introduction
	2. Background and Motivations
	2.1. YARP
	2.2. Robots, Modern Web APIs, 
and Node.js

	3. System Overview
	3.1. Server Side: YARP in Node.js
	3.1.1. First Layer: Node.js Addons for YARP (Language C++ → Node.js)
	3.1.2. Second Layer: Yarp.js Server Manager (Language Node.js)

	3.2. Client Side: YARP in the Browser (Language JavaScript)

	4. Applications
	4.1. Reading and Transmitting Inertial Data
	4.2. Speech Recognition and Synthesis
	4.3. Stream Video (a “yarpview” in the Browser)
	4.4. 3D Visualization of YARP Data
	4.5. Teleoperation with Face Tracking

	5. Conclusion
	Author Contributions
	Funding
	References

	The Event-Driven Software Library for YARP—With Algorithms and 
iCub Applications
	1. Introduction
	2. Event-Driven Vision for Robots
	3. The Event-Driven Library
	3.1. Representing an Event
	3.2. Event-Packets in YARP
	3.3. Structuring the Event-Stream
	3.4. Low-Level Processing

	4. Demonstrations, Code, and Datasets
	5. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	References

	Speech Recognition for the iCub Platform
	1. Introduction
	2. iCubRec
	2.1. Application and Utility
	2.2. Methods
	2.3. Code Description
	2.3.1. GMM-Based Acoustic Modeling
	2.3.2. DNN-Based Acoustic Modeling
	2.3.3. Speech Decoding
	2.3.4. Integration with YARP

	2.4. Resources
	2.4.1. The VoCub Dataset
	2.4.2. Trained Models

	2.5. Example of Use

	3. bioRec
	3.1. Application and Utility
	3.1.1. Articulatory Phone Recognition
	3.1.2. Unsupervised/Developmental ASR

	3.2. Methods
	3.2.1. Articulatory Phone Recognition
	3.2.2. Unsupervised/Developmental ASR

	3.3. Code Description and Example of Use
	3.3.1. Articulatory Phone Recognition
	3.3.2. Unsupervised/Developmental ASR
	3.3.3. Utilities


	4. Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	YARP-ROS Inter-Operation in a 2D Navigation Task
	1. Introduction
	2. YARP/ROS Interface
	2.1. YARP Ports and ROS Topics
	2.2. TransformServer and TransformClient

	3. YARP Classes and Interfaces for Navigation
	3.1. MapGrid2D
	3.2. Map2DLocation
	3.3. IMap2D
	3.4. INavigation2D

	4. YARP Modules and Tools for Navigation
	4.1. Map2DServer
	4.2. BaseControl
	4.3. Mapper2D
	4.4. LocalizationServer
	4.5. RobotGoto
	4.6. RobotPathPlanner

	5. Navigation Integration and Examples
	6. Conclusion and Future Work
	Author Contributions
	Supplementary Material
	References

	iCub-HRI: A Software Framework for Complex Human–Robot Interaction Scenarios on the iCub Humanoid Robot
	1. Introduction and Background
	1.1. Background and Related Works
	1.2. Design Principles

	2. The iCub-HRI Library
	2.1. Knowledge Representation and Exchange
	2.2. Subsystems

	3. iCub-HRI Modules
	3.1. Perception Modules
	3.1.1. Agent Detector
	3.1.2. Default Speech Recognition
	3.1.3. Object Recognition
	3.1.4. Saliency
	3.1.5. Face and Action Recognition

	3.2. Action Modules
	3.2.1. Face Tracking
	3.2.2. Babbling

	3.3. Social Interaction Modules
	3.3.1. Proactive Tagging
	3.3.2. Reactive Layer

	3.4. Tools

	4. Using iCub-HRI
	4.1. Example Usage of the Object Manipulation Subsystems
	4.2. Knowledge Acquisition Tutorial
	4.3. Usage within DAC-h3 Framework
	4.4. More Applications and Use Cases
	4.5. Platform Independence
	4.6. Dependencies
	4.7. Download, Licensing, and Compatibility

	5. Conclusion and Future Work
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	References

	Optimization-Based Controllers for Robotics Applications (OCRA): The Case of iCub's Whole-Body Control
	1. Introduction
	2. OCRA
	3. Optimization-Based Control
	3.1. Tasks
	3.2. Constraints
	3.3. Dynamics
	3.4. Quadratic Programming Based Control
	3.5. Prioritization Strategies

	4. Software
	4.1. Structure
	4.1.1. OCRA Libraries
	4.1.2. OCRA for iCub
	4.1.3. iCub Server
	4.1.4. Generic Client
	4.1.5. Client Generator


	5. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	Online Material
	References

	Design and Implementation of a YARP Device Driver Interface: The Depth-Sensor Case
	1. Introduction
	1.1. YARP Device Interface
	1.2. RGBD Device Family
	1.3. Common Design Patterns

	2. Design Process
	2.1. Identifying Data Flow and Device Capabilities
	2.2. Identifying Use Case Scenarios
	2.3. Additional Constraints and Requirements
	2.3.1. Need of a Standard
	2.3.2. Unique Traits of RGBD Device
	2.3.3. Compliance With the YARP Ecosystem
	2.3.4. Modularity
	2.3.5. Re-usability


	3. Adopted Solutions
	3.1. Design Criteria
	3.1.1. Definition of a YARP Standard
	3.1.2. Re-use, Not Inherit
	3.1.3. Isolation of Capabilities

	3.2. Implementation Solutions
	3.2.1. API Compensation
	3.2.2. Separated Data Flow
	3.2.3. Three Levels Decoupling
	3.2.4. Capabilities Composition


	4. Conclusion and Future Work
	Author Contributions
	References

	﻿Markerless Eye-Hand Kinematic Calibration on the iCub Humanoid Robot﻿
	1. Introduction and Related Work
	2. Proposed Solution
	3. Software Design and Architecture Principles
	4. Code Description
	4.1. Hand Pose Estimation Module
	4.1.1. Initializing the Sequential Monte Carlo parameter estimation - initSMC Function
	4.1.2 Read Image, Read Encoders, ProcessImages and SendData
	4.1.3. Update Likelihood
	4.1.4. Kernel Density Estimation
	4.1.5. Best Hypothesis
	4.1.6. Update Artificial Noise, Resampling and New Particles

	4.2. Robot’s Internal Model Generator
	4.2.1. Initialization of the Render Textures
	4.2.2. Generate Hypotheses

	4.3. Likelihood Assessment Module

	5. Application and Utility
	5.1. Installation and Dependencies
	5.1.1. Hand Pose Estimation Module
	5.1.2 Robot’s Internal Model Generator and Likelihood Assessment

	5.2. Running the Modules
	5.2.1. Running the Hand Pose Estimation and its parameters
	5.2.2. Running the Robot’s Internal Model
	5.2.3. User interface


	6. Experiments and Examples of Use
	7. Known Issues
	8. Conclusion and Future Work
	Author Contributions
	Funding
	References

	A Framework for Fast, Autonomous, and Reliable Tool Incorporation on iCub
	1. Overview
	2. Tool recognition
	3. Tool 3D reconstruction
	4. Tool reference frame and tooltip estimation
	4.1. Tool Reference Frame Definition
	4.2. Tool Reference Frame Estimation
	4.3. Tooltip Estimation

	5. Tool pose estimation
	6. Conclusion
	Author Contributions
	References

	Back Cover



