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Newborns suffer high rates of mortality due to infectious disease—this has been gen-
erally regarded to be the result of an “immature” immune system with a diminished 
disease-fighting capacity. However, the immaturity dogma fails to explain (i) greater 
pro-inflammatory responses than adults in vivo and (ii) the ability of neonates to survive 
a significantly higher blood pathogen burden than of adults. To reconcile the apparent 
contradiction of clinical susceptibility to disease and the host immune response findings 
when contrasting newborn to adult, it will be essential to capture the entirety of available 
host-defense strategies at the newborn’s disposal. Adults focus heavily on the disease 
resistance approach: pathogen reduction and elimination. Newborn hyperactive innate 
immunity, sensitivity to immunopathology, and the energetic requirements of growth 
and development (immune and energy costs), however, preclude them from having an 
adult-like resistance response. Instead, newborns also may avail themselves of disease 
tolerance (minimizing immunopathology without reducing pathogen load), as a disease 
tolerance approach provides a counterbalance to the dangers of a heightened innate 
immunity and has lower-associated immune costs. Further, disease tolerance allows 
for the establishment of a commensal bacterial community without mounting an unnec-
essarily dangerous immune resistance response. Since disease tolerance has its own 
associated costs (immune suppression leading to unchecked pathogen proliferation), it 
is the maintenance of homeostasis between disease tolerance and disease resistance 
that is critical to safe and effective defense against infections in early life. This paradigm 
is consistent with nearly all of the existing evidence.

Keywords: neonate, infection, defense, tolerance, sepsis

introdUCtion

The world has seen under-five mortality greatly reduced over the last two decades but this progress 
has least benefited those in the first 28 days of life—the neonatal period—which now accounts for 
nearly half of all under-five deaths (1). Infectious disease is one of the most common causes of 
newborn death, accounting for more than a third of all neonatal mortality (1). Unfortunately, the 
underlying reasons for this are not clear, preventing a rational approach to preventing newborn death 
across the globe. Unquestionably, newborns are much more susceptible to infection causing clinical 
disease (2–5). Also clear is that the neonatal immune system is very different than that of adults 
(6, 7). Many immunomodulatory approaches to improving outcome in neonatal infectious disease 
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have been unsuccessful (8, 9), which necessitates a careful reex-
amination of our assumptions and beliefs regarding the nature of 
neonatal immune responses. The current dogmatic view, namely 
that the neonatal immune system is immature and therefore 
deficient to resist infection as compared to that of an adult (10), 
is inadequate as it does not capture the existing body of evidence 
(11). We recently reviewed the molecular mechanisms guiding 
the ontogeny of immune response from birth throughout infancy, 
emphasizing that newborns harbor an immune phenotype that 
is a match to the unique environmental pressures and challenges 
in the first days of life (11, 12). Balancing disease tolerance and 
resistance, while a challenge throughout the entire life span, is also 
unique for newborns (12). We here place the existing evidence in 
a larger framework to expand on this concept of host defense as 
a balance between disease tolerance and resistance to help guide 
the search for actionable answers.

neonataL Host deFense FroM 
inFeCtioUs disease: tHe CoMpLete 
piCtUre

Host defense to infection can broadly be divided into three 
different, not mutually exclusive, categories: disease avoidance, 
disease resistance, and disease tolerance (13). A more detailed 
exploration into the finer details of these defense strategies has 
been previously been outlined by Medzhitov et al. in their 2012 
Science paper titled “Disease Tolerance as a Defense Strategy” 
(13). Here, each strategy is briefly summarized and connected 
explicitly to the neonatal immune response, which has been 
found time and time again to be distinct from the adult immune 
response (4, 11, 14–17):

(i) An avoidance strategy reduces the risk of infection by 
preventing exposure to infectious agents. Human avoidance of 
rotten meat consumption through an olfactory response to the 
metabolites produced by bacteria breaking down tissue is an 
example of avoidance (13). Limitations in both newborn mobil-
ity and exclusive breastfeeding can prevent potentially harmful 
exposure and represent an example of an avoidance strategy in 
early life (18). However, there are obvious physiological, physical 
as well as social and cultural limitations to this strategy; there is an 
unfortunate inevitability to some degree of pathogen exposure.

When avoidance has failed and infection has been established, 
the (ii) disease resistance approach aims to reduce pathogen 
burden and has traditionally been considered the primary modus 
operandi of the immune system (and thus the focus of most 
prophylactic or therapeutic interventions). However, unleashing 
antimicrobial immune responses can also cause collateral dam-
age (13). In fact, much of what is clinically recognized as signs 
and symptoms of infection relates to this immune pathology 
(19). For example, a recent comparison of sepsis models showed 
that lipopolysaccharide (LPS) treatment in mice “induced a very 
similar course of inflammation” as infection (20). Given that 
LPS has no intrinsic virulence, the pathology of LPS challenge 
must result from host response, and thus similarities between 
LPS-induced sepsis and, e.g., polymicrobial sepsis (21) implicate 
host-mediated immune pathology as a key agent of disease. This 

is further evidenced by murine studies showing that knocking 
out anti-inflammatory cytokine production during infection 
is associated with worse outcomes without impacting bacterial 
clearance or viral replication (22, 23). Importantly, the newborn 
is particularly susceptible to this host-mediated immune pathol-
ogy (e.g., intraperitoneal LPS challenge at 10 mg/kg resulted in 
100% mortality in neonatal mice and 0% in adults) (11, 24). It is 
therefore not surprising that evolution has selected for a higher 
threshold that needs to be overcome in early life before a full-
fledged immune response can be unleashed (12). This leaves the 
newborn with a conundrum; a disease avoidance approach has 
clear limitations [indiscriminately avoiding bacterial coloniza-
tion is not only impossible, but would be harmful as the first few 
days of life are extremely important for establishing a healthy and 
diverse community of commensal enteric bacteria (25)], while a 
disease resistance approach carries substantial risk for immune-
mediated damage (11, 13, 24, 26).

Newborns thus likely also rely on employing the third strategy 
of host defense, disease tolerance. (iii) Disease tolerance reduces 
potential harm to the host without reducing pathogen burden, 
generally by minimizing the level of immunopathology that 
results from a resistance response (13). This strategy is understood 
to be widely employed by plants (27) but the notion that animals 
(and humans) may rely on a disease tolerance defense as well has 
only recently begun to be considered (13). It is important to note 
that disease tolerance is different from the concept of adaptive 
immune tolerance: the former is a broad, categorical term for 
a defense strategy of coping with infection, and the latter is the 
immunological phenomenon of immune unresponsiveness to 
specific antigens. To our knowledge, the concept of disease toler-
ance as a defense strategy in early life has never been experimen-
tally examined. However, existing evidence, while not proof, is at 
least consistent with its existence. Lastly, the host microbiota has 
increasingly been recognized as key to host defense, impacting all 
aspects of from avoidance (colonization resistance) to immune 
development; however, its role and relation to disease tolerance 
is significant and unexplored, as the tolerance to a range of 
microbial commensals is essential for a healthy human host (28).

tHe Case For HiGHer disease 
toLeranCe in earLy LiFe

A disease tolerant vs. intolerant phenotype would be expected to 
display a lower morbidity/mortality relative to a same pathogen 
load, and/or a higher pathogen load at a similar mortality level 
(13). While many suspected cases of bacterial sepsis in both 
neonates and adults are not confirmed by a positive blood culture 
(29, 30), within culture-positive cases, neonates have consistently 
been found to exhibit much higher circulating bacterial loads 
than adults (31). Despite expected variability depending on the 
pathogen involved, studies generally report bacterial counts in 
adults (with an active bacterial infection) to be somewhere in the 
range of 1–30 CFU/ml blood (31–34), while in neonates, the more 
commonly detected range lies between 50 and 500 CFU/ml blood 
with one-third of infected newborns harboring bacterial counts 
in excess of 1,000 CFU/ml (31, 35). Furthermore, while 50% of 
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adult culture-positive cases harbor <1 CFU/ml blood (considered 
a “low” bacterial load), 78% of culture-proven newborn sepsis 
cases reported  >5  CFU/ml of blood, and  <50  CFU/ml blood 
was considered to be low for neonates (31). Most of these studies 
were not set up to compare newborn vs. adult bacterial loads in 
sepsis but rather were framed in the context of describing how 
much blood would be needed in order to confidently determine 
a culture-positive or a -negative state, thus do not directly address 
this comparison (34). However, this relationship also holds true 
in more controlled animal models, where much higher bacterial 
counts are consistently found in the blood as well as visceral 
organs of septic neonatal vs. adult mice challenged with the same 
pathogen (36).

Perhaps, a higher bacterial load in infected newborns does 
not seem surprising at first glance—after all, neonates are more 
susceptible to suffer from infection, and higher bacterial loads 
would seem to be entirely in line with this observation. However, 
this simple concept begins to unravel when age-specific mortality 
statistics are taken into consideration. While bacterial load corre-
lates with outcome across all ages, there are log-fold differences in 
the scale of circulating bacteria which neonates are able to survive 
in comparison to adults. Studies have shown 100% mortality in 
adult patients with greater than 100 CFU/ml blood (37) and 84% 
mortality when the bacterial load was greater than 5 CFU/ml blood 
(38). By contrast, a cohort of neonates with sepsis suffered 73% 
mortality when bacterial loads were greater than 1,000 CFU/ml  
blood and 37% when less than 1,000 CFU/ml blood (35). This 
particular study describes the “low bacterial count with 37% 
survival” group as those with bacterial loads between 5 and 49 
colonies per ml of blood—an amount that would be considered 
extremely high and lethal in adult patients (31). As stated above, 
the most recent studies tend not to report the magnitude of bacte-
rial burden in human patients with sepsis, but simply whether they 
were culture positive or negative; this precludes a full assessment 
of the relationship between bacterial load and mortality across 
the age groups. However, many animal models using CFU/ml  
blood as an outcome validate the observation that neonates are 
able to survive much higher circulating bacterial loads than adults 
(36, 39). Note that this is not to suggest that newborns are able to 
survive higher levels of bacterial exposure than adults (in fact, the 
opposite is true, as detailed below), rather that neonates are able 
to survive levels of bacteremia that adults cannot.

tHe BaLanCe oF disease resistanCe 
Vs. iMMUnopatHoLoGy

Many studies have described deficiencies in the neonatal innate 
immune system that could be responsible for the decreased ability 
to clear invasive pathogens. For example, kinetics of pathogen 
clearance in animal models of neonatal infection show that 
neonates take longer to clear invasive bacteria than their adult 
counterparts (36, 39). A recent study comparing methicillin-
resistant Staphylococcus aureus infection in neonatal and adult 
mice attributed a delayed clearance in neonates to inefficient 
phagocytosis and a limited neutrophil recruitment to the site 
of infection. Specifically, in neonates, neutrophil production 

dropped off despite the continued presence of bacteria, whereas 
in adult animals, a diminishing neutrophil production corre-
sponded with bacterial clearance. Other studies have implicated 
impaired neutrophil recruitment as a potential explanation for 
the increased susceptibility to infection in early life (40, 41). 
Furthermore, while neonates have higher basal levels of circulat-
ing phagocytic cells than adults, they are generally considered 
to be less efficient phagocytes (40, 42–45). For example, in vitro 
neonatal monocytes and neutrophils in whole blood cultures have 
been shown to have an impaired phagocytic ability of Escherichia 
coli and S. aureus when compared to adults (44). However, other 
groups that found similarly reduced phagocytosis of S. aureus by 
newborn polymorphonuclear leukocytes (PMNs) also found that 
the exposure of neonatal PMNs to adult plasma resulted in adult 
levels of bactericidal activity and hydrogen peroxide production 
(against S. aureus) (17, 46). Similarly, phagocytosis of group B 
Streptococci and E. coli by adult and neonatal purified monocytes 
had similar phagocytic activity between the different age groups 
(45, 47). This brief excursion into the literature of just one aspect 
of host defense immediately highlights that the ability of newborn 
immune cells to fight infection is a purposeful response and not 
simply a state “deficient as compared to the adult.”

Just as in vitro comparisons of neonatal and adult phagocytic 
cells have contributed to the theory that neonatal susceptibility to 
infection is a result of “immaturity,” so has the evidence accrued 
which describes diminished in vitro pro-inflammatory responses 
when comparing neonatal and adult cells (7, 10, 48, 49). However, 
animal models of neonatal sepsis using a variety of pathogens 
(both bacterial or viral) or TLR agonists have found neonates to 
generate an inflammatory response equal to or greater than that  
of adults (1, 24, 39, 50–52). Furthermore, exogenous supplemen-
tations of pro-inflammatory cytokines have been shown to greatly 
increase mortality in a polymicrobial model of sepsis in neonatal 
mice (53, 54). This increased mortality of neonatal sepsis does 
not relate to a decreased bacterial clearance, as neonatal mice also 
suffer a much greater mortality than adults when challenged with 
purified TLR agonists in the absence of an infection (24, 26). This 
has led to the realization that the inflammatory response itself is 
considered to be largely responsible for the higher mortality of 
infected newborns vs. adults (53, 54).

Given this higher risk of the newborn vs. adult to suffer from 
the immune response to an infection (or TLR agonist), newborns 
would benefit from mechanisms that would reduce the risk to 
unleash a harmful antimicrobial immune response. The molecular 
mechanisms related to this have recently begun to be deciphered 
and highlight a direct connection to disease tolerance. An E. coli 
model of neonatal sepsis found that neonatal TRIF−/− mice suf-
fered a higher mortality than WT or MyD88−/− strains with the 
opposite being true in young adults (55). Neonatal prioritization 
of TRIF-dependent pathway activation when exposed to TLR 
agonists was then linked to a strong induction of type 1 interferon 
regulatory responses, as opposed to the adult MyD88-dependent 
pro-inflammatory response. A molecular explanation for these 
age-dependent differences in defense strategy has recently been 
identified as the endogenous, heterodimeric complex of TLR4 
ligands S100A8/A9: high levels of S100A8/A9 shift TLR signal-
ing from MyD88- to TRIF-dependent pathways. S100A8/A9  
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alarmins are also known to be massively released at birth. This 
alarmin release is entirely incongruous with the “immune 
immaturity” paradigm as it represents a purposeful shift away 
from MyD88 pathway activation, the preferred adult pathway. If 
neonatal death was driven by a simple lack of adult-like features, 
one would expect that any external shift toward a more adult-like 
immune response would lead to better outcome. But the opposite 
is in fact the case, as S100a9−/− neonatal mice suffer much higher 
mortality than their WT counterparts when infected, implying 
the alarmin release at birth; i.e., the subsequent shift away from 
an adult-like response is an important and necessary step to suc-
cessfully mount a defense against an early-life infection (11, 56). 
The age-dependent production of S100A8/A9 thus represents 
an example of disease tolerance unique to neonates that has 
developed to avoid immunopathology from an MyD88-driven 
pro-inflammatory response at the potential cost of rapid bacterial 
clearance.

This emphasis on the TRIF-dependent response is entirely 
incongruous with the “immune immaturity” paradigm. While 
this is true for pathogens that signal through TLR4, other mecha-
nisms of disease tolerance to, e.g., Gram-positive infections still 
need to be identified. For example, there are several other 
mechanisms in place in early life that commonly are described 
as immune suppressive, with the notion that these are remnants 
of the mechanisms that allow semiallogeneic mismatch in utero 
without rejection of maternal cells by the fetus (12). However, 
these mechanisms persist far beyond the immediate perinatal 
period and thus likely have other benefits in postnatal life, such 
as increasing disease tolerance by reducing immune-mediated 
pathology (“immune cost”) even if it comes at the cost of an 
increased bacterial burden (13).

tHe BaLanCe oF disease resistanCe 
Vs. disease toLeranCe

The benefit of disease tolerance as a host-defense strategy depends 
on the capacity for virulence of a given invasive agent. If the only 
pathogen ever encountered by a host organism secreted virulence 
factors that inflicted mortality in 100% of cases, there would be 
intense pressure to improve resistance and no pressure to improve 
tolerance. More relevant to humans is the opposite case; there are 
myriads of bacteria that rarely cause mortality and provide both 
direct and indirect fitness advantages to the host. This creates 
a situation where disease tolerance is a viable defense strategy, 
but to a finite degree. Even very low virulence organisms, if left 
totally unchecked, would cause disease. To prevent disease from 
occurring upon the transition from the semi-sterile environment 
in utero into the microbe-rich ex utero world, disease tolerance 
(immunosuppression preventing immunopathology) and disease 
resistance (inflammatory/antimicrobial responses preventing 
virulence) must maintain a state of homeostasis for optimal host 
defense. Without active suppression of inflammatory innate sign-
aling, the initial influx of microbes from the birth process could 
prompt an enormous, potentially lethal inflammatory response; 
even if this inflammatory response did not result in mortality, 
there would be serious short- and long-term health ramifications 

as a result of inadequate bacterial diversity in the gut (25, 57). If 
there was no disease resistance, opportunistic colonizers would 
inevitably reach the blood stream and cause disease (Figure 1). 
Since adults (a) are less sensitive to immunopathology caused by 
inflammation, (b) have already established an enteric microbi-
ome, and (c) are not hindered by the energetic requirements of 
development and environmental change (see below); the benefits 
of disease resistance (keeping pathogens out) outweigh the costs 
of disease tolerance (letting pathogens in).

tHe Cost oF Host deFense

Any form of host response (or lack thereof) to an invasive agent 
must be weighed in terms of the potential for self-inflicted dam-
age, or immunopathology. The resultant immunopathological 
impact of any given response can range from negligible (i.e., mild 
fever) to fatal (i.e., septic shock), and thus the immunopathology 
associated with an immune response has been described as the 
“immune cost” of a response (58). The three principle host-defense 
strategies of avoidance, disease tolerance, and disease resistance 
can be ordered in terms of increasing immune cost, i.e., immune 
pathology: avoidance has a very low cost, resistance a very high 
cost, and tolerance lies somewhere in between (13). In addition 
to the cost of damage from an immune response, however, there 
is also an associated “energetic cost” which describes the amount 
of energy required to deploy a given strategy. Ordering the 
strategies by energetic cost indicates the same order as that of 
immune cost—disease avoidance very low (primarily behavioral, 
little to no regulation), disease resistance very high (58) (massive, 
highly regulated cell mobilizations across the body), and disease 
tolerance in the middle (some regulatory maintenance to avoid 
resistance and tissue healing). Both types of costs, immune and 
energetic, are particularly important to consider when discussing 
infections in neonates, as newborns are (a) particularly sensitive 
and prone to immunopathology (24) and (b) in the midst of a 
rapid growth and development phase which demands a high 
energy input to be maintained (59), i.e., neonates are unable to 
“pay” the costs of a full resistance response (Figure 2). Avoidance 
has failed by definition when discussing an already established 
active infection, which leaves disease tolerance as the primary 
defense strategy for newborns to cope with an invasive agent. This 
comprehensive, holistic point of view takes into account aspects 
of immunity (i.e., energy balance) which fall beyond the narrowly 
defined immune system and is best captured with the phrase “host 
fitness cost.” The concept of host fitness cost helps better explain 
some seemingly paradoxical observations in neonatal immunity 
and can inform interventions moving forward.

tHe roLe oF tHe MiCroBioMe  
in neonataL Host deFense

In the last decade, a vast body of research has emerged, implicat-
ing the microbiome as a critical mediator of neonatal immune 
development (2, 6, 28, 60–62). Dysbiosis during the neonatal 
period has been associated with necrotizing enterocolitis, and 
both early- and late-onset sepsis (60, 63–65). Given the potential 
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FiGUre 1 | The cost of host-defense strategies in newborn infection. The immune response must be suppressed to a degree in order to allow healthy commensal 
colonization of the gut, though unchecked suppression can result in gut “leakiness” and lead to infection. Upon infection, newborns must balance the potential 
self-inflicted harm associated with the pro-inflammatory/antimicrobial response (immunopathology) with the dangers of unencumbered pathogen proliferation and 
ensuing virulence. A disease tolerance strategy reduces immunopathology and supports microbiome development at the cost of pathogen load, while a disease 
resistance strategy reduces pathogen load at the cost of microbiome development and immunopathology.

FiGUre 2 | Difference in energy demands of the newborn and adult as it relates to infectious disease. Newborns must devote a large amount of energy toward 
growth and development which adults are able to spend on maintaining homeostasis. When healthy (a), these differences in energetic demands may not be 
important, though when fighting infectious disease (B), the newborn is unable to expend the resources required to employ a strategy of disease resistance  
and must therefore rely more heavily on disease tolerance.
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costs of impaired microbiome development, the neonatal immune 
system seems to have developed specific mechanisms to ensure 
“safe colonization” of the interphase between external and internal 

environments. Some of these mechanisms are reviewed below. 
The active immunosuppressive portion of the neonatal immune 
response may not only serve to minimize the damage associated 
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with immunopathology but also ensure that the neonatal gut can 
be colonized with a large and diverse array of commensal bacte-
ria. The interplay and dependence on commensal bacteria begins 
immediately with colonization, as transcriptomic analysis of 
germ-free mice exposed to common commensal bacteria showed 
the most prominent changes in genes associated with toll-like 
receptor (TLR) and type 1 interferon (IFN1) signaling pathways, 
which, as evidenced by the aforementioned importance of the 
TRIF-dependent signaling, are crucial in early life (66).

Newborns heavily depend on avoidance to prevent infec-
tion. In the context of microbial colonization, they rely on their 
mothers to introduce them to the right organisms and promote 
their growth, meanwhile avoiding unwanted colonizers from 
outcompeting the beneficial ones. While maternal influence on 
prepartum colonization is still being debated (67), postpartum 
colonization has been shown to be largely derived from the 
vagina during birth (68). In newborns sampled during the first 
week of life alongside their mothers, the majority of taxa detected 
in their stools were also detected in stool samples taken from their 
mothers at the same time (69). While newborns are colonized by 
bacterial families such as Bacteroides and Clostridia acquired from 
their mothers, the composition of their microbiota is still different 
from their mothers with Escherichia/Shigella, Bifidobacterium, 
Streptococcus, and Enterococcus occupying roughly half the space 
of the entire intestinal microbiome in newborns but only about 
10% in their mothers [the exception is Bacteroides, which feature 
prominently in both (69)]. While life will eventually expose an 
individual to a multitude of different foods and diverse microbial 
environments, newborns subsist solely on breast milk and have no 
environmental exposure in their control. Thus, microbes found in 
human milk or other maternal sources that utilize human milk 
oligosaccharides dominate initial colonization (70, 71) and in 
turn provide resistance to colonization by potential pathogens 
(72) and other forms of immune support (28). Consequences of 
less-controlled exposure are suggested by the detriment of devia-
tion of exclusive breastfeeding practices; excusive breastfeeding 
in low- and middle-income countries (and perhaps high income) 
is associated with a substantial reduction in newborn disease and 
mortality (18).

Avoiding inflammatory or deleterious responses to commen-
sal microbes is important throughout the life span of colonized 
hosts. Strategies put in place by the newborn are appropriate for 
the environmental pressures and physiological requirements of 
this unique early-life period. Adults depend on a thick mucous 
layer packed with antimicrobial peptides and dimerized IgA 
alongside trained innate and adaptive mucosal responses to 
prevent microbial translocation into host tissues (73). Since the 
development of these defenses first requires stimulation by the 
microbiota, newborns must employ a different repertoire of toler-
ance strategies prior to the introduction of solid food. For example, 
newborn intestinal epithelial cells (IECs) produce a micro-RNA 
molecule that targets IRAK-1, a necessary signal transducer of 
inflammatory TLR signaling for degradation and thus reduces 
inflammation caused by commensal stimulation of intestinal 
TLRs (74). However, this mechanism requires continuous TLR4 
stimulation for its maintenance and is absent in pups delivered 
by C-section. Also, murine IECs produce antimicrobial peptide 

CRAMP only prior to Paneth cell development and show some 
efficacy against Listeria infection (75). In fact, weaning appears to 
be a massive transitory period for IEC regulation. Transcriptional 
regulator Blimp1 is active in the newborn intestine and ceases to 
be expressed upon weaning; its deletion results in an adult-like 
intestinal architecture at birth and with it a substantial early-
life mortality in animal models (76). A more comprehensive 
evaluation of intestinal transcriptional regulation showed a more 
global postweaning shift in rodents with an increase in IL-1/TLR 
signaling post weaning that was lost in MyD88/TRIF−/− mice, 
showing that the intestinal immune environment is very sensitive 
to changes in early-life transitions (77) and is likely guided by the 
changing microbial and nutritional environment.

Newborn colonizers also play an instrumental role in prevent-
ing immune hyperresponsiveness within and outside the mucosal 
immune system. Widely studied commensal Bacteroides fragilis 
promotes an anti-inflammatory environment by inhibiting the 
recruitment of invariant NKT cells to the gut and lung mucosa, 
leaving mice less susceptible to inflammatory disease later in 
life (78). dsRNA from lactic acid bacteria (LAB) preferentially 
promotes IFN-β expression in mucosal dendritic cells to concen-
trations that predominantly drive their anti-inflammatory effects 
in adult rodents (79). Since LAB are prominent colonizers of 
the newborn gut, it is likely that they perform similar functions 
during this period—although that mechanism still needs to be 
investigated. An influx of highly activated regulatory T cells into 
the neonatal skin has been linked with tolerance to commensal 
skin bacteria, an event that was not replicated when the same 
experiment was performed in adult animals. Selective inhibition 
of these specific Tregs completely prevented tolerance to com-
mensal bacteria colonization later in life (80).

There is evidence in adult animal models that microbiome-
derived products can reduce disease pathology, i.e., increase 
disease tolerance. Recently, the clostridia-derived metabolite 
desaminotyrosine (DAT) was shown to promote type 1 IFN sign-
aling in lung dendritic cells, resulting in a less damaging response 
to influenza challenge and an increased animal survival, while 
the viral burden in DAT-treated mice remained unchanged (81). 
Newborns are thought to be at risk for “inside-out” infections, 
where the pathogen escapes mucosal compartments, supported 
by the identification of the same strain of bacteria from septic 
newborns in their feces (82). The microbiome is not only instru-
mental in excluding potential pathogens, but by promoting an 
anti-inflammatory environment, it likely also plays a role in 
reducing the potential harm from responses to inflammatory 
microbes. For example, newborn mice given probiotic strains 
of Lactobacillus were rescued from death caused by Citrobacter 
rodentium infection (a mouse model of enteropathogenic E. coli) 
via a mechanism involving the recruitment of Tregs to the colon 
(83). A second group was administered L. acidophilus alongside 
a prebiotic to newborn mice prior to challenge with C. rodentium 
in young adulthood, a finding that treated mice had an enhanced 
IL-10 and a diminished NF-kB response to infection, in addition 
to a faster recovery from disease (84).

Taken together, host-commensal bacteria crosstalk in new-
borns is highly dependent on maternal care for both original 
inoculation and continued support through breastfeeding and 
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controlled environmental exposure. This complete dependence 
is unique to the newborn period, highlighted by both the devas-
tating consequences of suboptimal breastfeeding practices and 
the reworking of intestinal and microbial architecture once solid 
foods are introduced. During this time, commensals selected 
to thrive in newborns promote disease tolerance by boosting 
anti-inflammatory immune responses and disease avoidance by 
excluding potentially pathogenic organisms from coming into 
contact with the epithelium, thus preventing infection of the 
mucosal and systemic sites.

transLationaL iMpaCt

Successful immune defense relies on a balance between disease 
resistance and disease tolerance strategies to bring the host back 
to homeostasis. The ideal intervention is one that would hasten 
restoration of homeostasis or enable the system to deal with 
an extreme imbalance in either direction for longer periods. A 
promising approach that fits this requirement is to work in the 
realm of innate immune memory or trained immunity—the 
concept that an initial infection or an exposure to a pathogen 
can provoke an enhanced innate immune response when the 
organism is re-exposed or exposed to a different pathogen (85) 
Unlike many traditional interventions, prophylactic or treat-
ment approaches reliant on trained immunity are not depend-
ent on shifting the response only toward resistance. Numerous 
examples of successful interventions reliant on innate immune 
memory have been described in animal models and human clini-
cal trials (85). Various TLR agonists have, for example, shown to 
protect nonspecifically against mortality from a polymicrobial 
challenge 24 h later in neonatal mice (41). A similar model used 
a Listeria monocytogenes challenge and found TLR agonists to 
be protective as well. Cord blood monocytes stimulated with 
endotoxin showed an enhanced activity both 7 and 14 days later. 
Moreover, a retrospective analysis revealed correlation between 
histological chorioamnionitis (a condition prompting an 
inflammatory response) exposure and a reduction in late-onset 
neonatal sepsis (85). Most impressively, probiotics in newborns 
have been shown to be very powerful in reducing both necrotiz-
ing enterocolitis (86), a devastating disease characterized by 
colonization with proteobacteria and excessive inflammation 
(87), and most recently, sepsis and respiratory disease when 
administered within days of birth (88). Finally, certain live vac-
cines (particularly Bacille Calmette–Guérin) have been shown 
to reduce all-cause neonatal mortality, presumably through 

nonspecific protection against unrelated pathogens in the first 
month of life (89).

sUMMary

The paradigm that neonates are more susceptible to infectious 
disease than adults is well known, well documented, yet poorly 
understood. The high susceptibility and mortality figures have 
largely been attributed to “immune immaturity,” a vague concept 
that is predicated on findings of weaker antimicrobial responses 
of newborns than those of adults. Here, we posit that an increased 
susceptibility to infection in neonates is not a result of immaturity 
but rather one of immunosuppressions, which is in part an active 
defense strategy termed disease tolerance. This is supported by 
the finding that neonates can survive significantly higher bacte-
rial loads than adults during active infection. This observation is 
consistent across many studies, yet still is oft ignored and cannot 
be adequately explained by the immaturity paradigm. Employing 
a defense strategy of disease tolerance during infection rather than 
disease resistance confers some advantages but is more likely a virtue 
of necessity. Compared to the adult-like disease resistance strategy, 
disease tolerance is (a) less energetically intensive (critical during a 
period of rapid development), (b) less likely to incur serious damage 
associated with bacterial clearance (neonates are more sensitive to 
immunopathology than adults and seem to have a heightened innate 
immune response), and (c) less likely to interfere with the develop-
ment of the gut microbiome (overactive resistance pathways could 
result in a dangerous inflammatory response and interfere with 
colonization). Maintaining homeostasis between disease resistance 
and disease tolerance is a critical outcome of fighting and prevent-
ing infection. Fortunately, interventions, which work within these 
constraints, have been identified and promise to finally usher in the 
desperately needed reduction of global newborn mortality rates.
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Infections take their greatest toll in early life necessitating robust approaches to protect the 
very young. Here, we review the rationale, current state, and future research directions for 
one such approach: neonatal immunization. Challenges to neonatal immunization include 
natural concern about safety as well as a distinct neonatal immune system that is generally 
polarized against Th1 responses to many stimuli such that some vaccines that are effective 
in adults are not in newborns. Nevertheless, neonatal immunization could result in high-pop-
ulation penetration as birth is a reliable point of healthcare contact, and offers an opportunity 
for early protection of the young, including preterm newborns who are deficient in maternal 
antibodies. Despite distinct immunity and reduced responses to some vaccines, several vac-
cines have proven safe and effective at birth. While some vaccines such as polysaccharide 
vaccines have little effectiveness at birth, hepatitis B vaccine can prime at birth and requires 
multiple doses to achieve protection, whereas the live-attenuated Bacille Calmette–Guérin 
(BCG), may offer single shot protection, potentially in part via heterologous (“non-specific”) 
beneficial effects. Additional vaccines have been studied at birth including those directed 
against pertussis, pneumococcus, Haemophilus influenza type B and rotavirus providing 
important lessons. Current areas of research in neonatal vaccinology include characteriza-
tion of early life immune ontogeny, heterogeneity in and heterologous effects of BCG vaccine 
formulations, applying systems biology and systems serology, in vitro platforms that model 
age-specific human immunity and discovery and development of novel age-specific adju-
vantation systems. These approaches may inform, de-risk, and accelerate development of 
novel vaccines for use in early life. Key stakeholders, including the general public, should be 
engaged in assessing the opportunities and challenges inherent to neonatal immunization.

Keywords: neonatal, vaccine, protection, trained immunity, novel adjuvants

iNTRODUCTiON

Despite the success of the Millenium Development Goal era from 2000 to 2015, during which the 
under five mortality rate was reduced by 53%, ~ 2 million infants under 6 months die annually due 
to infections (1). Of the 5.9 million children under 5 years of age who died in 2015, 45% were in the 
first month of life (2). Many of these deaths are attributed to vaccine preventable illnesses, occurring 
before protection is afforded by routine immunization given as part of the expanded program of 
immunization (EPI). Although this commences at 6–8 weeks of age, the first dose does not provide 
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immediate protection and multiple doses are required, leading to 
vulnerability in the first 6 months of life. In an effort to reduce the 
under 5-year old mortality rate further, to ≤25/1,000 live births 
by the end of 2030, a number of strategies are being explored 
and implemented as part of the sustainable development goal-3. 
These include maternal immunization, which, although it shows 
great promise for a number of pathogens, including pertussis 
and influenza, is limited by safety and ethical concerns, and is 
of limited value for the ~2.6 million infants born preterm, prior 
to maternal antibody (Ab) transfer (3). The reality, that we rely 
on immunization occurring early in life, coupled with recent 
advances in our understanding of neonatal immune responses 
(4–6), has led to renewed interest in neonatal immunization as a 
promising and effective strategy, to reduce morbidity and mortal-
ity in young infants. Thus, the topic of early life immunity, and in 
particular neonatal immunization, is one of tremendous public 
health relevance.

Great strides in vaccine development over the last century 
have resulted in a number of effective vaccines being given in 
early life, but only Bacille Calmette–Guérin (BCG), hepatitis 
B (HBV), and polio vaccine [oral polio vaccine (OPV); or 
inactivated polio vaccine (IPV)] have been routinely recom-
mended at birth. For some pathogens, including pertussis and 
tuberculosis (TB), better vaccines are needed, while for others 
such as human immunodeficiency virus (HIV) and respiratory 
syncytial virus (RSV), efficacious vaccines have yet to be devel-
oped and licensed for any age group. Among the approaches 
to improving protection against infection in early life, neonatal 
immunization is ripe for further research and development. 
Herein, we review the rationale for neonatal immunization 
and highlight essential research areas, including the study of 
immune ontogeny and the development of vaccines optimized 
for early life administration.

Rationale for Use of vaccines in the 
Neonatal Period
The neonatal period is defined as the first 28 days of life. For 
the purpose of this review, we define neonatal vaccines as those 
given “at birth” or within the first 28 days of life. Of note, EPI 
vaccines are licensed to be given within the first few weeks of 
life, and in reality, the “birth dose” is given across a range of 
time in the first month of life, a variability that to our knowledge 
has not been systematically studied with respect to relative 
vaccine efficacy. In contrast, we define infant vaccines as those 
given after the first 28 days of life. In countries following the 
EPI schedule, after the neonatal doses of BCG, HBV, and polio 
vaccines, the next EPI schedule dose is typically given between 
6 and 8 weeks of life. As with any vaccine approach, develop-
ment of neonatal vaccines must take into account potential 
limitations, including: (a) need to establish safety, (b) lack of 
effectiveness of some vaccines in early life, (c) challenges of a 
translational path that typically starts with formulations opti-
mized for adults, rather than generating formulations that are 
optimal for the young, and (d) potential blunting of neonatal 
Ab responses after maternal immunization. Nevertheless, the 
rationale for neonatal immunization is robust and includes: 

(a) the heavy burden of early life infection; (b) that birth is a 
practical point of healthcare contact, and pairing immuniza-
tion with birth may lead to health benefits for both mothers 
and newborns; (c) immunization at birth may provide earlier 
protection than existing immunization schedules; (d) the likely 
benefit of protection to babies born preterm for whom maternal 
Ab transfer is limited, with an increased risk of serious infec-
tions throughout childhood (7); and (e) emerging evidence that 
the heterologous benefit of the live-attenuated BCG vaccine and 
other live vaccines may be greatest in early life (8).

LeSSONS FROM iMMUNe ONTOGeNY

Neonatal immunization occurs in a backdrop of distinct early 
life immunity. Recent reviews have highlighted that both cellular 
and soluble aspects of the immune system are distinct at birth 
(9, 10). Neonatal immunity must not only defend the newborn 
against a potential onslaught of potential pathogens, but also 
mediate the acquisition of a colonizing microbiome over the 
first hours and days of life. In this context, neonatal immune 
responses are apparently designed to avoid excessive inflamma-
tion with a generally reduced production of pro-inflammatory 
and Th1-polarizing cytokines to microbial components/pattern 
recognition receptors (PRR) agonists. Age-specific composition 
of soluble and cellular factors shape neonatal immunity. The 
distinct composition of human newborn cord blood plasma 
includes soluble mediators such as maternal Abs, high levels 
of immunosuppressive adenosine, and low levels of comple-
ment, important for triggering adaptive immune responses 
(11). Accordingly, modeling age-specific immunity in  vitro 
should take into account distinct composition of age-specific 
autologous plasma, rather than, for example, fetal bovine 
serum (9). Distinct cellular immunity in the newborn includes 
reduced Th1 but robust anti-inflammatory IL-10 responses of 
antigen-presenting cells to stimulation by PRR agonists, high 
frequency of naïve- and regulatory-T cells and CD71+ erythroid 
precursors that may limit, for example, responses to pertussis 
immunization (10, 12, 13). Nevertheless, neonatal immunity 
is capable of mounting antigen-specific effector responses, as 
demonstrated by BCG-specific IFNγ production following vac-
cination at birth (14). Overall, detailed study and modeling of 
age-specific human immunity may help inform development of 
vaccine formulations, with or without adjuvants as needed, that 
may trigger a protective immune response in early life.

PROOF OF CONCePT: ROUTiNe 
NeONATAL vACCiNeS

Bacille Calmette–Guérin
Bacille Calmette–Guérin is a live-attenuated strain of 
Mycobacterium bovis. Given in areas with high-endemic TB 
to prevent disseminated TB in infancy, BCG is the most com-
monly given vaccine with ~4 billion doses administered to date. 
Although it has been administered for nearly 100 years, several 
key issues regarding BCG have emerged, including: (a) lack of 
a clear correlate of protection (CoP); (b) marked heterogeneity 
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TABLe 1 | Immunizations given at different ages.

vaccines 
licensed

vaccines tested Future vaccine 
targets

Pregnancy •	 aPertussis
•	 Tetanus
•	 Influenza

•	 (RSV)
•	 GBS

•	 Group B 
Streptococcus

•	 HIV
•	 Malaria

Birth •	 OPV
•	 HepB
•	 BCG

•	 DTaP
•	 Hib
•	 PCV
•	 Malaria (e.g.,  

RTS,S/ASO1/2)
•	 Recombinant  

BCG vaccines  
(e.g., VPM1002)

•	 HIV (phase I/IIa)
•	 Rotavirus

•	 RSV
•	 Salmonella
•	 ETEC
•	 ncHI
•	 Malaria

Infant doses
Age 2–4 months

•	 DTaP and 
DTwP

•	 IPV
•	 Hib
•	 HepB
•	 PCV
•	 MenB
•	 MenC
•	 Rotavirus

•	 Malaria (e.g., RTS, 
S/ASO1/2, and 
Spf66)

•	 Recombinant BCG 
vaccines  
(e.g., VPM1002)

•	 Novel TB candidates 
(e.g., MVA85A)

•	 HIV (phase I/IIa)

•	 RSV
•	 Men ACWY
•	 Salmonella
•	 ETEC
•	 ncHI
•	 Malaria

Infant doses
Age 12–13 months

•	 Hib
•	 PCV
•	 MMR
•	 MenB
•	 MenC
•	 Varicella

•	 LAIV

RSV (respiratory syncytial virus), Hib (haemophilus influenzae B), BCG (Bacille Calmette–
Guerin), OPV (oral polio vaccine), IPV (inactivated polio vaccine), HepB (hepatitis B), DTaP 
(diphtheria, tetanus, acellular pertussis), DTwP (diphtheria, tetanus, whole cell pertussis), 
PCV (pneumococcal conjugate vaccine), HIV (human immunodeficiency virus), ETEC 
(enterotoxic Escherichia coli), ncHI (non-encapsulated Haemophilus influenzae), Men B,C, 
ACWY (meningococcal B,C, ACWY), MMR (measles, mumps, rubella), TB (tuberculosis), 
LAIV (live-attenuated influenza virus). ( ) indicates Trial in progress.
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between licensed BCG formulations (15); and (c) growing 
evidence that BCG has heterologous (“non-specific”) beneficial 
effects, particularly when administered in newborns (16). It is 
hypothesized that these non-specific benefits may protect against 
unrelated infections, supporting the use in neonates, beyond 
any protection against TB infection or disease. Furthermore, 
association studies suggest that early immunization with BCG-
containing regimens may protect against leukemia, allergy, and 
childhood diabetes among others, possibly via heterologous 
trained immunity (17–19).

A CoP is an immune measure that corresponds to vaccine-
induced protection from disease (20). Despite substantial 
efforts to characterize classic adaptive immunity, including 
multiple studies of polyfunctional CD4 T  cells, a clear CoP 
for BCG has yet to be established (21). Indeed, increasing 
evidence that BCG induces trained immunity—i.e., enhanced 
subsequent innate responses to a range of stimuli (8)—raises 
the possibility that these innate immune enhancing effects 
may not only underlie heterologous (non-specific) benefits of 
BCG vaccine, but may also contribute to, or conceivably be, 
the major factor in the so called “specific” effect of BCG, i.e., 
protection against early life TB.

A critical issue with respect to BCG immunization is marked 
variability between vaccine formulations produced in different 
production facilities, with the result that “BCG” is not a single 
entity. After its original manufacture in the Pasteur Institute 
(Paris, France) in 1921, BCG was shipped to 20 different interna-
tional sites where the vaccine was repeatedly subcultured under 
different conditions. This has resulted in diverse licensed BCG 
formulations that are distinct both by content of live mycobacte-
ria as well as genetic composition. These strains have been shown 
to have differing immune responses and furthermore, the clini-
cal relevance of this has been illustrated in comparative studies, 
which suggest, for example, that BCG-Denmark and BCG-Japan 
may have greater benefit in reducing TB disease than BCG-Russia 
(15, 22).

Much remains to be learned regarding mechanisms underly-
ing BCG-induced protection. As a complex vaccine comprised 
of live-attenuated mycobacterium, BCG engages the innate 
immune system via PRRs. Analogy to M. tuberculosis as well as 
direct human in vitro studies suggests that BCG may activate via 
multiple toll-like receptors (TLRs) including TLRs-2, -4, -7, -8, 
and -9 as well as C-type lectin receptors and NLRs (23). Studies 
of BCG-immunized adults demonstrate a re-programing of 
monocyte precursors such that the higher expression of PRRs 
and greater reactivity to stimuli such as TLR agonists. This innate 
immune enhancing effect of BCG is reminiscent of the effect of 
administration of TLR agonists to neonatal mice that enhanced 
innate immune responses, including cytokine induction and 
phagocyte recruitment, and improved bacterial clearance and 
survival in a model of neonatal sepsis (24). Such innate immune 
enhancing effects of prior stimulation have been termed “trained 
immunity” reflecting an adaptive arm of innate immunity that is 
noted in plants, insects, and mammals (25). That BCG heterolo-
gous (non-specific) benefits are greater in early life (26) suggests 
ontogeny of underlying immune mechanisms, potentially includ-
ing trained immunity (27).

Hepatitis B vaccine
Hepatitis B vaccine is an alum-adjuvanted vaccine containing 
hepatitis B surface antigen (HBsAg). The alum-adjuvanted HBV 
is given within the EPI (Table 1) and also in Australia, Europe, 
and United States, where a birth dose is recommended (28). With 
respect to innate immune activation, while the Alum adjuvant 
present in HBV may engage the inflammasome, HBsAg also 
interacts with CD14 to activate dendritic cells (29). Importantly, 
there is a measurable CoP for HBV, namely the titer of anti-HBsAg 
Abs. Although this CoP has been defined, as with many vaccines, 
it is not fully understood how HBV vaccine induces protective 
immunity, as a newborn dose is protective, despite only ~30–50% 
of newborns responding with “protective” titers after a single dose. 
This observation suggests that additional mechanisms, including 
cell-mediated immunity (CMI), may contribute to protection 
(30). Ab and T cell responses to HBV given to infants are distinct 
from those of adults, in that infants produced markedly higher 
serum anti-hepatitis B surface (HBs) Ab titers in one study, and 
low-Ab levels were associated with lower HBs Ag-specific IFNγ 
responses and a more Th2-polarized memory response to HBsAg 
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at 1 year (30). Genetic factors, low-birth weight and low-Apgar 
scores were risk factors for poor HBV response in a study of twins 
in China (31). Haplotype analysis of Gambian infants suggested 
that CDC42, IL19, and IL1R1 genes associated with peak anti-
HBsAg Ab level (32). Much remains to be learned regarding how 
HBV protects in early life.

Polio
A birth dose of OPV has been recommended by the World Health 
Organization since 1984. It is hypothesized that a birth dose of 
OPV may induce mucosal protection prior to colonization or 
infection with enteric organisms which may interfere with the 
immune response to doses given later in life. Data on seroconver-
sion following this individual dose of trivalent OPV (tOPV) vary 
greatly, from 10 to 15% in India to 76% in South Africa, however, 
the positive impact on levels of neutralizing Abs and seroconver-
sion rates on completion of the routine immunization schedule are 
undisputed (33). A systematic review of 5,257 infants given tOPV 
at birth, found that the percentage of newborns who seroconverted 
at 8 weeks ranged between 6 and 42% for poliovirus type 1, 2 and 
63% for type 2, and 1 and 35% for type 3 (34). In addition, there 
were four studies of IPV in newborns with a seroconversion rate 
of 8–100% for serotype 1, 15–100% for serotype 2, and 15–94% 
for serotype 3, measured at 4–6 weeks of life. No serious adverse 
events related to OPV or IPV doses at birth were reported in 
these studies, including no cases of acute flaccid paralysis. Some 
groups have advocated a shift to using IPV because (a) tOPV has 
been associated with rare cases of vaccine-associated paralytic 
poliomyelitis (~2–4 cases/million), (b) concerns about the use of 
live vaccines in immunocompromised individuals, including those 
with HIV infection, and (c) potential risk of strain reversion. Of 
note, however, some studies have suggested that similarly to BCG 
vaccine, a birth dose of live OPV may induce heterologous (“non-
specific”) beneficial effects (35). Further research is warranted 
prior to replacing OPV with IPV (36).

CLiNiCAL STUDieS OF OTHeR vACCiNeS 
AT BiRTH

Pertussis
Initial studies of the role of a birth dose of whole cell pertussis 
vaccine demonstrated low-Ab titers at 4 months, although there 
were no randomized studies at that time comparing a birth 
dose with a dose at 6–8  weeks of age (37). Further studies of 
neonatal whole cell pertussis immunization were deterred by 
the suggestion in 1965 that immunization with the whole cell 
pertussis vaccine combined with diphtheria and tetanus toxoids 
(DTwP) within 24 h of birth may introduce “immune paralysis” 
(38). Twenty years later, comparison studies of a birth dose of 
DTP with routine immunization at 2  months demonstrated 
significantly lower titers to pertussis toxin (PT) at 9  months 
of age, and an inverse correlation between cord Ab titers and 
infant responses (39). Safety concerns about the whole cell vac-
cine led to a switch to acellular pertussis vaccines (aP, or DTaP) 
in the 1990s. Initial neonatal studies of aP vaccines, both with 
and without diphtheria and tetanus antigens, were promising 

(40, 41), but a conflicting later study showed poorer responses 
(42). Reports of bystander interference resulting in lower 
Haemophilus influenza type B (Hib) vaccine and HBV responses 
were concerning (41). A pilot study of the GSK monovalent aP 
vaccine at birth and 4 weeks demonstrated significantly higher 
IgG Ab against pertussis antigens at 2 months of age, without 
reducing subsequent pertussis Ab responses. A larger study 
of doses at birth and 6 weeks, including influence of maternal 
immunization, on Ab responses up to 5  years of age is ongo-
ing (43, 44). Follow-up of children from the initial pilot study 
to 4  years of age demonstrated higher cytokine responses to 
pertussis antigen stimulation in those who received a birth dose 
compared with controls at 2 years of age (44). These observations 
were similar to those in a long-term follow-up study of children 
vaccinated at birth which showed increasing CMI, as measured 
by lymphoproliferative capacity, compared with controls (45). 
As the role of maternal immunization with pertussis becomes 
more established, it is crucial to include the effect of maternal 
interference in studies, as even pre-pregnancy immunization 
may influence later-born infant responses (46). Englund et  al. 
demonstrated a lack of maternal Ab interference on infant 
immunizations given at 2 months—that is, the PT Ab response 
to DTaP, unlike DTwP, was not affected by pre-existing Ab to PT 
(47). Whether this observation also holds true for birth doses 
requires future study. Given current concerns of waning immu-
nity to aP (48), novel pertussis vaccine formulations, potentially 
including developing pertussis vaccines that are safe and effective 
in newborns, are needed to induce robust and durable immunity 
against this pathogen.

Haemophilus influenza Type B
The role of a birth dose of Hib vaccine was explored by a number 
of groups following the initial success of its introduction into the 
EPI. Three different conjugate vaccines tested {HIB polysaccha-
ride conjugated to tetanus toxoid, Hib polysaccharide conjugated 
to a genetically modified diphtheria toxin (HbOC), and Hib 
polysaccharide conjugated to a Neisseria meningitidis outer mem-
brane protein [HbOMP; subsequently noted to be a TLR2 agonist 
(49)]} all resulted in significantly higher PRP Ab levels at 2 or 
4 months compared with controls, suggesting neonatal priming 
was possible (50, 51). However, these higher Ab levels did not 
persist for HbOC and declined more rapidly than controls for 
HbOMP, leading to concerns about waning protection. Further 
studies have not been undertaken, as epidemiological studies 
have demonstrated a protective effect of herd immunity on early 
life burden of invasive Hib disease, presumed due to reduction of 
asymptomatic nasopharyngeal carriage of Hib among vaccines 
(52, 53). Conjugate vaccines, through a T cell-dependent immune 
response, result in very high-protective Ab responses in infants 
of all ages, which results in reduction of carriage. Furthermore, 
the licensed 10 valent pneumococcal conjugate vaccine (PCV10; 
PHid-CV), uses a Haemophilus outer membrane protein (protein 
D) as its carrier protein, and immunization with this reduces 
the incidence of all invasive Haemophilus spp. disease, includ-
ing non-typable or non-encapsulated Haemophilus influenzae 
(ncHI). This may be of particular importance as invasive disease 
due to ncHI is commonest in the first month of life (54, 55), so the 
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potential role of the PHid-CV pneumococcal vaccine or a specific 
ncHI vaccine in neonates should be studied.

Pneumococcal Conjugate vaccine
To date, only two published trials have assessed effects of a neona-
tal dose of the seven valent PCV7 (56, 57). In Kenya, 300 neonates 
were randomized to receive PCV7 at birth, 10 and 14 weeks or at 
6, 10, and 14 weeks (EPI schedule). The safety of giving vaccine at 
birth was an important endpoint in the study and the researchers 
saw no significant difference in safety events between the two 
groups. Serotype-specific IgG binding was measured following 
the completion of the primary infant schedule at 18 weeks of age. 
The proportion of infants who had an Ab concentration above 
the accepted protective threshold of >0.35  μg/mL was similar 
between the two groups. When a higher threshold (>1.0 µg/mL) 
was used, proportions above 1 for serotypes 4, 18 C, 19 F were 
lower in the neonatal group. Geometric mean concentrations 
of IgG for four serotypes (4, 9V, 18 C, 19 F) were lower in the 
neonatal group compared with the EPI group at 18 weeks of age. 
In contrast, the mean avidity indices were significantly higher 
in the neonatal group for three of the four serotypes tested (4, 
6B, 19 F) (57). In both groups, maternal IgG measured in cord 
blood inversely correlated with the GMC at 18 weeks of age with 
high-serotype specific cord blood levels associated with lower 
responses to vaccine. At 9  months of age, 5  months following 
the third PCV dose, there was no difference in the percentage of 
infants with an Ab concentration above either the 0.35 or 1.0 µg/
mL thresholds. The GMC of serotype 4 specific IgG remained 
lower and serotype 19  F avidity index remained higher in the 
neonatal group. Responses to a booster dose of PCV given at 
9 months of age and measured 2 weeks later were comparable 
between the two groups suggesting that there is no tolerance 
induced by the neonatal dose. Carriage was measured at 18 and 
36 weeks in this study with no significant differences detected 
between the groups.

In a trial undertaken in Papua New Guinea (PNG), 318 infants 
were randomized to receive either PCV7 at birth, 1 and 2 months, 
PCV7 at 1–3 months, or no PCV7 (56). Local reactogenicity rates 
were generally low although higher rates were seen in the infant 
than the neonatal group. There were no differences in the illness 
episodes or serious adverse events. At 2 months of age, serotype-
specific GMCs were significantly higher in the neonatal group 
than in the infant group for four of the seven serotypes in PCV7 
(4, 9V, 18 C, 19 F). At this point, the neonatal group had received 
two doses of PCV compared with one dose in the infant group. By 
4 months of age, following three doses of the vaccine, GMCs were 
significantly higher for all serotypes in the infant group than in the 
neonatal group although 2 months had elapsed since the neonatal 
groups third dose, a gap that was only 1 month for the infant group. 
Comparable responses were seen following a pneumococcal poly-
saccharide vaccine administered at 9 months of age and responses 
in both PCV7 primed groups were significantly greater than 
responses in those who were not primed. Nasopharyngeal swabs 
were collected at ages 1–4 weeks and 3, 9, 18 months, and middle ear 
discharge if present. The prevalence of pneumococcal carriage was 
22% at 1 week of age, rising to 80% by age 3 months and remained 
>70% thereafter (58). There were no significant differences in PCV7 

serotype carriage between PCV recipients and controls at any age 
(22 vs. 31% at 9 months, p = 0.2). At age 9 months, the prevalence 
of non-PCV7 serotype carriage was 17% higher in PCV7 recipients 
(48%) than in controls (25%, p = 0.02). The authors attributed the 
limited impact of neonatal or accelerated infant PCV7 schedules on 
vaccine serotype carriage to the early onset of dense carriage of a 
broad range of pneumococcal serotypes.

A prior report from the same PNG study examined whether 
a neonatal PCV7 dose might induce immune tolerance (59). In a 
comprehensive immuno-phenotypic analysis at 9 months of age, 
no differences in the quantity or quality of vaccine-specific T cell 
memory responses (including responses to CRM197, tetanus 
toxoid, and HBsAg) were found between the neonatal and infant 
vaccination groups. Hospitalization rates in the first month 
of life did not differ between children vaccinated with PCV at 
birth or not. Reviewing the data outlined in these two studies 
demonstrates that neonatal immunization with PCV7 is safe and 
not associated with immunologic tolerance (56, 58).

CURReNT ReSeARCH ON eARLY LiFe 
iMMUNiZATiON

enhancing Current vaccines
One approach to developing enhanced neonatal vaccines 
focuses on improving existing vaccines such as the live “self-
adjuvanted” BCG vaccine. For example, the BCG-derivative 
VPM1002 expresses listeriolysin from Listeria monocytogenes 
designed to enhance MHC-I responses (60). In a phase II open 
label study comparison with conventional BCG-SSI in South 
African newborns (n  =  48), VPM1002 demonstrated safety 
and immunogenicity with an increased proportion of CD8+ 
IL-17+ cells at 6 months post-vaccine. The authors speculate 
that although the significance of such cells is unknown, it is 
possible that they could contribute to more robust protection 
against TB and that larger studies are needed to assess this 
possibility.

Development of Adjuvants for early Life 
immunization
Another approach to enhancing vaccine responses in infants 
with “age-appropriate” immunity is the addition of adjuvantation 
systems to enhance vaccine immunogenicity and efficacy. PRR 
agonists such as mono-phosphoryl lipid A that activates TLR4, 
have been employed as vaccine adjuvants but the translational 
path for this approach must take into account that responses to 
PRR stimulation vary markedly with the age of a given individual 
(6). In developing adjuvant systems optimized to early life, there 
may be lessons to learn from live-attenuated vaccines currently in 
use. Examples from human in vitro studies using the BCG vaccine 
demonstrate this, including TLR2-mediated activation of neona-
tal NK cells to produce IFNγ; TLR9-mediated activation of pDCs 
for IFNγ; TLR2- and IFN-mediated activation of conventional 
DCs IL-12 p70 production and subsequent CD4+ T-cell Th1 
polarization (61). Along these lines, TLR7/8 adjuvant-containing 
nanoparticles mimic effects of BCG on human neonatal mono-
cyte-derived DCs in vitro and induce anti-mycobacterial T cells 
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in humanized TLR8 mice in  vivo (62). Addition of a TLR7/8 
agonist adjuvant to PCV dramatically accelerated and enhanced 
responses to a birth dose, inducing pneumococcal-specific Ab 
titers far exceeding the CoP after a single dose (63). As with any 
vaccine development, safety will be front and center, and in this 
context, it is worth noting that the most commonly given neona-
tal vaccine, BCG, activates multiple PRRs including TLRs and is 
safely given to newborns across the globe. Although this does not 
necessarily imply that any TLR-stimulating approach would be 
safe, it does provide an important proof of concept that in certain 
settings and contexts, PRR activation including TLR-stimulation 
can be safe and effective approach to vaccine adjuvantation in 
human newborns.

Mucosal vaccine Development
In designing new vaccines to be given in the neonatal period, 
consideration must be given to ideal characteristics (64). 
Mucosal vaccines, with their potential for needle-free delivery, 
are very attractive. A number of the pathogens causing severe 
disease in early infancy are mucosally transmitted [rotavi-
rus, RSV, polio, non-typable Salmonella spp., enterotoxic 
Escherichia coli (ETEC)] and the positive experience with OPV 
provides proof of concept of mucosal vaccines in this age group. 
Mucosal vaccines could be administered by a number of routes 
(oral, nasal, conjunctival, rectal, and vaginal) with nasal and 
oral being the most practical and studied to date. Adjuvanted 
mucosally administered vaccines stimulate multiple types of 
immune responses, including secretory IgA Abs which prevent 
adhesion and invasion of pathogens, serum IgG neutralizing 
Abs, and a wide array of cell-mediated T cell responses (65). 
Of note, determining the correlate of immune protection for 
each vaccine is a challenge. The focus has historically been 
on neutralizing IgG antibodies, but increasingly, the role of 
antigen-specific IgA in serum and stool has been explored (66) 
with need for further standardization of these assays. A number 
of factors may influence the efficacy and immunogenicity of 
oral vaccines, particularly in early life, including the presence 
of pre-existing Abs, malnutrition, enteropathy, micronutrient 
deficiencies, and breast feeding, factors being studied in the 
context of OPV and rotavirus vaccines (67). Breast milk con-
tains an array of protective molecules including specific Abs, 
oligosaccharides, glycoproteins, and receptor analogs, likely 
to prevent both pathogenic- and vaccine-strains of micro-
organisms binding to the intestinal wall. A study of Rotarix in 
infants comparing withholding or not withholding breastfeed-
ing around the time of vaccine administration did not dem-
onstrate an increase in anti-rotavirus IgA seroconversion (68). 
To the extent that these factors may limit responses to mucosal 
vaccines, neonates, who are unlikely to yet have malnutrition, 
enteropathy, and co-infections, may be more responsive to oral 
vaccines.

A number of oral vaccines with varying immunogenic and 
protective efficacies have been licensed including those directed 
against typhoid, rotavirus, polio, and cholera. Other targets 
include non-typable Salmonella, ETEC, Shigella, and adenovirus 
(64). Few to date have been studied in newborns, although diar-
rheal illness accounts for many of the deaths in infants <6 months 

of age, with rotavirus identified as a leading cause of dehydrating 
gastroenteritis, associated with ~28% of diarrheal deaths (69). 
Two live-attenuated oral rotavirus vaccines, the pentavalent 
human-bovine rotavirus vaccine, RotaTeq, given as three oral 
doses a month apart; and monovalent human rotavirus vaccine 
Rotarix, given as two doses a month apart; were licensed in 2006. 
Protection against severe disease in high- and middle income 
countries is excellent for both (80–95% efficacy). However, 
unfortunately, these rotavirus vaccines have been less efficacious 
in low-income regions where the need is far greater such as sub-
Saharan Africa (46% efficacy) and in Southern Asia (50%) (70). 
Although indirect benefits of rotavirus vaccine, such as those 
realized via herd immunity and protection, have been described 
in high- and middle income countries, this has not been firmly 
established in low-income countries to date (71). Factors includ-
ing breastmilk Abs, concurrent infections, or environmental 
enteropathy may interfere with the efficacy of the oral rotavirus 
vaccine (67). Administration of a birth dose could potentially 
ameliorate these concerns, as well as provide protection in the 
vulnerable gap when the most severe disease occurs, between 
birth and the protective response induced by a first dose given at 
6 weeks of age (72). Furthermore, the risk of intussusception as a 
complication of rotavirus vaccine appears to follow an age-related 
pattern, supporting a neonatal schedule over an infant schedule 
for this vaccine (73). A phase IIa study of a monovalent human 
rotavirus vaccine RV3-BB, including a neonatal dose, demon-
strated a rotavirus IgA response rate of 11% with stool excretion 
of 13% after one dose (74). Overall immunogenicity following the 
non-neonatal schedule at 8, 15, and 24 weeks was 50% after two 
doses and 74% after 3. A nested study within the trial examined 
the relationship between rotavirus-specific IgA in cord blood, 
colostrum and breast milk and infant serum IgA response and 
stool excretion and found no evidence of an association (75). 
Although these initial immunogenicity results are disappointing, 
with low uptake following the neonatal dose, neither RotaTeq 
nor Rotarix have been tested in the neonatal period such that 
further studies of rotavirus vaccines in the neonatal period are 
warranted.

A nasally delivered live-attenuated influenza vaccine 
(LAIV) has been effective in infants in protection from flu, 
but has not to date been tested in neonates. Infants between 6 
and 12 months experienced relatively high rates of hospitaliza-
tion in an RCT comparing inactivated vaccine and LAIV and 
consequently, LAIV has only been recommended in infants 
greater than 12  months of age (76). There is currently no 
available influenza vaccine for infants younger than 6 months, 
however, maternal immunization provides passive protection 
(77) and in a murine model, there was no evidence of maternal 
interference (78).

As a leading cause of morbidity and mortality in the neonatal 
and early infancy period, RSV is an ideal target for a mucosal 
vaccine (79). The RSV fusion (F) surface glycoprotein has 
been considered as one of the two major protective antigens 
for eliciting neutralizing Abs; a humanized monoclonal Ab 
specific to the F protein (Palivizumab), administered monthly 
to vulnerable infants during the RSV season, is efficacious in 
preventing severe disease, but not infection (80). Low levels of 
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nasal RSV-specific IgA are a risk factor for RSV disease in adults 
(81), but as yet, although animal models have demonstrated 
neutralizing Abs in response to RSV vaccine candidates, specific 
IgA production has not been shown (82, 83). Animal models of 
live-attenuated vaccines provide grounds for optimism (84) and 
phase I studies of virus-vectored vaccines in adults have been 
promising (85), but virus-vectored RSV vaccines have not yet 
been trialed in infants. Development of vaccines based on the 
RSV pre-fusion protein, an antigenic target to which protective 
neutralizing Abs in human sera are directed (82), offers fresh 
avenues for RSV vaccine development with much to be learned 
regarding the potential of this antigen when administered in 
early life.

Systems Biology
Systems biology approaches have been applied to adults and 
older infants but thus far not to newborns (86). This deficiency 
is to soon change with the award of a NIH Human Immunology 
Project Consortium grant to employ systems vaccinology 
to study HBV-induced molecular signatures in relation to 
CoP—i.e., anti-HBsAg Ab responses. Led by the Expanded 
Program on Immunization Consortium, an affiliation of Boston 
Children’s Hospital, Medical Research Council (UK)-Gambia, 
and the University of British Columbia, focused on application 
of systems biology to early life vaccinology, this study will lever-
age transcriptomics and proteomics to provide fresh insights into 
HBV-induced protection in newborns. Among the novel systems 
biology approaches is “systems serology” that offers potential for 
much more precise understanding on the impact of vaccines at 
different ages measuring all aspects of the response, Ab avidity, 
titer, specific, and non-specific responses (87). This approach 
promises to provide deeper insight into the vaccine-induced 
humoral immune responses of distinct populations such as 
human newborns.

In Vitro Modeling to Accelerate and  
De-Risk early Life vaccine Development
Vaccine development is inherently costly, slow, and unfortunately 
beset by multiple failures. Current paradigms of vaccine develop-
ment tend to presume that all populations will respond similarly 
to a given formulation and do not take species-specificity, genetic 
background, and age-specificity into account. Accordingly, many 
vaccine formulations fail or are less effective in vulnerable sub-
populations such as the very young or elderly. In this context, 
human in  vitro platforms that model age-specific vaccine-
induced innate and adaptive immune responses as benchmarked 
to licensed vaccines offer the possibility of accelerating and de-
risking vaccine development (9, 88). Indeed age-specific human 
in vitro platforms such as newborn whole blood assays, dendritic 
cell arrays, and microphysiologic tissue constructs (89) have been 
successfully used to define novel biomarkers of vaccine adjuvan-
ticity (90) and identify TLR7/8 agonists as adjuvants active in 
early life (63).

Overall these technical advances offer powerful new oppor-
tunities to inform, de-risk, and accelerate novel vaccine develop-
ment for use in early life.

iNTeGRATiON iNTO CURReNT 
PROGRAM: CHALLeNGeS AND 
STRATeGieS

Neonatal immunization carries tremendous potential but fur-
ther expansion or enhancement of this approach will require 
both deeper mechanistic insight into how vaccines protect in 
early life as well as integration into the existing framework of 
public health, including maternal immunization programs. 
In response to the concerns of multiple professionals in the 
field of maternal immunization, the Brighton Collaboration 
was formed in 2000, followed by the formation of the Global 
Alignment of Immunization safety Assessment in pregnancy 
(GAIA) to establish safety and efficacy standards in this area 
(91). A collection of case definitions and guidelines for data 
collection, analysis, and presentation of safety data in vaccine 
trials, relevant for neonates and infants, were published by 
global experts, largely in the context of maternal immunization, 
but these are also relevant and of value for monitoring safety 
of neonatal immunization studies (92). Whilst these defini-
tions and guidelines can be amended for the use in neonatal 
immunization studies, the formation of an independent group 
is warranted to establish the framework for safe and efficacious 
neonatal immunization studies.

In 2010, to identify key topics and research gaps in the field and 
foster collaboration among investigators focusing on vaccinol-
ogy and immune ontogeny, a workshop was organized by NIH 
(NIAID; Division of Allergy, Immunology, and Transplantation) 
and cosponsored by the Bill and Melinda Gates Foundation 
(93). Given recent technical and conceptual advances, and their 
potential to vastly transform the area of early life immuniza-
tion, further workshops on optimizing early life immunization, 
including those individuals involved in regulation and safety 
assessments are warranted. The study populations for any ongo-
ing vaccine trials should include not just healthy term infants, 
but a number of distinct populations, including preterm infants 
and those with immunodeficiencies, in particular HIV-exposed 
infected and uninfected [but not unaffected (94)], to ensure pro-
tection of all infants, especially the most vulnerable. Thoughtful 
design of studies, both of maternal and neonatal vaccines, will 
be essential to understand mechanisms underlying vaccine–
vaccine interactions, including interference. It is essential that 
whilst adopting the most advanced systems-based approaches, 
the data are standardized to allow comparison of sample sets 
from the same or different sites. Ongoing reassessment of infant 
immunization schedules will allow the development of more 
effective neonatal vaccine schedules.

