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Editorial on the Research Topic:

Breast cancer imaging: clinical translation of novel methods
Breast cancer has become the most common cancer in women, and the incidence rate

has increased by 6% in the last decade (1) with a projected increase of 2% between 2024 and

2035 (2). In the EU, women over 50 years of age receive regular radiological screening (3),

while younger women at high risk of developing breast cancer receive annual surveillance

(4). However, current radiological approaches are suboptimal and suffer from high false

positive and negative rates (5), leading to overtreatment and late detection (6, 7). There is

an urgent unmet clinical need for novel radiological methods to facilitate accurate early

detection and treatment monitoring of breast cancer. Current radiological methods for

breast cancer diagnosis and treatment monitoring are primarily mammography,

ultrasound and MRI (8). Mammography is primarily sensitive to the presence of

microcalcifications in the tumor, ultrasound is sensitive to solid masses in the tumor

versus fluid-filled lesions, and MRI is sensitive to the presence of abnormal vasculature in

the tumor (8). However, there have been major advances in medical imaging in recent

years, ranging from novel ultrasound devices and algorithms to functional and metabolic

MRI. These innovations not only have the potential to improve the accuracy of diagnosis

but may also provide critical information for treatment planning that was previously

unavailable from radiological examination, leading to a change in healthcare pathway. We,

therefore, would like to highlight recent developments in breast imaging methods (6 articles

on ultrasound techniques and 3 on MRI techniques) with this Research Topic to facilitate

clinical translation.

Conventional B-mode ultrasound reconstructs breast anatomy from the reflection of

high-frequency acoustic waves at the interface of tissue boundaries, offering a tool with the

advantages of low cost, safety, speed, wide accessibility and high sensitivity in dense breast,

and the disadvantages of limited image contrast and operator dependence (9). With a

contrast agent to highlight blood flow, Li et al. explored the relationship of perfusion

characteristics with molecular subtypes, and identified heterogeneous enhancement,
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perfusion defects and peripheral radial vessels for grade III tumors,

perfusion defects and clear edges after enhancement for human

epidermal growth factor receptor 2 (HER-2) and triple-negative

breast cancer (TNBC), and peak enhancement and wash-in

perfusion for Luminal A and Luminal B differentiation. Using

shear wave elastography to reveal mechanical properties and

super microvascular imaging to outline microcirculation, Wang

et al. investigated the inclusion of quantitative tumor properties in

the breast-imaging reporting and data system (BI-RADS), and

achieved higher sensitivity (+1.5%), specificity (+16.0%) and

accuracy (+13.2%) than the conventional classification. Using

strain elastography and an automated breast volume scanner to

form a comprehensive picture, Shiyan et al. studied the risk of

malignancy in hypoechoic lesions using a radiomics approach and

constructed a nomogram using multivariate logistic regression with

a larger area under the curve (AUC) in receiver operating

characteristic (ROC) than the BI-RADS and clinical risk factors

model alone. Leveraging artificial intelligence to accelerate

workflow and reduce operator dependence (10), Qiu et al. trained

a breast lesion classification algorithm using dynamic ultrasound

videos from two hospitals and demonstrated a higher consistency

closer to the experienced clinicians (Kappa: 0.82) than the junior

clinicians (Kappa: 0.60) for diagnostic efficiency. Combining

automated breast volume scanners and artificial intelligence to

extract clinically relevant features, Li et al. estimated the

probability of malignancy for ambiguous BI-RADS 4 lesions using

radiomics features and showed an AUC of 0.949, a sensitivity

of 82.14% and specificity of 95.56%. However, with RECIST

criteria for treatment monitoring abandoned in many centers,

Zhang et al. attempted to use an artificial intelligence algorithm

trained on patients undergoing neoadjuvant chemotherapy

(NACT) for pathological complete response identification but

failed to show any significant improvement in AUC over manual

and conventional approaches.

Conventional dynamic contrast-enhanced (DCE) MRI

highlights the vascular abnormalities associated with angiogenesis

in breast tumors using a paramagnetic contrast agent, offering a tool

with the advantages of high resolution, high sensitivity, and good

contrast in dense breast, and the disadvantages of limited image

contrast, high cost, and potential adverse reactions to contrast agent

(11). Using diffusion MRI for tissue microstructure profiling and an

extension of intravoxel incoherent motion (IVIM) for concurrent

microcirculation estimation without a contrast agent, Cheung et al.

investigated tumor cellular microstructure and perfusion using a

Bayesian algorithm for noise reduction as early response markers

for NACT and found a decrease in perfusion fraction in good

responders against an increase in poor responders after 1 cycle of
Frontiers in Oncology 025
NACT. However, with mathematical modeling of DCE MRI to

derive quantitative perfusion characteristics, Almutlaq et al.

explored the discrepancies in tumor perfusion quantified by IVIM

and DCE MRI and illustrated the discordance between the two

imaging techniques on perfusion but at the same time the

concordance between interstitial and extracellular volume

fractions against water diffusion. Using 2D, 3D and hotspot

region-of-interest analysis approaches in conjunction with

quantitative metrics of apparent diffusion coefficient to reduce

operator dependency, Biswas et al. derived the optimal cutoffs

with 2 and 4 diffusion weightings using two larger clinical trials

[ECOG-ACRIN A6702 (12) and EUSOBI (13)] and recommended

the hotspot approach with 2 diffusion weightings for differentiating

between malignant and benign lesions.

We thank all the contributors for their excellent research work

that advances medical imaging for the diagnosis and prognosis of

breast cancer. Together, we can help humankind identify breast

cancer early and treat it more gently.
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Diagnostic value of shear wave
elastography combined with
super microvascular imaging for
BI-RADS 3-5 nodules

Xueqing Wang †, Yi He † and Liangyu Wang*

Department of Ultrasound, Shantou Central Hospital, Shantou, Guangdong, China
Background: To investigate the diagnostic value of shear wave elastography

(SWE) and super microvascular imaging (SMI) integrated with the traditional

ultrasound breast imaging reporting and data system (BI-RADS) classification in

differentiating between benign and malignant breast nodules.

Methods: For analysis, 88 patients with 110 breast nodules assessed as BI-RADS

3-5 by conventional ultrasound were selected. SWE and SMI evaluations were

conducted separately, and all nodules were verified as benign or malignant ones

by pathology. Receiver operating characteristic (ROC) curves were plotted after

obtaining quantitative parameters of different shear waves of nodules, including

maximum (Emax), mean (Emean), minimum (Emin) Young’s modulus, modulus

standard deviation (SD), and modulus ratio (Eratio). The best cut-off value,

specificity, sensitivity, accuracy, positive predictive value (PPV), and negative

predictive value (NPV) for diagnosing malignant nodules employing Emax were

obtained, and the diagnostic value of combining Emax and BI-RADS classification

was compared. SMI graded nodule based on the Alder blood flow grading

standard, whereas the BI-RADS classification was based on microvascular

morphology. We assessed the diagnostic value of SMI for breast nodules and

investigated the diagnostic efficacy of SWE combined with SMI in differentiating

benign and malignant breast nodules with BI-RADS classification 3–5.

Results: The adjusted the BI-RADS classification using SMI and SWE technologies

promoted the sensitivity, specificity, and accuracy of discriminating benign and

malignant breast nodules (P < 0.05). The combination of traditional ultrasound

BI-RADS classification with SWE and SMI technologies offered high sensitivity,

specificity, accuracy, PPV, and NPV for identifying benign and malignant breast

lesions. Moreover, combining SWE and SMI technologies with the adjusted BI-

RADS classificationhad the best diagnostic efficacy for distinguishing benign and

malignant breast nodules with BI-RADS 3–5.

Conclusion: The combination of SWE and SMI with the adjusted BI-RADS

classification is a promising diagnostic method for differentiating benign and

malignant breast nodules.

KEYWORDS

breast cancer, breast nodules, shear wave elastography, super microvascular imaging,
microvascular morphology classification
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1 Introduction

In clinical practice, imaging approaches including ultrasound,

mammography, CT, and MRI are often employed for breast cancer

screening. Mammography has been the preferred choice for early

screening of breast cancer in the past (1–3). However, the sensitivity

of mammography for detecting dense breast nodules is low (4, 5).

Traditional ultrasound evaluation has become the preferred

screening approach for the early detection of breast nodules

because of its simplicity, safety, noninvasiveness, radiation-free,

and real-time dynamic imaging benefits. However, breast nodules

have various appearances on grayscale ultrasound images, and

benign and malignant features overlap; therefore, the application

of new ultrasound technologies is urgently required to enhance

diagnostic efficacy (6–9).

SWE is a non-invasive, real-time, dynamic ultrasound imaging

technology that evaluates tissue hardness by measuring the velocity

of shear wave propagation in the target tissue. The principle is that

the propagation speed of the mechanical wave is proportional to the

hardness of the propagating medium, and the ultrasonic probe

forms a continuous ultrasonic shear wave source in the target

region, and then the propagation speed of the shear wave is

accurately measured to calculate the hardness of the propagating

medium. The relationship between shear wave velocity and

microstructure hardness is positive, and the higher the velocity,

the greater the microstructure hardness.Since malignant nodules

are harder than benign ones, studies have demonstrated that the

average shear wave velocity of malignant lesions is substantially

higher than that of benign lesions (10–12). Breast tumors comprise

various tissue components, primarily consisting of tumor cells and

surrounding stromal components. In the growth process of

malignant breast tumors, tumor cells constantly proliferate,

infiltrate, necrose, and repair, resulting in collagen synthesis and

fibrous tissue proliferation and reactive proliferation of surrounding

connective tissue (13, 14). The higher the density of tumor cells, the

more edema in the surrounding tissue and the higher the hardness

of the tumor. This forms the pathological histological basis for

employing elastography to differentiate between benign and

malignant breast nodules (15, 16).

SMI technology is a real-time non-invasive microvascular

imaging technology, which can detect low-velocity microvessels

with high resolution, high frame rate and minimum motion

artifacts. It adopts a unique adaptive algorithm to eliminate

clutter and motion artifacts generated by source tissue motion

through a multi-dimensional wall filter, thus minimizing the loss

of low-speed blood flow information. Compared to traditional

blood flow imaging (such as color Doppler and power Doppler),

which can only show vessels with higher flow velocity and tube

diameter > 0.2mm, SMI can visualize low-velocity tiny vessels with

tube diameter > 0.1mm without injecting contrast agent. It

represents a technological innovation in vascular imaging and is

mainly used for the assessment of tumor vessels (17). Investigations

have reported that it can substantially enhance the diagnostic

effectiveness of benign and malignant breast nodules (18). The

growth, invasion, and metastasis of breast cancer are closely
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associated with the formation of new microvessels. Therefore, the

emergence and use of ultramicro vascular imaging technology offer

a good complement to traditional ultrasound blood flow detection

methods. It can not only measure low-speed microvessels with

diameters greater than 0.1 mm but can also effectively separate low-

flow signals from tissue motion artifacts, even retaining the finest

low-flow components.

SWE and super microvascular imaging (SMI) technologies were

combined in this research to reclassify breast imaging reporting and

data system (BI-RADS) categories based on the hardness

information and blood flow signal characteristics of breast

nodules and to further examine the diagnostic value of the two

new technologies for distinguishing between benign and malignant

breast nodules classified as BI-RADS 3-5.
2 Materials and methods

2.1 Study population

Patients who visited the Central Hospital of Shantou fbecause of

breast nodules were chosen as the study population. Inclusion

criteria were as follows: (a) BI-RADS classification, SWE, and

SMI diagnostic examinations were conducted with no

contraindications; (b) complete imaging data were available.

Exclusion criteria were as follows: (1) patients with a history of

breast surgery, breast cancer recurrence, or concomitant malignant

tumors; (2) lesions larger than 4 cm in maximum diameter or with

internal liquefaction; (3) patients receiving neoadjuvant

chemotherapy; (4) patients with a history of breast implantation;

(5) lactating or pregnant women; (6) patients with mental or

cognitive disorders. All lesions had undergone biopsy or surgical

pathological diagnosis. 88 patients with 110 lesions were included,

with ages ranging from 15 to 87 years and a mean age of (46.39 ±

14.81) years. The maximum diameter of breast lesions ranged from

4 to 40 mm, with a mean of (19.34 ± 7.96) mm.
2.2 Instruments and methods

2.2.1 Instruments
A Japanese TOSHIBA Aplioi900 ultrasound diagnostic system

equipped with SWE and SMI imaging technology with a high-

frequency linear array probe of 10–14 MHZ was used. The

“BREAST” mode of the instrument system settings was chosen.

An ultrasound physician with over 10 years of experience and

proficiency in SWE and SMI technologies guided the operator, and

three operations were repeated to obtain an average value and

reduce human error.

2.2.2 Methods
First, a two-dimensional (2D) gray-scale breast ultrasound

evaluation was conducted. The ultrasound probe was gently

placed on the breast and radially scanned from the nipple. This

process was repeated twice. The depth, gain, and focus were
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adjusted according to the lesion condition after detecting the breast

lesion to obtain the best image quality. Sonographic features of the

breast lesion were recorded in detail, and any abnormal lymph

nodes in the axilla were also screened.

2.2.3 Classification criteria and imaging
observation indicators

Breast BI-RADS classification: The comprehensive analysis was

conducted in accordance with the classification criteria of the 2013

version of the Breast Imaging Reporting and Data System (BI-

RADS). Class 3: High probability of benign or low grade

malignancy, the probability of malignancy is 0%-2%, short-term

follow-up of 3 to 6 months; Class 4: Suspected malignancy, the

possibility of malignancy is 3%-94%, biopsy is recommended; Class

5: Highly suggestive of malignancy, malignant probability ≥ 95%,

recommended biopsy and active treatment. BI-RADS class 4 lesions

were further classified into 4a, 4b, and 4c subcategories (18–20), as

follows: 4a - low suspicion for malignancy, with a 3-10% likelihood

of malignancy; 4b - intermediate suspicion for malignancy, with a

10-50% likelihood of malignancy; 4c - high suspicion for

malignancy, with a 51-94% likelihood of malignancy. Malignant

signs, such as microcalcifications, irregular shape, spiculated

margins, were categorized, round shape, microlobulated/

indistinct/angular margins, duct extension, complex echogenicity

and posterior acoustic shadowing, non-parallel growth, were

categorized (19, 20).

SMI: The number, course, and distribution of microvessels

inside and around the lesion are observed using CDFI and mSMI

technology after determining the location of the breast lesion using

routine ultrasound. The size of the sampling box was modified,

including regulating the blood flow velocity measurement range

within 1 cm around the nodule and its surrounding breast tissue as

much as possible, which is approximately 1.0–2.0 cm/s. To classify

the microvascular morphology of breast nodules in SMI mode,

Adler’s blood flow grading standard (21) was employed (22): (1)

avascular type: no visible blood flow signal was detected within the

nodule; (2) linear type: a single linear or slightly curved blood flow

signal was detected within the nodule without crossing; (3)

branching type: blood flow signals with uniform vessel diameter

and branching were detected within the nodule, similar to

branching; (4) root type: the blood vessel course within the

nodule is irregular and disordered, and less than two large twisted

blood vessels can be detected around it; (5) crab claw type: two or

more radiating, thick and twisted blood vessels, or tiny, thorn-like

blood vessels can be detected around the nodule. The microvascular

morphology distribution was classified based on the above types

after obtaining the mSMI blood flow image of the benign and

malignant breast nodules (23). Among them, nodules with

microvascular morphology types of avascular, linear, and

branching were judged as benign nodules, and those with residual

root and crab claw types were judged as malignant nodules.

SWE examination: SWE mode was initiated by the same

physician using the same ultrasound diagnostic equipment after

verifying the location of the lesion using traditional ultrasound (24–

26). The measuring range was set to 0–180 kPa. The ROI was drawn
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to include the entire nodule using a grayscale ultrasound display of

the lesion boundary. The SWE elasticity average value (Emean) of

the lesion was measured. Then, the ROI range was set to 2 mm ×

2 mm and placed in the elasticity mode map to obtain different

SWE parameters including Emax, Emin, Eratio, SD, and Emean.

Each data was measured three times and the average value

was taken.
2.3 Statistics

For analysis, SPSS19.0 software was employed. Count data were

presented as mean ± standard deviation (x ± s), whereas t-tests and

chi-square tests were employed for continuous and categorical data,

respectively. The sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), and diagnostic accuracy for

the diagnosis of breast nodules employing the BI-RADS

classification, SWE, and SMI technology alone, and the two

technologies combined with the BI-RADS classification diagnostic

criteria, were separately computed. To compare the diagnostic

indicators among different methods, chi-square tests were

employed. Furthermore, receiver operating characteristic (ROC)

curves were separately constructed for SWE, SMI, BI-RADS

classification, and their combinations, and the area under the

curve (AUC) was computed. The optimal cutoff value was

determined as the elastic value with the maximum Youden index.

A statistically significant difference was considered when P < 0.05.
3 Results

3.1 Pathological results

In this research, pathological findings were obtained from 110

solid nodules in 88 patients, which were either obtained through

biopsy or surgical excision (Table 1). Of these, 60 nodules (54.54%)

were malignant and 50 nodules (45.45%) were benign (Table 1).
3.2 Conventional ultrasound BI-RADS
classification results

The traditional ultrasound evaluation reported that among the

110 breast nodules, 26 (23.63%) nodules were categorized as BI-

RADS 3 and were all benign; 14 (12.72%) nodules were categorized

as BI-RADS 4a, with 2 (1.81%) nodules being malignant and 12

(10.90%) nodules being benign; 27 (24.54%) nodules were

categorized as BI-RADS 4b, with 17 (15.45%) nodules being

malignant and 10 (9.09%) nodules being benign; 32 (29.09%)

nodules were categorized as BI-RADS 4c, with 30 (27.27%)

nodules being malignant and 2 (1.81%)nodules being benign; 11

(10%)nodules were categorized as BI-RADS 5 and were all

malignant. BI-RADS 3-4a lesions were considered benign, while

BI-RADS 4b-5 lesions were considered malignant. There were two

cases of infiltrating ductal carcinoma among the misdiagnosed
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malignant nodules. There were six cases of fibroadenoma, four cases

of mammary gland hyperplasia, one case of chronic mastitis, and

one case of lymphocytic mastitis among the misdiagnosed

benign lesions.
3.3 Examination results of BI-RADS
classification combined with shear
wave elastography technology in
routine ultrasound

3.3.1 Shear wave elastography evaluation of
breast nodules

The Young’s modulus values of breast nodules obtained

through SWE measurement, including Emax, Emean, Emin, and

SD, demonstrated substantial differences between the benign and

malignant groups (P < 0.01) (Table 2).

3.3.2 Diagnostic performance of combined use of
BI-RADS and shear wave elastography in breast
nodule evaluation

In this research, BI-RADS classification and SWE were

combined, with Emax ≥77.25 kPa and BI-RADS classification

greater than 4a employed as the malignant standard. ROC curves
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were constructed for Emax (SWE), BI-RADS classification (US),

and the combined diagnostic approach (US+SWE) (Table 3,

Figure 1). The sensitivity of US+SWE was not substnatially

different from that of US or SWE alone, while its NPV was

slightly higher than that of the two individual classifications. The

specificity, accuracy, and PPV of US and SWE substantially

increased with the combined US+SWE approach. A statistically

significant difference was observed in the AUC between the

US+SWE approach and the US alone (Z = 3.404, P = 0.0007).
3.4 Results of the examination using
traditional ultrasound BI-RADS
classification combined with super
microvascular imaging technology

3.4.1 Alder grading of breast nodule microvessels
in SMI mode

In SMI mode, the blood flow classification of benign nodules

based on the Alder grading system (Table 4) demonstrated

statistically significant differences (c2 = 44.153, P<0.01) compared

with the pathological results. The microvascular morphology of

benign nodules tended to be avascular [10 (19.4%)], linear [19

(38.00%)], or dendritic [19 (38.00%)], whereas malignant nodules

tended to be root-like [20 (33.33%)] or crab-like [25 (41.67%)]. In

SMI mode, there was a significant difference in microvascular

morphology between benign and malignant breast nodules

(c2 = 56.181, P<0.01) (Table 4).

3.4.2 Optimization and adjustment of BI-RADS
classification using SMI technology

In SMI mode, the BI-RADS classification remained unchanged

or was downgraded when the microvascular morphology of breast

nodules was classified as benign (avascular, linear, or dendritic).

The BI-RADS classification remained unchanged or was upgraded

when the microvascular morphology was classified as malignant

(root-like or crab-like). The nodule classification remained

unchanged when the low-level grayscale ultrasound showed a

low-level microvascular classification and the high-level grayscale

ultrasound showed a high-level microvascular classification. The

classification was upgraded by one level when the low-level

grayscale ultrasound showed a high-level microvascular

classification. However, the classification could be downgraded by

at most one level when the high-level grayscale ultrasound showed a

low-level microvascular classification. Table 5 shows a comparison

of the adjusted BI-RADS classification with the pathological results.
TABLE 1 Pathological results of 110 breast nodules.

Pathological Results Number (n) Percentage (%)

Benign 50

Fibroadenoma 37 33.63

Breast adenosis 5 4.54

Benign phyllodes tumor 3 2.72

Intraductal papilloma 3 2.72

Breast inflammation 2 1.81

Malignant 60

Invasive ductal carcinoma 48 43.63

Invasive lobular carcinoma 3 2.72

Ductal carcinoma in situ 4 3.63

Mucinous carcinoma 3 2.72

Medullary carcinoma 1 0.90

Invasive small cell carcinoma 1 0.90

Total 110
TABLE 2 Comparison of SWE elasticity modulus parameters between benign and malignant breast lesions.

Pathology Result Number Emax/kPa Emean/kPa Emin/kPa SD/kPa

Benign 50 42.95 ± 37.34 26.60 ± 21.95 15.69 ± 11.85 4.80 ± 6.04

Malignant 60 114.28 ± 23.83 66.40 ± 19.38 28.31 ± 11.86 13.39 ± 9.86

t value 12.133 10.099 5.555 5.369

P value <0.001 <0.001 <0.001 <0.001
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3.4.3 Diagnostic performance of the adjusted
BI-RADS classification for benign and malignant
breast nodules

Compared with the traditional ultrasound BI-RADS classification

(US) after adjustment, the adjusted BI-RADS classification employing

SMI microvascular morphology classification (US+SMI)

demonstrated a slightly lower sensitivity and NPV (P<0.05)
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(Table 3, Figure 1). However, compared with the prior adjustment,

the specificity, accuracy, and PPV were significantly improved

(c2 = 4.763, P<0.05). The AUC for US+SMI was 0.966, and there

was a statistically significant difference in the AUC between US+SMI

and US (Z = 2.826, P = 0.0047). Combining SMI classification can

enhance the diagnostic accuracy of benign and malignant breast

nodules classified as BI-RADS 3-5.
FIGURE 1

Classification Rule (Bn) for incorporating traditional ultrasound BI-RADS with SWE or SMI in Figure 1. When BI-RADS 3, Bn classification, n=1; BI-
RADS-US 4a, Bn classification, n=2; BI-RADS 4b, Bn classification, n=3; BI-RADS 4c, Bn classification, n=4; BI-RADS 5, Bn classification, n=5. For
instance, a nodule was initially classified as BI-RADS 3. Its Bn classification is 1, when Emax > 77.25kPa, it is classified as B2 (n+1) by adding SWE to
traditional ultrasound (US + SWE); when the SMI mode is type III branch, it is classified as B1 (n+1-1), by adding SMI on US + SWE (US + SWE + SMI),
Bn classification ranges from 1 to 5 after elevated and lowered. (SMI pattern vascular type: type I avascular, type II linear, type III branching, type IV
root-like, type V crab-li.
TABLE 4 Microvascular morphology classification of breast nodules under SMI mode [n (%)].

Pathological Type Number avascular linear dendritic root-like crab-like

Benign 50 10 (20) 19 (38) 19 (38) 1 (2) 1 (2)

Malignant 60 3 (5) 3 (5) 9 (15) 20 (33.33) 25 (41.67)

Total 110 13 22 28 21 26
TABLE 3 Diagnostic performance of various examination methods for differentiating benign and malignant breast nodules.

Examination
Method

Examination
Result

Pathological Result
(Number of
Nodules)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Positive
Predictive
Value (%)

Negative
Predictive
Value (%)

AUC

Benign Malignant

US Benign 38 2 96.67 76.00 82.27 82.86 95.00 0.938

Malignant 12 58

US+SWE Benign 46 2 96.67 84.00 90.91 87.88 95.45 0.975

Malignant 4 58

US+SMI Benign 46 3 95.00 92.00 93.63 93.44 93.88 0.966

Malignant 4 57

US+SWE+SMI Benign 46 1 98.33 92.00 95.45 97.87 96.72 0.980

Malignant 4 59
fro
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3.5 The examination results of the
traditional ultrasound BI-RADS
classification combined with the SWE
and SMI are concluded based on the
following criteria

The BI-RADS classification is elevated or unchanged when

Emax is greater than or equal to 77.25 kPa and/or the mSMI

pattern is malignant vascular type (IV-type root-like or V-type

crab-like). The BI-RADS classification is lowered or unchanged

when Emax is less than 77.25 kPa and/or the SMI pattern is benign

vascular type (I type avascular, II type linear, or III type

branching) (Figure 1).

Results showed that the AUC values of US+SWE+SMI,

US+SWE, and US+SMI were 0.980, 0.975, and 0.966, respectively.

Among them, the US+SWE+SMI had the highest AUC and

diagnostic values (Table 3, Figure 2) compared to that of US-BI-

RADS classification (P < 0.01). No statistical difference was observed
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in the AUC value between US+SWE+SMI and US+SWE or US+SMI.

For distinguishing between benign and malignant breast nodules, the

sensitivity, specificity, accuracy, PPV, and NPV of US+SWE+SMI

were all superior to those of US, US+SWE, or US+SMI.
4 Discussion

To re-adjust BI-RADS classification based on the nodule

hardness and blood flow characteristics of breast nodules, this

research combined SWE and SMI technologies and further

examined the diagnostic value of the two new technologies for

discriminating benign and malignant BI-RADS 3-5 breast nodules

(exmple Figures 3, 4). This research discovered that the sensitivity,

specificity, and accuracy of the BI-RADS classification adjusted by

SMI and SWE technologies for the diagnosis of breast nodules were

higher than those before adjustment (P<0.05). Combining SWE and

SMI with traditional ultrasound BI-RADS classification can

improve the diagnostic efficiency of BI-RADS 3-5 breast nodules,

and their combination has the highest diagnostic efficiency, offering

a more reliable diagnostic basis for clinical practice.
4.1 Classification ultrasound
BI-RADS results

BI-RADS 3-4a nodules were classified as benign lesions and 4b-5

nodules were classified as malignant lesions based on the

conventional ultrasound BI-RADS classification criteria in this

experiment. The sensitivity of the traditional ultrasound BI-RADS

classification for the diagnosis of benign and malignant breast

nodules was high, but the specificity was low, indicating a high

misdiagnosis rate of traditional ultrasound BI-RADS classification.

Due to that, a large proportion of benign breast nodules will be

misdiagnosed as malignant one. Some of the misdiagnosed benign

lesions were fibroadenomas with active proliferation of surrounding

ductal epithelium, and some fibroadenomas were accompanied by

surrounding glandular disease, resulting in the misdiagnosis as

malignant. Misdiagnosed malignant nodules had parallel growth,

uniform internal echogenicity, slightly blurred margins, apparent

capsules, and slight attenuation of posterior echoes; therefore, they
TABLE 5 Comparison analysis of BI-RADS classification combined with SMI adjustment and pathological results for breast nodules (n).

BI-RADS
Category

Nodules(n) Pathological Result
Benign

Pathological Result
Malignant

Diagnostic Accuracy of
Malignant Nodules (%)

Before
Adjust

After
Adjust

Before
Adjust

After
Adjust

Before
Adjust

After
Adjust

Before
Adjust

After
Adjust

3 26 37 26 37 0 0 0.00 0.00

4a 14 12 12 9 2 3 14.29 25.00

4b 27 19 10 2 17 17 62.96 89.47

4c 32 27 2 2 30 25 93.75 92.59

5 11 15 0 0 11 15 100.00 100.00

Total 110 110 50 50 60 60
FIGURE 2

Receiver operating characteristic curves for US and three sets of
combined tests.
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were categorized as BI-RADS 4a. Particularly in BI-RADS 4, the

malignancy rate of breast nodules previously examined using

ultrasound as BI-RADS 3-5 varies significantly, and there were

several similar morphological signs between benign and malignant

nodules. Although diagnosed strictly according to the BI-RADS

classification criteria, it is still challenging to accurately determine

their classification sometimes. Furthermore, many patients with

benign breast nodules have undergone excessive biological

examination and surgery due to the misdiagnosis, which is

unnecessary (27). Thus, it is urgent to develop diagnostic methods

with high accuracy to reduce unnecessary clinical intervention.
4.2 Diagnostic performance of BI-RADS
classification adjusted with SWE

This research combined SWE technology and BI-RADS

classification criteria to exclude false-positive diagnoses of eight

lesions in the BI-RADS classification standard. In cases where the

lesion was small and the degree of fibrosis in the breast cancer cell

matrix was low, the collagen fiber content decreased, resulting in a

corresponding decrease in the hardness (28, 29). It has been

reported that the higher breast thickness and lesion depth can

result in lower elasticity values compared with actual values during

SWE examination (19). Our results revleaed that the combination
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of US and SWE had an improved specificity and comparable

sensitivity compared to US or SWQ alone. Hence, the addition of

nodule elasticity contributes to the high diagnostic accuracy.
4.3 Diagnostic performance of BI-RADS
classification adjusted with SMI

The blood flow levels of benign tumors were mostly at levels 0–1,

while those of malignant tumors were mostly at levels 2–3. Malignant

tumors have an abundant blood supply and a higher blood flow rate

than benign tumors. Park et al. discovered that SMI was superior to

color Doppler when evaluating the morphology, quantity and

distribution of tumor microvessels (30). However, some

fibroadenomas with large volume or quick growth rates will have

similar vascular blood flow signals and penetrating vessel patterns

compared to malignant tumors when using semiquantitative grading

and penetrating vessels as diagnostic criteria (31, 32). Therefore,

employing blood flow distribution pattern analysis as a diagnostic

criterion is superior to semiquantitative grading in diagnosing benign

and malignant breast lesions (33).

In this research, Adler grade 0-1 nodules with avascular, linear,

dendritic subtype of microvascular morphology were classified as

benign ones, while Adler grade 2-3 nodules with root and crab leg

subtype of microvascular morphology were classified as malignant
B
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A

FIGURE 3

Ultrasound and pathological graphs: A 50-year-old female patient with a right breast nodule received ultrasound and pathological biopsy
examinations. (A) An irregularly shaped, crab-like hypoechoic nodule is detected in the upper outer quadrant of the right breast, with unclear
boundaries, classified as BI-RADS 4c. (B) mSMI image demonstrates that the microvascular morphology is radicle-shaped, with an increased
BI-RADS level of 1 classified as BI-RADS 5. (C) Shear wave elastography image: Emax is 140.9 kPa, which is higher than 77.25 kPa, resulting in an
increase or no change in the BI-RADS classification. (D) The nodule is an invasive ductal carcinoma based on pathological results.
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ones (34, 35). A significant difference of microvascular morphology

classification and the Adler grade was observed between the benign

and malignant breast nodules (P < 0.01). Furthermore, when we

adjusted the BI-RADS classification in combination with SMI

technology, four benign nodules were classified as malignant, two

of which were classified as 4b type, both of which were sclerosing

adenosis with poor blood supply. The other two cases were classified

as 4c nodules, which were lymphocytic mastitis and chronic

granulomatous mastitis, respectively, and both of them exhibited

obvious malignant signs on traditional ultrasound with the Adler

grade of 3 and the microvascular morphology of root and crab leg

subtypes under the mSMI mode. Three malignant nodules were

categorized as benign ones (BI-RADS 4a), of which two were

verified to be ductal carcinoma in situ, and the other was verified

to be infiltrating lobular carcinoma. Since traditional ultrasound

only showed slight malignant signs, so downgrading blindly is not

advisable. A total of 18 BI-RADS classifications of breast nodules

were upgraded, and no downgrade was adopted. The combination

of SMI and BI-RADS classification criteria can enhance the

diagnostic accuracy of breast nodules but still has limitation.

In this research, 4b nodules showed avascular characteristics

and were downgraded to 4a. Postoperative pathology demonstrated

that they were breast glandular diseases with fibroadenoma. BI-

RADS 4a nodules exhibited linear characteristics and were

downgraded to category 3. Postoperative pathology indicated that
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they were fibroadenoma with peripheral proliferation. All two cases

of 2D ultrasound images demonstrated irregular shapes and unclear

borders. Among them, breast glandular disease with fibroadenoma

was more common in clinical cases, with nodules frequently having

unclear borders and a hard texture, which can be categorized as BI-

RADS category 4. Six 4a nodules downgraded to grade 3 were all

fibroadenomas, which were routinely classified as 4a because of

their irregular morphology, some with angular or lobulated shapes

but with a benign vascular pattern. According to the pathological

findings, most of these patients were middle-aged to elderly women,

and the nodules had been present in their bodies for numerous

years without substantial changes in size. Pathological findings

demonstrated that chronic inflammation around the edge of the

nodules could result in irregular nodular morphology, and the

blood flow distribution inside the nodules was not abundant.

Therefore, the combination of SMI and traditional BI-RADS

classification can help differentiate these modules.
4.4 Diagnostic performance of BI-RADS
classification optimized by combining SWE
and SMI technologies

In this research, 15 nodules were SWE-positive but SMI-

negative, whereas 2 nodules were SWE-negative but SMI-positive.
B
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FIGURE 4

Ultrasound and pathological graphs. A 28-year-old female patient with a right breast nodule received ultrasound and pathological biopsy
examinations. (A) A regular low-echo nodule was detected in the right outer and lower mammary quadrant, with parallel growth, lobed edges,
even internal echo, and clear boundaries, BI-RADS 4a. (B) mSMI shows that microvessel morphology is dendritic subtype; BI-RADS grade was
downgraded 1 level. (C) Shear wave elastic imaging: Emax is 25.7kPa < 77.25 kPa; BI-RADS classification was lowered or remained unaltered.
(D) The nodule is a breast fibroadenoma based on pathological results.
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48 nodules were positive for both technologies. When the findings

were inconsistent, the BI-RADS category remained unchanged. The

addition of SWE and SMI to the BI-RADS classification led to 26

fibroadenomas remaining unaltered, 9 fibroadenomas categorized

as BI-RADS 4a being downgraded to level 3, and 8 benign 4b

nodules being downgraded, indicating that not all level 4 nodules

require immediate intervention or biopsy since they were benign

nodules. However, five nodules were still misdiagnosed even after

combining the SWE and SMI approaches.
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A clinical-radiomics nomogram
based on multimodal ultrasound
for predicting the malignancy
risk in solid hypoechoic
breast lesions

Guo Shiyan, Jiang Liqing, Yan Yueqiong and Zhang Yan*

Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
Background: In routine clinical examinations, solid hypoechoic breast lesions are

frequently encountered, but accurately distinguishing them poses a challenge.

This study proposed a clinical-radiomics nomogram based on multimodal

ultrasound that enhances the diagnostic accuracy for solid hypoechoic breast

lesions.

Method: This retrospective study analyzed ultrasound strain elastography (SE)

and automated breast volume scanner images (ABVS) of 423 solid hypoechoic

breast lesions from 423 female patients in our hospital between August 2019 and

May 2022. They were assigned to the training (n=296) and validation (n=127)

groups in a 7:3 ratio by generating random numbers. Radiomics features were

extracted and screened from ABVS and SE images, followed by the calculation of

the radiomics score (Radscore) based on these features. Subsequently, a

nomogram was constructed through multivariate logistic regression to assess

the malignancy risk in breast lesions by combining Radscore with Breast Imaging

Reporting and Data System (BI-RADS) scores and clinical risk factors associated

with breast malignant lesions. The diagnostic performance, calibration

performance, and clinical usefulness of the nomogram were assessed by the

area under the curve (AUC) of the receiver operating characteristic curve, the

calibration curve, and the decision analysis curve, respectively.

Results: The diagnostic performance of the nomogram is significantly superior to

that of both the clinical diagnostic model (BI-RADS model) and the multimodal

radiomics model (SE+ABVS radiomics model) in training (AUC: 0.972 vs 0.930 vs

0.941) and validation group (AUC:0.964 vs 0.916 vs 0.933). In addition, the

nomogram also exhibited a favorable goodness-of-fit and could lead to

greater net benefits for patients.
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Conclusion: The nomogram enables a more effective assessment of the

malignancy risk of solid hypoechoic breast lesions; therefore, it can serve as a

new and efficient diagnostic tool for clinical diagnosis.
KEYWORDS

nomogram, breast, radiomics, automated breast volume scanner, strain elastography
1 Introduction

As the most prevalent cancer in the world, breast cancer poses a

grave threat to people’s health and survival (1). Given its high

metastatic tendency and high mortality rate (2, 3), coupled with the

significant differences in treatment modalities for benign and

malignant breast tumors, early definitive diagnosis is a critical first

step in the therapeutic management of breast lesions, which plays a

crucial role in improving patient outcomes and survival (3–5).

