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Editorial on the Research Topic

The immunological regulation of extracellular vesicles on chronic diseases
Extracellular vesicles (EVs) are microscopic membrane structures that originate inside

the cell and are then expelled into the extracellular matrix, especially exosomes (1). EVs are

encapsulated by a lipid bilayer and harbor a variety of biomolecules, including proteins,

lipids, and various forms of RNA and DNA. Primarily, EVs have been considered cellular

waste. However, most researchers now found that EVs play a key role in mediating complex

cellular communication (2–4). After over 30 years of exploration, the regulation of

exosomes in intercellular transport mechanisms was further explored in depth. Scientists

James E. Rothman, Randy W. Schekman, and Thomas C. Südho were jointly awarded the

2013 Nobel Prize for their outstanding contributions to this field. The cellular interactions

responsible for exosomes are critical for a myriad of physiological processes and have

implications for the pathogenesis of disease (5, 6). As our understanding of EVs continues

to grow, the field has undergone a major shift and has begun to explore the potential of EVs

for diagnostic and therapeutic applications (7–10). This collection of manuscripts on our

topic - The Immunological Regulation of Extracellular Vesicles on Chronic Diseases,

provides a comprehensive overview of the latest advances in EVs and immunology

research. Experts have written 11 featuring articles in their respective fields. This

Research Topic not only reveals innovative approaches to isolate and characterize EVs

but also explores the functional roles of EVs in the regulation of chronic diseases. In

addition, this Research Topic demonstrated EVs’ emerging applications in the fields of

targeted therapies and biomarker discovery shown in Figure 1.

An innovative study conducted by Lentilhas-Graca et al. investigated the impact of

macrophage secretomes on recovery from spinal cord injuries. The research revealed that

macrophage secretomes, exhibiting diverse polarization patterns, exert varied influences on

neuronal growth and survival. Notably, secretomes activated by IL-10 and TGF-b1 were
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found to significantly enhance axonal regeneration and contribute

to functional recovery post-spinal cord injury. Proteomic analysis

identified a suite of proteins within these secretomes that are pivotal

in axon extension and the establishment of cell polarity, offering

novel therapeutic avenues for spinal cord injury treatment.

In a comprehensive review, Iuliano et al. delineate the

involvement of EVs in the pathogenesis of psoriasis and their

potential therapeutic applications. The review articulates the

critical function of EVs as conveyors of molecular signals across

the psoriatic landscape, their utility as innovative biomarkers, and

their capability as platforms for precision anti-inflammatory

treatments. Furthermore, the discussion extends to the integration

of EVs within the psoriasis microenvironment, their role in disease

transmission, and the progression of related comorbidities,

underscoring the potential of EV-based biotechnologies in both

therapeutic and research settings.

Di Florio et al.’s review focuses on the role of mitochondrial EVs

in autoimmune diseases, particularly myocarditis. The review

highlights that viruses like Coxsackievirus B3 and SARS-CoV-2

can induce cells to release mitochondrial vesicles during infection,

which subsequently trigger an immune response culminating in

autoimmune reactions. Moreover, the presence of mitochondrial
Frontiers in Immunology 026
autoantibodies in myocarditis patients and the regulatory role of

autoimmune regulatory factors (AIRE) in mitigating mitochondrial

antigen-induced autoimmunity are explored. This study offers fresh

perspectives on the mechanisms through which viral infections may

precipitate autoimmune conditions.

A review conducted by Zhang et al. provides a comprehensive

analysis of the roles of exosomes derived from various cellular

origins in the context of rheumatoid arthritis (RA). The study

elucidates that exosomes are intricately involved in the pathogenesis

of RA and may serve pivotal roles as diagnostic markers and

therapeutic agents. Notably, exosomes originating from

mesenchymal stem cells demonstrate considerable potential in

modulating immune responses, mitigating inflammation, and

facilitating tissue repair, suggesting their viability as therapeutic

modalities in RA management.

In a succinct mini-review, Zhang et al. highlight the critical

functions of exosomal microRNAs (miRNAs) in autoimmune skin

disorders. This review details how these miRNAs, abnormally

expressed across various autoimmune skin conditions, influence

disease progression by regulating the secretion of essential cytokines

and directing immune cell differentiation. The potential of

exosomal miRNAs as biomarkers for tracking disease activity,
FIGURE 1

Various extracellular vesicles can play an immunomodulatory role in many chronic diseases.
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recurrence, and therapeutic response is underscored, paving the

way for novel targeted treatment approaches. The review calls for

further investigation into the mechanisms of exosomal miRNAs to

enhance clinical treatment strategies.

Ye et al.’s mini-review discusses the immunomodulatory

properties of mesenchymal stem cell-derived extracellular vesicles

(MSC-EVs) in Alzheimer’s disease (AD). The review proposes

MSC-EVs as innovative agents for AD therapy by detailing their

roles in suppressing glial cell activation, reducing inflammatory

cytokine levels, and promoting both neuroprotection and amyloid

b clearance. It also critically assesses the potential challenges and

advantages of MSC-EVs in clinical applications, offering valuable

insights for advancing extracellular vesicle-based therapies for

neurodegenerative diseases.

Zhao et al.’s mini-review examines the involvement of

exosomes in lung cancer progression, focusing on their roles in

metastasis, diagnostic potential, and immunological interactions.

Exosomes are described as crucial players in lung cancer dynamics,

capable of enhancing metastatic processes and modulating immune

responses. The review highlights the diagnostic potential of specific

miRNAs within exosomes and discusses the innovative applications

of engineered exosomes in lung cancer therapy. It also emphasizes

the need for further studies to validate the safety and efficacy of

exosomal applications in clinical settings.

A review authored by He et al. critically assesses the

immunomodulatory functions and therapeutic potentials

of natural killer cell-derived extracellular vesicles (NKEVs)

in managing chronic diseases. These vesicles are enriched

with a diverse array of cytotoxic proteins and nucleic acids,

demonstrating promising therapeutic effects across various

conditions, including malignant tumors, hepatic fibrosis, and

pulmonary injuries. Despite certain challenges such as limited

yield and suboptimal targeting capabilities, advancements in

research concerning memory-like NK cells, their derived EVs,

and engineered NKEVs are paving the way for enhanced

treatment efficiency, specificity, and safety. Collectively, NKEVs

are emerging as potent therapeutic agents in the realm of chronic

disease management.

In the mini-review by Huang et al., the role of exosomes in

sports medicine is explored, emphasizing their importance in

managing chronic conditions and boosting athletic performance.

The review elucidates the fundamental aspects of exosomes,

including their biogenesis, release mechanisms, content profiles,

and biological activities, and discusses their capabilities in

facilitating muscle repair, arthritis treatment, and performance

enhancement. The paper also addresses the ongoing challenges

and future prospects of exosome application in sports medicine,

underscoring their significant role in personalizing treatment and

advancing clinical evaluations and technological innovations.

Wong et al. provide a comprehensive review on the use of

mesenchymal stem cell (MSC)-derived extracellular vesicles

(MSC-EVs) in treating systemic lupus erythematosus (SLE). The

review highlights the vast potential of MSC-EVs as innovative, cell-

free therapeutic options that leverage immunomodulation, MSC
Frontiers in Immunology 037
preconditioning techniques, and their diagnostic and therapeutic

applications in SLE. It also points to existing gaps in understanding

the precise mechanisms of MSC-EV actions and the hurdles in their

clinical implementations, advocating for more research to optimize

their therapeutic deployment in SLE.

Li et al.’s review offers an in-depth look at the emerging role of

exosomes in the immunotherapy of diabetes. Serving as critical

intercellular communicators, exosomes can reprogram immune

responses associated with diabetes and its complications. This

paper discusses how exosomes from immune cells like

neutrophils, T lymphocytes, and macrophages, as well as from

stem cells, exert immunomodulatory and anti-inflammatory effects

in diabetes management. The review also considers engineered

exosomes as novel therapeutic tools for diabetes, addressing

current challenges in their clinical application and proposing new

directions for future diabetes immunotherapy research.

Through these articles, we have not only expanded our

understanding of the function of EVs but also opened new

perspectives for future therapeutic strategies. This album is the

result of our joint efforts and demonstrates how scientific research

can reveal deeper mechanisms in biology and bring hope for the

treatment of chronic diseases. We look forward to continuing this

exciting journey of scientific discovery of EVs with researchers

around the world.
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Rheumatoid arthritis (RA) is an autoimmune disease that can induce joint

deformities and functional impairment, significantly impacting the overall well-

being of individuals. Exosomes, which are cellularly secreted vesicles, possess

favorable biological traits such as biocompatibility, stability, and minimal toxicity.

Additionally, they contain nucleic acids, lipids, proteins, amino acids, and

metabolites, serving as mediators in cellular communication and information

exchange. Recent studies have demonstrated the association between

exosomes and the pathogenesis of RA. Exosomes derived from mesenchymal

stem cells, dendritic cells, and neutrophils exert influence on the biological

functions of immune cells and joint cells, however, the precise mechanism

remains largely unclarified. This comprehensive review systematically analyzes

and summarizes the biological characteristics and functionalities of exosomes

derived from diverse cellular sources, thus establishing a scientific foundation for

the utilization of exosomes as diagnostic targets and therapeutic modalities in

the context of RA.
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1 Introduction

RA is a long-lasting and widespread inflammatory autoimmune disease that is

characterized by inflammation in the synovial membrane, gradual erosion of the joints,

and involvement of other body parts outside the joints (1). The prevalence rate of RA in

China ranges from 0.2% to 0.4%, while European and American countries experience a

higher prevalence rate of up to 1%. The pathogenesis of RA remains incompletely

understood, and this immune disease is associated with a high disability rate, poor

prognosis, and susceptibility to recurrent attacks (2). Additionally, RA can impact the

synovial joint lining, causing stiffness, pain, inflammation, limited mobility, and joint

erosion (3). Furthermore, the articular cartilage primarily comprises an extracellular matrix

(ECM) and a small population of cells. The ECM mainly consists of type II collagen,
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proteoglycans, and aggrecans. In the context of RA, the synovium

undergoes hyperplastic transformation into an invasive tissue that

destructs cartilage and bone. Fibroblastoid synovial cells (FLSs),

which line the joints, exhibit an aggressive phenotype in RA and

play a crucial role in these pathological processes (4). FLSs, along

with matrix metalloproteinases (MMPs) secreted by chondrocytes,

constitute the key components contributing to cartilage tissue

destruction (5). Abnormal proliferation of FLSs results in elevated

levels of interleukin (IL)-6, IL-8 and other cytokines and

chemokines, promoting the activation and migration of

leukocytes from blood vessels to the synovium (6).

Exosomes are nanovesicles that originate from endosomes and

possess a diameter ranging from 40 to 160 nm (with an average of

100 nm). These small vesicles are enclosed by lipid layers and can

be released by various cells, and they are detectable in both tissues

and biological fluids (7–10). Depending on their cellular origin,

exosomes harbor diverse constituents, including DNA, RNA, lipids,

metabolites, cytosolic proteins, and cell surface proteins (11, 12).

Due to their ability to carry genetic information, exosomes serve as

crucial mediators in intercellular communication and have been

investigated as potential carriers for therapeutic molecules (13).

Numerous studies have implicated exosomes in inflammatory

processes, which play fundamental roles in the pathogenesis of

numerous diseases such as cancer, type II diabetes, inflammatory

bowel diseases, RA, and neurodegenerative diseases. Furthermore,

exosomes have emerged as vital regulators of intercellular

communication, exerting their influence locally and systemically

by modulating a wide array of biological processes between

cells. Notably, exosomes represent a cutting-edge treatment

strategy for systemic immune diseases (14–16). Thus, aside

from their involvement in the pathogenesis of RA, exosomes

also exert significant influence in inflammation, cell signaling,

immune regulation, and can potentially serve as biomarkers for

diagnosing RA.

In this review, we conduct a comprehensive analysis and

synthesis of the functions of various exosomes derived from cells

in the pathogenesis of RA, as well as their potential preventive roles.

Our findings offer valuable clinical insights into the potential

diagnostic and therapeutic applications of exosomes as a means

to identify future therapeutic targets for RA.
2 Exosomes derived from
mesenchymal stem cells

Mesenchymal stem cells (MSCs) are a distinct population of

cells characterized by their ability to undergo self-renewal and

differentiate into multiple cell types. These cells possess the

capacity to modulate inflammatory responses and play a crucial

role in various pathological conditions associated with tissue repair

and regeneration. MSCs can be obtained from diverse sources such

as bone marrow, umbilical cord, adipose tissue, and other tissues

(17). MSC therapies have been employed as cell-based therapeutic

interventions for several decades due to their anti-inflammatory,

immunomodulatory, and regenerative attributes (18). Several

studies have suggested that exosomes released by MSCs (MSCs-
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Exo) not only demonstrate enhanced efficacy compared to the

parent cells but also exhibit reduced toxicity and improved

stability. These exosomes are capable of transferring various

nucleic acids, proteins, and lipids from the donor cell to the

recipient cell, thereby contributing to chronic inflammatory and

immune processes (19, 20).

Exosomes derived from MSC can affect the occurrence and

progression of RA through lncRNA, miRNA and circRNA. Su et al.

discovered that exosomes derived from MSCs play a role in

intercellular transfer of lncRNA HAND2-AS1, which leads to the

suppression of RA-FLS activation through the miR-143-3p/

TNFAIP3/NF-kB pathway. This finding provides a novel

understanding of the pathogenesis and treatment of RA (21).

Additionally, L. Chang et al. observed decreased levels of

circFBXW7 and histone deacetylase 4 (HDAC4), along with

elevated levels of miR-216a-3p in clinical RA samples compared

to healthy samples. HDAC4 is involved in modulating immunity,

inflammation, and osteoblast differentiation during the onset of RA,

and it also contributes to the release of RA-related inflammatory

cytokines by FLSs. L. Chang et al. demonstrated that treatment with

exosomal circFBXW7 suppressed proliferation, migration, and

inflammatory response of RA-FLSs, as well as attenuated damage

in the RA model. The circFBXW7 directly acts as a sponge for miR-

216a-3p, leading to the upregulation of HDAC4 expression. The

therapeutic effects of exosomal circFBXW7 were diminished when

HDAC4 was inhibited or miR-216a-3p was upregulated (22).

Furthermore, H.Y. Meng et al. produced exosomes from human

MSCs overexpressing miRNA-124a. They observed that co-

incubation with HMSC-124a-EV effectively suppressed cell

proliferation, migration, and promoted apoptosis in a fibroblast-

like synoviocyte cell line. Their findings suggest that MSC-derived

exosomes serve as efficient carriers for therapeutic miRNA, offering

a promising avenue for developing new medicines and strategies to

treat RA (23). Here, we summarize the role of different MSC derived

exosomes in RA and the related mechanisms.
2.1 Exosomes derived from bone marrow
mesenchymal stem cells

At present, the research on exosome in MSC s mainly focuses

on bone marrow mesenchymal stem cells (BMSCs) (24–26).

Fibrinogen-like protein 1 (FGL1) is a member of the fibrinogen

family and can be recognized as an immune checkpoint target

through an immune escape mechanism (27). FGL1 functions as an

anti-inflammatory agent in collagen-induced RA (28). Subsequent

investigations have demonstrated that FGL1 contained in MSCs-

Exo exhibits therapeutic effects on RA without significant adverse

reactions. Overexpression of FGL1 reduces the activity of the

nuclear factor kappa B (NF-kB) pathway, thereby attenuating RA

injury by inhibiting apoptosis of fibroblast-like synoviocytes (FLS)

and promoting their proliferation (29). It is acknowledged that

MMPs are involved in the degradation of the extracellular matrix

(ECM). FLS can produce MMPs, among other matrix-degrading

enzymes, which contribute to the destruction of cartilage in the

affected joints of RA (30). Vascular endothelial growth factor
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(VEGF) is a potent growth factor specific to endothelial cells and is

upregulated by pro-inflammatory cytokines and hypoxia. Serum

concentrations of VEGF are elevated in RA and associate with

disease activity (31). In a study by Chen et al., MSCs were

transfected with an miR-150-5p expression plasmid, and MSC-

derived exosomes were harvested. MSC-derived exosomes

containing miR-150-5p may play a beneficial role in ameliorating

joint destruction in RA. In vivo experiments demonstrated that

MSC-derived miR-150-5p exosomes inhibit synoviocyte

hyperplasia and angiogenesis by reducing the migration and

invasion of FLSs and downregulating tube formation in human

umbilical vein endothelial cells (HUVECs) through the targeting of

MMP14 and VEGF. Injection of MSC-derived miR-150-5p

exosomes leads to a reduction in hind paw thickness and clinical

arthritic scores in a mouse model of collagen-induced arthritis, thus

facilitating the direct intracellular transfer of miRNAs between cells

and representing a potential therapeutic strategy for RA (13).

Moreover, BMSCs have emerged as a viable solution for treating

inflammatory rheumatism, they also have the potential to promote

inflammation. BMSCs exhibit low immunogenicity and possess

immunomodulatory effects, enabling them to regulate various cell

types through the transmission of exosomes. These exosomes

derived from BMSCs carry specific regulatory molecules present

in the parent cells, including programmed death (PD)-L1, galectin-

1 (GAL-1), and transforming growth factor (TGF)-b1 (32). In a

murine model of collagen-induced arthritis (CIA), which mimics

human RA, PD-L1 demonstrates the capacity to modulate collagen

type II (CII)-reactive T cells and subsequently mitigate joint

destruction. Intraperitoneal administration of PD-L1-Ig in mice

leads to a deceleration in the development rate of CIA and an

improvement in associated clinical manifestations (33). GAL-1

exerts regulatory functions within the immune system, with a

study verifying increased levels of GAL-1 serum (sGal1) in RA

patients (34).

Additionally, Stella et al. conducted the initial investigation on

the involvement of exosomes derived from bone marrow

mesenchymal stem cells (BMSC-Exo) in models of RA. They

demonstrated the effective therapeutic potential of BMSC-Exo in

mitigating experimental RA. This was achieved by dose-dependent

inhibition of T lymphocyte proliferation and reduction in the

proportion of CD4+ and CD8+ T cell subsets. Notably, the

administration of parental MSCs did not result in an increase in

Treg cell population. In a study using delayed-type hypersensitivity

(DTH) mice, a dose-dependent anti-inflammatory effect of BMSC-

Exo was observed. Furthermore, BMSC-Exo effectively alleviated

clinical symptoms of inflammation in a mouse model of collagen-

induced arthritis (CIA). The beneficial impact of BMSC-Exo was

correlated with a decrease in plasmablast numbers and an increase

in Breg-like cell numbers in lymph nodes (26). Another study

indicated that exosomes derived from BMSCs have the ability to

hinder the release of IL-1b, tumor necrosis factor-a (TNF-a), and
IL-18, as well as the activation of NLRP3 in macrophages and RA

rats. Additionally, they confirmed that BMSC-derived exosomes

containing miR-223 could ameliorate RA by inhibiting NLRP3

expression in macrophages (35). G.Q. Li et al. substantiated that

BMSC-derived exosomes alleviate RA by delivering miR-21. The
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exosomal miR-21, in turn, alleviates RA by targeting the TET1/

KLF4 regulatory axis. TET1, a member of the DNA demethylase

family that governs the expression of numerous genes, has been

associated with RA. It is noteworthy that KLF4, a key player in cell

survival and proliferation, has been recently found to be

upregulated in RA (36).
2.2 Exosomes from human umbilical cord
mesenchymal stem cells

The easier obtainability of umbilical cord mesenchymal stem

cells (UMSCs) compared to other cell types is complemented by

their ability to maintain their biological properties unchanged even

after cryopreservation. UMSCs have progressively emerged as the

preferred cells for cell therapy, gradually replacing bone marrow-

derived MSCs. Human UMSCs (HUMSCs) release exosomes that

exhibit specific immunomodulatory functions in the context of RA.