CONCLUSiON

Overall, neonatal immunization is a common practice across 
the globe, yet much can be done to optimize its beneficial 
impact. Taking advantage of pivotal opportunities to enhance 
this approach will require engagement with stakeholders, 
including government, funding agencies, and the general pub-
lic, on: (a) the need for greater precision in our understanding 
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of how current neonatal vaccines protect, the potential impact 
of the exact timing of administration in the neonatal period 
(i.e., first 28 days of life) and of vaccine–vaccine interactions, 
(b) assessing how maternal and neonatal immunization can 
be best integrated, and (c) leveraging modern tools including 
systems biology and human in  vitro modeling to study the 
impact of immune ontogeny on vaccine responses thereby 
informing development of novel vaccines for use in early 
life against pathogens for which currently vaccines are inad-
equate (e.g., pertussis, TB, and influenza) or do not yet exist  
(e.g., RSV, HIV).
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Maternal immunization has the potential to significantly improve maternal and child health 
worldwide by reducing maternal and infant morbidity and mortality associated with 
disease caused by pathogens that are particularly relevant in the perinatal period and in 
early life, and for which no alternative effective preventive strategies exist. Research on all 
aspects related to vaccines for administration during pregnancy is ongoing with support 
of multiple stakeholders and global participation. Substantial progress has been made, 
and the availability of new vaccines licensed exclusively for use in pregnant women to 
protect their infants has become an achievable goal. This review provides an update of 
the current challenges and achievements in maternal immunization research, focusing 
on recent milestones that advance the field and the prospects to make maternal immu-
nization a feasible and accessible strategy to improve global health.

Keywords: maternal immunization, ethics, research, pregnancy, inclusion, regulatory, vaccination

iNTRODUCTiON

The goal of maternal immunization is to boost maternal levels of specific antibodies to provide 
the newborn and young infant with sufficient IgG antibody concentrations at birth to protect 
them against infections occurring during a period of increased vulnerability, until they are able 
to adequately respond to their own active immunizations or infectious challenges. Newborns and 
young infants are at greatest risk of morbidity and mortality from infectious diseases, and they 
depend of maternal antibodies to resist these infections in early life. Maternal antibodies can be 
optimized during pregnancy given that pregnant women have intact humoral immune responses to 
vaccines and adequately produce antibodies, which can be efficiently transferred to the fetus through 
an active receptor-mediated transport system in the placenta. Higher concentrations of antibody 
at birth result in protection from infection and disease, or in delayed onset and decreased severity 
of various infectious diseases in the newborn. Examples of this concept include passive maternal 
antibody protection against tetanus, pertussis, respiratory syncytial virus (RSV), influenza virus, and 
group B streptococcus (GBS) infections, among others.

Research on maternal immunization is not new; as vaccines were developed, their administration 
to pregnant mothers to protect them and/or their infants was considered and evaluated, including 
protection against small pox with vaccinia vaccine in the late 1800s, whole cell pertussis vaccine 
(DTP) in the 1940s, influenza vaccine after the 1950s pandemics, and tetanus toxoid vaccine 
to prevent maternal and neonatal tetanus worldwide since the 1960s. Despite the success of the 
Maternal–Neonatal Tetanus Elimination program of the World Health Organization (WHO) (http://
www.who.int/immunization/diseases/MNTE_initiative/en/), there was a paucity of active research 
on maternal immunization for several years in the twentieth century, in part due to concerns 
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TAble 1 | Recommended vaccines for maternal immunization [World Health 
Organization (WHO)].

Generally 
recommended

Recommended for disease 
prevention in specific 
situations

Contraindicated

Tetanus (TT, Td)

Influenza inactivateda

Acellular pertussis 
vaccine (Tdap) only in 
areas of burdenb

Cholera

Yellow fever

Meningitis A (meningococcal)

Hepatitis A, B, and E,

Japanese encephalitis

Polio (OPV and IPV)

Rabies

BCG

Measles

Mumps

Rubella

Varicella

Live typhoid T21a

Live influenza

aInfluenza vaccine is recommended by WHO for administration in pregnant women in 
regions where influenza vaccine programs are already in place. Influenza vaccination is 
recommended as part of routine antenatal care in the US and several countries in Latin 
America.
bTdap is routinely recommended for pregnant women in the US, the UK, some 
provinces of high burden in Europe, Canada, and Australia, as well as several countries 
in Latin America.
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with the safety of administering any drug or biologic to women  
during pregnancy, particularly after the experience of the drug 
thalidomide in the 1960s, which was associated with severe limb 
and other deformities in infants born to women who took this 
unlicensed medication in the US to treat hyperemesis gravidarum.

KeY iSSUeS ON MATeRNAl 
iMMUNiZATiON ReSeARCH

The potential impact of maternal immunization as a public stra-
tegy to prevent disease in mothers and infants is well recognized. 
Yet, there are no vaccines currently approved or licensed spe-
cifically for use in pregnant women. Licensed vaccines that are 
recommended for non-pregnant adults may be administered to 
pregnant women based on need and a risk:benefit assessment. 
When the risk of exposure and disease from a vaccine prevent-
able infection is high for a mother and/or her fetus, and an effec-
tive vaccine is available, the benefit of the vaccine protection is 
greater than any potential theoretical risk from the vaccine, which 
is in turn considered to be lower than the risk of acquiring the 
infection and disease the vaccine can prevent. Licensed vaccines 
that have not been formally evaluated in or approved for pregnant 
women are therefore recommended for administration during 
pregnancy by the WHO and the US Centers for Disease Control 
and Prevention (CDC), as well as local organizations in many 
countries (1, 2) (Table 1). These recommendations have evolved 
over time, and they differ in that the current WHO recommen-
dations do not specifically recommend pertussis vaccination 
during pregnancy, except when there is a known high burden of 
disease, as implemented in several countries such as Canada and  
Australia; while CDC and other Public Health programs such as 
in the UK, recommend routine vaccination of all pregnant women 
with the tetanus, diphtheria, and reduced acellular pertussis anti-
gen content (Tdap) vaccine for all women, at every pregnancy. 
The specific timing of administration of this vaccine is also vari-
able in different countries. Similarly, while tetanus vaccination is 
recommended for all pregnancies by WHO, most industrialized 

countries in Europe and North America, where pediatric vac-
cination coverage is high and the risk of tetanus infection at 
birth is negligible, do not routinely recommend tetanus vaccine 
administration during pregnancy. It is only given now because of 
the use of Tdap. Finally, influenza vaccination during pregnancy 
is considered an essential element of prenatal care in the US, and 
pregnant women have one of the highest influenza vaccination 
coverage rates in this country. However, while pregnant women 
are not excluded from influenza vaccination, routine administra-
tion is not the standard in most countries.

Given that currently licensed vaccines are not specifically 
indicated for pregnant women, there might be reluctance by 
some providers and government agencies worldwide to recom-
mend routine vaccination in this population. However, the US 
Federal Drug Administration (FDA) addresses this concern by 
approving labeling clearly stating in that licensed vaccines that 
are recommended for pregnant women (such as influenza and 
Tdap) are NOT contraindicated for use in pregnant women, and 
specific considerations regarding safety of use during pregnancy 
are addressed in the pregnancy subsection of the FDA approved 
labeling (3). Furthermore, the safety of these vaccines continues 
to be monitored through post-licensure surveillance mechanisms, 
such as pregnancy registries and large passive and active adverse 
event reporting and surveillance systems (4).

Ensuring and evaluating the safety of vaccines administered 
to pregnant women is a key component of any maternal immu-
nization program or recommendation. This is particularly true 
now that new vaccines that can benefit pregnant women and their 
infants are being developed, such as vaccines to protect against 
GBS and RSV. An important issue is the need for harmonization 
of standard definitions of key safety outcomes after maternal 
vaccination and of a systematic approach to the assessment of 
safety throughout the life cycle of a vaccine, but particularly after 
implementation as large number of pregnant women are vacci-
nated. It is critical to consider the inherent risks associated with 
pregnancy itself, and to clearly understand the background rate 
of these risks in specific populations. Furthermore, to evaluate 
the impact of maternal immunization as a public health strategy 
to impact the burden of morbidity and mortality associated with 
the infection it prevents, it is necessary to establish baseline rates 
of these outcomes to demonstrate the efficacy and benefit of the 
vaccines in both mothers and infants. Finally, the ethical and 
regulatory aspects surrounding the inclusion of pregnant women 
as research subjects also influence the progress of the develop-
ment of vaccines for maternal immunization.

ReCeNT MileSTONeS iN MATeRNAl 
iMMUNiZATiON ReSeARCH

Substantial progress has occurred in maternal immunization 
research (Table  2). Maternal immunization research has been 
supported by National Institutes of Health in the US for decades, 
spanning basic science, clinical, epidemiological, and transla-
tional research (5). Studies of relevant pathogens, including GBS, 
Haemophilus influenzae type b, Streptococcus pneumoniae, and 
tetanus were conducted during the 1980s and 1990s; studies of 
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TAble 2 | Milestones in the development of vaccines for maternal immunization.

Time period Milestones

1940s •	 Studies of whole cell pertussis vaccine (DTPw) in  
pregnant women to protect infants in the US (8)

1960s •	 Influenza vaccines recommended for pregnant women, 
considered a high risk group for influenza complications  
after the 1957 pandemic (8)

•	 Maternal immunization with tetanus toxoid demonstrated  
to prevent neonatal tetanus in clinical study in Papua New 
Guinea (9)

1970s •	 Tetanus toxoid added to World Health Organization (WHO) 
Expanded Program on Immunization (10)

1980s •	 Maternal–Neonatal Tetanus Elimination program goal set  
by the WHO (10)

•	 Phase I/II studies of vaccines in pregnant women and various 
studies related to maternal immunization supported by NIH  
are initiated in the US (5)

1990s •	 Phase I/II studies of vaccines in pregnant women and various 
studies related to maternal immunization supported by NIH  
are ongoing in the US (5)

•	 Influenza vaccine is routinely recommended for pregnant 
women in the US, regardless of underlying medical  
conditions (11)

2000s •	 NIH clinical studies of vaccines in pregnancy continue (5)
•	 Brighton Collaboration is formed (12)
•	 WHO supports influenza vaccine recommendations in 

pregnancy (13)
•	 Study in Bangladesh demonstrates efficacy of influenza  

vaccine given to pregnant women in protecting mothers and 
infants against laboratory confirmed influenza illness (14)

•	 The Bill and Melinda Gates Foundation supports 3 large  
studies of influenza maternal immunization in Nepal, Mali,  
and South Africa (15–17)

•	 MenAfrivac program in the African meningitis belt does not 
exclude pregnant women from receiving the meningococcal  
A vaccine (18)

•	 The 2009 influenza pandemic results in prioritization of  
maternal immunization research in the US and worldwide (19)

2010 to date •	 Publications of NIH guidance on Maternal Immunization 
Research and Toxicity Tables for pregnant women (7)

•	 GAIA is formed in response to call from WHO to work toward 
harmonization of the assessment of safety of vaccines in 
pregnancy (20)

•	 The WHO’s Strategic Advisory Group of Experts recommends 
influenza vaccination of pregnant women in countries were 
influenza vaccines are routinely administered (21)

•	 Given the reemergence of pertussis and infant mortality, 
maternal immunization with Tdap is recommended in the US 
and the UK in 2012 and subsequently other countries (22, 23)

•	 Safety and effectiveness data from the UK and the US  
continue to support the administration of Tdap for pregnant 
women (24–26)

•	 Research and health regulations support the inclusion of 
pregnant women in research (27–33)

•	 Multiple studies of vaccines for pregnant women are being 
conducted globally with the support of various stakeholders, 
including vaccines for the prevention of respiratory syncytial 
virus and group B streptococcus (19, 34–38)
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pertussis and RSV were prioritized from the 1990s to the first 
decade of the twenty-first century, while studies of seasonal 
and pandemic influenza vaccine studies have been conducted 

continuously for 40  years. Experimental and licensed vaccines 
for these pathogens were evaluated in phase I/II clinical trials 
in pregnant women under contract with various public and 
academic institutions in the US. Furthermore, these programs 
promoted research related to maternal immunization from 
vaccine antigen identification to the development of pertinent 
laboratory assays and reference materials, as well as animal mod-
els and developmental toxicity studies, and epidemiology and 
safety studies. In 2013, guidance documents on research, protocol 
design, and assessment of safety of vaccines during pregnancy 
were developed (6, 7). Other guidance documents have since 
been published, providing a framework for the study of vaccines 
and other biologics in pregnant women.

In 2008, a pivotal study conducted in Bangladesh was 
published (14). This study demonstrated for the first time that 
maternal vaccination with influenza vaccine can protect mothers 
and their infants from laboratory confirmed influenza illness, 
with an efficacy in preventing infant influenza of 63%, similar 
to that achieved with active immunization. This study led to the 
support to three large studies of influenza vaccination of pregnant 
women by the Bill and Melinda Gates Foundation, conducted in 
Nepal, Mali, and South Africa. These seminal studies have now 
been completed, contributing significantly to the knowledge of 
the benefits and safety of influenza vaccination of mothers and 
infants, including HIV infected women, and providing critical 
information to guide decisions and policies surrounding mater-
nal immunization (15–17). One important contribution of these 
trials was the determination of the relatively limited duration of 
protection of infants provided by maternally derived antibody, 
which decreased substantially after the second month of life 
(39). The 2009–2010 influenza pandemic was another critical 
event that resulted in the subsequent prioritization of maternal 
immunization research in the US and worldwide. The number 
of clinical trials and publications on the topic of maternal 
immunization has increased substantially since the pandemic. 
Importantly, the knowledge gained in aspects related to safety, 
immunogenicity, and implementation of influenza vaccines for 
pregnant women has resulted in more advances in this field than 
ever. An example of this was the acquisition of data on the safety 
and effectiveness of adjuvanted influenza vaccines in pregnant 
women (40). In general, there is a need for more immunogenic 
vaccines for use in all populations, including pregnant women, to 
improve effectiveness and further reduce the impact of influenza.

In 2012, prompted by evidence of reemergence of pertussis 
disease and associated infant mortality, maternal immunization 
with Tdap was recommended in the US and the UK as the most 
immediate and direct intervention to decrease pertussis in the first 
few months of life (22). Several other countries with high burden 
of pertussis disease in the Americas, Europe, and Australia also 
adopted this recommendation. Importantly, research on maternal 
immunization with Tdap flourished, filling critical gaps of infor-
mation, such as understanding the optimal timing for maternal 
vaccination in the second trimester of gestation to achieve 
higher antibody concentrations in infants at birth, and better 
and longer duration of protection in the first few months of 
life until active immunization with pertussis containing vaccines 
is achieved (41). Another relevant concept associated with the 
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utilization of Tdap vaccine in pregnancy is the potential blunting 
of infant immune responses to active immunization when high 
concentrations of maternal antibodies are present. This has been 
observed and documented for various antigens in the pertussis 
vaccines, including pertussis toxin, filamentous hemagglutinin, 
and pertactin, but relatively lower concentrations of vaccine-
specific antibodies in infants after primary vaccination have not 
been associated with increased incidence or severity of pertussis 
disease in infants of vaccinated mothers, and preservation of 
priming and memory immune responses has been documented 
(42–45). Furthermore, the safety and effectiveness of the Tdap 
maternal immunization program have been demonstrated in the 
US and the UK, supporting continuation of this intervention in 
these countries (23–26). Similar programs are in place now in 
Latin America and other countries and regions with high burden 
of pertussis disease.

Currently, several studies are ongoing assessing various aspects 
of the use of licensed vaccines such as influenza and pertussis 
in pregnant women, as well focusing on the development of 
new vaccines specifically designed for administration during 
pregnancy, for the protection of infants against RSV and GBS in 
early life. Numerous RSV and GBS vaccines are in various phases 
of development, from preclinical to clinical trials, supported 
by multiple stakeholders from industry to private and public 
organizations (34–36). One RSV vaccine is currently in phase III 
of clinical development, promising, if successful, to be the first 
vaccine developed and licensed for specific use in pregnancy. 
Achieving this milestone has the potential to positively impact 
and change the landscape and practical applicability of infant 
disease prevention through maternal immunization. In addition 
to research focused on basic placental biology and immunology, 
understanding the role of passive and breast milk antibodies in 
infant protection and responses to natural infection and active 
immunization, and determining how to optimize maternal 
intervention to improve its safety and efficacy, other aspects that 
require further study include those related to acceptance, feasi-
bility, and logistics of implementation of maternal immunization 
in different settings and populations. Furthermore, aspects related 
to education of mothers and providers, utilization, communica-
tions, and long-term surveillance and assessment of vaccine 
safety are paramount for the success of maternal immunization 
as a public health strategy to improve maternal and child globally. 
The field of maternal immunization research is therefore open, 
active, and rich.

PROGReSS iN THe ReGUlATORY 
ASPeCTS RelATeD TO MATeRNAl 
iMMUNiZATiON AND ReSeARCH

The perception of risk of any intervention during pregnancy 
has evolved over time. Before the demonstration that the use 
of thalidomide during pregnancy was associated with birth 
defects, there were relatively little restrictions to what pregnant 
women were exposed to (46). This tragic association resulted 
in a shift toward strict restrictions of what pregnant women 
could be exposed to, including medications and vaccines,  

and the exclusion of pregnant women from research. How-
ever, there has been a culture change in recent years, driven 
by the need to develop effective immunization strategies and 
understanding that pregnant women and their infants can 
actually benefit from participating in clinical research. Their 
participation in clinical trials of vaccines and therapeutics 
ultimately will reduce any potential harm of these products, 
by generating useful information that is specifically relevant 
to pregnancy, and avoiding exclusion of women from receipt 
of potentially beneficial interventions available to the rest of 
the population. Having access to the benefits of participating 
in research and the results of this research will promote and 
improve maternal, fetal, and infant health. Clinical studies in 
pregnant women are carefully designed to minimize the risks 
of the intervention, particularly the risk to the fetus, and to 
balance the risk of participating in research with the risk of 
not having a potentially beneficial intervention available for 
mothers and infants.

Several recent milestones have been reached in the regula-
tory aspects of the assessment of vaccines for use in pregnancy 
(27). It is clear that for both novel vaccines, as well as for cur-
rently licensed vaccines not previously evaluated in pregnant 
women, regulatory agencies approval for use during pregnancy 
would result in inclusion of specific information in the product 
label that would facilitate the acceptance and use of the vac-
cine by health-care providers and the public in general. One 
important step toward facilitating the utilization of vaccines 
in pregnancy is the recent update to the US FRA pregnancy 
and lactation labeling rule, whereby product label pregnancy 
risk categories designated with letters as A, B, C, D, and X that 
were difficult to put into practice have been replaced with a 
narrative descriptions of the risks of using the vaccine during 
pregnancy, as informed by any source of information, includ-
ing both observational and prospective studies (28). In 2015, 
vaccine manufacturers sought guidance from the Vaccines 
and Related Biological Products Advisory Committee of the 
FDA to work toward the development of vaccines for maternal 
immunization. In their fall meeting, the determination was 
made that the regulatory approval process of vaccines indicated 
for maternal immunization to prevent infant disease would be 
guided by regulations outlined in Title 21 of the Code of Federal 
Regulations and standards set forth in applicable documents 
such as the ICH guidelines and FDA guidance documents (29). 
The groups agreed that the path to development and licensure 
of a vaccine for pregnant women would be product specific and 
designed to support the indication being sought. Key aspects 
to consider would include the use of serologic endpoints as 
markers of passive protection in the infants, the evaluation of 
duration of immunity and immune interference with child-
hood vaccines, and the duration and type of safety follow-up. 
Importantly, the committee considered that observational stud-
ies could be used as an approach to confirm the effectiveness 
of already licensed vaccines that are recommended for use in 
pregnancy in the US.

Progress has also been made in regulations that further 
expand the options for pregnant women to be included in 
research. The updated “Common Rule,” which is the set of federal 
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regulations for the ethical conduct of human subject research in 
the US, clearly delineates that pregnant women or fetuses may 
be involved in research if several conditions are met, including 
the prior conduct, when scientifically appropriate, of preclinical 
studies, including studies on pregnant animals (such as repro-
ductive toxicology studies), and clinical studies, including stud-
ies on non-pregnant women (30). The document also delineates 
the risk categories for research based on the prospect of benefit 
for the women or the fetus, indicating that the risk of the research 
needs to be balanced with the prospect for benefit for the women 
OR the fetus, or if there is no such prospect of benefit, the risk to 
the fetus should be not greater than minimal when the purpose 
of the research is the development of important biomedical 
knowledge which cannot be obtained by any other means. The 
pregnant mother is given the right to provide consent for herself 
and for her baby, unless the prospect of direct benefit is solely 
to the fetus, then the consent of the pregnant mother and the 
father should be obtained, with exceptions allowed based on 
specific situations that would prevent the father from signing. 
These provisions help guide the Institutional Review Boards in 
their decision making regarding the participation of pregnant 
women in research.

Other advances relate to the change in classification of preg-
nant women from being considered a “vulnerable” population for 
research, to no longer being considered “vulnerable.” This chal-
lenge for maternal immunization was addressed by the National 
Vaccine Advisory Committee to the Department of Health 
and Human Services, who also recommended the prioritization 
of maternal immunization as a public health strategy, and the 
investment in the development of vaccines for pregnant women 
(31). Globally, the 2017 updated International Guidelines for 
Health-Related Research Involving Humans of the Council for 
International Organizations of Medical Sciences, in collabora-
tion with the WHO, also conclude that women must be included 
in health-related research, unless a good scientific reason justi-
fies their exclusion, and that women should provide informed 
consent for themselves (32). Finally, the 21st Century Cures 
Act, as law enacted by the US Congress in December 2016 and 
designed to help accelerate medical product development and 
faster access to patients to innovations, established a task force 
on research specific to pregnant women and lactating women, to 
provide advice and guidance to the Secretary of HHS, to address 
gaps in knowledge and research regarding safe and effective 
therapies for pregnant and lactating women, and authorized 
substantial funds for this task (33). A key provision of this law 
was the inclusion of vaccines administered during pregnancy in 
the Vaccine Injury Compensation Program, thereby providing 
coverage for claims of potential vaccination adverse effects on 
the fetus and the mother, for providers who administer vaccines 
to pregnant women. Specifically, the law states that “…both a 
woman who received a covered vaccine while pregnant and any 
child who was in utero at the time such woman received the vac-
cine shall be considered persons to whom the covered vaccine 
was administered and persons who received the covered vaccine.” 
This provision is a tremendous step toward the improvement of 
acceptance, confidence, and coverage of maternal immunization 
in the US.

eFFORTS iN HARMONiZATiON iN THe 
ASSeSSMeNT OF SAFeTY OF MATeRNAl 
vACCiNeS

In addition to the work of the NIH and investigators involved 
in maternal immunization research, one of the organizations 
that provided early contributions toward the goal of develop-
ing a consensus and harmonized assessment of the safety of 
vaccines during pregnancy is the Brighton Collaboration. This 
independent and non-profit partnership was formed in the year 
2000 as a voluntary international group seeking to facilitate the 
development, evaluation, and dissemination of high quality 
information about the safety of human vaccines. The group 
stated by developing a common language and standardized 
research methods to improve the accuracy and consistency 
of vaccine risk assessment. In 2014, stemming from a call 
by WHO, and with support from the Bill and Melinda Gates 
Foundation, the GAIA (Global Alignment on Immunization 
Safety Assessment in pregnancy) consortium was formed, with 
the goal to develop a globally concerted approach to actively 
monitor the safety of vaccines and immunization programs 
in pregnancy (20). The GAIA group utilizes the format of the 
Brighton Collaboration to assess safety outcomes in mothers 
and infants after maternal vaccination, determining the level of 
certainty in the assessment of the event, to ensure uniformity 
and comparability in different settings. In addition to pertinent 
clinical case definitions, the GAIA consortium also published 
guidelines and tools for the assessment of safety of vaccines in 
maternal immunization clinical trials (47, 48). These guidelines 
were supported by the Global Advisory Committee on Vaccine 
Safety of the WHO (21), and various clinical case definitions 
are undergoing evaluation and validation as they are utilized 
in various settings from retrospective, to observational and 
prospective clinical trials worldwide.

CONClUSiON

Maternal immunization has the potential to significantly 
improve maternal and child health worldwide by reducing 
maternal and infant morbidity and mortality associated with 
disease caused by pathogens that are particularly relevant in the 
perinatal period and in early life, and for which no alternative 
effective preventive strategies exist. Active research encompass-
ing all aspects related to vaccines for administration during 
pregnancy is underway, with support of multiple stakeholders 
and global participation. Substantial progress has been made, 
and the availability of new vaccines licensed for use in pregnant 
women is an achievable goal. While many challenges remain 
to be addressed, the achievements in maternal immunization 
research to date have advanced the field and the prospects to 
make maternal immunization a feasible and accessible strategy 
to improve global health.
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The success of prevention of mother to child transmission programs over the last 
two decades has led to an increasing number of infants who are exposed to human 
immunodeficiency virus (HIV), but who are not themselves infected (HIV-exposed, 
uninfected infants). Although the morbidity and mortality among HIV-exposed, unin-
fected infants is considerably lower than that among HIV-infected infants, they may 
remain at increased risk of infections in the first 2 years of life compared with their 
HIV-unexposed peers, especially in the absence of breastfeeding. There is some evi-
dence of immunological differences in HIV-exposed, uninfected infants, which could 
play a role in susceptibility to infection. Cytomegalovirus (CMV) may contribute to 
the increased immune activation observed in HIV-exposed, uninfected infants. Infants 
born to HIV-infected women are at increased risk of congenital CMV infection, as well 
as early acquisition of postnatal CMV infection. In infants with HIV infection, CMV 
co-infection in early life is associated with higher morbidity and mortality. This review 
considers how HIV infection, HIV exposure, and CMV infection affect infant responses 
to vaccination, and explores possible immunological and other explanations for these 
findings. HIV-infected infants have lower vaccine-induced antibody concentrations 
following tetanus, diphtheria, pertussis, hepatitis B, and pneumococcal vaccination, 
although the clinical relevance of this difference is not known. Despite lower concentra-
tions of maternal-specific antibody at birth, HIV-exposed, uninfected infants respond 
to vaccination at least as well as their HIV-unexposed uninfected peers. CMV infection 
leads to an increase in activation and differentiation of the whole T-cell population, 
but there is limited data on the effects of CMV infection on infant vaccine responses. 
In light of growing evidence of poor clinical outcomes associated with CMV infection 
in HIV-exposed, uninfected infants, further studies are particularly important in this 
group. A clearer understanding of the mechanisms by which maternal viral infections 
influence the developing infant immune system is critical to the success of maternal 
and infant vaccination strategies.
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iNTRODUCTiON

Immunization is essential to global strategies to reduce infant 
mortality, especially in low-resource settings where infectious 
morbidity and mortality remain high (1, 2). In regions of the 
world where the burden of infectious diseases is high, even a 
small reduction in vaccine efficacy might have important clinical 
implications for young infants. Factors affecting infant vaccine 
responses can be divided into those relating to the infant, mother 
and environment; an important and potentially modifiable 
maternal factor is antenatal viral infections. To date, studies of 
the effects of maternal antenatal viral infections on infant vaccine 
responses have focused on two important viral infections: human 
immunodeficiency virus (HIV) and cytomegalovirus (CMV).

In 2015, there were 1.4 million pregnant women living 
with HIV (3), and an estimated 24% of those did not receive 
antiretroviral therapy (ART) for prevention of mother-to-child 
transmission (PMTCT) (4). In infants born with HIV infection, 
early commencement of combination ART significantly reduces 
mortality (5, 6) and is associated with increased magnitude and 
quality of infant antibody responses to vaccines (7–10), but there 
is some evidence of reduced humoral responses to vaccines even 
in those children starting ART at 6–8  weeks of age, compared 
with HIV-unexposed infants (9).

The expansion of PMTCT programs in the last two decades, 
and continued high numbers of HIV-infected women who be- 
come pregnant, have led to an increase in the number of HIV-
exposed, uninfected infants, who now represent up to 30% of 
births in some parts of Southern Africa (11). Compared with 
HIV-unexposed infants, HIV-exposed, uninfected infants are at 
increased risk of hospitalization, pneumonia and mortality at 6 
and 24 months in some settings, although the risk is reduced when 
they are breastfed and when infected children and their mothers 
receive ART (12). Increasing evidence shows immunological dif-
ferences in HIV-exposed, uninfected infants, who have changes 
in T-cell populations, lower CD4 counts and increased T-cell  
differentiation by 10 weeks of age compared with HIV-unexposed 
infants (13). While these immunological differences may play  
a part in the increased morbidity which has been observed, fac-
tors such as socioeconomic status, maternal health, breastfeeding 
duration, exposure to ART, and exposure to co-infections are also 
likely to be important.

Cytomegalovirus is the most common congenital infection 
worldwide, affecting up to 1.2% of live births in developing 
countries. Although CMV infection is thought to lead to immune 
senescence and a poor response to the influenza vaccine in the 
elderly (14), it is not fully understood how CMV might affect 
infant responses to vaccines. Congenital CMV infection leads to 
changes in the infant T-cell population as a whole and is associ-
ated with increased morbidity in HIV-infected and HIV-exposed, 
uninfected infants. In HIV-infected infants who are not receiving 
ART, those with congenital CMV infection have an increased rate 
of HIV disease progression (15, 16). HIV-exposed infants may be 
at higher risk of congenital CMV than HIV-unexposed infants 
(17, 18). In HIV-exposed, uninfected infants, CMV infection may 
contribute to immune activation (11, 19, 20) and increase the risk 
of postnatal HIV infection (21, 22).

This review summarizes the evidence for alterations in infant 
vaccine responses associated with exposure to maternal HIV  
and CMV infection, and explores possible immunological and 
other explanations for these findings.

MeTHODS

A literature search of English language publications was per-
formed using Medline. Key search terms included: maternal,  
fetal, neonate, HIV, CMV, vaccination, and immunization. The 
full search strategy is detailed in Table S1 in Supplementary 
Material. A formal systematic review was not undertaken; how- 
ever, we sought to carry out a comprehensive review of the pub-
lished literature. We screened titles and abstracts, selecting all  
articles with outcomes that included infant immune responses 
to routine Expanded Program on Immunizations vaccinations 
following antenatal exposure to either maternal HIV or CMV 
infection, or both.

Studies of HIV-infected infants in which the majority of par-
ticipants received ART were selected when possible, for three 
main reasons: (1) ART is associated with increased magnitude 
and quality of infant antibody responses to vaccines (7–10);  
(2) studies in which infants do not receive ART are prone to 
survival bias because there is often a high mortality rate in the 
HIV-infected group (7, 9, 23); and (3) this review is intended to  
be relevant to current and future practice, looking toward uni-
versal ART in HIV-infected children. Since 2015, the World 
Health Organization guidelines have recommended that all 
children infected with HIV receive ART. The proportion of chil- 
dren with HIV receiving ART worldwide was 49% in 2015, and  
ART coverage in children and adults with HIV has been 
increasing year on year (24). Studies of vaccine responses in 
HIV-infected infants were excluded if they did not include a 
HIV-unexposed control group. Papers including a comparison 
between vaccine responses in HIV-exposed, uninfected infants 
with HIV-unexposed, uninfected infants were included. This 
review aimed to review the contemporary literature; there were 
no studies comparing vaccine responses of HIV-infected infants 
treated with ART and HIV-exposed, uninfected infants, there- 
fore this comparison is not made in this review.

vACCiNe ReSPONSeS iN Hiv-iNFeCTeD 
iNFANTS

Humoral Responses
The published literature shows some heterogeneity in the differ-
ences in concentrations of specific immunoglobulin (Ig) G and 
proportion of infants protected following primary and booster 
doses of routine vaccines in HIV-infected infants receiving ART 
compared with HIV-unexposed infants (Table 1).

Following primary immunization, HIV-infected infants aged 
20  weeks had significantly lower specific antibody concentra- 
tions to tetanus, diphtheria, pertussis and hepatitis B surface  
antigen (HBSAg), than HIV-unexposed infants in a South African 
study (9). However, the clinical significance of this is unclear, as 
high proportions (92–100%) of infants from both groups had 
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TAble 1 | Effect of HIV infection on infant responses to vaccines.

vaccine Age at 
vaccination

Age at blood 
sampling

Hiv-infected 
infants on 

ART, n

Hiv-
unexposed 
infants, n

Main findings in Hiv-infected compared with  
Hiv-unexposed infants

South Africa (7) PCV 7, 11, and 
15 weeks

20 weeks 172 125 •	 No significant difference in % protected or concentration of specific IgG
•	 Opsonophagocytic assay: higher concentration of antibody needed for 

50% killing activity for 2/3 serotypes (antibody (95% CI) for 50% killing 
24 (21–27) vs 19 (16–23), p = 0.045 for serotype 19F; 4 (3–5) vs 2 (2–3), 
p = 0.007 for serotype 23F)

South Africa (8) PCV 7, 11, and 
15 weeks

7, 11, 15, and 
20 weeks

205 119 •	 Pre-vaccination, lower concentration of specific IgG for 3/7 serotypes 
(mean GMC 0.14 vs 0.22, p ≤ 0.004) and lower % protected for 4/7 
serotypes (mean 30 vs 45%, p ≤ 0.008)

•	 Following dose 1, significantly lower specific IgG concentrations for 3/7 
serotypes (mean 0.42 vs 0.60, p ≤ 0.016) and lower % protected (mean 
34 vs 49%, p ≤ 0.007) for 4/7 serotypes

•	 No difference after dose 2

South Africa (9) DTwP-Hib, 
HBV

6, 10, and 
14 weeks

7 and 20 weeks 172 114 •	 Pre-vaccination, lower concentration of antibody to tetanus (GMC 0.086 
vs 0.421 IU/ml N/nm, p < 0.001), HBsAg (GMC 5.81 vs 7.74 mIU/ml N/n, 
p = 0.01), and pertussis (GMC 17.67 vs 40.65 IU/ml, p < 0.001)

•	 Post-vaccination antibody concentration lower for tetanus (GMC 0.405 vs 
0.952 IU/ml N/nm, p < 0.001), diphtheria (GMC 0.200 vs 0.272 IU/ml N/n, 
p = 0.001), HBsAg (GMC 924.87 vs 2,521.03 mIU/ml N/n, p < 0.001), 
and pertussis (GMC 40.48 vs 61.24 IU/ml, p < 0.001), but no difference in 
% protected

South Africa (10) Measles 9 and 
15.5 months

2.5, 4, 15.5, 16, 
and 24 months

182 115 •	 Pre-vaccination, significantly lower % protected (41.8 vs 65.2%)
•	 At 24 months, no significant difference in antibody concentration or % 

protected

Zambia (21) OPV 0, 6, 10, and 
14 weeks, 
12 months

18 months 17 397 •	 Lower antibody titer (log2 antibody titer 4.71 (SD 2.97) vs 8.15 (SD 2.09), 
p < 0.01)

•	 Lower proportion had protective antibody levels (64.5 vs 98.4%, p < 0.01)

PCV, pneumococcal conjugate vaccine; DTwP-Hib, diphtheria, tetanus, whole cell pertussis, Hib; OPV, oral polio vaccine; % protected, proportion protected; CI, confidence  
interval, Ig, immunoglobulin; HBSAg, hepatitis B surface antigen; ART, antiretroviral therapy; HIV, human immunodeficiency virus.
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concentrations of antibody to tetanus, diphtheria, and HBsAg 
that are deemed protective (9).

Pneumococcal conjugate vaccine (PCV) antibody concen-
trations were lower in HIV-infected infants after the first and 
second PCV doses (8), but after the third dose the antibody con-
centration and proportion of infants protected were similar in 
HIV-infected and HIV-unexposed infants (7). However, an op- 
sonophagocytic assay showed that antibody against two out of 
three PCV serotypes tested in HIV-infected infants receiving  
ART had 26–50% lower killing activity than that of HIV-
unexposed infants. This suggests that HIV-infected infants may 
not mount as effective an antibody response against pneumo-
coccal disease as HIV-uninfected infants, despite producing 
a similar concentration of antibody following vaccination 
(7). A UK study of older children (mean age 12.8 years, range 
1–17.4 years) showed that a lower proportion of HIV-infected 
individuals were protected against three of 13 PCV serotypes, 
compared with HIV-unexposed children and adults. This was 
despite an equal or larger proportion of HIV-infected children 
having previously received the 7-valent or polysaccharide pneu-
mococcal vaccines (25).

In a Zambian cohort in which mothers received short- 
course intrapartum nevirapine to prevent mother-to-child trans-
mission during labor and delivery, but infants did not receive 
ART, HIV-infected infants who received oral polio vaccine (OPV) 
had 42% lower neutralizing antibody responses at 18  months 

(p < 0.01), and a lower proportion had protective antibody lev- 
els than HIV-unexposed infants (64.5 vs 98.4%, p < 0.01) (26).

Following measles vaccination at age 9 months, there was no 
significant difference in measles-specific IgG levels at 24 months 
in HIV-infected infants compared with HIV-unexposed infants 
in a study from South Africa, and no difference in the proportion 
of infants with protective antibody levels (10).

Human immunodeficiency virus-infected newborns are 
potentially more susceptible to vaccine-preventable diseases for 
a longer period than HIV-unexposed infants (8, 10). As well as 
having lower responses to the first two doses of vaccine (as seen 
with PCV and measles), compared with HIV-unexposed infants, 
HIV-infected infants had lower pre-vaccination concentrations 
of antibody to three of seven PCV serotypes (8), tetanus (GMC 
0.086 vs 0.421, p < 0.001), HBsAg (GMC 5.81 vs 7.74, p = 0.01), 
and pertussis (GMC 17.67 vs 40.65, p < 0.001) (9, 10). Similarly, 
before vaccination a lower proportion of HIV-infected than 
HIV-unexposed infants had protective levels of antibody to PCV  
(for four serotypes, mean 30 vs 45% protected, p ≤ 0.008) and 
measles (9, 10).

Cellular Responses
In a study in South Africa, in which mothers received PMTCT 
and infected infants (diagnosed at 6 weeks) were not breastfed and  
did not receive ART, T-cell responses to BCG in HIV-infected in- 
fants were compared with those in HIV-unexposed infants (27).  
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After BCG vaccine on day 1 of life, HIV-infected infants had  
severely impaired T-cell responses at 3  months, and by 
9–12  months the response was almost absent (27). Both the 
magnitude of the CD4 and CD8 T-cell responses, and the poly-
functionality of the CD4 response were markedly reduced (27). 
Secreted cytokines interferon (IFN)-γ and interleukin-2 were  
also present in significantly lower concentrations in HIV-infected 
than HIV-unexposed infants at 3  months, although tumor  
nec rosis factor (TNF)-α concentration was not significantly  
different (27).

Mechanisms of Altered vaccine 
Responses in Hiv-infected infants
Both maternal and infant factors are likely to be involved in 
the observed differences in antibody and cellular responses to 
vaccines seen in HIV-infected compared with HIV-unexposed 
infants (8). In HIV-infected infants, lower CD4 count may 
impair the mechanisms leading to induction and maintenance 
of immunological memory to vaccine antigens (26). The obser-
vation that specific antibody concentrations are lower in HIV-
infected infants before vaccination may suggest reduced transfer 
of antibody across the placenta (8, 10). Both reduced antibody 
concentration and impaired placental function in HIV-infected 
mothers may contribute to this (28, 29).

There are inherent difficulties in comparing vaccine responses 
in HIV-infected with HIV-unexposed infant populations, as the 
two groups are likely to differ in duration of breastfeeding, expo-
sure to ART, socioeconomic status, exposure to co-infections, 
nutritional status, and survival. In a multivariable analysis of  
factors associated with response to OPV (primary course and  
booster at age 12 months) at 18 months of age, increasing breast- 
feeding duration was associated with increasing poliovirus 
antibody level (26). In this study, median breastfeeding duration 
was 6  months in HIV-infected mother-infant pairs compared 
with 15 months in HIV-uninfected pairs (p < 0.01). Differences 
in breastfeeding duration in HIV-infected and unexposed groups 
were not stated in the other studies described earlier, although in 
four of the studies, infants were co-enrolled in the CHER trial in 
South Africa, a randomized controlled trial evaluating antiret-
roviral treatment strategies, in which only 14% of infants were 
breastfed (30). Short duration or refraining from breastfeeding 
in low and middle-income settings, including for HIV-infected 
infants, is associated with increased infectious morbidity, stun-
ting, and wasting (31–33).

A recent review of the effects of maternal nutritional status 
on infant vaccine responses concluded that maternal macro- and 
micronutrient deficiency during pregnancy is likely to impair 
infant responses to vaccines, even in the presence of nutrient 
supplementation (34).

Increased exposure to opportunistic infections through breast-
feeding (for example, CMV infection) or close contact with HIV-
infected mothers who may have co-infection may affect immune 
responses in HIV-infected infants. In HIV and CMV co-infection, 
infants have accelerated HIV progression, increased mortality, 
growth delay and cognitive impairment, compared with HIV-
infected infants without CMV (35). In Malawi, breastmilk CMV 

load had a stronger negative association with infant growth than 
breastmilk HIV load (36).

In summary, HIV-infected infants receiving ART may have 
impaired ability to mount quantitatively and qualitatively ade- 
quate antibody responses to vaccines compared with HIV-
unexposed infants. The clinical effect of impaired vaccine 
responses on morbidity from vaccine-preventable disease is not 
known. Shorter breastfeeding duration, poorer nutritional status 
and increased exposure to co-infections in HIV-infected infants 
may be contributing factors, and their impact requires further 
investigation to fully understand the mechanisms underlying 
the changes in vaccine responses in HIV-infected infants. CMV 
infection is almost ubiquitous in low-resource settings, and its 
clinical effects on infants with HIV suggest it is having an impor-
tant effect on the immune system, and could be an important 
modifiable factor in reducing morbidity and mortality of HIV-
infected infants.

vACCiNe ReSPONSeS iN Hiv-eXPOSeD, 
UNiNFeCTeD iNFANTS

Humoral Responses
Detailed studies in HIV-exposed, uninfected infants have demon-
strated differing patterns of antibody responses to vaccines 
compared with HIV-unexposed infants (Table 2), and revealed 
likely underlying mechanisms.

After three doses of pertussis-containing vaccine, antibody 
levels in HIV-exposed, uninfected infants were two to seven 
times higher than in unexposed infants (9, 29, 37). However, fol-
lowing the booster dose at 18 months, the proportion of children  
with protective antibody levels was non-significantly higher 
in HIV-exposed, uninfected infants than in HIV-unexposed  
children (37).

Following the first one to two doses of Hib vaccine, concen-
tration of specific antibody was 12 times higher at 16 weeks in 
HIV-exposed, uninfected than unexposed infants (29), but there 
was no significant difference when infants had received all three 
doses (9, 29, 37, 38). Similarly, tetanus antibody concentration 
was higher after one to two doses, but not significantly different 
at 4, 5, or 6 months following three doses (9, 29, 37). Six months  
after the fourth (booster) dose, at 24 months, the antibody con-
centration was significantly higher in the HIV-exposed, uninfected 
children than in the HIV-unexposed children (p  <  0.05) (37). 
One study found that at 7 months tetanus antibody concentration 
was significantly lower in HIV-exposed, uninfected infants than 
unexposed infants, but neither study found any significant differ-
ence in the proportion of infants protected (37, 39).

In studies in South Africa, HIV-exposed, uninfected infants 
who received all three doses of PCV had significantly higher 
antibody concentrations at 16 and 20  weeks (7, 29), although 
opsonophagocytic activity was reduced compared with unex-
posed infants for 1 out of 3 serotypes (7).

The increased antibody responses to the initial doses of Hib,  
tetanus, and other vaccines can be explained by reduced inter-
ference from maternally derived antibody in HIV-exposed, un- 
infected infants. Before vaccination, HIV-exposed, uninfected 
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TAble 2 | HIV-exposed, uninfected infant responses to vaccines.

vaccine Age at 
vaccination

Age at blood 
sampling

Hiv-exposed 
uninfected 
infants, n

Hiv-
unexposed 
infants, n

Findings in Hiv-exposed uninfected compared with  
Hiv-unexposed infants

South Africa (7) PCV 7, 11, and 
15 weeks

20 weeks 120 125 •	 Overall no difference in specific IgG concentration or % protected after 
third dose (median 99 vs 98% protected)

South Africa (8) PCV 7, 11, and 
15 weeks

7, 11, 15, and 
20 weeks

124 119 •	 Pre-vaccination: for 7/7 serotypes, significantly lower specific 
IgG concentration (median GMC 0.12 vs 0.21, p ≤ 0.006) and % 
protected (median 18 vs 32%, p ≤ 0.005)

•	 Post-dose 1: significantly lower specific IgG concentration (4/7 
serotypes, median GMC 0.26 vs 0.53, p ≤ 0.003) and % protected 
(5/7 serotypes, median 35 vs 49%, p ≤ 0.019)

•	 Post-dose 2: overall no significant difference in GMT or  
% protected

South Africa (9) DTwP-HibCV, 
HBV

6, 10, and 
14 weeks

7 and 20 weeks 120 114 •	 Pre-vaccination: lower antibody concentration against tetanus (GMC 
0.219 vs 0.421 IU/ml N/nm, p = 0.001); higher antibody concentration 
and % protected against diphtheria (61 vs 29% protected, p < 0.001) 
and HBsAg (81 vs 50% protected, p < 0.001)

•	 Post-vaccination: lower antibody concentration against HBsAg (GMC 
2,019.28 vs 2,521.03, p = 0.041) but mean 99.2% protected. Higher 
antibody concentration (GMC 261.30 vs 134.34, p < 0.001) and % 
achieving fourfold increase (76.7 vs 39.1%, p < 0.001) in response to 
pertussis

South Africa (10) Measles 9 and 
15.5 months

2.5, 4, 15.5, 16, 
and 24 months

116 115 •	 Pre-vaccination: no significant difference in GMT or % protected at 
2.5 months

•	 Before booster (15.5 months): significantly higher antibody 
concentration (GMT 3,009 vs 2,212, p = 0.008) but no difference in 
% protected

•	 After booster: significantly lower antibody concentration at 16 months 
(GMT 2,532 vs 3,124, p = 0.015) and 24 months (GMT 1,773 vs 
2,248, p = 0.004), and lower % protected at 24 months (79.6 vs 
94.3%, p = 0.002)

Malawi (13) BCG, OPV Birth 10 weeks 13 21 •	 No difference in anti-M. tb and anti-polio IgG

Zambia (21) OPV 0, 6, 10, and 
14 weeks, 
12 months

18 months 133 397 •	 Significantly lower antibody titer (difference in log2 antibody titer −0.62, 
95% CI −1.04; −0.21, p < 0.01)

South Africa (25) DTP-Hib or 
DTaP-IPV/ 
Hib, HBV,  
PCV

6, 10, and 
14 weeks

Birth, 16 weeks 38 55 •	 Pre-vaccination: significantly lower antibody concentrations to Hib, 
pertussis, pneumococcus, and tetanus; lower % protected  
against Hib (17 vs 52%, p < 0.001), pertussis (24 vs 57%, p = 0.001), 
tetanus (43 vs 74%, p = 0.002), and hepatitis B (21 vs 54%, 
p = 0.01)

•	 Post-vaccination: following 1–2 doses, higher antibody concentration 
against Hib (6.46 vs 0.52 mg/L, p = 0.02), pertussis (81.16 vs 11.6 
FDA IU/mL, p < 0.001), pneumococcus and tetanus (1.86 vs 0.50 
IU/mL, p = 0.01). Following 3 doses, higher antibody concentration 
against pertussis (270.1 vs 91.7 FDA U/mL, p = 0.006) and 
pneumococcus (47.32 vs 14.77 mg/L, p = 0.001)

•	 Greater fold increase in antibody level against Hib (21.15 vs 2.97, 
p = 0.007) and pertussis (9.51 vs 2.16, p = 0.007)

•	 Infant:maternal antibody ratio (proxy for placental transfer of antibody) 
lower by 23% for Hib, 40% for pertussis, and 27% for tetanus in HIV-
infected compared with HIV-uninfected mothers

South Africa (33) DTP, Hib,  
HBV,  
measles

6, 10, and 
14 weeks; 
DTP booster 
18 months; 
measles 9, 
18 months

0.5, 1.5, 3, 6, 
12, 18, and 
24 months

27 28 •	 Pre-vaccination, significantly lower antibody levels against tetanus 
(p < 0.025) and higher against hepatitis B (p < 0.025)

•	 DTP, Hib, and HBV: after 2 doses, no difference in antibody levels or 
% protected. After 3 doses: higher antibody level and  
% protected against pertussis. At 24 months higher antibody  
level against tetanus

•	 Measles: no differences between groups

Denmark (34) Hib 3, 5, and 
12 months

15 months 19 7 •	 No difference in antibody concentration

(Continued)
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vaccination

Age at blood 
sampling

Hiv-exposed 
uninfected 
infants, n

Hiv-
unexposed 
infants, n

Findings in Hiv-exposed uninfected compared with  
Hiv-unexposed infants

Brazil (35) HBV, DTP/ 
Hib

HBV: 0, 1,  
and 6 months 
DTP/Hib: 2, 4, 
and 6 months

7 months 53 112 •	 HBV: more non-responders (6.7 vs 3.6%, χ2 10.93, df = 1) and more 
very good responders (64.4 vs 38.8%, non-significant) among  
HIV-exposed infants

•	 Tetanus: significantly lower antibody titer against tetanus (GMT 1.520 
vs 2.712, p = 0.013), but 100% of infants were protected

•	 Diphtheria: no significant differences between groups

M. tb, Mycobacterium tuberculosis; OPV, oral polio vaccine; PCV, pneumococcal conjugate vaccine; DTwP-Hib, diphtheria, tetanus, whole cell pertussis, Hib; HBV, hepatitis  
B vaccine; DTaP-IPV/Hib, diphtheria, tetanus toxoid, and acellular pertussis combined with inactivated polio vaccine and Hib; HBsAg, hepatitis B surface antigen; % protected, 
proportion protected; GMC, geometric mean concentration; GMT, geometric mean titer; HIV, human immunodeficiency virus; Ig, immunoglobulin; CI, confidence interval.
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infants consistently had lower antibody concentrations against 
PCV (seven serotypes), pertussis, Hib, and tetanus in a number 
of studies (8, 9, 29, 37). For each of these specific antibodies, there 
was significantly reduced placental transfer, with reductions of 
15–40% in the ratio of maternal antibody to infant antibody con-
centrations at birth (29). Individual infants with lower antibody 
levels at birth had larger antibody responses at 16  weeks, and 
HIV-exposed, uninfected infants had a significantly larger fold 
increase than unexposed infants following vaccination against 
PCV, pertussis, and Hib (29).

Two South African studies have compared measles vaccine 
responses in HIV-exposed, uninfected, and unexposed infants. 
One study found antibody concentrations were 36% higher at 
16 months, but after the booster dose, both the antibody titer and 
proportion of infants protected were lower at 24  months (79.6 
vs 94.3% protected, p = 0.002) (10). The other study found the 
opposite; however, in this study antibody responses were lower 
in all groups, especially HIV-unexposed infants, for whom only 
50% had antibody concentrations associated with protection at 
2 years (37). Pre-vaccination levels of measles antibody did not 
differ significantly in HIV-exposed and unexposed infants in 
either study (10, 37).

Antibody responses to hepatitis B vaccine in HIV-exposed, 
uninfected infants were heterogeneous, with higher proportions 
of both non-responders (6.7 vs 3.6%, χ2 10.93, df = 1) and very 
good responders (64.4 vs 38.4%, non-significant) at 7  months, 
compared with HIV-unexposed infants in Brazil (39). At time 
points between 3 and 24 months, no significant differences were 
found in the overall proportion of infants with protective anti-
body levels in HIV-exposed, uninfected, and unexposed groups 
in Brazil and South Africa (9, 29, 37, 39). Before vaccination, the 
proportion of infants with protective antibody levels was higher 
in HIV-exposed than unexposed infants in two studies from South 
Africa and lower in one study in the same country (9, 29, 37).

In two studies of responses to diphtheria vaccine, antibody 
responses in HIV-exposed, uninfected, and HIV-unexposed 
infants did not differ, with more than 98% protected following 
the primary course (9, 39). Pre-vaccination anti-diphtheria 
toxin antibody levels were significantly higher in HIV-exposed, 
uninfected infants (GMC 0.136 vs 0.078, p < 0.001) (9). There 
were no differences found in IgG concentrations against OPV 
at 10 weeks (13). The response to OPV at 18 months was lower 
in HIV-exposed uninfected infants than unexposed infants, but 

this was no longer significant after adjusting for breastfeeding 
duration (26).

In summary, typically vaccines for which the antibody con-
centration is lower before vaccination result in higher concentra-
tions after vaccination. This is true for only the first one to two 
doses of Hib and tetanus vaccines, but persists to the end of the 
course of PCV and pertussis. For all four vaccines there is reduced 
mater nal trans-placental transfer of antibody (29). There are less  
clear trends for measles and hepatitis B vaccines, which may be 
more dependent on population transmission and prevalence.  
HIV exposure did not appear to have any effect on antibody 
responses to diphtheria or OPV. Overall, HIV-exposed, uninfec-
ted infants respond at least as well to vaccines as their unexposed 
peers.

Cellular Responses
Human immunodeficiency virus-exposed, uninfected infants 
produce strong T-cell responses to BCG vaccine. In South 
Africa, BCG-specific CD4 and CD8 T-cell proliferation increased 
significantly after vaccination in HIV-exposed, uninfected, and 
unexposed infants at 14 weeks (40). In another study, all 94 HIV-
exposed, uninfected infants formed a scar (41). T-cell prolifera-
tion and cytokine secretion were not affected by maternal HIV 
infection or Mycobacterium tuberculosis (M. tb) sensitization at 
time points between 6 weeks and 12 months (13, 27, 40, 42, 43).

Differences in the frequencies of specific T-cell subpopula-
tions have been found between HIV-exposed, uninfected, and 
unexposed infants before and after BCG vaccination (40, 42). In 
HIV-exposed and uninfected infants, the CD4 and CD8 T-cell 
response at 14  weeks was less polyfunctional, indicating a less 
effective response (42). However, this may simply reflect imma-
turity, as infants were vaccinated within 3 days after birth, and 
another study in which the infants were vaccinated at 6 weeks 
found very little difference in T-cell subpopulations at 16 weeks, 
compared with HIV-unexposed infants (40).

At birth, no differences in BCG-specific T-cell proliferation 
or functionality are seen between HIV-exposed, uninfected, and 
unexposed infants (40). However, there are differences in the fre-
quencies of some T-cell subsets, some of which correlate between 
mother-infant pairs, with the strongest associations between 
HIV-infected, M. tb sensitized mothers, and their infants (40). 
Secretion of TNF-α and IFN-γ in response to BCG antigens was 
increased at birth in HIV-exposed uninfected infants compared 
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with HIV-unexposed infants, but only when their mothers had 
evidence of latent tuberculosis infection (40). These findings 
support the idea that HIV-exposed uninfected infants are able 
to mount just as robust a response to BCG vaccine as unexposed 
infants, but that the immune system may be primed by antenatal 
exposure to maternal HIV and tuberculosis infection (40).

Two studies have investigated the cellular response to other 
vaccine antigens in HIV-exposed, uninfected infants compared 
with unexposed infants. In response to pertussis vaccine, one 
study found no significant differences in T-cell proliferation at 
14  weeks in HIV-exposed, uninfected, and unexposed infants,  
but HIV-exposed infants showed reduced polyfunctionality in 
CD4 and CD8 responses (42). Similarly, tetanus vaccine-specific 
T-cell responses showed no differences at 3  months, but at 
12  months HIV-exposed uninfected infants had reduced poly-
functionality, and a lower proportion of effector memory T-cells 
compared with HIV-uninfected infants (43).

A similar pattern was seen in response to stimulation with 
staphylococcal enterotoxin B (SEB) in one study, even after 
adjusting for differences in birthweight, breastfeeding, and ges- 
tational age (42). However, another study found that cytokine 
production and polyfunctionality were increased overall at 
3 months but reduced at 12 months (43).

Mechanisms of Altered vaccine 
Responses in Hiv-exposed,  
Uninfected infants
Human immunodeficiency virus-exposed, uninfected infants  
are exposed to antenatal factors that might affect both their anti-
body and T-cell responses to vaccines. There is compelling evi-
dence that in mothers with HIV infection, less IgG is transferred 
across the placenta than in HIV-uninfected mothers, resulting 
in lower pre-vaccination levels of IgG specific to several vaccines 
(8–10, 29, 37). Results from analysis adjusting for maternal age, 
gravidity, and socioeconomic status show that maternal HIV 
infection is associated with the concentration of specific IgG 
following Hib, pertussis, PCV, and tetanus vaccines in exposed, 
uninfected infants (26, 29). In this study, mothers received ART 
during and after pregnancy, infants received zidovudine for the 
first month after birth, and no HIV-exposed, uninfected infants 
were exclusively breastfed. This finding is likely to be a result of 
lower vaccine-specific antibody levels in HIV-infected mothers, 
which correlate with CD4 count (29), and placental dysfunction 
resulting in reduced placental transfer of antibody (8, 9, 29, 37). 
Maternally derived antibody present in infants pre-vaccination 
may inhibit the infants’ own IgG responses, leading to the obser-
vation that infants with the highest pre-vaccine levels of anti- 
body had the lowest fold increase following vaccination (29). 
Although the mechanisms for this are incompletely understood  
in humans, animal models have shown that this inhibition is medi-
ated by maternally derived antibody binding to vaccine antigens, 
which then form cross-linkage between the B cell receptor (which 
binds vaccine antigen) and the FcγIIB receptor (which recognizes 
the Fc portion of IgG). This results in inhibitory signals, reduced 
proliferation of B cells and decreased secretion of vaccine-specific 
IgG (44, 45).

Infants of mothers with HIV infection may be exposed  
antenatally to HIV proteins and/or maternal immune factors that 
have a wider effect on the development of the immune system 
in utero and early infancy. HIV-exposed, uninfected infants may 
have a smaller thymus, which has been associated with immune 
abnormalities in early infancy (38). There is some evidence that 
T-cells in HIV-exposed, uninfected infants show changes in 
proliferation and phenotype compared with HIV-unexposed 
infants (13). CD4 count may be significantly lower and represent 
a smaller proportion of total lymphocytes, and some studies have 
found an association between infant and maternal CD4 count 
(13, 46). The reduction in T-lymphocytes occurs mainly in less 
differentiated subsets, and cells expressing markers of replica-
tive senescence (CD57 and PD-1) are more frequent (13). At 
birth and 6  weeks, the background concentration of IFNγ was 
reported to be significantly higher in HIV-exposed, uninfected 
infants than unexposed infants in one study in South Africa (41). 
These early changes could represent priming of some aspects of 
the immune response in utero, leading the alterations in prolife-
ration and function of T-cell subsets in response to vaccinations 
in HIV-exposed infants (13, 39–41).

Another antenatal factor that may affect HIV-exposed, unin-
fected infants is exposure to ART. Nevirapine has been associated 
with slightly increased markers of immune activation in cord 
blood (47), and maternal ART was associated with reduced 
neutrophil and lymphocyte counts in HIV-exposed, uninfected 
infants, with the largest difference in infants of mothers on com-
bination therapy (46). However, an association between maternal 
ART and infant vaccine-specific T-cell responses has not so far 
been demonstrated (42, 43).

Increasing maternal age is associated with higher infant levels 
of pertussis antibody at birth (29). This might be influenced by 
differing maternal exposure to circulating pertussis or to different 
vaccine coverage with pertussis vaccines at different times. Other 
maternal infections during pregnancy are likely to be important 
in determining infant antibody concentrations pre-vaccination 
and therefore potentially post-vaccination too, for example, high 
variability in infant hepatitis B antibody response is likely to be 
a result of higher prevalence of hepatitis B infection in HIV-
infected mothers in some settings (37).

Postnatally both maternal and environmental factors probably 
have important effects on infant vaccine responses. Breastfeeding 
is an important conduit for transfer of IgA from mother to infant 
and is associated with larger thymic size, phenotypic changes 
to lymphocyte subpopulations and improved immune function 
(48). In studies of HIV-exposed, uninfected, and unexposed 
infants, there are often large differences in breastfeeding prac-
tices between groups (26, 29, 37), and many studies do not report  
data on breastfeeding (7–10, 13, 38–40, 43). One study reported 
that the reduction in neutralizing antibody response to OPV in  
HIV-exposed, uninfected infants could be accounted for by redu-
ced breastfeeding duration (26). This could be because of reduced 
antibody transfer, or increased exposure to maternal infections 
such as CMV which are transmitted in breast milk (26).

Postnatal exposure to other infections may also affect specific 
antibody responses to vaccines. The large differences between 
studies in the proportion of infants protected against measles 
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following vaccination raises the possibility that differences in 
transmission rates of measles infection may have affected the pro-
portions of infants protected (49). Differences in nasopharyngeal 
colonization with pneumococcus among HIV-exposed, unin-
fected infants, and unexposed infants has also been suggested to 
contribute to differences in their vaccine responses (7). In low-
resource settings HIV-exposed, uninfected infants have poorer 
nutritional status than unexposed infants (50), although a trial  
of nutritional supplementation between age 6 and 18  months 
had no effect on antibody responses to OPV in HIV-exposed, 
uninfected infants (26).

We conclude that there is convincing evidence that reduced 
antibody transfer across the placenta is associated with changes 
in antibody responses to the initial doses of PCV, tetanus,  
pertussis, and Hib vaccines in HIV-exposed, uninfected infants. 
The effect of HIV exposure on responses to hepatitis B and 
measles vaccines appears more variable between populations, 
and prevalence of these infections may be an important factor. 
The functional quality of vaccine-specific antibody produced by 
HIV-exposed, uninfected infants requires further investigation 
(29, 37), but overall it is encouraging that HIV-exposed, unin-
fected infants do not appear to have significantly reduced levels 
of protection from routine infant vaccines. Breastfeeding is likely 
to affect responses to other vaccines besides OPV, and further 
studies are now more feasible following changes in WHO recom-
mendations to support breastfeeding in HIV-infected mothers  
in a wider range of settings (51).

vACCiNe ReSPONSeS iN iNFANTS  
wiTH CONGeNiTAl AND POSTNATAl 
CMv iNFeCTiON

effect of CMv infection on T-Cell 
Populations
Congenital and postnatal CMV infection leads to a series of 
changes in infant CMV-specific CD4 and CD8 T-cells, as well 
as having an effect on the whole T-cell population. There is an 
initial increase in activation of the whole CD8 T-cell popula-
tion, which returns to normal over 12–24  months (52–55). 
CMV-specific CD8 T-cells remain highly activated for at least 
24  months following postnatal infection, but in congenital 
infection, activation may diminish more rapidly (53, 54). There 
is a shift toward more differentiated CD4 T-cells, but CMV-
specific CD4 T-cells are infrequently found in infected infants 
(55, 56). In adults with CMV, these cells are common and are 
associated with effective control of viral replication, less severe 
disease, and lower risk of mother-to-child transmission (57, 58). 
Infant T-cells are less polyfunctional than those seen in adults, 
and polyfunctionality is also thought to be associated with 
improved control of CMV infection (55, 58–60). Therefore, 
congenital and postnatal CMV infection affects the whole T-cell 
population, and the effect is different in infants compared with 
adults. Infants have a longer duration of viremia than adults  
(55, 61), and their vaccine responses may be affected differently 
by CMV infection.

effect of CMv infection on Humoral and 
Cellular vaccine Responses
Studies in elderly adults have shown that latent CMV infection 
leads to the expansion of CD8+CD28− T-cells, which are thought 
to suppress immune responses to influenza vaccine and contri-
bute to generalized immunosenescence in older adults (14). Few 
studies have evaluated the effects of CMV infection on infant 
vaccine responses (Table 3).

In a study of measles vaccine in Gambian infants, 1 week after 
vaccination infant CD8 T-cell responses did not vary with CMV 
infection acquired congenitally or postnatally, but CD4 T-cell 
IFN-γ responses were lower in CMV-infected infants than in 
infants without CMV infection (54). At 13 months of age, there 
were no differences in memory T-cell responses between CMV-
infected and uninfected infants. However, CMV-infected infants 
showed significantly higher CD4 and CD8 T-cell IFN-γ responses 
to SEB, indicating that immune activation is present in CMV-
infected infants. Furthermore, there was a positive correlation 
between the magnitudes of the responses to SEB and CMV (54).

A study of CMV and EBV co-infection supports the idea that 
the effect of CMV infection on antibody responses to measles 
is dependent on changes to the T-cell population. Epstein–Barr 
virus (EBV) infects B-cells, and EBV-infected infant IgG 
responses to measles vaccine and meningococcus A and C poly-
saccharide vaccine are reduced by approximately one third (62). 
In infants co-infected with CMV and EBV, the measles-specific 
IgG vaccine response is similar to uninfected infants. However, 
CMV co-infection does not have a significant effect on the IgG 
response to meningococcus (a T-cell independent response) in 
EBV-infected infants, and the vaccine response is still lower than 
in EBV uninfected infants (62).

Gambian infants who acquired CMV antenatal or postnatally 
had no significant differences in anti-Hib or anti-tetanus toxoid 
IgG concentration measured compared with uninfected infants 
at 18  months (54). A study of antibody response to OPV in 
Zambian infants found that neither CMV seropositivity nor 
viremia had a significant effect on OPV neutralizing antibody 
titers or frequency of vaccine failure at 18 months of age (26). 
However, trends in the data suggested that co-infection with HIV 
and CMV may have negative synergistic effects on the antibody 
response to OPV. CMV seropositivity at 18 months was associ-
ated with a trend toward a small decrease in vaccine failures in 
HIV-unexposed infants (0.4 vs 4.3% vaccine failure, p = 0.06), but 
not in HIV-exposed, uninfected infants. In HIV-infected infants 
antibody responses were reduced in CMV seropositive compared 
with CMV seronegative infants, although these results did not 
reach statistical significance (26).

Human immunodeficiency virus-infected mothers in this 
study had a mean breastfeeding duration of 6 months compared 
with 15 months in HIV-uninfected mothers, and longer breast-
feeding duration was associated with increased mean poliovirus 
antibody titers in infants (26). The authors do not state whether 
mean breastfeeding duration differed between CMV seropositive 
and seronegative groups, but this is important because breast-
feeding is the main route of transmission of postnatal CMV 
infection, and in HIV-exposed, uninfected infants in this study, 
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TAble 3 | Effect of CMV infection on infant responses to vaccines.

vaccine Age at 
vaccination

Age at blood 
sampling

CMv-
infected 
infants, n

CMv-
uninfected 
infants, n

Findings

Gambia (51) Measles;  
tetanus, Hib

9 months; 2, 3, 4, 
and 16 months

9 months 86 46 CMV-infected vs uninfected infants (congenitally and postnatally  
infected infants in same cohort):
•	 Infected infants had lower CD4 IFN-γ response  

to measles (p = 0.013)
•	No significant difference in CD8 T cell proliferation  

or IFN-γ response to measles
•	No difference in measles antibody titers
•	 Infected infants’ IFN-γ response to CMV  

correlated with measles antibody response at 13 months
•	No significant difference in IgG response to Hib or  

tetanus vaccines at 18 months

13 months 90 42
18 months 121 11

Gambia (59) Measles, 
meningococcus 
A and C

9 months Birth 0 224 Comparison of CMV and EBV singly infected, co-infected, and  
uninfected infants
•	CMV status had no significant effect on measles  

antibody titer
•	 Infection with EBV reduced measles antibody response,  

except when there was co-infection with CMV (median log2  
hemagglutinin antibody inhibition assay titer EBV+CMV− = 3.0,  
EBV+CMV+ = 5.0, p = 0.003)

•	CMV status had no significant effect on anti-meningococcus IgM or IgG

9 months 115 58
11 months 121 51

Zambia (21) Oral polio Birth, 6, 10, 
and 14 weeks, 
12 months

18 months 369 75 •	 No significant associations between IgG response to OPV and  
CMV infection.

