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Editorial on the Research Topic

Current trends in targeted and non-targeted metabolomics in analytical
toxicology
s

Analytical toxicology is at the frontline of detecting, identifying, and quantifying
xenobiotics, drugs, and their metabolites in biological specimens. This essential discipline
intersects with several fields, including analytical and clinical chemistry, pharmacology,
and environmental health. Particularly in personalised medicine, analytical toxicology
plays an essential role as metabolomics, analyzing small molecules in biological systems,
plays a pivotal role in this evolution. By enabling both targeted and untargeted analyses,
metabolomics allows for rapid screening of metabolites, helping to identify changes
in physiological states triggered by toxic exposure or drug interactions. This approach
not only enhances the precision of toxicological testing but also broadens the scope of
detection, allowing for a deeper understanding of how substances affect human health
on a molecular level (Zhu et al.; Barla et al.). This allows the integration of metabolomics
into personalised medicine, opening up new frontiers in both research (Mojsak et al.) and
clinical applications. What makes metabolomics particularly pioneering in the context of
personalized medicine is its ability to capture the individual biochemical responses to drugs
or toxins. Every person’s metabolic profile differs, influencing how they process and react
to substances. By incorporating metabolomics into analytical toxicology, we can better
understand these unique individual responses, paving the way for tailored therapeutic
strategies. This strategy allows clinicians to move away from one-size-fits-all treatments,
instead offering interventions that are finely tuned to each patient’s specific metabolic
makeup. In turn, this can improve patient outcomes by optimizing drug efficacy and
reducing adverse effects. Furthermore, metabolomics allows for more precise monitoring
of ongoing drug use or exposure, offering the option of real-time adjustments to treatment
plans. In the case of substance misuse, metabolomics could help track metabolites over
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time, enabling more effective management strategies, personalized
detoxification protocols and faster recovery timelines.This flexibility
is essential for addressing the evolving nature of drug misuse
and ensuring that healthcare approaches are not only reactive but
proactive.

As the landscape of drug misuse also continues to evolve, the
importance of advanced analytical methods in toxicology testing
has never been greater. Fundamentally, analytical toxicology serves
a critical function in ensuring the safety andwellbeing of individuals
by providing accurate testing for drugmisuse, environmental toxins,
and other harmful substances. However, the escalating complexity
of substances involved in drug abuse and toxic exposure demands
persistent innovation in analytical techniques. The struggle lies
in keeping up with new drugs, metabolites, and their potentially
changeable effects on the human body. For this reason, joint
communication and collaboration between clinicians, legal experts,
law enforcement, and toxicologists are essential to effectively address
these issues.

The combination of analytical toxicology, metabolomics,
and personalized medicine is poised to revolutionize the way
we approach drug misuse, exposure, and treatment. This
interdisciplinary approach promises better detection, more precise
diagnoses, and customized therapeutic strategies that improve
both health outcomes and public safety. As research in these fields
continues to evolve, so too will our ability to provide smarter, more
effective solutions for patients and society as a whole.

This editorial Research Topic highlights how the integration of
metabolomics into analytical toxicology offers fresh perspectives. As
personalizedmedicine continues to gainmomentum,metabolomics
stands at the forefront of tailoring healthcare to the individual.
By offering deeper insights into how specific drugs and toxins
affect each person, we move closer to precision medicine—where
treatments are based on a comprehensive understanding of an
individual’s metabolic and biochemical makeup.

Zhu et al. employed mass spectrometry-based metabolomics to
investigate the effects and underlyingmechanisms of isochlorogenic
acid A in MC3T3-E1 cells. Their findings offer valuable insights
into the therapeutic potential of 3,5-DiCQA for osteoporosis and
demonstrate the effectiveness of metabolomics in advancing the
understanding of traditional Chinese medicine (TCM).

In their study, Mojsak et al. applied gas chromatography–mass
spectrometry (GC-MS)-based metabolomics to investigate how
metabolite profiles change post-mortem in porcine blood,
comparing samples collectedwith andwithout EDTA anticoagulant.
Using linear mixed models, they examined how metabolite levels
were influenced by time since death and the presence of EDTA,while
also accounting for variability between individual animals. Their
results revealed that 16 metabolites—primarily amino acids—were
significantly affected by both post-mortem interval (PMI) and
anticoagulant use. The authors emphasized that for a biomarker
to be reliable in estimating PMI, its concentration should be driven
solely by the time elapsed after death, without being impacted by
external factors such as EDTA.

Barla et al. investigated the biochemical disruptions in the
kidneys and liver of mice treated with a clinically relevant dose
of colistin. Their analysis identified six metabolites (including
PAA, DA4S, and 2,8-DHA) that responded in a dose-dependent
manner, along with notable disturbances in renal dopamine

regulation and significant alterations in purine metabolism within
the kidneys. Additionally, the researchers observed changes
in hepatic suberylglycine levels—a metabolite associated with
fatty liver disease. Elevated concentrations of xanthine and
uric acid were also detected in kidney tissue, both known to
enhance acetylcholinesterase (AChE) activity, which in turn
accelerates the breakdown of acetylcholine. These findings support
a simplified hypothesis suggesting a possible link between colistin
methanesulfonate (CMS)-induced kidney toxicity and its potential
to cause neurotoxic effects—an association that warrants deeper
investigation.

Isaiah et al. conducted a study examining the urinary metabolic
profile of children in South Africa with advanced tuberculous
meningitis (TBM). Their analysis revealed a distinct set of 29
urinary metabolites associated with advanced stages of the disease.
These metabolites were linked to six major disruptions in metabolic
function: (1) enhanced breakdown of tryptophan, indicating
interference with vitamin B pathways; (2) abnormalities in amino
acid metabolism; (3) a surge in energy production consistent
with a metabolic burst; (4) imbalances in gut microbiota-related
metabolism; (5) signs of ketoacidosis; and (6) elevated nitrogen
elimination. This work offers novel biological insights into a urinary
metabolic signature that may help distinguish paediatric TBM cases
within this regional population.

Moses et al. outlined the potential of ion mobility spectrometry
in the context of untargeted metabolomics. In this review,
the authors compare ion mobility-based separation with liquid
chromatography, trace the evolution of ion mobility techniques
within metabolomics, present the current advancements and
methodologies, and offer perspectives on future developments
in the field.

Wang et al. investigated the therapeutic effects and underlying
mechanisms of YiYiFuZi powder (YYFZ) in the context of
chronic heart disease (CHD), employing both metabolomics
and network pharmacology approaches. YYFZ is a traditional
Chinese medicinal formula frequently used in clinical practice
to manage CHD, though its precise pharmacological actions
remain insufficiently understood. Using UPLC-Q-TOF/MS, the
researchers conducted metabolomic profiling of rat plasma to
identify biomarkers and explore affected metabolic pathways.
Additionally, network pharmacology was applied to uncover key
molecular targets and signaling pathways involved in YYFZ’s effects.
The metabolomic analysis revealed 19 metabolites associated with
pathways including amino acid and fatty acid metabolism. The
network analysis indicated that YYFZ may exert its effects via the
PI3K/Akt,MAPK, andRas signaling pathways. In conclusion, YYFZ
appears to influence systemic metabolism and activate multiple
phosphorylation-related signaling cascades in CHD; however, more
research is needed to clarify which specific changes are critical to its
therapeutic action.

Su et al. conducted a comprehensive investigation involving
untargeted serum metabolomics and whole-body fat assessment
using dual-energy X-ray absorptiometry (DXA) in a cohort of
517 Chinese women. The study examined four DXA-derived
body fat (BF) traits simultaneously to uncover shared metabolite
associations and highlight key metabolic contributors. Using a
pathway topology approach, the researchers identified biological
processes closely linked to body fat regulation. The analysis was
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further extended by evaluating how these candidate BF-associated
metabolites relate to fat traits across different sexes and ethnic groups
using two independent validation cohorts. Among the findings,
acetylglycine emerged as a standout metabolite, showing strong
anti-obesity properties confirmed in vivo using multiple models
of diet-induced obesity (DIO) in mice. In total, 18 metabolites
and 14 metabolic pathways were significantly associated with BF
traits, with six metabolites validated across populations of different
gender and ethnicity. The consistent, cross-species efficacy of
acetylglycine underscores its potential as a therapeutic agent for
obesity prevention. Overall, this study highlights the metabolic
underpinnings of fat distribution and the biological mechanisms
that may influence obesity risk and its management, pointing to
acetylglycine as a promising target for future interventions.

Wandy et al. conducted a study comparing data acquisition
strategies in untargeted metabolomics by evaluating how well
simulated results reflect real-world performance. They enhanced
the Virtual Metabolomics Mass Spectrometer (ViMMS) platform
by integrating a module for Data-Independent Acquisition (DIA),
enabling a detailed in silico comparison between DIA and Data-
Dependent Acquisition (DDA) approaches. Their findings revealed
thatmethod performance is highly dependent on the number of ions
eluting simultaneously. When few compounds overlap, DIA delivers
superior results; however, as ion overlap increases,DDAprovesmore
effective since DIA struggles to resolve the complexity of densely
overlapping chromatographic signals. These simulation outcomes
were corroborated using a physical mass spectrometer, confirming
that ViMMS simulations can reliably predict real experimental
behavior. A major strength of this study lies in ViMMS’s ability to
flexibly model and test various parameters across both acquisition
modes. This approach not only enhances understanding of DIA
and DDA performance but also significantly reduces the need for
extensive laboratory testing, offering a powerful tool for advancing
LC-MS/MS method development in metabolomics research.

Ji et al. explored how Tongdu Huoxue Decoction (THD)
influences the biological network involved in lumbar spinal stenosis
(LSS) through a clinical metabolomics approach. Patients were
assessed both before and after treatment using the Visual Analogue
Scale (VAS) and Japanese Orthopaedic Association (JOA) scores to
evaluate pain and lumbar function. Serum levels of Interleukin-1β
(IL-1β), Tumor Necrosis Factor-alpha (TNF-α), and Prostaglandin
E2 (PGE2) were measured pre- and post-treatment using ELISA
assays. Additionally, targeted metabolomic profiling was performed
on serum samples from patients (both before and after treatment)

as well as from healthy individuals, using Ultra Performance
Liquid Chromatography (UPLC). Multivariate statistical analysis
was then applied to identify significant changes in metabolites and
disrupted metabolic pathways. The clinical findings showed that
THD effectively alleviates pain, enhances lumbar function, and
reduces inflammatory markers in LSS patients. Mechanistically,
these therapeutic effects appear to involve the modulation of
purine metabolism, steroid hormone synthesis, and amino acid
metabolism-related biomarkers.
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Data-Dependent and Data-Independent Acquisition modes (DDA and DIA,
respectively) are both widely used to acquire MS2 spectra in untargeted liquid
chromatography tandemmass spectrometry (LC-MS/MS)metabolomics analyses.
Despite their wide use, little work has been attempted to systematically compare
their MS/MS spectral annotation performance in untargeted settings due to the
lack of ground truth and the costs involved in running a large number of
acquisitions. Here, we present a systematic in silico comparison of these two
acquisition methods in untargeted metabolomics by extending our Virtual
Metabolomics Mass Spectrometer (ViMMS) framework with a DIA module. Our
results show that the performance of these methods varies with the average
number of co-eluting ions as the most important factor. At low numbers, DIA
outperforms DDA, but at higher numbers, DDA has an advantage as DIA can no
longer deal with the large amount of overlapping ion chromatograms. Results
from simulation were further validated on an actual mass spectrometer,
demonstrating that using ViMMS we can draw conclusions from simulation
that translate well into the real world. The versatility of the Virtual
Metabolomics Mass Spectrometer (ViMMS) framework in simulating different
parameters of both Data-Dependent and Data-Independent Acquisition (DDA
andDIA)modes is a key advantage of this work. Researchers can easily explore and
compare the performance of different acquisition methods within the ViMMS
framework, without the need for expensive and time-consuming experiments
with real experimental data. By identifying the strengths and limitations of each
acquisition method, researchers can optimize their choice and obtain more
accurate and robust results. Furthermore, the ability to simulate and validate
results using the ViMMS framework can save significant time and resources, as it
eliminates the need for numerous experiments. This work not only provides
valuable insights into the performance of DDA and DIA, but it also opens the
door for further advancements in LC-MS/MS data acquisition methods.

KEYWORDS

liquid chromatography tandem mass spectrometry, metabolomics, data-dependent
acquisition, data independent acquisition, digital twin
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1 Introduction

Liquid chromatography tandem mass spectrometry (LC-MS/
MS) is one of the dominant analytical platforms for untargeted
metabolomics. LC-MS/MS acquisition strategies can be categorised
as either Data-Dependent Acquisition (DDA) or Data-Independent
Acquisition (DIA). In the former, MS2 scans are scheduled to target
particular ions observed in full scan (MS1) survey scans. After each
MS1 survey scan, a small number of ions will be prioritised
(normally based upon their intensity) and fragmented in a series
of MS/MS (MS2) scans. This will be followed by another MS1 survey
scan from which the next batch of fragmentation events will be
decided. In DIA, fragmentation is not based upon ions observed in
survey scans but instead fixed m/z windows are isolated and
fragmented, regardless of the ions present. The m/z windows can
range from the whole m/z range (All-Ion Fragmentation, or AIF) or
can be broken into a series of smaller windows that are iterated over
in consecutive scans (e.g., Sequential Window Acquisition of all
Theoretical Mass Spectra, or SWATH) (Gillet et al., 2012). DIA
therefore removes the need to choose which ions to target at
acquisition time at the cost of introducing an additional
deconvolution step into the data analysis pipeline. Note that in
this paper, we use the term “DIA” to refer to all data-independent
acquisition methods, including both SWATH and AIF.

Various different DDA and DIA strategies have been introduced
(Kaufmann and Walker, 2016; Guan et al., 2020; Davies et al., 2021;
Guo et al., 2021) and although each new method is compared with
other approaches, no clear consensus has emerged as to which
overall strategy is best in which situation (Fernández-Costa et al.,
2020; Guo and Huan, 2020a; Guo and Huan, 2020b). An advantage
of DDA is thatMS2 spectra are generated nearly ready to use, as each
MS2 spectrum targets a particular ion, and we can be reasonably
confident that the fragment ions observed do indeed come from the
targeted ion. Sometimes multiple ions can end up in the same
isolation window (Lawson et al., 2017), but this, in general, is not
considered to be a major problem, as most of the times there is one
dominant ion species giving rise to the mass fragments. Critics of
DDA point to the lack of reproducibility (i.e., due to its stochastic
nature, different peaks will be fragmented if the same sample is
injected twice) and the low coverage–only a subset of the ions
present in the sample are fragmented (Zhang et al., 2020). On the
other hand, DIA offers chromatographic traces for all detected
fragment ions, which can be useful in the identification of
complex samples, particularly those containing isomers, where
chromatographic information can help distinguish between them.
The increased fragmentation capabilities of DIA can also be
beneficial in the case of nearby-eluting isomers, where DDA
might trigger only one MS2 spectrum due to dynamic exclusion.
As DIA does not prioritise based on the contents of MS1 survey
scans, it is more reproducible (we know beforehand exactly the
properties of any scan). It also, at least in theory, overcomes the
coverage issues as it is able to assign MS2 fragments to any detected
MS1 ion.

The analysis of complex samples using DIA presents a unique
set of challenges. In DIA, multiple ions from different compounds
are fragmented during each MS2 scan, leading to complex spectra
that require deconvolution to identify individual components. This
can be particularly challenging in untargeted metabolomics where

the compounds present and their fragmentation patterns are
unknown prior to analysis, making it difficult to set up a pre-
determined table of metabolites of interest to compare their
fragmentation spectra to. Deconvolution, using software such as
MS-DIAL (Tsugawa et al., 2015), is a process that separates the
complex spectra generated by the fragmentation of multiple
compounds into individual components, enabling the
identification of the compounds present in the sample. However,
deconvolution is a complex process and it is widely recognised that
the high coverage provided by DIA comes at the cost of lower quality
spectra (Bern et al., 2010).

Although there have recently been two studies (Guo and Huan,
2020a; Guo and Huan, 2020b) that compare DDA with DIA for its
use in untargeted metabolomics, in general comparisons between
the two acquisition strategies are still lacking. This is mainly due to
the lack of ground truth for real experimental matrices and the cost
of running large numbers of injections. While validation on real
injections is vital, simulation can also play an important role in
answering such questions. For example, the number of ions that can
be targeted in a DDA analysis is a complex function of scan times,
chromatographic peak widths, and the number of peaks eluting at a
particular time. Similarly, the number of spectra that can be
accurately deconvoluted in a DIA analysis depends on the
number of co-eluting ions in the same isolation window, and
how correlated their chromatographic profiles are. In both cases,
analysis on real injections is hampered by a lack of knowledge of the
true make-up of that sample, or samples being overly simplistic if
they consist of just a handful of known standards. Simulation can
overcome these limitations by permitting complete control over the
ground truth in terms of both the fragment spectra present, the
number of chemical ions in the sample, and how and when they
elute.

In our previous work we introduced ViMMS (Wandy et al.,
2019;Wandy et al., 2022), a virtual metabolomics mass spectrometry
simulator framework, and demonstrated how it could be used to
develop new, and improve existing DDA strategies. One of the main
advantages of using ViMMS to develop new strategies lies in its
ability to develop methods without the overhead costs of using a real
mass spectrometer (MS). Within the ViMMS framework, it is
possible to prototype methods and optimise them in silico before
transferring the developed method for validation to an actual
instrument. New DDA methods, such as WeightedDEW and
SmartROI, have been developed on top of ViMMS and shown to
outperform Top-N in terms of the number of peaks that were
fragmented in both simulated and real experiments (Davies et al.,
2021). More recent work has used ViMMS to develop improved
methods for multi-sample and -injection DDA strategies (McBride
et al., 2023).

In the current work we utilised ViMMS as a method for
accurately benchmarking DIA and DDA through simulations.
We firstly introduce two DIA controllers (SWATH and AIF) into
the ViMMS framework, before conducting extensive simulated
experiments to evaluate the comparative performance of DIA
and DDA (Top-N) across a range of different simulated
conditions, effectively creating a “digital twin” of the real
situation. The DIA methods prototyped on the simulator were
transferred with ease to run on an actual MS instrument with no
code changes in the implementation–evidencing the capability of
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ViMMS to develop DIA methods in a simulated-to-real setting. As
such, we used ViMMS to validate the in silico experiments using
complex beer samples in real LC-MS/MS experiments. The real
experimental results were first benchmarked using an online
reference spectral library (GNPS/NIST14) to assess spectral
matches to a database of known molecules. This approach
follows that of Guo and Huan (2020a), but importantly compares
SWATH as well as AIF. Improving upon Guo and Huan (2020a), we
also more systematically compare the results for DDA (Top-N) and
DIA (SWATH and AIF) by evaluating our results against a database
created on the specific sample using a recently developed, but
computationally expensive multiple injection data acquisition
method (McBride et al., 2023). This multi-injection dataset was
constructed specifically to evaluate the maximum spectral coverage
from a realistic experimental setting, complementing the standard
approach of evaluating against a database of known molecules.

Our results found that over a wide range of experimental
conditions, DIA is generally more effective at fragmenting more
features, both in simulations and reality. However, DDA
outperforms DIA in terms of the number of chemical ions for
which high-quality spectra are recovered. Based on simulated and
real instrumental results, we were able to provide a clear, actionable
guideline on when a particular acquisitionmethod (whether DDA or
DIA) should be used.

In summary, the contributions of this paper are as follows.

1) We have introduced two new DIA controllers (SWATH, AIF)
into the ViMMS framework.

2) We have conducted extensive simulated experiments to evaluate
the performance of DDA (Top-N) vs. DIA with a known in silico
ground truth.

3) We have validated the simulated results through benchmarking
on the actual instrument using two reference datasets: the GNPS/
NIST14, and our own Multi-Injection libraries.

2 Materials and methods

2.1 DDA and DIA data acquisition

To validate performance on a real instrument, we performed
DDA and DIA acquisition using six beer samples. Each beer sample
was acquired once using the Fullscan, Top-N, AIF and SWATH
controllers in ViMMS when connected to an actual mass
spectrometer (more details in Section 2.4). To create the Multi-
Injection reference library (described in Section 2.5), each beer
sample was further injected ten times repeatedly for acquisition
using the Intensity Non-overlap method in ViMMS (McBride et al.,
2023).

For sample extraction, chloroform and methanol were added to
beer samples (detailed names in Supplementary Section S1) in a 1:1:
3 ratio and mixed with a vortex mixer. The mixture was centrifuged
to remove protein and other precipitates, and the supernatant was
stored at −80°C. Chromatographic separation was performed with a
Thermo Scientific UltiMate 3000 RSLC liquid chromatography
system and a SeQuant ZIC-pHILIC column. The gradient elution
used 20 mM ammonium carbonate and acetonitrile. 10 μL of each
sample was injected with an initial 80% acetonitrile concentration,

maintaining a linear gradient from 80% to 20% acetonitrile over
15 min, and finally a wash of 5% acetonitrile for 2 min, before re-
equilibration at 80% acetonitrile for 9 min. The flow rate was 300 μL/
min and the column oven temperature was 40°C.

A Thermo Orbitrap Fusion tribrid-series mass spectrometer was
used to generate mass spectra data, controlled through Thermo
Instrument Application Programming Interface (IAPI) managed by
ViMMS (more details in Section 2.4). Full scan spectra were
acquired in positive mode at a resolution of 120,000 and a mass
range of 70–1,000 m/z. Fragmentation spectra for both DDA and
DIA were acquired using the Orbitrap mass analyser at resolution
7,500. In DDA mode, precursor ions were isolated using 0.7 m/z
width and fragmented with fixed HCD collision energy of 25%. The
AGC was set as 200,000 for MS1 scans and 30,000 for MS2 scans. N
was set to 10 Top-N. The dynamic exclusion window (DEW) was set
to 15 s to prevent repeated fragmentation of the same ion. A
minimum intensity threshold of 5,000 was also used before a
precursor ion can be selected for MS2 fragmentation. For DIA
(AIF), an MS1 source CID energy of 25% was used. For DIA
(SWATH), a window of 100 m/z was used with no overlap
between the windows.

2.2 Developing DIA methods using ViMMS

In previous work (Davies et al., 2021), ViMMS was used to
develop DDA methods, but the capability of the framework is not
limited to that. Here we introduced two new methods, SWATH and
AIF, on top of the framework, demonstrating that DIA methods can
also be developed on top of ViMMS. Rather than prioritising ions for
fragmentation based on their abundance as is commonly done for
DDA, DIA methods operate by fragmenting all precursor ions
within a large m/z window. In AIF, all precursors in the entire
m/z range are fragmented, whereas in SWATH, a series of smaller
and potentially overlapping windows are used to fragment ions in
the window. Both AIF and SWATH were implemented as
controllers in ViMMS, allowing their performance to be
benchmarked in the simulator and validated on an actual
instrument easily, as previously done with DDA methods (Davies
et al., 2021).

Figure 1 shows a schematic of the DIAmethod implementations
in ViMMS illustrating how the new DIA methods were introduced.
The ViMMS framework can be divided into two parts: a “Simulated
Environment” where simulated scans are generated by querying
synthetic chemicals, and a “Real Environment” where actual scans
are generated through measurements using an LC-MS instrument.
In the Simulated Environment (Figure 1A), the Virtual MS is seeded
with synthetic molecules that are created by either sampling
chemical databases or extracted from existing experimental
mzML files. Once generated, molecules can be used to produce
scans during virtual mass spectrometry. Scans are generated based
on which molecules elute at a particular retention time, and
generated chemicals are dispatched to the appropriate controllers.
In ViMMS, a controller class is a specific implementation of an
acquisition method in Python that follows a predefined Python
interface to receive scans and schedule the next MS1 and MS2 scans.
The new DIA methods are implemented as the SWATH and AIF
controller classes in ViMMS (solid purple box in Figure 1A),
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extending from the base Controller class (blue box in Figure 1A).
Different experiments can be performed in the Simulated
Environment, allowing for different data characteristics to be
explored.

Once tested and optimised, the developed DIA controllers can
be transferred to run on an actual mass spectrometer instrument
with no change to their implementations. This is accomplished by
swapping the Simulated Environment to a Real Environment
(Figure 1B), where an IAPI MS is used in place of the Virtual
MS. The IAPI MS class has the same interface as the Virtual MS to
ensure code compatibility, however the IAPI MS relies upon the
Instrument Application Programming Interface (IAPI) (Thermo
Fisher Scientific, 2022) to communicate with an actual Thermo
Orbitrap Fusion instrument. All developed controller
implementations, whether DDA or DIA that were initially tested
against the Simulated Environment in ViMMS, can run without any
change in the Real Environment (for the new DIA methods, this is
the dashed purple box in Figure 1B). In this manner, real
experimental data can be seamlessly acquired using the AIF and
SWATH controllers initially developed in the simulator.

2.3 Simulating DDA and DIA methods

2.3.1 Generation of simulated data
Simulations allow us to flexibly define different scenarios to

validate hypotheses without costly instrument time. To compare the
two types of acquisition methods, we use the Simulated
Environment in ViMMS (Figure 1A) to generate simulated data
with an increasing number of co-eluting chemicals present to test
the limit of deconvolution empirically. While these chemicals are
purely synthetic, they allow us to know the ground truth and

evaluate the results of the different methods more accurately
without being reliant on inconsistent database matching.

In the simulated study, each chemical is generated by first
choosing a formula randomly from the HMDB database,
ensuring that its observed monoisotopic mass is between
100–1,000 Da (the mass distribution of e.g., the 5,000 sampled
chemicals is shown in Supplementary Section S5). Next the
chemical is assigned a uniformly-sampled retention time value
between 0–400 s. The choice of uniform distribution here is
motivated by the narrow retention time range used. When the
number of chemicals are high (e.g., 5,000), this results in dense
regions of co-eluting ions throughout the entire simulated injection,
which could challenge spectral deconvolution and potentially
demonstrate the limit of such approaches.

Finally for each chemical, a chromatogram is generated. The
maximum intensity value of the apex of the chromatogram was
sampled from a uniform distribution between 1E4–1E7. A Gaussian
chromatographic peak shape with a mean centered at the chemical’s
RT value, and a standard deviation of 5 s is assumed. This
chromatographic peak shape assumption matches that of MS-
DIAL, thus making the task of peak picking easier. Each
chemical’s observed MS2 spectra are also generated randomly by
sampling fragment peaks’ m/z uniformly between 70 m/z to the
exact mass of the formula (assuming a positive charge of +1). The
intensity of a fragment peak is also set to be between the specified
minimum (0.1) and maximum (0.8) proportions of the chemical’s
apex intensity. The number of fragment peaks in an MS2 scan is
generated by sampling from a Poisson distribution with the mean
10. This Poisson mean was chosen to produce sufficient expected
numbers of fragment peaks perMS2 scan for spectral matching later.

Simulated samples containing the specified number of chemicals
are generated in a case-vs-control setup, where each sample set

FIGURE 1
The overall schematic of the ViMMS framework. (A) The Simulated Environment in ViMMS allows for new acquisition methods to be developed
against a Virtual MS that takes simulated molecules as input. The new DIA methods, e.g., SWATH and AIF (solid purple box), as well as existing DDA
methods (faded orange box), are implemented as controllers and initially tested here in the Simulated Environment. A controller is a specific Python
implementation of an acquisition method in ViMMS. (B) Acquisition methods can be run for method validation on the Real Environment in ViMMS,
connected to a ThermoOrbitrap Fusion instrument via IAPI, to acquire real experimental scans. Controllers developed in the Simulated Environment can
be transferred to the Real Environment easily (shown by the dashed purple line). As different environments abstract the low-level scan generation
process, the underlying Python controller codes for the new DIA methods remain unchanged when transferred from the Simulated to the Real
Environment (dashed purple box).
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consists of 5 case and five control samples, and each sample contains
observation from the specified number of chemicals. To reduce the
influence of peak picking and alignment during data processing of
DIA data, chemicals were generated such that the same chemical has
identical m/z and RT values across samples, although their intensity
values change across the case and control groups. While simple, this
setup represents a realistic case that captures the essence of many
real biological mass spectrometry-based experiments. Varying
numbers of chemicals are generated during simulation, ranging
from 10, 20, 50, 100, 200, 500, 1,000, 2000, and 5,000. The entire
experiment is repeated 5 times, resulting in multiple experimental
replicates. DDA (Top-N) and DIA (AIF, SWATH) controllers were
run for every sample that was simulated, resulting in an mzML file
for each acquisition run. Parameters of these controllers were set to
be the same as that used for real data acquisition (detailed in
Section 2.1.

2.3.2 Processing of simulated data
Once simulated data has been generated in Section 2.3.1,

chemicals need to be mapped to their respective fragmentation
spectra. For DDA, the association between observed fragmentation
scans to chemicals is known unambiguously as their mapping can be
read from the simulation state directly. For DIA, spectral
deconvolution needs to be performed to assign the deconvoluted
fragment peaks to chemicals. We chose MS-DIAL (Tsugawa et al.,
2015) for peak picking and spectral deconvolution on the resulting
mzML files produced by simulating DIA methods (see
Supplementary Section S2 for the MS-DIAL parameter settings).
MS-DIAL was chosen as it was widely used by the community for
processing DIA data.

From MS-DIAL output, we can extract for each sample set a
list of features that were detected and aligned across the DIA
mzML files (5 cases and five controls). Each feature is potentially
associated with a fragmentation spectra, which has been
deconvoluted by MS-DIAL. To assign fragmentation spectra,
we matched simulated chemicals to features using the m/z
tolerance of 5 ppm and RT tolerance of 10 s, therefore linking
chemicals to their deconvoluted spectra. If there are multiple
possible candidates during matching, the feature closest in m/z
value to the chemical’s monoisotopic peak will be chosen. Finally
for each simulated chemical, its true fragmentation spectra are
known. This can be used to construct a library of true reference
spectra for matching. Observed (and deconvoluted, in the case of
DIA) spectra are matched to the true spectral library using cosine
similarity. For matching, a bin width of 0.05 Da is used and a
minimum of at least three matching peaks is required.

2.4 Validation on a real instrument

2.4.1 Generation of real data
The Real Environment in ViMMS was used to validate that the

simulated results translate to real experiments (Figure 1B). This
environment can be connected to a ThermoOrbitrap Fusion tribrid-
series mass spectrometer, allowing us to perform data acquisition on
a series of beer samples using the fullscan, Top-N, and the newly
introduced SWATH and AIF controllers. The result from data
acquisition is a series of mzML files, one for each beer sample

and controller used. For more details on real data acquisition, refer
to Section 2.1.

2.4.2 Processing of real data
Peak picking and alignment was performed using MS-DIAL on

the real experimentally-derived fullscan mzML files. Unlike in
simulations, here the exact chemical composition of the sample is
unknown. As such, fullscan features from peak picking on the
fullscan data are used as a proxy for chemicals. The fullscan data,
which contains the most MS1 information and therefore the best
chromatographic peak shapes, was chosen for feature extraction
using MS-DIAL. MS-DIAL parameters were chosen by hand to give
a reasonable number of peaks comparable to what we have seen
from past experiments using this kind of sample on the same
instrument (details in Supplementary Section S3). The result
from this is a list of fullscan features detected and aligned from
the fullscan beer mzML files.

Next DDA fragmentation spectra were to be assigned to fullscan
features, with the following procedure employed to bypass the need
to do further peak picking on the DDA mzML files (which can be
problematic due to the lower number of MS1 scans in fragmentation
files). pymzML (Bald et al., 2012) was used to load MS2 scans from
each DDAmzML file. For eachMS2 scan, we used its precursor m/z,
isolation window and RT values to assign the scan (and therefore
fragmentation spectra) to its corresponding fullscan feature. This
assignment was done based on whether the isolation window and
RT values of a chemical overlap with the feature’s bounding box
from peak picking. If a fullscan feature had multiple MS2 scans
associated with it, the scan that was fragmented at the highest
intensity within the feature’s bounding box was chosen.

Finally, just like in simulation, MS-DIAL was used to perform
peak picking and spectral deconvolution on the DIA mzML files.
Peak picking was performed using the same parameters as the
fullscan data, and an additional deconvolution step was done
using MS-DIAL (detailed parameters in Supplementary Section
S3). From MS-DIAL output we extracted a list of fragmentation
features detected in the DIA mzML files and their corresponding
MS-DIAL deconvoluted spectra. Fullscan features (without
fragmentation information) were matched to the DIA
fragmentation features (with deconvolved spectral information)
using an m/z tolerance of 5 ppm and RT tolerance of 10 s. If
there were several possible candidates during matching, the one
closest in m/z value was chosen. The results of this procedure from
both the DDA and DIA data is the assignment of a fullscan feature to
fragmentation spectra. Such spectra can be used for matching
fullscan features to the reference libraries during benchmarking
experiments.

2.5 Matching experimental spectra to
reference libraries

To assess mass spectral quality, we match the fragmentation
spectra from DDA and DIA methods to two reference spectra
libraries. These reference libraries can be used to match against
the observed and deconvoluted spectra from DDA and DIA
methods. For matching, a bin width of 0.05 Da is used and a
minimum of at least three matching peaks is required.
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The first reference library is the “GNPS Matches to NIST14”
dataset obtained from the GNPS library (Wang et al., 2016). This
dataset contains 5,763 high confidence matches to NIST14 M/MS
library spectra. Filtering by polarity is performed to select spectra
in positive mode only that can be used as reference to assess
spectral annotation quality. For experiments, we call this the
GNPS/NIST14 library. Its purpose is to assess how many
potentially unknown metabolites could be annotated in an
untargeted metabolomics experiment using the different
acquisition methods.

Additionally, we also introduced our own multiple-injection
reference library for spectral matching, which we call the Multi-
Injection Library. Each beer sample was injected ten times and
data acquisition is performed by taking advantage of replicate
information using the Intensity Non-overlap method available in
ViMMS (detailed in Supplementary Section S4). Intensity Non-
overlap is an iterative DDA-based method that detects regions-
of-interests (ROIs) in real-time and avoids re-fragmenting the
same ROI multiple times across successive injections. An ROI is
scored for fragmentation based on its overlapping area weighted
by intensity, with higher scoring ROIs selected more often (for
more details, refer to Supplementary Section S4 and McBride
et al. (2023)). In the presence of multiple injections, Intensity
Non-overlap has been shown to outperform Top-N by a large

margin as it is able to target more unique features across
injections, while fragmenting each feature closer to its apex.

To convert the acquiredMulti-Injection mzML files into spectral
library, for each beer sample, we perform peak picking using MS-
DIAL on its corresponding fullscan mzML file, generating a list of
fullscan feature for that beer sample. Fragmentation spectra,
acquired via exhaustive fragmentation of each sample using
Intensity Non-overlap, were extracted from mzML files and
matched to the detected fullscan features following the DDA
procedure outlined in Section 2.4.2. The purpose of introducing
this Multi-Injection reference library is to assess the coverage of the
benchmarked DDA (Top-N) and DIA (AIF, SWATH) methods
when only a single replicate is available (a common occurrence) and
increasing the number of replicates is not possible due to cost or
other constraints.

3 Results

3.1 Simulated results

Acquired fragmentation spectra could help deduce the chemical
identities of measured compounds. From the proposed simulated
experiment in Section 2.3, for each acquisition method the number

FIGURE 2
The mean proportion of unique chemical annotations at varying numbers of chemicals and similarity thresholds across five replicates. The error bar
shows the 95% confidence interval.
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of chemicals that could be annotated based on spectral matching is
obtained. The number of unique chemical annotations in the dataset
is counted at varying thresholds for cosine similarity score of at least
20%, 40%, 60% and 80% (Figure 2). The results across five replicates
show that for small numbers of chemicals, all benchmarked
methods, whether DDA or DIA, have similar annotation
performance. At similarity threshold 60% and with only
100 chemicals, AIF annotated a mean of 72.6% of chemicals,
SWATH 86.0% and Top-N 84.4%. As the number of chemicals
increases, the gap between the benchmarked methods widen leading
to lower annotation rates from DIA. When the number of chemicals
increased to 200, at 60% similarity threshold, AIF managed to
annotate 54.4% chemicals, SWATH 80.7% and Top-N 82.4%. For
500 chemicals, AIF annotates 28.8% of chemicals, SWATH 59.0%
and Top-N 79.3%.

With a greater number of chemicals, Top-N outperforms the two
DIAmethods across all thresholds. At the highest number of chemicals
(5,000), the annotations obtained from SWATHandAIF are nearly 0%
while Top-N managed a mean of 31.5% across replicates. It can be
observed that increasing the cosine similarity threshold from 20% to
80% lowers the results of all methods, but the overall trend remains.
The supplementary section also includes additional results obtained
from varying the matching threshold. Supplementary Figure S2
displays the results of matching with a bin width of 0.005 Da,
while Supplementary Figure S3 illustrates the results of matching
with a bin width of 0.50 Da. The results in Supplementary Figure
S2 demonstrate that the tolerance level was too narrow, leading to a
decrease in performance for all acquisitionmethods. Despite this, Top-
N still demonstrates superior performance compared to the DIA
methods when a high number of chemicals are present. The results
in Supplementary Figure S3, obtained using a larger bin width of
0.50Da, are consistent with those presented in Figure 2 which utilised a
bin width of 0.05 Da. This consistency in results highlights that the
trend of Top-N outperforming DIA methods holds true for a large
number of chemicals (> 200). Supplementary Figure S4 also shows the
results from using different window sizes of 100 m/z, 50 m/z and 25 m/
z in the SWATH simulation. It can be observed from Supplementary
Figure S4 that making the window size smaller produces a slight

annotation improvement in SWATH when the number of chemicals
are large (2000 and 5,000). However this improvement is small, and the
overall trend of Top-N outperforming both SWATH and AIF in this
regime holds.

To further explain the annotation results in Figure 2, here we
consider for one replicate the distribution of spectral similarity
scores when matching DDA and DIA spectra to the known
ground truth of true chemical fragmentation spectra. The results
are shown in Figure 3 for the entire range of chemicals tested. From
Figure 3, it can be seen that Top-N generally performs best in
returning high similarity scores, followed by SWATH then AIF. For
Top-N, the cosine similarities of matches generally remain high even
with an increasing number of chemicals. For the two DIA methods,
their cosine similarities gradually decrease with more co-eluting
chemicals. This could be explained by the fact that as the elution
profile gets more crowded, more precursor ions are isolated and
fragmented in the same window, making deconvolution harder.
SWATH performs marginally better than AIF with increasing
chemicals. This makes sense as the window used for isolating
multiple peaks in SWATH is smaller than AIF where all ions in
the entire scan range are used, making the deconvolution problem
slightly easier for SWATH.

Inspecting the hardest case of 5,000 chemicals in Figure 4, it can
be observed that AIF returns most of its matches at low cosine
similarity achieving a median score of 10.7%, Top-N returns most
matches at high cosine similarity with a median of 94.1%. SWATH
outperforms AIF (median similarity 31.3%) but not as well as Top-
N. To explain the decrease in similarity scores, we inspect the
pairwise cosine similarity of all observed/deconvolved spectra for
each acquisition method (Figure 5). The results show that the
pairwise similarity of the ground truth and Top-N spectra is
nearly 0 for nearly the entire range of chemicals. However, most
likely due to the increased difficulty in deconvolution, pairwise
spectral similarities in the SWATH and AIF results are higher
with increasing chemicals–resulting in a decrease in identification
hits, and fewer matches at high cosine similarity as the experimental
mass spectra become more similar to each other and less similar to
the true mass spectra of the chemicals.

FIGURE 3
The distribution of cosine similarity scores when matching observed spectra to the true reference spectra for varying numbers of chemicals.
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3.2 Real experimental results

3.2.1 Mapping features to fragmentation spectra
Simulated results were further validated on real instruments by

running the benchmarked DDA and DIA methods on actual beer
samples. Following the procedure in Section 2.4.2 to map fullscan
features to fragmentation spectra, 6090 fullscan features initially
were detected from the fullscan data after peak picking and
alignment. After matching the fullscan features to fragmentation
data, DIA methods produce the largest number of matched features,
with SWATH at 3889 and AIF at 4381. In contrast, Top-N only has

2,895 matched features. Figure 6 summarises the proportion of
fullscan features that can be matched to the fragmentation spectra.
Our results here agree with Guo and Huan (2020a) in how DIA
(AIF) is able to fragment more features than DDA (Top-N).We note
some slight differences in our methodology to (Guo and Huan,
2020a). In this work, we perform peak picking to extract features on
the fullscan data, which has more reliable MS1 signals.
Fragmentation mzML files are used only to map fragmentation
scans to the detected fullscan features. Whereas in (Guo and Huan,
2020a) the peak picking is performed directly on the fragmentation
mzML files, potentially leading to poorer extracted chromatographic

FIGURE 4
The distribution of cosine similarity scores as a boxplot (left) and a histogram (right) when matching observed spectra to the true reference spectra
for 5,000 chemicals.

FIGURE 5
The distribution of pairwise cosine similarity scores of the ground truth (true chemical spectra), and fragmentation spectra from Top-N, SWATH and
AIF. The plot y-axes are truncated at 25% similarity.
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peak shapes due to sparser MS1 data points in the mzML files.
Despite these differences in the experimental set up, the conclusions
from both our study and (Guo and Huan, 2020a) agree that AIF
outperforms Top-N in the number of fragmented features.
Additionally SWATH was not included in (Guo and Huan,
2020a) but it was hypothesised to perform in the middle of Top-
N and AIF, as the windowing approach used in SWATH lies
between the two extremes of fragmenting everything (AIF) and
fragmenting only a few selected precursor ions (Top-N). Our results
here confirmed that SWATH achieves a higher coverage than Top-N
but lower than AIF.

3.2.2 Pairwise spectral similarity
By following the methodology of Section 2.5, two reference mass

spectral libraries were constructed, one based on the GNPS spectra
matched to NIST-14 at high reliability (the GNPS/NIST14 library),
and another based on an exhaustive multiple-injection approach we
constructed ourselves (the Multi-Injection library). The purpose of
the GNPS/NIST14 library is to assess how many unknown

molecules can be identified from spectral matching for each
acquisition method, whereas the purpose of the Multi-Injection
library is to determine the extent of coverage with respect to an
exhaustive and expensive multiple-injection method. After filtering
by polarity, we obtain 5,274 positive-mode spectra from the GNPS/
NIST14 library, whereas for the Multi-Injection library, in total
4987 features were available for matching in this library.

To assess spectral quality, we first compute the pairwise
similarity of spectra in the same dataset, and also within each of
the two reference libraries. For each feature, we find the matches to
fragmentation spectra in the same dataset by computing the cosine
similarity (ms2_tol = 0.05 Da, min match peaks = 3), with the results
shown in Figure 7. The Multi-Injection reference library has a
median of nearly 0% for pairwise similarities, demonstrating that
the acquired reference spectra using the Intensity Non-overlap
method are sufficiently different from each other. The GNPS
reference library has a higher pairwise similarity of 9.5%,
suggesting that some of the curated molecules share similar
structures and therefore similar mass fragmentation spectra. This
is a reasonable assumption as shared structures is the core
underlying assumption for models to discover chemical
substructures, such as MS2LDA (van Der Hooft et al., 2016) that
has been applied to reference libraries like MassBank and GNPS.

The Top-N dataset also has the same low median pairwise
similarity (2.7%) in its member spectra. This is expected given
the nature of DDA. Assuming that deconvolution works well for
DIA data and the resulting spectra are dissimilar to each other in a
manner similar to the Top-N results, we expect to observe lower
pairwise similarities from the DIA datasets too. However the higher
median pairwise similarity scores for SWATH (16%) and AIF (22%)
suggest that deconvolved spectra from SWATH and AIF tend to be
more similar to each other. This could be due to the difficulty in
deconvolving spectra. The results here generally agree with
simulated results in Section 3.1, where DIA methods are also
shown to exhibit higher pairwise similarity in simulation.

3.2.3 Spectral matching results
We compute the cosine similarity of features to the GNPS/

NIST14 reference spectra. Similar to before, features were matched
to reference spectra based on their cosine similarity (ms2_tol =
0.05 Da, minmatch peaks = 3). If there are multiple matches for each
feature, the one with the best score (highest) is kept. Figure 8A shows
the score distributions for the three methods. From Figure 8A (left
panel), it can be observed that Top-N obtains the highest median
cosine similarity (26.5%) followed by SWATH (19.5%) and finally
AIF (15.2%). Consequently this results in Top-N (DDA) obtaining
the most high-scoring matches at ≥ 60% similarity, followed by
SWATH and AIF last (Figure 8A). The results here are consistent
with the simulated results in Section 3.1 and also with Guo and
Huan (2020a) but in that work, only Top-N and AIF were compared.
Our results further confirmed the hypothesis in Guo and Huan
(2020a) that SWATH should perform in the middle of Top-N and
AIF when it comes to spectral quality. This is because deconvolution
using SWATH data is easier than AIF due to the smaller window
sizes.

Next we perform spectral matching to the Multi-Injection
reference library. When matched against Top-N and DIA
methods, Top-N performs best (90.5% median) followed by

FIGURE 6
Proportion of matched features to the total number of detected
features from the fullscan data.

FIGURE 7
Pairwise similarities of spectra in each dataset. DIA methods (AIF,
SWATH) produce deconvoluted spectra that are more similar to each
other.
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SWATH (28.1%) and AIF (13.3%) (Figure 8B). The results here are
consistent with the GNPS results above. However we see that the
median similarity of Top-N is much higher compared to the two
DIA methods here. That is because the reference spectra contains
more query spectra since it is based on the same sample, only
fragmented exhaustively, and unlike GNPS/NIST14 there are fewer
missing matches.

Comparing the overlap of annotated features at matching
threshold ≥60% (Figure 9) for both reference libraries, it can be
observed that Top-N (DDA) obtains the most hits, being able to
annotate the most unique features (295 for GNPS/NIST14, and
2,231 for Multi-Injection). In both cases, there is a large overlap
between Top-N and DIA annotations, and most DIA annotations
are also recovered by Top-N. Between AIF and SWATH, there is
also a lot of overlap with SWATH being able to recover most of the

annotations of AIF. The results here for AIF and Top-N generally
agree with Guo and Huan (2020a), with SWATH a new addition in
our results that perform in between those two.

4 Discussion and conclusion

In this study, we performed a comprehensive comparison of DDA
vs. DIA methods, first in the simulator, followed by validation using
real experimental mass spectrometry data. We simulated experiments
at various complexity levels to challenge DDA acquisionmethods and
DIA deconvolution methods. Here, we observed that the quality of
deconvolution using MS-DIAL is limited by the number of co-eluting
chemicals. Identification performance is limited in DIA compared to
DDA with a large number (more than 1,000) of simulated chemicals
or observed molecular features. We further benchmarked this
scenario using a real untargeted metabolomics dataset acquired on
the mass spectrometer generated from beer samples. Mass spectral
matching of experimental mass fragmentation spectra from this real
dataset on two sets of reference mass spectral libraries confirmed our
simulated results. This validates our motivation that a simulator
framework such as ViMMS can be used to benchmark the
performance of both types of methods. Simulation helps to
provide an environment that can be used to prototype and
validate advanced deconvolution methods–without the need of
costly instruments (i.e., a “digital twin”). This encourages the
development of better deconvolution methods, since known
ground truths were generated in silico, thus making benchmarking
easier. The ViMMS framework could also be used to simulate various
scenarios that we have not covered in this study, for instance
simulating different column properties and elution profile of
chemicals, and assessing how that affects deconvolution.