Notably, macrophages, B cells, T cells, particularly CD4+ T cells,

assume pivotal roles in local inflammation development. The

immune pathogenesis of RA is linked to the imbalanced response

of memory Th17 and memory regulatory T cells. The progression of

RA is regulated by T helper and regulatory T (Treg) cells, with

synovial inflammation and pannus growth being attributed to Th17

cells. A particular study highlighted the significant role of HUMSC-

Exo in regulating the balance between Th1/Th17 and Treg cells

during immune and inflammatory responses, thus reducing the

ratio of Th1/Th17 to Treg cells and inhibiting the development of

RA. Additionally, HUMSC-Exo may exert a direct influence on

macrophage and osteoclast differentiation (37). In light of these

findings, it can be inferred that exosomes derived from HUMSCs

have the potential to modulate the equilibrium between pro-

inflammatory and anti-inflammatory cells, presenting a promising

therapeutic avenue for RA.

Serum/glucocorticoid regulated kinase 1 (SGK1) serves as a

crucial modulator in the process of osteo-/chondrogenic

transdifferentiation and calcification in vascular smooth muscle

cells. Exosomal miRNA-140-3p derived from HUMSCs effectively

mitigates joint injury in rats with RA by downregulating the

expression of SGK1. Overexpression of SGK1 reversed the

inhibition of RASF growth caused by overexpression of miR-140-

3p (38).
2.3 Exosomes derived from synovial
mesenchymal stem cells

Zhang J. et al. discovered that the intracellular transfer of

circEDIL3 through exosomes derived from synovial mesenchymal

stem cells (SMSC-Exo) holds potential as a novel therapeutic

approach for RA. The circEDIL3 molecule functions as a sponge

that specifically targets miR-485-3p, which in turn regulates PIAS3.

PIAS3, a member of the small Rho GTPase family, serves as a

primary cellular inhibitor of STAT3. By inhibiting STAT3 activity,

PIAS3 exosomes derived from SMSCs overexpressing circEDIL3

effectively downregulated the expression of the VEGF complex.
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This effect was achieved by influencing the miR-485-3p target

through PIAS3 and suppressing STAT3 activity, resulting in

reduced downstream VEGF levels. These findings were observed

in the supernatants of co-cultured RA-FLS (rheumatoid arthritis

fibroblast-like synoviocytes) and human dermal microvascular

endothelial cells (HDMECs), as well as in the cell lysate of co-

cultured RA-FLSs (39). These studies have demonstrated that

exosomes derived from MSCs effectively attenuate the invasion

and migration of FLS to some extent.

The specific mechanisms of diverse MSC-derived exosomes on

RA are summarized in Figure 1. Nevertheless, there is a dearth of

research investigating the relationship between SMSC-Exo and RA,

a lot of research needs to be carried out in the future.
3 Exosomes derived from
dendritic cells

Dendritic cells (DCs) play a crucial role in initiating antigen-

specific immune responses and promoting immune tolerance (40, 41).

Recently, there has been growing interest in exploring and utilizing

exosomes derived from DCs in the context of autoimmune diseases. A

study demonstrated that exosomes derived from immature DCs

exhibited therapeutic potential in treating mice with collagen-

induced arthritis (CIA). These exosomes, when derived from
Frontiers in Immunology 0412
immature DCs treated with IL-10, effectively suppressed

inflammation and autoimmune responses by inhibiting pro-

inflammatory cytokines such as IL-1 and TNF-a, as well as

reducing Hsp70 levels. However, it was observed that DC-derived

exosomes (DC-Exo) showed diminished responsiveness to regulatory

T cells compared to DCs alone (42). Subsequent investigations

revealed that exosomes obtained from DCs overexpressing

indoleamine 2,3-dioxygenase (IDO) or CTLA-4Ig, an inducer of

IDO, could reverse established CIA and alleviate inflammation in a

model of delayed-type hypersensitivity (DTH) in mice. The DC-

derived exosomes were found to suppress CD8+ effector T cells and

interact with endogenous antigen-presenting cells through B7

costimulatory molecule-dependent mechanisms, thereby modulating

their function (43). IDO, an immunomodulatory protein known for

its role in inducing or maintaining peripheral tolerance and

immunosuppression in autoimmune diseases, asthma, cancer, is

upregulated by CTLA-4Ig and has shown promise in the treatment

of RA (44, 45). Furthermore, exosomes secreted by genetically

modified bone marrow-derived DCs were found to secrete IL-4 and

exhibited therapeutic effects by reducing the severity and incidence of

CIA, as well as inhibiting inflammation in DTH mice. These DC-

derived exosomes exerted their inhibitory effects on the DTH response

through MHC class II molecules, partially dependent on Fas ligands/

Fas, thereby modulating the activity of collagen-reactive T cells in in

vivo (46). Current research suggests that DC-derived exosomes not
A

B

C

FIGURE 1

Mechanisms of diverse MSC-derived exosomes on RA. (A). Exosomes derived from (BMSCs contain various regulatory molecules, such as PD-L1,
GAL-1, and TGF-b1, which play a significant role in promoting the progression of RA. Additionally, BMSCs-derived exosomes carrying miR-150-5p
have been found to effectively reduce the migration and invasion of RA-FLS cells by targeting VEGF and MMP14. Furthermore, the exosomal miR-
223 derived from BMSCs exhibits inhibitory effects on the release of interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), and interleukin-18 (IL-
18), as well as the activation of NLRP3 in rats, thereby alleviating inflammation. Notably, BMSCs-derived exosomes also participate in the intercellular
transfer of lncRNA HAND2-AS1. The lncRNA HAND2-AS1 has been shown to have a positive impact on RA by inhibiting miR-143-3p and promoting
the expression of TNFAIP3, resulting in the inhibition of the NF-kB pathway. In terms of circRNA, the BMSCS-derived exosome CircFBXW7 has been
found to directly inhibit the activity of miR-216a-3p and up-regulate the expression of HDAC4, leading to the inhibition of proliferation, migration,
and inflammatory response in RA-FLS. Furthermore, FGL1-MSC-Exo has the ability to reduce inflammatory cytokines such as IL1-b, IL-17, IL-8, and
the NF-kB pathway, thereby attenuating RA injury. (B). HUMSCs-derived exosomes miRNA-140-3p can attenuate joint injury of rats with rheumatoid
arthritis by silencing SGK1. (C). SMSCs-derived exosomes circEDIL3 can act as a sponge targeting miR-485-3p of PIAS3, inhibit STAT3 activity and
reduce downstream VEGF.
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only possess immunosuppressive properties but also hold potential as

carriers for drug delivery in immune-related disorders. Triptolide, a

compound known for its immunosuppressive effects, selectively

targets DCs. In vivo experiments demonstrated that DC-derived

exosomes can encapsulate triptolide, enabling targeted delivery of

the compound and alleviating local inflammation and damage in mice

with RA, while reducing toxicity. Additionally, triptolide-loaded DC-

derived exosomes were found to reshape the immune

microenvironment by reducing the levels of CD4+ T cells and

increasing the levels of Treg cells in the body (47). Therefore, DC-

derived exosomes can serve as carriers for anti-RA drugs and offer a

novel non-cellular drug delivery system, presenting a promising

approach for anti-RA therapy. Nevertheless, there is a paucity of

research on the specific molecules present in exosomes derived from

dendritic cells, which display therapeutic effects on RA. This deficiency

requires prompt attention, and further investigations are imperative.
4 Exosomes derived from neutrophils

Neutrophils are abundant in the synovial fluid of patients with

RA. A study has identified an increased concentration of

polymorphonuclear neutrophil-derived exosomes (PMN-Exo) in

the synovial fluid of RA patients. PMN-Exo induces an elevation of

Annexin A1 (AnxA1+) in the synovial fluid, which activates

anabolic genes in chondrocytes and contributes to extracellular

matrix (ECM) accumulation and cartilage protection by regulating

IL-8 and prostaglandin E2 (PGE2). Correspondingly, in vivo

experiments have demonstrated that intra-articular injection of

AnxA1 (+)-containing exosomes at tenuated cart i lage

degeneration in mice with inflammatory arthritis. Furthermore,

direct co-culture of neutrophils with chondrocytes indicated that

chondrocyte death was induced, whereas exposure to neutrophil

exosomes exerted a protective effect. It was revealed that exosomes,

rather than neutrophils themselves, possess the ability to penetrate

cartilage (48). Another study suggested that exosomes secreted by

neutrophils, due to nanase functionalization, exhibit excellent anti-

inflammatory properties. Ultrasmall Prussian Blue nanoparticle

exosomes (UPB-Exo) selectively accumulate in activated FLS,

subsequently neutralizing pro-inflammatory factors, eliminating

reactive oxygen species, and alleviating inflammatory stress.

Moreover, UPB-Exo can effectively target inflammatory synovitis

and penetrate the cartilage, enabling precise diagnosis of RA in vivo

and triggering a series of anti-inflammatory events through

regulation of Th17/Treg cell balance, thus significantly improving

joint injury (49).
5 Exosomes derived from granulocytic
myeloid-derived suppressor cells
and macrophages

GMDSC-Exo, secreted by granulocytic myeloid-derived

suppressor cells, exhibits regulatory effects on immune cells. In

both in vivo and in vitro settings, GMDSC-Exo stimulates the
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secretion of IL-10 by regulatory B cells. Arthritis patients and

mice demonstrate elevated levels of PGE2 in their serum and

synovium. Upon injection of GMDSC-Exo into CIA mice, a

decrease in arthritic index values and inflammatory cell

infiltration is observed. Previous research has shown that PGE2

can elevate the levels of IL-10, an anti-inflammatory cytokine, and is

a crucial factor in the production of IL-10 and Breg cells. Studies

have revealed that GMDSC exosomes can generate PGE2,

upregulate the phosphorylation of GSK-3b and CREB, and exert

an anti-inflammatory role by promoting the secretion of IL-10 (50).

Macrophages play a significant role in complex microenvironments

and can be categorized into M1 and M2 subtypes. Imbalances

between pro-inflammatory M1 and anti-inflammatory M2

macrophage activities induce synovial inflammation and

autoimmunity, leading to joint injury. It has been reported that

macrophage-derived exosomes not only enhance inflammation and

cellular immune responses but also serve as nanocarriers for drug

delivery in therapeutic applications. Plasmid DNA encoding the

anti-inflammatory cytokine IL-10 (IL-10 pDNA) and the

chemotherapy drug betamethasone sodium phosphate (BSP) can

be encapsulated within exosomes (M2-Exo) derived from M2-type

macrophages. This co-delivery system of M2 Exo/pDNA/BSP

promotes the polarization of M1-to-M2 macrophages by reducing

the secretion of pro-inflammatory cytokines (IL-1b and TNF-a)
while increasing the expression of IL-10. In vivo experiments also

demonstrate the potent anti-inflammatory activity of M2 Exo/

pDNA/BSP. Furthermore, M. Chen et al. have discovered that

high expression of miR-103a in exosomes derived from

macrophages (RAW264.7) can exacerbate inflammation and

angiogenesis in RA mice by downregulating hepatocyte nuclear

factor 4 alpha (HNF-4a) and activating the JAK/STAT3 pathway,

thereby aggravating RA in mice (51). These studies present

empirical evidence indicating that exosomes originating from

GMSCs and macrophages may mitigate the advancement of RA

by means of their anti-inflammatory properties. In brief, Figure 2

illustrates the mechanisms of exosomes derived from DCs,

neutrophils, GMDSCs, and macrophages within the framework of

RA. Additional research is necessary to elucidate the exact

molecular mechanisms that underlie exosome-mediated signaling

pathways in various cell types in the future.
6 Exosomes derived from serum
and plasma

In recent years, there has been a growing body of research

focusing on the role of exosomes in arthritis serum. Several studies

have been conducted by numerous researchers, who have extracted

serum exosomes from both clinical RA patients and collagen-induced

arthritis (CIA) mouse models. These investigations aimed to analyze

the influence of serum exosomes on RAmorbidity, clinical score, and

bone degradation. The results of these studies suggest a noteworthy

association between serum exosomes and the occurrence of RA. As a

result, the timely identification and prevention of RA are of utmost

importance. However, it remains unclear whether serum exosomes
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accurately reflect the content of exosomes in synovial fluid. Exosomes

were isolated from the serum and synovial fluid of osteoarthritis

patients, and miRNA expression was compared through miRNA

sequencing. The comparison revealed 31 upregulated miRNAs and

33 downregulated miRNAs in the synovial fluid compared to the

serum. Further transcription analysis demonstrated that these

differentially expressed miRNAs primarily relate to intercellular

processes and metabolic pathways. Hence, the results suggest that

serum-derived exosomes do not fully represent synovial exosomes

(52). In another study utilizing global miRNA screening in plasma

exosomes, performed with a custom microarray on both RA patients

and healthy controls, researchers identified four abnormally

expressed exosomal miRNAs in RA patients. The downregulation

of exosomal miR-204-5p was confirmed in both the replication group

(30 RA patients vs. 30 healthy controls) and the validation group (56

RA patients vs. 60 healthy controls). Furthermore, Spearman

correlation analysis indicated an inverse correlation between the

expression of plasma exosomal miR-204-5p and disease parameters

of RA patients, including rheumatoid factor (RF), erythrocyte

sedimentation rate (ESR), and C-reactive protein (CRP) levels (53).

Another study demonstrated that overexpression of serum-derived

exosomes containing nuclear-enriched abundant transcript 1

(NEAT1) or ROCK2 promotes the proliferation of immune cells

(CD4+ T cells), differentiation of Th17 cells, and cell migration in

response to stimulation. NEAT1 binds to and inhibits the expression

of miR-144-3p, and knockout of the NEAT1 gene induces the

expression of miR-144-3p in CD4+ T cells. MiR-144-3p is

associated with the activation of ROCK2 in RA, thereby activating

the Wnt/b-catenin pathway (54). Moreover, a novel group of serum

biomarkers consisting of exomiR-451a, exomiR-25-3p, and serum
Frontiers in Immunology 0614
sTWEAK levels may be utilized for early clinical diagnosis of RA.

Additionally, a newly identified predictive RNA target gene,

YHWAB, may play a significant role in the development of RA

(55). Osteoclasts directly transform into osteoblasts, and elevated

levels of miR-214-3p in osteoclasts are associated with increased

serum exosome miR-214-3p and reduced bone formation in older

women with fractures and ovariectomized (OVX) mice. Targeted

inhibition of miR-214-3p promotes bone formation in aging OVX

mice (56). Furthermore, exosome-encapsulated miR-6089 exhibits a

significant reduction in serum exosomes in 76 RA patients compared

to 20 controls. MiR-6089 regulates the production of IL-6, IL-29, and

TNF-a by targeting TLR4 signal transduction, thereby inhibiting cell

proliferation induced by lipopolysaccharide (LPS) and macrophage-

like activation of THP-1 cells. Therefore, exosome-encapsulated miR-

6089 holds promise as a new biomarker for RA (57). Moreover, the

expression of miR-3a-76p in serum exosomes and peripheral blood

mononuclear cells (PBMCs) of RA patients (n = 20) was significantly

downregulated compared to healthy controls (n = 548). Serum

exosome miR-548a-3p exhibited a negative correlation with serum

CRP, RF, and ESR levels in RA patients.

Toll-like receptors (TLRs) are transmembrane proteins that

recognize diverse pathogen-associated molecular patterns,

triggering an inflammatory immune response. All TLRs engage the

myD88-dependent pathway, which activates NF-kB, a classical

inflammatory pathway, and ultimately elicits the release of

inflammatory mediators and cytokines. Wang et al. previously

identified the distinct exosome-encapsulated miRNA profile in

serum samples of RA patients using miRNA microarray analysis.

This profile encompasses 20 differentially expressed serum exosomal

miRNAs. Notably, miR-548a-3p stands out as one of the significantly
A B
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FIGURE 2

Mechanisms of other cell-derived exosomes on RA. (A). DC-derived exosomes can inhibit the DTH mice response through MHC class II, partially
dependent on Fas ligands/Fas, thereby regulating the activity of collagen-reactive T cells. DCs treated with IL-10 can inhibit inflammation and
autoimmune responses by inhibiting pro-inflammatory cytokines IL-1 and TNF-a and reduce Hsp70 levels. (B). Annexin A1 (AnxA1+) is overexpressed
by PMN-derived exosomes in synovium fluid, which can activate anabolic genes in chondrocytes and play a role in ECM accumulation and cartilage
protection by regulating IL-8 and PGE2. (C). Exosomes derived from G-MDSC can produce PGE2 and upregulate phosphorylation of GSK-3b and
CREB, promoting the secretion of IL-10 from regulatory B cells and ameliorating arthritis in mice. (D). miR-103a in RAW264.7-derived exosomes
from macrophages can promote inflammation and angiogenesis in RA mice by targeting the downregulation of HNF-4a and activation of the JAK/
STAT3 pathway, thus, aggravating RA in mice.
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down-regulated exosome-delivered miRNAs in the serum of RA

patients when compared to healthy controls. Subsequently, they

determined that miR-548a-3p exerts inhibitory effects on the

proliferation and activation of pTHP-4 cells by modulating the

TLR1/NF-kB signaling pathway (58). Furthermore, the expression

level of HOX antisense intergenic RNA (Hotair) in serum exosomes

of patients with RA exhibited a substantial increase, leading to the

migration of activated macrophages. Conversely, inhibition of Hotair

resulted in the reduction of MMP-2 and MMP-13 levels. These

findings indicate that, in addition to miRNAs, lncRNAs transcribed

in reverse orientation may also contribute to the pathogenesis of RA

through serum-derived exosomes (59).
7 Discussion

In conclusion, RA is a systemic and progressive inflammatory

disorder that results in joint and periarticular structural damage as

well as systemic inflammation-related consequences. Exosomes,

which are small nanovesicles released by nearly all cells, contain

genetic information and have emerged as crucial mediators of

intercellular communication in various biological processes.

Through the investigation and analysis of the presence of

miRNAs and lncRNAs in exosomes derived from different cell

types and serum sources, it has been observed that exosomes

predominantly contribute to immune regulation, control of

inflammatory response, and reduction of inflammatory cytokine

release. Exosomes actively participate in the pathogenesis of RA,

offering potential therapeutic prospects in inflammation

management, cellular signaling, and immune regulation.