•	 In CMV seropositive infants, % vaccine failure was slightly lower than in  
seronegative infants (1.4 vs 4.0%, p = 0.14)

•	 In HIV+ infants, Ab titers were lower in infants with CMV viremia than  
without (log2 antibody titer 3.2 vs 5.75, p = 0.14)

•	 In HIV-unexposed infants, Ab titers were higher in CMV seropositive  
infants (log2 antibody titer 8.31 vs 7.77, p = 0.11)

•	 In HIV-exposed uninfected infants, CMV had no significant effect

EBV, Epstein–Barr virus; Ig, immunoglobulin; HIV, human immunodeficiency virus; CMV, cytomegalovirus; OPV, oral polio vaccine; IFN, interferon.
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the reduction in neutralizing antibody response to OPV could  
be accounted for by reduced breastfeeding duration (26).

Cytomegalovirus-infected infants show alterations in res-
ponses to measles and possibly polio vaccines, which are live 
vaccines, and no significant differences have been found in the 
responses to Hib or tetanus vaccines. Overall the ability to mount 
effective and lasting responses is preserved in otherwise well 
infants, at least in the short term, and responses to SEB indicate 
that some T-cell responses are increased in CMV infection. 
Interactions may occur between CMV and HIV or EBV to pro-
duce further alterations in vaccine responses, but there is still no 
significant impairment compared with CMV-uninfected infants. 
There is limited data on the effects of CMV infection on infant 
vaccine responses, and in light of growing evidence of poor clini-
cal outcomes associated with CMV infection in HIV-exposed, 
uninfected infants, further studies are particularly important in 
this group.

CONClUSiON

Human immunodeficiency virus-infected infants have some 
impairment in their humoral and cellular responses to routine 
immunizations. However, as many of the infants in the studies 
reviewed were born to mothers who started ART a short time 
before delivery as part of PMTCT programs, and were not 
exclusively breastfed, future studies will be needed to determine 

whether the same changes in immune responses are present  
when mothers and infants undertake optimal HIV treatment, 
PMTCT, and feeding practices. The clinical importance of these 
findings is unknown, as the risk of vaccine-preventable infection 
in HIV-infected infants compared with HIV-unexposed infants 
has not been determined.

Human immunodeficiency virus-exposed, uninfected infants 
and those with CMV have alterations in their vaccine responses, 
but the evidence does not support changes to the vaccine sched-
ule in these groups. Protecting infants from infection before  
their first vaccines, for example, by maternal immunization, is 
important in all infants, even more so in HIV-exposed, uninfected, 
and HIV-infected infants, who are less likely to be protected than 
HIV-unexposed infants. Maternal immunization is a key part  
of global efforts to reduce neonatal and infant infectious morbid-
ity and mortality. A better understanding of the mechanisms by 
which maternal infection and immune responses influence the 
developing infant immune system are critical to ensuring the 
success of new vaccines.
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Breast milk is the perfect nutrition for infants, a result of millions of years of evolution. In 
addition to providing a source of nutrition, breast milk contains a diverse array of microbiota 
and myriad biologically active components that are thought to guide the infant’s develop-
ing mucosal immune system. It is believed that bacteria from the mother’s intestine may 
translocate to breast milk and dynamically transfer to the infant. Such interplay between 
mother and her infant is a key to establishing a healthy infant intestinal microbiome. 
These intestinal bacteria protect against many respiratory and diarrheal illnesses, but are 
subject to environmental stresses such as antibiotic use. Orchestrating the development 
of the microbiota are the human milk oligosaccharides (HMOs), the synthesis of which 
are partially determined by the maternal genotype. HMOs are thought to play a role 
in preventing pathogenic bacterial adhesion though multiple mechanisms, while also 
providing nutrition for the microbiome. Extracellular vesicles (EVs), including exosomes, 
carry a diverse cargo, including mRNA, miRNA, and cytosolic and membrane-bound 
proteins, and are readily detectable in human breast milk. Strongly implicated in cell–cell 
signaling, EVs could therefore may play a further role in the development of the infant 
microbiome. This review considers the emerging role of breast milk microbiota, bioactive 
HMOs, and EVs in the establishment of the neonatal microbiome and the consequent 
potential for modulation of neonatal immune system development.

Keywords: breast milk, microbiota, microbiome, human milk oligosaccharides, exosomes, extracellular vesicles, 
infant microbiome, breast milk microbiome

iNTRODUCTiON

Breastfeeding confers protection against respiratory and gastrointestinal infections and is associated 
with a reduced risk of inflammatory diseases such as asthma, atopy, diabetes, obesity, and inflam-
matory bowel disease (1–7). Prolonged and exclusively breastfed infants have improved cognitive 
development (8, 9). Human milk continues the transfer of immunity from mother to child that 
started in utero, providing a nurturing environment that protects against infection and develops the 
infant intestinal mucosa, microbiota, and their own immunologic defenses. Breast milk is a special-
ized secretion in which immune response is highly targeted against microorganisms in the mother’s 
gut and airway, providing an important defense against the same pathogens likely encountered by 
her infant (10). More recent studies suggest that breast milk not only provides passive protection 
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but also directly modulates the immunological development of 
the breastfed infant through a variety of personalized microbial 
and immune factors transmitted from mother to child (11–14). 
These early imprinting events are crucial for immunologic and 
metabolic homeostasis.

Breast milk immune factors are at their highest concentrations 
in the colostrum (15), suggesting an immunologic function of 
milk when the infant is at highest risk of exposure to new patho-
gens. However, they continue to be dynamically present through-
out the lactation period. Bioactive factors transferred to the 
infant via breastfeeding including immunoglobulins, cytokines, 
chemokines, growth factors, hormones, and lactoferrin have been 
reviewed in detail elsewhere (15–17). This review will focus on the 
roles of breast milk microbiota in the establishment of the infant 
intestinal microbiota, human milk oligosaccharides (HMOs) in 
shaping the microbiota, and extracellular vesicles (EVs) in modu-
lation of the host–microbe interactions. Breast milk microbiota, 
HMOs, and EVs are emerging as areas of potential therapeutic 
interests due to their implications for infant immune develop-
ment, health, and scope for therapeutic manipulation.

BReAST MiLK MiCROBiOTA

Breast milk comprises several hundred bacterial species and  
harbors bacteria at concentrations of approximately 1,000 
colony-forming units (CFUs)/mL (18, 19). It is estimated 
that breastfed infants ingest up to 800,000 bacteria daily (20). 
Following a dose of microbes at birth (21), breast milk is the 
immediate next fundamental source of microbes seeding 
the infant’s gut (22, 23). Many epidemiologic studies have 
documented differences in the composition of gut microbiota in 
breastfed and formula-fed infants (24–26). Human milk directly 
contributes to the establishment of the infant intestinal micro-
biome (19, 20, 23, 27–29). Multiple studies have documented 
the sharing of specific microbial strains of Bifidobacterium, 
Lactobacillus, Enterococcus, and Staphylococcus species between 
breast milk and infant stool (30–32). During the first month of 
life, infants who primarily breastfeed share 28% of their stool 
microbes with their mother’s milk microbes. The frequency of 
shared microbes increases with the proportion of daily breast 
milk intake in a dose-dependent manner (23). These findings 
strongly suggest the transfer of microbes from breast milk to the 
infant gut. Although an interindividual variation in the types 
and abundance of different bacteria in human milk exists, the 
bacteria found in the infant gut most resemble the bacteria from 
their own mother (23).

While early studies employed culture-dependent methods, 
recent development of culture-independent techniques, such as 
next-generation sequencing, has expanded our understanding 
of the composition and diversity of the breast milk microbiome 
(33–35). Streptococcus and Staphylococcus species are the most 
commonly identified bacterial families in human milk, followed 
by Bifidobacterium, Lactobacillus, Propionibacteria, Enterococcus, 
and members of the Enterobacteriaceae family (23, 28, 35, 36). 
Several hundred bacterial species have been identified with 
higher diversity in colostrum compared to transition and mature 
milk (18).

The origin of bacteria in breast milk is not well established. 
Breast tissue itself contains a diverse population of bacteria (37). 
A dynamic cycling of bacteria between mother and infant with 
retrograde flow from maternal commensal skin flora to infant 
mouth flora during breastfeeding (38) likely contributes to the 
bacterial communities (39). However, commensal contamination 
does not fully account for the diversity of human milk microbes  
or the presence of strictly anaerobic species such as Bifidobacterium, 
Clostridium, or Bacteroides species. Milk microbial community 
composition has been shown to differ from communities on the 
surrounding areolar skin and infant mouth (35, 40). Another 
proposed theory is an enteromammary pathway whereby mater-
nal intestinal bacteria migrate to the mammary glands via an 
endogenous cellular route during pregnancy and lactation (19, 
28, 41). It has been hypothesized that bacteria first translocate 
the maternal gut by internalization in dendritic cells and then 
circulate to the mammary gland via the lymphatic and blood 
circulation (42). This specialized form of mother–infant com-
munication of transferring microbes from the mother’s gut to the 
infant via breastfeeding needs further investigation.

Maternal factors affect milk microbiota composition and 
diversity (Figure 1). Higher diversity has been reported in milk 
from mothers who deliver vaginally compared with C-section by 
some groups (18, 43, 44) but not others (23, 45). Milk bacterial 
profiles do not significantly differ in relation to maternal age, infant 
gender, or race/ethnicity within a geographical region but do dif-
fer across geographic locations of Europe, Africa, and Asia (23, 
45, 46). Bifidobacterium species concentration was higher in term 
deliveries than preterm deliveries (44). Total bacteria concentra-
tion using quantitative PCR is lower in colostrum than in transi-
tional and mature milk, with increasing levels of Bifidobacterium 
and Enterococcus species over time (18, 44). Maternal health 
alters milk microbiota composition and diversity as evidenced 
by comparative studies of healthy mothers to those with obesity, 
celiac disease, and human immunodeficiency virus (HIV) (18, 47, 
48). Immunomodulatory cytokines secreted in breast milk from 
healthy women such as transforming growth factor beta (TGFβ) 
1 and TGFβ2 are associated with increased early-life microbial 
richness, evenness, diversity, and increased abundance of taxa 
protective against atopic diseases (49). Unsurprisingly, maternal 
antibiotic use and chemotherapy decrease bacterial diversity in 
breast milk (50, 51); how this impacts on the infant microbiome 
and immune system development in the long term is currently 
unknown. More studies are warranted to understand how 
maternal genetics, culture, environment, nutritional status, and 
inflammatory states from acute or chronic diseases affect breast 
milk microbiota.

Role of Breast Milk Microbiota in the 
infant Gut
Breast milk bacteria have both immediate- and long-term roles 
in reducing the incidence and severity of bacterial infections in 
breastfed infants by multiple mechanisms. Commensal bacteria 
can competitively exclude or express antimicrobial properties 
against pathogenic bacteria. For example, Lactobacilli isolated 
from breast milk have been shown to inhibit adhesion and growth 
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FiGURe 1 | Factors that influence maternal breast milk microbiome and proposed mechanism of how breast milk may alter the infant gut microbiome and health 
outcome. A myriad of environmental, genetic, and immune factors personalize a mother’s milk for delivery to her infant. Starting from the initial feeding, the breast 
milk microbes and human milk oligosaccharides contribute to the composition and diversity of the infant gut microbiome. The initial gut microbes may continue to 
promote colonization of a healthy community or an aberrant community. During the critical window of immune development, the community types may induce 
metabolic alterations leading to differing immune phenotypes and long-term health outcomes. SCFA, short-chain fatty acids.
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of gastrointestinal pathogens, including Escherichia coli, Shigella 
spp, Pseudomonas spp, and Salmonella spp strains (52–54). Five 
breast milk Lactobacilli strains increased mucin gene expression 
by intestinal enterocytes to form an antibacterial barrier (53). 
Administration of a breast milk Lactobacilli strain in a double-
blind controlled trial to infants 6–12 months of age reduced the 
incidence of gastrointestinal, respiratory, and total infections by 
46, 27, and 30%, respectively (55). The significant increase in 
bacterial counts of Lactobacilli and bifidobacteria in the experi-
mental group compared with the controls was thought to explain 
the reduced clinical infection episodes although the pathogenic 
bacteria counts were not measured. Another study found that 
30% of human milk contains nisin-producing bacteria that can 
survive passage through the intestine (56). Nisin is a bacteriocin 
used by the dairy industry to prevent spore germination and 
inhibit Clostridium botulinum and Bacillus cereus. Staphylococcus 
epidermidis and Streptococcus salivarius from expressed breast 
milk also possesses antimicrobial activity against pathogenic 
Staphylococcus aureus (20). Although there are many studies 
of antimicrobial peptides and molecules in the intestine, more 
studies are necessary to understand the specific antimicrobial 
activities of breast milk bacteria.

Increasing evidence in animals points to the instrumental 
role of microbiota in the development and instruction of the 
immune system (57, 58). In the absence of intestinal bacteria, 
animals have defects in lymphoid tissue development within 
the spleen, thymus, and lymph nodes. Germ-free intestines have 

reduced numbers of lamina propria CD4+ cells, IgA-producing 
cells, and hypoplastic Peyer’s patches (59). Germ-free mice typi-
cally are Th2 skewed but achieve a balance of Th1/Th2 cytokine 
production after the introduction of symbiotic bacteria (60). 
Breast milk Lactobacillus strains have been shown to enhance 
macrophage production of Th1 cytokines including Il-2, IL-12, 
and TNF-alpha (61). An early human study has suggested better 
Th1 responses in breastfed children compared to formula-fed 
children with immunomodulating effects lasting beyond weaning 
(62). Another in vitro study showed that Lactobacillus fermentum 
and Lactobacillus salivarius were potent activators of natural  
killer cells affecting innate immunity as well as moderate activators 
of CD4+ and CD8+ T cells and regulator T cells affecting acquired 
immunity (63). Breastfed rhesus macaque infants develop distinct 
gut microbiota and robust populations of memory T  cells and  
T helper 17 cells compared to bottle-fed infants (64). Whether 
these mechanisms also exists in humans is not yet known.

Critical window of Opportunity for 
immune effects
The World Health Organization recommends exclusive breast-
feeding during the first 6 months of life (65). This time period of 
exclusive milk ingestion is also a critical window for microbial 
imprinting (23, 66, 67). The infant microbiome comprises a 
dynamic community of bacteria that transforms throughout 
infancy and into early childhood, but the community assembly is 
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non-random and depends on early-life events (57, 66). Dysbiosis 
during this critical developmental window during a time of 
exclusive milk ingestion may have long-term health implications 
(57, 68). Germ-free mice have an overaccumulation of invariant 
natural killer (iNKT) cells leading to susceptibility to colitis, 
but colonization with standard microbiota before 2  weeks of 
life but not after, normalizes iNKT cell numbers and protected 
against colitis (69). Similarly, germ-free adult mice have elevated 
serum IgE levels associated with exaggerated allergic responses, 
but mice colonized with standard microbiota before 4  weeks 
of age, but not after, have normal IgE levels (70). Oral admin-
istration of Bifidobacterium breve in mice induces proliferation 
of FoxP3+ regulatory T  cells, but only if administered during 
the pre-weaning stage (54). Even transient perturbations in the 
microbiota in early life with penicillin is sufficient to induce 
sustained metabolic alterations and changes in the expression of 
immune genes in mice (68). Longitudinal human cohorts have 
supported the long-term implications of early dysbiosis. Arrieta 
et  al. showed transient gut dysbiosis during the first 100  days 
of life put infants at higher risk for asthma (71). The relative 
abundance of Lachnospira, Veillonella, Faecalibacterium, and 
Rothia was significantly lower in children at risk of asthma. These 
genera are present in breast milk (23, 36). Fujimura et al. found 
a microbiota conformation that was significantly associated with 
a higher risk of atopy; the conformation was only detectable in 
children younger than 6 months. By using fecal water from these 
infants cultured ex vivo with human adult peripheral T  cells, 
the investigators showed enhanced induction of IL4+ CD4+ 
T  cells and decreased abundance of CD4+ CD25+ FOXP3+ 
cells, suggesting that dysbiosis promotes CD4+ T cell dysfunc-
tion associated with atopy (72). The progressive establishment 
of the infant microbiota is vital for educating their immune 
system to tolerance and reactivity to maintain health throughout 
life. A recent study by Bäckhed et al. suggests that cessation of 
breastfeeding rather than introduction of solid foods is the major 
driver in the development of an adult microbiota (73). Indeed, 
Ding and Schloss found that history of breastfeeding as an infant 
dictated bacterial community composition as adults (74).

Breast Milk virome
Viruses are also known to be transmitted through breast milk 
(75) and likely contribute to the gut ecology of the developing 
infant. The assembly of phage and eukaryotic components of the 
infant gut virome is affected by health and nutritional status (76). 
Breitbart et al. did not find similar viral sequences in maternal 
breast milk and the infant stool in their one infant followed 
over time (77). However, a recent study of 25 mother–infant 
pairs identified bifidobacterial communities and bifidophages 
in maternal milk and infant stool, strongly suggesting vertical 
transmission through breastfeeding (78). Because the majority 
of viruses inhabiting the infant and adult gut are bacteriophages 
(77, 79), they have the ability to kill bacteria or provide them 
with potentially beneficial gene functions to shape the bacte-
rial community and long-term health. Longitudinal studies 
to determine the role of breastfeeding in the establishment of 
the infant gut virome and the viral–bacterial interactions are 
warranted.

HUMAN MiLK OLiGOSACCHARiDeS

Human milk oligosaccharides (HMO) may further influence the 
establishment of a healthy microbiome, by binding potentially 
harmful bacteria in the intestinal lumen, asserting direct anti-
microbial effects, modulating the intestinal epithelial cell immune 
response, and thereby promoting the growth of “good bacteria” 
(Figure  2). HMOs are soluble complex carbohydrates that are 
synthesized in the mammary glands dependent on maternal 
genotype, including the genes that determine the Lewis blood 
group antigen.

HMO are indigestible by the infant. Instead, they function as 
prebiotics, encouraging the growth of certain strains of beneficial 
bacteria, such as Bifidobacterium infantis, within the infant gas-
trointestinal tract (80), thus preventing infection by allowing the 
microbiota to outcompete potential pathogenic organisms (81, 
82). Once ingested by the infant, HMOs are thought to inhibit 
the adherence of pathogens to the intestinal epithelium by acting 
as a decoy receptor for pathogens, which prevents attachment to 
host cells, thereby preventing pathogen adhesion and invasion 
(83). HMOs are also thought to have direct antimicrobial effects 
on certain pathogens (81). Finally, HMOs have been observed 
to modulate intestinal epithelial cell responses, as well as act as 
immune modulators. HMOs alter the environment of the intes-
tine, by reducing cell growth, and inducing differentiation and 
apoptosis (84). They alter immune responses by shifting T cell 
responses to a balanced Th1/Th2 cytokine production (85).

Genetic differences are responsible for differences in HMO 
profiles in breast milk (86–89), although HMO abundance 
changes throughout lactation. Therefore, mothers possessing 
different genotypes, and thus different HMO profiles, may pro-
tect their infants against certain infections to a greater or lesser 
extent, depending on the presence of specific HMOs. Likewise, 
the different HMOs produced alter the types of microbiota 
colonizing infants, as well as the timing of the establishment 
of the microbiota (90). Because of their complexity, no human 
milk identical HMOs have been synthesized. However, non-
human milk-derived alternatives that may have similar bioactive 
properties are gaining interest. In a recent placebo-controlled 
trial of 4,556 infants from India, a plant oligosaccharide, fructoo-
ligosaccharide, was given to infants together with Lactobacillus 
plantarum and demonstrated a reduced risk of sepsis and death  
in those in the treatment arm (RR, 0.6; CI, 0.48–0.74) compared 
to those in the control arm (91). The results highlight a potential 
role for HMOs and non-milk oligosaccharides in preventing 
neonatal infection.

HMO are thought to play an important role in preventing 
neonatal diarrheal and respiratory tract infections (92, 93). 
Several HMOs have been implicated in protection against bacte-
rial and viral infections in neonates, including fucosyltransferase 
enzyme (FUT3), associated with the Lewis–Secretor gene (89) 
and 2′-fucosyllactose (2′-FL), associated with the Secretor gene 
(FUT2) (87). High concentrations of 2′-FL are associated with 
reduced risk of infant Campylobacter jejuni (94) and rotavirus 
infections (95). However, it has been noted that there is a rota-
virus strain-specific effect of different HMOs, both alone and in 
combination (95, 96). Lewis–secretor positive infants in Burkina 
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FiGURe 2 | Mechanism of action of HMO to prevent aberrant pathogen colonization. HMO may bind directly to bacteria in the gut lumen causing conformational 
change in bacterial binding sites and preventing binding to cell receptors; alternatively, HMO may bind directly to gut epithelial cells causing altered expression of cell 
receptors, which prevent pathogen binding to gut epithelial cells. HMO, human milk oligosaccharide.
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Faso and Nicaragua appear to have increased susceptibility to 
rotavirus infection compared to Lewis-negative infants. As the 
Lewis antigen is partially responsible for HMO abundance, this 
finding may explain the reduced efficacy of the live oral rotavirus 
vaccine in Africa where the majority of women are Lewis–Secretor 
negative (96). Conversely, an observational study undertaken in 
the United States found severe rotavirus gastroenteritis to be 
essentially absent in children who had a genetic polymorphism 
that inactivates FUT2 expression on the intestinal epithelium, 
which may indicate further strain-specific adaptations of HMOs 
(97). Infants who received milk containing a low concentration of 
lacto-N-difucohexaose have an increased incidence of calicivirus 
diarrhea (98). Other HMO combinations in breast milk have also 
been associated with reduced risk of HIV transmission in Zambia 
(99).

It has been suggested that HMOs could be used therapeuti-
cally to harness these antibiotic benefits together with standard 
antibiotics (100, 101). Research to date has primarily focused on 
developing such adjuncts by investigating antiadhesive properties 
of HMOs in vitro. These include the ability of HMOs to reduce 
Streptococcus pneumoniae adherence to cells of the oropharynx 
(102) and gastrointestinal adherence with Escherichia coli 
(103–105). Specific HMOs such as FUT3 have been implicated 
in increased killing of Group B Streptococcus (GBS) in  vitro 
(106–108). The Bode laboratories have determined that GBS 
requires specific HMO to proliferate in  vitro (101), Further 
in vitro investigation revealed that GBS uses a glycosyltransferase, 
which incorporates HMOs into the cell membrane, preventing 
bacterial proliferation. The Townsend and Le Doare laboratories 
have also identified Lewis–Secretor status to be important in 

reducing biofilm associated with GBS (106, 107). Further studies 
have identified that HMO-2′-FL also acts as a decoy receptor 
for norovirus (109). Animal models also report increased Th1 
responses against RSV in mice given a prebiotic containing 
HMOs (110). HMOs are emerging as a novel potential adjunct to 
antibiotic therapy, but there is much uncertainty as to individual 
HMO function and synthesizing individual HMOs in the labora-
tory for use in clinical trials has proven problematic.

exTRACeLLULAR veSiCLeS AND THeiR 
CARGO

One of the most recently identified breast milk components 
that may alter the intestinal immune response and subsequent 
establishment of the microbiota are the extracellular vesicles (EV) 
that contain a rich protein cargo, capable of influencing the local 
immune response to bacterial challenge (111, 112). Hence, the 
discovery 10 years ago that human breast milk contains abundant 
EVs has garnered a lot of attention in the field (113). EVs contain 
a diverse cargo, including mRNA, miRNA, and cytosolic and 
membrane proteins and have been demonstrated to be intricately 
involved in cell–cell signaling. EVs include exosomes, which form 
through the endosomal pathway, and are released from cells fol-
lowing fusion of multivesicular endosomes with the plasma mem-
brane. The larger (0.1–2 µM), more heterogenous microvesicles are 
formed through direct blebbing from the cell plasma membrane. 
It is important to note that many breast milk studies use the term 
“exosomes,” but do not separate exosomes from other vesicles, 
neither conceptually nor physically. Unless the isolation procedure 
takes advantage of exosomes’ known size or flotation density (e.g., 
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through sucrose gradients, or size exclusion chromatography) or 
their known markers (i.e., by immunomagnetic isolation, e.g., 
anti-tetraspanin beads), isolated vesicles cannot be definitively 
described as exosomes. Both ultracentrifugation and PEG-based 
reagents such as Exoquick™, commonly used in breast milk 
studies to date, will pellet other vesicles as well as non-vesicular 
proteins, including RNA-binding proteins. Studies that use these 
methods have still revealed exciting potential for breast milk EVs, 
in terms of biomarkers, or biological activity in vivo. The Nolte- 
‘t Hoen group have published a useful study that compares EV 
isolation methods from breast milk (114).

Breast milk EVs contain RNA (115), miRNA, and long 
non-coding RNA (116). Several studies that profiled miRNA in 
breast milk exosomes found enrichment in multiple biological 
functions, including regulation of actin cytoskeleton, glycolysis/
gluconeogenesis, aminoacyl-tRNA biosynthesis, pentose phos-
phate pathway, galactose metabolism, and fatty acid biosynthesis, 
as well as a wide range of immunological pathways (117–120). 
Likewise, proteomic analysis of human breast milk EVs revealed 
that the majority of proteins mapped to immune cell origin 
(121). Interestingly, a large number of these proteins had not 
been previously identified in human breast milk, demonstrating 
that exploration of EV cargoes may reveal novel biomarkers 
and functional pathways for further investigation. Exosomes in 
bovine milk are also enriched in proteins involved in immune 
response and growth (122).

Exosomes can mediate delivery of novel functional miRNA 
and mRNA to recipient cells (123). Whether miRNAs in breast 
milk exosomes are functional in the human digestive system is 
still relatively unknown; some studies show that exosomes pro-
tect miRNAs from digestion (118, 124), while others show that 
miRNAs are degraded by intestinal contents (125). Certainly, 
breast milk mRNAs and miRNAs can be taken up by cells and 
elicit functional effects in  vitro, suggesting the exciting pos-
sibility that they may be able to alter protein expression at the 
neonatal mucosal surface, impacting on the development of the 
infant’s immune system. These functional effects demonstrated 
thus far include inhibition of in vitro T cell cytokine production 
and boosting regulatory T cells (113) and inhibition of HIV-1 
infection of dendritic cells (126). Liao et al. also recently demon-
strated that milk-derived EVs enter human intestinal crypt-like 
cells, with some localization to the cell nucleus; thus, this is a 
potential mechanism for delivery of immunoregulatory genetic 
material from mother-to-infant cells (127). Administration of 
breast milk exosomes increases intestinal epithelial prolifera-
tion in both pigs (128) and rats (129), suggesting that they also 
have the potential to promote normal intestinal development 
and function in neonates. In addition to acting in the intestinal 
tract, EVs could potentially exert effects in the oropharynx and 
nasopharynx. Thus, breast milk EVs could alter the neonatal 
immune response to oral vaccines, respiratory pathogens and 
colonization.

Extracellular vesicles also have the potential to modulate the 
host–microbe interaction. Epithelial and immune cell responses 
to gut microbes Lactobacillus or Bifidobacterium are modulated 
in the presence of EVs from serum (111). These EV enhance 
aggregation and phagocytosis of bacteria, as well as modulating 

TLR responses. Whether these activities are also performed by 
breast milk EVs is not known. As well as human milk, EVs also 
have been detected in porcine (128), bovine (122), and murine 
(125) milk, enabling the use of animal models to explore this 
phenomenon, as well as raising the possibility of there being 
cross-kingdom cell–cell communication via unpasteurized milk. 
Studies in mice have identified that the absence of EVs decreases 
the diversity of the pup intestinal microbiome (130). Human stud-
ies of the role of exosomes and their cargo in modulating infant 
intestinal microbiome are limited. However, Kosaka et al. identi-
fied miRNA associated with immune regulation within exosomes 
in breast milk that are particularly abundant in the first 6 months 
of life, when the neonatal mucosal immune system is developing 
(118). Recent work investigating the role of miRNA in EVs in the 
ProPACT trial demonstrated an array of miRNA in human milk 
that differed between mothers given probiotics and those given 
placebo but no significant differences in atopy outcomes (131).

The few studies of exosomes in breast milk to date have often 
been cross-sectional (116), and there is only one study of exosomes 
in human colostrum (113); milk that is delivered at a key stage 
for early immune priming. A study of bovine exosomes shows 
that the immunomodulatory protein cargo changes temporally 
during lactation (122); thus, detailed exploration of human breast 
milk EV cargo across the course of lactation could yield data that 
are highly relevant to the development of the neonatal immune 
system. Isolation of exosomes from breast milk to investigate 
the miRNA and protein cargo that could be delivered to the 
infant mucosa would offer novel insight into potential delivery 
mechanisms for drugs with intestinal immunomodulatory fac-
tors (132). Furthermore, improved knowledge of the stability and 
functionality of EV cargoes in vivo is vital for our understanding 
of how breast milk improves neonatal health and immunity.

FUTURe DiReCTiONS

Breast Milk Microbiota
Many unanswered questions regarding the microbiome need 
further exploration. We need more studies to define the 
mechanism by which the microbiota impact immune develop-
ment and how dysbiosis leads to gut inflammation. Greater 
comprehension beyond the community profile to elucidate 
function and metabolites produced by the microbes is integral 
to utilizing these pathways to improve health or alter disease 
outcomes. If an enteromammary pathway is confirmed, we 
could exert a positive influence on infant health by modulating 
the maternal gut microbiota. Breast milk studies to date have 
mainly focused on the bacterial component. We also need to 
further understand how the milk virome and mycobiome influ-
ence infant gut health.

Breast Milk HMOs
Further questions surround the HMOs, namely, functions of 
individual HMO and synthesis of HMO in the laboratory for 
nutrition supplementation; manipulation of HMO expression; 
and their delivery to establish a healthy microbiome. It is also 
possible that early intervention (within the first few days of life) 
is required for such therapies to be successful.
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Breast Milk evs
For future studies of breast milk EVs, including exosomes, it is 
key to ensure that the correct nomenclature is utilized, based 
on the isolation methods used. Utilizing the guidelines of the 
International Society for Extracellular Vesicles (114) and report-
ing isolation methods through the new EV-TRACK database 
(133) will greatly aid the field of breast milk EVs. Apoptotic bod-
ies have been seen as something to deplete in breast milk studies 
to date. Nothing is known about their cargo nor their function 
in breast milk, but they could play an important biological func-
tion in the neonate, as seen in other fields. We also lack detailed 
understanding of how breast milk EVs change over the course of 
lactation in humans. We need to understand better how breast 
milk EVs survive in vivo in the oropharynx, nasopharynx, and 
the gut, where their delivery would be critical. Finally, a human 
model of EV interaction with the neonatal microbiome would 
also give critical insight into possible mechanisms that could 
be harnessed to protect infants from disease and aid intestinal 
immune development in term and preterm infants alike.

Summary
Future research studies should aim for enrollment of mother–
infant pairs, large sample sizes, and longitudinal sample collections 
and include a diverse population to further elucidate variability 
in the breast milk microbiome, HMOs, and EVs on infant health 
outcomes. Studies should employ metagenomics, metatranscrip-
tomics, and metabolomics approaches to understand the complete 
taxonomical, functional, and metabolic profile and create a more 

accurate picture of the breast milk contribution to infant health. 
Studies of the breast milk virome and fungome are warranted. 
Furthermore, ensuring that a repository of maternal and infant 
samples is kept for future research is useful in determining the long-
term health implications of the gut microbiome present during the 
critical window. A repository can also present the opportunity to 
study the multigenerational transmission of microbes, HMOs, and 
EVs, facilitating a comprehensive understanding of the dynamics 
of the mother’s contribution to the infant immune system.
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Immunization is key to protecting term and preterm infants from a heightened risk of 
infection. However, preterm immunity is distinct from that of the term, limiting its ability to 
effectively respond to vaccines routinely given at birth, such as hepatitis B vaccine (HBV). 
As part of the Expanded Program on Immunization, HBV is often given together with 
the live-attenuated vaccine Bacille Calmette–Guérin (BCG), known to activate multiple 
pattern-recognition receptors. Of note, some clinical studies suggest BCG can enhance 
efficacy of other vaccines in term newborns. However, little is known about whether BCG 
can shape Th-polarizing cytokine responses to HBV nor the age-dependency of such 
effects, including whether they may extend to the preterm. To characterize the effects 
of BCG on HBV immunogenicity, we studied individual and combined administration 
of these vaccines to cord newborn and adult human whole blood and mononuclear 
cells in vitro and to neonatal and adult mice in vivo. Compared to either BCG or HBV 
alone, (BCG + HBV) synergistically enhanced in vitro whole blood production of IL-1β, 
while (BCG + HBV) also promoted production of several cytokines/chemokines in all 
age groups, age-specific enhancement included IL-12p70 in the preterm and GM-CSF 
in the preterm and term. In human mononuclear cells, (BCG + HBV) enhanced mRNA 
expression of several genes including CSF2, which contributed to clustering of genes 
by vaccine treatment via principle component analysis. To assess the impact of BCG on 
HBV immunization, mice of three different age groups were immunized subcutaneously 
with, BCG, HBV, (BCG + HBV) into the same site; or BCG and HBV injected into separate 
sites. Whether injected into a separate site or at the same site, co-administration of BCG 
with HBV significantly enhanced anti-HBV IgG titers in mice immunized on day of life-0 
or -7, respectively, but not in adult mice. In summary, our data demonstrate that innate 
and adaptive vaccine responses of preterm and term newborns are immunologically 
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distinct. Furthermore, BCG or “BCG-like” adjuvants should be further studied as a prom-
ising adjuvantation approach to enhance immunogenicity of vaccines to protect these 
vulnerable populations.

Keywords: Bacille calmette–guérin, hepatitis B vaccine, preterm, newborn, innate cytokine profiles, hBV-specific 
antibodies

inTrODUcTiOn

Infectious diseases are a leading cause of childhood death with 
neonatal infection accounting for ~40% of mortality in those 
<5 years of age, ~7 million cases, and 700,000 deaths per year 
(1). Within the neonatal population, prematurity, defined as birth 
at <37 weeks of gestational age (GA), is the single most important 
cause of death in the first month of life and the second largest 
cause of death after pneumonia in children <5 years of age (1). 
Most preterm births (84%, 12.5 million) occur at >32 weeks of 
gestation (2). At this GA, many preterm newborns can survive 
with cost-effective supportive care. The mortality from neonatal 
infection in preterm infants has increased over the last 20 years 
(1). Moreover, preterm newborns remain at elevated risk of infec-
tion through 18 years of age (3). Accordingly, global progress in 
child survival and health to 2015 and beyond will depend on 
optimizing preventative care for preterm and term infants with 
vaccines one of the most effective biomedical approaches for 
disease prevention.

Vaccine-mediated prevention of infections is limited by 
reduced or distinct immune responses in early life (4). The 
current necessity for repeated vaccine booster doses to obtain 
full protection leaves a window of susceptibility in both the 
preterm and term infant during the first 6 months of life (5). 
Alongside efforts at maternal immunization, enhancement of 
responses to early-life vaccines via use of novel adjuvantation 
systems that demonstrate age-specific immune-enhancing 
activity is an attractive approach to address this problem. To 
date, development of pediatric vaccines has largely relied on 
ad  hoc studies of adult vaccines, and has not taken the age-
dependent development of the immune system into account 
(6). This holds true for vaccination of the preterm as well: 
the Advisory Committee on Immunization Practices (ACIP) 
of US Centers for Disease Control and Prevention as of 2011 
has recommended that, with respect to most vaccines, preterm 
infants be immunized with the full-recommended dose accord-
ing to the same schedule as full-term infants. However, even 
thought vaccine immunogenicity in preterm infants is often 
distinct compared with term responses (7–10), there remains 
a research knowledge gap. Specifically, hepatitis B vaccine 
(HBV) immunization is delayed in the preterm due to empiric 
evidence of reduced immunogenicity. In preterm newborns 
<1,500–1,800  g birth weight or <34–35  weeks gestation, a 
three-dose vaccine series of HBV induces protective antibody 
(Ab) titers in only ~45–85% of patients as opposed to 90–100% 
in more mature infants (11).

Consideration of vaccine adjuvantation in early life 
must take into account that newborn innate and adaptive 
immune cells exhibit distinct activation profiles in response 
to pattern-recognition receptor (PRR) agonists. However, 

activation of some PRRs in newborns, such as toll-like recep-
tors (TLRs) 7/8, can induce an adult-like response (12, 13). 
For example, the germinal center reaction that drives the 
magnitude and persistence of the Ab response is impaired 
early in life but can be enhanced with certain TLR agonists 
(14, 15). Of note, preterm innate and adaptive immunity is 
distinct from that of both term newborns and adults. For 
example, preterm monocytes exhibit attenuated PRR-mediated  
Th1 and Th17-cytokine responses (16). Herein, we assessed 
whether a live-attenuated vaccine Bacille Calmette–Guérin 
(BCG), known to activate multiple PRRs (17, 18), might exert 
adjuvant activity in the context of neonatal HBV immunization.

BCG is the most commonly administered vaccine worldwide 
and when administered at birth is safe and effective in reducing 
the rates of infantile tuberculous (TB), meningitis, and dissemi-
nated miliary disease (19). It is the only routinely administered 
neonatal vaccine that induces a Th1-polarized immune response 
(20). BCG administration may also, in an age-dependent man-
ner, induce beneficial heterologous (“non-specific” or “trained”) 
immunity against unrelated pathogens and stimuli (21–25), 
impact responses to other vaccines (20, 26–28), and immune-
modulate in the context of allergic diseases as well (29).

Some limited clinical studies have suggested that BCG may 
enhance responses to other, vaccines such as Oral Polio Vaccine 
and HBV (20). We posited that co-administration of BCG with 
HBV could induce greater innate and adaptive immune responses, 
including acute cytokine induction and HBV-specific Ab produc-
tion. Employing in  vitro human blood and mononuclear cell 
assays we demonstrated that (BCG  +  HBV) enhanced cytokine 
and chemokine production on both the protein and mRNA 
level. Strikingly, in  vivo immunization of neonatal [day of life 
(DOL)-0 and -7] and adult mice demonstrated that combined 
(BCG + HBV) vaccination induced anti-HBV-specific Ab titers 
in all three age groups at 21 days post-immunization relative to 
immunization with HBV alone. Overall, our studies provide fresh 
insight into a vaccine–vaccine interaction that may be the basis 
of enhanced immunization strategies for vulnerable preterm and 
term newborn populations.

MaTerials anD MeThODs

cord Blood collection
Moderate to late preterm (28 2/7–34 6/7 weeks GA) and term 
cord blood was collected at The Brigham and Women’s Hospital 
and the Beth Israel Deaconess Medical Center, both tertiary 
care centers for delivery and postnatal care of the preterm and 
term newborns. The details of our preterm study cohort are 
outlined in Table  1. The de-identified newborn cord blood 
(~15–60 ml) was collected immediately after caesarian section 

53

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://10.13039/100000002
http://10.13039/100000865


TaBle 1 | Characteristics of human preterm, term, and adult study participants.

Preterm Term adult

Total number of  
individuals

10 15 14

Site of delivery BWH (7), BI (3) BWH (9), BI (6) N/A
Delivery mode 7 CS, 3 VD 15 CS N/A
Sex 6 F, 4 M 8 F, 8 M 6 F, 8 M
(Gestational) age 28/2–34/ 

6 weeks GA
37/0–41 
weeks GA

23–35 years old

Twins 1 set (Mono-Di) 1 set (pooled) N/A
Chorioamnionitis 6 no/4 unknown No N/A
HIV positive status No No No
Antibiotics 4 no/3 yes/3 unknown No N/A
Celestone 1 no/5 yes/4 unknown N/A N/A
Last celestone dose  
≥48 h before delivery

2 no/3 yes/5 unknown N/A N/A

BWH, Brigham and Women’s Hospital; BI, Beth Israel Deaconess Hospital; CS, 
Caesarian section; HIV, human immunodeficiency virus; VD, vaginal delivery; F, female; 
M, male; GA, gestational age; Mono-Di, monochorionic-diamniotic.
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or vaginal delivery of the placenta from a larger placental or 
umbilical vein under sterile conditions, as previously described 
(30). No cord blood samples from newborns born to human-
immunodeficiency virus-positive mothers were included. 
Samples were collected from both male and female newborns. 
Blood and blood-derived products were handled per applicable 
biohazard policies. As the type of anti-coagulant and length of 
storage prior to assay can affect cytokine production (31), we 
have established a routine standard of procedure in which 
blood was anti-coagulated with 15–20  U/ml pyrogen-free 
heparin sodium (Sagent Pharmaceuticals, Inc.; Schaumberg, 
IL, USA), and then kept at room temperature (RT) and pro-
cessed within 4 hours (h) of collection (typically 1–2 h). Each 
preterm placenta was histologically examined for signs of 
chorioamnionitis, and information on the timing of prenatal 
steroid administration, as well antibiotic administration was 
collected. Peripheral blood was collected from healthy adult 
male and female volunteers employed at BCH.

animals
C57BL/6 mice were obtained from Charles River Laboratories 
and housed in specific pathogen-free conditions in the animal 
research facilities at BCH. To obtain newborn mice, pregnant 
dams were purchased on pre-determined days of pregnancy and 
cages checked twice daily (~every 12 h) to assess for the presence 
of pups. Both male and female pups were used for experiments.

Vaccines and Whole Blood assay
~8  ml of fresh blood was processed for the whole blood assay 
as previously described (32). Briefly, neonatal cord (preterm 
and/or term) or adult whole blood was mixed 1:1 with sterile 
pre-warmed (37°C) RPMI 1640 medium (Invitrogen) and 180 µl 
of the 1:1 suspension added to each well of a 96-well U-bottom 
plate (Becton Dickinson) containing 20 µl freshly prepared HBV, 
BCG, (BCG + HBV) at 10× final concentration, testing stimuli 
at a 5-point concentration–response curve based on published 
data (12, 33). As sources of BCG and HBV, we used the Danish 
Strain 1331 (Statens Serum Institut, Copenhagen, Denmark) and 

Recombivax® HB (Merck and Co, Inc.), respectively. Suspensions 
containing 200 μl/well were gently mixed by pipetting and incu-
bated at 37°C in a humidified incubator at 5% CO2 for 6 h.

elisa and Multiplex cytokine analysis
After treatment of the preterm, term, and adult blood with the 
described vaccines for 6 h, the plates were centrifuged (10 min, 
RT, 500 g), and supernatants collected and stored in three aliquots 
at −80°C for subsequent TNF (BD Biosciences Human TNF 
ELISA) and IL-1β ELISA (eBioscience Human IL-1β ELISA) 
and for subsequent multiplexing assays for Th1 (TNF, IL-1β, 
IL-12p70, IFNα, and IFNγ) and Th2 (IL-6, IL-10, and IL-12p40), 
and Th17 (IL-6, IL-1β) polarizing cytokines (Milliplex Human 
Magnetic Bead Panel; Millipore; Chicago, IL, USA). Data were 
analyzed on the Luminex® 100/200™ System using xPOTENT® 
software (Luminex; Austin, TX, USA).

isolation of cord Blood Mononuclear  
cells (cBMcs) and Peripheral Blood 
Mononuclear cells (PBMcs) and  
In Vitro stimulation
From each whole blood sample collected, matched PBMCs and 
CBMCs were isolated using Ficoll density gradient method-
ologies and cryopreserved for further downstream stimulation 
experiments (12, 33). MCs were stored at 50 million cells per vial 
in 1 ml RPMI containing 20% autologous plasma and 10% DMSO  
at −80°C until use. After a standardized thawing procedure, 
PBMCs and CBMCs isolated from human donors were resus-
pended at a concentration of 2 × 106 cells/1000 µl of RPMI sup-
plemented with 10% of autologous platelet-poor plasma. Cells 
were stimulated for 4 h with either HBV, BCG, or (BCG + HBV) 
(each at 1:1,000, 1:100, 1:10  vol/vol) and cells washed with ice 
cold PBS prior to addition of RLT buffer (RNeasy Lysis Buffer, 
Qiagen, MD, USA) and storage at −80°C for subsequent RNA 
isolation.

gene expression analysis by Quantitative 
real-time Pcr array
Total RNA was extracted from lysates of vaccine-stimulated 
PBMCs and CBMCs using the Qiagen RNeasy Minikit and 
DNAse treatment performed using the Qiagen RNAase Free 
DNAase set all per the manufacturer’s instructions. RNA concen-
trations were determined using the Nanodrop 1000 and cDNA 
generated using the Qiagen RT2 First Strand Kit. 96-well PCR 
array analysis was performed using the Qiagen standardized 
Innate and Adaptive Immune Reponses PCR Array (PAHS-0522A) 
and RT2 qPCR roxSYBR green kit. Web-based PCR array analyses 
(RT2 Profiler PCR Array Data Analysis version 3.5) was used 
and normalized to five reference genes (B2M, HPRT1, RPL13A, 
GAPDH, and ACTB). Relative quantification of gene expression 
was calculated by the ΔCt (relative expression × 104). Multivariate 
biplots of principal component analyses were performed in R 
3.4.2 using ggplot2, ggord, and vegan packages using log-fold 
transcript abundance of gene arrays in each group. Genes were 
sorted using unsupervised hierarchical heatmap clustering of 
log-fold changes using the heatmap2 package.
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immunization and anti-recombinant  
hBV surface antigen (rhBsag)-specific 
ab Quantification, subtype classification, 
and avidity Determination
For immunization experiments, mice of three age groups were 
used: the first group of mice were given their first immunization 
(prime immunization) on DOL0; the second group of mice on 
DOL7, and in the third group at 6–8 weeks of life. Each of the 
three age groups were divided into five immunization groups: 
saline; BCG (Organon Teknika/Merck, Durham, NC, USA) 
alone; HBV vaccine alone; (BCG + HBV) as a combined admixed 
injection; and BCG with HBV vaccine administered separately. 
All immunizations were injected subcutaneously (s.c.). If one 
injection was performed per animal, it was performed into the 
right posterior thigh, if two separate injections were performed 
they were performed either into the right and left posterior thighs 
(DOL7 mice; adult mice) or in DOL0 mice into the right posterior 
thigh (HBV) and the scruff (BCG). The injection volumes were 
50 µl of vaccine (or vaccine combination)/injection in the adult 
animals and 25 µl of vaccine (or vaccine combination)/injection 
in the newborn animals (DOL0 and DOL7). The injection dose 
of Recombivax® was 0.25  µg of rHBsAg for the adult animals 
and 0.125 µg in the newborn pups (DOL0 and DOL7) diluted in 
0.9% NaCl Inj (USP). We chose to administer half HBV doses in 
the newborn as this is an established approach in human clinical 
vaccinology (ACIP recommendations for hepatitis B immuniza-
tion). The injection dose for BCG was 0.4  ×  106  CFU for the 
adult animals and 0.2 × 106 CFU for the pups (DOL0 and DOL7) 
diluted in 0.9% NaCL Inj (USP). We selected the BCG dose based 
on published literature in neonatal mice (12, 26). The selected 
dose of HBV was slightly lower than that routinely used in other 
murine studies (34) and reflected the volume limitations inher-
ent to administration of two vaccines. We conducted preliminary 
experiments to confirm that we could obtain measurable Ab titers 
with the chosen concentration of HBV in all age groups. Mice 
were immunized with a prime-boost schedule; a primary immu-
nization; and a secondary (booster) immunization, 2 weeks apart. 
Serum samples were obtained from blood collected via tail vein 
or artery nick as indicated for Ab detection. rHBsAg-specific IgG 
were quantified by ELISA. High binding flat bottom 96-well plates 
(Corning Life Sciences) were coated with Recombivax® diluted 
to 1  µg/ml in carbonate buffer pH 9.6, incubated overnight at 
4°C, and blocked with PBS + BSA 1% (Sigma-Aldrich) for 1 h at 
RT. Then, sera from immunized mice were added with an initial 
dilution of 1:100 and 1:3 serial dilutions in PBS + BSA 1% and 
incubated for 2 h at RT. Plates were then washed and incubated 
for 1 h at RT with HRP-conjugated anti-mouse IgG, IgG1, IgG2c 
(Southern Biotech). At the end of the incubation, plates were 
washed again and developed with tetramethylbenzidine (BD 
Biosciences) for 5 min, then stopped with 2N H2SO4. The optical 
density was read at 450 nm on a Versamax microplate reader with 
SoftMax Pro Version 5 (both from Molecular Devices), and end-
point titers were calculated using as cutoff two times the optical 
density of the background (35). For assessing Ab avidity, plates 
were incubated 15 min with ammonium thiocyanate 0.5 M before 
the addition of HRP-conjugated Abs. Avidity was expressed as 

the LogEC50 ratio of corresponding plates treated with or without 
ammonium thiocyanate (36).

statistical analyses and graphics
Data were analyzed and graphed using Prism for MacIntosh v. 7.0  
(GraphPad Software). Tests used for statistical comparisons 
are indicated in figure legends. p value  <  0.05 was considered 
significant. An adaptation of the Loewe method of additivity (37) 
was used to assess whether cytokine production after stimulation 
with (BCG  +  HBV) was synergistic, additive, or antagonistic. 
Concentration–response curves were subjected to regression 
analysis to determine the slope and y-intercept of each curve in 
the exponential phase. The formula D = [Ac]/[Ae] + [Bc]/[Be] 
was used, where [Ac] = the concentration of (HBV) used in the 
combination of (HBV + BCG) that results in half the maximal 
TNF production measured with the combination of both vac-
cines; [Ae] = the concentration of HBV used alone that results in 
half the maximal TNF production measured with the combina-
tion of (HBV + BCG); [Bc] = the concentration of BCG used in 
the combination of (HBV + BCG) that results in half the maximal 
TNF production measured with the combination of vaccines; and 
[Be] = the concentration of BCG used alone that results in half 
the maximal TNF production measured with the combination of 
(BCG + HBV). If D = 1: (HBV + BCG) act additively, if D > 1: 
(HBV + BCG) act antagonistically, and if D < 1: (HBV + BCG) 
act synergistically. Our laboratory has employed this interaction 
analysis method in other recently published studies (13, 38, 39).

resUlTs

(Bcg + hBV) synergistically enhances 
il-1β Production in Preterm, Term, and 
adult Whole Blood
The in vitro whole blood assay is a useful tool to characterize the 
effects of vaccines on cytokine production as it enables testing of 
moderate number of different vaccine formulations, at multiple con-
centrations in a sample from a single individual (13, 38, 40). To assess 
whether (BCG + HBV) may enhance NF-κB and inflammasome- 
mediated cytokine induction compared to HBV alone, we com-
pared (BCG + HBV) with identical concentrations of BCG and 
HBV in its ability to stimulate TNF and IL-1β production in pre-
term (Figure 1A,D) or term cord (Figure 1B,E) or adult periph-
eral blood (Figure 1C,F). In all three age groups, (BCG + HBV) 
significantly increased TNF and IL-1β secretion relative to RPMI 
controls and also secretion of IL-1β relative to HBV alone. Using 
the Berenbaum equation to assess drug–drug interactions, the 
interaction between HBV and BCG with regard to TNF was addi-
tive or antagonistic (Table 2). However, with respect to IL-1β, the 
combined vaccine effect was synergistic, defined as a D-value < 1, 
especially so in the term followed by the preterm, and least pro-
nounced in the adult (Table 2). Of note, IL-1β is important to 
immunogencity of ALUM-adjuvanted vaccines (41), has a role in 
neutrophil recruitment and in Ab production, and has been used 
as an adjuvant (42–45). Figure  1 also demonstrates that BCG 
alone is a potent inducer of both TNF and IL-1β in whole blood of 
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TaBle 2 | Quantification of (Bacille Calmette–Guérin + hepatitis B vaccine) 
synergism.

age groups D-value interpretation

TnF
Preterm 13.1064 Inhibitory
Term 1.3557 Additive
Adult 1.0777 Additive

il-1β
Preterm 0.6398 Synergy
Term 0.3506 Synergy
Adult 0.7233 Synergy

FigUre 1 | Concurrent stimulation with [Bacille Calmette–Guérin (BCG) + hepatitis B vaccine (HBV)] synergistically enhances IL-1β production in human preterm, 
term, and adult whole blood. Preterm (a, D), term (B, e), and adult (c, F) whole blood was stimulated with HBV alone, BCG alone, or (BCG + HBV) at 1:10 v/v. 
After 6 h, supernatants were analyzed for TNF (a–c) and IL-1β (D–F) cytokine production by ELISA. Statistical significance was determined by Kruskal–Wallis with 
Dunn post hoc test. *p < 0.05, **p < 0.01. N = 7–8 preterm, N = 10–11 term newborns, and N = 10–11 adults.
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all age groups and in this context is likely the driving component 
behind this vaccine interaction.

The combination of Bcg and hBV Vaccine 
stimulates secretion of numerous 
cytokines and chemokines in Preterm, 
Term, and adult Whole Blood
Having established that (BCG  +  HBV) enhance TNF and 
IL-1β production by preterm and term whole blood, we next 
characterized the cytokine profiles induced by these vaccine 
treatments in more detail employing multiplex cytokine analysis 
on the isolated supernatants. As shown in Figure 2, cytokines sig-
nificantly induced in preterm or term cord blood by the vaccine 
combination relative to RPMI control and/or HBV vaccine alone 
included CSF2 (GM-CSF), IL-6, IL-10, CXCL8, CCL2, and CCL3. 
Interestingly, IL-12p70 was significantly induced by the vaccine 
combination in the preterm. Of note, the similarity of the BCG 
cytokine/chemokine profile to that induced by (BCG  +  HBV) 
suggested that the vaccine combination effect was mainly driven 
by BCG.

hBV, Bcg, and (Bcg + hBV) induce 
Distinct rna Transcription clusters in 
cBMcs/PBMcs isolated from Preterm, 
Term, and adult individuals
To investigate how addition of BCG to HBV vaccination alters 
gene expression patterns at the mRNA level, RNA isolated from 

neonatal CBMCs (term and preterm) or adult PBMCs stimulated 
for 4 h with vehicle (control), BCG, HBV, or (BCG + HBV) was 
subjected to quantitative real-time PCR array comprised of 84 
genes in human innate and adaptive immune pathways. mRNA 
levels were quantified in 4–5 individuals/group. Figure 3 shows 
that there were increases in expression of several cytokine and 
chemokine transcripts upon mononuclear cell stimulation 
with (BCG + HBV) compared to unstimulated or HBV-treated 
cells. Some of them reached statistical significance in all  
(i.e., CSF2) or some age groups (i.e., CXCL8 in preterms and 
adults). Interestingly, some of these genes encode proteins with 
defined roles in vaccine efficacy (13, 42–48). Figure 4A demon-
strates treatment-driven segregation of age groups by a principle 
component biplot of mRNA gene expression data. The points 
representing age and treatment group (open circles) approximate 
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FigUre 2 | Cytokine and chemokine profiles induced by hepatitis B vaccine (HBV) and Bacille Calmette–Guérin (BCG) in human preterm, term, and adult whole 
blood. Preterm, term, and adult whole blood was stimulated for 6 h with either HBV, BCG, or (BCG + HBV) and supernatants analyzed via Multiplex Cytokine 
Analysis. Statistical significance was determined by repeated measure or ordinary one-way ANOVA with Holm-Sidak post hoc test (or their non-parametric 
equivalent Friedman or Kruskal–Wallis with Dunn post hoc test). *p < 0.05, **p < 0.01 of preterm vs. term vs. adult; #,+p < 0.05, ##,++p < 0.01 of groups indicated by 
the corresponding color, respectively, vs. saline or HBV. N = 7 preterm newborns, N = 6 term newborns, N = 7 adults.
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gene expression patterns between groupings. The unsupervised 
hierarchical heat map in Figure 4B demonstrates similar cluster-
ing by treatment and outlines in a red to blue scale high to low 
gene expression per gene.

(Bcg + hBV) significantly enhance the 
level of anti-rhBsag-specific igg Titers  
in neonatal Mice (immunized on DOl0  
and DOl7) but not adult Mice
To assess the impact of (BCG + HBV) in vivo, we turned to a 
murine model. Mice at DOL 0–5 have been utilized as a model 
for preterm innate and adaptive immunity (49, 50) while mice 
at DOL7 have been used to model the term newborn (4, 15, 
51–53). We made use of these age-specific models to investigate 
whether BCG can enhance early-life immunization with HBV, 
for which anti-Hepatitis B sAg Ab titers are the established 
correlate of protection (54). Figure 5A demonstrates the sched-
ule according to which the mice of all three age groups were 
prime-immunized and booster immunized 2  weeks later. The 
age at prime immunization was DOL0 (the “preterm” group, 
n = 9–14), DOL7 (the “term” group, n = 14–16) and 6–8 weeks 
for the adult group (n =  15–17). These data were acquired in 

two separate experiments, each of which included all three age 
groups and within each age group all five treatment groups. The 
linear graphs represent median anti-rHBsAg IgG titers over time 
post-prime immunization (Figure  5B). The box-and-whisker 
plots depict Ab titers 21 and 42 days post-prime immunization. 
To assess whether the potential beneficial effect of addition of 
BCG to HBV depends on co-administration of both vaccines 
into the same site, we differentiated two combined treatment 
groups: one in which (BCG  +  HBV) were combined (i.e., 
admixed) and injected into the right flank s.c. and one in which 
HBV was injected into the right thigh and BCG was injected 
either into the scruff (neonatal mice on DOL0) or left thigh 
(neonatal mice on DOL7 and adult mice). Addition of BCG 
to HBV significantly enhanced Ab responses at 21  days post-
prime immunization in neonatal mice immunized on DOL0 
and DOL7 but not in adult mice. Whereas in DOL0 mice, it 
was the separate injection of BCG and HBV that significantly 
enhanced anti-rHBsAg IgG titers, the combined injection was 
the administration technique that lead to enhanced Ab titers 
in DOL7 mice. While this effect was sustained at D42 post-
prime immunization in mice immunized on DOL0, it was no 
longer evident in neonatal mice prime-immunized on DOL7 
(Figure 5C). Interestingly, switching toward IgG2c was observed 
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FigUre 3 | Gene expression profiles induced by hepatitis B vaccine (HBV) and Bacille Calmette–Guérin (BCG) in human preterm, term, and adult mononuclear 
cells. Preterm and term cord blood mononuclear cells, and adult peripheral blood mononuclear cells was stimulated for 4 h with either HBV, BCG or (BCG + HBV) 
and cells were harvested for quantitative real-time PCR analysis. Statistical significance was determined by repeated measure or ordinary one-way ANOVA with 
Holm-Sidak post hoc test (or their non-parametric equivalent Friedman or Kruskal–Wallis with Dunn post hoc test). *p < 0.05, **p < 0.01 of preterm vs. term vs. 
adult; #,+p < 0.05, ##,++p < 0.01 of groups indicated by the corresponding color, respectively, vs. saline or HBV. N = 4–5/group.
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only in adult mice immunized with (BCG + HBV) (Figure S1 in 
Supplementary Material). In addition, BCG did not significantly 
modulate Ab avidity, suggesting that BCG did not affect affinity 
maturation of anti-rHBsAg Abs (Figure S2 in Supplementary 
Material).

DiscUssiOn

In this study, we have demonstrated for the first time that BCG, 
alone or when coadministered with HBV in a neonatal context, 
can enhance human innate cytokine responses in vitro. Moreover, 
we show that BCG can enhance hepatitis B antigen-specific 
murine adaptive responses in vivo. These observations are impor-
tant in that newborns and young infants are highly susceptible 
to infection with intracellular pathogens including viruses, such 
as hepatitis B virus. Acquisition of hepatitis B virus during the 
newborn period carries risks of developing both hepatocellular 
carcinoma and liver cirrhosis. Moreover, most licensed vaccines, 
including HBV, are not optimally effective at birth and require 
multiple booster immunizations later in life despite the fact that 
hepatitis B immunization in newborns induces higher primary 
and memory Ab responses than in adults (55). Under the current 

immunization schedule with an ALUM adjuvanted HBV vac-
cine, the term newborn does not reach a status of immunological 
protection against HBV, as measured by titers of anti-rHBsAg 
Abs, until 6 months of life. For the preterm newborn with a birth 
weight <2 kg the unmet need to enhance responses to HBV is 
exacerbated by the fact that a birth dose is not recommended 
as priming has been inefficient in this population. With age-
specific differences in the quantity and quality of cellular and 
soluble factors playing a role (56), the neonatal immune system 
is distinct from that of infants and adults, with bias toward 
induction of regulatory T  cell and Th2-type T  cell responses. 
Distinct early-life immunity limits the efficacy of adjuvants that 
activate newborn DCs to produce Th1-polarizing cytokines. The 
preterm newborn, in addition to demonstrating low innate Th1 
support, demonstrates a low TLR-mediated production of Th17-
supporting cytokines, with robust anti-inflammatory IL-10 levels 
(57–60). Combined stimulation of newborn cells through certain 
combinations of PRRs may potentially overcome the early-life 
bias against Th1 responses (30, 38, 61). In summary, there is an 
unmet need for early-life vaccine strategies that provide earlier 
protection against HBV infection for the term and in particular 
for the preterm infant.
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FigUre 4 | Principal component analysis of gene expression data reveals treatment-specific segregation of different age groups. Gene expression data were 
generated as outlined in Figure 3. (a) Principal components analysis biplot of mRNA gene expression data where observations (samples) are points and gene 
expression profiles are arrows shows dominant clustering of profiles by treatment. The distance between points approximates gene expression pattern differences 
among groupings. Arrows indicate genes that have greater biplot scores and drives the differences between groups. Arrowheads close to a particular group indicate 
genes are expressed at a greater relative abundance differences in those samples. (B) Unsupervised hierarchical heatmap shows clustering of treatments 
demonstrating log2-fold changes, expression values of genes in each sample; red to blue scale represent intensity of fold changes per genes (red indicates up, blue 
indicates down). Each row means individual gene and each column indicates groupings of age and treatment. P, preterm; T, term; A, adult.
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While HBV immunization of the term infant effectively 
reduces chronic Hepatitis B infection in countries with universal 
neonatal immunization, the window of vulnerability in term and 
preterm infants at birth (into infancy) is still a major concern. 
This concern could be addressed by maternal or an optimized 
(one dose) HBV immunization of the newborn at birth. The com-
mon goal among maternal vaccination programs is temporary 
protection of the young infant against severe illness and death by 
ensuring sufficient and timely transfer of protective antibodies 
from the mother (62). Unfortunately, while some attempt have 
been made, clinical studies of vaccination against hepatitis B 
have showed lower immunogenicity in pregnant women than in 
nonpregnant women (63, 64). Regarding improved immuniza-
tion of the newborn, as the Center for Disease Control outlines, 
worldwide, most people with chronic Hepatitis B are infected 
at birth or during early childhood. While a positive mother is a 
significant source of risk for Hepatitis B infection as a newborn, 
the recommendation to administer Hepatitis B vaccination at 

birth in many countries including the United States is based on 
the understanding that asymptomatic chronic carriers within the 
family and family contacts can be a significant risk for infection 
in the neonatal period (ACIP, recommendations for Hepatitis B 
immunization).

BCG is the most commonly administered vaccine in world 
history with billions of doses given globally at or soon after birth to 
protect against disseminated TB during infancy (65). In addition 
to its protective effects against TB, for which there is no established 
correlate of protection, BCG administration may also enhance Ab 
responses to unrelated pathogens in human newborns and infants 
(20, 27, 28) and in newborn mice (26). Protective heterologous 
effects of certain live-attenuated vaccines including BCG have 
been demonstrated that reduce morbidity and mortality beyond 
what can be attributable to prevention of the target disease (23, 
25). BCG activates TLRs, including TLR2 and TLR4 (66), as well as 
C-type lectin receptors (CLRs) such as Dectin-1 and macrophage-
inducible C-type lectin (Mincle) (67–70), resulting in strong 
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FigUre 5 | Combined immunization of newborn mice with Bacille Calmette–Guérin (BCG) and hepatitis B vaccine (HBV) in vivo enhances anti-recombinant HBV 
surface antigen (rHBsAg) IgG titers 21 days post-immunization. (a) Schematic representation of the immunization and blood draw schedule for the in vivo 
experiments: prime immunization was administered either on day of life (DOL) 0, DOL7, or at 6–8 weeks of life with either saline, BCG, HBV vaccine, BCG and HBV 
in a combined s.c. injection or BCG and HBV vaccine injected in separate sites. Booster immunization was performed with either saline in the mice prime-
immunized with saline or BCG, or with HBV vaccine in the mice prime-immunized with either HBV vaccine alone, or BCG and HBV (either in combined or separate 
injection). Blood draws in the adult mice were obtained prior to prime immunization, prior to booster immunization, at 21 days and at 42 days post-prime 
immunization. Blood draws in the neonatal mice immunized on DOL7 were performed prior to booster immunization, at 21 days and at 42 days post-prime 
immunization. Blood draws in the mice immunized on DOL0 were obtained at 21 days and at 42 days post-prime immunization. Some neonatal mice from both the 
group immunized on DOL0 as well as DOL7 were sacrificed for a baseline blood draw prior to prime immunization. (B) Anti-rHBsAg IgG titers in mice immunized on 
DOL0, mice immunized on DOL7 and at 6–8 weeks of life. (c) Fold change over the HBV vaccine immunized group of the median anti-rHBsAg IgG titers. N = 9–14/
group for the mice immunized on DOL0; N = 14–16/group for the mice immunized on DOL7; N = 15–17/group for the mice immunized at 6–8 weeks of life. Data 
are representative of two independent experiments each of which included all three age groups and within each age group all five treatment groups. Statistical 
analysis of differences between the treatment groups was performed via Kruskal–Wallis test with Dunn’s post hoc test. *p < 0.05, **p < 0.01.
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Th1-biased immune responses. Of note, combined TLR and CLR 
activation synergistically enhances Th1- and Th17-cytokine induc-
tion in human newborn monocyte-derived dendritic cells (38), 
raising the possibility that engagement of multiple PRRs by BCG 
may contribute to the observed enhancement of HBV immuno-
genicity. Accordingly, we examined the cytokine profiles induced 
by (BCG +  HBV) relative to HBV alone in term and moderate 
to late preterm human infants on the protein and mRNA levels 
in vitro and then to examine the impact of cytokine polarization on 
the adaptive anti-rHBsAg-specific Ab production in vivo utilizing 
both mice on DOL0 as well as DOL7 to mirror different levels of 
immune ontogeny.

Our study characterized (BCG  +  HBV)-induced human 
leukocyte cytokine profiles at different GAs at the protein and 
mRNA level. Of these IL1B, IL6, CSF2, and TNF were key drivers 
of gene clustering in the principal component analysis by treat-
ment instead of by age. The interleukins induced are particularly 
noteworthy as they have been associated with enhanced adap-
tive immunity: (a) IL-1β, whose production was synergistically 
induced by (BCG + HBV) in human preterm and term cord blood 
as well as peripheral adult blood in  vitro, is an inflammasome-
produced cytokine that may improve vaccine immunogenicity 
(42–45), having a role in neutrophil recruitment (71) and in Ab 
production (72) and has been used directly as an adjuvant (73). 
Indeed, IL-1β has been implicated as important to immunogenic-
ity of HBV, in particular anti-HBsAg Ab responses (74–76) and 
(b) IL-6, a Th17-polarizing cytokine that stimulates differentiation 
and maturation of B cells to Ab-producing plasma cells, stimulates 
T cell proliferation, and is a murine adjuvant (46, 47, 77).