FIGURE 8
Distribution of cosine similarity of annotated features for Top-N and DIA methods for the (A) GNPS/NIST14 library and (B) Multi-Injection library.

FIGURE 9
Venn diagram showing the overlap of annotated features
between Top-N, SWATH and AIF at matching threshold ≥60% for the
(A) GNPS/NIST14 library, and (B) Multi-Injection library.
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In the context of LC-MS/MS analysis, a complex sample would
contain a large number of different metabolites, while a simple
sample would contain only a few metabolites. Determining the
complexity of a sample is important for choosing the appropriate
acquisition strategy for LC-MS/MS analysis. ViMMS can generate
simulated samples of varying complexity, which can be used to
assess whether DDA or DIA methods should be used in specific
scenarios. By varying average number of co-eluting ions, we found
that DIA being more effective at lower numbers and DDA having an
advantage at higher numbers where DIA struggles to handle the
large amount of overlapping ion chromatograms. From both
simulated and real results, DDA was also found to generally
perform better than DIA when it comes to matching unidentified
features to spectra in both reference libraries (GNPS and Multi-
Injection). DIA fragments more features than DDA but their quality
for spectral matching is typically lower. Our results on this are not
unique as a similar work in (Guo and Huan, 2020a) confirms our
findings. Crucially, our study improves upon that prior work in
several key aspects. The first is that SWATH was not included in the
comparison of Guo and Huan (2020a), whereas our study did
include both AIF and SWATH. Secondly, while spectral
matching to a library of known fragmentation spectra (e.g.,
GNPS, or MassBank) can be done, many compounds present in
such databases have no matches thus reducing the identification rate
observed from both DDA and DIA methods. Thus we introduce
another dataset, constructed using an advanced multiple-injection
method, to measure how well DDA and DIA methods perform with
respect to exhaustive fragmentation procedures. Exhaustive
fragmentation procedures have been shown to perform best with
respect to coverage when a large number of replicates are available.
However, real experiments are often constrained by cost or time,
limiting the number of replicates that could be produced. In this
setting, our analysis shows that DDA still performs best compared to
DIA in recovering coverage when multiple replicates are not easily
available.

Our recommendation on which acquisition method to choose is
therefore.

• If the sample complexity is expected to be low tomedium, OR
it is preferred to fragment asmany features as possible, even if
they are not all identified, it is recommended to use DIA for
data acquisition (keeping in mind the necessary deconvolution
step).

• If the sample complexity is expected to be high, OR it is
preferred to obtain as many identified features as possible, it
is recommended to use DDA, which targets a specific ion for
each MS2 scan thus generating fragmentation spectra that are
almost immediately usable for analysis.

It is worth emphasizing that our results do not negate the
usefulness of running DIA methods. Using DIA, we obtain the
largest number of coverage of features, resulting in the most number
of fragmented molecules–many of whom could be used for further
investigation in the future. However acquired DIA scans need to be
deconvoluted in order to translate the results to actual identification.
Improvements in deconvolution methods are therefore needed to
fully maximise the usefulness of DIA data. The work introduced
here shows that a large margin of improvement is still possible in

spectral deconvolution of DIA results–an avenue for further
research that could be explored by the community. The work
here also shows that through a simulation framework such as
ViMMS, researchers could first test their deconvolution method
in silico. The portable nature of ViMMS means controllers
(fragmentation methods) developed in simulators can be easily
ported to run on the real instrument. DIA methods such as AIF
and SWATH were implemented as controllers on top of ViMMS,
tested in the simulator, and easily deployed to run on the actual
instrument. This makes it easy for others to reproduce our results in
simulation. It also opens the path for more advanced DIA methods
to be developed in the future on top of ViMMS. What makes
ViMMS particularly valuable is its ability to simulate a range of
different method parameters for both DDA and DIA, allowing
researchers to easily evaluate the performance of different LC-
MS/MS data acquisition methods. This feature not only provides
valuable insights into the strengths and limitations of each
acquisition method, but it also opens the door for further
advancements in LC-MS/MS data acquisition methods. By using
ViMMS, researchers can optimize their choice of acquisition
method and obtain more accurate and robust results, while
saving significant time and resources as they eliminate the need
for numerous experiments. In other fields such as molecular
machine learning, having a standardized benchmark dataset (Wu
et al., 2018) fosters development and collaborations as now a
common reference exists onto which we can compare the
performance of different methods. It is our hope that the
simulated experiment introduced here could also serve as a
standard and reproducible benchmark to which other
deconvoluted methods can be compared to.

Our study has several limitations, including the fact that our
comparison of DDA and DIA acquisition methods is based solely on
the analysis of processed and, in the case of DIA, deconvoluted data.
While data processing, particularly the deconvolution step, is a
crucial aspect of DIA data analysis, other important factors such
as the increased computational demands for deconvolution in DIA
are not considered in detail. Additionally, the impact of instrument
configuration and sample preparation on the data is not evaluated in
our study, which can also influence the performance of both
acquisition methods. Further research is necessary to gain a
comprehensive understanding of the strengths and limitations of
both DDA and DIA in untargeted metabolomics and to determine
the optimal approach for various scenarios. Our findings primarily
emphasise the MS/MS spectral annotation performance and do not
extensively address other factors such as quantitative performance.
We only used MS-DIAL for the pre-processing of DIA data. MS-
DIAL is de-facto the most popular tool used for spectra
deconvolution and analysis of DIA data. However, other
deconvolution tools exist, such as those of Yin et al. (2019) and
Graca et al. (2022), that we do not include in our comparison.
Parameters from MS-DIAL in our study were picked by hand to
obtain reasonable results–similar to the limitation in Guo and Huan
(2020a). Furthermore, DDA and DIA methods exist that can exploit
information across multiple samples (Koelmel et al., 2017; Tada
et al., 2020) but these were not included in our evaluation. Using
ViMMS, we could generate samples in multiple replicates and assess
the performance of DDA and DIA methods when replicates are
available. This validation to some extent has been done to compare
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standard DDA vs. multiple samples/injections DDA in McBride
et al. (2023) but not in the context of comparing to DIA methods.

Another aspect to take into account is the choice of cosine
similarity as the metric for spectral matching. While cosine
similarity is a commonly used metric in MS-DIAL, there are
more advanced techniques available, such as Spec2Vec (Huber
et al., 2021) and Tanimoto similarity, which have been shown to
better preserve chemical similarity in spectral matching. However,
for the purposes of this study, cosine similarity was selected as the
metric because it can be applied to both real and synthetic data. The
goal of this study was to demonstrate that simulated results can be
translated to experimental results, and cosine similarity was chosen
as the metric for spectral matching because of its broad applicability
to both types of data.

For future work, the developed in silico benchmarking pipeline
introduced in this work can also serve as the foundation to develop
and validate a hybrid method that combines the benefit of both
approaches. DDA and DIA methods exist in a spectrum: DDA
isolates a certain precursor m/z for fragmentation, and DIA isolates
multiple ions in a range of windows. This behaviour is the same
across the entire run. It would be interesting to explore the potential
of a hybrid method that combines the benefits of both DDA andDIA
approaches. Such a method could potentially take advantage of the
strengths of both approaches, allowing for more accurate and
comprehensive analysis of complex samples. Such work has
already been attempted (Guo et al., 2021) but that integration
happens in data processing, not during the data acquisition itself.
A hybrid acquisition method could use DDA to isolate certain
prioritised precursor ions for fragmentation, and use DIA to
isolate the remaining ions within a range of windows. This
hybrid approach would allow for a more flexible and
comprehensive analysis of samples, and could potentially
improve the accuracy and reliability of results. This would lead
to a more effective use of untargeted metabolomics, as more
molecular features will be fragmented with higher-quality mass
spectra associated to them. Ultimately, that will improve the
biochemical interpretation of metabolomics profiles across the
life sciences and other research areas.
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Modulation of the biological
network of lumbar spinal stenosis
by Tongdu Huoxue Decoction
based on clinical metabolomics

Luhong Ji1†, Ping Huang1,2†, QiongWang1, Xugui Li3* and Ying Li1*
1Hubei University of Chinese Medicine, Wuhan, Hubei, China, 2Department of Rehabilitation Medicine,
Central Theater General Hospital, Wuhan, Hubei, China, 3Hubei 672 Orthopaedic Hospital of Integrated
Traditional Chinese and Western Medicine, Wuhan, Hubei, China

Objective: To explore the clinical efficacy and metabolic mechanism of Tongdu
Huoxue Decoction (THD) in treating lumbar spinal stenosis (LSS).

Methods: A total of 40 LSS patients and 20 healthy participants were recruited
from January 2022 to June 2022. The patients’ pre- and post-treatment visual
analogue scale (VAS) and Japanese Orthopaedic Association (JOA) scores were
recorded. ELISA kits were used to assess pre- and post-treatment levels of serum
Interleukin-1beta (IL-1β), Alpha tumour necrosis factor (TNF-α) and prostaglandin
E2 (PGE2). Finally, the patients’ pre- and post-treatment and healthy human sera
were subjected to extensively targeted metabolomics using Ultra Performance
Liquid Chromatography (UPLC) to identify potential differential metabolites and
metabolic pathways using multivariate statistical analysis.

Results: Compared to the pre-treatment (group A), the patients’ VAS scores
decreased significantly (p < 0.05), while JOA scores increased significantly (p <
0.05) post-treatment (group B), indicating that THD could effectively improve the
pain and lumbar spine function of LSS patients. Moreover, THD could effectively
inhibit the expression of IL-1β, TNF-α and PGE2-associated inflammatory factors
in serum. Regarding metabolomics, the levels of 41 differential metabolites were
significantly different in the normal group (group NC) compared to group A, and
those were significantly restored after treatment with THD, including
chenodeoxycholic acid 3-sulfate, taurohyodeoxycholic acid, 3,5-Dihydroxy-4-
methoxybenzoic acid, pinocembrin. These biomarkers are mainly involved in
purine metabolism, steroid hormone biosynthesis and amino acid metabolism.

Conclusion: This clinical trial demonstrated that THD is effective in improving
pain, lumbar spine function and serum levels of inflammation in patients with LSS.
Moreover, its mechanism of action is related to the regulation of purine
metabolism, steroid hormone biosynthesis and the expression of key
biomarkers in the metabolic pathway of amino acid metabolism.
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1 Introduction

Lumbar spinal stenosis (LSS) is a degenerative disease of the
lumbar spine. It can lead to increased pressure in the spinal canal,
causing cauda equina ischaemia or compression of the nerve roots,
resulting in low back pain. The pain may be confined to the lower
limbs or span multiple dermatomes, as well as impaired movement
or sensation during walking, intermittent claudication and other
clinical symptoms that seriously impact people’s productivity and
quality of life (Deer et al., 2022). Studies have reported an 11%
prevalence of symptomatic LSS in the general population, with
almost half of those over 60 years experiencing symptomatic LSS.
The number of people with disabilities due to LSS is expected to
increase globally as the population ages rapidly (Young et al., 2020).
Surgical intervention is common, but postoperative pain and
disability might persist, and studies have noted that no
significant benefit has been observed with surgical treatment
compared to non-surgical treatment (Zaina et al., 2016). The 2nd
edition of the North American Spine Surgery Society (NASS)
Guidelines for the Management of Degenerative Lumbar Spinal
Stenosis recommends that patients with mild to moderate lumbar
spinal stenosis be considered for conservative treatment with
medication, physical therapy and functional exercise (Kreiner
et al., 2013). Therefore, non-surgery management is urgently
needed for patients, and previous studies have shown that
Chinese medicine has clear advantages in treating LSS, with the
holistic concept and evidence-based treatment being its main
philosophy (Zhao et al., 2019).

Tongdu Huoxue Decoction (THD) is an experienced formula
for treating degenerative spinal stenosis and consists of Cervus
elaphus Linnaeus (Lu Jiao), Cibotium barometz (L.), J.Sm.
(Jinmao Gouji), Eucommia ulmoides Oliv. (Du Zhong),
Astragalus membranaceus (Fisch.) Bge.var.mongholicus (Bge.)
Hsiao (Huang Qi), Angelica sinensis (Oliv.) Diels (Dang Gui),
Caesalpinia sappan L. (Su Mu), Lycopus lucidus Turcz. var. hirtus
Regel (Ze Lan Ye), Pheretima aspergillum (E.Perrier) (Di Long),
Paeonia lactiflora Pall.(Chi Shao), and Salvia miltiorrhiza Bge. (Dan
Shen). These substances have good anti-inflammatory and analgesic
effects and can effectively reduce patients’ clinical symptoms and
improve the quality of life (Shu et al., 2005; Wu and Dong, 2016).
THD was created by Chinese orthopaedic specialist Li Tongsheng
and is mentionedin his book “Famous Doctors’ Remedies for
Experimentation”. It has been reported that THD can improve
the microcirculatory perfusion of the spinal stenosis lesion,
improve local nerve root ischemia and hypoxia, accelerate the
action of local inflammatory mediators and pain-causing factors,
thereby reducing the patient’s back pain and improve the function of
the lower limbs (Li and Li, 1991). Some studies found that THD-
containing serum can slow down the degeneration of the
intervertebral disc annulus by reducing the expression of
NLRP3 inflammatory vesicle-mediated caspase-1 signalling
pathway-related cytokines, inhibiting lipopolysaccharide/ATP-
induced cell scorching, and controlling the release of
inflammatory factors (Wu et al., 2021). This might be the
pharmacodynamic basis for THD’s anti-inflammatory and
analgesic effects. However, the effects of metabolites in treating
LSS with THD are unclear. Alterations in metabolites can regulate
gene transcription, and gene remodelling occurs when abnormal

expression of some proteins is corrected, suggesting that changes in
certain metabolic processes occur at the epigenetic level (Gao et al.,
2022).

Metabolomics is capable of qualitative and quantitative analysis
of metabolites in organisms. It can be used to study the changes in
biomarkers and interference pathways in the body after Traditional
Chinese Medicine (TCM) interventions and to scientifically
interpret the efficacy of TCM interventions in diseases and their
mechanisms of action (Wu et al., 2022). One study demonstrated
tissue metabolism during intervertebral disc degeneration by
correlating rat and human metabolomics and found that the
degenerative process was associated with changes in carbohydrate
utilisation patterns in the Gly-Ser-Thr metabolic axis and reduced
antioxidant capacity in the in-vitro diagnostic environment. This
process ultimately leads to the disintegration of the fibrous ring and
the loss of water fixation groups (Wu et al, 2021). Moreover,
metabolite changes in both serum and disc tissue of patients with
disc degeneration are associated with amino acid metabolism, with
increased glycine levels in both (Swank et al., 2020). This may
provide ideas for treating patients with lumbar disc herniation or
lumbar spinal stenosis. In addition, a broadly targeted metabolomic
serum analysis using UPLC revealed that the Chinese medicine
Zuojin pill was able to act as an inflammatory inhibitor, inhibiting
levels of the inflammatory factors COX-2, IL-4 and IL-17, thereby
regulating the combined metabolic disorders in patients with
chronic non-atrophic gastritis (Ma et al., 2022). These studies
offer the possibility of technical applications of THD in LSS.
Therefore, we conducted a clinical trial to validate THD’s
analgesic and anti-inflammatory effects in LSS and explore the
underlying mechanisms using metabolomics to provide a
scientific basis for clinical treatment.

2 Methods and design

2.1 Patients and methods

We recruited patients attending the Department of Spine
Surgery, Hubei 672 Orthopaedic Hospital of Integrated
Traditional Chinese and Western Medicine, from January
2022 to June 2022. The ethical approval was granted by the
Ethics Committee of Hubei 672 Orthopaedic Hospital of
Integrated Traditional Chinese and Western Medicine
(672HREC20220115A).

The inclusion criteria were as follows:1) the diagnostic criteria
for LSS were met, and the clinical diagnosis of LSS was determined
by a combination of clinical symptoms and radiological findings of
LSS on computed tomography (CT) or magnetic resonance
imaging (MRI). Computed tomography or MRI shows
narrowing of the lumbar spinal canal with compression of the
cauda equina by thickened posterior vertebral bodies, small joints,
marginal bony bulges or soft tissue structures such as the
ligamentum flavum or disc herniation (Alvarez and Hardy,
1998); 2) age 18–70 years; 3) no indication for the surgery; 4)
voluntary signed informed consent form. Exclusion criteria are as
follows: 1) patients with other severe orthopaedic conditions; 2)
those with severe medical conditions; 3) psychiatric patients; 4)
pregnant or lactating women, allergic patients or those who cannot
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receive this treatment; 5) those who were already receiving other
treatments that may affect the results of this study. The criteria for
discontinuation/exclusion/withdrawal were as follows: 1) patients
with severe adverse reactions during the study; 2) patients with
poor compliance; 3) patients who were assessed to have difficulty
tolerating the study protocol during the study. Discontinuation: In
the event of withdrawal due to allergy or other adverse reactions to
the study drug, the participant would be offered a specialist
consultation and medication at no cost. All participants
provided written informed consent and were screened by
physical examination, medical history assessment and clinical
laboratory tests.

Forty eligible patients were recruited to receive THD as the
treatment. THD consisted of Lu Jiao 18 g, Jinmao Gouji 12 g, Du
Zhong 9 g, Huang Qi 18 g, Dang Gui 9 g, Su Mu 9 g, Ze Lan Ye 9 g,
Di Long 9 g, Chi Shao 9 g, and Dan Shen 18 g. All the above drugs
were provided by the pharmacy of Hubei 672 Orthopaedic Hospital
of Integrated Traditional Chinese and Western Medicine. Twenty
general participants were used as the healthy group. The mean age of
the patients was 50.83 ± 8.15 years, and the mean age of the normal
group was 52.075 ± 7.82 years, and the difference in age between the
two groups was not statistically significant (p > 0.05). Treatment:
patients were given oral THD 150 mL/dose twice/day for 4 weeks.
We collected 5 mL of fasting venous blood from the participants in
the morning, rested at 4°C for 1 h, and centrifuged for 10 min
(3000 r-min-1). Then, the supernatant was removed and stored
frozen at −80 °C. Blood was collected from the patients in pre-
treatment (A) and post-treatment (B) and once from the normal
group (NC).

2.2 Efficacy evaluation

The patient’s self-reported pain was scored pre- and post-
treatment using a visual analogue scale (VAS), with higher scores
indicating severe subjective pain. The patient’s lumbar spine
function was assessed pre- and post-treatment using the Japanese
Orthopaedic Association (JOA) Assessment Treatment Score, with
higher JOA scores indicating better recovery (Lyu et al., 2021).

2.3 Serum testing

Changes in serum interleukin-1-beta (IL-1β), tumour
necrosis factor-alpha (TNF-α), and prostaglandin-E2 (PGE2)
levels in the two groups of patients pre- and post-treatment were
measured according to the method described in the ELISA kit for
human use.

2.4 Metabolomics analysis

2.4.1 Sample preparation and extraction
The sample stored at −80 °C refrigerator was thawed on ice

and vortexed for 10 s 50 μL of sample and 300 μL of 20%
acetonitrile methanol internal standard extract were added
into a 2 mL microcentrifugetube. The sample was vortexed
for 3 min and then centrifuged at 12,000 rpm for 10 min

(4 °C). 200 μL of the supernatant was collected and placed
in −20 °C for 30 min, and then centrifuged at 12,000 rpm for
3 min (4 °C). A 180 μL aliquots of supernatant were transferred
for LC-MS analysis.

2.4.2 UPLC conditions (T3)
All samples were acquired by Waters ACQUITY UPLC

combined with the Xevo TQ-S Micro mass spectrometer system
followed machine orders. The analytical conditions were as follows,
UPLC: column, Waters ACQUITY UPLC HSS T3 C18 (1.8 µm,
2.1 mm*100 mm); column temperature, 40 °C; flow rate, 0.4 mL/
min; injection volume, 2μL; solvent system, water (0.1% formic
acid): acetonitrile (0.1% formic acid); gradient program, 95:5 V/V at
0 min, 10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min, 95:5 V/V at
12.1 min, 95:5 V/V at 14.0 min.

2.4.3 Sample Quality Control analysis
Quality Control (QC) samples were prepared from a mixture of

sample extracts and were used to analyse the reproducibility of the
samples under the same processing method. During the
instrumental analysis, one QC sample was inserted for every ten
samples tested for analysis to monitor the reproducibility of the
analytical process.

2.4.4 Differential metabolite and metabolic
pathway analysis

The original data file acquisited by LC-MS was converted into
mzML format by ProteoWizard software. Peak extraction, peak
alignment and retention time correction were respectively performed
by XCMS program. The “SVR” method was used to correct the peak
area. The peaks with detetion rate lower than 50% in each group of
samples were discarded. After that, metabolic identification information
was obtained by searching the laboratory’s self-built database, integrated
public database, AI database and metDNA.

Principal component analysis (PCA) was performed by statistics
function prcomp within R (www.r-project.org). The data was unit
variance scaled before unsupervised PCA. For two-group analysis,
differential metabolites were determined by VIP (VIP ≥1), p-value
(p-value <0.05, Student’s t test) and absolute Log2FC (|Log2FC| ≥ 1.
0). VIP values were extracted from orthogonal partial least squares
discriminant analysis (OPLS-DA) result, which also contain score
plots and permutation plots, was generated using R package
MetaboAnalystR. The data was log transform and mean
centering before OPLS-DA. In order to avoid overfitting, a
permutation test (200 permutations) was performed. Identified
metabolites were annotated using KEGG Compound database
(http://www.kegg.jp/kegg/compound/), annotated metabolites
were then mapped to KEGG Pathway database (http://www.kegg.
jp/kegg/pathway.html). Significantly enriched pathways are
identified with a hypergeometric test’s p-value for a given list of
metabolites.

2.5 Statistical analysis

SPSS 24.0 was used to analyse the data. χ2 test was applied to
compare the differences between groups, and the t-test was used to
compare the measurement data at the test level of a = 0.05. All
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statistical tests were performed using a two-sided test, and p <
0.05 would be considered a statistically significant difference.

3 Results

3.1 Comparison of patients’ VAS and JOA
scores pre- and post-treatment

Compared to the pre-treatment period (A), the VAS scores of
the patients decreased significantly after treatment (B) (p < 0.05),
indicating that THDwas able to reduce the pain of patients with LSS.
Compared to the pre-treatment period (A), the JOA scores of the
patients increased significantly after treatment (B) (p < 0.05). Thus,
the results indicated that THD could improve the function of the
lumbar spine in patients with LSS (Figure 1).

3.2 Comparison of serum inflammatory
factors

Compared to group A, serum IL-1β, TNF-α, and PGE2 levels
were significantly lower in group B (p < 0.05), indicating that THD

could improve the inflammation level in the serum of LSS patients
(Figure 2).

3.3 Metabolomic results

3.3.1 Metabolic routine analysis
This experiment selected 20 samples and divided them into

three groups for metabolic studies. We detected 3412 metabolites.
According to the analysis of metabolite composition, the main
component was benzene and substituted derivatives, amino acid
and its metabolites, heterocyclic compounds, and organic acid and
its derivatives (Supplementary Figure S1). Overlap display analyses
of total ion flow plots (TIC plots) were analysed using mass
spectrometric detection. Different QC samples showed high
overlap curves for metabolite detection of total ion flow,
i.e., consistent retention times and peak intensities
(Supplementary Figure S2), indicating good signal stability of the
mass spectrometry for the same sample at different times. The
coefficient of variation (CV) is the ratio of the standard deviation of
the original data to the mean of the original data and reflects the
degree of dispersion of the data. The empirical cumulative
distribution function (ECDF) can be used to analyse the

FIGURE 1
VAS scores and JOA scores of patients before and after treatment. **: p < 0.01.

FIGURE 2
Changes in serum levels of IL-1β, TNF-α and PGE2 in patients before and after treatment. **: p < 0.01.
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frequency of substances with CVs smaller than the reference value.
In this study, the percentage of substances with CV values less than
0.3 was higher than 85%, indicating that the experimental data were
very stable (Figure 3A).

PCA results showed trends in metabolome separation between
groups and whether metabolomes differ within sample groups (Ho
et al., 2013). The samples from the different groups in the PCA plot
were clustered overall (Figure 3B), indicating good similarity within
groups. Furthermore, QC samples were clustered and located in the
middle of the other three groups, indicating good system stability,
while the ability to separate the three groups indicated significant
differences between groups. B lies between A and NC, suggesting
that THD improved serum metabolism in patients with LSS. PLS-
DA combined orthogonal signal correction and PLS-DA methods,
with OPLS-DAmaximising group differentiation and facilitating the
search for differential metabolites compared to PCA. The
characteristics between the NC and A, and A and B groups were
well distinguished from each other in both the PCA and OPLS-DA
score plots (Figures 3C–F). In the permutation test of OPLS-DA,
R2X = 0.518, R2Y = 1, Q2 = 0.987 in NC and A group, R2X = 0.477,
R2Y = 0.999, Q2 = 0.945 in A and B group, and p < 0.05, indicating
that the OPLS-DAmodel has a high explanatory and predictive rate.
In the permutation test of PLS-DA, R2X = 0.677, R2Y = 1, Q2 =
0.997 in NC and group A, R2X = 0.498, R2Y = 0.999, Q2 = 0.99 in A
and B group, p < 0.05, indicating that the PLS-DA model has a high
explanatory and predictive rate. (Supplementary Figure S3).

3.3.2 Screening for differential metabolites
Comparing the NC group with group A, there were

309 differential metabolites satisfying VIP >1, |Log2FC| ≥
1.0 and p < 0.05, including 260 under anionic conditions,
98 upregulated and 162 downregulated; and 49 differential

metabolites under cationic conditions, including 13 upregulated
and 36 downregulated (Figures 4A, B). Moreover, heat maps
were used to demonstrate the biomarkers between the groups
and the differential expression of the biomarkers between the
groups (Figures 4C, D). The top 20 potential biomarkers with
VIP ≥1 included ursocholic acid, cephamycin C, ganolucidic acid
C, ferulic acid dilactone, glycine deoxycholic acid caffeine, all-trans-
13,14-Dihydroretinol, androstanedione, Arg-Tyr-Gln-Lys
(Arginine-Tyrosine-Glutamine-Lysine), deoxycholic acid (Figures
5A, B). Based on the fold change values, the top 10 upregulated and
downregulated biomarkers in the NC/A group comparison were
mainly 2-Hydroxy-3-isopropyl-6-methyl benzoic acid, 3-
Phosphoglyceric acid, Lys-Gln-Ile-Glu (lysine-glutamine-
isoleucine-glutamic acid), taurohyodeoxycholic acid, 2-
Methylnaphthalene 3alpha, 12alpha-Dihydroxy-5beta-chol-6-
enoate, retinol, mitragynine (Figures 5C, D). In addition, the
radar plot selectively shows ten representative biomarkers with
variable scores, including Lys-Gln-Ile-Glu, 2-Hydroxy -3-
isopropyl-6-methyl benzoic acid, taurohyodeoxycholic acid, 2-
Methylnaphthalene, caffeine, mitragynine (Figures 5E, F). This
suggests that amino acid metabolism and lipid metabolism
abnormalities might be associated with developing LSS.

The sera from groups A and B were subjected to metabolomic
analysis, and 309 differential metabolites satisfying VIP >1, Log2FC >
1 and p < 0.05, including 88 under anionic conditions, 48 upregulated
and 40 downregulated, and 20 differential metabolites under cationic
conditions, including 12 upregulated and 8 downregulated (Figures 6A,
B). Heat maps were used to demonstrate the biomarkers in each group
and differential expression between groups (Figures 6C, D). Of these, the
top 20 potential biomarkers withVIP≥1weremainly ganolucidic acidC,
chaetochromin, Leu-Asn-Arg-Glu, laminaribiose, N-(4-aminobutyl)-3-
(4-hydroxy-3-methoxyphenyl) prop-2-enimidic acid, 8-Aminooctanoic

FIGURE 3
Metabolic Pulmonary Analysis. (A) CV distribution of each group of samples; (B) PCA score of each group of samples with mass spectral data of QC
samples; (C) PCA score between A and NC; (D) OPLS-DA analysis between A and NC; (E) PCA score between A and B; (F) OPLS-DA analysis between A
and B.
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Acid, D-urobilinogen, Arg-Tyr-Gln-Lys (Figures 7A, B). The top ten
upregulated and downregulated biomarkers in the A/B group
comparison, based on the fold change values, contained Thiamine
monophosphate, cholesteryl hemisuccinate, Leu-Asn-Arg-Glu
(Leucine-Asparagine-Arginine- Glutamic acid), Ganolucidic acid C,
D-Quinovose, 8-Aminooctanoic Acid, Arg-Tyr-Gln-Lys,
D-urobilinogen, (S)-1-Phenylethanol, all-trans-5,6- Epoxyretinoic acid
(Figures 7C, D). In addition, the radar plot selectively shows ten
representative biomarkers with variable fractions of Leu-Asn-Arg-Glu,
Phylloquinone oxide, Hydroxyecdysone, Arg-Tyr-Gln-Lys, D
urobilinogen, and (S)-1-Phenylethanol (Figures 7E, F). The results
suggested that THD could regulate amino acid and lipid metabolisms
in the body of LSS patients, thus exerting its therapeutic effects.

Furthermore, Venn diagrams were used to identify the
intersection between NC/A and A/B and identified 76 common

biomarkers. Among those, 41 had significantly different levels in the
normal group compared to pre-treatment and were significantly
restored after THD treatment (Table 1). Most of those biomarkers
belonged to amino acids and their metabolites, bile acids, organic
acids and their derivatives, indicating that THD could regulate
amino acid and lipid metabolisms in LSS patients.

3.3.3 Metabolite pathway analysis
Metabolites interact with the organism to form different

pathways. Metabolic signalling in KEGG showed that bile
secretion, vitamin digestion and absorption, ubiquinone and
other terpenoid-quinone biosynthesis, primary bile acid
biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis
were altered compared to NC (Figure 8A). In contrast, metabolic
pathways, biosynthesis of cofactors, and mannose-type O-glycan

FIGURE 4
Expression of differential metabolites in NC vs. group A. (A) volcano plot of differential metabolites under anionic conditions; (B) volcano plot of
differential metabolites under cationic conditions; (C) heat map of differential metabolite expression between samples under anionic conditions; (D) heat
map of differential metabolite expression between samples under cationic conditions.
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FIGURE 5
NC vs. group A differential metabolite screening. (A) top 20 potential differential metabolites with VIP ≥1 under anionic conditions; (B) top
20 potential differential metabolites with VIP ≥1 under cationic conditions; (C) top 10 differential metabolites with up- and downregulated ploidy change
values under anionic conditions; (D) top 10 differential metabolites with up- and downregulated ploidy change values under cationic conditions; (E) radar
plot under anionic conditions selectively showing ten representative differential metabolites with change fractions; (F) radar plot under cationic
conditions selectively showing ten representative differential metabolites with change fractions.

FIGURE 6
Expression of differential metabolites in groups A vs. B (A) volcano plot of differential metabolites under anionic conditions; (B) volcano plot of
differential metabolites under cationic conditions; (C) heat map of differential metabolite expression between samples under anionic conditions; (D) heat
map of differential metabolite expression between samples under cationic conditions.
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biosynthesis were regulated in the serum of patients before and after
THD treatment, which might be an effective pathway for THD
treatment of LSS (Figure 8B).

In addition, metabolic enrichment analysis (MSEA) does not
require the specification of clear thresholds for differential
metabolites and identifies significantly different metabolomes
through a series of metabolic ensembles, each representing a
biological function (Ma et al., 2022). The results showed that
steroid hormone biosynthesis, biotin metabolism, one carbon
pool by folate, tyrosine metabolism, and pyrimidine metabolism
were the main pathways of metabolic differences between A and NC
(Figure 9A). Purine metabolism, steroid hormone biosynthesis,
tyrosine metabolism, one carbon pool by folate, and arginine
biosynthesis had significant differences before and after THD
treatment (groups A and B) (Figure 9B). This suggested a clear
overlap between the therapeutic process of THD with LSS and its
development. THD can potentially correct amino acid metabolism
in patients with LSS and thus achieve therapeutic effects.

4 Discussion

Pain is the main symptom and reason for patients to seek medical
attention, and low back pain is one of the common symptoms among
LSS patients. Unbearable pain and severe functional impairment are the
most common reasons patients with LSS undergo spinal surgery (Lurie
and Tomkins-Lane, 2016). Treatment of THD is effective in relieving
pain and improving the functional movement of the lumbar spine in
patients with LSS. Moreover, the effective relief of pain is thought to be

closely related to reducing local tissue inflammation in
patients(Conaghan et al., 2019). In this study, serum levels of IL-1β,
TNF-α and PGE2 decreased significantly after THD treatment
compared with those before treatment. In contrast, levels of the pro-
inflammatory cytokines IL-1β, TNF-α, and PGE2 were significantly
elevated in the serumof surgically induced LSS rats, and it was noted that
these inflammatory factors were closely related to pain (Park et al., 2019).
Inhibition of the expression of key inflammatorymediators reduces LSS-
induced chronic mechanical abnormalities in pain (Lee et al., 2019).

Activation of inflammation contributes to fibrosis and hypertrophy
of the ligamentum flavum in the LSS (Sun et al., 2018). Macrophage
migration inhibitory factor (MIF) promotes ligamentum flavum
proliferation through the Src kinase signaling pathway and
extracellular matrix changes through its pro-inflammatory effects.
MIF and its mediated inflammatory response are the drivers of
ligamentum flavum hypertrophy (Lu et al., 2022). The MIF content
is positively correlated with the thickness of the ligamentum flavum, and
it promotes fibroblast proliferation and collagen fibrillation which might
be an important part of the ligamentum flavum scar repair leading to its
hypertrophy. The inflammatory response, which includes both
inflammatory damage and repair, is one of the main components of
the blood stasis theory in TCM, and herbs with blood activation and
blood stasis removal effects can effectively block the inflammatory and
pro-proliferative effects of MIF on fibroblasts (Lu, 2020). Modern
pharmacological studies have shown that tonifying the kidney and
invigorating the blood can effectively reduce the expression of
inflammatory factors and inhibit the degeneration of articular
cartilage (Wang et al., 2022). THD is a clinically representative
formula for tonifying the kidneys and invigorating the blood.

FIGURE 7
Groups A vs. B differential metabolite screening. (A) top 20 potential differential metabolites with VIP ≥1 under anionic conditions; (B) top
20 potential differential metabolites with VIP ≥1 under cationic conditions; (C) top ten differential metabolites with up- and downregulated ploidy change
values under anionic conditions; (D) top ten differential metabolites with up- and downregulated ploidy change values under cationic conditions; (E)
radar plot under anionic conditions selectively showing ten representative differential metabolites with change fractions; (F) radar plot under
cationic conditions selectively showing ten representative differential metabolites with change fractions.
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Astragalus polysaccharide, the active ingredient of Huang Qi, can inhibit
macrophage migration inhibitory factor(Liao et al., 2020). In addition,
Huang Qi, Dang Gui and Dan Shen are involved in enhancing
angiogenesis and osteogenesis in THD. Their positive effect on bone
formation may be related to their ability to promote angiogenesis by
acting on substances such as VEGF (Yang et al., 2014). Huang Qi and
Dan Shen have been shown to promote the proliferation of bonemarrow
mesenchymal stem cells and TGF-β1-induced bone marrow
mesenchymal stem cells in vitro(Cai et al., 2015). Tanshinone IIA is
one of the main active phytochemicals isolated from Dan Shen, which
has been reported to inhibit osteoclast differentiation and bone
resorption by disrupting the actin ring, thereby inhibiting osteoclast
formation and bone erosion(Kwak et al., 2008; Nicolin et al., 2010).

Based on the apparent clinical effects of THDon LSS, we explored its
mechanism of action using metabolomics and showed that the levels of
41 potential metabolites were significantly restored by THD treatment,

including Chenodeoxycholic acid 3-sulfate, Taurohyodeoxycholic acid,
3,5-Dihydroxy-4-methoxy benzoic acid, Pinocembrin. Bile acids have
multiple biological functions and are involved in pathways, including
lipid and glucose metabolism, energy expenditure and inflammation,
thereby regulating metabolism-related diseases. By quantifying
circulating levels of specific bile acids, Taurohyodeoxycholic acid was
found to be negatively associated with diabetes(Choucair et al., 2020).
The association between diabetes and LSS is a risk factor for developing
LSS, and prolonged and poorly controlled hyperglycaemia can
exacerbate disc degeneration(Asadian et al., 2016; Kakadiya et al.,
2020). Upregulation of Chenodeoxycholic acid 3-sulfate levels is
thought to disrupt the metabolic processes of the body’s antioxidant
defence (Wang et al., 2021). Similarly, 3,5-Dihydroxy-4-methoxybenzoic
acid, a new antioxidant flavonoid, can effectively inhibit the level of
reactive oxygen species and regulate the inflammatory process(Oladele
Oladimeji et al., 2018; Gadallah et al., 2020). Pinocembrin attenuates

TABLE 1 Levels of 41 biomarkers were significantly restored by THD treatment.

Formula Compounds Class I VIP p-value Log2FC Type

MW0109398 C11H21N3O3 Pro-Lys Amino acid and Its
metabolites

1.65 9.35E-06 1.87 up

MW0053750 C26H43NO5 Glycochenodeoxycholic acid Bile acids 1.21 6.31E-04 1.22 up

MW0139070 C15H20O4 N-(4-aminobutyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-
enimidic acid

Organic acid And Its
derivatives

1.90 1.25E-13 1.42 up

MEDN0841 C4H8N2O3 3-Ureidopropionic Acid Organic acid And Its
derivatives

1.12 5.00E-02 1.44 up

MEDP1233 C33H42N4O6 D-urobilinogen Tryptamines,
Cholines,Pigments

1.90 1.76E-07 −2.23 down

MW0063749 C26H45NO6S Taurodeoxycholic acid Bile acids 1.36 2.51E-04 1.28 up

MW0140638 C8H10O (S)-1-Phenylethanol Benzene and substituted
derivatives

1.20 9.83E-04 −1.38 down

MW0015647 C20H28O3 all-trans-5,6-Epoxyretinoic acid Organic acid And Its
derivatives

1.71 3.30E-05 −1.35 down

MW0155485 C9H10O Phenylacetone Benzene and substituted
derivatives

1.14 4.03E-02 1.01 up

mws3144_N C8H17NO2 8-Aminooctanoic Acid Organic acid And Its
derivatives

1.90 5.26E-07 −3.28 down

MW0147534 C12H12O2 cis-2,3-Dihydro-2,3-dihydroxybiphenyl Benzene and substituted
derivatives

1.09 4.51E-02 1.20 up

MW0155740 C30H52O7P2 Presqualene diphosphate Terpenoids 1.80 1.21E-06 −1.35 down

MW0060196 C39H68NO8P PE-NMe2(14:1(9Z)/18:4(6Z,9Z,12Z,15Z)) GP 1.58 7.68E-04 −1.37 down

MW0057219 C46H88NO8P PC(20:1(11Z)/18:1(9Z)) GP 1.32 7.52E-03 1.23 up

MW0056644 C44H87O8P PA(i-21:0/20:0) GP 1.39 2.78E-04 1.85 up

MW0055921 C47H93O8P PA(20:0/i-24:0) GP 1.48 1.65E-02 2.14 up

MW0107606 C39H47N5O5 Jubanine C Benzene and substituted
derivatives

1.33 1.51E-02 −1.09 down

MW0050034 C41H72O5 DG(18:0/20:4(5Z,8Z,11Z,14Z)/0:0) GL 1.58 1.05E-04 1.20 up

MW0145540 C26H43N9O7 Arg-Tyr-Gln-Lys Amino acid and Its
metabolites

1.88 4.48E-09 −3.23 down

MW0166423 C30H50O (6E,10E,12R,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-
2,6,10,14,18,22-hexaen-12-ol

Alcohol and amines 1.31 3.10E-05 1.68 up
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FIGURE 8
KEGG Enrichment analysis of differential metabolites. (A): NC vs. A; (B) A vs. B; the dot’s colour is the p-value. The redder it is, themore significant the
enrichment is. The dot size represents the number of differential metabolites in the pathway enriched).

FIGURE 9
MSEA of differential metabolites. (A): NC vs. A; (B) A vs. B; The dot’s colour represents p-value).

FIGURE 10
THD intervenes in LSS metabolic pathway mechanism map.
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glucocorticoid-induced apoptosis in osteoblasts by inhibiting the PI3K/
Akt/mTOR pathway to activate autophagy and may have a protective
effect on osteocytes(Wang et al., 2020). The levels of these flavonoid
molecules were significantly higher post-treatment compared to pre-
treatment. Thus, THDmight exert its anti-inflammatory mechanism by
regulating the levels of flavonoid molecule metabolites.

The analysis of the different metabolites between patients in the NC
group and group A found that it was mainly steroid hormone
biosynthesis. Biotin metabolism, one carbon pool by Folate, Tyrosine
metabolism, Pyrimidine metabolism and other pathways were related,
while THD was related mainly through Purine Metabolism. Steroid
hormone biosynthesis, Tyrosine metabolism, one carbon pool by Folate,
Arginine biosynthesis, and other pathways regulate body metabolism
and play a therapeutic role. A study using transcriptomic data found that
purinemetabolism significantly affected gene expression in patients with
ligamentum flavum ossification, with xanthine dehydrogenase being a
key regulator (Li et al., 2020). Whereas ligamentum flavum fibrosis and
ossification be the primary pathology of ligamentum flavum
hypertrophy, ligamentum flavum hypertrophy is the most crucial
component of LSS (Yamada et al., 2021). The intervention of steroid
hormone biosynthesis and amino acid metabolic pathways can
effectively prevent bone loss (Xia et al., 2019). Epidural steroid
injections improve serum monocyte chemotactic protein-1,
biomarkers of nerve root injury and electromyography in patients
with LSS (Lin et al., 2020).

5 Conclusion

THD can effectively improve pain and lumbar spine function in
patients with LSS and reduce serum levels of IL-1β, TNF-α and
PGE2-related inflammatory factors in patients. Its mechanism of
action might be related to reducing the inflammatory response,
improving amino acid metabolism and lipid metabolism, and
relieving ligamentum flavum hypertrophy and fibrosis (Figure 10).
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Systematic metabolomic studies
identified adult adiposity
biomarkers with acetylglycine
associated with fat loss in vivo

Kuan-Jui Su1,2†, Xing-Ying Chen3,4†, Rui Gong1,3,5, Qi Zhao6,
Shi-Di Hu4, Mei-Chen Feng4, Ye Li3, Xu Lin1,3,4, Yin-Hua Zhang3,
Jonathan Greenbaum1, Qing Tian1, Hui Shen1, Hong-Mei Xiao7,
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Orleans, LA, United States, 2Department of Biostatistics and Data Science, School of Public Health and
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Medical University (The First People’s Hospital of Shunde), Foshan, China, 4Department of Endocrinology
and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,
5Department of Cadre Ward Endocrinology, Gansu Provincial Hospital, Lanzhou, China, 6Department of
Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN,
United States, 7Center of System Biology, Data Information and Reproductive Health, School of Basic
Medical Science, Central South University, Changsha, China

Obesity is associated with various adverse health outcomes. Body fat (BF)
distribution is recognized as an important factor of negative health
consequences of obesity. Although metabolomics studies, mainly focused on
body mass index (BMI) and waist circumference, have explored the biological
mechanisms involved in the development of obesity, these proxy composite
measures are not accurate and cannot reflect BF distribution, and thus may
hinder accurate assessment of metabolic alterations and differential risk of
metabolic disorders among individuals presenting adiposity differently
throughout the body. Thus, the exact relations between metabolites and BF
remain to be elucidated. Here, we aim to examine the associations of
metabolites and metabolic pathways with BF traits which reflect BF
distribution. We performed systematic untargeted serum metabolite profiling
and dual-energy X-ray absorptiometry (DXA) whole body fat scan for
517 Chinese women. We jointly analyzed DXA-derived four BF phenotypes to
detect cross-phenotype metabolite associations and to prioritize important
metabolomic factors. Topology-based pathway analysis was used to identify
important BF-related biological processes. Finally, we explored the
relationships of the identified BF-related candidate metabolites with BF traits in
different sex and ethnicity through two independent cohorts. Acetylglycine, the
top distinguished finding, was validated for its obesity resistance effect through in
vivo studies of various diet-induced obese (DIO) mice. Eighteen metabolites and
fourteen pathways were discovered to be associated with BF phenotypes. Six of
the metabolites were validated in varying sex and ethnicity. The obesity-resistant
effects of acetylglycine were observed to be highly robust and generalizable in
both human and DIO mice. These findings demonstrate the importance of
metabolites associated with BF distribution patterns and several biological
pathways that may contribute to obesity and obesity-related disease etiology,
prevention, and intervention. Acetylglycine is highlighted as a potential
therapeutic candidate for preventing excessive adiposity in future studies.
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1 Introduction

Obesity, defined as an excess of adiposity, is a global epidemic
widely recognized as a leading cause of various metabolic disorders
and cancers (Cirulli et al., 2019; Koenen et al., 2021; He et al., 2023).
Excess central fat accumulation causing metabolic disturbance can
exacerbate the risk of diabetes and cardiovascular diseases (Vasan
et al., 2018; Marsh et al., 2023). Biomarkers reported to influence
abdominal obesity have also been shown to be prognostic of early
cardiometabolic risk independent of general obesity (Supriya et al.,
2018). However, not all abdominal areas in which fat accumulates
are associated with harm. It is known that android fat deposited
around the waist increases the risk of metabolic disease, while
gynoid fat deposited around the hips does not, and some studies
suggest gynoid fat may have a beneficial effect (Vasan et al., 2018;
Marsh et al., 2023). Therefore, uncovering novel biomarkers for fat
distribution can provide more precise insight into fat accumulation
and obesity-related diseases.

Metabolomics provides comprehensive profiling of distinct
exogenous/endogenous small molecules functioning as
intermediates or end products of cellular metabolism. Since
metabolites represent the downstream expression of genomic,
transcriptomic, and proteomic factors, their study can reveal
biomarkers and pathways that link genotypes to phenotypes
(Cirulli et al., 2019). Multiple studies have revealed crucial
metabolites for obesity or regulating BF (Chen et al., 2015; Bogl
et al., 2016; Ahmad et al., 2022; O’Keeffe et al., 2022), some of which
were used as a basis for developing treatments and preventive
interventions for obesity-related disorders (Okosun et al., 2015;
Chen and Gerszten, 2020) and prediction models for visceral
adipose tissue, an important prognostic factor that is difficult to
measure in practice (Boone et al., 2022). Although there have been
numerous efforts to identify metabolic biomarkers of obesity, these
studies were largely limited by small sample sizes, the number of
metabolites considered, and lack of replication/functional
validation. Moreover, they primarily relied on proxy measures of
body composition such as BMI and/or waist-to-hip ratio. These
proxy measures may miss valuable information provided by the
regional BF, and therefore hinder assessment of metabolic
alterations and differential risk of metabolic disorders among
individuals presenting adiposity differently throughout the body
(Rangel-Huerta et al., 2019).