Furthermore, exosomes exhibit great potential as biomarkers for

RA diagnosis and as a diagnostic tool for precise identification and

targeted treatment. Among these, MSC-Exo demonstrates

significant potential in the treatment of RA. Neutrophils,

granulocytic myeloid-derived suppressor cells, and macrophage-

secreted exosomes also exert immunological regulatory and anti-

inflammatory roles in RA. The miRNAs and lncRNAs enclosed

within exosomes derived from serum could serve as novel groups of

serum biomarkers for early clinical detection of RA. Additionally,

certain exosomes derived from stem cells act as therapeutic agents
Frontiers in Immunology 0715
in RA by functioning as drug carriers. Consequently, scrutinizing

the roles of exosomes derived from different sources in the

pathogenesis of RA and their preventive functions holds promise

for the identification of future therapeutic targets.
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Exosomes, bilaterally phospholipid-coated small vesicles, are produced and

released by nearly all cells, which comprise diverse biological macromolecules,

including proteins, DNA, RNA, and others, that participate in the regulation of

their biological functions. An increasing number of studies have revealed that the

contents of exosomes, particularly microRNA(miRNA), play a significant role in

the pathogenesis of various diseases, including autoimmune skin diseases.

MiRNA is a class of single-stranded non-coding RNA molecules that possess

approximately 22 nucleotides in length with the capability of binding to the

untranslated as well as coding regions of target mRNA to regulate gene

expression precisely at the post-transcriptional level. Various exosomal

miRNAs have been found to be significantly expressed in some autoimmune

skin diseases and involved in the pathogenesis of conditions via regulating the

secretion of crucial pathogenic cytokines and the direction of immune cell

differentiation. Thus, exosomal miRNAs might be promising biomarkers for

monitoring disease progression, relapse and reflection to treatment based on

their functions and changes. This review summarized the current studies on

exosomal miRNAs in several common autoimmune skin diseases, aiming to

dissect the underlying mechanism from a new perspective, seek novel

biomarkers for disease monitoring and lay the foundation for developing

innovative target therapy in the future.
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1 Introduction

MicroRNA (miRNA), first discovered within nematodes by Ambro et al. (1) in 1993, is

a class of single-stranded non-coding RNA molecules typically consisting of approximately

22 nucleotides in length. MiRNA binds to the 3’ untranslated region (UTR) and coding

region of target mRNA through base pairing, leading to either degradation or inhibition of

translation of the target mRNA (2), enabling precise control of gene expression at the post-

transcriptional level (3). MiRNA is involved in various cellular activities, including

proliferation, differentiation, apoptosis, and metabolism (4). It has emerged as a
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potential biomarker and therapeutic target for numerous diseases,

making it a prominent focus of research in the medical field in

recent years (5).

Exosomes, vesicular structures with a diameter ranging from 40

to 160nm enclosed within a bilayer phospholipid membrane,

contain diverse biological molecules, including nucleic acids,

lipids and proteins. They are widely distributed and can be

generated by almost all cells and detected in various body fluids

(6–9).

Unlike freely circulating miRNA in body fluids, miRNA within

exosomes resists RNA degradation by ribonucleases, making it more

stable (10). Furthermore, exosomal miRNA exhibits potential

homing properties (11) and selective enrichment, enabling disease

occurrence, progression and relapse monitoring (12), which is critical

for clinical management of autoimmune diseases.

Autoimmune skin diseases are defined as autoimmune diseases

characterized by excessive activation of the immune system leading to

abnormal immune reactions and responses against self-antigens that

are normally tolerated, including but not limited to skin involvement,

such as vitiligo, psoriasis, systemic lupus erythematosus and

dermatomyositis. In recent years, there has been a steady increase

in the incidence and prevalence of autoimmune skin diseases,

accounting for an essential part of the global disease mortality and

economic burden. The uncertainty of etiology, the complexity of

pathogenesis, and the unpredictable nature of disease progression

have posed significant challenges to patients treating and managing

autoimmune skin diseases, significantly impacting patients’ quality of

life. Therefore, searching for new therapeutic targets and identifying

biomarkers that can predict disease progression and treatment

effectiveness is crucial. As mentioned above, exosomal miRNA can

be a promising choice for its function and nature. A comprehensive

map illustrating how exosomal miRNAs are involved in autoimmune

skin diseases by regulating transcripts, pathways, immune system

differentiation, and their interactions with terminal cells such as

keratinocytes, fibroblasts, and immune cells is no doubt important yet

still lacking. Here, we reviewed recent evidence on the role of

exosomal miRNAs within autoimmune skin diseases and discussed

their impact on these diseases (Table 1), aiming to facilitate a better

understanding of the pathogenetic mechanisms of autoimmune skin

diseases and clinical management.
2 Exosomal miRNAs in several
autoimmune skin diseases

2.1 Exosomal miRNAs in vitiligo

Vitiligo is an acquired pigmentary skin disorder that involves

the participation of various innate and adaptive immune cells,

leading to damage to melanocytes in the skin and hair follicles

(41), resulting in depigmented patches.

Several researches have yielded positive results that circulating

exosomal miRNAs contribute to vitiligo’s pathogenesis. Zhang et al.

(13) co-cultured circulating exosomes from vitiligo patients with

the human melanocyte cell line PIG1. They observed the inhibition

of melanogenesis, decreased tyrosinase activity, and altered
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expression of genes related to melanogenesis in melanocytes.

Furthermore, they detected significantly higher expression of

miR-21-5p in exosomes from vitiligo patients and confirmed that

miR-21-5p inhibits melanogenesis, as evidenced by changes in the

levels of tyrosinase and tyrosinase-related protein 1 (TYP1) and

tyrosinase-related protein 2 (TYP2). Luo et al. (14) found that

circulating exosomal miR-487b-3p in advanced-stage vitiligo

patients was significantly downregulated before glucocorticoid

treatment but recovered to normal levels after intervention.

Enrichment analysis suggested that this miRNA primarily affects

metabolic pathways.

Additionally, skin keratinocytes (42) and fibroblasts (43) are

involved in this disease’s abnormal immune environment that

promotes local T-cell infiltration by secreting CXCL9, CXCL10,

and various cytokines. Moreover, melanocytes appear to be not

solely victims of the abnormal immune response but also

participants in initiating the immune dysfunction (44). Zhao et al.

(15) found that melanocytes exhibited a significant decrease in

melanin content and tyrosinase activity after being cultured with

exosomes from vitiligo patients’ skin lesional keratinocytes.

Furthermore, they discovered that miR-200C, downregulated in

these exosomes, could promote melanogenesis, potentially

mediated by the inhibition of SOX1 to activate the Wnt pathway.

Li et al. (16) performed high-throughput sequencing and

correlation analysis of circulating exosomal miRNAs from

segmental vitiligo patients and healthy controls with disease

progression and staging, screened and expanded the specimens to

verify that miR-493-3p, which was highly expressed in circulating

exosomes of the patients as well as keratinocytes of the lesions. They

subsequently demonstrated in vitro the miR-493-3p-hnRNPU-

COMT-DA axis on the initial damage of melanocytes. However,

there are no current studies on exosomal miRNAs referring to the

role of fibroblasts or melanocytes initiating abnormal immunity,

which might be worth investigating in the future to uncover the

mechanism of vitiligo from multidimensional perspectives.
2.2 Exosomal miRNAs in psoriasis

Psoriasis is a chronic inflammatory skin disease characterized

by abnormal activation and infiltration of T-cells and excessive

proliferation of keratinocytes, clinically manifesting red plaques and

papules covered with thick silver-white scales. Th17 cells and IL-

17A/IL-23 play a crucial role in the immune dysfunction in psoriasis

(45). Jiang et al. (17) discovered that exosomes derived from

keratinocytes treated with psoriasis cytokines (IL-17A, IL-22, IFN-

g, TNF-a) can induce the differentiation of CD4-positive T-cells

into Th1 and Th17 cells and upregulate the expression of various

cytokines including IL-17A, IL-17F, IL-22, IL-23, IL-36, IFN-g, and
TNF-a. MiR-381-3p was found to upregulate the expression of the

indicated cytokines in CD4-positive T-cells. UBR5 and FOXO1 were

identified as critical downstream target genes, playing essential roles

in the immune response in psoriasis.

Chen et al. (18) sequenced circulating exosomal miRNAs in 15

patients with psoriasis vulgaris and 15 healthy controls and

identified 246 differentially expressed miRNAs. Subsequently,
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TABLE 1 Summary of exosomal miRNAs profiles of indicated autoimmune skin diseases.

Disease Exo-miRNA State in
disease
group/
specific
cells

Origin
of

exosome

Target cell Target
gene

Significance References

vitiligo

miR-21-5p up plasma melanocyte STAB1 inhibit melanogenesis (13)

miR-487b-3p down plasma - - biomarker for monitoring
disease progression

(14)

miR-200C down primary
keratinocyte

melanocyte SOX1 promote melanogenesis,
potentially mediated by the

Wnt pathway

(15)

miR-493-3p up plasma keratinocyte hnRNPU miR-493-3p/hnRNPU/ COMT/
DA axis is involved in the initial

damage of melanocytes

(16)

psoriasis

miR-381-3p up keratinocyte CD4-positive T-cell UBR5
and

FOXO1

induce Th1 and Th17
polarization and promote
psoriasis development

(17)

246 miRNAs up/down plasma - - provide abundant circulating
exosomal miRNAs, target genes
and signaling pathways for

further research

(18)

let-7b-5p and miR-
30e-5p

down plasma - - biomarkers for arthritis in
psoriasis patients

(19)

miR-151a-3p, miR-
199a-5p, miR-370-
3p, miR-589-5p,
and miR-769-5p

up plasma - - participate in the common
pathogenesis of psoriasis vulgaris,
psoriatic arthritis, rheumatoid
arthritis and gouty arthritis

(20)

atopic
dermatitis

miR-147 down plasma HaCaT cell TLSP exert protective effects by
inhibiting TLSP expression

(21)

25 miRNAs up/down plasma - - biomarkers for
psychological stress

(22)

severe
drug eruption

miR-375-3p up plasma keratinocyte XIAP promote apoptosis in
keratinocytes by

downregulating XIAP

(23)

miR-18a up plasma keratinocyte BCL2L10 induce keratinocyte apoptosis by
downregulating BCL2L10

(24)

miR-4488 up peripheral
blood

mononuclear
cell

HaCaT cell - promote HaCaT cell apoptosis (25)

miR-96-5p down

dermatomyositis

miR-125a-3p, miR-
1246, and miR-

3614-5p

up plasma human skeletal
muscle myocyte

clinical biomarkers and
therapeutic targets

(26)

miR-4488 up/down plasma - DDX39B biomarkers for DM-ILD-MDA5
Ab (+)

(27)

miR-1228-5p ZBTB22
and

MDM 2

10 miRNAs up/down neutrophil - - modulate PI3K-Akt, MAPK,
AMPK, and FoxO pathways

(28)

10 miRNAs up/down plasma human aortic
endothelial cell

59 genes involved in vessel-related
inflammation in

juvenile dermatomyositis

(29)

(Continued)
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they discovered that enrichment analysis could enrich some target

genes in inflammatory metabolic pathways. This study facilitated

other researchers to select circulating exosomal miRNAs and

target genes of interest at the subsequent step of investigating

in psoriasis.

In addition to skin involvement, joints can also be affected,

known as psoriatic arthritis (PsA). Pasquali et al. (19) identified 15

circulating exosomal miRNAs from 14 patients with psoriasis

vulgaris (PsV) and 15 PsA patients. After expanding the sample

size for validation along with regression analysis, they found that

the expression levels of let-7b-5p and miR-30e-5p were negatively

correlated with PsA group, which might be possible biomarkers for

PsA. Chen et al. (20) extracted plasma exosomes from 15 PsV

patients, 30 PsA patients, 15 patients with rheumatoid arthritis, 15

patients with gouty arthritis, and 15 healthy controls and identified

five miRNAs (hsa-miR-151a-3p, hsa-miR-199a-5p, hsa-miR-370-

3p, hsa-miR-589-5p, and hsa-miR-769-5p) that mainly participate
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in the common pathogenesis of these four diseases by affecting

inflammation and bone metabolism.
2.3 Exosomal miRNAs in atopic dermatitis

Atopic dermatitis (AD) is a chronic inflammatory skin disease

characterized by intense itching, alternating acute episodes, and

remissions, significantly affecting patients’ quality of life. Crosstalk

between keratinocytes and various immune cells results in skin

barrier impairment via secreting diversified cytokines, such as TNF-

a and IFN-g (46). Shi et al. (21) detected significantly

downregulated levels of miR-147 in the plasma, lesional tissues of

a mouse model of AD and HaCaT cell models compared to the

negative control group. The expression of miR-147 was negatively

correlated with TLSP and VEGFA, two vascular growth-related

factors considered important in the pathogenesis of AD (47).
TABLE 1 Continued

Disease Exo-miRNA State in
disease
group/
specific
cells

Origin
of

exosome

Target cell Target
gene

Significance References

scleroderma

17 miRNAs up/down plasma normal human
dermal fibroblast

- identify 17 fibrosis-related
miRNAs in systemic sclerosis

(30)

22 miRNAs up/down neutrophil human dermal
fibroblast and
human dermal
microvascular
endothelial cell

- uncover the role of neutrophil in
systemic sclerosis

(31)

miR-214 down bone marrow
mesenchymal
stem cell

fibroblast IL-33 inhibit IL-33/ST2 signaling (32)

miR-196b-5p up mesenchymal
stem cell

fibroblast COL1A2 alleviate skin fibrosis by
inhibiting COL1A2 expression

(33)

miR-151-5p up mesenchymal
stem cell

bone marrow
mesenchymal
stem cell

IL-4Ra improve bone loss by targeting
IL-4Ra

(34)

systemic
lupus

erythematosus

miR-574 up plasma plasmacytoid
dendritic cell

IFN-a structures resembling IFN-
inducing motifs promote pDCs

maturation and secretion

(35)

miR-155 up peripheral
blood B-cell

B-cell SHIP-1 regulate cell proliferation and
activation of peripheral blood B-
cells through targeting SHIP-1

(36)

miR-19b down peripheral
blood

mononuclear
cell

CD4-positive T-cell KLF13 result in the differentiation of
CD4-positive T-cells into Tregs
and reduce the production of

inflammatory cytokines

(37)

miR-146a down plasma bone marrow
mesenchymal
stem cell

TRAF6 rescue the senescence of BM-
MSCs via inhibiting TRAF6/NF-

kB pathway

(38)

miR-146-5p up umbilical
cord blood

mesenchymal
stem cell

macrophage NOTCH1 suppress excessive inflammatory
responses and protect against
alveolar injury by inhibiting

NOTCH1 expression

(39)

miR-195-5p down urine - CXCL10 biomarker for lupus nephritis (40)
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Treatment with TNF-a/IFN-g decreased the viability of HaCaT

cells, upregulated TLSP and VEGFA expression, and promoted cell

apoptosis. However, overexpression of miR-147 reversed these

damaging processes in HaCaT cells. Furthermore, they found that

exosomes from adipose-derived stem cells overexpressing miR-147

exerted similar protective effects and inhibited TLSP expression

(21). These results indicate exosomal miR-147 as a potential target

for AD therapy.

Besides, some studies have indicated a correlation between the

onset of atopic dermatitis and psychological stress. Moreover, it has

been demonstrated that psychotherapy can alleviate some patients’

symptoms (48). Sung et al. (22) performed sequencing and

differential analysis of plasma-derived neuronal exosomes from

AD mouse models, identifying 9 significantly upregulated and 16

considerably downregulated miRNAs, which can be utilized to

unveil mechanism of AD regarding psychological factors.
2.4 Exosomes miRNAs in severe
drug eruption

Drug eruption, one of the most common adverse drug

reactions, manifests as inflammatory skin and mucosal lesions

with possible systemic involvement. Stevens-Johnson Syndrome

(SJS), Toxic Epidermal Necrolysis (TEN), Acute Generalized

Exanthemata’s Pustulosis (AGEP) and Drug Reaction with

Eosinophilia and Systemic Symptoms (DRESS) are collectively

known as severe drug eruptions characterized by large-scale death

of keratinocytes (49). High mortality rates of severe drug eruptions

urge dermatologists to excavate disease mechanisms and develop

improved therapies. exosomes miRNA helps better understand the

pathogenesis of severe drug eruptions that remain unclear.

Zhang et al. (23) identified upregulation of miR-375-3p in

exosomes from patients with SJS and TEN. Overexpression of

miR-375-3p in primary human keratinocytes reduced cell viability

and promoted apoptosis via downregulating XIAP. Furthermore,

they observed a positive correlation between the expression levels of

miR-375-3p and the affected body surface area and epidermal

necrosis score in patients with severe drug eruptions. Salinas et al.

(24) investigated circulating exosomal miRNAs of patients with

severe drug eruptions (9 cases of DRESS, 8 cases of SJS/TEN) and

identified 24 significantly upregulated miRNAs, which were

predominantly involved in T-cell activation, cell apoptosis, and

inflammation processes. From these findings, they verified

differential overexpression of miR-18a, consistent with previous

research (50) that showed significant upregulation of miR-18a in

the skin lesions and plasma of TEN patients, and it was found to

induce keratinocyte apoptosis by downregulating BCL2L10.

Suthumchai et al. (25) observed cytotoxic effects on HaCaT cells

by exosomes secreted by peripheral blood mononuclear cells from

12 patients with SJS/TEN and identified upregulated miR-4488 and

downregulated miR-486-5p, miR-96-5p, and miR-132-3p.

Furthermore, both overexpression of miR-4488 and reduced

expression of miR-96-5p promoted HaCaT cells apoptosis.
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2.5 Exosomal miRNAs in dermatomyositis

Dermatomyositis (DM) is an autoimmune disease characterized

by edematous purplish-red patches on the upper eyelids, as well as

flat brownish-red papules on exposed areas.

Weakness and myalgia are the main manifestations of muscle

involvement. Li et al. (26) confirmed the upregulation of has-miR-

125a-3p, has-miR-1246, and has-miR-3614-5p in circulating exosomes

from untreated DM patients and in human skeletal muscle myoblasts

cells stimulated by these exosomes, which returned to normal levels

after antirheumatic treatment. Furthermore, these three miRNAs were

related to the cellular autophagy pathway and positively correlated with

specific indicators in DM patients, such as serum creatine kinase levels

and myositis antibody titers, suggesting them as potential biomarkers

for DM.

The existence of anti-MDA5 antibodies was related to

interstitial lung disease and a worse prognosis in DM patients

(51). Zhong et al. (27) sequenced circulating exosomal miRNAs

from 5 patients with DM accompanied by interstitial lung disease

and positive anti-MDA5 antibody, 5 patients with DM without

myositis antibodies, and 5 healthy controls and found significant

differences in has-miR-4488 and hsa-miR-1228-5p in all three

comparisons. H2AFX and MDM2 were identified as two essential

hub genes that may be involved in the pathogenesis of DM.