In neonatal mice, compared to HBV alone, we found that 
(BCG + HBV) induced significantly higher anti-rHBsAg-specific 
IgG levels at 21 days after prime immunization. In DOL0 mice, 
this effect was significant when BCG and HBV were injected 
into separate sites, in DOL7 mice this effect was significant when 
both vaccines were injected in combination. Although it should 
be recognized that the kinetics of immune ontogeny are distinct 
in mice compared to humans, this relatively early effect of BCG 
co-administration is intriguing. If such enhancing effects of 
BCG would extend to humans, they may fall within the window 
of susceptibility inherent to current term infant immunization 
schedules, prior to completion of HBV booster immunization. 
While in adult mice, the (BCG  +  HBV) group demonstrated 
higher Ab titers, the difference relative to HBV alone did not 
reach statistical significance. A surprising finding of this study 

was the observation that in the DOL0 mouse the separate injec-
tion of BCG and HBV compared to a combined injection in the 
same age group was the potent route of administration whereas 
in both the DOL7 mouse as well as in the adult mouse, the 
combined injection was more effective than the separate admin-
istration. This observation could reflect age-specific immunity 
and deserves further investigation. In summary, our study 
demonstrates that (BCG + HBV) synergistically induced IL-1β 
in vitro and enhanced neonatal anti-rHBsAg-specific Ab titers at 
an early stage post prime and first booster immunization in vivo. 
Given evidence in mice and humans that IL-1β production 
enhances the magnitude of HBV-induced Ab responses (74–76), 
we speculate that robust (BCG + HBV)-induced inflammasome 
activation may contribute to the observed enhancement in HBV 
immunogenicity.

Our study features many strengths including, to our knowl-
edge, multiple novel aspects: (a) an age-specific approach to 
characterizing vaccine–vaccine interactions including study of 
preterm humans and newborn DOL0 mice, reflecting aspects of 
preterm humans who represent ~11% of all global live births and 
are particularly susceptible to infection (3); (b) human in vitro 
modeling of (BCG + HBV) effects, in a way that reflects immune 
ontological differences present in these age groups in  vivo;  
(c) evaluating the impact of vaccine–vaccine interactions on 
innate cytokine induction using mathematical and bioinformatic 
approaches, and (d) characterizing age- and administration- (e.g., 
combined vs. separate injections) specific BCG-HBV interactions 
in newborn mice in vivo.

Our study also has a number of limitations. With regard to 
our in  vitro systems, although providing potentially valuable 
human data that have predicted adjuvantation effects in vivo (13), 
they may not optimally reflect vaccine effects in vivo. The use of 
a whole blood assay aims to reflect in  vivo conditions includ-
ing differences in cell quantity and immunphenotype between 
the neonate and the adult. Consequently, whole blood data are 
limited with regard to the ability to ascribe cytokine differences to 
single cell function or cell composition (78). Moreover, there are 
differences in the functionality and composition of mononuclear 
cells from adult individuals and mononuclear cells derived from 
neonatal cord blood (e.g., more predominantly lymphocytic) 
(78). Potential confounders in the use of preterm cord blood 
include maternal disease such as preeclampsia, a disease not 
captured in our collection of data for the preterm cord blood 
samples. We were able to limit the effects of steroid exposure on 
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our sample collection for a group of preterm cord blood samples 
as steroids were known to have been given over 48  h prior to 
cord blood collection (Table 1). We also recognize that attention 
must by paid to the type of anti-coagulant used for peripheral 
or cord blood collections as the type of cytokine used can affect 
cytokine production. We chose pyrogen-free anti-coagulant 
heparin sodium because it is certified to be endotoxin-free. 
Future studies may need to compare the results obtained with 
other methods of anti-coagulation, such as EDTA. Our in vivo 
studies feature distinct species (mouse) and route of adminis-
tration (subcutaneous) from human newborns (intradermal). 
Indeed, we were not able to demonstrate higher primary anti-
HBV Ab responses in our neonatal mice relative to our adult 
mice as has been previously demonstrated in humans (55).  
Nevertheless, the cogent pattern of enhanced age-dependent HBV 
responses in the presence of BCG, mirroring those observed in 
some clinical cohorts (20) suggests that our data may be relevant 
to the effects of these vaccines in human newborns in vivo.

Future work will be necessary to elucidate the immunological 
mechanisms involved in the BCG adjuvantation phenomenon 
described here, and hence enable design of a new generation 
of vaccines that recapitulate desirable features of the live vac-
cine BCG as (a) a single dose effectiveness and (b) induction of 
both adaptive and trained immunity. At this point, it is unclear 
whether the observed BCG-driven phenomena relate mechanis-
tically to “heterologous” effects that could be mediated by trained 
immunity (79). In addition to informing optimization of the use 
of BCG vaccine together with other vaccines, characterizing 
BCG-induced enhancement of Ab titers in response to unrelated 
vaccines may inform development of “BCG-like” adjuvantation 
systems (12). Furthermore, of importance to global health, these 
findings support the hypothesis, that in the appropriate context in 
countries in which neonatal immunization with BCG is recom-
mended, concurrent administration of (BCG + HBV) at birth to 
the moderate to late preterm and term newborn may enhance the 
protective response to HBV immunization. Of note, in relatively 
small preterm studies thus far, BCG has been immunogenic and 
safe when administered to the moderately to late preterm infant 
[31–33  weeks GA] (80). Further studies of the safety, efficacy 
and mechanism of action of the combination of (BCG + HBV) 
compared to each alone in newborn animals, including humans, 
will shed further light into this important area crucial to the 
protection of the most vulnerable among us.
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Immunization is key to preventing infectious diseases, a leading cause of death early in 
life. However, due to age-specific immunity, vaccines often demonstrate reduced effi-
cacy in newborns and young infants as compared to adults. Here, we combined in vitro 
and in vivo approaches to identify adjuvant candidates for early life immunization. We 
employed newborn and adult bone marrow-derived dendritic cells (BMDCs) to perform a 
screening of pattern recognition receptor agonists and found that the stimulator of inter-
feron genes ligand 2′3′-cGAMP (hereafter cGAMP) induces a comparable expression of 
surface maturation markers in newborn and adult BMDCs. Then, we utilized the trivalent 
recombinant hemagglutinin (rHA) influenza vaccine, Flublok, as a model antigen to inves-
tigate the role of cGAMP in adult and early life immunization. cGAMP adjuvantation alone 
could increase rHA-specific antibody titers in adult but not newborn mice. Remarkably, 
as compared to alum or cGAMP alone, immunization with cGAMP formulated with alum 
(Alhydrogel) enhanced newborn rHA-specific IgG2a/c titers ~400-fold, an antibody 
subclass associated with the development of IFNγ-driven type 1 immunity in vivo and 
endowed with higher effector functions, by 42 days of life. Highlighting the amenability 
for successful vaccine formulation and delivery, we next confirmed that cGAMP adsorbs 
onto alum in vitro. Accordingly, immunization early in life with (cGAMP+alum) promoted 
IFNγ production by CD4+ T cells and increased the proportions and absolute numbers of 
CD4+ CXCR5+ PD-1+ T follicular helper and germinal center (GC) GL-7+ CD138+ B cells, 
suggesting an enhancement of the GC reaction. Adjuvantation effects were apparently 
specific for IgG2a/c isotype switching without effect on antibody affinity maturation, as 
there was no effect on rHA-specific IgG avidity. Overall, our studies suggest that cGAMP 
when formulated with alum may represent an effective adjuvantation system to foster 
humoral and cellular aspects of type 1 immunity for early life immunization.

Keywords: vaccines, adjuvants, newborn, antigen-presenting cells, germinal centers, T follicular helper cells, 
antibodies, stimulator of interferon genes
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inTrODUcTiOn

Infectious diseases represent a major cause of morbidity and 
mortality in neonates and young infants (1, 2). For example, 
each year in the US ~20,000 children <5 years old are hospital-
ized due to influenza complications and flu-related death may 
occur, especially among those with underlying chronic illness 
(3). Immunization strategies are fundamental to prevent infec-
tious diseases. However, due to age-specific immunity, vaccines 
often demonstrate reduced efficacy in newborns and young 
infants compared to adults (4, 5). Newborn innate immune 
cells exhibit distinct activation profiles in response to pattern 
recognition receptor (PRR) agonists (6, 7), and only certain PRR 
agonists (e.g., TLR7/8 agonists) (8–14) or their combinations 
(15, 16) are able to induce an adult-like response. The newborn 
adaptive immune compartment presents distinct features that 
may also limit vaccine efficacy. Neonatal B  cells can produce 
immunoregulatory cytokines (e.g., IL-10) (17–20), and the 
magnitude and persistence of the antibody response are reduced 
(21). Several mechanisms may contribute to distinct immunity 
in early life, including distinct activity of B and plasma cells  
(22, 23), the presence of maternal antibodies, impaired CD4+ 
CXCR5+ PD-1+ T follicular helper (Tfh) cell differentiation 
and lymph node germinal center (GC) reaction (24, 25) that 
may adequately support the antigen-specific B  cell response. 
Moreover, neonatal CD4+ T cells produce lower amounts of IFNγ 
and are skewed toward Th2, Th17, and Treg polarization (6, 7). Of 
note, adjuvants exhibit age-specific patterns of Th-polarization 
(16) such that adjuvantation systems that boost adult immune 
responses do not necessarily lead to enhanced vaccine efficacy in 
newborns or young infants (26). Therefore, identification of vac-
cine adjuvants capable of activating neonatal and infant immune 
responses may inform development of adjuvanted vaccine for-
mulations that enhance early life immunization (8, 9).

Dendritic cells (DCs) play a pivotal role in activating T cells 
and instructing the adaptive immune response. They express 
a high diversity of PRRs, whose activation leads to DC migra-
tion to lymph nodes and enhancement of immune-stimulatory 
functions (27). Recently, a systems vaccinology analysis of young 
infants vaccinated with trivalent inactivated influenza vaccine 
with or without the oil-in-water adjuvant MF59 demonstrated 
that innate immune gene signatures (e.g., antiviral and DC 
genes) 1 day post-immunization correlated with vaccine efficacy, 
highlighting the importance of robust innate immune activation 
in early life immunization (28). Agonists of the intracellular 
receptors TLR7/8, that recognize viral single-stranded RNAs, 
potently activate Th1-polarizing responses, including expression 
of interferons (IFNs), production of IL-12p70 and upregulation of 
co-stimulatory molecules in newborn DCs in vitro and enhance 
vaccine efficacy in newborn non-human primates in vivo (8–14). 
Moreover, adjuvantation with the TLR9 agonist CpG increases 
CG Tfh and B cell responses in newborn mice (25). Among intra-
cellular PRRs, the stimulator of interferon genes (STING) is an 
amenable target for adjuvant discovery and development (29, 30). 
It binds cyclic dinucleotides (CDNs) derived from bacteria (i.e., 
c-di-AMP, c-di-GMP, and 3′3′-cGAMP) or synthesized in mam-
malian cells by cGAMP synthase in response to double-stranded 

DNA in the cytoplasm (i.e., 2′3′-cGAMP). Upon activation, 
STING induces the TBK-1-mediated phosphorylation of IRF3, 
which in turn modulates the expression of type I IFNs, IFN-
stimulated genes, and also promotes DC maturation and type 1 
(i.e., IFNγ-driven) immunity (31). Accordingly, STING agonists 
have demonstrated promising adjuvanticity in adult experimen-
tal models of parenteral and mucosal immunization as well as 
cancer immunotherapy (32–49). However, to our knowledge, 
STING has not yet been investigated as an adjuvant target for 
early life immunization.

Here, we took an unbiased approach to identify PRR-based 
agonists for early life immunization. We employed adult and 
neonatal bone marrow-derived DCs (BMDCs) to screen the 
activity of a comprehensive panel of PRR agonists and adjuvants, 
and found that the STING ligand 2′3′-cGAMP is a potent activa-
tor of newborn BMDCs. Strikingly, we found that 2′3′-cGAMP 
formulated with alum induces antibody isotype switching toward 
IgG2a/c, a subclass endowed with higher effector functions, 
appears to enhance the GC reaction and also promotes Th1 
polarization in immunized newborn mice. Altogether, our study 
supports the use of STING ligands and their formulations for 
enhancement of early life immunization.

MaTerials anD MeThODs

ethics statements
All experiments involving animals were approved by the Animal 
Care and Use Committee of Boston Children’s Hospital and 
Harvard Medical School (protocol numbers 15-11-3011 and 
16-02-3130).

animals
C57BL/6 and BALB/c mice were obtained from Taconic 
Biosciences or Charles River Laboratories and housed in specific 
pathogen-free conditions in the animal research facilities at 
Boston Children’s Hospital. For breeding purposes, mice were 
housed in couples, and cages checked daily to assess pregnancy 
status of dams and/or the presence of pups. When a new litter was 
discovered, that day was recorded as day of life (DOL) 0. Both 
male and female pups were used for experiments.

generation of neonatal and adult Murine 
Bone Marrow-Derived Dendritic cells 
(BMDcs)
BMDCs were generated from newborn (5–7 days old) and adult 
(6–12 weeks old) C57BL/6 mice with an adaptation of previously 
described methods (50, 51). Briefly, mice were sacrificed and 
legs removed; bones were surgically cleaned from surrounding 
tissue, extremities of tibiae and femurs were trimmed with sterile 
scissors and bone marrow flushed through a 70-µm nylon mesh 
strainer (Corning Life Sciences). Cell number and viability was 
determined by trypan blue exclusion. Whole bone marrow cells 
were plated into non-tissue culture-treated 100 mm Petri dishes 
(Corning Life Sciences) at a density of 0.3 × 106 cells/ml in 10 ml 
total volume/plate of complete culture medium (RPMI 1640 plus 
10% heat-inactivated fetal bovine serum [FBS, GE Healthcare 
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HyClone], 50  µM 2-mercaptoethanol, 2  mM l-glutamine, 100   
U/ml penicillin/streptomycin [Gibco ThermoFisher Scientific]) 
supplemented with 20  ng/ml of recombinant murine GM-CSF 
(rmGM-CSF, R&D systems). Plates were incubated in humidified 
atmosphere at 37°C, 5% CO2 for 6 days, with one supplement of 
10 ml of complete culture medium and rmGM-CSF on day 3. On 
day 6, non-adherent and loosely adherent cells were harvested 
by washing the plate gently with culture medium. Adherent 
cells were discarded. For flow cytometry analysis, BMDCs were 
stained (20 min at 4°C) in PBS + FBS 2% + EDTA 2 mM, fixed 
with formaldehyde 4% [10 min at room temperature (RT)] and 
acquired on a BD LSRFortessa flow cytometer (BD Biosciences) 
or a Sony spectral analyzer SP6800 (Sony Biotechnology) and 
data were analyzed using FlowJo v.10 software (Tree Star). For a 
complete list of antibodies and fluorochromes used in the study, 
see Table S1 in Supplementary Material.

Prrs agonists, adjuvants, and BMDc 
In Vitro stimulation
Rough (Salmonella Minnesota, R595) and smooth (Escherichia 
coli, O55:B5) lipopolysaccharide (LPS) were purchased from 
List Biological Laboratories. Aluminum hydroxide (Alhydrogel) 
and Aluminum phosphate (Adju-phos) were purchased from 
Brenntag Biosector. All remaining PRR agonists and adjuvants, as 
indicated in Table S2 in Supplementary Material, were purchased 
from Invivogen. All PRR agonists employed in the studies were 
chosen based on and verified endotoxin free as indicated by the 
manufacturers. For stimulation experiments, immature BMDCs 
generated from newborn and adult mice were plated in round 
bottom 96-wells non-tissue culture-treated plates at the density 
of 105 cells/well in 200 µl of fresh complete culture medium with 
rmGM-CSF as described above, with the appropriate stimuli at the 
concentrations indicated in Table S2 in Supplementary Material. 
Cells were incubated at 37°C for 20–24 h, then supernatant har-
vested and TNF, IL-6, IL-1β, and IL-12p70 concentrations were 
measured by ELISA (R&D Systems). IFNβ was measured with a 
bioluminescent ELISA kit (LumiKine, Invivogen). Alternatively, 
BMDCs were stained and analyzed by flow cytometry as indi-
cated above. For experiments involving blocking antibodies, 
BMDCs were pre-incubated for 20 min at 37°C with anti-mouse 
IFNAR1 (clone MAR1-5A3, 10 µg/ml, Biolegend) or anti-mouse 
TNF (clone MP6-XT22, 10 µg/ml, Biolegend) antibodies or an 
isotype control before stimulation.

antigens, immunization, and antibody 
Quantification
Both neonate and adult mice were immunized intramuscularly 
(i.m.) in the right posterior thigh with 50 µl of the 2016–2017 
formulation of the FluBlok vaccine (Protein Sciences Corp.) con-
taining 0.33 µg of each of the following recombinant influenza 
virus hemagglutinins (rHA): A/Michigan/45/2015 (H1N1), A/
Hong Kong/4801/2014 (H3N2), and B/Brisbane/60/2008. Mice 
were immunized with a single dose at DOL 7 or a prime-boost 
schedule (two injections 1  week apart, for newborn mice at 
DOL 7 and 14). As indicated for specific experimental groups, 
the vaccine was formulated with Aluminum hydroxide (100 µg, 

hereafter “alum”) with or without 2′3′-cGAMP (10 µg). Serum 
was collected at the indicated intervals for antibody detection. 
rHA-specific IgG, IgG1, IgG2c (for C57BL/6 mice), and IgG2a 
(for BALB/c mice) antibodies were quantified by ELISA. High 
binding flat bottom 96-well plates (Corning Life Sciences) were 
coated with 1 µg/ml rHA in carbonate buffer pH 9.6, incubated 
overnight at 4°C and blocked with PBS  +  BSA 1% (Sigma-
Aldrich) for 1  h at RT. Then, sera from vaccinated mice were 
added with an initial dilution of 1:100 and 1:4 serial dilutions 
in PBS + BSA 1% and incubated for 2 h at RT. Plates were then 
washed and incubated for 1 h at RT with HRP-conjugated anti-
mouse IgG, IgG1, IgG2c, or IgG2a (Southern Biotech). At the 
end of the incubation, plates were washed again and developed 
with tetramethylbenzidine (BD Biosciences) for 5  min, then 
stopped with 2 N H2SO4. The optical density was read at 450 nm 
Versamax microplate reader with SoftMax Pro Version 5 (both 
from Molecular Devices) and endpoint titers were calculated 
using as cutoff three times the optical density of the background.

For assessing antibody avidity, plates were incubated 15 min 
with ammonium thiocyanate 0.5 M before the addition of HRP-
conjugated anti-mouse IgG antibodies. Avidity was expressed as 
the LogEC50 ratio of corresponding plates treated with or without 
ammonium thiocyanate.

Quantification of 2′3′-cgaMP adsorption 
onto alum
To quantify the extent of 2′3′-cGAMP adsorption to aluminum 
hydroxide (Alhydrogel) we mixed 100 µg/100 μl of 2′3′-cGAMP 
with 1000 µg/100 μl of alum (a 1:10 cGAMP:alum mass ratio) 
plus 300  µl of 0.9% saline. After vortexing for 10  s the sample 
was placed in a 37°C incubator. Every 15 min, the sample was 
vortexed for an additional 5 s and placed back into the incubator. 
Aliquots were taken at t = 0.25, 0.5, 1, 2, 4 and 24 h and centri-
fuged at 3,000 RPM (rcf = 664 g) to separate the alum from the 
supernatant. Supernatant was immediately removed and placed 
into an autosampler vial undiluted for analysis by reverse-phase 
high-performance liquid chromatography (RP-HPLC) to deter-
mine adsorption as a function of time. RP-HPLC samples were 
run on a Waters 2695 HPLC equipped with a 2996 photodiode 
array detector at a wavelength of 254 nm. A gradient was per-
formed using a two mobile phase system of 0.1% trifluoroacetic 
acid in water and 0.1% trifluoroacetic acid in acetonitrile, on an 
Agilent Zorbax Eclipse Plus C18, 4.6 × 150 mm, 5 µm column 
at 25°C. The response (peak area) of the samples were compared 
against a 50 µl 2′3′-cGAMP plus 200 µl 0.9% saline control and a 
separate 100 µl alum plus 400 µl saline control.

In Vitro restimulation of rha-specific  
T cell responses
Splenocytes from immunized mice were harvested 10  days 
post-boost (DOL 24) as previously reported (25, 52, 53) and re-
stimulated in vitro to assess cytokine production by flow cytom-
etry. Spleens were mashed through a 70 µM strainer, washed with 
PBS, and erythrocytes were lysed with 2  min of incubation in 
ammonium chloride-based lysis buffer (BD Biosciences). Cells 
were then counted and plated 2 ×  106 per well (round bottom 
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96-well plate) in 200  µl of complete culture medium with or 
without rHA 10  µg/ml or rHA 10  µg/ml  +  anti-mouse CD28  
2 µg/ml (BioLegend). Plates were incubated for 18 h at 37°C with the  
addition of Brefeldin A (BD Biosciences) for the last 6 h. Cells were 
stained against for surface antigens in (PBS + BSA 0.2% + NaN3 
0.05%) for 20 min at 4°C, then fixed with formalin 2% (10 min at 
RT) and permeabilized with intracellular staining permeabiliza-
tion wash buffer (BioLegend) for 20 min at 4°C. Finally, cells were 
stained with conjugated antibodies against IFNγ, IL- 2, IL-4, and 
IL-17. Data were acquired on a BD LSRFortessa flow cytometer 
(BD Biosciences) and analyzed using FlowJo v.10 software (Tree 
Star). For a complete list of antibodies and fluorochromes used in 
the study, see Table S1 in Supplementary Material.

analysis of the gc reaction
Draining (inguinal) lymph nodes (dLNs) from immunized mice 
were harvested 10 days post-boost (DOL 24) as previously reported 
(25, 52, 53). To prepare a single-cell suspension, dLNs were pressed 
using the plunger end of a syringe. Then, cells were washed and 
stained with the following antibodies: for GC Tfh cells, anti-CD45, 
anti-B220, anti-CD3, anti-CD4, anti-programmed death-1 (CD279 
or PD-1), anti-CXCR5; for GC B cells, anti-CD45, anti-B220, anti-
CD3, anti-GL7, and anti-Syndecan-1 (CD138) (all from BioLegend). 
GC Tfh cells were defined as viable singlet CD45+ B220− CD3+ 
CD4+ CXCR5+ PD-1+ cells. GC B cells were defined as viable singlet 
CD45+ B220+ CD3− CD138− GL-7+. Cells were acquired on a BD 
LSRFortessa (BD Biosciences) and data were analyzed using FlowJo 
v.10 software (Tree Star). Absolute number of cell subsets were deter-
mined using CountBright Absolute Counting Beads (ThermoFisher 
Scientific). For a complete list of antibodies and fluorochromes used 
in the study, see Table S1 in Supplementary Material.

iFnγ elisPOT
Draining lymph nodes from immunized mice were harvested 
3 days post-boost (DOL 17). Nitrocellulose 96-microwell plates 
(Millipore) were coated with 75  µl/well of anti-mouse IFNγ  
(10 µg/ml in PBS, clone R4-6A2, BD Pharmingen) overnight at 4°C, 
washed twice with wash buffer (PBS + Tween-20 0.05%) and once 
with distilled water. Wells were blocked with 200 µl of complete 
culture medium for 2  h at RT. Single-cell suspensions of dLNs 
in complete culture medium supplemented with recombinant  
mouse IL-2 (5 ng/ml, PeproTech) were added to the wells in the 
presence or absence of 10 µg/ml of Flublok and 2 µg/ml anti-mouse 
CD28 (Biolegend) and cultured for 18 h. Wells were then washed 
and incubated with 100 ml of biotinylated anti-mouse IFNγ (5 µg/
ml in PBS + FBS 10%, clone XMG1.2, BD Pharmingen) for 2 h at 
RT, washed again and incubated with 100μl of streptavidin-alka-
line phosphatase (1:1000 dilution in PBS + FBS 10%, MabTech) 
for 1  h prior to color development using BCIP/NBT substrate 
(Biorad) as per manufacturer’s protocol. Spots on air-dried plates 
were counted on an ImmunoSpot Analyzer.

statistical analyses and graphics
Data were analyzed and graphed using Prism for MacIntosh  
v. 7.0 (GraphPad Software). Tests used for statistical comparisons 
are indicated in figure legends. p-value <0.05 was considered 
significant.

resUlTs

Phenotypic and Functional 
characterization of neonatal BMDcs
Murine BMDCs represent a widely used model to study DC 
function in  vitro. Adult BMDCs represent a heterogeneous 
population composed of CD11c+ macrophage-like and DC-like 
cells with distinct phenotypic and functional profiles (54). 
However, murine neonatal BMDCs have never been character-
ized in depth. Therefore, we first sought to define the phenotypic 
and functional properties of neonatal BMDCs. Although the 
cell yield from neonatal bone marrow was lower compared to 
adult ones (Figures S1A,B in Supplementary Material), neonatal 
immature BMDCs generated from 7-day-old mice grew in 
culture similarly to adult cells (Figure S1C in Supplementary 
Material), and once fully differentiated they expressed similar 
levels of CD11c compared to adult cells but significantly lower 
levels of MHCII (Figures S1D,E in Supplementary Material). 
To further characterize phenotypic differences between 
newborn and adult BMDCs, we assessed by flow cytometry 
the expression of different macrophage and DC markers. As 
previously reported for adult BMDCs (54), neonatal BMDCs 
also comprised CD11c+ MHCII-low and CD11c+ MHCII-high 
cells. Of note, the percentage of MHCII-low cells was higher 
in neonatal BMDCs compared to adult BMDCs. Neonatal 
MHCII-low BMDCs also expressed higher levels macrophage-
associated markers (CD64, CD115, CD11b, F4/80) compared to 
MHCII-high BMDCs, while this population expressed higher 
levels of CD117. No significant differences in surface marker 
expression were found between corresponding neonatal and 
adult MHCII-high and -low populations, except for neonatal 
MHCII-low BMDCs that expressed higher levels of F4/80 and 
neonatal MHCII-high BMDCs that expressed higher levels of 
CD117 compared to their adult counterparts (Figures S2A,B in 
Supplementary Material).

To characterize a functional response of newborn BMDCs, 
we next assessed cytokine production and upregulation of co-
stimulatory molecules in response to the TLR4 agonist smooth 
LPS. While newborn BMDC production of IL-6 and TNF was, 
respectively, comparable or slightly lower than adult BMDCs, 
IL-12p70 production, albeit detectable, was markedly reduced 
compared to adult BMDCs (Figure S3A in Supplementary 
Material). The latter result might be consistent with a more 
macrophage-like phenotype of newborn BMDCs. As previ-
ously reported, both adult and newborn BMDCs produced 
IL-1β in response to rough but not smooth LPS (55), with 
newborn BMDCs producing slightly higher amounts of IL-1β 
(Figure S3B in Supplementary Material). Finally, newborn 
BMDCs expressed lower levels of MHCII, CD40, and CD86 
in response to smooth LPS (Figures S3C,D in Supplementary  
Material).

identification of sTing as a Target for 
inducing neonatal BMDc Maturation
Having characterized phenotypic and functional features of 
neonatal and adult BMDCs, we next assessed their response to a 
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panel of PRR agonists and adjuvants (Table S2 in Supplementary 
Material). As readouts we measured cytokine production (TNF, 
IL-1β, IL-6, and IL-12p70) and surface expression of matura-
tion markers (CD40, CD80, and CD86). At the most effective, 
non-toxic (as established in preliminary experiments, data not 
shown) concentration of each agonist (in bold in Table S2), 
neonatal BMDCs produced similar amounts of TNF, IL-6, and 
IL-1β compared to adult BMDCs in response to different TLR7/8 
agonists, namely R848 (Resiquimod, imidazoquinoline), CL075 
(thiazoloquinolone) or CL264 (9-benzyl-8 hydroxyadenine), 
but again failed to produce IL-12p70 (Figure 1A). Remarkably, 
the upregulation of surface maturation marker expression on 
neonatal BMDCs was much lower than adult BMDCs upon any 
PRR stimulation, with the exception of the STING agonist 2′3′-
cGAMP (hereafter cGAMP) (Figure 1B). To assess in depth the 
response to STING and TLR7/8 agonists, we stimulated neonatal 
and adult BMDCs with different concentrations of cGAMP 
and R848. We confirmed that R848 induced higher produc-
tion of TNF and IL-12p70 (the latter only in adult BMDCs), 
while cGAMP was more effective than R848 at upregulating 
the expression of surface maturation markers (Figure  1C). 
cGAMP also induced dose-dependent IFNβ production in both  
newborn and adult BMDCs (Figure 1C). Of note, the response of 
neonatal and adult BMDCs to cGAMP was comparable (Figure 
S4 in Supplementary Material). Using neutralizing antibodies 
against TNF or type I IFN receptor (IFNAR), we demonstrated 
that the expression of maturation markers by neonatal BMDCs 
mostly relies on type I IFN signaling (Figure S5 in Supplementary 
Material).

cgaMP Formulated with alum enhances 
anti-rha igg2a/c antibody Titers in an 
early life immunization Model
The in vitro results obtained so far supported further investiga-
tion of cGAMP as adjuvant candidate for early life immuniza-
tion. Therefore, we proceeded to test this hypothesis in vivo. We 
immunized newborn (7-day old) and adult (8- to 10-week old) 
C57BL/6 mice using a prime-boost schedule (Figure 2A) and 
employing trivalent recombinant hemagglutinin (rHA) influ-
enza vaccine Flublok as clinically relevant model antigen that is 
devoid of adjuvant, alone, or formulated with alum [Alhydrogel, 
Al(OH)3], cGAMP or (cGAMP  +  alum) (Figure  2B). Mice 
were bled 14, 21, 28, and 35 days post-prime (respectively, day 
of life (DOL) 21, 28, 35, and 42 for newborn mice) to assess the 
magnitude and kinetic of the antibody response. As expected, 
both alum and cGAMP increased anti-rHA IgG titers in adult 
mice. We also investigated the titers of the IgG subclasses 
IgG1 and IgG2c, respectively associated with type 2 and type 
1 (IFNγ-driven) immunity (56, 57). In keeping with previously 
published data, alum preferentially increased anti-rHA IgG1 
titers (median anti-rHA IgG1 titers at Day 35 post-prime: 
5.02 × 106 for alum, 0.77 × 106 for cGAMP), while cGAMP was 
more effective than alum at enhancing anti-rHA IgG2c titers 
(median anti-rHA IgG2c titers at day 35 post-prime: 0.16 × 106 
for alum, 0.82 × 106 for cGAMP). (cGAMP + alum) was as effec-
tive as alum at increasing anti-rHA IgG and IgG1 titers [median 

anti-rHA IgG and IgG1 titers at day 35 post-prime: respectively, 
4.77 × 106 and 4.46 × 106 for (cGAMP + alum)], and even more 
effective than cGAMP alone at enhancing anti-rHA IgG2c titers 
[median anti-rHA IgG2c titers at day 35 post-prime: 3.27 × 106 
for (cGAMP + alum)] (Figure 2B, upper panels and Figure S6 
in Supplementary Material). In newborn mice, we unexpectedly 
found that cGAMP was much less effective at increasing anti-
rHA IgG, IgG1, and IgG2c titers [median anti-rHA IgG, IgG1, 
and IgG2c titers at day 35 post-prime (DOL 42): respectively, 
20.57  ×  103, 24.51  ×  103, and 0.23  ×  103 for cGAMP]. Alum 
enhanced anti-rHA IgG and IgG1 titers, but in marked contrast 
from adult mice it did not induce anti-rHA IgG2c titers [median 
anti-rHA IgG, IgG1, and IgG2c titers at day 35 post-prime  
(DOL 42): respectively, 48.35 × 103, 143.23 × 103, and 0.00 × 103 
for alum]. Surprisingly, (cGAMP  +  alum) adjuvantation 
matched or exceeded alum at increasing anti-rHA IgG and IgG1 
titers [median anti-rHA IgG and IgG1 titers at Day 35 post-
prime (DOL 42): respectively, 329.19  ×  103 and 167.83  ×  103 
for (cGAMP + alum)], and, remarkably, also induced relatively 
high titers of anti-rHA IgG2c as early as 14  days post-prime 
(DOL 21) [median anti-rHA IgG2c titers at day 14 (DOL 21) 
and day 35 post-prime (DOL 42): respectively, 0.14 × 103 and 
4.23 × 103 for (cGAMP + alum)] (Figure 2B, lower panels and 
Figure S7 in Supplementary Material). Therefore, the addition 
of cGAMP to alum markedly enhanced anti-rHA antibody 
production (in particular IgG2c), with a more prominent effect 
in newborn than adult mice (~400 as compared to ~150-fold 
increase, respectively) (Figure 2C). Interestingly, newborn mice 
immunized at DOL 7 and 14 (as indicated in Figure 2B) with 
(cGAMP  +  alum) still display the highest anti-rHA IgG and 
IgG2c titers at DOL 90 compared to saline and alum groups 
(Figure S8 in Supplementary Material). Enhancement of anti-
rHA IgG and IgG2a titers induced by (cGAMP + alum) was also 
demonstrable in the Th2-skewed mouse strain BALB/c (Figure 
S9 in Supplementary Material).

In light of the robust adjuvanticity of the (cGAMP + alum) 
formulation, we quantified cGAMP adsorption to alum by 
RP-HPLC (Table 1). We observed a rapid initial adsorption of 
cGAMP onto alum (63% of total cGAMP) within 15 min from 
the incubation. The adsorption rate dropped quickly, with the 
overall adsorption reaching a plateau (75.33% of total cGAMP) 
after 24  h of incubation. No significant degradation products 
were observed over this time window.

Altogether, our in vivo results demonstrate that (cGAMP + alum)  
is an effective formulation to enhance antigen-specific antibody 
titers (especially of the IgG2a/c subclass) for early life immunization.

(cgaMP + alum) Fosters Th1 Polarization 
and gc reaction
IgG2a/c isotype switching is driven by IFNγ in  vivo (58), and 
reduced in early life, since newborns display reduced IFNγ pro-
duction and Th1 polarization to many stimuli (6, 7). Therefore, 
we investigated whether (cGAMP + alum) was able to modulate 
the polarization and cytokine production of antigen-specific 
T  cells. Accordingly, newborn mice were immunized as indi-
cated in Figure  2A with alum or (cGAMP  +  alum). Ten days 
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FigUre 1 | Screening of pattern recognition receptor (PRR) agonists on neonatal and adult BMDCs. (a–c) Newborn (N) and adult (Ad) BMDCs were stimulated 
with the indicated PRR agonists or adjuvants for 20–24 h. Cytokine production (a,c) and MFI of surface marker expression (B,c) were, respectively, assessed by 
ELISA and flow cytometry. (a,B) Color intensities of the heatmaps are proportional to (a) mean cytokine levels (expressed as pg/ml) or (B) mean co-stimulatory 
molecule levels (expressed as fold change of median fluorescence intensity over CTRL) of 5–6 (a) or 3 (B) independent experiment. (c) Results are expressed as 
mean + SEM of 4–5 (cytokine production) or 3 (surface marker expression) independent experiments. *p < 0.05, **p < 0.01 determined by repeated measures 
two-way ANOVA with Sidak post hoc test.
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post-boost, splenocytes were harvested, re-stimulated with 
rHA in the presence or absence of the co-stimulus αCD28, and 
cytokine production by CD4+ T  cells was measured by flow 

cytometry (Figure  3A). While IL-2- and IL-4-producing cells 
were observed in both groups, IFNγ+ CD4+ T (Th1) cells were 
only detected among splenocytes isolated from mice immunized 
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TaBle 1 | cGAMP adsorption onto alum as function of time as assessed by 
RP-HPLC.

cgaMP adsorbed onto alum—incubated at 37°c

Time point Peak area (maU) % adsorbed to alum

15 min 22.53 63.00
30 min 22.93 62.34
1 h 22.22 63.51
2 h 20.83 65.79
4 h 21.02 65.48
24 h 15.02 75.33
Alum control (no cGAMP) 0.53 ND
Saline 0.55 ND

RP-HPLC, reverse-phase high performance liquid chromatography.

FigUre 2 | Immunization with recombinant hemagglutinin (rHA) formulated with cGAMP and alum induces distinct antibody profiles in adult and newborn mice. (a) 
Schematic representation of the immunization schedule for adult (day post-priming is indicated) and newborn [day of life (DOL) is indicated] mice. (B) Adult (top) and 
newborn (bottom) mice were immunized i.m. with saline (black line), rHA (brown line), (rHA + alum) (blue line), (rHA + cGAMP) (orange line) or (rHA + cGAMP + alum) 
(red line), and antibody titers for rHA-specific IgG, IgG1, and IgG2c were determined by ELISA in serum samples collected at the reported timepoints. (c) Fold 
change of median Ab titers over (rHA + alum) group. White bars, newborn mice. Black bars, adult mice. Results are shown as median of 9–10 (adult) or 7–8 
(newborn) mice per group. *, +, #p < 0.05, **, ++, ##p < 0.01 of groups indicated by the corresponding color, respectively, vs. saline, rHA, and (rHA + alum) groups 
determined by Kruskal–Wallis with Dunn’s post hoc test.
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with (cGAMP  +  alum) [median percentages of IFNγ+ CD4+ 
T cells upon rHA re-stimulation: 0.000 for saline, 0.031 for alum, 
and 0.295 for (cGAMP  +  alum) groups; upon rHA  +  αCD28 
re-stimulation: 0.009 for saline, 0.021 for alum, and 0.280 for 
(cGAMP +  alum) groups]. No IL-17 production was observed 
in any of the tested conditions (Figure 3B). To corroborate this 
evidence, upon in  vitro re-stimulation with rHA  +  αCD28 we 
found by ELISPOT a higher number of IFNγ-producing cells 
in the dLNs of mice immunized with (cGAMP + alum) 3 days 
post-boost (Figure 4).

T  cell-dependent antibody generation is initiated in GCs 
and guided by Tfh cells (59, 60). Since GCs are major sites for 
isotype switching, we reasoned that immunization of newborn 
mice with (cGAMP + alum) might promote the GC reaction, 
thereby inducing IgG2a/c switching. To this aim, we assessed 
by flow cytometry the percentages and absolute numbers of GC 
Tfh and B cells (respectively, identified as viable singlet CD45+ 
B220− CD3+ CD4+ CXCR5+ PD-1+ and CD45+ CD3− B220+ 
GL-7+ CD138− cells) in dLNs 10 days post-boost of newborn 
mice immunized with alum or (cGAMP + alum). Interestingly, 
we found a significant increase in the percentage [median: 0.275 
for saline, 0.42 for alum, and 0.925 for (cGAMP + alum)] and 
absolute number [median: 1,360 for saline, 2,558 for alum, 
and 5,754 for (cGAMP + alum)] of GC Tfh cells and the per-
centage [median: 14.4 for saline, 19.7 for alum, and 27.35 for 
(cGAMP +  alum)] and absolute number [median: 10,975 for 
saline, 19,878 for alum, and 42,524 for (cGAMP +  alum)] of 
GC B  cells only in the (cGAMP +  alum) group (Figure  5A). 
Immunization with alum induced a small increase in the per-
centage (but not absolute number) of GC B  cells, while only 
minor modifications of the percentages and absolute numbers 
of total CD4+ T cells and B cells were observed across different 
immunization groups (Figures 5A,B).

The GC is also the site where the processes of somatic 
hypermutation of antibody variable region genes and generation 
of high-affinity antibodies take place (60). To verify whether 
cGAMP modulates antibody affinity maturation, we measured 
rHA-specific IgG avidity of newborn mice immunized with alum 
or (cGAMP  +  alum) as indicated in Figure  2A. Although we 
observed a steep increase in antibody avidity 21 days post prime 
(DOL 28) which reached a plateau later on [28 (DOL 35) and 
35 (DOL 42) days post-prime], no differences between the two 
groups were detected at any time point (Figure 6).

Overall, these results demonstrate that the addition of cGAMP 
to alum promoted the induction of IFNγ-producing T cells and 
appeared to foster the GC reaction, which might in turn drive 
IgG2a/c isotype switching in our early life immunization model.

single-Dose immunization with 
(cgaMP + alum) induces rha-specific 
igg2c antibodies
The results obtained so far supported the efficacy of 
(cGAMP + alum) as an adjuvantation system in a prime/boost 
model of neonatal murine immunization. Of note, a single-dose 
immunization strategy capable of enhancing antigen-specific 
antibody titers would be highly desirable early in life. To this 
end, we immunized newborn mice with rHA formulated with 
alum, cGAMP, or (cGAMP  +  alum). Distinct from its effects 
in prime/boost immunization, cGAMP without alum did not 
induce detectable anti-rHA IgG, IgG1, and IgG2c titers. Alum 
and (cGAMP + alum) significantly increased anti-rHA IgG and 
IgG1 titers [median anti-rHA IgG and IgG1 titers: respectively, 
26.74  ×  103 and 52.08  ×  103 for alum; respectively, 1.07  ×  106 
and 1.48  ×  106 for (cGAMP  +  alum)]. Interestingly, only 
(cGAMP +  alum) induced detectable levels of anti-rHA IgG2c 
(median: 571.9), albeit at lower levels compared to prime/boost 
immunization (Figure 7). Altogether, these results demonstrate 
that (cGAMP + alum) is an effective adjuvantation system also 
for single dose early life immunization.

DiscUssiOn

Over the past decades, many PRRs and their agonists have been 
identified, and the molecular definition of their mechanisms of 
action and immunostimulatory properties has paved the way for 
new classes of adjuvants (26, 61). For example, the TLR4 agonist 
monophosphoryl lipid A is employed in different FDA-approved 
vaccine formulations. Despite this wealth of knowledge, the 
portfolio of adjuvants approved or in clinical development for 
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FigUre 3 | Immunization with (cGAMP + alum) induces Th1 polarization in early life. Newborn mice were immunized with alum or (cGAMP + alum) as indicated in 
Figure 2a. Ten days after boost [day of life (DOL) 24] splenocytes were harvested, re-stimulated for 18 h with recombinant hemagglutinin (rHA) in the presence or 
absence of the co-stimulus αCD28, and cytokine production by CD4+ T cells was assessed by intracellular flow cytometry. (a) Representative gating strategy. CD4+ 
T cells were defined as viable singlet CD3+ CD4+ cells. (B) Results are shown as the median, the 25th and 75th percentiles (boxes) and the 5th and 95th percentiles 
(whiskers) of 9–10 mice per group. **p < 0.01 of in vitro CTRL vs. rHA vs. rHA + αCD28, ++p < 0.01 of respective in vitro conditions compared to in vivo saline 
group, #p < 0.05 and ##p < 0.01 of respective in vitro conditions compared to in vivo alum group, determined by two-way ANOVA with Tukey’s post hoc test.
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the newborn and the young infant is much narrower, in part due 
to our limited knowledge of the immune system early in life (6, 7, 
62). Notwithstanding these limitations, in vitro and pre-clinical 
in vivo studies have shown that targeting some PRRs, in particular 
TLR7/8 (8–14), potently activates newborn immune cells and 
markedly enhances vaccine efficacy early in life. Here, by combin-
ing an in vitro analysis of newborn BMDC activation in response 
to PRR agonists and in vivo immunization models, we identify 
the STING agonist cGAMP as adjuvant candidate for early life 
immunization. In particular, we demonstrate that immunization 
of newborn mice with cGAMP formulated with alum appears to 
foster the GC reaction as well as features of IFNγ-driven type 1 

immunity, namely switching toward IgG2a/c subclass and Th1 
polarization.

Although there is no comprehensive consensus on whether 
and how in vitro models can predict the in vivo effect of candidate 
adjuvants, the use of DCs has some advantages for assessing their 
activity in vitro (6, 27, 63, 64). First, DCs are the most prominent 
subset of antigen-presenting cells. Second, they express many 
PRRs. Third, DCs can be employed to recapitulate age-specific 
differences. Although isolating primary DCs from spleen and 
lymph nodes of neonatal mice would be ideal, this approach 
is cumbersome if not impossible due to low cell yield (65, 66). 
Therefore, we developed and characterized a neonatal BMDC 
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FigUre 4 | Immunization with (cGAMP + alum) induces IFNγ-producing 
cells in draining lymph nodes (dLNs) of newborn mice. Newborn mice were 
immunized with alum or (cGAMP + alum) as indicated in Figure 2a. 3 days 
after boost [day of life (DOL) 17] cells were isolated from dLNs, re-stimulated 
for 18 h with rHA + αCD28, and the number of IFNγ-producing cells per LN 
was assessed by ELISPOT. Results are shown as the median, the 25th and 
75th percentiles (boxes) and the fifth and 95th percentiles (whiskers) of 4–5 
mice per group. **p < 0.01 of in vitro CTRL vs. rHA + αCD28, ++p < 0.01 of 
respective in vitro conditions compared to in vivo saline group, ##p < 0.01 of 
respective in vitro conditions compared to in vivo alum group, determined by 
two-way ANOVA with Sidak’s post hoc test.
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model, and found phenotypic and functional differences between 
neonatal and adult BMDCs. Most importantly, by comparing the 
activation profiles of neonatal and adult BMDCs we identify 
that the STING agonist cGAMP induces their maturation (e.g., 
upregulation of CD40, CD80, and CD86). Although we proceeded 
in assessing the in vivo adjuvant activity of cGAMP, we cannot 
exclude that other PRR ligands that did not activate newborn 
BMDCs in vitro might act as adjuvants in vivo. Therefore, further 
studies, especially of combination formulations, are required to 
define the predictive value of the in vitro newborn BMDC system.

Cyclic dinucleotides including cGAMP have been tested as 
candidate adjuvants in experimental models of parenteral or 
mucosal adult immunization (32–49). In the present work, mice 
were immunized by the intramuscular route as it is commonly 
employed for pediatric vaccines: a new formulation specific for 
intramuscular injection may fit easily with other vaccines in the 
pediatric vaccination schedule, while intranasal immunization 
against influenza virus, for example, is currently not recom-
mended by the CDC (67). We found that free cGAMP, simply 
injected together with the model antigen, is much less effective in 
newborn than in adult mice at increasing antigen-specific anti-
body titers. Remarkably, cGAMP formulated with alum induces 
relatively high titers of antigen-specific IgG2a/c compared to 
alum or cGAMP alone, especially in newborn mice immunized 
with prime/boost or single dose schedules. The explanation for 
this might be that about 60% of cGAMP adsorbs onto alum 
in vitro, which also suggests that there is still the possibility of 

further optimizing this formulation and increasing the percent-
age of adsorbed cGAMP by modification of the adsorption pH, 
buffer, and alum to cGAMP ratio. Interestingly, it has already been 
reported that CDNs tend to diffuse in the bloodstream after injec-
tion, while their nanoparticle formulations deliver CDNs to the 
dLNs (40). It is tempting to speculate that the same phenomenon 
might explain the differences in the efficacy between cGAMP and 
(cGAMP + alum). In addition, it will be interesting to compare 
the effect of optimized (cGAMP + alum) and nanoparticle-based 
cGAMP formulations in our early life immunization model.

Newborns and young infants have a distinct immunity with 
an impairment of IFNγ-driven type 1 immunity, which in turn 
leads to reduced vaccine efficacy and higher risk of infections 
(6, 7). By using (cGAMP + alum) as adjuvantation strategy for 
early life immunization, we were able to induce cardinal features 
of type 1 immunity: (1) IFNγ production by antigen-specific 
CD4+ T  cells and (2) relatively high titers of antigen-specific 
IgG2a/c. As IFNγ promotes isotype switching toward IgG2a/c 
in vivo (58), these two events are likely linked. The importance 
of inducing this antibody subclass relies in its higher affinity 
toward Fcγ receptors expressed on myeloid cells, which endows 
this subclass with greater effector functions (e.g., induction of 
phagocytosis, complement fixation) that may be important for 
protecting from infections (56, 57). Our results also suggest that 
(cGAMP + alum) increases the magnitude of the GC reaction, 
known to be impaired in early life (24, 25), by inducing higher 
percentages and absolute numbers of GC Tfh and B cells in dLNs. 
Although we cannot exclude that the GC reaction induced by 
alum follows a different kinetics, these results might represent 
the cellular correlate of the isotype switching and early IgG2a/c 
production observed in the (cGAMP + alum) group. Altogether, 
our data point to a relevant effect of the (cGAMP + alum) for-
mulation on the humoral and cellular immune responses elicited 
upon immunization early in life.

Overall, our study features several strengths, including (a) the 
first immunophenotypic characterization of murine neonatal 
BMDCs, (b) an unbiased screening of PRR agonists for activity 
toward neonatal BMDCs, and (c) identification of a novel adju-
vantation system active in vitro and in vivo with evidence sup-
porting potential utility in enabling single-dose immunization at 
birth. Our study also has limitations, including (a) the neonatal 
BMDC model studied represents a mix of cells generated by treat-
ment with cytokines in vitro such that they may not fully reflect 
in  vivo biology, (b) the potential effects of (cGAMP  +  alum) 
on GCs are intriguing but until such time as they are verified 
by microscopy are inferential, (c) although our studies demon-
strated robust increases in antibody titers and features of type 
1 immunity elicited by immunization with (cGAMP  +  alum), 
future functional studies (e.g., pathogen challenge) are required 
to assess the efficacy of this adjuvantation system, and (d) due to 
species specificity, results in mice may not accurately reflect those 
in humans.

In conclusion, we demonstrate that cGAMP is a promising 
and robust adjuvant candidate for early life immunization. We 
also show that cGAMP formulated with alum potently enhances 
humoral and cellular aspects of type 1 immunity in early life. Since 
we employed the rHA influenza vaccine throughout our work, 
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FigUre 5 | Immunization with (cGAMP + alum) fosters the germinal center (GC) reaction. Newborn mice were immunized with alum or (cGAMP + alum) as indicated 
in Figure 2a. Ten days after boost [day of life (DOL) 24] cells were isolated from draining lymph nodes and the percentages and absolute numbers of CD4+ T cells, 
B cells, GC Tfh, and B cells were assessed by flow cytometry. [(a,B) top panels] Representative gating strategies. CD4+ T cells were defined as viable singlet CD45+ 
B220− CD3+ CD4+ cells. GC Tfh cells were defined as viable singlet CD45+ B220− CD3+ CD4+ CXCR5+ PD-1+ cells. B cells were defined as viable singlet CD45+ B220+ 
CD3− cells. GC B cells were defined as viable singlet CD45+ B220+ CD3− GL-7+ CD138− cells. (B) Results are shown as the median, the 25th and 75th percentiles 
(boxes) and the 5th and 95th percentiles (whiskers) of 9–10 mice per group. *p < 0.05, **p < 0.01 determined by one-way ANOVA with Holm–Sidak’s post hoc test.

FigUre 6 | Continued
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FigUre 7 | Single-dose immunization of newborn mice with (cGAMP + alum) significantly increases anti-recombinant hemagglutinin (rHA) IgG2c titers. Newborn 
mice were immunized i.m. with saline, rHA alone or formulated with alum, cGAMP or (cGAMP + alum) and antibody titers for rHA-specific IgG, IgG1, and IgG2c 
were determined by ELISA in serum samples collected 28 days after boost [day of life (DOL) 35]. Results are shown as the median, the 25th and 75th percentiles 
(boxes), and the 5th and 95th percentiles (whiskers) of 9–13 mice per group. **p < 0.01 determined by Kruskal–Wallis with Dunn’s post hoc test.

FigUre 6 | Immunization with (cGAMP + alum) does not modulate recombinant hemagglutinin (rHA)-specific IgG avidity. Newborn mice were immunized with rHA 
formulated with alum or (cGAMP + alum) and serum samples were collected as indicated in Figure 2. Avidity of rHA-specific IgG was measured by ELISA and 
expressed as the ratio between the LogEC50 values obtained with and without ammonium thiocyanate treatment (0.5 M). Results are shown as median (left panel) 
or as the median, the 25th and 75th percentiles (boxes) and the 5th and 95th percentiles (whiskers) (right panels) of 7–8 newborn mice per group. *p < 0.05, 
**p < 0.01 determined by two-way ANOVA with Sidak’s post hoc test (left panel) or Mann-Whitney test (right panels).
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our results may be applicable to influenza immunization. Use of 
(cGAMP + alum) may also represent a general strategy to elicit type 
1 immunity toward protein antigens for early life immunization.
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Nutritional Factors during Gestation 
and early infancy Modulate the 
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The ontogeny of the human immune system is sensitive to nutrition even in the very early 
embryo, with both deficiency and excess of macro- and micronutrients being potentially 
detrimental. Neonates are particularly vulnerable to infectious disease due to the imma-
turity of the immune system and modulation of nutritional immunity may play a role in 
this sensitivity. This review examines whether nutrition around the time of conception, 
throughout pregnancy, and in early neonatal life may impact on the developing infant 
immune system.

Keywords: nutrients, immunity, ontogeny, neonatal, pregnancy, infection, supplements

iNTRODUCTiON

Nearly 3 million deaths occur annually in children less than 30 days old, principally in low and 
middle-income countries (1). Improvements in neonatal mortality rate have proved difficult to 
achieve. Low-cost, easily implementable interventions are urgently needed.

Infections directly account for approximately one-third of neonatal deaths and are likely to 
contribute to deaths from other causes such as prematurity and in cases where babies are stillborn 
(1). Neonates show heightened susceptibility to infectious diseases due to a functionally immature 
immune system (2). Innate immune components are compromised by impaired mucosal surface 
integrity (3), lower levels of complement proteins (4), and reduced phagocytic capacities (5). Adaptive 
immune responses to pathogens are attenuated compared to adult responses, with children under 
2 months old tending toward more regulatory responses with strong Th-2 and Th-17 cell polarization 
and weak Th-1 polarization (2, 6, 7). This is partly necessary to produce a tolerogenic environment, 
stopping rejection at the maternofetal interface and reducing reactions to self-antigens, and partly 
due to lack of primary exposure to antigens necessary to build up the adaptive immune responses. 
This functional immaturity of responses leaves the neonate particularly vulnerable to infectious 
pathogens. Decades worth of research has been directed at identifying interventions to improve 
neonatal immune responses to infections.

Various organs are sensitive to nutrition during embryonic and fetal development. Nutritional 
status can have short-term impacts on both fetal and childhood growth and development and longer 
term influences on adult health. Infants born following periods of nutritional deprivation, such 
as the Dutch Hunger Winter and identified in The Hertfordshire cohort, show increased risks of 
coronary heart disease, stroke, type-2 diabetes and metabolic syndrome when subsequently exposed 
to periods of nutrient sufficiency (8, 9). The concept that undernutrition during gestation may con-
tribute to adult disease by having permanent effects on the structure, function and metabolism of 
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the developing fetus, is known as the Developmental Origins of 
Health and Disease (DOHaD) theory. It has subsequently been 
shown to extend to a range of other diseases including psychiatric 
illnesses and cancers (10). Excess macronutrient consumption 
in mothers has also been associated with long-term sequelae in 
their offspring (11). Micronutrient deficiencies have long been 
known to have impacts on organogenesis, with iodine deficiency 
leading to congenital hypothyroidism (12) and folate deficiency 
increasing the risk of neural tube defects (13). Therefore, it has 
been hypothesized that the developing immune system is likely to 
be similarly sensitive to nutrition and that optimizing a mother’s 
nutritional state during pregnancy will have long-term benefits 
for the immune responses during the neonatal period and beyond.

Early human evidence that nutritional factors during gestation 
might specifically influence adult immune responses came from 
longitudinal studies carried out in The Gambia in the 1990s (14). 
The Gambia has a strong bimodal seasonality that has major 
effects on the nutritional status of the population. The dry season, 
running from November to June, is a time of relative nutrient 
security. With the previous seasons crops being harvested, 
macronutrients are in greater supply and manual labor levels tend 
to be lower. In contrast, the rainy season, running from July to 
October, is characterized by declining levels of food availability 
and higher manual labor demands as the next season’s crops are 
planted but the previous seasons supply is running short. This 
leads to deficits of both energy and micronutrient intakes that are 
particularly pronounced for women, who bare the brunt of much 
of the agricultural work (15). Analysis of demographic surveil-
lance data available for the population from the 1940s revealed 
that people born during the “hungry” rainy season had a three-
fold higher risk of mortality from infectious diseases as adults 
than those born during the dry season (14). These findings were 
independent of subsequent nutritional status, as demonstrated 
by anthropometric and hematological status at 18 months of age, 
suggesting that the effector of these changes occurred earlier on 
in development. These data suggested that environmental factors, 
most likely nutrition, during conception, gestation and early 
postnatal life can have marked effects on the immune system that 
are stable, durable and not susceptible to modification by later 
improvements in nutritional status.

Nutrient intake of the mother and neonate is theoretically 
amenable to modification via supplements, which represent low-
cost, easily implementable public health interventions. As such, 
there has been huge interest in the provision of nutritional sup-
plements during gestation and early infancy to improve neonatal 
outcomes. This review summarizes the evidence regarding the 
impact of early life nutrition on biochemical immune markers 
and clinical infectious diseases outcomes in neonates.

POTeNTiAL MeCHANiSMS FOR 
NUTRiTiONAL iNFLUeNCeS ON THe 
DeveLOPiNG NeONATAL iMMUNe 
SYSTeM

Studies in older children and adults have demonstrated the 
important influence that different nutrients have on the immune 

system. These effects, and the impacts of deficiencies on sus-
ceptibility to infectious diseases, are summarized in Table  1. 
Although the influence of nutrients on the developing immune 
system in utero and in early neonatal life may be similar to that 
of older children and adults, the impact of the nutritional state of 
the mother on the neonatal immune system is less well described.

Mother’s nutritional status may hypothetically affect the neo-
natal immune system by influencing:

•	 The mother’s own immune system: Optimizing maternal 
nutrition could directly enhance the neonatal immune system 
by increasing the quality and quantity of antibody and other 
immune factors available for passive transfer across the 
placenta and in breast milk. It could also indirectly improve 
neonatal immunity, by reducing the likelihood of maternal 
infections that may lead to preterm birth, a known cause of 
IgG deficiency in neonates due to reduced third-trimester 
antibody transfer (57). Increased maternal infections may also 
influence neonatal immune development via effects on the 
hypothalamic–pituitary–adrenal (HPA) axis (see below).

•	 Placentation: Maternal nutrient availability has been shown in 
animal and human studies to affect placentation, with affects 
on size, morphology, nutrient transfer receptors and vascular 
flow (58–63). This may theoretically affect passive transfer of 
antibodies and other immune factors to the fetus as well as 
altering the efficiency of nutrient transfer for fetal immune 
system development.

•	 The maternal HPA axis: The HPA axis is activated in times of 
low nutrient availability [particularly protein-energy malnu-
trition (64) and zinc deficiency (65, 66)] leading to increased 
circulating glucocorticoids. Increased cortisol levels can lead 
to both immunosuppression and altered placental function in 
the mother, with downstream effects for the fetus as described 
above, as well as directly impacting on the fetal immune system 
via actions on its own HPA axis.

•	 The maternal gut microbiome: The human intestinal tract con-
tains more than 1014 bacteria and other organisms (67). These 
commensal microflora have evolved a complex symbiotic 
relationship with humans, and are increasingly recognized 
as essential for many aspects of human health (68). Nutrient 
intake influences the composition of the gut microbiota, which 
in turn can influence the availability of nutrients for absorp-
tion from food (69–71). The gut microbiome is crucial for the 
development and functioning of the mucosal immune system 
(72). Healthy gut flora help to promote mucosal tolerance to 
non-pathogenic antigens, reduce the overgrowth of pathogenic 
microorganisms and enhance absorption of nutrients that are 
potentially important for systemic immune system develop-
ment (68). Dysbiosis (altered microbiome) has been associated 
with increased risk of immune-mediated diseases such as 
allergy, asthma, and inflammatory bowel diseases, as well as 
increased risk of infections (73). Animal models suggest that 
the immune development of the offspring may be influenced 
by the maternal microbiota in the following ways [reviewed 
in detail in Ref (74)]: (1) alteration of nutrient uptake having 
direct effects on maternal immunity and hence the availability 
of antibodies and immune factors for transfer to the offspring, 
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TAbLe 1 | Nutrients and their effects on immunity.

Nutrient effect on immunity effect of deficiency on clinical immune outcomes Reference

Protein energy Innate Increased bacterial, viral, and fungal infections (16, 17)
Epithelial integrity
Complement levels
NK-cell activity
Adaptive
T-lymphocyte number and function, particularly Th1-type cytokines
Delayed type hypersensitivity
Effect on B-lymphocytes less clear

n-3 PUFAs Activity is largely immunosuppressant with reductions in: Theoretical increases in inflammatory-mediated diseases 
and allergy. Trials suggest that supplementation reduces 
the risks of inflammatory-mediated diseases such as 
rheumatoid arthritis and improves responses to infectious 
disease

(18–25)
Innate
Leukocyte chemotaxis and adhesion
NK-cell function
Innate cytokine production
Adaptive
T-lymphocyte signaling

Vitamin A Innate Increased susceptibility to infections, particularly diarrhea, 
respiratory infections and measles. Supplementation 
of children from 6 months to 5 years in areas at risk of 
deficiency reduces all cause mortality, diarrhea incidence 
and mortality and measles incidence and morbidity on 
meta-analysis

(26–28)
Epithelial integrity
Neutrophil, monocyte, macrophage, and NK-cell number and function
Adaptive
T-lymphocyte differentiation and migration
T-lymphocyte numbers, especially CD4
B-lymphocyte numbers
Antibody production and may affect the balance of production of different 
IgG subclasses

B vitamins Vitamin B2 (riboflavin) (29–39)
Phagocyte activation
Vitamin B6
Dendritic cell function
Lymphocyte maturation and growth
T-lymphocyte activity and delayed type hypersensitivity
B-lymphocyte activity and antibody production
Vitamin B9 (folate)
Epithelial integrity
NK-cell activity
T-lymphocyte proliferation and response to mitogenic activation
Cytotoxic T-lymphocyte activity
Vitamin B12
NK-cell activity
CD8+ T-cell activity
B-lymphocyte activity and antibody production

Vitamin C Innate Association with increased incidence and severity of 
pneumonia. Supplementation in the elderly shows 
possible reductions in pneumonia incidence and duration

(40)
Epithelial integrity
Phagocyte production
Antioxidative functions
Adaptive
T-lymphocyte maturation
Interferon production

Vitamin D Innate Increased susceptibility to infections, particularly of the 
respiratory tract. Meta-analysis shows reduced acute 
respiratory tract infections when routine supplementation 
is given in the context of deficiency

(41–43)
Macrophage activity (cathelecidin antimicrobial peptide expression, 
induction of reactive oxygen intermediaries, activation of autophagy)
Adaptive
T-lymphocyte number and function
Th1/Th2 balance skewed to Th2
Unclear effect on B-lymphocytes (in humans)

Vitamin E Innate Supplementation is suggested to lead to reduced 
respiratory tract infections in the elderly

(37, 44, 45)
Epithelial barrier integrity
NK-cell activity
Adaptive
T-lymphocyte proliferation and function
Delayed type hypersensitivity reactions
Vaccine-mediated antibody responses
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Nutrient effect on immunity effect of deficiency on clinical immune outcomes Reference

Zinc Innate Increased bacterial, viral and fungal infections: particularly 
diarrhea and pneumonia. Routine supplementation of 
children in at-risk areas leads to reductions in duration 
of diarrhea and incidence of pneumonia, in children 
>6 months on meta-analysis, but not in children 
2–6 months old

(46–50)
Epithelial barrier integrity
Proinflammatory cytokine production
Neutrophil oxidative burst
NK-cell function
Adaptive
T-cell maturation and proliferation
Th1/Th2 balance skewed to Th1

Selenium Adaptive Increased viral virulence (51–54)
CD4+ T-lymphocyte proliferation and function

Iron Innate May enhance or protect from infections with  
bacteria, viruses, fungi and protozoa depending on the 
level of iron. Although supplementation may theoretically 
enhance immunity to infectious diseases, untargeted 
supplementation may increase availability of iron for 
pathogen growth and virulence and increase susceptibility 
to, particularly, malaria and bacterial sepsis

(55, 56)
Neutrophil, NK-cell, and macrophage activity
Innate cytokine production
Adaptive
T-lymphocyte numbers
No apparent effect on B-lymphocyte number and function
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(2) alteration of the repertoire of antibodies passively trans-
ferred to the neonate, which may alter the degree of mucosal 
tolerance in the neonate, and hence its own microbiome 
composition (75, 76), (3) bacterial metabolites derived from 
the microbiota may be transferred to offspring across the 
placenta and in breastmilk and may impact on the offspring’s 
developing immune system (77), and (4) organisms from the 
maternal microbiota can be found in placental tissue (78) and 
this exposure may impact directly on the developing infant 
immune system and indirectly by altering gestational length.

The mother’s nutritional status may also affect the neonatal 
immune system by directly altering the nutrients available to the 
developing embryo/fetus. This may theoretically have long-term 
effects on offspring immunity via:

•	 Epigenetic modification: Epigenetic modification is the process 
by which stable alterations to gene expression, and thus the 
phenotype of cells, are induced without changes to the primary 
DNA sequence (79, 80). These modifications may be altered 
in response to environmental factors, persist following cell 
division, and, in some cases, are heritable—providing a means 
by which the environment may have permanent and multigen-
erational impacts on phenotype (81). The three main types of 
epigenetic modification are (1) DNA methylation; where the 
degree of methylation at, primarily, CpG dinucleotide rich sites 
in gene-specific promoters affects the degree of expression of 
that gene, (2) histone modification; where the accessibility of 
promoter regions of genes to transcription machinery is altered 
by additions to protein tails, affecting the degree to which DNA 
transcription occurs, and (3) non-coding RNAs, where small 
lengths of RNA bind to target mRNA, altering its subsequent 
translation (81). Of these, DNA methylation has emerged as a 
strong candidate effector mechanism to explain the DOHaD 
theory as it largely occurs during embryogenesis or early 
postnatal life, and produces durable effects (82). Alterations in 
DNA methylation of key metabolic genes induced by famine 
exposure in early life persist for at least six decades (83, 84). 

Epigenetic modification could theoretically have similar long-
term impacts on the expression of genes important for the 
immune system.

•	 Organogenesis and lymphopoiesis: The process by which organs 
develop during embryonic and fetal life is highly sensitive to 
environmental influences. It has long been known that expo-
sure to adverse factors at critical windows of organogenesis 
can lead to permanent changes in organ growth and function. 
Development of the infant immune system is likely to be simi-
larly susceptible to environmental influences, including nutrient 
levels. In older children, both the thymus and hematopoietic 
branches of immunity are acutely sensitive to undernutrition, 
with reductions in thymus size and blood cell functioning 
shown to occur in both acute and chronic starvation conditions 
(85). As both immune compartments undergo massive expan-
sion during the gestational period, with the thymus being at its 
largest as a proportion of body size at birth, it is highly plausible 
that nutritional conditions in utero would impact on the neona-
tal immune system. Studies in animals support a link between 
maternal macro/micronutrient deficiency and reduced thymic 
size and function (86–88), which may not be fully reversible by 
later improvements in nutrition (89).