With the recent advancements in ultrasound imaging technology,

ultrasound plays an increasingly important role in the detection of

breast lesions. Strain elastography (SE) allows for a quick and intuitive

display of differences in elasticity coefficients within the lesion through

color-coded imaging, therefore, it serves as a powerful diagnostic aid to

offer valuable reference values for lesion diagnosis (6, 7). Automated

breast volume scanner (ABVS) provides good reproducibility of

diagnostic results due to its standardized operating procedures (8), it

can acquire the whole breast volume information and perform

multiplanar imaging on the acquired information. Studies have

shown that ABVS exhibits comparable diagnostic accuracy to

handheld ultrasound scanners for detecting breast lesions, while also

providing additional information (9, 10). In routine ultrasound

examinations, it is frequent to encounter patients with solid

hypoechoic breast lesions, physicians can make an initial assessment

of the malignancy risk of breast lesions based on their morphological

appearance on ABVS image and elastic performance on SE images.

The combination of ABVS and SE imaging techniques demonstrates

significant diagnostic efficacy in evaluating breast lesions (11).

However, the dependability of diagnostic outcomes generated by

conventional imaging techniques is largely contingent on the

proficiency of the examining physician and is markedly susceptible

to interobserver variability (12).

Radiomics is in line with the current trend toward precision

medicine, as it transforms ordinary visual images into high-

throughput data through deep mining of medical images, allowing for

the capturing of the internal heterogeneity of the entire tumor in a non-

invasivemanner (13–15). Therefore, itmay provide novel biomarkers to

facilitate diagnosis for better clinical decision-making. There are already

several radiomics studies on ultrasound (US), mammography, and

magnetic resonance (MR) in breast cancer diagnosis that have yielded

promising results (16–29). However, there have been no studies on the

combination of ABVS and UE radiomics features with clinical

ultrasound factors for the diagnosis of breast cancer. Therefore, we

conducted a radiomics analysis on SE andABVS images, then combined
0218
these features with traditional imaging risk assessments and other

clinical risk factors, resulting in a novel nomogram to help physicians

accurately diagnose solid hypoechoic breast lesions.
2 Materials and methods

2.1 Patients

The retrospective study was approved by the institutional

review board at our hospital. The inclusion criteria were: (1)

Patients who underwent both ABVS and SE examinations at our

hospital between August 2019 and May 2022 and subsequently

underwent biopsy or surgical resection within two weeks with a

pathologically confirmed diagnosis. (2) Patients with complete

imaging data. (3) Patients’ breast lesions were hypoechoic solid

lesions. The exclusion criteria were: (1) Patients whose images were

of poor quality; (2) Patients who underwent aspiration or clinical

treatment before examining target lesions. Eventually, we included

423 solid hypoechoic breast lesions from 423 female patients. By

generating random numbers, they were allocated into training and

validation groups in the ratio of 7:3. The flow is shown in Figure 1.
2.2 Image acquisition and assessment

In this study, all images used were obtained using the ACUSON

S2000 US machine and its accompanying ABVS system.

2.2.1 SE image
Patients were instructed to breathe normally while lying supine

on the examination bed with their breasts fully exposed. A 9L4

probe in two-dimensional ultrasound mode was used to examine

the breast in all planes. The imaging mode was then switched to the

elastic mode when scanning the largest two-dimensional section of

the lesions, and the patient was required to cooperate by holding her

breath. The probe is placed perpendicularly over the breast without

applying any pressure during the capture of SE images, with the

lesion positioned at the center of an elasticity sampling window at

least twice the size of the area of interest.

2.2.2 ABVS image
Instruct the patient to raise both arms over the head and remain

in the supine position. A sufficient amount of coupling agent was
frontiersin.org
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applied uniformly to the breast. Before scanning, parameters such

as depth and overall gain were adjusted to achieve optimal image

quality. During the scanning procedure, patients were instructed to

breathe normally. Each breast was routinely scanned in two

positions using a 14L5BV high-frequency linear array automatic

scanning US probe. The nipples were marked after the scanning,

and the acquired images were saved and transferred to a

workstation for processing and analysis. Images with the

maximum section image of the target lesion in coronal,

transverse, and sagittal planes were selected for subsequent region

of interest (ROI) segmentation and feature extraction.

Refer to the BI-RADS criteria which were defined by the

American College of Radiology in 2013 (30), we evaluated the

morphology, margin, border, orientation, posterior echogenicity of

the lesion, microcalcification within the lesion, and conditions of

retraction in its coronal plane on the saved images. This is followed

by a combination with ultrasound elastic strain performance of the

lesions (elasticity score using a 5-point scale (31)), enabling an

accurate classification of the risk of malignancy of the lesions.

All of the above steps were performed by a physician who

has over ten years of expertise in ultrasound breast disease

diagnosis.
2.3 Extraction and selection of
radiomics features

The ABVS and SE images were sequentially imported into 3D

Slicer 5.2.1 for image processing, manual segmentation of the ROI
Frontiers in Oncology 0319
and extraction of radiomics features. We delineated ROI for lesions

in both SE and ABVS images. Notably, in the ABVS images, we

delineated the ROI on the coronal, sagittal, and transverse planes of

the lesions, respectively. Further details can be found in Figure 2.

This procedure was performed with the participation of two

physicians. Physician A, with five years of experience in

ultrasound-based breast disease diagnosis, performed outlining

for all the lesions. Physician B, with eight years of experience in

ultrasound-based breast disease diagnosis, conducted lesion

outlining on the training group to validate ROI outlining

reproducibility. Then, we utilized the Pyradiomics package within

3D Slicer to extract radiomics features from the SE and ABVS

images, respectively. The features extracted encompassed first-order

statistics features, texture features (including the gray level co-

occurrence matrix (glcm), gray level dependence matrix (gldm),

gray level run length matrix (glrlm), gray level size zone matrix

(glszm), and the neighbouring gray tone difference matrix

(ngtdm)), as well as post-wavelet transformed features.

Subsequently, we subjected the extracted features to screening. By

utilizing the intra-class correlation coefficient (ICC) analysis, we can

identify features that exhibit high levels of reproducibility (ICC >

0.75) (32), subsequently, radiomics features extracted from the

region of interest segmented by physician A were utilized for

further analysis. All feature values were normalized using Zscore.

The radiomics features of both modalities were subjected to

dimensionality reduction through the Mann-Whitney U test and

least absolute shrinkage and selection operator (LASSO) regression

and to identify features with strong qualitative diagnostic ability for

solid hypoechoic breast lesions.
FIGURE 1

The grouping process of this study.
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2.4 Development of models

2.4.1 Radiomics models
Based on radiomics features of SE and ABVS images, logistic

regression analysis was utilized to build the radiomics model, including

the SE radiomics model, the ABVS radiomics model, the SE+ABVS

radiomics model that was developed by combining the two. The

radiomics score (Radscore) for each lesion was computed by

weighting the coefficients of features in the SE+ABVS radiomics model.

2.4.2 Clinical diagnostic model
The BI-RADS model was constructed through logistic

regression analysis of lesion’s BI-RADS categories in the

training group.
2.5 Development and performance
validation of nomogram

This study performed a univariate analysis in order to determine

the risk predictive variables associated with breast cancer(P<0.05),

which were then combined with the results of conventional imaging

assessment and radiomics analysis. Based on these findings, we

integrated relevant clinical risk factors, the Radscore, and the BI-

RADS category of lesions to develop a nomogram for assessing the

malignancy risk in such breast lesions by multivariate logistic

regression analysis. Subsequently, the nomogram’s diagnostic

performance was compared to that of the BI-RADS model and SE

+ABVS radiomics model. To evaluate the diagnostic performance of

the models, we calculated the area under the receiver operating

characteristic curve (AUC) for each model in the training group,

validation group, and in the BI-RADS category 4 lesions within both
Frontiers in Oncology 0420
groups. Furthermore, the DeLong test was used to examine differences

in AUC values between different models. The nomogram’s goodness of

fit was investigated graphically and by calculating significance by

plotting the calibration curve and conducting the Hosmer-Lemeshow

test. Lastly, clinical decision analysis curves were drawn for quantifying

the net benefits of the BI-RADS model, SE+ABVS radiomics models,

and nomogram at various threshold probabilities.

2.6 Statistical analysis

SPSS 23.0, R 4.2.2, and MedCalc 19.6.0 were utilized for

statistical analysis and graph plotting. The ‘psych’, ‘survival’,

‘glmnet’, ‘rms’, ‘ResourceSelection’, and ‘rmda’ packages were

used in R. We performed normality tests on each group of data

and selected the appropriate hypothesis test based on the results to

compare the distribution of data between the training and

validation groups. The study has chosen a significance level of

0.05 as the threshold for detecting statistical differences.

3 Results

3.1 Comparison of clinical basis
information and sonographic features

The study included 423 breast lesions that were pathologically

confirmed to include 215 benign lesions and 208 malignant lesions.

Table 1 demonstrates that both the clinical basis data and sonographic

features of lesions were evenly distributed in the training and validation

groups, indicating no statistically significant differences between the

two groups (P>0.05). Furthermore, the univariate risk analysis revealed

that patients with malignant lesions had significantly higher age and

lesion’s maximum diameter compared to those with benign lesions in
A B

DC

FIGURE 2

An instance of manually delineating a region of interest (ROI). The strain elastography (SE) and automated breast volume scanner (ABVS) images of a
41-year-old female with a solid hypoechoic lesion measuring approximately 16x11x12mm on her left breast. The lesion was irregular in shape,
parallel in position, with still well-defined borders, sharp margins, and scattered microcalcifications visible internally, and exhibited no significant
posterior echogenicity change or retraction in the coronal plane, and the ultrasound elasticity score was 4, finally, the lesion was classified as BI-
RADS category 4a. Pathological examination confirmed it as invasive ductal carcinoma. ROI segmentation was performed on both the SE image (A)
and ABVS coronal image (B), with delineation along the boundary of the lesion followed by uniform outward expansion of its edges by 3 mm to
encompass some surrounding tissue.ROI segmentation was performed on ABVS transverse (C) and sagittal (D) images, respectively, and meticulous
delineation was performed along the lesion’s contour and borders on these two views.
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TABLE 1 Clinical basis information and sonographic features of patients with breast lesions.

Characteristic Training group (n=296) Validation group (n=127)

Benign group
(n=151)

Malignant group
(n=145)

PIntra

value
Benign group

(n=64)
Malignant group

(n=63)
PIntra

value
PInter

value

Age

Median±SD 39±10.85 51±10.73 <0.01* 41±9.83 53±10.82 <0.01* 0.34

maximum
diameter

Median±SD 13±7.36 19±8.23 <0.01* 15±9.24 18±8.52 <0.05* 0.37

Location

Left 72 (47.68%) 79 (54.48%) 0.24 32 (50%) 30 (47.62%) 0.79 0.68

right 79 (52.32%) 66 (45.52%) 32 (50%) 33 (52.39%)

Morphology

Regular 77 (50.99%) 17 (11.72%) <0.01* 28 (43.75%) 5 (7.94%) <0.01* 0.24

Irregular 74 (49.01%) 128 (88.28%) 36 (56.25%) 58 (92.06%)

Border

Clear 110 (72.85%) 45 (31.03%) <0.01* 43 (67.19%) 19 (30.16%) <0.01* 0.50

Not Clear 41 (27.15%) 100 (68.94%) 21 (32.81%) 44 (69.84%)

Margin

Circumscribed 127 (84.11%) 22 (15.17%) <0.01* 51 (79.69%) 12 (19.05%) <0.01* 0.89

Not circumscribed 24 (15.89%) 123 (84.83%) 13 (20.31%) 51 (80.95%)

Orientation

Parallel 128 (84.77%) 79 (54.48%) <0.01* 54 (84.38%) 32 (50.79%) <0.01* 0.65

Not parallel 23 (15.23%) 66 (45.52%) 10 (15.62%) 31 (49.21%)

Posterior
echogenicity

Enhancement 11 (7.28%) 17 (11.72%)

0.28

4 (6.25%) 6 (9.52%) 0.82 0.52

No difference 130 (86.10%) 111 (76.56%) 57 (89.06%) 52 (82.54%)

Shadowing 10 (6.62%) 17 (11.72%) 3 (4.69%) 5 (7.94%)

Retraction sign

Presence 0 (0%) 32 (22.07%) <0.01* 0 (0%) 16 (25.40%) <0.01* 0.60

Absence 151 (100%) 113 (77.93%) 64 (100%) 47 (74.60%)

MicroCalcification

Presence 16 (10.60%) 66 (45.52%) <0.01* 3 (4.69%) 26 (41.27%) <0.01* 0.30

Absence 135 (89.40%) 79 (54.48%) 61 (95.31%) 37 (58.73%)

Ultrasonic
elasticity score

1 point 16 (10.60%) 0 (0%) 7 (10.94%) 0 (0%)

2 points 49 (32.45%) 1 (0.69%) 22 (34.37%) 3 (4.76%)

3 points 65 (43.05%) 21 (14.48%) <0.01* 27 (42.19%) 14 (22.22%) <0.01* 0.70

4 points 20 (13.24%) 55 (37.93%) 8 (12.50%) 24 (38.10%)

5 points 1 (0.66%) 68 (46.90%) 0 (0%) 22 (34.92%)

(Continued)
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both groups (P<0.05). However, no correlation was seen between the

location of the lesion and the malignant risk of the lesion (P>0.05).

Hence, we regarded age and lesion size as predictor variables in the

context of breast cancer. Regarding the sonographic features of the

lesions, there were statistically significant differences (P<0.01) observed

in morphology, borders, margins, orientation, microcalcifications,
Frontiers in Oncology 0622
retraction condition of the coronal plane, and elasticity scores

between benign and malignant lesions within both groups. while no

statistical differences were found in posterior echogenicity (P>0.05).

This study assessed the malignancy risk of lesions by these sonographic

features of them, and the BI-RADS categories obtained were also

significantly different in benign and malignant lesions (P<0.01).
A

B

D

C

FIGURE 3

Screening of radiomics features. Selection of strain elastography (SE) radiomics features (A), automated breast volume scanner (ABVS) coronal plane
radiomics features (B), ABVS transverse plane radiomics features (C), and ABVS sagittal plane radiomics features (D) using the least absolute
shrinkage and selection operator (LASSO) regression model. The coefficient profiles of LASSO for each modal radiomics feature are presented on
the left. The right shows that the tuning parameter l (lambda) in the LASSO model was selected using tenfold cross-validation, and the binomial
deviance was plotted as a function of log(l), with vertical dashed lines drawn at the minimum deviation (log(l.min)) and the 1 standard error of the
minimum deviation (log(l.1se)). Selected the non-zero coefficient features in the model when the horizontal coordinate was log(l.1se).
TABLE 1 Continued

Characteristic Training group (n=296) Validation group (n=127)

Benign group
(n=151)

Malignant group
(n=145)

PIntra

value
Benign group

(n=64)
Malignant group

(n=63)
PIntra

value
PInter

value

BI-RADS

3 64 (42.38%) 4 (2.76%) 27 (42.19%) 2 (3.17%)

4a 82 (54.31%) 21 (14.48%) <0.01* 34 (53.12%) 11 (17.46%) <0.01* 0.77

4b 4 (2.65%) 27 (18.62%) 3 (4.69%) 12 (19.05%)

4c 1 (0.66%) 30 (20.69%) 0 (0%) 17 (26.98%)

5 0 (0%) 63 (43.45%) 0 (0%) 21 (33.34%)
front
* p < 0.05.
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3.2.Screening of radiomics features

The SE and ABVS images generated 837 and 2511 radiomics

features (ABVS cross plane, sagittal plane, and coronal plane, each

generated 837 features), respectively. The training group’s SE radiomics

features aswell as theABVS coronal plane, transverse plane, and sagittal

plane radiomics features underwent sequential ICC analysis, Mann-

WhitneyU test, LASSO regression analysiswith tenfold cross-validation

for dimensionality reduction. Finally, a total of 14 features were selected,

comprising four SE radiomics features and tenABVS radiomics features

(two from the coronal plane, three from the transverse plane, and five

from the sagittal plane). All of these radiomics features are texture

features, one of which was from the original image and thirteen were

obtained after wavelet transform (Figure 3).
3.3 Comparison of radiomics models

By comparing and validating the diagnostic efficacy of the

radiomics models (Figure 4, Table 2), the AUC values of the

selected ABVS and SE features for distinguishing between benign

and malignant solid hypoechoic breast lesions were consistently

above 0.8 in both the training and validation groups. Moreover,

compared to any single-modality radiomics models, the SE+ABVS

radiomics model, which integrated the radiomics features of two

imaging modalities, demonstrated significantly higher AUC values

in both training (All P<0.01) and validation groups (compared to

the ABVS radiomics model: P<0.01, compared to SE radiomics

model: P<0.05). These outcomes suggest that combining radiomics

features from both SE and ABVS could enhance the accuracy of

diagnostic models. Thus, the Radscore for each patient was obtained

by weighting the corresponding coefficients for each feature in the

SE+ABVS radiomics model., the formula is shown below, the
Frontiers in Oncology 0723
Radscore for malignant lesions was found to be significantly

higher than that for benign lesions within both groups. (Training

group: 2.86 + 2.66, -2.34 + 1.80, P<0.01; Validation group:

2.60 + 2.31, -2.17 + 1.85, P<0.01).
A B

FIGURE 4

The receiver operator characteristic curves for various radiomics models in the training (A) and validation groups (B).
TABLE 2 The AUC values of radiomics models in the training and
validation groups.

Model AUC
(95%CI)

P
(AUC compare
to SE radiomics

model)

P
(AUC compare

to ABVS
radiomics
model)

Training group

SE
radiomics
model

0.920 (0.883,
0.948)

<0.01*

ABVS
radiomics
model

0.865 (0.821,
0.902)

<0.01*

SE+ABVS
radiomics
model

0.941 (0.907,
0.965)

<0.01* <0.01*

Validation group

SE
radiomics
model

0.892 (0.824,
0.940)

0.08

ABVS
radiomics
model

0.811
(0.732,0.875)

0.08

SE+ABVS
radiomics
model

0.933
(0.875,0.970)

<0.05* <0.01*
*P< 0.05.
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Radscore = 1:944469*original glszm GrayLevelVariance _ SE

+0:03492*wavelet − LHL glszm GrayLevelNonUniformity _ SE

+0:634491*wavelet − LHH gldm LargeDependenceLowGrayLevelEmphasis _ SE

+0:465968*wavelet − LLL glcm SumSquares _ SE

+0:133391*wavelet −HHL glszm GrayLevelNonUniformity _ ABVS _Coronal

−1:515639*wavelet − LLL glszm ZoneEntropy _ ABVS _Coronal

+0:010666*wavelet − LHH glszm ZoneEntropy _  ABVS _ Transverse

+1:292836*wavelet −HLL glszm ZoneEntropy _  ABVS _ Transverse

+0:043941*wavelet −HHL glszm GrayLevelNonUniformity _  ABVS _ Transverse

−1:828919*wavelet − LHH glcm MCC _ABVS _ Sagittal

+0:813141*wavelet − LHH glszm ZoneEntropy _ ABVS _ Sagittal

−0:008279*wavelet −HLL glszm GrayLevelNonUniformity _ ABVS _ Sagittal

+1:520859*wavelet −HLH glszm ZoneEntropy _ ABVS _ Sagittal

+0:271946*wavelet −HHL glszm GrayLevelNonUniformity _ ABVS _ Sagittal

−25:66532
3.4 Evaluation of nomogram performance

Based on the clinical risk factors identified through univariate

analysis, BI-RADS categories determined from imaging

assessments, and Radscore obtained from radiomics analysis, we

constructed a nomogram using multivariate logistic regression to

visually assess the risk of malignancy in solid hypoechoic breast

lesions, the nomogram incorporated the patient’s age, lesion’s

maximum diameter, Radscore, and BI-RADS category. As

illustrated in Figure 5, Radscore had the highest weightage

followed by BI-RADS score while age and maximum diameter of

the lesion exerted less influence on assessment results.

Figure 6 and Table 3 present that the BI-RADS model, SE

+ABVS radiomics model, and nomogram are effective in predicting

the malignancy risk in solid hypoechoic breast lesions, Notably, the

nomogram exhibits superior diagnostic performance with higher

AUC values (0.972, 0.964) in training and validation group

compared to both the BI-RADS model (AUC: 0.930, 0.916) and

SE+ABVS radiomics models (AUC: 0.941, 0.933). Furthermore, its

difference with BI-RADS model and SE+ABVS radiomics model

was statistically significant in both groups (P<0.05). Besides, we

further compared the diagnostic efficacy of the three models for BI-
Frontiers in Oncology 0824
RADS category 4 lesions within the two groups. The results revealed

that the nomogram (AUC: 0.952, 0.930) consistently exhibited

higher AUC values than both the BI-RADS model (AUC:0.844,

0.839) and SE+ABVS radiomics model (AUC:0.915, 0.899).

Moreover, there were consistently statistically significant

differences between the nomogram and BI-RADS model (All

P<0.01). However, in comparison to the SE+ABVS model, the

nomogram was only statistically different from it in the training

group (P<0.05), but not in the validation group (P>0.05). Other

than that, in terms of diagnostic sensitivity, specificity, and

accuracy, Although the specificity of the nomogram was slightly

inferior to that of the BI-RADS model in the training group, it

significantly improved diagnostic sensitivity. Furthermore, its

diagnostic parameters were at the highest level across all

validation groups. These results suggest that the nomogram

exhibited the best overall diagnostic performance. Finally, we

observed that the AUC values of the SE+ABVS Radiomics model

consistently outperformed those of the BI-RADS model, and a

statistically significant difference was found between them when

diagnosing BI-RADS category 4 lesions of the training group

(P<0.05). This finding highlights the ability of radiomics analysis

to detect deep-seated features within the images, ultimately leading

to improved diagnostic efficiency.

The calibration curve exhibits a favorable fit of the nomogram

(Figures 7A, B). indicating that the predicted risk by the nomogram

was close to the observed risks. The results from the Hosmer-

Lemeshow test further proved that the differences between them did

not present statistical significance in either the training group

(P=0.70) or validation group (P=0.95).

The clinical decision analysis curve (Figure 7C) indicates that

utilizing the BI-RADS model, SE+ABVS radiomics model, and

nomogram for decision-making significantly improved the net

benefit for patients compared to the assumption of intervention

for all lesions or no intervention at all. Furthermore, the nomogram

provided a greater net benefit to patients compared to both the BI-

RADS model and SE+ABVS radiomics model.
4 Discussion

The study combined radiomics features of ABVS and SE images

with conventional imaging diagnosis criteria along with clinical risk

factors for developing a clinical-radiomics nomogram that

demonstrated excellent diagnostic efficacy, as well as good

calibration capabilities, and significant clinical usefulness.

Although ABVS and SE examination techniques offer significant

advantages in breast screening, the examiner’s naked eye remains

incapable of capturing deep image information. Radiomics provides

a pathway to capture internal tumor information at a more

profound level. Wang et al. derived radiomics features from

ABVS images and constructed multiple machine learning models

for breast cancer diagnosis, the best of which was the support vector

machine model with an AUC of 0.857 (17). Additionally, Liu et al.

employed radiomics features extracted from SE images for breast

cancer prediction, yielding a Radscore with an AUC of 0.866 in the

test set (18). Besides, Ma et al. developed a multivariate logistic
FIGURE 5

The Nomogram for predicting the malignant risk of solid
hypoechoic breast lesions.
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model by combining SE, B-mode, and ABVS coronal radiomics

features, with an AUC value of 0.946 in the internal validation group

(19). In this study, we performed radiomics analysis on both ABVS

and SE images. For ABVS images, we delineated the ROI across

sagittal, transverse, and coronal planes. While outlining the ROI in

the ABVS coronal planes and the SE image, we incorporated a

portion of the lesion’s peripheral tissues to capture additional

information. As a result, the ABVS and SE features that we

acquired demonstrated good predictive capabilities for breast

cancer, and the combination of the two yielded a higher

diagnostic efficacy than the BI-RADS model that obtained by a

highly experienced physician based on visual assessment alone

(AUC: 0.933 vs. 0.916). Additionally, this study analyzed clinical

risk factors related to breast cancer and revealed that age and lesion

size exhibited significantly higher values in the malignant group

compared to the benign group, which is consistent with previous

research findings (33–35). Therefore, we developed a nomogram by

integrating Radscore, patient’s age, maximum diameter of the

lesion, and BI-RADS scores using multivariate logistic regression

analysis. The AUC of this nomogram in the internal validation

group was 0.964, which surpassed that of both the SE+ABVS

radiomics model and the clinical model. Furthermore, we

conducted an analysis on the clinical utility of this nomogram,

and the decision analysis curves revealed that it could offer superior
Frontiers in Oncology 0925
net benefit to patients across a broad range of threshold intervals.

Consequently, the nomogram holds significant value as a point of

reference for clinicians, particularly novice practitioners lacking

diagnostic expertise in identifying suspicious lesions.

In addition, this nomogram has demonstrated significant

advantages in the diagnosis of BI-RADS category 4 lesions. The

appearance of these lesions on imaging can be highly deceptive, so

they span a wide range of malignancy risks (36, 37), which makes

clinical diagnosis extremely challenging, often necessitating biopsies

to definitively determine the nature of such lesions (30). However,

routine biopsy results are often influenced by the spatial

heterogeneity of the lesion and operator expertise (38), while also

being an invasive procedure with potential complications such as

bleeding (39). The majority of radiomics studies for this category of

lesions have predominantly utilized MR images, and these studies

have yielded favorable outcomes (26–29). Nevertheless, MR

examinations are expensive, time-consuming, and not suitable for

common screenings (40, 41). Based on ABVS images, Wang et al.

integrated clinical ultrasound factors and Radscore to develop a

nomogram for the diagnosis of BI-RADS category 4 lesions, which

achieved an AUC value of 0.925 in the internal validation group and

effectively minimized unnecessary biopsies (20). During this study,

we constructed nomogram that also achieved an AUC value of

0.930 for the diagnosis of BI-RADS category 4 lesions in the
A B

DC

FIGURE 6

The receiver operator characteristic curves of the BI-RADS model, SE+ABVS radiomics model, and Nomogram in the training group (A), the
validation group (B), the BI-RADS category 4 lesions in the training group (C), and the BI-RADS category 4 lesions in the validation group (D).
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validation group, surpassing the performance of the clinical model

(AUC: 0.839), thereby further validating its good diagnostic

efficacy. This may be attributed to the fact that the radiomics

features selected for this study are all texture features with the

majority derived from wavelet transform. Previous studies have

demonstrated the value of wavelet transform-based texture features

for the diagnosis of tumor lesions (42). The primary advantage of

wavelet transform in image analysis lies in its multi-scale analysis

capability, allowing it to capture the texture information of an

image at various granularities. It possesses directional sensitivity,

enabling it to accurately identify texture changes in multiple

directions, while its time-frequency localization property allows it

to keenly detect local variations in images. Additionally, wavelet

transform can enhance image contrast, exhibit certain resistance to

noise, and effectively compress image information, making feature

extraction more robust and efficient (43). By quantifying the
Frontiers in Oncology 1026
textural variances of breast lesions, we successfully captured the

subtle heterogeneity within these lesions, thereby effectively

distinguished between benign and malignant breast lesions.

Lambin et al. introduced the radiomics quality score (RQS) to

provide a framework for clinical researchers to evaluate and guide

their radiomics studies (44). This study has given comparatively

detailed elaboration on image acquisition, feature extraction and

screening, and model construction in order to ensure the

reproducibility of the study. Two physicians independently

del ineated the lesions, effect ively achieving mult iple

segmentations. The features extracted from both segmentations

were then subjected to ICC analysis. Consequently, only the

features demonstrating excellent repeatability and robustness were

selected. To prevent model overfitting, we standardized the feature

values. Features with strong discriminative ability were obtained

through the U-test, LASSO regression with tenfold cross-validation
TABLE 3 The diagnostic parameters of the BI-RADS model, SE+ABVS radiomics model, and Nomogram in each group.

Model AUC
(95%CI)

Sensitivity
%

Specificity
%

Accuracy
%

P
(AUC compare to BI-

RADS model)

P
(AUC compare to SE+ABVS

radiomics model)

Training group

BI-RADS model 0.930(0.894,
0.956)

82.76 96.69 89.86 0.46

SE+ABVS
radiomics model

0.941(0.907,
0.965)

87.59 90.07 88.85 0.46.

Nomogram 0.972(0.946,
0.988)

89.66 94.04 91.89 <0.01* <0.01*

Validation group

BI-RADS model 0.916(0.853,
0.958)

79.37 95.31 87.40 0.52

SE+ABVS
radiomics model

0.933(0.875,
0.970)

85.71 85.94 85.83 0.52

Nomogram 0.964(0.916,
0.989)

87.30 95.31 91.34 <0.05* <0.05*

BI-RADS category 4 lesions in the
Training group

BI-RADS model 0.844(0.779,
0.895)

73.08 94.25 84.24 <0.05*

SE+ABVS
radiomics model

0.915(0.862,
0.953)

84.62 87.36 86.06 <0.05*

Nomogram 0.952(0.907,
0.979)

84.62 89.66 87.27 <0.01* <0.05*

BI-RADS category 4 lesions in the
Validation group

BI-RADS model 0.839(0.738,
0.913)

72.50 91.89 81.82 0.13

SE+ABVS
radiomics model

0.899(0.809,
0.956)

82.50 83.78 83.12 0.13

Nomogram 0.930(0.848,
0.975)

82.50 91.89 87.01 <0.01* 0.12
*P<0.05.
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from ABVS and SE images, respectively. Subsequently, we evaluated

the constructed nomogram using calibration curves and the

Hosmer-Lemeshow test, which demonstrated excellent calibration

performance. Based on these analyses, the nomogram appears to be

a robust and generalizable tool, offering accurate risk prediction

with potential for practical clinical implementation. Although the

development of this nomogram necessitates a combination of

diverse factors, these data can be retrospectively obtained without

imposing an additional examination burden on patients.

Admittedly, This study was subject to certain limitations: It was

conducted as a single-center retrospectively study thus selection

bias may have occurred, and lacked external validation, which

necessitates further multicenter large-sample studies and

prospective trials for the validation of our developed nomogram.
5 Conclusion

The nomogram developed in this study, which combined SE

and ABVS radiomics features, with traditional imaging assessment
Frontiers in Oncology 1127
criteria and clinical risk factors, it can serve as a reliable and non-

invasive analytical tool to assist physicians in accurately assessing

the malignancy risk in solid hypoechoic breast lesions, leading to

better clinical decision-making.
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FIGURE 7

The calibration curves for the Nomogram in the training group (A) and the validation group (B).The decision analysis curves of the BI-RADS mode,
SE+ABVS radiomics model, and Nomogram in the validation group (C).
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Introduction: AI-assisted ultrasound diagnosis is considered a fast and accurate

new method that can reduce the subjective and experience-dependent nature

of handheld ultrasound. In order to meet clinical diagnostic needs better, we first

proposed a breast lesions AI classification model based on ultrasound dynamic

videos and ACR BI-RADS characteristics (hereafter, Auto BI-RADS). In this study,

we prospectively verify its performance.

Methods: In this study, the model development was based on retrospective data

including 480 ultrasound dynamic videos equivalent to 18122 static images of

pathologically proven breast lesions from 420 patients. A total of 292 breast

lesions ultrasound dynamic videos from the internal and external hospital were

prospectively tested by Auto BI-RADS. The performance of Auto BI-RADS was

compared with both experienced and junior radiologists using the DeLong

method, Kappa test, and McNemar test.

Results: The Auto BI-RADS achieved an accuracy, sensitivity, and specificity of

0.87, 0.93, and 0.81, respectively. The consistency of the BI-RADS category

between Auto BI-RADS and the experienced group (Kappa:0.82) was higher than

that of the juniors (Kappa:0.60). The consistency rates between Auto BI-RADS

and the experienced group were higher than those between Auto BI-RADS and

the junior group for shape (93% vs. 80%; P = .01), orientation (90% vs. 84%; P =

.02), margin (84% vs. 71%; P = .01), echo pattern (69% vs. 56%; P = .001) and

posterior features (76% vs. 71%; P = .0046), While the difference of calcification

was not significantly different.

Discussion: In this study, we aimed to prospectively verify a novel AI tool based

on ultrasound dynamic videos and ACR BI-RADS characteristics. The prospective

assessment suggested that the AI tool not only meets the clinical needs better

but also reaches the diagnostic efficiency of experienced radiologists.

KEYWORDS

artificial intelligence, diagnosis, ultrasound video, BI-RADS, breast
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1 Introduction

According to the latest statistics on cancer incidence and

mortality from the International Agency for Research on Cancer

(GRIBOCAN) in 2020, breast cancer incidence has risen to the top

and become the first cause of death among women worldwide (1).

Early screening for breast cancer is crucial to reducing death rates.

National guidelines for breast cancer screening vary from country to

country. Due to the high proportion of dense breasts in Chinese

women and the low sensitivity of mammography, the National

Cancer Centre of China proposes that the ultrasound (US) should

be the preferred method for breast cancer screening in Chinese

women and recommends that women over 45 years old should be

screened by ultrasound alone every 1-2 years (2). China has a large

population which brings the heavy workload of breast cancer

ultrasound screening. Therefore, it is necessary to develop a clinical

application AI tool that can assist in diagnosis quickly and efficiently.

In clinical practice, to improve the accuracy of diagnosis,

standardize ultrasound description, and communicate effectively

with the physician, worldwide radiologists generally use the

American College of Radiology Breast Imaging Reporting and

Data System (ACR BI-RADS) lexicon for breast US (3). The

radiologist scans the whole breast with handheld ultrasound and

gives BI-RADS category. However, since handheld ultrasound

depends on the operators and experience, different radiologists

have different opinions on the interpretation of BI-RADS

characteristics, resulting in a high inter-observer variability, poor

repeatability and low work efficiency (4–6).

To the best of our knowledge, AI is the most likely tool to

improve diagnostic effectiveness and reduce the subjective and

experience-dependent nature of handheld ultrasound. In recent

years, with the continuous application of AI in clinics, deep learning

has been favored by human experts due to its strong capacity for

autonomous feature extraction and expression (7). Several studies

applied deep learning to classify US images of breast lesions and

have reported that it could achieve a high diagnostic performance

similar to or better than that of experienced radiologists. Becker

et al. (8) used a deep neural network to identify malignant lesions in

637 breast lesions. Han et al. (9) used the GoogLeNet convolutional

neural network to classify benign and malignant ultrasound images

of 7408 breast lesions. However, these studies are all based on a

keyframe image which was not in accord with the actual situation of

the clinical ultrasound dynamic scan. Moreover, a single static

image cannot contain all the information about the entire breast

lesion. In addition, studies (10, 11) showed that one person may also

have other diagnoses within videos and static images for one lesion.

Youk et al. (12) showed that in radiologists’ interpretation of BI-

RADS characteristics, videos had a higher diagnostic performance

than static images. What’s more, the above studies all belong to the

benign and malignant dichotomy, which is of little clinical guiding

significance compared with the multi-classification of BI-RADS.

Ciritsis et al. (13) and Qian et al. (14) tried to use deep learning to

conduct multi-classification studies of BI-RADS on breast lesions.

However, they all merged BI-RADS 4a, 4b, and 4c into category 4,

which was not in line with clinical practice, and at the same time,

they still failed to overcome the limitations of using static images.
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To overcome the above limitations, we first proposed an

approach to scan the breast lesions and record their ultrasound

dynamic videos per unified criteria, obtaining ACR BI-RADS

morphological characteristics, and realizing the BI-RADS

category. Compared to traditional methods based on single-frame

static images, it not only captures comprehensive and complete

breast lesion information, avoiding missing lesion features in static

images but also better suits clinical diagnostic scenarios. In this

approach, we introduce an AI diagnostic model (hereafter, Auto BI-

RADS), which includes a YOLOV5 network with improved

attention mechanism and morphological image processing

algorithms. Based on effectively screening, localizing, and

capturing tumor lesions in breast ultrasound dynamic videos,

Auto BI-RADS can obta in BI-RADS morpholog ica l

characteristics, achieve BI-RADS category and make a benign or

malignant prediction. In this study, we prospectively verified its

performance through a comparative test.
2 Materials and methods

2.1 Study sample

The institutional review board approved this study, and the

requirement to obtain informed consent was waived (approval

number: B-2022-182). In the development of Auto BI-RADS, we

include retrospective data from the First Affiliated Hospital of

Shantou University Medical College (Guangdong, China) with a

total of 480 pathologically proven lesions. Figure 1 presents the

inclusion and exclusion criteria. A total of 480 ultrasound dynamic

videos equivalent to 18122 static images comprised the training and

validation sets at 3:1 (mean age, 45 years; range, 18–82 years, May

2019 to June 2022). In the testing study, the dataset was screened

with the same criteria and included two hospitals: internal test set

(mean age 45 years, range,19-76 years, First Ultrasound

Department, First Affiliated Hospital of Shantou University

Medical College[Hospital 1], July 2022 to March 2023, n = 228);

and external test set (Mean age: 50 years old; range,26-73 years old;

Ultrasound Department, Shantou Chaonan Mingsheng Hospital

[Hospital 2], July 2022 to March 2023, n = 64). A flowchart

describing the research process is shown in Figure 1. Baseline

clinical pathologic data, including age, sex, pathologic findings,

and US diagnosis reports, were derived from the medical records.