Nonetheless, this study didn’t focus on the mechanism underlying

the distinction between MDA5 positive and MDA5 negative

DM patients.

Neutrophil/lymphocyte ratio in peripheral blood was found

associated with disease activity, lung involvement, and overall

survival in DM patients (52). Additionally, proteases within

neutrophil cytoplasm seem to participate in muscle inflammation

(53). Li et al. (28) validated 10 differentially expressed miRNAs in

neutrophils-derived exosomes from DM patients’ peripheral blood

and determined PI3K-Akt, MAPK, AMPK, and FoxO as the main

downstream signaling pathways, demonstrated and partially

explained the role of neutrophil in DM.

In addition, evidences indicate a close relationship between the

pathogenesis of DM and vascular changes (54). Jiang et al. (29)

identified 10 differentially expressed circulating exosomal miRNAs

in adolescent DM patients and 59 differentially expressed genes

after co-culturing exosomes with human aortic endothelial cells.

Through reciprocal prediction, they found specific downregulated

genes in the patient group corresponding to upregulated miRNAs in

the exosomal sequencing data, providing some miRNA-target gene

axes for future research.
2.6 Exosomal miRNAs in scleroderma

Scleroderma, a chronic autoimmune skin disease characterized

by abnormal activation offibroblasts leading to progressive skin and

visceral fibrosis, can be classified into two types: localized cutaneous

scleroderma and systemic scleroderma, also known as systemic

sclerosis (SSc) (55).
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Wermuth et al. (30) validated the upregulation of 9 pro-fibrotic

miRNAs and the downregulation of 8 anti-fibrotic miRNAs in

exosomes derived from plasma of SSc patients and detected an

upregulation of type I collagen fibers and fibronectin in normal

human dermal fibroblasts stimulated by these exosomes, indicating

the pro-fibrotic function of circulating exosomal miRNAs in SSc.

It has been found that neutrophil-derived exosomes from the

peripheral blood of patients can inhibit endothelial cell proliferation

and migration (56). Li et al. (31) discovered 22 differentially

expressed miRNAs in neutrophil-derived exosomes from the

peripheral blood of SSc patients and identified the involvement of

theWnt, IL-23, NOTCH and AMPK pathways. Further co-culturing

the exosomes above with primary human dermal fibroblasts and

human dermal microvascular endothelial cells from healthy

individuals validated the presence of negative correlations

between specific miRNAs and target genes associated with these

molecular pathways, suggesting neutrophil as one of culprits in SSc.

Mesenchymal stem cells (MSCs) are a type of pluripotent stem

cell derived from various tissues such as bone marrow, adipose

tissue, placenta, and umbilical cord (57). These cells have

demonstrated beneficial effects in improving the manifestations of

scleroderma through their anti-inflammatory and anti-fibrotic

properties (58), and it is believed that these effects are primarily

mediated through the production of extracellular vesicles including

exosomes (59). Xie et al. (32) identified downregulation of miR-214

in the peripheral blood of the SSc patients and discovered that bone

marrow- MSC-derived exosomes could transport miR-214 to

fibroblasts and inhibit their proliferation, migration, and

expression of fibrosis-related genes via inhibiting IL-33/ST2

signaling. Baral et al. (33) found that injection of exosomes

derived from MSCs could alleviate skin fibrosis in bleomycin-

induced SSc mice. They further identified upregulated miR-196b-

5p and overexpression of this miRNA in mouse fibroblasts

downregulated COL1A2 expression, speculating that miR-196b-5p

may play a role in the anti-fibrotic effects of MSC-derived exosomes.

Chen et al. (34) discovered that MSCs transplantation could

improve bone loss in systemic sclerosis mice by modulating the

differentiation of recipient bone marrow-MSCs probably attributed

to miR-151-5p derived from MSC-derived exosomes by targeting

IL-4Ra, consistent with a previous study identifying IL-4 as a

suspicious pathway (60).

These findings exhibited therapeutic potential of MSC-derived

exosomal miRNAs for SSc.
2.7 Exosomal miRNAs in systemic
lupus erythematosus

Systemic lupus erythematosus (SLE) is a complex autoimmune

skin disease involving multiple systems. The characteristic skin

lesions of SLE include edematous butterfly rash on the face, discoid

rash, vasculitis-like lesions in the distal limbs, oral ulcers, and easily

breakable hair at the frontal hairline.

Type I interferon plays a crucial role in the pathogenesis of SLE

(61). Salvi et al. (35) demonstrated that circulating exosomal

miRNAs with structures resembling interferon-inducing motifs
Frontiers in Immunology 0623
from SLE patients can promote the maturation of human

peripheral blood plasmacytoid dendritic cells(pDCs) and their

secretion of type I interferon and other pro-inflammatory factors.

In addition to SSc, MSCs were also found therapeutic in SLE by

modulating adaptive immunity. Patients exist various autoantibodies

in their bodies, exemplified by anti-double-stranded DNA and anti-

Sm antibodies (62), demonstrating the dominance of humoral

immunity in SLE. Zhao et al. (36) found significantly higher

numbers of peripheral blood B-cells in untreated SLE patients

compared to healthy individuals, validated the upregulation of

miR-155 and confirmed the binding relation between miR-155 and

SHIP-1. Additionally, exosomes derived from umbilical cord blood-

derived MSCs could upregulate SHIP-1 expression in B-cells and

inhibit cell proliferation, activation, and promotion of apoptosis.

However, cellular immunity shouldn’t be easily neglected in

SLE. Tu et al. (37) determined that miR-19b was downregulated

while KLF13 was upregulated in peripheral blood mononuclear cells

of patients with SLE and verified the binding and negative

correlation between miR-19b and KLF13. They further discovered

that umbilical cord blood-derived MSCs could enrich miR-19b in

exosomes, resulting in the differentiation of CD4-positive T-cells

into Tregs and reducing the production of inflammatory cytokines.

On the contrary, MSCs might be victims surrounded by abnormal

immune microenvironment in SLE. Dong et al. (38) discovered that

plasma and plasma exosomes derived from SLE patients could

promote the senescence of bone marrow MSCs, accelerate the

degradation of IkBa, phosphorylation and translocation of p65, and

exosomal miR-146a was downregulated. Based on previous studies and

prediction websites, miR-146a is predicted to target and inhibit the

expression of TRAF6, indicating that plasma-derived exosomal miR-

146a may regulate the senescence of bone marrow MSCs through

negative regulation of the TRAF6/NF-kB pathway.

Studies of exosomal miRNAs also focus on lupus nephritis and

lung damage in SLE. Chen et al. (39) found that exosomes derived

from umbilical cord blood-derived MSCs could alleviate diffuse

alveolar hemorrhage in SLE mice and demonstrated that exosomes

from umbilical cord blood-derived MSCs could transport miR-146-

5p to target and inhibit the expression of NOTCH1, thus promoting

the polarization of M2 macrophages, leading to the suppression of

excessive inflammatory responses and protection against alveolar

injury. Cheng et al. (40) demonstrated downregulation of miR-195-

5p in the urine of lupus nephritis patients and its negative

modulation of CXCL10, consistent with their initial result based

on online available data. Furthermore, this miRNA was negatively

correlated with urinary protein, renal damage, serum complement

levels, and disease severity.
3 Discussion

Autoimmune skin diseases impose significant burdens on patients,

families, and society. Despite the availability of various treatment

options, the lack of a clear understanding of the underlying

mechanisms of the diseases, coupled with their tendency for

progression and relapse, often leads to unsatisfactory outcomes in

terms of treatment and management. Exosomes, extracellular vesicles
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1307455
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1307455
that transport important molecules such as miRNA to recipient cells,

play a crucial role in modulating gene expression and altering cellular

functions. Studies of exosomal miRNA can provide insights into the

intrinsic mechanisms of diseases, facilitate the identification of

potential biomarkers and molecular targets, and lay the foundation

for disease monitoring and the development of novel therapies and

drugs from a new perspective. However, there is limited foundational

research on exosomal miRNA in autoimmune skin diseases, with a

scarcity of clinical studies and low levels of evidence. Therefore, more

standardized research designs and larger-scale studies to explore the

role of exosomalmiRNA in autoimmune skin diseases are warranted in

the future.
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Lung cancer is a chronic wasting disease with insidious onset and long

treatment cycle. Exosomes are specialized extracellular vesicles, at first

exosomes were considered as a transporter of cellular metabolic wastes,

but recently many studies have identified exosomes which contain a variety

of biologically active substances that play a role in the regulation of cellular

communication and physiological functions. Exosomes play an important

role in the development of lung cancer and can promote metastasis through

a variety of mechanisms. However, at the same time, researchers have also

discovered that immune cells can also inhibit lung cancer through exosomes.

In addition, researchers have discovered that some specific miRNAs in

exosomes can be used as markers for early diagnosis of lung cancer.

Engineering exosomes may be one of the strategies to enhance the clinical

translational application of exosomes in the future, for example, strategies

such as modifying exosomes to enhance targeting or utilizing exosomes as

carriers for drug delivery have been explored. but more studies are needed to

verify the safety and efficacy. This article reviews the latest research on

exosomes in the field of lung cancer, from the mechanism of lung cancer

development, the functions of immune cell-derived exosomes and tumor-

derived exosomes, to the early diagnosis of lung cancer.
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1 Introduction

Cancer is essentially a disease of uncontrolled growth, unlimited

proliferation and metastasis to distant sites, with an insidious onset

and a long treatment period (1, 2). The American Cancer Society

reported in 2020 that lung cancer currently ranks second in new

cancer cases and first in cancer-related deaths worldwide (3, 4).

Lung cancer is mainly categorized into two types: non-small cell

lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is

a predominant type of lung cancer, accounting for approximately

85% to 90% of lung cancer cases. In contrast to SCLC, NSCLC

typically exhibits slower growth with better prognosis compared

to SCLC (5).

Almost all cell types can secrete extracellular vesicles (EVs).

Currently, there is no gold standard for classifying extracellular

vesicles (EVs). They can be categorized into microvesicles,

exosomes, apoptotic bodies, and more. Different types of EVs

exhibit distinct biological characteristics and origins. For instance,

microvesicles, ranging in size from 100-1000nm, are directly

secreted from the cellular membrane. Apoptotic bodies, generated

during cell apoptosis, typically have a size of 50-500nm (6). Various

EVs carry different surface markers, allowing for isolation and

purification. The biogenesis of exosomes involves the inward

budding of the plasma membrane and the formation of

intraluminal vesicles (ILVs) within multivesicular bodies (MVBs).

Through MVB fusion with the plasma membrane and exocytosis,

ILVs are eventually released as exosomes (7).

Exosomes are specialized extracellular vesicles produced by the

endocytosis pathway with a lipid bilayer closed structure, with

diameters ranging from 30-150 nm, and are widely distributed in

body fluids including urine, saliva, plasma, cerebrospinal fluid, and

bile (7, 8). They contain a variety of biologically active substances,

including proteins, DNA, microRNA, lipids, etc (Figure 1).

Researchers have conducted extensive research to verify their

biological functions (9). Cell-to-cell communication can be

realized through exosomes, which have also been found to be

involved in various physiopathological processes and intracellular

mechanism regulation (10).

Exosomes were first discovered and named in 1983. But for a

long time afterward, exosomes were not thought to be valuable

components until 2007 that it was found to have the capability of

intercellular communication, and more studies have subsequently

found that exosomes have a variety of physiological functions (11).

In other areas such as endocrine, cardiovascular, and

ophthalmologic diseases, exosomes can serve as biomarkers for

clinical diagnosis (12, 13). The function and contents within the

exosomes are heterogeneous due to different origins, and even

exosomes secreted by the same cell at different time can exhibit

different morphologies and functions. In recent years, exosomes

have been found to play an important role in tumor metastasis,

immune microenvironment formation, and non-programmed

tumor cell death (14).

There are various strategies for exosome isolation, including

ultracentrifugation, ultrafiltration, size-exclusion chromatography,

precipitation, immunoaffinity-based capture, and microfluidic
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separation (8, 15, 16). All these techniques allows researchers to

unveil the mystery of exosomes. Currently, several researches on

exosomes in lung cancer have made good progress, revealing the

mechanism in lung cancer progression, drug resistance, and

metastasis, and emphasizing the significance of exosomes in the

early diagnosis (17). With the increasing knowledge of exosomes,

researchers have used innovative techniques to generate engineered

exosomes as a novel therapeutic strategy for lung cancer (18).

In this paper, we will briefly introduce the relevant mechanism

of exosomes in lung cancer development in recent years. Then

based on the previous understanding, we analyze the potential of

exosomes as diagnostic markers as well as drug delivery carriers.

Finally, we discuss the challenges and potential directions for future

applications of exosomes in lung cancer research.
2 Exosomes promote the
development of lung cancer

2.1 Exosomes in tumor drug resistance

Drug resistance refers to the development of tolerance in tumor

cells to antitumor therapy, which can greatly reduce the

effectiveness of antitumor therapy. Tumor drug resistance can be

achieved through a variety of mechanisms, such as altered drug

kinetics and enhanced drug efflux and metabolism, affecting tumor

cell cycle and promoting proliferation and inhibiting apoptosis (19).

Existing studies have shown that exosomes derived from different

sources of cells in the tumor microenvironment(TME) can affect

tumor drug resistance by influencing tumor proliferation and

immunity (20), which include immune cells, tumor cells, and

tumor-associated fibroblasts.

Exosomes can act as intermediate carriers to deliver drug resistance

information from drug-resistant tumor cells to tumor cells that have

not acquired resistance For example, researchers found that cisplatin-

resistant NSCLS cells induced by hypoxic environment could secrete

PKM2 exosomes to transfer resistance capability to cisplatin-sensitive

NSCLS (21). As a result, exosomes can also serve as a drug-carrying

tool to inhibit tumor drug resistance in lung (22).
2.2 Exosomes in tumor epithelial
mesenchymal transition

Tumor metastasis is a major cause of poor prognosis and death,

and epithelial mesenchymal transition (EMT) is one of the

important pathways for tumor progression and metastasis (23).

Normally, EMT helps cells to migrate in the embryo, and tumor

cells that undergo EMT show changes of weakened intercellular

adhesion and enhanced cell motility, which increases the likelihood

of metastasis of tumor cells (24).

Exosomes from tumor-associated fibroblasts (CAFs) enhance

cell stemness and EMT in colorectal cancer, thereby promoting

tumor metastasis (25). KRT6B in tumor-derived exosomes was also

found to promote cancer metastasis by inducing EMT in bladder
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cancer (26). Similar phenomena were found in kidney cancer (27),

liver cancer (28), and breast cancer (29). In lung cancer, exosomes

constituting the TME can also mediate EMT in lung cancer, thus

promoting metastasis. Researchers found that miRNAs contained

in exosomes produced by mysenchymal stem cells under hypoxic

environments could elevate the expression of markers associated

with EMT in lung cancer by regulating the STAT3 signaling

pathway (30). Exosomes from hypoxic LUAD cells could

significantly increase the migration of normoxic lung
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adenocarcinoma cells via SATB2to activate MEK/ERK pathway-

mediated EMT (31).

Apart from a direct effect on EMT, lung adenocarcinoma cells

may indirectly regulate EMT in lung adenocarcinoma by interfering

with exosome secretion from CAFs as well (32). Additionally,

different states of tumor cells and other cells in the TME can

exert an influence on the EMT process. Exosomes, as one of the

constitutive components of the TME, thereby intervene in the

progression of the tumor process greatly.
A

B

FIGURE 1

Overview diagram of exosome biogenesis and engineered exosomes. (A) Secretion and uptake of exosomes and the composition of exosomes. The
cell membrane of the parent cell invaginates to form early endosomes, which subsequently mature into late endosomes and multivesicular vesicles,
and the vesicles in the lumen of the multivesicular vesicles are exosomes secreted by the cell after membrane fusion. After exosomes are released
to the outside of the cell, they can transmit information to the receptor cells in three ways(Endocytosis, Fusion, Juxtacrine signaling) to achieve the
corresponding functions. (B) Extraction methods of exosomes and strategies for engineering exosomes. Engineered exosomes can be obtained by
modifying exosomes at both cellular and exosome levels. At the cellular level, engineered exosomes can be obtained by processing cells through
transfection and co-incubation, etc. At the exosome level, after extracting cellular exosomes through microfluidics and other techniques,
information is loaded into exosomes using transfection, cojugation, freeze-thaw cycling, electroporation, sonication and other techniques.
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2.3 Tumor exosomes
and neovascularization

Neovascularization is required for lung cancer growth and

metastasis, and is also a factor that affects the prognosis of lung

cancer (33–35). The significance of anti-vascularization in lung

cancer treatment has been noted early on, and anti-vascular

endothelial growth factor (VEGF) drugs have been approved

for use in the clinic (36). Studies on the mechanism of

neovascularization in lung cancer are more limited, but some

specific miRNAs, sirtuin1, and notch pathway have been found to

play a role in neovascularization (37, 38). The Tumor

Microenvironment (TME) refers to the collective assembly of

cells, molecules, and physical factors surrounding a tumor,

interacting with tumor cells and influencing the growth, spread,

and therapeutic responses of the tumor. Hypoxic conditions are

common in the TME. One study indicated that miR-23a in

exosomes of lung cancer cells under hypoxia targets ZO-1 protein

and prolyl hydroxylase, thereby enhancing angiogenesis and

vascular permeability (39), while another study found that miR-

197-3p in exosomes of lung adenocarcinoma origin targets TIMP2,

TIMP3 to promote neoangiogenesis (40). MiR-3157-3p in

exosomes from NSCLS was also found to down-regulate the

expression of TIMP2, KLF2, ZO-1, and Occludin, and up-regulate

the expression of VEGF, MMP2, and MMP9, ultimately leading to

increased angiogenesis (41). Currently, anti-angiogenic drugs, such

as bevacizumab, apatinib, abciximab, have been applied in the

clinical treatment of lung cancer patients, with good efficacy.

Since lung cancer exosomes is believed to be one of the

mechanisms of neovascularization, and existing research found

that the miRNAs therein seem to be the key, one may opens up

the idea that if the application of the inhibitors of these miRNAs, or

the inhibition of secretion of tumor exosomes, is possible to achieve

good results? Of course, this requires more in-depth research to

verify the safety and efficacy.
2.4 Tumor exosomes in immune cells
regulation and immune efficacy of
related research

The human immune system recognizes and removes tumor

cells from the body, and tumor cells can evade immune

recognition and removal by inhibiting immune cell proliferation

or activation. For example, tumor-derived exosomes have been

found to alter mitochondrial function to inhibit the proliferation

of cytotoxic T cells (42). Natural killer cells(NKC) are sentinel

cells of the immune system (43) that recognize tumor cells and

remove them without additional activation. During immune

evasion of tumor cells, a large number of bioactive molecules

contained in tumor cell-derived exosomes, such as transforming

growth factor-b (TGF-b), programmed death ligand (PD-L1),

ligand for natural killer cell activated receptor NKG2D (MICA/

B), apoptosis-associated protein Fas-L, etc., will recognize the

cognate receptor on NK cells and abolish the anti-tumor activity.
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Regarding macrophages, tumor-derived exosomes have also been

found to inhibit polarization, achieving immunosuppression and

allowing tumor progression (44, 45).