In the present study, we aim to identify shared and specific
metabolites and their associated pathways related to various BF
traits. The study has three main components: discovery, validation,
and in vivo experiments. First, we analyzed untargeted liquid
chromatography-mass spectrometry (LC-MS) metabolomics
profiling on a sample of 517 Chinese women for discovery. Next,
we verified the identified BF-related metabolites in two
independent cohorts with various ethnicities and genders.
Both the validated metabolites and those associated with all
the studied BF traits were selected for more detailed
examination of their biological functions and relevance as
revealed in prior studies. One such metabolite, meeting both
criteria, was chosen for in vivo experiments for further validation

and functional significance in mice. Our study design and
analytical approach are outlined in Supplementary Figure S1.

2 Materials and methods

2.1 Subjects and study design

A total of 517 unrelated peri-/post-menopausal Chinese women
in the discovery cohort were recruited from the Third Affiliated
Hospital of Southern Medical University (Guang Zhou, Guang
Dong Province, China) between June 2014 and January 2018.
The mean age was 52.9 years (standard deviation (SD) = 2.9).
Two independent samples for validation were sampled from the
Louisiana Osteoporosis Study (LOS) (Zhao et al., 2018). The first
validation cohort consisted of 136 Caucasian women (mean aged
31.48 years (SD = 5.08)) sampled by a discordant phenotype design
based on the top/bottom 20% of the hip bone mineral density
Z-score (Zhao et al., 2018). The second validation cohort comprised
700 males (295 African Americans and 405 Caucasians) with mean
age 37.8 (SD = 8.45) years overall. The study designs and sample
characteristics are detailed in Supporting Material S1 and
Supplementary Tables S1-S2, respectively. Signed consent forms
were obtained from all participants. All clinical measurements and
experiment procedures were subject to the Helsinki Declaration II
and regulations of the Institutional Review Boards.

2.2 Clinical measurements

All respondents in the discovery and validation cohorts
completed a questionnaire regarding demographics, lifestyle,
dietary factors, and reproductive and medical history. Trained
research staff collected clinical measurements with participants.
The BF distribution phenotypes considered in this study were
android fat/whole BF mass ratio (A/W ratio), gynoid fat/whole
BF mass ratio (G/W ratio), android fat to gynoid fat ratio (A/G
ratio), and whole BF percentage (W%) (Bogl et al., 2016). Daily
calibrated DXA machines (discovery cohort: Lunar, GE Healthcare,
Madison, WI, United States; validation cohorts: Hologic Inc.,
Bedford, MA, United States) were used to measure BF
(Supplementary Figure S2). The detail of the region of interest is
provided in Supporting Material S1.

2.3 Metabolite analysis

Untargeted LC-MS metabolite profiling was conducted on
serum samples from all cohorts. The details of experimental
protocols, which are in accordance with the suggestions of the
Metabolomics Standards Initiative reporting standards (Sumner
et al., 2007), have been previously described (Gong et al., 2021)
and are provided in Supporting Material S2. A high-resolution
tandem mass spectrometer TripleTOF5600plus (SCIEX,
United Kingdom) at Lian-Chuan Biotechnology Co., Ltd
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(Hangzhou, China) was used to detect metabolites eluted from the
column in the discovery cohort. LC-MS metabolomics platforms
were also used to perform the metabolomic analyses on serum
samples for both validation cohorts. The experimental protocols
for the validation cohorts have been previously described (Zhao
et al., 2018) and are listed in Supporting Material S2. All
metabolites profiling with a unique or high-confidence
annotation were log-transformed and auto-scaled prior to the
subsequent analyses.

2.4 In vivo validation study in mice for
acetylglycine

Acetylglycine consistently demonstrated an anti-obesity
association with observed BF traits across sex and ethnicity.
We performed an in vivo study that extended the work of
Harper et al. (Harper et al., 2010) by exploring the effect of
acetylglycine on high-fat diet-induced obese mice for further
validation. A total of 61 female C57BL/6 J mice were randomized
into five groups: 1) standard chow diet with vehicle (control; n =
12), 2) high fat (60% kcal from fat; n = 12) diet with vehicle (HFD;
n = 12), 3) HFD with low-dosage acetylglycine (HFD + ACE500;
500 mg/kg; n = 12), 4) HFD with medium-dosage acetylglycine
(HFD + ACE1000; 1,000 mg/kg; n = 12), and 5) HFD with high-
dosage acetylglycine (HFD + ACE1500; 1,500 mg/kg; n = 13). We
administered drinking water or acetylglycine (treatment) to
corresponding mice by oral gavage every day starting at
8 weeks of age. Experimental measurements were recorded
weekly during the 16-week intervention. We used micro-
computed tomography (µ-CT) to measure total abdominal fat
(between L1 and L5 vertebrae), visceral BF, and subcutaneous BF
(Luu et al., 2009). The biochemical analysis involved the
measurement of fasting plasma glucose (FPG) after 6-h and
12-h fasting, total cholesterol (TC), triglyceride (TG), high-
density lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL), alanine transaminase (ALT), and aspartate
aminotransferase (AST). All experimental procedures are
provided in Supporting Material S3.

2.5 Statistical analysis

We investigated the relationship between the metabolites and
BF traits using two complementary approaches, seemingly
unrelated regression (SUR) and sparse partial least squares
(sPLS) regression. The most important BF-related metabolites
were identified as those with variable importance in projection
(VIP) score >1 in sPLS and SUR false discovery rate (FDR)
q-value ≤0.2. The selection of cutoffs for the FDR q-value and
VIP score usually depends on the study objective. In this study,
we aimed to provide a robust list of potential BF-related
metabolites for future replication, and therefore chose not to
apply highly stringent significance criteria since the analysis is
exploratory in nature. A pathway analysis was performed to
identify biological functions with p-score <0.05. The Spearman
and partial Spearman correlation tests were conducted in the
validation cohorts to examine the associations between the

metabolites and traits after adjustment for age, height,
physical activity for both cohorts, and ethnicity in the second
cohort. We also performed the tests stratified by ethnicity.
p-value ≤0.05 was considered statistically significant. All
analyses were detailed in Supporting Material S4. The
metabolites associated with all BF traits in the discovery
cohort or replicated the associations in the validation cohorts
will be further discussed in our study (Supporting Material S5).

The Generalized Estimating Equations (GEE) model was
applied to investigate the associations between acetylglycine and
the measure of weight and weight gain in the animal models. The
covariates included baseline weight, treatment (water, low-,
medium-, or high-dose acetylglycine), and diet (normal/HFD) in
the weight model, and treatment and diet in the weight gain model.
Tukey method was used to examine whether there were significant
pairwise differences (p-value ≤0.05) in weight and weight gain. The
Kruskal–Wallis test was used as a global test for a one-time
measurement to compare biomedical indexes across different
treatment groups. The null hypothesis of this test is that there is
no significant difference in the biomedical measurement across all
treatment groups, while the alternative hypothesis is that at least one
group differs significantly from at least one other group. Following
the Kruskal–Wallis test, Wilcoxon tests were conducted to examine
whether acetylglycine had significant differences (FDR
q-value ≤0.05) in pairwise comparisons for both the µ-CT and
biochemical measurements.

3 Results

3.1 Relationships between BF traits and
serum metabolites in discovery

Among 3,075 annotated metabolites with MS1 and
MS2 confidence levels in our discovery cohort (Supplementary
Table S3 and Supporting Material S3), we identified
18 statistically significant BF-metabolite associations with FDR
q-values <0.2 in the SUR models and VIP scores >1 in sPLS
(Figure 1 and Supplementary Table S4). Figure 1A illustrates how
the metabolites relate to multiple traits: none of the 18 metabolites
exclusively related to a single BF trait. All were significantly
associated with G/W ratio. Overall, two metabolites had
significant relationships with three traits (G/W, A/W, and A/G
ratios) representing central BF and five with all four traits
representing general and central BF.

Directions of coefficient effects on the four traits were consistent
across the 18 metabolites; A/G ratio, A/W ratio, and W% were
always affected in opposite directions as G/W ratio (Figure 1B).
Those having positive relationships with A/G ratio, A/W ratio, and
W% but a negative relation with G/W ratio were defined as obesity-
risk metabolites, the others as protective metabolites. Among the six
metabolites with VIP scores >2, the top three (austalide J,
pyridinoline, and deoxycoformycin) are obesity-risk metabolites,
while acetylglycine, creatinine, and cortisone are protective
metabolites. The top six in the VIP score also had relatively large
effect sizes on central BF compared with general BF (Supplementary
Figure S3). Acetylglycine, for example, had stronger negative effect
sizes on A/G ratio (β = −0.19, p-value = 1.09 × 10−5) and A/W ratio
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(β = −0.17, p-value = 6.23 × 10−5) than on W% (β = −0.09, p-value =
3.24 × 10−3).

3.2 Functional topological pathway analysis
in discovery

Six metabolites out of 18 could be mapped to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and used

in the pathway analysis. We identified 14 significant pathways, three
modules, 28 enzymes, 39 reactions, and 21 compounds (refer to
Table 1 for an overview and Supplementary Table S6 for a
comprehensive list). The topological results showed that thiamine
had the highest connectivity at the compound level (degree = 10)
and thiamine metabolism had the highest connectivity at the
pathway level (degree = 9) in Supplementary Figure S4. The
connectivity degree indicates the importance of thiamine for
essential metabolic processes.

FIGURE 1
Summary results for the joint analysis in the discovery cohort. Panel (A) Venn diagram depicting metabolite sets that were significantly associated
with body fat traits (FDR q-value <0.2 and VIP >1). Traits are represented by ovals of different colors. The number in each area represents the count of
identified BF-associated metabolites associated with the given traits. Panel (B). Important metabolites selected on the basis of VIP, score >1 and FDR
q-value ≤0.2. Each tile represents the effect size of the metabolite on each trait. VIP: the variable importance in projection scores, FDR: false
discovery rate, A/W ratio: Android fat/Whole body fat ratio, G/W ratio: Gynoid fat/Whole body fat ratio, A/G ratio: Android fat to gynoid fat ratio, and W:
Whole body fat %. *: p-value <0.05; **: p-value <0.01; ***: p-value <0.001.
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TABLE 1 Summary of topological attributes of the top 5% significant biological components at each biological level.

Level KEGG
ID

KEGG name p
Score

Betweenness
centrality (B)

Closeness
centrality (C)

Combined
score (B)+(C)

Degree

Pathwaya hsa00330 Arginine and proline metabolism 1.80 ×
10−3

0.35 0.54 0.89 5

hsa02010 ABC transporters 1.59 ×
10−4

0.39 0.26 0.64 8

Modulea hsa04979 Cholesterol metabolism 1.00 ×
10−6

0.31 0.25 0.56 5

M00047 Creatine pathway 1.00 ×
10−6

0.37 0.56 0.93 5

Enzymeb 2.3.2.27 RING-type E3 ubiquitin transferase 1.54 ×
10−3

0.38 0.24 0.62 4

2.7.3.2 Creatine kinase 1.00 ×
10−6

0.04 0.42 0.46 2

2.1.1.2 Guanidinoacetate N-methyltransferase 1.00 ×
10−6

0.05 0.41 0.45 2

3.1.3.2 Acid phosphatase 8.83 ×
10−5

0.15 0.23 0.37 4

2.1.4.1 Glycine amidinotransferase 1.84 ×
10−3

0.00 0.37 0.37 1

3.1.1.3 Triacylglycerol lipase 1.96 ×
10−2

0.08 0.24 0.32 2

Reactionc R07420 Phosphocreatine ≤≥ Creatinine +
Orthophosphate

1.00 ×
10−6

0.13 0.47 0.60 3

R01884 Creatinine amidohydrolase 1.00 ×
10−6

0.10 0.47 0.57 3

R02922 Creatinine iminohydrolase 1.00 ×
10−6

0.09 0.42 0.51 3

R01566 Creatine amidinohydrolase 9.33 ×
10−4

0.04 0.43 0.47 2

R01881 ATP:creatine N-phosphotransferase 2.01 ×
10−6

0.08 0.39 0.47 3

R03720 Choloyl-CoA:glycine
N-choloyltransferase

4.33 ×
10−3

0.18 0.25 0.44 8

R03187 N-Methylimidazolidine-2,4-dione
amidohydrolase

3.68 ×
10−2

0.04 0.38 0.42 2

Compoundd C00300 Creatine 9.93 ×
10−5

0.17 0.44 0.61 4

C00378 Thiamine 1.00 ×
10−6

0.27 0.26 0.53 10

C00791 Creatinine 1.00 ×
10−6

0.08 0.44 0.52 3

C00037 Glycine 1.16 ×
10−5

0.22 0.26 0.48 5

C01921 Glycocholate 1.00 ×
10−6

0.21 0.24 0.46 3

C02305 Phosphocreatine 1.35 ×
10−4

0.02 0.38 0.41 2

C01606 Phthalate (1,2-Benzenedicarboxylic
acid)

1.00 ×
10−6

0.09 0.21 0.30 4

C00762 Cortisone 0.11 0.18 0.29 6

(Continued on following page)
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3.3 Metabolite and BF trait relations
validation in LOS cohorts

We examined the correlations of four metabolites in the female
validation cohort and five in the male validation cohort, which

resulted in 22 significant relations between the metabolites and traits
(Table 2). The correlations between acetylglycine and the traits were
significant in both cohorts, with the strongest negative association
with W% and A/W ratio respectively in Caucasian women
(Spearman correlation ρ) = −0.34, partial Spearman correlation

TABLE 1 (Continued) Summary of topological attributes of the top 5% significant biological components at each biological level.

Level KEGG
ID

KEGG name p
Score

Betweenness
centrality (B)

Closeness
centrality (C)

Combined
score (B)+(C)

Degree

1.00 ×
10−6

C04148 Phenylacetylglutamine (Alpha-N-
phenylacetyl-L-glutamine)

1.00 ×
10−6

0.00 0.18 0.18 1

aReported pathways and modules with combined score (B + C) > 0.5.
bReported enzymes with combined score >0.3.
cReported reactions with combined score >0.4.
dReported compounds with combined score >0.4 or original input compounds; Bold, the original BF-related metabolites. The components were selected by the threshold of combined score

greater than 0.3 or as the input metabolites. A comprehensive list can be found in Supplementary Table S6.

TABLE 2 Summary of body-fat associated metabolites in the validation cohorts.

Metabolite Class Ion m/z RT/RIa Molecular Trait ρ ρ p-value ρ′ ρ’ p-value

Validation 1: Caucasian women (n = 136)

Acetylglycine Amino acids Pos 140.03 1.17 C4H7NO3 AG −0.31 1.96 × 10−4 −0.28 9.10 × 10−4

AW −0.29 6.89 × 10−4 −0.25 3.27 × 10−3

GW 0.29 5.88 × 10−4 0.28 1.17 × 10−3

W% −0.34 5.17 × 10−5 −0.29 6.55 × 10−4

Creatinine Amino acids Neg 112.05 0.98 C4H7N3O AW −0.20 1.96 × 10−2 −0.15 7.61 × 10−2

Thiamine Pyrimidines Pos 265.11 1.13 C12H16N4OS W% −0.19 2.34 × 10−2 −0.16 7.01 × 10−2

Validation 2: African American and Caucasian men (n = 700)

Acetylglycine Amino acids Polar 116.04 1,780 C4H7NO3 AG −0.26 7.22 × 10−12 −0.24 1.47 × 10−10

AW −0.28 6.48 × 10−14 −0.26 1.97 × 10−12

GW 0.09 1.41 × 10−2 0.09 1.32 × 10−2

W% −0.27 6.34 × 10−13 −0.24 5.28 × 10−11

Cortisone Lipid Neg 359.19 4,575 C21H28O5 AG −0.11 2.67 × 10−3 −0.10 1.12 × 10−2

AW −0.11 2.38 × 10−3 −0.10 8.97 × 10−2

W% −0.11 5.02 × 10−3 −0.09 1.22 × 10−2

Creatinine Amino acids Pos Early 114.07 2,055 C4H7N3O AG −0.09 2.20 × 10−2 −0.05 ns

AW −0.09 1.84 × 10−2 −0.03 ns

W% −0.16 1.24 × 10−5 −0.13 6.69 × 10−4

Glycocholic acid Lipid Neg 464.30 5,163 C26H43NO6 AG −0.10 8.16 × 10−3 −0.07 ns

AW −0.13 5.96 × 10−4 −0.10 8.13 × 10−3

W% −0.12 1.96 × 10−3 −0.09 1.38 × 10−2

N-Phenylacetyl-L-Glutamine Peptide Pos Early 265.12 2,145 C13H16N2O4 AG −0.02 ns −0.11 4.17 × 10−3

AW −0.04 ns −0.12 1.34 × 10−3

W% −0.08 2.81 × 10−2 −0.14 2.60 × 10−4

m/z: mass-to-chare ratio; a: RT (Retention time) and RI (Retention index); ρ: Spearman correlation coefficient; ρ’: Partial Spearman correlation coefficient adjusted by age, height, and physical

activity in Validation 1 and additional ethnicity in Validation 2; ns: not statistically significant; The directions of the correlation test in the validation studies are consistent with the findings in the

Chinese women cohort. A/G: android to gynoid ratio; A/W: android fat to whole body total fat; G/W: gynoid fat to whole body total fat; W%: whole body total fat percentage.
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(ρ′) = −0.29, both p-value < 0.001) and African American and
Caucasian men (ρ = −0.28, ρ’ = −0.26, both p-value < 0.001).
Glycocholic acid was negatively associated with A/G ratio, A/W
ratio, andW% in African American and Caucasian men only, which
may be attributed to the relatively small sample size of Caucasian
women (Supplementary Tables S7-S14).

In the ethnicity-stratified analyses, we replicated the
correlations of five metabolites related to at least one BF trait
in African American or Caucasian men (Supplementary Table
S5). Acetylglycine had the highest absolute correlation
coefficients on the BF traits (except for the G/W ratio in the
African American men). Cortisone had the significant negative
correlations with A/G ratio, A/W ratio, and W% exclusively in
the African American men; creatinine was also negatively related
to W% in Caucasian men.

3.4 Relationship of acetylglycine with body
weight, body weight gain, and abdominal fat
mass in mice

The acetylglycine treatments with equivalent baseline weight
and diet were significantly associated with an average decrease in
body weight of 0.51 (p-value = 0.01) and 1.03 (p-value = 2.30 ×
10−7) grams, respectively, in ACE1000 and ACE1500 groups,
compared with groups without the treatment. Similarly, we
found negative marginal effect sizes on weight gain while
adjusting for diet (Table 3). Body weight and weight gain
were lower in all the acetylglycine treatment groups and the
control group than the HFD-only group (Supplementary Figure
S5). Overall food intake presented no differences between the

HFD-only and HFD with treatment groups during the
intervention period.

Among the acetylglycine treatment groups, we observed
significant differences in the µ-CT measures: abdominal fat,
visceral fat, subcutaneous fat, and fat/weight ratio (Figure 2 and
Supplementary Tables S1-S15). The HFD groups had significantly
higher measurements than the control group, indicating the success
of the obesity model. Despite similar HFD consumption, we
observed a decreasing trend in the four µ-CT measures as the
treatment dosage increased, and statistically significant differences
between the HFD-only group and the HFD with the medium and
high-dose groups.

3.5 Association of acetylglycine with
biochemical measurements in mice

The overall tests indicated significant differences in the levels of
glucose, CHO, HDL, and LDL among the groups (Supplementary
Table S16). The HFD-only group in the 6-h FPG test had
significantly higher glucose level (mean = 8.57 mmol/L, SD =
1.49) than the control, HFD + ACE500, and HFD +
ACE1000 groups (Figure 2). In the 12-h FPG test, there were
significant differences between the HFD + ACE1000 and control/
HFD-only groups. ALT and AST, two enzymes for testing liver
toxicity or damage, were not significantly different across groups
(Supplementary Figure S6). Lipid profiles were significantly higher
in the treatment groups with HFD compared to those in the control
group, and there were no differences in the cholesterol levels among
the intervention groups (Supplementary Figure S7). Taken together,
the HFD-only diet successfully induced obesity in the mice, as

TABLE 3 Results of GEE models for the associations of acetylglycine on mouse weight and weight change.

Variable Effect size SE Wald p-value

Trait: Weight

Water REF

TRT ACE 500 −0.29 0.28 1.08 0.30

TRT ACE 1000 −0.51 0.20 6.56 0.01

TRT ACE 1500 −1.03 0.20 26.78 2.30 × 10−7

Normal Diet REF

HFD 1.35 0.19 48.23 3.80 × 10−12

Baseline weight 0.98 0.10 92.78 <2.00 × 10−16

Trait: Weight change

Water REF

TRT ACE 500 −0.38 0.32 1.44 0.2295

TRT ACE 1000 −0.65 0.22 8.61 0.0033

TRT ACE 1500 −1.41 0.23 39.10 3.90 × 10−10

Normal Diet REF

HFD 1.61 0.21 58.00 2.70 × 10−14

REF: Reference group. HFD: High fat diet. TRT ACE: Treatment group with acetylglycine (dose); SE: Standard error for the effect size.
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reflected by the higher weight, weight gain, abdominal fat mass, and
glucose level observed in the study.

4 Discussion

We performed a joint analysis that revealed the relationships
between the metabolites and four DXA-derived BF measures among
Chinese women. In contrast to proxy phenotypes, such as BMI, BF
measures provide a direct assessment of body adiposity distribution,
enabling the identification of novel metabolites related to general or
central BF. We identified 18 metabolites that demonstrated
consistent associations with A/G ratio, A/W ratio, and W%, and
opposing associations with G/W ratio. We further partially validated
the consistent relationships of the metabolites on the BF traits in two
independent samples with different ethnicity and sex characteristics.
Lastly, we validated the protective effect of acetylglycine in the obese
mouse experiments.

Pyridinoline, deoxycoformycin, acetylglycine, creatinine, and
cortisone were robustly associated with general and central BF.
Austalide J and 28-homobrassinolide were only associated with
central BF, and austalide J had the highest VIP score, reflecting a
strong contribution in distinguishing abdominal obesity.

Interestingly, no metabolite was exclusively related to any
single BF trait, implying that the identified metabolites
simultaneously influence total and central region fat deposits
with different effect sizes. As gynoid fat may reduce the risk of
metabolic diseases (Fu et al., 2013; Okosun et al., 2015), our
findings of 12 metabolites positively associated with G/W ratio
suggest further replication and merit for future study in
preventing obesity.

Pyridinoline and deoxycoformycin were observed as positive
associations with general and central BF, except gynoid fat, in our
study. These two metabolites have been recognized from
exogenous sources and have close relationships with complex
diseases. Pyridinoline, a well-known biomarker of bone
resorption and formation (Delmas et al., 1991; Kuo and Chen,
2017), has been reported to be positively associated with weight,
BMI, and bone mineral density at different skeletal sites (New
et al., 2000; Wang et al., 2016). It is a cross-linked compound that
provides chemical stabilization in cartilage, bone, ligaments, and
blood vessels (Kuo and Chen, 2017). Next, deoxycoformycin is an
inhibitor of adenosine deaminase and a common anticancer
chemotherapeutic drug for leukemia and lymphoma treatment
(Tusup et al., 2022). In addition, deoxycoformycin can be
produced by fungi such as C. militaris, which is regarded as a

FIGURE 2
In vivo study with acetylglycine. Panels (A–D) show the pairwise comparisons for the µ-CTmeasures among different groups. The abdominal region
was defined as between L1–L5 lumbar vertebrae. Panels (E, F) are the pairwise comparisons for the fasting plasma glucose test. FDR: false discovery rate;
*: FDR q-value <0.05; **: FDR q-value <0.01; ***: FDR q-value <0.001; ****: FDR q-value <0.0001.
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beneficial food supplement (Chen et al., 2020). However, it
increases the susceptibility to toxic accumulation in kidney,
liver, and central nervous system (Demain and Sanchez, 2009;
Chen et al., 2020). The effect of the impaired tissue/organs by
deoxycoformycin on the development of BF and its dose-
dependent toxicity in humans is still unclear. Further research
on the underlying mechanism of this relationship is warranted.

We demonstrated the potential anti-obesity effect of
acetylglycine on both general and central body fat, which is
consistent with previous findings of its association with lower
BMI levels and fat percentages in population-based studies
(Moore et al., 2014; Cirulli et al., 2019). However, a
longitudinal study of Mexican American women aged
20–72 years reported that increased levels of acetylglycine
elevated the risk of weight gain (Zhao et al., 2016). Further
investigations into the long-term effect are needed to clarify
these contradictory results. In addition to obesity-related
traits, a study on the causal effect of metabolites on
cardiovascular diseases found that acetylglycine is associated
with a lower risk of diastolic blood pressure and is considered
a potential cause (Qiao et al., 2021). The glycine
N-acyltransferase (GLYAT) enzyme, linked with phenylalanine
metabolism (Supplementary Figure S4), forms N-acylglycines
(Westhuizen et al., 2000) and catalyzes glycine conjugation of
acyl-Coa-species, producing intermediate products such as
acetylglycine in amino acid and fatty acid metabolism
(Badenhorst et al., 2013). A mice study showed that lower
mRNA expression levels of GLYAT in adipose tissue were
observed in a fat-susceptible group compared to a fat-resistant
group (Fedry et al., 2016). The perturbation of GLYAT induces
harmful disruption to CoA homeostasis (Badenhorst et al., 2013),
musculoskeletal development (Badenhorst et al., 2013), and
obesity-related metabolic disturbances (Fedry et al., 2016;
Alves et al., 2019), suggesting that acetylglycine plays a role in
the development of obesity-related diseases.

Creatinine, a breakdown product of creatine, reflects muscle
metabolism and kidney function and plays a significant role in
muscle energy production (Patel et al., 2013). Individuals with low
muscle mass and body weight have low creatinine levels (Patel et al.,
2013) and high glomerular hyperfiltration rates, which may increase
the risk of metabolic diseases and diabetes (Hjelmesæth et al., 2010).
The association between cortisone and general/central BF was
consistent with a recent study reporting a negative association on
BMI in European women (Cirulli et al., 2019). Interestingly, when
assessing the relationship of cortisone in childhood obesity, cortisol
and cortisone levels were significantly positively correlated with BMI
and A/G ratio (Noppe et al., 2016).

The age-dependent differences in activities of 11β-
hydroxysteroid dehydrogenases, an enzyme catalyzing the
interconversion between cortisol and cortisone, may reverse the
associations on BF deposition (Vierhapper et al., 2007; Chapman
and Seckl, 2008). Cortisone participating in cortisol metabolism for
generating steroid hormone is a known signature for obesity, type
2 diabetes (Gawlik et al., 2020), and other diseases (Supplementary
Figure S4).

In our validation analyses, we observed the negative
relationships for glycocholic acid, a key a bile acid regulator of
fat absorption, cholesterol level, and energy homeostasis (Marco-

Ramell et al., 2018). Glycocholic acid was only replicated in African
American or Caucasian men but not in Caucasian women. This
discrepancy could be attributed to aging-related decline in
physiological functions, such as a decrease in female estrogen
and hormone levels. A study reported a large difference in
glycocholic acid levels between obese and lean women aged
between 50 and 70 years old, and a relatively small difference in
women aged 30–40 years old (Xie et al., 2015). This is consistent
with the findings from our study samples. Further work is needed to
understand the complex relationship between glycocholic acid and
BF which may be mediated by age-related factors, estrogen, and
hormone level.

The negative associations for N-Phenylacetyl-L-Glutamine and
thiamine were validated in the men’s and women’s replication
samples, respectively. A recent study reported that there are no
sex differences in excretion of the amino acid N-Phenylacetyl-L-
Glutamine (Zheng et al., 2014). The abnormal activity of
N-Phenylacetyl-L-Glutamine could be attributed to the difference
in phenylalanine metabolism and further reflect the development of
obesity (Bogl et al., 2016). However, some studies also observed that
the concentration was lower in obese men compared with normal-
weight men (Yu et al., 2018). The mechanism through which
N-Phenylacetyl-L-Glutamine may influence BF requires further
investigation. Moreover, many studies support thiamine as an
essential micronutrient in glucose metabolism that is negatively
associated with obesity (Maguire et al., 2018). To the best of our
knowledge, our study provided the first evidence of the relationship
between thiamine and BF.

The arginine and proline metabolism pathway had a high
closeness and betweenness centralities, which implies that the
pathway has considerable influence on neighboring molecules/
pathways. The pathway is known to be associated with obesity
(Cirulli et al., 2019). Elevated arginine levels can reduce BF accretion
in humans and animals (Wu et al., 2009). Further investigation of
the identified biological components involved in the arginine and
proline metabolism may reveal an important influence on obesity.

The ATP-binding cassette (ABC) transporter pathway, a pivotal
connector pathway, regulates the import/export of membrane
proteins, such as thiamine, phthalate, L-glutamine, and glycine
via different enzymes or reactions for the overall BF-related
network (Rees et al., 2009). The pathway may delineate
associations between genes and physiologic changes before,
during, and after the onset of obesity in mice (Donepudi et al.,
2016) and beneficial influences on obese women (Teixeira et al.,
2020). However, we observed that phthalate in ABC transporters
was negatively associated with A/G, A/W, and W%, in accordance
with the findings from Hatch et al.’s study of BMI and waist
circumference (Hatch et al., 2008). Other studies found
contradictory results, demonstrating that phthalate was an
endocrine-disrupting chemical (Apau et al., 2020) and linked to
adverse health outcomes such as obesity and diabetes (Hatch et al.,
2008; Apau et al., 2020). The various characteristic of phthalates on
obesity may depend upon endogenous hormone levels and vary
across sex and age groups (Hatch et al., 2008). The influence on BF
and other pathways via the ABC transporter pathway may warrant
further investigation.

Additionally, our study suggested that impaired cholesterol
metabolism may cause adverse health outcomes. The cholesterol
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metabolism pathway was connected to pathways for aldosterone-
regulated sodium reabsorption and prostate cancer. Cortisone and
cortisol were closely connected to the disease pathway and may be
diagnostic biomarkers for obesity. The impaired conversion of
cortisone and cortisol has been reported as an important factor
for insulin sensitivity and central obesity (Weaver et al., 1998).

Harper et al. observed no statistical differences in body
weights and feed consumption between the acetylglycine
treatment groups and the control group (Harper et al., 2010).
Our animal model extended the prior research by exploring the
effect of acetylglycine on HFD-induced obese mice. For the first
time, we demonstrated a protective effect of mid and high doses
of acetylglycine on body weight and fat in mice. The evidence has
also been seen in a case of smoking-cessation-induced weight
gain mice study that showed acetylglycine ameliorated weight
gain rate compared with HFD control mice (Fluhr et al., 2021).
The single-cell transcriptomics analysis of epididymal-adipose
immune cells exemplified that acetylglycine is a potent signaling
molecule that modulates modulated multiple adipose-tissue gene
expressions in obesity-associated pathways such as immune
response, lysosome function, and tissue remodeling (Fluhr
et al., 2021).

Biochemical tests showed significant increases in the fasting
glucose, total cholesterol, HDL, and LDL of the HFD groups, and
unaltered triglycerides. This is consistent with what was reported
in a previous HFD-induced obesity study in mice (Eisinger et al.,
2014; Fluhr et al., 2021). The results of the FPG tests for the mid-
dose group provided evidence for a reduction in the glucose levels,
and the total and abdominal fat mass. Acetylglycine may
ameliorate fat mass accumulation and further improve glucose
metabolism since the decreased capacity for adipocyte
differentiation and angiogenesis is reported to alleviate
lipogenesis and lipolysis activities as well as insulin resistance
(Patel and Abate, 2013). Elevated acetylglycine levels have been
associated with decreased risk of impaired fasting glucose and
onset of diabetes (Menni et al., 2013) and improved glucose
tolerance (Fluhr et al., 2021). However, this evidence may not
be applicable to all situations, such as high variations in glucose
reduction in our high-dose group. Further investigations are
needed to estimate the dose-response effects of acetylglycine on
glucose.

Our study has several strengths. We had precise measures of BF
mass from DXA scans to distinguish the association of metabolites
with obesity. Our study systematically examined the BF-metabolites
associations and partially validated them in two independent
samples with different sex and ethnicities. We confirmed our
novel finding with in vivo experiments showing that acetylglycine
can significantly affect adiposity. One inherent limitation is the
difficulty harmonizing metabolites from different metabolomics
platforms. Although we partially replicated our findings in other
sex and ethnicity groups, more research on obesity is still needed
since metabolic responses affect or are affected by diverse lifestyles
and diets. Second, we cannot draw causality in our findings due to
the cross-sectional design. However, our validations from the
independent replication cohort and in vivo mice studies may
support the robustness of our findings to some extent.

Our investigation of adiposity phenotypes systematically
identified BF metabolomic signatures and several relevant

pathways. Our study provides evidence that acetylglycine,
creatinine, and cortisone may have a protective role against body
fat accumulation. External validation replicated six metabolites
associated with BF in either Caucasian women or African
American and Caucasian men. The protective effects of
acetylglycine were consistent across different samples and were
further validated in vivo in mice. The findings open new
possibilities for utilizing acetylglycine as a potential diagnostic
biomarker and therapeutic target of obesity or obesity-related
diseases.
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Pharmacological effects and
mechanisms of YiYiFuZi powder in
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Introduction: YiYiFuZi powder (YYFZ) is a classical formula in Chinese medicine,
which is commonly used clinically for the treatment of Chronic Heart Disease
(CHD), but it’s pharmacological effects and mechanism of action are currently
unclear.

Methods: An adriamycin-induced CHD model rat was established to evaluate the
pharmacological effects of YYFZ on CHD by the results of inflammatory factor
level, histopathology and echocardiography. Metabolomic studies were
performed on rat plasma using UPLC-Q-TOF/MS to screen biomarkers and
enrich metabolic pathways; network pharmacology analysis was also
performed to obtain the potential targets and pathways of YYFZ for the
treatment of CHD.

Results: The results showed that YYFZ significantly reduced the levels of TNF-α
and BNP in the serum of rats, alleviated the disorder of cardiomyocyte
arrangement and inflammatory cell infiltration, and improved the cardiac
function of rats with CHD. The metabolomic analysis identified a total of 19
metabolites, related to amino acid metabolism, fatty acid metabolism, and other
metabolic pathways. Network pharmacology showed that YYFZ acts through
PI3K/Akt signaling pathway, MAPK signaling pathway and Ras signaling pathway.

Discussion: YYFZ treatment of CHD modulates blood metabolic pattern and
several protein phosphorylation cascades but importance specific changes for
therapeutic effect require further studies.

KEYWORDS

metabolomics, biomarker, chronic heart disease, YiYiFuZi powder, pathways

1 Introduction

Chronic heart disease (CHD) is a complex clinical syndrome in which structural or
functional abnormalities of the heart cause a range of symptoms of diastolic and systolic
dysfunction, such as dyspnea, ankle swelling, and fatigue. CHD is the end-stage of heart
disease and a major cause of death from cardiovascular disease (Tsutsui, 2022). The
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main drugs used to treat heart failure are diuretics, angiotensin-
converting enzyme (ACE) inhibitors, angiotensin receptor
blockers (ARBs), β-blockers, and salt corticosteroid receptor
antagonists (MRAs), but the morbidity and mortality rates of the
disease remain high (Roger, 2021). Traditional Chinese
medicine (TCM) has been used for thousands of years for the
treatment of CHD with good results and multi-target
advantages, and many studies are showing the use of TCM
for the improvement of CHD, which makes the clinical
application of TCM in the treatment of CHD possible (Du
et al., 2021; Leung et al., 2021; Meng et al., 2021; Liao et al.,
2022; Liu et al., 2022).

In Chinese medicine, CHD belongs to the category of “heart
paralysis” and “chest paralysis,” and the main pathogenesis of
CHD is a deficiency of positive energy and paralysis by cold and
dampness. This formula is from the book “Jin Gui Yao Lve.” Coix
seed has multiple pharmacological effects such as anti-tumor,
improving body immunity, hypoglycemia, anti-inflammatory
and analgesic, and regulating lipid metabolism, and its
important pharmacological activities in the treatment of
cervical cancer, lung cancer, and gastrointestinal tract tumors
have been confirmed in clinical practice (Ni et al., 2021; Zhou
et al., 2021; Sui and Xu, 2022; Yang et al., 2022). In a related
experimental study, Coix seed was found to improve Th1/
Th2 cytokines in mice to restore immune homeostasis after
administration (Wang H. et al., 2022). Fuzi is commonly used
in clinical practice for the treatment of heart diseases such as
heart failure, and its main chemical constituents are alkaloids
with cardiac analgesic, anti-myocardial ischemic, anti-
arrhythmic, and improving the energy metabolism of
cardiomyocytes (Zhang et al., 2017; Yan et al., 2020; Chen
et al., 2022; Tai et al., 2022).

Metabolomics and network pharmacology are effective tools
to elucidate the potential mechanisms of TCM compounding. In
recent years, metabolomics has been widely used in biomedical
research, and its target is endogenous metabolites with small
molecular weight in the organism, and by detecting the changes
of endogenous metabolites after the disturbance of the organism,
the differential metabolites associated with the disturbance can
be identified, and the metabolic pathways can be elucidated in
combination with bioinformatics analysis, and then the
biological metabolic mechanism can be analyzed (Li et al.,
2020; Cui et al., 2021; Nicholson, 2021; Sun C. et al., 2021;
Buergel et al., 2022; Santos-Gallego et al., 2022). Network
pharmacology is a joint application of bioinformatics, systems
biology and multidirectional pharmacology to study drugs. The
“multi-target” and “synergistic mechanism” emphasized by
cyber pharmacology are in line with the “holistic concept”
and “diagnosis and treatment” emphasized by TCM theory.
“Through the analysis of genes, proteins, diseases, drugs and
other real data obtained from databases and experiments, the
intrinsic relationship between multi-component and multi-
target effects of TCM on the body can be explored from a
systematic and holistic perspective, which is important for
explaining the potential mechanisms of TCM treatment (Li
et al., 2019; Yao et al., 2020; Li et al., 2021; Shi et al., 2022;
Zhou et al., 2022). The combination of network pharmacology
and metabolomics can complement each other to reveal the

biological significance and mechanism of drug action more
comprehensively.

In this study, we first established a rat model of CHD suitable
for testing of pharmacological effects and metabolomic analysis
on plasma samples to reveal potential biomarkers and metabolic
pathways; secondly, we performed network pharmacological
analysis on the in vivo components of YYFZ to predict the
targets and pathways of action as well as allowing the in-
depth study of the material basis and mechanism of action of
YYFZ in the treatment of CHD.

2 Materials and methods

2.1 Instruments and reagents

Adriamycin hydrochloride was purchased from Solarbio
(China). Purified water was purchased from Watson’s (China).
Isoflurane was purchased from Rwd Life Science Co., Ltd.
(China). Saline for injection was purchased from SSY Group
Limited. Captopril was purchased from Shanghai Xudong Haipu
Pharmaceutical Co., Ltd. (China). Coix Seed was purchased from
Hunan Yaoshengtang Traditional Chinese Medicine Technology
Co., Ltd. (China). Fuzi was purchased from Hebei Meiwei
Pharmaceutical Co., Ltd. (China).

Vevo small animal ultrasound imager was purchased from
Visualsonics Co., Ltd. (United States). ALLLEGRATM-64R high-
speed frozen centrifuge was purchased from Beckman Co., Ltd.
(United States). TecanInfiniteF50 enzyme labeler was purchased
from Tecan, Co., Ltd. (Switzerland). UPLC/Q-TOF/MS was
purchased from Waters Corporation Co., Ltd. (United States).
The rat TNF-α kit and rat BNP kit were purchased from Nanjing
Jiancheng Biotechnology Co., Ltd. (China). The pathological
sections of heart tissue were processed by Hunan Fenghui
Biotechnology Co., Ltd. (China).

2.2 Preparation of YYFZ decoction

Weighed coix seeds and Fuzi, mixed in the ratio of 5:3, placed in
a round bottom flask, added 10 times the amount of water and soak
for 45 min. The extract was then extracted by reflux extraction
method for 1 h. The extract was filtered through 3 layers of gauze.
The remaining drug residue was added with 8 times the amount of
water and extracted for 45 min. The two filtrates were combined and
concentrated to a viscous infusion (concentration of 1 g/mL in terms
of raw drug). The samples were stored in a refrigerator at 4°C and set
aside.

2.3 Animals

Sixty SPF-grade male Wistar rats (190–220 g, purchased from
Beijing Spelford Biotechnology Co., Ltd., license number: SCXK
(Beijing) 2019–0010) were selected, and the rats were
acclimatized and fed at a temperature of 20°C–26°C, relative
humidity of 40%–70%, ventilation of 10–15 times/h, and light
of 12 h light/dark for 7 days, and all animals The feeding process
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was carried out by the operating procedures for clean grade
laboratory animals. The study was approved by the Animal
Ethics Committee of Tianjin University of Traditional Chinese
Medicine (TCM-LAEC2021241), and ethical norms were
followed in handling animals during the experiment to
minimize animal numbers and suffering.

2.4 Establishment of CHD rat models and
grouping

After 1 week of acclimatization feeding, 10 rats were randomly
selected as the NS group (control group), and the remaining rats
were injected intraperitoneally with 1.25 mg/mL aqueous solution of
adriamycin hydrochloride at a dose of 1.25 mg/kg twice a week for
8 weeks, with a cumulative dose of 18 mg/kg; the NS group was
injected with the same dose of saline. After the end of modeling, the
rats were randomly divided into 5 groups: Model group, Captopril
group, YYFZ-H group, YYFZ-M group, YYFZ-L group, 10 rats in
each group and treated according to the dosing. YYFZ-H, YYFZ-M,
and YYFZ-L groups were treated with 5.25 g/kg, 2.63 g/kg and
1.31 g/kg by gavage. The Captopril group was given 6.75 mg/kg
by gavage. The NS andModel groups were given the same volume of
pure water as a control and administered once a day for a treatment
period of 30 days.

2.5 Observation and detection of indicators

2.5.1 General morphological observation
From the beginning of the modeling, the experimental animals

were closely observed and recorded for weight, coat condition,
mental status, respiratory system condition and survival.

2.5.2 Evaluation of rat CHD model
At the end of the modeling, all rats fasted for 12 h. Ten rats were

randomly selected from the NS group and the model group,
anesthetized with isoflurane. Cardiac function was measured
using a vevo small animal ultrasound imager, with cardiac
ejection fraction (EF) less than 55% as the modeling criterion. At
the same time, blood was taken from the inner canthus of the rat’s
eye, placed at room temperature for 30 min, and then centrifuged for
10 min at 4°C and 3,500 rpm/min in a freezing centrifuge for the
detection of BNP and TNF-α.

2.5.3 Detection of cardiac function indexes
The rats were anesthetized with a VMR small animal respiratory

anesthesia machine, skin was prepared on the chest using hair
removal cream, coupling agent was applied, and an ultrasound
probe was used to perform ultrasound examination of the rat’s
heart from the long axis of the parasternal bone. In M ultrasound
mode, and the rat’s EF, fractional shortening (FS), left ventricular
posterior wall end-systolic thickness (LVPW; s), left ventricular
posterior wall end-diastolic thickness (LVPW; d), left ventricular
end-systolic internal diameter (LVID; s), left ventricular internal
diameter end-diastolic internal diameter (LVID; d), left ventricular

end-systolic septal thickness (IVS; s), Left ventricular end-diastolic
septal thickness (IVS; d), and the average of 3 cardiac cycles were
taken for each sample.

2.6 Observation and detection of indicators

At the end of day 30 dosing, all rats fasted without water for 12 h.
After anesthetizing the rats, the cardiac function indexes were first
tested using VMR, and then subsequent operations were performed
under anesthesia.

2.6.1 Collection of blood samples
Blood was collected from rats through the abdominal aorta to

the maximum extent possible, and half of the whole blood samples
were placed in heparin anticoagulation tubes and the other half in
EP tubes, which were left for 30 min and then pretreated. The
plasma samples in the anticoagulation tubes were centrifuged at 4°C,
3,500 rpm for 10 min, and the supernatant was frozen in a −80°C
refrigerator for subsequent metabolomic analysis; the blood samples
in the EP tubes were centrifuged at 4°C, 3,500 rpm for 10 min, and
the supernatant was frozen in a −80°C refrigerator for subsequent
serum biochemical analysis.

2.6.2 Heart index
The hearts of rats were removed and weighed after blood

sampling from the abdominal aorta, and the organ index was
calculated: organ index = organ (g)/body weight (kg).

2.6.3 Detection of serum biochemical indexes
The levels of BNP and TNF-α in rat serum were measured by

ELISA kits.

2.6.4 Cardiac histopathology
The rat heart was taken and placed in a 4% tissue fixating

solution for 24 h, then dehydrated, paraffin-embedded wax blocks
were made, which were successively sliced, dissected, baked, and
stained by HE. Morphological changes in rat cardiomyocytes were
observed under a light microscope.

2.7 Metabolomics analysis

2.7.1 Sample preparation
Frozen rat plasma samples were removed from the −80°C

refrigerator and thawed first in a 4°C refrigerator. 100 μL of
plasma was pipetted from the samples, 300 μL of
chromatographically pure acetonitrile was added at a volume
ratio of 1:3, vortexed and mixed for 5 min, then centrifuged in a
refrigerated centrifuge at 13,000 rpm/min for 15 min, and the
supernatant was aspirated for UPLC-Q-TOF/MS analysis.

2.7.2 Preparation of QC sample
10 μL of each plasma sample was taken in an EP tube, vortexed

for 1 min, and then centrifuged at 4°C at 13,200*g for 15 min, and
the supernatant was aspirated for methodological investigation.
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2.7.3 Instrument conditions
In this experiment, UPLC-Q-TOF/MS was used to characterize

metabolites. UPLC separation was performed on an ACQUITY UPLC
BEH C18 column (2.1 mm × 100mm, 1.7 μm, Waters Co.,
United States) at 45°C. The mobile phase consists of water (A) and
acetonitrile (B) (both containing 0.1% formic acid). The gradient elution
procedure is as follows: 0–0.5 min, 1%B; 0.5–2 min, 1%-50%B; 2–9min,
50%-99%B; 9–10 min, 99%B; 10–10.5 min, 99%-1%B; 10.5–12min, 1%
B, the flow rate was 0.3 mL/min. The injection volume was 5 μL.

After separation, mass spectra were detected and analyzed using
an electrospray ion source (ESI) in positive and negative ionization
modes. Ion source parameters are set as follows: The capillary
voltage is 3.0 kV, the drying gas temperature is 325°C, the
atomized gas pressure is 310 kPa, the drying gas flow is 0.26 mL/
min, the desorption gas flow is 600 L/h, the source temperature is
120°C, the desorption temperature is 350°C, and the cone gas flow is
50 L/h.

2.7.4 Data processing
Raw data were exported by Masslynx4.1 (Waters, United States)

software, after which the data were imported into SIMCA
14.1 statistical software (Umetrics Corporation, Sweden) for
multivariate statistical analysis. Subsequently, SPSS 26.0 was
applied for statistical tests and the appropriate test was selected
to determine whether metabolites changed significantly (p < 0.05) in
the statistical analysis. The metabolites screened by the above
analysis are input into the MetaboAnalyst platform(https://www.
metaboanalyst.ca/) for cluster analysis and Mate-Pa analysis.