US video data were recorded by two experienced radiologists per the

criteria below (SM.Q., with 7-8 years of experience, Hospital 1;

JH.W., with 11-12 years of experience, Hospital 2).
2.2 US examination

US examinations were performed with linear array transducers

of real-time US systems. All patients in hospital 1 were examined

with the following US scanners: Canon Toshiba (Japan, Aplio I800,

L9-18 MHz), SIUI (China, Apogee 6800, L8-12 MHz), and Siemens

(Germany, Acuson S3000, L9-12MHz). Patients in hospital 2 were

examined with Siemens (Germany, Acuson Sequoia, L4-10MHz).
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US video acquisition: The patients held the supine position and

raised their hands to fully expose their axilla and breast. We selected

the maximum transverse diameter section of breast lesions and used

the body mark showing the position; adjusted the depth to place the

lesions in the center of the screen and the focus at the bottom of

them; activated the storage function; kept the transducer at a

constant speed to scan the lesions until some normal breast

tissues appear, and pressed the storage key to acquire the video.
2.3 US image analysis

The six lexicon categories of BI-RADS were labeled as

identifying features (shape, orientation, margin, echo pattern,

posterior acoustic features, and calcification). The shape was a

binary classification feature: regular or irregular; orientation was

also binary: parallel or not parallel; the margin was another binary
Frontiers in Oncology 0332
feature: circumscribed or not circumscribed. The echo pattern was

mapped to three binary classification features: Anechoic,

homogeneous echo (including homogeneous low, equal, and high

echoes), heterogeneous echo (including heterogeneous solid and

cystic-solid echoes); Posterior acoustic features are also classified

into three classification features: no change, enhancement, or

shadowing. Calcification is the last category, classified into three

classification features: no calcification, coarse calcification, and

punctate calcification (Figure 2).

In the training set, two experienced radiologists (DP.L. and

XX.C, both with 10 years of US experience) were blinded to

histopathologic results and independently manually labeled masks

for each breast lesion video. Image classification was then

performed based on the fifteen features of the six main BI-RADS

lexicon. Groups would make a discussion to reach a consensus. In

the validation dataset, the initial performance of Auto BI-RADS was

evaluated by those two radiologists.
FIGURE 1

Overview of the retrospective and prospective workflow. It should be pointed out that all BI-RADS categories in this study were determined on 2D
US videos exclusively.
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For the test data set, four radiologists blinded to histopathologic

results were split into two groups: experienced radiologists (BQ.Z.

and XY.L., with 30 and 28 years of ultrasound work experience,

respectively) and junior radiologists (ZY.L. and X.C., with 3 and 4

years of ultrasound work experience, respectively). Each radiologist

independently evaluated the features of breast lesions in dynamic

videos and determined the benign or malignant nature of the mass.

When the evaluation results were inconsistent, a group consensus

was reached through discussion.
2.4 AI model development

2.4.1 The establishment of Auto BI-RADS
diagnosis model

The diagnostic AI model of Auto BI-RADS consists of three

parts (Figure 3). The first part is based on the YOLOV 5 attention

and segment network for object detection and segmentation. This

model first converts the input breast lesions US video into

sequence frames and selects frames containing lesions, then

extracts and segments the regions of interest and their

corresponding masks (15–18). In order to improve the detection
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performance of the network, we added the simple attention

mechanism (Sim AM) to the model, which enhances the

recognition effect of the small breast tumor target. We also

combined the binary cross entropy loss (BCE loss) function,

focal loss (FL loss) function, and Complete-Intersection-Over-

Union (CIOU) loss function to optimize the network (19, 20). The

second part focuses on extracting features of breast lesions using

image processing algorithms. In this part, tumor regions of

interest and their corresponding masks are obtained. These

regions of interest and masks undergo equalization processing

and data augmentation (21). After that, morphological image

processing algorithms are used to extract features such as shape,

orientation, margin, echo pattern, posterior acoustic features, and

calcification from these tumor slices. The third part involves a

feature score fusion algorithm based on weighted thresholds.

Because multiple and unevenly distributed features may present

in the breast lesions ultrasound video sequences, we establish

threshold values based on the proportion of frames in which

different features appear. Then, we merge the scores of all detected

features and use a rank threshold score table to divide the tumor

into its BI-RADS category and distinguish its benign or

malignant nature.
FIGURE 2

Examples of US images with Six American College of Radiology Breast Imaging Reporting and Data System characteristics. Characteristics include
(A) regular, (B) irregular, (C) parallel, (D) not parallel, (E) circumscribed, (F) not circumscribed, (G) Anechoic, (H) hypoechoic, (I) hyperechoic,
(J) Isoechoic, (K) complex cystic and solid, (L) heterogeneous, (M) enhancement, (N) shadowing, (O) no posterior features, (P) macrocalcifications,
(Q) punctate echogenic foci, (R) no calcification.
FIGURE 3

Proposed network scheme of the Auto BI-RADS model for breast lesions diagnosis based on American College of Radiology Breast Imaging
Reporting and Data System US characteristics.
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The predictive results of the Auto BI-RADS include the BI-

RADS category, benign or malignant, and the assessment results of

six significant features for each nodule. Figure 4 shows the

prediction results of the Auto BI-RADS model in a case,

compared with the interpretation results of experienced and

junior radiologists.

2.4.2 The design of the YOLOV5 att-seg network
based on the Sim AM

The deep learning model in this study is the YOLOV5 network

based on the Sim AM. Hereafter we call it the YOLOV5 Attention

Segmentation model (YOLOV5 att-seg).

The YOLOV5 network model consists of feature extraction and

feature processing. The feature extraction part includes a Cross

Stage Partial Network (CSP Net) (21) and a Path Aggregation

Network (PA Net) (16) (Figure 5).

The CSP net is primarily composed of multiple Conv

+BatchNorm+SiLU (CBS) modules, Cross Stage Partial modules 1

(CSP1), and spatial pyramid pooling fast (SPPF) modules. This

network extensively utilizes residual structures and convolutional

modules for refining image features and reducing feature map

dimensions through downsampling. Additionally, it preserves

feature maps at different depths within the network, allowing

subsequent parts of the PA Net network to further integrate

features from different levels.

The PA Net Network is primarily used for generating feature

pyramids to enhance the model’s detection of objects at different

scales. It is an improvement based on the Feature Pyramid Network

(FPN) architecture. The network consists of CBS modules, CSP2

modules, and Sim AM modules. Since CSP Net already captures

sufficiently deep-level feature information, a non-residual module

called CSP2 is used in the PA Net section to accelerate training and

inference speed. The inclusion of Sim AM aims to further enhance

the network’s detection performance for small lesions. Sim AM is a

parameter-free attention mechanism module based on the theory of

neural energy functions (17). It calculates the neural energy of the

input image and performs Hadamard multiplication with the input

image to spontaneously enhance or suppress the neural pathways.

(Figure 6) shows that YOLOV5 without Sim AM failed to identify

tumor targets in some small breast tumor slices. However, the

YOLOV5 att-seg model, which incorporates the Sim AM, exhibited

improved detection performance for small tumor targets.
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The second part is the feature processing section. It mainly

involves processing the feature information obtained from the

feature extraction section. The previous CSP Net and PA Net

have effectively refined and aggregated the image features.

Therefore, this part of the work is divided into two branches:

mask segmentation and tumor target detection. One branch

utilizes upsampling layers and CBS modules to further refine the

edge information of the features, thereby obtaining better details of

the mask edges. The other takes the three different-sized receptive

field feature maps (RFFM) output by the PA Net network, adjusts

them to the same dimension using CBS modules, and fuses them

with the Concat function to enhance the network’s detection of

objects of different sizes. Finally, the network outputs the categories

and detection boxes (22).
2.4.3 Performance validation of the YOLOV5 att-
seg network model

The YOLOV5 att-seg network in this study was trained using

18122 static images extracted from 480 ultrasound dynamic videos.

The detection box data was obtained by extracting the bounding

rectangles from the masks. 75% of the samples were used for

network training. The network was trained for 300 epochs, and

the results are shown in (Figure 7).

In the remaining 25% samples for validation, we compared the

detection performance of YOLOV5 att-seg with YOLOV5, Vgg-16

and Resnet50 networks. We also compared the segmentation

performance of YOLOV5 att-seg with YOLOV5, Unet and Fcn-

16s networks. The result is shown in Table 1.

The detection result shows that YOLOV5 att-seg has an

improved performance in detecting smaller tumors in ultrasound

images. In comparison, YOLOV5 att-seg vs. YOLOV5 vs. Vgg-16

vs. Resnet50, the precision, recall, and specificity are (0.98, 0.93,

0.94, vs. 0.97, 0.92, 0.9, vs. 0.84, 0.86, 0.82, vs. 0.78, 0.77,

0.77), respectively.

The segmentation result shows that YOLOV5 att-seg has an

improved performance in precision, recall, Dice. and Iou.

comparing with YOLOV5, Unet and Fcn-16s (0.98, 0.93,

0.77,0.68, vs. 0.98, 0.93, 0.75,0.67, vs. 0.60, 0.76, 0.62,0.53, vs. 0.53,

0.66, 0.53,0.46, respectively). However, the specificity of YOLOV5

att-seg (0.94) was slightly lower than that of Unet (0.97) and Fcn-

16s (0.96). This indicates that the YOLOV5 att-seg model used in
FIGURE 4

The left side displays a series of key frames extracted from an ultrasound dynamic video of a breast lesion that was pathologically proven as
malignant. The right side shows the predictive results of the Auto BI-RADS model for the lesion based on ACR BI-RADS, as well as the interpretation
results of the experienced (Exp.) and junior (Jun.) radiologists.
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this study achieves a more balanced performance compared to Unet

and Fcn-16s. Unet and Fcn-16s tend to have overly conservative

segmentation contours for ultrasound tumor targets, resulting in

abnormally high specificity values. On the other hand, the

enhancement in small target detection of YOLOV5 att-seg leads

to improved segmentation performance compared to YOLOV5.
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In terms of network running speed, YOLOV5 att-seg achieves

significant improvement by using a single network to extract image

features and obtain detection boxes and segmentation masks for

tumor targets. This network demonstrates much faster speed

compared to the traditional approach using separate networks for

detection and segmentation.
FIGURE 6

(A) the original image of a breast tumor. (B) the manually annotated ground truth by experienced physicians. (C) the detection results of YOLOV5
seg. (D) the detection results of YOLOV5 att-seg.
FIGURE 5

YOLOV5 att-seg Architecture.
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2.5 Statistical analysis

The areas under the receiver operating characteristic curves

(AUCs) with 95% confidence intervals (CI) were compared using

the DeLong test (23) for Auto BI-RADS and two groups of

radiologists. The threshold of Auto BI-RADS was established

using validation sets. Performance metrics (sensitivity, specificity,

positive predictive value, and negative predictive value) of Auto BI-

RADS and the two groups of radiologists were evaluated. The

Kappa test was used to compare the consistency of the breast

lesion BI-RADS category between Auto BI-RADS and the two

groups of radiologists. The McNemar test was used to compare
Frontiers in Oncology 0736
the consistency rate of breast lesion characteristics recognition

among Auto BI-RADS, the experienced group, and the junior

group. Data were analyzed with SPSS, version 26.0 (IBM), and

MedCalc, version 20.2 (MedCalc Software). P<0.05 was considered

indicative of a statistically significant difference.
3 Results

3.1 Patient characteristics and clinical
features of breast lesions

A total of 698 patients were included in this study. In model

development, 420 patients (480 pathologically confirmed lesions: 284

[60%] benign and 196 [40%)] malignant) from Hospital 1 were

collected for training and validation in a 3:1 ratio. In the test data set,

there were 278 patients (292 pathologically confirmed lesions: 168

[58%] benign and 124 [42%] malignant) from Hospitals 1 and 2.

Figure 2 shows the workflow of patient inclusion and exclusion for

model development and independent test. The specific pathological

composition and distribution of the lesions are shown in Table 2.
3.2 Performance of Auto BI-RADS
experienced radiologists and junior
radiologists for diagnosing benign and
malignant breast lesions

In the test set, the AUC value was slightly lower than that of the

experienced group but significantly higher than that of the junior

group as shown in Figure 8.

The AUC, sensitivity, specificity, positive predictive value, and

negative predictive value of Auto BI-RADS were 0.87 (95%CI: 0.82,

0.90), 93% (116 out of 124 lesions), 81% (136 out of 168 lesions),

78% (116 out of 148 lesions), and 94% (136 out of 144 lesions),

respectively. The false positive of the Auto BI-RADS is 6%, as much

as the experienced group. We found no evidence of a statistical
FIGURE 7

The box loss, segmentation loss, and target category loss of YOLOV5 att-seg achieve 0.0097, 0.0109, and 0.0034, respectively. It indicates that the
network has achieved a good fit to the overall data.
FIGURE 8

Areas under the receiver operating characteristic curves (AUCs) of
the Auto BI-RADS model for breast lesions based on the American
College of Radiology Breast Imaging Reporting and Data System and
two radiologist groups with different experience levels who used
BI-RADS.
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difference between the Auto BI-RADS model and the experienced

group for AUC (P = 0.06), but there were statistically significant

differences compared to the junior group (P < 0.001) (Table 3).
3.3 Comparison of consistency among
Auto BI-RADS, experienced radiologists,
and junior radiologists in the BI-RADS
category in the test set

In the test set of 292 breast lesions, the consistency between the

Auto BI-RADS model and the experienced radiologists in the BI-

RADS category was higher than that of the junior radiologists, with

kappa values of 0.82 and 0.60, respectively (Table 4).
3.4 Comparison of consistency rates
among Auto BI-RADS, experienced
radiologists, and junior radiologists in the
identification of breast lesions
characteristics in the test set

In the test set of 292 lesions, the consistency rate between Auto

BI-RADS and experienced radiologists was higher than that

between Auto BI-RADS and junior radiologists in the

identification of morphology, orientation, margin, internal echo,

posterior echo with respective values for morphology (93% [n =

271] vs. 80% [n = 234]; P = 0.01), orientation (90% [n = 265] vs.

84% [n = 247]; P = 0.02), margin (84% [n = 246] vs. 71% [n = 209];

P = 0.01), internal echo (69% [n = 202] vs. 56% [n = 163]; P = 0.01)

and posterior echo (76% [n = 221] vs. 71% [n = 207]; P = 0.046). In

the identification of calcification, there was no statistically

significant difference in the consistency rates between Auto BI-

RADS and experienced radiologists or junior radiologists (P =

0.4) (Table 5).
4 Discussion

In this study, we first developed a breast lesions AI classification

model. By identifying the BI-RADS characteristics within the

ultrasound dynamic videos, it can automatically evaluate the
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lesions’ BI-RADS category and predict their benign or

malignant nature.

The development of the Auto BI-RADS model was based on

480 breast lesions ultrasound videos equivalent to 18122 static

images from Hospital 1, with a 3:1 ratio for training and

validation. To verify the stability and efficiency of the model,

we made an independent test in this study in 292 breast lesions

testing sets from Hospital 1 and Hospital 2. Compared with those of

experienced and junior radiologists, it showed that Auto BI-RADS

achieved high performance in distinguishing between benign

and malignant breast lesions (AUC: 0.87, sensitivity: 93%,

specificity: 0.81), which was close to the experienced radiologists

(AUC: 0.89, sensitivity: 93%, specificity: 86%), and significantly

better than juniors (AUC: 0.74, sensitivity: 72%, specificity: 74%).

Tracing back to the previous studies, Han et al. (9) first used an end-

to-end deep learning framework to classify regions of interest

selected by radiologists in a dataset of 7,408 static ultrasound

breast lesions. They reported a sensitivity of 0.86, specificity of

0.93, and AUC >0.9. Ciritsis et al. (13) used a deep learning model

that mimicked human decision-making to detect and classify

ultrasound breast lesions in a dataset of 1,019 static images.

In an external test dataset, they reported a sensitivity of 0.894,

specificity of 1.0, and AUC of 0.967. Qian et al. (14) developed a

neural network model that combined ultrasound B-mode

and color Doppler to classify static ultrasound images of the

breast in a larger dataset. Their bimodal model reported an AUC

of 0.982, specificity of 88.7%, and sensitivity of 97%. Although the

diagnostic performance indicators reported in those studies

may appear higher than our study, they are not directly

comparable. Firstly, the above studies were based on keyframes

that can reflect the main BI-RADS characteristics of breast lesions.

However, in clinical practice, not all radiologists were able to select

the most critical frames. Secondly, a single static image cannot

reflect all the morphological features of one breast lesion. Therefore,

the results of those studies may have significant bias and low

reproducibility, with limited clinical applicability. Additionally,

none of the above studies conducted independent testing, raising

questions about the stability of the models. In contrast, we used

ultrasound dynamic videos for independent testing, which could

improve its clinical generalizability with more objective and

reproducible consequences.

In addition, we also compared the consistency among Auto

BI-RADS, experienced radiologists, and junior radiologists in the
TABLE 1 Comparison of performance metrics for object detection and segmentation in validation set.

Network Function Precision Recall Specificity Dice. Iou.

YOLOV5 att-seg det./seg. 0.98|0.98 0.93|0.93 0.94|0.94 0.77 0.68

YOLOV5 det./seg. 0.97|0.98 0.92|0.93 0.91|0.91 0.75 0.67

Vgg-16 det. 0.84 0.86 0.82 – –

Resnet50 det. 0.78 0.77 0.77 – –

Unet seg. 0.60 0.76 0.97 0.62 0.53

Fcn-16s seg. 0.53 0.66 0.96 0.53 0.46
frontier
det, detection; seg, segmentation; Dice, Dice coefficient; Iou, Intersection over Union.
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BI-RADS category (the Kappa values were 0.82 and 0.60,

respectively). The results showed that Auto BI-RADS were

highly consistent with experienced radiologists. Finally, we

compared the identification of breast lesions’ BI-RADS

characteristics. The results showed that Auto BI-RADS had a

higher consistency rate with experienced radiologists in

morphology, orientation, margin, internal echo, and posterior

echo. This indicates that the model conforms to the visual

judgment of experienced human experts. These comparative

studies have not been mentioned in previous studies. As for the

recognition of calcification, there was no difference among the

Auto BI-RADS model, experienced and junior radiologists. We

speculate that this is because the characteristics of calcification are

more complex, and their distribution in terms of location, size,

and shape varies greatly. The image algorithm identifies different

grayscale thresholds to determine whether calcification exists, and
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it will fail when there are only show slight changes in grayscale. It

was also found that some tumors with high echogenic envelopes

were mistakenly identified as calcifications. Chen et al. (24) had

similar explanations in their identification of thyroid calcification.

Later, we will increase the calcification samples and improve the

algorithm to enhance the identification of calcification.

To meet the practical application, we first developed the Auto

BI-RADS model based on ultrasound dynamic videos combining

deep learning and image processing algorithms. There have been no

similar reports previously. In the first step, we employed a YOLOV5

deep convolutional neural network to track and segment the targets.

Then, we utilized image processing algorithms to extract BI-RADS

features. Finally, we performed feature algorithm fusion to obtain

target classification. For video tracking and segmentation, Yap et al.

(25) have compared multiple types of deep learning neural

networks, demonstrating their powerful capabilities in object

tracking and segmentation. Relevant studies (26–28) have also

indicated that deep learning exhibits uncertainty and a lack of

interpretability in lesion feature recognition. Continuous learning

required large sample sizes for the identification of each specific

feature (29). However, machine learning has unique advantages in

extracting breast lesion features. Hamyoo et al. (30) used machine

learning alone to extract 13 features from lesions using the BI-

RADS lexicon in a multi-center study (1288 static ultrasound

images from three countries: Malaysia, Iran, and Turkey) and

obtained an AUC value of 0.88, demonstrating the strong feature

recognition capabilities of machine learning through comparison

with human expert readings. Herein, our study constructed an Auto

BI-RADS model based on deep learning and image processing

algorithms to achieve the identification and classification of breast

lesions in ultrasound dynamic videos. The prospective assessment

indicates that the Auto BI-RADS model demonstrates good

diagnostic performance and has significant potential.

Reviewing other imaging for breast cancer screening,

mammography is considered a recommended method for reducing

breast cancer-related mortality, but it involves radiation and is less
TABLE 2 Patient demographics data and breast lesion characteristics.

Characteristic Retrospective
Training and
Validation sets

Prospective test sets

Hospital
1 Set

Hospital
2 Set

Number of patients 420 214 64

Age (years) (mean) 45 ± 12 45 ± 12 50 ± 11

Number of lesions 480 228 64

Lesion maximum diameter(mm)

2-10 167(35%) 89(39%) 13(20%)

10-20 185(38%) 90(40%) 34(53%)

20-30 128(27%) 49(21%) 17(27%)

BI-RADS category a

2 34(7%) 18(8%) 0(0%)

3 110(23%) 30(13%) 10(16%)

4a 106(23%) 70(31%) 8(13%)

4b 80(17%) 41(18%) 14(22%)

4c 74(15%) 35(15%) 22(34%)

5 76(16%) 34(15%) 10(15%)

Lesion type

Invasive ductal
carcinoma

82(17%) 26(11%) 14(22%)

Invasive lobular
carcinoma

73(15%) 43(19%) 16(25%)

Ductal carcinoma
in situ

21(4%) 10(4%) 6(9%)

Other malignant b 20(4%) 4(2%) 5(8%)

Fibroadenoma 141(30%) 64(28%) 13(20%)

Other benign c 143(30%) 81(36%) 10(16%)
The BI-RADS category a is based on the interpretation of the radiologist who originally
performed the US examinations before the biopsy test, not the radiologists involved in the
reader study. It should be noted that all BI-RADS categories involved in this study were
determined on breast-US video images only. b Includes non-specific malignant results.
c Includes adenosis, hyperplasia, benign phyllodes tumors, and papillomata.
TABLE 3 Performance of Auto BI-RADS and two groups of radiologists
for diagnosis of benign and malignant breast lesions in test set.

Parameter
Auto

BI-RADS
Experienced
Radiologists

Junior
Radiologists

AUC 0.87[0.82,0.90] 0.89[0.85,0.92] 0.74 [0.68,0.79] †

Sensitivity (%) 93(116/124) 93(116/124) 72 (91/124)

Specificity (%) 81(136/168) 86(144/168) 74(125/168)

FP (%) 19(32/168) 14(24/168) 26(43/168)

FN (%) 6(8/124) 6(8/124) 25(33/124)

PPV (%) 78(116/148) 82(116/140) 68(91/134)

NPV (%) 94(136/144) 95(144/152) 79(125/158)
—Except where indicated, numbers in parentheses are numbers of lesions and 95% confidence
intervals are in brackets.
FP, False Positive; FN, False Positive.
NPV, negative predictive value; PPV, positive predictive value.
† Data are for comparison with Auto BI-RADS (P < 0.001).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1274557
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qiu et al. 10.3389/fonc.2023.1274557
sensitive to dense breasts, making it unsuitable for all countries (31).

MRI is always used as a supplementary means (31). On the other hand,

the US is recommended by Asia medical experts due to its low cost,

non-radiation, and suitability for Asian women (31). The limitations of

ultrasound have always been operator dependence and observer

variability. Although many studies have focused on developing

artificial intelligence models to address these limitations, they have

not fully taken into account the practical clinical applications.

Considering the above problems, we propose to develop a novel AI

model simulating the clinical practice conducted by dynamic videos and

BI-RADS characteristic identification. This approach allows for more

objective, realistic, and reliable diagnostic results with high repeatability.

The application of Auto BI-RADS offers great practical significance and

provides better references for clinical practitioners with less experience.

Our study has several limitations. Firstly, the sample size for the

prospective evaluation of the model is not large enough, and it does

not include all categories of BIRADS, especially category 1 which

indicates no lesion. Afterward, to improve the adaptability and

stability of the model, we will include more external hospitals to

increase the samples and species. By strengthening the model’s

training, we increase the model’s robustness. Furthermore, it should

be noted that the breast lesions ultrasound videos used in this study
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may still exhibit variability due to handheld ultrasound. In the

future, if an Automated Breast Ultrasound System (ABUS) or

robotic arms can be used to record the videos, it would provide

more convincing results. Additionally, the latest fifth edition ACR

BI-RADS guidelines have added color Doppler and elastography to

evaluate breast lesions (32). It means that multimodal ultrasound

has become part of breast cancer assessment. Therefore, for further

improvement, this study can incorporate multiple ultrasound

modalities such as color Doppler, elastography, contrast-enhanced

ultrasound, etc., to develop a multimodal AI ultrasound

diagnostic model.
5 Conclusion

In conclusion, we first propose a novel method for breast tumor

AI diagnosis based on breast lesions ultrasound dynamic videos to

obtain ACR BI-RADS morphological characteristics, realize the BI-

RADS category, and predict benign or malignant lesions. In the AI

model development, we combined an improved attention

mechanism YOLOV5 network with image processing algorithms

to achieve it. This novel method not only avoids the problem of

missing and incomplete lesion features caused by traditional single-

frame static images but also better suits clinical diagnostic scenarios,

providing a fast and effective approach for breast cancer screening.
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Junior Radiologists (%)

Kappa
Value

BI-RADS 2 100(17/17)
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TABLE 5 Consistency rates between Auto BI-RADS Model and two
radiologist groups for identification of breast lesions characteristics in
test set.

US
Characteristic

Rate
between
Auto

BI-RADS and
Experienced
Radiologists

(%)

Rate between
Auto BI-RADS
and Junior
Radiologists

(%)

P
Value
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Margin 84(246) 71(209) 0.01

Echo pattern 69(202) 56(163) 0.01

Posterior features 76(221) 71(207) 0.046

Calcification 31(91) 29(85) 0.4
-Numbers in parentheses are numbers of lesions (n = 292).
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Towards detection of early
response in neoadjuvant
chemotherapy of breast cancer
using Bayesian intravoxel
incoherent motion

Sai Man Cheung1*, Wing-Shan Wu1, Nicholas Senn1,
Ravi Sharma2, Trevor McGoldrick2, Tanja Gagliardi1,3,
Ehab Husain4, Yazan Masannat5 and Jiabao He1,6

1Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United
Kingdom, 2Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom,
3Department of Radiology, Royal Marsden Hospital, London, United Kingdom, 4Department of
Pathology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom, 5Breast Unit, Aberdeen Royal
Infirmary, Aberdeen, United Kingdom, 6Translational and Clinical Research Institute, Faculty of
Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
Introduction: The early identification of good responders to neoadjuvant

chemotherapy (NACT) holds a significant potential in the optimal treatment of

breast cancer. A recent Bayesian approach has been postulated to improve the

accuracy of the intravoxel incoherent motion (IVIM) model for clinical translation.

This study examined the prediction and early sensitivity of Bayesian IVIM to

NACT response.

Materials and methods: Seventeen female patients with breast cancer were

scanned at baseline and 16 patients were scanned after Cycle 1. Tissue diffusion

and perfusion from Bayesian IVIM were calculated at baseline with percentage

change at Cycle 1 computed with reference to baseline. Cellular proliferative

activity marker Ki-67 was obtained semi-quantitatively with percentage change

at excision computed with reference to core biopsy.

Results: The perfusion fraction showed a significant difference (p = 0.042) in

percentage change between responder groups at Cycle 1, with a decrease in

good responders [−7.98% (−19.47–1.73), n = 7] and an increase in poor

responders [10.04% (5.09–28.93), n = 9]. There was a significant correlation

between percentage change in perfusion fraction and percentage change in Ki-

67 (p = 0.042). Tissue diffusion and pseudodiffusion showed no significant

difference in percentage change between groups at Cycle 1, nor was there a

significant correlation against percentage change in Ki-67. Perfusion fraction,

tissue diffusion, and pseudodiffusion showed no significant difference between

groups at baseline, nor was there a significant correlation against Ki-67 from

core biopsy.
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Conclusion: The alteration in tumour perfusion fraction from the Bayesian IVIM

model, in association with cellular proliferation, showed early sensitivity to good

responders in NACT.

Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT03501394,

identifier NCT03501394.
KEYWORDS

diffusion, cellularity, microcirculation, perfusion fraction, pathological response
1 Introduction

Neoadjuvant chemotherapy (NACT) is increasingly used in

breast cancer, evolving from originally downstaging inoperable

breast tumours to allow surgical excision (1) to facilitating

potential breast and axillae conservation (2). However, NACT not

only is costly at an estimated £6,000 per patient for a typical six-

cycle regimen of 5-fluorouracil/epirubicin/cyclophosphamide (FEC

100) in the National Health Service (3) but also often leads to

adverse side effects and subsequent severe physical and emotional

distress (4, 5). Although NACT improves rates of pathological

complete response (pCR) (6, 7) and disease-free survival (7, 8),

poor responders to NACT might receive earlier and timely

mastectomy or breast conservation (9). RECIST criterion, the

current approach to estimate residual disease load based on

tumour size (10) at the halfway point of NACT (11), has limited

accuracy at a relatively late stage of treatment, demanding more

precise radiological approaches.

The loss of tumour cellularity is the central histological marker

of cellular damage in tumours responding to NACT (12). Diffusion-

weighted imaging (DWI), although sensitive to cellularity (13, 14)

with the potential of identifying responders after one cycle of NACT

(15), is susceptible to biological noise and limited to large cohort

studies (16), and is therefore inadequate for response-guided NACT

(17). Apparent diffusion coefficient (ADC) from DWI (18) is

effective in differentiation of tumour from healthy tissue and

benign lesions (19, 20). An increase in ADC at the halfway point

of 12 weeks of NACT-predicted pCR, however, may not reach

clinical relevance with the receiver operating characteristics curve at

an area under 0.6 (21). Diffusion tensor imaging yielded a

significant increase in prime diffusion coefficient (l1) and ADC in

good responders compared to poor responders at the completion of

NACT, although baseline diffusion metrics did not predict good

response (22). Diffusion kurtosis imaging approximates the

deviation from the tensor model using kurtosis, with a lower

mean kurtosis at baseline associated with pCR at four cycles of

NACT in patients with breast cancer (23). We have shown that q-

space imaging was more effective in the evaluation of cellularity in

breast cancer; however, the method was not suitable for routine

clinical application due to the demand on high field gradient and

long scan duration (24). Intravoxel incoherent motion (IVIM),

incorporating tissue diffusion and blood microcirculation as two
0243
independent components (18), showed improved diagnostic

sensitivity in breast cancer (25). However, IVIM is prone to

misfitting as a result of the high susceptibility in the main

algorithm to biological noise (26). A Bayesian probability (BP)

approach has been suggested to improve fitting accuracy and reduce

variability in the estimation of tissue diffusion and blood

microcirculation (27).

We therefore hypothesise that the Bayesian IVIM model may

differentiate good from poor responders at baseline and after Cycle

1 of NACT with association from tumour proliferative activity,

providing a non-invasive biomarker sensitive to prediction and

early response to NACT.
2 Materials and methods

We hence conducted a prospective, longitudinal study of NACT

in 17 female patients with breast cancer using the Bayesian IVIM

model (Figure 1). The study was approved by the London Research

Ethics Committee (Identifier: 17/LO/1777) and registered as a

clinical trial [NCT03501394]. The planned study incorporated

four MRI scans across the entire NACT, but was interrupted and

closed prematurely due to the COVID-19 pandemic. Therefore,

analysis was conducted on MRI scans acquired at baseline and after

Cycle 1 only.

Clinical Procedure: Seventeen female patients (age 37–71 years),

with grade II or III invasive breast carcinoma from core biopsy and

planned for NACT were recruited into the study. Patients with a

previous history of breast cancer or receiving hormonal treatment

were not eligible. All patients received 5-fluorouracil 500 mg/m2,

epirubicin 100 mg/m2, and cyclophosphamide 500 mg/m2 (FEC)

once every 21 days for the first three cycles, and docetaxel 100 mg/

m2 once every 21 days for the remaining three cycles (28, 29). Two

patients with HER2-positive breast cancer additionally received

pertuzumab and trastuzumab for a year (30, 31). MRI scans were

performed at 5–10 days (median: 7) before the start of the treatment

and 10–14 days (median: 12) after Cycle 1. MRI was acquired from

17 patients at baseline and 16 patients at Cycle 1 due to

complications in one patient. Standard clinical histopathological

examination was performed for each patient to determine

histological grade, and immunostaining of Ki-67, a nuclear

marker of cellular proliferation associated with worse survival
frontiersin.org
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outcomes (32), was conducted in a single batch. The histology

results were obtained from core biopsies before NACT and resected

residual tumours after six cycles respectively, with appropriate

positive controls (33). The pathological response was assessed on

the resected tumours, and the good responders and poor responders

were identified as above (grades 4 and 5) or below (grades 1, 2, and

3) 90% reduction in cellularity, respectively, according to the

Miller–Payne system (12). The percentage change in Ki-67 was

computed as the difference between biopsy and excision,

normalised to biopsy: [Ki-67 in resected tumour – Ki-67 in core

biopsy]/Ki-67 in core biopsy × 100%.

Magnetic Resonance Imaging: All images were acquired on a 3 T

clinical whole-body MRI scanner (Achieva TX, Philips Healthcare,

Best, The Netherlands), using body coil for uniform transmission

and a 16-channel breast coil for signal detection. Patients were in

prone position with the imaging volume centered on the breast

affected by tumour. IVIM images were acquired in the sagittal

orientation using pulsed gradient spin echo (PGSE) sequence with

single-shot echo planar imaging (EPI) at 10 diffusion weightings (b-

values at 0, 30, 60, 90, 120, 250, 400, 600, 800, and 1,000 s/mm2)

(34). For each b-value, diffusion gradients were applied along three

orthogonal directions, and the image was computed as the average

across the three directions. Images were acquired with a diffusion

time (d/D) of 13.1/25.4 ms, a field of view (FOV) of 240 mm ×
Frontiers in Oncology 0344
240 mm, an in-plane resolution of 2.5 mm × 2.5 mm, a slice

thickness of 5 mm, an acceleration factor of 2, a repetition time (TR)

of 2,400 ms, and an echo time (TE) of 50 ms.

Image Analysis: Bayesian IVIM was performed in MATLAB

(R2020a, Mathworks, Natick, MA, USA). The tumour was

delineated on dynamic contrast-enhanced MRI by a consultant

radiologist in ImageJ (v1.58k, National Institute of Health,

Bethesda, MD, USA), with adjustment of image resolution to

match IVIM images and conservative definition of tumour

boundary to avoid the necrotic, hemorrhagic, and cystic areas.

The size of the tumours was evaluated based on the longest

diameter from the high-resolution dynamic contrast-enhanced

(DCE)-MRI (21, 35, 36). The Bayesian algorithm estimated the

joint posterior distribution using the Rician noise likelihood

function and uniform joint prior distribution, based on previous

literature for Bayesian IVIM model fitting (37). The Bayesian fitting

used a Markov chain Monte Carlo setup with Gibbs sampling and

Metropolis-Hastings algorithm to derive a marginalised parameter

distribution. The step-length parameters were updated every 2,000

iterations, with a total of 20,000 iterations. The conventional IVIM

analysis algorithms, including nonlinear least squares full fitting,

segmented-unconstrained, and segmented-constrained (38), were

also deployed in supplementation to the study (Supplementary

Data: Appendix A). The correction for the noise floor (39) was

not undertaken since the data have a sufficiently high signal-to-

noise ratio (SNR), and the same consistent approach was adopted

for all the longitudinal data. The median perfusion fraction (f),

tissue diffusion (D), and pseudodiffusion (D*) within the tumour,

representing volume fraction between capillary blood and tissue

water, mean diffusivity of the tissue, and vascular blood flow

motion, respectively, were calculated for baseline and Cycle 1.

The percentage change in perfusion fraction, diffusion, and

pseudodiffusion at Cycle 1 was computed with reference to

baseline: [Cycle1(f/D/D*) – Baseline(f/D/D*)]/Baseline(f/D/D*) ×

100% (34).

Statistical Analysis: Statistical analysis was performed using the

R software (v3.6.3, The R Foundation for Statistical Computing,

Vienna, Austria). The normality of the distribution was assessed

using the Shapiro–Wilk test. The measures at baseline and

percentage change at Cycle 1 of perfusion fraction, diffusion, and

pseudodiffusion were compared between good and poor responder

groups using Wilcoxon rank sum test to determine the prediction

and early sensitivity of the markers. The correlation of perfusion

fraction, diffusion, and pseudodiffusion at baseline against Ki-67

from core biopsy for treatment-naïve prognosis was performed

using Spearman’s rank correlation test. The percentage change in

perfusion fraction, diffusion, and pseudodiffusion against

percentage change in Ki-67 for treatment-altered prognosis was

also performed using Spearman’s test. A p-value < 0.05 was

considered statistically significant.
3 Results

The patient demographics is shown in Table 1. Among the 17

patients, there were 8 good responders and 9 poor responders at
FIGURE 1

Intravoxel incoherent motion (IVIM) images were acquired before
neoadjuvant chemotherapy (NACT) at baseline and after Cycle 1. A
Bayesian probability (BP) IVIM model was used to compute
perfusion fraction (f), tissue diffusion (D), and pseudodiffusion (D*)
for the assessment of prediction and early tumour response to
NACT. The baseline and percentage change in f, D, and D* at Cycle
1 were examined between good and poor responders, with patients
grouped according to the Miller–Payne system for pathological
response (RQ1). Medians of baseline and percentage change in f, D,
and D* were compared against tumour cellular proliferation marker
Ki-67 at core biopsy and percentage change in Ki-67, respectively,
from immunostaining in histopathology (RQ2).
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baseline, and due to complications, 1 patient did not complete an

MR scan at Cycle 1. There was no significant difference in age and

tumour size at baseline between good and poor responders. There

was no significant difference in the change in tumour size between

good and poor responders at Cycle 1 (Table 1).
Frontiers in Oncology 0445
There was no significant difference in Bayesian perfusion

fraction (p = 0.481), tissue diffusion (p = 0.743), and

pseudodiffusion (p = 0.673) at baseline between good and poor

responders (Table 2; Supplementary Figure A1). There was also no

significant difference in perfusion fraction, tissue diffusion, and
TABLE 1 Tumour characteristics of patients.