The lymphatic system is responsible for immune cell activation,

and the researchers found that exosomes secreted by tumor cells

containing immunosuppressive protein PD-L1 can inactivate

immune cells to protect themselves from being killed (46). This

observation gives clue to researchers that if one can inhibit some

tumor cell-derived exosomes, it will also be possible to address the

dilemma of insensitivity to immune checkpoint inhibitors in many

patients. However, this also raises new challenges in developing

medications that can act on tumor exosomes.

Besides the effect of tumor-derived exosomesaffect on immune

cells, exosomes secreted by immune cells also exert impact on the

tumor immune response. In addition to recognizing and killing

tumor cells, NK cells exosomes also modulate the immune response

of T cells (47) and are cytotoxic to cancer cells (48). Exosomes

secreted by M1-polarized macrophages were found to promote M1

polarization of macrophages, thereby enhancing anti-tumor

immunity and inhibiting tumor growth (49).
2.5 Research progress of exosomes in the
early diagnosis of lung cancer

Large number of researches have validated the function of

exosomes in the progression of lung cancer (50), and people are

also thinking about the role of exosomes in the clinical context.

Early diagnosis of lung cancer can significantly improve the survival

rate of patients (51, 52). Although low-dose computed tomography

(LDCT) has improved the diagnosis rate of lung nodules, LDCT has

poor specificity and is prone to unnecessary surgery, so non-

invasive means to diagnose benign and malignant lung nodules is

a very promising research direction.

Based on the changes of miRNA profiles in plasma exosomes,

researchers identified miR-500a-3p, miR-501-3p, and miR-502-3p,

up-regulated within lung cancer, which revealed the possibility of

early diagnosis of lung cancer by plasma exosomes (53).

Subsequently, another researcher team constructed a diagnostic

model to distinguish benign and malignant lung nodules based on

plasma exosomal miRNAs, which was also reported encouraging

outcomes for lung nodules with a diameter of less than 1 cm (54).

Combined with the current deep learning algorithm Shin et al.

validated the feasibility of human plasma exosomes as potential

tumor-associated biomarkers (55). Subsequently, a set of miRNAs,

i.e., miR-200b-3p, miR-3124-5p and miR-92b-5p, in serum

exosomes could be used as diagnostic and prognostic markers for

SCLC (56) (Figure 2). Another study showed that exosomes of

SCLC cells with molecules such as Hippo, Rap1, andWnt could also

be used as indicators to determine prognosis (57). At present, a

series of studies have verified the feasibility of exosomes in the early

diagnosis of lung cancer. Combining the advantages of non-

invasiveness of exosomal examination with existing tests is

expected to enhance the early diagnosis and prognosis of

lung cancer.
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3 Discussion

Exosomes act as a carrier of information passed from cell to cell,

altering the responsiveness of the immune system and the

microenvironment. Understanding how the immune system reads

the information in exosomes and how exosomes affect immune cells is

important for the development of new strategies that will allow

immune cells to behave effectively. For example, exosomes secreted

by lung cancer cells contain miR-21 and miR-29a, which can be taken

up by surrounding tumor-associated macrophages (TAMs) to

influence cytokine secretion (58), which regulate tumor growth and

metastasis. Exosome secretion has been found to be pH-sensitive, with

the pH of the tumor microenvironment affecting both exosome

secretion and the contents (59). The acidic environment in the

tumor microenvironment tends to lead to the death of immune

cells. This is why some researches have proposed that neutralizing

the acidic environment of the TME using proton pump inhibitors or

other buffering therapies can reduce the immune escape of tumor (60),

and thesemay be the directions in the future to produce an anti-tumor

therapy by restricting the function of tumor exosomes. Exosomes may

be a potential treatment for tumors as well. While drug therapy can

lead to drug resistance and cell therapy can lead to the risk of so-called

“cytokine storm” in the body, exosomes may be able to circumvent

these side effects. In addition, exosomes have been shown to cross the
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blood-brain and blood-testis barriers, a vital property in the context of

cancer cells, since these cells can evade elimination by immune cells

through various immune escape mechanisms. Nevertheless, exosomes

have the potential to bypass such mechanisms and still target and kill

cancer cells effectively.

One of the problems in the development of exosome-related

tools is that the content is variable and complex. On the other hand,

the development of engineered exosomes allows researchers to use

exosomes as carriers, in which specific content is loaded. This

technology may be one of the future drug delivery strategies for

targeting tumor cells, and good results have been detected in lab.

Still, more research is needed.

Apart from the deepened understanding of exosomes in lung

cancer in recent years, there is still much limitation in the clinical

application of exosome-related knowledge and techniques. First, the

difference in the delivery mechanisms of exosomes from various

cancer cells as compared to normal cells are not clearly investigated.

Unveiling the factors influencing category and amount of cargo within

the exosomes will remarkably help us gain a better picture of cancer

biology. Secondly, one should keep in mind that the distribution and

concentration of exosomes is not even across different systems. For

example, blood-brain barrier has a significant impact on exosome

biology and induces a divergence between those in circulation and in

cerebrospinal fluids (61, 62). Does alveolar-capillary barrier has
FIGURE 2

Mechanisms of exosomes in the development of lung cancer. Exosomes can promote or inhibit lung cancer development through different
bioactive substances, as reflected in tumour drug resistance, epithelial-mesenchymal cell transformation, neovascularization, immunomodulation,
and early diagnosis.
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similar effect should be depicted in the future, as this will provide

valuable clue to the development of better laboratory methods with

more accuracy. Third, a dynamic observation of exosomes from

sputum, blood, and within the tumor in response to therapies is still

poorly conducted in detail. A comparison and integration of these

information can shed light on cancer biology and therapeutic targets.

People first discovered exosomes in the culture fluid of

reticulocytes, which was then thought to be nothing more than a

garbage truck for cells to remove waste. Decades later, exosomes once

again attract much attention with a new face. With the deepening of

research, it is found that exosomes have rich biological functions,

which can regulate the growth of the cells, signaling. Then,

researchers found that exosomes have specificity, and some of their

special components can be used as markers for identifying exosomes.

(fig4, Progress in the understanding of exosome research, three

stages). Researches also found that the contents in exosomes are

related to the cell state and cell origin, which also laid the foundation

for exosome-based therapeutics and diagnostics. In recent years, the

proposal of engineered exosomes has expanded the applications of

exosomes, allowing researchers to modify the surface of exosomes to

make them targeted or to evade recognition by other cells. The

contents of exosomes can also be customized to carry specific drugs

or miRNAs. In short, with the deepening of research, the functional

development of exosomes will be more complete.
4 Limitation

Apart from the deepened understanding of exosomes in lung

cancer in recent years, there is still much limitation in the clinical

application of exosome-related knowledge and techniques. First, the

difference in the delivery mechanisms of exosomes from various

cancer cells as compared to normal cells are not clearly investigated.

Unveiling the factors influencing category and amount of cargo

within the exosomes will remarkably help us gain a better picture of

cancer biology. Secondly, one should keep in mind that the

distribution and concentration of exosomes is not even across

different systems. For example, blood-brain barrier has a

significant impact on exosome biology and induces a divergence

between those in circulation and in cerebrospinal fluids (61, 62).

Does alveolar-capillary barrier has similar effect should be depicted

in the future, as this will provide valuable clue to the development of

better laboratory methods with more accuracy. Third, a dynamic

observation of exosomes from sputum, blood, and within the tumor
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in response to therapies is still poorly conducted in detail. A

comparison and integration of these information can shed light

on cancer biology and therapeutic targets.
5 Conclusion

Exosomes of lung cancer origin can influence the metastasis and

development of lung cancer through multiple mechanisms, while

exosomes secreted by immune cells can also influence the

progression of lung cancer. Exosomes have the potential to be a

complementary means of early diagnostic tool for lung cancer, but

more exploration is still needed.
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Immunoregulatory functions
and therapeutic potential of
natural killer cell-derived
extracellular vesicles in
chronic diseases
Shuang He1,2†, Lanqian Su2†, Haiyang Hu2, Haiqi Liu2,
Jingwen Xiong3, Xiangjin Gong3, Hao Chi2*, Qibiao Wu1*

and Guanhu Yang4*

1Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine,
Macau University of Science and Technology, Macao, Macao SAR, China, 2Clinical Medical
College, Southwest Medical University, Luzhou, China, 3Department of Sports Rehabilitation,
Southwest Medical University, Luzhou, China, 4Department of Specialty Medicine, Ohio
University, Athens, OH, United States
Extracellular vesicles (EVs) have been proven to play a significant

immunoregulatory role in many chronic diseases, such as cancer and

immune disorders. Among them, EVs derived from NK cells are an essential

component of the immune cell functions. These EVs have been

demonstrated to carry a variety of toxic proteins and nucleic acids derived

from NK cells and play a therapeutic role in diseases like malignancies, liver

fibrosis, and lung injury. However, natural NK-derived EVs (NKEVs) have

certain limitations in disease treatment, such as low yield and poor

targeting. Concurrently, NK cells exhibit characteristics of memory-like NK

cells, which have stronger proliferative capacity, increased IFN-g production,
and enhanced cytotoxicity, making them more advantageous for disease

treatment. Recent research has shifted its focus towards engineered

extracellular vesicles and their potential to improve the efficiency,

specificity, and safety of disease treatments. In this review, we will discuss

the characteristics of NK-derived EVs and the latest advancements in disease

therapy. Specifically, we will compare different cellular sources of NKEVs and

explore the current status and prospects of memory-like NK cell-derived EVs

and engineered NKEVs.
KEYWORDS

NK cell, NK cell-derived exosome, engineered EVs, chronic disease, microvesicles,
therapy, surface modification
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1 Introduction

Extracellular vesicles are vesicles enclosed by phospholipid

bilayers secreted by all cell types, so they can be found in tissue

culture supernatants and biological fluids, such as blood, saliva,

breast milk, cerebrospinal fluid, and malignant ascites (1). Based on

the different formation processes, EVs were divided into three

groups: exosomes, microvesicles (microparticles) and apoptotic

bodies. Among them, exosomes have received more attention.

They are EVs with a size range of 50~200nm (2). They bud

inward from the limiting membrane of endosomes to form

multivesicular bodies (MVBs). Subsequently, MVBs fuse with the

plasma membrane to release exosomes into the extracellular space.

The surface of exosomes is enriched with tetraester proteins, such as

CD63, CD81 and CD9. Although exosomes have no final and

specific surface markers, they are a combination of expression

markers and lack of specific intracellular protein expression,

meeting the minimum requirements of the current exosome

definition. Due to the overlap size between the three populations,

surface markers, and the lack of proteins restricted to specific

populations,it has been a challenge to distinguish exosomes from

microvesicles (3); At present, researchers collectively refer to three

different types of vesicles as EVs.

Natural killer (NK) cells are natural lymphocytes that fight

infection and kill tumor cells, mainly in the peripheral blood, bone

marrow, lymph nodes, and spleen (4). Based on the recognition of

activating or inhibitory receptors and stress-induced ligands, NK

cells not only enhance cytokine production and cell killing, but also

provide immune self-tolerance and negative feedback mechanisms,

and perform the three major functions of immune surveillance,

immune response, and immune memory (5, 6).

Another mechanism of NK cell involves rapidly killing target

cells through the slow Fas-FasL-dependent pathway, or via the

utilization of intracellular lytic granules releasing proteins such as

granzymes and perforin (7). The formidable antineoplastic

potential of NK cells has been effectively leveraged in numerous

clinical trials, employing autologous or allogeneic NK cells, as well

as chimeric antigen receptor (CAR)-modified NK cells, in the

concerted effort to combat hematologic malignancies (8–10).

Nonetheless, the therapeutic application of NK cells in the

context of solid tumors poses a more intricate challenge,

primarily attributed to their constrained capacity for infiltrating

neoplastic tissues (11, 12). Considering the unique biocompatibility

and higher penetration ability of EVs, NK cell-derived EVs may be

the key to overcoming this challenge.

In the burgeoning domain of targeted drug delivery, the realm

of nanotechnology has emerged as a pivotal contributor, notably

through the advancement of intelligent carriers. Among these

carriers, systems predicated on EVs have garnered considerable

and pervasive attention (12). EVs are crucial mediators in many

physiological processes, and EVs derived from NK cells can inherit

bioactive molecules and some membrane proteins from parent cells,

playing a role in immune surveillance and cytotoxicity. They also

serve as carrier systems that effectively target solid tumor cells,

playing a significant role in the treatment of cancer, metabolic, and
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neurodegenerative diseases (13, 14). However, achieving efficient

and precise drug delivery for specific applications of NKEVs

presents significant challenges. Engineering of isolated NKEVs

through genetic engineering or chemical modifications can

effectively enhance their targeting ability, homing and chemotaxis,

as well as their immunomodulatory and anti-tumor capabilities.

Although NK cell-derived extracellular vesicles have not yet entered

clinical trials, they have become an important research focus (14).
2 Basic biology of NK cell-derived
extracellular vesicles

2.1 Components and mechanisms of action

2.1.1 Cytotoxic proteins
Enriched cytotoxic proteins from NK cell sources are a typical

characteristic of NKEVs and a key mechanism by which NKEVs

exert cytotoxic effects. These proteins mainly include perforin

(PFN), granzyme A (GzmA), granzyme B (GzmB), and

granulysin (GNLY) (Figure 1).

Perforin is a pore-forming protein that can create pores on the

endosome membrane, releasing granzyme B into the target cell,

subsequently inducing target cell death through apoptosis (15). The

levels of perforin in NKEVs are exceptionally high, several times to

several tens of times higher than other cytotoxic proteins (16).

GzmA is a serine protease that induces cysteine-dependent

apoptosis (17). Upon entering the nucleus of target cells, GzmA

cleaves the SET complex, shifting it from DNA repair to DNA

damage (18). As integral constituents of the SET complex, SET and

HMG2 proteins assume the role of substrates for GzmA in the

context of programmed cell death. Evidently, the degradation of

SET and HMG2B becomes apparent in CHLA255 and SupB15 cells

upon treatment with NKEVs (16). Additionally, GzmA orchestrates

the activation of a pathway intricately linked to mitochondrial

stress. Upon internalization into target cells, GzmA instigates

oxidative stress reactions, instigating mitochondrial depolarization

and a surge in reactive oxygen species (ROS). This cascade, in turn,

facilitates the aggregation of the SET complex within the cellular

nucleus (19, 20). Consequently, GzmA elicits a distinctive and

parallel cell death pathway, operating autonomously of caspases.

GzmB is possibly the most active member of the granzyme

family. After entering the cytoplasm of target cells, GzmB activates

initiator caspases, caspase-8 and caspase-10, following two

pathways to promote cell apoptosis (17). One is directly

processing of caspase-3, 7 by GzmB, thus promoting cell

apoptosis. The other pathway is related to mitochondrial-

associated caspase cascades. GzmB promotes the release of

cytochrome C (cyt c) from the mitochondrial membrane

interstitial space into the cytoplasm to bind to caspase- 9 and

form apoptotic vesicles by truncating BID, which indirectly

promotes the activation of caspase-3, 7 (16, 21, 22). Wu et al.

found that NK-EVs can induce the release of cytochrome c from

neuroblastoma cells, confirming the mechanism by which GzmB in

NKEVs exerts its cytotoxicity. GzmB and GNLY may also induce
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cell death in target cells through endoplasmic reticulum stress via

NK-EVs (16).

FasL is a type II transmembrane protein of the tumor necrosis

factor superfamily, which interacts with receptors on the target cell

membrane, such as Fas or CD95, leading to receptor trimerization.

Subsequently, a death-inducing signaling complex (DISC) is

formed, recruiting and activating caspase-8,10 proenzymes,

promoting cell apoptosis through two pathways (23, 24). In one

pathway, a large amount of caspase-8 proenzymes is recruited,

activating the caspase-3 and caspase-7 pathways. In the other

pathway, a small amount of caspase-8 cleaves BID, activating the

mitochondria-related apoptosis pathway (25, 26).

The involvement of FasL in the cytotoxicity exerted by NKEVs

has engendered substantial discourse within the scientific

community. Divergent perspectives posit potential mechanisms,

with one school of thought implicating classical receptor-ligand

interactions facilitated by FasL-expressing NK92-cell-derived EVs.

This notion gains empirical support as these vesicles demonstrate

time- and dose-dependent cytotoxicity against melanoma (27) and

hepatocellular carcinoma cells (28). Concurrently, an alternate

mechanism is proposed involving the endocytic pathway, wherein

target cells internalize NKEVs carrying soluble FasL. Notably, the

enrichment of FasL in NK-EVsIL-15 has been identified, and both

BLI and MTT assays corroborate that NK-EVIL-15-mediated cell

death is, in part, associated with the presence of FasL (29). However,

a counter perspective contends that FasL might not substantially

contribute to cytotoxicity, as some studies suggest its content in EV
Frontiers in Immunology 0336
preparations ranks lowest among cytotoxic proteins. This viewpoint

gains further support from protein correlations and Fas antibody

blocking experiments, which collectively imply that FasL might not

play a decisive role in the observed cytotoxic effects (16, 30).
2.1.2 Cytokines
NKEV can inherit a series of cytokines produced by NK cells,

such as interferon IFN-g and TNF-a, and thus interact

immunologically with other cells.

IFN-g is a soluble dimeric cytokine and is a type II interferon

with antiviral, antitumor, and immunomodulatory properties.

Upon activation of IFN-g receptor, a cascade is initiated wherein

JAK1 and JAK2 undergo phosphorylation. The resultant

phosphorylated STAT1 subsequently assembles into homodimers,

translocating to the cell nucleus. In this nuclear milieu, these

phosphorylated homodimers efficaciously exert their regulatory

effects (31). Ample investigations have substantiated the presence

of IFN-g within EVs originating from NK cells. The consequential

release of IFN-g in close proximity to target cells by NKEVs has

been demonstrated to curtail the proliferation and migration of

endothelial cells, as supported by diverse studies (32, 33).

TNF-a is an inflammatory cytokine that plays a crucial role in

immune regulation, cell proliferation, cell death, and

morphogenesis through multiple signaling pathways (34). TNF-a
has been found in EVs originating from diverse immune cells,

including dendritic cells and macrophages (35, 36). Zhu et al. were
FIGURE 1

NKEVs biogenesis, secretion, content, uptake mechanism and Cytotoxic effects. EVs were divided into three groups: exosomes, microvesicles
(microparticles) and apoptotic bodies. NK cell-derived EVs express activation receptors eg. NKG2D and DNAM1, and express molecules involved in
cytotoxicity, e.g., perforin-granzyme mediated fusion, receptor–ligand mediated reaction, granulysin mediated electrostatic interaction.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1328094
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2023.1328094
the first to discover TNF-a in NK cell-derived EVs and confirmed

the relevance of TNF-a to the cytotoxicity mediated by NKEVs in

melanoma cells (27).
2.1.3 Activating receptors
NKG2D, a type II transmembrane C-type lectin-like activating

receptor, assumes significance as it forms homodimers and finds

ubiquitous expression not only on NK cells but also on CD8+ T cells

and a limited subset of CD4+ T cells (27). Research has shown that

NKG2D is highly expressed on the membrane of NKEVs and is

frequently used as a marker for EVs derived from NK cells (32).