2.8 Network pharmacology

2.8.1 Blood-inlet-components in YYFZ
Based on the incoming components of YYFZ identified in our

previous study (Supplementary Material), the information on these
components was retrieved in TCMSP (http://lsp.nwsuaf.edu.cn/
tcmsp.php) for relevant target information. On the other hand,
the molecular structure formula was drawn in Chemdraw, saved in.
sdf format and uploaded to PharmaMapper (http://lilab-ecust.cn/
pharmmapper/index.html) for predicting potential targets, and
SwissTargetPrediction (http://www.swisstargetprediction.ch/) for
predicting the results. As a supplement, the targets of all
components were combined and de-weighted after conversion to
Genename by UniProt (https://www.UniProt.org/) (UniProt
Consortium, 2013).

2.8.2 Establishment of CHD disease target library
Search by Genecards (https://www.genecards.org/), TTD data

(http://bidd.nus.edu.sg/group/cjttd/) (Wang et al., 2020), OMIM
(https://omim.org/) (Amberger and Hamosh, 2017) databases
The targets related to the pathogenesis of “chronic heart disease”
were combined by removing duplicate targets from several
databases.

2.8.3 Visualization and analysis of active
ingredient-target-disease network

PPI (protein-protein interaction) maps were created through
protein interaction analysis via STRING database and imported into

Cytoscape 3.8.2 for intra-network visualization of PPI data between
potential therapeutic targets of diseases and mapping of active
ingredient-target-disease networks.

KEGG pathway enrichment analysis was performed on the
network nodes using DAVID database to obtain the functional
pathways involved in disease modulation by each component-
acting target of YYFZ bulk, and the enriched pathways were
visualized using the advanced bubble map function of the
Omicshare platform.

3 Results

3.1 Pharmacodynamic study of YYFZ onCHD
rat model

3.1.1 General conditions of rats
During the modeling of CHD rats, the rats in the NS group grew

naturally, fed and drank normally, and were in good condition, and
there was no death. During the modeling process, the rats’ body
weight growth slowed down significantly, and they lost their body
weight and hair. After the fourth week, the rats gradually appeared
ascites, abdominal distension, panting and shortness of breath, and
individual rats lost their hair in flakes; until the seventh week, the
rats had obvious abdominal distension, diarrhea, watery stool, filthy
perianal area, shortness of breath, vertical hair, loose fur, lack of
blood in the feet and paws and ears, mental inactivity, and increased
secretion around the eyes and nose. After the start of administration,
the condition of the rats in the Captopril group, YYFZ-H, YYFZ-M,
and YYFZ-L improved, while no improvement was observed in the
Model group. In addition, hepatomegaly was seen in the Model
group at autopsy, and some of them had renal edema with
mesenteric adhesions.

3.1.2 Weight gain of rats
After the beginning of modeling, it can be seen from

(Figure 1A) that the weight gain of rats in the model group
slowed down significantly, and there was a significant difference
in body weight after the second injection (p < 0.01) until the end
of the experiment. During the modeling period, the body weight
of the NS group was stable, while that of the model group was
slow, and occasionally fluctuated in the later period, but there was
almost no obvious increase. The rats in the administration group
showed no significant difference in body weight during the
modeling period compared to NS (p < 0.05) and showed a
significant increase after administration (p < 0.05). At the late
stage of the experiment, the weight changes of rats were difficult
to directly reflect the drug effect because of the severe abdominal
ascites of some rats. Therefore, in this study, the therapeutic
effect of the drug was reflected by calculating the body weight
growth rate of rats, and the body weight growth rate % = (body
weight without ascites—body weight before modeling)/body
weight before modeling * 100%. It can be seen from Figure 1C
that the body weight growth rate of the Model group and drug
administration group was significantly different from that of the
NS group (p < 0.05), while compared with the Model group, the
body weight of Captopril group, YYFZ-H group and YYFZ-M
group was significantly increased (p < 0.05).
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(Compared with NS group, n = 10, ‾x ± SD *: p<0.05, **: p < 0.01;
compared with Model group, +: p < 0.05, ++: p < 0.01)

3.1.3 Ascites in rats
At the late stage of modeling, some rats showed significant signs of

ascites; the ascites condition of the rats in the administered group did not
continue to worsen as the administration treatment began. As seen in
Figure 1B, the ascites of rats in Captopril, YYFZ-H and YYFZ-M groups
appeared significantly different from the Model group (p< 0.05), and
there was no significant difference in the low-dose group, suggesting that
Captopril and high and medium doses of YYFZ have better efficacy.

3.1.4 Rat heart function
At the end of modeling, to determine the success of the

model, we performed cardiac function tests on the rats. As
seen in Table 1, the EF and FS in the Model group were
significantly lower than those in the NS group (p < 0.05),
indicating the success of the model. The rats were grouped
after modeling, and cardiac function tests were performed
after grouping. As seen in Table 2, compared with the NS
group, LVPW; s and LVPW; d was significantly lower in the
Model and drug administration groups (p < 0.05), with LVPW; d
significantly higher in the Captopril group than in the Model
group (p < 0.05). IVSs and IVSd in the Model group and YYFZ-H,
YYFZ-M and YYFZ-L groups were significantly lower than those
in the NS group (p < 0.05), with significant differences between
IVSs in the YYFZ-H and YYFZ-M groups and the Model group
(p < 0.05). The IVSs and IVSd in the Captopril group were not
statistically different from those in the NS group and were
significantly higher than those in the Model group (p < 0.05).

Cardiac function tests were performed on the rats at the end of
the dosing. As shown in Table 3 and Figure 2. The EF and FS in the
Model group were significantly lower than those in the NS group
(p < 0.05), indicating that the systolic-diastolic function of the heart
was reduced in theModel group. The EF and FS in the Captopril and
YYFZ-H groups were significantly higher than those in the Model
group. Compared with the NS group, LVID;d was significantly lower
(p < 0.05) and LVID;s was significantly higher (p < 0.05) in the
Model group. LVID;d, LVID;s in the YYFZ-M and YYFZ-L groups
were significantly lower than those in the NS and Model groups (p <
0.05). LVID;d, LVID;s in the Captopril and YYFZ-H groups were

FIGURE 1
(A) Weight change trend of rats; (B) Ascites of rats in each group; (C) Weight growth of rats in each group; (D) Heart index of rats in each group.

TABLE 1 Comparison of cardiac structural and functional indices between
modeled rats and blank rats.

Indicators NS Model

EF(%) 67.12 ± 1.59 49.23 ± 1.54**

FS(%) 38.53 ± 1.24 25.79 ± 0.98**

LVPW; s (mm) 2.95 ± 0.14 2.45 ± 0.14*

LVPW; d (mm) 1.96 ± 0.11 2.19 ± 0.15

LVID; s (mm) 4.52 ± 0.18 5.38 ± 0.23*

LVID; d (mm) 7.36 ± 0.31 7.27 ± 0.33

IVS; s (mm) 2.93 ± 0.15 2.92 ± 0.19

IVS; d (mm) 1.99 ± 0.15 2.14 ± 0.15

*p < 0.05, **p <0.01.
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not significantly different from the NS group, but were significantly
different from the Model group (p < 0.05).

3.1.5 Rat cardiac index
After weighing and comparing, we found that there was no

significant difference in the heart weight of the rats in each group,
presumably related to the larger size of the rats in the NS
group. After conversion into the cardiac index, it can be seen
from Figure 1D that the cardiac index of the Model group and
each dosing group was significantly higher than that of the NS
group (p < 0.05), and the mean value of the cardiac index of each
dosing group was lower than that of Model group, but only
Captopril group and YYFZ-H group were significantly lower than
that of Model group (p < 0.05), and the difference between the
cardiac index of the remaining dosing groups and Model group
was not The difference between the cardiac index of the
remaining administration groups and the Model group was
not statistically significant.

3.1.6 Detection of serum BNP and TNF-α in rats
To assess the rat modeling situation, this study used Elisa kits

to detect BNP and TNF-α contents in rat serum, as shown in
Figure 3C, there was a significant increase in BNP content in the
serum of model rats about 2.16 times higher than that of NS
group, and the difference was statistically significant (p < 0.01);
TNF-α in model rats was about 1.6 times higher than that of NS
rats, and the difference was statistically significant (p< 0.01).

After the administration, the serum BNP and TNF-α levels in
each group are shown in Figures 3A, B. The serum BNP levels in

the Model, YYFZ-M and YYFZ-L groups were significantly
higher than those in the NS group (p < 0.05), with the serum
BNP in the YYFZ-M group being significantly lower than that in
the Model group (p < 0.05) and the YYFZ-L group not
significantly different from that in the Model group. The
differences between the Captopril and YYFZ-H groups were
statistically significantly lower than those in the Model group
(p < 0.05) and the NS group (p < 0.05). The TNF-α levels in the
Captopril, YYFZ-H and YYFZ-M groups were significantly lower
than those in the Model group (p < 0.05), and there was no
significant difference with the NS group. (Compared with the NS
group, n = 10, ‾x ± SD *: p <0.05, **: p<0.01; compared with the
Model group, +: p<0.05, ++: p<0.01).

3.1.7 Pathological results of myocardial tissue in
rats

The results of histopathological HE (hematoxylin-eosin) staining of
rat myocardium are shown in Figure 4: In the NS group, myocardial
cells were clearly arranged and tightly packed, with a few myocardial
transverse breaks, and vascular proliferation and inflammatory cell
infiltration were not obvious. The myocardial cells in the Model group
were unevenly stained, with relatively blurred transverse lines, reduced
volume of some cells, and deepened staining of the envelope; the
myocardial interstitium was obviously edematous, with loosely
arranged cells and fat vacuoles within the cells (yellow arrows), an
increased number of small blood vessels between the myocardium (red
arrows), and a small number of lymphocytes between the myocardium.
Captopril group and YYFZ-H group: myocardial cell transverse lines
were clear, there was a small amount of edema in myocardial

TABLE 2 Cardiac indexes (LVPW;s, LVPW;d, IVSs, IVSd) of rats in each group before drug administration.

Group LVPW;s(mm) LVPW;d(mm) IVSs(mm) IVSd(mm)

NS 3.68 ± 0.17 2.46 ± 0.08 3.30 ± 0.10 2.31 ± 0.09

Model 2.28 ± 0.11** 1.73 ± 0.10** 2.48 ± 0.12** 1.84 ± 0.09**

Captoril 2.63 ± 0.08** 2.12 ± 0.09**+ 2.85 ± 0.19+ 2.19 ± 0.13+

YYFZ-H 2.60 ± 0.14** 2.04 ± 0.11** 2.81 ± 0.14*+ 2.04 ± 0.06*

YYFZ-M 2.44 ± 0.09** 1.98 ± 0.07** 2.68 ± 0.10**+ 1.94 ± 0.06**-

YYFZ-L 2.32 ± 0.13** 1.84 ± 0.06**- 2.58 ± 0.13** 1.88 ± 0.13**-

Compared to the NS group.*p < 0.05, ** p < 0.01; Compared with the Model group. +p<0.05, ++ p < 0.01; Compared with the Captoptil group, Compared with the Captoptil group, –p < 0.05, ––p

< 0.01.

TABLE 3 Comparison of cardiac function indices (FS, EF, LVID;s, LVID;d) in rats in each group after drug administration.

Group FS(%) EF(%) LVID;s(mm) LVID;d(mm)

NS 44.96 ± 2.08 72.61 ± 2.13 4.60 ± 0.14 8.45 ± 0.14

Model 26.64 ± 0.86** 48.51 ± 1.93** 5.58 ± 0.11** 6.89 ± 0.11**

Captopril 35.52 ± 1.59**++ 59.29 ± 2.61**++ 4.98 ± 0.18+ 7.8 ± 0.25++

YYFZ-H 33.11 ± 1.74**++ 56.42 ± 0.99**++ 5.01 ± 0.13++ 8.09 ± 0.16++

YYFZ-M 30.35 ± 1.73** 53.18 ± 2.16** 5.24 ± 0.15** 7.7 ± 0.19**++

YYFZ-L 28.95 ± 1.91** 51.96 ± 3.00** 5.42 ± 0.19** 7.48 ± 0.17**++

Compared to the NS group.*p < 0.05, **p < 0.01; Compared with the Model group. +p < 0.05 ,++ p < 0.01; Compared with the Captoptil group, –p < 0.05, ––p < 0.01.
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interstitium, and the area of lax cell arrangement was reduced compared
with the model group. YYFZ-M group and YYFZ-L group: myocardial
cell transverse lines were clear, the cell volume was reduced, the
arrangement was more laxer, there was edema in the cell
interstitium, and the number of blood vessels was increased.

3.2 Metabolomics analysis results

3.2.1 Methodological investigation
After collecting the data by UPLC-Q-TOF/MS analysis, we

randomly selected 20 peaks from the obtained QC sample
profiles (as shown in Figure 5A) and calculated the RSD values
of their peak areas and retention times. RSD<16.17%, retention time
RSD<0.92%; sample stability study in the sample at 0 h, 6 h, 12 h,
18 h, 24 h time points in the peak area RSD<12.45%, retention time
RSD<0.59%. The above indicates that the instrument precision,
method precision and sample stability are good, indicating that the
method is reliable and can be followed up.

3.2.2 Metabolomics data pre-processing and
multivariate statistical analysis

The raw data were exported from Masslynx4.1 software, and
the data were subjected to a normality test and chi-square test
after 80% modification, and suitable methods were selected to
compare the NS and Model groups between groups, and p-values

and fold change (FC) were calculated, and the substances and
p-values and log2 (FC) values were entered into the Wukong data
analysis cloud platform for volcano plot analysis to visually
display the NS and Model groups group in the different
substances. As shown in Figure 5C, the horizontal coordinate
is log2 (FC), the greater the difference the more distant the
metabolite is distributed, and the vertical coordinate is the
p-value, the greater the difference the more distant the
substance is from the horizontal axis, so the substance
distributed in the upper left right corner is usually considered
as a potential difference marker. Each of these points represents
data, and the gray color is for substances with no significant
changes, while the red and blue colors are for substances with
significant elevated changes, which are potential differential
substances that we need to pay attention to in the subsequent
processing.

Multivariate statistical analysis was used to discriminate the
changes of metabolites within the plasma of healthy and model rats.
For this, we first set up an unsupervised PCA model as shown in
Figure 6C. Each point in the figure represents a sample, respectively,
and the color is used to distinguish the rat groups, and the farther the
distance between the points of different groups indicates the greater
difference. We can see that there is a certain convergence in the
distribution of NS and Model groups, and Model and drug
administration groups in the PCA model. Therefore, to further
differentiate, we further established a supervised OPLS-DA model

FIGURE 2
Echocardiography of rats after treatment ((A): NS group; (B) Model group; (C) Captopril group; (D)YYFZ-H group; (E) YYFZ-M group; (F) YYFZ-L
group).
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(Figure 6A), and we can see that the NS group and Model group are
distributed on both sides in the OPLS-DA model, with obvious
distinction.

3.2.3 Identification of CHD biomarkers
The SPSS26.0 software was used to test for normality and the

chi-square test for the differential substances. t-test and Mann-
Whitney u-test were selected to test for significance according to
whether the data distribution was normal and chi-square, and
the differential substances with significant changes (p < 0.05)
were considered as differential markers of heterogeneous
disease and treatment. Finally, we obtained 732 NS-CHD
differential substances, respectively. We entered m/z values
in the HMDB database to search, selected [M + H]+, [M +
K]+, [M + Na]+ in ion addition mode, and identified metabolites
by MS/MS analysis, metabolite database information, and
literature information. We finally identified 19 markers,
which were leukotriene F4, arachidonic acid, lysoSM(d18:0),
tryptophan, phenylpyruvic acid, S-lactoylglutathione,
phenylalanine, ornithine, nicotinamide-N-oxide, fumaric
acid, adipic acid, D-pantothenic acid, PC(14:1/18:4),
tetradecanedioic acid, 3-deoxy glucosone, α-linolenic acid,
L-octanoylcarnitine, lysoPE (20:1(11Z)/0:0), lysoPC (17:0/0:
0), see Table 4 for specific information. 16 markers were
upregulated and 3 markers were downregulated in the Model
group.

3.2.4 Hierarchical clustering analysis of CHD
biomarkers

To observe the changes of markers in each group more intuitively,
this study used hierarchical clustering analysis as shown in Figure 7,
which can see the distribution of biomarkers in each group. The shades
of color in the figure respond to the magnitude of the values, each row
represents a metabolite, and each column represents the content of the
whole group of samples; the left bifurcation is the cluster analysis of the
substances, where the more clustering levels of the substances indicate
the higher similarity of the substances, and there may be similar
variations in the source and metabolic pathways. We can observe a
significant change in plasma marker content in the Model group
compared to the NS group, suggesting that the markers have some
discriminatory ability. Metabolite levels in the captopril and YYFZ-H
groups were closer to those in the NS group, andmetabolite trends were
more consistent, suggesting that high-dose YYFZ significantly
modulates CHD disease-related markers.

3.2.5 CHD biomarker ROC analysis
ROC curves are widely used for the evaluation of the sensitivity and

specificity of markers and can screen for more diagnostic biomarkers.
After the above study, we identified markers with diagnostic potential
by ROC analysis of the above 19 biomarkers by SPSS 26.0, and the area
under the curve was used to evaluate the diagnostic ability of the
markers. Usually, an area under the curve>0.5 indicates good
discriminatory ability. As shown in Figure 6B, we can see that each

FIGURE 3
(A) Reduction of BNP after treatment; (B) Reduction of TNF after treatment; (C) BNP and TNF-α before treament.
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curve represents a substance and the area under the curve is distributed
between 1 and 0.87 (95% confidence interval), indicating that the
19 markers have the diagnostic ability.

3.2.6 CHD biomarker pathway analysis
To further speculate on the mechanism of CHD metabolic

disorders, this study performed metabolic pathway analysis (MetPA)
on 19 markers. The MetPA database is a visual metabolic pathway
analysis database (www.metaboanalyst.ca), which combines pathway
enrichment analysis and topological analysis to assist in screening
relevant metabolic pathways. We obtained 16 metabolic pathways
(Figure 5B), including phenylalanine, tyrosine and tryptophan
biosynthesis, alpha-linolenic acid metabolism, phenylalanine
metabolism, and arachidonic acid metabolism are the main
metabolic pathways involved, suggesting that lipid metabolism and
amino acid metabolism are the pathways to focus on in CHD.

3.3 Network pharmacology

3.3.1 YYFZ blood entry components and CHD
targets

The database was used to predict the YYFZ inlet component
targets, and finally, 228 YYFZ component targets were obtained.

1488 CHD disease targets were obtained. Venny enrichment
analysis was performed between CHD inlet component targets
and disease targets, as shown in Figure 8A, and 44 YYFZ targets
for CHD was obtained.

3.3.2 Visualization and analysis of active
ingredient-target-disease network

The potential targets of CHD and YYFZ were imported into the
String database for protein interaction analysis and the PPI network
was constructed, and the results showed 42 nodes with 176 edges
(Figure 8B). The results in.tsv format were imported into Cytoscape
3.8.2 software for network analysis, MAPK14, EGFR, HSP90AA1,
MTOR, ESR1, and IGF1 had high Dgree values, which might be the
key targets of YYFZ for CHD treatment.

The Cytoscape software was used to construct the drug-active-
ingredient-target network (Figure 8C). The network contains
70 nodes and 90 edges, and the larger the node degree value, the
more important it is in the network. The core nodes were selected
based on the network topological features such as node degree
values. Among them, senbusine B, sitosterol, hypaconitine,
phenylalanine, and deoxyaconitine may be the pharmacodynamic
components of YYFZ for CHD.

To further discover the mechanism of action of YYFZ in the
treatment of CHD, GO enrichment analysis was performed using

FIGURE 4
Pathological sections of myocardial tissue of rats in each group ((A): NS group; (B)Model group; (C) Captopril group; (D) YYFZ-H group; (E) YYFZ-M
group; (F) YYFZ-L group).
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the DAVID database for the common targets obtained above
(Figure 9), and a total of 162 enrichment results were obtained for
biological process (BP) screening at p < 0.05, mainly involving
positive regulation of protein kinase B signaling, positive
regulation of smooth muscle cell proliferation,
phosphatidylinositol 3-kinase signaling. Cellular component
(CC) obtained 36 enrichment results, mainly involving the
extracellular region, lysosomal lumen, perinuclear region of
cytoplasm, etc.; molecular function (MF) obtained
37 enrichment results, mainly involving identical protein
binding, Enzyme binding, Protein homodimerization activity,
etc. The KEGG pathway analysis is shown in Figure 10, excluding
the pathways unrelated to CHD. signaling pathway, PI3K-Akt
signaling pathway, MAPK signaling pathway, etc.

4 Discussion

In this experiment, the CHD model of rats was established by
intraperitoneal injection of adriamycin, and the rats were treated
with captopril and different doses of YYFZ, and the efficacy of YYFZ
was comprehensively evaluated by observing the biochemical
indexes and cardiac function indexes of rats and myocardial
histopathological sections. Adriamycin belongs to anthracycline
antibiotics, which are widely used in clinical practice for the

treatment of various malignant tumors (Sabatino et al., 2020;
Younis et al., 2021; Xu et al., 2022). Cardiotoxicity is one of its
main side effects, which can be manifested as irreversible dose-
dependent cardiomyopathy and CHD, so a heart failure model was
prepared using this side effect. TNF-α is an inflammatory factor that
plays an important role in promoting myocardial remodeling and
inhibiting myocardial contraction, as well as in increasing
endothelial and myocardial apoptosis, and there is abundant
evidence that inhibition or reduction has a protective effect in
heart failure models (Lee et al., 2019; Reina-Couto et al., 2021;
Szabo et al., 2021; Zhong et al., 2022). BNP is a marker of cardiac
insufficiency, and many studies have shown that plasma BNP levels
are significantly elevated in heart failure patients, which can be used
for the diagnosis of heart failure (Ichiki et al., 2013; McDonald et al.,
2018; Rørth et al., 2020). We found that the YYFZ-H group had a
better therapeutic effect from the perspective of biochemical indexes,
significantly regulating serum BNP and TNF-α and improving
cardiac function (p < 0.05). The pathological results showed that
the YYFZ dose groups could improve myocardial cell disorder and
reduce inflammatory cell infiltration. Echocardiographic
determination of cardiac function in rats has been widely
accepted because it provides a convenient, reliable, and non-
invasive method (Zeng et al., 2019; Quagliariello et al., 2021;
Wang X. et al., 2022). Generally, EF is measured as an indicator
of cardiac function, FS is also one of the commonly used indicators,

FIGURE 5
(A) BPI plots of QC samples; (B) Marker metabolic pathway analysis (A: phenylalanine, tyrosine and tryptophan biosynthesis; B: linolenic acid
metabolism; C: phenylalanine metabolism; D: arachidonic acid metabolism); (C) intergroup volcano plot analysis between NS and Model groups.
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FIGURE 6
(A) OPLS-DA; (B) CHD marker ROC analysis (C) PCA.

FIGURE 7
Heat map of serum metabolite changes from minimum (dark blue) to maximum (dark red) in NS, Model, YYFZ-H, YYFZ-M, YYFZ-L and Captopril
groups.
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TABLE 4 Differential metabolite information.

No. tR/
min

Metabolite Formula Parent
ion

Theoretical
value

Measured
value

ppm Model/
NS

Captopril/
Model

YYFZ-H/
Model

YYFZ-M/
Model

YYFZ-L/
Model

1 5.47 Leukoteiene F4 C28H44N2O8S M + K 607.2416 607.2443 4.45 ↓** ↑* ↑* ↑* ↑

2 6.6 Arachidonic acid C20H32O2 M + K 343.2006 343.2029 6.70 ↑** ↓** ↓* ↓* ↓

3 4.59 LysoSM(d18:0) C23H51N2O5P M + K 505.3174 505.3201 5.34 ↑** ↓* ↓** ↓* ↓*

4 0.91 Tryptophan C11H12N2O2 M + Na 227.0796 227.0784 −5.28 ↑** ↓* ↓* ↓* ↓

5 0.89 Phenylpyruvic acid C9H8O3 M + H 165.0552 165.0547 −3.02 ↓** ↑** ↑* ↑ ↑

6 8.09 S-Lactoylglutathione C13H21N3O8S M + H 379.1049 379.1054 1.32 ↑** ↓** ↓** ↓* ↓*

7 1.72 Phenylalanine C9H11NO2 M + H 166.0827 166.0831 2.41 ↑** ↓* ↓** ↓* ↓*

8 3.09 Ornithine C5H12N2O2 M + H 133.0991 133.0968 −17.28 ↑** ↓* ↓* ↓* ↓

9 0.84 Nicotinamide-N-
oxide

C6H6N2O2 M + Na 161.0359 161.0376 10.56 ↑** ↓** ↓** ↓* ↓

10 6.79 Fumaric acid C4H4O4 M + Na 139.0007 139.0029 15.83 ↑** ↓** ↓* ↓* ↓*

11 2.23 Adipic acid C6H10O4 M + H 147.0657 147.0636 −14.28 ↑** ↓* ↓** ↓* ↓*

12 1.71 D-Pantothenic acid C9H17NO5 M + H 220.1144 220.1153 4.09 ↑** ↓* ↓* ↓ ↓

13 5.48 PC(14:1/18:4) C40H70NO8P M + K 762.4469 762.4483 1.84 ↑** ↓** ↓** ↓* ↓

14 6.06 Tetradecanedioic acid C14H26O4 M + K 297.1468 297.1501 11.11 ↓** ↑* ↑** ↑* ↑*

15 5.89 3-deoxy Glucosone C27H42O11 M + Na 565.2661 565.2638 −4.69 ↑** ↓* ↓* ↓* ↓

16 5.66 α-Linolenic acid C18H30O2 M + H 279.2324 279.2361 13.25 ↑** ↓** ↓** ↓* ↓*

17 2.82 L-Octanoylcarnitine C15H29NO4 M + H 288.2169 288.2142 −9.37 ↑** ↓* ↓* ↓* ↓

18 5.09 LysoPE(20:1(11Z)/0:0) C25H50NO7P M + Na 530.3216 530.3247 5.84 ↑** ↓* ↓* ↓* ↓*

19 6.11 LysoPC(17:0/0:0) C25H52NO7P M + H 510.3641 510.3567 −14.5 ↑** ↓* ↓** ↓* ↓

*p<0.05. **p<0.01.
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and the magnitude of the two values shows a correlation. In the
present study, we observed the long axis of the sternum in rats and
used EF as an indicator to determine the modeling status of rats and
the effect of YYFZ treatment. We found that EF and FS were
significantly retraced in the administered group, and there were
some differences in the mean values of other functional indicators
LVPW;s, LVPW;d, LVID;s, LVID;d, IVS;s, IVS;d, etc. Moreover, the
cardiac index of rats in the YYFZ-H and YYFZ-M groups was lower
than that of the model group, and ascites were also significantly
reduced, suggesting that YYFZ could improve cardiac function and
alleviate the symptoms of CHD in rats with CHD.

In this study, we used non-targeted metabolomics techniques to
study serummetabolites in CHD rats and identified 19 CHD-related
metabolites, seven of which were regulated by YYFZ including
S-lactoylglutathione, phenylalanine, fumaric acid, adipic acid,
tetradecanedioic acid, α-linolenic acid, and lysoPE (20:1(11Z)/0:
0), and the metabolic pathways involved mainly include four
categories: amino acid metabolism (phenylalanine, tyrosine and
tryptophan biosynthesis; phenylalanine metabolism; arginine
biosynthesis; alanine, aspartate and glutamate metabolism;
arginine and proline metabolism; tryptophan metabolism;
tyrosine metabolism), lipid metabolism (α-linolenic acid
metabolism, arachidonic acid metabolism, biosynthesis of
unsaturated fatty acids, glycerophospholipid metabolism), energy

metabolism (pyruvate metabolism, pantothenate and CoA
biosynthesis, citrate cycle (TCA cycle)), glutathione metabolism.

It has been confirmed that myocardial infarction and heart
failure can lead to abnormalities in amino acid metabolism such
as branched-chain amino acids, taurine or glutamine, and
abnormalities in the metabolism of certain amino acids, such as
branched-chain amino acids, can activate the mTOR signaling
pathway, which accelerates myocardial remodeling and leads to
the development of heart failure after myocardial infarction. In
addition, elevated leucine levels may activate mTOR, and inhibition
of mTOR in a heart failure model improves cardiac function. When
mitochondrial dysfunction and phenylalanine are increased in the
heart failure state, tetrahydrobiopterin consumption is increased,
resulting in decreased nitric oxide production and causing heart
failure (Nishijima et al., 2011; Hong et al., 2019). Phenylalanine may
also be associated with increased aromatic amino acids, and
increased protein breakdown in muscle and impaired liver
function can cause accumulation of aromatic group amino acids.
Dysregulation of the hepatic urea cycle can lead to a further increase
in ornithine, a precursor to the formation of polyamines.
Polyamines are also involved in the development of cardiac
disease processes, and in models of myocardial hypertrophy
(Chen et al., 2019). This further reflects the regulatory role of
amino acid metabolism in heart failure, but the exact

FIGURE 8
(A) Venn diagram of YYFZ component and CHD target; (B) PPI diagram; (C) Drug-active component-target network expressing the interaction
between YYFZ inlet component, protein target and CHD pathway (red-inlet component, blue-target, yellow-pathway).
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mechanisms still need to be investigated in depth (Wang et al., 2016;
Dimou et al., 2022).

Disorders of lipid metabolism play an extremely important role
in the process of CHD. It has been shown that patients with CHD
often have abnormal lipid levels, and that disorders of lipid
metabolism further contribute to the development of CHD. In
this experiment, linoleic acid was significantly elevated in the
model group compared to the blank group, and the molecular
structure of linoleic acid contains double bonds that are
susceptible to oxidative stress, causing vasodilator dysfunction
and endothelial damage (Asselin et al., 2013; Djuricic and Calder,
2021). Phospholipids are the main constituent molecules of
biological membrane structure and assist in the function of the
organism at the cellular level. Arachidonic acid is a widely
distributed unsaturated fatty acid in living organisms, and in
pathological states, it is broken down into biologically active
derivatives that are involved in inflammatory responses,
apoptosis, and other biological processes (Sonnweber et al.,
2018). Prostaglandins (PGs) are produced by the metabolism of
arachidonic acid through the COX pathway and are further
metabolized to produce a variety of active substances that
regulate the process of vascular remodeling and generation and
can control vascular tone and influence the course of CHD (Mitchell
et al., 2021; Wan et al., 2021).

The heart is the organ of the body with the greatest energy
demand, and the diastolic and contractile movements of the heart
muscle depend on the energy produced by the cells. Under

normal conditions, 60%–80% of the heart’s energy is derived
from fatty acid oxidation and 10%–20% from glucose
metabolism. In contrast, when cardiac function is abnormal,
the metabolic substrate is changed from glucose to fatty acids,
resulting in increased levels of free fatty acids in serum and
myocardial tissue. It has been shown that lipid deposition is
observed in rat myocardium high in free fatty acids and that free
fatty acids may contribute to impaired cardiac function via PI3K-
Akt-GLUT4 and AMPK-eNOS pathways (Han et al., 2018).
Acylcarnitine is mainly found in muscle tissues such as
cardiac muscle and is involved in fatty acid metabolism and
amino acid metabolism. Short-chain acylcarnitines are associated
with branched-chain and aromatic amino acid metabolism, and
the buildup of long-chain acylcarnitines results from impaired
fatty acid oxidation (Roussel et al., 2015). One study found that
acylcarnitine decreased in a guinea pig model of compensatory
hypertrophy, while fatty acids gradually increased during the
process. Long-chain acyl CoA dehydrogenase knockout mice
were cardiac hypertrophy accompanied by elevated triglyceride
levels, and after carnitine administration, triglyceride levels
returned to normal in the myocardium of long-chain acyl
CoA dehydrogenase knockout mice (Foster et al., 2016). The
above suggests that amino acid metabolism, lipid metabolism and
energy metabolism are closely related to the pathogenesis of CHD
and that YYFZ acts to inhibit inflammation and reduce
intravascular lipid accumulation by regressing lipid and amino
acid metabolism.

FIGURE 9
GO function enrichment map.
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Hypaconitine, deoxyaconitine and senbusine B are all
diterpenoid diester alkaloids with analgesic, anti-inflammatory
and antipyretic effects (Zhang et al., 2022). YYFZ is composed
of aconitum and Coicis seed. Aconitoid alkaloids in aconitum
aconitine are the main active components of YYFZ, while aconitine
alkaloids can be hydrolyzed under heating conditions. It is
speculated that hypaconitine, deoxyaconitine and senbusine B
are the hydrolyzed alkaloids that play a role. Sitosterol is the
most abundant sterol in Coix seed, which can interfere with a
variety of cell signaling pathways, including cell cycle, cell
apoptosis, survival, invasion, proliferation, metastasis, anti-
inflammatory, angiogenesis, and cardiac protection (Khan et al.,
2022).MAPK14 (p38α), a member of the mitogen-activated
protein kinase (MAPK) family, is the most abundant and well-
characterized of the four isoforms of p38MAPK and plays a central
role in the initiation of stress-activated pro-inflammatory
responses (Cuenda and Rousseau, 2007). p38MAPK14 acts
downstream on transcription factors and protein kinases to
regulate cellular stress and inflammatory responses. It has been
demonstrated that p38MAPK plays an important role in
myocarditis and myocardial remodeling (Niu et al., 2017;
Turner and Blythe, 2019). EGFR is a receptor-type tyrosine
kinase, which is important for embryonic heart development
and maintenance of adult heart function. EGFR signaling
pathway is a complex network system, including three main
pathways: Ras/Raf/MAPK pathway, PI3K/AKT pathway, JAK
pathway, and STAT pathway (Iwamoto and Mekada, 2006).

mTOR is an atypical serine/threonine protein kinase, which can
participate in gene transcription and protein expression by
phosphorylating its downstream target proteins, and then affect
biological activities such as apoptosis. mTOR signaling pathway is
one of the effective ways to treat heart failure (Shi et al., 2020).
IGF1 is a key hormone that regulates the growth of cardiomyocytes
and physiological cardiac hypertrophy. IGF1 is closely related to
cardiac hypertrophy and heart failure. In cardiomyocytes, after
IGF1 binds to its receptor, the receptor itself is phosphorylated and
further activates the MAPK pathway and PI3K pathway (Tao et al.,
2017). The Ras family of small guanosine triphosphate (GTP)-
binding proteins (G proteins) is one of the major components of
intracellular signaling required for normal heart growth and also
plays a key role in the development of heart failure. Ras regulates
multiple downstream signaling pathways mainly involving MAPK
as well as the PI3K/Akt/mTOR pathway (Ramos-Kuri et al., 2021).
Overactivation of the JNK and p38 signaling pathways play a key
role in the CHD Ras can activate the JNK and p38 signaling
pathways through the PI3K/AKT/mTOR pathway. The PI3K-Akt
signaling pathway has an important role in the pathogenesis of
heart disease, not only regulating the survival and function of
cardiomyocytes, but also influencing the proliferation, migration,
and apoptosis of vascular smooth muscle cells through the
regulation of the pathogenesis and development of CHD
(Magaye et al., 2021; Qin et al., 2021; Sun G. et al., 2021).
These studies suggest that Ras/MEK/ERK and PI3K/Akt/mTOR
signaling control the interconnection of several levels of protein

FIGURE 10
KEGG pathway enrichment analysis.
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synthesis, cardiomyocyte growth, and remodeling. Ras and its
downstream pathways (MAPK pathway, PI3K pathway) may be
important pathways for CHD treatment by YYFZ.

5 Conclusion

In this study, the pharmacological effects and pharmacodynamic
mechanisms of YYFZ in the treatment of adriamycin-induced CHD
rats were investigated based on metabolomics combined with
network pharmacology. The YYFZ group was able to improve
the disorder of cardiomyocyte arrangement and reduce
inflammatory cell infiltration, and the cardiac index of rats in the
YYFZ-H and YYFZ-M groups was lower than that of the Model
group, suggesting that YYFZ was able to improve the cardiac
function and alleviate the symptoms of CHD in CHD rats.
Metabolomics identified 19 biomarkers related to the
pathogenesis of CHD, mainly involving the improvement of
amino acid metabolic pathways, fatty acid metabolism, and
energy metabolism. In addition, network pharmacology analysis
showed that YYFZ may act through MAPK14, EGFR, HSP90AA1,
MTOR, ESR1, IGF1, and other protein targets in the treatment of
CHD. Combining the results of metabolomics and network
pharmacology pathway enrichment analysis suggested that YYFZ
may further regulate PI3K/Akt pathway and MAPK pathway by
modulating amino acid metabolism and fatty acid metabolism.
YYFZ, as a classical TCM formula, has been used to treat CHD
from multiple links and targets.
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Right in two: capabilities of ion
mobility spectrometry for
untargeted metabolomics
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This mini review focuses on the opportunities provided by current and emerging
separation techniques for mass spectrometry metabolomics. The purpose of
separation technologies in metabolomics is primarily to reduce complexity of
the heterogeneous systems studied, and to provide concentration enrichment by
increasing sensitivity towards the quantification of low abundance metabolites.
For this reason, a wide variety of separation systems, from column chemistries to
solvent compositions and multidimensional separations, have been applied in the
field. Multidimensional separations are a common method in both proteomics
applications and gas chromatography mass spectrometry, allowing orthogonal
separations to further reduce analytical complexity and expand peak capacity.
These applications contribute to exponential increases in run times concomitant
with first dimension fractionation followed by second dimension separations.
Multidimensional liquid chromatography to increase peak capacity in
metabolomics, when compared to the potential of running additional samples
or replicates and increasing statistical confidence, mean that uptake of these
methods has been minimal. In contrast, in the last 15 years there have been
significant advances in the resolution and sensitivity of ion mobility spectrometry,
to the point where high-resolution separation of analytes based on their collision
cross section approaches chromatographic separation, with minimal loss in
sensitivity. Additionally, ion mobility separations can be performed on a
chromatographic timescale with little reduction in instrument duty cycle. In
this review, we compare ion mobility separation to liquid chromatographic
separation, highlight the history of the use of ion mobility separations in
metabolomics, outline the current state-of-the-art in the field, and discuss the
future outlook of the technology. “Where there is one, you’re bound to divide it.
Right in two”, James Maynard Keenan.

KEYWORDS

chromatography, separation, drift time, drift tube, travelling wave, trapped, high-field
asymmetric

1 Introduction

Global untargeted metabolomics aims at facilitating our understanding of the
dynamics of the chemical composition of biological systems. Metabolites in
heterogenous systems are chemically diverse and vary in their abundances, with many
endogenous metabolites existing at very low concentrations. The primary goal of
metabolomics is the unbiased relative quantification of each metabolite in a biological
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system. For comprehensive metabolite coverage of biological
systems to be successful, multiple separation techniques are
needed.

In this review, we outline the principles of separation systems as
applied to mass spectrometry based metabolomics. We focus on the
capabilities of the increasingly commonly used technique of ion
mobility, hyphenated (or not) to liquid chromatography. We
evaluate the current state-of-the-art of ion mobility metabolomics
in its various guises and provide a forward-looking summary of
where we can expect the technology to move in future.

2 Liquid chromatography

The term liquid chromatography was originally described by
Michael Tswett in 1906 (Tswett, 1968). The method initially used to
separate plant pigments (hence the name) has now become a
powerful and ubiquitous technique routinely applied to separate
and purify complex mixtures of molecules. Briefly, analytes are
dissolved in a solvent and then passed through a column filled with a
stationary phase. The stationary phase can be made of various
materials, such as silica or polymer beads, which are packed
uniformly into the column. As the analytes pass through the
column, different molecules interact with the stationary phase,
depending on their physicochemical properties. This interaction
causes the molecules to separate and travel through the column at
different rates, creating peaks.

There are many different stationary phases, allowing separations
to be tailored depending on the particular characteristics of the
analytes in question. A detailed analysis of stationary phases is
beyond the scope of this article, and there are already many excellent
reviews on the subject (Zou et al., 2002; Zhang, 2008; West et al.,
2010; Sobańska, 2021), but the most commonly applicable phases in
metabolomics in general are reversed phase (RP, which separates on
the basis of hydrophobicity) and hydrophilic interaction liquid
chromatography (HILIC, which separates on the basis of
hydrophilicity).

2.1 Advantages of liquid chromatography
separation

While there have been many excellent studies in the metabolomics
discipline conducted using direct infusion mass spectrometry (Maleki
et al., 2018; Dou et al., 2023; Sun et al., 2023; Wolthuis et al., 2023) and
flow injection mass spectrometry (Zang et al., 2018), chromatographic
separations are commonly hyphenated to mass spectrometry. This
coupling adds a further dimension of separation, beyond mass
spectrometry itself, which in essence is a separation.

The main aim of applying chromatographic separations up-
front of a mass spectral analysis is to reduce the complexity of highly
complex biological samples, in an effort to ameliorate the effects of
dynamic range (Want et al., 2005) and ion suppression (Furey et al.,
2013). Furthermore, chromatography provides a very valuable
concentration of each analyte as it leaves the column as a peak,
substantially improving its signal-to-noise ratio and making it more
likely to be detected and quantified, as opposed to direct infusion
mass spectrometry.

2.2 Limitations of liquid chromatography for
global metabolomics

One of the main limitations of chromatography is its lack of
reproducibility and its heavy reliance on a few common stationary
phases. Reversed-phase chromatography, for example, is now the
most well-developed and ubiquitous separation medium in
analytical chromatography, and rather than use a different
column, it is common to use ion-pairing reagents to adapt the
chemistry of an analyte to a reversed-phase system (Gong, 2015).
Unfortunately, the vast majority of ion-pairing reagents are not mass
spectrometry compatible, comprising (as many do) inorganic salts
or highly ionizable organic compounds in millimolar concentrations
that overwhelm the detection of less abundant endogenous
compounds in the system being studied. Various powerful
metabolomics methods exploit these properties to perform more
targeted analyses, but for broad-based untargeted metabolomics,
analysts are typically limited to RP or HILIC with volatile organic
acids, bases and salts used as separation systems. Thus, a major
limitation of liquid chromatography, as applied to mass
spectrometry is that the separation gradient is responsible for
much of the selectivity of the system, which can lead to
situations where global separations are poorly suited to the
separation of closely related compounds.

3 Ion mobility spectrometry

Ion mobility spectrometry (IMS), also known as gaseous
electrophoresis, plasma chromatography (Revercomb and Mason,
1975), or ion chromatography (Helden et al., 1995), is an
electrophoretic technique that separates ions based on their
mobility in gas phase when subjected to an electric field.
Traditional IMS measurements determine the drift velocities of
gaseous ions in a weak electric field at a constant temperature.
The applied electrical field accelerates ions through the drift region,
which is counteracted by the drift gas that impedes ion progress. The
speed of ion movement or drift velocity (νd) is therefore
proportional to the strength of the applied electric field (E), with
mobility (K) of the ion being the constant of proportionality. The
mobility of an ion is determined by its shape, size, and charge in the
given drift gas. As a result, ions traverse the drift region at a velocity
that is proportional to the inverse of their collision cross section
(CCS), a physical property that reflects the geometric shape of the
ion in the specific gas (Borsdorf and Eiceman, 2006). More compact
structural conformations undergo fewer collisions with the drift gas
and therefore have smaller CCS values, than extended planar
structures. Thus, the CCS feature provides insight into the overall
shape of the molecule, while ion mobility allows rapid separation of
mixtures, including isobaric ions, typically within milliseconds.

3.1 Types of ion mobility spectrometry

There are four major types of ion mobility spectrometry
(Figure 1). The most common and oldest ion mobility analysers
consist of a drift tube containing an inert gas, typically dubbed ‘drift
tube ion mobility spectrometry or DTIMS’ (Kirk et al., 2019), as
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described above. Travelling wave ion mobility spectrometry
(TWIMS) is a more recent modification of the traditional drift
tube on similar hardware, with the addition of an electrostatic pulse
waveform that propagates along the tube, allowing nonlinear
resolution of ions at the expense of ion heating (Shvartsburg and
Smith, 2008). Ion heating is one of the more significant limitations of
TWIMS as ion temperatures can reach 551–774 K (Merenbloom
et al., 2012) and can lead to dissociation in small molecules (Morsa
et al., 2011). More recent developments in this technology include
structures for lossless ion manipulation (SLIM) and cyclic ion
mobility (Giles et al., 2019). The SLIM architecture consists of a
sandwich structure, with parallel, mirror image electrode arrays that
can be configured for either conventional or travelling wave ion
mobility (Ibrahim et al., 2017). Currently, available commercial
instruments based on the technology configure the system in a
serpentine array, significantly extending the ionmobility path length
to a total of 13 m utilizing 44 U-turns. Resolving power varies
depending on the configuration of the ion optics and the voltages
applied, but resolutions of around 300 are available (May et al.,
2021). The cyclic IMS instrument incorporates a doughnut-shaped
cyclic ion mobility (cIM) device that allows ions to be separated via a
user-designated number of repetitive 98 cm paths. The drawback to
the instrument is that faster, lighter ions eventually end up ‘lapping’
slower ones, and to this end the instrument brackets the cIM with
ion traps, allowing isolation and selection of pre-and post-separation
ions. This allows some unprecedented and complex ion mobility
experiments, such as the one described by (Sisley et al., 2020), to be
performed.

Another type of ion mobility analyser is high-field asymmetric
ion mobility spectrometry (FAIMS). This relies on the use of a
changing compensation voltage as a filter across a gas flow counter
to the direction of the ions. FAIMS was originally published by
Buryakov et al. (1993), and has since found its way into several
commercial instruments. It is generally employed as a filter
(Canterbury et al., 2008), rather than a separation device and has
therefore been sparsely used in liquid chromatography coupled to
ion mobility multidimensional separations.

Recently, the Park group introduced the trapped ion mobility
spectrometry (TIMS) device (Ridgeway et al., 2016). Unlike the
previous systems, in TIMS the ions are held in a trapping device and
exposed to a moving column of gas, based typically on a
modification of ion funnel technology. This trap and release
substantially reduce the dimensions of the ion mobility device.
Ions are separated based on their physicochemical properties as

in conventional drift tube ion mobility, however, the movement of
the gas and ions are reversed. In TIMS, ramping the electric field
gradient (E) releases ions in descending order of their mobility (K).
For an excellent review of TIMS, see (Ridgeway et al., 2018). Parallel
accumulation, serial fragmentation (PASEF) is an experimental
methodology available on TIMS instruments that uses the unique
capabilities of the ion mobility trapping device to accumulate ions,
and then sequentially pulse them into a quadrupole for isolation and
fragmentation (Meier et al., 2018). Thus, in a single drift spectrum,
fragment patterns for each MSMS spectrum are resolved via ion
mobility. This dramatically increases the acquisition rate of data
dependent acquisition experiments (Meier et al., 2015). It has
recently been modified to support data-independent acquisition
(dia-PASEF) for proteomics applications (Demichev et al., 2022),
which provides an intriguing possibility for improving
metabolomics analysis.

3.2 Advantages of ion mobility as a
separation technology

Regardless of the specific type of ion mobility device, there are
two main advantages of ion mobility spectrometry. Firstly, it allows
the separation of isomeric analytes. As discussed in Section 2.2, one
of the major limitations of chromatography is that while an optimal
liquid chromatography gradient can separate closely related ions,
the generally applicable rapid gradients used with untargeted
analysis often preclude the separation of isomeric compounds
with closely related structures. While this is an issue for
chromatography, modern ion mobility instruments with
resolutions greater than 100 can now separate many isomeric
ions within milliseconds. By coupling ion mobility to
chromatography, multidimensional separation can be performed,
allowing unprecedented resolution of complex mixtures without
extending separation times or employing complex fractionation
strategies.