Characteristic All (n = 17) Good Responders (n = 8) Poor Responders (n = 9) p-value

Age 51 (46–58) 50 (38–59) 52 (47–58) NS

Tumour size at baseline (mm) 32 (26–38) 38 (34–43) 29 (20–37) NS

Tumour size changes at Cycle 1 (%) −7.3 (−16.7 to 0.0) −16.7 (−27.1 to −4.4) −3.9 (−8.3 to 0.0) NS

Histology

Invasive ductal
carcinoma

16 7 9

Mixed ductal/lobular
carcinoma

1 1 0

Grade

Grade II 1 1 0

Grade III 16 7 9

Hormonal receptor status

Oestrogen receptor
positive (ER+)

7 3 4

Human epidermal
growth factor receptor 2
positive (HER2+)

2 2 0

Triple negative (TN) 8 3 5
fro
Tumour histology and hormonal receptor status grouped by the Miller–Payne system (Poor Responders: 1, 2, and 3; Good Responders: 4 and 5). Median (interquartile range, IQR) of age, tumour
size, and size changes are shown.
NS, not significant.
TABLE 2 Comparison of IVIM-derived parameters between responder groups before and after the first cycle of NACT and the association with Ki-67.

IVIM-
derived
parameters

Baseline-f/D/D* %Change-f/D/D* Ki-67
correlations

(r score, p-value)

All
(n = 17)

Good
Responder
(n = 8)

Poor
Responder
(n = 9)

All
(n = 16)

Good
Responder
(n = 7)a

Poor
Responder
(n = 9)

Coreb %
Changec

fd 10.81
(8.89–
11.71)

9.95 (8.13–11.73) 11.01 (9.34–11.71) 5.54 (−10.34
to 15.37)

−7.98 (−19.47 to
1.73)*

10.04 (5.09–
28.93)*

0.180,
0.480

0.590,
0.042*

D 0.95
(0.88–1.27)

0.95 (0.84–1.51) 0.96 (0.91–1.19) 16.06
(2.61–32.31)

28.87 (6.98–33.77) 15.54 (0.79–25.42) −0.350,
0.174

0.380, 0.217

D* 6.20
(4.38–9.04)

4.63 (4.03–12.83) 6.23 (6.17–8.41) −15.50
(−19.05
to −2.14)

−16.12 (−17.05
to −3.50)

−14.89 (−24.98
to −4.12)

0.190,
0.474

0.530, 0.075
aOne patient did not complete MR scan due to complications.
bSpearman’s rank correlation test – baseline-f/D/D* vs. Ki-67 Core.
cSpearman’s rank correlation test – %Change-f/D/D* vs. %Change-Ki-67.
dUnits at baseline – f: percentage (%), D and D*: ×10−3 mm2/s.
The baseline and percentage change in perfusion fraction (f), tissue diffusion (D), and pseudodiffusion (D*) in good responders and poor responders from the Bayesian probability (BP) IVIM
model. The Spearman’s rank correlation coefficients (r) for baseline IVIM-derived parameters against Ki-67 in core biopsy and percentage changes in IVIM-derived parameters against
percentage change in Ki-67 are also shown. Values are presented as median (IQR). Statistically significant differences (p < 0.05) are marked with an asterisk (*).
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pseudodiffusion at baseline between good and poor responders

from full fitting and segmented analyses (Supplementary Table

A1, Supplementary Figure A2). There was no significant correlation

in Bayesian perfusion fraction (p = 0.480), tissue diffusion (p =

0.174), and pseudodiffusion (p = 0.474) at baseline against Ki-67

from core biopsy (Table 2, Supplementary Figure A1). There was

also no significant correlation in perfusion fraction, tissue diffusion,

and pseudodiffusion at baseline against Ki-67 from core biopsy

from full fitting and segmented analyses (Supplementary Table A1,

Supplementary Figure A3).

There was a significant difference (p = 0.042) in percentage

change in Bayesian perfusion fraction between good and poor

responders at Cycle 1, with a decrease in good responders

[−7.98% (−19.47–1.73), n = 7] against an increase in poor

responders [10.04% (5.09–28.93), n = 9] (Figure 2A, Table 2).

There was no significant difference in percentage change in

perfusion fraction between good and poor responders at Cycle 1

from full fitting and segmented analyses (Figure 3; Supplementary

Table A1). There was a significant correlation in percentage change

in Bayesian perfusion fraction (p = 0.042, Figure 4A, Table 2)

against percentage change in Ki-67. There was no significant

correlation in percentage change in perfusion fraction against

percentage change in Ki-67 from full fitting and segmented

analyses (Figure 5; Supplementary Table A1). There was no

significant difference in percentage change in Bayesian tissue

diffusion (p = 0.606, Figure 2B, Table 2) and pseudodiffusion (p =

0.918, Figure 2C, Table 2) between good and poor responders at

Cycle 1. There was no significant correlation in percentage change

in Bayesian tissue diffusion (p = 0.217, Figure 4B, Table 2) and

pseudodiffusion (p = 0.075, Figure 4C, Table 2) against percentage

change in Ki-67. There was also no significant difference in

percentage change in tissue diffusion and pseudodiffusion

between good and poor responders (Figure 3, Supplementary

Table A1), nor was there correlation against percentage change in

Ki-67 from full fitting and segmented analyses (Figure 5;

Supplementary Table A1).

The parametric maps from IVIM analysis from a typical good

and poor responder at baseline and Cycle 1 are shown in Figure 6.
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The Ki-67-stained microscopy slides from a typical good and poor

responder at core biopsy and excision are shown in Figure 7.
4 Discussion

In this study, we investigated predictive and early response

markers for NACT in breast cancer using perfusion fraction,

diffusion, and pseudodiffusion derived from BP IVIM. We found

that perfusion fraction showed a significant alteration between

baseline and Cycle 1 in good responders compared to poor

responders, and the alteration is correlated with the change in

proliferative activity accumulated through the whole course of

NACT across the cohort. However, we did not observe significant

differences in alterations in diffusion or pseudodiffusion at Cycle 1

between groups or their correlation against change in proliferative

activities. We further did not observe significant differences in

imaging markers at baseline between groups, or any significant

correlation against proliferative activities at baseline.

The imaging markers of tissue diffusion, perfusion fraction, and

pseudodiffusion at baseline did not predict NACT response,

indicating the absence of evidence to use tissue diffusion and

perfusion at baseline to guide NACT. The results were in

agreement with imaging markers of diffusion tensor imaging and

ADC at baseline that did not have predictive value for pCR after eight

cycles of NACT (22). The results also agreed with a recent study

showing that pretreatment tissue diffusion, perfusion fraction, and

pseudodiffusion from the segmented constrained model were not

predictors of response in patients undergoing a comparable regimen

of NACT (36). Diffusion and perfusion metrics estimate cellularity

and angiogenesis, respectively, and the lack of a difference between

responder groups indicated that a tumour with high cell density and

vascular abnormality at initial presentation might not determine the

effectiveness of NACT, despite an initial poorer prognosis. Diffusion

and perfusion metrics showed no correlation with Ki-67 prior to

NACT, indicating no direct correlation between imaging markers of

cellularity and angiogenesis with treatment-naïve prognosis, although

tissue sampling error could not be excluded.
B CA

FIGURE 2

Percentage change in (A) perfusion fraction (f), (B) tissue diffusion (D), and (C) pseudodiffusion (D*) between good and poor responders at first treatment
cycle (Cycle 1) from the Bayesian probability (BP) IVIM model. There was a significant difference in percentage change in perfusion fraction between
good and poor responders, but not in tissue diffusion and pseudodiffusion. Each dot represents the percentage change in f, D, and D* from an individual
patient. Error bar represents median (IQR). Statistically significant p-values (<0.05) are shown on the upper right corner with “*”.
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B CA

FIGURE 4

Percentage change in perfusion fraction (f), tissue diffusion (D), and pseudodiffusion (D*) against percentage change in the tumour cellular
proliferation marker Ki-67. The correlation of percentage change in (A) f, (B) D, and (C) D* at Cycle 1 against percentage change in Ki-67 in resected
tumour is shown in scatter plots. Spearman’s rank correlation coefficient (rho (r)) was used for correlation analysis and respective r score and p-
value are shown on each plot. Statistically significant p-values (<0.05) are marked by “*”.
B C

D E F

G H I
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FIGURE 3

Percentage change in perfusion fraction (f), tissue diffusion (D), and pseudodiffusion (D*) between good and poor responders from nonlinear least
squares (Free), segmented-unconstrained (SU), and segmented-constrained (SC) IVIM models. The percentage change in f, D, and D* between good
and poor responders from (A–C) Free, (D–F) SU, and (G–I) SC algorithms are shown in dot plots. Each dot represents the IVIM-derived parameter of
an individual patient. Error bar represents median (IQR).
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There was an early significant decrease in perfusion fraction f in

good responders, indicating that perfusion fraction might be a

sensitive marker in the early identification of a successful NACT.

The increase in stiffness of capillary vasculature obstructs

microcirculation (40), leading to a modulation of perfusion in the

tumour (41). Perfusion fraction has been shown to drastically

decrease following a reduction in vascular blood flow motion,

despite a subtle structural change in the functional capillary

network (18). The susceptibility to systemic changes was lower in

comparison to diffusion and pseudodiffusion as independent

measures for the physiological response in cellularity and

angiogenesis subsequent to cell apoptosis (42). Bayesian-derived

perfusion fraction not only showed the potential of perfusion

fraction as a marker to predict pathological complete response

after one cycle of NACT, in agreement with a previous study (36),
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but also demonstrated a higher sensitivity since the full fitting and

segmented analyses conducted in supplementation to Bayesian

showed no group difference. The use of probability constraints on

neighboring voxels in the Bayesian model led to less susceptibility of

perfusion fraction and pseudodiffusion to the impact of noise, and

improved the robustness of fitting (27). However, the higher

demand on computing power may delay early adoption, whereas

segmented analysis has an added advantage due to the faster

processing time and initial validity in a recent study (36).

Although perfusion volume ratio from DCE-MRI has been

suggested as a marker of responders after one treatment cycle

(43), DCE-MRI suffers from nonspecific contrast enhancement

from post-treatment changes, including reactive inflammation,

necrosis, and peritumoural oedema (18), requiring inputs from

more than one radiologist (35). The sensitivity of DCE-MRI to
B C

D E F

G H I
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FIGURE 5

Percentage change in perfusion fraction (f), tissue diffusion (D), and pseudodiffusion (D*) against percentage change in Ki-67. The correlations of
percentage change in f, D, and D* from (A–C) nonlinear least squares (Free), (D–F) segmented-unconstrained (SU), and (G–I) segmented-
constrained (SC) algorithms at Cycle 1 against percentage change in tumour cellular proliferation marker Ki-67 in resected tumour are shown in
scatter plots. Spearman’s rank correlation coefficient (rho (r)) was used for correlation analysis and respective r score and p-value are shown on
each plot.
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angiogenesis (44) is also limited by the accuracy in the

measurement of arterial input function in kinetic hemodynamic

models (45) and specialist quantitative deconvolution analysis (16).

The inconsistency in terminology between radiology and research

practice Dickie et al. 20231 further hinders the wider clinical

adoption of quantitative perfusion maps from DCE-MRI for early

response in NACT. IVIM, incorporating tissue diffusion and

perfusion, shows clinical relevance in the current and previous

studies (34, 36, 41, 46), does not require contrast, and has a clearer

set of terminology to aid clinical translation. However, the higher

susceptibility to noise demands extended acquisition time to reach

submillimeter resolution sufficient for accurate determination of

tumour size.

The significant correlation between percentage change in

perfusion fraction after one cycle and percentage change in Ki-67

indicates a strong association between capillary blood-to-tumour

water volume ratio with proliferative activities. Although a causal

relationship for the primary impact of NACT on proliferative activity

or blood supply could not be established, a reduction in metabolic

demand from stunned proliferation and limitation of blood supply

from restricted perfusion are both central characteristics of a

successful NACT (46). The association between proliferative

activity and perfusion has been shown in cell and ex vivo studies as

central to tumour development (47, 48). Ki-67 was positively

correlated with median (35) and mean (49) tumour perfusion

fraction respectively in cross-sectional studies. Thus, an increase in

proliferative activity has a corresponding increase in volume fraction

between capillary blood and tissue water. Bayesian-derived perfusion

fraction showed that good responders with a greater decrease in Ki-67

across NACT also had a greater decrease in perfusion fraction at one
1 Dickie, B.R., Ahmed, Z., Arvidsson, J., Bell, L.C., Buckley, D.L., Debus, C., et

al. (2023). A community-endorsed open-source lexicon for contrast agent-

based perfusion MRI: A consensus guidelines report from the ISMRM Open

Science Initiative for Perfusion Imaging (OSIPI). Magn Reson Med. Online

ahead of print. doi: 10.1002/mrm.29840

Frontiers in Oncology 0849
cycle, therefore enhancing the critical evidence in the clinical

population from a longitudinal study. However, simultaneous full

fitting and segmented analyses showed no correlation between

change in perfusion fraction and Ki-67. A decrease from high pre-

NACT (>35%) to low post-NACT (<15%) Ki-67 showed a sustained

low recurrence (<20%) at 3 years after diagnosis (32), and post-

NACT Ki-67 proliferative index is an independent prognostic marker

in addition to pCR (32). The results showed the potential of perfusion

fraction in early response for treatment-altered prognosis and the

clinical relevance of an imaging biomarker in the targeted evaluation

of the impact of NACT on breast tumours.

There was no significant difference in alteration of tissue

diffusion D between responder groups, indicating that cellularity

might not be the correct biological target to reveal the effectiveness

of NACT at Cycle 1. It has been shown that an increase in tissue

diffusion at the second (34, 41) and third (46) cycle was associated

with good response in NACT; however, the time points are at a later

stage of NACT and metabolic change at an earlier time point might

precede morphological change in cellularity and hence tissue

diffusion (34, 41, 46). There was a limited number of cytological

or histological studies on changes in cellularity and metabolism

during the early phase of NACT, potentially due to the

heterogeneity across tumour and the fact that biopsy suffers from

partial sampling error. There was a decrease in cellularity in biopsy

obtained from good responders after two cycles of NACT (50),

although the authors in the current study did not find any study on

the direct assessment of cellularity after one cycle of conventional

NACT. However, a low tumour cellularity in biopsy at day 15 in

patients treated with anti-HER-based chemotherapy (including

lapatinib and trastuzumab) (51) and a decrease in cellular

proliferative activity of Ki-67 after one cycle of conventional

NACT (52) predicted good responders. There was no significant

difference in alteration of pseudodiffusion D* between responder

groups, in agreement with previous breast cancer treatment studies

(34, 53). The results might be due to the higher variability in

vascular blood flow motion within the capillary bed (54). The lack

of association between alterations in tissue diffusion and
BA

FIGURE 6

Parametric maps from IVIM Bayesian analysis of f, D, and D* from a typical (A) good responder and (B) poor responder at baseline (V1) and Cycle 1
(V2) of NACT (overlaid on diffusion weighted images, b = 1000 s/mm2). Images were acquired with a field of view of 240 mm × 240 mm, an in-
plane resolution of 2.5 mm × 2.5 mm, a repetition time of 2,400 ms, and an echo time of 50 ms.
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pseudodiffusion against alterations in Ki-67 showed an absence of

evidence for a direct link between early response in cellularity and

vascular blood flow motion against change in proliferative activity

in the course of NACT.

Bayesian algorithm offers a robust assessment, and an improved

estimation of perfusion fraction in association with pathology. The

results of the study suggest that perfusion fractionmight be a sensitive

biomarker of NACT to improve treatment planning, reduce side

effects, and expedite precision medicine. Mammography and breast

ultrasound have been proposed at the halfway point of NACT to

measure the residual tumour size using the RECIST criteria (55);

however, tumour regression is not an accurate predictor of response

at the first (56) or second (34) cycle of NACT. There was no

correlation in size reduction with tumour grade decrease after two

cycles of NACT (50), and a reduction in size of the tumours was seen

in both small and large tumours (57), potentially due to the formation

of islands of nonviable tumour cells subsequent to NACT (50).

Perfusion fraction has the potential for tumour perfusion rate

characterisation and responder identification after the first cycle,

and the correlation with the change in Ki-67 showed that perfusion

fraction might have a unique prognostic value in response-guided

NACT prior to surgical intervention.

This investigation was a prospective, registered clinical trial that

recruited consecutive patients, and set timing for individual MRI

scans ensured comparability between patients (46). This study on

patient data provided important clinical evidence to a previous

study that used simulated and volunteer data (38) and showed that

the Bayesian model might ensure greater accuracy of perfusion

fraction in association with pathology for differentiation between

good and poor responders. A threshold might not be clear cut, and

hence, IVIM will contribute to NACT early responder identification

but not as a standalone test. Future large cohort studies that will give
Frontiers in Oncology 0950
an accurate estimation of sensitivity and specificity are required to

demonstrate the potential of the Bayesian IVIM model to support

early response markers in breast cancer management. A three-

direction acquisition scheme was utilised due to limited acquisition

time (58) and potential risk of overfitting with DTI parameters very

sensitive to noise (39); however, a six-direction scheme (or more)

might be used to mitigate the impact of anisotropy in the breast (39,

59, 60) in a future study. The current analysis might also benefit

from a multi-compartmental IVIM model to account for the

exchange between the extracellular and intracellular compartment

that affects the quantification of diffusion and pseudodiffusion, since

there was a characteristic change in cellular fibrous tissue (stroma)

after NACT and the stromal component of the tumour is critical in

tumour biology (50, 61).
5 Conclusion

The alteration in perfusion fraction from the Bayesian IVIM

model supported the differentiation of good responders from poor

responders at the first treatment cycle, and warrants further

investigation in comparison to full fitting and segmented analyses

in large cohort studies. Early treatment-induced changes in

perfusion fraction might serve as non-invasive biomarker to

facilitate the delivery of response-guided NACT and the

development of an optimal treatment plan.
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FIGURE 7

Ki-67 stained microscopy slides from a typical good and poor responder of neoadjuvant chemotherapy (NACT). (A) In the good responder, the Ki-67
score was 17.5% in the core biopsy and 0.8% in the resected tumour. (B) In the poor responder, the Ki-67 score was 23.7% in the core biopsy and
12.4% in the resected tumour. Sections at the greatest dimension of the specimens are shown. Magnification, ×10.
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27. Vidić I, Jerome NP, Bathen TF, Goa PE, While PT. Accuracy of breast cancer
lesion classification using intravoxel incoherent motion diffusion-weighted imaging is
improved by the inclusion of global or local prior knowledge with bayesian methods. J
Magn Reson Imaging (2019) 50(5):1478–88. doi: 10.1002/jmri.26772
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Purpose: The aim of this study was to investigate the value of a deep learning

model (DLM) based on breast tumor ultrasound image segmentation in

predicting pathological response to neoadjuvant chemotherapy (NAC) in

breast cancer.

Methods: The dataset contains a total of 1393 ultrasound images of 913 patients

from Renmin Hospital of Wuhan University, of which 956 ultrasound images of 856

patients were used as the training set, and 437 ultrasound images of 57 patients

underwent NAC were used as the test set. A U-Net-based end-to-end DLM was

developed for automatically tumor segmentation and area calculation. The

predictive abilities of the DLM, manual segmentation model (MSM), and two

traditional ultrasound measurement methods (longest axis model [LAM] and dual-

axis model [DAM]) for pathological complete response (pCR) were compared using

changes in tumor size ratios to develop receiver operating characteristic curves.

Results: The average intersection over union value of the DLM was 0.856. The

early-stage ultrasound-predicted area under curve (AUC) values of pCR were not

significantly different from those of the intermediate and late stages (p< 0.05).

The AUCs for MSM, DLM, LAM and DAM were 0.840, 0.756, 0.778 and 0.796,

respectively. There was no significant difference in AUC values of the predictive

ability of the four models.

Conclusion: Ultrasonography was predictive of pCR in the early stages of NAC.

DLM have a similar predictive value to conventional ultrasound for pCR, with an

add benefit in effectively improving workflow.
KEYWORDS

breast cancer, ultrasound image, deep learning, neoadjuvant chemotherapy,
pathological complete response
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Introduction

According to the 2023 cancer statistics from the American

Cancer Society, breast cancer remains the most prevalent malignant

tumor worldwide, and its incidence continues to rise (1). Thus,

developing treatment and evaluation strategies remains crucial.

Neoadjuvant chemotherapy (NAC) represents systemic

medication administered before surgical tumor excision and is a

standard treatment for locally advanced breast cancer (2). NAC can

downstage tumors, rendering initially inoperable tumors eligible for

surgery and enhancing the breast conservation rate (3). NAC can be

used to evaluate tumor response to treatment by monitoring

changes in tumor size during treatment (4).

Conventional assessment for tumor response including clinical

examination, pathological examination and imaging examinations.

The frequency of assessment of tumor response during NAC

remains controversial. The National Comprehensive Cancer

Network (NCCN) guidelines advocate for routine clinical

examination to assess tumor response, with imaging evaluations

only warranted if tumor progression is suspected (5). However,

domestic guidelines recommend that imaging evaluations should be

performed at least once every two cycles (6). Pathological

examination post-NAC and surgery remains the gold standard for

tumor response assessment (7). Pathological complete response

(pCR) is the absence of residual invasive disease in the breast and

axilla (8). Patients with pCR achieve long-term disease-free survival

and improved overall survival rates (9, 10). Imaging examinations

such as mammography, ultrasound, and magnetic resonance

imaging (MRI) are employed to evaluate patients undergoing

NAC (11, 12). Mammography can serve as an effective means for

the primary tumor assessment and the detect ion of

microcalcifications. Ultrasound provides real-time monitoring, is

widely accessible and cost-effective (12, 13). Contrast-enhanced

MRI is considered as the most sensitive imaging modality for

assessing tumor response (14).

In addition to these conventional imaging examinations, artificial

intelligence (AI) has been increasingly used to automatically improve

early breast cancer detection and treatment. AI algorithms such as

deep learning (DL) can efficiently and automatically analyze medical

images, with outstanding capabilities in locating lesions and

extracting characteristic features from medical images (15). DL has

been introduced to assist clinicians in breast lesion identification and

segmentation, cancer grading while allowing reproducibility and

visualization (16–18). AI has been applied for ultrasound

assessment of NAC treatment response in breast cancer (19).

Ultrasound images exhibit speckle noise, variable tumor size and

shape, and tumor-like breast tissue along with echo pattern modality

imaging (20), which reduce diagnostic accuracy; therefore,

developing precise tumor detection algorithms that lack noise and

ambiguity represents considerable challenges.

However, certain aspects that require further exploration. First,

the relationship between tumor size and NAC has long been a

subject of research interest. Second, deep learning algorithms based

on ultrasound images for predicting NAC response can be

developed (21–23). Especially for breast ultrasound image

segmentation, algorithms could be categorized into two methods.
Frontiers in Oncology 0255
One algorithm is the CNN-based networks which utilize the fixed

receptive region to extract information, such as U-net (24), FCN

(25) and Mask R-CNN (26). Due to the special computer kernel, the

networks pay more attention to the local features (27), which work

poorly in evaluating the tumor-resemble, shadows and speckle

noise. Though many researchers have creatively proposed many

multi-scale and attention mechanisms, the improvement is limited.

The other method utilized the transformer (28, 29), which splits the

ultrasound image into tokens, which employ the sequence

information to acquire the global relationship from the global

dimension. Therefore, the transformer would extract more

features especially avoiding the interference from tumor-resemble

tissue. However, because the transformer most focuses on the global

features, it detects boundaries of tumor would be sensitive. To

enhance the accuracy of tumor detection, the network which

balances the local and global features has challenges and has the

potential to widespread in radiology (30). In comparison to the

conventional manual delineation of tumor regions by sonographers,

this model holds advantages in terms of segmentation speed and

reduction of experiential bias. Moreover, existing studies primarily

focus on early-stage treatment or predicting efficacy at individual

time points (31–33). The continuous evaluation of treatment

response of breast cancer during the process of NAC, rather than

at isolated time points, remains to be investigated.

Herein, we prospectively collected data from patients with

breast cancer who underwent NAC and designed a deep learning-

based tumor detection model to analyze regions of interest (ROI) in

ultrasound images. Next, we verified the ability of the model to

detect breast tumors without noise interference and blurry

boundaries using statistical methods to monitor ultrasound

images during NAC, extract information from feature maps, and

provide an intuitive and quantitative picture of tumor alterations.

Furthermore, we examined the performance of proportional

changes in tumor size measured using conventional models and

DLM for predicting the response to chemotherapy. We employed

DLM and conventional ultrasound throughout all phases of the

NAC treatment to monitor its efficacy. The study aimed to assess

the ability of DLM in predicting pCR in breast cancer patients

undergoing NAC and its ability to evaluate the treatment response

at various stages of NAC.
Methods

Patients

Between December 2020 and December 2022, researchers

collected a total of 1393 ultrasound images from 913 patients at

Renmin Hospital of Wuhan University. Among these, 956

ultrasound images from 856 patients were retrospectively

collected and used as the training dataset. Additionally, 437

ultrasound images from 57 patients who underwent NAC were

prospectively collected and utilized as the test dataset. This study

was conducted according to the Declaration of Helsinki and

relevant Chinese clinical trial research norms and regulations.

Ethical approval was obtained from the Ethics Committee of
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Renmin Hospital of Wuhan University (approval number:

WDRY2022-K217). All patients provided written informed

consent for ultrasound examinations, surgical intervention, and

use of data. Figure 1 presents the patient selection flowchart.

Patient eligibility criteria included 1) a definitive diagnosis of

primary invasive breast cancer by biopsy; 2) no previous treatment,

and at least one of the following indications for NAC: tumor size >

5 cm; HER2 positive; estrogen receptor/progesterone receptor and

human epidermal growth factor receptor (HER) 2 negative; axillary

lymph node metastasis or strong breast-conserving intention; 3)

underwent 6–8 cycles of complete NAC; 4) breast ultrasound

examination before initiating NAC, after each NAC cycle, and after

NAC completion; and 5) surgical resection after NAC completion.

Exclusion criteria were 1) patients who did not complete the

NAC regimen or underwent treatment at another center; 2) breast

surgery performed before NAC completion; 3) insufficient

ultrasound image quality for feature extraction; and 4) lack of

pathological results post-surgery.
Neoadjuvant chemotherapy regimen

The National Comprehensive Cancer Network guidelines for

Breast Cancer (Version 3.2020) recommend selecting the NAC

regimen based on the breast cancer molecular subtype. All

patients underwent 6–8 NAC cycles. The most common regimen

for patients with luminal or triple-negative breast cancer includes a
Frontiers in Oncology 0356
combination of epirubicin, cyclophosphamide, and paclitaxel,

administered every 21 days. Patients with HER2-positive tumors

received either the THP (paclitaxel, trastuzumab, and pertuzumab

every 21 days) or TCbHP (paclitaxel, carboplatin, trastuzumab, and

pertuzumab every 21 days) regimens.
Ultrasound imaging

An ESOTE MEGAS GPX FD570A ultrasound diagnostic

instrument was used for patient examination, with probe

frequencies ranging 5–13 MHz. All patients were placed in the

supine or side-lying position with both arms lifted and abducted to

fully expose the breast. Diagnostic criteria were based on the

American College of Radiology Breast Imaging Reporting and

Data System. Experienced breast sonographers independently

performed each ultrasonographic examination. Measurements

were extracted from the ultrasound report and confirmed by

another breast sonographer based on captured images. Two

experienced breast sonographers manually segmented ROIs from

original ultrasound images using a 3D slicer software (version 4).
Tumor response assessment

Tumor size was assessed using ultrasound after each NAC cycle.

NAC-treated tumors were also evaluated using the Response
FIGURE 1

Flowchart of inclusion and exclusion for patients in the test set. US, ultrasound.
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Evaluation Criteria for Solid Tumors (RECIST 1.1) (34). In this

prospective study, tumor size was defined as the sum of the size of

each tumor if the patient had multifocal disease. Four models were

established to calculate tumor size before and after each treatment:

the longest axis model (LAM), the product of two perpendicular

axes model (dual-axis model [DAM]), the manual segmentation

model (MSM), and the deep learning model (DLM). To compare

changes in tumor size, the relative ratio was calculated after each

treatment cycle using the following formula:

Ratio N =
untrasound tumor size after N cycles of NAC

ultrsound tumor size before NAC
Histopathological assessment

Breast cancer was diagnosed by needle biopsy of the tumor.

HER2 status was assessed using immunohistochemistry and

fluorescence in situ hybridization analysis (35). Breast tumors

were classified as HER2-negative and HER2-positive subtypes.

After completing NAC, surgically resected breast tumor tissue

was delivered to the Department of Pathology, where a

specialized breast pathologist examined the specimens to establish

the pathological diagnosis. The residual cancer burden (RCB) index

was used as a criterion for assessing residual tumors after NAC for

breast cancer. A pCR or RCB-0 was defined as the complete absence

of invasive cancer in the breast and axillary lymph nodes (8).
Development of the deep learning-
based model

Given that breast ultrasound images are characterized by low

resolution and contrast and ambiguous boundaries, we utilized a

custom U-Net neural network to capture tumor features by

applying data augmentation (23), attention mechanism, and

multi-scale method. As U-Net segments each pixel into classes, it
Frontiers in Oncology 0457
can directly infer the ultrasound image and generate a tumor

distribution map with the same dimensions as the input image.

We adopted U-Net as a cancer-detection architecture and creatively

added modules to construct a custom U-Net for enhancing

extracted model features.

Figure 2 presents the algorithm construction process. To

promote the generation and prevent overfitting, we adopted a

data-augmentation technique and several network construction

algorithms. During image processing, breast tumor features on

the ultrasound image varied in all directions, lightness, and

contrast; we utilized data-augmentation techniques such as

cropping, rotation, and adjusting lighting conditions, including

contrast and lightness, to extract general tumor features without

intervention. We used batch normalization and dropout at each

convolution layer in the neural network to avoid model oscillations

and facilitate robustness. Additionally, we exploited the grayscale

intensity as the input image, given that the grayscale ultrasound

image contained sufficient information for the diagnosis, affording

efficiency by reducing three channels into one. In the network, we

introduced an attention mechanism after each convolution block,

namely, the SCSE module (36), allocating more computing

resources to abnormal regions and improving inference speed.

Considering variations in breast tumor shape and size, a constant

kernel size from the convolution layer was constrained to capture

the tumor with a feasible receptive field. Therefore, we implemented

multi-scale imaging to acquire different tumor sizes in ultrasound

images, specifically atrous spatial pyramid pooling, with the

capacity to extract multi-scale contextual information.

To ensure accurate tumor regions and contours, we proposed a

hybrid loss function for model refinement. The loss function is

crucial in selecting an optimizer for the model weight. We expanded

the hybrid loss function for model adjustment based on the region

and boundary. To obtain a more accurate intersection with the

ground truth, we adopted the dice coefficient loss accompanying the

binary cross-entropy loss to promote the accuracy of each pixel.

Owing to the ambiguous tumor contour due to poor contrast, we

adopted the active contour (37) and Hausdorff distance loss (38) to
FIGURE 2

Algorithm construction Construction of the deep learning model.
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calculate the refined boundary. After applying the above techniques

and changing the network, our model could precisely segment

breast tumors in ultrasound images.
Model training and model performance
evaluation metrics

All datasets were collected from breast tissues examined in the

ultrasound department. The dataset contains 1393 ultrasound (US)

images. 956 US images of 856 patients were used as a training set to

train our model, covering a variety of US images of benign breast

tumors, malignant breast tumors, and post-chemotherapy breast

cancer. And 437 NAC US images of 57 patients with complete NAC

cycles were used as a test set to display network ability. There was

no data overlap between the training set and the test set. We

employed two experts to diagnose the whole dataset and

generated corresponding ground truth masks. In detail, one

expert annotated each image, while the other one reviewed it.

When differences in diagnosis were encountered, the final

annotation utilized the latter expert’s results. Meanwhile, due to

variation in US image size, during network training, we rescaled the

ultrasound image with a fixed resolution of 448×384 pixels. Besides,

in order to quickly find the optimizer weights, we adopted the

Adam algorithm (39) with the betas from 0.5 to 0.999. When

conducting experiments, we set the batch size 4 learning rate of

0.002 and stopped the iteration when the model was updated for

100 epochs, saving the most accurate model parameters and

avoiding overfitting. All experiments were conducted in PyTorch

under an Ubuntu OS server with an Intel Xeon (R) CPU E5‐2680 v4

@2.40 GHz, 40 GB of RAM, and an NVIDIA GeForce RTX 3090 Ti

with 24 GB of VRAM to boost training processing. We achieved our

network on the 64-bits operation system and constructed algorithm

on the Pytorch 2.0.1 framework with CuDNN 11.8. The training

processing took up to 20 hours and the test phase lasted 76 seconds.

Finally, the well-trained model generated a breast tumor

distribution map for each ultrasound image and quantitatively

analyzed performance.

To demonstrate the segmentation performance of our model,

we utilized five metrics to quantitatively analyze the prediction

output by comparing areas of prediction and annotation: accuracy,

intersection over union (IoU), precision, recall, and the F1. All the

metric formulas are show in Formula 1, 2, 3, 4, 5, and the TP, TF, FP

and FN of each formula demonstrate the true positive, true negative,

false positive and false negative. Among these metrics, accuracy,

precision, recall, and the F1 score reflect the model’s ability to

capture specific features. Specifically, accuracy showcases the

correctness of pixel predictions, precision demonstrates the

model’s capability to predict positive samples accurately, recall

reflects the model’s ability to capture positive samples, and the F1

score provides a balanced measure considering both positive and

negative samples. As for the IoU, it denotes the intersection between

the predicted segmentation and the ground truth divided by the

area of union, which is commonly used in segmentation tasks.

Considering the definition of the IoUmetric, the value belongs to 0–
Frontiers in Oncology 0558
1, and the closer the value is to 1, the more similar the prediction to

the ground truth. To automatically calculate tumor parameters, we

generated geometric parameters from an ultrasound image. After

processing the model, we acquired a prediction mask for the tumor

region. We first annotated each image with a scale bar, which could

assist in precisely calculating the geometric information.

Subsequently, we calculated the tumor number, area, diameter,

area ratio, and length-to-width ratio using the scale bar and

prediction mask. Accordingly, the IoU metric supported the

overall network performance, whereas geometric parameters

indicated the breast mass condition of each breast ultrasound

image.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(1)

IOU  ¼ TP
TPþ FPþ FN

(2)

Precision  ¼  
TP

TPþ FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2� TP

2� TP + FP + FN
(5)
Statistical analysis

Statistical analyses were performed using R version 4.2.1 (R

Foundation for Statistical Computing, Vienna, Austria). Normally

distributed data are presented as the mean ± standard deviation.