•	 Immunoregulatory mechanisms, e.g., the neonatal HPA axis: 
Maternal cortisol levels (which may be altered by nutrient 
availability, see above), can influence the development of the 
fetal HPA axis, with long-term consequences for neuroendo-
crine-immune interactions (90, 91). Although the developing 
fetus is generally protected from maternal cortisol fluctuations 
by the function of 11 B-hydroxysteroid dehydrogenase in the 
placenta, levels of this enzyme are decreased by undernutrition 
(92). Evidence from animal studies suggests that stimulation of 
the fetal HPA axis can lead to lower lymphocyte proliferation, 
reduced NK-cell activity, and reduced antibody responsiveness 
in offspring (93), as well as increasing the responsiveness of 
the HPA axis to stressors later in life. These effects are hypoth-
esized to be mediated through epigenetic programming of 
glucocorticoid receptors (91).

TAbLe 1 | Continued
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FiGURe 1 | Conceptual framework for the potential interactions between maternal and early neonatal nutrition and the developing infant immune system.

Prentice Nutritional Influences on the Neonatal Immune System

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1641

•	 The neonatal gut-microbiome: The neonatal gut microbiome is 
strongly influenced by the maternal microbiome. Colonization 
of the gastrointestinal tract occurs around the time of birth 
(and possibly even earlier) with organisms acquired from the 
mother’s gastrointestinal tract, vagina, skin, and breast milk, 
and is influenced by delivery type, gestational age, and feeding 
method among other factors (94). Modification of the maternal 
microbiome may thus be hypothesized to influence the devel-
oping neonatal immune system both directly, by altering the 
neonatal microbiome composition, and indirectly, by altering 
the nutrient status of the mother and hence the availability of 
nutrients for immune system development during fetal life.

A conceptual framework for the potential influences of early 
life nutrition on the developing infant immune system is shown 
in Figure  1. Evidence for such effects occurring in humans is 
discussed below.

eviDeNCe FOR THe iNFLUeNCe OF 
PRe- AND PeRiCONCePTiONAL 
NUTRiTiON ON THe iNFANT iMMUNe 
SYSTeM

epigenetic Modification of the early 
embryo
Specific evidence for the impact of periconceptional nutrition on 
later immune functioning through epigenetic modifications has 
been suggested from the previously described Gambian cohort. 
The plasma levels of 1-carbon metabolites crucial for DNA 
methylation undergo seasonal variations in pregnant women. 

Higher levels of folate, methionine, and riboflavin, and reduced 
homocysteine levels occur in the nutritionally challenged rainy 
season (95–97). Although counterintuitive, this may be due to 
increased consumption of green leafy vegetables during this 
period, due to the need to food diversify (98). The increased level 
of these methyl-donor intermediaries correlates with increases in 
DNA methylation seen at metastable epialleles (MEs) (see Box 1) 
in children conceived in the rainy season (and thus born in the 
dry season, correlating with reduced later infectious disease 
mortality) (96, 99). A metastable epiallele VTRNA2-1, involved 
in tumor suppression and viral immunity, has been identified that 
is differentially methylated according to season of conception 
(and hence nutritional status), and is stable for at least 10 years 
(100). This provides the first in-human evidence that pericon-
ceptional nutrition could directly influence subsequent immune 
functioning. Although the clinical relevance of the variability in 
methylation of this ME in susceptibility to infections has yet to 
be proven, it provides a tantalizing suggestion that the seasonal 
variation in adult infectious disease mortality is mediated, at least 
in part, through nutritionally sensitive epigenetic modifications.

A number of epidemiological studies have now linked DNA 
methylation status at the promoter region of inflammatory 
mediators to nutritional status in pre- and early postnatal life 
(107–109), although the timing of nutritional influences causing 
these epigenetic modifications is difficult to prove. Methylation 
status of these genes has been correlated with later markers of 
biochemical inflammation, though effects on clinical outcomes 
have yet to be shown (107). Intriguingly, animal models have 
shown that alterations to paternal diet can alter DNA methyla-
tion in offspring, with resultant phenotypic changes increasing 
the risk of obesity and metabolic syndromes (110–113). The 
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bOx 1 | Metastable epialleles. A tool for investigating the influence of the 
periconceptional environment on offspring epigenomes.

The inherent tissue specificity of many epigenetic changes creates challenges 
for the study of the influence of epigenetic modifications on adult phenotypes 
(99). While epidemiological association studies between gene variants and 
risk of disease may use easily obtainable peripheral blood draws, studies 
investigating epigenetic influences on disease etiology may require tissue-
specific samples that are often not as accessible. Metastable epialleles (MEs) 
are regions of DNA where methylation is established stochastically in the early 
embryo and is subsequently maintained throughout all three germ-layer line-
ages (101). Thus, methylation of MEs occurring in the early embryonic period 
(pregastrulation) may be determined from peripheral blood samples.

Differential methylation of MEs in mice has been shown to have dramatic 
phenotypic consequences including alterations in fur color (102), tail-kinking 
(4, 103), and propensity to obesity (104). Methylation of murine MEs is 
strongly influenced by maternal nutrition and other environmental factors in 
the periconceptional period (105, 106). MEs in humans may have effects on 
adult disease and provide an easily accessible method of investigating the 
epigenetic pathways that may be involved in the DOHaD theory.
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potential transgenerational influence of paternal diet on the 
health outcomes of offspring has also been suggested in humans 
from epidemiological studies carried out in Sweden. These 
showed a correlation between reduced food availability during 
the father’s, and even grandfather’s, preadolescence and increased 
life expectancy, with reduced risk of cardiovascular and diabetes-
related mortality (114). Other studies have linked early onset 
of paternal obesity with increased liver enzymes and long-term 
changes in percentage body fat in offspring. These effects are 
likely to be mediated by epigenetic modification of spermatozoa, 
and may be sex specific (115). Thus, it may be that paternal diet is 
also ultimately shown to produce lasting effects on the immune 
system of offspring.

Although most human studies have focused on DNA meth-
ylation as a mediator of long-term effects of periconceptional 
environment on the health of off-spring, animal studies suggest 
that histone modification (116) and microRNAs (117, 118) may 
also play a role in the developmental origins of disease, though 
their importance in immune system development has yet to be 
investigated. Thus, it appears likely that immune system func-
tioning is influenced by interacting and overlapping epigenetic 
modifications induced by nutritional status, and other environ-
mental factors, occurring around the time of conception, during 
gestation and in early postnatal life.

Placentation
Although evidence for the importance of several micronutrients 
including vitamin D, zinc, folate, calcium, and iron on placental 
growth and function exists (58, 59), studies directly investigating 
the effects of periconceptional maternal nutrition on placentation 
and subsequent fetal immunity are limited. One study that rand-
omized non-pregnant women of child-bearing age to a multiple-
micronutrient (MMN) supplementation or placebo and followed 
up subsequent pregnancies, showed minimal improvements in 
placental vascular function with MMN supplementation, but no 
improvements in other markers of placental function (plasmino-
gen activation inhibitor 1 and 2 ratio) and transfer of maternal 
measles antibody at birth (119).

eviDeNCe FOR THe iNFLUeNCe OF 
GeSTATiONAL NUTRiTiON ON THe 
iNFANT iMMUNe SYSTeM

Macronutrients
Protein Energy
The relationship between maternal nutrition and fetal growth is 
complex, involving maternal metabolic and endocrine, as well as 
placental, functioning (2, 120). However, the neonatal presenta-
tion of protein-energy malnutrition is assumed to be infants who 
are born small-for-gestational age (SGA). Infants born SGA or 
low-birth weight (LBW) have an increased risk of infectious mor-
tality in the neonatal period and beyond (121–124). SGA/LBW 
infants show altered immunology, with lower complement and 
IgG (125), lower plasmacytoid dendritic cells, higher NK-cells 
and higher IgM (126), and higher inflammatory activation and 
T-cell turnover (127), compared to those delivered at an appro-
priate weight. Gambian infants born in the nutritionally deprived 
rainy season (a presumptive marker of reduced macronutrient 
supply in late gestation) show smaller neonatal thymus size (128), 
and have some changes to thymic function (129). These immune 
changes do not appear to be long lasting, however, and a seasonal 
effect of infectious disease incidence may contribute to these 
findings (130, 131). Intrauterine growth restriction has been 
associated with reduced vaccine responses in childhood, though 
inconsistently (132–135).

Given the suggested link between macronutrient deficiencies 
and neonatal morbidity, a number of maternal protein sup-
plementation strategies have been evaluated (136). Balanced 
protein energy supplementation (containing up to 20% of energy 
as protein) leads to modest increases in birth weight (up to 324 g)  
(137), and reduces the number of SGA infants born by around 
a third (136). Reductions in neonatal deaths as a result of 
supplementation have not been clearly shown, however, with 
meta-analysis of the three published studies reporting neonatal 
mortality showing only non-significant improvements in neonatal 
outcomes (136, 138–140). Even if these non-significant reductions 
in mortality are true findings, the causal mechanisms underlying 
such effects are unknown, with reductions in prematurity likely 
to play a significant role. No clear link between maternal protein 
energy supplementation and improvement in neonatal immunity 
has been demonstrated. Maternal protein supplementation has 
no proven impact on later vaccine responses, mucosal immunity 
and delayed-type hypersensitivity reactions (130) or thymus size 
(141), although impacts on thymic function at the cellular level 
were not assessed. The lack of substantial demonstrable neonatal 
benefits from maternal protein energy supplementation may 
reflect the heterogeneous etiologies of SGA and LBW, with factors 
such as poor placentation and environmental toxin exposure not 
addressed by supplementation. It may also be due to challenges 
with targeting the intervention to the most at-risk subjects within 
populations. Subgroup analysis of supplementation studies sug-
gest that the intervention is only beneficial when provided to 
malnourished individuals, and that high protein supplements 
may even impair fetal growth when given in the context of 
adequate diets (136).
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Lipids
Maternal PUFA supplementation during gestation is associated 
with reductions in preterm births and small increases in birth 
weight (142) on systematic review. However, impacts on the 
immune system are less clear. Most research has been directed 
on the effect of fish-oil supplementation on reduction in atopy 
risk in offspring. Systematic reviews have suggested reductions in 
offspring IgE-mediated allergy and eczema following gestational/
lactational n-3 PUFA supplementation, though the duration of 
these effects is not clear and the relative importance of the tim-
ing of supplementation during gestation or lactation is difficult 
to determine (143, 144). Murine studies suggest that n-3 PUFA 
supplementation of mothers can improve offspring responses to 
infections, with enhanced vaccination responses shown in mice 
fed high n-3 PUFA diets during gestation and lactation (145). In 
humans, docosahexaenoic acid (DHA) supplementation during 
gestation and lactation was associated with reductions in CD8+ 
T-cells, increases in naive CD4CD45RA+ helper cells and reduc-
tions in lymphocyte IFNγ production (146). However, this trial 
did not show changes to immunoglobulin levels, vaccination 
responses or clinical outcomes and may have been confounded 
by the high baseline dietary DHA levels of all participants. One 
trial of prenatal DHA supplementation has shown reduction in 
incidence and duration of cold symptoms during infancy (147). 
No significant evidence of reductions in neonatal outcomes such 
as sepsis, morbidity or mortality have been shown in systematic 
review of human studies, though adequately powered trials to 
assess these outcomes are lacking (148).

Micronutrients
Micronutrient deficiencies are estimated to affect approximately 
2 billion people worldwide. They are often particularly severe in 
women of reproductive age due to the high demands of preg-
nancy and lactation (149). Optimization of micronutrient levels 
in pregnant women has therefore been proposed as a strategy to 
enhance neonatal immunity.

Specific Micronutrient Supplementation during 
Gestation
Zinc
Overt zinc deficiency is now rare but moderate deficiency is 
common worldwide (150). Zinc supplementation of mothers 
leads to biochemical improvements in their zinc status and that 
of their offspring (151, 152). Thymus size in infants correlates 
with cord-blood zinc levels (153), although a recent study showed 
no impact of maternal zinc supplementation on infant thymic 
size (154). Improved hepatitis B vaccine antibody responses and 
delayed type hypersensitivity reactions to BCG vaccination have 
been shown following maternal zinc supplementation (154), 
but no effect on haemophilus influenza B conjugate vaccine 
responses has been found (155). Theses studies suggest some 
influence of maternal zinc supplementation on infant immune 
development, but the clinical impact of this is uncertain.  
A recent systematic review of 21 trials (>17,000 mother–infant 
dyads) suggests no benefit of maternal zinc supplementation 
for IUGR, LBW, stillbirth, and neonatal death, though small 
reductions in preterm birth were shown (156). No significant 

reduction in neonatal infective outcomes, including neonatal 
sepsis, umbilical infections, fever, and necrotizing enterocolitis 
(NEC), was seen but the number of studies reporting these out-
comes was small. One study from Bangladesh showed reduced 
acute diarrheal and impetigo episodes in the first 6 months of life 
following maternal zinc supplementation, though no difference 
in persistent diarrhea, cough, and LRTI (157, 158). A study from 
Indonesia similarly reported reduced diarrheal incidence in 
infants <6 months old following maternal supplementation with 
zinc, but this was at the expense of increased episodes of cough 
(159). Conversely, a study in Peru did not report any benefit for 
diarrheal prevalence (160).

Vitamin D
Vitamin D deficiency is common worldwide due to lack of UV 
exposure in northern latitudes, darker skin pigmentation in 
southern latitudes, covering the skin with clothes, and vegetarian 
diets. There are strong correlations between maternal and umbili-
cal cord vitamin D with deficiency or insufficiency in the mother 
likely to cause deficiency in offspring (161). Systematic reviews 
of supplementation in pregnancy suggest reduced risk of vitamin 
D deficiency in offspring and slight increases in birth weight 
(162, 163). However, no evidence for improvement in any other 
neonatal outcomes including neonatal mortality has been shown 
(162). Impacts of vitamin D deficiency on the developing immune 
system have been shown with reduced thymus size in offspring 
(164) and an association with increased CRP [although this trend 
is reversed with vitamin D sufficiency (>50 nmol/L) (165, 166)]. 
Maternal vitamin D supplementation during gestation results in 
increased Th1 and Th2 cytokine gene expression and reduced 
pattern recognition receptor expression in cord blood, following 
stimulation with PHA (167). Clinically, vitamin D deficiency 
in cord blood has been associated with increased risk of lower 
respiratory tract infections, wheeze, and eczema in a number of 
observational studies, suggesting long-term impacts on immune 
ontogeny, although causation is difficult to prove (168, 169). Of 
four studies assessing the impact of maternal vitamin D sup-
plementation on infant risk of respiratory infections and wheeze 
(170–173), only one showed significant reductions in incidence 
of acute respiratory tract infections in offspring (170). In this 
study the intervention was combined with postnatal vitamin D 
supplements so the contribution of maternal supplementation 
per se is difficult to assess. A recent systematic review of vitamin 
D supplementation in pregnancy and early life did not show any 
reduction in the risk of persistent wheeze, eczema, or asthma, 
though the quality of available evidence was low (174).

Vitamin A
Vitamin A deficiency is associated with increased susceptibility 
particularly to diarrhea, respiratory infections, and measles (27). 
Infants born to mothers with low serum retinol had increased 
all-cause neonatal mortality in a study in Malawi (175). Nepali 
infants born to mothers with xeropthalmia (the clinical mani-
festation of severe vitamin A deficiency) had a 63% increased 
mortality within the first 6 months of life, which was reduced 
following maternal supplementation (176). However, large 
randomized controlled trials of vitamin A supplementation 
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including more than 310,000 mother–infant pairs have failed 
to show benefits for perinatal and all-cause neonatal mortality 
on systematic review, despite reductions in maternal night-
blindness and possible reductions in maternal infections (177). 
There is some evidence, though, that vitamin A supplementa-
tion of women may lead to long-term enhancement of natural 
antibody levels in offspring, perhaps acting through impacts 
on early lymphopoiesis (178). This suggests that long-term 
alterations to the neonatal immune system may occur following 
vitamin A supplementation, but that more sensitive outcome 
measures are required to identify these changes than all-cause 
neonatal mortality.

Iron
Fetal iron acquisition occurs actively across the placenta, mainly 
in the last trimester of pregnancy, and is highly regulated (179, 
180). Direct correlations between maternal and fetal iron status 
are not consistently seen, as neonatal iron levels are likely to be 
preserved at the expense of maternal stores, but severe maternal 
anemia is associated with reductions in neonatal iron (181). Iron 
deficiency is thought to be the most prevalent micronutrient 
deficiency worldwide (182). It occurs particularly in low-income 
countries where diets tend to be low in absorbable iron and 
parasitic burden can be high. Systematic reviews support the 
use of daily or intermittent iron supplementation during preg-
nancy for improvement of maternal iron status and reduction in 
anemia (182, 183). However, no evidence for improvements in 
other maternal or neonatal outcomes has been found. There is a 
current paucity of evidence regarding specific impacts, whether 
beneficial or detrimental, of maternal oral iron supplementation 
on neonatal infection risks (184). Similarly, studies investigating 
a direct impact of fetal iron status on immune system ontogeny 
are lacking.

B-Vitamins, Including Folic Acid
Folate (vitamin B9) has been widely studied as a pregnancy sup-
plement, due to its role in the reduction of neural-tube defects. A 
systematic review of 31 studies, mainly carried out in Europe in 
the 1960s and 1970s, showed a modest increase in birth weight 
(136 g) following maternal folate supplementation, but no reduc-
tion in preterm birth, still-birth, or neonatal death (all cause) 
(185). The impact of folate supplementation in pregnancy on neo-
natal immune parameters and infective outcomes has not been 
investigated. More recently, concerns have been raised that folate 
supplementation given beyond the first trimester, or in excessive 
doses during pregnancy, may be linked to an increased risk of 
allergy/asthma, but the evidence is largely from observational 
studies and is not yet conclusive (186).

Vitamin B12 deficiency is associated with an increased risk 
of preterm birth (187), but its supplementation in pregnancy 
has been little studied. One study in Bangladesh confirmed that 
maternal oral vitamin B12 supplementation during pregnancy 
and lactation led to significant increases in infant B12 levels, but 
this was not associated with improvements in passive transfer 
of influenza antibodies or levels of acute inflammation markers 
(188). A significant reduction in number of infants with raised 
CRP was shown, but the number of infants with the outcome 

was small and the influence of timing of supplementation during 
pregnancy or lactation could not be distinguished.

A systematic review of three randomized controlled trials of 
maternal supplementation with vitamin B6 has been shown to 
result in a significant reduction in mean birth weight (217  g) 
(189). The impact of supplementation on neonatal mortality or 
infections has not been studied (190).

One study of vitamin B2 supplementation during pregnancy 
and lactation exists, which showed modest increases in infant 
riboflavin levels, but did not report neonatal outcomes (191). Sole 
supplementation with other B-vitamins has not been studied in 
the context of pregnancy and their impacts on the developing 
neonatal immune system are unknown.

Other Vitamins and Trace Elements
A number of other micronutrients with known immunomodu-
latory effects in adults have been little studied in neonates. 
Longitudinal studies of the influence of maternal diet on infant 
respiratory outcomes have suggested inverse associations between 
maternal vitamin E intake and infant asthma/wheeze (192–194), 
however, this has not been borne out in randomized controlled 
trials of maternal supplementation (195). Maternal selenium 
deficiency leads to low selenium status of neonates and is associ-
ated with reduced circulating adaptive immune cells and in vitro 
thymocyte activation (196). Observational studies have associ-
ated maternal selenium deficiency with enhanced risk of infant 
infections in the first 6 weeks of life, but these studies are at high 
risk of confounding (197). One supplementation study of sele-
nium in HIV positive mothers showed a possible reduced risk of 
all-cause child mortality after 6 weeks of life, but a non-significant 
increase in fetal deaths (198). No studies have yet investigated 
maternal vitamin C, vitamin E, or selenium supplementation for 
neonatal immune outcomes specifically. There is also no current 
evidence for reductions in the more gross markers that may be 
associated with neonatal immune function (IUGR, LBW, preterm 
birth, perinatal, or neonatal death) from supplementation in 
pregnancy of vitamin C (199), vitamin E (200), copper (201), or 
selenium (198).

Multiple Micronutrient Supplementation during 
Gestation
When micronutrient deficiencies exist they are often multiple, 
due to poor quantity and diversity of available foodstuffs (149). 
Identification and targeted treatment of specific deficiencies in 
pregnant women is expensive and programmatically challenging. 
Therefore many studies aiming to enhance micronutrient levels 
in pregnancy use multiple micronutrient (MMN) supplements 
that provide the recommended daily allowance of all vitamins 
and minerals in one tablet (202). However, the evidence sup-
porting the use of MMNs for neonatal outcomes in general, 
and neonatal immunity specifically is not clear. Meta-analysis 
of studies involving more than 135,000 women showed modest 
increase in birth weight (22–54 g), with corresponding reduction 
in babies born SGA or LBW, following MMN supplementation 
compared to standard iron and folic acid supplementation (203). 
These improved birth outcomes did not translate into improve-
ments in neonatal and infant morbidity/mortality including from 
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infectious disease (204). No MMN supplementation studies to 
date have investigated neonatal immune parameters specifically, 
although one randomized controlled trial from The Gambia is 
due to report shortly (205).

Probiotics, Prebiotics, and Synbiotics
Studies of maternal supplementation with probiotics (live 
microorganisms that contribute to a “healthy” gut microbiota), 
prebiotics [nutrients that promote growth of healthy bacteria, 
such as non-digestible oligosaccharides (206)], and synbiotics (a 
combination or pro- and prebiotics), for modulation of the neo-
natal immune system have been conducted in humans, but are 
relatively limited. A number of randomized controlled trials have 
shown that maternal consumption of probiotics or synbiotics can 
lead to measurable changes in the composition of their offspring’s 
microbiome (207–210) and to changes in immune markers in the 
mother (211). However, alterations in infant immune markers 
following maternal supplementation, such as vaccine responses 
and cytokine levels, have been harder to show (212). Reduced 
incidence of eczema, though not asthma and wheeze, in infants 
has been suggested from systematic reviews of trials of prenatal 
supplementation but the effects may not be durable (72, 213–216). 
One small trial has shown reduced gastrointestinal infections in 
infants born to mothers supplemented with probiotics (211), and 
another a reduction in respiratory infections (217), but these 
findings need to be confirmed in larger studies.

eviDeNCe FOR THe iNFLUeNCe OF 
eARLY POSTNATAL NUTRiTiON ON THe 
iNFANT iMMUNe SYSTeM

The major nutritional influence on neonatal immunity is breast 
milk, which contains immunological components such as anti-
bodies, anti-inflammatory cytokines and other antimicrobial fac-
tors, as well as the macro and micronutrients to support neonatal 
immune system development (218). Its benefits over formula 
milk for protection against various infections, atopy, and allergy 
are well reviewed elsewhere (219, 220). Here, we focus on the 
potential impact of supplementary nutritional interventions for 
the breastfeeding mother and neonate on the developing neonatal 
immune system.

Lactational Supplementation
The composition of breast milk is highly regulated according to 
the neonate’s needs with the concentrations of many components 
maintained independently of maternal nutritional status and 
diet (221). Some immunomodulatory micronutrients, such 
as iron, folate and zinc (222, 223) and macronutrients such as 
arachadonic acid (224, 225) are not altered in the breast milk 
according to maternal diet. Therefore, maternal supplementa-
tion of these nutrients would likely have little or no impact on 
neonatal immune outcomes and they are not discussed further 
in this section. However, some immunoactive nutrients in breast 
milk are impacted by diet and their concentrations in milk vary 
worldwide. These include vitamin A, vitamin D, B vitamins, 
selenium, and PUFAs, particularly DHA (34, 221).

Micronutrient Supplementation of Lactating Mothers
Vitamin A
Vitamin A is not only necessary for the developing neonatal 
immune system, its presence in breast milk is also important for 
the regulation of a number of breast milk proteins important 
for host defense (226). Infants are born with low vitamin A 
stores in the liver, and breast milk is the main source of vitamin 
A for infants during the first 6 months of life (227). Numerous 
reports have shown decreased breast milk vitamin A concen-
tration with maternal deficiency, and increased concentrations 
with high exogenous vitamin A levels (228, 229). However, the 
results of postnatal maternal vitamin A supplementation stud-
ies for neonatal outcomes have been inconclusive. Systematic 
reviews of both lower dose (200,000  IU) and higher dose 
(400,000 IU) postpartum maternal vitamin A supplementation 
have shown only small increases in breast milk retinol concen-
trations (230) and a lack of supporting evidence for reduced 
infant morbidity (including from infections) to 6 months of age 
(230, 231). As a result, WHO no longer recommends routine 
postpartum vitamin A supplementation for women in low- and 
middle-income countries (WHO 2017). Studies on the effects 
of postpartum vitamin A supplementation on immunological 
outcomes specifically are limited and inconclusive. Studies 
variously report increases and no change to sIgA following 
postpartum vitamin A supplementation (226, 232). Further 
studies looking at a wider array of immunological parameters, 
and altering the timing of vitamin A supplementation are ongo-
ing (226).

Vitamin D
Vitamin D deficiency is relatively common in breastfed infants, 
with low concentrations in milk even from vitamin D sufficient 
mothers (233). Studies investigating maternal postpartum sup-
plementation have shown variable results, though on balance 
suggest supplementation may enhance infant vitamin D status 
(234–238). At present, however, direct neonatal supplementation 
of with vitamin D is the preferred method of enhancing neonatal 
vitamin D status (see below). Studies investigating the impact of 
vitamin D supplementation in breast-feeding women for neonatal 
immunological outcomes are lacking.

B-Vitamins
B-vitamins levels in the breast milk are largely amenable to 
improvements with supplementation of the mother (with the 
exception of folate) (34, 239), but there are no studies looking at 
the impact of lactational B-vitamin supplementation on neonatal 
immune outcomes.

Selenium
Selenium levels in breast milk are sensitive to dietary intake (240) 
and can be increased by supplementation (240, 241) [although 
these effects have not been consistently shown (197, 242)] and 
alter infant selenium status (243). Although selenium deficiency 
in infants has been associated with increased risk of respiratory 
infections in the first 6 weeks of life (197), large studies investigat-
ing maternal postpartum selenium supplementation for infant 
infectious morbidity have not been conducted.
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Multiple Micronutrients
Given the high prevalence of coexisting micronutrient deficien-
cies world-wide, there is a surprising lack of studies investigating 
the impact of multiple micronutrient supplements in breastfeed-
ing mothers for infant outcomes (34). Only two small trials (52 
women total) have compared MMN supplementation with noth-
ing/placebo in breast feeding mothers, and reported on neither 
infant morbidity nor immunological outcomes (34, 232).

Lipid Supplementation of Lactating Mothers
The concentration of PUFAs, particularly DHA, in breast milk is 
highly affected by maternal diet (244), and PUFA supplementa-
tion increases levels in breast milk (245). Breast milk n3:n6 ratios 
have been associated with risk of allergy and atopy in infants in 
observational studies (246–248) although not consistently (249). 
Fish oil supplements provided during lactation alter cytokine 
production in the infant for at least 2.5  years, favoring faster 
immune maturation and Th1 polarization (250). Given the 
increasing existence of imbalanced n3:n6 ratios in westernized 
diets, there has been interest in providing PUFA supplements to 
lactating women for allergy prevention in infants, although con-
cerns exist about potential negative impacts on infectious disease 
susceptibility (251, 252). However, at present only two studies 
(667 participants) have investigated postnatal maternal PUFA 
supplementation specifically, and although persisting alterations 
in cytokines have been shown, the studies were underpowered to 
detect differences in infant atopic disease or infectious morbidity 
(143, 250).

Probiotic, Prebiotic, and Synbiotic Supplementation 
of Lactating Mothers
Supplementation of lactating mothers with probiotics has been 
associated with alterations to breast milk cytokines and infant 
fecal IgA (253), and changes to the breast milk and infant micro-
biomes (254). Studies supplementing mothers with probiotics 
during lactation suggest a reduced risk of dermatitis, but inter-
ventions tended to combine pre- and postnatal supplementation, 
so the specific impact of lactational supplementation is difficult 
to determine (255). As with prenatal maternal supplementation, 
effects on infant immune outcomes following lactational sup-
plementation require further evaluation (72, 256).

Neonatal Supplementation
Direct supplementation with crucial nutrients in the neonatal 
period has also been assessed as a strategy to protect infants from 
deficiency. However, in the majority of cases, despite improve-
ments in the nutrient status of infants, no clear evidence for 
improvements in clinical or biochemical immune outcomes has 
been shown.

Micronutrient Supplementation of the Neonate
Zinc
Zinc use in older infants has been associated with reductions 
in diarrhea duration (48) and lower respiratory tract infections 
incidence (47), but results following supplementation in the 
neonatal period have been more equivocal (257–261). One small 
study of zinc supplementation as an adjunct to antibiotics in 

neonates with sepsis showed a reduction in treatment failures and 
a non-significant 43% reduction in mortality (262). A larger study 
to investigate this is currently ongoing (263). Studies directly 
investigating the impact of neonatal zinc supplementation on 
immunological markers are limited. Routine zinc supplementa-
tion has not been associated with improvements in OPV serocon-
version rates (264), although its use as an adjunct to antibiotics 
in neonatal sepsis has been associated with significantly reduced 
serum calprotectin, IL-6, and TNFα and a non-significant reduc-
tion in mortality (265).

Vitamin D
Vitamin D supplementation is recommended routinely in many 
countries for its impact on calcium and bone metabolism, but 
large-scale evidence for postnatal supplementation on any 
immunological disease outcomes (infection or allergy) is lacking 
(266). A recent systematic review of supplementation in children 
below 5  years of age did not show reductions in diarrhea and 
pneumonia incidence despite raised vitamin D levels in supple-
mented children, though supplementation in the neonatal period 
was not looked at specifically (42). One trial of maternal and 
infant vitamin D supplementation has suggested lower numbers 
of respiratory infection primary care visits following high dose 
maternal and infant supplementation, compared to low dose 
(170). A large trial to investigate immunological outcomes fol-
lowing neonatal vitamin D supplementation in breastfed infants 
is currently underway (266).

Vitamin A
Vitamin A supplementation in children from low- and middle-
income countries aged 6  months to 5  years is associated with 
reductions in all-cause mortality of around one-third on 
systematic review (28). In contrast, a large systematic review 
of trials including more than 168,000 infants from low- and 
middle-income countries did not show any benefit of vitamin 
A supplementation when given in the neonatal period (267). 
Effects of supplementation may differ by underlying vitamin A 
status of the population, as reductions in all-cause mortality were 
suggested in the South Asian studies but not in the African stud-
ies. The African studies also showed concerning side-effects with 
increased transient bulging of the fontanelle and interactions of 
vitamin A with routine immunizations, particularly in female 
infants (268, 269). Studies investigating the effects of neonatal 
vitamin A on immunological parameters are limited. One study 
conducted in Guinea Bissau showed no effect of neonatal vitamin 
A supplementation on BCG vaccination responses at 6 months of 
age (270), although some evidence of reduced TNFα and IL-10 
production in girls who have not received DTP vaccination (271). 
Two RCTs are currently ongoing to specifically investigate the 
effects of neonatal vitamin A supplementation on the immune 
system, but these have yet to report (226, 272). Routine vitamin 
A supplementation in children below 6 months of age is not cur-
rently recommended.

Iron
The provision of iron supplements to neonates deserves special 
mention due to its potential for increasing susceptibility to 
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infections by enhancing iron availability for pathogens (55). 
Studies conducted in the 1970s showed that injecting neonates 
with iron dextran at birth significantly increased the risk of 
Escherichia coli meningitis and sepsis (273) and enhanced in vitro 
bacterial growth (274, 275). This may have been partly due to the 
mode of delivery, as parenteral iron administration is not subject 
to regulated uptake in the gut and therefore may overwhelm iron 
homeostatic mechanisms in iron replete children, but similar con-
cerns exist with the untargeted provision of oral iron supplements. 
Older children given iron supplements from 4 months of age have 
increased risk of gastrointestinal infections (276), adult studies 
show increased in vitro bacterial growth in serum after oral iron 
supplementation (277) and there are suggestions that malaria risk 
is increased when oral iron is provided to iron replete children 
in endemic countries (55, 278). Human breast milk contains 
low levels of iron and has specific iron chelating agents such as 
lactoferrin. Our group and others have also shown that serum 
iron drops rapidly and profoundly in the first 12 h of life that and 
persists at low levels for at least 4 days. This low serum iron is 
associated with reduced ex vivo bacterial growth (279, 280). Taken 
together, this evidence suggests that humans may have evolved to 
mitigate against the enhanced pathogen susceptibility and oxida-
tive stress that results from high iron loads. Therefore provision 
of exogenous iron to the neonate, except in specific situations 
where severe iron deficiency anemia has been diagnosed, may 
do more harm than good. In fact, there is increasing interest in 
novel therapeutics, such as lactoferrin and hepcidin agonists, that 
reduce serum iron in the context of neonatal infections (281–283). 
However, as preterm and growth-restricted infants have lower iron 
stores from birth, routine iron supplementation is often given, 
starting from 4 weeks of age, in high-income countries (284). In 
these settings, where infectious disease burden is low, no adverse 
infective outcomes have been shown on systematic review (285).

Other Vitamins and Trace Elements
Parenteral selenium supplementation of very LBW infants in 
NICU has been shown to increase selenium levels and reduce the 
incidence of neonatal sepsis, but systematic review of available 
evidence does not show improvements in survival (286, 287). 
No similar studies of oral supplementation in normal weight, 
term, breastfed infants in areas of selenium deficiency have been 
conducted. Studies looking at the effects of neonatal selenium, 
B-complex vitamins, vitamins C and E, or combined micronutri-
ent supplements on immunological parameters specifically are 
lacking.

Probiotic, Prebiotic, and Synbiotic Supplementation 
in the Neonate
Interest in the provision of probiotics, prebiotics, or synbiotics 
directly to neonates that are at risk of dysbiosis of the gut micro-
biome has exploded in recent years (255). Preterm infants are 
at particular risk of dysbiosis, not only due to gut immaturity, 
but because they often have reduced or delayed enteral feeds and 
increased exposure to antibiotics. Failure to establish normal gut 
flora is linked to higher risk of NEC and nosocomial sepsis (288). 
Systematic review of studies providing probiotics to low-birth 
weight infants in neonatal units, suggest a reduction in grade II or 

III NEC and all-cause mortality, though no significant reductions 
in sepsis (289, 290). Not all studies have shown clear benefits for 
NEC, however, and multistrain probiotics appear more beneficial 
than single strain organisms (291). Prebiotic supplements have 
not been shown to result in significant reduction in NEC, all-
cause mortality or sepsis when given to preterm infants (292). 
The long-term health implications of use of pre- and probiotic 
supplements in preterm infants are not currently known. 
Provision of probiotics and prebiotics to formula fed infants, in 
attempts to produce a gut microbiome profile similar to breastfed 
infants, has also been extensively studied. Although beyond the 
scope of this review, these studies suggest reductions in atopic 
disease (though few studies have follow-up of sufficient duration 
to assess long-term effects) (293) and some limited evidence on 
systematic review for reductions in gastrointestinal and respira-
tory infections (294, 295). More excitingly, a recent randomized 
controlled trial in breastfed infants in rural India showed that 
synbiotic administration during the first 7  days of life led to a 
40% reduction in sepsis and all-cause mortality in the first 60 days 
of life (296). This suggests that in certain  situations even the 
breastfed microbiome may be altered for immunological benefits 
in the early neonatal period. However, further studies to examine 
the effect of different strains, dosages and durations, as well as 
the long-term consequences of synbiotic administration, will be 
needed before synbiotics could be considered as a public health 
intervention for neonatal sepsis.

SUMMARY

Despite multiple animal and human studies associating nutrient 
deficiencies with adverse immunological outcomes, there is strik-
ingly little evidence to suggest nutritional supplementation dur-
ing gestation and early infancy has benefits for neonatal responses 
to infection or allergic disease prevention.

There are a number of plausible explanations for the lack of 
significant and consistent impacts of individual or combined 
nutrient supplements on neonatal outcomes. First, it may reflect 
the heterogeneity of the studied populations in-terms of their 
underlying nutritional status. Improvements in clinical outcomes 
are likely to be most where deficiencies are highest. The transfer of 
many nutrients across the placenta, such as vitamin A (177) and 
iron (179), occurs actively and is regulated by the fetus, mean-
ing that even in the context of maternal insufficiency the fetus 
remains relatively protected. As a result, maternal supplementa-
tion might only benefit infants born to mothers with critical 
deficiencies. Large population studies including non-deficient 
participants will have reduced power to detect clinical benefit. 
Maternal vitamin A supplementation, for instance, had larger 
effects on maternal and neonatal outcomes in Nepal (297), where 
severe deficiency is common, compared to Ghana (298) and 
Bangladesh (299) where levels of deficiency are more moderate 
(177). Second, in many studies iron and folate were provided to 
mothers in the non-intervention arm. As these can also impact 
on neonatal infective outcomes, this may have confounded the 
results (156). Third, the optimal level of supplementation of 
micro- and macronutrients for neonatal outcomes is not known 
and dosages often differ between studies (300). Micronutrients 
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have nutrient–nutrient interactions that may alter the availability 
of other immunity modulating nutrients and have a rate-limiting 
effect on immune development (301). High levels of iron, zinc, 
and protein, for instance, can have counterintuitively negative 
effects on the immune system, and may have detrimental out-
comes when given to sufficient women (302). If this is the case, 
then population-based treatment as a public health intervention 
becomes challenging and less measurably effective. Fourth, it may 
be that the onset of maternal supplementation in the studies was 
too late in gestation to have lasting effects on immune system 
development. Supplementation was commenced after 12 weeks 
of age in many studies, which would miss an early programming 
effect of nutrients if one exists. As a number of supplementation 
studies reported improvements in mothers nutrient status follow-
ing supplementation, but no improvements in clinical outcome 
for the offspring, it would be interesting to know whether this 
enhanced nutritional status had positive impacts on future preg-
nancies, by improving nutrient status during the periconceptional 
period. Lastly, despite the large number of studies investigating 
maternal nutrient supplementation, those designed specifically to 
look at the effects on neonatal immune development and infec-
tious/allergic disease outcomes are limited and further research 
with more sensitive outcome markers is warranted.

Although the evidence for the benefits of nutritional supple-
ments in pregnancy and early infancy has so far been disappoint-
ing, some exciting possibilities remain. The persisting epigenetic 
changes induced by nutritional factors around the time of 
conception, which may impact on immune functioning in later 
life, warrants further study to assess their impact on neonatal 

infections, allergy and the amenability to supplementation. The 
potential benefit of probiotics and synbiotics for infectious disease 
and allergic outcomes in infancy is also extremely exciting. The 
World Allergy Organisation has recently recommended probiotic 
use during gestation, lactation and early life for infants at high risk 
of atopic disease (303), but further work to determine the most 
effective strains, dosage and duration, and whether these vary by 
geographical region, will be needed before their widespread use 
as a public health intervention against neonatal infections can be 
recommended.
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Early life is a period of particular susceptibility to respiratory infections and symptoms 
are frequently more severe in infants than in adults. The neonatal immune system is 
generally held to be deficient in most compartments; responses to innate stimuli are 
weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lym-
phocyte responses are limited, leading to poor immune memory and ineffective vaccine 
responses. For mucosal surfaces such as the lung, which is continuously exposed to 
airborne antigen and to potential pathogenic invasion, the ability to discriminate between 
harmless and potentially dangerous antigens is essential, to prevent inflammation that 
could lead to loss of gaseous exchange and damage to the developing lung tissue. We 
have only recently begun to define the differences in respiratory immunity in early life 
and its environmental and developmental influences. The innate immune system may be 
of relatively greater importance than the adaptive immune system in the neonatal and 
infant period than later in life, as it does not require specific antigenic experience. A better 
understanding of what constitutes protective innate immunity in the respiratory tract in 
this age group and the factors that influence its development should allow us to predict 
why certain infants are vulnerable to severe respiratory infections, design treatments to 
accelerate the development of protective immunity, and design age specific adjuvants to 
better boost immunity to infection in the lung.

Keywords: respiratory, neonatal, infection, respiratory syncytial virus, innate immunity

inTRODUCTiOn

Respiratory infection is one of the leading causes of mortality in children under 5 years of age (1, 2). 
Early life respiratory viral infections are most commonly caused by rhinovirus, respiratory syncytial 
virus (RSV), influenza, parainfluenza virus, and coronavirus (3). Infection is frequently restricted to 
the upper respiratory tract but may develop into severe lower respiratory tract infection, such as RSV 
bronchiolitis, the leading cause of hospitalization of infants worldwide (4–7). Bacterial pneumonia in 
infants, caused by agents such as Haemophilus influenzae and Streptococcus pneumoniae, is estimated 
to cause a million deaths in infants under 5 years of age annually (8, 9). Maternal antibodies afford 
some protection against infection but wane over the first months of life, and neonates and infants 
respond poorly to vaccination, leaving early life as a window of particular vulnerability to respiratory 
infection (10, 11). Experiences during the crucial neonatal and infant window may shape respiratory 
health in the long term (12–14). Severe RSV infection in infants is associated with the development 
of wheeze and asthma in childhood (15–19) and even respiratory disease that occur late in life, such 
as chronic obstructive pulmonary disease, are associated with early life events (20–24).
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At birth, the neonate emerges from the sheltered intrauter-
ine environment into a plethora of antigenic challenges from 
pathogens, commensals, and harmless environmental antigens. 
Neonatal immunity is, in general, attenuated compared to that 
of adults (4, 25–29). Differences in immunity in early life are 
due to tissue leukopenia, cell intrinsic hyporesponsiveness, and 
inhibitory mechanisms, such as CD71+ immunosuppressive 
erythroid cells and high levels of adenosine in extracellular fluids 
(26, 28–31). Protective Th1 polarized responses and antibodies 
are produced less well in early life than in adults, along with a 
propensity to develop unwanted, Th2 or Th17 biased, or dysregu-
lated inflammation (28, 31–33), for example, following vaccina-
tion or allergen exposure (34, 35). TLR stimulation of cord blood 
leukocytes results in a lower production of proinflammatory, 
Th1-associated cytokines (IL-12p70, TNF-α, IFN-α), and greater 
production of IL-10 and the Th17-promoting IL-6 and IL-23 
when compared to stimulation of adult blood cells, although 
equivalent responses to TLR 7/8 ligand R848 occur (29, 36, 37). 
Over the first few years of life, antiviral and Th1-biasing cytokine 
production increases (38, 39).

In the face of an inexperienced adaptive response, innate 
immunity is likely to play a more dominant role in protection 
against infection in early life than in adulthood. This is supported 
by the findings that many gene polymorphisms associated with 
severe RSV infection in infants encode components of the innate 
immune response (4, 40–43). The importance of TLR signaling 
in early life is illustrated by individuals with genetic deficiencies 
in components of the TLR signaling pathway such as MyD88 
or IRAK-4. These patients are at high risk of bacterial infection 
in childhood, including in the respiratory tract; however, their 
condition improves dramatically with age (44). This review will 
focus on describing our current knowledge of innate immunity in 
the neonatal lung as a first line of defense against infection. Some 
potentially important mechanisms underlying susceptibility to 
lung infection in infants are summarized in Figure 1.

ReSPiRATORY iMMUniTY in eARLY LiFe

It is relatively difficult to obtain samples from the lower airways 
of healthy infant subjects, so many studies have been carried out 
in murine and other animal models. Information on the cellular 
composition of the neonatal lung in humans has come from 
analysis of bronchoalveolar lavage fluid composition (46–49), 
immunohistochemistry (50), and more recently, extensive phe-
notypic analysis of leukocyte subsets in pediatric tissues (51–53).

Adaptive immunity
Fetal airways are essentially devoid of lymphocytes, they are 
seeded from birth, and lymphocytes increase as a proportion 
of airway cells over the first few years of life (48, 54). There is 
a relative paucity in CD4+ cells (46, 50), and memory T cells 
are less abundant in infant lungs than in adults, though they 
are more abundant in the lungs than many other tissues (51). 
Tregs are relatively abundant in pediatric tissues and may have a 
higher suppressive capacity than those from adults (28, 51) and a 
transient increase in regulatory T cells, associated with microbial 
colonization, protects from hyperresponsiveness to allergen 

(35). A failure of regulation may underlie excessive inflamma-
tion in infection, as in RSV bronchiolitis (43), and RSV infection 
in early life can increase susceptibility to allergic inflammation 
in the mouse model through an impairment of regulatory T cells 
(4, 55). CD8+ T cells in the lung correlate with disease severity 
in infants with respiratory failure due to respiratory viral infec-
tion (52) and in neonatal mice infected with RSV, a CD8+ T cell 
epitope hierarchy emerges, which is distinct to that of adults 
(56). Distinct phenotypes of adaptive lymphocytes are found in 
early life. A subset of Th cells in human cord blood produce the 
neutrophil chemoattractant interleukin-8 upon activation (57) 
and, during RSV infection, a regulatory phenotype in the neona-
tal B cell compartment may dampen protective immunity (58).

Lung Dendritic Cells (DCs)
There is some evidence that neonatal T  cells have the capac-
ity to mount adult-like protective responses to lung infection. 
Adoptive transfer of neonatal CD4+ T cells into Pneumocystis 
carinii-infected adult SCID mice allowed for adult-level patho-
gen clearance and cytokine production (59, 60), suggesting 
that the neonatal environment in the lung influences T  cell 
responses. This may be due in part to the function of neonatal 
antigen-presenting cells. Neonatal mouse lungs contain rela-
tively fewer conventional DCs (cDCs), which are immature and 
poorly functional (56, 61, 62), although mature functions ex 
vivo have been reported (63). During neonatal RSV infection, 
migratory cDCs are dominated by CD103+ DCs, while the 
CD11b+ contribution increases with age (64). These CD103+ 
DCs are phenotypically immature and poorly functional (65), 
and this may influence the magnitude and epitope hierarchy 
of the CD8+ T cell response (64–66), although these are also 
influenced by T cell intrinsic differences and regulatory T cells 
(56, 67). As well as stimulating protective responses, lung DCs 
in neonates must promote tolerance to harmless environmental 
antigens. CD11b+ cDCs in the lung induce Th2 responses to 
allergens, but transiently express high levels of PD-L1, which 
promotes tolerance, following acquisition of the microbiota 
(35, 68). In contrast to murine studies, the relative frequency of 
different DC subsets in the human lung appears to be relatively 
stable over the life course (53).

In the murine neonatal lung, potent IFN-α-producing pDC 
cells are scarce (61), and there is limited recruitment of pDCs and 
IFN-α production following RSV infection (69).

Alveolar Macrophages (AM)
Lung resident macrophages, which include AM and the less 
well-characterized interstitial macrophages (70–72), are an 
important component of the first line of defense in the lung. In 
the steady state, AMs remove debris and maintain a tolerogenic 
environment; during infection, they secrete proinflammatory 
cytokines and contribute to pathogen clearance; and after 
infection, they aid resolution of inflammation (45). AMs 
are the predominant cell type in the neonatal airway, they 
appear in the alveolar compartment from just before birth and 
throughout the first week of life, and are relatively abundant 
and self-renewing, persisting for at least 11  weeks in mice 
(47–50, 73, 74).

101

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 1 | Innate immunity to infection in the lung in early life. Alveolar macrophages (AM) are the most numerous leukocyte in the lungs in early life. Reduced 
cytokine production and phagocytic ability in AM in early life compared to those of adults could underlie susceptibility to infection. AM also promote pre- and 
post-natal lung development and remodeling. The respiratory epithelium protects against infection through the production of mucus and antimicrobial peptides. 
Production of type I IFNs may be lower in infant than adult epithelial cells, perhaps permitting greater viral replication. Epithelial cells may interact with innate 
lymphocytes to both initiate and regulate inflammation. Developmental reprograming in the epithelium in early life may also alter the nature of the epithelial response 
to infection. There are low numbers of pDC in the lungs compared to adults. Recruitment of neutrophils to the lung occurs less readily in early life compared to 
adults in some circumstances, but in other situations, excessive recruitment of inflammatory cells can lead to lung inflammation, tissue damage, and impairment of 
gaseous exchange. Immaturity and lower numbers of dendritic cells, the environment as well as intrinsic differences in T cells in early life may result in the 
development of skewed helper T cell responses and an altered epitope hierarchy in CD8+ T cells. Innate immunity in the lung in early life is influenced by acquisition 
of the microbiota, exposure to microbial products and other environmental factors, as well as the infant genome. Adapted by permission from Macmillan Publishers 
Ltd: Nature Reviews Immunology (45), copyright 2014.
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Stimulation of cultured cells has been used to interrogate the 
relative antimicrobial functions of neonatal and adult AMs. LPS 
stimulation of rodent or ovine AMs results in similar or even 
enhanced upregulation of TNF-α and CXC-chemokines in neona-
tal compared to adult cells (75–77), though others demonstrated 
a reduced translocation of NF-κB to the nucleus of AM from neo-
natal mice (78). Enhanced phagocytosis by neonatal compared 
to adult rat AM has been observed (75), but others have reported 
impaired phagocytosis and subsequent killing of yeast particles 
in neonatal rhesus monkey AMs; and impaired phagocytosis of 
opsonized red blood cells in neonatal rat AMs in comparison 
to adults (79, 80). In a murine model of Pneumocystis infection, 

neonatal AMs were delayed in their expression of activation 
markers in vivo in comparison to adults (81). Similarly, during 
murine neonatal RSV infection, there was reduced and delayed 
AM activation compared to adult infection (82), but intranasal 
IFN-γ was able to promote AM maturation (82). Little is known 
about responses in human infant AMs. Cultured cells obtained 
by bronchoalveolar lavage from infants <2 years of age produce 
lower IL-1 and TNF-α following LPS stimulation compared with 
cells from children aged 2–17 (54). The apparent contradictions 
in the data on AM function in early life may reflect differences 
in the species, age, experimental conditions, and assays used. 
Various macrophage functions are likely to mature at different 
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rates. Neonatal and adult AMs are likely to behave differently in 
their respective lung environments, which is a limitation of these 
in vitro studies.

Respiratory epithelial Cells
The respiratory epithelium is the principal site of replication of 
respiratory viruses. It is in close communication with AM and acts 
an immune sentinel producing inflammatory mediators, such as 
type I and III interferons, mucus, and antimicrobial proteins (45, 
83). Relatively little is known about the immunological functions 
of the airway epithelium in early life. In cultured tracheobron-
chial epithelial cells from Rhesus macaques of different ages 
(infant, juvenile, and adult), IL-8 production on exposure to LPS 
positively correlated with age (84). Furthermore, epithelial cells 
from juveniles housed in filtered air produced higher cytokine 
responses than those in conventional housing suggesting the 
microbial richness of the environment may influence epithelial 
responsiveness. The same group demonstrated that infant Rhesus 
monkey primary epithelial cell cultures are more permissive for 
the H1N1 influenza virus than those from adult airways, while 
producing less IL-1α (85).

In humans, type I IFNs are detected at only low levels in the 
airways of RSV-bronchiolitic infants. This may be due to inhibi-
tion of the host anti-viral response by the viral non-structural 
proteins but alternatively may reflect the timing of sampling, 
and an IFN-induced gene signature is detectable in blood 
(86–88). Pediatric nasal and airway epithelial cells cultured 
from bronchial brushings are readily infected with RSV (89–91) 
and poor induction of type I IFNs by RSV is reflected in these 
cultures (92, 93). Instead, the type III interferon IL-29 (IFN-λ) 
is detected both in the airways of bronchiolitic infants and in 
cultures of RSV infected airway epithelial cells, and IL-29 pre-
treatment of cultured epithelial cells attenuates RSV growth (92, 
93). Epithelial cells are probably a key source of inflammatory 
cytokines in respiratory tract secretions of infants with acute 
RSV (92, 94, 95), including the type-2 immunity promoting 
cytokine IL-33 (96). The cells used in many in vitro experiments 
on pediatric respiratory epithelial cells were originally taken 
from the conducting airway and data surrounding lower airway 
and ATII cells in early life is even sparser.

Antimicrobial proteins are a first line of defense at barrier sites 
and are produced primarily by epithelial cells and innate leuko-
cytes, particularly neutrophils (97, 98). In the lung, they include 
surfactants as well as S100s, β-defensins, and cathelicidin and 
they may provide protection against important infant respira-
tory infections, including RSV (99–102). Cathelicidin has direct 
antiviral activity against RSV, can prevent infection in vitro and 
in vivo and in children hospitalized with bronchiolitis, those with 
low serum cathelicidin were significantly more likely to have RSV 
infection and a longer hospital stay (97, 103–107).

innate Lymphocytes
Neonatal murine lungs show no quantitative deficiency in γδ 
T cells as a proportion of CD3+ T cells (61, 108). Exposure to 
allergen in neonatal mice can stimulate innate ILC2 lymphocytes, 
a major source of type 2 cytokines (109). Colonization by the 
microbiota in neonates protects against the accumulation of 

potentially pro-inflammatory mucosal iNKT  cells in the lung 
and gut (110). Colonization of the gut of neonatal mice can also 
lead to intestinal DC mediated upregulation of CCR4 on IL-22 
producing ILC3, which allows their migration into the lungs of 
neonatal mice, and promotes protection against bacterial pneu-
monia (111).

neutrophils
Recruitment of innate leukocytes and, in particular, neutro-
phils, is likely to play an important role in the innate response 
to infection in the neonatal lung following microbial recogni-
tion. Both TLR4 gene and protein expression are present in 
the murine lung in the fetus and increase with age through to 
adulthood (112, 113). TLR2 expression is also present in the 
human fetal lung and increases with gestational age (114). It 
appears that there is an immaturity of chemokine production at 
baseline in the respiratory mucosa. Expression of CXCL2 is low 
in neonatal mice compared with adults (115) and in uninfected 
infants (newborn to 18 months), the concentration of IL-8 in 
nasal washes positively correlates with age (116). There is a 
dramatically reduced and delayed neutrophil influx in neonatal 
lung in response to administration of LPS or bacteria in com-
parison to adult animals (75, 117–119). In the neonatal murine 
lung, infection with the paramyxovirus Sendai virus results in a 
minimal early influx of neutrophils and low production of pro-
inflammatory cytokines compared with the adult lung; simi-
larly in murine RSV infection, early pro-inflammatory cytokine 
production is impaired (108, 115). Diminished recruitment of 
neutrophils may also be due to an impaired chemotaxic ability 
of infant neutrophils (25, 120, 121).

In severe RSV bronchiolitis in infants, neutrophils can account 
for the majority of cells recovered from the airways, associated 
with increased neutrophil elastase (122–125) and IL-8 (94, 126), 
although others have reported a lower inflammatory cytokine 
response in infants with severe vs mild RSV bronchiolitis (127). 
There is a considerable influx of neutrophils into S. pneumoniae-
infected lungs of neonatal and adult mice, with the neonatal 
influx even occurring at a lower bacterial dose (128). It is unclear 
under what circumstances the neonatal lung will produce an 
equivalent or exacerbated inflammatory response compared to 
that of adults, whether this simply requires a high level of stimula-
tion or whether additional factors are involved.

FACTORS inFLUenCing THe 
DeveLOPMenT AnD MATURATiOn OF 
LUng iMMUniTY

Despite the apparent absence of a mature adult-like immune 
system, neonates are able to produce effective immune responses 
that defend against infection and indeed excessive inflammation 
can occur. The neonate must strike a balance between protection 
against infection and potential damage to the developing lung 
and may use alternative mechanisms of protection against infec-
tion to those that predominate in adults.

Exposure to microbial products from the environment, the 
microbiota, or infection may be beneficial in terms of their ability 
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to promote immune maturation and more adult like innate and 
adaptive immunity (28, 30). Treatment with TLR agonists CpG 
or LPS during RSV infection alters the CD8+ T  cell response 
toward a more adult-like immunodominance (66) and treatment 
of neonatal mice with CpG prior to RSV infection shifts the 
secondary response to re-infection away from a type 2 response 
(129). Furthermore, administration of BCG shifts lung CD4+ 
responses away from a Th2 bias and cDC from BCG treated lungs 
promote Th1 responses (61).

The microbiota is acquired from the mother at birth and in early 
life and an adult-like microbiome is established by around 3 years 
of age (130). The composition of the microbiota and microbial 
richness of the environment in which children develop have been 
linked to susceptibility to severe respiratory infections and the 
development of wheeze and asthma (131–133). Environmental 
microbial exposure may influence lung health by establishing the 
set-point of immunological responsiveness of the lung, as seen by 
the attenuation of allergic lung inflammation by airway exposure 
to LPS or endotoxin rich dust samples (133, 134). Additionally, 
commensal bacteria may influence neonatal respiratory immu-
nity indirectly. For example, sensing of commensal bacteria by 
gut DCs promotes resistance to bacterial pneumonia in neonatal 
mice (111). Factors that shape the microbiota, such as delivery by 
cesarean section and antibiotic use in early life and pregnancy, are 
likely to profoundly influence the developing immune system (14, 
135). Other environmental factors that regulate the balance of 
immunity in the infant respiratory tract may include diet, vitamin 
D status, breast feeding, maternal immunity, and exposure to 
environmental pollutants.

Significant stages of lung development occur both before 
and after birth and hyporesponsiveness to immune stimuli may 
have evolved to protect the developing lung from the disruptive 
and damaging effects of inflammation (136, 137). This is evi-
denced in mouse models of chorioamnionitis, where exposure 
of the fetal lung to LPS results in abnormal development of the 
distal airways (138, 139). In addition, IL-1β expression in the 
fetal or newborn lung impairs normal postnatal development 
(140). Reciprocally, the developmental programmes active in 
resident lung cells, which drive cell growth and differentiation 
may also influence immune responses (141, 142). Macrophages 
take on important roles in lung development and remodeling 
including septation and vascularization of the alveoli after 
birth (137, 143). Macrophages associate with sites of branch-
ing morphogenesis where they assume a tissue remodeling 
phenotype and promote development through production of 
growth factors and matrix metalloproteases (143). Polarization 
of macrophages away from this phenotype might, therefore, 

be a mechanism by which pro-inflammatory signals disrupt 
lung development (138, 140). As with lung macrophages, the 
respiratory epithelium will be subject to lung developmental 
programmes extending into the postnatal period, which regu-
late epithelial cell proliferation and differentiation, and these 
may potentially also alter epithelial immunological function. 
Foxa2 is an epithelially expressed member of the forkhead fam-
ily of transcription factors. In the developing lung, it regulates 
epithelial differentiation and controls goblet cell hyperplasia. It 
also has immunoregulatory functions and limits type-2 immu-
nity through inhibition of the cysteinyl LT signaling pathway 
(83, 141, 144).

COnCLUSiOn

The mechanisms that regulate inflammatory responses to micro-
bial stimulation in the lung need to be more fully elucidated. 
Increasing our knowledge of how the developing immune 
system responds to infectious challenge is of importance for 
development of neonatal vaccines and treatments for exag-
gerated respiratory inflammation during infection. In certain 
circumstances, the immune system in early life is capable of 
adult-level responses, and perhaps boosting responses in at-risk 
infants—in treatment for acute infectious disease or as adjuvant 
for vaccination—would be a beneficial protective strategy. 
Additionally, selectively harnessing the protective innate mecha-
nisms that are already expressed at adult or greater than adult 
levels in the neonate could be a safe therapeutic method. Thus, 
while early life is clearly a period of immunological vulnerability 
for the developing lung, it is also an opportunity for effective 
intervention strategies, which could benefit respiratory health 
not only in infancy, but into adulthood.
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The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the 
third day and the third month of life, remains poorly understood. Group B Streptococcus 
(GBS) is the most important cause of LOD in infants without underlying diseases or 
prematurity and the third most frequent cause of meningitis in the Western world. On 
the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite 
its adaption to the human lower gastrointestinal tract, GBS has retained its potential 
virulence and its transition from a commensal to a dangerous pathogen is unpre-
dictable in the individual. Several cellular innate immune mechanisms, in particular 
Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS 
effectors like nucleic acids. These are likely to impact on the GBS-specific host resis-
tance. Given the long evolution of streptococci as a normal constituent of the human 
microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 
50 years ago is remarkable. It appears that intensive usage of tetracycline starting 
in the 1940s has been a selection advantage for the currently dominant GBS clones 
with superior adhesive and invasive properties. The historical replacement of Group 
A by Group B streptococci as a leading neonatal pathogen and the higher frequency 
of other β-hemolytic streptococci in areas with low GBS prevalence suggests the 
existence of a confined streptococcal niche, where locally competing streptococcal 
species are subject to environmental and immunological selection pressure. Thus, it 
seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact 
on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, 
at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated 
strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their 
potential and facilitate adaptation of potentially hazardous streptococci as part of a 
beneficial local microbiome, which is stabilized by mucocutaneous innate immunity.

Keywords: S. agalactiae, Group B Streptococcus, cellular innate immunity, microbiome, colonization, sepsis

iNTRODUCTiON

Neonatal sepsis occurs as two distinct clinical entities either in the first 72 h of life as early-onset 
disease (EOD), resulting from in utero or intrapartum infection, or during the following 3 months as 
late-onset sepsis (LOD). In both cases, the Gram-positive, β-hemolytic Group B Streptococcus (GBS) 
is one of the most prevalent bacterial species in blood and cerebrospinal fluid. As a consequence, 
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pregnant women undergo routine or targeted screening for 
GBS in the last third of pregnancy in many Western European 
countries and the USA. In case of positive testing, women receive 
preventive intrapartum antibiotics during delivery (1). Since 
approximately 20–30% of all pregnant women are colonized, this 
prevention strategy affects an estimated 1 million women every 
year in the US alone. In other countries such as the Netherlands, 
a risk-based approach has been adopted, i.e., antibiotics are only 
administered in case of additional risk factors such as premature 
labor, intrapartum fever, bacteriuria, prolonged membrane  
rupture or previous children with GBS disease.

Before the use of antibiotic prophylaxis, the GBS sepsis 
incidence exceeded 1 in 1,000 children with high case fatality 
rates (2, 3). The role of GBS in neonatal sepsis may be due to (i) 
it being one of the most prevalent colonizers of the birth canal 
and thus among the first bacteria to get into contact with the 
newborn (4, 5), (ii) GBS carrying highly invasive properties, and 
(iii) a particular neonatal immunopathology induced by GBS. 
In EOD, the size and deposition site, e.g., the lung, of the GBS 
inoculum may be decisive factors. However, it is unresolved 
why GBS establishes as a harmless mucocutaneous colonizer 
in approximately 10% of infants in the first weeks of life, and 
overcomes epithelial barriers and cellular innate immunity only 
in less than one in thousand infants to cause LOD. In other 
words, it remains a puzzle which specific factors at the level of 
mucosal immunity and the local microbiome allow GBS to leave 
its colonizing niche, thus facilitating invasion in the individual 
child.

At the beginning of life, the developmental lines of the 
microbiota and of the local cellular innate immunity have 
to run with substantial interdependence. Both areas are 
subject to factors in cis and in trans, i.e., specific bacteria are 
influenced by the microbiota and by host immunity, and host 
cells are modulated by other host and microbial cells (6). In 
order to guarantee long-term ecologic stability, adaptation 
on either side of the host–microbe interface is required, both 
at the population level and in the individual cell. The puta-
tive contribution of variations in specific innate immune 
genes to neonatal sepsis has recently been discussed (7). The 
authors suggested that affected children may suffer from yet 
to be identified minor primary immunodeficiency. This is a 
tempting hypothesis, given the enormous gain in knowledge 
on single gene alterations leading to susceptibility to a nar-
row spectrum of microorganisms. On the other hand, there 
is no indication for inheritance of a specific neonatal sepsis 
risk. Moreover, LOD typically remains the only “suspicious” 
episode in the individual infection biography. Finally, preterm 
birth is a well-recognized risk factor of GBS sepsis. In preterm 
infants, several factors impact on the individual codevelop-
ment of microbiota and immunity, in particular cesarean 
section and formula feeding, which modify the microbiome 
(8, 9), and antibiotic usage, which affects both the microbiome 
and myeloid cell development (10, 11).

The hypothesis underlying this review holds that aberra-
tions in the codevelopment of microbiota and host immunity, 
rather than genetic variations in immune genes alone, shape the  
individual risk for neonatal GBS sepsis, in particular LOD.

GBS: COLONiZATiON AND viRULeNCe 
FACTORS

Neonatal GBS sepsis is a global problem with an overall 
incidence of around 0.5/1,000 live births. In contrast to the 
situation in Europe, American and African countries, GBS are 
reported to be a rare cause of neonatal colonization and sepsis 
in Southeast Asia (12, 13). However, the epidemiology in devel-
oping countries often suffers from constraints related to early 
deaths outside hospitals and low microbiological sensitivity of 
detection methods (13). In many, but not all Western European 
and North American countries, intrapartum antibiotic prophy-
laxis (IAP) has been associated with a decreased incidence of 
EOD while LOD rates remained unchanged (14–16). Notably, 
a substantial proportion of mothers whose infants developed 
EOD were tested negative before birth (1). It is unclear whether 
this phenomenon is due to false-negative test results or very 
recent GBS acquisition. Although, as outlined above, incidence 
and fatality rates are significantly higher in preterm than term 
infants (16–18), most cases occur in term infants (1) without 
clinical or laboratory evidence for immunodeficiency. LOD 
alone has an incidence of about 0.3–0.4 per 1,000 children and 
can develop randomly within the first 3 months after birth (19). 
It manifests more frequently as meningitis than EOD (17, 20). 
Conceptionally, these observations indicate that EOD and LOD 
originate from distinct biological processes or disturbances 
thereof.

Group B streptococcus is classified into 10 serotypes based 
on chemical structure and conformation of capsular polysac-
charides. Serotyping relies on latex agglutination or multiplex 
PCR (21). In the past 30 years about 50% of the reported neo-
natal GBS sepsis cases worldwide were caused by serotype III 
strains (13). This indicates a considerable genetic homogeneity  
and sta bility in the pathogenic potential of GBS despite anti-
biotic sele ction pressure. Notably, Islam et  al. did not detect 
any colonization by GBS of serotype III in their cohort of more 
than 600 infants in Bangladesh, while 6% of all infants were 
colonized by other serotypes, predominantly VII and Ia (22). 
It is very plausible yet uncertain that low circulation of highly 
invasive GBS strains underlies the low incidence of invasive 
neonatal GBS in several Asian countries (13).

In addition to the serotypes, GBS can be further classified 
by multilocus sequence typing, with more than 700 identified 
types (ST). The majority of human isolates belong to six clonal 
complexes (23, 24). EOD is significantly associated with serotype 
Ia strain ST-23 and closely related ST-24 as well as the ST-17 
strain of serotype III (25, 26). LOD on the other hand is largely 
caused by ST-17 (20, 25). Moreover, ST-17 causes most cases 
of meningitis in EOD and LOD (27). In EOD, the distribution 
of invasive strains mainly corresponds to those colonizing the 
mothers (26). However, ST-17 shows an elevated disease-to-
colonization ratio in EOD and LOD, i.e., it causes more cases 
of invasive disease than expected from its colonization rate of 
pregnant women (28–30). These observations, together with 
the characteristic expression of several virulence factors, have 
led to the term of a “hypervirulent” strain. Two of these factors, 
the hypervirulent GBS adhesin HvgA (27) and the serine-rich 
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repeat glycoprotein Srr2 (31), are surface-anchored proteins 
which allow for adherence to epithelial cells and host plasma 
proteins. ST-17 strains also often carry the 2b pilus variant which 
contributes to invasion in mouse models (32, 33).