While the specific role of NKG2D on NKEVs is not yet clear, it has

been confirmed that co-culturing cancer cells with NKEVs results in

a significant decrease in apoptosis when anti-NKG2D antibodies is

used (30).

DNAM-1, or CD226, represents a natural cytotoxicity receptor

with broad expression encompassing T cells and a majority of

quiescent NK cells. This receptor assumes a pivotal role in

governing NK cell adhesion, cytotoxicity, and the facilitation of

immune synapse formation (37, 38). Pace et al. blocked DNAM1 on

the EV surface to inhibit the cytotoxic effects of NKEV;

furthermore, DNAM1 may be ligand-bound to act through

caspase-induced apoptosis (37, 39). However, in the apoptosis

experiment using HCT116 spheroids, blocking DNAM-1 did not

affect the apoptosis of recipient cells, possibly due to variations in

ligand types and quantities on different target cells (30).
2.2 NKEVs regulate immune cells

I n add i t i on to cy t o to x i c i t y , NKEVs a l s o ex e r t

immunomodulatory effects.The activation, inhibition of various

immune cells and immune related modulators are directly or

indirectly regulated by NKEV. Federici et al. observed that

NKEVs exhibit the capacity to directly activate T cells. Moreover,

these vesicles demonstrate the dual capability of inducing T cell

proliferation, achieved either through direct stimulation or

indirectly by elevating the expression of co-stimulatory molecules

on monocytes (40). Jia et al. confirmed that NK-derived EVs can

promote M1 polarization of macrophages, inhibit M2 polarization,

thereby reducing bacterial load in mouse lung tissue to mitigate

Pseudomonas aeruginosa-induced lung injury, and also decrease the

percentage of neutrophils and lymphocytes in mouse lung tissue

(41). Furthermore, the influence of NKEVs extends to both direct

and indirect modulation of the function and activity of parent cells.

Notably, an augmentation in the proportion of CD56+ NK cells is

observed as an exemplar of the impact exerted by NKEVs (40). Not

only does the number of NK cell subtypes change, but also their

cytotoxicity and content are affected. NK cells subjected to

treatment with NKEVs manifest not only a marked augmentation

in cytotoxicity but also a concurrent elevation in the release of

tumor necrosis factor (TNF) and perforin (42). Even more

interestingly, various cytokine genes involved in regulating NK

cell proliferation, cytotoxicity, and migration, such as the ligands
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for the chemokine receptor CXCR3, including CXCL9, CXCL10,

and CXCL11, are significantly upregulated (42).

Furthermore, through some specific treatments of NKEVs, their

immunomodulatory abilities can be enhanced. In a recent

investigation, hydrophilic siRNA and hydrophobic photosensitizer

Ce 6 were employed to modify NK-derived exosomes through light-

activated silencing of NK (LASNEO). This innovative approach

resulted in the induction of substantial photodynamic therapeutic

effects, facilitated by the generation of reactive oxygen species (ROS)

subsequent to laser irradiation. Notably, this intervention prompted

the polarization of M1 tumor-associated macrophages and the

maturation of dendritic cells within the tumor microenvironment

(TME).Furthermore, the targeted application of siRNAs against

PLK1 or PD-L1 elicited potent gene silencing in cancer cells.

Intriguingly, the consequential downregulation of PD-L1

contributed to the restoration of immune surveillance by CD4+ T

cells and CD8+ T cells within the TME. LASNEO displayed excellent

anti-tumor effects by recruiting various types of immune cells (43).
2.3 EVs produced by memory-like NK cells

NK cells were previously believed to lack immune memory.

However, increasing evidence suggests that NK cells can generate

specific memory responses, acquiring “memory-like” functional

characteristics, resulting in enhanced functional activity (44).

Traditionally, the acquisition of memory-like traits by NK cells

ensues in response to activation signals emanating from both target

cells and the surrounding microenvironment. A case in point is the

phenomenon observed in tissues, where resident decidual NK cells

have the capacity to engender a distinctive and enriched NK cell

subset during recurring pregnancies. This subset augmentation

culminates in an enhanced production of IFN-g and vascular

endothelial growth factor (VEGF), thereby potentially

contributing to improved placental development (45). Upon

infection with mouse cytomegalovirus (MCMV),(NK cells in mice

undergo a transition, acquiring adaptive immune features (46).

Cultivating NK cells in the presence of artificial antigen-presenting

cells (aAPC) and K562-mb IL-21 proves to be a transformative

milieu, resulting in substantial expansion and activation of these

cells. This orchestrated response is notably accompanied by a

marked increase in the production of NK-EVs (47). Furthermore,

EVs produced by memory-like NK cells exhibit greater toxicity

towards cancer cells (48).

Furthermore, these memory-like NK cells can also produce

EVs, enhancing their functional activity. EVs derived from NK cells

previously exposed to neuroblastoma cells (NB), which express

NCRs and activation signals, can activate resting human NK cells,

enhancing their NK-mediated anti-NB tumor response (49). NK

cells exposed in advance to EVs derived from CML cells exhibit

higher gene expression levels of caspase 3 and P53 compared to the

untreated EVs group, showing stronger cytotoxic effects on tumor

cells (48).

Federici et al. proposed that there is no significant difference in

the quantity and expression of surface markers on EVs produced by
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NK cells in the resting and activated states (50). However, current

research indicates that memory-like NKEVs produced in response

to cytokine stimulation appear to exhibit more effective cytotoxicity

and anti-tumor effects.

Cytokine activation plays a crucial role in conferring memory-

like characteristics to NK cells (51, 52). Stimulating NK cells with

homeostatic and/or pro-inflammatory cytokines such as IL-2 and

IL-15 enhances their effector functions, promotes anti-tumor

immunity, and increases their persistence in the body (53).

In the study conducted by Zhu et al., it was discerned that the

stimulation of an equivalent number of NK cells with IL-15 elicited

a remarkable more than twofold augmentation in the overall

production of extracellular vesicles (EVs). This increase extended

not only to the quantity of EVs but also encompassed heightened

protein content and particle numbers within these vesicles. Notably,

IL-15-treated NKEVs (IL-15-treated NK-EVs) demonstrated a

more potent tumor-targeting effect and an extended circulation

period. These characteristics collectively resulted in a significant

inhibition of the growth of heterotransplanted glioblastoma cells in

murine models. Furthermore, the application of IL-15 was observed

to correlate with an upregulation in the expression of Rab27a in NK

cells. This observation suggests that IL-15 potentially exerts control

over the cellular trafficking of Rab27a-specific cargoes, implicating a

regulatory role in this particular pathway (29).

Enomoto et al. obtained similar conclusions when stimulating

NK cells with IL-15, and IL-15 in combination with IL-21-induced

EVs demonstrated stronger cytotoxic activity, even though the

cytotoxicity of NK-92 cells was not enhanced under co-

stimulation. This may be due to the NK-92 cells and the EVs they

produce having different protein and RNA profiles, such as the

enrichment of co-induced miR-146b and miR-23a, and the

presence of CD226 (DNAM-1). Additionally, GZMB and GZMH

were also co-induced by IL-15 and IL-21 (39).

In one study, it was revealed that the efficiency of EV

production exhibited a notable increase when NK cells were

subjected to co-stimulation with cytokines IL-15, IL-12, and IL-

18, in comparison to stimulation with IL-15 alone. This heightened

efficiency in co-stimulated EVs translated into a pronounced

proclivity for spheroid apoptosis, particularly evident in the

context of WM 9, OVCAR-3, and SK-RB-3 spheroids.

Intriguingly, the cell lines WM9 and SK-RB-3, known for their

resistance to NK cell-mediated killing, exhibited vulnerability to

apoptosis induced by these co-stimulated EVs. This observation

suggests a compelling prospect: that NK cell-derived extracellular

vesicles possess the capability to target cells autonomously,

irrespective of their donor cell origin (30).

Furthermore, EVs produced by stimulating NK cells with IL-1b
did not show a significant change in total protein content. However,

the expression of perforin significantly increased, and there was a

dose-dependent enhancement of EVs in their inhibitory effect on

endothelial cell proliferation and migration (33).

Moreover, it was observed that EVs generated through the

stimulation of NK cells with IL-1b did not manifest a substantial
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alteration in their overall protein content (Table 1). However, the

expression of perforin significantly increased, and there was a dose-

dependent enhancement of EVs in their inhibitory effect on

endothelial cell proliferation and migration.
3 NK cell source

There are various options for the sources of NK cells used to

generate EVs (Figure 2A). Currently, common sources for primary

NK cells include peripheral blood-derived NK cells (PB-NK), cord

blood-derived NK cells (CB-NK), and splenic NK cells from mice.

In addition, immortalized NK cell lines, such as the NK-92 cell line

and the NK3.3 cell line, are also commonly used. Recently, NK cells

derived from induced pluripotent stem cells (iPSC) and highly

efficient chimeric antigen receptor (CAR)-armed NK cells have

demonstrated effective expansion capabilities, making them

potential sources of EVs. NK cell-derived EVs from different

sources exhibit distinct characteristics in terms of isolation and

extraction, cytotoxicity, and safety (Figure 2C).
3.1 Primary NK cells

The number of NKEVs (NK cell-derived extracellular vesicles)

in human blood is low, and there are many other cell-derived EVs,

making isolation challenging (37, 50). Therefore, a preferable

approach, compared to directly extracting NKEVs from blood, is

to first obtain primary NK cells and then extract NKEVs. Human

peripheral blood emerges as the most readily accessible source for

procuring primary NK cells. Typically, single-nucleated cells are

separated from the blood using density gradient centrifugation. NK

cell populations are then obtained through flow cytometry (54).

However, NK cells in peripheral blood are mature, and their

viability decreases when frozen, making long-term storage

difficult. Umbilical cord blood contains an abundant population

of immature NK cells that are highly tolerant to freezing and exhibit

good homing to the bone marrow (55). Furthermore, NK cells

expanded from cord blood have higher proliferation capacity and

lower cytotoxicity compared to NK cells obtained from peripheral

blood (56–58). In a study by Luo et al., the successful isolation of

cord blood mononuclear cells (CBMC) from cord blood was

achieved through the implementation of density gradient

centrifugation. Subsequently, NK cells were co-stimulated using

IL-2 and irradiated K562-engineered cells. This tailored approach

resulted in a noteworthy expansion of NK cells and facilitated the

subsequent isolation of a substantial quantity of highly cytotoxic

and high-quality NK-EVs (42). For commonly used laboratory

animals like C57BL6 mice, obtaining blood samples is limited,

and spleen tissue is often used as the source for NK cells. Spleen

tissue is processed into a single-cell suspension through grinding,

and then CD3- CD49b+ cell populations are obtained using flow

cytometry to isolate NK cells (59).
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TABLE 1 Extracellular vesicles produced by cytokine-activated memory-like NK cells.
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NK-
92MI

IL-15 Ultracentrifugation
106.9±21.6 nm
(after use of IL-
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More than twice
as much as before

More than twice
as much

Stronger anti-tumor activity in
tumor targeting and longer cir

NK-92

IL-15

Ultracentrifugation 148.2 nm

Increase cytotoxicity

IL-21 No significant change in cytot
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IL-21

Increase cytotoxicity
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Inhibited endothelial cell migr
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of pro-inflammatory and pro-
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NK cells

CD16
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(electron
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3.2 NK cell line

NK-92 is the most commonly used NK cell line. In comparison

to the complex process of collecting NK cells from peripheral blood

mononuclear cells (PBMCs) and activating them for seven days,

NK-92EV (extracellular vesicles secreted by the NK-92 cell line) can

be rapidly isolated and utilized for clinical immunotherapy (27, 50,

60). It is currently the only NK cell line approved by the FDA for

clinical applications and is the most widely used NK cell line in

experimental research. NK-92 is a NK tumor cell line derived from

a non-Hodgkin’s lymphoma patient (61), and EVs from these

transformed/tumor cells may carry cargo specific to cells capable

of altering receptor cells or causing adverse effects (62, 63).

However, studies have indicated that the protein levels of

cytotoxic proteins in EVs derived from PB-NK cells are generally

higher than those from NK-92 sources (16).

NK3.3, a non-tumorogenic NK cell line originating from the

peripheral blood of a healthy donor, presents a distinct advantage.

This unique lineage alleviates the requirement for identifying and

securing consent from numerous healthy peripheral blood donors,

concurrently mitigating concerns related to donor variability.

Importantly, the utilization of NK3.3 circumvents the potential

introduction of oncogenic elements that may be associated with

the use of transformed NK-92 cells. Furthermore, this cell line

demonstrates the capacity for extensive expansion in substantial

quantities, contributing to its utility in research and applications

requiring large-scale production (64). Although research has

shown that NK-92 cells are more effective than NK3.3 cells in

lysing the K562 leukemia cell line, in Cochran et al.’s study, EVs

sourced from NK3.3 cells have demonstrated the capacity to

instigate morphological transformations and modulate protein

expression patterns pertinent to apoptosis induction in diverse

cancer cells. This consequential effect manifests as a potent

inhibition of tumor proliferation, accompanied by robust

cytotoxicity specifically targeted at K562 cells. Importantly, these
Frontiers in Immunology 0740
discernible impacts on cancer cells do not extend to exert any

influence on the growth or viability of non-tumorogenic normal

cells (64, 65). Hence, NK3.3 emerges as a promising candidate

with the potential to function as an efficacious, safe, and

universally applicable immunotherapeutic agent.
3.3 iPSC and car-NK cells

NK cells derived from induced pluripotent stem cells (iPSC)

have been shown to be superior in cellular therapy compared to

primary NK cells and the NK-92 cell line. The therapeutic

properties of iPSC-derived cardiomyocyte (66)-EVs, MSC (67)-

EVs, and iPSC (68)-EVs have been confirmed. However, further

research on their extracellular vesicles (EVs) has not been

conducted yet, and this may be a highly promising research

direction that deserves further exploration (69, 70). Moreover, the

recent advancement in the creation of CAR-equipped NK cells,

strategically designed to target specific tumor antigens, marks a

sophisticated and potent avenue for EV sourcing. These EVs have

the potential for higher specificity in targeting tumor cells (71).
4 Extraction of NKEVs

Currently, the methods for EVs are continually evolving and

b e i n g upda t e d . Common l y u s ed me thod s i n c l ud e

ultracentrifugation, density gradient centrifugation, polymer

precipitation, immunoaffinity methods, ultrafiltration, and size

exclusion chromatography (Figure 2B). In fact, the purity of

isolated EVs often comes at the cost of sacrificing factors such as

cost, yield, scalability, and therapeutic efficacy. If one aims to enrich

more EVs in a specific isolation, it inevitably requires more time,

labor, and cost (55, 72).

In recent years, some new extraction methods have gradually

become research hotspots, such as microfluidic devices, which can
FIGURE 2

(A) Origin and isolation of NK cells. (B) Isolation of NKEVs. (C) Comparison of NK cell-derived EVS from different sources.
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efficiently and precisely separate particles of micrometer or

nanometer size in a given volume of fluid (73). Due to their

miniaturization, integration, high-throughput capacity, and low

time consumption, microfluidic devices hold great promise for

improving recovery rates, reducing sample volumes, and

shortening processing times. In consideration of the synergistic

benefits arising from the integration of microfluidic devices and

chemical release strategies, Kang et al. introduced a refined

microfluidic platform incorporating anti- NK cell antibody

functionality, denoted as the NK-go chip. This innovative

platform leverages biocompatible graphene oxide for the capture

of NK cell-derived exosomes (NK-Exos) during short-term culture.

Additionally, it employs anti-CD63 magnetic beads (ExoBeads) to

facilitate the subsequent recovery and purification processes. The

study found that the highest exosome purity is obtained with a 12-

hour incubation on the chip (74).

Wu et al. have developed a seesaw-motion bioreactor (SMB)

system with continuous fluid flow, which not only expands the

production of extracellular vesicles (EVs) by increasing the yield of

EVs per cell but also achieves scalable EV production by increasing

the working volume and cell density of the cell culture medium

during continuous-flow cell culture. Through in vivo and in vitro

experiments, it has been demonstrated that the toxicity of NKEVs

produced in this manner is not significantly altered compared to

static conditions (75).
5 Therapeutic potential of NKEVs-
based delivery platforms for the
treatment of chronic diseases

Over the past few years, exosomal therapies have made

remarkable progress, and the ability to leverage cell-to-cell

transfer of information is increasingly becoming a focus of

chronic disease research. More importantly, EVs are loaded with

a wide range of bioactive molecules from the parent cell, mainly

drugs, lipids, proteins and nucleic acids (DNA, coding and non-

coding RNA) (76) (Table 2). These loads can be introduced before

or after exosome isolation. Pre-isolation loading methods Refers to

the introduction of therapeutic molecules into parental cells prior to

EV production so that they are encapsulated prior to EV biogenesis

(82) (Table 3). Currently, NK cell-derived EVs have received

extensive attention as delivery vectors for miRNAs or drugs, and

there is a large scope for development in the transport of siRNAs.