Normality was tested using the Shapiro–Wilk normality test. For

comparisons between two groups, Student’s t-test was used for

normally distributed data, and the Wilcoxon rank-sum test was

used for non-normally distributed data. For categorical variables,

the chi-square test was used to determine differences between

groups. The Kruskal–Wallis method was used to compare

multiple groups. By utilizing the percentage reduction of tumors

relative to their initial state at a specific time point (cycle N), as the

predictor variable, and considering whether pCR was achieved as

the outcome indicator, we compared the predictive performance of

different models by constructing receiver operating characteristic

(ROC) curves (Figure 3). We created ROC curves for all patients

after completing the entire treatment cycle using four measurement

models (Figure 3A); after each treatment cycle using the DLM

(Figure 3C); after each treatment cycle using the MSM (Figure 3D);

after each treatment cycle using the LAM (Figure 3E); and after each

treatment cycle using the DAM (Figure 3F). It is essential to

emphasize that Figure 3A includes patients who completed both 6

and 8 cycles of NAC. Therefore, the ROC curve in Figure 3A does

not overlap with any ROC curves in Figures 3C–F. The p values of

the area under the curve (AUC) were calculated using the DeLong

test. A p-value<0.05 was considered statistically significant.
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Results

Patient information

We included 57 patients who underwent complete per-cycle

ultrasound assessment for primary invasive breast cancer. Table 1

summarizes basic patient data. The mean patient age was 49 years

(range 28–70 years). Mean tumor size prior to NAC was calculated

as follows: LAM 3.059 ± 1.283 cm, dual-axis model (DAM) 6.198 ±

5.734 cm2, manual segmentation model (MSM) 4.190 ± 3.330 cm2,

and DLM 4.233 ± 3.638 cm2. Considering all patients with breast

cancer, 29 (50.9%) achieved pCR after NAC and 28 (49.1%) failed to

achieve pCR. The pCR and non-pCR groups differed significantly in
Frontiers in Oncology 0659
age (p=0.020), HER2 status (p<0.001), and post-NAC tumor size

(LAM, p=0.030; DAM, p=0.008; MSM, p=0.031; DLM, p=0.009).
Performance of the DL-based model

After predicting the test-set images, we achieved a mean IoU of

0.856. Meantime, the model achieved best results on the dataset

from the NAC, with an average accuracy of 0.973, average recall of

0.912 and average F1 score of 0. 918. Additionally, the segmentation

capabilities of this model were quantitatively represented through

ROC curve and PR curve (Supplementary Figure S1). The AUC for

the ROC curve reached 0.99, and for the PR curve, it reached 0.92.
B

C D

E F

A

FIGURE 3

ROC curve for different models in predicting pCR. (A) The ROC curves were plotted to compare the ability of four different models in predicting
pCR. (B) A radar chart shows the predictive ability of the four models at each cycle of the NAC. (C–F) After each cycle of NAC, tumor size was
measured using four models and ROC curves were developed to predict pCR. The ROC curves for all cycles of the same model are drawn in
one graph.
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The DLM demonstrated good discrimination ability in addressing

challenges related to delineating the boundary of breast cancer

ultrasound images (e.g., blurred boundary, irregular shape, uneven

brightness, and interference of contrast). And the DLM could also

extract breast cancer feature of ultrasound image. Simultaneously,

we also tested the model’s computational complexity to display our

network with more information. Our network contains 51.6 M

parameters and 197.15G FLOPs and could detect a US within 0.08

seconds. In summary, the discrimination ability of the DLM was

satisfactory for benign breast tumors and early-stage cancers
Frontiers in Oncology 0760
undergoing NAC, but relatively poor for images of late-stage

NAC and pCR.
Ablation experiment

To deepen our understanding of the mechanisms of our model, we

conducted an ablation experiment. Based on the functionality of the

model, we divided the algorithm into three modules: U-Net, ASPP, and

self-attention. We designated U-Net as the baseline, named the model

with combined multi-scale ASPP as baseline-M, and the U-Net with

combined self-attention module as baseline-A. All experiments were

conducted using the same ultrasound images and identical data

preprocessing methods to analyze the effects of each module and the

overall experimental performance. Additionally, we selected four

ultrasound images with different manifestations for visual analysis,

providing a comprehensive examination of the algorithm’s

performance from quantitative to qualitative perspectives.

In terms of cancer segmentation, the baseline model exhibited

the weakest performance, with an average IoU index of only 0.742.

The baseline-M, incorporating a multi-scale ASPP module,

demonstrated superior performance by capturing ultrasound

information at multiple scales and avoiding interference from

noise or shadow areas. However, baseline-A, which integrated a

self-attention mechanism into the baseline model, showed

improved performance by directing more computational

resources to cancer regions. Through comparative analysis, the

performance gain of the baseline-A model was not as high as that

of baseline-M. Nevertheless, the final model output results indicate

that modules combining multi-scale and self-attention mechanisms

can complement each other’s shortcomings, achieving optimal

performance. Finally, the model achieved the best results on the

NAC dataset, with an average accuracy of 0.973, average recall of

0.912, average IoU of 0.856, and average F1 score of 0.918 (Table 2).

Simultaneously, we visually demonstrated the performance of

each model. We selected ultrasound images from four NAC

treatment cycles, encompassing both pCR and non-pCR response,

as well as variations in tumor boundary clarity. In Figure 4, we

illustrated that the clearer the tumor boundary, the better the image

quality, the better the model’s performance. However, in

comparison to other models, our model resisted noise and

shadows, accurately distinguishing the boundaries of cancer. In

Figure 4, the baseline model exhibited the weakest resistance to

interference, easily influenced by shadows and tissue around the

tumor, especially in the second and third rows of the baseline

images. Baseline-M, introducing a multi-scale features mechanism,

significantly reduced interference from shadows and noise in

ultrasound images. However, its ability to extract global

information remains limited, and the accuracy of edge delineation

is not precise. In the visual results of baseline-A, we observe that the

attention mechanism consumes more computational resources on

suspicious areas, but its detection ability is insufficient. In contrast,

our proposed method, incorporating both multi-scale and self-

attention mechanisms, enhances the segmentation ability to
frontiersin.o
TABLE 1 Basic patient data.

Characteristics Patients (n=57) p-
value

pCR
(n=29)

Non-
pCR (n=28)

Age (mean ± SD) (years) 52 ± 11 47 ± 11 0.020*

Histologic type 0.862

Invasive
ductal carcinoma

18 18

Others 11 10

Clinical N stage 0.060

cN0 9 3

cN1-3 20 25

HER2 status <0.001*

HER2+ 21 4

HER2- 8 24

Pre-NAC tumor size (mean
± SD)

LAM (cm) 3.321
± 1.399

2.778 ± 1.103 0.114

DAM (cm2) 7.133
± 6.451

5.194 ± 4.765 0.209

MSM (cm2) 4.936
± 4.261

3.479 ± 2.704 0.112

DLM (cm2) 4.874
± 3.974

3.454 ± 2.316 0.135

Post-NAC tumor size
(mean ± SD)

LAM (cm) 1.148
± 0.663

1.607 ± 0.870 0.030*

DAM (cm2) 0.781
± 0.829

1.726 ± 1.647 0.008*

MSM (cm2) 0.549
± 0.575

1.189 ± 1.115 0.031*

DLM (cm2) 0.504
± 0.561

0.958 ± 0.936 0.009*
*p<0.05 was considered significant. NAC, neoadjuvant chemotherapy; HER2, human
epidermal growth factor receptor 2; pCR, pathological complete response; LAM, the longest
axis model; DAM, dual-axis model; MSM, manual segmentation model; DLM, deep learning
model; SD, standard deviation.
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capture global information. As a result, we ultimately achieve robust

cancer segmentation with improved resistance to interference.
Measures of tumor size ratios

Following NAC, both pCR and non-pCR groups exhibited

tumor shrinkage. However, tumor regression was more significant

in the pCR group than in the non-pCR group (p<0.01), particularly

during the early stages of treatment (Figures 5B, C). As shown in

Figure 5A, after the first two NAC cycles, the average residual tumor

size measured by MSM, DLM, and DAM was <50% for patients in

the pCR group, whereas the residual tumor size of patients in the

non-pCR group was >50% (detailed data are displayed in the

Supplementary Files).
Performance of the four models for
predicting pCR

ROC curves were established for the four models to predict the

possibility of obtaining pCR after the NAC completion in all

patients (Figure 3A). The AUCs for LAM, DAM, DLM, and

MSM were 0.778 (95% confidence interval [CI], 0.654–0.901),

0.796 (95% CI, 0.675–0.916), 0.756 (95% CI, 0.625–0.887), and

0.840 (95% CI, 0.731–0.949), respectively. The AUCs were

compared using the DeLong test (DLM vs. LAM, p=0.769; DLM

vs. DAM, p=0.769; DLM vs. MSM, p=0.133; LAM vs. DAM,

p=0.557; LAM vs. MSM, p=0.269; and DAM vs. MSM, p=0.358),

with no significance detected (p<0.05).

Subsequently, we plotted the ROC curves for each measurement

method separately across the entire course of NAC and calculated

the AUC to determine which model was more powerful in

predicting pCR at an early stage (Figures 3B–F). After the

DeLong’s test, there was no significant difference between the

AUCs of the different cycles (p>0.05), indicating that there was

no significant difference in the predictive effect of the percentage of

residual tumor size on pCR in the early (cycle 1-2), middle (cycle 3-

4) and late (after 4 cycles) stages of NAC treatment. The AUC

values of DLM for pCR prediction during all-phases of NAC

treatment are as follows: cycle 1 (C1): 0.826; C2: 0.833; C3: 0.782;

C4:0.872; C5:0.831; C6:0.844; C7: 0.851; C8:0.794 (p>0.05).
Discussion

In this study, we collected ultrasound images of breast cancer

patients underwent NAC and developed an efficient DLM for tumor

detection. In comparison to various methods employed for tumor

segmentation in other studies, such as He et al.’s (27) utilization of

the HCT-network, Xu et al.’s (40) implementation of region

attention, Lyu et al.’s (41) application of the pyramid attention,

and Chen et al.’s (42) use of the cascade network, our approach

stands out by efficiently extracting global and local features using

the WSA module and enhancing robustness using ASSP and FAM.

Our model reaches the highest IOU of 0.856 among these studies
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while successfully distinguishing normal tissues and mitigating

noise and shadow interference. Additionally, our dataset was both

extensive and diverse which collected from clinical patients with a

variety of characteristics displaying the comprehensiveness of breast

ultrasound images, such as age, cancer grading, and pCR status.

moreover, the data size consisting of 913 patients and 1393 images,

significantly exceeds that of existing public datasets, such as the 780

images in BUSI (43) and the 163 images in DatasetB (44), ensuring

suitability for breast ultrasound-specific tasks. Therefore, our DLM

achieving excellent segmentation performance. Herein, we

employed the DLM to measure changes in tumor size during

NAC and predict pathological outcomes accordingly. We aimed

to assess the capability of DLM for predicting breast cancer

NAC outcomes.

Firstly, we compared the sensitivity of pCR and non-pCR breast

cancers to NAC by constructing tumor size change ratios and line

graphs. The percentage of tumor regression in patients with and

without pCR was the most notably distinguished after the first NAC

cycle, and the difference in the percentage of regression between the

two groups gradually decreased. Ultrasound images and DLMs have

been shown to predict the treatment response in the early (cycle 1–

2) or mid-treatment (cycle 4) stages of NAC (32, 33, 45). However,

follow-up observations of responses to all consecutive courses of

NAC are still lacking. Hence, we further explored the accuracy of

predicting pCR based on the percentage of tumor regression at

different treatment stages of NAC. Based on our findings, there was
Frontiers in Oncology 0962
no significant difference in the predictive ability of ultrasound

assessment for pCR when performed at any NAC cycle; therefore,

ultrasound assessment can be performed at any time, regardless of

the treatment course.

Furthermore, we compared the predictive abilities of the four

models for pCR after NAC for breast cancer (Figure 3). Tumor size

is known to be closely related to the therapeutic effects of NAC (11).

Conventional ultrasound models such as LAM and DAM assess

tumor size by measuring dimensions. MSM and DLM assess tumor

size by measuring area. The constructed DLM possesses the same

level of capability as experienced sonographers in accurately

identifying tumor boundaries. There was no significant difference

in the predictive efficacy of the four models for pCR. Therefore, the

DLM can serve as a valuable tool for assisting sonographers in

manually measuring breast cancer, enabling more precise

calculations of tumor size. Notably, our DLM is still helpful in

clinical practice. First, it helps improve the workflow. The

algorithms rapidly and automatically identify tumor areas within

ultrasound images, allowing for precise segmentation and accurate

tumor size measurements. The DLM developed in this study offers a

time-efficient model to reduce the burden on the sonographers and

eliminate bias due to differences in experience. The predictive effect

of the DLM is also relatively stable throughout the treatment

process compared to conventional measurement models

(Figure 3B). Second, our DLM was learned from the database of a

large general hospital and reviewed by senior sonographers, and the
FIGURE 4

Performance of different components on four clinical ultrasound images during NAC. The results of ablation experiment. Baseline: U-Net; Baseline-
M: U-Net + Multi-scale ASPP; Baseline-A: U-Net + Self-Attention Module; US, ultrasound; GT, ground truth.
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DLM’s ability to recognize ultrasound images is equivalent to that of

an experienced sonographer. Therefore, the DLM is useful for

assisting junior sonographers or primary hospitals in breast

ultrasound examinations. Third, our research helps doctors and

patients by facilitating the tracking of tumor growth and treatment

responses. It enables the recording of tumor size and shape at

different time points, allowing for image comparisons. This

automatic cancer detection capability enables clinicians to
Frontiers in Oncology 1063
evaluate treatment effectiveness and adjust treatment plans, as

necessary. Most importantly, predicting tumor responses and

tailor personalized treatment plans to ensure the best treatment

outcomes for patients.

The direct comparison of our results with those of other studies

can be challenging, given the differences in data collection and

analysis methods. To the best of our knowledge, this is the first

study to use DL to continuously monitor changes in tumor size
B

C

A

FIGURE 5

Changes in residual tumor with NAC cycles in the pCR and non-pCR groups. (A) The percentage of residual tumors decreased with the increase of
NAC cycle in both groups, with the most evident decrease in the first two cycles. (B) in ultrasound images of breast cancer of a patient who didn’t
receive pCR. (C) Changes in ultrasound images of breast cancer of a patient who received pCR. The green line denotes the prediction contour,
while the red line denotes the ground truth in the first column.
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during NAC. The previous studies similar to this research and their

AUC values for predicting pCR have been listed in Table 3.

Candelaria et al. (45) and Gounaris et al. (46) predicted pCR by

measuring the largest change in tumor diameter at mid-treatment.

Sannachi et al. (47) employed quantitative ultrasonography to

collect data at the 1st, 4th, and 8th NAC cycles. Byra et al. (32)

used a DL approach based on early treatment ultrasound images to

assess the treatment response. The authors also performed

consecutive predictions during the first four cycles, concluding

the absence of any significant difference in the prediction of

chemotherapy outcomes during the first four cycles (48),

consistent with our findings.

In the present study, the following innovations are pivotal. First,

the DL method for processing ultrasound images has several

advantages. 1) Our DL method based on U-Net is an automatic

end-to-end neural network that does not manually screen

handcrafted features. The model can infer the entire ultrasound

image and provide prediction results directly. Moreover, the model

can distinguish the tumor boundary from breast tissue by

intelligently extracting morphological features from cancer and

normal tissues. Meanwhile, the prediction image had the same

dimensions as the input image, displaying breast cancer

distribution. 2) Our model adopted a multi-scale method and

attention mechanism to improve the ability to extract and focus

on features for accurate and rapid tumor tissue identification.

Moreover, the multi-scale method considers context information

to improve boundary performance, particularly the relationship

between the tumor and normal tissue region. 3) To enhance the

detection capacity, we adopted a hybrid loss function to search for

optimal model parameters. By improving the accuracy of the tumor

contour and pixel segmentation, our hybrid loss function consists of

binary cross-entropy loss, dice loss, and active contour models.

Second, to the best of our knowledge, this is the first study to

evaluate ultrasound findings during NAC. Herein, the ultrasound

assessment values were similar for each cycle. Third, we compared

the effectiveness of conventional ultrasound tumor measurements

and DLM in predicting pathologic response, with the DLM as an

alternative to manual measurements.

Nevertheless, the limitations of the present study need to be

addressed. First, this was a single-center study. Although this study

was conducted over 2 years, recruiting an adequate number of

representative patients was challenging. Further external validation

should be performed by recruiting more patients in a multicenter

prospective study to demonstrate the accuracy of the DLM. Second,
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the DLM predictions were solely based on changes in tumor size.

Although size change is the most important and intuitive indicator of

tumors’ response to chemotherapy, this approach overlooks other

ultrasound image features related to the response to NAC, such as

texture changes, tumor shrinkage patterns, and lymph node status.

Including these additional features may further enhance the

predictive performance of the model. Third, although ultrasound is

one of the most important imaging modalities for breast cancer NAC,

predictions based on ultrasound images alone are insufficient to

determine whether the NAC treatment regimen should be stopped

or changed. Many guidelines suggest employing dynamic contrast

enhanced (DCE) MRI for assessing the efficacy of NAC. However,

this study lacks a comparative analysis between ultrasound and MRI.

Therefore, the clinical value of the DLM based on breast ultrasound

for pCR outcome prediction remains to be validated.

Future research will be primarily focused on several key areas.

First, there should be a focus on the multimodal fusion of medical

imaging data to provide a more comprehensive medical insight for

predicting the tumor’s response. Second, there is a need for

development of automated annotation tools to alleviate the

burden of data labeling for medical professionals and researchers.

Third, there should be a quantification of uncertainty and research

into interpretability, particularly in medical ultrasound imaging.

Fourth, there should be a focus on incremental learning to enable

continuous adaptation to new data, with a special emphasis on

monitoring long-term tumor changes and addressing new tumor

types. These research directions will help enhance the efficiency and

accuracy of medical image analysis, fostering ongoing

improvements in tumor diagnosis and treatment.
Conclusions

In conclusion, we constructed a U-Net-based end-to-end DLM

for processing ultrasound images during NAC treatment for breast

cancer, which offers advantages of accuracy, efficiency, and

automation to assist manual measurement. This study provides a

non-invasive method for predicting individualized responses in

breast cancer patients undergoing NAC at all stages of treatment.
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Objective: We aimed to investigate the value of contrast-enhanced ultrasound

(CEUS) in the preoperative prediction of the histological grades and molecular

subtypes of breast cancer.

Methods: A total of 183 patients with pathologically confirmed breast cancer were

included. Contrast enhancement patterns and quantitative parameters were

compared in different groups. The receiver operating characteristic (ROC) curve

was used to analyze the efficacy of CEUS in the preoperative prediction of

pathological characteristics, including histologic grade and molecular subtypes.

Results: Heterogeneous enhancement, perfusion defects, and peripheral radial

vessels were mostly observed in higher histologic grade (grade III) breast cancer.

Heterogeneous enhancement and perfusion defect were the most effective

indicators for grade III breast cancer, with the areas under the ROC curve of 0.768

and 0.756, respectively. There were significant differences in the enhancement

intensity, post-enhanced margin, perfusion defects, and peripheral radial vessel

among the different molecular subtypes of breast cancer (all P < 0.01). Perfusion

defects and clear edge after enhancement were the best qualitative criteria for the

diagnosis of HER-2 overexpressed and triple-negative breast cancers, and the

corresponding areas under the ROC curves were 0.804 and 0.905, respectively.

There were significant differences in PE, WiR, WiPI, and WiWoAUC between grade III

vs grade I and II breast cancer (P < 0.05). PE, WiR, WiPI, and WiWoAUC had good

efficiency in the diagnosis of high-histologic-grade breast cancer. PE had the highest

diagnostic efficiency in Luminal A, while WiPI had the highest diagnostic efficiency in

Luminal B subtype breast cancer, and the areas under the ROC curvewere 0.825 and

0.838, respectively. WiWoAUC and WiR were the most accurate parameters for

assessing triple-negative subtype breast cancers, and the areas under the curve were

0.932 and 0.922, respectively.

Conclusion: Qualitative and quantitative perfusion analysis of contrast-

enhanced ultrasound may be useful in the non-invasive prediction of the

histological grade and molecular subtypes of breast cancers.
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Introduction

According to the latest analysis from the International Agency for

Research on Cancer, new cases of breast cancer surpassed those of

lung cancer in 2020, becoming the world’s most commonly

diagnosed cancer (1). Breast cancer is a highly heterogeneous

tumor, and the pathological grading of breast cancer reflects the

degree of malignancy and invasiveness of the tumor to a certain

extent (2). The higher the pathological grading, the more malignant

the tumor, and the worse the prognosis. The expression levels of

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2) in breast cancer cells

are considered important factors in determining the biological

behavior of breast cancer and the efficacy of endocrine therapy and

are the main prognosis predictors (2, 3). For the preoperative

assessment of the histopathological grading and molecular

subtyping of breast cancer, the clinical standard is the pathological

immunohistochemistry of needle biopsies. However, pathological

biopsy is an invasive procedure and has the defect of insufficient

samples to make a diagnosis. Therefore, it is necessary to develop

non-invasive imaging modalities to predict the pathological

characteristics of breast cancer before surgery.

VueBox is a color-coded external perfusion software program

that can be used for dynamic contrast-enhanced ultrasound (CEUS)

with motion/respiration compensation and is suitable for DICOM

format video images acquired by various ultrasound equipment (4).

The software calculates the perfusion parameters automatically,

generating color-coded maps of the perfusion parameters and thus

providing a more direct and objective quantitative analysis of the

subtle difference in enhancement degree, reducing the subjective

dependence of image interpretations by operators. In recent years,

there have been literature reports on the application of VueBox to

quantitatively analyze the characteristics of breast, thyroid, liver,

and other organ tumors by CEUS (5–7). Jung EM (7) et al. used the

TIC curve of VueBox external perfusion software to compare and

analyze the perfusion performance of benign and malignant non-

cystic breast masses. The results showed that the quantitative CEUS

perfusion parameters PE and areas under the curve (AUC) can well

evaluate the malignant risk of non-cystic breast masses. This may

reduce the risk rating for certain BI-RADS category 4 lesions.

However, there are few reports on the application of CEUS

perfusion imaging with VueBox for the evaluation of breast

cancer pathological characteristics. In this study, VueBox external

perfusion analysis software was used to explore the value of

contrast-enhanced ultrasound (CEUS) in the preoperative

prediction of the pathological grading and molecular subtyping of

breast cancer.
Materials and methods

Patients

This study was performed with the approval of the Ethics

Committee of the People’s Hospital of Guangxi Zhuang

Autonomous Region, China (IRB No. KY-LW-2020-24).
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Informed consent was obtained from all participants. A total of

183 patients with breast cancer were enrolled from December 2020

to April 2023 (women, age range 28-85 y, and mean age 52 y).

Inclusion criteria: ① patients who underwent CEUS and for whom

contrast dynamic images were stored; ② no preoperative treatment;

③ pathologically confirmed invasive breast cancer; and ④ complete

postoperative pathological and immunohistochemical results. The

exclusion criteria were as follows: ① poor quality of CEUS dynamic

images; and ② incomplete clinical data.
Imaging acquisition

Conventional ultrasound and CEUS imaging were performed

using a GE LOGIQ E9 ultrasound system (GE Healthcare, Chicago,

IL, USA) with a high-resolution linear transducer; the probe

frequency was 6-15 MHz for conventional ultrasound and 6-9

MHz for CEUS. The patients were placed in a supine position

with arms placed above the head. First, the whole breast was

continuously multi-section scanned by conventional ultrasound.

Color and power Doppler were performed in different planes to

evaluate the intralesional vascularity. Then, the plane with the most

abundant vessels including the lesion and its surrounding normal

breast tissue was selected and switched to CEUS imaging mode with

a mechanical index (MI) < 0.10. The ultrasound contrast agent used

in the present study was SonoVue (Bracco SpA, Milan, Italy). A

bolus of 4.8 mL of contrast agent was administrated via a peripheral

vein and was immediately followed by a flush of 5 mL saline. CEUS

continuous dynamic imaging was observed immediately after

injection of the contrast agent for at least 6 minutes. The images

and video clips (the last 2 minutes after contrast agent injection)

were stored and transferred to a mobile hard disk in Dicom format

for subsequent offline analysis.
CEUS image analysis

CEUS image analysis was performed by two radiologists (LL.L and

Q.H with 3 and 12 years of experience in breast CEUS, respectively).

They were blinded to the clinical data and pathological results of the

patients. In cases of discrepancies, the two reviewers reanalyzed and

discussed together to reach a consensus.

The following CEUS qualitative indicators were analyzed: (1)

compared with that of surrounding normal breast tissue, the

enhancement intensity was classified as hyper-, iso-, or hypo-

enhancement; (2) based on the internal homogeneity of

the tumor, enhancement was divided into homogeneous or

heterogeneous enhancement; (3) the enhancement edge of the

lesion was classified as a clear or blurred margin; (4) whether the

lesion scope enlarged after enhancement; (5) the presence or

absence of perfusion defect; (6) the presence or absence of radial

or penetrating vessels.

Quantitative analysis for dynamic CEUS imaging was

performed using the color-coded off-line software (VueBox,

Bracco, Genève, Suisse). Regions of interest were manually

delineated with the strongest enhanced area in the lesion and the
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surrounding normal breast tissue at the same depth. Time-intensity

curves were generated to obtain quantitative parameters, including

peak enhancement (PE), mean transit time (mTT), time to peak

(TTP), wash-in rate (WiR), wash-in perfusion index (WiPI), and

wash-in and wash-out areas under the curve (WiWoAUC). For

each quantitative data, the measurements were repeated three times,

and their mean was used in the analysis.
Histopathologic analysis

Histopathological specimens were fixed with 10% formalin,

embedded in paraffin, and sliced into 3-mm sections, and

hematoxylin–eosin staining was performed. Invasive breast cancer

was graded using the Nottingham histological grading system (8).

Immunohistochemical staining was used to determine the

expressions of estrogen receptor (ER), progesterone receptor (PR),

human epidermal growth factor receptor 2 (Her-2), and Ki-67. The

molecular classification of breast cancer was divided into four

subtypes (9): ① luminal A subtype: ER(+) and/or PR(+), Her-2(-),

and Ki-67 low expression (< 14%); ② luminal B subtype: ER(+) and/

or PR(+), Her-2(+), or ER(+) and/or PR(+), Her-2(-), and Ki-67

high expression (≥ 14%); ③ Her-2 overexpressed subtype: ER(-), PR

(-), and Her-2(+); and ④triple-negative subtype: ER(-), PR(-), and

HER-2(-). All histopathologic slides were observed by a pathologist

(WW.G) who had more than 6 years of experience in breast

pathologic analysis.
Statistical analysis

SPSS 26.0 statistical software (IBM Corp, Armonk, NY, USA)

was used for the statistical analysis. Count data are expressed as

frequency (n), and intergroup comparisons were conducted using

the c² test. Quantitative parameters with a non-normal distribution

were presented as M (Q1, Q3); the Kruskal−Wallis H test was used

for intergroup comparisons of quantitative data, and the Dunn-

Bonferroni test was used for pairwise comparisons. MedCalc

software was also used to draw ROC curves for the parameters

with significant differences to verify their diagnostic efficacy. P <

0.05 was considered statistically significant.
Results

There were 183 invasive breast cancers among 183 patients

enrolled in this present study, including invasive ductal carcinoma

(n = 152, 83.06%), invasive lobular carcinoma (n = 20, 10.93%),

intraductal papillary carcinoma (n = 3, 1.64%), mucinous

carcinoma (n = 3, 1.64%), and medullary carcinoma (n = 5,

2.73%). Of all the breast lesions (size, 28.8 ± 19.2 mm, range, 8.0-

118mm), 126 (68.85%) were moderately (grade II) and highly

differentiated (grade I), 57 (31.15%) were poorly differentiated

(grade III), 50 (27.32%) were luminal A, 80 (43.72%) were

luminal B, 31 (16.94%) were HER-2 overexpressed, and 22

(12.02%) were triple-negative subtypes. There were no significant
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differences in age and tumor size among patients with different

grades and subtypes (Table 1).
Qualitative CEUS features of breast cancer
with different pathological grades and
molecular subtypes

The qualitative CEUS analysis revealed that higher histological

grade (grade III) breast cancer mostly showed heterogeneous

enhancement (50/57, 87.72%), perfusion defect (41/57, 71.93%),

and presence of radial or penetrating vessels (47/57, 82.46%). Lower

histological grade (grade I and II) breast cancer showed more iso- or

hypo-enhancement (79/126, 62.70%), homogeneous enhancement

(83/126, 65.87%), and no obvious perfusion defect (100/126,

79.37%) (Figure 1). The enhancement degree, internal

homogeneity, perfusion defect, and presence or absence of radial

or penetrating vessels showed significant differences between lower

histological grade and higher histological breast cancer (all P <0.01).

However, with regard to the enhancement edge and whether lesion

scope enlarged after enhancement, no statistical difference was

found between the two groups (P > 0.05) (Table 2).

Iso- or hypo-enhancement was found in 43 (43/50, 86.00%)

luminal A and 41 (41/80, 51.25%) luminal B subtype breast cancers.

There were 44 (44/50, 88.00%) luminal A and 42 (42/80, 52.25%)

luminal B lesions present in the radial or penetrating vessels. The
TABLE 1 Clinicopathological Characteristics of patients.

Characteristics Case number (percentage)

Age (years)* 52.21 ± 11.54

Tumor diameter (mm)* 28.82 ± 19.24

Histologic grade

Grades I and II 126 (68.85%)

Grade III 57 (31.15%)

Molecular subtypes

Luminal A 50 (27.32%)

Luminal B 80 (43.72%)

Her-2 overexpressed 31 (16.94%)

Triple-negative 22 (12.02%)

Histologic type

Invasive ductal carcinoma 152 (83.06%)

Invasive lobular carcinoma 20 (10.93%)

Intraductal papillary carcinoma 3 (1.64%),

Mucinous carcinoma 3 (1.64%)

Medullary carcinoma 5 (2.73%)

Lymph node status

Positive 60 (32.79%)

Negative 123 (67.21%)
* Mean ± standard deviation.
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enhancement features of HER-2 breast cancer were predominantly

hyper-enhancement (26/31, 83.87%) and perfusion defects (27/31,

87.10%). The enhancement features of triple-negative breast cancer

were predominantly clear edge (20/22, 90.91%) (Figures 2, 3).

There were significant differences in the enhancement degree,

enhancement edge, perfusion defects, and radial or penetrating

vessels among the different molecular subtypes of breast cancer (P <

0.05). Radial or penetrating vessels were more common in luminal

A breast cancer than in other subtypes. In addition, clear edge after

enhancement was more common in the triple-negative subtype, and

perfusion defect was more often found in HER-2 overexpressed

breast cancer than in other subtypes (P < 0.05). With regard to

internal homogeneity, there was no significant difference among the

different molecular subtypes (P > 0.05) (Table 3).
Quantitative CEUS parameters of breast
cancer with different pathological grades
and molecular subtypes

There were significant differences in PE, mTT, TTP, WiR,WiPI,

and WiWoAUC between breast cancer groups and the surrounding

normal breast tissue (all P < 0.001). After Bonferroni correction, the

PE, WiR, WiPI, and WiWoAUC for breast cancer lesions were

greater, while mTT and TTP were shorter than the surrounding

normal breast tissue. PE, WiR, WiPI, andWiWoAUC for the higher

histological grade group were greater than the lower histological

grade group (Table 4).

There were significant differences in the quantitative parameters

PE, WiR, WiPI, and WiWoAUC among the different molecular

subtypes of breast cancer (all P < 0.05). PE, WiR, WiPI, and

WiWoAUC for the luminal A and luminal B subtypes were lower

than triple-negative breast cancer. HER-2 overexpressed subtype

had higher PE than luminal A and greater WiR than luminal A and

luminal B subtypes. However, the mTT and TTP showed no

statistical difference among the different molecular subtypes of

breast cancer (both P > 0.05) (Table 5).
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Diagnostic performances of different
qualitative and quantitative
CEUS parameters

Using the pathological results as the gold standard, ROC

curves were drawn to analyze the diagnostic performance of

CEUS perfusion imaging with VueBox for the pathological

grades and molecular subtypes of breast cancer. The results

showed that among the qualitative parameters, perfusion defect

and heterogeneous enhancement were the most accurate features

for higher histologic-grade breast cancer, and the areas under

the ROC curve were 0.756 and 0.768, respectively. Among the

quantitative parameters, PE, WiR, and WiWoAUC had the

highest diagnostic performance, with 667.02, 108.55, and

6517.99 identified as the optimal cutoff values for the diagnosis

of higher histologic grade breast cancer; the corresponding

sensitivities were 0.895, 0.895, and 0.860; specificities were

0.673, 0.651, and 0.689; and the accuracies were 0.708, 0.689,

and 0.716, respectively (Figure 4).

With a PE value of 253.96 as the threshold, hypo-enhancement,

and the presence of radial or penetrating vessels used to diagnose

luminal A breast cancer, the areas under the ROC curve were 0.825,

0.746, and 0.760, respectively. Using the cutoff value of 147.56 for

WiPI to diagnose luminal B subtype breast cancer, the area under

the ROC curve was 0.838, and the sensitivity, specificity, and

accuracy were 0.925, 0.709, and 0.803. Perfusion defect and clear

edge after enhancement were the best qualitative criteria for

diagnosis of HER-2 overexpress and triple-negative breast cancer;

the corresponding areas under the ROC curves were 0.804 and

0.905, the corresponding sensitivities were 0.871 and 0.909,

specificities were 0.737 and 0.901, and the accuracies were 0.760

and 0.902, respectively. Using a WiR value of 107.81 and

WiWoAUC value of 7646.07 as the cutoff values to diagnose

triple-negative breast cancer, the areas under the curve were 0.932

and 0.922, the sensitivities were 0.955 and 0.955, the specificities

were 0.820 and 0.857, and the accuracies were 0.836 and 0.869,

respectively (Figure 5).
A B C

FIGURE 1

A 35-year-old female patient with invasive ductal carcinoma. (A) CEUS perfusion imaging using VueBox software. The ROIs were set in the breast
lesion (green circle) and the surrounding breast tissue (yellow circle). The breast lesion showed iso-hyper, homogeneous enhancement, and no
perfusion defect, and the radial vessel was observed. (B) TIC analysis showed a fast wash-in, a medium-high peak, and a rapid wash-out with the
tumor. (C) Histopathological examination indicated a moderately differentiated (grade II), Luminal B subtyping breast cancer (HE, ×100). TIC, Time
intensity curve.
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Discussion

Previous studies have reported that CEUS enhancement

patterns and hemodynamic changes in breast cancer can be

analyzed to predict the pathological characteristics associated with

breast cancer prognosis (10). However, previous studies on the

preoperative assessment of breast cancer pathological grades and

ER, PR, or other biomarkers’ expression by CEUS mostly focused

on qualitative indicators, which have certain limitations of

subjectivity. In the present study, VueBox, an external perfusion

analysis software, was used to comprehensively analyze and explore

the value of CEUS qualitative and quantitative parameters in the

preoperative assessment of the pathological grading and molecular

classification of breast cancer.

The results indicated that higher histological-grade breast

cancer commonly showed heterogeneous enhancement, perfusion

defects, and the presence of radial or penetrating vessels.

Additionally, iso- or hypo-enhancement, homogeneous

enhancement, and no obvious perfusion defect were found more

often in lower histological-grade breast cancer. These findings are

consistent with the results of a previous report (11). Breast cancer is

a vascular-dependent disease, and the differences in CEUS

enhancement patterns between breast cancer lesions and the

surrounding normal breast tissue are closely related to their blood

perfusion and pathological characteristics. The higher the

histological grade of breast cancer, the poorer the differentiation,

the higher the degree of malignancy, and the more angiogenesis

(12). The distribution of blood vessels in malignant tumors is

uneven; there are abundant tortuous and dilated blood vessels at

the edges of lesions, and immature, stenotic, and occluded new

blood vessels are common, resulting in heterogeneous enhancement

within the tumors (13). Perfusion defects in malignant lesions are

related to rapid tumor growth and the relatively insufficient supply

of oxygen and nutrients, resulting in tumor liquefaction and

necrosis. On CEUS, radial or penetrating vessels may manifest as

the “crab claw” sign. As we know, cells of tumors with higher

histological grades could continuously secrete a large amount of

vascular endothelial growth factor, which promotes the formation

of new blood vessels and infiltration into surrounding normal

tissue. These tumors are likely to appear as “crab claw”-like

enhancement on CEUS (14).

To minimize the influence of subjective factors and individual

differences on the interpretation of CEUS imaging, VueBox

quantitative analysis was also used to analyze the differences in

breast cancer and surrounding normal breast tissue. The results

showed that the TIC curve for breast cancer lesions was

characterized by rapid and hyper-perfusion. Quantitative CEUS

parameters for breast cancer lesions were significantly different

from those for surrounding normal breast tissue. It is probably due

to the differences between the microvessel density (MVD) of the

lesions and the surrounding normal glandular tissue. There is very

little neovascularization in normal breast tissue, and the MVD in

breast cancer lesions is significantly higher than that in normal

breast tissue (15). Additionally, higher histological-grade breast

cancer has more thick feeding vessels, and the neovascular wall in

the tumor is incomplete. A lack of smooth muscle innervation and
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vasomotor components and the formation of thrombi in feeding

vessels in the tumor can cause a large number of microbubbles to

remain in the blood vessels and eventually lead to greater PE, WiR,

WiPI, and WiWoAUC and a shorter mTT and TTP values for the

breast cancer lesion than for the surrounding normal glandular

tissue (16). However, Li et al. (13) proposed that the longer the TTP,

the smaller the WiR, and the higher the pathological grade, which is

different from the present finding. The explanation for this

inconsistent result may be attributable to the individual

differences of patients, different ROI areas, or analysis software (17).

In this study, luminal A and luminal B subtypes of breast cancer

mostly showed iso- or hypo-enhancement on CEUS. The reason for

this may be the low density of microvessels, low invasiveness, and low

perfusion in luminal epithelial tumors. Radial or penetrating vessels

on CEUS are characteristic of luminal A breast cancer. It is speculated

that luminal A breast cancer has lower Ki-67 expression, slower cell

proliferation, and lower malignancy. In addition, tumor adhesion and

E-cadherin expression promote the proliferation of interstitial

connective tissue and inflammatory cell infiltration, leading to the

formation of dense fibrosis. On CEUS, these tumors appear

peripherally radial convergent, which is consistent with the burr-

like appearance around masses on mammography (18).