Most GBS strains produce surface-associated β-hemolysin 
which can damage membranes and promote barrier penetration 
(34). β-Hemolysin was found to be identical to the orange to red 
pigment of GBS, an ornithine rhamnolipid called granadaene 
(35). Both factors rely on the cyl operon which is controlled by 
the CovR/S two-component system. Strains mutated in CovR/S 
show hyperhemolysis and increased virulence (34, 35). For 
further detailed descriptions about GBS virulence factors, we 
refer to recent reviews (36, 37).

ROUTeS OF iNFeCTiON

In EOD, GBS is usually transmitted from the colonized mater-
nal vaginal tract during birth to the infant. Aspiration of con-
taminated fluids allows for bacterial entry via the respiratory 
tract in many cases, resulting in sepsis or pneumonia during 
the first days of life (38). The route of infection in LOD is less 
well understood. The gastrointestinal tract is considered to be 
a natural reservoir for sepsis pathogens in neonates (39, 40). 
GBS shares this niche with Escherichia coli, the second typical 
organism in neonatal sepsis. Yet, the point of time when GBS 
establishes colonization is highly variable. 50–70% of colonized 
mothers transfer GBS to their offspring during delivery (41, 42) 
and 50% of infants which later developed LOD were colonized 
with GBS at birth (43). It remains unknown how many of these 
infants were stably colonized between the first contact with GBS 
and the disease onset. Unfortunately, large-scale and longitu-
dinal colonization data of mother-infant pairs before and after 
disease onset, which would allow resolving this LOD puzzle, 
are not available. In a case series, Carl et al. found that 7 out 
of 11 children with LOD by GBS, E. coli or Serratia marcescens 
produced at least one stool with the matching organism before 
bloodstream infection (39). However, only two infants with GBS 
sepsis contributed to this study and they showed a GBS positive 
stool only briefly before sepsis, indicating recent colonization 
or overgrowth in the gastrointestinal tract. Another longitudi-
nal case study on LOD also found that GBS occurred in the 
stool 2  days before sepsis onset (44). In contrast, it has been 
shown for other infections, e.g., enterococcal or staphylococcal 
bloodstream infections, that children often have a pathogen-
dominated gut flora before disease onset (44, 45). Thus, it is 
conceivable that GBS exposure constitutes a particular LOD 
risk to infants who failed to firmly establish GBS colonization 
after birth (46). However, it seems important to note that stool 
samples do not always adequately mirror the actual intestinal 
community (47).

Meningitis caused by serotype III strains is often linked to 
high-level bacteremia. Factors that enable serotype III strains 
to survive in the blood stream, i.e., escape of adaptive and 
innate immune mechanisms, such as antibody or complement-
mediated phagocytosis may be responsible for this effect (48). 
While the route of infection has not been resolved with certainty 
in infants, several studies showed bacterial dissemination to the 

blood and CNS after intraperitoneal (49), subcutaneous (50, 51)  
and intragastral (27, 52) inoculation of GBS serotype III in 
neonatal mice and rats. ST-17 is also specifically found in cases 
of GBS meningitis after 3 months of age (53), indicating that this 
clonal complex has an increased capability of overcoming colo-
nization site barriers and blood borne immunity and of invading  
the CNS.

THe NeONATAL MiCROBiOMe

The microbiome, defined as the microbial flora inhabiting the 
human body, constitutes an important factor in individual 
health and development. The composition of the microbiome is  
complex, distinct between individuals and subject to environ-
mental changes and adaptation to host factors. Each body site 
contains a unique microbial community. Even within one niche 
such as the skin the composition varies depending on the exact 
location, i.e., the back skin shows a different microbial signature 
than the foot pad or the axillary vault (54). It seems self-evident 
that exposure to bacteria in the birth canal impacts on the colo-
nizing flora in the infant. However, the fetus may be less sterile 
than thought, i.e., that the microbiome might develop already 
in  utero. 16S rDNA sequencing of amniotic fluid, placenta 
samples and meconium revealed prenatal presence of bacteria 
with a predominance of Escherichia spp. (9, 55, 56). Of note, 
the Streptococcus genus was also detected in these samples, yet 
at very low abundance (56). Intrauterine colonization data have 
to be interpreted with some caution, since microbial viability is 
usually not confirmed and the risk of contamination is high in 
many of the investigated samples (57). Accordingly, the contri-
bution of colonization in  utero to microbiome development is 
still unclear, whereas that of colonization after rupture of fetal 
membranes is beyond doubt. As an example, vaginal delivery 
and cesarean section result in different bacterial communities 
on skin, nares, and gingiva (9). Yet, the impact of the delivery 
mode on the expansion and functional diversification after 
the first 6 weeks of life is surprisingly modest (9, 58). Instead, 
the infant’s microbiome follows a rather predictable successive 
colonization pattern and reaches a stable state resembling the 
adult microbiome already at 1–3 years of age (59–61). Oxygen 
abundance in the neonatal gut facilitates the colonization by 
facultative anaerobes, e.g., Lactobacillus and Streptococcus fol-
lowed by Enterobacteriaceae. After oxygen is consumed and 
anaerobic conditions are established, obligate anaerobic species, 
e.g., Bifidobacterium, Bacteroides, and Clostridium spp. populate 
the intestine (62, 63). Administration of antibiotics, on the 
other hand, heavily affects the postnatal microbiome (8, 64, 65). 
Postnatal exposure to antibiotics alters the gut microbiome in the 
first 2–3 years of life by delaying microbiome development and 
altering phylogenetic diversity, e.g., affecting early colonization 
with Lactospiraceae spp. (8, 65). In addition, antibiotics reduce 
the stability of the microbiota composition as indicated by an 
increased variation between consecutive samples as compared 
to controls (65). Notably, very preterm infants with a gestational 
age of <33 weeks, who in many cases receive antibiotics within 
24  h of birth, showed a 10-fold reduced bacterial diversity in 
comparison to term infants (66).
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GBS AS PART OF THe HUMAN 
MiCROBiOMe

Streptococcus is, together with Lactobacillus, Staphylococcus, 
and Propionibacterium, one of the most commonly found bac-
terial genera in the neonatal intestine and oral cavity (9). Strep-
tococcal species account for up to 10% of total bacteria in fecal 
samples during the first months of life (67–69). In pregnant 
women, GBS colonization is found in up to 30% of rectovaginal 
samples (28, 70, 71) and stable colonization with the same clone 
for several years has been demonstrated (4, 70). Spread from 
the gastrointestinal tract to the genital tract is considered to be  
a probable colonization sequence for GBS (4). Since strains 
might be lost or reacquired in relatively short time periods  
(72, 73), GBS screening is recommended relatively late in preg-
nancy, i.e., between gestational weeks 35 and 37 (74).

Colonization by GBS is not exclusively confined to humans. 
Instead, GBS was first described in the 1880s as a cause of 
mastitis in goats and cows and it is a frequent commensal in 
seals and fish (75, 76). Although rare, invasive GBS disease can 
be a zoonotic disease as outbreaks in adults have been linked 
to raw fish consumption (77). Moreover, the hypervirulent 
ST-17 strain, which emerged 40 years ago, shares greater genetic 
similarity with bovine than with many human strains, indicat-
ing that it originated from a bovine lineage. Therefore, GBS 
may—under very specific conditions—cross species barriers 
(28, 78). However, since virulent strains in humans are distinct 
from those causing disease in animals (26, 75), person-to-person 
transmission plays the primary role in human GBS dissemina-
tion. Data on GBS spread are largely confined to mother-infant 
pairs. In contrast, the contribution of fecal-oral transmission 
by other family members than the mother to GBS colonization 
of the infant remains unclear. While strains are largely shared 
between sexual partners (79, 80), cohabitation appears to play a 
minor role in transmission (81).

Intrapartum antibiotic prophylaxis during delivery may 
transiently increase the GBS colonization risk of the infant yet 
probably does not affect the relative abundance of Streptococcus 
spp. in the stool beyond the first few weeks of life (72). While a 
number of studies longitudinally analyzed the development of 
the microbiome after birth on the level of phylum, class or order, 
studies on species or even genus level, e.g., with a specific focus 
on Group A Streptococcus (GAS) or GBS are rare and do not 
allow for robust statements on this level of resolution. Infants 
which were tested negative for GBS after IAP administration 
frequently acquire maternal GBS strains at later time points 
(82). Breast milk is hence a probable source of GBS in LOD. 
Several LOD case studies detected GBS in breast milk (46, 83). 
However, it is often unclear whether GBS in breast milk results 
from maternal colonization or infant oropharyngeal contamina-
tion. Mutated strains from infants which have been detected in 
the maternal breast milk (84) support the latter hypothesis. On 
the other hand, positive cultures of breast milk correspond to 
heavy colonization of the newborn (82), which is in turn a risk 
factor for LOD, especially in the case of mastitis (18). Bacterial 
expansion in breast milk and subsequent uptake by the infant 
may favor heavy colonization and LOD recurrences. Finally, 

nosocomial GBS transmission can occur in the case of children 
with invasive devices (82), indicating again that LOD can be a 
smear infection in some cases.

COMPeTiNG MiCROBeS: GBS NeeDS  
TO FiND iTS (NeONATAL) NiCHe

Although GBS is the most prevalent streptococcal strain in 
neonatal sepsis, other streptococci, notably Groups A, D, and G, 
are isolated from blood cultures of newborns as well (22, 85, 86).  
Indeed, the connection of GBS and neonatal sepsis was only 
found in the 1960s and its predominance was established in the 
1970s (24, 78). Prior to that, GAS and Streptococcus pneumoniae 
accounted for most neonatal sepsis cases (3, 87). As in other 
ecological niches, competition for nutrition and space occurs 
between bacterial species on colonized human body sites (88). 
Indeed, examples of mutual exclusion are found in the genus 
Streptococcus, e.g., in the case of Streptococcus mutans, the pre-
dominating cause of caries. The presence of other streptococcal 
species in the oral cavity, namely Streptococcus sanguinis and 
Streptococcus oligofermentans, is inversely correlated with the 
abundance of S. mutans which has been linked to the produc-
tion of hydrogen peroxide in vitro (89, 90). Another example is 
the observation that Corynebacterium and Dolosigranulum in 
the upper respiratory tract are protective against colonization 
with Streptococcus pneumonia, which causes otitis media in 
infants after colonization of the airways (91). More importantly 
in the context of this review, growth of GBS is inhibited by 
Streptococcus salivarius both in vitro and in a vaginal coloniza-
tion mouse model (92). Competitive growth was also shown for 
Bifidobacterium and GBS in vitro (93) and lactobacilli inhibited 
growth (94) and attachment of GBS to vaginal epithelial cells (95). 
In addition, Lactobacillus reuteri reduced vaginal colonization 
in a mouse model (96) and—importantly—as a probiotic in a 
placebo-controlled trial in pregnant women (97). These findings 
are in line with a very recent randomized, double-blind, placebo-
controlled trial from Indian, where Lactobacillus plantarum plus 
fructooligosaccharide protected newborns from sepsis (98).  
In general, however, the presence of GBS appears not to be linked 
to an abnormal microbiome or a reduction of the predominant 
Lactobacillus genus in the vaginal tract of the mother (99–101). 
Interestingly, a small study found significant taxonomic differ-
ences in stools of 6-month infants, when mothers were GBS 
carriers, as compared to non-carriers (102). Yet, robust epide-
miological evidence for a correlation of neonatal colonization 
with GBS and that of other specific intestinal commensals such 
as other streptococcal species is not existent.

Next to streptococci, staphylococci cause bacteremia and 
sepsis in newborns. Indeed, coagulase-negative staphylococci are 
the most common cause of nosocomial sepsis in newborns, yet 
do not play a role in healthy term infants. The generally more 
virulent S. aureus is isolated in variable frequency from neonatal 
blood cultures, but it is rarely found in cerebrospinal fluid (86). 
Furthermore, in view of the omnipresence of S. aureus as a colo-
nizer in up to 50% of neonates, infants of this age group are not 
specifically susceptible to staphylococcal infections, unless they 
are subject to medical interventions such as indwelling catheters 
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or surgery (85, 103). Hence, the contact with GBS and potentially 
other (beta-hemolytic) streptococci and the establishment of 
coexistence with these bacteria appears to impose a greater risk 
to the infant compared to other genii.

THe iMPACT OF ANTiBiOTiC PReSSURe 
AND ReSiSTANCe ON LOD

The majority of GBS strains isolated from humans are resistant 
to the antibiotic tetracycline. Indeed, the insertion of tetracy-
cline resistance (TcR) elements, i.e., the ribosomal protection 
proteins Tet(M) and Tet(O), in few GBS clones led to their 
selection and expansion after the onset of extensive tetracycline 
usage since 1948 (24). These clones have since replaced a prior 
diverse GBS population, concurrent with the rise of GBS as 
major cause of neonatal sepsis. Notably, TcR elements are the 
most widely spread resistance genes in the human gut micro-
biota (104). Moreover, a subset of GBS strains, especially ST-1,  
carry genes which confer general resistance to macrolids and 
lincosamides, i.e., the methylases erm(B) and erm(TR) (24). 
Resistance rates to clindamycin (lincosamid) and erythromy-
cin (macrolide) range up to 30 and 50%, respectively (30, 71, 
105, 106). A rise of resistance to fluoroquinolones has been 
described in serotype V strains (105, 107). In addition, GBS 
with reduced penicillin susceptibility due to mutations in the 
penicillin-binding proteins are isolated with increasing fre-
quencies in Japan (108, 109) and were also reported to occur 
spontaneously in an American patient after prolonged penicil-
lin treatment (110). In this context, it seems likely that the fre-
quent use of antibiotics other than tetracyclines may also lead 
to selection of hypervirulent strains. In the Netherlands, the 
incidence of EOD caused by ST-17 has significantly increased 
after implementation of a risk-based approach of antibiotic 
prophylaxis (15). ST-17 strains are also significantly more 
prevalent in women with IAP as compared to other strains 
(72). Thus, a relatively short course of intrapartum antibiotics, 
usually penicillin and ampicillin, may allow for seeding and 
expansion of hypervirulent GBS strains, which may not affect 
the majority of infants but propagate LOD development in few 
colonized individuals.

In addition, the capsular serotypes of GBS are not fixed but 
subject to frequent exchange by conjugative transfer between 
strains, explaining for the diversity of serotypes within clonal 
complexes. Lately, serotype IV has emerged as a causative agent 
of adult GBS disease in the US (106, 111). This seems important, 
as serotype IV is not included in the latest efforts in vaccine devel-
opment to capsular antigens of GBS. Sequencing has revealed 
that a predominating serotype IV strain acquired large genomic 
fragments by horizontal gene transfer from the hypervirulent 
ST-17 and ST-23 strains (112). Additionally, ST-17 strains with 
capsular switching to serotype IV have been identified in several 
countries (29, 113, 114). Since maternal antibodies can impact 
on colonization with the antibody-specific GBS strains in moth-
ers and early infants (115–117), it remains an open question 
whether targeting certain serotypes may eventually select for 

strains which have acquired novel capsule genes and allow for 
their expansion.

Interestingly, single-nucleotide polymorphisms (SNPs) in 
virulence-associated genes were detected in neonatal invasive 
GBS strains in comparison to the respective colonizing strains 
from the mothers, possibly contributing to the transition from 
a maternal commensal to a neonatal pathogen (84). This sug-
gests that mutations are positively selected for in the neonatal 
environment. Moreover, mutations in the virulence regulator 
CovR/S leading to hyperhemolytic activity were found in inva-
sive isolates of women in preterm labor (35). The acquisition of 
antibiotic resistance, serotype switching and SNPs can therefore 
lead to microevolution in the individual newborn, which may 
explain the pathogenicity of GBS in only a very small number 
of infants.

THe ROLe OF ANTiBiOTiCS AND 
DYSBiOSiS iN THe DeveLOPMeNT OF 
GBS SePSiS

The microbiota may have beneficial but also detrimental, acute, 
and chronic effects on infant health. Dysbiosis may predispose 
the neonatal intestine to inflammation (63) and facilitate the 
expansion of otherwise infrequent pathobionts (118, 119). 
Dysbiosis with lower bacterial diversity and decreased density of 
Propionibacterium spp. was found to precede the onset of necrotiz-
ing enterocolitis (NEC) (120, 121). Moreover, lactate-producing 
bacilli such as staphylococci and streptococci were reduced after 
birth in infants with NEC (68). Even though the increased preva-
lence of opportunistic pathogens such as uropathogenic E. coli 
(122) and Clostridium perfringens (68) has been linked to NEC, 
a common bacterial signature has not been found (121, 123). In 
addition, it is often unclear whether dysbiosis and the develop-
ment of organ pathology are causally linked or whether they both 
depend on upstream disturbances, which may be diverse. Mai et al. 
found signs of dysbiosis in preterm infants already 2 weeks before 
onset of sepsis (124). Dysbiosis meant a delayed colonization with 
Proteobacteria and decreased density of Bifidobacteria spp. This 
observation receives support by the finding that Bifidobacterium 
spp. in the gut are protective for LOD (44), although the data on 
this issue are not fully consistent between studies (40). During 
sepsis, anaerobic Bacteroides and Bifidobacterium spp. were found 
to be decreased and aerobic Enterobacteria to be increased in 
affected infants as compared to non-septic twin controls (125). In 
view of these observations, a reduced intestinal Bifidobacterium 
density in infants whose mothers received IAP constitutes an 
important warning sign for the most careful usage of antibiot-
ics in this sensitive period (93). In support of this notion, the  
risk for LOD caused by various pathogens including GBS in 
preterm infants is threefold higher after prolonged empirical 
antibiotic treatment (126). Antibiotics can affect the composi-
tion of the microbiome in many ways, including the depletion 
of competitive microbes, a delay in immune cell maturation (see 
below) and dysbiosis, all of which widen the niche for pathogenic 
bacteria.
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CeLLULAR iNNATe iMMUNiTY AND 
ReSiSTANCe TO GBS

Group B streptococcus is also recognized as an important health 
threat in immunocompromised adults, i.e., the elderly and 
patients with diabetes mellitus or HIV infections. Notably, the 
most common manifestations are skin/soft tissue infections and 
bacteremia (127–129), indicating that in these patients barrier 
immunity is important for the normal containment of GBS, 
similar to the situation in infants. The immaturity of the neonatal 
immune system in comparison to that of the adult was reviewed 
in detail elsewhere (130–132) and we will therefore focus on 
selected GBS-related aspects.

Neonatal rodents show exquisite sensitivity for GBS. Neonatal 
rats succumb to doses as low as 10 CFU intraperitoneally, while 
adult rats require approximately 6-log higher inoculums for a 
similar mortality rate (49) even if their body weight is taken into 
account (50). Neonatal mice, which normally die after i.p. infec-
tion within 48 h, were protected by transfer of specific antiserum 
to the pregnant dam before delivery (133). This experimental 
data is in line with the protective role of maternal GBS antibod-
ies in the protection from GBS EOD, which is the basis for the 
development of a maternal vaccine (36, 134). In contrast, the role 
of maternal antibodies in the prevention LOD development is 
less clear. Recently, it has been inferred that high antibody levels 
also prevent GBS colonization (42, 116, 117). Women with high 
serotype-specific titers had a significantly lower risk of rectovagi-
nal colonization with the respective GBS strains (42). However, 
GBS antibody levels do not inversely correlate with the sepsis 
risk per  se. Thus, it remains puzzling why only very few of the 
GBS exposed and/or colonized infants with low antibody levels 
develop LOD.

In the innate arm of the immune system, the family of 
Toll-like receptors (TLRs) is essential for the defense against 
invasive streptococcal infections. Children with genetic 
deficiency in MyD88, an essential adaptor for all TLRs but 
TLR3, or IRAK4, a kinase downstream of MyD88, have an 
approximately 50% risk of dying from invasive bacterial infec-
tions in the first 8 years of life. In most cases, streptococci are 
the causative organisms (135, 136). Furthermore, roughly one 
third of the affected children suffer from a sepsis episode in the 
first 3 months of life. Thus, the risk for early and late neonatal 
sepsis is approximately 1,000-fold higher in these infants than 
in newborn infants overall. It seems noteworthy that most 
isolates are either pneumococci or GAS, whereas only few 
cases of late neonatal sepsis and meningitis caused by GBS have 
been reported so far (135, 137). Whether this predominance 
of other streptococcal species is due to an altered microbiome 
in MyD88- and IRAK4-deficient individuals has not been 
explored so far. In mice with MyD88 deficiency, a gross devia-
tion in microbiome composition cannot be observed (138, 139),  
although a generally increased risk for the invasion and dis-
semination of intestinal commensals was observed (140). 
Moreover, MyD88-deficient neonatal mice have not been 
studied in this context. The already exceptional susceptibility 
of neonatal mice for local GBS infections, with a 100,000-fold 
decreased LD90 (cfu/g bw) in 2-day-old mice as compared to 

adult mice, is further significantly increased in MyD88 defi-
ciency (141, 142).

Within the MyD88-dependent TLR family, TLR2 activation 
by GBS lipoproteins (143, 144) and endosomal TLR-activation 
by single-stranded RNA are equally important. TLR13 is a com-
mon receptor of 16S rRNA from Gram-positive bacteria includ-
ing GBS in mice (10, 145), whereas TLR8 is the incomplete 
analog in humans (146–148). TLR recognition by myeloid cells 
is highly site-specific, i.e., RNA sensing and TLR13 are crucial 
for recognition of GBS by resident mouse macrophages but not 
circulating blood monocytes (142). Interestingly, recognition 
of GBS and Gram-positive bacteria appears to rely more on 
endosomal TLRs than recognition of Gram-negative bacteria 
(149). This seems intriguing in the context of human neonatal 
mononuclear cells, which are particularly responsive to TLR8 
ligands (150). Accordingly, recognition of bacterial RNA by 
TLRs is not only particularly important at the beginning of 
life, but may result in distinct immune activation patterns 
induced by Streptococcaceae and Enterobacteriaceae. It remains 
an appealing yet unproven hypothesis that TLR8-dependent 
immunopathology contributes to myeloid cell-mediated 
disturbance of mucocutaneous barrier integrity. In addition, 
TLR8 and 13 do not hold exclusive roles in the recognition 
of GBS RNA or nucleic acids in general. First, the NLRP3 
inflammasome mediates GBS-induced formation of IL-1β and 
IL-18 in macrophages via recognition of ssRNA (151, 152). 
NLRP3 activation requires the induction of potassium efflux 
by a rhamnolipid of GBS, which also mediates cytolysis (35). 
Proper inflammasome activation is essential for the neonatal 
resistance against GBS (151). Next, GBS DNA engages the 
cytosolic signaling of cGAS and STING which leads to inter-
feron (IFN)-β production and contributes to GBS immunity 
(153, 154). In addition, conventional dendritic cells secret type 
I IFNs in response to endosomal GBS RNA interacting with 
TLR7 (155). GBS may subvert nucleotide sensing via expression 
of ectonucleotidases (154, 156) (Figure 1). Similarly, the GBS 
hyaluronidase HylB blocks cellular activation by degrading host 
hyaluronic acid into fragments which bind and inhibit TLR2 
(157). HylB was shown to promote vaginal colonization and 
ascending infections in mice (157, 158). How these enzymes 
impact on the sensing of colonizing GBS and of competing bac-
teria in neonates is currently unclear. It furthermore remains 
to be determined how the relatively increased TRIF-dependent 
pathway in neonates impacts on barrier defense against GBS 
(159). Any effect can be assumed to be indirect, since TRIF is 
redundant in GBS-mediated activation of phagocytes, although 
a role as a signaling intermediate in other (immune) cells can-
not be excluded (149, 160).

Understanding the distinct TLR, inflammasome and cGAS 
engagement in the monocyte-macrophage lineage by GBS is of 
utmost importance, since macrophages are the dominant resi-
dent immune cells at mucocutaneous barriers, i.e., the dermis 
and the gut. They are crucially involved in barrier maintenance 
(161, 162), both by executing direct antimicrobial actions and by 
cytokine and chemokine dependent recruitment and activation 
of other immune cells. Development of the neonatal macrophage 
compartment is particularly well understood in the neonatal 
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FiGURe 1 | Innate immune pathways manipulated by Group B Streptococcus. Depicted is the impact of GBS on type I interferons (IFN) (153, 155), Toll-like  
receptor (TLR) (10, 149), and inflammasome (151) pathways by secreted bacterial factors. The ectonucleotidase CdnP hydrolyzes bacterial cyclic dinucleotides 
which otherwise activate STING and IFN-β production (154). Hemolysin contributes as second signal to the NLRP3 inflammasome activation (152). The GBS 
hyaluronidase can degrade pro-inflammatory hyaluronan polymers during tissue injury which normally bind to TLR2 and the resulting fragments block TLR2 signaling 
in the host (157).

FiGURe 2 | Stabilization of the mucocutaneous niche. During homeostasis, GBS colonizes the intestine of healthy infants. Macrophages and other immune cells 
guarantee barrier integrity by surveillance. Other commensal bacteria including streptococcal species form the niche. Disease can be preceded by multiple factors 
leading to dysbiosis, expansion of GBS and barrier disruption. Expression of virulence factors such as HvgA and β-toxin facilitate adhesion to epithelial cells and 
barrier disruption. Dissemination is often concurrent with mutations of the CovR/S virulence repressor.
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intestine, where the population of embryonic macrophages is 
replaced by monocyte-derived macrophages starting at weaning 
(163). It is tempting to speculate that macrophage maturation 
in the lamina propria directly impacts on the macrophage-
driven recognition and elimination of invading GBS. Another 
TLR-based mechanism promoting susceptibility to GBS is the 
increased production of anti-inflammatory cytokines. Enhanced 

IL-10 concentrations in serum and cord blood are correlated 
with mortality in septic infants (164). Moreover, IL-10 has a 
major impact on intestinal barrier immunity, both in humans 
and mice. Yet, whereas too little IL-10 leads to spontaneous 
inflammation and colitis, increased IL-10 production impairs 
neutrophil recruitment into infected organs and thus decreases 
GBS clearance (164, 165). How increased IL-10 formation 
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impacts on keeping GBS in a colonization—as opposed to an 
invasion—state is currently not known.

iMPACT OF THe MiCROBiOMe ON THe 
DeveLOPiNG iMMUNiTY

Numerous studies were initiated to understand the impact of 
the colonizing flora on the function of intestinal cells in general 
and the immune system in general. Research is usually based on 
germ-free mice and antibiotic treatments in order to understand 
the consequences of a reduction or absence of microorganisms. 
Evidence for immunological consequences of alterations in the 
microbiome was even found in cells very distant to the gastroin-
testinal tract such as brain microglia (166). In a highly interesting 
mouse study, exposure of the pregnant dam to antibiotics not only 
led to neutropenia in newborn mice, but subsequently increased 
the susceptibility to Gram-negative sepsis (10). A reduction in 
Gammaproteobacteria may mediate these effects, since their 
effector LPS induces granulocyte colony-stimulating factor pro-
duction and consequently granulopoiesis. Recently, Josefsdottir 
et al. suggested that the microbiota is the cause of neutropenia 
and general depletion of hematopoietic stem cells across multiple 
lineages in antibiotic-treated mice (11). The phenotype could be 
partially rescued by fecal transfer. This experimental data is in 
line with the observation that administration of ceftalorine and 
β-lactam antibiotics can lead to neutropenia in patients (167, 
168). Consequently, antibiotics appear to indirectly impact on 
the maturation of the immune response (169) and the resistance 
against neonatal sepsis pathogens. An overall smaller granulo-
cyte pool in neonates (132) may further propagate the negative 
effects of antibiotics. Therefore, it seems that the immaturity of 
neonatal blood cells, including phagocytes and adaptive immune 
cells, might restrict the ability to fight off pathogens. Hence, in 
the stochastic event of pathogen invasion through the muco-
cutaneous barrier, which may be potently responded to by the 
adult immune system, neonatal immunity may be overwhelmed, 
resulting in bacterial spread and sepsis (Figure  2). It remains 
incompletely understood whether the protection in the adult 
usually involves the resident immune cells at mucocutaneous 
sites, e.g., the lamina propria in the gut or the dermis in the skin, 
or whether circulating leukocytes are necessary for efficient bar-
rier defense.

CONCLUSiON

The challenge to understand and ultimately prevent neonatal 
GBS sepsis comprises (i) the control of GBS transmission dur-
ing and immediately after birth leading to EOD and (ii) the 
sub  sequent control of GBS as a mucocutaneous colonizer, when 
failure results in LOD. Whereas high maternal antibody titers, 
as induced by GBS vaccines, and IAP are established strategies 
to prevent EOD, similar strategies with proven efficacy for LOD 
reduction are missing. Based on experimental and observa-
tional evidence, it seems worth considering—and thus requires 
careful studies—whether antibiotic pressure during primary 
colonization of the intestine facilitates dysbiosis on the strain 
level and transient immunodeficiency in the individual child. 
Furthermore, capsular polysaccharide based vaccines may select 
for serotype-switched virulent strains as observed with ST-17 
and allow for the expansion of other β-hemolytic streptococci 
than GBS.

The vast recent gain in knowledge on the coevolution of 
microbiome and cellular barrier defense make the design of novel 
approaches for neonatal sepsis prevention conceivable, although 
much preclinical work remains to be done first. Examples are 
designer probiotics, containing—among others—strains which 
occupy the streptococcal niche without risk of invasion. Immu-
nomodulators that accelerate the maturation of the phagocyte 
population resident at mucocutaneous sites may be another 
strategy that holds potential. Yet, the variable conditions and 
demands at the beginning of life, e.g., that of very preterm infants 
or those requiring antibiotic therapy early on, make one-fits-all 
solutions to the neonatal sepsis conundrum unlikely and rather 
ask for individualized approaches.
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Background: Group B Streptococcus (GBS) is a major cause of mortality and mor-
bidity in infants and is associated with transmission from a colonized mother at birth 
and via infected breastmilk. Although maternal/infant colonization with GBS is common, 
the majority of infants exposed to GBS remain unaffected. The association between 
breastmilk immune factors and infant colonization and disease prevention has not been 
elucidated.

Objectives: We have investigated the association between SIgA and cytokines in 
breastmilk and infant GBS colonization and clearance.

Methods: Mother/infant GBS colonization was determined in a prospective cohort of 
750 Gambian mother/infant pairs followed to day 89 of life. Anti-GBS secretory IgA 
bound to the surface of whole bacteria was assessed by flow cytometry and a panel 
of 12 cytokines quantified by mesoscale discovery in colostrum, breastmilk and serum.

results: Compared with infants receiving low anti-GBS SIgA in colostrum, infants 
receiving high anti-GBS SIgA were at decreased risk of GBS colonization for serotypes 
III and V. Infants colonized at day 6 were twice as likely to receive colostrum with high 
TGF-β1, TNFα, IL10, and IL-6 compared to uncolonized infants. Infants receiving high 
colostral TGF-β1, TNFα, and IL-6 had two-fold enhanced GBS clearance between birth 
and day 89.

conclusion: Our results suggest that the infant GBS colonization risk diminishes with 
increasing anti-GBS SIgA antibody in breastmilk and that key maternally derived cyto-
kines might contribute to protection against infant colonization. These findings might be 
leveraged to develop interventions including maternal vaccination that may reduce infant 
GBS colonization.

Keywords: breast milk, antibody, cytokines, neonatal immunity, microbiome, group B Streptococcus

Abbreviations: GBS, group B Streptococcus; SIgA, secretory Ig A; FI-C, fluorescence intensity; STGG, skim-milk tryptone 
glucose glycerol; ST, serotype; PBS, phosphate buffered saline; BSA, bovine serum albumin.
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inTrODUcTiOn

Given the limited ability of newborns to respond efficiently to 
infectious agents, including at the mucosal surface, there is 
increasing interest in identifying maternal factors that may 
influence protection from infections in the early months of 
life. Neonatal immunity can be influenced by maternal factors 
through transfer of specific antibody across the placenta as well 
as via breastmilk (1). Several studies have shown that breastfed 
infants are better protected from infections of the gastrointestinal 
and respiratory tracts compared to formula-fed infants (2–4). 
The neonatal gut immune system is constantly modulated by 
colostrum and breastmilk, promoting the growth of certain bac-
teria over others and thereby influencing the neonatal immune 
response (1). Evidence now supports a connection between the 
mother’s gastrointestinal tract and the mammary glands via an 
“entero-mammary circulation,” which may play a role in immune 
priming (5).

One of the most important factors in breastmilk is secretory 
IgA (SIgA). SIgA mediates protection via binding to mucosal 
pathogens as well as neutralization of toxins and virulence 
factors. SIgA antibodies can prevent bacterial adhesion by bind-
ing to pili and other adhesins found on the surface of group B 
Streptococcus (GBS) (6, 7).

It is also established that cytokines in breastmilk vary accord-
ing to maternal exposure to bacteria (8). TGF-β, IL-6, and IL-10 
in breastmilk may enable the development and differentiation 
of neonatal cells that produce IgA (9) and are involved in the 
maturation of the neonatal gut immune system (10). It has also 
been shown that TGF-β1 and TGF-β2 in colostrum are positively 
correlated with infant IgA in neonatal serum (11, 12).

Little is known about the impact of cytokines and SIgA in 
breastmilk on bacterial colonization and clearance in general and 
in relation to GBS in particular. We tested the hypothesis that 
SIgA and breastmilk cytokines could influence infant coloniza-
tion and clearance over the first three months of life in a cohort 
of Gambian infants.

MaTerials anD MeThODs

Samples were collected in an urban clinic in The Gambia, West 
Africa as part of a wider study of GBS infection previously reported 
(13). Ethical approval was given by the Gambia Government/
MRC Joint Ethics committee (reference SCC 1350v4).

sample collection
Sample collection and microbiology have been previously 
described (13). Briefly, 750 pregnant women between the ages 
of 18 and 40 years who had a low-risk, singleton pregnancy were 
recruited after giving informed consent. The study excluded 
very preterm (<32  weeks gestation) or very low birth weight 
(<2.0 kg) infants. Colostrum was collected within 12 h of birth 
and breastmilk was collected at day 6 and 60–89 days of life. After 
washing their hands, mothers wiped each breast with an alcohol 
wipe beforehand expressing 2–3 mL of colostrum and 4–5 mL of 
breastmilk. Milk samples were stored on cold packs at 4°C and 

transported to the laboratory within 6 h of collection. The lipid 
and whey layers were separated by centrifugation at 3,200 rpm for 
30 min. The solid lipid layer was removed using a sterile scalpel 
and the whey stored separately in 1 mL aliquots at −70°C.

Midwives or field nurses collected rectovaginal swabs 
(Copan, UK) after cleaning of the perineum when women pre-
sented to the hospital in labor. Infant nasopharyngeal (calcium 
alginate swabs, Sterilin, UK) and rectal swabs (Copan, UK) 
were taken at 4 h of life, on day 6 and at day 60–89. Swabs were 
stored in 5 mL skim-milk tryptone glucose glycerol (STGG) on 
cold packs at 4°C and transported to the laboratory within 6 h of 
collection. The swab in STGG was vortexed briefly before being 
stored at −70°C (13).

Microbiological and Molecular 
Quantification of gBs colonization
The protocol was adapted from the Public Health England (PHE) 
protocol for the pre-incubation of swabs in enrichment broth 
before plating on solid media to enhance the yield of GBS (14). 
Swab samples were processed within 7  days of collection in 
batches of 100. Swabs in STGG were thawed on wet ice and trans-
ported to the microbiology laboratory. Samples were vortexed 
for 10–20  s and 100  µL of vortexed specimen was transferred 
to 2.5 mL Todd Hewitt Broth for 24 h pre-culture at 37°C in an 
atmosphere of 5% CO2. A Colombia Agar plate was divided into 
four segments, and 10 µL of neat suspension and each of three 
1:10 dilutions were dispensed into each of the four quadrants 
and incubated overnight at 37°C in 5% CO2. From the primary 
plate, presumptive beta hemolytic Streptococcus colonies were 
streaked onto a blood agar plate and reincubated at 37°C in 5% 
CO2 for 24 h. Beta hemolytic streptococci appeared colorless or 
gray, about 2  mm in diameter with or without a surrounding 
zone of beta-hemolysis. Streptex® (Oxoid, UK) was used in the 
qualitative identification of GBS. Samples were serotyped using 
PCR as previously described (13).

All infants were exclusively breastfed and all samples were 
collected before feeds to ensure samples were not contaminated 
with oral bacteria.

cytokine Quantification
The concentrations of cytokines IL-1β, IL-2, IL-4, IL-6, IL-10, 
IL-12, IL-13, IFN-γ, TNFα, and TGF-β1 were determined 
in the cord serum, colostrum, and breastmilk of a subset of 
100 randomly selected Gambian mothers and serum from 
their infants at day 60–90, using electroluminescence via the 
Meso-Scale Discovery system and the Proinflammatory Panel 
1 (human) MSD Multi-Spot Kit (MSD, Rockville, MD, USA). 
First, multi-analyte calibrator solution containing recombinant 
human cytokines at known concentrations, which have been 
expressed in E. coli or Sf21 insect cells, was reconstituted using 
the diluent provided. The calibrator was diluted fourfold six 
times to generate a series of seven reference calibrators to which 
unknown serum/breastmilk samples were compared. All serum/
colostrum/breastmilk samples were diluted two-fold in the same 
diluent before addition to the plate. 50 µl of the diluted serum or 
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breastmilk and calibrators were added to each well. Plates were 
incubated at room temperature for 2 h and then washed three 
times with phosphate-buffered saline (PBS) containing 0.05% 
Tween-20. 25 µl of a solution containing detection antibody to 
each cytokine was added to each well. Plates were then incubated 
for a further 2  h at room temperature. After the incubation, 
plates were washed and 150  µl read buffer added. Plates were 
then read using the MESO QuickPlex SQ 120 MSD instru-
ment. Samples below the limit of quantification were allocated 
a value for each cytokine of half the lower limit of detection 
as per manufacturer’s instructions. Details of each lower limit 
of quantification and the associated allocations for analysis are 
found in Table S2 in Supplementary Material. The coefficient of 
variance (CoV) for the assay was 25%.

siga Binding to gBs Bacteria
The assay was adapted from a serological assay described by  
Le Doare et al. (15) which quantified IgG binding to GBS bac-
teria using serum samples. GBS isolates used in this study were 
H092040676 (ST Ia), H092120162 (ST III), and H091780506 
(ST V), which were kindly provided by Professor Androulla 
Efstratiou, PHE, Colindale. 5  µl of the breastmilk sample was 
added to a 96 well micro-titer plate and incubated with 195 µl of 
killed GBS of STs Ia, III, and V diluted to OD 0.05 (at 600 nm) 
in PBS with 2% bovine serum albumin (BSA) for 30 min at 25°C 
while shaking at 900 rpm. After centrifuging at 3,060 g for 5 min, 
excess fluid was removed. The pellet was washed with 200 µl of 
PBS with 2% BSA before centrifuging. The pellets were then re-
suspended in rabbit anti-human SIgA polyclonal FITC antibody 
(BIOSS, Woburn USA) diluted to 1:100 in PBS with 2% BSA. This 
was incubated at 4°C for 20 min. After centrifugation, the pellet 
was washed twice. The final pellet was re-suspended in PBS with 
1% formaldehyde to kill any sample bacteria in the breastmilk 
before SIgA binding was analyzed using a Beckman Coulter Cyan 
flow cytometer with attached Cytek 96 well plate loader (High 
Wycombe, UK) calibrated with Ultra rainbow beads (San Diego, 
CA, USA). A secondary gate was set to 10% of the histogram of 
the bacteria and conjugate wells providing a percentage gated 
value for each of the samples. The percentage gated and the mean 
fluorescence for that population were multiplied together to give 
a fluorescence index (FI). The FI of the conjugate control was 
subtracted from each sample’s mean Fl to remove background, 
non-specific binding. This is referred to as florescence intensity 
(FI-C) (see Figure S1 in Supplementary Material). For the meas-
urement of SIgA deposition, raw data were plotted and used in 
the analysis. Where no antibody deposition was detected, these 
data were given a value of ND and excluded from analysis; all 
samples were run in duplicate and samples were accepted if the 
standard error was < 5%. Over the course of the study, the mean 
SD of FI for zymozan controls was 8,831 (CoV, 31.6%).

statistical analysis and sample size 
calculation
To ensure that the study avoided bias, we followed the statistical 
design of experiments for cluster analysis method (16). Based 

on estimates from the original study in The Gambia [21% 
infants colonized (158/750); 6.5% prevalence of the lowest 
serotype GBS STIa] (13) a sample size of 750 women would 
be required to give at least ten women/5 infants colonized 
with GBS STIa. Five infants for each GBS ST would give 80% 
power to detect a correlation of 70% or greater between GBS 
ST-specific antibody and colonization.

STATA version 12 (StataCorp 2013, California, CA, USA) and 
GraphPad Prism version 6.0 (GraphPad Software Inc., La Jolla, 
CA, USA) were used for statistical analysis. Additional statistical 
support was provided by Fiona Warburton (PHE) who verified 
all statistical analysis.

Potential differences between cytokines in colostrum and 
breastmilk were calculated using the Mann–Whitney U Tests 
or Wilcoxon Rank sum tests. Radar plots were generated to 
demonstrate the distribution of cytokines between colonization 
groups. Odds ratios, adjusted odds ratios, and analysis of variance 
(ANOVA) were calculated to compare groups. Potential differ-
ences in antibody concentrations between colonized and non-
colonized mothers and infants were evaluated by Student’s t-test 
after log transformation of data. Three groups were compared 
(mother colonized/infant non-colonized; mother colonized/
infant colonized; and neither mother nor infant colonized) using 
ANOVA following log-transformation of data. Comparison of 
log-transformed serum FI-C values at day 6 and 60–89 days was 
performed using a paired t-test. Linear regression was calculated 
from log transformed data to determine IgG in serum and IgA 
in breastmilk.

Definitions
Maternal colonization was defined as the identification of a 
GBS-positive rectovaginal swab at time of delivery. Infant 
colonization was defined as the identification of a GBS-positive 
nasopharyngeal and/or rectal swabs at 4 h (birth), day 6 (early 
colonization), or day 60–89. We identified infants colonized 
both at birth and day 6 as the baseline colonization point to 
ensure we captured only true colonization episodes. Infant 
acquisition of colonization was defined as a positive naso-
pharyngeal and/or rectal swab at day 6 and/or day 60–89 when 
the associated swab from the previous visit was negative, and 
loss was defined as a negative nasopharyngeal and/or rectal 
swab when the previous swab was GBS-positive. Persistently 
colonized infants were defined as infants where nasopharyn-
geal and rectal swabs at birth, day 6, and day 60–89 were all 
GBS positive.

resUlTs

The maternal GBS colonization rate was 32% (n = 237), with 21% 
of infants colonized at birth (n = 158), 20% colonized at day 6 
(n = 152), and 7% of infants colonized on day 60–89 (n = 50) 
(13). 680 colostrum and 750 breastmilk samples were available 
for analysis.

We examined the presence of GBS in breastmilk from all 750 
women and found 10 to be GBS colonized in breastmilk.
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relationship between siga in Breastmilk 
and Maternal gBs-colonization status
Overall, 324/680 (47.6%) colostrum samples had detectable 
SIgA against any GBS ST. There was no significant difference in 
SIgA concentration between non-colonized mothers and those 
colonized with STs Ia [GBS + mother FI-C 1300 (1,000–1765) 
GBS-mother 1500 (1000–1886) p = 0.3], III [GBS + 1713 (1,545–
4,837), GBS-1995 (1,798–2,223) (p =  0.3)], or V [GBS +  2089 
(1,883–5,896) GBS-2691 (2,426–2,985) (p = 0.8)].

There was no difference in IgA antibody concentrations 
found between those women colonized in breastmilk and those 
uncolonized.

relationship between siga in colostrum 
and Maternal/infant colonization on Day 6
152 infants [152/680 (22.4%)] were colonized both at birth and 
on day 6 of life. Colonized infants born to colonized mothers 
received colostrum with lower SIgA binding to GBS than any 
other colonization group. Non-colonized infants born to colo-
nized mothers received colostrum with significantly higher SIgA 
than colonized mother/infant pairs for STIII and STV, when 
adjusted for maternal age, maternal weight, maternal anemia, and 
gestation (p < 0.0001) (Figure 1).

siga in colostrum is associated  
with absence of infant colonization  
at Days 60–89
Compared to infants who remained colonized on day 60–89, 
non-colonized infants received higher SIgA concentrations 
against STV in colostrum (p < 0.001). There were no infants who 
remained colonized with STIa and only three infants remained 
colonized with STIII. Infants who cleared colonization between 
birth and day 6 also received colostrum with higher concentra-
tions of SIgA than those infants who remained colonized for STV 
(Figure 1). In addition, non-colonized infants at 60–89 days were 
more likely to have higher antibody concentrations in cord blood 
and in infant serum (p < 0.001). There was a positive correlation 
between SIgA in colostrum and complement-mediated antibody 
deposition in cord blood and in infant serum found in the main 
study (R = 0.67, p < 0.0001) (17).

cytokines in colostrum, Breastmilk,  
and infant serum
Significantly higher concentrations of TNFα, IFNγ, IL-1β, IL-2, 
IL-4, IL-6, IL-10, IL-12, IL-13 (p < 0.0001 for all) were found in 
colostrum in comparison with breastmilk, cord blood, or infant 
serum at days 60–89. Breastmilk had lower concentrations of 
TNFα, IL-1β, IL-6, and IL-13 (p  <  0.0001) than infant serum. 
Low levels of IL-2, IL-4, and IL-12 were found in all samples. 
Associations between cytokines in colostrum, breastmilk, cord 
blood, and infant serum are highlighted in Figure 2.

relationship between cytokines in 
colostrum and early infant colonization
Infants who were still colonized on day 6 of life were more 
likely to receive colostrum with high concentrations of TGF-β1  

[OR 1.45 (1.1–1.9), p  =  0.02], IL-10 [2.8 (1.1–7.5), p  =  0.05], 
TNFα [2.4 (1.1–5.0), p = 0.02], and IL-6 [2.4 (1.2–5.0), p = 0.02]  
than non-colonized infants (Figure  3). Multivariate logistical 
regression adjusted for other cytokines showed that colonized 
infants were more likely to receive colostrum with high concen-
trations of TGF-β, IL-10, TNFα, and IL-6 than non-colonized 
infants [AOR 3.2 (1.8–9.2), p = 0.03]. There was no association 
with any other cytokine at day 6.

relationship between cytokines  
in colostrum and acquisition and 
clearance of infant colonization  
between Birth and Days 60–89
Median concentrations of ten cytokines in colostrum were com-
pared for all four mother/infant groups. As shown in Figure 4, 
infants who cleared colonization between birth and days 60–89 
(n = 27) received colostrum with higher concentrations of TNFα, 
IL-6, and TGF-β1 (p = 0.01) than infants who acquired coloniza-
tion between birth and day 60–89 [AOR 2.4 (1.2–5.0), p = 0.02]. 
Infants who were persistently colonized (n = 7) received higher 
concentrations of IFN-γ in colostrum than infants who acquired 
colonization (n = 28) [AOR 5.1 (2.4–11.0), p < 0.001]. There was 
no association between other cytokines in breastmilk and infant 
colonization at day 60–89 (Figure 4).

DiscUssiOn

The results from our large cohort of mother/infant pairs show for 
the first time that SIgA and key immunomodulatory cytokines 
TNFα, IL-6, IL-10, and TGF-β in colostrum may be associated 
with infant GBS colonization, acquisition, and clearance up to 
3 months of life.

Few studies have focused on the relationship between SIgA 
in breast milk and infant colonization with potential pathogens. 
Given that infant GBS colonization is the pre-requisite for dis-
ease, investigating factors that can reduce infant colonization 
is important, as manipulation of such factors could reduce the 
risk of invasive disease. Our data, obtained using an assay that 
measures SIgA that binds to whole GBS bacteria of STs Ia, III, 
and V, demonstrate that compared to all other mother/infant 
groups, the lowest anti-GBS SIgA levels were found in colonized 
mother/infant pairs. We also show that infants receiving the 
lowest concentration of anti-GBS SIgA in breastmilk were less 
likely to clear GBS colonization. Several studies have investigated 
anti-GBS antibody levels in breastmilk. Lagergard et  al. (1992) 
identified IgA antibodies to CPS type III GBS in 63% of a cohort 
of 70 Swedish women (18), while Weisman and Dobson (1991) 
determined anti-STIa, II or III CPS IgG in a cohort of 46 USA 
women and found levels at approximately 10% of those in mater-
nal serum (19). The most recent study of SIgA was conducted 
by Edwards et al. (2004). The study investigated IgG and IgA in 
breast milk to GBS ST III CPS in 9 colonized and 9 non-colonized 
women with antibody titers less than or equal to 1 µg/mL and 
those greater than 1 µg/mL and also found that detectable levels 
of anti-STIII SIgA in breastmilk correlated with high levels in 
maternal serum (20).
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FigUre 1 | Relationship between SIgA in colostrum and maternal and infant colonization group for STIII and STV. Mean and SD of log transformed florescence 
intensity (FI-C) of SIgA deposition onto the surface of whole group B Streptococcus (GBS) bacteria STIII and STV at day 6 (a,c) and clearance of colonization 
between day 6 and day 60–89 (B,D). STIII (n = 3 persistent, n = 12 cleared colonization, n = 106 non-colonized any serotype) STV (n = 9 persistent colonization, 
n = 33 cleared colonization, n = 106 non-colonized any serotype). *p < 0.05, **p < 0.01, ****p < 0.0001. Table S1 in Supplementary Material outlines the numbers 
in each group by colonizing serotype.
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In line with our own observations, animal models of GBS ST 
Ib and III disease (21–23) demonstrate an association between 
increased SIgA in breastmilk and pup survival. There have 
been few studies of the effect of breastmilk antibody on infant 
colonization, but a small study of breastfed infants challenged 
postnatally with non-pathogenic E. coli demonstrated a reduc-
tion in colonization with high breastmilk SIgA concentrations 
(24), whilst studies of H. influenzae (25), S. pneumoniae (26), 
and N. meningitides (27) demonstrate that increasing antibody 
concentrations in serum are associated with reduced risk of 
pharyngeal colonization with these bacteria. If the same is true 
of SIgA in breastmilk and GBS colonization, then increasing 
maternally derived antibody in breastmilk in conjunction with 
increasing serum antibody through vaccination could interrupt 
GBS colonization and subsequently development of GBS disease.

The highest concentration of SIgA antibody in milk was 
found in mother/infant pairs where the mother but not the 

infant was colonized. This could be explained by the develop-
ment of an immune response in the mother, triggered by a new 
GBS challenge. This antibody is then passed to the infant and 
acts in a protective fashion. Timing of acquisition of maternal 
GBS colonization is likely to be important but our study was not 
able to assess this aspect. The fact that mother/infant pairs who 
remain completely non-colonized also have high concentrations 
of anti-GBS SIgA antibody indicates a long half-life of IgA during 
lactation due to previous colonization, as has been seen in moth-
ers vaccinated with N. meningitidis vaccines (28). Alternatively, 
this could also be due to another cross-reactive antigen that we 
have not identified.

Our finding of the association between TNFα and de novo 
GBS colonization fits with the results of the only other published 
study of breastmilk cytokines and infant disease by Riskin et al. 
(2012). This study analyzed the breastmilk of exclusively breast-
feeding mothers of 31 sick infants under 3  months of age and 
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FigUre 2 | Comparison of cytokine concentrations in colostrum, breastmilk, cord blood, and infant serum. Box-and-whisker plot of concentrations of TNFα, IFN-γ, 
IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, and IL-13 in colostrum, breastmilk, cord, and infant serum in picograms per milliliter (pg/mL). 100 samples were assessed. 
Median and interquartile range is demonstrated. Solid shapes indicate outliers. *p = <0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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demonstrated that increases in TNFα in colostrum were associ-
ated with acute infant disease, whether or not the mother was also 
sick (29). A possible explanation is that colostral TNFα induced 
an increase of MHC class II expression on antigen presenting 
cells (30) and expression of receptors that facilitate transcytosis 
of SIgA into exocrine fluids in the respiratory and gastrointestinal 
tracts to counteract infection (31). In vitro studies have similarly 
demonstrated that increased TNFα was associated with altered 
binding of E. coli in intestinal cells (32). If the same is true with 
GBS, then increased colostral TNFα could reduce GBS binding  
to neonatal gut epithelium and reduce the risk of systemic inva-
sion by inducing IgA at the mucosal surface.

Our observation that early infant colonization was associated 
with increased concentrations of IL-10 and TGF-β might be 

explained by IL-6-driven synthesis of IgM and IgG together with 
TGF-β as part of the maternal immune response to a pathogen 
during active infection, which equally increases IgA synthesis 
from naive B  cells (33). However, it is also possible that the 
cytokines in breastmilk result from local immune activation in 
the mammary glands due to GBS in breastmilk. These hypotheses 
remain speculative at present and future longitudinal studies of 
breastmilk and assessment of function of infant gut epithelial cells 
in response to pathogen challenge would be required to provide 
more insight into this phenomenon.

Our study has several limitations. As cytokines vary within 
and between mothers, our data can only provide a cross-sectional 
snapshot and a larger cohort with longitudinal maternal sampling 
is needed to fully appreciate the implications of these results.  
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FigUre 3 | Cytokine concentrations in colostrum by infant group B Streptococcus (GBS) colonization status at day 6. Box-and-whisker plot of colostrum 
concentrations of TNFα, IL-6, IL-10, and log10 values of TGF-β1 in picograms per mililitre (pg/mL). 65 of the 100 samples had cytokine concentrations above the 
lower limit of detection. Geometric mean and 95% confidence interval is demonstrated. Solid shapes indicate outliers. *p = <0.05, **p < 0.01.
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On average 10 of the 100 samples analyzed for each cytokine had 
levels below the limit of detection of our assay and we have allo-
cated an arbitrary level of half the lower limit of detection into our 
results as the most robust way of dealing with these data. There 
is the possibility that this may introduce bias into our results but 
this is reduced by the analysis of logged data.

Additionally, the data surrounding the associations between 
acquisition and loss of infant GBS colonization do not take into 
account maternal colonization at each time point, as this was only 
measured in mothers at delivery. Maternal colonization is tran-
sient (34) and we cannot be certain that mothers who were not 
colonized at birth did not acquire GBS colonization themselves 
during the study. The collection of repeat rectovaginal swabs 
from the mothers in addition to breastmilk and infant samples 
was beyond the scope of our study. In future studies, it might 
be possible to consent for longitudinal swabbing in order to 
better understand the dynamics between maternal colonization, 
breastmilk SIgA, cytokine production and subsequent infant 
colonization over time.

We did not conduct any analysis of the association between 
cytokines and SIgA antibody and GBS colonization as the com-
plexity of the model and the sample size needed was outside of the 
scope of this study. However, we have demonstrated that infants 
who remained non-colonized received high concentrations of 

SIgA in colostrum and high functional antibody in cord blood 
and infant serum (17), suggesting a role for both systemic and 
mucosal antibody in preventing GBS colonization.

The low numbers of mother/infant pairs colonized with GBS 
STIa and III precluded detailed analysis of these GBS serotypes, 
which are important causes of infant disease in many countries 
and represent two of the serotypes being targeted by the current 
vaccine candidates. The serotype distribution in The Gambia 
is different from that in the USA and Europe, and highlights 
the need to understand GBS serotype prevalence in different 
regions (13).

The lack of standardized protocols available for the measure-
ment of specific SIgA in breastmilk remains a limitation not just 
of this study, but in general, restricting comparison with other 
studies. Going forward, it will be very important for the field 
that assay standardization is undertaken in order to demonstrate 
consistency in our predictions of antibody-mediated protection 
from colonization and disease between studies, particularly when 
assessing novel vaccines against GBS and their potential impact 
on breastmilk factors.

We did not seek to measure cellular or functional mucosal 
immunity as part of our cytokine analysis, therefore the data 
do not offer mechanistic insights into the role of cytokines in 
breastmilk and interactions at the mucosal surface.
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FigUre 4 | Radar plot of cytokine concentration in colostrum by group B Streptococcus (GBS) colonization status by colonization status of infants. Radar plot of 
median cytokine concentration in colostrum in pg/mL from: blue = non-colonized, green = persistently colonized infants, red = infants who acquired colonization 
and purple = infants who cleared colonization between birth and day 60–89. TGF-β values are shown as log10 pg/mL values.

Le Doare et al. Breastmilk Antibody Determine Infant GBS-Colonization

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1269

Finally, we made the assumption that the reduction in 
colonization is due to breastmilk cytokine and SIgA antibody 
concentrations. It is probable that protection from colonization 
at the mucosal surface is more complicated and includes both innate 
and adaptive factors associated with breastmilk (35) or the infants’ 
developing microbiome (1). Measurement of the complexity of 
breastmilk immunity is extremely challenging, as there are few 
methods available and to assess these additional aspects requires 
sophisticated phenotyping of breast milk immune cells. However, 
samples have been stored for a comprehensive proteomic inter-
rogation of breastmilk components and further work is ongoing.

In conclusion, our data support the notion that the risk of GBS 
colonization in infants diminishes as naturally acquired SIgA 
antibody in breastmilk increases as part of the maternal immune 
response to GBS, and that the presence of key cytokines such as 

TNFα, IL10, and TGF-β might further contribute to protection. 
Our findings support the idea that increasing SIgA through 
vaccinating mothers in pregnancy against GBS could have the 
same effect, provided the antibody levels and function induced by 
vaccination are similar or greater than that of naturally acquired 
antibody.
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This study was carried out in accordance with the recommenda-
tions of the MRC Gambia joint research ethics committee with 
written informed consent from all subjects. All subjects gave 
written informed consent in accordance with the Declaration of 
Helsinki. The protocol was approved by the MRC Gambia joint 
research ethics committee SCC1350v4.
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At birth, neonates are particularly vulnerable to infection and transplacental transfer 
of immunoglobulin G (IgG) from mother to fetus provides crucial protection in the first 
weeks of life. Transcytosis of IgG occurs via binding with the neonatal Fc receptor (FcRn) 
in the placental synctiotrophoblast. As maternal vaccination becomes an increasingly 
important strategy for the protection of young infants, improving our understanding 
of transplacental transfer and the factors that may affect this will become increasingly 
important, especially in low-income countries where the burden of morbidity and mortal-
ity is highest. This review highlights factors of relevance to maternal vaccination that may 
modulate placental transfer—IgG subclass, glycosylation of antibody, total maternal IgG 
concentration, maternal disease, infant gestational age, and birthweight—and outlines 
the conflicting evidence and questions that remain regarding the complexities of these 
relationships. Furthermore, the intricacies of the Ab–FcRn interaction remain poorly 
understood and models that may help address future research questions are described.

Keywords: neonatal Fc receptor, placenta, antibody, immunoglobulin G, pregnancy, maternal, vaccination

iNTRODUCTiON

Despite medical advances, infection continues to be a leading cause of neonatal and infant morbid-
ity and mortality worldwide (1). At birth, neonates encounter a wide range of new pathogens and 
have an inexperienced immune system, making them particularly vulnerable to infection (2). The 
transfer of antibodies from the mother to the fetus across the human placenta is central for providing 
immunity in early life. Vaccination in pregnancy is a strategy that aims to protect mother and infant 
by increasing the concentration of maternal vaccine-specific antibody, and thereby the quantity 
transferred to the infant by transplacental transfer (3). This serves to protect the newborn until the 
time of infant vaccination, or until the window period of greatest susceptibility has passed.

In the human placenta, a histological barrier separates the blood in the maternal and fetal circula-
tions. This barrier consists of two layers: the multinucleated synctiotrophoblast and the endothelial 
cells of the fetal capillaries. Wide ranges of substances are transferred, either actively or passively, 
across the placenta from mother to fetus, including the nutrients and solutes needed for normal fetal 
growth and development. Many compounds of low molecular weight (<500 Da) will simply diffuse 
across the placental tissue, whereas substances of very high molecular weight are usually not able to 
transverse the placental barrier (4). One of the exceptions is immunoglobulin G (IgG), which has a 
molecular mass of 160 kDa, yet is actively transported from mother to fetus (5). Of the five antibody 
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classes in humans, IgG is the only one to be transferred across 
the placenta in significant quantities, and this process begins at 
around 13 weeks of gestation (6).

Transplacental antibody transfer occurs via binding with the 
neonatal Fc Receptor (FcRn) in the placental synctiotrophoblast 
(7). A better understanding of mechanisms underlying FcRn-
mediated transplacental antibody transfer, and the factors that 
affect these, is thus crucial for the optimization of maternal 
vaccination strategies, especially for developing countries where 
the burden of maternal and neonatal morbidity and mortality 
is highest (3). This review therefore sets out to summarize our 
current understanding of this field, review factors affecting FcRn-
mediated transport of relevance to vaccination in pregnancy, and 
highlight gaps in our knowledge to direct future research.

THe ROLe OF vACCiNATiON iN 
PReGNANCY

Increasingly, vaccination in pregnancy is being recognized as a 
vital strategy to protect mother, fetus, and infant from infection 
and the associated adverse consequences. A number of vaccines 
are now routinely offered to pregnant women in several coun-
tries, including tetanus, influenza, and pertussis (8). Other vac-
cines may be offered to women in special circumstances (such 
as foreign travel and during outbreaks) and include menin-
gococcus, inactivated poliovirus, and hepatitis A and B. Live 
vaccines are contraindicated in pregnancy. Vaccines currently 
progressing through the vaccine pipeline with a specific indica-
tion of use in pregnancy or pre-pregnancy include respiratory 
syncytial virus (RSV) (9), group B streptococcus (GBS) (10), 
and cytomegalovirus (11). Vaccination in the neonatal period 
is challenging as neonates may mount ineffective protective 
immunity, and the presence of maternal antibodies can blunt 
vaccine responses (2, 12).

Maternal vaccination is a highly effective approach to protect 
infants from infection. Early evidence comes from a study of teta-
nus vaccination in pregnancy in Papua New Guinea in the 1960s. 
Ten percent of infants born to mothers who received either no 
doses or one dose of tetanus developed neonatal tetanus compared 
to 0.57% of infants whose mothers had received three doses (13). 
More recent observational (14) and randomized controlled trials 
(RCTs) (15–17) conducted in both developed and developing 
countries have demonstrated that infants of influenza vaccinated 
mothers were 45–63% less likely to have episodes of proven influ-
enza illness in early infancy (4–6 months of age). Furthermore, 
two of these RCTs showed that influenza vaccination reduced the 
incidence of maternal respiratory illness by 36 and 50.4% (15, 16). 
Maternal vaccination with a pertussis-containing vaccine is now 
routinely recommended in several countries and has been shown 
to be safe and to result in high concentrations of antibody in the 
infant over the first 2 months of life (18–21). Furthermore, mater-
nal vaccination against pertussis has been demonstrated to have 
an effectiveness of over 90% at preventing disease in infants up to 
3 months of age (22–24). Little is known regarding the beneficial 
effects of vaccination in pregnancy on breast-feeding, in which 
the transfer of secretory immunoglobulin A (IgA) antibodies 

serve to protect infants in the first few months of life by bind-
ing and opsonizing pathogenic microorganisms (25). However, 
recent studies have demonstrated that higher concentrations of 
secretory IgA to various diseases exist following maternal vac-
cination (26), with the strongest evidence coming from studies of 
influenza vaccination (27, 28).

Underpinning maternal vaccination is the effective FcRn-
mediated transplacental transfer of vaccine-induced maternal 
IgG. A better understanding of the mechanisms of transplacental 
antibody transfer and the factors that affect this is crucial to opti-
mize maternal vaccination strategies. Factors discussed below 
include IgG subclass, IgG glycosylation, maternal IgG concentra-
tion, maternal disease, gestational age at birth, and birthweight, 
all of which may all affect the protection conferred to the infant 
by maternal vaccination.

igG AND THe FcRn

The human IgG molecule is a heterodimer of two identical 
50 kDa heavy chains and two identical 23 kDa light chains (5) 
(Figure 1A). The heavy chains are of five different classes: μ, γ, δ, 
α, and ε, with four subclasses of γ and two of α. The light chains 
are of two classes: κ and λ (29). Together, the light and heavy 
chains form a Y-shaped structure, consisting of two fragment 
antigen-binding (Fab) arms, which contain the antigen-binding 
site and one crystallizable (Fc) tail region (30). The Fab region 
consists of constant and variable regions of the light chain, con-
stant region 1 of the heavy chain (CH1), and variable region of the 
heavy chain (VH). Constant regions two and three of the heavy 
chain (CH2 and CH3) form the fragment crystallizable (Fc) tail 
region (30). A flexible hinge of disulfide bonds connects the CH1 
and CH2 domains, to allow the Fab arms freedom of movement 
from the fragment crystallizable (Fc) tail. The outward-facing 
part of the interface between the CH2 and CH3 domains is where 
binding with FcRn occurs.

On the basis that whole IgG molecules and the Fc portion of IgG 
pass into the fetal circulation more readily than antigen-binding 
Fab fragments, it was hypothesized in the 1960s that receptors for 
the Fc part of IgG (FcγR) may be involved in the placental transfer 
of IgG (31). A functionally distinct FcγR was first proposed to 
mediate this specific transport of IgG by Brambell (32, 33), and 
this was later established to be the neonatal Fc receptor (FcRn)—
termed as such due to its identification in the gut epithelial cells 
of neonatal rats (34). Its existence was confirmed by further work 
in mice (35, 36), and direct evidence of its involvement in the 
delivery of maternal IgG came from ex vivo perfused placenta 
studies comparing the maternofetal transfer of a recombinant 
IgG1 with that of a variant containing a mutation in the Fc region 
that did not bind to FcRn (37).

The structure of FcRn is unlike other Fc receptors and is 
markedly similar in structure to major histocompatibility 
complex (MHC) class I, with which it shares 22–29% sequence 
homology (37) (Figure 1B). It is a heterodimer consisting of a 
complex of two chains: a polypeptide α-chain (heavy chain) and 
β2-microglobulin (light chain) (38). The heavy (45 kDa) α-chain 
is encoded on chromosome 19 and consists of three extracel-
lular domains (α1, α2, and α3), a transmembrane region, and a 
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FiGURe 1 | Schematic of the structure of human immunoglobulin G (A) and the neonatal Fc receptor (B).
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short cytoplasmic tail. While the α-domains are closely related 
to MHC class I, the transmembrane and cytoplasmic domains 
distinguish FcRn from other receptors of the same class (39). 
The light (12  kDa) chain, β2-microglobulin (β2m), is encoded 
on chromosome 15 and is non-covalently associated with the α3 
domain (38).

The role of FcRn extends beyond its role in placental FcRn 
transport. It is central to the homeostatic maintenance of both 
serum IgG and albumin levels by protecting them from lysoso-
mal degradation and is thereby responsible for their long serum 
half-lives relative to other plasma proteins (40, 41). Furthermore, 
FcRn is increasingly recognized to have a wide role in modulat-
ing humoral and cell-mediated immunity (42). It is involved in 
the bidirectional transcytosis of IgG and IgG immune complexes 
across various human epithelia (43–45), and its expression in 

hematopoietic cells (46, 47) is essential for the enhancement of 
IgG-mediated phagocytosis (48), anti-tumor immunosurveillance 
(49), and the direction of immune complexes to lysosomes in 
dendritic cells in order to facilitate antigen presentation (50, 51).