NKEVs emerge as inherently advantageous drug carriers,

distinguished by their elevated biocompatibility, diminished

immunogenicity, and the capacity to traverse the blood-brain

barrier. Noteworthy in their role as cargo transporters, NKEVs

exhibit intrinsic targeting capabilities and cytotoxicity during

transit, thereby eliciting potent killing effects. Moreover, the

regulatory influence of NKEVs extends to the modulation of

signaling pathways within recipient cells, thereby orchestrating

anti-tumor functions through the efficient delivery of cargo. This

multifaceted potential positions NKEVs as a promising avenue for

therapeutic interventions in chronic diseases, encompassing
Frontiers in Immunology 0841
conditions such as cancer, diabetes, depression, and immune

disorders (84).
5.1 NKEVs and breast cancer

The inclusions loading capacity and nano-size of EVs, coupled

with the membrane proteins inherited from NK cells, so NKEV

provides an important solution as a delivery strategy to efficiently

deliver small molecule nucleic acids to breast cancer cells. As an

illustrative instance, the NK cell line NK92MI underwent lentiviral

transduction for the purpose of expressing small interfering RNAs

targeting BCL-2 (siBCL-2) within EVs denoted as NKExos. This

strategic modification ensured the encapsulation of siBCL-2 within

NKExos without imposing a substantial impact on NK cell viability

or effector function (78). Subsequently, siBCL-2NKExos targeting

BCL-2 enhanced intrinsic apoptosis in breast cancer cells without

affecting non-malignant cells. Meanwhile, NKEV can also deliver

other non-nucleic acid cargoes. Han et al. extracted EVs from NK-

92 cells and prepared paclitaxel PTX-NK-Exos delivery system by

electroporation, which targeted human breast cancer MCF-7 cells,

effectively inhibited the proliferation of tumor cells and induced

apoptosis, thus exerting anti-tumor effects (77). Not only that,

NKEV delivery of iron death inducer induced RSL3 leading to

intracellular lipid peroxidation in breast cancer cells, resulting in

iron death (85).
5.2 NKEVs and other cancers

A plethora of studies has substantiated the involvement of EVs

in cancer development, underscoring their pivotal role in the

regulation of tumor growth, invasion, and metastasis. These

effects are attributed to the dynamic influence of EVs on the

tumor microenvironment and their adept modulation of the

immune response (86, 87). EVs derived from NK cells have a

certain targeting ability. NKEVs can distinguish between

transformed and non-transformed cells, and NK-EVs can

effectively kill tumor cells. This highlights a potential and

interesting application of NKEVs in cancer treatment (37). Kim

et al. found that NKEVs have a strong targeting effect and

significant toxicity on solid tumors in a primary liver cancer

mouse model but do not affect the activity and apoptosis of

normal liver cells (28). Currently, gliomas (LGG) have a poor

prognosis with a lack of specific biomarkers. While there exists

ongoing research aimed at constructing prognostic markers for

lower-grade gliomas (LGG) linked to potential factors such as

immunogenic cell death (88), inflammatory signaling (89), or

long non-coding RNAs (90), the pervasive and inherent capability

of exosomes to traverse the blood-brain barrier (BBB) presents an

avenue of greater promise in the realms of diagnosis, targeted

treatment, and prognosis assessment for brain diseases. As

highlighted by Zhu et al., NK-EVs containing IL-15 exhibit

heightened cytolytic activity against various human cancer cell

lines, including glioblastoma, breast cancer, and thyroid cancer.

This enhanced cytotoxicity is accompanied by an upregulation of
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molecules associated with NK cell cytotoxicity. Importantly, NK-

EVs do not exhibit significant toxicity against normal cells or

murine models, emphasizing their potential as a safe and effective

therapeutic modality (29).

However, the targeting mechanisms of NKEVs are not yet clear,

but some believe that surface receptors on the vesicles such as

TRAIL, NKp30, and NKp44, or adhesion molecules such as

lymphocyte function-associated antigen (LFA)-1/intercellular

adhesion molecule (ICAM)-1, are involved in the recognition and

targeting of tumor cells (29, 91).

NKEV delivers miRNAs for the treatment of a variety of

cancers, mainly including its mechanism of action includes direct

binding to proteins, preventing their binding to receptors as ligands,

and triggering downstream signaling, thus altering the activity of

the target cells. Neviani et al. primarily utilized a liposomal

preparation, anionic liposome nanoparticles (lypopolyplex

nanoparticles, the NP) loaded with miR-186 mimics or controls,

exposed to PBMC-isolated NK cells, and EVs isolated from NK cell

supernatants delivered mature miRNAs targeting and impairing

neuroblastoma cell survival and migration, while resisting NK cell

inhibition, to achieve inhibition of the tumorigenic potential of the

cells (81). Cytokines can also serve as miRNA targets. SUN et al.

found that NK cells isolated from PBMC, which derived EVs,

directly targeted IL-26 via miR-3607-3p, in which LNM+PC

patients (pancreatic cancer patients with lymph node metastasis)

had higher levels of IL-26 than the control group, and that IL-26
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may play a role in the reduction of metastasis of tumor cells, thereby

inhibiting their malignant transformation (80). Contemplating the

gene-silencing efficacy inherent to siRNA (92), the intercellular

transferability of EVs between tumor cells and immune cells (93),

and the tumor-homing proficiency exhibited by NKEVs (94), it is

plausible to envisage that NKEV possesses the potential to

orchestrate the modulation of immune cell activity. This may be

achieved through the mediation of siRNA, consequently impeding

the initiation and advancement of tumors. NKEVs modified with

the hydrophobic photosensitizer Ce 6, loaded with hydrophilic

siRNAs through electroporation, and subsequently subjected to

laser activation, instigated substantial photodynamic therapeutic

effects. This intervention not only facilitated the polarization of M1

tumor-associated macrophages and the maturation of dendritic

cells (DC) within the tumor microenvironment (TME) but also

orchestrated the recruitment of various immune cell types.

Impressively, these tailored NKEVs demonstrated outstanding

efficacy in exerting anti-hepatic tumor cell effects (43).

Most delivery platforms for cancer treatment based on

Nanoscale Extracellular Vesicles (NKEV) are centered around

nucleic acid therapies, particularly miRNA. However,

theoretically, there may be a broader range of applications. As

one of the three major gynecological cancers, the treatment of

ovarian cancer using radiotherapy and chemotherapy is hampered

by issues such as drug resistance and long-term complications.

Considering the toxicity and loading capacity of Nanoscale
TABLE 2 Cargo loaded by NKEVs.

Source
of
NK
cells

Extraction
method
of Evs

Engineering
approach

Target cells Function reference

NK-92
Differential
ultracentrifugation

Electroporation loading
paclitaxel PTX

Human breast cancer MCF-7 cells
Increased cellular uptake of drugs,
promoting apoptosis

(77)

PB-NK,
CB-NK

Differential
ultracentrifugation

Electroporation loading
of cisplatin

Human ovarian cancer cell lines SKOV3,
OV-90, COC1/DDP

Promoted apoptosis and improved
drug resistance

(42)

NK-92MI
Differential
ultracentrifugation

Electroporation loading of
siRNA targeting PLK1
(siPLK1), modified with
photosensitizer Ce6

Hepatocellular Carcinoma HepG2-Luc
cell line, Colorectal carcinoma CT26 cell
line, Murine macrophage RAW264.7
cell line

Promoted polarization of M1
tumor-associated macrophages and
DC cell maturation

(43)

NK-92MI Test kit
siBCL-2 transfection into NK
cells by virus

ER+ breast cancer cells HEK293T cells
Activated mitochondria-
dependent apoptosis

(78)

NK92-MI
Differential
ultracentrifugation

miR-223 transfected into
NK cells

Human hepatic stellate cells-LX-2

Targeted ATG7, inhibited TGF-b1-
induced autophagy and attenuated
TGF-b1-induced stellate
cell activation

(79)

PB-NK
Differential
ultracentrifugation

Human PC cells (MiaPaCa-2 and
PANC-1)

Inhibited cell proliferation,
migration and invasion

(80)

PB-NK
High Performance
Liquid
Chromatography

miR-186 transfected into
NK cells

Neuroblastoma cell line

Inhibited tumorigenic potential of
adult neuroblastoma and prevented
TGFb1-dependent inhibition of
NK cells

(81)

PB-NK
Differential
ultracentrifugation

Polyamidoamine hybridization
of NKEVs with reproducible
let-7a (membrane fusion)

Human adult neuroblastoma CHLA-255
cells (MDA-MB-231-luc, CHLA-255-
luc cells)

Inhibited tumor growth (54)
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TABLE 3 Summary of studies on the NKEV drug delivery platform.

get Cells Mechanism and Function reference

an breast cancer MCF-7 cells
Inhibited cell proliferation and induced
apoptosis more significantly than free PTX

(77)

an hepatic stellate cells-LX-2
Targeted ATG7, inhibited TGF-b1-induced
autophagy and attenuated stellate
cell activation

(79)

st cancer cells(MEC-1, MCF-7, T-47D,
R3, MDA-MB-MB-231)

Promoted apoptosis (78)

an PC cells (MiaPaCa-2, PANC-1)
Targeted IL-26, inhibited cell proliferation,
migration and invasion.

(80)

ocytes Targeted Tril to exert antidepressant effects (59)

roblastoma cell lines
Inhibited tumorigenic potential of neuronal
neoplasms, prevented TGFb1-dependent
inhibition of NK cells

(81)

ocytes and hepatocytes (3T3-L1
ocytes, AML12 adipocytes)

Targeted SKOR1, inhibit TLR4/NF-kB
pathway, enhanced insulin sensitivity,
reduced inflammation in adipocytes
and hepatocytes

(83)

an ovarian cancer cell lines (SKOV3,
90, COC1/DDP)

Killed OC cells and sensitized tumor cells
to DDP

(42)

atocellular Carcinoma HepG2-Luc cell
Colorectal carcinoma CT26 cell line,
ine macrophage RAW264.7 cell line

Promoted polarization of M1 tumor-
associated macrophages and DC
cell maturation

(43)
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Loading
Method

Tar
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Extracellular Vesicles (NKEVs), along with the effectiveness of

immunotherapy, combining NKEVs with immunotherapy for

anticancer treatment may have potential applications (95).

Cisplatin can inhibit tumor proliferation. Luo et al. loaded

cisplatin into eNK-EXO, enhancing drug sensitivity in cisplatin-

resistant ovarian cancer cells. Additionally, it can activate NK cells

in the immunosuppressive tumor microenvironment, ultimately

achieving an anti-ovarian cancer cell effect (42). In conclusion,

utilizing extracellular vesicles derived from natural killer (NK) cells

to load chemotherapeutic agents can enhance the uptake by solid

tumors, thereby achieving a more precise and effective

drug delivery.
5.3 NKEVs and other chronic diseases

Due to the cell-permeable capacity of exosomes and their ability

to cross the blood-brain barrier, NKEV may be a promising strategy

for the treatment of psychiatric or metabolic chronic diseases. As an

exemplar, EVs derived from NK cells, isolated from mouse spleens,

exhibited the capacity to traverse the blood-brain barrier. These EVs

were subsequently internalized by astrocytes, conveying miR-207,

which directly targeted proteins interacting with TLR4-Tril

complexes, consequently inhibiting the NF-kB signaling pathway.

This orchestrated molecular modulation led to a diminished release

of pro-inflammatory cytokines. Notably, such intervention

translated into a reduction in stress-related symptoms, including

locomotor retardation, thereby eliciting antidepressant effects in the

mice (59). 2021 wang et al. After co-culturing mouse splenic

lymphocyte NK cells transfected with miR-1249-3p with 3T3 - L1

adipocytes or AML12 cells, miR-1249-3p from EV of the former

origin inhibited the NF-kB signaling pathway, with novel roles in

insulin resistance mitigation and attenuation of inflammatory

response, a common dysfunction in patients with type 2 diabetes

(83). However, the role of NKEV in immune chronic diseases is

easily overlooked, and it has been demonstrated that NKEV exhibits

a dose-dependent killing effect for K562 cell lines or Jurkat cell lines

derived from chronic granulocytic leukemia or acute T-cell

leukemia (39).
6 NKEVs in clinical diagnosis
and treatment

In addition to being widely recognized as a nano-scale carrier

transport platform, they also have a wide range of applications in

clinical diagnosis and treatment. From the perspective of NK cells,

on one hand, NK cells, as important effector cells of the innate

immune system, can rapidly identify and eliminate heterogeneous

cells such as virus-infected cells, tumor cells, and respond to the

early pathological conditions of the body. On the other hand, NK

cells differentiated in different tissue types exhibit a high degree of

heterogeneity, and even within the same organ or tissue, NK cells

can have different phenotypic characteristics and functions in

different functional states. The high complexity of cell
Frontiers in Immunology 1144
differentiation within tissues makes NK cells a potential specific

indicator of the body’s pathological functional state, especially in

the early stages of disease. At present, clinical data has shown that

the abundance of NK cells in the TME predicts a better prognosis

for patients with various cancers, such as hepatocellular carcinoma

(HCC), melanoma, and others. Simultaneously, researchers have

established a signature of NK cell (NRG)-related genes to assess the

immunotherapeutic efficacy in head and neck squamous cell

carcinoma (96). Because EVs can inherit various characteristics

and specific biomolecules from parent cells, it is one of the reasons

for the heterogeneity of EVs. Therefore, NKEVs inherit the

potential of NK cells as specific biomarkers. As early as 2012, it

was discovered that in pre-eclampsia, the number of microvesicles

in peripheral blood would undergo changes, and among them, there

were fewer microvesicles formed by NK cells (97). The correlation

between the content of EVs released by NK cells in the blood and

the development of the disease reveals the potential clinical

application value of NKEVs in disease diagnosis and treatment.

In recent years, through the application of microfluidic systems

for NKEV extraction, it has been discovered that changes in NKEV

concentration are positively correlated with the number of

circulating tumor cells (CTC) in non-small cell lung cancer

(NSCLC) patients (74). CTCs, representing subclones with a high

metastatic propensity, are used in liquid biopsies for cancer. They

provide more information than traditional tissue biopsies through

phenotype and molecular analysis and can serve as biological

markers of interest in precision cancer treatment. In 2017, the

National Comprehensive Cancer Network (NCCN) in the United

States included circulating tumor cells (CTC) in the clinical

guidelines for breast cancer malignant tumor staging (TNM

staging). Given the diagnostic significance of CTC in cancer and

the robust association between NKEV and CTC counts, a

compelling prospect emerges—namely, that the identification of

NKEVs could offer a personalized approach to disease diagnosis

and treatment. This notion supplements and amplifies the

predictive capacity of CTCs in delineating patient prognosis. In a

noteworthy development, Deeptha et al. engineered a highly

sens i t ive , h ighly spec ific , and stra ight forward GBM

ImmunoProfiler platform. This platform harnessed an expandable

ultrafast laser multiphoton ionization mechanism to scrutinize

serum samples from glioblastoma (GBM) patients, enabling the

tracking of NKEV expression in the circulation alongside immune

checkpoint markers, namely PDL-1 and cytotoxic T-lymphocyte-

associated protein 4 (CTLA4). The clinical validation of this

cutting-edge technology furnishes robust evidence advocating for

the utilization of NKEVs as a diagnostic and therapeutic tool in

minimally invasive biopsies (98).
7 Discussion and future

NK cells are important immune cells in the body, and their EVs

have similar characteristics to the parental cells. Compared with

other immune cells, such as T cells, T cells need expensive and time-

consuming engineering and expansion of T cell processes, as well as

the therapeutic effect limitation caused by low expression of major
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histocompatibility complex (MHC) on tumor cells. NK cell therapy

is independent of antigen presentation and can be better controlled

to reduce the risk of cytokine storm.

EV has many advantages, such as biocompatibility, blood-brain

barrier penetration, small size, and suitable for infiltrating solid

tumors (59, 81). The cytotoxicity of NK cells to a variety of tumors

is inhibited by acidic extracellular pH, which inhibits the release of

perforin/granzyme containing particles and fas/fasl interaction (50,

99). The promotion of EV accumulation and delivery is notably

facilitated by acidity. Within the acidic tumor microenvironment,

this distinctive milieu actively encourages the uptake of EVs by

tumor cells. This phenomenon is driven by the compelling influence

of low pH, which not only attracts EVs but also fosters the

facilitation of membrane fusion processes (27, 100). Moreover,

NK extracellular vesicles (NK exo) have natural tumor targeting

ability and immune regulation ability, and are ideal molecular

carriers, which can effectively transmit drugs or signal molecules

to tumor cells or immune cells, thereby enhancing the anti-tumor

effect. In addition, the exosome production of NK92 cells under

hypoxia treatment increased (101); The hypoxic milieu proves

conducive to both the accumulation and delivery of exosomes.

This advantageous effect arises from the low oxygen concentration

within the environment, a factor that attracts exosomes and

facilitates their membrane fusion processes (102).

Even though NKEVs (NK cell-derived Extracellular Vesicles)

have been shown to have some degree of specificity towards tumor

sites, the mechanism of EVs targeting specific cells and the precise

delivery of therapeutic EVs to target cells remain a yet-to-be-solved

and critically important issue. Addressing this issue could enable us

to utilize EVs as a means of delivering more therapeutic EVs to

target cells and avoiding unwanted side effects. In recent years,

engineered EVs have gradually come into focus, and surface

modifications of EVs, including chemical modifications and

genetic engineering, have significantly enhanced their tumor-

targeting capabilities. The development of EV-nanomedicine co-

delivery systems, such as liposomes, can further enhance the

loading efficiency of EVs while ensuring their targeting specificity.

This approach has also been validated in EVs derived from NK cells

(54, 103). Microfluidics and lab-on-a-chip technologies make it

possible to control the size of liposomes, and freeze-thaw cycles

appear to be advantageous for the fusion of EVs with liposomes.
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These advancements make EV-nanomedicine delivery systems even

more promising in terms of their potential for targeted drug

delivery (104, 105).
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This review in sports medicine focuses on the critical role of exosomes in

managing chronic conditions and enhancing athletic performance. Exosomes,

small vesicles produced by various cells, are essential for cellular communication

and transporting molecules like proteins and nucleic acids. Originating from the

endoplasmic reticulum, they play a vital role in modulating inflammation and

tissue repair. Their significance in sports medicine is increasingly recognized,

particularly in healing athletic injuries, improving articular cartilage lesions, and

osteoarthritic conditions by modulating cellular behavior and aiding tissue

regeneration. Investigations also highlight their potential in boosting athletic

performance, especially throughmyocytes-derived exosomes that may enhance

adaptability to physical training. Emphasizing a multidisciplinary approach, this

review underlines the need to thoroughly understand exosome biology,

including their pathways and classifications, to fully exploit their therapeutic

potential. It outlines future directions in sports medicine, focusing on

personalized treatments, clinical evaluations, and embracing technological

advancements. This research represents a frontier in using exosomes to

improve athletes’ health and performance capabilities.
KEYWORDS

exosomes, sports medicine, chronic diseases, injury recovery, immune regulation,
translation
1 Introduction

Exosomes represent a specialized subset of extracellular vesicles, with dimensions

typically ranging from 30 to 150 nanometers, that are elaborated and liberated by a broad

spectrum of cells via the endoplasmic reticulum vesicle system (1–4). These nanostructures

play a quintessential role in cellular communication, encapsulating and conveying an

assortment of biomolecules, including proteins, lipids, RNA, and DNA (5–9). Their
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interaction with recipient cells significantly modulates the

recipient’s cellular functions (9, 10). The ontogeny of exosomes

commences within the endoplasmic reticulum vesicle system, where

they originate as incipient endosomes in the cytoplasmic milieu.

Subsequently, they progress to mature into multivesicular bodies

(MVBs), which are repositories for myriad intraluminal vesicles

that ultimately coalesce with the plasma membrane, culminating in

the extracellular release of exosomes. This elaborate process is

under the stringent regulation of a network of proteins and lipids

(2, 4). Exosomes are taxonomically classified per their progenitor

cell lineage, inherent biological functions, and distinctive surface

markers, rendering them an intriguing focus of current biomedical

research. Depending on the source cell, exosomes can be sub-

classified into various types, such as those derived from immune

cells (e.g., exosomes produced by T cells, B cells, or dendritic cells),

tumor cells (exosomes from tumor cells, typically associated with

promoting tumor growth and metastasis), and stem cells (exosomes

from various stem cells like mesenchymal stem cells and embryonic

stem cells, noted for their robust tissue repair and regenerative

capabilities). Additionally, based on their biological function,

exosomes can be classified as pro-inflammatory or anti-

inflammatory, immunomodulatory, pro-tumorigenic, or anti-

tumorigenic, and more (11–14). The analysis of exosomal surface

markers, such as CD63, CD81, and CD9, which are commonly

regarded as universal markers, also aids in their categorization.