HER-2 expression is correlated with tumor size, lymph node

metastasis, and TNM stage. HER-2 overexpression often indicates

poor prognosis (19). In our present study, HER-2 breast cancer

mostly showed hyper-enhancement and perfusion defects. HER-2
Frontiers in Oncology 0672
can upregulate the expression of vascular endothelial growth factor

(VEGF), increase angiogenesis, and stimulate the proliferation of

microvessels around a tumor (20). The blood supply to the tumor

increases, manifesting as hyper-enhancement on contrast-enhanced

ultrasonography. When a tumor grows rapidly, necrosis occurs due

to insufficient oxygen and nutrient supply, manifesting as perfusion

defects on CEUS, which is consistent with the results reported by

Liang et al. (21).

Triple-negative breast cancer has the worst prognosis and is not

sensitive to endocrine therapy and targeted therapy. Previous

studies have indicated that triple-negative breast cancer and

benign tumors have similar appearances on conventional

ultrasound (22). In this study, triple-negative breast cancer

commonly showed a clear edge on CEUS, potentially relating to

the compressive growth of triple-negative breast lesions, and the

stromal reaction around the gland is reduced, resulting in a clear

border between the tumor and the surrounding breast tissue (23).

There were different opinions of previous research regarding

the correlation between quantitative CEUS parameters and the

molecular expression in breast cancer. Vraka et al. (10) reported

that there was no significant difference in PE, TTP, and MTT

between ER-negative and ER-positive tumors. The results of

another study suggested that the PE of luminal epithelial breast

cancer was lower than that of HER-2 and triple-negative tumors,

while the TTP of HER-2 breast cancer was shorter than that of other

subtypes (21). Our results revealed that PE, WiR, WiPI, and
A B C

FIGURE 2

A 55-year-old female patient with invasive ductal carcinoma. (A) VueBox perfusion imaging showed that hyper-, heterogeneous enhancement, and
perfusion defect (white arrows) were present in the breast lesion. (B) TIC analysis showed a fast wash-in, a higher peak, and a rapid wash-out with
the tumor. (C) Histopathological examination indicated a poorly differentiated (grade III), Her-2 subtyping breast cancer (HE, ×100). TIC: Time
intensity curve.
A B C

FIGURE 3

A 47-year-old female patient with invasive lobular carcinoma. (A) CEUS perfusion imaging showed that hyper-enhancement, clear edge, and radial
vessels (white arrows) were present in the breast lesion. (B) TIC analysis showed a fast wash-in, a higher peak, and a rapid wash-out with a greater
WiWoAUC of the tumor. (C) Histopathological examination indicated a poorly differentiated (grade III), triple-negative subtyping breast cancer (HE,
×100). WiWoAUC: wash-in and wash-out area under the curve.
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WiWoAUC for the luminal A and luminal B subtypes were lower

than triple-negative breast cancer. HER-2 overexpressed subtype

had higher PE than luminal A and greater WiR than luminal A and

luminal B subtypes. Our results concur with those of Wen B et al.

(24) in that HER-2 overexpressed and triple-negative breast lesions

can secrete more vascular endothelial growth factor, leading to
Frontiers in Oncology 0773
higher angiogenesis and vascular permeability and significant

hyper-perfusion situation in the tumors.

This study had certain limitations. First, this was a retrospective

study, and there may be some selection bias. Second, the selected

ROIs were lesion areas with the strongest enhanced area, thus not

fully representing blood perfusion in entire lesions. Third,
TABLE 3 CEUS Qualitative Features with Different Molecular Subtypes of Breast Cancer.

Molecular
Subtype

Enhancement Intensity Internal Homogeneity Enhancement
edge

Perfusion defect Radial or pene-
trating vessel

Enhancement
scope enlarged

Hyper-
enhancement

Iso- or
hypo-
enhancement

homogeneous Heterogeneous clear blurred Present Absent Present Absent Present Absent

Luminal A 7 43 23 27 6 44 15 35 44 6 32 18

Luminal B 39 41a 35 45 5 75 23 57 42 38a 54 26

Her-
2
overexpressed

26 5ab 18 13 5 26 27ab 4 4 27ab 19 12

Triple-
negative

19 3ab 14 8 20abc 2 2 20c 2 20ab 14 8

Total 91 92 90 93 36 147 67 116 92 91 119 64

P Value < 0.01 0.262 < 0.01 < 0.01 < 0.01 0.930
frontie
aCompared with the Luminal A subtype, p < 0.05.
bCompared with the Luminal B subtype, p < 0.05.
cCompared with the Her-2 overexpressed subtype, p < 0.05.
TABLE 4 Comparison of CEUS Quantitative Parameters in different histological grades of breast cancer and normal breast tissue (Q1, Q3).

Group PE (au) mTT (s) TTP (s) WiR (au) WiPI (au) WiWoAUC (au)

Normal breast tissue
95.72

(39.19, 295.39)
39.63

(21.70, 73.87)
12.29

(8.98, 17.32)
17.67

(7.57, 51.12)
69.69

(27.06, 402.93)
1101.93

(341.01, 3869.24)

Grades I and II
840.19a

(414.84, 2351.48)
26.56a

(18.19, 52.72)
8.25a

(6.57, 9.84)
151.26a

(78.28, 269.91)
726.95a

(277.77, 4146.50)
7400.29a

(2672.86, 19547.71)

Grade III
2926.97ab

(1015.94, 14848.96)
22.58a

(14.04, 44.52)
7.74a

(6.57, 9.84)
604.97ab

(191.32, 3013.64)
2107.34ab

(727.08, 9465.63)
26677.88ab

(9280.65, 146525.00)

P Value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
aCompared with normal breast tissue, p < 0.05; bCompared with Grades I and II breast cancer, p < 0.05.
PE, peak enhancement; mTT, mean Transit time; TTP, Time to Peak; WiR, wash-in rate; WiPI, wash-in perfusion index; WiWoAUC, wash-in and wash-out areas under the curve.
au, arbitrary unit; S, second.
TABLE 5 CEUS Quantitative Parameters with Different Molecular Subtypes of Breast Cancer (Q1, Q3).

Molecular Subtype PE (au) mTT (s) TTP (s) WiR (au) WiPI (au) WiWoAUC (au)

Luminal A
710.56

(333.10, 2584.27)
23.41

(18.04, 51.69)
8.70

(7.23, 10.04)
115.97

(62.10, 203.20)
833.74

(241.40,4106.77)
7617.21

(2104.91,38584.92)

Luminal B
876.70

(442.76, 3357.51)
23.56

(16.87, 44.9175)
7.975

(6.98, 10.3625)
175.97

(83.92, 427.59) a
817.85

(325.13,4424.32)
10368.69

(3927.83,45378.18)

Her-2 overexpressed
2082.53

(729.85, 6682.69)a
29.00

(15.11, 54.04)
8.36

(7.28, 10.72)
629.8

(197.28,1361.85)ab
1762.22

(465.52,22005.59)
12184.65

(4372.72,36945.39)

Triple-negative
2946.19

(1565.76, 16195.12)ab
29.495

(14.43, 52.09)
7.74

(6.40, 9.62)
879.26

(230.51,5049.16)ab
2116.12

(1132.53,13369.86)a,b
34138.295

(11401.22,168665.78)a,b

P Value < 0.001 0.842 0.478 < 0.001 < 0.001 0.007
aCompared with Luminal A subtype, p < 0.05; bCompared with Luminal B subtype, p < 0.05.
PE, peak enhancement; mTT, mean Transit time; TTP, Time to Peak; WiR, wash-in rate; WiPI, wash-in perfusion index; WiWoAUC, wash-in and wash-out areas under the curve.
au, arbitrary unit; S, second.
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univariate analysis was used in the present study and the sample size

was relatively small; the combined value of CEUS quantitative and

qualitative parameters in predicting the pathological characteristics

of breast cancer needs to be calculated in a multivariate regression

analysis and verified in future multicenter and large-scale studies.
Frontiers in Oncology 0874
In conclusion, there were differences in the qualitative features

and quantitative parameters of CEUS for breast cancer with

different pathological grades and molecular subtypes. Contrast-

enhanced ultrasound may be used to non-invasively predict the

histological characteristics of breast cancer.
BA

FIGURE 4

ROC curves for CEUS quantitative (A) and qualitative (B) parameters in the diagnosis of higher histologic grade (grade III) breast cancer. ROC,
Receiver operating characteristic; CEUS, Contrast enhanced ultrasound.
B

C D

A

FIGURE 5

ROC curves for CEUS diagnoses of (A) Luminal A, (B) Luminal B, (C) Her-2 overexpressed, and (D) Triple-negative subtyping breast cancer. ROC,
Receiver operating characteristic; CEUS, Contrast-enhanced ultrasound.
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The relationship between
parameters measured using
intravoxel incoherent motion
and dynamic contrast-enhanced
MRI in patients with breast
cancer undergoing neoadjuvant
chemotherapy: a longitudinal
cohort study
Zyad M. Almutlaq1,2, Sarah E. Bacon3, Daniel J. Wilson3,
Nisha Sharma4, Tatendashe Dondo5 and David L. Buckley1*

1Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University
of Leeds, Leeds, United Kingdom, 2Radiological Sciences Department, College of Applied Medical
Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, 3Department of
Medical Physics & Engineering, Leeds Teaching Hospitals National Health Service (NHS) Trust, Leeds, United
Kingdom, 4Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom, 5Clinical
and Population Sciences Department, LICAMM, University of Leeds, Leeds, United Kingdom
Purpose: The primary aim of this study was to explore whether intravoxel

incoherent motion (IVIM) can offer a contrast-agent-free alternative to

dynamic contrast-enhanced (DCE)-MRI for measuring breast tumor perfusion.

The secondary aim was to investigate the relationship between tissue diffusion

measures from DWI and DCE-MRI measures of the tissue interstitial and

extracellular volume fractions.

Materials and methods: A total of 108 paired DWI and DCE-MRI scans were

acquired at 1.5 T from 40 patients with primary breast cancer (median age: 44.5

years) before and during neoadjuvant chemotherapy (NACT). DWI parameters

included apparent diffusion coefficient (ADC), tissue diffusion (Dt), pseudo-

diffusion coefficient (Dp), perfused fraction (f), and the product f×Dp

(microvascular blood flow). DCE-MRI parameters included blood flow (Fb),

blood volume fraction (vb), interstitial volume fraction (ve) and extracellular

volume fraction (vd). All were extracted from three tumor regions of interest

(whole-tumor, ADC cold-spot, and DCE-MRI hot-spot) at three MRI visits: pre-

treatment, after one, and three cycles of NACT. Spearman’s rank correlation was

used for assessing between-subject correlations (r), while repeated measures

correlation was employed to assess within-subject correlations (rrm) across visits

between DWI and DCE-MRI parameters in each region.

Results:No statistically significant between-subject or within-subject correlation

was found between the perfusion parameters estimated by IVIM and DCE-MRI
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(f versus vb and f×Dp versus Fb; P=0.07–0.81). Significant moderate positive

between-subject and within-subject correlations were observed between ADC

and ve (r=0.461, rrm=0.597) and between Dt and ve (r=0.405, rrm=0.514) as well as

moderate positive within-subject correlations between ADC and vd and between

Dt and vd (rrm=0.619 and 0.564, respectively) in the whole-tumor region.

Conclusion: No correlations were observed between the perfusion parameters

estimated by IVIM and DCE-MRI. This may be attributed to imprecise estimates of

fxDp and vb, or an underlying difference in what IVIM and DCE-MRI measure. Care

should be taken when interpreting the IVIM parameters (f and f×Dp) as surrogates

for thosemeasured using DCE-MRI. However, themoderate positive correlations

found between ADC and Dt and the DCE-MRI parameters ve and vd confirms the

expectation that as the interstitial and extracellular volume fractions increase,

water diffusion increases.
KEYWORDS

breast cancer, intravoxel incoherent motion, dynamic contrast enhanced MRI,
perfusion, repeated measures, correlations
1 Introduction

Breast cancer is one of the most prevalent cancers affecting

women globally, with about 2.3 million women diagnosed with the

disease and 685,000 deaths in 2020 (1). Patients with primary breast

cancer are often treated with neoadjuvant chemotherapy (NACT)

to downsize the tumor and increase the probability of breast-

conserving surgery (2). A non-invasive imaging technique that

can provide information on tumor cellularity and perfusion

during treatment would be beneficial, as reduced cellularity and

perfusion are promising indicators of patient response to

treatment (3).

Patients with breast cancer undergoing NACT often undergo

repeated dynamic contrast-enhanced (DCE) MRI scans for

treatment monitoring (4). DCE-MRI is a widespread technique

that can provide information on tumor perfusion and cellularity

through serial MRI scans acquired before and after the injection of a

gadolinium-based contrast agent (3). Furthermore, quantitative

estimation of perfusion-related parameters of breast tumors,

including tumor blood flow (Fb), blood volume fraction (vb),

along with hemodynamic and cellularity-related parameters:

capillary permeability–surface area product (PS); interstitial

volume fraction (ve), and extracellular volume fraction (vd;

calculated from the combination of blood volume and interstitial

volume fractions) can be achieved by employing a recently

developed DCE-MRI technique (5). However, certain safety

concerns exist regarding gadolinium administration, particularly

in patients with cancer who undergo repeated contrast-enhanced

scans (6). Therefore, alternative imaging techniques that can

provide equivalent perfusion and cellularity-related measurements

without administering a contrast agent are of interest.
0278
Conventional diffusion-weighted imaging (DWI), which is not

used generally in breast cancer imaging, can be employed in

oncology treatment response monitoring through the apparent

diffusion coefficient (ADC). The ADC measures the diffusivity of

water molecules in the tissue and is assumed to serve as an indicator

of cellular density. As such, as tumor cellularity decreases in

response to treatment, the ADC value increases (7). The ADC is

therefore expected to be directly proportional to the DCE-MRI

measurements of the tissue’s interstitial and extracellular volume

fractions. However, few studies have examine this relationship, and

one study in breast tumors has challenged the expectation

suggesting that the ADC is incompletely understood (8, 9). Also,

blood in the microcirculation can contaminate the DWI signal

decay, contributing to the ADC value (10). A technique that can

potentially address the problems affecting both DCE-MRI and DWI

is intravoxel incoherent motion (IVIM), an advanced form of DWI.

It has been proposed that IVIM enables simultaneous assessment of

tissue diffusion and perfusion by separating the effects of the

microcirculation of blood in the capillary network (so-called

pseudo-diffusion) from water diffusion in the rest of the tissue.

This method requires DWI acquisitions with multiple b-values (low

and high) and fits a bi-exponential model to the data to estimate the

diffusion-related parameter Dt (tissue diffusion) and perfusion-

related parameters, including Dp (the pseudo-diffusion

coefficient), f (the perfused fraction), and their product f×Dp

(microvascular blood flow) (10, 11).

In the past decade, growing interest in exploring the potential

applications of IVIM in breast tumors has produced studies

differentiating benign and malignant tumors (12, 13). IVIM

perfusion-related parameters have also shown some promise for

evaluating breast tumor response to NACT (14–16). This in turn
frontiersin.org
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has reopened the question of whether IVIM could be used as a

contrast-agent-free alternative to DCE-MRI for measuring breast

tumor perfusion. Few studies have investigated the correlations

between IVIM and DCE-MRI perfusion-related parameters in

breast tumors and have produced contradictory results (17–19).

These studies examined correlations at a single visit; however, a

correlation between perfusion parameter changes caused by

treatment is meaningful and suggests that IVIM could be a

contrast-agent-free surrogate to the DCE-MRI method in

monitoring serial changes in tumor perfusion. Further, none of

these studies provided an absolute estimation of tumor blood flow;

they did not perform a direct comparison with the IVIM parameter

purported to measure microvascular blood flow (f×Dp).

The primary aim of this study was to investigate whether IVIM

and DCE-MRI perfusion-related parameters correlate and whether

IVIM can offer a contrast-agent-free alternative to DCE-MRI for

monitoring serial changes in tumor perfusion. The DCE-MRI data

were analyzed to estimate absolute tumor blood flow, blood volume

fraction, capillary permeability–surface area product, interstitial

volume fraction, and extracellular volume fraction (5). This study

assesses both between-subject and within-subject repeated

measures correlations between the perfusion parameters

estimated by IVIM and DCE-MRI (specifically perfusion fraction

versus blood volume fraction and microvascular blood flow versus

blood flow) in a cohort of patients with breast cancer imaged before

treatment and after one and three cycles of NACT. Analyzing both

correlations is valuable; between-subject correlation reveals the

potential for estimating DCE-MRI perfusion parameters using

IVIM at a given time, whereas within-subject repeated measures

correlations indicate the potential for estimating change in DCE-

MRI perfusion parameters using IVIM when assessing longitudinal

changes in the same patient. The secondary aim of this study was to

examine the correlation between tissue diffusion measures from

DWI and DCE-MRI measures of the tissue’s interstitial and

extracellular volume fractions. This would improve the

understanding of tissue diffusion measures and their changes in

response to treatment further, which are of interest for translation

into breast cancer imaging as markers of treatment response (20).
2 Materials and methods

2.1 Patients

The prospective study had local research ethics committee

approval, and written informed consent was obtained from all

subjects. The eligibility criteria for patient inclusion were: 1) 18

years of age and older; 2) pathological confirmation of primary

invasive breast cancer through a core needle biopsy; and 3)

scheduled to undergo NACT. Patients who had impaired kidney

function or contraindications to MRI were considered ineligible.

Recruited patients underwent a standardized NACT regimen

consisting of three cycles of epirubicin (90 mg/m2) and

cyclophosphamide (600 mg/m2) (one cycle every three weeks),
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followed by three cycles of docetaxel (100 mg/m2, one cycle every

three weeks). Patients with tumors positive for human epidermal

growth factor receptor 2 were treated with trastuzumab and/or

pertuzumab alongside docetaxel.
2.2 Image acquisition

MRI scans were performed at baseline (pre-treatment) and after

one and three (mid-treatment) cycles of NACT. All images were

acquired using a 1.5-T MRI scanner (Aera; Siemens) with the

patient in a head-first prone position. A dedicated 16-channel

breast coil (Sentinelle; Siemens) was used to image the breasts,

and a flexible array coil, placed on the patient’s back, was employed

to increase the signal from the descending aorta (21). The scanning

protocol included axial T2-weighted turbo spin-echo, axial T1-

weighted 3D spoiled gradient echo, inversion recovery, DWI, and

DCE-MRI sequences.

The axial DWI was acquired using a spectral attenuated

inversion recovery fat-suppressed, 2D single-shot spin-echo echo-

planar imaging sequence (repetition time/echo time: 7200/59 ms,

flip angle: 90°, field of view: 340×136×169 mm, matrix size:

280×116×34, slice thickness: 4 mm, acceleration factor: 2,

acquisition time: 5 min 31 s) performed at six b-values (0, 50,

100, 200, 400, and 800 s/mm2; gradient system: strength 45 mT/m,

slew rate 200 T/m/s)). The high b-value of 800 s/mm2 was chosen in

line with consensus recommendations for breast DWI (22). ADC

maps were generated by the scanner software after DWI acquisition.

This step was followed by a 3D non-selective inversion recovery

-prepared spoiled gradient echo sequence (repetition time/echo

time: 2.8/0.93 ms, flip angle: 8°, field of view: 340×340×180 mm,

matrix size: 128×128×36, slice thickness: 5 mm, acceleration factor:

2, inversion recovery - repetition time: 3000 ms, overall acquisition

time: 4 min 20 s), performed at four inversion times (100, 600, 1200

and 2800 ms) to estimate T1. Both breasts, the aortic arch and part

of the descending aorta were included in the field of view (21).

Afterwards, interleaved high temporal resolution (HTR) and

high spatial resolution (HSR) DCE-MRI sequences were employed

(5). The dynamic series consisted of 93 HTR images interleaved

with 8 HSR images acquired as follows (10×HTR, 1×HSR, 43×HTR,

[1×HSR, 5×HTR] repeated seven times, and finally 5×HTR). The

HTR dynamic images were acquired using a T1-weighted 3D

spoiled gradient echo sequence (repetition time/echo time: 2.37/

0.73 ms, flip angle: 25°, field of view: 340×340 ×180 mm, matrix size:

128×128×36, slice thickness: 5 mm, acceleration factor: 2×2,

acquisition time: 2 s). For the HSR images, a fat-suppressed T1-

weighted 3D spoiled gradient echo sequence (repetition time/echo

time: 4.1/1.2 ms, flip angle: 10°, field of view: 340×340 ×180 mm,

matrix size: 384×384×128, slice thickness: 1.4 mm, acceleration

factor: 3, and acquisition time: 36 s) was employed. The HTR and

HSR images were acquired with the same geometry as the inversion

recovery sequence. Using an automated power injector (Spectris

Solaris EP), gadolinium-based contrast agent (Dotarem, Guerbet

Laboratories) was administered intravenously (0.1 mmol/kg) at the
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start of the eleventh HTR-DCE-MRI image, followed by saline

(20 ml at a rate of 3 ml/s). A second inversion recovery T1 estimate

(bookend) was performed (23) after all eight HSR (and 88 HTR

images) images were obtained. Then, the last five HTR images

were acquired.
2.3 Image analysis

MRI data were processed using in-house programs developed in

MATLAB (MathWorks, USA). The DWI images (including ADC

maps) were rigidly aligned to the corresponding HSR, HTR and

inversion recovery images to match the slice position with no

interpolation of the DWI data, and HTR and HSR subtraction

images were generated to improve tumor visibility. The location of

the largest tumor for each patient was determined using HSR DCE-

MRI images from the baseline MRI, confirmed by a breast

radiologist. Then, a whole-tumor region of interest was generated

using a 3D region-growing algorithm based on the enhanced

tumor’s signal intensity in HSR subtraction images, while

avoiding obvious necrotic areas manually. Two smaller single-

slice regions of interest (5×5 pixels) within the whole-tumor
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region were generated to reduce the possibility of tumor

heterogeneity compromising subsequent correlation analysis.

These small regions comprised the region with the lowest ADC

on the ADC map (cold-spot region) (22) and the region with the

highest SI on the HTR subtraction images (hot-spot region). All

three regions were propagated to the corresponding DWI, inversion

recovery and HTR images for further analysis (Figure 1). The spatial

location of the smaller regions generated for each tumor were

allowed to vary at each MRI visit as the tumor responded to NACT.

For DCE-MRI, these three regions were used to estimate T1

relaxation-times from both sets of inversion recovery images. A

further region of interest was drawn in the descending aorta to

generate signal intensity -time curves and estimate T1 before and

after gadolinium-based contrast agent injection for measurement of

the arterial input function (21). The signal intensity -time data were

converted to gadolinium-based contrast concentration-time using a

bookend T1 correction with an iterative scheme (21, 23). A two–

compartment exchange model was fitted to the DCE-MRI data, and

tumor blood flow, blood volume fraction, capillary permeability–

surface area product and interstitial volume fraction were estimated

(24). Then, the extracellular volume fraction (the sum of interstitial

and blood volume fractions) was calculated. For each region of
FIGURE 1

Example of seeding a tumor in a 45-year-old woman with invasive ductal carcinoma in the left breast and generating three regions of interest
(whole-tumor, cold-spot, and hot-spot). First, the tumor was seeded on the HSR subtraction images, and the whole-tumor region of interest was
generated (top row). Then, two smaller regions of interest (5×5 pixels) were generated within the whole-tumor region (cold-spot (middle row) and
hot-spot regions (bottom row)). The whole-tumor region of interest encompasses all the slices in which the tumor appears, while the cold-spot and
hot-spot regions originate in only a single slice (not necessarily the same slice). All three regions were propagated to the corresponding DWI,
inversion recovery, and HTR images for further analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1356173
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Almutlaq et al. 10.3389/fonc.2024.1356173
interest, a tissue uptake model (described by parameters blood flow,

blood volume fraction, and capillary permeability–surface area

product) and a one–compartment model (described by

parameters blood flow and extracellular volume fraction) were

also fitted to the DCE-MRI data (24). The final model to use in

the correlation analysis was selected based on the corrected Akaike

information criterion test (cAIC) to evaluate which model best fits

the data (25, 26).

For DWI, the mean signal intensity for each b−value was

extracted from the three regions (27). The IVIM parameters were

estimated by fitting the bi-exponential model to the mean signal

intensity vs b-value data using an over-segmented approach, where

tissue diffusion and perfusion fraction were estimated first and then

pseudo-diffusion (28). The monoexponential model was also fitted

to the mean signal intensity vs b-value, and the ADC value for each

region of interest was estimated (28). The two model equations are

detailed in the Supplementary Material (Appendix A). This step was

conducted blinded to the DCE-MRI parameter values. Further, a

simulation study was performed to assess the bias and precision of

the IVIM parameter estimates with 6 b-values in comparison with

12 b-values (methods and results are provided in Appendix B,

Supplementary Material).
2.4 Statistical analysis

Due to the non-normal data distribution, the DWI and DCE-

MRI data were summarized using the median (interquartile range).

Friedman’s test with Bonferroni correction (Bonferroni post hoc

test) was performed for each parameter from the baseline MRI to

determine whether parameter differences existed between the three

regions of interest (whole-tumor, cold-spot, and hot-spot). To

determine the between-subject correlation between IVIM and

DCE-MRI parameters for each region, the mean value of each

parameter for each patient was calculated by dividing the sum of

parameter values from all MRI visits by the number of times the

parameter was estimated; then, the parameter value for each visit

where the parameter was estimated was replaced by its subject

mean. The weighted correlation coefficient, r, was calculated

between the mean DWI and DCE-MRI parameters for each

region of interest using the Spearman’s rank correlation test (29)

(r<0.2, very weak; 0.2≤r<0.4, weak; 0.4≤r<0.7, moderate; 0.7≤r<0.9,

strong; r≥0.9, very strong correlation) (30). This statistical method

was followed to exploit the properties of data with multiple

measures while addressing the issue of non-independence among

observations and the impact of NACT (29). Statistical analyses were

performed using SPSS software for Windows (v.25.0, Chicago, IL).

All tests were two-sided, and a p-value of less than 0.05 was

considered statistically significant.

To determine the correlation between changes in the IVIM and

DCE-MRI parameters induced by treatment, the repeated measures

correlation test (rmcorr) was utilized via the rmcorr-shiny app (31,

32). The rmcorr-shiny app computes a repeated measures

correlation coefficient (rrm) that considers the dependence
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between repeated measurements. This analysis involves

determining the correlation between two parameters while

accounting for between-subject variation. The rmcorr-shiny app

fits separate parallel lines to each patient’s data utilizing a shared

slope but permitting the intercept to differ per patient.

The orientation of these parallel lines represents the correlation’s

sign (positive or negative), while the slope denotes the

correlation’s magnitude.

The results of repeated measures correlation for each region

were summarized in tables as: rrm, degrees of freedom, 95%

confidence interval, and a p-value. The 95% confidence interval

for each rrm were determined using bootstrapping with 1000

resamples. The degrees of freedom (df) were computed based on

the formula df = N(k-1) – 1, where N is the total number of patients

and k is the (average) number of repeated measures per patient (31).

The rmcorr test was initially conducted to identify statistically

significant results (P-value < 0.05), then bootstrapped 95%

confidence intervals were calculated. A correlation result was

considered meaningful and significant only if the magnitude of

the correlation coefficient was ≥ 0.4, the P-value was less than 0.05,

and the bootstrapped 95% confidence intervals excluded zero. Since

this is a preliminary exploration study focusing on hypothesis

generation, P-values for the correlation tests were reported as raw

values and were not corrected for multiple comparisons. An upper

estimate of the repeatability of the DWI and DCE-MRI parameters

was calculated from a subset of baseline and cycle 1 studies (details

included in Appendix C, Supplementary Material).
3 Results

In this study, 40 female patients were eligible and enrolled

between August 2015 and April 2018 (median age 44.5 (39, 53)

years). MRI data were obtained for all patients at baseline and 37

patients after one and three cycles of NACT (three withdrew

following baseline MRI). However, the MRI data acquired after

three NACT cycles from two patients were excluded from the

analysis because no tumor was apparent on their MRI scans. This

exclusion resulted in 112 MRI studies with DWI and DCE-MRI

acquisitions. Table 1 presents the clinical characteristics of

the patients.

Four DCE-MRI scans—two at baseline and two after three

NACT cycles—were excluded because one patient could not

tolerate the whole imaging protocol, two had technical issues (the

back coil was switched on and off sporadically), and one moved

during the DCE-MRI acquisition, leaving 108 studies with paired

DWI and DCE-MRI data acquisitions (Figure 2). Based on the cAIC

results, 75 DCE-MRI data sets were analyzed using the two–

compartment exchange model, 20 using the tissue uptake model,

and 13 using the one–compartment model.

Smaller regions of interest (cold-spot and hot-spot regions)

were generated from 91 out of 108 studies: 34 at the baseline, 33

after one NACT cycle, and 24 after three NACT cycles (some

tumors shrank below the 5x5 pixels threshold during NACT). DCE
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data sets were fitted using the two-compartment exchange/tissue-

uptake/one-compartment models for 68/13/10 cold-spot regions

and for 72/9/10 hot-spot regions.

For DWI data analysis, there were a number of cases where

estimates of the IVIM parameters pseudo-diffusion and perfusion

fraction reached one of their limiting values, and these parameters

were excluded from the statistical analyses (2 cases from the whole-

tumor region, 8 from the cold-spot region, and 4 from the hot-

spot region).
3.1 Estimated DWI and DCE-MRI
parameters from the three regions
at baseline

There were significant differences between the parameter values

estimated in whole-tumor, cold-spot, and hot-spot regions for all
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DWI and DCE-MRI parameters, with the exception of pseudo-

diffusion and extracellular volume fraction (P=0.88 and 0.2,

respectively). Detailed results, including pairwise comparisons

(Bonferroni-corrected), are presented in the Supplementary

Material (Supplementary Table A1).
3.2 Correlation between averaged DWI and
DCE-MRI parameters from three MRI visits
(between-subject correlation)

No significant correlations were discovered between the IVIM

and DCE-MRI perfusion-related parameters (perfusion fraction

with blood volume fraction, and microvascular blood flow with

blood flow) in the three tumor regions (P=0.146–0.379, Table 2,

Supplementary Table A2, Supplementary Table A3). However, for

whole-tumor regions, ADC exhibited a significant moderate

positive correlation with tumor T1 and interstitial volume fraction

(r = 0.603 and 0.461, respectively). Similarly, Dt demonstrated a

significant moderate positive correlation with tumor T1 and

interstitial volume fraction (r = 0.631 and 0.405, respectively).

(Figure 3, Table 2).

In the cold-spot regions, significant moderate positive

correlations were found between tumor T1 and both measures of

tissue diffusion ADC and Dt (r= 0.632 and 0.588, respectively).

pseudo-diffusion demonstrated a significant moderate negative

correlation with blood flow (r = -0.400, Supplementary Table A2).

In hot-spot regions, ADC and Dt displayed significant moderate

positive correlations with tumor T1 (r=0.520 and 0.460, respectively,

Supplementary Table A3).
3.3 Repeated measures correlations
between DWI and DCE-MRI parameters
(within-subject correlation)

Table 3 lists the repeated measures correlation results computed

between the DWI and DCE-MRI parameters estimated

from the whole-tumor regions of interest. No statistically

significant correlations were discovered between the IVIM and

DCE-MRI perfusion-related parameters of the study’s primary

interest (perfusion fraction versus blood volume fraction and

microvascular blood flow versus blood flow; P=0.815 and 0.229,

respectively). However, ADC and Dt displayed significant moderate

positive correlations with interstitial volume fraction (rrm=0.597

and 0.514, respectively) and extracellular volume fraction

(rrm=0.619 and 0.564, respectively) (Figure 3).

The median DWI and DCE-MRI parameter values estimated at

the three MRI visits from the cold-spot and hot-spot regions

exhibited patterns similar to those of the whole-tumor regions

but with much more variability (Figure 4, Supplementary Figure

A1); repeated measures correlation results in the cold-spot and

hot-spot regions are presented in Supplementary Data only

(Supplementary Table A4, Supplementary Table A5).
TABLE 1 Clinical characteristics of all the enrolled patients.

Characteristic Number or
Median (Interquartile range)

Number of patients 40

Age (years) 44.5 (38.8, 53.0)

Tumor volume (cm3)

At baseline (N= 40) 5.45 (2.16, 16.27)

After one cycle of NACT (N= 37) 4.1 (1.57, 8.83)

After three cycles of NACT (N= 35) 2.15 (0.53, 5.8)

Tumor grade

II 15

III 25

Tumor type

Invasive ductal carcinoma 38

Inflammatory breast cancer 1

Mucinous carcinoma 1

Estrogen receptor status

Positive (+) 28

Negative (-) 12

Progesterone receptor status

Positive (+) 18

Negative (-) 20

Not evaluable 2

Human epidermal growth factor 2 status

Positive (+) 15

Negative (-) 25
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4 Discussion

Despite the examination of 108 paired DWI and DCE-MRI

datasets, no statistically significant between-subject or within-

subject repeated measures correlations were found between the

IVIM and DCE-MRI perfusion parameters of the study’s primary

interest (perfusion fraction versus blood volume fraction and

microvascular blood flow versus blood flow). These findings align

with previous breast cancer studies, which also found no correlation

between any IVIM perfusion parameters and DCE-MRI parameter

related to perfusion, Ktrans (transfer constant) (18, 19). Ktrans may

not solely reflect tumor blood flow but also vessel permeability (33).

The present study went further by estimating tumor blood flow and

blood volume fraction from DCE-MRI during NACT, but still

found no correlations. One possible explanation for the lack of

correlation might be significant tissue heterogeneity in tumors; the

parameters were estimated from the whole-tumor regions. Where

possible, two smaller regions of interest (5×5 pixels) in each

whole-tumor region were generated to reduce the likelihood of

heterogeneity. It was assumed that these smaller regions would be

more homogenous. However, no clear correlations were found in

these smaller regions, and the data were observed to be more

variable than the whole-tumor region, as reflected by the number

of outliers and a wider range in the box plot scale (Figure 4,
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Supplementary Figure A1). An alternative method for future

studies that might aid in selecting homogeneous tumor regions

could be histogram analysis of pixel-wise IVIM and DCE-MRI

parameter maps; however, the possibility of finding a homogeneous

tumor region in the IVIM and DCE perfusion-related parameter

maps to examine the correlation would require further investigation

and validation.

Imprecision in the estimates of microvascular blood flow and

blood volume fraction, in particular, is a potential issue that may

have masked correlations between the IVIM and DCE-MRI

perfusion parameters. A previous report recognized that the

precision with which pseudo-diffusion is estimated is poor (34),

and the estimate of blood volume fraction in another study was

reported to be very imprecise (35), which was reflected in our

calculated upper estimate of its repeatability (Appendix C,

Supplementary Material). The estimation of blood volume

fraction, against which the perfusion fraction derived from IVIM

is compared, becomes difficult when tumor capillaries are

excessively leaky (24). In this study, out of 108 DCE-MRI

datasets, a one-compartment model was preferred in 13 cases,

and an estimate of blood volume fraction and capillary

permeability–surface area product was not possible in those 13.

It is also possible that IVIM and DCE-MRI reflect different

underlying physiology. IVIM does not estimate perfusion in a
FIGURE 2

The flow chart illustrates the number of recruited patients, excluded DCE-MRI data, and the final number of MRI studies with paired DWI and DCE-
MRI data acquisitions.
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classical way but estimates flow in the direction of the diffusion

encoding gradient, whereas DCE-MRI measures the delivery of

blood and subsequent distribution of contrast agent in the tissue, on

a different time scale (36). Furthermore, it has been suggested that a

single pseudo-diffusion coefficient is insufficient to describe the

complex diffusion properties of the vascular signal (37). The

inconsistent patterns of response to treatment seen in the median

values of perfusion fraction versus blood volume fraction and

microvascular blood flow versus blood flow may support this

suggestion (Figure 4).

In contrast, this study found moderate positive between-subject

and within-subject repeated measures correlations between the

diffusion parameters (ADC and Dt) and interstitial volume

fraction, as well as a moderate positive within-subject repeated

measures correlation between the diffusion parameters and

extracellular volume fraction. These positive results are important,

as this is the first time they have been observed in breast cancer (8),

and support the current understanding of these imaging

parameters. A positive between-subject correlation between ADC

and interstitial volume fraction was previously determined in head

and neck cancers (9) suggesting that these parameters are related to

tissue microstructure. The ADC and Dt values reflect the diffusion

of water molecules in tissue, which is affected by cellular density,

membrane permeability and extracellular volume (7), and vd is a

direct measure of the extracellular volume fraction (24) while ve is a

parameter that reflects the volume fraction of the interstitial space

within the tissue, which can be influenced by such factors as cellular
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density and extracellular matrix deposition. A prior study revealed

that tumor cellularity is inversely proportional to ve, vd, and ADC

values (38). Therefore, the observed between-subject correlation of

the diffusion coefficients and interstitial space may suggest that

breast tumors with a high cellular density tend to have a small

interstitium and increased diffusion restriction, whereas tumors

with a low cellular density tend to have a large interstitium and less

diffusion restriction. The observed positive within-subject repeated

measures correlations could result from the fact that ADC/Dt, ve,

and vd exhibited similar patterns of change in response to

treatment, wherein the values were increasing during the three

MRI time-points (Figure 4).