MeCHANiSMS OF FcRn-MeDiATeD igG 
TRANSCYTOSiS iN THe PLACeNTA

The placenta is a complex organ of which the basic functional unit 
is the chorionic villus (52, 53). Villi are highly branched vascular 
projections of fetal tissue, through which fetal blood flows from 
the umbilical cord. The villi are surrounded chorion, which 
consists of two layers: the outer syncytiotrophoblast (which is in 
direct contact with maternal blood flowing through the intervil-
lous space) and the inner layer of cytotrophoblast progenitor 
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FiGURe 2 | Schematic of the microstructure of the human placental barrier at term (A) and the neonatal Fc receptor (FcRn)-mediated endocytosis of 
immunoglobulin G (IgG) across the placental syncytiotrophoblast (B).
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cells. Under the chorion lies the stroma and the fetal capillaries 
(Figure 2A).

Unlike other FcγRs, the interaction of FcRn with IgG displays 
a strong pH dependence, such that high-affinity binding occurs 
at pH 6.0, but little or no binding occurs at physiological pH 7.4 
(54). This pH-selective binding is key to the effective transport 
of IgG across the synctiotrophoblast of the placenta from the 
maternal to fetal circulation. Various crystallography studies have 
found structural modifications in the FcRn α-chain that might 
contribute to this pH dependence. This characteristic is likely 
mediated, at least in part, via protonation of histidine residues 
(the only amino acid that changes between pH 5.5 and 7.4) at the 
CH2–CH3 domain interface of IgG (54–56). Additionally, thermal 
denaturation studies have shown that the FcRn heterodimer is 
significantly more stable at pH 6 than pH 8 (57).

To be successfully transferred across the placenta, maternal 
IgG must cross the synctiotrophoblast layer, the villous stroma, 
and the fetal vessel endothelium. The mechanisms of FcRn-
mediated IgG trancytosis across the synctiotrophoblast have 
been elucidated by the use of the BeWo choriocarcinoma cell line  
(a model for placental trophoblast) (58) and fluorescence micros-
copy of FcRn-green fluorescent protein-transfected live human 
endothethial cells, which enable analysis of the intracellular 
trafficking of IgG in real time (Figure 2B) (59, 60). These studies 
suggest that IgG is taken up from the extracellular fluid on the 
apical side of the synctiotrophoblast by endocytosis. Within the 
acidic environment of endosomes, IgG binds with membrane-
bound FcRn and is protected from proteolytic degradation by 
lysosomal enzymes. IgG is then transcytosed to the basal cell 
surface, where a return to physiological pH causes dissociation of 
IgG from FcRn. FcRn may then be recycled back to the maternal 
membrane to perform more cycles of transcytosis.

The mechanisms underlying the initial endocytosis of IgG, and 
onward transport of IgG across the villous stroma and the fetal 
vessel endothelium remain somewhat of a gap in our knowledge. 

It is controversial as to whether FcRn is also expressed in fetal 
vessel endothelium. Various studies using immunohistochemical 
staining of placental sections with anti-FcRn antibodies have 
shown a mix of some (61, 62) or no (36). FcRn expression in 
fetal endothelium, and some evidence, points toward alternative 
Fc receptors in the further movement of IgG (63, 64).

FACTORS ASSOCiATeD wiTH CHANGeS 
iN TRANSPLACeNTAL ANTiBODY 
TRANSFeR

How Does the Structure of igG vary 
between Subclasses and How Might This 
Affect FcRn Binding and Transplacental 
Transfer?
Human IgG can be divided into four subclasses (IgG1, IgG2, IgG3, 
and IgG4), named in order of decreasing abundance (65). IgG 
subclasses are over 90% identical at the amino acid level; however, 
each subclass has a unique functional profile. In human serum, 
FcRn prolongs the half-life of IgG1, IgG2, and IgG4 equally. It is 
thought that FcRn does not prolong the half-life of IgG3 in the 
same way, because IgG3 has an arginine at position 435 instead of 
the histidine found at the same position in the other subclasses, 
except for individuals expressing a natural IgG3 variant (H435) 
(66). IgG1 is preferentially transported across the placenta, followed 
by IgG4, IgG3, and IgG2 (37, 67). Placental IgG transport has been 
estimated by comparing cord and maternal concentrations of IgG 
subclasses. These studies have shown that concentrations of IgG1, 
IgG4, and H435-containing allotypes of IgG3 exceed maternal 
levels; however, levels of IgG2 do not (68–70). This suggests that 
the placental transport of IgG2 is significantly less efficient.

One explanation for this difference in placental transport 
relates to the IgG hinge region, as differences in the length 
and flexibility of the hinge region are found in the subclasses.  
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The length and flexibility of the hinge region affects the orientation 
and movement of the Fab arms in relation to the Fc tail (5). The 
relative flexibility differs as follows: lgG3 > lgG1 > lgG4 > lgG2 
(71). IgG2 has been demonstrated to have a uniquely short hinge 
region, comprising 12 amino acids and containing a poly-proline 
double helix, stabilized by four inter-heavy chain disulfide bridges 
(72). This causes the Fab arms to be relatively close to the Fc tail 
and enables its κ isotope, but not λ isotope, to form three disulfide 
isoforms that differ from each other with relation to their disulfide 
bridges in the hinge region (73). It has therefore been postulated 
that one these IgG2κ isoforms may have decreased interaction 
with FcRn and account for the reduced placental transport dis-
played by IgG2. However, recent studies in humans have found 
that FcRn binding does not seem to vary among these different 
disulfide isoforms (74) and that no preference occurs for recycling 
and placental transport of IgG2λ or IgG2k (69).

The question therefore remains over the mechanism underlying 
the reduced placental transport of IgG2 relative to other subclasses. 
One possible explanation relates to recent findings suggesting that 
different proteins are involved in regulating FcRn-mediated IgG 
transcytosis (actin motor myosin Vb and Rab25) and recycling 
(Rab11a), respectively (75). While IgG2 transport through the 
placenta is indeed low, its recycling and half-life extension in the 
adult circulation are even better than IgG1 (69). It is therefore a 
possibility that regulation by these proteins varies depending on 
IgG subclass, but how the stoichiometry of IgG2 may affect these 
intracellular processes requires further study. Another possible 
explanation is that another Fc receptor, FcγRIIb, may play a role 
in modulating transplacental antibody transport (76, 77). A role 
for FcγRIIb might provide a plausible explanation for the reduced 
transport of IgG2 because, unlike other subclasses, IgG2 has almost 
non-existent binding affinity to FcγRIIb (78).

The discrepancy between transfers of different IgG subclasses 
may have key implications for maternal vaccination. IgG2 is 
crucial for the opsonization and killing of polysaccharide-encap-
sulated pathogens and is induced by polysaccharide vaccines 
(69). Conversely, vaccines that contain protein antigens, such 
as tetanus, predominantly elicit production of IgG1 and IgG3. 
Therefore, transcytosis of some vaccine-induced IgG subclasses 
is more efficient than others. Future work to optimize placental 
transfer of IgG2 has the potential to better protect infants against 
important polysaccharide-encapsulated pathogens such as GBS, 
Haemophilus influenzae B (HiB), and Neisseria meningitidis (79).

How Does Glycosylation of igG Affect 
FcRn Binding and Transplacental 
Transfer?
Glycosylation involves the covalent addition of sugar moieties 
(such as fructose, galactose, and sialic acid) to proteins. The 
dynamics and binding affinity of IgG can be influenced by its 
glycosylation (80), and IgG exists in a number of glycosylated 
variants (glycoforms) (81). Both pregnancy and disease may have 
an impact on IgG glycosylation. Pregnancy is associated with 
increased Fc and Fab region galactosylation and sialylation (82). 
Interestingly, pregnancy is also associated with clinical improve-
ment of autoimmune disease (such as rheumatoid arthritis), 

which, as well as infectious disease, is associated with a reduction 
in galactosylation of IgG in human serum (83).

Neonatal Fc receptor binds to the outward-facing part of the 
CH2 and CH3 domains of the Fc region of IgG. The N-glycosylation 
site occupies the inner part of the Fc region at asparagine 297, help-
ing to maintain its quaternary structure and stability [Figure 1A; 
Ref. (84)]. It has therefore been suggested that IgG glycosylation 
may affect the IgG–FcRn interaction and that that there may be a 
preferential placental transport for glycosylated IgG. Supportive 
evidence for the hypothesis of preferential transport of glyco-
sylated IgG comes from studies in the 1990s, which demonstrated 
reduced concentrations of non-glycosylated IgG and higher 
concentrations of galactosylated IgG in newborn infants (85, 86). 
More recently, Dashivets et al. studied enzymatically engineered 
glycosylation variants and showed that deglycosylated IgG1 had 
a slightly diminished binding to FcRn, with digalactosylated IgG 
demonstrating superior binding than monogalactosylated and 
agalactosylated variants (87). Furthermore, in  vivo pharmaco-
logical studies have also shown an impact of the glycan on the 
half-life mediated by FcRn (88).

Evidence to the contrary, however, includes a study by 
Bakchoul et al. that showed agalactosylated IgG was transported 
equally well across the placenta (89). In addition, Einarsdottir 
et al. studied Fc region glycosylation for all IgG subclasses in 10 
pairs of fetal and maternal IgG samples. They demonstrated com-
parable Fc region glycosylation for all IgG subclasses (including 
galactosylation, sialylation, bisecting G1cNAc, and fucosylation), 
suggesting that transplacental IgG transfer does not favor certain 
Fc glycoforms (90). However, another more recent study by the 
same group in 2016 found clear, albeit minor, differences in the 
N-glycosylation profile of IgG between maternal and umbilical 
cord plasma in 42 mother–newborn pairs (91). Levels of galac-
tosylation were slightly higher for cord IgG, with lower levels 
of bisection, sialylation, and sialylation per galactose. Possible 
reasons for the differences observed between studies include a 
IgG subclass-related transport bias (discussed previously), as well 
as the method of measurement, which was at the released glycans 
level in the 2016 study, rather than by analyzing IgG-derived 
Fc-glycopeptides (92). It is therefore possible that it is the quality 
of Ab glycosylation, rather than the total quantity of glycosylation 
that determines transplacental transfer. It is not known how vac-
cination in pregnancy might affect glycosylation of IgG and the 
efficacy of transplacental transfer of vaccine-specific IgG and is an 
area where more research is needed.

How Does Total Maternal igG 
Concentration Affect Transplacental 
Transfer of Specific igG?
It is well established that maternal antibody levels play a role 
in determining transfer efficiency. Neonatal IgG levels usually 
correlate with maternal ones; however, it has been suggested 
that once maternal total IgG levels reach a threshold (>15 g/L), 
FcRn can become saturated (37, 93). IgG must then compete 
for a finite number of FcRn receptors. Unbound IgG molecules 
are subsequently destroyed through the lysosomal degradation 
process within cells. This is supported by African studies showing 
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that reduced IgG transfer ratios were associated with the higher 
maternal total IgG levels (94, 95). Furthermore, a number of more 
recent studies have demonstrated negative correlations between 
maternal IgG levels and placental transfer ratios for both total and 
antigen-specific IgG (96–98).

Very high concentrations of vaccine-specific antibodies could 
potentially result in a reduced proportion of maternal IgG being 
transferred across the placenta to the infant, resulting in a lower 
transplacental transfer ratio. However, the concentration of 
antibody in cord blood is still likely to be significantly higher in 
infants born to vaccinated women compared to infants born to 
unvaccinated women and therefore may not have implications 
for protective infant immunity, and to date, no adverse clinical 
outcomes have been observed.

How Does Maternal Disease Affect the 
Ab–FcRn interaction and Placental 
Transfer of igG?
Maternal Infectious Disease
It is now well established that maternal chronic infection can 
reduce the transplacental transfer of IgG specific to a variety 
of important childhood pathogens, including RSV, measles, 
tetanus, and HiB (37, 99–103). The majority of these studies 
have focused on placental malaria and HIV, which are par-
ticularly prevalent in developing countries and continue to 
exert a significant burden of morbidity and mortality globally. 
These include studies of HIV-exposed but uninfected infants, 
which showed reduced transplacental transfer ratios and lower 
concentrations of specific antibodies than HIV-unexposed 
infants did to HiB, pertussis, pneumococcus, and tetanus at 
birth (104).

The mechanisms behind this reduced transfer are poorly 
understood, and current models remain speculative. Infections 
may impact on IgG transfer directly through infection and 
inflammation of the placenta, or a reduction FcRn-antibody 
binding avidity, or as detailed above, via induction of hyper-
gammaglobulinemia (IgG  >  15  g/L) leading to saturation of 
placental FcRn (105). Studies assessing the impact of infection 
and hypergammaglobulinemia have had a great deal of overlap 
between these populations (>90%), complicating the inter-
pretation of these effects independently (95). One Malawian 
study demonstrated that reduced antibody transfer in placental 
malaria may occur independently of hypergammaglobulinemia 
using multivariate regression analysis (106); however, more 
recent conflicting evidence from Papua New Guinea showed that 
only hypergammaglobulinemia, and not placental malaria, was 
associated with impaired transport of RSV antibody (99). Further 
studies are therefore clearly needed to understand the complexi-
ties of these relationships.

Interestingly, non-pregnant individuals with infectious 
diseases such as HIV have been shown to have significantly 
higher levels of galactose-deficient IgG than healthy controls.  
If glycosylation does indeed impact on the Ab–FcRn interaction 
as discussed above, then this may represent a further possible 
mechanism by which HIV could impact on placental IgG transfer 
and thus the effectiveness of maternal vaccination (107, 108).

Maternal Nutrition and Non-Communicable Diseases
Maternal malnutrition can have adverse implications for the 
neonate, and it has been demonstrated that neonatal immune 
responses may be modulated by the nutrition of a mother during 
gestation (108). One study reported a 14% reduction in antibody 
transfer among malnourished pregnant women compared to 
controls (109); however, the reasons for this are unclear and 
possibly relate to differences in placental size, morphology, and 
vascular development (110, 111). Other studies of micronutrients 
include a recent review of antenatal zinc supplementation that 
did not find significant evidence for the positive effect of zinc on 
antibody transport (112).

Another significant maternal morbidity is diabetes mellitus, 
which can either be pre-existing or gestational and affects 0.2–0.3 
and 2–5% of pregnancies, respectively (113). To date, the effect 
of maternal hyperglycemia on FcRn and IgG transfer remains 
unclear. Stach et al. (98) demonstrated an increased rate of IgG 
transfer in hyperglycemic mothers for all antigens they studied 
(GBS, Klebsiella LPS, and Pseudomonas LPS), as did França et al. 
(114). More recently, De Souza et al. investigated both the transfer 
of IgG and expression of FcRn expression (measured by flow 
cytometry), in normo- and hyperglycemic mothers (115). They 
found that mothers with pre-existing type 2 diabetes had lower 
total levels of IgG, and reduced leukocyte FcRn expression across 
maternal blood, cord blood, and placental samples (collected at 
delivery) compared with normoglycemic mothers. Interestingly 
however, FcRn expression increased with mild gestational hyper-
glycemia. There was no statistically significant difference in total 
IgG levels in newborns between groups of mothers. Differences 
were observed on subclass analysis however, with significantly 
lower transfer of IgG1, IgG3, and IgG4 in women affected by 
diabetes, but significantly higher transfer of IgG3 in women with 
mild gestational hyperglycemia.

This decrease in FcRn expression may explain the reduced 
transfer of some IgG subclasses in mothers with diabetes. 
Furthermore, high levels of glycated IgG have been demon-
strated in the plasma of patients with diabetes, and this may have 
an effect on the avidity of binding with FcRn and its transfer 
across the placenta (116, 117). The question also remains over 
why higher transfer might occur for IgG3 in the context of mild 
gestational hyperglycemia. Hyperglycemia is associated with a 
variety of alterations to placental structure, including increased 
numbers of glucose transporters (118) and a discontinuity in the 
trophoblastic layer (119), which may both facilitate the passage of 
glucose, and possibly some immunoglobulins, across the placenta 
(120). Additionally, greater placental villous capillarization has 
been noted in women with mild gestational hyperglycemia, and 
may facilitate placental transfer of a variety of substances (121).

Another common complication in pregnancy is maternal 
hypertension, affecting 2–3% of pregnancies (122). One study has 
examined the effect of pregnancy-induced hypertension on IgG 
transfer and, interestingly, found that hypertension was associ-
ated was increased transfer of IgG against Klebsiella spp. (98). This 
might be considered paradoxical given the immune-pathological 
damage observed in the placenta of hypertensive women (123).

Clinical trials of vaccination in pregnancy typically enroll 
healthy women, without chronic infections or co-morbidities.  
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As these factors may influence transplacental transfer of antibody 
and therefore the protection afforded to the infant, it is important 
to also design studies, which assess vaccines in pregnancies in 
“real-life” settings, without the extensive exclusion criteria 
applied to early phase clinical trials. These data also suggest that 
optimization of maternal health for the benefit of mother and 
infant is important.

How Does the Ab–FcRn interaction 
Change across Gestation and 
Birthweight?
Placental transfer of IgG occurs in an exponential fashion 
as pregnancy progresses, with minimal transfer in the first 
trimester (6). In the second trimester, the use of cordocentesis 
has demonstrated that fetal IgG rises from roughly 10% of the 
maternal concentration at 17–22  weeks of gestation, to 50% at 
28–32 weeks (124). In the third trimester, the rate of IgG transfer 
rises significantly (particularly from 36 weeks), with the increase 
of fetal IgG concentrations between 29 and 41 weeks of gestation 
doubling that of 17–28 weeks. At term, fetal levels vary, however, 
usually exceed maternal levels by 20–30% (64, 125, 126).

It follows therefore that a reduced transfer of IgG in preterm 
infants compared with term infants has been demonstrated for a 
variety of pathogens (97, 127, 128) particularly for infants born 
at less than 36  weeks of gestation (126). This knowledge has 
significant implications for the optimal timing of vaccination 
in pregnancy and has shaped the development of maternal vac-
cination strategies, reviewed by Calvert et al. (129). In order to 
protect preterm infants, a vaccine would need to be given early 
in pregnancy to ensure sufficient time of transport of IgG to the 
infant. However, later vaccination could be more desirable to 
more closely match the peak antibody response with the peak 
of transplacental transport of IgG to the infant. There remains 
debate in the published literature about the optimal timing of vac-
cination in pregnancy. It is worth noting that, given the increased 
susceptibility of premature infants to serious early-life infections, 
the optimal strategy may require a compromise between giving 
the best protection to term babies, versus protecting all viable 
infants.

Birthweight may also affect IgG transfer, with studies demon-
strating a reduced transfer of antibodies in term low birthweight 
infants (65, 130). Interestingly, on subclass analysis, the reduced 
transfer seen in premature and low birth weight infants has been 
shown to be specific to IgG1 and IgG2, which may in part explain 
the higher susceptibility of premature infants to infections caused 
by polysaccharide-encapsulated pathogens which predominantly 
elicit IgG2 production, such as GBS (97, 127).

It is thought that this change in rate of transplacental 
transfer may partly occur because of increased expression of 
FcRn throughout gestation; however, this is yet to be formally 
demonstrated and our understanding of the evolving expression 
of FcRn remains poor. Whether alternations in the Ab–FcRn 
interaction may also play a role in this effect is unknown. It is 
worth noting that preterm labor and low birthweight are associ-
ated with numerous maternal pathologies, such as gestational 
hypertension, diabetes, and preeclampsia, which may also have 

a direct or indirect effect on placental function and the Ab–FcRn 
interaction. Thus, interpreting their independent effects may 
therefore be challenging.

wHAT MODeLS OF PLACeNTAL 
FUNCTiON ARe CURReNTLY AvAiLABLe 
TO STUDY TRANSPLACeNTAL TRANSFeR 
OF iMMUNiTY?

Over the years, several models of placental function have been 
developed to study the transplacental transfer of substances, 
including IgG. Mouse and rat models have been central to the 
discovery of FcRn (34) and have provided useful insights into 
the possible mechanisms of FcRn-mediated IgG transfer in situa-
tions where human studies are considered invasive or impractical 
(131). However, they differ from humans in many key features 
including levels of FcRn expression (132), immunological func-
tion (133), and placental anatomy (77). Another major model 
has been paired maternal–cord samples, which have been used 
widely and offer the possibility of comparing blood samples from 
the mother at the time of delivery with umbilical cord blood. The 
ratio of cord:maternal antibody concentration has been used as a 
proxy for placental transport (104).

In addition, several ex vivo and in vitro placental models are 
available to study transplacental transfer at a more mechanistic 
level. The cell line most commonly used is the choriocarcinoma-
derived BeWo (b30) cell line, which can be cultured to form 
polarized, confluent monolayers with tight junctions for use in 
directional transport studies. These trophoblast cells serve as 
an in vitro model of the rate-limiting barrier of maternal–fetal 
exchange and can be used to study placental metabolism and 
transport of numerous substances, including IgG (134–136). 
BeWo cells also demonstrate hormone secretion properties and 
characteristics of third trimester trophoblasts; however, the model 
lacks connective tissue and fetal endothelium, which are present 
in the in vivo human placenta. Also, as single cytotrophoblast cells 
with tight junctions, they do not fully recapitulate the multinu-
cleate syncytiotrophoblast, which is the cell type in contact with 
maternal blood. Forskolin treatment has sometimes been used, as 
it can induce fusion of BeWos to form syncytia (137). However, 
this fusion is variable and never reaches 100%, so is unable to 
create a complete syncytiotrophoblast barrier for transfer studies. 
Culture of isolated primary term cytotrophoblasts, which differ-
entiate in culture to model syncytiotrophoblasts can be employed 
to overcome this issue (138).

The gold standard for placental transfer studies is the placental 
perfusion model. For this, a term placental cotyledon is cannu-
lated and re-perfused to model the fetal and maternal circulations, 
enabling the study of the placental transfer of a chosen substance 
(139). Compared to placental transfer in  vivo, this model is 
obviously simplified and does not take into account some of the 
possible maternal/fetal physiological variables. It does however 
offer the best technique to study the transplacental exchange of 
substances across the intact human placenta (134, 140).

The BeWo and placental perfusion models have shown good 
comparability in studies comparing the transport of different 
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compounds across the placenta in terms of rank order; however, 
the transfer rate is much slower in BeWo cells (141, 142). This 
could be due to the higher pressure and flow in the circula-
tion pump setup of the perfusion model, and while the BeWo 
cell monolayer can be placed on a shaking plate to create flow, 
this is not in the same magnitude as the placenta and there is 
a lack of hydrostatic pressure on the fetal side (140). Also, as 
mentioned above, the BeWo is a cytotrophoblast model, not a 
syncytiotrophoblast model, and thus, uptake rates and receptor 
expression may differ. Despite its limitations, the BeWo model 
is far less technically challenging to perform than the perfusion 
model, which requires very rapid access to fresh placenta samples 
and has a high failure rate (134). It therefore may present a useful 
first-step model for those wishing to investigate placental trans-
fer, before progressing to the more complex placental perfusion 
model, particularly for the study of inter-individual differences or 
disease states (139, 143).

One other consideration is that both the BeWo model and 
the placental perfusion models only enable the modeling of 
term placenta. This represents a gap in our knowledge, particu-
larly as maternal vaccines are often given in the first and second 
trimester. One way to overcome this issue could be through 
the use of the placental explant model. For this, small placental 
villous explants are dissected and cultured in vitro. This model 
can be performed with placental tissue of any gestation and 

thus is a commonly used model for early placental function, as 
samples are obtainable from termination of pregnancies. The 
explant model enabled the first demonstration of Zika virus 
infection of the first trimester placenta in vitro (144) and has 
been used to investigate placental uptake of other substances, 
including glucose (145), amino acids (146), and exosomes 
(147). The explant model has not been extensively used for 
antibody investigations, except for in the study of antiphos-
pholipid antibodies (148); this is likely due to the fact that it 
does not fully model maternal to fetal transfer. Nevertheless, 
the ability to demonstrate uptake into intact human placental 
tissue from across gestation could provide useful information 
regarding maternal antibody uptake and interaction with the 
FcRn throughout pregnancy, both requisite steps for transfer of 
antibody to the fetus.

CONCLUSiON

Since its first identification in 1989, it has become increasingly 
apparent that FcRn plays a lifelong role in immunity. Importantly 
for neonates, FcRn is crucial for establishing humoral immunity 
via transplacental IgG transfer, and this exciting research field 
continues to expand.

This review has highlighted a number of factors that may affect 
the effective FcRn-mediated transplacental antibody transfer, 

FiGURe 3 | Conceptual diagram of the factors that may modulate placental antibody transfer of relevance to maternal vaccination.
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Pertussis Maternal immunization: 
narrowing the Knowledge gaps  
on the Duration of Transferred 
Protective immunity and on 
Vaccination Frequency
María Emilia Gaillard, Daniela Bottero, María Eugenia Zurita, Francisco Carriquiriborde, 
Pablo Martin Aispuro, Erika Bartel, David Sabater-Martínez, María Sol Bravo,  
Celina Castuma and Daniela Flavia Hozbor*

Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas,  
Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina

Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody 
transfer are well documented, but information on infant protection from pertussis by 
such antibodies and by subsequent vaccinations is scarce. Since mice are used exten-
sively for maternal-vaccination studies, we adopted that model to narrow those gaps 
in our understanding of maternal pertussis immunization. Accordingly, we vaccinated 
female mice with commercial acellular pertussis (aP) vaccine and measured offspring 
protection against Bordetella pertussis challenge and specific-antibody levels with or 
without revaccination. Maternal immunization protected the offspring against pertussis, 
with that immune protection transferred to the offspring lasting for several weeks, as 
evidenced by a reduction (4–5 logs, p < 0.001) in the colony-forming-units recovered 
from the lungs of 16-week-old offspring. Moreover, maternal-vaccination-acquired 
immunity from the first pregnancy still conferred protection to offspring up to the fourth 
pregnancy. Under the conditions of our experimental protocol, protection to offspring 
from the aP-induced immunity is transferred both transplacentally and through breast-
feeding. Adoptive-transfer experiments demonstrated that transferred antibodies were 
more responsible for the protection detected in offspring than transferred whole spleen 
cells. In contrast to reported findings, the protection transferred was not lost after the 
vaccination of infant mice with the same or other vaccine preparations, and conversely, 
the immunity transferred from mothers did not interfere with the protection conferred 
by infant vaccination with the same or different vaccines. These results indicated that 
aP-vaccine immunization of pregnant female mice conferred protective immunity that is 
transferred both transplacentally and via offspring breastfeeding without compromising 
the protection boostered by subsequent infant vaccination. These results—though 
admittedly not necessarily immediately extrapolatable to humans—nevertheless enabled 
us to test hypotheses under controlled conditions through detailed sampling and data 
collection. These findings will hopefully refine hypotheses that can then be validated in 
subsequent human studies.

Keywords: pertussis, Bordetella pertussis, pregnancy immunization, acellular vaccine, protection
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inTrODUcTiOn

Pertussis or whooping cough is a respiratory disease mainly 
caused by the Gram-negative coccobacillus Bordetella pertussis. 
This disease affects all individuals regardless of age, but with 
higher morbidity and mortality rates among infants that have 
received either no vaccine or an incomplete vaccination schedule 
(1–3). Pertussis has resurged as a major public health concern 
in many countries (4, 5). Until two decades ago, the control of 
the disease was mainly carried out through a vaccination scheme 
consisting in a three-dose primary series, with the first dose 
administered as early as at 6 weeks of life, with subsequent doses 
being completed by 6 months of age (6). In order to accomplish 
the three-dose primary series, two types of vaccines are currently 
available: a whole-cell vaccine based on standardized cultures of 
B. pertussis strains (wP) and an acellular form [acellular pertussis 
(aP)] composed of purified B. pertussis immunogens. Acellular 
vaccines, originally developed to reduce the side effects associ-
ated with wP vaccination (7, 8), have since replaced wP, especially 
in industrialized countries. Unfortunately, the duration of the 
immunity conferred by these two vaccines is not lifelong (9). 
Moreover, recent data indicated that protection from aP vaccines 
wears off faster than that induced by wPs. This weakness in the 
current vaccines together with the lack of optimal vaccination 
coverage and the evolution of the causal agent to greater vaccina-
tion resistance have contributed to the recent rise in pertussis 
incidence and fatalities (10–12). While coverage is improved and 
better vaccines are designed, many countries have added vaccina-
tion boosters beyond the primary doses with the main aim at 
reducing both the disease burden and the incidence in the most 
vulnerable populations.

Maternal pertussis immunization during the third trimester of 
every pregnancy is one of the recent strategies recommended in 
several countries to improve pertussis control in infants (13, 14). 
The reported safety of the acellular vaccine when used during 
pregnancy and the placental transfer of pertussis antibodies from 
mothers to their infants that has been detected argue in favor of 
this strategy (15–17). Nevertheless, the question of whether or 
not this approach is able to effectively protect neonates against 
pertussis and how the transmitted maternal immunity affects 
the protection conferred by subsequent infant vaccination are 
still insufficiently clear. Recently, Amirthalingam et al. reported 
the effectiveness of maternal immunization in preventing infant 
pertussis, as evaluated 1  year after the introduction of the 
maternal-pertussis-immunization program in England in 2012 
(18). Moreover, in the 3 years following its introduction vaccine 
effectiveness against confirmed pertussis has been sustained 
>90% with a vaccine effectiveness against infant deaths esti-
mated at 95% (95% confidence interval, 79–100%). Furthermore, 
the authors reported that the protection conferred by maternal 
immunization was retained in infants who received the first dose 
of the primary series (18). Though all these data are highly prom-
ising and support the successfulness of maternal immunization, 
the reported number of cases in that study was, unfortunately, 
small; and therefore an ongoing assessment is still needed.

The use of animal models has also indicated an effective pro-
tection against pertussis in the offspring of mothers immunized 

during pregnancy. In a primate model (baboons), it was observed 
that both maternal and neonatal vaccinations were found to 
confer protection against the pathogen (19). The authors of those 
baboon experiments suggested that the transmitted maternal 
antibodies alone would be sufficient to confer protection against 
pertussis symptoms. In pigs, protection seems to be related to the 
presence of anti-B. pertussis antibodies in the colostrum (20, 21). 
We need to emphasize here that although in mice a protection 
transmitted to the pups via the placenta has been duly demon-
strated, a transmission via the breast milk cannot be discarded 
since that via has not yet been completely investigated. Oda et al. 
(22) and Quinello et al. (23) reported some data on that topic.

We thus used this mouse model in order to substantially 
enhance our understanding of the efficacy of maternal pertussis 
immunization in the protection of subsequent offspring as well 
as determine the potential interference of maternal immunity 
with the eventual protection of those offspring by the primary 
vaccination against B. pertussis.

MaTerials anD MeThODs

Mice
BALB/c mice (4 weeks old), obtained from the Instituto Biológico 
Argentino SAIC (Biol Argentina), were kept in ventilated cages 
and housed under standardized conditions with regulated day-
light, humidity, and temperature. The animals received food and 
water ad libitum. Day 1 of gestation was determined when vaginal 
plugs were observed. Breeding cages were checked daily for new 
births, and the pups were kept with their mothers until weaning 
at the age of 4 weeks. The animal experiments were authorized 
by the Ethical Committee for Animal Experiments of the Faculty 
of Science at La Plata National University (approval number  
004-06-15 and 003-06-15).

B. pertussis strain and growth conditions
Bordetella pertussis Tohama phase I strain CIP 8132 was used 
throughout this study as the strain for challenge in the murine 
model of protection. B. pertussis was grown in Bordet–Gengou 
agar supplemented with 15% (v/v) defibrinated sheep blood 
(BG-blood agar) for 72 h at 36.5°C. Isolated colonies were replated 
in the same medium for 24 h and then resuspended in phosphate-
buffered saline (PBS: 123 mM NaCl, 22.2 mM Na2HPO4, 5.6 mM 
KH2PO4 in MilliQ® nanopure water; pH 7.4). The optical density 
(OD) at 650 nm was measured and serial 10-fold dilutions plated 
onto BG-blood agar to determine the density of the challenge 
inoculum.

Vaccines
The maternal immunization protocols were performed with the 
three-valent pertussis aP BOOSTRIX® (GSK, GlaxoSmithKline), 
with composition per human dose (HD): pertussis toxoid (8 µg), 
pertactin (2.5  µg), filamentous hemagglutinin (8  µg), tetanic 
toxoid (20 IU), and diphtheria toxoid (2 IU). For all experiments, 
immunization was carried out through the use of a 1/10 HD of 
that vaccine, hereafter referred to as a mouse dose (MD). The 
vaccinations of infant mice were performed with 1 MD of the 
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aP, a commercial wP vaccine (DTP vaccine, PT. BIO FARMA, 
Indonesia), or the B. pertussis-outer-membrane-vesicle-based 
vaccine formulated by us as previously described (24), to be 
referred to as the OMV vaccine.

experimental Protocol
Maternal Immunization and Offspring Protection
Female BALB/c mice (n = 10) were intraperitoneally immunized 
with three doses of commercial acellular vaccine (aP) Boostrix™ 
1/10 HD at days 0 and 14. Before applying the third vaccine, dose 
females were housed with males within the same cage and daily 
checked for pregnancy, when mucosal vaginal plug was detected a 
third vaccine dose was applied. Pregnancy eventually occurs after 
detection of vaginal mucosal plug. Mice couples stayed cohoused 
until the end of the experiment. Non-immunized mice were used 
as negative control of protection. Offspring born to either immu-
nized or non-immunized mothers were intranasally challenged 
with a sublethal dose (106–108 CFU 40 µl−1) of B. pertussis Tohama 
phase I at 21 days of life. Seven days after challenge, mice were 
sacrificed, and their lungs were harvested, homogenized in PBS 
and plated in serial dilutions onto BG-blood agar to count CFUs 
after incubation at 37°C for 3–4 days. At least three independent 
assays were performed.

Passive Immunization through Lactation
To investigate the protection of infant mice by means of pas-
sive immune transfer through lactation; after giving birth, 
aP-vaccinated mothers were separated from their own pups and 
exchanged with non-immunized mothers that had given birth at 
the same time. The changeling pups were then breast-fed by the 
surrogate mothers until weaning at the age of 4 weeks. Finally, the 
mice were infected with B. pertussis and protection assessed on 
day 7 as described above.

Adoptive Transfer
To study protection conferred by passive transfer, pooled serum 
(100  µl) or spleen cells (20–50  ×  106) from mice born from 
non-immunized or immunized dams were transferred intraperi-
toneally to 4-week-old naïve mice. Twenty-four hours later, the 
mice were infected with B. pertussis and protection assessed on 
day 7 as described above.

Effect of Infant Vaccination on Protection  
in Mice Born to Vaccinated Mothers
To study the effect of active immunization of infant mice born to 
vaccinated mothers on protection from subsequent pertussis infec-
tion, the offspring were immunized at 4 weeks of age with an MD 
of the commercial aP, a commercial wP vaccine, or with the OMV 
vaccine. Non-immunized offspring from aP-immunized mothers 
or aP-immunized mice at 4 weeks of age were used as controls. 
Mice were challenged with B. pertussis 2 weeks after receiving the 
vaccine dose and protection assessed on day 7 as described above.

enzyme-linked immunosorbent assay
As we previously described (25), plates (Nunc A/S, Roskilde, 
Denmark) were coated with sonicated B. pertussis Tohama 

phase I (whole-cell lysates), designated Bp, or with the purified 
recombinant pertussis toxin (PTxA), each at 3 µg/ml in 0.5 M 
carbonate buffer pH 9.5, by means of an overnight incubation at 
4°C. The rinsed plates were then blocked with 3% milk in PBS 
(2 h 37°C) and incubated with serially diluted samples of mouse 
serum (1 h 37°C). In the experiments described above, the sam-
ples of blood used were collected from mothers at delivery, from 
mothers and pups at weaning, from mothers and pups before 
pup challenge, and from pups 13 days after immunization. The 
sera were obtained after leaving the blood samples to clot for 1 h 
at 37°C followed by centrifuging for 10 min at 7,000 × g. IgGs 
from individual serum or pooled sera bound to the plates were 
detected after a 2-h incubation with goat anti-mouse-IgG-linked 
horseradish peroxidase (1:8,000 Invitrogen, USA). As substrate 
1.0  mg/ml o-phenylenediamine (Bio Basic Canada, Inc.) in 
0.1 M citrate-phosphate buffer, pH 5.0 containing 0.1% hydrogen 
peroxide was used. ODs were measured with Titertek Multiskan 
Model 340 microplate reader (ICN, USA) at 492 nm, and the OD 
was plotted as a function of the log of the (serum dilution)−1.  
A successful assay produced for each antibody sample a sigmoidal 
curve in this type of plot. The titer of each antibody sample was 
determined from this curve by identifying by GraphPad Prism® 
software the concentration (expressed as inverse of the dilution of 
the antibody) that provokes a half way between the basal response 
and the maximal response.

Of the experimental protocol—it performed in triplicate—one 
representative experiment is presented in Section “Results.”

statistical analysis
The data were evaluated statistically by one-way analysis of vari-
ance followed by the Tukey test post hoc (via the GraphPad Prism® 
software). Differences were considered significant at a p < 0.05.

resUlTs

Maternal immunization and Protection  
of the Offspring against B. pertussis 
infection
To evaluate the protection of the offspring against B. pertussis 
infection through a maternal-vaccine-induced immunization, 
female mice were vaccinated twice with a commercial aP within 
an interval of 2 weeks, then mated with male mice and a third 
aP-vaccine dose administered when a vaginal plug was detected. 
Non-immunized females were mated with male mice at the same 
time to serve as the negative-control dams. Mice born to aP-
immunized (hereafter referred to as Ipups) or non-immunized 
females (hereafter referred to as Cpups, for negative control) 
were challenged (intranasally) with 106 CFUs of B. pertussis at 
4 and 16 weeks after birth (Figure 1A). We observed significant 
differences in the lung B. pertussis bacterial counts between mice 
born to immunized mothers and the negative-control group 
(Figure 1B; p < 0.001). Differences in CFUs of six to seven orders 
of magnitude were detected between the Ipups and the Cpups 
challenged at 4 weeks after birth and of about four to five orders 
of magnitude after challenge at 16 weeks of age. Once again, the 
CFU counts in the Ipups were non-detectable. What is notable, 
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FigUre 1 | Effect of maternal immunization on protection of offspring against Bordetella pertussis infection. (a) Schematic representation of the maternal 
vaccination and challenge protocols. Female mice were vaccinated twice with a commercial acellular pertussis (aP) at a 2-week interval; mated with male mice;  
and when the vaginal plug was detected, a third aP dose was administered. Non-immunized females were mated with male mice at the same time as the 
immunized females. Mice were born 3–4 weeks after the last immunization. Mice born to aP-immunized or non-immunized females (controls) were challenged with 
B. pertussis at 4 and 16 weeks after birth. Mothers and pups were bled at different time points as indicated by the dotted vertical arrows. (B) Short- and long-term 
protection of offspring through maternal immunization. Mice born to aP-immunized (Ipups n = 6, black bars) or non-mmunized (Cpups n = 6, white bars) females 
were challenged with B. pertussis Tohama I at 4 and 16 weeks after birth. The number of bacteria recovered from mouse lungs, expressed as the log10 of CFUs per 
lungs, is plotted on the ordinate for the times after birth in weeks indicated on the abscissa, with the data representing the means ± the SD. The dotted horizontal 
line indicates the lower limit of detection. *p < 0.001 Ipups versus Cpups. (c) The anti-whole-cell-B. pertussis (a-Bp)- and anti-pertussis toxin (a-PTxA)-specific IgG 
titers were determined in the mother and in the offspring at the indicated time points. The titers are expressed as the geometric mean of the data from each group. 
p < 0.001 a-PTxA and a-Bp IgG titers in Ipups at 4 weeks after birth versus those detected at 16 weeks after birth. The results from one representative experiment 
are shown. nd, not detected.
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however, is that the difference found at 16 weeks after birth was not 
as high as after 4 weeks after birth (four to five versus six to seven 
orders of magnitude) probably because of the age of mice since at 
16 weeks mice seem to be less susceptible to pertussis infection 
(Figure 1B; cf. CFUs recovered from Cpups at 4 versus 16 weeks 
of age). As to the antibody titers, we performed a quantification 
of both the anti-whole-cell-B. pertussis (a-Bp) and the anti-PTxA 
(a-PTxA) antibodies in the mothers and in the offspring at the 
times indicated in Figures  1A,C lists the a-Bp- and a-PTxA-
antibody titers detected in the immunized mothers and in their 
offspring. In contrast to the undetectable titers in the Cpups born 
to non-immunized females, significant levels of a-Bp and a-PTxA 
IgGs were present in the serum of the Ipups (Figure  1C). The 
antibody titers in the Ipups were lower at 16 weeks than at 4 weeks 
after birth, although the titers were still high enough to afford 
complete protection against B. pertussis infection (Figure  1B). 
With respect to the time elapsed between the administration 
of the last dose of vaccine to the mother and the evaluation of 
the protective capacity in the offspring, it is important to point 
out that the immunity transferred to the offspring still provided 
protection against B. pertussis infection even for the pups born to 
mothers whose last vaccination was given at up to 5 weeks before 
pregnancy (Table 1).

Another significant result observed in relation to maternal 
vaccination and immune protection of the successive litters was 
that the immunity acquired during the first pregnancy proved to 

be capable of conferring protection to the offspring born in later 
pregnancies (Figures 2A,B). For example, we detected a protec-
tion against B. pertussis infection in the Ipups born in the second 
pregnancy in which the reduction in CFUs recovered from the 
lungs was by more than six orders of magnitude below the levels 
determined in the Cpups (Figure 2B). Moreover, we also detected 
differences of 3.9–5.2 orders of magnitude between the CFUs 
recovered in the Ipups born in the third through the fifth pregnan-
cies and those measured in the Cpups (Figure 2B). Of particular 
interest to us was that the antibody titers against PTxA detected 
in the pups born in the later pregnancies were lower than those 
recovered from the pups born in the earlier ones; but nevertheless, 
as we observed here, those titers were still high enough to protect 
the pups against B. pertussis infection (Figure 2B). In this sense, 
the technique produced a degree of redundancy of protection that 
constitutes a benefit in this model system simulating a clinical 
situation in generating a certain margin of error that would be of 
pragmatic value in the latter circumstance.

Donor Pups for examination of effector 
Mechanisms of Passive immunity Transfer
To evaluate the contribution to protection of the transferred 
maternal antibodies, we performed transfer experiments of 
immune sera from Ipups to naïve mice. As a negative control of 
this protection, an equal volume of non-immune sera (100  µl) 
from Cpups was transferred to groups of five of those naïve female 

148

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 1 | Protection of offspring through maternal immunization before 
pregnancy.

log10cFU/lungs

Time elapsed between the last immunization and 
pregnancy

0 weeks 1 week 2 weeks 5 weeks

Cpups 7.00 ± 0.86 7.52 ± 0.42 7.12 ± 0.54 7.72 ± 0.64
Ipups 1 ± 0.0 1 ± 0.0 1.07 ± 0.15 1 ± 0.0

p < 0.001 Ipups versus Cpups at each tested time.

FigUre 2 | Duration of protective immunity conferred by maternal immunization beyond the first pregnancy. (a) Schematic representation of the maternal 
vaccination and pup-challenge protocol. Female mice were vaccinated twice with commercial acellular pertussis (aP) at a 2-week interval; mated with male mice; 
and when the vaginal plug was detected, a third aP dose was administered. Non-immunized females were mated with male mice at the same time as the 
immunized females. The first birth was 3–4 weeks after the last immunization. Successive births occurred at intervals of 5–8 weeks. Mice born to aP-immunized or 
non-immunized females (the negative controls) were challenged with Bordetella pertussis at 4 weeks after birth. Mothers and pups were bled 1 day before pup 
challenge as indicated by the dotted vertical arrows. (B) Protection conferred to the offspring born in later pregnancies by maternal immunity acquired during the 
first pregnancy. Mice born to aP-immunized (Ipups n = 5) or non-immunized (Cpups n = 5) females were challenged with B. pertussis Tohama I 4 weeks after birth. 
The protection conferred to the offspring through maternal immunization during the first pregnancy was estimated by determining the number of bacteria recovered 
from mouse lungs. The bacterial counts expressed as the log10 of CFU per lungs, is plotted on the ordinate as a function of the number of births after the initial 
delivery indicated on the abscissa. *p < 0.001 Ipups versus Cpups. The anti-pertussis toxin (a-PTxA) IgG titers in the mothers and the offspring determined at the 
time of challenge are listed below the abscissa. The titers are expressed as the geometric mean of the data from each group (n = 5). p < 0.001 a-PTxA IgG titers in 
Ipups from the first and second deliveries versus those detected in Ipups from the third through the fifth deliveries. The results from one representative experiment 
are presented.
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BALB/c mice. Twenty-four hours after transfer, all the mice were 
infected with a sublethal dose of B. pertussis and sacrificed 7 days 
later to determine the number of CFUs in the lungs. Transfer of 

100 µl of sera from Ipups either with high titer (sera from pups 
from the first and second deliveries, the earlier pregnancies) or 
with low titer (sera from pups born from the third through the 
fifth deliveries, the later pregnancies) was found to confer pro-
tection (Figure 3). A reduction of 2.76 logs or 1.17 logs in CFU 
counts was detected relative to the control group (Figure 3) in 
the mice thus passively immunized with a high and a low titer of 
immune sera, respectively (p < 0.05).

Similar transfer experiments were also performed with spleen 
cells removed surgically from Ipups born from the earlier deliver-
ies and injected into naïve mice, with the spleen cells from non-
immunized mice being used as a negative control for protection. 
One day after the transfer, the recipient mice were challenged with 
B. pertussis, and 7 days after the challenge the CFUs in the lungs 
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FigUre 4 | Effect of passive immunization through spleen cells collected 
from Ipups on protection from infection. Whole spleen cells (20–50 × 106) 
from Ipups or Cpups (controls) were tested as possible vehicles of immune 
protection by passive transfer to naïve mice. Twenty-four hours after transfer, 
the mice were infected with Bordetella pertussis and sacrificed 7 days later to 
determine the CFUs in the lungs. Ipup-recipients were used as a positive 
control. In the figure, the number of bacteria recovered from the mouse 
lungs, expressed as the log10(mean CFUs ± SD of per lungs), is plotted on 
the ordinate for each of the spleen-cell-recipient groups (n = 7) indicated on 
the abscissa. The dotted horizontal line marks the lower limit of detection. 
*p < 0.05 Ipups versus both spleen-cell recipient groups.

FigUre 3 | Effect of passive immunization on protection through sera 
collected from Ipups. Pooled sera from either early pregnancy Ipups with high 
anti-pertussis toxin (a-PTxA) titer or late-pregnancy Ipups with low a-PTxA 
titer were tested by transfer to naive (Cpup n = 5) female mice. Pooled sera 
from Cpups transferred to naive female mice were used as negative control 
of protection. Twenty-four hours after transfer, the mice were infected with 
Bordetella pertussis and sacrificed 7 days later to determine the CFUs in the 
lungs. In the figure, the number of bacteria recovered from mouse lungs, 
expressed as the log10 of CFUs per lungs, is plotted on the ordinate for each 
of the two serum-donor groups (early- and late-pregnancies) indicated above 
the bars. *p < 0.05 Ipup serum versus Cpup serum. The IgG a-PTxA titers 
are listed for each pool below the abscissa (nd, not detected).

Gaillard et al. Pertussis Maternal Immunization

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1099

of the recipients were counted. In this instance, no significant 
difference was found between the control group and the group 
injected with spleen cells from the Ipups (Figure 4).

Passive immunization through lactation
We also evaluated passive immunization through lactation. To 
achieve this aim, pups born to immune mothers (Ipups) were 
fostered to non-immune mothers (Ipups–Cmother), and pups 
born from control mothers were fostered to immune mothers 
(Cpups–Imother). Ipups breast-fed by their immune mother 
(Ipups–Imother) and Cpups breast-fed by their non-immune 
mother (Cpups–Cmother) were used as the respective positive and 
negative controls. After all the pups were suckled for 21 days, the 
pups’ sera were collected to analyze the titers of a-PTxA and a-Bp 
IgGs before B. pertussis challenge. Pups were then challenged with 
a sublethal dose of B. pertussis to analyze the protection against 
infection. Through this experimental protocol and the resulting 
assays, we detected that pups from the Ipups–Imother and Cpups–
Imother groups exhibited high titers of a-PTxA and a-Bp IgGs 
(Figure 5A) and also possessed a high degree of protection against 
B. pertussis—i.e., a reduction in the CFUs recovered from the lungs 
by more than six orders of magnitude (Figure 5B). In contrast, pups 
from the group Ipups–Cmother contained low titers of a-PTxA and 
a-Bp IgGs and retained a low degree of protection. The lowest titers 
of a-PTxA and a-Bp IgGs and degrees of protection were detected 
in the pups from the Cpups–Cmother group (Figures 5A,B).

effect of infant Vaccination in Mice Born 
to aP-Vaccinated Mothers on Protection
To evaluate the possible interference of maternal immunization 
with subsequent infant immune boosting, offspring born to 
aP-vaccinated mothers, upon weaning from their mothers, were 
split into four groups at 4 weeks after birth. Three groups were 
treated with a single dose of either the aP vaccine, a commercial 
wP vaccine, or the OMV vaccine (Figure 6A), while the remain-
ing group was left untreated. Cpups that received one dose of 
the aP vaccine at 4 weeks after birth were also used as control. 
Two weeks after vaccination of the infant mice, the antibody 
titers to PTxA were measured. We observed that the titers in 
aP-vaccinated Cpups (given a single dose) were slightly higher 
than those detected in the non-vaccinated Cpups. In the mice 
born to aP-vaccinated mothers (i.e., the vaccinated Ipups), the 
titers detected after vaccination with any of the three vaccines 
tested were lower than those quantified in Ipups left untreated 
(blunting effect) (Figure  6B). Moreover, that the titers in the 
non-vaccinated Ipups were higher than those detected in the 
vaccinated Cpups was most notable (Figure  6B). All the mice 
in this experiment, including the Cpups used as the negative con-
trol for protection, were then challenged with 106–107 CFUs of  
B. pertussis 2 weeks after the postnatal immunization of the Ipups. 
We observed that at 7 days after challenge, the vaccinated Cpups 
exhibited a reduced bacterial burden in the lungs by 1.5 logs 
(32-fold) compared with the non-vaccinated Cpups (Figure 6C). 
Furthermore, aP vaccination of the infant mice born to vacci-
nated mothers did not interfere with the maternally transmitted 
protective immunity, as evidenced by a comparable reduction in 
the CFUs detected in the lungs of approximately 5 logs compared 
with the burden of the non-vaccinated Cpups. In these experi-
ments, we also observed that the immunization of Ipups with 
vaccines of different antigenic compositions from that used in 
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FigUre 5 | Effect of passive immunization through lactation on pertussis protection. Pups born from immune mothers (Ipups) were fostered to non-immune 
mothers (Ipups–Cmother), and pups born from control mothers were fostered to immune mothers (Cpups–Imother). Ipups breast-fed by their immune mother 
(Ipups–Imother) and Cpups breast-fed by their non-immune mother (Cpups–Cmother) were used as the respective positive and negative controls. All the pups 
(n = 6 for each group) were suckled for 21 days. (a) Sera from mothers and pups were collected at different time points to analyze the titers of anti-pertussis toxin 
(a-PTxA) and anti-whole-cell-B. pertussis (a-Bp) IgGs. The titers are expressed as the geometric mean of the data for each group (n = 6). (B) Pups were challenged 
with a sublethal dose of Bordetella pertussis Tohama phase I to analyze protection. In the figure, the number of bacteria recovered from the mouse lungs, expressed 
as the log10(mean CFUs ± SD of per lungs), is plotted on the ordinate for each of the dam-suckling groups indicated on the abscissa. The dotted horizontal line 
marks the lower limit of detection. Two independent experiments were performed. *p < 0.05 for Ipups–Imother and Cpups–Imother versus the other groups and for 
Ipups–Cmother versus Cpups–Cmother.

FigUre 6 | Effect of heterologous mother–pup vaccination on protection against Bordetella pertussis challenge. (a) Schematic representation of vaccination and 
challenge protocols. Female mice were immunized with three doses of commercial aP vaccine on days 0 and 14; mated with male mice; and when the vaginal plug 
was detected, a third aP dose was administered. Four weeks after birth, the offspring received either no vaccine (n = 8) or one dose of the aP, OMV, or wP vaccine 
(n = 8 in each group), as indicated below the abscissas of panels (B,c). Two weeks later, the pups were challenged with B. pertussis and the bacterial burden in the 
lungs measured 7 days after challenge. Pups born to vaccinated or non-vaccinated mothers and receiving no postnatal vaccine served as controls. The pups (n = 5 
for each group) were bled and the anti-pertussis toxin (a-PTxA) IgG titers determined 1 day before the challenge as designated by the dotted vertical arrow.  
(B) The titers, plotted on the ordinate, are expressed as the geometric mean of the data from each group specified on the abscissa. *p < 0.05 pups born to 
immunized mother versus others groups, and the nd signifies not detected. (c) In the figure, the number of bacteria recovered from the mouse lungs, expressed as 
the log10(mean CFUs ± SD per lung), is plotted on the ordinate for each group indicated on the abscissa. *p < 0.05 for negative control versus other groups, and 
aP-immunized pups born to non-immunized mother versus others groups. The dotted horizontal line marks the lower limit of detection. Of the three independent 
experiments that were performed, the results from a single representative one is presented.
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the maternal immunization reciprocally did not interfere with the 
maternally transmitted protective immunity since after postnatal 
vaccination with either a commercial cellular vaccine (wP) or our 

previously designed OMV vaccine the protection conferred was 
similar to that seen in infant mice born to aP-vaccinated mothers 
with or without postnatal aP vaccination (Figure 6C).
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DiscUssiOn

The vaccination of women with aP during pregnancy is expected 
to provide infants with a certain degree of protection from 
pertussis until they are old enough to be vaccinated themselves. 
Because of this strategy and the data reported on its safety, the 
Advisory Committee on Immunization Practices (ACIP) recom-
mended in 2011 that unvaccinated pregnant women receive a 
dose of tetanus toxoid, reduced diphtheria toxoid, and aP vac-
cine (26). In an effort to reduce the pertussis burden in infants, 
in 2012, the ACIP recommended the use of aP during every 
pregnancy (27). In their publication of August 2015, the WHO 
stated that they considered the vaccination of pregnant women 
to be most likely the greatest cost-effective additional strategy 
for preventing disease in infants too young to be vaccinated, 
with that approach appearing to be more effective and favorable 
than the so-called cocooning tactic, the vaccination of adults 
in close contact with infants (6). Indeed, WHO recommended 
that the national programs might consider the vaccination of 
pregnant women with one dose of aP administered during the 
second or third trimester or at least 15 days before delivery as a 
control strategy in addition to routine primary infant pertussis 
vaccination either in entire countries, or in other more limited 
settings having a high or increasing infant morbidity and/or 
mortality from the disease. Although the present time is still 
early to assess the definitive effect of implementing this strategy 
on the disease in infants, reports in support of that approach 
have already appeared in the literature (28, 29). In particular, 
several studies evidenced the placental transfer of anti- 
B. pertussis antibodies from aP-vaccinated mothers to their 
infants where the infants born to those immunized mothers had 
a high level of antibodies during their first months of life (28, 29).  
A further report in England related the key observation that 
vaccine effectiveness against laboratory-confirmed pertussis 
had been sustained during the 3  years following the vaccine’s 
introduction in 2012 (18). Also highly significant was the finding 
that the disease incidence in infants less than 3 months of age had 
remained low despite a high persistence in those aged 1 year and 
older (18). In 2017, a retrospective cohort study appeared that was 
designed to evaluate whether or not pertussis-infected infants 
born from 2011 through 2015 whose mothers had received aP 
vaccine during pregnancy had less severe pertussis than infants 
born to unvaccinated mothers. The authors concluded that the 
infants with pertussis whose mothers had been aP-vaccinated 
during pregnancy had a significantly lower risk of hospitalization 
and admission to intensive-care units as well as shorter hospital 
stays (30). Another promising aspect found in the Amirthalingam 
et  al. (18) study was that additional protection from maternal 
immunization was retained in infants who subsequently received 
their first dose in the primary Amirthalingam series (18).

Animal models had been used earlier to obtain information 
about that strategy. Although the data reported once again had 
been scarce, evidence was nevertheless garnered for protection by 
the aP vaccine when used during pregnancy against intracerebral 
infections of B. pertussis and those contagions transmitted by 
aerosols to infant mice (22). In those studies, mice of from 6 to 
10  days of age born to aP-immunized mothers were protected 

against an aerosol challenge with B. pertussis strain 18323. The 
authors ascertained that the protection was transferred from the 
dams to their offspring first through the placenta and then through 
the milk (22). More recently, Feunou et al. (31) confirmed that 
maternal immunization protected the offspring against B. pertussis  
challenge; but in their experimental paradigm, the protection 
waned and was eventually lost after the postnatal vaccination of 
the infant mice with the selfsame vaccine (31).

In the experiments reported here, we used just such a mouse 
model to enhance our understanding of that specific form of 
maternal immunization. In agreement with previous reports, 
we detected that maternal immunization with an aP vaccine—in 
our paradigm, administered in three doses (one being during 
the pregnancy)—led to offspring protection against B. pertussis 
infection (Figure 1). Moreover, we confirmed that the antibody 
levels to B. pertussis and PTxA were accordingly higher in those 
neonates (the Ipups) than in mice born to non-immunized 
females (the Cpups). The antibody titers in the offspring declined 
at 16 weeks relative to the levels at 4 weeks after birth, although 
the titers were high enough to protect the neonates against  
B. pertussis infection. Furthermore, the transferred antibodies, 
but not the spleen cells, from Ipups to naïve mice were sufficient 
to confer protection (Figure 3).

What was interesting to us was the observation that the immu-
nity transferred to the offspring had a protective capacity even 
for pups born to mothers whose last dose of vaccine was given 
some weeks before pregnancy. Moreover, we detected that the 
immunity acquired during the first pregnancy was even capable 
of conferring protection to the offspring born in later pregnan-
cies. We noted that although the titers of antibodies against PTxA 
were low, protection against pertussis in the Ipups born in those 
later deliveries was still significantly elevated (Figure 2B). These 
results, though having been obtained in a murine model, would 
underscore the need to revise the frequency with which human 
maternal immunization should be conducted.

In agreement with Oda et al. (22), we detected that the main 
protection was transferred through colostrum and/or milk. Those 
authors found that challenged infant mice born to mothers immu-
nized with either the aP or the wP vaccine twice before mating 
evidenced the lowest increase in the number of CFUs per lung. 
Moreover, out of eight mice, seven deaths were registered in the 
non-immunized group, whereas five deaths occurred in the trans-
placentally immunized group, but only two in the transcolostrally 
immunized mice (22). In our protocol involving a schedule that 
included the administration of a third aP dose during pregnancy, 
we detected high degree of protection against B. pertussis through 
lactation (Figure 5B). In particular, we detected that the Ipups–
Imother and Cpups–Imother experimental groups exhibited high 
a-PTxA and a-B. pertussis IgG titers (Figure 5A) in combination 
with high resulting protection against B. pertussis infection (more 
than a 6-log reduction in the CFUs recovered from the lungs: cf. 
Figure 5B). The results obtained by Quinello et al., in agreement 
with ours, demonstrated that the pertussis-absorbed serum and 
the colostrum pools protected only 30% of the immunized mice, 
whereas purified IgGs protected some 65% (23). Although IgA 
was not measured in this study or in our work, its presence could 
contribute at least in part to protection. In fact, it was reported 
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that IgA induced by oral or nasally delivered pertussis antigens 
formulated with mucosal adjuvants confers protection although 
at levels not so high than the equivalent parenterally delivered 
vaccines [reviewed in Ref. (32)].

Although the data garnered from our murine model under-
scored the significance of breastfeeding in protecting infants 
against pertussis infection, we must point out that this protection 
could be less substantial in humans since in Homo sapiens the 
majority of the maternal IgG is transferred to the fetus in utero 
during pregnancy (33) and not via the milk.

We also observed that, when infant mice born to aP-immu-
nized mothers (the Ipups) were vaccinated at 3 weeks of age with 
the same aP vaccine or a different one (i.e., a commercial wP 
or the OMV vaccine); the titer of IgG against a-PTx decreased 
(Figure  6B), but the maternally derived protection was not 
reduced upon that subsequent vaccination, regardless of the type 
of vaccine administered. These results seem to be contradictory 
in principle to those reported by Feunou et al., but we must bear 
in mind that those authors applied two vaccine boosters, one at 
7 days and another at 3 weeks of life (31). The blunting effect on 
protection that the authors observed could have resulted from 
the application of those boosters—and particularly the ones per-
formed during neonatal life—at a time when the antibody titers in 
the pups were still high. In contrast, our results are in agreement 
with those observed in humans in whom the protective capacity 
conferred by maternal immunization was retained in neonates 
receiving their first dose of the primary series (18).

Though the use of mouse models to research maternal vacci-
nation is not expected to completely replicate human physiology, 
the results obtained with a model of this design will enable a test 
of the proposed hypotheses under controlled conditions, where 
the forthcoming results can then refine those hypotheses for fur-
ther validation in subsequent human studies. Here, in the present 
mouse model, we have demonstrated that immunization with aP 
during pregnancy or up to 5 weeks prior effectively protects new-
borns against pertussis. Although the titer of maternal antibodies 
in the infant offspring diminishes with time, protection is not 
reduced for at least up until 4 months of age. Moreover, subse-
quent vaccination of the infant mice with the same vaccine or a 
different one from the type used during pregnancy did not affect 
the transferred maternal protection (Figure  6). The potential 

blunting of protection conferred by maternal immunization 
through infant vaccination could be developed depending on the 
antibody levels in the infants. Another important finding here 
described was that maternal-vaccination-acquired immunity 
from the first pregnancy still conferred protection to offspring up 
to the fourth pregnancy. The results presented here reinforce the 
need to continue studying that blunting effect in humans as well 
as to revise the frequency of vaccination in successive pregnancies 
according to the time between each one.
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Vaccination of infants with bacillus Calmette–Guérin (BCG) activates both the innate and 
adaptive arms of the immune response. The antimycobacterial effects of these responses 
most likely account for the ability of BCG to protect against childhood forms of tubercu-
losis (TB). There is also evidence for a heterologous protective effect of BCG vaccination 
against TB-unrelated mortality in low birth weight infants. A possible mechanism of action 
of this effect, the induction of trained innate immunity, has been demonstrated when 
cells from BCG-vaccinated adults are restimulated in  vitro with non-related microbial 
stimuli. Our aim was to examine an extensive panel of secreted immune biomarkers to 
characterize the profile of trained innate immunity in infants. Stimulation of whole blood 
for 48 h was performed 4 months after BCG vaccination, or in control unvaccinated 
infants. Stimulants were lipopolysaccharide; Pam3Cys (P3C); heat-killed Candida albi-
cans, Staphylococcus aureus, Escherichia coli, and a lysate of Mycobacterium tuber-
culosis. Culture supernatants were tested for secreted cytokines and chemokines by 
42-plex bead array and monocytes and natural killer (NK) cells assessed for expression 
of activation markers by flow cytometry. BCG-vaccinated infants displayed increases 
in 11 cytokines and chemokines in response to different non-specific innate immunity 
stimuli: epidermal growth factor (EGF); eotaxin; IL-6; IL-7; IL-8; IL-10; IL-12p40; mono-
cyte chemotactic protein-3; macrophage inflammatory protein-1α; soluble CD40 ligand 
and platelet-derived growth factor (PDGF)-AB/BB. Although each stimulant induced a 
distinct response profile, three analytes, EGF, IL-6, and PDGF-AB/BB, were commonly 
higher after stimulation with Pam3Cys, C. albicans, and S. aureus. Conversely, certain 
cytokines such as interferon gamma-inducible protein-10, IL-2, IL-13, IL-17, GM-CSF, 
and GRO were suppressed in BCG-vaccinated infants, while no increases in TNFα or 
IL-1β production were detected. We did not observe a concomitant, BCG-associated 
change in monocyte surface activation markers in response to non-specific stimuli, but we 
detected a significant increase in CD69 expression on NK cells in response to Pam3Cys. 
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Pam3Cys-induced NK  cell activation correlated with the magnitude of IL-12p40 and 
IL-10 responses to the same stimulant. This study reveals a novel cytokine/chemokine 
biomarker signature of BCG-induced trained innate immunity in infants and the involve-
ment of NK cells in these responses.

Keywords: bacillus calmette–guérin, vaccination, heterologous effects, trained immunity, infants, cytokines, 
chemokines, natural killer

inTrODUcTiOn

Mycobacterium bovis bacillus Calmette–Guérin (BCG) is cur-
rently the only licensed vaccine for tuberculosis (TB). Although 
its protective efficacy against adult pulmonary TB is variable 
(1–3), BCG affords more reliable protection against childhood 
forms of the disease when administered to infants (4). The 
immune mechanisms responsible for this protection are not 
fully understood, although many studies have described BCG-
induced, antigen-specific immune responses that may play a  
part (5–12).

Evidence also exists of a beneficial effect for the BCG vaccine 
against several different diseases and outcomes other than TB, 
including as a therapeutic agent against bladder cancer when 
instilled directly into the bladder (13) and protection against 
all-cause mortality in low birth weight infants (14). These 
effects are heterologous (non-specific) as they do not rely on 
mycobacteria-specific adaptive immune responses. Exactly 
how BCG mediates these effects is not clear, although different 
pathways are probably involved. Non-specific protective effects 
against mortality in low birth weight infants are a result of resist-
ance to pathogenic microorganisms that are responsible for 
death due to neonatal sepsis and respiratory infections (15, 16).  
The immune responses mediating this effect could be either 
heterologous T-cells (i.e., T-cells induced by an epitope from 
one organism but with cross-reactivity to others) or the ability 
of BCG to potentiate the responsiveness of the innate immune 
system to later infections: a biological process termed trained 
innate immunity which represents a de facto innate immune 
memory (17–19). Such a phenomenon is thought to have existed 
for millions of years as acquired systemic resistance in plants and 
also in invertebrates, neither of which have adaptive immune 
systems (17). Several studies have revealed enhancements of the 
neonatal innate immune response to Gram-positive and Gram-
negative infections following previous encounters, mediated by 
different toll-like receptor pathways (20) or initiated by in utero 
inflammatory conditions such as histologic chorioamnionitis 
(21). Studies in adults show that trained innate cells, including 
monocytes and natural killer (NK) cells, appear to be epige-
netically and metabolically reprogrammed to produce increased 
amounts of pro-inflammatory cytokines and display higher 
levels of surface activation markers in response to restimulation 
with toll-like receptor ligands or different whole microorgan-
isms (22–25).

If trained immunity is to provide a mechanism of action for 
the non-specific protective effects of BCG, evidence of trained 
immunity in infants or infant innate cells is needed. The immune 
system of the newborn infant differs from that of the adult in 

its constitution as well as in its propensity to respond to dif-
ferent stimuli; differences that reflect the unique physiological 
challenge of transitioning from the intrauterine environment 
to the outside world where some microorganisms are beneficial 
commensals and some are life-threatening pathogens (26, 27). 
Newborn innate immune responses are characterized by a 
reduced capacity for pro-inflammatory cytokines and dendritic 
cell differentiation and activation, but a greater propensity to 
produce regulatory cytokines (28, 29). More data are needed 
on how these differences impact upon the generation of trained 
innate immunity by BCG.

Our aim in this study was to probe the infant immune response 
to mycobacteria-unrelated stimuli following BCG vaccination for 
potential mediators of trained immunity. We used a multiplex 
bead array approach for the detection of secreted cytokines and 
chemokines from diluted whole blood following stimulation with 
a panel of innate stimuli. The rationale for this was to maximize 
the variety of immune cells available for stimulation as well as the 
potential to detect a broad array of soluble mediators. Our data 
provide a description of previously unreported profiles of trained 
immunity in infants and a role for activated NK cells.