Similar to the first, the second advantage of ion mobility comes
from the modern high-resolution IM instruments. Collisional cross
section is a fundamental property of an ion, and it can therefore be
calculated with greater accuracy than predicting retention times on
columns. While ion mobility devices measure ‘drift times’ rather
than CCS directly, all modern instruments can calculate CCS from
drift times, and this directly addresses one of the biggest challenges
in metabolomics—the unambiguous identification of metabolites.

FIGURE 1
Schematic representation of the different types of ion mobility and the principles of separation. The direction of drift gas flow and electric field are
indicated with dark blue and grey arrows, respectively.
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This latter poses an important challenge for the application of
IMS to metabolomics. CCSs are able to be determined from
experimental parameters via the Mason-Schamp equation (Siems
et al., 2012) in DTIMS instruments, while for other types of IMS,
calibration standards with known CCS values (derived from DTIMS
experiments) must be used (Dodds and Baker, 2019). In practice,
even on DTIMS instruments, a typical use for metabolomics, e.g.,
single field multiplexed analysis, require calibration standards
derived from slower, more complex stepped-field methodologies
(Dodds and Baker, 2019). Due to the development of large-scale,
experimentally determined libraries (Zheng et al., 2017; Picache
et al., 2019), as well as appropriate calibration, CCS features provide
an additional criterion for metabolite annotation.

3.3 Limitations of ion mobility

Sensitivity has been the perennial issue with ion mobility
mass spectrometry. In standard ion mobility analysis, analytes
are introduced to the ion mobility device as a packet, followed by
ion separation and concomitant detection in the mass
spectrometer. Before the next packet of ions can be
introduced to the ion mobility device, the slowest ion in the
current packet must pass through and exit the IM device. This
means that during ion mobility separation, all ions that would
otherwise be analysed are lost. Furthermore, due to imperfect
electronics, ions of interest can also be lost during the ion
mobility separation itself. There have been many attempts to
improve sensitivity, such as improving overall instrument
design as outlined in 3.1 (Deng et al., 2016), advances in the
construction of the instrument with improved lens designs and
electric field generation, and the use of multiplexing.
Multiplexing is a technique used to decrease ion packet losses
in ion mobility mass spectrometry. Multiple ion packets are
pulsed into a single ion mobility device in a pseudo-random
order. This creates a patterning effect in the ion mobility
analysis that can be deconvoluted by the use of a sliding
window algorithm during data analysis. This technique has
been reported to reduce sensitivity losses from 99% to 50%
(Reinecke et al., 2019).

Current, commercially available ion mobility instruments
possess resolving power in the hundreds, compared to the tens of
thousands of theoretical plates typical in chromatography (for a
fascinating discussion on the relationship between resolution
parameters for chromatography and spectrometry see (Rokushika
et al., 1985)). Consequently, reproducibility is a key parameter to
confidently assign collisional cross sections to analytes.
Interlaboratory studies have been performed, demonstrating
RSDs of 0.14% and ~1.5% in TWIMS-based devices (Hernández-
Mesa et al., 2020; Righetti et al., 2020) and 0.29% for DTIMS-based
devices (Stow et al., 2017), which compares favourably to
chromatography retention time RSD of 5%–20% depending on
analyte (Madji Hounoum et al., 2015).

A further limitation to ion mobility is that it does not get
around the problem of matrix effect, a somewhat complex term in
‘omics disciplines, particularly metabolomics. Typically, the
“matrix” corresponds to all of the components of a sample one
does not want to analyse, while the “analytes” are the components

one wants to detect. While all sample preparation methodologies
are biased, a good ‘targeted’ analysis aims to strip out the vast
majority of the “matrix” while leaving the “analytes” in place. In
untargeted metabolomics one does not have this luxury, and the
“matrix” and the analytes are (apart from contaminants, buffers,
salts, etc.) mostly the same thing. The interaction between these
contaminants, as well as the more abundant analytes within the ion
mobility device can result in ion suppression (or ion
enhancement).

Ion suppression is commonly associated with electrospray
ionization, although matrix effects and suppression of
ionization are also found in electron ionization used with gas
chromatography (Yarita et al., 2015) and nanoelectrospray
ionization (Kourtchev et al., 2020). Ion suppression occurs in
the ion source, but matrix effects such as ion-ion interactions
and space charging can occur in trapping instruments
(Hohenester et al., 2020). Thus, ion mobility separations,
occurring as they do, after ionization, provide no reduction
on in-source ion suppression. Consequently, suppression
resulting from, flow injection or direct infusion mass
spectrometry will not be ameliorated by the use of IMS, and
could result in additional artifacts in measurement (Levin et al.,
2014).

4 Hyphenating ion mobility to mass
spectrometry reduces sample
complexity

As previously stated, the primary purpose of separation in
mass spectrometry studies is the reduction in sample complexity
and reduction of matrix effects. The human metabolome
database currently contains 217,920 compounds (Wishart
et al., 2022), demonstrating the scale of metabolomics
researchers’ analytical challenge. Of these, 8,369 metabolites
are currently listed as ‘detected’ in human tissues, with the
remainder either predicted or derived from other sources, such
as the microbiome and the diet. With the impact of ion
suppression (see 3.3) and the limited dynamic range of mass
spectrometers (Want et al., 2005), it is very common to perform
some separation of analytes before they are presented to the
mass spectrometer.

An exception to this is mass spectrometry imaging (MSI), a
technique where mass spectrometry is used to raster across a tissue
or other spatially resolved sample, providing a spectrum per pixel.
Individual ions can be collated to generate images of the distribution
of a molecular species to, for example, a tissue structure or feature.
Of course, a typical matrix-assisted laser desorption ionization
(MALDI) (Tanaka et al., 1988) or desorption electrospray
ionization (DESI) (Takáts et al., 2004) process is extremely
challenging to hyphenate to chromatography as extraction of
analytes and ionization are performed directly from the sample.
Therefore, MSI sees considerable benefits from the incorporation of
ion mobility separation prior to mass spectrometry (Spraggins et al.,
2019), regardless of any impact of matrix effects, as high-resolution
IMS can separate isobaric compounds without prior
chromatographic separation, while also maintaining acquisition
speed.
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TABLE 1 Typical workflows in liquid chromatography ion mobility mass spectrometry utilizing multidimensional separation principles.

Type of ion
mobility

Instrument
used

Separation pre-ion
mobility

Run
length
(min)

Sample Comments Reference

TWIMS Waters Metabolites: BEH Amide 30 Not listed Paglia and Astarita
(2017)

Synapt G2S Lipids: C18

DTIMS Agilent Waters Atlantis HSS
T3 RPLC

21 Pichia pastoris Feuerstein et al.
(2021)

6560

TIMS Bruker timsTOF fleX Matrix-assisted laser
desorption ionization
(MALDI)

N/A Human kidney IM separation only, mass
spectrometry imaging

Neumann et al.
(2020)

DTIMS Agilent LC-MS: Atlantis T3 C18 20 Pichia pastoris Combines conventional LC-
IMMS and heart cutting 2D
LC-IMMS

Causon et al. (2019)

6560 Heart cutting: Hypercarb
porous graphetised
carbon

DTIMS Agilent Capillary electrophoresis Not listed Mass Spectrometry
Metabolite Library of
Standards (Sigma)

Drouin et al. (2021)

6560

TWIMS Waters Flow injection 3 Serum (prostate cancer) No chromatographic
separation

Zang et al. (2018)

Synapt G2-S

DTIMS Modified Agilent Laser ablation
electrospray ionization
(LAESI)

Not listed Allium cepa IM separation only, single-cell
mass spectrometry

Taylor et al. (2021)

6538

DTIMS Agilent Agilent Zorbax Eclipse
Plus C18

22.5 Human serum
(xenobiotics)

Foster et al. (2022)

6560

TWIMS Waters Waters HSS T3 RPLC 26 Human serum Tebani et al. (2016)

Synapt G2-S

DTIMS Modified Agilent Waters BEH C18 5 Pichia pastoris Data independent MS/MS Mairinger et al.
(2019)

6560

TIMS Bruker timsTOF Pro Bruker Solo C18 23 Olive oil Drakopoulou et al.
(2021)

TWIMS Waters Waters HSS T3 29 Ginseng root, leaf, bud Li et al. (2021)

Vion IM-QToF

TWIMS Waters Waters CORTECS C18 18 Human plasma (orange
metabolites)

Lacalle-Bergeron
et al. (2020)

Vion IM-QToF

DTIMS Agilent Not listed Not listed Not listed Protocol paper Reisdorph et al.
(2019)

6560

DTIMS Modified Thermo Direct infusion Not listed Standards and bovine heart
extract

Maleki et al. (2018)

LTQ-Velos

DTIMS Custom Ionwerks Direct infusion Not listed Rat lymph Kaplan et al.
(2013b)

DTIMS Tofwerk Direct infusion 20 Rat brain tissue after
cocaine administration

Kaplan et al.
(2013a)

Resistive Glass Ion
Mobility-ToF MS

TWIMS Waters Waters BEH Amide
(HILIC) and Waters BEH
C18 (RP)

HILIC: 12 Saposhnikoviae Radix Wang et al. (2020)

Vion IM-QToF RP: 17

(Continued on following page)
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Outside the world of MSI, hyphenation of chromatography
to mass spectrometry has been used to ameliorate ion
suppression and the effects of limited dynamic range for
decades, and the recent advances in ion mobility peak
capacities have made this a viable addition, or alternative, to
chromatography separations.

5 The use of multidimensional
separation and best practices

Typical multidimensional separation workflows consist of
coupling multiple liquid chromatography-based separation
chemistries and hyphenating to mass spectrometry. A full
overview of metabolomics applications with liquid
chromatography is beyond the scope of this article. For a
comprehensive review of recent methods please read (Lv
et al., 2019).

Many examples of ion mobility used as a separation method for
metabolomics studies appear in the literature (see Table 1). Of the
28 tabulated articles, nine perform no prior separation to analysis via
ionmobility-mass spectrometry. Of these, four are single-cell studies
using a variety of methods (laser ablation electrospray ionization,
matrix-assisted laser desorption ionization, microsampling), where

the addition of chromatography would be challenging, if not
impossible. For the remainder, a variety of chromatography
methods are hyphenated. The most common remains the use of
RP chromatography employing C18 columns, but a growing
number of HILIC chromatography methods are beginning to be
applied. A single method by Causon et al. incorporates heart-cutting
two-dimensional liquid chromatography into a metabolomics
workflow, while an additional two methods incorporate both
HILIC and RP chromatography, performed separately, into their
analyses.

Liquid chromatography hyphenated with ion mobility mass
spectrometry has become a powerful technique for reducing
complexity in untargeted metabolomics. Publications should, of
course, adhere to the most appropriate rigorous standards for
reporting, the most recent of which is currently (Kirwan et al.,
2022), but ion mobility mass spectrometry is a relatively recent
development and standards are still evolving. At minimum, the
parameters for the ion mobility device should be recorded along
with those for the mass spectrometer it is hyphenated to. This is
relatively straightforward for dedicated hybrid instruments, but
can be more complex for aftermarket or less intrinsically-linked
hardware. Additionally, calibration standards should be noted
and the parameters of the calibration should be recorded.
Typically these are performed before every batch, but IM

TABLE 1 (Continued) Typical workflows in liquid chromatography ion mobility mass spectrometry utilizing multidimensional separation principles.

Type of ion
mobility

Instrument
used

Separation pre-ion
mobility

Run
length
(min)

Sample Comments Reference

FAIMS Owlstone FAIMS
with Agilent 6230

Agilent Poroshell
120 HILIC

13 Human urine Szykuła et al. (2019)

TWIMS Waters Direct infusion 2 Exhaled human breath
condensate (cystic fibrosis
patients)

Zang et al. (2017)

Synapt G2-S

TWIMS Waters Phenomenex Kinetex
C18 and CORTECS
HILIC

18 Herbal cigarettes (14 herbs
plus tobacco)

Gil-Solsona et al.
(2021)

Vion IM-QToF

TWIMS Waters Inertsyl Phenyl-3 47 Zucker rat plasma (high fat
diet)

Wickramasekara
et al. (2013)

Synapt G2-S

TWIMS Waters Waters HSS T3 C18 30 Mouse feces (bile diversion
surgery)

Poland et al. (2019)

Synapt G2-S

TWIMS Waters LAESI Not listed Human neuroblasts IM separation only—single
cell mass spectrometry

Stopka and Vertes
(2019)

Synapt G2-S

FAIMS Sciex Single cell microsampling Not listed Raphanus sativus single
cells

IM separation only—single
cell mass spectrometry

Fujii et al. (2015)

SelexION QTRAP
5500

TWIMS Waters Waters HSS T3 C18 25 Vangueria agrestis
glycosides and terpenoids

Avula et al. (2020)

Vion IMS-QToF

DTIMS Agilent Agilent HILIC-Z 4 Bacillus sp. Plant growth
promoting rhizobacteria

Pičmanová et al.
(2022)

6560

TWIMS Waters Waters BEH Amide 3.3 Rat urine (tienilic acid
study)

King et al. (2019)

Synapt G2-S
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calibration samples at both the beginning and the end of a run
would provide good evidence that the system was working to
appropriate parameters during sample acquisition. CCS
libraries, both predicted (Zhou et al., 2020) and
experimentally determined (Nichols et al., 2018) are now
commonly used in ion mobility mass spectrometry analyses.
Both are useful but which library and what criteria (typically a
1%–2% window is used to match CCS) were used is critically
important information in the quality assessment of
identifications, and should be rigorously reported.

Of course, libraries are not valuable without software to
support their use, and academic software that supports the
diversity of ion mobility datasets has been relatively slow in
development in comparison to the advances in
instrumentation. The three most commonly used packages in
the field are MS-Dial (Tsugawa et al., 2015), Skyline (MacLean
et al., 2010) and MzMine (Schmid et al., 2023). All three are
graphical applications that provide peak picking, metabolite
annotation and statistics, with Skyline being more closely
aimed at targeted applications and MS-Dial having the benefit
of integrated large-scale libraries. Ideally, the development of
modular tools accessible via R and/or Python would support
rapid advancement in terms of new features, that could then be
backported into more attractive GUI applications while allowing
the possibility of building pipelines into interfaces such as
Workflow4Metabolomics (Giacomoni et al., 2015).

6 Conclusion and prospects

Ion mobility spectrometry hyphenated to mass spectrometry has
seen rapid technological advancement in the previous 10 years.
Initially confined to a few specialists, it is finding itself now routinely
applied in proteomics and metabolomics studies for the valuable
additional information it provides. Given its capacity for extremely

rapid separations, we anticipate a great future for the technology and
expect to see further developments to improvements in resolution
for the technology.
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Tuberculous meningitis (TBM) is a severe form of tuberculosis with high neuro-
morbidity and mortality, especially among the paediatric population
(aged ≤12 years). Little is known of the associated metabolic changes. This
study aimed to identify characteristic metabolic markers that differentiate
severe cases of paediatric TBM from controls, through non-invasive urine
collection. Urine samples selected for this study were from two paediatric
groups. Group 1: controls (n = 44): children without meningitis, no
neurological symptoms and from the same geographical region as group 2.
Group 2: TBM cases (n = 13): collected from paediatric patients that were
admitted to Tygerberg Hospital in South Africa on the suspicion of TBM,
mostly severely ill; with a later confirmation of TBM. Untargeted 1H NMR-
based metabolomics data of urine were generated, followed by statistical
analyses via MetaboAnalyst (v5.0), and the identification of important
metabolites. Twenty nine urinary metabolites were identified as characteristic
of advanced TBM and categorized in terms of six dysregulated metabolic
pathways: 1) upregulated tryptophan catabolism linked to an altered vitamin B
metabolism; 2) perturbation of amino acid metabolism; 3) increased energy
production–metabolic burst; 4) disrupted gut microbiota metabolism; 5)
ketoacidosis; 6) increased nitrogen excretion. We also provide original
biological insights into this biosignature of urinary metabolites that can be
used to characterize paediatric TBM patients in a South African cohort.
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1 Introduction

The most lethal form of extra-pulmonary tuberculosis (TB)–
tuberculous meningitis (TBM)–affects 1%–5% of TB infected
individuals globally (Donovan et al., 2020). The pediatric age
group (aged ≤12 years) are the most at risk for contracting the
disease, and account for 12% of all TBM cases, with one in five
affected children dying and only one in three surviving without
long-term neurological sequelae (WHO, 2020; Basu Roy et al., 2021).
According to theWorld Health Organization, South Africa is among
the eight countries that account for two-thirds of the global total TB
burden (WHO, 2020). In the Western Cape province of South
Africa, TBM is the most common form of paediatric meningitis
detected (Donald et al., 1996; Wolzak et al., 2012). Early diagnosis
and timely introduction of appropriate therapy can potentiate a
positive treatment outcome (Donovan et al., 2020). However, the
timely and accurate diagnosis of TBM is challenging, since the early
symptoms are usually nonspecific (van Toorn and Solomons, 2014).

There is a pressing need to improve current TBM diagnostic
strategies (Hasbun et al., 2018). Stand-alone methods currently used
to diagnose TBM in children are unreliable (Manyelo et al., 2021).
Existing diagnostic techniques for TBM are invasive, complex and
time-consuming, subsequently delaying treatment, and putting
patients at a high risk of mortality. Recently, efforts have been
made to better understand the pathophysiology through new
research focused on finding novel TBM biomarker signatures
(Rohlwink et al., 2017; Manyelo et al., 2019). Yet, there are still
no clear biomarker(s), nor biosignature(s), for TBM in the
cerebrospinal fluid (CSF), let alone one from patient samples
collected non-invasively, such as from urine. Urine is rich in
metabolic information that describes the systematic state of an
individual and is a relatively unexplored biofluid in TBM
research. Urinary metabolomics profiling in pulmonary TB
patients has been an efficient means of diagnosing and
monitoring an individual’s response to treatment (Luies et al.,
2017). Mason et al. (2016b) holistically illustrated the metabolic
complexity of TBM and provided proof-of-concept that a putative
biosignature of urinary metabolites (methylcitric, 2-ketoglutaric,
quinolinic and 4-hydroxyhippuric acids) can be defined with the
potential to be used for the non-invasive metabolomics diagnosis
and prognosis of paediatric TBM patients. In another metabolomics
study, Chatterji et al. (2016) observed reduced malonic acid and
elevated 2-hydroxybutyric acid, acetic acid, creatine and
glycerophosphocholine, in the urine of TBM adults. These
pioneering metabolomics studies have provided proof-of-concept
that urine provides a wealth of metabolic information in TBM cases
and deserves further investigation.

Metabolomics provides analytical, chemical and physiological
insights into metabolite interactions (Mason et al., 2016a). These
metabolites are vital constituents of biological systems and are
highly informative of their functional state, serving as biomarkers
of disease and also reflective of therapeutic response (Goodacre,
2010). van der Greef et al. (2004) describe metabolomics as a
prospective tool for clinical use in the early detection of a
metabolic perturbation in a biological system, before the disease
symptoms actually present themselves. Nuclear magnetic resonance
(NMR) spectroscopy is one such technique commonly used for the
metabolite profiling and analysis of complex biofluids (Nagana

Gowda et al., 2008). Studying the molecular level shift in
equilibrium in patient urine will improve the systematic
understanding of TBM and may also help develop transformable
solutions related to novel diagnostics (Blankley et al., 2014). The
need for research, such as that reported here, in order to generate
knowledge which can be used to develop timely and accurate
diagnosis, improve treatment outcomes, and ultimately reduce
the dire mortality and neuro-morbidity in paediatric TBM
disease in children (and adults), has become a priority
(Organization, 2018). Hence, this study aimed to identify
metabolites in urine that characterize the metabolic profile of
severe TBM in paediatric cases, using 1H NMR metabolomics.
Characterization here is defined as explaining the biochemistry
underpinning TBM, in terms of altered metabolic pathways and
increased/decreased metabolites.

2 Materials and methods

2.1 Sample origin and selection criteria

The sample population used in this study were infants and
children (aged ≤12 years) from the Western Cape Province of South
Africa, an area with high prevalence of TB (681 per 100,000),
especially among children ≤12 years of age (100 per 966)
(Donald et al., 1996; KANABUS, 2020). Participants were
referred from primary and secondary level healthcare facilities to
the paediatric department at Tygerberg Hospital, Stellenbosch
University. The participants were divided into two groups
(Group 1: control; n = 44) and (Group 2: TBM; n = 13). Criteria
for collection of the controls (Group 1) were paediatric patients
without meningitis, no neurological symptoms, and from the same
geographical region as the TBM patients. Urine samples from the
control group were requested from children undergoing routine
follow up at Paediatric Outpatient Clinics, none of whom were
acutely ill during sampling. The TBM urine samples (Group 2) used
in this study were collected from pediatric patients (van Elsland
et al., 2018) under initial treatment that were admitted to the
hospital on suspicion of TBM, most of them severely sick; with a
later confirmation of “definite TBM” according to the uniform
research case definition for TBM (i.e., M. tuberculosis (M.tb)
identified on CSF by microscopy, culture and/or detection by
commercial nucleic-acid amplification test (Marais et al., 2010))
at an advanced stage (with or without focal neurological deficit)
(Van Toorn et al., 2012). The urine sample used in this study was the
first urine sample collected as an out-patient (discharged from
hospital once stabilized) as a home-treatment program (van
Elsland et al., 2018). Clinical information was recorded for all
TBM cases (see Table 1). As per ethics requirements, all urine
samples were collected after written informed consent from
parent(s) and assent from the child, if older than 7 years and
able to do so, was obtained, under the Health Research Ethics
Committee (HREC) approval of Stellenbosch University (ethics
approval no. N16/11/142 and N11/03/061 for group 1 and
2 respectively), the Western Cape provincial government, as well
as by the HREC of the North-West University, Potchefstroom
campus (ethics approval no. NWU-00063-18-A1-01). Participants
with an unknown or positive HIV status were excluded from this
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TABLE 1 Demographic, clinical, laboratory and imaging findings of 13 paediatric patients diagnosed with advanced tuberculous meningitis.

CRITERIA n (%)

Gender: male/female 6 (46.2)/7 (53.8)a

Age (months) (Median [range]) 43 [22–140]

Clinical symptoms

Fever 11/13 (84.6)

Night sweats 2/13 (15.4)

Poor feeding 5/13 (38.5)

Weight loss 5/13 (38.5)

Vomiting 4/13 (30.8)

Coughing None

Headache 1/13 (7.7)

Seizures 4/13 (30.8)

Lethargy 2/13 (15.4)

Neurological signs

GCS: (median [range]) 10 [7–15]

Meningism 3/13 (23.1)

Focal motor deficit 4/13 (30.8)

Cranial nerve palsy 3/13 (23.1)

Raised ICP 4/13 (30.8)

Neuroimaging (CT brain)

Hydrocephalus 11/13 (84.6)

Infarctions 1/13 (7.7)

Tuberculoma 2/13 (15.4)

Meningeal enhancement 7/13 (53.8)

VP shunt 4/13 (30.8)

Convulsions 1/13 (7.7)

Hemiparesis 4/13 (30.8)

CXR (signs of pulmonary TB) 1/13 (7.7)

Laboratory values

Blood albumin (g/L) (median [range]) 41 [40–52]

Blood sodium (mmol/L) (median [range]) 131.5 [120–141]

Blood total protein (g/L) (median [range]) 77.5 [75–80]

Blood glucose (mmol/L) (median [range]) 7.1 [4.9–7.7]

Blood lipids (median) 3.9

CSF protein (g/L) (median [range]) 0.84 [0.21–3.0]

CSF glucose (mmol/L) (median [range]) 2.2 [0.2–4.8]

CSF pleocytosis (cells/µL) (median [range]) 40 [3–129]

CSF lymphocytes (cells/µL) (median [range]) 57 [3–148])

BCG positive status 3/13 (23.1)

a= so significant difference; ICP = intracranial pressure; VP = ventriculoperitoneal; BCG = Bacillus Calmette–Guérin vaccine; GCS = glasgow coma scale; CSF = cerebrospinal fluid; CXR = chest

X-ray.
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study because HIV co-infection further confounds an already
complex metabolic profile.

2.2 Sample transport, storage and handling

Upon collection, urine samples were stored at −80°C in a
dedicated freezer at the division of Molecular Biology and
Human Genetics at Stellenbosch University. Once all samples
were collected, they were collectively couriered overnight–frozen,
on dry ice, to a dedicated freezer (−80°C) in a biosafety level 3 (BSL3)
laboratory at the Centre for Human Metabolomics, situated on the
Potchefstroom campus of North-West University. All urine samples
were thawed in a biological safety cabinet, after which 600 µL of each
sample was aliquoted into a separate tube for NMR analysis and an
additional 50 µL for the purpose of making a pooled quality control
(QC) sample. The pooled QC sample was then vortexed and re-
aliquoted into 20 equal-volume quantities. All aliquoted samples
(including QC samples) were kept at −80°C until NMR analysis.

2.3 Sample preparation and 1H NMR analysis

All urine samples were thawed to room temperature prior to
processing. A volume of 600 µL of urine was centrifuged at 12,000 g
for 5 min to sediment any particulates and macromolecules. A
volume of 540 µL of the supernatant was collected in a micro-
centrifuge tube, with 60 µL of the NMR buffer solution [1.5 M
potassium phosphate solution in deuterium oxide with internal
standard TSP (trimethylsilyl-2,2,3,3-tetradeuteropropionic acid);
pH 7.4]. The sample was briefly vortexed to ensure homogeneity
before being centrifuged at 12,000 g for 5 min. For 1HNMR analysis,
540 µL of the supernatant was transferred to a 5 mmNMR glass tube
and analyzed using a Bruker Avance III HDNMR spectrometer with
a triple-resonance inverse (TXI) 1H (15N,13C) probe head and x, y,
and z gradient coils, at 500 MHz, in a randomized sequence, with
QC samples interweaved at regular intervals. With a spectral width
of 12,000 Hz, 1H spectra were recorded as 128 transients in 32 K data
points. The sample temperature was kept constant at 300 K, and the
H2O resonance was pre-saturated using single-frequency irradiation
with a 4-s relaxation delay and an 8-µs excitation pulse, using the
noesygppr1d water presaturation pulse program. Sample shimming
was performed automatically based on the deuterium signal. TSP
and metabolites had resonance line widths of <1 Hz. Fourier
transformation, phase and baseline correction were performed
automatically. Bruker Topspin (V3.5) was used to process the
NMR data. For metabolite identification and quantification,
Bruker AMIX (V3.9.14) was employed (Erasmus et al., 2019).

2.4 Data pre-processing and
statistical analysis

The 1H NMR spectral output was binned at 0.02 ppm widths,
relative to creatinine, to create a data matrix of spectral intensity
with the bins as the columns and samples as the rows. A t-test on the
peak integral region of the creatinine peak between the control and
TBM group revealed a p-value of 0.065. The noise level was

identified as less than the limit of detection (LOD), calculated as:
LOD = average of blank bins (bins with no discernible peaks) + 3.3 *
standard deviation of blank bins (Westgard, 2008), and bins
identified as noise were zeroed. All zeroes were replaced with 1/
5 of the lowest value using MetaboAnalyst (V5.0). Bins around the
suppressed water peak ~4.72 ppm were also removed. The final data
matrix gave a total of 468 bins. Throughout the batch analysis,
20 aliquots of a pooled QC sample were processed at predefined
intervals to ensure trustworthy data. Quality assurance was based on
QC observations, with bins with a coefficient of variation (CV) value
greater than 30% were removed from the spectral binned data
matrix. Because spectral intensity does not always reflect
biological significance, data were log transformed and Pareto
scaled to account for skewed distributions and to put bins on an
even footing when presented for multivariate analysis. Statistical
analyses and identification of important metabolites were conducted
using MetaboAnalyst (V5.0)–a comprehensive platform dedicated
for metabolomics data analysis via a web-based interface that
enables high-throughput analysis for both targeted and
untargeted metabolomics (Pang et al., 2021); included univariate
statistics (fold changes and t-tests, displayed using a volcano plot)
and multivariate statistics, specifically principal component analysis
(PCA), partial least squares–discriminant analysis (PLS-DA). To
project the data onto fewer, more manageable dimensions and to
highlight entirely data-driven connections between instances,
unsupervised PCA analyses were used with a 95% confidence
interval (CI) ellipsis to detect natural separation between group
centroid, to remove outliers in the two experimental groups, and to
examine QC distribution to assess overall method reliability.
Hierarchical cluster analysis was also performed, based on
Euclidean distance using Ward’s linkage method. Quantitative
statistical data were used to identify variables of importance:
PLS-DA VIP of >1.0 for components 1 and 2, a t-test
p-value ≤0.05, corrected for multiple testing (FDR, false discovery
rate), and a fold change ≥2.0. Discriminatory metabolites were
identified using pure compound 1D 1H NMR spectral libraries
and confirmed using 2D correlation spectroscopy (COSY) and
J-resolved (JRES) 1H–1H NMR data. Important identified
metabolites were quantified relative to the creatinine peak (µmol/
mmol creatinine) and additional univariate measures, including
t-test p-values (adjusted using Bonferroni–Holm) and Cohen’s
d-values, were calculated. Statistical significance (p ≤ 0.05) was
used to generalize findings, that is, what is the probability that
we won’t find a difference if we take another sample? On the other
hand, practical significance (d > 0.6) indicates magnitude of
difference and answers the “so what” question, namely, whether
the effect is large enough to care about. A summary of the
experimental design for this study is illustrated schematically in
Figure 1. The use of online metabolite databases, such as the Human
Metabolome Database (HMDB) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG), were used to assist in the biological
interpretation of the results.

3 Results

Prior to statistical analysis, a quantitative quality assurance
check was performed on all QC samples. A total of 24 bins
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across 20 QC samples had a CV greater than 30% and were removed
from the spectral binned data matrix. This reduced the number of
bins from 468 to 444. Hence, the variation exhibited across bins
between the two groups can be attributed towards biological
variation. A PCA of all cases, including the QC samples
(Figure 2A), shows that the 20 QC samples cluster closely
together, indicating overall method reliability (i.e., no batch or
machine drift). An unsupervised PCA, excluding QC samples,
was performed Supplementary Figure S1 and four outliers were
identified in the control group and removed from further analysis;
no outliers identified in the TBM group. Next, an unsupervised PCA
analysis of the 40 controls against the 13 TBM cases was performed
(Figure 2B), which yielded almost complete natural separation
between the groups, with their 95% CI ellipses slightly
overlapping as a result of two control samples. The results of the
unsupervised PCA confirm that the two groups are indeed
differentiated, providing confidence before using the supervised
method of PLS-DA.

Subsequent hierarchical cluster analysis (Supplementary Figure S2)
identified two clusters: one homogeneous cluster containing control
cases (n = 38) at the top, with one TBM case, and the other (bottom)

cluster containing 12 TBM cases and two control cases. The hierarchical
cluster analysis further illustrates that there was some overlap between
the two groups, but overall there was differentiation.

A supervised PLS-DA (Figure 3) was performed in order to
detect differentiating bins and avoid false discoveries. The PLS-DA
model generates meaningful information that can be used to identify
important variables and assess the significance of class
discrimination by performing a permutation test using the
optimal number of components determined by cross validation.
The supervised PLS-DA model for the data exhibited an R2 of 96%,
and was validated by a Q2 of 81%, and a permutation p-value of
0.0004 (188/2000). Various bins differentiating the TBM and control
groups were observed through loading plots for the PLS-DA and
identified through a variable of importance in projection (VIPs) cut-
off criteria of greater than 1.0 (VIP >1.0) for components 1 and 2.

Additionally, univariate statistics of fold change analysis and
Wilcoxon t-tests are illustrated as a volcano plot in (Figure 4).
Thresholds of absolute fold change ≥2.0 and an FDR
p-value ≤0.05 were used to identify statistically significant bins.

Based upon the quantitative statistical data of the 1H-NMR
spectral bins, the important bins were identified using the following

FIGURE 1
Schematic diagram indicating sequence of steps of experimental design of 1H NMR metabolomics and statistical analyses performed.
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rule: (VIP comp one and comp 2 > 1.0) OR (p-value FDR ≤0.05 and
absolute fold change ≥2.0) (see Supplementary Table S1). Pure
compound 1H NMR spectral libraries were used to annotate
most of the important bins that discriminated between the
40 controls and the 13 cases of TBM at initial treatment. Several
important bins contained either pure forms of medications, or their
metabolites: 1,2-propanediol, acetaminophen, isoniazid, isonicotinic

acid, acetylisoniazid, pyrazine carboxamide, pyrazine carboxylic
acid, 2-pyridin-4-formidoacetic acid, 5-hydroxy-2-pyrazine
carboxylic acid. 1,2-Propanediol (or propylene glycol) is used as
a solvent for the preparation of pharmaceuticals and is a common
vehicle for some paediatric medication (Komoroski et al., 2000).
Aspirin, or acetylsalicylic acid, is a medication in the family of
salicylates and the derivative salicyluric acid (2-hydroxyhippuric

FIGURE 2
PCA scores plots. (A) (Left): Quality controls (QCs) and all cases–20 QCs, 44 controls and 13 TBM cases at initial treatment (TBM), with 95% CI
ellipses. The total explained variance from PC1 and PC2 is 28.2%. (B) (Right): Reduced cases (without QCs)–40 controls and 13 TBM cases at initial
treatment (TBM), with 95% CI ellipses. The total explained variance from PC1 and PC2 is 48.9%.

FIGURE 3
Supervised PLS-DA scores plot of 40 controls and 13 TBM cases at initial treatment (TBM), with 95% CI ellipses. The total explained variance from
component 1 and component 2 is 47.8%.
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acid) is the glycine conjugation product (Erasmus et al., 2019).
Isoniazid–a first-line TB treatment drug, was identified, along with
two of its metabolites–isonicotinic acid, acetylisoniazid. Four
metabolites (pyrazine carboxamide, pyrazine carboxylic acid, 2-
pyridin-4-formidoacetic acid, 5-hydroxy-2-pyrazine carboxylic
acid) of the first-line TB drug pyrazinamide were also identified.
These medications are excluded from our discussion because they
are of exogenous origin. A total of 29metabolites were identified that
characterize the urinary metabolic profile of the TBM cases in this
cohort. The relative concentrations (µmol/mmol creatinine) of
28 metabolites were calculated (Figures 5–8) and the p-value and
effects size were determined (Table 2). The resulting 28 metabolites
were classified as: perturbed amino acid metabolism Figure 5: a)
quinolinic acid, b) tyrosine, c) leucine, d) 3-hydroxyisobutyric acid,
e) lysine, f) isoleucine, g) valine, h) glycine]; gut microbiota
perturbation Figure 6: a) o-cresol, b) 4-hydroxyphenylacetic acid,
c) m-cresol, d) formic acid, e) arabinose, f) hippuric acid, g)
methylamine, h) methylguanidine]; perturbed energy metabolism
Figure 7: a) myo-inositol, b) 3-hydroxyisovaleric acid, c) glucose, d)
sucrose, e) mannose, f) pyruvic acid]; ketoacidosis [Figure 8: a)
acetone, b) acetic acid, c) acetoacetic acid]; altered vitamin B
metabolism Figure 8: d) 1-methylnicotinamide, e) trigonelline];
increased nitrogen excretion Figure 8: f) N-acetylglutamine, as
well as increased urea–not quantified].

4 Discussion

The 29 significant urinary metabolites identified in this study
can be categorized in terms of six dysregulated metabolic pathways.

1) Upregulated tryptophan catabolism (quinolinic acid) linked to an
altered vitamin B3 metabolism (1-methylnicotinamide,
trigonelline). 2) Perturbation of amino acid metabolism (leucine,
lysine, isoleucine, glycine, tyrosine, valine). 3) Increased energy
production–metabolic burst (3-hydroxyisobutyric acid, 3-
hydroxyisovaleric acid, glucose, mannose, myo-inositol, pyruvic
acid, sucrose). 4) Disrupted gut microbiota metabolism (4-
hydroxyphenylacetic acid, arabinose, formic acid, hippuric acid,
m-cresol, methylamine, methylguanidine, o-cresol). 5)
Ketoacidosis (acetic acid, acetoacetic acid, acetone). 6) Increased
nitrogen excretion (urea, N- acetylglutamine). We provide biological
context by describing the characterization of the urinary metabolic
profile of TBM in the discussion below.

4.1 Upregulated tryptophan catabolism

Quinolinic acid (Figure 5A) was significantly elevated in the
urine of the TBM patients (71.57 ± 49.42 μmol/mmol creatinine)
compared to the controls (0 μmol/mmol creatinine; p < 0.001, d =
2.9). Quinolinic acid was completely absent (or below the detection
limit of the NMR spectrometer) in all control cases. This suggests
that quinolinic acid would be an excellent candidate as a potential
urinary diagnostic marker for TBM–to be tested in a future study.

Tryptophan is a key amino acid required for protein
biosynthesis, and a precursor for the synthesis of a diversity of
other metabolites (Davis et al., 2019); the most reported on, in the
case of TB (Campbell et al., 2014; Manyelo et al., 2019), is the
kynurenine pathway, via the M. tb infection-induced pro-
inflammatory cytokines IL-6, TNF-α, and IFN-γ, upregulating

FIGURE 4
Volcano plot showing univariate statistically significant bins. Thresholds of absolute fold change ≥2.0 (log2) and p-value ≤0.05 (log10) are given as
dotted lines. The red circles represent features above the threshold–notably, almost all significant bins are increased in TBM cases. Note that both fold
changes and p-values are log transformed on the axes.
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FIGURE 5
Box plots of the relative concentration (µmol/mmol creatinine) of seven urinarymetabolites (A) quinolinic acid, (B) tyrosine, (C) lysine, (D) leucine, (E)
isoleucine, (F) valine, (G) glycine] identified as being part of perturbation of amino acid metabolism in TBM. Green = TBM cases; red = controls. Blue line
(and number) indicates normal reference value, based upon www.hmdb.ca and Bouatra et al. (2013).

FIGURE 6
Box plots of the relative concentration (µmol/mmol creatinine) of eight urinary metabolites (A) o-cresol, (B) 4-hydroxyphenylacetic acid, (C)
m-cresol, (D) formic acid, (E) arabinose, (F) hippuric acid, (G)methylamine, (H)methylguanidine] identified as being part of gut microbiota perturbation in
TBM. Green = TBM cases; red = controls. Blue line (and number) indicates normal reference value, based upon www.hmdb.ca and Bouatra et al. (2013).
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indoleamine 2,3-dioxygenase (IDO) (Campbell et al., 2014).
Quinolinic acid (a downstream metabolite of tryptophan),
induced via IDO-1 (Heyes et al., 1992), has been associated with
a variety of inflammatory disorders, elevated, and also detected in
elevated concentrations in the CSF and brain tissue of patients with a
wide range of infectious and other neurological diseases (Heyes et al.,
2001), produced in large quantities by activated macrophages and
microglia (Heyes et al., 1996). Of note, a study on the CSF collected
from adult TBM cases done by van Laarhoven et al. (2018) identified
tryptophan metabolism as one of the most upregulated metabolic
pathways in TBM cases, with downstream upregulated tryptophan
metabolism reflected by the kynurenine pathway. Their study
examined an adult cohort of 33 TBM cases against 22 controls;
with a further validation study of 101 TBM cases verses 17 controls.
Of the metabolites identified in the initial study, 250 metabolites
were increased and 18 decreased in TBM. Van Laarhoven et al.
further examined the initial 33 TBM cases and identified 16 as
survivors and 17 as non-survivors; 13 metabolites were shown to be
increased in TBM survivors compared to controls and even higher in
TBM non-survivors compared to TBM survivors. Of the
13 metabolites identified, three metabolites, including tryptophan,
were found to be decreased in non-survivors compared to controls,
and also decreased in TBM survivors versus TBM non-survivors.
Van Laarhoven et al. then carried out a validation study on CSF
tryptophan with 101 TBM cases versus 17 controls; that identified
IDO-1 as having greater expression in TBM. However, in all of these
investigation studies, there is no report of the metabolites that
characterize TBM. In a study characterizing the CSF
immunological signature of TBM in a cohort of 23 children
(Manyelo et al., 2019), a 3-marker signature associated with

neuroinflammation (VEGF, IFN-γ, and MPO) showed strong
potential as a diagnostic tool for TBM in children with
promising accuracy. We modelled the downstream metabolic
effects expected from VEGF, IFN-γ, and MPO and predicted
pivotal altered metabolic pathways that would be reflected in the
urinary profiles of TBM subjects (Isaiah et al., 2020). Quinolinic acid
was one of the major metabolic end-products that we predicted to
come from this, within the M. tb-infected brain, induced by an
increased IFN-γ. Urinary quinolinic acid was also observed in the
TBM patients’ urine samples in a similar untargeted urinary 1H
NMR metabolomics study carried out by Mason et al. (2016b).
Quinolinic acid is not only expected in abundance in the M. tb-
infected brain, but also produced by the enteric nervous system in
the gut caused by dysbiosis, in conjunction with a perturbed
gut–brain axis (Isaiah et al., 2020).

4.2 Altered vitamin B3 metabolism

Trigonelline (1-methylnicotinic acid) was significantly
elevated (Figure 8E) in the urine of the TBM patients
(18.65 ± 12.58 μmol/mmol creatinine) when compared to that
of the controls (6.94 ± 7.96 μmol/mmol creatinine; p = 0.008, d =
1.14). 1-Methylnicotinamide, the methylated amide of nicotinic
acid, was also significantly elevated (Figure 8D) in the urine of
the TBM patients (45.30 ± 25.22 μmol/mmol creatinine) when
compared to that of the controls (10.61 ± 12.83 μmol/mmol
creatinine; p < 0.001, d = 1.82). Both 1-methylnicotinic acid and
1-methylnicotinamide are products of an upregulated
kynurenine metabolism (Cazzullo et al., 1976), and, within

FIGURE 7
Box plots of the relative concentration (µmol/mmol creatinine) of seven urinary metabolites (A) myo-inositol, (B) glucose, (C) 3-hydroxyisovaleric
acid. (D) 3-hydroxyisobutyric acid, (E) sucrose, (F) mannose, (G) pyruvic acid] identified as being part of perturbed energy metabolism in TBM. Green =
TBM cases; red = controls. Blue line (and number) indicates normal reference value, based upon www.hmdb.ca and Bouatra et al. (2013).
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the tryptophan–nicotinic acid metabolism, 1-methylnicotinamide is
an end-product of nicotinamide (vitamin B3) metabolism.
Nicotinamide is the precursor of the coenzymes β-nicotinamide
adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide
phosphate (NADP), which are involved in a variety of enzyme-
mediated oxidation and reduction reactions (Li et al., 2006; Zhou
et al., 2009). Excess nicotinamide is methylated, oxidized or
hydroxylated to 1-methylnicotinamide, nicotinamide-N-oxide or
6- hydroxynicotinamide, respectively, and then 1-methylnicotinamide
is further oxidized to the pyridones 1-methyl-2-pyridone-5-
carboxamide (2Py) and 1-methyl-4-pyridone-3-carboxamide by
aldehyde oxidase (Zhou et al., 2009; Mayneris-Perxachs et al.,
2016). 2Py and 1-methylnicotinamide are the major common
nicotinamide metabolites found in human urine (Kitamura et al.,
2008). A study by Zhou et al. (2009) showed that 1-
methylnicotinamide clearance was delayed in diabetic patients,
suggesting that 1-methylnicotinamide could cause oxidative stress
and insulin resistance (discussed further below). 1-
Methylnicotinamide may also play a role in the progression of
Parkinson’s disease, as a result of a superoxide anion formed by
1-methylnicotinamide via mitochondria (Fukushima et al., 2002;
Williams et al., 2005), associated with elevated oxidative stress

(Smeitink et al., 2004), and also with major depressive disorders
(Zheng et al., 2013); hence, associating increased urinary 1-
methylnicotinamide to several neurological and inflammatory
conditions. In this study, the significantly elevated concentrations
of 1-methylnicotinamide, is most likely due to the increased flux
through the kunurenine pathway induced by INF-γ, and generation
of reactive oxygen species (ROS) and reactive nitrogen species
(RNS)–the consequences of severe oxidative stress and impaired
redox status, associated with TB (Reddy et al., 2009; Miric
et al., 2013).

4.3 Perturbation of amino acid metabolism

The urinary concentrations of tyrosine (Figure 5B) were
significantly elevated in the TBM patients (55.09 ± 21.81 μmol/
mmol creatinine) compared to the controls (37.2 ± 20.14 μmol/
mmol creatinine; p = 0.021, d = 0.85). Phenylalanine and tyrosine are
aromatic amino acids, synthesized from phosphoenolpyruvate and
erythrose 4-phosphate–intermediates of glycolysis and the pentose
phosphate pathway, respectively (Ferreira and Teixeira, 2003).
Phenylalanine is catabolized into acetoacetic acid and fumaric

FIGURE 8
Box plots of the relative concentration (µmol/mmol creatinine) of six urinary metabolites identified as being part of ketoacidosis (A) acetone, (B)
acetic acid, (C) acetoacetic acid], altered vitamin B metabolism (D) 1-methylnicotinamide, (E) trigonelline] and increased nitrogen excretion (F) N-
acetylglutamine] in TBM. Green = TBM cases; red = controls. Blue line (and number) indicates normal reference value, based upon www.hmdb.ca and
Bouatra et al. (2013).
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acid via tyrosine (Komoda and Matsunaga, 2015). Tyrosine is
formed by the hydroxylation of phenylalanine in the liver when
the intake of tyrosine is low (Litwack, 2018). Both these amino acids
serve as precursors for the synthesis of many biologically/
neurologically active compounds that are essential for
maintaining a variety of biological functions (Han et al., 2019).
The neurotransmitters epinephrine and norepinephrine are
synthesized from the tyrosine metabolite L-3,4-
dihydroxyphenylalanine (L-DOPA). Parkinson’s disease and
schizophrenia are thought to be caused by, amongst other
factors, a lack of these neurotransmitters (Komoda and
Matsunaga, 2015). Hyperphenylalaninemia (HPA), a disorder
resulting in levels of phenylalanine that are excessive, is caused

by a deficiency of the hepatic phenylalanine-4-hydroxylase (PAH)
or its cofactor tetrahydrobiopterin (BH4), and clinically presents
with a number of neurological signs and symptoms, such as
irritability, hyperkinesis, and severe cognitive deficiency, often
associated with TBM (Blau et al., 2014). In TB patients, altered
metabolism of phenylalanine and tyrosine was previously observed
in a pilot study that compared the urine metabolic profiles of
21 adults [33]; this alteration was confirmed in M. tb-infected
mice (Shin et al., 2011; Weiner et al., 2012). These studies
support our findings of significantly elevated tyrosine in
advanced TBM when compared to controls.

Glycine concentrations (Figure 5G) were elevated in the TBM
patients (457.19 ± 336.45 μmol/mmol creatinine) when compared to

TABLE 2 Data of the quantified (concentration: µmol/mmol creatinine) important metabolites (n = 28) that characterize TBM. A p-value ≤0.05 indicates
statistical significance, and a Cohen’s d effect size ≥0.6 indicates practical significance.