Furthermore, a moderate positive between-subject correlation

between the diffusion coefficients and tumor T1 was observed in this

study. Tumor T1 measures tissue relaxation time, which can be

affected by tissue water and fat content, macromolecule

concentration and hydration state (39). Thus, this positive

correlation may be because breast tumors with high cellular

density and a small extracellular space have a decreased free-

water content, resulting in low diffusion coefficient values and

short tumor T1 (12, 39).

The present study has some limitations. First, this study was

performed on a limited sample size using a 1.5 T MRI scanner, which

may limit the statistical power of the results. However, this is the first

study that assesses both between-subject and within-subject repeated

correlations between the perfusion parameters estimated by IVIM

and DCE-MRI in a cohort of breast cancer patients undergoing
TABLE 2 Correlation between averaged DWI and DCE-MRI parameters from three MRI visits (Whole-tumor region).

Parameter Tumor T1 Fb PS ve vb vd

ADC r 0.603** 0.026 0.305 0.461* -0.173 0.302

P-value <0.001 0.873 0.056 0.004 0.286 0.058

N 40 40 40 37 40 40

Dt r 0.631** 0.014 0.266 0.405* -0.135 0.302

P-value <0.001 0.932 0.097 0.013 0.406 0.058

N 40 40 40 37 40 40

Dp r -0.251 0.172 -0.051 -0.360 -0.006 -0.213

P-value 0.118 0.289 0.755 0.029 0.971 0.187

N 40 40 40 37 40 40

f r 0.187 0.121 0.186 0.093 -0.144 0.079

P-value 0.248 0.457 0.251 0.584 0.375 0.628

N 40 40 40 37 40 40

f×Dp r -0.020 0.143 0.071 -0.126 -0.041 0.001

P-value 0.903 0.379 0.663 0.457 0.802 0.995

N 40 40 40 37 40 40
r, correlation coefficient; N, sample siz;. ADC, apparent diffusion coefficient; Dt, tissue diffusion; Dp, pseudo-diffusion coefficient; f, perfused fraction; f×Dp, microvascular blood flow; Fb, blood
flow; PS, capillary permeability–surface area product; ve, interstitial volume fraction; vb, blood volume fraction; vd, extracellular volume fraction.
Values in bold indicate significant correlation results: * r ≥ 0.4 and P<0.05.
** r ≥ 0.4 and P<0.001.
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NACT with a primary focus on hypothesis generation rather than

testing; therefore, the results can be used to direct future studies.

Second, the DWI data were acquired with only 6 b-values, four of

which were low (≤ 200 s/mm2). In a clinical protocol, it is not

practical to acquire DWI data with a large number of b-values.

Nevertheless, the simulation study showed that using 6 b-values will

not result in appreciably worse outcomes for most parameters,
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though the precision of microvascular blood flow was lower than

with 12 b-values (details provided in Appendix B, Supplementary

Material). Further, a previous study showed that a small number of b-

values is not the main source of errors in IVIM parameter estimates.

Intra-patient variability is significant; they found that the precision in

the estimates of the IVIM parameters with only 4 b-values was better

than the test-retest repeatability of those same parameters estimated
A

B

C

FIGURE 3

Scatter plots show moderate positive (A) between-subject and (B) within-subject repeated measures correlations between the diffusion coefficients
(ADC and Dt) and the interstitial volume fraction (ve), as well as moderate positive (C) within-subject repeated measures correlation between the
diffusion coefficients (ADC and Dt) and the extracellular volume fraction (vd). Each line in the scatter plots (B, C; repeated measures correlations)
shows the fit for a single patient.
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with 16 b-values (34). Third, a pixel-wise comparison of IVIM and

DCE-MRI parameter maps was not performed in this study, although

it might be valuable. Instead, the images were analyzed by following

the recommended approaches of the International Breast Diffusion-

Weighted Imaging Working Group (22), which included volumetric

sampling and focused regions of interest (i.e., smaller single-slice

regions on the darkest part of the ADC map). No correlations were

observed between perfusion fraction versus blood volume fraction

and microvascular blood flow versus blood flow in these smaller

regions, but they showed more variability in the estimates instead

(Supplementary Figure A1), suggesting that a pixel-wise analysis

might yield similar outcomes. Fourth, rigid registration was

employed for aligning the DCE and DWI images and this

approach may not have been sufficient to correct DWI distortions.

As such, the accuracy of spatial co-registration could have been

affected, potentially influencing the findings reported, particularly in

the smaller regions. Therefore, future work incorporating pixel-wise

analysis following rigorous DWI and DCE-MRI image registration is

needed to further investigate these relationships. Finally, the

repeatability of the DWI and DCE-MRI parameters was not

formally investigated. It was challenging to justify performing a

repeated baseline DCE-MRI scan that required an additional
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injection of gadolinium contrast because the patients were due to

undergo multiple NACT cycles and MRI scans. Instead, an upper

estimate of the repeatability of the DWI and DCE-MRI parameters

was calculated from a selection of baseline and cycle 1 studies

(Appendix C, Supplementary Material).

In conclusion, this preliminary study investigated both between-

subject and within-subject repeated measures correlations between

DWI and DCE-MRI parameters in a cohort of patients with breast

cancer imaged before and after one and three cycles of NACT. No

statistically significant correlations were observed between the

perfusion parameters estimated by IVIM (perfusion fraction and

microvascular blood flow) and those estimated by DCE-MRI (blood

flow and blood volume fraction). The two techniques may reflect

different underlying physiology, and/or estimates of the IVIM and

DCE-MRI parameters in the current study are largely imprecise.

Therefore, care should be taken when interpreting the IVIM

perfusion parameters as surrogates for those measured using DCE-

MRI until their underlying pathophysiologic interpretation and

relationship to the DCE-MRI perfusion parameters are elucidated

by further research. However, the moderate positive within-subject

repeated measures correlations found between the diffusion

parameters and DCE-MRI measures of the tissue’s interstitial and
TABLE 3 Repeated measures correlations between DWI and DCE-MRI parameters estimated from Whole-tumor region.

Parameter Tumor T1 Fb PS ve vb vd

ADC rrm 0.035 -0.361 -0.138 0.597** 0.226 0.619**

df 67 67 54 37 54 47

P-value 0.775 0.002 0.309 <0.001 0.094 <0.001

95% CI -0.18, 0.253 -0.605, 0.01 -0.452, 0.253 0.203, 0.785 -0.012, 0.432 0.383, 0.82

Dt rrm 0.043 -0.32 -0.045 0.514** 0.165 0.564**

df 67 67 54 37 54 47

P-value 0.724 0.007 0.741 <0.001 0.224 <0.001

95% CI -0.217, 0.279 -0.544, 0.036 -0.339, 0.312 0.103, 0.716 -0.052, 0.373 0.305, 0.785

Dp rrm 0.125 0.336 0.157 -0.127 -0.208 0.078

df 65 65 53 37 53 46

P-value 0.313 0.005 0.253 0.442 0.127 0.597

95% CI -0.08, 0.268 0.092, 0.502 -0.08, 0.397 -0.311, 0.074 -0.402, -0.02 -0.221, 0.304

f rrm 0.04 -0.182 -0.237 0.354 0.165 0.297

df 65 65 53 37 53 46

P-value 0.748 0.139 0.081 0.027 0.229 0.04

95% CI -0.201, 0.229 -0.423, 0.137 -0.477, 0.034 0.017, 0.583 -0.19, 0.418 0.068, 0.509

f×Dp rrm 0.055 0.029 -0.059 0.215 -0.035 0.252

df 65 65 53 37 53 46

P-value 0.661 0.815 0.668 0.188 0.799 0.084

95% CI -0.178, 0.228 -0.169, 0.265 -0.222, 0.123 -0.066, 0.444 -0.261, 0.187 -0.023, 0.445
rrm, repeated measures correlation coefficient; df, degrees of freedom; CI, confidence interval; ADC, apparent diffusion coefficient; Dt, tissue diffusion; Dp, pseudo-diffusion coefficient; f, perfused
fraction; f×Dp, microvascular blood flow; Fb, blood flow; PS, capillary permeability–surface area product; ve, interstitial volume fraction; vb, blood volume fraction; vd, extracellular
volume fraction.
Values in bold indicate significant correlation results: * rrm ≥ 0.4, P<0.05, and bootstrapped 95% CIs excluded zero.
** rrm ≥ 0.4, P<0.001 and bootstrapped 95% CIs excluded zero.
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extracellular volume fractions confirms the expectation that as these

volumes increase, water diffusion increases.
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Multiview deep learning
networks based on automated
breast volume scanner
images for identifying breast
cancer in BI-RADS 4
Yini Li1†, Cao Li2†, Tao Yang1, Lingzhi Chen1, Mingquan Huang3,
Lu Yang2, Shuxian Zhou4, Huaqing Liu4, Jizhu Xia1

and Shijie Wang1*

1Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Sichuan, China,
2Department of Radiology, The Affiliated Hospital of Southwest Medical University, Sichuan, China,
3Department of Breast Surgery, The Affiliated Hospital of Southwest Medical University,
Sichuan, China, 4Artificial Intelligence Innovation Center, Research Institute of Tsinghua,
Guangdong, China
Objectives: To develop and validate a deep learning (DL) based automatic

segmentation and classification system to classify benign and malignant BI-

RADS 4 lesions imaged with ABVS.

Methods: From May to December 2020, patients with BI-RADS 4 lesions from

Centre 1 and Centre 2 were retrospectively enrolled and divided into a training

set (Centre 1) and an independent test set (Centre 2). All included patients

underwent an ABVS examination within one week before the biopsy. A two-

stage DL framework consisting of an automatic segmentation module and an

automatic classification module was developed. The preprocessed ABVS images

were input into the segmentation module for BI-RADS 4 lesion segmentation.

The classification model was constructed to extract features and output the

probability of malignancy. The diagnostic performances among different ABVS

views (axial, sagittal, coronal, and multi-view) and DL architectures (Inception-v3,

ResNet 50, and MobileNet) were compared.

Results: A total of 251 BI-RADS 4 lesions from 216 patients were included (178 in

the training set and 73 in the independent test set). The average Dice coefficient,

precision, and recall of the segmentation module in the test set were 0.817 ±

0.142, 0.903 ± 0.183, and 0.886 ± 0.187, respectively. The DL model based on

multiview ABVS images and Inception-v3 achieved the best performance, with an

AUC, sensitivity, specificity, PPV, and NPV of 0.949 (95% CI: 0.945-0.953),

82.14%, 95.56%, 92.00%, and 89.58%, respectively, in the test set.
Abbreviations: BI-RADS, Breast Imaging Reporting and Data System; ABVS, automated breast volume

scanner; DL, deep learning; US, ultrasound; AI, artificial intelligence; MRI, magnetic resonance imaging; CT,

computed tomography; AUC, area under the curve; CNN, convolutional neural network; ROC, receiver

operating characteristic; PPV, positive predictive value; NPV, negative predictive value; DC, Dice coefficient;

Grad-CAM, gradient-weighted class activation mapping.
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Conclusions: The developed multiview DL model enables automatic

segmentation and classification of BI-RADS 4 lesions in ABVS images.
KEYWORDS

BI-RADS 4, deep learning, breast cancer, automated breast ultrasound, segmentation
1 Introduction

Breast cancer has become the most prevalent cancer worldwide,

with 2.3 million new cases resulting in 665,684 deaths in 2022 (1).

Accurate identification and timely treatment are effective measures

to reduce its mortality. Breast Imaging Reporting and Data System

(BI-RADS) category 4 lesions (2) are suspected to be malignant

lesions (2%~95% likelihood) and are recommended for biopsies,

which results in more than 67.0% of benign lesions receiving

biopsies (3–6). This may lead to unnecessary anxiety and invasive

examination-related complications, such as pain, infection, and

needle track seeding, in patients as well as increase the burden to

the healthcare system (7). Therefore, a noninvasive method for

identifying malignant BI-RADS 4 lesions and reducing unnecessary

biopsies is an urgent issue in current precision medicine.

Ultrasound (US) is not inferior to mammography for screening

for breast cancer and has a sensitivity of up to 90% in dense breasts

with safety and low cost (8, 9). The automated breast volume

scanner (ABVS) is a novel breast ultrasound imaging technique that

overcomes many of the limitations of traditional US, provides a

three-dimensional (3D) representation of breast tissue, and allows

image reformatting in three planes (axial, sagittal and coronal) (10).

The ABVS’ unique coronal images provide an intuitive view of the

lesions and their relationships with neighboring catheters and

surrounding tissues. The retraction phenomenon, characterized

by a perinodal stripe of hypoechoic and hyperechoic radial

extension, is a unique sign on the coronal plane for malignant

breast tumors with a high specificity (91.1%~100%) (11, 12).

However, the large amount of ABVS image data is a significant

challenge for radiologists.

Deep learning (DL) is a subfield of artificial intelligence (AI),

and its emergence has increased interest in automated detection and

diagnostic tools in medicine (13). DL has achieved state-of-the-art

performance in feature recognition and classification in several

modalities, including magnetic resonance imaging (MRI),

computed tomography (CT), X-ray and US (14–17). Recent

studies have shown that DL methods using ABVS images also

have enormous potential in breast cancer (18–20). Wang et al. (18)

proposed a DL method that adopted a modified Inception-v3

architecture to extract effective features from ABVS images to

distinguish between benign and malignant breast lesions with an

area under the curve (AUC), sensitivity, and specificity of 0.945,

0.886, and 0.876, respectively. However, most of these studies were
0291
designed as proof-of-concept or technical feasibility studies without

a thorough external validation of real-world clinical performance

(19, 20). To our knowledge, no studies have investigated the use of

DL methods based on ABVS images to distinguish between benign

and malignant BI-RADS 4 lesions.

Therefore, we attempted to develop a DL model based on ABVS

images with automatic segmentation and classification capabilities,

and to explore its performance in identifying benign and malignant

BI-RADS 4 lesions and in reducing unnecessary biopsies. In

addition, since ABVS images can be visualized in axial, sagittal

and coronal views, we further compared the DL models based on

the use of single or multiple views.
2 Materials and methods

This retrospective study was approved by the Institutional

Review Board of the Affiliated Hospital of Southwest Medical

University (KY2020163) and was conducted following the

Declaration of Helsinki guidelines. All participating subjects were

informed and voluntarily signed informed consent forms.
2.1 Patients and data collection

From 1 May to 31 December, 2020, consecutive patients with

BI-RADS 4 lesions on US who were scheduled for biopsies at the

Affiliated Hospital of Southwest Medical University (Centre 1, the

training set) and Guangdong Provincial Hospital of Traditional

Chinese Medicine (Centre 2, the independent test set) were invited

to participate in this study. Further selection was performed

according to the following inclusion and exclusion criteria.

The inclusion criteria were as follows: (1) age≥18 years; (2) BI-

RADS 4 lesions identified following the 2013 edition of the BI-

RADS guidelines (21) by two senior radiologists (>10 years of breast

US experience) at both centers; and (3) completion of the ABVS

examination within one week before biopsy. The exclusion criteria

were as follows: (1) patients who were breastfeeding or had mastitis

or breaks in the affected breast; (2) patients who had undergone

previous invasive procedures for the lesion; (3) patients with poor-

quality images; and (4) patients who lacked definitive pathologic

findings. Patients with more than one BI-RADS 4 lesion were

included separately.
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Clinical data included age, menopausal status, history of oral

contraceptive use and smoking history, alcohol consumption level,

and family history of breast or ovarian cancer. The patient’s breast

density was classified as type A-D according to the mammographic

BI-RADS guidelines. The characteristics of the lesions, including

the lesion size, location (left or right), shape (regular or irregular),

orientation (parallel or nonparallel), posterior echogenicity

(enhancement, shadowing, mixed pattern, or absence of posterior

echogenicity), internal echogenicity (hypoechoic, hyperechoic, or

mixed echogenicity), and calcification (present or absent),

were recorded.
2.2 ABVS examinations

All ABVS examinations were performed by the Acuson S2000

ABVS (Siemens, Germany) ultrasound systems with the 14L5BV

probe (5–14 MHz) by two technicians (with 6 months of ABVS

training experience). For more details on the ABVS examination,

see Kim et al (22). After the examination, axial ABVS images were

sent to a dedicated workstation, and the sagittal and coronal images

were reconstructed automatically. Finally, the axial, sagittal, and

coronal ABVS images showing the largest lesions were selected for

further segmentation and classification. An example is shown

in Figure 1.

Within one week after the ABVS examination, a US-guided

core-needle biopsy was performed by experienced US doctors. In

accordance with the standard biopsy procedure, four to eight

samples per lesion were acquired via an automatic biopsy gun

with a 14G or 16G needle. The specimens were analyzed and

diagnosed by breast pathologists (>10 years of experience),

according to the World Health Organization’s standards for

breast tumor classification (23). For lesions with unclear

diagnoses by puncture, histopathologic diagnosis after surgical

removal was used as the reference standard.
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2.3 DL Framework and models

Centers 1 and 2 were divided into a training set and an

independent test set, respectively. We utilized five-fold cross-

validation on the training set to optimize the parameters of the

models and guide the choice of hyperparameters. The test set was

used to evaluate the final model performance independently. A two-

stage DL framework consisting of an automatic segmentation

module and an automatic classification module was developed.

First, the preprocessed ABVS images were input into the automatic

segmentation module for BI-RADS 4 lesion segmentation. Patches

were created as the input to the classifier. The classification model

was subsequently constructed via convolutional neural networks

(CNNs) to automatically extract the features of the lesions and

output the probability of malignancy. The overall process is

described in detail below and the whole pipeline of the DL model

is shown in Figure 2. Finally, we visualized and analyzed the

prediction results of the DL model.
2.3.1 Image preprocessing and automatic
segmentation module

Histogram equalization and median filtering were used to

remove noise and enhance the images. The black boxes in the

ABVS images were cropped using the Sobel operator (24). Online

data augmentation was performed for the ABVS images in the

training set during the training period. The augmented image pixels

were normalized and input into the ImageNet dataset

for pretraining.

The DeepLab-V3 algorithm introduced by Google was used to

build the automatic image segmentation module. DeepLab-V3 uses

the atrous spatial pyramid pooling (ASPP) structure to expand the

receptive field, mining context information, and the improved

Xception module to reduce the number of parameters and

achieve the best effect of the current segmentation network.
FIGURE 1

An example of a BI-RADS 4 lesion on ABVS images.ABVS images of the largest sections of a lesion in the coronal (A), axial (B), and sagittal (C) planes.
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2.3.2 Automatic classification module
The segmented images of the lesion and its surrounding area

were as patches to input to the classification module to extract

features and automatically output the probability of malignancy.

For the reasons that manually labelling masks has a certain degree

of subjectivity; the segmentation results of the segmentation model

also have certain biases; and the differences between the lesion area

and nearby normal tissues may help AI classify more accurately. To

construct the optimal DL model, we explored the performances of

CNN models based on single-view (axial, sagittal, and coronal) and

multiview (combined axial, sagittal, and coronal) images, as well as

different backbone networks (ResNet50, MobileNet, and Inception-

v3) in differentiating benign and malignant BI-RADS 4 lesions.

Transfer learning was applied to ensure a strong feature extraction

capability. Because of the limited number of samples, pretrained

knowledge was effectively applied to a specific task from a mega

database such as ImageNet, and the model was then retrained using

a small amount of data, which could achieve satisfactory results

(25). Each model was fine-tuned on the dataset of ABVS images to

reduce overfitting. The convolutional structure was used as the

backbone network, consisting of multiple convolutional layers,

average pooling layers, and convolutional modules in series for

feature extraction. In the multiview models, each view of the input

images corresponds to a backbone network branch, and three
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branches are concatenated to form the total feature vector. A

CNN framework example of Inception-v3 is shown in Figure 3. A

dropout layer (with deactivation rate of 0.5) was added behind the

vector to mitigate overfitting. Finally, the fully connected layer was

normalized to output the probability of malignancy of BI-RADS 4

lesions (a cut-off value of 50%).

The image preprocessing methods and DL algorithms with the

parameters and software settings are detailed in Supplementary File 1.

2.3.3 Testing and visualization of the DL model
The fine-tuned parameters were used in the segmentation and

classification models of the independent test set to evaluate the

effectiveness and final performance of these models. The results

were analyzed and assessed by the area under the receiver operating

characteristic (ROC) curve. The sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV) were

calculated at the maximum Youden index. The performance of the

automatic segmentation network was evaluated via the Dice

coefficient (DC). Additionally, we set a decision point in the ROC

curve based on the final model where sensitivity is 100% to evaluate

the value in reducing the unnecessary biopsies and this would allow

no lesions to be missed.

Gradient-weighted class activation mapping (Grad-CAM) was

used on the final convolutional layer of the classification model to
FIGURE 2

The whole pipeline of the deep learning (DL) model. The illustration shows the image input and the main processing stages for the two-stage DL
framework model, which consists of an automatic segmentation module and an automatic classification module. The preprocessed ABVS images
were used as input for the segmentation module for segmenting lesions. The classification module was constructed on the basis of single-view
(axial, sagittal, and coronal) and multiview (combined axial, sagittal, and coronal) images, as well as different backbone networks (ResNet50,
MobileNet and Inception-v3), and outputs the probability of malignancy. In the multiview model, each view of the input images corresponds to a
backbone network branch, and three branches are concatenated to form the total feature vector. Five-fold cross-validation was utilized on the
training set to choose the hyperparameters. The test set was used to evaluate the final performance.
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visualize the extent of each region on the ABVS image that

contributed to identifying malignant BI-RADS 4 lesions. The

critical areas predicted by the model are highlighted.
2.4 Statistical analysis

IBM SPSS Statistics (version 26.0, IBM Corp., USA) and Python

software (version 3.6.8, https://www.python.org/) were used for the

statistical analysis. SPSS software was used to analyze the differences

between the training and test sets and between benign and

malignant lesions. Continuous variables (age and tumor size)

were compared via t-tests. Categorical variables (breast density,

BI-RADS 4 subclasses, and family history of breast cancer) were

compared via the chi-square test.

The DC, recall, and precision were introduced to evaluate the

automatic segmentation performance objectively. ROC curves were

constructed to assess the classification performance and to calculate

the sensitivity, specificity, PPV, NPV, and AUC. The AUCs were

compared via the DeLong test. All the statistical calculations were

performed with 95% confidence intervals (95% CIs). All tests were

two-sided, and P<0.05 was considered statistically significant.
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3 Results

3.1 Patient characteristics

A total of 251 BI-RADS 4 lesions in 216 patients from two

centers were included. The flow chart is shown in Figure 4. Among

them, 178 lesions from 157 patients (mean age 49.0 ± 11.8 years) at

Centre 1 were included in the training set, and 73 lesions from 59

patients (average age 46.8 ± 10.5 years) at Centre 2 were included in

the independent test set. The proportions of malignant lesions

between the two sets were not significantly different (45.5% vs.

39.7%, P=0.402), and there were no significant differences in patient

age, lesion size, lesion location, BI-RADS 4 subclassifications, breast

density, or family history (Table 1).
3.2 Performance of the automatic
segmentation module

The Dice coefficient curves (Supplementary File 2) for assessing

segmentation performance revealed 474 (88.7%) ABVS images with

DCs greater than 0.90 in the training set and 165 (75.3%) ABVS
FIGURE 3

A convolutional neural network (CNN) framework example of an automatic classification model with Inception-v3 as the backbone network. (A) The
backbone network: The input ABVS image in three views (axial, sagittal, and coronal) passed six convolutional layers and one average pooling layer,
followed by three Inception A modules, one Inception B module, four Inception C modules and one Inception Lite module as defined in this study.
The Inception Lite module consists of an average pooling layer in tandem with two convolutional modules of different kernel sizes. (B) The modified
version of Inception-v3.
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images in the test set. Example plots are provided in Supplementary

File 3. The automatic segmentation model has the best

segmentation performance in axial views with DCs, recall rates,

and precisions of 0.908 ± 0.077, 0.996 ± 0.067, and 0.974 ± 0.123 in

the training set and 0.890 ± 0.152, 0.972 ± 0.167, and 0.948 ± 0.198

in the test set, respectively. Among all the views, the segmentation

module displayed the worst performance in the coronal views, with

DC, recall and precision values of 0.784 ± 0.120, 0.825 ± 0.188, and

0.825 ± 0.188, respectively, which is still a satisfactory result. The

detailed segmentation statistics of the different ABVS views in the

two sets are shown in Table 2.
3.3 Performance of the automatic
classification module

The automatic classification of BI-RADS 4 lesions was

performed after automatically segmenting the lesions.
TABLE 1 Baseline data of the benign and malignant BI-RADS 4 lesions in the training and test sets.

Characteristics

Training set (n=178) Test set (n=45) P *

Malignant (n=81) Benign
(n=97)

P Malignant (n=29) Benign
(n=44)

P

Age (years, ±) 54.6 ± 12.5 44.1 ± 9.9 <0.001 57.5 ± 9.4 45.4 ± 11.7 <0.001 0.229

Lesion size (cm, ±)* 2.3 ± 0.9 1.6 ± 0.9 <0.001 2.5 ± 1.2 1.6 ± 0.7 0.005 0.549

BI-RADS 4 category (n, %)

4a 11(13.3%) 73(76.0%) <0.001 2(6.9%) 35(79.5%) <0.001 0.593

4b 16(19.3%) 20(20.0%) 4(13.8%) 9(20.5%)

4c 54(67.4%) 4(4.0%) 23(79.3%) 0(0.0%)

Breast density (n, %)

A 11(13.2%) 4(4.0%) <0.001 4(13.8%) 0(0.0%) 0.319 0.878

B 38(45.8%) 26(27.0%) 12(41.4%) 17(38.6%)

C 26(45.8) 42(44.0%) 9(31.0%) 20(45.5%)

D 6(7.2%) 25(25.0%) 4(13.8%) 7(15.9%)

Menopausal status (n, %)

Premenopausal 33(41.0%) 73(74.0%) <0.001 6(20.7%) 29(65.9%) 0.010 0.054

Postmenopausal 48(59.0%) 24(26.0%) 23(79.3%) 15(34.1%)

Family history (n, %)

Yes 8(9.6%) 8(8.0%) 0.705 6(20.7%) 13(29.5%) 0.793 0.153

No 73(90.4%) 89(92.0%) 23(79.3%) 31(70.5%)

Location of lesion (n, %)

Left 51(62.7%) 52(55.05) 0.208 15(51.7%) 26(59.1%) 0.302 0.992

Right 30(37.3%) 45(45.0%) 14(48.2%) 18(40.9%)
fr
*P values between the training set and the test set.
Lesion size was defined as the maximum diameter on ABVS images. Family history referred to breast or ovarian cancer in first-degree relatives. The differences in characteristic variables (age and
lesion size) between the two cohorts were compared via two-sample t-tests, whereas chi-square tests were conducted on the other variables. P<0.05.
BI-RADS, Breast Imaging Reporting and Data System.
FIGURE 4

Flow chart of the study.
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Among the DL models on the various views, the multiview

models had better classification performance than the single-view

models in different backbone networks (ResNet50, MobileNet, and

Inception-v3). Moreover, all three single-view models and the

multiview model achieved the best classification performance in

the Inception-v3 network on both sets. The statistics for the training

set are shown in Supplementary File 4, and the performance results

for the test set are shown in Table 3, Figure 5. Among them, the

multiview model with the Inception-v3 backbone had the best

performance, with an AUC, sensitivity, specificity, PPV, and NPV

of 0.949 (95% CI: 0.945–0.953), 82.14%, 95.56%, 92.00%, and

89.58%, respectively. However, the coronal single-view model

based on ResNet50 had the worst classification performance, with

an AUC, sensitivity, specificity, PPV, and NPV of 0.807 (95% CI:

0.779–0.836), 85.71%, 57.78%, 55.81%, and 86.67%, respectively.
3.4 Value in reducing unnecessary biopsies
and visualizations

The confusion matrix of all the DL models with the test set is

shown in Figure 6. The Inception-v3-based multiview DL model

performed the best, with a missed diagnosis rate and misdiagnosis

rate of 17.85% (5/28) and 4.44% (2/45), and with the unnecessary

biopsy rate reducing from 61.64% (45/73) to 8.00% (2/25)

compared to the conventional US. The sagittal single-view and

multiview models based on the MobileNet network achieved similar

performance, with missed diagnosis rates and misdiagnosis rates of

21.43% (6/28) and 2.22% (1/45) on the sagittal view, and 17.85% (5/
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28) and 6.67% (3/45) on the multiview, respectively. With a decision

point of 100% sensitivity in the ROC curve based on multiview

Inception-v3 model, the specificity, PPV, and NPV were 58.1%,

58.9%, and 100%, respectively (The confusion matrix is shown in

Supplementary File 5). And the unnecessary biopsy rate of it is

40.42% (19/47), which is 21.22% lower than conventional

ultrasound (61.64%, 45/73) without missing any malignant lesions.

The saliency map highlighted the lesion location and

surrounding region, both in benign and malignant lesions

(Figure 7). This finding indicated that the multiview DL model

focused on the lesion itself and surrounding structures when

categorizing BI-RADS 4 lesions.
4 Discussion

In this study, we developed an ABVS-based DL model with

automatic segmentation and classification capabilities to explore its

diagnostic performance in single-view and multiview images for

identifying breast cancer in BI-RADS 4 lesions. We found that our

DL model can accurately segment multiple views of ABVS images

and further differentiate benign and malignant BI-RADS 4 lesions,

which could reduce unnecessary invasive biopsies.

DL, a technique used in artificial intelligence, has achieved

significant advances in automatic medical image analysis of breast

cancer through CNNs. In addition to segmenting (26) and

categorizing (27) various modalities of ultrasound images of

breast cancer, DL can also predict metastasis (28) and patient

prognosis (29). The BI-RADS 4 lesion is the watershed for

whether to perform a biopsy, with a 5%–98% likelihood of being

benign (3). Therefore, accurately differentiating the benign and

malignant natures of BI-RADS 4 lesions is the key to minimizing

noninvasive manipulation of breast lumps and is a pressing issue.

Therefore, we used a deep learning approach to solve this problem

noninvasively. To our knowledge, the development of ABVS-based

DL models for the automatic segmentation and classification of BI-

RADS 4 lesions, as well as the application of such an approach for

reducing the possibility of biopsy, has not been reported.

This study used the DeepLab-V3 model to segment BI-RADS 4

lesions automatically, and the high DC values reflected its powerful

segmentation performance. The segmentation effectiveness was the

worst in the coronal plane. This may be because the artefacts caused

by the nipple are extremely similar to the echogenicity of the lesion

in the coronal plane, and the adipose tissue in the breast, which is

morphologically similar to some breast nodules, is also in a

restricted distribution in this plane. The model achieved the best

segmentation performance in the axial single section, which is

consistent with recent research results (30). Therefore, the

DeepLab-V3-based segmentation module actually has excellent

segmentation efficacy, self-learning ability, and self-adaptation for

ABVS image segmentation (31, 32). Moreover, high-quality

automatic segmentation lays a foundation for the subsequent

standardization of feature extraction and classification

accuracy (33).

ABVS can provide 3D images and reconstruct the images to

axial, sagittal, and coronal views. Thus, we explored the
TABLE 2 Automatic segmentation results of different ABVS views in the
training and test sets.

Clusters Dice coefficient
(mean ± SD)

Recall
(mean ± SD)

Precision
(mean
± SD)

The training
set (n=534)

0.874 ± 0.173 0.911 ± 0.185 0.893 ± 0.195

Coronal
view
(n=178)

0.804 ± 0.121 0.894 ± 0.207 0.883 ± 0.216

Sagittal
view
(n=178)

0.824 ± 0.154 0.926 ± 0.163 0.905 ± 0.177

Axial
view
(n=178)

0.908 ± 0.077 0.996 ± 0.067 0.974 ± 0.123

The test
set (n=219)

0.817 ± 0.142 0.903 ± 0.183 0.886 ± 0.187

Coronal
view (n=73)

0.784 ± 0.120 0.825 ± 0.188 0.825 ± 0.188

Sagittal
view (n=73)

0.801 ± 0.119 0.883 ± 0.157 0.888 ± 0.165

Axial
view (n=73)

0.890 ± 0.152 0.972 ± 0.167 0.948 ± 0.198
SD refers to the standard deviation, and the bolded portion is the group with the
best indicator.
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performance of the classification module based on three single

views and the combined views. Among the single-view models, the

diagnostic performance on the coronal view was the lowest, whereas

it was the best on the axial view, which is inconsistent with previous

perceptions (34). These authors (34) suggested that the ABVS-

specific coronal view maximizes the understanding of the

relationship between the breast lesion and the surrounding tissues

and is more conducive to identifying benign and malignant lesions.

In particular, the retraction phenomenon on the coronal view has a

high sensitivity (80%~89%) and specificity (96%~100%) for

detecting breast cancer (11, 35). The main reasons for this

contradiction may be that the classification module in this study
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was constructed on the basis of automatic segmentation, and the

relatively poorer segmentation results on the coronal plane led to a

subsequent decrease in classification performance. This finding is

consistent with a recent view (36) emphasizing that accurate

segmentation is a prerequisite for precise classification in DL

models. This, in turn, explains the better classification

performance of the axial sections. The multiview models

simultaneously fused the features of the three views and

demonstrated the best diagnostic performance.

Since different CNN backbone network structures may affect

the classification performance of the model (37), three common

backbone structures (Inception-v3, ResNet50, and MobileNet) were
FIGURE 5

The ROC curves of the (A) single-view models and (B) multiview model based on different backbone networks (ResNet50, MobileNet, and
Inception-v3) on the test set. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.
TABLE 3 Diagnostic performance of the single-view and multiview models based on different backbone networks (ResNet50, MobileNet, and
Inception-v3) on the test set.

Backbones View AUC (95%CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

ResNet50 Axial view 0.880 (0.857-0.903) 71.43 91.11 83.33 83.67

Sagittal view 0.898 (0.880-0.915) 82.14 82.22 74.19 88.10

Coronal view 0.807 (0.779-0.836) 85.71 57.78 55.81 86.67

Multiview * 0.922 (0.905-0.939) 82.14 84.44 76.67 88.37

MobileNet Axial view 0.909 (0.886-0.931) 78.57 93.33 88.00 87.50

Sagittal view 0.910 (0.890-0.930) 78.57 97.78 95.65 88.00

Coronal view 0.827 (0.802-0.854) 67.86 73.33 61.29 78.57

Multiview 0.933 (0.914-0.952) 82.14 93.33 88.46 89.36

Inception-v3 Axial view 0.910 (0.888-0.933) 82.14 91.11 85.19 89.13

Sagittal view 0.946 (0.932-0.961) 78.57 91.11 84.61 87.23

Coronal view 0.921 (0.905-0.937) 85.71 77.78 70.59 89.74

Multiview 0.949 (0.945-0.953) 82.14 95.56 92.00 89.58
*Multiview is the combination of axial, sagittal, and coronal planes. The bolded portion is the group with the best indicator.
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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compared for our DL classification modelling. Inception-v3, a CNN

improved by the third-generation GoogLeNet, uses multiple regular

convolutional layers for feature extraction and concatenates the

features as an output, which can help the model learn different-sized

lesions efficiently (38). The Inception-v3-based model can handle

more and richer spatial features, increase feature diversity, and

reduce the number of computations, with an error rate of only 3.5%

(39). It actually achieved the highest classification accuracy in the

single- and multiview automatic classification models in this study,

which may reduce the unnecessary biopsy rate. The optimal DL

model in this study could reduce unnecessary biopsies by 53.64%,

significantly outperforming previous approaches using contrast-

enhanced US (40) and elastography (41), which also have more

complicated procedures and rely on the experience of the

examining sonographer (42). However, the DL model still had a

missed diagnosis rate of 17.85%, which would delay treatment and

affect the outcomes and prognoses of patients (43). Although the

sagittal single-view model on the MobileNet backbone could reduce

the rate of unnecessary biopsies more (57.29%), it was more likely to

miss diagnosis (21.43%) than the optimal model was. Therefore, the

Inception-v3-based multiview DL model was selected as the final

model. On this basis, we further set a decision point with the
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sensitivity of 100% in the ROC curve which could reduce

unnecessary biopsy rate by 21.22% without missing any lesions.

However, more comprehensive research and optimization are

needed before its application in the clinic. Additionally, previous

studies (44, 45) have shown that both the breast lesion itself and its

periphery contribute significantly to the interpretability of breast

lesions, which is consistent with our Grad-CAM visualization

results. To some extent, this may explain the discrimination

ability of this DL model.

In conclusion, our work indicated that the ABVS-based DL

model can reduce radiologists’ manual intervention through

automatic segmentation and automatic classification and improve

the performance of benign and malignant discrimination of BI-

RADS 4 lesions. With further improvements in the model in the

future, it will hopefully be promoted and applied in clinical practice,

which could significantly impact the management of BI-RADS 4

lesions, reduce biopsies, and promote the development of

precision medicine.