MaTerials anD MeThODs

study Participants and sample collection
Healthy, UK-born infants were recruited following ethical approval 
from the National Research Ethics Service Committee London-
East (11/LO/0363) and from the Ethics Committee of the London 
School of Hygiene and Tropical Medicine (ref. 4068). Written 
consent was obtained from parents prior to recruitment. Infants 
were recruited from two regions of South East England: Redbridge, 
where a single dose of intradermal BCG (BCG Vaccine Danish 
Strain 1331, Staten Serum Institute, Copenhagen, Denmark) was 
administered to infants at approximately 6 weeks of age in local 
vaccination clinics and West Essex where infants do not routinely 
receive BCG. Heparinized venous blood was obtained 4 months 
post-vaccination or from unvaccinated infants at an age-matched 
time point. This exploratory study was part of a larger study (11) 
and 4-month post-vaccination samples available were n  =  11, 
vaccinated infants; and n = 10, unvaccinated infants for Luminex 
analysis and n = 10 and n = 8, respectively, for flow cytometry 
analysis.

Diluted Whole Blood assays for  
cytokine responses to innate stimuli
Venous blood was diluted 1/5 in RPMI 1640 (Invitrogen) 
 supplemented with 2 mM l-glutamine (Invitrogen) and cultured 
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at 37°C for 48 h in 96-well U-bottomed plates in a final volume 
of 200 µl. Duplicate wells were incubated alone (medium only 
negative control) or with the following stimuli: lipopol ysaccharide 
(LPS; 10 ng/ml); (S)-(2,3-bis(palmitoyloxy)-(2RS) -propyl)-
N-palmitoyl-(R)-Cys-(S)-Ser(S)-Lys4-OH, trihydrochloride 
[Pam3Cys; 10 µg/ml]; heat-killed (HK) Candida albicans (C. 
albicans; 106 microorganisms/ml); HK Staphylococcus aureus (S. 
aureus; 106 microorganisms/ml); HK Escherichia coli (E. coli; 106 
microorganisms/ml); and sonicated Mycobacterium tuberculosis 
H37Rv [Mtb lysate; 1 µg/ml end concentration]. Concentrations 
used for each stimulus were optimized in previous experiments.

Tissue culture supernatant harvest  
and Multiplex Bead array assay
After 48  h, plates were centrifuged at 400  g for 5  min. 
Supernatants were removed from duplicate wells, pooled, and 
stored in aliquots at −80°C prior to analysis. Thawed super-
natants were subjected to multiplex bead array analysis using 
the human cytokine/chemokine Milliplex™ MAP 42-plex pre-
mixed kit (Merck Millipore) and following the manufacturer’s 
instructions. The pre-mixed bead set included the following 
panel: IL-1α, IL-1β, IL-1Ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, 
IL-8, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17, 
epidermal growth factor (EGF), eotaxin, Flt-3L, FGF-2, frac-
talkine, G-CSF, GM-CSF, GRO, IFNα2, IFNγ, IP-10, MCP-1, 
MCP-3, MDC, MIP-1α, MIP-1β, platelet-derived growth fac-
tor (PDGF)-AA, PDGF-AB/BB, RANTES, sCD40L, sIL-2Ra, 
TGFα, TNFα, TNFβ, and VEGF. Data were acquired using the 
Biorad Luminex® 100 system and Bioplex Manager Software 
version 6.1 (Biorad).

Peripheral Blood leukocyte (PBl)  
harvest and Flow cytometry
Following the removal of supernatants from diluted whole blood 
assay plates, remaining PBLs were harvested and cryopreserved 
for later analysis. EDTA in PBS (2 mM) was added to assay wells, 
which were incubated at room temperature for 15 min to detach 
adherent cells. Wells were mixed and cells from duplicate wells 
were pooled and then incubated with 10× volume of 1× FACS 
Lysing Buffer (BD Biosciences) at room temperature for 10 min. 
Following red cell lysis, PBLs were pelleted, resuspended in fetal 
bovine serum with 10% dimethylsulfoxide, and cryopreserved in 
liquid nitrogen. For flow cytometric analysis, thawed cells were 
washed in PBS with 0.1% bovine serum albumin and 0.01% 
sodium azide (both Sigma Aldrich) and stained for 30  min at 
4°C with the following antibodies: CD3-BV510 (clone UCHT1); 
CD25-PerCP-Cy™5.5 (clone M-A251); CD56-PE-Cy™7 (clone 
B159); CD206-PE-CF594 (clone 19.2); HLA-DR-BV605 (clone 
G46-6) (all from BD Biosciences); CD11b-FITC (clone ICRF44); 
CD69-PE (clone FN50); CD163-APC (clone eBioGHI/61) (all 
from Affymetrix/eBiosciences); CD14-BV650 (clone M5E2; 
Biolegend). Following a further wash, cells were resuspended 
in PBS with 1% paraformaldehyde for acquisition. Cells were 
acquired using a BD LSR II flow cytometer (BD Biosciences) 
equipped with blue (488 nm), red (633 nm), and violet (405 nm) 
lasers and FACSDiva 6.1.3 software. Compensation was carried 

out using BD™ CompBead Plus compensation particles stained 
separately with each antibody conjugate and fluorescence minus 
one control stains were used to determine the position of pheno-
type and activation marker analysis gates.

Data analysis, Management, and 
statistical analysis
Multiplex bead array data for each stimulation condition were 
background subtracted using values measured in unstimulated 
controls. Background levels of each cytokine/chemokine are 
given in Table S1 in Supplementary Material. Final concentra-
tions below the lower limit of quantitation were adjusted to 
the value of the lowest standard (3.2 pg/ml) and data above the 
upper limit of quantitation were adjusted to the highest standard 
(10,000  pg/ml). The compensation matrix was generated and 
flow cytometric data were analyzed using FlowJo™ 10.2 soft-
ware (FlowJo LLC). Monocytes were gated based on CD14 and 
HLA-DR expression as well as on size and granularity. NK cells 
were gated based on CD56 expression and lack of CD3 expres-
sion (see Figure S1 in Supplementary Material). Multiplex bead 
array data were analyzed using IBM® SPSS® Statistics version 
23 software (IBM Corp.) and Prism 7 for Windows (GraphPad 
Software Inc.). Flow cytometric data were further analyzed using 
a combination of Spice 5.35 (30) and Prism. Statistical com-
parisons between vaccinated and unvaccinated infant groups 
for both multiplex bead array and flow cytometry data were by 
Mann–Whitney U test and correlations were by Spearman’s rank 
correlation coefficient.

resUlTs

infant Bcg Vaccination is associated  
with enhanced cytokine and chemokine 
responses to non-specific innate stimuli
Diluted whole blood from BCG-vaccinated and unvaccinated 
infants was stimulated with a panel of non-specific innate stimuli 
and with a preparation of Mtb lysate. Secreted cytokines and 
chemokines were measured in tissue culture supernatants by 
multiplex bead array after 48 h.

Previous reports described TNFα, IL-6, and IL-1β as the 
characteristic cytokines of BCG-induced trained innate immu-
nity in adults (24, 31). However, when we investigated this 
signature in infants, only IL-6 was significantly increased in 
response to non-specific stimuli. Re-stimulation with the myco-
bacterial stimulant Mtb lystae did produce a significant increase 
in TNFα (Figure 1). As expected, Mtb lystae induced the most 
extensive upregulation of responses in BCG-vaccinated infants 
including 27 cytokines and chemokines that characterize 
both innate and adaptive T-cell responses (Figures  1 and 2; 
Table 1). We detected 11 cytokines and chemokines that were 
significantly increased and 6 that were significantly decreased in 
BCG-vaccinated infants in response to non-specific stimulants 
(Figure  2; Table  1). Each non-specific stimulant induced a 
distinct response profile. For example, increases in 10 cytokines 
and chemokines were detected following Pam3Cys stimulation 
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FigUre 1 | Cytokine profile of bacillus Calmette–Guérin (BCG)-induced trained immunity in infants does not include TNFα or IL-1β. TNFα, IL-6, and IL-1β 
concentrations were measured in tissue culture supernatants after diluted whole blood from BCG-vaccinated (□, n = 11) and unvaccinated (○, n = 10) infants 
was cultured for 48 h with the indicated stimulants. Data shown is background subtracted (unstimulated samples). Wide bars indicate median response; narrow 
bars indicate 25th and 75th percentiles. Responses in vaccinated and unvaccinated groups were compared using the Mann–Whitney U test: **p < 0.01; 
*p < 0.05.
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whereas C. albicans stimulation revealed BCG-associated 
increases in four analytes: EGF, IL-6, PDGF-AB/BB, MCP-3, 
but decreases in four further analytes: IL-2, IL-13, IL-17, IP-10. 
Despite distinct response profiles for each non-specific stimu-
lant, we observed a common signature of increases in EGF, IL-6, 
and PDGF-AB/BB in response to three different stimulants: 
Pam3Cys, C. albicans, and S. aureus.

These data led us to conclude that BCG vaccination of infants, 
in this setting, induces a complex reprogramming of the innate 
immune system to respond mainly in an enhanced fashion when 
exposed in vitro to a panel of heterogeneous, non-specific stimuli. 
For a few cytokines, downregulation of production was observed 
after vaccination. Overall, this effect is consistent with trained 
immunity which is known to be mediated by cells of the innate 
immune system.

nK cell cD69 expression is increased  
in Bcg-Vaccinated infants following  
Pam3cys re-stimulation In Vitro
To determine which innate immune cells were associated with 
altered cytokine and chemokine responses to non-specific stimuli 
in BCG-vaccinated infants, we stained PBLs recovered from 48 h 
diluted whole blood assays for markers of monocyte and NK cell 
phenotype and activation.

Consistent with BCG-associated increases in a broad array 
of cytokine and chemokine responses following Mtb lystae res-
timulation, we also detected concomitant increases in expression 
of CD11b and CD206 on monocytes (Figure  3A). There were 
no significant, BCG vaccination-associated changes to monocyte 
activation markers in response to non-specific stimuli. In addition 
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to its effect on monocytes, Mtb lystae stimulation also induced 
increased surface expression of the activation marker CD69 on 
NK cells (Figure 3B). Although there were no significant changes 
to monocyte activation markers in response to non-specific 
stimuli, BCG-vaccinated infants displayed a significant increase 
in NK cell CD69 expression in response to Pam3Cys (Figure 3B).

Based on these data, we conclude that, accompanying the 
cytokine/chemokine profile of BCG-induced trained immunity 
in infants, there is a role for activated NK  cells but that their 
involvement depends upon the nature of the restimulating non-
specific ligand.

Pam3cys-induced nK cell activation 
correlates with the secretion of  
il-12p40 and il-10
Pam3Cys is a ligand for TLR2 which is found on the surface of 
NK cells. We speculated that enhanced Pam3Cys-induced NK cell 
activation in BCG-vaccinated infants could be a result of changes 
to the cytokine milieu that this ligand induces (Figure 2) or due to 
intrinsic changes to NK cells following BCG vaccination that alter 
their responsiveness to TLR2-mediated Pam3Cys stimulation or 
a combination of the two. Although the scope of this study did 
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TaBle 1 | BCG vaccination-associated cytokine and chemokine responses induced by specific and non-specific stimuli in 48 h diluted whole blood assays.

stimulation Overexpressed in Bcg-vaccinated infants Median fold 
change

Under-expressed in Bcg-
vaccinated infants

Median fold 
change

Mtb lysate IL-2, IFNγ, IL-13, IL-1α, IP-10, IL-6 >10
Flt-3L, IL-8, IL-1Rα, IL-12p40, IL-10, MCP-3 5–10
MIP-1α, IL-5, TNFα, VEGF, MIP-1β, GM-CSF, IL-7, IL-17, IFNα2, eotaxin 2–5
CD40L, TNFβ, fractalkine, FGF- 2, TGFα 1–2

Pam3Cys IL-10, epidermal growth factor (EGF) 5–10
Platelet-derived growth factor (PDGF)-AB/BB, sCD40L, MIP-1α 2–5
IL-12p40, IL-6, MCP-3, IL-7, eotaxin 1–2

Candida albicans EGF, IL-6, PDGF-AB/BB, MCP-3 2–5 IL-2, IL-13, IL-17, IP-10 0.2–0.5

Staphylococcus aureus EGF, IL-6 2–5
PDGF-AB/BB 1.7

Escherichia coli EGF 2.8 GM-CSF, GRO 0.2–1.0

Lipopolysaccharide IL-8 1.7 GM-CSF, GRO 0.2–1.0

FigUre 2 | Distinct patterns of cytokine and chemokine secretion characterize bacillus Calmette–Guérin (BCG)-induced trained immunity in response to different, 
non-specific stimuli. The concentrations of 42 cytokines and chemokines were measured in 48 h, diluted whole blood assay supernatants using multiplex bead array. 
(a) Heat maps represent the vaccination effect [the log2 median fold change in analyte concentration in the BCG-vaccinated infants (n = 11) compared to unvaccinated 
infants (n = 10)] on the indicated cytokine/chemokine responses to different stimuli: ML, Mtb lysate; LPS, lipopolysaccharide; EC, E. coli; P3C, Pam3Cys; CA, C. 
albicans; SA, S. aureus. (B) Volcano plots represent the vaccination effect on cytokine/chemokine responses to different indicated stimuli which are plotted on the x-axis 
against the −log10 p value on the y-axis (calculated by Mann–Whitney U test comparisons of responses in BCG-vaccinated and unvaccinated groups). Data points 
represent individual cytokines and chemokines. Significant responses of interest are labeled where clarity permits. Horizontal dotted lines represent a p value of 0.05.
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not allow us to address the intrinsic changes hypothesis, we were 
able to look at associations between the magnitude of Pam3Cys-
mediated NK  cell activation and the changes in cytokine and 

chemokine release in response to the same stimulant. Of the 10 
analytes that were significantly upregulated in BCG-vaccinated 
infants in response to Pam3Cys, IL-12p40 and IL-10 secretion 
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FigUre 3 | Bacillus Calmette–Guérin (BCG) vaccination of infants is associated with enhanced natural killer (NK) cell activation in response to Pam3Cys. Following 
48 h, diluted whole blood assay stimulation of samples from BCG-vaccinated (□, n = 10) and unvaccinated (○, n = 8) infants, cell pellets were cryopreserved and 
later analyzed by flow cytometry. (a) Monocytes were identified based on high CD14 and HLA-DR expression as well as on size and granularity (see Figure S1A in 
Supplementary Material) and stained for the indicated markers of monocyte activation and differentiation. Data points represent the fold change in MFI for samples 
incubated with the indicated stimulants compared to unstimulated samples. (B) CD56+ CD3− NK cells were gated (see Figure S1B in Supplementary Material) and 
the expression of the activation markers CD69 and CD25 analyzed. Data points represent the fold change in percent of activation marker expressing NK cells for 
samples incubated with the indicated stimulants compared to unstimulated samples. Responses in vaccinated and unvaccinated groups were compared using the 
Mann–Whitney U test: *p < 0.05; **p < 0.01.
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demonstrated significant correlation with the extent of NK cell 
CD69 expression (Figure 4).

From these data, we conclude that cytokine secretion, most 
notably IL-12, may account at least in part for the TLR2-mediated 
activation of NK cells in BCG-vaccinated infants.

DiscUssiOn

Trained innate immunity has, to date, been demonstrated and 
characterized largely in adults. Isolated PBMC released more TNFα, 
IL-6, and IL-1β when exposed to non-specific innate stimuli 
3  months after BCG vaccination in adults, and monocytes dis-
played higher levels of activation markers (24). Mechanisms of 
trained immunity such as underlying epigenetic regulation and 
shifts in the metabolic pathways used have similarly been revealed 
in vaccinated adults and in adult cellular models in vitro (22, 32). If 
trained innate immunity is to provide a causal link between BCG 
vaccination of infants and non-specific protection against mortal-
ity due to infectious diseases other than those with a mycobacterial 
etiology (15, 16), then a detailed description of the phenomenon 
in infants and infant cells is needed.

In this paper, we have profiled the infant whole blood cytokine 
and chemokine secretome of trained immunity following BCG 
vaccination using a panel of non-specific innate stimuli and reveal 
a differentially expressed signature. A total of 11 analytes were 
overexpressed and 6 under-expressed in vaccinated infants, 
with different innate stimuli inducing distinct combinations of 

response elements: for example, the Pam3Cys-induced response 
included the overexpression of 10 analytes, while S. aureus only 
induced three analytes. Four analytes were overexpressed and 
four under-expressed in response to C. albicans; LPS and E. 
coli each induced one overexpressed and two under-expressed 
analytes. These distinctions most likely reflect the different 
characteristics of the stimuli involved. Two of them, LPS and 
Pam3Cys, are defined biochemical compounds that interact with 
specific pattern recognition receptors: TLR4 and TLR2/1 heter-
odimer, respectively. C. albicans, S. aureus, and E. coli are all HK 
preparations of microorganisms containing complex mixtures of 
pathogen-associated molecular patterns that will interact with an 
array of different pathogen recognition receptors or other innate 
antigen receptors. It has been suggested that different microorgan-
isms act on multiple, distinct TLRs simultaneously in a manner 
likened to the playing of a unique “chord” on a “molecular piano” 
(17) and the different response profiles generated by different 
stimuli described here may be an illustration of that effect.

The pathways by which BCG mediates its training effect in vivo 
are yet to be fully elucidated, although a role for the mycobacterial 
cell wall component muramyl dipeptide, acting via the NOD2 
receptor, has been described (24). β-glucan, another activator 
of trained immunity mediates its effects via a dectin-1/Raf1-
dependant pathway (33), yet the role of dectin-1 in recognizing 
mycobacteria is probably minor at most. The emerging picture 
is one in which the recall of a trained immune response may be 
restimulated via different receptors to those that prime that same 
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FigUre 4 | Correlation between Pam3Cys (P3C)-induced natural killer  
(NK) cell CD69 expression and IL-12p40 and IL-10 secretion. P3C-specific, 
NK cell CD69 expression in samples from bacillus Calmette–Guérin 
(BCG)-vaccinated (□, n = 10) and unvaccinated (○, n = 8) infants were 
plotted against P3C-specific secretion of IL-12p40 and IL-10 in the same 
samples. The degree of correlation was measured using Spearman’s rank 
correlation coefficient.
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response and that the cytokine/chemokine signature of that recall 
is determined by the receptors involved. Although little is known 
at this time about the mechanisms responsible, this should be a 
focus of future studies.

Despite the differences described above, we described here 
a biosignature of BCG-induced trained innate immunity in 
infants comprising increases in EGF, IL-6, and PDGF-AB/BB, 
all of which were apparent in responses to three different innate 
stimuli. This is different to the characteristic signature of trained 
innate immunity in adults, which includes TNFα and IL-1β as 
well as IL-6. It must be however underlined that in adults not all 
the cytokines reported here were measured, and some of them 
may be upregulated as well in older individuals. The absence of 
canonical innate cytokines such as TNFα in this infant biosig-
nature may reflect the maturation of the infant innate immune 

response, whereby the ability to make certain cytokines develop 
over the first 9 months of life (34). Despite the most extensive 
response profile, Mtb lystae stimulation did not upregulate EGF 
or PDGF-AB/BB. This may reflect the involvement of a broader 
array of pattern recognition receptors in response to Mtb lystae 
with downstream effects that manifest themselves as a distinct 
pattern of upregulated and downregulated markers. These 
observations illustrate the importance of an unbiased, multiplex 
approach to analyzing these responses. A more directed study 
focused on TNFα, IL-6, and IL-1β would have underestimated 
the effect of trained immunity in infants and would have missed 
the previously unreported markers EGF and PDGF-AB/BB, as 
well as the finding that C. albicans-induced trained immunity 
recall in BCG-vaccinated infants involves reduced IL-2, IL-13, 
IL-17, and IP-10 responses. It is interesting that IL-17 responses 
to C. albicans are reduced in vaccinated infants. Th-17 cells 
are known to be important in immune responses to C. albicans 
(35). BCG vaccination has been shown to enhance non-specific 
(innate-mediated) protection against candidiasis in SCID mice 
(24) and adult BCG vaccination activates heterologous Th-17 
responses specific for non-mycobacterial ligands including C. 
albicans (31). Our data suggest that BCG is exerting a different 
influence on the infant immune response, steering it away from a 
bias toward Th-17 development that is known to exist in early life 
(36). Detailed analyses of epigenetic and transcriptional programs 
of training or tolerance induction have revealed upregulation 
and downregulation of genes that characterize these responses 
hence it is unsurprising that the profiles we report here involve 
both upregulation and downregulation of different cytokines 
and chemokines associated with both T-cell and inflammatory 
monocyte responses to stimuli such as C. albicans as well as to E. 
coli and LPS which have both been associated with the induction 
of tolerance (37, 38).

In contrast to our findings here, another report of infant BCG-
associated, non-specific cytokine responses described increases 
in TNFα and IL-1β as well as in IL-6 in response to Pam3Cys 
(39). Differences between study designs that might explain this 
difference are that Jensen et al. carried out their study in a low-
income country and in low birth weight infants. In addition, the 
genetic backgrounds of the populations studied were different. 
Their sampling time point of 4 weeks was earlier than that used 
here and there were some methodological differences in their 
whole blood assay. An interesting possible explanation is that, 
unlike Jensen et al., infants in our study had received DTP vac-
cination through the national vaccination program by the time of 
sampling which is thought to negatively affect the positive non-
specific effects of BCG (40). Finally, compared to Jensen et al., 
our study was relatively small and exploratory and was possibly 
underpowered to detect small differences in cytokine responses. 
It should be noted that in agreement with our findings and those 
of others (7), Jensen et al. found no BCG-associated increase in 
TNFα in response to non-specific LPS stimulation.

The involvement of monocytes in adult trained immunity has 
been demonstrated using stimulating ligands that interact with 
receptors known to be found on monocytes and more directly 
by the demonstration that markers of monocyte activation and 
differentiation are upregulated following training (24). It is 
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also possible to isolate adult blood monocytes and train them 
directly with BCG and β-glucan in  vitro (32). Although the 
assay described in this paper was designed primarily to look at 
secreted cytokines and chemokines, it was possible to harvest 
PBLs and to examine monocytes and NK  cells for evidence 
of BCG vaccination-associated trained innate activation. We 
examined four markers of monocyte activation, but found no 
significant differences in their expression following non-specific 
stimulation of samples from vaccinated and unvaccinated infants. 
Stimulation with Mtb lystae, which also induced increases in 27 
cytokines and chemokines in vaccinated infants, did increase 
levels of CD11b and CD207 on the surface of monocytes. Unlike 
responses induced by non-specific ligands in these experiments, 
it is likely that antigen-specific T-cell help is involved in these 
changes in monocyte activation. It is interesting that monocytes 
from BCG-vaccinated infants show increased expression of 
CD207 (mannose receptor), as this is usually found only on 
certain populations of differentiated macrophages and dendritic 
cells (41).

Natural killer cells from BCG-vaccinated infants displayed 
increased levels of the activation marker CD69 in response to 
Pam3Cys, as well as to Mtb lystae. Previous work has described 
long-lived mycobacteria-specific NK cells following infant BCG 
as well as a role for NK cells in BCG-induced trained immunity in 
adults and in BCG-vaccinated SCID mice which show increased 
resistance to C. albicans infection (25, 42). However, this is the 
first time their involvement in trained immunity to heterologous 
stimuli in infants has been described. NK cells express the TLR2 
receptor via which they are reported to interact with mycobacteria  
(43, 44). NK cells are also activated in response to type 1 cytokines 
(45). Although we cannot determine the pathway of NK  cell 
activation from the current data, we did observe a correlation 
between CD69 expression, IL-12p40 secretion, and IL-10 secre-
tion in response to Pam3Cys. IL-12 is known to be a soluble 
activator of NK  cells, while a role for IL-10 is less obvious. A 
limitation of this study was the small volume of blood available 
from infants which meant it was not possible to identify the cell 
type producing the cytokines and chemokines described. Clearly 
it would be interesting to determine whether the NK responses 
described above or other populations were a source, either by 
depletion studies or intracellular cytokine staining and future 
studies should address this. Additionally, as well as stimulation 
of the TLR2/1 heterodimer using Pam3Cys, it would be useful 
in future to determine more precisely the role of TLR2 either in 
homodimeric form or as a heterodimer with TLR6 also using 
specific ligands for these receptors.

This exploratory study was not designed to investigate the het-
erologous effects of infant BCG vaccination on clinical outcomes; 
however, if the non-specific immune responses we describe are to 
provide a mechanism for these effects, a causal relationship will 
need to be demonstrated in a larger study. The setting of such a 
study will need to be carefully considered as to date, the results 
of clinical trials have been mixed. Heterologous, BCG-induced 
protection against clinical outcomes related to infectious disease 
has been observed in a low-income setting in West Africa (15, 46)  
but was not recapitulated in another trial in a high income, 
European setting (47, 48).

In conclusion, we have described a novel whole blood signa-
ture of BCG-induced, trained innate immunity in infants that 
includes secretion of EGF, IL-6, and PDGF-AB/BB and involves 
activated NK cells. We also show distinct patterns of cytokine and 
chemokine release in response to different innate ligands. The 
data show different patterns to previously published descriptions 
of BCG-induced trained innate immunity in adults and low birth 
weight infants and suggest that more, larger scale studies of this 
effect in different populations are required for a more complete 
understanding.
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Only a small proportion of newborn infants exposed to a pathogenic microorganism 
develop overt infection. Susceptibility to infection in preterm infants and infants with 
known comorbidities has a likely multifactorial origin and can be often attributed to the 
concurrence of iatrogenic factors, environmental determinants, underlying pathogenic 
processes, and probably genetic predisposition. Conversely, infection occurring in other-
wise healthy full-term newborn infants is unexplained in most cases. Microbial virulence 
factors and the unique characteristics of the neonatal immune system only partially 
account for the interindividual variability in the neonatal immune responses to pathogens. 
We here suggest that neonatal infection occurring in otherwise healthy infants is caused 
by a failure of the specific protective immunity to the microorganism. To explain infection 
in term and preterm infants, we propose an extension of the previously proposed model 
of the genetic architecture of infectious diseases in humans. We then focus on group B 
streptococcus (GBS) disease, the best characterized neonatal infection, and outline the 
potential molecular mechanisms underlying the selective failure of the immune responses 
against GBS. In light of the recent discoveries of pathogen-specific primary immunodefi-
ciencies and of the role of anticytokine autoantibodies in increasing susceptibility to spe-
cific infections, we hypothesize that GBS disease occurring in otherwise healthy infants 
could reflect an immunodeficiency caused either by rare genetic defects in the infant or 
by transmitted maternal neutralizing antibodies. These hypotheses are consistent with 
available epidemiological data, with clinical and epidemiological observations, and with 
the state of the art of neonatal physiology and disease. Studies should now be designed 
to comprehensively search for genetic or immunological factors involved in susceptibility 
to severe neonatal infections.

Keywords: newborn infant, life-threatening, primary immunodeficiency, genetic predisposition to disease, 
Mendelian diseases, monogenic, infection, group B streptococcus

introdUCtion

Neonates are commonly thought to be vulnerable to pathogens because of neonatal immaturity, 
immune tolerance, or immune deviation, a developmentally regulated transitional state (1–4). These 
concepts, while useful to describe the highest incidence of infection during the neonatal age at the 
population level, do not take into account interindividual variability. Even if the highest incidence of 
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infection is observed during the first 28 days of life, the majority 
of newborn infants are resistant to common pathogens, and only 
a small proportion of infants exposed to a given microorganism 
develop overt disease.

It is very clear from epidemiological studies that multiple risk 
factors contribute to the individual risk of developing neonatal 
infections. Based on them, neonates can be classified into high- 
and low-risk groups; individual risks can be estimated; and 
preventive protocols can be designed for infants who are at high 
risk of suffering from severe infections (5–7).

Despite their proven clinical utility, most preventive protocols 
are only partially effective. This can be explained in part by 
incomplete adherence by healthcare practitioners and missed 
opportunities (8–10). However, another critical limitation is the 
inability of current protocols to accurately predict susceptibility 
to severe infection at the individual level. Furthermore, infections 
that occur in the absence of any recognizable factors are currently 
unpredictable.

Many research groups are focusing on the mechanisms of host 
susceptibility and resistance to pediatric and adult infections  
(11, 12). Conversely, neonatal infections have been much less 
studied from a host susceptibility perspective. Several layers of 
complexity have indeed prevented researchers from fully under-
standing the neonatal-specific protective immunity, beyond 
maternal protection of the neonate through transplancentally 
transmitted antibodies (Abs). Considering the global burden of 
neonatal infectious diseases, this looks like a missed opportunity 
to address a critical public health problem.

The study of neonatal infections raises several practical and 
ethical issues and is challenging from a scientific perspective. 
First, the neonatal immune system is a rapidly evolving entity, as 
is every other organ and system soon after birth (13). Second, and 
possibly more importantly, there is a complex immune interplay 
between the mother and the child. The maternal environment 
(the maternal immune system and microbiome) is intertwined 
with physiological and pathological processes occurring in 
the fetal and neonatal tissues (e.g., the maturation of fetal and 
neonatal immune responses, the composition of the neonatal 
microbiome) (13–17).

To date, little is known about the mechanisms leading to 
individual vulnerability and resistance to specific pathogens in 
the neonatal age. We here propose novel, testable hypotheses 
that could explain the interindividual differences in pathogen 
susceptibility and help dissect the molecular and cellular bases of 
severe neonatal infections.

epideMioLoGy oF neonataL 
inFeCtions

The Global Burden of Disease Study 2015 reports that “sepsis and 
other neonatal infections” account for 336,300 neonatal deaths 
each year worldwide (18).

The distribution of infecting microorganisms varies between 
term and preterm infants and is different in the neonatal period 
compared to other age groups. Early-onset and late-onset infec-
tions are defined as infection occurring during and after the first 

6 days of life, respectively. According to other definitions, 48–96 h 
of life could be used as cutoff (19).

Group B streptococcus (GBS), or Streptococcus agalactiae, 
is one of the leading pathogens in neonatal infections occur-
ring in full-term newborn infants during the first week of life 
(9). It is also the most frequent cause of sepsis and meningitis 
in young infants after the first week of life (20, 21). Recent 
reports show an increase in the proportion of Escherichia coli 
infection, mostly associated with urinary tract infection, in 
previously healthy, full-term infants aged 1 week to 3 months 
(22, 23). Other pathogens responsible for invasive infection in 
full-term infants include Gram-positive (Staphylococcus aureus, 
Streptococcus spp., Enterococcus spp., and, less frequently, 
Listeria monocytogenes) and Gram-negative microorganisms 
(Klebsiella spp., Citrobacter spp., Serratia marcescens, Salmonella 
spp., Haemophilus influenzae) (22, 23). Deep organ infections by 
Candida spp. and other fungal microorganisms are exceedingly 
rare in full-term infants.

In very low-birth-weight (VLBW; <1,500 g at birth) infants, 
Gram-negative pathogens are the most frequently isolated micro-
organism in early-onset infections, while Gram-positive bacteria 
are the most frequently isolated pathogens in late-onset infections 
in the neonatal intensive care units (NICUs), followed by Gram-
negative bacteria and fungal organisms (24–29).

sUsCeptiBiLity to neonataL 
inFeCtions

Maturation of the neonatal immune 
system
The neonatal immune responses differ in many aspects from 
immune responses in other age groups. A fine-tuning is required 
to balance the need for tolerance to beneficial antigens (microbial 
flora and nutrients) and the need for defense against harmful 
microorganisms.

The cord blood is enriched in CD4+CD25+ T regulatory cells 
with potent suppressor activity (30, 31) and other immunosup-
pressive cell populations including some B cell populations and 
CD71+ erythroid cells (32, 33).

Despite this strong immunosuppressive component, the 
neonatal immune system has been demonstrated to be able to 
mount pro-inflammatory responses that are appropriate for the 
protection against common pathogens in most infants (34). The 
two main components of the adaptive immune system, the T and 
B cell compartments, undergo maturation during human fetal 
life, with progressive and regulated acquisition of B and T cell 
repertoire diversity and complexity (35). In addition, the human 
cord blood possesses several pro-inflammatory cell populations, 
including newborn-specific interleukin (IL)8-producing T cells 
(36) and a population of CD4+ T cells with a memory-like phe-
notype and a variety of effector functions (37).

Cells of the neonatal adaptive immune system are capable of 
mounting a wide range of responses, from poor or “deviant” T 
helper 2 (Th2)-skewed antiinflammatory responses to balanced 
Th1/Th2 responses, and even strong adult-like pro-inflammatory 
responses (2–4, 38). A series of elegant experiments have shown 
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that neonatal T cells, unlike adult cells, are able to produce large 
amounts of the Th2 cytokines, IL4 and IL13, upon polyclonal 
stimulation (39, 40). This phenomenon is linked to extensive 
epigenetic modifications at the Th2 locus (IL5, IL13, and IL4 
genes) and in particular to hypomethylation of the conserved 
non-coding sequence 1 locus, an enhancer and coordinate regu-
lator of Th2 cytokine production (38, 41). Despite this Th2 bias, 
neonatal adaptive immune responses can shift toward a dominant 
Th1 and pro-inflammatory response depending on the type of 
innate responses and the conditions of antigen exposure (38, 42).

Adaptive immune responses require, however, several days to 
take place. Neonates cannot rely on preexistent immunological 
memory because exposure to foreign antigens and pathogens is 
limited during intrauterine life (34, 42). Furthermore, humoral 
immunity largely depends on maternally transmitted antimicro-
bial IgG Abs during the first days of life. The rapid decline of 
maternal IgG in the neonatal plasma after birth (with a half-life 
of 21–30 days) is accompanied by a relatively slow maturation of 
both T-dependent and T-independent B-cell responses through-
out the first months of life (13, 43).

Infections occurring in the neonatal period are, by defini-
tion, primary infections, and neonates mostly rely on the innate 
immune responses that provide a first line of defense against 
invading pathogenic microorganisms (34, 44, 45).

A number of studies demonstrated that the neonatal innate 
immune responses are characterized by dampened Th1-polarizing 
and pro-inflammatory responses [low amounts of tumor necrosis 
factor (TNF) upon toll-like receptor (TLR) stimulation] and by 
increased production of Th2-polarizing and antiinflammatory 
cytokines (higher IL6/TNF ratio compared to adult responses) 
(45–48). Furthermore, decreased phosphorylation of signal 
transducer and activation of transcription 1 in response to 
interferon gamma (IFN-γ) (49) and developmental maturation 
of specific dendritic cell subsets (50) contribute to the neonatal-
specific Th2-polarizing innate immunity.

Interestingly, full-term healthy newborn infants do not appear 
specifically vulnerable to deep infection by microorganisms typi-
cally causing disease in immunodeficient patients, most notably 
Nocardia and fungi-like Aspergillus, Candida, Cryptococcus, 
Pneumocystis, and other opportunistic pathogens, suggesting 
a substantial maturation of the specific antifungal protective 
responses in most full-term newborn infants.

Altogether, the characterization of the neonatal immune 
responses over the past two decades has shown profound dif-
ferences with adult immunity that in part explain the overall 
increased susceptibility to life-threatening infection of newborn 
infants. However, little is known so far about the interindividual 
differences in the immune protection against pathogens in the 
neonatal age.

Heritability of neonatal sepsis
There is controversy over the heritability of susceptibility to 
neonatal sepsis. In one study, comparing the concordance of late-
onset sepsis in same-sex vs. unlike-sex twin pairs, no evidence 
was found of a genetic component of susceptibility to late-onset 
sepsis among VLBW infants (51). Conversely, another study 
compared sepsis concordance rates between monozygotic and 

dizygotic twins; the authors found that 49% of the variance in 
liability to late-onset sepsis could be explained by genetic factors 
alone and 51% by residual environmental factors (52). Both stud-
ies focused on cohorts of very preterm/VLBW infants. No study 
so far addressed the question of heritability of neonatal sepsis in 
late-preterm and full-term newborn infants.

The question of the role of the genetic background on 
neonatal host susceptibility to infection has been addressed by 
several studies. All published studies, included in a recent meta-
analysis, used a candidate gene approach on cohorts of preterm 
infants (53). One genome-wide association study (GWAS) is 
ongoing (54). Such studies are useful to investigate the contri-
bution of host genetics in the setting of a likely multifactorial 
pathogenesis, as it is probably the case for most infections occur-
ring in preterm infants. Different approaches are needed to find 
the genetic determinants of susceptibility to life-threatening 
infections occurring in full-term infants with no underlying 
medical conditions in which susceptibility to infection is largely 
unexplained.

Lessons from inborn errors of immunity in 
pediatric infections
Inborn errors of immunity or primary immunodeficiencies 
(PIDs) are a group of genetic disorders characterized by increased 
susceptibility to infection. Historically, the so-called conventional 
PIDs have been the first PIDs described and dissected from 
a molecular perspective (55). They are typically Mendelian 
diseases, caused by highly penetrant single-gene defects. They 
often occur in families or in the presence of consanguinity and 
are characterized by a profound defect in one or more arms of the 
immune system leading to susceptibility to recurrent infections 
by a broad range of microorganisms (56).

Over the past two decades, it has become clear that infectious 
diseases previously thought to be due to the sole virulence of the 
pathogen may be the expression of a monogenic disorder under-
lying a PID. Inborn errors of immunity resulting from single-gene 
defects have been shown to underlie multiple bacterial infections 
[myeloid differentiation primary response 88 (MYD88) and 
interleukin 1 receptor-associated kinase 4 (IRAK4) deficiency], 
monogenic susceptibility to mycobacterial disease (deficiency 
of genes in the IL12/IFN-γ loop), herpes simplex encephalitis 
(defect in TLR3-dependent immune responses), and severe 
primary Influenza virus infection (interferon regulatory factor 7 
deficiency) (56–60).

These “non-conventional” PIDs are distinguished from 
conventional PIDs as they often occur in sporadic cases with-
out any family history of severe infection. Individuals affected 
by non-conventional PIDs are often otherwise healthy. The 
immunological phenotype is not detectable with first-line 
immunological studies, and the disease might manifest as a 
single episode of severe and potentially lethal infection caused 
by a common or opportunistic pathogen, mostly during primary 
infection (56, 58, 59).

The discovery of non-conventional PIDs suggested that 
monogenic conditions might underlie infectious diseases of 
infancy and childhood more frequently than previously thought 
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(11). The model of the genetic architecture of human infectious 
diseases that has been proposed based on these observations sug-
gests that infections occurring early in life are more likely to be 
caused by single-gene disorders (61).

pids in neonatal infections
The proportion of neonatal infections that can be explained by 
known PIDs is unknown. However, there is evidence from case 
reports or small case studies that life-threatening infections 
occurring early in life may represent the first phenotypic mani-
festation of an inborn error of immunity.

The role of conventional PIDs in conferring susceptibility 
to infection in the neonatal age has been recently reviewed by 
Walkovich and Connelly (62). It is important here to remember 
that a high index of suspicion is required, given that the infec-
tious and potential extraimmunological phenotypes may be only 
partially expressed during the neonatal period.

Non-conventional PIDs have also been shown to underlie 
life-threatening neonatal infections. Pyogenic infections occur-
ring during the first few weeks of life have been described as the 
first phenotypic manifestation of IRAK4 and MYD88 deficien-
cies (63–65). Klebsiella pneumoniae infection often striking in 
neonatal units as a fulminant and fatal disease, has been linked 
in some pediatric patients to IL12 receptor subunit beta 1 
deficiency (66).

Loss-of-function mutations in interferon induced with heli-
case c domain 1 (IFIH1), a cytosolic sensor of the viral RNA, have 
been implicated as causative factors in lower respiratory tract 
infections (pneumonitis, bronchiolitis) caused by RNA viruses 
(67). Interestingly, the phenotype of IFIH1 deficiency is narrow 
(restricted to few related RNA viruses), transient (recurrence was 
found in one of eight patients), and organ specific (only affects 
the lungs).

Variants in single Ig And TIR domain containing (SIGIRR) 
have been implicated as a possible causative or facilitating fac-
tor of necrotizing enterocolitis (NEC) (68), but fulminant and 
infection-associated NEC (69) in infants with no other identifi-
able facilitating iatrogenic factor or medical condition has not 
been linked yet to a genetic condition.

spectrum of neonatal infections
From a clinical perspective, newborn infants suffering from life-
threatening infections may be divided in two major groups:

(1) Newborn infants with a known medical condition. This 
group includes all infants admitted to a NICU (therefore 
exposed to nosocomial pathogens) and specifically very 
preterm (<32 weeks gestational age) and extremely preterm 
(<28  weeks gestational age) infants, infants undergoing 
surgery, infants with organ disease (e.g., urinary tract 
malformations, neurological conditions), and infants 
receiving medical procedures or treatments that are per se 
sufficient to explain an increased vulnerability to colonizing 
microorganisms. Infections in this group are multifactorial 
or linked to one specific known factor of vulnerability, and 
only a small proportion of the risk is probably explained by 
individual genetic variation.

(2) Otherwise healthy, full-term, or late-preterm newborn 
infants with no identifiable medical conditions. Severe 
infections in these infants occur without any apparent risk 
or facilitating factor and, from a host perspective, can be 
considered idiopathic diseases.

Most of these infections occur as isolated events (the spectrum 
of susceptibility is extremely narrow, in most cases restricted to a 
single microorganism) and rarely recur.

Some infections are almost never observed in healthy children 
after the first year of life or in adults. These include neonatal GBS 
disease, viral bronchiolitis, and rare cases of infection-related NEC 
in late preterm and full-term infants. Conversely, other infections 
are not age specific, but may occur with particular frequency and 
severity in the neonatal period and infancy. These include infec-
tions by E. coli, Klebsiella spp., Listeria monocytogenes, and other 
Gram-negative and Gram-positive pathogens.

The biological underpinnings of the interindividual differ-
ences in resistance and vulnerability to specific pathogens in 
otherwise healthy infants are currently unknown.

Hypothetical General Model for neonatal 
infections
A general model to explain susceptibility to neonatal infections in 
full-term and preterm infants is lacking.

Single factors with high effect size explain some of the most 
severe diseases occurring in infants without known comorbidi-
ties. A prime example in neonatal medicine is the rare occurrence 
of rapidly progressive neonatal jaundice and kernicterus in 
otherwise healthy, full-term babies, which is due to neonatal 
hemolysis resulting from either monogenic defects (e.g., sphero-
cytosis, G6PD deficiency) or alloimmune maternal Abs (anti-Rh, 
anti-ABO) (70). Conversely, hemolysis leading to kernicterus 
in extremely preterm infants is more likely to be multifactorial, 
depending on the combined contribution of common genetic 
polymorphisms, underlying medical conditions, iatrogenic fac-
tors, and other environmental determinants (71).

As a general observation, single-gene or single-factor disorders 
are more likely to underlie severe neonatal disease phenotypes 
in otherwise healthy full-term infants, while a multifactorial 
pathogenesis is more likely to explain mild-to-severe neonatal 
disease in the presence of comorbidities or iatrogenic factors, 
with severity depending on the underlying pathogenic process 
(Table 1).

Along the same lines, we here suggest that single factors with 
high effect size may underlie life-threatening infections in other-
wise healthy, full-term, or late-preterm babies, while a polygenic/
multifactorial model may better explain the occurrence and 
severity of infections in very and extremely preterm infants.

Accordingly, we propose an extension of the model of the 
genetic architecture of infectious diseases proposed by Alcais 
et al. (61) to include full-term and preterm infants (Figure 1).

Additional host factors (maternal antimicrobial protective 
Abs, vaginal and breast microbiome, epigenetic, and maturational 
changes in the immune system) and determinants of microbial 
virulence may also modulate disease severity (17).
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FiGUre 1 | Human genetic architecture of infections. Modified from Alcais et al. (61). The contribution of Mendelian genetic defects (red lines) to life-
threatening infectious diseases is mostly observed during childhood, while complex interactions between environmental influences and polygenic susceptibility (blue 
lines) play a more important role for infections occurring later in life. We propose a specular trend for the contribution of human genetic variants to infection 
susceptibility with decreasing gestational age. In newborn infants at extremely low gestational ages, exogenous factors play a major role, while host genetic defects 
are more likely to explain life-threatening infection in full-term, otherwise healthy babies.

taBLe 1 | Mechanisms of disease in term and preterm infants.

involved tissue/
organ

disease phenotype single-factor disorders Multifactorial conditions

Red cells, liver Neonatal jaundice 
with/without bilirubin 
encephalopathy

Monogenic disorders (spherocytosis, 
elliptocytosis, G6PDH deficiency, Lucey–Driscoll 
and Crigler–Najjar syndromes)

Prematurity, metabolic or respiratory acidosis, alterations of blood–
brain barrier, hypoproteinemia, liver immaturity, polycythemia

Maternal abs (ABO alloimmunization, Rh 
alloimmunization)

Megakaryocytic 
lineage

Neonatal 
thrombocytopenia

Monogenic disorders (genetic 
thrombocytopenias)  
Maternal abs (auto- or alloimmune 
thrombocytopenia)

Mild thrombocytopenia in small-for-gestational-age infants, infants 
with perinatal asphyxia; thrombocytopenia in infants with bacterial 
and viral infections and/or intravascular disseminated coagulation

Thyroid Neonatal hypothyroidism Monogenic disorders (genetic thyroid dysgenesis 
and dyshormonogenesis)

Maternal exposure to iodopovidone, iodopovidone use in 
term and preterm infants (Wolff–Chaikoff effect due to iodine 
transdermal resorption)Maternal abs (anti-TPO, anti-TSHr, anti-TG)

Immune system Neonatal infection •	 Urinary tract malformation
•	 Mendelian predisposition to life-threatening 

infection?
•	 Maternal anti-cytokine Abs?

Infections in infants with underlying medical conditions facilitating 
exposure and translocation of the pathogens to the bloodstream

This table reports examples of hematological and non-hematological neonatal disease phenotypes that can be explained by either monofactorial or multifactorial conditions. The 
list is non-comprehensive, and other conditions explained by the same mechanisms include neonatal hyperthyroidism, arrhythmias and neuromuscular disorders. Monofactorial 
conditions, that include monogenic disorders and pathogenic maternal Abs are, in general, severe, often explain disease in full-term infants but can also underlie disease in preterm 
infants. Disease phenotypes linked to multifactorial conditions can be mild to severe and are generally found in infants with co-morbidities.
Abs, antibodies; GSPDH, glucose-6-phosphate dehydrogenase; TPO, thyroperoxidase; TSHr, thyroid-stimulating hormone receptor; TG, thyreoglobulin.
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Current evidence supporting the Model
In preterm infants, multiple factors are well known to contribute 
to both the occurrence and the severity of infections. Colonization 
of deep mucosal tissues by hospital-acquired microorganisms and 
translocation to the bloodstream is facilitated by several factors: 
biomedical devices (endotracheal or nasogastric tubes), invasive 
procedures, thin skin and mucosal layers, central catheters, total 

parenteral nutrition, drugs (histamine type 2 receptor-antagonists, 
steroids, antibiotics), delayed initiation of enteral nutrition with 
formula milk, associated diseases, male gender, an incomplete 
maturation of the preterm immune system (6, 35, 72–74), and, 
possibly, a weak polygenic predisposition (52).

In full-term infants, supporting evidence for a role of single 
host factors in determining susceptibility to infection is provided 
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by the example of urinary tract malformation as one single, high 
effect-size factor, in determining susceptibility to urosepsis (75) 
independently of other protective or risk factors. In infants with 
urinary tract malformation, the effect of the alterations in urinary 
flow on the facilitation of urosepsis exceeds by far the effect of 
other potentially modulating factors.

Where no apparent determinant of higher susceptibility to 
infection is identified, a failure of the individual specific protec-
tive innate immune responses can be hypothesized. The failure 
of specific arms of the immune system that are non-redundant 
in the neonatal defense against a given microorganism would 
exceed in effect size the modulating potential of other protective 
factors.

The view of single-gene defects contributing to the burden of 
neonatal infections in otherwise healthy infants is supported by 
the growing body of evidence in the literature describing neonatal 
infections as the first phenotypic manifestation of a known con-
ventional or non-conventional PID (62–65, 67, 76). However, the 
great majority of neonatal infections still need to be characterized 
from a host molecular perspective.

neonataL GBs disease

In the past years, given its predominant role among neonatal 
infections, neonatal GBS disease has been extensively character-
ized from an epidemiological standpoint. The elucidation of the 
mechanisms underlying neonatal vulnerability to GBS may serve 
as a model to understand the pathogenesis of other neonatal 
infectious diseases. In the following paragraphs, we discuss the 
unique susceptibility to GBS infection of some young infants and 
propose that it could be due to genetic or immune factors.

epidemiology and Clinical Characteristics
Group B streptococcus is a Gram-positive, β-hemolytic bacterium 
frequently colonizing the human gastrointestinal and genitou-
rinary tracts. Invasive GBS disease is extremely rare in healthy 
adults, with a reported incidence of 10/100,000 non-pregnant 
individuals (20, 21). Young infants, pregnant and post-partum 
women, and older adults with underlying medical conditions 
display higher rates of invasive disease (77).

The global incidence of neonatal GBS disease is estimated to 
be as high as 0.53/1,000 live births (78). The incidence is high-
est in infants during the first 3 months of life and dramatically 
declines afterward (7). Early-onset GBS disease (EOD, onset 
during the first 6 days of life) occurs after vertical transmission 
of the bacterium through ascending infection or during delivery 
through a GBS-colonized birth canal. Risk of EOD can be reduced 
by administration of antibiotics to the mother during labor. Late-
onset GBS disease (LOD) (onset between 7 and 89 days of life) is 
thought to result from horizontal transmission in most cases. The 
source of GBS can been identified in some cases. Potential routes 
of transmission include persistent mucous membrane and skin 
colonization from acquisition of GBS at birth or after birth from 
mothers with vaginal colonization; gut colonization through 
ingestion of infected breast milk from mothers with or without 
mastitis; or the community or hospital environment (15, 79–81). 
No preventive strategy exists for LOD. After the introduction of 

intrapartum antibiotic prophylaxis in clinical practice, the inci-
dence of EOD has dropped in the United States from 1.7/1,000 
live births in 1993 to ~0.3/1,000 live births, but the incidence of 
LOD remained stable (7, 82). Clinically, neonatal GBS disease has 
the features of a severe, life-threatening bacterial infection with 
systemic disease (sepsis), often associated with organ involve-
ment (meningitis, osteoarthritis, NEC), requiring admission to a 
NICU. Untreated, it is almost always fatal with multiorgan failure 
due to septic shock and disseminated intravascular coagulopathy. 
Case-fatality ratio was as high as 50% in the 1970s (7) and has 
now dropped to <10% (78, 82), thanks to improvements in 
neonatal intensive care techniques and the prompt detection of 
clinical signs of infection and immediate initiation of antibiotic 
treatment.

established risk Factors for Human 
neonatal GBs disease and Gaps in 
Knowledge
Approximately 50% of infants born to GBS-colonized mothers 
(10–30% of all pregnancies) are in turn colonized. Of these, only 
1–2% develops overt EOD (7). Data on the proportion of GBS-
exposed infants developing LOD are lacking, but it is probably 
low, given a likely increase in the cumulative exposure/coloniza-
tion rate with age and a concurrent decline in the incidence of 
GBS disease.

During the past decades, epidemiological studies led to the 
identification of several risk factors for EOD, including maternal 
colonization with GBS and bacteriuria, prematurity, chorioam-
nionitis, and/or intrapartum fever, prolonged (>18 h) premature 
rupture of membranes (PROM), low maternal anticapsular 
polysaccharide GBS Abs (29, 83–88), and GBS disease in an older 
sibling (89). Established risk factors for LOD include prematurity 
and gut colonization by the pathogen (80, 90).

In many cases, invasive GBS infection develops in otherwise 
healthy, full-term newborn infants, with as many as 42% of 
early-onset cases (91) and most late-onset cases occurring in 
the absence of any established risk factor. Known risk factors are 
therefore unable to reliably predict the occurrence of GBS disease 
at the individual level. Rather, they identify groups of infants 
enriched for determinants of susceptibility, but the nature of such 
determinants has remained elusive.

GBs Microbial Load and Virulence Factors
Fetal and neonatal exposure to the microorganism is the sine 
qua non-for neonatal colonization and subsequent infection. 
Heavy maternal vaginal colonization has since long been 
recognized as a risk factor for EOD, possibly due to greater 
bacterial inoculum to the lungs (7). High bacterial load in 
maternal milk has been linked to neonatal gut colonization and 
subsequent invasive LOD (80). The determinants of maternal 
carriage and the maternal bacterial overgrowth are poorly 
understood. Mild maternal disease may accompany heavy 
maternal colonization: maternal GBS urinary tract infection in 
pregnancy is considered a sign of heavy colonization (7), and 
maternal mastitis may be responsible for high bacterial load in 
maternal milk (80).
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Additional microbial factors, beyond bacterial load, contribute 
to the development of invasive disease. Ten different GBS sero-
types have been described (Ia, Ib, II–IX), based on the capsular 
polysaccharide antigen. Serotypes Ia, Ib, II, III, and V are most 
frequently found in EOD; serotype III is the most frequently iso-
lated serotype in LOD and meningitis, but all serotypes can cause 
neonatal infection (19, 82, 92, 93). The capsular polysaccharide is 
thought to contribute to the virulence of the microorganism by 
aiding to escape the host immune responses. Deeper investiga-
tion on GBS isolates through multilocus sequence typing and 
grouping of genetically related sequence types (STs) into clonal 
complexes (CCs) has shown that most human isolates belong to 
few CCs (CC1, CC10, CC17, CC19, CC23, and CC26) (94–98) 
(http://pubmlst.org/sagalactiae/). The hypervirulent CC17 
strains (including the hypervirulent ST-17 strain) are newborn 
specific. They possess the adhesin HvgA and other surface pro-
teins conferring the ability to invade the neonatal central nervous 
system and are responsible for most LOD with meningitis, but are 
usually not responsible for adult disease (99). Strains belonging to 
all the six CCs have been reported in EOD (82, 98, 99).

The neonatal-specific hypervirulence of some bacterial strains 
and the bacterial load may explain in part the occurrence of 
neonatal disease. Nonetheless, individual susceptibility is not 
fully explained by bacterial virulence, especially in cases in which 
infection is caused by non-hypervirulent strains.

protective immunity to GBs
One fundamental and yet-unanswered question in the field is 
which are the non-redundant pathways of the innate immune 
system conferring neonatal protection to GBS.

Several different methodologies in in vitro and animal models 
have been used to attempt to answer this question.

Both knockout mouse and in  vitro models of GBS infection 
identified a critical role for TLR and IL1 receptor signaling and/or 
signaling through MYD88 in bacterial clearance, TNF-mediated 
inflammation, septic shock, and microglia activation and neurode-
generation (100–109). Specifically, TLR2 and IL1R signaling have 
been shown to be both beneficial and harmful, depending on the 
experimental conditions (101, 110–112). A role for IL6, IL10, IL12, 
and IL18 has been demonstrated in mouse models of GBS infection 
through administration of anticytokine specific Abs (113–116).

The relevance of the studied pathways in the experimental 
settings may largely depend on the experimental conditions. 
Conversely, the non-redundant role of the studied signaling path-
ways in the human model in natural (as opposed to experimental) 
conditions still needs to be elucidated (117).

One human study suggested that a null polymorphism in sialic 
acid-binding immunoglobulin-like lectin 14 (SIGLEC14) influ-
ences human inflammatory responses to GBS in neutrophils and 
amniotic membranes and is possibly correlated with GBS-related 
preterm birth (118), but no data are available on the possible role 
of SIGLEC proteins in the pathogenesis of GBS infection.

HypotHesis

Despite advances in the understanding of both the host and the 
microbial sides of neonatal GBS infection, currently available data 

are not able to fully explain neonatal susceptibility to infection at 
the individual level.

We hypothesize that susceptibility to neonatal GBS disease in 
otherwise healthy infants is due to a failure of the specific neo-
natal protective innate immune responses to GBS. This neonatal 
immunodeficiency could be either intrinsic (genetic defect in 
the infant) or extrinsic/environmental (interference of maternal 
Abs). In the next paragraphs, we present the genetic and the 
“maternal antibody” hypotheses of GBS disease and explain how 
these fit with current evidence.

the Genetic Hypothesis of GBs disease
Several reports, recently reviewed (76), demonstrate that adult 
and neonatal GBS infection may be a phenotypic expression 
of both conventional (Kostmann disease, transient hypogam-
maglobulinemia of infancy, chronic granulomatous disease, 
activated phosphatidylinositol 3-kinase δ syndrome—like 
immunodeficiency, C2 and IgG4 subclass deficiency, and isolated 
congenital asplenia) and non-conventional (IRAK4 and MYD88 
deficiency) PIDs. Even when occurring in the context of a non-
conventional PID, neonatal GBS infection may be one of the 
several manifestations of a broader phenotype that, for MYD88 
and IRAK4 deficiency, includes susceptibility to multiple pyo-
genic bacteria. Conversely, most cases of neonatal GBS disease 
occur as an isolated infection, indicating that the susceptibility to 
GBS is pathogen specific and not linked to a more general state 
of immunosuppression.

We hypothesize that inborn errors of the primary innate 
immune responses to GBS, i.e., monogenic susceptibility to GBS 
disease, underlie some cases of isolated neonatal GBS infec-
tion occurring in otherwise healthy neonates. The clinical and 
immunological phenotypes of isolated neonatal GBS disease may 
indeed be consistent with those of non-conventional PIDs (57): 
(i) GBS disease is a potentially lethal infection striking early in life; 
(ii) the infecting strain/serotype and its virulence factors, while 
accounting for some variability in the occurrence and severity of 
infection (92, 119, 120), are not sufficient to explain susceptibility 
and resistance at the individual level; (iii) the spectrum of suscep-
tibility is extremely narrow, restricted to GBS; and (iv) in most 
cases, there are no immunological defects at first-line immuno-
logical studies that would be consistent with conventional PIDs. 
In addition, GBS infection usually strikes once in life and only 
rarely recurs (~1% of cases) (121). This observation is consistent 
with a low recurrence rate in the subset of non-conventional PIDs 
characterized by immunodeficiency of the protective immunity 
to primary infections (57).

The highest incidence of GBS disease during the first 3 months 
of life would be explained by the high likelihood of being exposed 
to GBS in the perinatal period and/or by the full penetrance of the 
genetic defects in this age group.

Recurrence of GBS infection concerns only a small percent-
age of cases, both singletons and twins, and has been linked to 
re-exposure to GBS through maternal milk or other sources, to 
inappropriate treatment, or to persistence of GBS on skin and 
mucosal surfaces after the first infectious episode (122–125). A 
genetic explanation for recurrence is also plausible. In some PIDs 
of protective immunity to primary infection, the genotype has 
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been shown to influence the recurrence rate (126). Therefore, 
recurrence of neonatal GBS disease may indicate a more severe 
phenotype or represent the phenotypic manifestation of a specific 
genetic defect.

The occurrence of GBS disease in siblings (89), as well as the 
recurrence described in a consanguineous family (76), suggests 
that the genetic hypothesis may be a plausible explanation for 
some cases. Infection by poorly virulent strains, the presence of 
other cases with overlapping phenotypes in the family, consan-
guinity in the parents, recurrence and severity of the clinical signs, 
and slow or absent response to antimicrobials despite appropriate 
treatment strengthen (although their absence does not exclude) 
the hypothesis of a PID underlying GBS infection.

the “Maternal antibody” Hypothesis  
of GBs disease
The highest incidence of GBS disease is registered during the 
first 3 months of life, with most cases (77–78%) occurring during 
the first week of life (20, 21). This observation, together with a 
known role of GBS in prenatal disease, both prematurely and at 
full term of pregnancy (GBS-related stillbirth, term or preterm 
PROM, chorioaminionitis), suggest that a maternal factor might 
be particularly important for perinatal infection.

Recently, neutralizing anticytokine auto-Abs have been found 
in adult and pediatric patients suffering from life-threatening 
infections, revealing novel mechanisms of unusual susceptibility 
to specific pathogens (127–130). Auto-Abs against IL17 and/or 
IL22 have been associated with chronic mucocutaneous candidi-
asis; anti-IFN-γ auto-Abs with adult-onset immunodeficiency; 
anti-IL6 auto-Abs with recurrent skin infection; and auto-Abs 
against GM-CSF with pulmonary alveolar proteinosis (131).

The clinical phenotypes resulting from anticytokine auto-Abs 
partially (anti-IFN-γ, anti-IL6) or completely (anti-IL17, anti-
GM-CSF) overlap with known monogenic conditions affecting 
the same pathways, demonstrating that Ab-mediated diseases 
may be immunophenocopies of monogenic immune disorders.

In neonates, autoimmunity is an exceedingly rare condition, 
but Ab-mediated disease due to transplacental crossing of mater-
nal auto- or allo-Abs is a well-recognized and relatively frequent 
mechanism of organ dysfunction. This has been shown in the thy-
roid (congenital hypothyroidism), the blood (fetal and neonatal 
hemolytic disease and fetal and neonatal auto- and alloimmune 
thrombocytopenia), the neuromuscular junction (transient 
neonatal myasthenia gravis), the heart (congenital heart block 
due to SSA/Ro Abs), and other organs and tissues (132–137). 
We therefore hypothesize that neonatal GBS disease may be 
caused by yet-undiscovered neutralizing maternal auto-Abs or 
allo-Abs against components of the fetal and neonatal immune 
system that are non-redundant in conferring neonatal protection 
against GBS. The progressive decay of circulating maternal Abs 
in the infant plasma might then explain the decreasing incidence 
of infection over the first 3  months of life. Furthermore, the 
presence of pathogenic circulating Abs in the maternal blood 
would be consistent with the occurrence of mild disease in the 
mother (GBS-related urinary tract infection or mastitis) that is 
often associated with neonatal GBS disease, as well as with the 

well-documented higher risk of GBS-EOD in infants with a 
previous sibling with GBS disease (7). Finally the removal, with 
exchange transfusion, of pathogenic Abs from neonatal plasma 
could be an additional explanation to the efficacy of the proce-
dure in infants with septic shock (138).

The proposed mechanism could in part explain neonatal 
GBS disease in full-term infants. Despite transplacental transfer 
of Abs is reduced at low gestational ages, allo- or autoimmune 
pathogenic maternal Abs have been demonstrated to be able 
to cause disease in the preterm infant or during gestation  
(71, 134). Therefore, the “maternal antibody” hypothesis could 
also explain some cases of neonatal GBS disease occurring in 
preterm infants.

testing the Hypotheses—possible study 
Methodologies
Previous studies that addressed the role of genetics in the 
susceptibility to neonatal infection focused on the associations 
between selected common single-nucleotide polymorphisms and 
infectious outcomes (139). A more integrated approach including 
genomics, transcriptomics, proteomics, and functional studies 
is required to uncover the precise molecular determinants of 
susceptibility to specific pathogens causing neonatal infections.

Ad hoc studies should be designed depending on the pheno-
type under investigation.

Multicenter GWASs may provide some insight into the patho-
genesis of suspected multifactorial infections as, for instance, 
those occurring in preterm infants. GWAS are currently ongoing 
on neonatal cohorts (54).

Exome or genome sequencing studies have potential to 
uncover the cause of suspected monogenic disorders. Cases 
should be prioritized based on the clinical profile most sug-
gestive of a monogenic etiology, including extreme severity, 
consanguinity, recurrence of infection, and familial presenta-
tion. Depending on the design of the study, analysis of the trio 
(proband and parents) and of the family or cohort studies should 
be carried out to uncover the individual, rare (<1% in the gen-
eral population), and functionally deleterious genetic variants 
that best fit the most likely genetic model (de novo, autosomal 
dominant with complete or incomplete penetrance, autosomal 
recessive with mono- or biallelic mutations). This approach 
could shed light on the pathways that are non-redundant in 
neonatal protection against GBS.

Functional follow-up will be required to validate candidate 
variants and confirm their causative role. These studies should 
be designed to assess the integrity of the molecular pathways 
affected by the mutations and determine how they are relevant to 
the neonatal immune responses in primary cells and/or immor-
talized cell lines.

Laboratory experiments will be also needed to investigate the 
possible interfering effect of maternal plasma on the neonatal 
immune responses. The laboratory tests could include cytokine 
production assays, detailed analyses of RNA (transcriptome 
analysis) and protein expression in ex vivo samples (blood col-
lected during sepsis), and in  vitro experiments (stimulation of 
patient and control cells with different ligands, cell differentiation 
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taBLe 2 | Comparison of neonatal hemolytic disease and neonatal group 
B streptococcus (GBs) disease.

neonatal hemolytic 
disease

neonatal GBs disease

Physiological 
condition

Mild jaundice (~50% 
newborn infants)

GBS colonization (~10% of 
infants at birth; probably higher 
cumulative colonization rate 
during the first 3 months of life)

Disease Life-threatening jaundice/
kernicterus

Life-threatening infection

Incidence of 
disease in the 
absence of 
prevention

Estimated ~1/1,000 EOD: 1.8/1,000
LOD: 0.3/1,000

Incidence after 
prevention

0.4–2.7/100,000 EOD: 0.3/1,000
LOD: 0.3/1,000

Prenatal disease Facultative: fetal anemia/
erythroblastosis

Facultative: term/preterm 
premature rupture of membranes, 
chorioamnionitis, GBS-related 
stillbirth

Screening/early 
diagnosis

Highly effective: direct 
and indirect Coombs test/
serial plasma bilirubin

Partially effective: universal 
screening of pregnant women for 
GBS/C-reactive protein, blood 
count, cultures after onset of 
infection

Prevention of 
life-threatening 
disease

Phototherapy Intrapartum antibiotic prophylaxis

Treatment Phototherapy; blood 
exchange

Antibiotics; intensive care; blood 
exchange

Molecular 
mechanisms

Known (red cells genetic 
defects, maternal AB0/Rh 
alloimmunization)

Unknown

EOD, early-onset GBS disease; LOD, late-onset GBS disease.
Incidence is expressed as number per 1,000 (or 100,000) live births.
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assays) in the presence of maternal or control plasma. Specific 
assays should be used for the detection of specific Abs in the 
maternal and in the perinatal plasma.

Ultimately, these experiments should aim at demonstrating 
a causative link between the molecular findings, the observed 
cellular phenotypes, and the patient’s clinical phenotype.

ConCLUsion

Transient susceptibility to a narrow range of infections during 
the neonatal age may be explained by inborn errors of immunity, 
in the context of a relatively immature, non-redundant immune 
system. The early recognition of a PID as an essential contributing 
factor to a severe neonatal infection is clinically very relevant, 
as it may change the management and allow the referral of the 
patient to the clinical immunologist for specific follow-up and 
family counseling.

In parallel fields, the discovery of concurrent genetic and 
auto-/alloimmune mechanisms for several neonatal diseases has 

dramatically changed practice, as exemplified by the develop-
ment of highly effective screening and diagnostic procedures 
for neonatal hemolysis, which reduced the incidence of fetal 
erythroblastosis and neonatal bilirubin encephalopathy by two 
orders of magnitude, from ~1/1,000 to ~1/100,000 live births 
(Table 2) (140). Similar observations can be made for congenital 
hypothyroidism and other common and rare neonatal diseases 
(Table 1).

Current prevention efforts, although invaluable for neonatal 
health, only had a limited impact on the global incidence of neo-
natal infections (9, 141) (Table 2). A more complete understand-
ing of the mechanisms underlying the interindividual variability 
in the neonatal innate immune responses to pathogens is required 
to develop highly effective, pathogen-specific and individual-
tailored preventive protocols.
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