Metabolites (chemical shift) HMDB ID p-value Effect size

1-Methylnicotinamide (9.29) HMDB0000699 <0.001 1.82

3-Hydroxyisobutyric acid (1.08) HMDB0000023 0.001 1.3

3-Hydroxyisovaleric acid (1.27) HMDB0000754 <0.001 2.48

4-Hydroxyphenylacetic acid (6.88) HMDB0000020 <0.001 2.07

Acetic acid (1.92) HMDB0000042 <0.001 2.97

Acetoacetic acid (2.29) HMDB0000060 0.111 0.81

Acetone (2.33) HMDB0001659 0.014 1.29

Arabinose (4.54) HMDB0000646 0.001 1.67

Formic acid (8.46) HMDB0000142 0.08 0.99

Glucose (4.67) HMDB0000122 0.001 1.48

Glycine (3.57) HMDB0000123 0.053 0.81

Hippuric acid (7.66) HMDB0000714 0.096 0.57

Isoleucine (1.03) HMDB0000172 0.052 0.99

Leucine (0.99) HMDB0000687 0.002 1.49

Lysine (1.76) HMDB0000182 0.007 1.34

Mannose (5.20) HMDB0000169 <0.001 2.3

m-Cresol (2.31) HMDB0002048 0.135 0.85

Methylamine (2.60) HMDB0000164 0.043 0.93

Methylguanidine (2.83) HMDB0001522 <0.001 2.56

myo-Inositol (4.09) HMDB0000211 0.001 1.71

N-Acetylglutamine (2.08) HMDB0006029 <0.001 2.21

o-Cresol (2.21) HMDB0002055 <0.001 2.58

Pyruvic acid (2.39) HMDB0000243 0.004 1.70

Quinolinic acid (8.03) HMDB0000232 <0.001 2.9

Sucrose (5.42) HMDB0000258 0.002 1.89

Trigonelline (9.13) HMDB0000875 0.008 1.14

Tyrosine (6.91) HMDB0000158 0.021 0.85

Valine (1.05) HMDB0000687 <0.001 1.48

Note: chemical shifts (ppm) of metabolites are given in brackets. HMDB ID refers to the identity number assigned to the metabolite in the Human Metabolome Database (www.hmdb.ca).
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that of the controls (242.51 ± 194.75 μmol/mmol creatinine; p =
0.053, d = 0.81), at a practically significant level (d > 0.6). Glycine
functions as a neurotransmitter in the brain, allowing neurons to
communicate with one another, and subsequently regulates
neuronal activity (Shahsavar et al., 2020). Many of the clinical
signs and symptoms of TBM, such as low muscle tone, lethargy,
seizures, coma, and apnea requiring ventilator support, are
associated with glycine accumulation in the brain and neural
tissue (DeArmond et al., 2017). Glycine transporters, both
astrocytic GlyT1 and presynaptic neuronal GlyT2, are critical for
proper glycine recycling at glutamatergic and glycinergic synapses.
A number of key studies have shown that microglial activity is
modulated by astrocyte-derived glycine and L-serine (Van Den
Eynden et al., 2009). Glycine at micromolar concentrations
changes the morphology of microglial cells and increases the
secretion of nitrogen oxide, superoxide, acid phosphatase, and
their metabolic activity when induced by lipopolysaccharides
(LPS) (Van Den Eynden et al., 2009). LPS are also well-known
for their ability to stimulate the production of proinflammatory
cytokines (Jansky et al., 2003; Schildberger et al., 2013), especially IL-
6 and IFN-γ, all of which (LPS and the associated cytokines) are also
elevated in TB patient blood (Feruglio et al., 2013; Gallucci et al.,
2021). Several of the clinical symptoms associated with HPA and an
accumulation of glycine in the brain are similar to those clinical
symptoms seen in TBM–e.g., altered consciousness and behavior.
Thus, the treatment of these amino acid imbalances is a potential
basis of therapy to alleviate the symptoms found in TBM
cases–something that needs to be tested in a future study.

The branched chain amino acids were all increased in the TBM
group–leucine (Figure 5D): 31.67 ± 12.64 μmol/mmol creatinine,
isoleucine (Figure 5E): 30.5 ± 31.27 μmol/mmol creatinine and
valine (Figure 5F): 31.67 ± 12.64 μmol/mmol creatinine, relative
to the controls–leucine: 16.95 ± 7.05 μmol/mmol creatinine; p =
0.002, d = 1.49, isoleucine: 10.95 ± 8.08 μmol/mmol creatinine; p =
0.052, d = 0.99, valine: 18.88 ± 6.9 μmol/mmol creatinine; p < 0.001,
d = 1.48. One of the most crucial building blocks for gluconeogenesis
are free amino acids, which become elevated when protein synthesis
is impaired. These findings are in line with other reports of wasting
(cachexia) and malnutrition, also known as “anabolic block,” in TB
patients. Here, the term “anabolic block” describes a higher
proportion of ingested amino acids being oxidized than being
used for protein anabolism (MacAllan et al., 1998; Macallan,
1999; Schwenk and Macallan, 2000). Hence, the significant
increase in BCAAs may likely be caused by the increased
proteolysis needed to meet the elevated demand for amino acids
that are used as fuel sources for energy production during infection
(Levin et al., 1983). It is also well recognized that branched chain
amino acids (BCAAs) contribute to important metabolic processes
in the brain, such as the gluconeogenesis that occurs in activated
microglia, as a source of energy during an activated immune
response (Sweatt et al., 2004). Furthermore, numerous other
pathological conditions are associated with changes to amino
acid levels in body fluids (Binici et al., 2023). The level of total
amino acids in CSF was measured and examined in a 1981 study on
patients who had viral meningitis and TBM. Patients with TBM
were found to have significantly higher concentrations of total
amino acids, which included leucine, isoleucine and valine
(Corston et al., 1981). In a recent investigation of the predictive

value of amino acids for bacterial, aseptic, and tuberculous
meningitis (n = 41, 41, and 21, respectively), against healthy
controls (n = 64), carried out by Binici et al. (2023), all BCAAs
were found to be significantly increased in TBM subjects, confirming
the results. In a 1H NMR-based metabolomics study, serum BCAAs
were increased in M. tb-infected rats, as compared to control rats
(Shin et al., 2011) giving support to what we are seeing in this
paediatric study population. In conditions of perturbed energy
metabolism, as reported by Mason et al. (2016b), as analyzed
using urine from a similar pediatric TBM cohort, elevated
concentrations of hydroxyl acids derived from BCAAs leucine (3-
hydroxyisovaleric acid) isoleucine (2-methyl-3-hydroxybutyric
acid) and valine (3- hydroxyisobutyric acid) were shown in a
putative urinary biosignature. The present study also indicates a
comparable metabolic increase in BCAAs to that observed in CSF of
children with TBM by Mason et al. (2015).

Lastly, lysine, an important amino acid known to facilitate
protein synthesis (Chang and Gao, 1995) (Figure 5C) was also
significantly increased in the TBM cases (151.55 ± 72.73 μmol/
mmol creatinine) when compared to that of the controls (82.59 ±
29.84 μmol/mmol creatinine; p = 0.007, d = 1.34). Via it’s already
well described neuroprotective and neurotrophic effects, lysine has
been shown to enhance neurological function and cerebral blood
flow in patients with ischemic stroke (Kondoh et al., 2010).
According to reports, intellectual disability and other motor
neuron impairment are associated with elevated levels of lysine
in the CSF of TBM patients (Shaw et al., 1995a). Additionally, it has
been demonstrated to form adducts with various substances,
including acrolein-lysine, a marker of lipid peroxidation in
pediatric meningitis (Tsukahara et al., 2002). Children with
persistent atopic dermatitis have also been shown to exhibit
considerably higher urine excretion of acrolein-lysine adducts
than do healthy children (unpublished data) (Tsukahara et al.,
2002). In this investigation, all TBM patients showed elevated
lysine concentration, which is in support of the aforementioned
reports, and that of Mason et al. (2017), who investigated the
utilization of amino acids in CSF, in order to distinguish TBM
from healthy controls.

4.4 Metabolic burst energy metabolites

In this study, urinary glucose (Figure 7A) was significantly
elevated in the TBM patients (114.82 ± 44.86 μmol/mmol
creatinine) compared to the controls (61.35 ± 27.63 μmol/mmol
creatinine; p = 0.001, d = 1.48). Other significantly increased urinary
saccharides in TBM included mannose (106.26 ± 62.42 μmol/mmol
creatinine) and sucrose (101.48 ± 63.86 μmol/mmol creatinine)
when compared to the controls, respectively (17.83 ± 14.63 μmol/
mmol creatinine; p < 0.001, d = 2.3 and 28.83 ± 12.95 μmol/mmol
creatinine; p = 0.002, d = 1.89). Myo-inositol (Figure 7A) and
pyruvic acid (Figure 7G) were also identified by statistical
analysis in this study as being significantly increased in TBM
(317.02 ± 145.37 μmol/mmol creatinine and 62.79 ± 34.04 μmol/
mmol creatinine, respectively) when compared to the controls
(137.99 ± 64.29 μmol/mmol creatinine; p = 0.001, d = 1.71 and
27.41 ± 7.49 μmol/mmol creatinine; p = 0.004, d = 1.70,
respectively).
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These increased metabolites–glucose, mannose, sucrose, myo-
inositol, pyruvic acid, 3- hydroxyisobutyric acid and 3-
hydroxyisovaleric acid–can be linked to metabolic burst, associated
with an increased need for energy production in the M. tb-infected
brain (Mason et al., 2015; Mason, 2017; van Zyl et al., 2020). Glucose is
the primary metabolite that is catabolized for neuroenergetics purposes.
However, uncontrolled glucose utilization in the brain may
subsequently lead to insulin resistance, and transitory glucose
oxidation via glucose oxidase during unregulated glucose
metabolism. According to a growing body of evidence, chronic
neuroinflammatory diseases, such as TBM, are known to be linked
to insulin resistance (Isaiah et al., 2020). The oxidation of glucose
produces gluconolactone, an inflammatory marker previously observed
in pulmonary TB (Preez et al., 2017), when insulin becomes depleted.
Gluconolactone is siphoned into the pentose phosphate pathway and
leads to elevated levels of hydrogen peroxide (Preez et al., 2017). Various
studies (Hampton et al., 1998; Podrez et al., 2000; Klebanoff, 2005;
Manyelo et al., 2019) have shown that myeloperoxidase, identified as an
immunological marker of TBM, interacts with hydrogen peroxide and
triggers a variety of oxidative stress pathways. In our previously
published downstream metabolic model of TBM (Isaiah et al.,
2020), we predicted end products of myeloperoxidase activation,
namely, glutathione sulfonamide and 3- chlorotyrosine. Although we
did not detect these two products in the urine of the TBMpatients using
1H-NMR, it is highly likely that other more sensitive analytical methods
(e.g., liquid chromatography coupled to mass spectrometry) may detect
these and this could be considered for a later study.

In the brain, lactate has neuroprotective properties, associated
with a shuttling neuroenergetic mechanism (Mason, 2017).
However, this shuttling role of lactate is compartmentalized
within the brain during TBM, and urinary lactate levels do not
significantly increase during such times. Systemically, lactate is
converted to pyruvate, leading to significantly increased urinary
levels of pyruvate in TBM, and an increased conversion of NAD + to
NADH. This signals an increased levels of redox and oxidative stress,
as previously described in the predictive urinary TBM model by
Isaiah et al. (2020). This is evidenced when looking at the urinary
lactate:pyruvate (Lac:Pyr) ratio, and TBM cases have a significantly
lower (p = 0.004) Lac-Pyr ratio of 2.43, when compared to that of the
controls (6.32). An additional measure of the redox status can be
done by determining the ratio of 3-hydroxybutyric acid:acetoacetic
acid (3HB:AAA), which is significantly lower (p < 0.001) in the TBM
cases (1.12), than in the controls (1.93).

3-Hydroxyisobutyric acid, a downstream catabolite of valine
metabolism (Ko et al., 1991) (Figure 7D), was significantly increased
in the TBM group (38.41 ± 11.78 μmol/mmol creatinine), as well as
was the leucine catabolite 3-hydroxyisovaleric acid (Figure 7C, 53. ±
20 μmol/mmol creatinine), when compared to the controls,
respectively (24.06 ± 10.32 μmol/mmol creatinine; p = 0.001, d =
1.3 and 17.85 ± 8.39 μmol/mmol creatinine; p < 0.001, d = 2.48).
Both of these hydroxy acids gave further support for the metabolites
associated with a perturbed energy state in TBM (Mason et al.,
2016b). The accumulation of 3-hydroxyisobutyric acid and 3-
hydroxyisovaleric acid, subsequently feeds into the anaplerotic
Krebs cycle, for primary energy production. Coincidently, the M.
tb bacilli also utilize the TCA cycle for their own energy production
(Savvi et al., 2008). An additional indicator of perturbed energy
metabolism is the elevated myo-inositol detected in the paediatric

TBM patients. Myo-inositol is mostly made from glucose (Hauser
and Finelli, 1963) and is a key signaling molecule required for
immunological responses, such as microglia activation. Myo-
inositol has previously been linked to microglia and astrocyte
activation, as well as a pathogenic response seen in
neurodegenerative illness and neuroinflammation (Pears et al.,
2005). Increased CSF myo-inositol in TBM patients has also been
reported previously (van Zyl et al., 2020), and this study shows that
this is a systemic condition in TBM that is likely linked to
uncontrolled glucose utilization.

Mannose is interesting because it is described as being
ubiquitous (i.e., it occurs everywhere). It is grouped under energy
metabolism here since it is a sugar but mannose can also come from
lipoarabinomannan (LAM), one of the key components of theM. tb
cell wall (Van Toorn et al., 2014). In lab grown M. tb, LAM was
shown to be composed of D-arabinose (55%–60%), D-mannose
(36%–40%), and fatty acyls (1%–3%; palmitate C:16;
tuberculostearate (TBSA) C:19:1) (Amin et al., 2021). Further
examination of the role of mannose is however still needed.

4.5 Disrupted gut microbiota metabolism

Eight of the metabolites listed in Table 2 are urinary indicators of
altered metabolism associated with the gut microbiota. A significant
increase of 4-hydroxyphenylacetic acid (Figure 6B) was observed in
TBM urine (138.78 ± 75.85 μmol/mmol creatinine) compared to the
controls (37.45 ± 22 μmol/mmol creatinine; p < 0.001, d = 2.07).
Elevated levels of o-cresol (Figure 6A) and m-cresol (Figure 6C)
(62.15 ± 20.88 μmol/mmol creatinine and 65.57 ± 101.77 μmol/
mmol creatinine, respectively) were found in TBM compared to the
controls (24.02 ± 8.67 μmol/mmol creatinine; p < 0.001, d = 2.58 and
18.5 ± 8.7 μmol/mmol creatinine; p = 0.135, d = 0.85, respectively).
Other elevated urinary gut microbiota metabolites were formic acid
(Figure 6D), methylamine (Figure 6G) and methylguanidine
(Figure 6H) (102.66 ± 129.4 μmol/mmol creatinine, 13.56 ±
8.65 μmol/mmol creatinine and 44.7 ± 10.8 μmol/mmol
creatinine, respectively), when compared to the controls (31 ±
16.06 μmol/mmol creatinine; p = 0.08, d = 0.99, 7.82 ±
3.64 μmol/mmol creatinine; p = 0.043, d = 0.93 and 22.03 ±
6.9 μmol/mmol creatinine; p < 0.001, d = 2.56). Hippuric acid
was identified by statistical analyses as significant based upon the
1H NMR spectral data (Table 2). However, the concentration data
(Figure 6F) of hippuric acid did not show statistical significance (p =
0.096, d = 0.57). Lastly, arabinose (Figure 6E) was identified from the
untargeted 1H-NMR data as being statistically significant in TBM
cases (103.45 ± 40.2 μmol/mmol creatinine) compared to the
controls (55.47 ± 17.21 μmol/mmol creatinine; p = 0.001, d = 1.67).

Arabinose is another ubiquitous metabolite that is produced by the
host and gut microbiota, but is also a component of LAM (Amin et al.,
2021). Previous studies have shown arabinose as a proxy for LAM in
active TB (De et al., 2015). Hence, it’s significantly elevated
concentrations in this pediatric cohort of TBM cases, could be
classified as a potential biomarker of M. tb–this requires further
investigation. Arabinose has also been associated with other diseases.
In a case of two autistic brothers, without any known metabolic disease,
urinary arabinose concentrations were found to be six times greater than
that in healthy children (Shaw et al., 1995b). Furthermore, increased
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levels of arabinose have been reported to have an inhibitory effect on
sucrase (Seri et al., 1996), which could account for the increased levels of
urinary sucrose in TBM cases found in this study.

Some organic acids are produced, at least in part, by intestinal
gut bacterial metabolism. Clinically, these organic acids can be used
as an indirect indicator of dysbiosis (Chapman et al., 2020), and the
higher the quantities of these bacterial metabolites in the urine, the
greater the bacterial quantities and activity in the gastrointestinal
tract (Chapman et al., 2020). Elevated urinary concentrations of gut
microbiota metabolites. Chalmers et al. (1979) indicated that 4-
hydroxyphenylacetic acid is synthesized when amino acids, such as
phenylalanine and tyrosine–both elevated in TBM–are metabolized
by intestinal bacteria. Tyrosine is degraded to tyramine, and then
deaminated and oxidized eventually to form 4-hydroxyphenylacetic
acid, which is then excreted unchanged and unconjugated in the
urine (van Der Heiden et al., 1971; Fellaman et al., 1977). The latter
occurs in children with small-bowel disease or in various bacterial
overgrowth syndromes; Chalmers et al. (1979) subsequently
concluded that urinary 4-hydroxyphenylacetic acid serves as a
useful marker for the screening of gut disorders in children
(Chalmers et al., 1979). It has also been determined that roughly
50% of cystic fibrosis patients, and some patients with confirmed or
suspected TB, have elevated urinary concentrations of 4-
hydroxyphenylacetic acid in both adults and children with
different types of pulmonary disease (Garrettson et al., 1971; van
Der Heiden et al., 1971). The occurrence of 4- hydroxyphenylacetic
acid has also been linked to the breakdown of amino acids.

Hippuric acid, also known as benzoylglycine or benzoylamino-
acetate, is the glycine conjugate of benzoic acid (Lees et al., 2013).
Increased levels of urinary hippuric acid have been linked to several
diseases, including dysbiosis. This supports its recognition as a
biomarker for microbial changes in the gut (Williams et al., 2010;
Chapman et al., 2020). In a gas chromatography–mass spectrometry
(GC-MS) metabolomics study conducted on a similar paediatric
cohort, Mason et al. (2016b) observed a significant increase of
hippuric acid in the urine of TBM patients and attributed the
observation to a drug-like phase II metabolic response of the
host to products generated by the microbiota, indicating a highly
active glycine-conjugated GLYAT-biotransformation system in
TBM. Hence, the presence of increased urinary hippuric acid in
TBM is supported by our previous metabolomics study, in which an
alternative analytical platform was used.

Methylamine has been found in numerous tissues and bodily
fluids, and it has been hypothesized that methylamine, and other
closely similar short-chain aliphatic amines, may be involved in the
abnormalities of the central nervous system seen during hepatic and
renal disease, particularly when the blood-brain barrier is damaged.
When compared to trimethylamine and dimethylamine, there is
little information in the literature about the human urinary
excretion of methylamine (Mitchell and Zhang, 2001; Pirisino
et al., 2005; Guba et al., 2022). Methylguanidine is the immediate
precursor to methylamine, thereby linking it to microbial
metabolism, however, methylguanidine is also known to be an
uremic (neuro)toxin (De Deyn et al., 2001) and an inhibitor of
inducible nitric oxide synthase (iNOS), which is known to affectM.
tb cerebral infection (Poh et al., 2022). Hence, methylguanidine is
another metabolite of interest that is potentially produced directly by
M. tb, and requires further investigation.

Formic acid is a common organic acid used and excreted by
bacteria and no specific link has previously been made to TBM,
however, formic acid has been associated as a potential biomarker of
Alzheimer’s disease, as a byproduct of the metabolism of formaldehyde
(Wang et al., 2022). To our knowledge, no literature exists on the two
cresols (o-cresol and m-cresol) detected as increased in TBM in this
study, in relation to neuropathology.

Thus, these eight increased microbial metabolites originate
almost exclusively from altered bacterial metabolism in the gut
and are attributed to the severe TBM disease in this study. The
occurrence of dysbiosis in TBM is supported by several studies and
the results support further investigation of the gut–brain axis in
TBM (Isaiah et al., 2020). A major limitation of this study is that we
cannot account for treatment given to the TBM cases prior to
admission to hospital, nor upon admission, and their effects on
the gut microbiota.

4.6 Ketoacidosis

Ketoacidosis is a condition defined by increased ketone bodies,
such as acetone, acetic acid and acetoacetic acid. Acetone
(Figure 8A) and acetic acid (Figure 8B) were significantly
elevated in the TBM cases (176.48 ± 179.09 μmol/mmol
creatinine and 61.77 ± 16.25 μmol/mmol creatinine, respectively)
compared to the controls (26.82 ± 52.59 μmol/mmol creatinine; p =
0.014, d = 1.29 and 24.73 ± 8.7 μmol/mmol creatinine; p < 0.001, d =
2.97, respectively). However, acetoacetic acid (Figure 8C) in the
TBM group was not statistically different from the control group
(p = 0.111), but were practically significant (d = 0.81).

Ketones are metabolic end-products of fatty acid metabolism that
occurs in the liver (Dhillon and Gupta, 2021; Cruzat et al., 2018). During
perturbed energy metabolism, or in the absence/diminished availability
of carbohydrates, fats become the primary source of energy, and large
levels of ketones are produced as a metabolic by-product. Hence, the
occurrence of ketoacidosis also supports evidence for insulin resistance,
as elevated glucose levels are found in TBMpatients. The increased levels
of ketone bodies indicate that this elevated glucose is not being used for
energy production; instead, fatty acid metabolism has become the major
source of energy production in TBM (Blau et al., 2014; Dhillon and
Gupta, 2021).

Acetone, whichmay give the breath of ketotic patients a typical odor,
is formed via the non-enzymatic decarboxylation of acetoacetate (Blau
et al., 2014). The TBM group’s urinary ketone values in this study are
indicative of their poor clinical health. Ketoacidosis also supports the
metabolic burst that we described previously. Several ketoacidosis
markers were also identified in our previous GC-MS metabolomics
study of TBM (Mason et al., 2016b), which included the ketosis markers
2- hydroxybutyric acid, 3-hydroxybutyric acid, 2-methyl-3-
hydroxybutyric acid, and acetoacetic acid, in the urine of the
TBM patients.

4.7 Increased nitrogen excretion

Urea was identified in the statistical analyses of the raw data as
being significantly increased in the urine of the TBM cases compared
to the controls. Increased urea is irrevocably linked to elevated
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nitrogen excretion. Urea in a 1H NMR spectrum presents as a very
distinctive broad singlet near to the suppressed water signal. Owing
to the width of the urea signal in the 1H NMR spectra, and the
known influence of water suppression on the urea peak, accurate
quantification of urea was not possible.

N-Acetylglutamine (Figure 8F), another metabolite of increased
nitrogen excretion, was significantly elevated in the TBM patients
(335.45 ± 184.47 μmol/mmol creatinine) compared to the controls
(102.43 ± 25.98 μmol/mmol creatinine; p ≤ 0.001, d = 2.21).
N-Acetylglutamine is an amino acid derivative, and the

downstream metabolite of D-glutamine and D-glutamate
metabolism (Zhou et al., 2018). N- acetylglutamine is used as a
neurotransmitter in the brain, and perturbed N-acetylglutamine can
be linked to altered neuronal stability and/or function. In a study
that conducted RNA-sequencing on whole blood and CSF of
ventricular and lumbar punctures of paediatric patients treated
for TBM, Rohlwink et al. (2019) indicated immune responses
and neural excitotoxicity which depicts the immunological events
that occurs in the brain. Of the 389 differentially expressed genes,
45 genes are mainly associated with glutamate excitotoxicity, key

FIGURE 9
The metabolic pathways characterizing the changed urinary metabolic profiles in TBM stage 3 patients. The metabolites in bold denote those
detected in significantly elevated concentrations in the TBM stage 3 patients when compared to the controls. As indicated in the pathway, P–phosphate; α
K.G–alpha ketoglutarate; IDO - Indoleamine 2, 3-dioxygenase; Isole–isoleucine; Val–valine; Leu–leucine; CoA, CoASH–coenzyme A; TCA -
tricarboxylic acid cycle; NH4

+–ammonium; HCO3
−–bicarbonate; ATP–adenosine triphosphate; NAD–nicotinamide adenine dinucleotide;

BCAA–branched-chain amino acids.; H2O–water; NAGS–N-acetyl glutamate synthase.
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excitatory neurotransmitter in learning and memory also, mediator
associated with several neurological diseases (Rohlwink et al., 2019).
N-Acetylglutamine is also classified as a uremic toxin and increased
urinary levels indicate severe neurological complications (typical in
TBM), advanced catabolism and/or possible kidney damage.
Glutamine supplementation is a well-known strategy to treat
some critically ill patients, such as prematurely born infants
(Darmaun et al., 2018), and could be considered in paediatric TBM.

4.8 Urinary metabolic map of TBM

We took all of the above described metabolic pathways
characterizing the urinary profiles of advanced hospitalized TBM
paediatric cases, and connected them into a metabolic map
(Figure 9). Figure 9 illustrates how all these metabolic pathways
connect with each other, providing new connections (information)
of metabolic pathways, and their complexity, in advanced TBM in
paediatric patients. With this new information, we offer new insights
and approaches into future TBM research.

4.9 Limitations of the study and TB
medications

The limitations in this study included: 1) a small sample size
(no a priori sample size considerations were factored in because
the samples were retrospectively selected from a previous study),
2) no validation sample cohort, 3) there was no information
available on the timing and type of treatment regime
administered to the undiagnosed TBM patients at the referral
healthcare centers, before being taken to the hospital, 4) the
controls were heterogenous and, due to ethical restrictions, the
only information available for the controls were that they were
pediatric patients without meningitis, no neurological
symptoms, and from the same geographical region as the
TBM patients. Upon inspection of the 1H-NMR spectra, it
was found that pyrazinamide (PZA), isoniazid (IZA) and
ethionamide were detected in all the time zero stage three
(T0) TBM cases urine samples, except for 2 cases (103 and
114) which had no IZA and no ethionamide. Rifampicin and its
two metabolites–3- formylrifampicin and 25-deacetyl-
rifampicin, were not detectable in the 1H-NMR spectra in any
of the urine samples. The inability to see rifampicin and its two
known urinary metabolites could be that either the rifampicin
has been detoxified in the body into a form that we do not know
of, or, more likely, the NMR analytical platform lacks the
sensitivity (i.e., below the detection limit of the NMR).

5 Conclusion

We consider the significant metabolites identified in this study
as being the best urinary metabolic characterization of TBM, to date.
The precise outcome of this study indicated that TBM under initial
treatment could be well differentiated from controls, based upon
urinary metabolic profiles analyzed by 1H NMR spectroscopy. These
results support metabolomics data produced in our previous GC-MS

metabolomics study conducted using a similar paediatric cohort.
Thus, these results support the use of 1H NMR metabolomics in
characterizing TBM, and in the pursuit of non-invasive metabolic
markers of TBM to aid in the early differential diagnosis and
subsequent treatment of TBM–something that is greatly needed
in the paediatric population, the patient group most at risk
of mortality.

Moreover, several clinical aspects of the studied cohort of
advanced TBM were inferred from the urinary metabolomics data,
which need to be confirmed from blood samples collected from
TBM cases. The findings related to -illness induced-malnutrition
can have therapeutic impact. Malnutrition can be subdivided in
deficiency of micronutrients (e.g., vitamins) and macronutrients
(e.g., proteins). We found (a) deficient vitamin B3 status expressed
by increased urinary 1-methylnicotinamide–upregulated
utilization of vitamin B3 from increased tryptophan catabolism,
and increased urinary trigonelline; (b) increased nitrogen
excretion, which reflects the elevated catabolic state of patients
and their related malnutrition. For instance, shortage of the semi
essential amino acid glutamine can lead to immune dysfunction
(Cruzat et al., 2018). Thus, it is our recommendation that the
nutritional status of TBM cases should be assessed with
comparison made to pulmonary TB cases or controls, in order
to determine whether the findings are specific to TB or TBM.
Potentially, additional supplementation of vitamin B and
glutamine may be a consideration in the nutritional component
of the future overall management of TBM.
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Metabolomics highlights
biochemical perturbations
occurring in the kidney and liver
of mice administered a human
dose of colistin

I. Barla1, I. V. Dagla2, A. Daskalopoulou3, M. Panagiotopoulou3,
M. Kritikaki3, P. Dalezis4, N. Thomaidis1, A. Tsarbopoulos4,
D. Trafalis4 and E. Gikas1*
1Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and
Kapodistrian University of Athens, Athens, Greece, 2GAIA Research Center, The Goulandris Natural
History Museum, Kifissia, Greece, 3Laboratory of Pharmaceutical Analysis, Department of Pharmacy,
School of Health Science, National and Kapodistrian University of Athens, Athens, Greece, 4Laboratory of
Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Introduction: Colistin (CMS) is used for the curation of infections caused by
multidrug-resistant bacteria. CMS is constrained by toxicity, particularly in kidney
and neuronal cells. The recommended human doses are 2.5–5 mg/kg/day, and
the toxicity is linked to higher doses. So far, the in vivo toxicity studies have used
doses even 10-fold higher than human doses. It is essential to investigate the
impact of metabolic response of doses, that are comparable to human doses, to
identify biomarkers of latent toxicity. The innovation of the current study is the
in vivo stimulation of CMS’s impact using a range of CMS doses that have never
been investigated before, i.e., 1 and 1.5 mg/kg. The 1 and 1.5 mg/kg, administered
inmice, correspond to the therapeutic and toxic human doses, based on previous
expertise of our team, regarding the human exposure. The study mainly focused
on the biochemical impact of CMS on the metabolome, and on the alterations
provoked by 50%-fold of dose increase. The main objectives were i) the
comprehension of the biochemical changes resulting after CMS administration
and ii) from its dose increase; and iii) the determination of dose-related
metabolites that could be considered as toxicity monitoring biomarkers.

Methods: The in vivo experiment employed two doses of CMS versus a control
group treated with normal saline, and samples of plasma, kidney, and liver were
analysed with a UPLC-MS-based metabolomics protocol. Both univariate and
multivariate statistical approaches (PCA, OPLS-DA, PLS regression, ROC) and
pathway analysis were combined for the data interpretation.

Results: The results pointed out six dose-responding metabolites (PAA, DA4S,
2,8-DHA, etc.), dysregulation of renal dopamine, and extended perturbations in
renal purine metabolism. Also, the study determined altered levels of liver
suberylglycine, a metabolite linked to hepatic steatosis. One of the most
intriguing findings was the detection of elevated levels of renal xanthine and
uric acid, that act as AChE activators, leading to the rapid degradation of
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acetylcholine. This evidence provides a naïve hypothesis, for the potential
association between the CMS induced nephrotoxicity and CMS induced 39
neurotoxicity, that should be further investigated.

KEYWORDS

metabolomics, colistin, drug toxicity, pathway analysis, dopamine metabolism, purine
metabolism

1 Introduction

Colistin is typically used as a last resort antibiotic to treat
infections caused by multidrug-resistant bacteria as it has a
narrow therapeutic index and can cause significant toxicity,
particularly to the kidneys and nervous system (Grégoire
et al., 2017; Satlin et al., 2020; Mohapatra et al., 2021). It
belongs to the class of antibiotics known as polymyxins, which
have a unique mechanism of action that disrupts the bacterial cell
membrane. This mechanism of action makes polymyxins
effective against many Gram-negative bacteria that are
resistant to other antibiotics, such as Pseudomonas aeruginosa,
Acinetobacter baumannii, and Klebsiella pneumoniae (Falagas
and Kasiakou, 2005). However, polymyxins are also toxic to
human cells, particularly kidney cells and neuronal cells. The
drug is usually given as colistimethate sodium (CMS), a prodrug
of colistin (Bergen et al., 2006). The dosage regimen of CMS can
vary depending on the patient’s age, weight, the severity of
infection, and the method of administration (injection or
inhalation). For the treatment of infections caused by Gram-
negative bacteria, the usual adult dose is 3 million units daily,
administered intravenously in divided doses every 8 h
(Plachouras et al., 2009). An average steady-state plasma
colistin concentration of 2 mg/L seems to be a reasonable
target value (Nation et al., 2015). A loading dose CMS is often
recommended to achieve a therapeutic concentration quickly.
The loading dose can vary depending on the patient’s condition,
but it is usually higher than the subsequent maintenance
dose (Haseeb et al., 2021; Rychlíčková et al., 2023). The
duration of treatment can also vary depending on the
severity of infection and the patient’s response to therapy.
According to the prescribing information for CMS injection,
the maximum daily dose should not exceed 5 mg/kg of body
weight (https://www.accessdata.fda.gov/drugsatfda_docs/label/
2009/050108s026lbl.pdf, accessed on 26 April 2023). It is
important to note that the dosage regimen for CMS should be
adjusted in patients with renal impairment as the drug is
primarily eliminated by the kidneys (Garonzik et al., 2011).
The use of CMS should always be monitored by a healthcare
professional. An approach to increase the drug efficacy is the co-
administration of CMS with other antibiotics such as fosfomycin
(Katip et al., 2024).

CMS, like other antibiotics, can cause side effects and
toxicities, i.e., brain dysfunction and neurotoxicity. The
mechanism of CMS-induced neurotoxicity is not fully
understood, but it is thought to involve the drug’s ability to
penetrate the blood–brain barrier and interact with neuronal cells
(Inci et al., 2018; Dai et al., 2019; Ramezanzade et al., 2023).
Furthermore, CMS can cause damage to the kidneys, especially if

it is used for a long time or at high doses. This can lead to
symptoms such as decrease in creatinine clearance, decreased
urine output, proteinuria, cylinduria, swelling in the legs or feet,
and shortness of breath (Gai et al., 2019; Eljaaly et al., 2021;
Alotaibi et al., 2022).

In vivo studies of CMS nephrotoxicity have shown histological
abnormalities, tubular dilation and cell necrosis, and epithelial cell
vacuolation as well (Gai et al., 2019). Although CMS is primarily
associated with kidney toxicity, there is some evidence to suggest
that it may also have an effect on the liver (Long et al., 2022). It is
important to note that the risk of toxicities may vary depending on
the dose, duration of treatment, and individual patient factors.
Therefore, the levels of CMS should be carefully monitored.

Despite these limitations, CMS remains a last-resort
treatment against multidrug-resistant bacteria. There is limited
literature on CMS toxicity; i.e., in PubMed (https://pubmed.ncbi.
nlm.nih.gov/?term=colistin+induced+toxicity, last access in
March 2024), the search colistin induced toxicity resulted in
178 published papers.

The majority of the CMS toxicity in vivo studies use doses even
10-folds higher than the human doses (Gai et al., 2019), to
investigate the background of highly toxic conditions; therefore,
our knowledge on the impact of low CMS doses is limited. In
addition, metabolomics studies of colistin toxicity are limited,
although in vivo metabolomics experiments could increase our
knowledge on CMS impact, as the metabolites are molecules of
universal structure and, thus, provide consistent interpretation of
the evidence resulting from toxicological studies using animal-to-
human translation. Until now, one metabolomics study has been
conducted for the characterization of urinary metabolites as
biomarkers of colistin-induced nephrotoxicity in rats (Jeong
et al., 2016). Furthermore, Long et al. (2022) have studied the
alteration of kidney and liver metabolome after the
administration of a high CMS dose.

Based on the above, the objective of the current study is the
evaluation of the biochemical impact resulting from realistic
human-relevant CMS doses and from an increase of 50% that is
perceived as pragmatistic . The main objectives of the study were 1)
comprehension of the biochemical changes resulting from the
mentioned doses; 2) determination of dose-related metabolites, as
potential toxicity-monitoring biomarkers; and 3) estimation of early
signs of hepatotoxicity. Therefore, an in vivo stimulation of CMS
metabolic changes was performed by administering CMS to mice
(1 and 1.5 mg/kg/day for 5 sequential days). Plasma, kidney, and
liver were used for metabolomics profiling using a UPLS-MS-based
platform. The doses were calculated by using the dose conversion
from animals to humans (Nair and Jacob, 2016; Jacob et al., 2022).
Based on the clinical experience of our team, these doses correspond
to human exposure, representing the therapeutic and toxic dose.
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2 Materials and methods

2.1 Animals and dosage regime

The study employed plasma, kidney, and liver samples of
15 C57Bl/6 (weight: 20–25 g; age: 8–10 weeks) mice. All in vivo
experiments were carried out in accordance with the “Guide for the
care and use of laboratory animals,” and experiments were approved
by the Ethics Committee (Approval No: 574234/20-07-2020). The
mice were housed and maintained according to the ARRIVE
guidelines. The number of animals needed to achieve statistical
power >80% was calculated using GPower 3.1. The animals were
randomized into three groups (n = 5 for each group) as follows: 1)
control (NaCl 0.9%), 2) low dose (LD) (CMS 1 mg/kg/day), and 3)
high dose (HD) (CMS 1.5 mg/kg/day). The drug and the normal
saline, respectively, were injected intramuscularly (i.m.) to the thigh
of each laboratory animal. The administration was repeated for
5 sequential days, and on the sixth day, the laboratory animals
were sacrificed.

2.2 Metabolite extraction from plasma
and tissues

For the plasma extraction, 200 μL of the sample was mixed
with 600 μL of frozen MeOH, centrifuged using a Neya 16R
centrifugation apparatus (REMI, Mumbai, India) at 10,000 rpm,
5 min, 4°C, and the supernatant was stored at −80°C. For the
extraction of liver and kidney samples, 100 mg of the tissue was
homogenized with 1 µL of MeOH–H2O (1:1, v/v) solution. A
Cryolys Evolution tissue homogenizer (Bertin Instruments,
Rockville, MD, United States) and the homogenizing CKMix
lysing kit (Bertin Corp., Rockville, MD, United States) were
employed for a two-step procedure. At first, 500 μL of the
solution was added in the falcon tube with the tissue, and the
“hard” mode (9,600 rpm, three 20-s cycles followed by a 60-s
pause) of the homogenizer was applied. Then, the blend was
centrifuged, and the supernatant was obtained. For the second
step, after removing the supernatant, the rest of the solution was
added to the homogenizing tube with the remaining tissue and
submitted to a second cycle of a “soft”mode (5,000 rpm, one 60-s
cycle) homogenization. The blend was centrifuged, as before,
and the supernatant was obtained and mixed with the
supernatant obtained from the 1st homogenization cycle;
400 μL and 500 μL of plasma and tissue extract, respectively,
were evaporated to dryness using a HyperVAC-LITE centrifugal
vacuum concentrator (Hanil Scientific Inc., Gimpo, Korea), and
the remaining solid was reconstituted with 150 μL of IS mix
solution containing 1 ppm of yohimbine and reserpine in
MeOH–H2O (1:1, v/v). Yohimbine and reserpine are
pharmaceutical compounds that are not normally detected in
organisms and were used for multi-IS-based signal correction.

2.3 UPLC-MS analysis

The samples were analyzed using a Dionex UltiMate
3000 RSLC (Thermo Fisher Scientific, Dreieich, Germany)

UPLC system, coupled to a maXis Impact QTOF mass
spectrometer (Bruker Daltonics, Bremen, Germany) equipped
with an electrospray ionization source. The chromatographic
column used was Acclaim RSL C18 column (2.1 × 100 mm,
2.2 μm, Thermo Fisher Scientific), and elution of the analytes was
performed with gradient conditions, by a ramp increase of the
organic mobile phase. The DIA methodology (bbCID mode, in
Bruker terminology) was selected for MS acquisition. A detailed
description of the UPLC conditions and the parameters of ESI
and MS are included in the Supplementary Material, §
Experimental Condition.

2.4 Data processing

The MZmine 4.9 software was selected for untargeted peak-
picking (Pluskal et al., 2010). The QCRLSC (Luan et al., 2018)
algorithm (via the StatTarget platform) (Luan et al., 2018) and the
NOMIS algorithm [via NOREVA 2.0 platform (Fu et al., 2022)] were
employed for QC- and IS-based signal correction, respectively.
RamClustR was used for the assignment of pseudo-MSMS
clusters (Broeckling et al., 2014), and MCID (http://www.
mycompoundid.org/mycompoundid_IsoMS/) (Huan et al., 2015)
and HMDB (Wishart et al., 2018) online libraries were used for
metabolite annotation. SIMCA 14.1 (Umetrics, Upsala, Sweden) and
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca) (Pang et al.,
2021) platforms were used for statistical analysis. Moreover,
TASQ Client 2.1 software (Bruker Daltonics, Bremen, Germany)
was used for the screening of the rawMS data, for the determination
of metabolites involved in purine metabolism. Further description of
the pre-processing workflow is included in the
Supplementary Material.

2.5 Statistical analysis design

The final feature tables were submitted to the following
statistical tests. Initially, the groups were submitted to pairwise
comparisons, i.e., C vs. LD and LD vs. HD, using PCA and
OPLS-DA. Pairwise comparisons were selected as they provided
several advantages:

• The comparison of C and LD provided an insight into the
biochemical impact of CMS on the metabolome, and so far, to
the best of our knowledge, this issue has not been addressed by
the existing literature.

• The comparison of LD and HD provided an image of what
happens when the CMS dose is 50% increased. It is worth
mentioning that low-dose increases display a realistic scenario
of clinical practice, and considering that CMS is nephrotoxic,
increasing the circulating levels of CMS could result in latent
or severe toxicity outcomes.

• The pairwise comparisons provide the ability to use ortho-
based methodologies, i.e., OPLS-DA, and thus remove the
impact of confounders on the metabolomics profiles,
acquiring more interpretable results.

• Pairwise comparisons can be combined with methodologies
such as SUS plot. The SUS plot compares two ortho-models
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FIGURE 1
Summary of the PCA and OPLS-DA results of the ESI+ datasets. PCA scores’ plots of the following: (A) kidney, C (n = 5)-LD (n = 5); (B) liver, C (n = 5)-
LD (n = 5); (C) plasma, C (n = 5)-LD (n = 5); (D) kidney, LD (n = 5)-HD (n = 5); (E) liver, LD (n = 5)-HD (n = 5); (F) plasma, LD (n = 5)-HD (n = 5). OPLS-DA
scores’ plots: (G) kidney, C (n = 5)-LD (n= 4); (H) liver, C (n = 5)-LD (n= 5); (I) plasma, C (n= 5)-LD (n= 5); (J) kidney, LD (n= 5)-HD (n = 5); (K) liver, LD (n =
5)-HD (n = 5); (L) plasma, LD (n = 5)-HD (n = 5).
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simultaneously and provides information about their
common and different trends, which is discussed in
detail below.

Considering that the CMS nephrotoxicity is dose-related, based
on the existing literature, the metabolites differentiated in LD and
HD could reveal latent signs of toxicity and even facilitate toxicity

FIGURE 2
Summary of PLS analysis. Observed vs. predicted plots of ESI+ datasets: (A) kidney; (B) liver; (C) plasma. The gray spots represent the C samples (CMS
0 mg/kg, n = 5); the blue spots represent the LD samples (CMS 1.0 mg/kg, n = 5); and the red spots represent the HD samples (CMS 1.5 mg/kg, n = 5).
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monitoring. For further investigation, OPLS-DA was used to
develop the SUS plot that allowed structure comparison of the
two states.

PLS regression models were used to investigate if there is a linear
correlation between the dose and the metabolomics alterations, as
has been observed by Nguyen et al. (Gai et al., 2019) when
administrating higher doses of CMS. Acknowledging that the
linear correlations provide limited explanation of the
dose–response phenomena, the study focused on the linearly
dose-related metabolites as their alterations were more easily
interpretable, and, most importantly, they could lead to
monitoring biomarkers, i.e., metabolites whose their levels are
altered by the dose increase in a consistent way and could betray
the stage or the development of toxicity.

Finally, univariate Receiver Operating Characteristic (ROC)
curve analysis was used for pairwise comparisons to validate the
prediction ability of the variables that were statistically significant in
the multivariate tests.

3 Results

3.1 Statistical analysis results

The control (C), the low dose (LD)-treated, and the high dose
(HD)-treated mice were compared in pairs to detect classification
trends correlated 1) with the drug administration (C vs. LD) and 2)
with the drug dose (LD vs. HD). Initially, PCA exhibited clear

FIGURE 3
Graphical description of the SUS plot basic information. (A) SUS plot developed by the OPLS-DA models of C–LD and LD–HD of the kidney ESI+

dataset. The green spotted area represents the variables of the shared structure. The blue and red spotted areas represent the variables of the unique
structure. At the edges of the black arrow of unique structures exist the statistically significant dose–response variables (red: upregulated, blue:
downregulated). (B) Box-plot representing a variable of the shared structure, which shows increased levels in LD (blue) but decreased levels in C
(gray) and HD (red). (C) Box-plot representing an example of an upregulated unique structure variable, which is increased in LD (blue) compared with C
(gray) and in parallel is decreased in LD, compared with HD (red).
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separation of C and LDmice in the kidney (Figure 1A) but there was
no separation observed either in C–LD comparison, or in the plasma
and liver (Figures 1B–F). The confidence and performance of the
developed models were estimated through misclassification and
permutation testing and model ROC analysis, and the results,
along with the figures of merit, are presented in
Supplementary Table S1.

The main objective of the study was to investigate the alterations
occurring by dose increase, and thus, the study was focused on the
differentially expressed variables acquired from the LD–HD
comparisons. Those with Variable Importance in the Projection
(VIP) > 1.2 were employed for univariate ROC curve analysis to
detect the variables that responded to the dose increase. The number
of variables with Area Under Curve (AUC) value >0.8 were as
follows: 251 variables for kidneys (49 upregulated in the HD),
345 variables for the liver (136 upregulated in the HD), and
47 variables for plasma (28 upregulated in the HD).

Moreover, PLS models were employed to investigate the linear
correlation between the three levels of administered CMS (0, 1, and
1.5 mg/kg) and the alteration occurring to the metabolomics profiles
of the mice. The excellent linearity (R2 > 0.99) and the low root
means square error of estimation of the PLS models (Figure 2) prove
that there is a linear correlation between the administered dose and
the resulting metabolomics alterations.