There are several limitations. First, the total number of cases of

BI-RADS 4 lesions was relatively limited, which may have affected

the reliability of the model. Datasets with more centers and larger

samples need to be included for further validation and optimization.
FIGURE 6

The confusion matrix of the deep learning models with the test set. The confusion matrix of the models is based on single view (axial, sagittal, and
coronal) and Multiview images, as well as different backbone networks (ResNet50, MobileNet, and Inception v3) with the test set. The correct
predictions are shown on the diagonal from the top left to the bottom right of each matrix.
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Second, only the largest section of each BI-RADS 4 lesion was used for

analysis, which did not fully utilize the advantages of ABVS 3D

imaging. The overall information of the lesions is also potentially

valuable for predicting their benignity and malignancy. Therefore, the

volume of interest in the lesions will be analyzed in a later study. Third,

only a single automatic segmentation method from the relevant

literature was used in this study. Subsequent studies will explore

different automatic segmentation methods to increase the accuracy

of model segmentation and further improve model performance.
5 Conclusion

The developed DL model can achieve automatic segmentation

and automatic classification of BI-RADS 4 lesions in multiview

ABVS images with satisfactory performance. This DL model could

reduce the number of unnecessary biopsies of BI-RADS 4 lesions

without missing any malignant lesions and simplify the workflow

for differential diagnosis, indicating its significant potential for

clinical applications.
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Introduction: Diffusion weighted MRI (DWI) has emerged as a promising adjunct

to reduce unnecessary biopsies prompted by breast MRI through use of apparent

diffusion coefficient (ADC) measures. The purpose of this study was to investigate

the effects of different lesion ADCmeasurement approaches and ADC cutoffs on

the diagnostic performance of breast DWI in a high-risk MRI screening cohort to

identify the optimal approach for clinical incorporation.

Methods: Consecutive screening breast MRI examinations (August 2014–Dec

2018) that prompted a biopsy for a suspicious breast lesion (BI-RADS 4 or 5) were

retrospectively evaluated. On DWI, ADC (b=0/100/600/800s/mm2) measures

were calculated with three different techniques for defining lesion region-of-

interest (ROI; single slice(‘2D’), whole volume(‘3D’) and lowest ADC region

(‘hotspot’)). An optimal data-derived ADC cutoff for each technique was

retrospectively identified to reduce benign biopsies while avoiding any false

negatives, inherently producing cutoffs with 100% sensitivity in this particular

cohort. Further, diagnostic performance of these measures was validated using

two prespecified ADC cutoffs: 1.53x10-3mm2/s from the ECOG-ACRIN A6702

trial and 1.30x10-3mm2/s from the international EUSOBI group. Diagnostic

performance was compared between ADC maps generated with 2(0/800s/

mm2) and 4(0/100/600/800s/mm2) b-values. Benign biopsy reduction rate

was calculated (number of benign lesions with ADC >cutoff)/(total number of

benign lesions).

Results: 137 suspicious lesions (in 121 women, median age 44 years [range, 20-

75yrs]) were detected on contrast-enhanced screening breast MRI and

recommended for biopsy. Of those, 30(21.9%) were malignant and 107(78.1%)

were benign. Hotspot ADC measures were significantly lower (p<0.001) than

ADCs from both 2D and 3D ROI techniques. Applying the optimal data-derived

ADC cutoffs resulted in comparable reduction in benign biopsies across ROI

techniques (range:16.8% -17.8%). Applying the prespecified A6702 and EUSOBI

cutoffs resulted in benign biopsy reduction rates of 11.2-19.6%(with 90.0-100%
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sensitivity) and 36.4-51.4%(with 70.0-83.3% sensitivity), respectively, across ROI

techniques. ADC measures and benign biopsy reduction rates were similar when

calculated with only 2 b-values (0,800 s/mm2) versus all 4 b-values.

Discussion: Our findings demonstrate that with appropriate ADC thresholds,

comparable reduction in benign biopsies can be achieved using lesion ADC

measurements computed from a variety of approaches. Choice of ADC cutoff

depends on ROI approach and preferred performance tradeoffs (biopsy

reduction vs sensitivity).
KEYWORDS

diffusion weighted imaging (DWI), apparent diffusion coefficient (ADC), breast magnetic
resonance imaging (MRI), diagnostic performance, false positives, ADC cutoff, region-
of-interest (ROI)
Introduction

Breast cancer is the most common type of cancer and second

leading cause of cancer deaths in women in the United States (1).

Timely detection of cancer can lead to better treatment outcomes

and higher survival rates for patients, making breast cancer

screening a crucial aspect of women’s health. It is well-established

that breast MRI offers superior sensitivity for detecting breast

cancer versus other clinical breast imaging techniques and is

therefore recommended for screening of high risk women (2–4).

The high sensitivity of breast MRI relies on injection of intravenous

contrast to identify areas of suspicious vasculature, commonly

associated with breast malignancies. Dynamic contrast enhanced

breast MRI (DCE) provides high sensitivity (> 85%) for breast

cancer detection but suffers from moderate specificity, resulting in

unnecessary biopsies that cause needless expense, inconvenience,

discomfort and emotional distress for the patient (5, 6). Diffusion

weighted imaging (DWI) is a non-contrast functional MRI

technique that provides information based on microscopic

movement of water molecules in tissues and allows an indirect

assessment of tissue microstructure and cellularity. Breast

malignancies tend to restrict diffusion and DWI has shown clear

potential to increase breast MRI diagnostic specificity when used

along with DCE.

The apparent diffusion coefficient (ADC), derived from DWI, is

commonly used to quantify in vivo diffusion. Numerous studies

have reported the utility of the metric for distinguishing between

benign and malignant breast findings, suggesting ADC cutoff values

could be safely used to downgrade suspicious enhancing lesions and

avoid unnecessary biopsies (7–12). However, diffusion-weighted

MRI is not yet incorporated into the Breast Imaging Reporting and

Data System (BI-RADS) (13), and more data are needed to refine

optimal methods for clinical implementation, particularly regarding

quantitation of lesion ADC. Approaches to measure lesion ADC

values vary and emphasize different aspects of the tumor
02103
microstructure. Choice of region-of-interest (ROI) sampling

methods capture different aspects of the lesion (e.g., whole

volume of the lesion to comprehensively measure the entire

tumor versus ‘hotspot’ for peak cellularity) (9, 14). ADC is most

commonly reported as the mean value across the lesion, measured

using a manually defined ROI from a single slice. Alternative

approaches of obtaining lesion ADC values include utilizing

multiple (more than 2) b-values to compute the ADC map, using

a nonzero minimum b-value to reduce confounding perfusion

effects in ADC calculation, segmenting the whole 3D volume of

the tumor across multiple slices to better account for cellular and

microstructural heterogeneity across the abnormality (15), and

measuring just the subregion of greatest diffusion restriction

within the tumor potentially reflecting highest cellularity and

proliferation within the tumor (16).

Despite evidence of ADC as a valuable biomarker for

diagnosing breast cancer from multicenter prospective (10) and

retrospective studies (17), implementation of DWI into routine

clinical interpretations is still a work in progress. Lack of

standardization of acquisition protocols and variability in ROI

definition techniques and study population have resulted in a

broad range of reported ADC values and diagnostic thresholds,

hindering clinical integration of DWI as a screening tool. Most of

the prior studies evaluated data derived from patients who received

breast MRI for diagnostic purposes (to evaluate symptomatic breast

tumors, abnormalities detected on other imaging modalities, or to

evaluate extent of disease for known cancers) rather than for

asymptomatic screening. Lesions detected in screening breast

MRI exams are usually smaller and may not exhibit the same

characteristics as symptomatic breast tumors, which have been used

to determine the ADC cutoffs in many prior studies.

Therefore, this study aimed to investigate how different

methods of measuring lesion ADC values affect the diagnostic

performance of breast MRI in a high-risk screening cohort. To

our knowledge, no prior research has focused exclusively on lesions
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identified through screening MRI. This distinctive cohort allows us

to identify the most effective measurement approach for clinical

incorporation of DWI in breast screening.
Materials and methods

Participants

The institutional review board approved this single academic

medical center retrospective study (Fred Hutchinson Cancer Center

institutional review no. 7339). Requirement for informed consent

was waived for reviewing clinical images and medical records.

Consecutive screening breast MRIs between May 2015 and

December 2018 with a biopsy recommendation (BI-RADS 4 or 5

assessment) followed by definitive biopsy outcome were included in

this study. Medical records were reviewed to determine two year

follow-up for lesions with benign pathology on biopsy. All breast

MRIs were prospectively interpreted by one of several fellowship-

trained breast radiologists (including HR, with over 10 years of

breast imaging experience). Over this timeframe, DWI was not

generally used for BI-RADS assessment due to a lack of consensus

on an ADC threshold to obviate biopsy. Lesion outcomes were

classified as benign or malignant based on pathology reports after

breast biopsy or excision. A subset of participants in our study (n =

108) were previously described in another study validating the

diagnostic performance of point of care (recorded in the clinic)

ADC measures of MRI detected breast lesions using pre-specified

cutoffs (11). In this study, we evaluated the effects of different b-

values and ROI segmentation techniques on ADC performance for

reducing unnecessary biopsies in breast screening exams.
MRI acquisition

All breast MRI examinations were acquired on a 3T MR scanner

(Achieva Tx; Philips Healthcare, Best, Netherlands) with a dedicated

16-channel breast coil. Images were acquired in the axial orientation,

and each exam included T2-weighted, DWI, and DCE-MRI

sequences, in accordance with American College of Radiology

(ACR) breast MRI accreditation and European Society of Breast

Imaging (EUSOBI) breast DWI guidelines (18), and following the

ECOG-ACRIN A6702 DWI protocol (10) (full protocol in Table 1).

Onboard software provided by the scanner manufacturer was used

for both spatially registering the DW images across b-values to

correct for patient motion and eddy current effects.
Image analysis

For the primary analysis, ADC maps were computed using a

classic monoexponential decay model and least squares fitting of the

signal decay across all b-values up to b = 800 s/mm2 (b =0, 100, 600,

800 s/mm2) as recommended by EUSOBI consensus for

standardized reporting of breast ADC values (18, 19). The

following equation was used
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Sb =   S0 * e
−b*ADC

where Sb is the DWI intensity signal at weighting b, S0 is the

signal intensity with no diffusion weighting and ADC expressed in

mm2/s. ADC maps were also computed using only 2 b-values (b=0,

800 s/mm2) for secondary analysis. Lesion ROIs were defined by a

researcher (DB) guided by a fellowship trained radiologist (AW)

who did not participate in the prospective reads, all blinded to

biopsy outcomes. Using a semi-automated threshold-based

software tool to avoid fat and fibroglandular tissue developed in

MATLAB (Mathworks, Natick, MA) (20), lesion ROIs were defined

for a single representative slice (‘2D’) and whole tumor volume

across multiple slices (‘3D’) on the b = 800 s/mm2 images and then

propagated to ADC maps. For lesions measurable only on a single

slice, the 2D and 3D measurements will be the same. A subregion (9

-16 contiguous pixels, depending on lesion morphology) within the

3D lesion ROI producing the lowest mean ADC value was

automatically selected by the software as the ‘hotspot’, following

consensus recommendations (18). For each lesion ROI, the mean

ADC of all voxels was calculated for primary analysis, while other

histogram metrics (minimum, maximum, standard deviation, etc)

were also calculated for 3D ROIs.
ADC thresholds

For optimal clinical integration and patient safety, our study

focused on ADC cutoffs that could reduce false positives while still

maintaining high sensitivity (minimizing false negatives). ADC

cutoffs were retrospectively determined for each of the ADC

measurement techniques based on the highest ADC observed

among malignant lesions, as previously described (10). For each

ADC technique, lesions with ADC measures above the cutoff would

be considered probably benign and avoid biopsy. These optimal

data-derived ADC cutoffs will inherently achieve 100% sensitivity in

the current dataset because they were selected retrospectively,

though 100% sensitivity may not be achieved with the same

cutoffs in another cohort. The primary purpose of selecting these

ADC cutoffs was to enable comparison of biopsy reduction rates of

the three ROI techniques at a comparable and clinically relevant

operating point, where sensitivity is held fixed at 100%. We further

evaluated the performance of two previously proposed ADC cutoffs:

1) 1.53 x 10-3 mm2/s determined by the ECOG ACRIN A6702

multicenter study (10) and 2) 1.30 x 10-3 mm2/s recommended by

EUSOBI consensus guidelines (18, 21) and implemented in a large

prospective DWI screening trial (22).
Statistical analysis

The analysis was performed at the lesion level. Paired comparison

of mean ADC values between ROI techniques or ADCmaps (based on

4 b-values vs. 2 b-values) were performed using generalized estimating

equations (GEE) based regression to account for non-independence of

multiple lesions from the same patient (23). ADC values were also

compared between benign and malignant lesions using GEE-based
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regression. Diagnostic performance of each ROI measure was

summarized using the area under the receiver operating

characteristic curve (AUC), sensitivity (proportion of malignant

lesions with ADC ≤ cutoff), and benign biopsy reduction rate

(proportion of benign lesions with ADC > cutoff). Confidence

intervals (CIs) were computed using the non-parametric bootstrap

(24) or GEE-based regression, clustered by patient, to account for non-

independence of multiple lesions from the same patient. CIs for

sensitivity were calculated using the Clopper-Pearson exact method

(25) due to the smaller sample size of malignant lesions and only two

patients had multiple malignant lesions (two lesions each). Benign

biopsy reduction rates were compared between ROI techniques using

the sign test and between lesion subgroups (by lesion type or lesion

size) using GEE-based regression. The performance of the data-driven
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thresholds was further explored using 5-fold cross-validation, where

different random subsamples of patients were used to rederive cutoffs

and subsequently test the cutoffs in held-out subsamples not used in

selecting the cutoff. The cross-validations were repeated 1,000 times

and the results were averaged. Statistical significance was defined as

two-sided p< 0.05. All analyses were performed using R version 4.0.3.
Results

During the study period, 2329 screening breast MRI

examinations were performed and 137 BI-RADS category 4/5

lesions were detected in 116 women (median age, 46 years, range

[20-75 years]) who underwent biopsy. Pathologic assessment
TABLE 1 MRI protocol parameters.

DWI T2-weighted DCE

Sequence type Diffusion-weighted spin echo, echo
planar imaging (DW SE-EPI)

Turbo spin echo (TSE) Fast Field Echo (FFE)

2D or 3D sequence 2D 2D 3D

Slice orientation Axial Axial Axial

Laterality Bilateral Bilateral Bilateral

Phase direction A/P R/L R/L

FOV 360 mm x 360 mm 240 mm x 360 mm 360 mm x 360 mm

In-plane Resolution 1.8 mm x 1.8 mm 1 mm x 1 mm 0.5 mm x 0.5 mm

Slice thickness 4 mm 3 mm 1.3 mm

Fat-suppression SPAIR SPAIR SPAIR

TR 5000 ms 5000 ms 5.95 ms

TE 60 ms 60 ms 3 ms

Echo Train Length 67 N/A N/A

Flip Angle 90 degrees 90 degrees 10 degrees

b-values 0, 100, 600, 800, 1000 s/mm2 N/A N/A

Number of slices 30 ~60; Variable; complete bilateral coverage ~150/ Variable; complete
bilateral coverage

Slice Gap No gap No gap No gap

Parallel imaging factor 3 Phase 3.1 Phase 2.7 Phase, 2 Slice

No. of averages 2 (b=0, 100), 4 (b=600, 800),
6 (b=1000)

1 1

Contrast injection N/A N/A Intravenous injection of 0.1mmol/kg
body-weight gadoteridol

Sequence acquisition time 4:30 minutes 2:45 minutes 2:54 mins per phase, 12 mins total (1
pre, 3 post-contrast phases with k0 at
~2, 5, and 8 minutes after
contrast injection)

Diffusion Gradient Parameters

Amplitude
Duration
Separation
#Directions

22.52 mT/m
13 ms
21 ms
3

N/A N/A
SPAIR, Spectral attenuated inversion recovery. N/A, Not Applicable.
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revealed 30 malignancies (21.9% of lesions [30/137]; 12 invasive

ductal carcinoma, 13 ductal carcinoma in situ [DCIS], 4 invasive

lobular carcinoma [ILC], and 1 malignant phyllodes tumor) and

107 benign (including 3 high-risk lesions with atypical ductal

hyperplasia, lobular carcinoma in situ, and atypical lobular

hyperplasia) lesions. None of the benign lesions upgraded to

malignancy within the two year follow up period. The median

size of the lesions was 8 mm (range: 3 – 76 mm), while 85% (20/137)

of lesions were only measurable on a single slice due to small size or

avoidance of partial volume averaging effects. Sixty-six lesions were

non mass enhancements (NME) and 71 were masses (Table 2).

The mean and standard deviation ADC measures for each of the

ROI definition techniques were 1.27 ± 0.35, 1.26 ± 0.35, and 1.16 ± 0.36 x

10-3 mm2/s for 2D, 3D, and hotspot, respectively. Pairwise comparisons

revealed that hotspot ADC measures were significantly lower than 2D

and 3D segmentations (mean ADC difference = 0.09 x 10-3 (mm2/s),

respectively, p<0.001 for both) while there was only a small, but

statistically significant, difference in ADC measures between 2D and

3D segmentations (meanADCdifference = 0.01 x10-3mm2/s, p = 0.020).

Mean ADC measures were significantly higher for benign

(range, 1.21 to 1.31 x10-3 mm2/s) versus malignant lesions (0.97

to 1.11 x10-3 mm2/s) by all three ROI techniques (p< 0.001 for each,

examples, Figures 1, 2). AUCs for predicting malignancy were

similar for the three ROI techniques (2D: 0.66 [95% CI: 0.55-
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0.77], 3D: 0.67 [95% CI: 0.56-0.77], hotspot: 0.68 [95% CI: 0.57-

0.79], Table 3). No other histogram metrics measured from the

ROIs demonstrated improved performance over mean ADC

(Supplementary Table 1).
Data-derived ADC thresholds and
diagnostic performance

The optimal ADC cutoffs derived from the data (producing

100% sensitivity) resulted in the same cutoff value for 3D and 2D

ROIs (1.55 x 10-3 mm2/s) while the cutoff for hotspot was lower

(1.44 x 10-3 mm2/s) (Figures 3, 4; Table 4). Applying these data-

derived ADC cutoffs resulted in a 17.8% (19/107) reduction in

benign biopsies using 2D (95% CI: 10.4-25.1%) and hotspot ROIs

(95% CI: 10.0-25.5%), and 16.8% (18/107, 95% CI: 9.6-24.0%) for
TABLE 2 Subject and lesion characteristics.

N (%) or Median (Range)

Women (N total) 116

Lesions (N total) 137

Mean Age (years) 46 (20-75)

Race

White 100 (86.2%)

Asian 7 (6.0%)

Black 2 (1.7%)

American Indian /
Alaskan Native

1 (0.9%)

Native Hawaiian/Other
Pacific Islander

1 (0.9%)

Unknown 5 (4.3%)

Ethnicity

Hispanic/Latino 2 (1.7%)

Not Hispanic/Latino 107 (92.2%)

Unknown 7 (6.0%)

Primary MRI Screening Indication

Personal History 35 (30.2%)

Genetic Mutation/
Family History

71 (61.2%)

(Continued)
TABLE 2 Continued

N (%) or Median (Range)

Primary MRI Screening Indication

Other (eg, prior
atypia diagnosis)

10 (8.6%)

Menopausal Status

Pre 62 (53.4%)

Post 54 (46.6%)

Lesion size*

≤10mm 67 (48.9%)

>10mm 70 (51.1%)

BI-RADS Assessment*

Category 4 135 (98.5%)

Category 5 2 (1.5%)

Lesion type*

Mass 71 (51.8%)

NME 66 (48.2%)

Method of biopsy*

MRI guided needle biopsy 100 (73%)

Ultrasound guided biopsy 35 (26%)

Stereotactic biopsy 2 (1%)

Pathology Outcome*

Malignant 30 (21.9%)

Invasive ductal carcinoma
Ductal carcinoma in situ
Invasive lobular carcinoma
Malignant phyllodes

13
12
4
1

Benign 107 (78.1%)
*Calculated at lesion level (N = 137), otherwise at patient level (N = 116).
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3D ROIs (p > 0.99 for each pairwise comparison between

ROI techniques).

Performance of the data-derived cutoffs based on repeated cross-

validations was explored in Supplementary Table 2. Average sensitivity
Frontiers in Oncology 06107
estimated fromheld-out subsamples not used to derive cutoffs ranged from

95.9% to 96.0% across ROI techniques. Average benign biopsy reduction

rates across the held-out subsamples were similar to their values based on

all of the data, ranging from 17.3% to 19.6% across techniques.
FIGURE 1

ADC measures of a BI-RADS 4 11 mm mass detected in a 41-year-old woman who underwent screening MRI. Lesion ADCs calculated using the
different ROI techniques were 2.12, 1.84, and 1.97 x10-3 mm2/s for 2D, hotspot, and 3D ROIs, respectively. On biopsy, it was found that the lesion
was benign breast tissue with focal fibrocystic changes.
FIGURE 2

ADC measures of a BI-RADS 4 6 mm mass detected in a 55-year-old woman who underwent screening MRI. Lesion ADCs calculated using the
different ROI techniques were 1.21, 1.17 and 1.22 x10-3 mm2/s for 2D, hotspot, and 3D ROIs, respectively. The lesion was invasive ductal carcinoma
on biopsy.
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Stratified performance of ADC measure

Stratifying by size, no significant differences were observed in

benign biopsy reduction rates between larger lesions (19.6% [10/51]

to 21.5% [11/51]) and smaller lesions (14.3% [8/56] to 16.1% [9/56])

for each ROI technique (p > 0.36 for each) (Table 5). Similarly, there

were no significant differences in performance between ROI

techniques for either larger lesions (p > 0.99 for each pairwise

comparison) or smaller lesions (p > 0.99).

Stratifying by lesion type, benign biopsy reduction rates from each

ROI technique were comparable between NMEs (17.0% [8/47] to

21.2% [10/47]) and masses (15.0% [9/60] to 18.3% [11/60], p > 0.44 for

each) (Table 5). There were no significant differences in performance

using the three ROI approaches by lesion type. For masses: 2D ROI

(18.3% [11/60]), hotspot (15.0% [9/60]) and 3D ROI (16.7% [10/60]),

(p > 0.62 for each pairwise comparison) and for NMEs: 2D and 3D

ROI (17.0% [8/47], hotspot (21.2% [10/47], (p = 0.69).
Diagnostic performance of
prespecified cutoffs

A6702 cutoff (1.53 x 10-3 mm2/s): This cutoff was determined in the

A6702 trial to reduce biopsies while prioritizing sensitivity, with lesion

ADC values generated using 4 b-values (same b-values as this study)
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and a 3D ROI approach. In this dataset, applying the A6702 cutoff to

ADC values measured using the same approach as A6702 resulted in

19.6% reduction (21/107, 95% CI: 12.1-27.1%) in benign biopsies with

93.3% sensitivity (28/30, 95% CI: 77.9-99.2%). Results were similar for

2D ROI measures, with 19.6% reduction in benign biopsies (21/107,

95%CI: 12.1-27.1%) and 90.0% sensitivity (27/30, 95% CI: 73.5-97.9%).

For hotspot ROIs, the A6702 cutoff was notably higher than data

derived optimal ADC 100% sensitivity cutoff (1.44 x 10-3 mm2/s) and

avoided fewer benign biopsies (11.2% [12/107] vs. 17.8% [17/107]).

EUSOBI cutoff (1.3 x 10-3 mm2/s): The EUSOBI working group

recommends using a focused ROI in the area of lowest ADC within

the enhancing lesion, similar to the hotspot ROI approach in this

study. Applying the EUSOBI cutoff to hotspot ROI ADC measures

in this dataset led to a 36.4% reduction in benign biopsies (39/107,

95% CI: 27.2-45.7%) and 83.3% sensitivity (25/30, 95% CI: 65.3-

94.4%). However, applying the EUSOBI cutoff to 2D and 3D ROI

measures resulted in a very high reduction in benign biopsies

(50.5% [54/107] and 51.4% [55/107], respectively) but

substantially lowered sensitivity (70.0% [21/30] and 73.3% [22/30]).

Secondary analysis of ADC mapping using
two vs four b-values

Pairwise comparisons revealed that ADC measures computed

from only 2 b-values (0, 800 s/mm2) were not significantly different
TABLE 3 ADC for differentiating benign and malignant lesions using different region of Interest (ROI) techniques.

ROI Technique ADC measures
Mean ± SD (x10-3 mm2/s)

P-value AUC (95% CI)

Malignant
N = 30

Benign
N = 107

2D 1.11 ± 0.29 1.31 ± 0.35 <0.001 0.66 (0.55-0.77)

3D 1.10 ± 0.29 1.31 ± 0.35 <0.001 0.67 (0.56-0.77)

Hotspot 0.97 ± 0.32 1.21 ± 0.35 <0.001 0.68 (0.57-0.79)
ADC, apparent diffusion coefficient; AUC, area under the curve; CI, confidence interval; ROI, region of interest.
FIGURE 3

Distribution of lesion ADC measures calculated via different ROI techniques and the corresponding cutoff (dashed lines), derived using the highest
malignant ADC value (100% sensitivity).
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from measures computed using all four b-values (0, 100, 600, 800 s/

mm2) on average (|mean ADC difference|< 0.01 x10-3 mm2/s for

each pairwise comparison between ROI techniques, p > 0.17 for

each). Similarly, diagnostic performance of ADC measures

computed from 2 b-values were almost identical to that from

ADC measured computed from 4 b-values for all ROI techniques

(Table 6). For example, the benign biopsy reduction rates from the

A6702 cutoff were 19.6% vs. 19.6% (4 b-values vs. 2 b-values) for 2D

ROIs and 19.6 vs. 18.7% for 3D ROIs and benign biopsy reduction

rates from the EUSOBI recommended cutoff were 36.4% vs 34.6%

for hotspot ROIs.
Discussion

Suspicious enhancement of normal parenchymal tissue and benign

tumors on DCEMRI leads to benign findings in as many as four in five

screening-MRI prompted biopsies. Reducing false positives and

unnecessary biopsies is of high importance due to the growing

utilization of breast MRI for screening women with elevated breast
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cancer risk. At the same time, maintaining the high sensitivity of breast

MRI is critical to ensure its value for early detection of disease. Although

many studies have shown a clear potential of utilizing DWI for

improving the diagnostic performance of breast MRI with minimum

increase in cost and scan time, it has not yet been incorporated into BI-

RADS. One challenge lies in determining the optimal approach for

standardized integration of DWI in the clinic. Therefore, our study

investigated the effect of various ADC measurement approaches and

ADC cutoffs (data derived and prespecified) on performance to reduce

unnecessary breast biopsies in lesions detected on breast MRI screening

exams. Overall, our results using data-derived cutoffs showed that a

variety of ADC measurement techniques could significantly distinguish

benign and malignant breast lesions (AUCs 0.66 – 0.68) and reduce the

rate of unnecessary biopsies (by 17% to 18%) of conventional breastMRI

without missing any cancers. Results using prespecified cutoffs further

illustrated the importance of performing lesion ADC measurements

consistent to that by which the cutoffs were derived in order achieve

maximal performance.

Selection of ADC threshold depends on clinical preferences

regarding tradeoffs between sensitivity and specificity. Many prior
FIGURE 4

Receiver operating characteristic (ROC) curves for each ROI technique. The optimal data-driven threshold for each technique is marked with a circle
on each curve and the A6702 and EUSOBI thresholds are marked with a triangle and square, respectively. The thresholds are labeled in units of 10-3

mm2/s.
TABLE 4 Optimal data-derived ADC cutoffs maintaining 100% sensitivity.

ROI Technique

Optimal ADC Cutoff Benign Biopsy Reduction Rate

(x10-3 mm2/s) No. Estimate (95% CI)

2D 1.55 19/107 17.8% (10.4, 25.1%)

3D 1.55 18/107 16.8% (9.6, 24.0%)

Hotspot 1.44 19/109 17.8% (10.0, 25.5%)
ADC, apparent diffusion coefficient; CI, confidence interval; ROI, region of interest.
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studies have defined an ADC cutoff by equally optimizing sensitivity

and specificity (26–28). While a false positive finding can lead to

further testing (biopsy) and unnecessary emotional distress to the

patient, a false negative is potentially more detrimental to patient

safety as it could delay diagnosis, allowing the cancer to progress.

Therefore, our study selected thresholds to maximize sensitivity, at

the cost of reduced specificity, by using the highest malignant lesion

ADC as the cutoff (resulting in no false negatives; 100% sensitivity)

for safer adoption into clinical workflows. However, it is important

to acknowledge false negatives are virtually unavoidable when

applying data derived thresholds on ‘new’ datasets, as illustrated

by cross-validation testing in our study. Use of a more conservative
Frontiers in Oncology 09110
inflated ADC cutoff to keep sensitivity high may be warranted in

clinical practice [e.g., a 10% inflated cutoff was proposed in the

ECOG-ACRIN 6602 trial (10)]. Regarding ROI approach, we found

similar biopsy reduction rates could be achieved using 2D, 3D or

hotspot lesion ADC values in MRI detected lesions. However,

hotspot ADC measures were systematically lower and required a

lower cutoff value vs. 2D to achieve equal performance. While the

choice of ROI approach did not appear to affect the performance

based on lesion size (big or small), our data suggested that

measuring the hotspot (lowest ADC region) of the lesion may

incrementally improve diagnostic performance over 2D and 3D

ROI approaches for NMEs, warranting further investigation in a
TABLE 5 Subgroup analysis of ADC performance by lesion type and size.

Benign Biopsy Reduction Rate

Subgroup ROI Technique No. Estimate (95% CI)

Masses

2D 11/60 18.3% (7.8, 28.9%)

3D 10/60 16.7% (6.4, 26.9%)

Hotspot 9/60 15.0% (5.3, 24.7%)

NMEs

2D 8/47 17.0% (6.5, 27.6%)

3D 8/47 17.0% (6.5, 27.6%)

Hotspot 10/47 21.3% (8.9, 33.6%)

Lesion size ≤ 10 mm

2D 8/56 14.3% (4.2, 24.4%)

3D 8/56 14.3% (4.2, 24.4%)

Hotspot 9/56 16.1% (5.6, 26.6%)

Lesion size > 10 mm

2D 11/51 21.6% (10.4, 32.8%)

3D 10/51 19.6% (8.8, 30.4%)

Hotspot 10/51 19.6% (9.4, 29.8%)
ADC, apparent diffusion coefficient; CI, confidence interval; NME, non-mass enhancement; ROI, region of interest.
TABLE 6 Performance of different ADC measures using prespecified cutoffs.

A6702 ADC Threshold (1.53 x 10-3 mm2/s) EUSOBI ADC Threshold (1.3 x 10-3 mm2/s)

Sensitivity Benign Biopsy
Reduction Rate

Sensitivity Benign Biopsy
Reduction Rate

ADC
Map

ROI
Technique

No. Est. (95%
CI)

No. Est. (95%
CI)

No. Est. (95%
CI)

No. Est. (95%
CI)

4 b-values

2D 27/30 90.0% (73.5,
97.9%)

21/107 19.6% (12.1,
27.1%)

21/30 70.0% (50.6,
85.3%)

55/107 51.4% (41.7,
61.1%)

3D 28/30 93.3% (77.9,
99.2%)

21/107 19.6% (12.1,
27.1%)

22/30 73.3% (54.1,
87.7%)

54/107 50.5% (40.7,
60.2%)

Hotspot 30/30 100.0% (88.4,
100.0%)

12/107 11.2% (4.8,
17.6%)

25/30 83.3% (65.3,
94.4%)

39/107 36.4% (27.2,
45.7%)

2 b-values

2D 30/30 100.0% (88.4,
100.0%)

21/107 19.6% (12.1,
27.1%)

21/30 70.0% (50.6,
85.3%)

55/107 51.4% (41.9,
60.9%)

3D 29/30 96.7% (82.8,
99.9%)

20/107 18.7% (11.3,
26.1%)

21/30 70.0% (50.6,
85.3%)

55/107 51.4% (41.7,
61.1%)

Hotspot 30/30 100.0% (88.4,
100.0%)

12/107 11.2% (4.8,
17.6%)

25/30 83.3% (65.3,
94.4%)

37/107 34.6% (25.1,
44.1%)
fron
ADC, apparent diffusion coefficient; CI, confidence interval; Est., Estimate; ROI, region of interest.
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larger cohort. While prior studies have found limited diagnostic

value of DWI in NME lesions (29, 30), a focused ROI approach may

improve diagnostic accuracy by emphasizing the tumor regions of

highest cellularity (16, 31).

In addition to deriving optimal ADC cutoffs from this dataset,

we also applied two pre-defined cutoffs to validate their

performance for the various ADC measurement approaches. We

evaluated the cutoff identified by ECOG-ACRIN A6702 multicenter

trial (1.53 x 10-3 mm2/s) that prioritizes high sensitivity, which we

confirmed maintained very high sensitivity (90-100%) in our

dataset. This cutoff worked best for the 2D and 3D ROI

approaches, with 19.6% reduction in benign biopsies (similar to

the data-derived ADC cutoff), but had relatively lower diagnostic

performance when using hotspot ROI measures (achieving only

11.2% reduction in benign biopsies). On the other hand, the lower

EUSOBI recommended cutoff (1.3 x 10-3 mm2/s), which is being

utilized in some active multicenter trials [e.g., DWIST (22)],

achieved the best performance (36.4% reduction in benign

biopsies and 83.3% sensitivity) using the hotspot ROI approach in

our dataset because the EUSOBI cutoff led to much lower sensitivity

when using the other ROI techniques (70.0% and 73.3% for 2D and

3D, respectively). Regarding the choice of b-values, fitting of DWI

signal intensities using a monoexponential decay model to calculate

ADC is more robust with a greater number of b-values (4 vs 2), but

at the cost of longer acquisition time. Our results found no

significant difference in ADC measures computed with 2 vs 4 b-

values for any of the ROI approaches, with very similar diagnostic

performance and reduction in biopsies. These results are consistent

with previous studies that have investigated optimal b-value

combinations for breast DWI (15, 18, 32) and support the use of

a two-b-value combination of 0 and 800 sec/mm² for

optimal efficiency.

It is well recognized that in vivo ADCmeasures are affected by the

b-values used for ADC calculation (15, 33), and different scanner

platforms may have varying degrees of bias due to gradient

nonlinearity effects (34), while variations in other factors such as

spatial resolution and field strength could introduce other effects. A

strength of our study therefore was the standardized data collection,

which was performed at a single institution where the MRI scanner

and protocol were kept consistent over the study period. Furthermore,

focused inclusion criterion of lesions detected by screening MRI only

[as opposed to palpable lesions, incidental findings in cancer staging

MRI exams, or problem solving exams included in prior studies (15,

17, 35)] was used to generate a unique clinically-relevant dataset to

evaluate impact on MRI screening performance.

This study has several limitations. While our study focused

primarily on mean ADC values for each lesion, and we did not find

any advantages of using other histogram metrics, more

comprehensive radiomics based measures may further improve

lesion characterization. Our study followed consensus guidelines

for breast tumor ADC calculation (18) and did not explore alternate

b value schemas (such as using maximum b > 800 s/mm2 or non-

zero minimum b), which would likely result in different ADC values

and optimal cutoffs. Noise was not considered when calculating

ADC, which may have introduced bias. Additionally, taking into

account that the MRI signal follows a Rician distribution, especially
Frontiers in Oncology 10111
in low signal-to-noise scenarios, could help make ADC estimates

more consistent across different protocols, scanner hardware, and

centers (36). Also, only monoexponential modeling was used for

ADC map generation, while more advanced non-Gaussian, multi-

compartment and other DWI modeling techniques may better

characterize tissue microstructure and improve performance (37,

38). However, utilizing such advanced DWI models in breast

screening applications is challenging due to limitations on scan

time, small lesion sizes, and variable image quality of breast DWI in

general (as ADC can be more robust to noise effects compared to

other modeling parameters) (39, 40). Furthermore, all the

measurements were performed offline using custom built software

tools. Testing these ADC measurement techniques on clinical

workstations may be needed to facilitate safe and real world

implementation of DWI. Implementation of novel correction

techniques during acquisition such as for gradient nonlinearity

effects (34) and EPI distortions (41) are areas of future investigation

to improve accuracy of ADC measures. Lastly, a larger sample size

may be needed to identify subtle differences in diagnostic

performance, particularly between the 2D and 3D techniques

since most lesions were not measurable on multiple slices.

In conclusion, our findings demonstrate that unnecessary

biopsies can be avoided for screening breast MRI exams while

maintaining high sensitivity using a variety of ROI methods and b-

value combinations for lesion ADC measurement. 2D, 3D and

hotspot ROI approaches achieved similar rates of benign biopsy

reduction using data derived ADC thresholds, which require further

validation. The prespecified ECOG-ACRIN A6702 ADC cutoff

worked best for 2D and 3D ROIs, whereas the lower EUSOBI

cutoff was better suited for hotspot measures. Choice of ADC cutoff

depends on ROI approach and preferred performance tradeoffs

(biopsy reduction vs sensitivity). Shorter acquisitions with two b-

values (0, 800 s/mm2) might be sufficient, as the diagnostic

performance was similar to that of the longer four b-value (0,

100, 600, 800 s/mm2) acquisition. For safe and successful clinical

integration of DWI to reduce biopsies, any of these ROI approaches

and/or cutoffs could be applied but they need to be held consistent

to achieve optimal diagnostic performance.
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