To elaborate on this observation, the OPLS-DAmodels of C–LD
and LD–HD comparisons were used to build shared and unique
structure plots, known as SUS plots, aiming to highlight the most
highly dose-correlated variables. The SUS plot describes the
correlation of the predictive variables afforded by the two OPLS-
DA models, by plotting the loadings of both against each other. In
this case, the two OPLS-DA models share a common group, the LD
group. The SUS plot in Figure 3A represents the loadings of C–LD
and LD–HD for the dataset of kidney, ESI+. The features at the edges
of the y-axis are discriminant for the model C–LD, and those at the
edges of the x-axis are discriminant for the model LD–HD. The
features existing in the diagonal orientation from the lower left to the
higher right (Figure 3A, green arrow) are those that present shared
structures, whereas those existing in the diagonal orientation from
the higher left to the lower right (Figure 3A, black arrow) present
unique structures. As the LD is the common group in the two OPLS-
DAs, the variables of the shared structure show the same regulation
in the LD group, in both C–LD and LD–HD comparisons. For
example, the variable in Figure 3B shows increased levels in LD
samples and decreased levels in C and HD samples; so, as it is always
increased in the LD group, it is considered a variable of shared
structure. Conversely, the variable in Figure 3C shows increased
levels in the LD group, compared with the C-group levels, and in
parallel shows decreased levels in the LD group when compared with
the HD group. Thus, it is considered to be a variable of unique
structure. The features of the unique structure seem to express
dose–response, whereas those of the shared structure do not provide
meaningful information.

Aiming to determine variables showing linear correlation to the
dose, a pipeline of three steps was followed: 1) at first, the variables
existing at the edges of the shared-structure-diagonal (of the SUS
plot) were selected; 2) then, they were submitted to pairwise (C–LD
and LD–HD) univariate ROC curve analysis, and those having
AUC > 0.8 in both comparisons were retained; and 3) they were

used to develop regression curves, as shown in Supplementary
Figures S1, S2. This procedure resulted in 16 dose–response
variables, with R2 > 0.7; nine of them were upregulated in
correlation to the dose (Table 1).

3.2 Variable selection and identification

The identification was statistically driven by the results of the
pairwise comparison of LD–HD and also by the results of the SUS
plot procedure. The pipeline followed for the current metabolomics
study is described in Figure 4. Thirty-four statistically important
features were attributed to known metabolites, as shown in Table 2.
The identified metabolites were submitted to pathway analysis,
showing extended alteration of purine metabolism in the kidneys.
Thus, an additional hypothesis-driven peak-picking, focusing on the
metabolites involved in the purine metabolism pathway, was
performed. The screening list of the investigated metabolites is
provided in Supplementary Table S3. For this step, the C, LD,
and HD groups of kidney samples were used, and 27 metabolites
were finally identified.

3.3 Pathway analysis

The pathway analysis was performed in two steps, using the
Pathway Analysis module of MetaboAnalyst 5.0. Initially, all the
identified metabolites, despite the biosample that they were detected
in, were submitted to a naïve pathway analysis. This step pointed out
extended dysregulation in purine metabolism, as described in
Figure 5. Therefore, the metabolites participating in purine
metabolism were targeted and determined in the raw MS data of
all samples (kidney, plasma, and liver) and all groups (C, LD, and
HD). The list of metabolites that were searched is available in
Supplementary Table S3.

A higher number (27) of purine metabolism metabolites were
detected in the kidney dataset, and therefore, the pathway analysis
focused on kidneys. The peak area signals of the detected metabolites
were used instead of concentration in the corresponding module of
the Pathway Analysis tool. As this module is capable of pairwise
comparisons, C–LD and LD–HD were investigated separately. In
the C–LD comparison, 17/65 metabolites were altered, providing a
p-value (FDR) = 0.04, in contrast to the LD–HD comparison that
showed 17/65 alteredmetabolites as well, but a p-value (FDR) = 0.37,
indicating that purine metabolism was highly influenced by the LD,
but there was no further impact by the dose increase.

4 Discussion

This study was designed to enrich the existing knowledge of the
metabolic alterations related to CMS. So far, most of the in vivo
studies have used significantly high CMS doses to invoke the drug’s
toxicity. For instance, the most recent experiment by Nguyen et al.
induced in vivo CMS toxicity by administering 25 mg/kg and
50 mg/kg (Long et al., 2022) at low and high doses, respectively,
which are 10-fold higher than the recommended human dose
(2.5–5 mg/kg/day). The high-dosing approaches provide ample
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TABLE 1 Summary of information for the dose–response variables resulting from the SUS plot procedure.

Dataset M/Z RT R2 VIP
(HD–LD)

AUC
(HD–LD)

p-value
(HD-LD)

Regulation
(HD)

VIP
(C–LD)

AUC
(C–LD)

p-value
(C–LD)

Regulation
(LD)

KIDNEY(−) 205.994 0.8 0.78 1.2 0.85 0.08 ↑ 1.1 1 0.02 ↑

KIDNEY(+) 125.0185 3.6 0.79 1.2 1 0.02 ↑ 1.1 0.85 0.12 ↑

KIDNEY(+) 175.0059 1.5 0.84 1.3 0.8 0.19 ↓ 1.0 0.9 0.03 ↓

KIDNEY(+) 224.5468 6.9 0.79 1.4 0.95 0.03 ↑ 1.0 0.9 0.08 ↑

KIDNEY(+) 262.0619 4.4 0.82 1.3 0.9 0.09 ↑ 1.1 1 0.03 ↑

KIDNEY(+) 278.0401 3.6 0.77 1.3 0.85 0.24 ↑ 1.2 0.95 0.02 ↑

LIVER(−) 239.0422 14.7 0.73 1.3 0.8 0.1 ↓ 1.2 0.8 0.16 ↓

LIVER(+) 126.0923 5.2 0.71 1.7 1 0.01 ↑ 1.2 0.76 0.22 ↑

LIVER(+) 195.1244 15.1 0.76 1.5 0.88 0.03 ↑ 0.9 0.8 0.48 ↑

LIVER(+) 206.1408 8.9 0.75 1.6 0.88 0.10 ↑ 1.1 0.72 0.19 ↑

LIVER(+) 222.1616 10.2 0.78 1.8 0.84 0.10 ↑ 1.2 0.76 0.18 ↑

LIVER(+) 241.1771 15.4 0.87 1.5 0.88 0.12 ↓ 1.1 0.72 0.28 ↓

LIVER(+) 254.0957 12.7 0.75 1.4 0.84 0.19 ↓ 1.1 0.72 0.26 ↓

LIVER(+) 348.3154 7.5 0.84 1.3 0.88 0.09 ↓ 1.6 0.96 0.03 ↓

LIVER(+) 359.3187 16.1 0.72 2.2 1 0.00 ↓ 1.4 0.80 0.12 ↓

LIVER(+) 399.2547 7.4 0.76 1.6 0.84 0.05 ↓ 1.7 0.92 0.02 ↓

The (R2) column includes the R2 factor of linearity resulting from the developed regression curves.

FIGURE 4
Graphical description of the appliedmetabolomicsworkflow: Initially, the in vivo experiment simulated the impact of 1-mg/kg and 1.5-mg/kgCMS in
mice. The liver, kidney, and plasma samples were used for metabolite extraction, and the analysis was conducted with a Bruker maXis Impact QTOF MS,
using RPLC and ESI+/− ionization. The MS was acquired with the DIA methodology. Then, the raw data were used for untargeted peak-picking, and the
feature list was submitted to QC- and IS-based signal correction. RAMclustR was used for the generation of pseudo-MSMS. Then, the features were
used for variable selection performed with two ways: i) extraction of dose–response variables using the SUS plot procedure and ii) extraction of dose-
correlated variables combining multivariate (OPLS-DA) and univariate (ROC) models of the LD–HD comparison. The most discriminant variables were
subjected to identification. The identifiedmetabolites were used for a naïve pathway analysis. The results showed an alteration in renal purinemetabolism,
and thus, a targeted peak-picking of specific metabolites was applied to the raw data on kidneys. The results were used for a new semi-quantitative
pathway analysis.
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TABLE 2 Summary of the identified metabolites.

mz_rt Precursor Common name Mass
error
(Da)

Initial
score

Fit
score

Dataset 1reaction AUC
(LD–HD)

Regulationa

192.0526_4.06 [M−H]− Glycolic acid <0.001 1 0.675 KIDNEY [+(C5H5N5 −
H2O)]

1 ↓

211.9876_3.93 [M−H]− L-Aspartyl-4-phosphate −0.009 1 0.383 KIDNEY - 1 ↓

125.0185_3.57 [M+H]+ (R)-N-Methylsalsolinol −0.002 1 0.931 KIDNEY [+CO2] 0.85 ↑ Dose-
dependent

136.0652_1.76 [M+H]+ Adenine 0.003 1 0.458 KIDNEY - 1 ↓

159.0317_1.5 [M+Na]+ Hypoxanthine 0.004 1 0.494 KIDNEY - 1 ↑

175.006_1.51 [M+K]+ Phenylacetic acid −0.010 1 0.302 KIDNEY - 0.9 ↓ Dose-
dependent

194.0826_5.37 [M+H]+ 2-Methylhippuric acid 0.001 1 0.707 KIDNEY - 1 ↓

232.0382_5.38 [M+K]+ 2-Methylhippuric acid 0.001 1 0.627 KIDNEY - 1 ↓

256.122_5.57 [M+Na]+ Hydroxypropionylcarnitine 0.006 1 0.321 KIDNEY - 1 ↓

262.062_4.45 [M+H]+ 2,8-Dihydroxyadenine −0.006 1 0.508 KIDNEY [+C4H2N2O] 1 ↑ Dose-
dependent

269.0943_2.25 [M+H]+ Inosine 0.006 0.998 0.822 KIDNEY - 1 ↓

272.0946_5.57 [M+H]+ Deoxycytidine 0.007 1 0.858 KIDNEY [+CO2] 1 ↓

273.0901_1.5 [M+Na]+ 5-Methoxytryptophan 0.001 1 0.758 KIDNEY [+O] 0.95 ↓

278.0404_3.57 [M+H]+ Dopamine-4-sulfate 0.007 1 0.641 KIDNEY [+CO2] 0.95 ↑ Dose-
dependent

307.0513_2.24 [M+Na]+ D-Glucurono-6,3-lactone −0.002 1 0.698 KIDNEY [+C5H4N2O] 0.95 ↑

348.0774_1.6 [M+H]+ 2′-Deoxyguanosine 5′-
monophosphate

0.007 1 0.713 KIDNEY - 1 ↓

371.1139_1.84 [M+K]+ 4-Hydroxynonenal 0.004 0.977 0.666 KIDNEY [+C6H8O6] 1 ↓

520.3444_8.18 [M+H]+ LysoPC(18:2(9Z,12Z)) 0.005 1 0.519 KIDNEY - 1 ↑

113.0361_1.09 [M+H]+ Dihydrouracil 0.002 1 0.122 LIVER [−CH2] 0.92 ↓

145.0505_1.91 [M+H]+ 3-Methylglutaconic acid 0.001 1 0.777 LIVER 0.92 ↑

149.1182_5.93 [M+H]+ 3-Hydroxyisoheptanoic acid 0.001 1 0.221 LIVER [+H2] 0.92 ↓

188.0695_2.69 [M+H]+ Indoleacrylic acid −0.001 1 0.725 LIVER - 0.92 ↑

241.1771_15.35 [M+K]+ Spermine −0.002 LIVER - 0.72 ↓ dose-
dependent

254.0957_12.56 [M+Na]+ Suberylglycine −0.004 1 0.689 LIVER - 0.72 ↓ dose-
dependent

256.0920_3.83 [M+K]+ Propionylcarnitine −0.003 1 0.59 PLASMA - 0.85 ↑

278.0352_3.57 [M+H]+ L-DOPA sulfate 0.002 1 0.65 PLASMA - 0.92 ↑

254.0949_5.04 [M+H]+ Neopterin 0.006 1 0.75 PLASMA - 0.88 ↑

229.1555_1.65 [M+H]+ L-isoleucyl-L-proline 0.000 1 0.79 PLASMA - 1 ↑

222.0898_6.78 [M−H]− 5-Methyldeoxycytidine 1.000 1 0.69 PLASMA [−H2O] 0.98 ↑

239.1498_4.34 [M+H]+ Homoanserine −0.001 1 0.7 PLASMA [−O] 1 ↓

515.1538_6.72 [M−H]− S-Adenosylhomocysteine 0.002 1 0.74 PLASMA [+C5H8O4] 1 ↑

264.0569_3.23 [M+H] N-acetyl-S-(3-oxo-3-
carboxynpropyl)

cysteine

0.006 1 1 LIVER [−H2] 1 ↑

(Continued on following page)
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information on biochemical alterations occurring in extremely toxic
conditions, offering clear evidence of the triggered pathways leading
to the observed clinical symptoms. Conversely, such dosing
regimens are never met in the clinical setting, where the
administered drug levels are strictly regulated and immediately
taken care of either by lowering or even by stopping the
administration. However, CMS remains the last-resort antibiotic
for patients infected by multidrug-resistant bacteria; thus, metabolic
dysregulations caused even by the normal dosing schemes should be
investigated.

Anticipating the early and frequently latent biochemical
alterations provoked by the drug will provide the ability to adjust
the curation protocol by reducing/stopping the administration.

Under this notion, the current study attempted to simulate in
vivo the metabolic alterations caused by the CMS doses that are
comparable with those administered to humans. Thus, 15 mice were
separated into three equal groups and received 0 mg/kg (C—the
control group), 1 mg/kg (LD), and 1.5 mg/kg (HD) of CMS. The
doses administered to mice were calculated based on the dose
conversion between humans and animals. The study examined
plasma, kidneys, and livers to investigate the latent background
of colistin nephrotoxicity and the impact of the drug on the
circulatory system and on the liver as well.

An Reversed Phase Liquid Chromatography—High Resolution
Mass Spectrometry (RPLC-HRMS)-based metabolomics protocol
was employed to analyze the samples, whereas an array of univariate

TABLE 2 (Continued) Summary of the identified metabolites.

mz_rt Precursor Common name Mass
error
(Da)

Initial
score

Fit
score

Dataset 1reaction AUC
(LD–HD)

Regulationa

154.0705 [M+H]+ Dopamine 0.002 1 0.77 LIVER - 0.79 ↑

206.1405_10.45 [M+NH4]+ Nonic acid 0.001 1 0.76 LIVER - 1 ↓

The (1reaction) column provides information for those metabolites that were identified as products of metabolite metabolism.
aThe arrows (↑, ↓) refer to the levels of the metabolites in the HD group when it is compared with the LD group. ↑/↓Dose-dependent refers to the metabolites that are dose-related and detected

up (↑)/down (↓) regulated by the increase in the dose.

FIGURE 5
Overview of pathway analysis, showing all matched pathways according to the p-values from the pathway enrichment analysis and pathway impact
values from the pathway topology analysis.
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and multivariate methodologies was combined for the statistical
process. The PCA and OPLS-DA focused on the pairwise
comparisons of the C–LD and LD–HD groups. PCA showed that
the most significant separation trend was observed in the kidneys of
those in the C–LD group. This implies that the drug triggers
important metabolic alterations in kidneys, even at the lower
doses, when there are no clinical data that could indicate toxicity.
The OPLS-DA models classified efficiently the C–LD and LD–HD
groups, providing satisfactory figures of merit.

Interestingly, the liver dataset offered the highest number of
important features in both OPLS-DA and ROC curve analysis, and
most of them were downregulated with the increase of the drug.
However, only nine of the liver’s differentiated variables were finally
identified, speculating that the drug impairs the liver metabolism,
dysregulating metabolite derivatives that remain unknown. In
addition, the PLS models proved the existence of linear
correlations between the dose level and the alterations expressed
in mice metabolomic profiles. The PLS models were only used to
verify the linear correlation of metabolomics profile and CMS dose.
The PLS results were not exploited for the variable selection, as PLS

is a more complex model that encompasses three groups, whereas
the pairwise OPLS-DA model affords more interpretable results.

Concomitantly, the SUS plot was used to investigate the
existence of metabolites that are linearly correlated to the dose
and highlighted 16 dose-related variables, with an ROC curve AUC
of >0.8 for both C–LD and LD–HD comparisons of kidneys and
livers (Supplementary Figures S2, S3). In the plasma case, none of
the variables resulting from the SUS plot passed the ROC curve
analysis threshold, and therefore, the variables were not used to
generate regression curves. Six of the dose-correlated variables were
identified: suberylglycine (liver, ↓, R2 = 0.75), spermine (liver, ↓, R2 =
0.87), (R)-N-methylsalsolinol (kidney, ↑, R2 = 0.79), phenylacetic
acid (kidney, ↓, R2 = 0.85), 2,8-dihydroxyadenine (kidney, ↑, R2 =
0.82), dopamine 4-sulfate (kidney, ↑, R2 = 0.78), and examples of
their box-plots are shown in Figure 6.

Regarding the LD–HD comparison, 14, 9, and
7 differentially expressed metabolites were identified in the
kidney, liver, and plasma, respectively, as summarized in
Table 2. In the kidney, 78% of the metabolites were
decreased in the HD group, whereas in plasma, 71% were

FIGURE 6
Box-plots of the most important CMS dose-responding metabolites: (A) N-methylsalsolinol, detected in the kidney; (B) dopamine-4-sulfate,
detected in the kidney; (C) phenylacetic acid, detected in the kidney; (D) 2,8- dihydroxyadenine, detected in the kidney.
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increased. The metabolites that exhibited a higher relevance to
the current case are further discussed below.

4.1 Alterations in dopamine regulation

The administration of CMS provoked changes in four metabolites
that belong to the dopamine biochemical pathways, i.e., dopamine
(DA, liver, ↑), dopamine-4-sulfate (DA-4-S, kidney, dose-increased),
L-DOPA sulfate (L-DOPA-S, plasma ↑), and N-methyl-R-salsolinol
(MNRSal, kidney, dose-increased). Differentiation of these
metabolites provides a latent sign of CMS-induced dysregulation of
dopamine mechanisms, that is, generalized, as the alterations were
observed in the plasma, kidney, and liver as well.

The MNRSal, which showed elevated response to the drug dose,
is an endogenous neurotoxin, related to cell apoptosis. MNRSal is
the enzymatic product of R-salsolinol (R-Sal), which in turn is
formed by DA under the action of R-Sal synthases. MNRSal has been
detected in the urine of patients with Parkinson’s disease and is
considered more toxic than R-Sal (Cao et al., 2021). MNRSal
presents apoptotic action, and it is suggested that the toxin
impairs the mitochondrial permeability transition by reducing
the mitochondrial membrane potential, resulting in increased
release of apoptotic factors, such as cytochrome c, into the
cytoplasm. Moreover, the toxin activates the caspase-3, which
also induces cell death (Akao et al., 2002). Furthermore, MNRSal
degradation products inhibit the mitochondrial complex-I causing
apoptosis and increase the ROS as well (Cao et al., 2021). A realistic
hypothesis is that the increasing trend of the toxin in the kidney,
following the increase of CMS, indicates early apoptosis in renal cells
that could lead to severe kidney injury. This hypothesis is amplified
by the results of a recent study that estimated the dose-responding
nephrotoxicity of CMS on human embryonic kidney cells. The
mentioned study showed dose-dependent renal cytotoxicity,
determined by renal cell viability (Mektrirat et al., 2023).

DA-4-S showed increased levels, in response to the drug dose in
the kidney, whereas L-DOPA-S was increased in plasma as well. The
sulfonation locus of the endogenous/exogenous phenols and
catechols, i.e., DA and L-DOPA, probably happens in the upper
gastrointestinal track, where the responsible enzymes are mainly
expressed (Itäaho et al., 2007). It should be noted that the sulfated
forms of DA are predominant in human blood and represent 90% of
the total DA (Itäaho et al., 2007). Furthermore, the sulfonation of
DA is pivotal for metabolites binding with its receptors (Itäaho et al.,
2007). The increased levels of DA-4-S and L-DOPA-S in plasma and
kidneys suggest elevated biosynthesis of DA. DA is a natriuretic
hormone and regulates sodium levels, inducing sodium excretion
and constraining its reabsorption at the proximal tubule (Choi et al.,
2015). Thus, excessive action of DA leads to limited levels of
circulatory sodium, a condition that is linked with the occurrence
of hypotension (Alshahrani et al., 2017). Additionally, it has been
speculated that impairment of the estimated glomerular filtration
rate (eGFR) is associated with neurological adverse effects, i.e., the
limited eGFR leads to increased circulation levels of uremic toxins
and kidney hormones that end up in the dopaminergic system of the
brain (De Donato et al., 2022).

DA was also found elevated in the liver of the HD group. It is
worth mentioning that elevated levels of DA are associated with

the liver fatty acid (FA) metabolism occurring in the
mitochondria of hepatocytes. The regulation of FA
metabolism depends on the expression of carnitine palmitoyl
transferase (CPT) I and CPT II. The catecholamines as DA
induce the CPT gene expression in the hepatocytes, inducing
ketogenesis. Thus, the increase of DA in CMS mice indicates
dysregulation in liver FA metabolism (Jensen et al., 2013). The
increased ketogenesis is also linked to hypoglycemia. The acute
increase in ketones leads to nausea, vomiting, pain, lethargy, and
even coma, whereas chronic ketosis can cause hepatic
transaminase elevation (Drachmann et al., 2021).

4.2 Downregulation of renal
phenylacetic acid

Phenylacetic acid (PAA) exhibited opposite response to the
drug dose, in the renal tissue, i.e., metabolite decreasing levels in
response to CMS increase. PAA is produced by phenylalanine
degradation and is considered to be a uremic toxin. Based on
existing literature, the circulatory levels of PAA have been
increased in patients with chronic kidney disease (CKD)
(Scholze et al., 2007); however, in the current case, no
alteration of PAA plasma levels was detected. In addition, the
metabolite inhibits the expression of the inducible nitric oxide
synthase (iNOS) in mononuclear leukocytes in patients with end-
stage renal failure (Jankowski et al., 2003). iNOS is expressed
when the cells are triggered by proinflammatory cytokines and
produce nitric oxide (NO) as a critical response of the immune
system. In the current case, PAA was found to be decreased by
CSM, speculating failure to balance the expression of iNOS
leading to elevated levels of NO in the kidney. The
overexpression of iNOS is linked to a variety of pathological
complications such as septic shock and pain (Cinelli et al., 2020).
Furthermore, the decreased renal PAA levels suggest kidney
impairment resulting in the limitation of renal filtration
ability. Thus, the circulatory substances do not pass from
blood to the kidneys but accumulate in the circulation.

4.3 Upregulation of renal 2,8-
dihydroxyadenine

The accumulation of 2,8-dihydroxyadenine (2,8-DHA) renal
levels by CMS dosing is worth mentioning finding. 2,8-DHA is an
adenine metabolite, accumulated in cases of adenine
phosphoribosyl-transferase deficiency, which is a rare autosomal
metabolic disorder, associated with uric acid’s metabolism. 2,8-DHA
exhibits low solubility; thus, its overexpression leads to the
formation and precipitation of urinary crystals and kidney stones,
leading to urolithiasis or nephropathy (George et al., 2017).

4.4 Downregulation of liver suberylglycine

Suberylglycine decreased by CMS administration in the liver
tissue. There is limited literature concerning this substance. The
metabolite is normally occurring as a product of fatty acid
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metabolism and is formed through the oxidation of suberyl-CoA, an
intermediate of fatty acid metabolism. Suberylglycine is primarily
associated with a group of inherited metabolic disorders known as
organic acidemias, leading to the accumulation of various organic
acids, including suberylglycine, in the body. The measurement of
suberylglycine levels in biological samples, such as urine or blood, is
used as a diagnostic marker for certain organic acidemias (Divry
et al., 1984; Rinaldo et al., 1989). The elevated urinary levels of
suberylglycine have been associated with hereditary medium-chain

acyl-CoA hydrogenase (MCAD) failing (Rinaldo et al., 1989);
however, in the current case, metabolite levels were found to be
decreased in the liver. MCAD is suggested to be the most common
cause of nonalcoholic fatty liver disease (Prieto Jimenez et al., 2022).
Prieto Jimenez et al. (2022) have reported rare hepatic steatosis
secondary to the chronic case, expressed in an infant, where the
levels of circulatory suberylglycine were elevated. This early
observation of potential CSM-induced MCAD deficiency is key
evidence and should be further investigated.

FIGURE 7
Graphical description of the alteration that occurred in renal purine metabolism with the administration of 1.0-mg/kg CMS. The sub-pathways of
interest point out the locations where sequential alterations were observed. The box-plots show the normalized content of the perturbated metabolites
in the C (red) and LD (green) groups.
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4.5 Downregulation of liver spermine

Spermine was also found to be downregulated in the liver by
the increase in CMS. The compound is a polyamine, naturally
present in cells and tissues of living organisms, including
humans. It is derived from the amino acid ornithine through a
series of enzymatic reactions. Spermine plays important roles in
various biological processes, including cell growth, proliferation,
and DNA stabilization (Zhou et al., 2018). It has been found that
in the plasma of patients with chronic renal failure, the
circulatory levels of spermine are decreased (Igarashi et al.,
2006). In our study, the hepatic levels of spermine were
decreased by the increased CMS dose, but there were no
detected alterations of this metabolite in plasma. Interestingly,
polyamines such as spermine are proved to counterbalance drug
adverse effects, such as hepatotoxicity, and thus are
administrated as protective agents (Zhou et al., 2018),
inhibiting cell apoptosis (Amin et al., 2021). In the current
case, the CMS-induced decrease of spermine indicates that the
drug prohibits homeostatic mechanisms, such as those that
counterbalance the drug’s effects.

4.6 Disturbed purine metabolism and renal
dysfunction

The results of the semi-quantitive pathway analysis of the C–LD
group are described in Figure 7 where, the altered metabolites of the
pathway are shown in Figure 7A and the box-plots of their corrected
signal are shown in Figure 7B. From the detected metabolites,
17 were increased by the low CMS dose, with the main
perturbations occurring in the sub-pathways that result in the
formation of xanthine, uric acid (UA), and guanine (Figure 7).
The dysregulation of nine sequential metabolites, in the sub-
pathway of UA formation, provides strong proof that CMS
causes severe effects on renal purine metabolism. An intriguing
observation is that in the C–LD comparison, the purine metabolism
pathway displayed critical alterations [p (FDR) = 0.04], whereas in
the LD–HD comparison, there were no important differences
detected in metabolite levels [p (FDR) = 0.37,
Supplementary Figure S4].

Purines are enzymatically transformed into hypoxanthine
and then into xanthine, which is the precursor of UA
(Figure 7). The formation of UA is followed by the generation
of superoxide anions and reactive oxygen species, as degradation
byproducts. The extended production of UA, as observed in the
current case, leads to high levels of intracellular oxidative stress-
inducing factors causing cell damage (Gherghina et al., 2022).
Dysregulation of purine metabolism, particularly hyperuricemia
(elevation of UA), is associated with kidney injury and is a
marker for the progression of CKD (Jiao et al., 2022). There
are several proposed associations between UA and kidney
impairment: 1) formation of monosodium urate crystals that
precipitate in the tubules of the extrarenal system; 2) oxidative
stress due to the intracellular pro-oxidative properties of UA that
cause endothelial dysfunction, renal fibrosis, inflammation, and
glomerulosclerosis; and 3) UA prevents nitric oxide (NO)
synthesis and thus hinders endothelial cell proliferation

(Gherghina et al., 2022; Jiao et al., 2022). The increased levels
of xanthine and UA are also associated with aging-induced renal
impairment (Jiao et al., 2022).

Additionally, the alterations of purine metabolism could be
the key point regarding the connection of neuro- and
nephrotoxicity occurring due to CMS administration. It is
proposed that decreased eGFR leads to an increase in
circulatory levels of metabolic waste (uremic toxins and
kidney hormones), provoking all types of neurological
complications by triggering the nervous system (dopaminergic
system) and causing brain dysfunction (Mazumder et al., 2018;
De Donato et al., 2022). In addition, there are several reports of
cognitive impairment in patients with CKD (Mazumder et al.,
2018). A recent computational docking study tested the binding
affinity of xanthine, hypoxanthine, UA, and 2,8-DHA with
acetylcholinesterase (AChE): UA showed a higher binding
affinity, and xanthine and hypoxanthine presented high
docking scores as well (Mazumder et al., 2018). AChE
hydrolyzes acetylcholine, which is important for learning and
memory, so its rapid degradation by AChE leads to dementia and
Cognitive Impairment (CI) (Wamser et al., 2013). In vitro testing
showed that hypoxanthine enhanced the action of AChE
(Wamser et al., 2013). This observation indicates a naïve
correlation between CMS-neurotoxicity and CMS-
nephrotoxicity that should be further investigated.

The results of the current study are in accordance with the results
of Nguyen et al.’s corresponding metabolomics study, in which ~16-
fold higher doses of CMS were administered, i.e., 25 mg/kg and
50mg/kg (Long et al., 2022) as low and high dose, respectively, in vivo.
Nguyen et al. observed critical separation trends (PCA) between the
control and the 25-mg/kg/day-treated mice and dose-responding
alterations in the metabolomics profiles of kidney and liver tissues.
Moreover, comparing the kidneys and livers of the control and treated
mice, they observed differences in pathways related to antioxidation
mechanisms, i.e., glutathione metabolism, and in pathways related to
DNA synthesis such as purine metabolism. In addition, the study
indicated CMS-induced oxidative stress and caspase-dependent cell
apoptosis at the renal level.

In the current study, important separation trends were
observed even in the kidneys of the LD group (1.0 mg/kg/day)
versus the control, indicating that CMS has a critical impact on
renal tissue, even at these doses. Therefore, the determination of
early biomarkers will help in the detection of latent kidney
dysfunction, even before it is expressed with clinical
symptoms, and it will permit the timely adjustment of the
curation protocol too. The dose–response metabolomics
alterations are also confirmed for the lower dose ranges, as
shown by the PLS regression results of the current study.
Moreover, there are early indications of increased oxidative
stress in kidney and liver tissue, i.e., the upregulation of
MNRSal renal levels that induces cell apoptosis by activating
caspase-3. Finally, the current study showed purine metabolism
alterations induced by low CMS that were not further amplified
by the 0.5-mg/kg/day increase in the dose. However, the Nguyen
et al. study showed that the purine metabolism is related to a
higher dose increase, and therefore, further investigation of this
pathway’s alterations at a wider range of doses, i.e., 1–5 mg/kg/
day would provide solid information regarding CMS impact on
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DNA synthesis and would also shed light on naïve assumption of
nephro- and neurotoxicity.

5 Conclusion

CMS is the last-resort antibiotic factor administered for the
treatment of infections caused by multidrug-resistant bacteria.
However, the use of the drug is attenuated by the occurrence of
neurological and renal complications resulting from its
administration. Several studies have focused on CMS-induced
neuro- and nephrotoxicity by administrating high doses of the drug
to simulate the toxic condition. The current study aimed to shed light on
the biochemical alterations triggered by the recommended human dose,
1–1.5 mg/kg/day. Moreover, the study investigated the impact of the
drug on the circulatory system, and on the renal and liver function as
well. So far, despite the existence of indications regarding CMS-induced
hepatotoxicity, there is no evidence for the displaying mechanisms. The
study showed that even the lower human dose (1 mg/kg) had a severe
impact on the kidneys and also pointed out a linear response between
the drug dose and the metabolic alterations for the plasma, kidney, and
liver. Sixteen variables showed significant correlation to the dose, and
six of them were identified: suberylglycine (liver, ↓), spermine (liver, ↓),
(R)-N-methylsalsolinol (kidney, ↑), phenylacetic acid (kidney, ↓), 2,8-
dihydroxyadenine (kidney, ↑), and dopamine-4-sulfate (kidney, ↑). In
summary, the results of the current study showed that CMS

• induces the renal dopamine pathway;
• increases the renal levels of 2,8-DHA and probably leads to the
formation and precipitation of urinary crystals and
kidney stones;

• disrupts the renal purine metabolism, increasing the
formation of xanthine, hypoxanthine, and UA. Xanthine is
considered an AChE activator, leading to the rapid
degradation of acetylcholine. This is strong evidence for the
shared metabolic background of CMS-induced nephrotoxicity
and neurotoxicity;

• disrupts hepatic MCAD, probably leading to hepatic
steatosis; and

• decreases hepatic levels of spermine, which counterbalances
hepatotoxicity by inhibiting cell death.

Overall, the current study, investigating the impact of CMS
doses that correspond to those applied in clinical practice, revealed
that these doses trigger biochemical pathways related to kidney and
liver toxicity. These alterations are early detectable, even when there
is no clinical evidence of toxicity, and could facilitate the adjustment
of the curation scheme in the future.

5.1 Limitations to the study

The current study is impacted by potential limitations; i.e., DIAMS
acquisition, despite being a more informative methodology, restricted
the ability to perform more extended identification. Moreover, the
study focused on nephrotoxicity and hepatotoxicity caused by CMS
and did not examine other organs such as the brain and the heart. In
particular, the examination of metabolomics alteration in the brain

could amplify the assumption of a correlation between nephrotoxicity
and neurotoxicity and will be an objective of a future study. The study
did not consider other toxicological endpoints, i.e., histological signs,
and therefore, the metabolomics evidence is not correlated with the
clinical picture of the mice. Finally, despite that the metabolites are
molecules of universal structure, the exact extrapolation of the effects
from humans to animals might not be accurate enough to draw a safe
conclusion and extend it to the mechanism proposed. Nevertheless, the
indications of this study set the basis for a thorough investigation of
CMS toxicity.
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Comparative analysis of
anticoagulant influence on PMI
estimation based on porcine
blood metabolomics profile
measured using GC-MS

Patrycja Mojsak1, Paulina Samczuk1,2, Paulina Klimaszewska1,
Michal Burdukiewicz1,3, Jaroslaw Chilimoniuk1,
Krystyna Grzesiak1,4, Karolina Pietrowska1,
Justyna Ciborowska5, Anna Niemcunowicz-Janica6,
Adam Kretowski1,7, Michal Ciborowski1,8* and
Michal Szeremeta6*
1Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok,
Bialystok, Poland, 2Department of Genetic Research, Central Forensic Laboratory of the Police,
Warsaw, Poland, 3Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona,
Cerdanyola, Spain, 4Faculty of Mathematics and Computer Science, University of Wroclaw, Wroclaw,
Poland, 5Chemical Research Laboratory, Forensic Laboratory of the Voivodeship Police Headquarters
in Bialystok, Bialystok, Poland, 6Department of Forensic Medicine, Medical University of Bialystok,
Bialystok, Poland, 7Department of Endocrinology, Diabetology and Internal Medicine, Medical
University of Bialystok, Bialystok, Poland, 8Department of Medical Biochemistry, Medical University of
Bialystok, Bialystok, Poland

Introduction: Accurate post-mortem interval (PMI) estimation is essential in
forensic investigations. Although various methods for PMI determination have
been developed, only an approximate estimation is still achievable, and an
accurate PMI indication is still challenging. Therefore, in this study, we employed
gas chromatography-mass spectrometry (GC-MS)-based metabolomics to
assess post-mortem changes in porcine blood samples collected with and
without the addition of anticoagulant (EDTA). Our study aimed to identify
metabolites dependent on the EDTA addition and time (taking into account the
biodiversity of the studied organism) and those that are time−dependent but
resistant to the addition of an anticoagulant.

Methods: The experiment was performed on blood samples collected from
16 animals (domestic pig, breed: Polish Large White), 8 with and 8 without
EDTA addition. The moment of death (time 0) and 15 additional time points
(from 3 to 168 h after death) were selected to examine changes in metabolites’
levels in specific time intervals. We employed linear mixed models to study the
relationship between metabolite intensities, time and presence of EDTA while
accounting for the effect of individual pigs.

Results and Discussion: We confirmed that the intensity of 16 metabolites
(mainly amino acids) significantly depends on PMI and the presence of EDTA.
However, the intensity of the ideal biomarker(s) for PMI estimation should be
determined only by the time after death and not by external factors such as
the presence of the anticoagulant agent. Thus, we identified 41 metabolites
with time−dependent intensities that were not susceptible to EDTA presence.
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Finally, we assessed the performance of these metabolites in a PMI predictive
model. Citraconic acid yielded one of the lowest errors in general PMI estimation
(32.82 h). Moreover, similar errors were observed for samples with and without
EDTA (33.32 h and 32.34 h, respectively). Although the small sample size and
information leak in predictive modelling prevent drawing definite conclusions,
citraconic acid shows potential as a robust PMI estimator.

KEYWORDS

post-mortem interval (PMI), animal model, blood biomarkers, metabolomics, GC-MS

1 Introduction

One of forensic medicine’s most essential and challenging tasks
is estimating the post-mortem interval (PMI). This parameter is
defined as the time elapsed since an individual’s death. Precise and
accurate estimation of the PMI is remarkably important as it can help
establish the timeline of events surrounding death (Gelderman et al.,
2021). Forensic science currently offers many methods for PMI
estimation, including various conventional methods, such as
measurement of physical changes (Donaldson and Lamont, 2013;
Ciaffi et al., 2018), biochemical components in different tissues
and body fluids (Donaldson and Lamont, 2013), DNA or RNA
degradation (Ciaffi et al., 2018), or analysis of rigour and livor
mortis (Madea, 2016; Amendt et al., 2011). Nevertheless, only an
approximate estimation can be derived from conventional methods,
and an accurate PMI estimation is still difficult to obtain (Mathur
and Agrawal, 2011). Thus, more reliable and accurate methods to
estimate PMI are in demand.

Recent advances in the methods for estimating PMI have enabled
us to determine post−mortem intervals more precisely (Mathur
and Agrawal, 2011). Based on the literature review (Peyron et al.,
2021; Szeremeta et al., 2021), it has been suggested that analysing
the metabolomic composition of body fluids might provide a
better tool for PMI estimation (Locci et al., 2023). The analysis
of the post−mortem metabolomic changes in biological samples
with mass spectrometry opens the way to develop new methods
for PMI estimation. Different analytical platforms such as liquid
chromatography−mass spectrometry (LC−MS) (Szeremeta et al.,
2022; Zhang et al., 2022a; Zhang et al., 2022b; Pesko et al., 2020),
gas chromatography−mass spectrometry GC−MS (Dai et al., 2019;
Wu et al., 2018; Sato et al., 2015; Kaszynski et al., 2016), and
nuclear magnetic resonance (NMR) (Fischer et al., 2014; Locci et al.,
2021) have been used in PMI−oriented research. Among these,
GC−MS is known to be one of the most efficient analytical
platforms and, therefore, iswell−established inmetabolomics research
(Mojsak et al., 2022). GC−MS has a distinct advantage over the other
analytical platforms in terms of retention time, mass spectrometry
reproducibility, and the availability of well−established commercial
and in−house metabolite libraries (Beale et al., 2018). Due to all these
advantages, this high−throughput detection technique was chosen
to conduct the analyses.

Based on the literature review, it was confirmed that the
application of GC−MS to the estimation of PMI is also gradually
increasing (Dai et al., 2019; Wu et al., 2018; Sato et al., 2015;
Kaszynski et al., 2016). Most often, the samples of post−mortem
blood plasma (Donaldson and Lamont, 2013; Sato et al., 2015;

Costa et al., 2015; Zelentsova et al., 2020) and vitreous humour
(Zelentsova et al., 2020; Bonicelli et al., 2022) are used to search
for potential PMI estimation markers; however, cerebrospinal,
pericardial, and synovial fluids (Wenzlow et al., 2023) have also
been considered. Due to the popularity of the use of blood in PMI
estimation and its relatively easy collection at the crime scene, we
selected this material to perform our study.

Blood trail age estimation could offer valuable information for
reconstructing criminal events and their chronological assessment
(Costa et al., 2015). Death results in extensive biochemical changes
also in the blood due to the absence of circulating oxygen and
the consequent cessation of aerobic respiration, altered enzymatic
reactions, cessation of anabolic production of metabolites, cessation
of active membrane transport and changes in the permeability
of cells and diffusion of ions (Donaldson and Lamont, 2013).
In these circumstances, using anticoagulants, such as EDTA, aids
in suppressing the blood clotting mechanism to enable a longer
examination time. On the other hand, there are many controversial
studies regarding adding this anticoagulant (Bergmann et al.,
2021). Based on UV-VIS analysis, Bergmann et al. confirmed that
unnatural blood coagulation prevention is highly questionable
when estimating bloodstain age, since the blood’s physical and
chemical properties are altered (Bergmann et al., 2021). On the
other hand, in most studies where blood samples were used to
estimate PMI, it was anticoagulated with EDTA (Das et al., 2019;
Sibbens et al., 2017;Wang et al., 2017). For this reason, we attempted
to compare the metabolite profiles in both types of blood samples to
check the impact of EDTA addition on the PMI estimation.

To the best of our knowledge, this is the first approach to estimate
PMI in a porcine model using GC−MS−based metabolomics of
plasma samples with or without EDTA addition. Considering the
complementarityofGC−MSandLC−MStechniques inmetabolomics
studies(Zekietal.,2020;Yumba-Mpangaetal.,2019), thepresentstudy
is a valuable continuation of our previous research (Szeremeta et al.,
2022). Apart from finding the differences between the metabolic
profiles of blood samples with and without the addition of
anticoagulants, we want to find universal metabolites that depend
on the time since death, regardless of the addition of EDTA.

2 Materials and methods

2.1 Chemicals

O−methoxyamine hydrochloride, analytical grade of heptane
and pyridine were supplied from Sigma−Aldrich (Steinheim,
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Germany). N,O−bis−(trimethylsilyl)− trifluoroacetamide (BSTFA)
with 1% trimethylchlorosilane (TMCS) solution and acetonitrile
(HPLC grade) was purchased from Thermo Fisher Scientific
(Waltham, MA, USA). 4−nitrobenzoic acid (4−NBA) and stearic
acid methyl ester (C18:0 methyl ester) were acquired as well
from Sigma–Aldrich (Steinheim, Germany) and applied as internal
standards (ISs). The 4−NBA (IS1) solution was prepared in
acetonitrile, whereas methyl stearate in heptane (IS2). Two mixtures
of standards for GC−MS, one containing grain fatty acid methyl
esters (FAMEs) (C8:0−C22:1, n9) and another a mixture of
n−alkanes (C8:C40), were obtained from Supelco (Bellefonte, PA,
United States).

2.2 Sample collection and preparation

The experimental design used in this study was the same as
described previously (Szeremeta et al., 2022). Sample preparation
was carried out as previously described (Mojsak et al., 2022) with
minor modifications. Briefly, an aliquot of 40 µL of plasma and
120 µL of cold acetonitrile containing the IS1 (25 ppm) were mixed
for metabolites extraction. The mixture was vortexed for 2 min and
centrifuged at 15,000 g for 10 min at 4°C. Finally, each sample’s
supernatant (120 µL) was collected in a GC vial equipped with
an insert and evaporated to complete dryness using a vacuum
concentrator. All analysed samples were subjected to a two−step
derivatisation process. First, methoxymation was performed by
adding 30 µL of methoxylamine hydrochloride in pyridine solution
(15 mg/mL) and then incubating at room temperature in the dark
for 16 h. Following this, 30 µL of BSTFA with 1% TMCS was added
to each sample and placed in the oven to react for 1 h at 70°C. At last,
90 µL of IS2 (10 ppm) was added as instrumental IS.

2.3 Quality control samples

To monitor the analytical variability and assess the
reproducibility and repeatability of themethodology, quality control
(QC) samples were used (Kirwan et al., 2022). The QC samples were
prepared by pooling the study samples. Blank samples containing
cold acetonitrile were used to detect the column’s contamination
and the background noise produced during sample derivatisation,
data processing and GC/MS analysis.

2.4 GC−MS−based untargeted
metabolomics

Metabolic fingerprinting was performed using a 7890B gas
chromatograph connected to a 7000D mass selective detector
(Agilent Technologies, Palo Alto, CA, United States). A DB−5MS
capillary column (30 m × 0.25 mm × 0.25 µm) was used for the
chromatographic separation. One µL of each derivatised plasma
samplewas automatically injected at a split ratio of 1:10 using helium
as a carrier gas with a 1 mL/min flow rate. The temperature of
the injection was set to 250°C. The column oven temperature was
maintained at 60°C for 1 min and then increased by 10°C/min to
320°C. The transfer line, ion source and quadrupole temperature

were set at 280, 300°C and 150°C, respectively. Mass spectra were
acquired under electron impact (EI) ionisation conditions using
70 eV in the mass range of m/z 50–600 using the default instrument
scan rate. All samples (study samples, QCs and blanks) were
analysed using the above-mentioned conditions.

2.5 Data processing

The deconvolution and identification were performed using
Mass Hunter Quantitative Unknowns Analysis software (B.07.00,
Agilent), alignment using Mass Profiler Professional software
(version 13.0, Agilent) and peak integration using Mass Hunter
Quantitative Analysis software (version B.07.00, Agilent). The
identificationwas performedmainly based on the accuratemass and
product ion spectrum matching against the in–house library of 100
authentic standards and Fiehn’s and NIST 14 libraries. Before the
statistical analysis, peak areas were normalised by IS abundance to
minimise the response variability from the instrument. Finally, data
were filtered based on the coefficient of signal variation (CV) in QC
samples, considering values lower than 30% as acceptable.

2.6 Statistical analyses

The exploratory analysis indicated high data variability between
the timepoints and individual pigs. To adequately address this
data structure, we employed the linear mixed model, where we
considered the metabolite intensity to depend on both time (t) and
the presence of EDTA. Moreover, we have included the impact of
individual pigs as a random effect (bID). Thus, our model considers
the additional unknown variability affecting the intensity of a given
metabolite over time (Equations 1, 2). We applied ANOVA to verify
if the presence of EDTA is a significant variable in the model.

y = β0 + bID + β1t+ β2EDTA (1)

y = β0 + bID + β1t (2)

We predicted the measurement time considering the
known metabolite intensity for each metabolite using the
coefficients of model 2) to assess if the metabolite intensity could
estimate PMI (Patterson and Thompson, 1971). Due to the small
sample size, we performed a prediction on the samples used to fit
the model, which caused the information leak. We evaluated the
error of time prediction (in hours) for both models sensitive and
those not sensitive to the presence of EDTA. We have used mean
average error (MAE) as an error measure for samples with and
without EDTA. Total mean average error (TMAE) was computed
for all samples (with and without EDTA). Due to the limited dataset,
we computed the performance on the same data we used to produce
the model, leading to the information leak. The statistical analysis
was performed in R 4.2.

3 Results

After data pretreatment (deconvolution, alignment, data
normalisation and filtering), 126 entities were obtained,
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FIGURE 1
Ven diagram showing number for statistically significant metabolites.

and 79 metabolites were annotated (Supplementary Table S1;
Supplementary Materials), taking into account several derivatives
from one metabolite [mainly for certain amino acids (AAs) and
carbohydrates (Carbs)]. Finally, we chose 71 and 73 metabolites for
statistical analysis, representing different analytical classes [mainly
AAs, Carbs and fatty acids (FAs)], with RSD below 30% in plasma
with and without EDTA addition, respectively.

Using ANOVA, we compared which of the two models
significantly better captures the data structure. As model 2) is
nested in model 1), we interpreted the ANOVA result as an
indication of the presence of EDTA as a parameter necessary to
describe the change of the metabolite intensity over time. After
applying the Benjamini−Hochberg correction, we discovered 16
metabolites whose intensities depend on the EDTA presence and
the time after death. Relationships between significant metabolites
in EDTA−based and time−based tests were presented on the
Venn diagram (Figure 1).

The p−values for the 16 metabolites mentioned above are
presented in Table 1, whilst their intensity−time plots showing the
tested pigs’ biodiversity are presented in Supplementary Figure S1.
Metabolites in blood containing EDTA aremore stable than in blood
without anticoagulant (see Figure S1). Additionally, we present the
result of the PLS-DA analysis (Figure 2) performed for EDTA-
treated serum metabolomics data at different post-mortal time
points, illustrating the temporal variations in plasma composition.

Reversing this reasoning, we identified 41 metabolites that
depend significantly on time after death but do not show a significant
dependence on the presence of EDTA (Supplementary Table S2).
It must be emphasized that there was over−interpretation of the
ANOVA result by drawing such conclusions. However, the potential
usefulness of these metabolites as PMI estimators was demonstrated
while keeping the same linear mixed model framework.

Two factors are vital for selecting the best metabolite for PMI
estimation: low error (accuracy) and lack of sensitivity to blood
clotting (universality). Among the considered metabolites, alanine,
phosphate, and citraconic acid had the lowest TMAE (respectively,
29.29, 32.52, and 32.83 h) (Figure 3).

However, out of these three metabolites, only citraconic acid
kept a comparably low MAE, independently of the presence or
absence of EDTA (33.32 and 32.34 h, respectively). Both alanine and

phosphate had drastically differentMAE depending on the presence
or absence of EDTA (alanine: 21.01 and 37.56; phosphate: 35.11 and
29.92 h, respectively).

Next, we investigated whether citraconic acid was the only
metabolite that yielded equally accurate predictions regardless of
EDTA presence. When considering the mean absolute difference in
MAE, citraconic acid had the lowest score (0.98 h) (see Figure 4).
Benzoic and glyceric acid were two othermetabolites, with themean
absolute difference in TMAE being lower than 2 hours (1.37 and
1.50 h, respectively). However, they could not be reliably used to
estimate PMI as their TMAE was very high (56.62 and 49.66 h,
respectively).

This analysis does not exhaust the range ofmetabolites that could
be useful for PMI estimation. Our analysis yielded 41 metabolites
(Table S2) resistant to EDTA and with time−dependent intensity.
However, their statistical significance was not followed up due to
the low TMAE.

4 Discussion

Evaluation of the PMI has always been a major challenge for
forensic pathologists (Wu et al., 2018). Despite many studies on
PMI estimation and the development of various methods for PMI
assessment over the years (Peyron et al., 2021; Laplace et al., 2021;
Wilk et al., 2020; Wilk et al., 2021; Choi et al., 2019; Peng et al., 2020;
Sangwan et al., 2021; De-Giorgio et al., 2021; Palacio et al., 2021), an
accurate PMI indication, highly required in forensicmedicine, is still
complicated. The practical use of these methods in forensic science
is impossible because most proposed approaches lack the reliability
required to meet rigorous forensic standards (Locci et al., 2023).

Metabolomics analyses using mass spectrometry have recently
gained popularity in forensic analysis (Kaszynski et al., 2016). This
relatively new technology is often based on mass spectrometry,
which allows the comprehensive study of low−molecular−weight
metabolites (Lu et al., 2023). Especially during the agonal period,
supravital reactions (occurring from death until cellular functions
cease), leakage from degrading cells, and degradation of proteins
affect the metabolomics profile. Therefore, analysing metabolites
from biofluid samples can provide insights into the post−mortem
changing biochemical environment (Donaldson and Lamont, 2013).
Probably the most significant post-mortal changes in the blood
metabolome are induced by cell membrane damage: the lack of ATP
causes the dysfunction of intracellular Na+/K+ pumps, resulting in
sodium accumulation inside the cells, cell lysis due to the osmotic
pressure, and the leakage of the intracellular metabolites into the
blood. The post−mortem metabolomic changes are also caused by
the disruption of enzymatic cycles and microbial activity in the
vascular system (Zelentsova et al., 2020).

Since the metabolomics approach to PMI estimation is still
in its infancy, using animals as study subjects to determine the
precise PMI is justified. Therefore, we built the PMI estimation
model using porcine blood in the current study. Furthermore,
ethical concerns make it considerably preferable to perform such
a study with multiple time points on animal, not human blood
(Matuszewski et al., 2020). Additionally, due to their structural and
functional similarity to humans, pigs have been used as a model
in biomedical research to evaluate PMI. It has been confirmed
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TABLE 1 List of statistically significant metabolites dependent on time and EDTA addition with their p−value, adjusted p−value (Benjamini−Hochberg
correction).

Group of metabolites Metabolites RT HMDB ID p−value Adjusted p−value

AAs, peptides and analogues

Creatinine 13.6 HMDB00562 5.29E−14 5.52E−13

Iminodiacetic acid 13.3 HMDB11753 4.01E−15 4.88E−14

Isoleucine 10.05 HMDB00172 2.11E−07 1.40E−06

Lysine 17.5 HMDB00182 0.000307 0.0014

Ornithine 15.8 HMDB00214 3.29E−06 2.00E−05

Phenylalanine 14.2 HMDB00159 2.85E−16 4.17E−15

Threonine 11.3 HMDB00167 2.20E−28 5.36E−27

Valine 7.2, 9.2 HMDB00883 5.28E−22 9.64E−21

5−Oxoproline/pyroglutamic acid 13.1 HMDB00267 3.52E−12 2.85E−11

Alpha−keto acids and derivatives Pyruvic acid 6.6 HMDB00243 6.47E−07 4.30E−06

Carb and Carb conjugates

Glucose 17.25, 17.4 HMDB00122 2.00E−35 7.31E−34

Mannose 17.15, 17.45 HMDB00169 1.63E−40 1.19E−38

1,5−anhydro−D−sorbitol 17 HMDB02712 3.54E−05 0.00017

Dicarboxylic acids and derivatives Fumaric acid 10.9 HMDB00134 1.87E−07 1.36E−06

Glycerophosphates Glycerol 1−phosphate 15.9 HMDB00126 5.00E−05 2.00E−04

Purines and purine derivatives Hypoxanthine 16.5 HMDB00157 4.76E−06 2.67E−05

FIGURE 2
PLS-DA analysis of blood samples with EDTA collected at different post-mortal time-points.

that pigs are a common human analogue in taphonomic studies
(Connor et al., 2018) Researchers already confirmed that adding
EDTA helps suppress the blood clotting mechanism, allowing
the examination to be conducted over a longer period of time
(Bergmann et al., 2021). On the other hand, this unnatural

prevention of blood coagulation is highly questionable when
estimating blood stain age since the blood’s physical and chemical
properties are altered (Sharma and Kumar, 2018). Bergmann et al.
confirmed that EDTA distorts blood spot ageing behaviour due to
the prevention of coagulation (Bergmann et al., 2021), but based
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FIGURE 3
Total Mean Average Error [h] and Mean Average Error [h] of predictive models for PMI estimation with and without EDTA component. The height of the
bar represents TMAE (left panel) and MAE (right panel). The bar’s colour (the right panel) represents the presence or absence of EDTA.

on different analyses conducted with UV/VIS spectra obtained for
oxyhemoglobin, methemoglobin and hemichrome measurement.
Until now, no study has reported using the metabolite profile
analyses using GC−MS to estimate PMI in blood samples with or
without the addition of an anticoagulant. For this reason, in this
study, we examined the influence of EDTA on blood profiles over
time to evaluate whether this effect occurs. Our results show that
differences between the profiles of blood samples with and without
EDTA addition were significant, which had already been proven
in our previous study, performed using a complementary LC−MS
technique (Szeremeta et al., 2022).

In the present study, we identified 16 metabolites with time-
dependent intensities that were also affected by the presence of
EDTA (see Figure S1). The best candidates for biomarkers for
PMI estimation would be blood metabolites whose post−mortem
intensity changes significantly, monotonously, relatively slowly, and
with minimal data scattering (Sato et al., 2015). Most metabolites
in plasma samples with EDTA (mainly AAs such as lysine,

phenylalanine, threonine, valine, and pyroglutamic acid) met these
criteria, with one exception for iminodiacetic acid, which met these
criteria for both EDTAandnon-EDTA samples.The intensity ofAAs
increases with time after death, and the most plausible explanation
for this is the lack of energy. The cells began to break down proteins
for energy and to combat bacterial spoilage, which led to the rapid
degradation of a large number of proteins. It is worth noting that
the increase in AAs was gradual rather than sudden, and the most
likely explanation for this is that at the moment of death, not all the
cells died, and within a certain time after death, some cells remained
metabolically active (Wu et al., 2018).

Based on the graphs presented in Figure S1, it can be noticed
that metabolites in blood with EDTA are more stable than in
blood without anticoagulant addition. We observed larger data
scattering in plasma samples without EDTA addition, especially at
further times after death. Multiple concurrent biological processes
induced by time may contribute to alterations in the post-mortem
metabolome of blood samples untreated with EDTA (Go et al.,
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FIGURE 4
The most important metabolites for PMI estimation. Panel (A) - plots considering the biodiversity of the tested pigs; panel (B) - plots considering the
median of all IDs for each time, metabolite, and EDTA, along with the first and third quartiles (Q1 and Q3).

2019). Another critical difference in the change of the intensity of
metabolites in the blood with the addition of EDTA is the rapid
decrease in glucose intensity during the first day after death, with

minimal data scattering (see Figure 4).The rapid decrease of glucose
after death may also depend on post-mortem anaerobic glycolysis
and the use of glucose by bacteria. After death, glycogen is used

Frontiers in Molecular Biosciences 07 frontiersin.org113

https://doi.org/10.3389/fmolb.2024.1400622
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Mojsak et al. 10.3389/fmolb.2024.1400622

by skeletal muscles as a carbohydrate source for glycolytic substrate
production, which generates ATP and lactate (Chauhan et al., 2019;
Chauhan and England, 2018). In our study, we observed an increase
in the intensity of lactic acid after death in two types of plasma
samples. Lactate is not only produced during glycolysis but is also
formed due to autolysis and bacterial catabolism. Several researchers
have studied the correlation between lactic acid concentration
and PMI (Mihailovic et al., 2011; Keltanen et al., 2015). The
remaining compounds associated with EDTA include hypoxanthine
and creatinine; the intensity of both metabolites increases with
time (see Figure 4). Many previous publications have confirmed the
use of these metabolites (i.e., creatinine or hypoxanthine) for PMI
estimation (Peyron et al., 2021; Szeremeta et al., 2022; Dai et al.,
2019; Sato et al., 2015; Kaszynski et al., 2016); and our research
provides additional confirmation. Hypoxanthine concentration in
the blood rises after death because it is an ATP−breakdown product
that increases its concentration in situations of oxygen limitation
and is available as a co−factor for xanthine oxidase. Changes
observed for hypoxanthine correspond to breaking the tricarboxylic
acid cycle and purine catabolism in an oxygen−deficient biological
medium (Hira et al., 2014). Zelentsova et al. conducted a PMI study
with rabbits and suggested that hypoxanthine and creatinine may
have a strong potential as a PMI biomarker (Zelentsova et al.,
2020), which was also confirmed in this study. After death,
creatinine levels in the blood increase due to the cessation of
kidney function and the breakdown of muscle tissue. Without renal
filtration, creatinine accumulates in the bloodstream (Nishida et al.,
2015). Measurement (in the vitreous humor) of hypoxanthine with
potassium (Rognum et al., 2016; Madea and Rödig, 2006) and
also urea (Cordeiro et al., 2019), has been reported useful for time
since death estimation.

Wehave also indicated 43metaboliteswhose intensities correlate
with PMI and are not susceptible to EDTA presence. Using
coefficients of the fitted models, we used intensities of these
metabolites to estimate PMI (Figure 3). No metabolites with TMAE
that were lower than 24 h, which severely hinder their usage in
the case of estimating very short PMIs were identified. Moreover,
we observed a much higher value of MAE for samples with
EDTA than those without anticoagulant. Only citraconic acid could
be characterised by the low TMAE (29.29 h) and comparable
MAE regardless of the EDTA presence (33.32 h with EDTA and
32.34 without EDTA). Shen et al. showed that citraconic acid
could be used to predict pork quality (Shen et al., 2022). This
metabolite belongs to the dicarboxylic acid family, formed from
the breakdown of citric acid. Citrate content, mainly in the bone,
was confirmed as a metabolite associated with PMI (Wilson and
Christensen, 2017; Brown et al., 2018).

However, it should be noted that the predictive model employed
in this study suffers from the information leak, and the error estimate
shown has to be overly optimistic. The precise assessment of its
accuracy requires future research, where the sample size would allow
for model validation using at least a leave−one−out setting. It was
speculated that citraconic acid could aid in determining PMI.

Despite metabolomics being fraught with a high risk of large
error (Zhang et al., 2023), findings show that this approach can be
a powerful tool for predicting PMI (Aljeaid, 2024) The literature
review confirmed that the metabolomic profile of the vitreous
humour determined with NMR could predict PMI better than

measuring potassium concentration, which was, until now, the best
option for PMI estimation. It is crucial to bear in mind that the use
of potassium concentration in PMI estimation is fraught with error
in the range of 6.9 h for PMI <24 h, 7.4 h for PMI between 24 and
48 h, and 10.3 h for PMI >48 h (Locci et al., 2023).

5 Conclusion

Our preliminary study shows large differences between the two
types of blood-originated samples. Metabolites in blood, with the
addition of EDTA, maintain much better stability and are subject
to much less data scattering. Adding EDTA helps suppress the
blood clotting mechanism, providing a longer time to perform
the examination. However, metabolites in blood behave more
significantly without the addition of an anticoagulant. We observe
a considerable dispersion of results in blood samples, especially at
later times. Possible reasons might be multiple coexisting biological
processes induced by time that affect metabolome post-mortem in
blood samples untreated with EDTA.

Our analysis indicated only one metabolite (citraconic acid)
suitable for PMI estimation, especially for PMIs longer than 1 day.
However, it should be pointed out that this study had some
limitations. First, the experiment was performed under constant
environmental conditions, and further work should be directed to
study the influence of environmental factors. Secondly, the studywas
conducted on animal material. Humans have a more complicated
biological background and living habits than experimental animals.
The application of the results of this study to the practical forensic
investigation of human corpses needs further study.
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Introduction: The bioactive compound 3,5-DiCQA, derived from Duhaldea
nervosa, has been traditionally utilized in folk remedies for bone fractures and
osteoporosis. However, its therapeutic mechanisms remain unclear.

Methods: We employed UHPLC-Q Exactive Orbitrap MS-based cell
metabolomics to investigate the molecular mechanisms of 3,5-DiCQA in
MC3T3-E1 cells. Cell proliferation was assessed via MTT assay, differentiation
by alkaline phosphatase (ALP) activity, and mineralization through alizarin red
staining and cetylpyridinium chloride quantification. Metabolomic profiling
compared drug-treated and control groups.

Results: Results from MTT assays demonstrated that 3,5-DiCQA significantly
promoted cell proliferation at 100 μM. Alkaline phosphatase (ALP) assays
and alizarin red staining revealed enhanced osteoblast differentiation and
mineralization, respectively. Calcification deposition was significantly increased
in the calcified stained cells by cetylpyridinium chloride quantization,
indicating that 3,5-DiCQA can promote the mineralization of MC3T3-E1
cells. Metabolomic analysis identified key metabolic changes, including the
downregulation of phytosphingosine and upregulation of sphinganine and
citric acid.

Discussion: These findings suggest that 3,5-DiCQA promotes osteoblast
proliferation, differentiation and mineralization through pathways such as
sphingolipidmetabolism, arginine and prolinemetabolism,mucin typeO-glycan
biosynthesis and the citrate cycle (TCA cycle). This study provides insights into
the therapeutic potential of 3,5-DiCQA for osteoporosis and highlights the utility
of metabolomics in elucidating traditional Chinese medicine (TCM).

KEYWORDS
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1 Introduction

Osteoporosis (OP) is a chronic, systemic endocrine and metabolic disorder. There
are two kinds of osteoporosis primary (caused by aging or a lack of sex hormones)
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and secondary (caused by hyperthyroidism, diabetes, obesity,
Cushing’s syndrome, anorexia, rheumatoid arthritis, drug effects,
etc.). The root cause of its occurrence is the imbalance of
bone remodeling homeostasis including osteoclasts that absorb
old bone and osteoblasts that form new bone. This causes the
rate of bone loss to be faster than that of bone production
(Föger-Samwald, Dovjak, Azizi-Semrad, Kerschan-Schindl and
Pietschmann, 2020; Hardy, Zhou, Seibel and Cooper, 2018; Inaba,
2004; Lademann, Tsourdi, Hofbauer and Rauner, 2020; Mo et al.,
2021; NIH Consensus Development Panel on Osteoporosis
Prevention, Diagnosis, and Therapy, 2001; Workman, Blalock
and Mehler, 2020). Therefore, the proliferation, differentiation
and mineralization of osteoblasts play a very important role
in fracture healing (Dirckx, Van Hul and Maes, 2013). As the
population ages, osteoporosis and osteoporoid-related fractures
have become a major public health problem for society and
significantly increase the consumption of healthcare resources.
Therefore, in-depth study of the pathological mechanism of
osteoporosis will help reduce the medical costs associated with
osteoporosis, and further targeted drug development can improve
the quality of life of the elderly.

Duhaldea nervosa (Wallich ex Candolle) A. Anderberg, is a
member of the Asteraceae family and is commonly known as
Maoxiucai or Xiaoheiyao in China (Cai et al., 2020; Liu et al.,
2018; Guan et al., 2017). It has been used as a folk medicine
for dispelling wind-chill, fighting inflammation and treating a
variety of conditions anddiseases including fracture and rheumatoid
arthritis (RA) (Long, 2004; Xiao, 2009; Xiao et al., 2013). Previous
research has shown that D. nervosa contains isochlorogenic acid
A (3,5-DiCQA), a chemical that has a wide range of physiological
activities, such as cardiovascular protection, antioxidant and anti-
inflammatory effects, and osteoblast proliferation, which might
have a therapeutic effect in the treatment of fractures and RA
(Naveed et al., 2018; Wang and Xiao, 2019). However, there are
relatively few reports on the efficacy and metabolic pathways of
3,5-DiCQA in treating osteoporosis. Osteoblasts are bone lining
cells responsible for the production of bone matrix components
and minerals in the process of bone formation (Florencio-
Silva, Sasso, Sasso-Cerri, Simões and Cerri, 2015). The regulation
of the activity of MC3T3-E1 osteoblasts is of great significance for
the prevention and treatment of fractures (Croucher, McDonald and
Martin, 2016; Long, 2011). Therefore, it is of great significance to
investigate the regulation of 3,5-DiCQAusing an in vitroMC3T3-E1
cell model.

Metabolomics is a burgeoning field that emerged as
an influential analytical approach for identifying potential
biomarkers and unraveling the molecular underpinnings of

Abbreviations: 3,5-DiCQA, isochlorogenic acid A; TCM, traditional Chinese
medicine; ALP, alkaline phosphatase; CPC, cetylpyridinium chloride; FBS,
Fetal bovine serum; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-
H-tetrazolium bromide; DMSO, Dimethyl Sulfoxide; E2, estradiol; LC-
MS/MS, Liquid chromatography-mass spectrometry; CO2, carbon dioxide;
OIM, osteogenic induction medium; PBS, phosphate-buffered saline; QC,
quality control; HRMS, High-resolution mass spectrometry; ANOVA, one-
way analysis of variance; PCA, principal component analysis; OPLS-DA,
orthogonal partial least squares discriminant analysis; VIP, variable important
in projection; TCA cycle: Citrate cycle; OP, Osteoporosis; ES, electrospray
ionization.

Traditional Chinese Medicine (TCM) in disease treatment
(Cheong, Yu, Chen andZhong, 2022;Wang et al., 2021).The subfield
of cellular metabolomics has garnered extensive interest, proving
instrumental in scrutinizing the biochemical processes related
to disease pathology. It offers insights into how TCM impacts
cellular metabolism, thereby contributing to a comprehensive
understanding of metabolic processes. For instance, recent studies
have demonstrated the utility of cellularmetabolomics in elucidating
disease mechanisms, such as mitochondrial dysfunction in
hypoxia/reoxygenation injury in cardiomyocytes (Lin et al., 2023)
and oxidative stress in HepG2 cells (Yu et al., 2024). They have
also uncovered the metabolic reprogramming of immune cells
in response to inflammation (Wang et al., 2024). These findings
highlight the potential of metabolomics to provide comprehensive
insights into cellular metabolism and its role in health and
disease. Advanced high-resolution mass spectrometry (HRMS)
has solidified its role as the principal analytical platform within
metabolomics studies. Its prevalence is due to its capacity for
sensitive detection, precise resolution of complex mixtures, high
precision in mass measurement, and its broad dynamic range,
making it an indispensable asset in the quest to decode the
metabolomic signatures of various biological systems (Sun et al.,
2018; Xie et al., 2023; Yu et al., 2016; Yu et al., 2017). The union of
Ultra-High-Performance Liquid Chromatography (UHPLC) with
Q-Exactive Orbitrap Mass Spectrometry (MS) stands out as an
exceptionally potent analytical methodology for both detecting and
characterizing the chemical constituents within botanical extracts
and complex biological matrices. The efficacy of this technique
is largely due to the swift and decisive separation capabilities of
UHPLC, complemented by the Q-Exactive Orbitrap’s prowess in
delivering precise mass measurements coupled with a wealth of
detailed fragment ion data from MSn experiments, which are
crucial for the elucidation of molecular structures (Cai et al.,
2017; Clifford, Johnston, Knight and Kuhnert, 2003; Qiao et al.,
2016). This approach has been successfully applied in various
studies, such as the investigation of Cynara scolymus Bracts’s effects
on liver and breast carcinoma cells (El Sohafy et al., 2024) and
the metabolic changes in mitochondrial dysfunction in kidney
tubular cells (Marchese et al., 2022), demonstrating its versatility
and reliability in cellular metabolomics research. Therefore, we
used UHPLC-Q-Exactive Orbitrap MS to investigate the molecular
mechanisms of 3,5-DiCQA in MC3T3-E1 cells to elucidate its
therapeutic mechanism in osteoporosis.

2 Materials and methods

2.1 Materials and reagents

3,5-DiCQA was purchased from Chengdu Herpurify Co.,Ltd.
Liquid chromatography-mass spectrometry (LC-MS/MS)-grade
acetonitrile, LC-MS/MS-grade formic acid and the BCA protein
concentration assay kit were purchased from Thermo Fisher
Scientific Co., Ltd. Ultra-pure water was obtained from Guangzhou
Watsons Food&Beverage Co., Ltd. Other solvents were of analytical
grade and were supplied by the Aladdin Industrial Corporation.

Fetal bovine serum (FBS) was acquired from Zhejiang Tianhang
Biotechnology Co., Ltd. α-MEM medium, tryptic digestion
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solution and 100 X penicillin streptomycin solution (containing
10 kU/mL penicillin+10 mg/mL streptomycin) were purchased
from Hyclone. Dimethyl sulfoxide (DMSO), β-glycerophosphate
sodium, vitamin C, estradiol (E2) and 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyl-2-H-tetrazolium bromide (MTT) were bought from
Sigma Chemical Co., Ltd. The alkaline phosphatase (ALP) kit was
acquired from Nanjing Jiancheng Bioengineering Institute. The
BCIP/NBT Alkaline Phosphatase Kit was purchased from Beyotime
Biotechnology.

2.2 Solution preparation

The compound 3,5-DiCQA was prepared as a stock solution
at a concentration of 100 mM in DMSO and stored in a dark
environment at −20°C for subsequent use. Prior to experimentation,
this stock solution was appropriately diluted with α-MEM medium
to achieve the desired working concentrations.

2.3 Cell culture

TheMC3T3-E1 cell line sourced from theNational Collection of
Authenticated Cell Cultures was maintained in an incubator at 37°C
with an atmosphere containing 5%CO2.The culturemediumwas α-
MEM supplemented with 10% FBS, 100 units/mL of penicillin, and
10 mg/mL of streptomycin. Upon reaching 80% confluence, the cells
were passaged, sub-cultured, and then cryopreserved for future use.

2.4 Cell proliferation assay

The MTT assay was utilized to evaluate the viability of MC3T3-
E1 cells. The cells were seeded in 96-well plates at a density of 5
× 103 cells per well. To determine the impact of 3,5-DiCQA on
osteoblast viability, they were exposed to various concentrations
of 3,5-DiCQA (12.5, 25, 50, and 100 μM) for both 24 and 48 h.
Following incubation, 10 μL of MTT solution was added to 90 μL of
complete medium and the cells were returned to the CO2 incubator
for an additional 4 h. The absorbance was measured at a wavelength
of 490 nm using a microplate reader (Biotek).

2.5 ALP activity and staining assay

The influence of 3,5-DiCQA on osteogenic differentiation
was investigated by treating experimental groups with different
concentrations of 3,5-DiCQA (25, 50, and 100 μM) alongside
10 nM estradiol. After a 6-day incubation period, ALP activity was
quantified using a commercial ALPAssay Kit.Themicroplate reader
was set to a wavelength of 562 nm for detection. Additionally, ALP
staining was performed using the BCIP/NBT ALP Kit to visualize
the activity.

2.6 Mineralization assay

The extent of mineralization was assessed using alizarin red
staining. MC3T3-E1 cells were cultured in osteogenic induction

medium, which contains 50 μg/mL of ascorbic acid and 10 mM
β-glycerophosphate, and treated with varying concentrations
of 3,5-DiCQA (12.5, 25, 50, and 100 μM) along with 10 nM
estradiol for a period of 14 days. The cells were then stained
with alizarin red S for 30 min to visualize mineralization
nodules. The stained nodules were photographed, and 10%
cetylpyridinium chloride (CPC) was utilized to extract the
alizarin red for quantification, with the detection wavelength
set to 540 nm.

2.7 Cell metabolomics

2.7.1 Cell sample collection and preparation
The MC3T3-E1 cells were cultured in 24-well plates and treated

with 3,5-DiCQA for a period of 6 days. After incubation, the
cells were meticulously rinsed with phosphate-buffered saline (PBS)
three times. A volume of 1 mL of chilled methanol was then added
to each dish, followed by gently scraping the cells using a cell
scraper while on ice. The cells underwent a freeze–thaw cycle
three times to facilitate extraction. The mixture was centrifuged
at 4°C with a rotation speed of 12,000 rpm for 20 min to collect
the supernatant. The supernatant was carefully transferred into LC-
MS vials and conserved at −80°C for future analysis. To ensure
the reliability of the LC-MS system and to mitigate potential
bias, a quality control (QC) sample was crafted. The injection
sequence was designed such that a QC sample was interspersed
every five samples.

2.7.2 UHPLC-orbitrap-HRMS analysis
For the UHPLC-Orbitrap-HRMS analysis, the cell samples were

processed using a Q-Exactive Focus Orbitrap mass spectrometer
(Thermo Electron, Bremen, Germany), interfaced with a Thermo
Scientific Dionex Ultimate 3000 RS liquid chromatography system
(Thermo Fisher Scientific, California, United States) through
an electrospray ionization (ESI) source. The chromatographic
separation was achieved using a Thermo Scientific Hypersil
GOLDTMaQcolumn (100 mm×2.1 mm, 1.9 μm), with the column
temperature regulated at 40°C. The mobile phase consisted of 0.1%
formic acid in water (phase A) and acetonitrile (phase B), with
a flow rate of 0.3 mL/min, according to the following gradient
elution program: 0–2 min, 5%–40% B; 2–3 min, 40%–55% B;
3–5 min, 55%–69% B; 5–7 min, 69%–70% B; 7–10 min, 70%–73%
B; 10–12 min, 73%–95% B; 12–12.1 min, 95%–5% B; and 15 min,
5% B. The injection volume was 2 μL.

High-resolution mass spectrometry (HRMS) operations were
conducted using an ESI ion source, capable of both positive and
negative ion detection modes. The spray voltage was set to 3.5 kV
for the positive mode and 3.2 kV for the negative mode, with sheath
gas pressure at 35 arb and auxiliary gas pressure at 10 arb. The
capillary and auxiliary gas heater temperatures were maintained at
320°C and 350°C, respectively, and the S-lens RF level was adjusted
to 60. Full scan data acquisition was performed over a mass range
ofm/z 100–1,200, utilizing data-dependentMS2 scanning. Nitrogen
was utilized as the collision gas, with the energy set to a normalized
collision energy of 30%. The entire system was controlled using
Xcalibur software, version 4.2.
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2.7.3 Data processing
The raw data underwent comprehensive processing utilizing

the Compound Discoverer 3.3 software (Thermo, United States). A
strict mass tolerance threshold of 5 parts per million (ppm) was
applied. The metabolomics workflow was engaged to dissect the
mass spectrometry data. Key parameters for analysis were defined,
focusing on peaks with signal intensities exceeding a threshold of
10,000 for identification. A retention time window of 0.1 min and
a noise elimination threshold of 10 were implemented. Critical
data points including peak identification, m/z values, retention
times, and signal intensities were extracted and prepared for use in
subsequent experimental phases. SIMCA 14.1 software (Umetrics,
Sweden) was used for the multivariate statistical treatment of the
data, including principal component analysis (PCA), orthogonal
partial least squares discriminant analysis (OPLS-DA), and other
advanced statistical techniques. The quality of the OPLS-DA
model was meticulously assessed through R2Y (cumulative) and
Q2 (cumulative) metrics, and a stringent 200 permutation test
protocol. The variable important in projection (VIP) score and
the p-value from the T-test were pivotal in screening potential
biomarkers. Metabolite enrichment and pathway analysis were
further conducted using the MetaboAnalyst 5.0 online platform,
integrating the potential metabolites for a deeper biological
interpretation.

2.8 Statistical analysis

We used GraphPad Prism (version 9.0) to perform one-way
ANOVA. The data are presented as the mean ± standard deviation,
derived from a minimum of three replicates per test condition.
Statistical significance was determined by a p-value of less than 0.05.

3 Results

3.1 3,5-DiCQA promoted MC3T3-E1 cells
proliferation

We used an MTT assay to explore the roles of 3,5-DiCQA
in the proliferation of MC3T3-E1 cells. The results showed that
compared with vehicle treatment, high-dose 3,5-DiCQA (100 μM)
significantly promoted cell proliferation in a dose-dependent
manner, whereas cell proliferation was significantly reduced 48 h
after treatment in MC3T3-E1 cells. As shown in Figure 1, the results
indicated that 3,5-DiCQA (12.5–100 μM) significantly promoted
cell proliferation (Figure 1).

3.2 3,5-DiCQA increased the ALP activity in
MC3T3-E1 cells

Next, we evaluated whether 3,5-DiCQA would increase the
ALP activity in MC3T3-E1 cells. MC3T3-E1 cells were cultured
in osteogenic induction medium and incubated with E2 (10 nM)
and 3,5-DiCQA (25, 50, and 100 μM) for 6 days. As a result,
3,5-DiCQA significantly increased the ALP activity in MC3T3-E1
cells. Cells treated with high-dose 3,5-DiCQA exhibited stronger

FIGURE 1
Effects of 3,5-DiCQA at different concentrations on proliferative
activity of MC3T3-E1 cells at different time periods. Data were
presented as the mean with standard deviation for technical triplicate
in an experiment representative of several independent ones (n = 3),∗P
< 0.05,∗∗P < 0.01,∗∗∗P < 0.001, vs. DMSO.

ALP staining compared with control cells (Figure 2A). The ALP
assay demonstrated that 3,5-DiCQA significantly enhanced cell
differentiation (Figure 2B).

3.3 3,5-DiCQA increased the mineralization
in MC3T3-E1 cells

MC3T3-E1 cells were cultured in OIM and incubated with
E2 (10 nM) and 3,5-DiCQA (12.5, 25, 50, and 100 μM) for 2
weeks. Alizarin red staining was used to visualize the calcified
nodules (Figure 3A). 3,5-DiCQA (12.5, 25, 50, and 100 μM)
promoted the formation of calcified nodules in MC3T3-E1
cells. Nodule formation was highest at 3,5-DiCQA treatments of
25 μM (Figure 3B).

3.4 Identification of the metabolites of
3,5-DiCQA in MC3T3-E1 cells

From a chemical structure perspective, 3,5-DiCQA is formed
by the esterification reaction of two molecules of caffeic acid
and one molecule of quinic acid. It may undergo hydrolysis,
methylation, sulfation, and other metabolic reactions within cells.
By comparing the LC-MS spectra of the control group and
the administered group, 11 metabolites (M1∼M11, Table 1) were
preliminarily identified from the samples after administration
of 3,5-DiCQA. After metabolism, the metabolites retain some
basic structural features of the parent drug. Therefore, we can
infer the structure of the metabolites by analyzing the mass
spectrometry fragmentation patterns of the parent drug 3,5-DiCQA.
On comparing the retention time and mass spectrometry data
of the standards, the quasi-molecular ion peak of 3,5-DiCQA is
m/z 515.1195 [M-H]- (with the molecular formula C25H24O12,
an error of 0.72), and the retention time is 9.71 min. The MS2

spectrum shows the characteristic fragmentation ions resulting
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FIGURE 2
The effect of 3,5-DiCQA on the ALP activity in MC3T3-E1 cells. (A) BCIP/NBT staining was conducted. (B) The ALP activity was determined after 6-days
co-treatment of MC3T3-E1 cells with 3,5-DiCQA (25, 50, and 100 μM) in OIM. Data were presented as the mean with standard deviation for technical
triplicate in an experiment representative of several independent ones (n = 5),∗p < 0.05 vs. DMSO.

from the neutral loss of one molecule of caffeoyl group at
m/z 353.08 [M-H-caffeoyl]−, the neutral loss of two molecules
of caffeoyl group at m/z 191.05 [M-H-2×caffeoyl]−, the neutral
loss of one molecule of caffeoyl group and one molecule of
quinic acid residue at m/z 179.03 [M-H-caffeoyl-quinic acid]−,
and further neutral loss of one molecule of CO2 producing the
fragment ion at m/z 135.04 [M-H-caffeoyl-quinic acid-CO2]

−.
These characteristic fragmentation pathways provide a basis for
the identification of metabolites. The retention time of M1 is
3.42 min. Its [M-H]- peak is at m/z 353.08818, which is 162 Da
less than m/z 515.1195. It is speculated to be the product formed
when 3,5-DiCQA loses one molecule of caffeoyl group during
hydrolysis. The double bond on the caffeoyl group of 3,5-DiCQA
undergoes a nucleophilic addition reaction with the thiol group
of cysteine. After the conjugate metabolic reaction of cysteine,
the molecular weight of the product increases by the molecular
weight of one cysteine. Therefore, it is speculated that M2, M3 and
M5 undergoes the cysteine conjugation metabolic reaction. In the
molecule of 3,5-DiCQA, there are carbon-carbon double bonds in
the caffeoyl part. These double bonds are the sites where hydration
reactions can occur. When 3,5-DiCQA undergoes a hydration

reaction once, it is equivalent to adding a water molecule to the
molecular structure. Then, the molecular weight of the product
M4 after the reaction is the molecular weight of 3,5-DiCQA plus
that of a water molecule. By comparing the retention time and
MS2 spectrum with those of the reference compounds, M8 and
M9 were identified as 1,5-DiCQA and 4,5-DiCQA, respectively,
both of which are products of the intramolecular acyl migration
reaction of 3,5-DiCQA.The retention time of M10 is 11.13 min.
The [M-H]- peak is at m/z 529.13515, which is 14 Da higher than
m/z 515.1195. This is speculated to be the methylated product
of 3,5-DiCQA. The retention time of M12 is 12.56 min. The
[M-H]- peak is at m/z 543.15080, which is 28 Da higher than
m/z 515.1195. We speculated that this is the dimethyl product of
3,5-DiCQA.

3.5 Multivariate statistical analysis

To delve deeper into the mechanisms by which 3,5-DiCQA
influences the differentiation of MC3T3-E1 cells, a comparative
metabolite analysis was conducted.We compared the differentiation
induced by 3,5-DiCQA with that of cells treated with DMSO using
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FIGURE 3
The effect of 3,5-DiCQA on the mineralization of MC3T3-E1 cells. (A) Alizarin red S was used for staining on day 14. (B) The calcified nodules was
quantified by extraction of alizarin red S with 10% cetylpyridinium chloride (CPC) on day 14. Data were presented as the mean with standard deviation
for technical triplicate in an experiment representative of several independent ones (n = 6),∗p < 0.05 vs. DMSO.

UHPLC-HRMS. An unsupervised PCA approach was employed
to assess the general sample distribution and the clustering
of quality control (QC) samples as depicted in Figures 4A, B.
The PCA plots demonstrated a coherent grouping of the QC
samples, with some overlap between the control (DMSO) and
the experimental (3,5-DiCQA) groups, which reflects the high
stability andmethodological soundness of the analytical instrument.
In an effort to enhance the differentiation between the control
and experimental groups and to boost the model’s analytical
resolution, a supervised OPLS-DA analysis was conducted, as
presented in Figures 5A, B. The OPLS-DA score plots revealed a
significant divergence between the control and experimental groups
in both positive and negative modes. This separation confirms
the presence of metabolic differences, suggesting that 3,5-DiCQA
induces changes in cellular metabolism. To ensure the robustness
of the OPLS-DA model against overfitting, a 200 permutation test
was applied. The R2Y (cumulative) metric indicates the model’s
explanatory power along the y-axis, while the Q2 (cumulative)
signifies its predictive accuracy. AQ2 value exceeding 0.5 is generally
considered a threshold for model stability and reliability. In this
study, the positive ion mode exhibited R2Y and Q2 values of 0.918
and 0.568, respectively, and the negative ion mode showed R2Y and
Q2 values of 0.963 and 0.687, respectively. The permutation test
results, as illustrated in Figures 5C, D, affirmed themodel’s reliability
and precision in both ionization modes.

3.6 Identification of potential biomarkers

Differential metabolite analysis among the groups was
performed using multivariate and univariate statistical analysis.
Specifically, the OPLS-DA model and t-test were employed to
identify variations in metabolite levels. A VIP score exceeding
1, coupled with a t-test p-value below 0.05, were established as
thresholds for the significance of differential metabolites. As a
result, nine potential biomarkers (Supplementary Figures S1, S2)
as detailed in Table 2. A heatmap with hierarchical clustering
was used to make data visualization more intuitive. The changed
patterns in metabolite concentrations across samples can clearly be
seen in Figure 6. A similar color distribution was observed within
each group, along with a large difference between the groups. In
comparison to the control group, treatment with 3,5-DiCQA led
to noticeable decreases in the levels of phytosphingosine while
it induced substantial increases in sphinganine and citric acid,
as outlined in Table 2. These findings underscore the substantial
metabolic alterations induced by 3,5-DiCQA.

3.7 Metabolic pathway analysis

We conducted an in-depth analysis to uncover the metabolic
pathways that may be influenced by 3,5-DiCQA in enhancing the
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differentiation of MC3T3-E1 cells. Utilizing the MetaboAnalyst 5.0
platform, we enriched and examined the topological aspects of 29
metabolic pathways represented by biomarkers. In our graphical
representation, the vertical axis denotes the name of the metabolic
pathway, while the horizontal axis reflects the enrichment ratio,
which is the proportion of altered metabolites relative to the
entire pool within a given pathway. Our findings indicated a
total of 11 pathways that are potentially modulated by 3,5-DiCQA
to facilitate cell differentiation, with notable pathways including
sphingolipid metabolism, arginine and proline metabolism, mucin
type O-glycan biosynthesis, and the citrate cycle (TCA cycle),
as depicted in Figure 7A. In the network topology analysis
diagram, each circle symbolizes a distinct metabolic pathway. The
variations in the size and color of these circles correspond to
the extent of their influence within the system. As illustrated
in Figure 7B, the differentiation of MC3T3-E1 cells induced by
3,5-DiCQA appears to be particularly linked to sphingolipid
metabolism and several other pathways, the details of which are
compiled in Table 3.

4 Discussion

Osteoporosis (OP), characterized by low bone mass,
degeneration of bone tissue and destruction of bonemicrostructure,
can lead to decreased bone strength and increased risk of fracture.
The number of OP hip fractures worldwide is estimated to exceed
200 million, and 40% of postmenopausal women and 30% of men
will experience OP fractures during their lives (Garvey et al., 2016;
Wright et al., 2014). In China, the incidence of OP is as high
as 23.9% among people between 50 and 59 years old, and the
incidence increases significantly with an increase in age (Liao et al.,
2002). However, the current treatment of OP includes drug
therapy, physical therapy and exercise therapy, but the therapeutic
effect is relatively low, patients' compliance is poor, and there
are many adverse reactions (Aaseth, Boivin and Andersen, 2012;
Metcalf, Aspray and McCloskey, 2017; Piemonte et al., 2012). At
present, the clinical treatment of osteoporosis is still dominated
by chemical drugs. According to their different mechanisms of
action in the treatment of osteoporosis, chemical drugs can be
divided into bone absorption inhibitors (such as bisphosphonates,
estrogen and calcitonin), bone formation promoters (fluoride
and strontium preparations) and bone mineralization promotion
drugs (vitamin D and calcium preparations) (An et al., 2016;
Zeng et al., 2014; Du et al., 2013; Xu et al., 2018). However,
taking these drugs is often accompanied by side effects such
as inflammation of the esophagus, nausea, abdominal pain and
even cancer of the reproductive system. Their potential toxicity
and side effects limit their wide application to some extent
(Black et al., 2013; Ma and Ge, 2017). Therefore, the search for safer
natural substitutes of traditional Chinese medicine (TCM) that can
promote bone formation and reverse bone structural damage is
receiving increasing attention.

Duhaldea nervosa is traditionally used for activating meridians,
promoting blood circulation and removing blood stasis, reducing
swelling and dispersing blood. It has a good therapeutic effect on
rheumatic pain, fall injury, fracture and other diseases, and can
significantly shorten the course of fracture healing. Since ancient
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FIGURE 4
Multivariate statistical analyses of metabolites in MC3T3-E1 cells. (A) The PCA score plots in positive modes. (B) The PCA score plots in negative modes.

FIGURE 5
Multivariate statistical analyses of metabolites in MC3T3-E1 cells. (A, B) The OPLS-DA score plots comparing Control groups and Drug groups in
positive and negative modes, respectively. (C) Permutation plot for Control groups and Drug groups by the 200-response reciprocity test in the
positive ion mode. (D) Permutation plot for Control groups and Drug groups by the 200-response reciprocity test in the negative ion mode.

times, Duhaldea nervosa has been widely used as a medicine for
treating fall injury by the Dong people (Long, 2004; Long et al.,
2013; Wang et al., 2008; Wang et al., 2009; Zhu and He, 2011). It
is common in Dong medicine to mix the stem powder of Duhaldea
nervosa with glutinous rice sweet distiller’s grains and apply it to the
injury or fracture, which can relieve pain, reduce swelling, disperse
silting and promote fracture healing. According to our previous
experimental studies, chlorogenic acids, especially 3,5-DiCQA are
the main component of Duhaldea nervosa.

3,5-DiCQA is a dicaffeinoquinic acid found among coffee
picolinic acids. The quinic acid component of coffee is a class
of natural compounds formed by acidification of quinic acid
and varying amounts of coffee. Modern pharmacological studies
have shown that dicaffeoylquinic acid has antioxidant, anti-
inflammatory, anti-microbial and other pharmacological effects
(Fiamegos et al., 2011; Könczöl et al., 2012; Park et al., 2009).
Therefore, in this study, MC3T3-E1 cells were used as the
cell model in vitro to study its effects on the proliferation,
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FIGURE 6
The hierarchically clustered heatmap of metabolite levels in control and drug group. The columns represent samples in different experimental
conditions, and the rows represent different biomarkers. Different colors represent the concentration differences of different samples.

FIGURE 7
Analysis of metabolic pathway associated with the 3,5-DiCQA promotes MC3T3-E1 cells differentiation using an enrichment analysis with an online
MetaboAnalyst 5.0. (A) Metabolic pathway enrichment analysis. (B) Metabolic pathway topology analysis.

differentiation and mineralization of osteoblasts, clarify the specific
mechanism of its promotion of osteoblast differentiation and
provide an experimental basis for the basic research of its
pharmacodynamic substances in treating fall injury and promoting
fracture healing.

To further investigate the mechanism by which 3,5-DiCQA
promotes MC3T3-E1 cell differentiation, UHPLC-HRMS was
used to compare differential metabolites between the control
groups and drug groups, for 100 μM 3,5-DiCQA MC3T3-
E1 cells. We concluded that 3,5-DiCQA increased the levels
of sphinganine and citric acid and decreased the levels of

phytosphingosine, which promotes differentiation in MC3T3-E1
cells. Bone remodeling balance is dynamic and easily stimulated by
the external environment including energy metabolism substrates,
hormones and growth factors (Shaw and Gravallese, 2016).
Osteoporosis is also a systemic disorder of energy metabolism,
of glucose and lipid metabolism, of abnormal distribution of
fatty acids, and disorder of amino acid content, which are closely
related to the occurrence and development of osteoporosis
(Chin, Wong, Ekeuku and Pang, 2020; During, Penel andHardouin,
2015; Martyniak et al., 2021; Su et al., 2019). Focusing on the
bone microenvironment, the energy metabolism disorder of
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TABLE 3 Pathway analysis of biomarkers using MetaboAnalyst 5.0 online.

Pathway name Match status Expect p Holm p FDR

Sphingolipid metabolism 2/21 0.0957 0.00359 0.301 0.301

Arginine and proline metabolism 2/38 0.173 0.0116 0.9961 0.486

Mucin type O-glycan biosynthesis 1/10 0.0456 0.0448 1.0 1.0

Citrate cycle (TCA cycle) 1/20 0.0911 0.0878 1.0 1.0

beta-Alanine metabolism 1/21 0.0957 0.092 1.0 1.0

Galactose metabolism 1/27 0.123 0.117 1.0 1.0

Alanine, aspartate and glutamate metabolism 1/28 0.128 0.121 1.0 1.0

Glutathione metabolism 1/28 0.128 0.121 1.0 1.0

Glyoxylate and dicarboxylate metabolism 1/32 0.146 0.137 1.0 1.0

Glycine, serine and threonine metabolism 1/33 0.15 0.141 1.0 1.0

Amino sugar and nucleotide sugar metabolism 1/37 0.169 0.157 1.0 1.0

osteoblasts and osteoclasts is a key factor in pathogenesis. Cell
energy production is mainly dependent on glucose Glycolysis
(in the cytoplasm), the tricarboxylic acid (TCA) cycle, and
oxidative phosphorylation (OXPHOS) (in mitochondria) are the
main pathways by which adenine riboside triphosphate (ATP,
the most important high energy phosphate bond compound
in the body)is produced (Lee, Guntur, Long and Rosen, 2017).
The C-H bonds in the molecular structure of energy substances
such as glucose, amino acids and fatty acids contain chemical
energy. In the process of oxidation, the C-H bonds are broken
to generate CO2 and H2O, and energy is released at the same
time. In the cell, the balance of chemical energy regulates
the cascade amplification mechanism of many upstream and
downstream molecules, thus controlling the transcription,
translation and other processes of genes, and finally realizing
the control of various cell phenotypes (Miyazaki et al., 2012;
Sabbatinelli et al., 2019).

5 Conclusion

This study provides new insights into the mechanism of
action of traditional Chinese medicines (TCMs) through a holistic
cellular metabolomics approach, and has revealed the potential
mechanisms by which 3,5-DiCQA promotes the proliferation,
differentiation and mineralization of MC3T3-E1 cells. These
findings not only provide a scientific basis for 3,5-DiCQA
as a candidate for promoting bone formation, but also offer
important references for further research into the application
of TCM components in bone tissue engineering. However, this
study has some limitations, and the results need to be further
validated in animal models to explore the mechanism of 3,5-
DiCQA.
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