Understanding the diverse classifications of exosomes is pivotal in

comprehending their varying biological functions and potential

clinical applications. Delving into the study of different types of

exosomes opens new avenues and strategies for clinical treatments,

particularly in the realms of sports medicine and regenerative

medicine, where exosomal research holds broad application

prospects and profound scientific significance (15–17). In the field

of sports medicine, exosome research is emerging as a novel and

vibrant area of study. Investigating the role of exosomes in cellular

communication, as well as their potential in repairing sports injuries

and enhancing athletic performance, is expected to provide new

theoretical foundations and experimental evidence for the clinical

translation of sports medicine (7, 10, 18, 19).

Sports medicine is an interdisciplinary field of research

dedicated to exploring the dynamic interplay between physical

activity and human health (7, 20–26). This domain is committed

to the prevention and treatment of sports injuries and the

enhancement of athletic performance (7, 12, 23, 27–30). The

scope of sports medicine encompasses but is not limited to,

disciplines such as physiology, biomechanics, sports psychology,

and sports nutrition (13, 31–35). Professionals in sports medicine

frequently collaborate with physical therapists, sports psychologists,

nutritionists, and experts from related fields to provide

comprehensive services to athletes and the general populace. The

primary objectives of sports medicine include the prevention and

treatment of sports injuries, achieved through a profound

understanding of the mechanisms underlying these injuries. This

understanding fosters the development of novel preventive

strategies and therapeutic approaches aimed at reducing the

incidence of injuries and accelerating the recovery process (20, 22,

27). Additionally, sports medicine focuses on optimizing athletic
Frontiers in Immunology 0249
performance through scientifically validated training methods,

appropriate nutritional supplementation, and psychological

adjustment strategies. This support empowers athletes and fitness

enthusiasts to achieve peak performance levels. Furthermore, sports

medicine advocates for a healthy lifestyle, utilizing education and

outreach to encourage public participation in regular physical

activity, thereby fostering physical and mental well-being and

preventing chronic diseases (25, 26, 29, 36). As technology

advances and society evolves, sports medicine will continue to

expand into new domains and technologies to meet the growing

demands for sports and health.

The intersection and significance of exosomes in the realm of

sports medicine primarily manifest in their potential contributions

to the recovery from sports injuries and the enhancement of athletic

performance. Exosomes, serving as critical vectors in intercellular

communication, are carriers of functional molecules such as

mRNA, microRNA, and specific proteins. These molecules are

instrumental in the early diagnosis and targeted treatment of

various diseases. Recent studies have illuminated the significant

role of exosomes in sports medicine, demonstrating that physical

exercise can influence the content of exosomes, thus revealing their

crucial role in this field (37).

Firstly, exosomes show remarkable potential in the realm of

sports injury recovery. Research has underscored the therapeutic

value of exosomes in the treatment of joint cartilage damage and

osteoarthritis (OA). Joint cartilage injury, a common clinical issue,

can lead to joint dysfunction, significant pain, and secondary

osteoarthritis. Exosomes, originating from the endoplasmic

reticulum and actively participating in cellular communication

under both physiological and pathological conditions, have gained

considerable attention across various domains. The significance of

exosomes in the progression of osteoarthritis and their therapeutic

value in cartilage repair and osteoarthritis treatment are

progressively being recognized. The functional differences

between various types and sources of exosomes are determined by

their specific contents, influencing their role in the onset and

progression of osteoarthritis and the treatment value and future

therapeutic design strategies related to cartilage injuries/

osteoarthritis (38). Secondly, the improvement of athletic

performance through exosomes is of notable significance.

Exosomes secreted by skeletal muscle cells can bind or fuse with

the plasma membranes of target cells or be endocytosed, thereby

transferring their effective payloads. This exosome-mediated

communication between cells and organs can be viewed as a

mode of transportation for myokines, potentially impacting

athletic performance and the body’s adaptability to exercise (39).

In summary, the intersection and importance of exosomes in sports

medicine are primarily evident in their potential contributions to

the recovery from sports injuries and the improvement of athletic

performance. As research on exosomes continues to deepen and the

field of sports medicine evolves, exosomes may emerge as a pivotal

therapeutic strategy for facilitating sports injury recovery and

enhancing athletic performance.

The purpose of this scholarly review is to meticulously

interrogate the role and significance of exosomes within the

domain of sports medicine, offering novel perspectives and
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foundational support for their clinical application. The specific

knowledge gaps that our review seeks to address are distinct from

previous studies, with a particular emphasis on translational

research and personalized treatment of exosomes in sports

medicine rather than merely discussing related mechanistic studies.
2 Biological basis of exosomes

2.1 Biogenesis and release of exosomes

The genesis and extracellular dispensation of exosomes are

governed by a sophisticated and nuanced cascade of cellular

events, necessitating the orchestrated participation of myriad

organelles and biomolecular constituents. Herein, we delineate the

sequential phases of this process:

The origin of exosome biogenesis is situated within the cellular

endosomal framework. The odyssey begins with the invagination of

the cell’s plasma membrane, leading to the genesis of late

endosomes, also termed multivesicular bodies (MVBs). Within

the confines of these MVBs, a secondary invagination transpires,

culminating in the creation of intraluminal vesicles (ILVs). These

nascent vesicles harbor an array of biomolecular entities, including

proteins, lipids, and RNA moieties, derived from both the cytosol

and the cell’s exterior membrane. Subsequently, MVBs are

trafficked to the periphery of the cell, coalescing with the plasma

membrane and facilitating the liberation of ILVs into the

extracellular milieu, at which juncture they assume the

designation of exosomes (40).

The incipient phase of exosomal biogenesis is catalyzed by the

cell’s endosomal recycling apparatus. This process commences with

the selective internalization of molecular constituents from the

plasma membrane into the incipient endosomes. These early

endosomes undergo a series of biochemical and biophysical

processes to transform into late endosomes and subsequently into

MVBs. The formation of ILVs within MVBs is accomplished

through the inward budding of the cell membrane. MVBs are

then transported to the cell membrane, where they fuse and

release exosomes into the extracellular space (40, 41).

The release mechanisms of exosomes may be regulated by the

Endosomal Sorting Complex Required for Transport (ESCRT)

machinery, although there is some contention regarding this.

During exosome biogenesis, several key proteins such as Alix,

flotillin, and TSG101 have been identified as participants in the

process. These proteins are likely intricately involved with the

fusion of the cell membrane and the release of exosomes (42).

Exosome biogenesis and release involve interactions among

multiple organelles and biomolecules, as well as a variety of

biochemical and biophysical processes. The cargo of exosomes,

including proteins and miRNAs, and their sorting and packaging,

are integral components of the exosome biogenesis process. With

those functions, exosomes can efficiently transport specific

biomolecules to target cells and act as a key role in intercellular

communication (43).
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2.2 Contents of exosomes

The molecular cargo of exosomes mirrors their progenitor

cellular milieu, encompassing a panoply of moleculcar

constituents such as lipids, proteins, and nucleic acid sequences.

The exosomal membrane is characterized by a lipid bilayer

architecture, enriched with cholesterol, sphingomyelin, ceramide,

and diglycerides (44). Exosomes are notably replete with an array of

transmembrane proteins, including tetraspanins, antigen-

presenting complexes, an assortment of glycoproteins, and

molecules facilitating cellular adhesion; alongside a cadre of

luminal proteins comprising heat shock proteins, elements of the

cytoskeleton, components of the endosomal sorting complexes

required for transport (ESCRT) machinery, membranous

transporters, fusogenic proteins, and an array of growth factors

and cytokines (44, 45). Beyond these proteins, exosomal cargo

encompasses nucleic acids, inclusive of DNA, messenger RNA,

and microRNA.

The repertoire of exosomal contents further extends to lipids,

metabolic intermediates, as well as proteins intrinsic to the

cytoplasm and cellular interface. These molecular entities are

capable of assimilation by recipient cells, exerting functional

modulation (41, 42). Despite the obscurity surrounding the

physiological raison of exosomes, burgeoning studies delineate

their quintessential role as conveyors in intercellular signaling,

orchestrating the communicative network among disparate cell

types (41, 43). Proteomic scrutiny of exosomes secreted across

various cellular origins has elucidated a conserved set of proteins,

thereby postulating exosomes as a bona fide secretory subcellular

organelle, while also identifying unique protein signatures

indicative of the discrete functional capacities engendered by

exosomes from divergent cellular provenances.
2.3 Biological activity and function
of exosomes

Exosomes are extracellular vesicles produced by all cells,

responsible for intercellular communication. Carrying genetic

information and proteins, they transport molecules from one cell to

another via vesicular transport, influencing biological processes such

as immune responses, cell proliferation, and neural signaling (46).

The bioactive cargo of exosomes may provide prognostic information

for a range of diseases, including chronic inflammation,

cardiovascular and renal diseases, neurodegenerative disorders,

lipid metabolism diseases, and tumors (42). They contain

components secreted by their parent cells (e.g., proteins, DNA, and

RNA) and can be taken up by distant cells, affecting cellular functions

and behavior (46).

Exosomes are recognized as a ubiquitous intracorporeal

conveyance mechanism, replete with multifunctionality, ferrying

an array of nucleic acids, proteins, lipids, and metabolic byproducts.

They fulfill a critical function as conduits for both proximal and

distal intercellular discourse in both physiological and pathological
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states (46). The myriad functions and biological activities of

exosomes are pivotal in the realms of cellular and pathobiological

sciences, especially in the domains of intercellular signaling,

inflammatory mediation, and the pathogenesis of disease.

Through the transport and transference of diverse bioactive

moieties such as growth factors, cytokines, and microRNAs,

exosomes exert regulatory control over the functional dynamics

and behavioral responses of target cells (12, 47). For example, they

can orchestrate immune responses by conveying molecules with

immunomodulatory efficacy, such as antigen-presenting complexes

and immunosuppressive agents, thereby modulating the functional

status of immune cells. In addition, exosomes can impinge upon

cellular proliferation, motility, and phenotypic differentiation by

transmitting growth factors and cytokines (48). Within the neural

milieu, exosomes demonstrate substantial bioactivity, influencing

neuronal viability and functionality through the delivery of

neurotrophic factors and neurotransmitter-related molecules (49).

Notably, exosomes are implicated in oncogenesis and tumorigenesis,

shaping the biological characteristics of neoplastic cells and the

architectonics of the tumor microenvironment by the translocation

of oncogenic and invasive factors (50).

Many types of exosomes are utilized as well in sports medicine,

such as bone marrow MSC exosomes, adipose stem cell exosomes,

embryonic MSC exosomes, umbilical cord MSC exosomes, dental

pulp stem cell exosomes, and so on. In this article, we will describe

the relevant studies that have been reported.
3 Exosomes in sports medicine-
related research

3.1 Role of exosomes in tissue repair
and regeneration

3.1.1 Muscle injury
The reparative role of exosomes in myotrauma has garnered

considerable scrutiny, with findings affirming their ability to instigate

muscular tissue regeneration through multifarious mechanisms.

Predominantly, exosomes expedite myotrauma remediation and

restoration by stimulating myogenic proliferation, catalyzing the

phenotypic maturation of tendinous cells, fostering neurite

outgrowth, and facilitating the proliferation of Schwannian cells

(51). Exosomes derived from platelet-enriched plasma and

mesenchymal stromal cells have been observed to significantly

expedite the recuperation of muscular functionality (51).

Exosomes exert their influence by attenuating cellular pyroptosis

and ameliorating ischemic myopathy. Empirical evidence suggests

that exosomes sourced from mesenchymal stromal cells (MSCs)

harbor the therapeutic potential for myopathic injuries, endorsing

myoblastic differentiation in patients with Duchenne Muscular

Dystrophy and in murine models of MDX (52). Furthermore,

exosomes emanating from C2C12 myoblasts have been implicated

in the promotion of myofibrillar regeneration, expediting lipogenesis

within injured myocytes, mitigating myofibrosis, and accelerating

reparative processes, which are attributed to the exosomal mediation
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of satellite cell proliferation and fibro-adipogenic progenitor cell

differentiation (53).

Exosomes isolated from human adipose-derived mesenchymal

stromal cells (AD-MSCs) have demonstrated promising therapeutic

implications for myogenic regeneration. These exosomes are

postulated as efficacious modalities for regenerative therapy,

potentially inaugurating novel avenues for myotrauma

remediation (54). Additionally, exosomes from bone marrow

stromal cells (BMSCs) have been documented to enhance

muscular healing by promoting M2 macrophagic polarization,

whereas pro-inflammatory C2C12-derived exosomes have been

associated with M1 macrophagic polarization and the suppression

of myogenic repair mechanisms (12, 27, 55).

3.1.2 Frozen shoulder
Adhesive Capsulitis (AC), commonly manifested as Shoulder

Stiffness (SS), is a pervasive affliction characterized by aggravated

pain and a diminished range of articular motion (56).

Pathologically, AC is classified as an inflammatory and fibrotic

disorder. Investigations have unveiled that exosomes from Bone

Marrow Stromal Cells (BMSCs) can suppress the expression of

TGFBR1 through the mediation of let-7a-5p, consequently

impeding the progression of AC (14, 28). Exosomes have

emerged as a significant therapeutic entity in the management of

diverse fibrotic maladies, with exosomes from various sources and

their molecular cargoes—such as miRNAs, lncRNAs, and proteins

—being contemplated as targeted therapeutic interventions. These

entities can influence an array of cellular types and signal

transduction pathways implicated in fibrosis (57, 58).

3.1.3 Tendon injury
Exosomes hold significant potential in the treatment of tendon

injuries, encompassing Achilles and rotator cuff injuries. In the

realm of tendon injury therapy, exosomes function through

multiple mechanisms. These primarily include the suppression of

inflammatory responses, modulation of macrophage polarization,

regulation of gene expression, remodeling of the cellular

microenvironment, restructuring of the extracellular matrix, and

promotion of angiogenesis (59).

In the context of rotator cuff injury repair, exosomes exhibit

considerable therapeutic potential. Studies have found that

Mesenchymal Stem Cells (MSCs) can enhance healing post-

rotator cuff repair through the release of exosomes (60).

Additionally, purified exosome products are being explored to

improve the surgical outcomes of rotator cuff tendon-bone

healing and to reduce postoperative re-tear rates. This is achieved

by focusing on biological and biomechanical factors (61).

In the treatment of Achilles tendon injuries, exosomes have also

demonstrated the ability to promote the healing of injured tendons.

Specifically, exosomes from tendon stem cells have been found to

facilitate tendon injury healing through mechanisms that balance

the synthesis and degradation of the tendon extracellular matrix

(62). Concurrently, given that poor outcomes in many soft tissue

injuries (such as Achilles tendon ruptures, rotator cuff tears, and

flexor tendon injuries) are attributed to macrophage-induced
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inflammation, researchers are investigating exosome-based

therapies to suppress inflammation and thereby improve the

treatment outcomes of tendon injuries (10).

3.1.4 Tendon-bone healing
Exosomes have demonstrated significant therapeutic potential

in tendon-bone healing, particularly in the healing process

following Anterior Cruciate Ligament Reconstruction (ACLR).

Research indicates that exosomes derived from Bone Marrow

Stromal Cells (BMSCs) can facilitate tendon-bone healing by

modulating the polarization of M1/M2 type macrophages, a

mechanism that has been validated in rat models of ACLR (63).

Typically, ACLR may fail due to the inability to regenerate normal

tissue at the tendon-bone junction and the formation offibrous scar

tissue at this interface (64). However, the combination of BMSC-

derived exosomes with cartilage fragments has been shown to

enhance healing at the tendon-bone interface, thereby increasing

the success rate of ACLR (65).

The role of exosomes in facilitating tendon-bone healing

primarily encompasses (1) inhibition of inflammatory responses

and regulation of macrophage polarization, (2) control of gene

expression, remodeling of the cellular microenvironment, and

restructuring of the extracellular matrix, and (3) promotion of

angiogenesis (59). Although studies have observed the effects of

BMSC-derived exosomes (BMSC-Exos) on tendon-bone healing

post-ACLR in rats, both in vivo and in vitro, elucidating the

possible mechanisms, it remains unclear whether BMSC-Exos can

facilitate tendon-bone healing in humans post-ACLR. Additionally,

some studies have explored the effects of exosomes on tendon-bone

healing and osteogenesis at the tendon-bone junction using rat ACLR

models. For instance, by locally injecting IONP-Exos, BMSC-Exos, or

PBS into the surgical knee joint, the retention of exosomes at the

surgical site was observed. It was found that exosomes can promote

bone formation at the tendon-bone junction (66).

3.1.5 Arthritis
Exosomes have demonstrated potential value in the treatment of

arthritis, primarily manifesting in alleviating cartilage damage,

inhibiting bone overgrowth, and modulating immune responses.

Certain types of exosomes show potential advantages in reducing

inflammation and regulating immune responses, which could be

significant for the treatment of disease models including Rheumatoid

Arthritis (RA). Exosomes can inhibit the proliferation of T

lymphocytes indicative of inflammation and induce other anti-

inflammatory effects (67, 68). Additionally, exosomes are involved

in numerous physiological and pathological processes, influencing

the development of various diseases, including Osteoarthritis (OA),

by regulating intercellular communication (69).

In the treatment of Rheumatoid Arthritis, exosomes can act as

therapeutic carriers. These extracellular vesicles from mice cells

affect biological mechanisms and signal transduction by

transporting genetic and proteomic components (67). Exosomes

also play a role in RA-related arthritis, where these specialized

function extracellular vesicles are responsible for transporting

autoantigens and mediators to distant cells (68).
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3.1.6 Cartilage injury
Firstly, exosomes can promote cartilage repair and regeneration

by regulating cell migration, proliferation, differentiation, and

extracellular matrix synthesis. For example, exosomes from

Mesenchymal Stem Cells (MSCs) can modulate immune

responses, reduce cell apoptosis, enhance cell proliferation, and

initiate the proliferation and migration of chondroprogenitor cells

(19, 38). Additionally, exosomes can alleviate cartilage injury,

reduce bone overgrowth, inhibit the production of M1

macrophages, and promote the generation of M2 macrophages,

while also decreasing levels of pro-inflammatory cytokines such as

IL-1b, IL-6, and TNF-a, and increasing levels of the anti-

inflammatory cytokine IL-10 (70).

In the treatment of rheumatoid arthritis, exosomes can be used

as therapeutic carriers; they are extracellular vesicles in mice that

influence biological mechanisms and signaling and can play a role

by transporting genetic and protein components (67). Exosome also

plays a role in rheumatoid arthritis, these specialized functioning

extracellular vesicles are responsible for transporting self-antigens

and mediators to distant cells (68).
3.2 Potential of exosomes in enhancing
athletic performance

3.2.1 Metabolic regulation
Exosomes, small vesicles originating from the endoplasmic

reticulum, circulate through blood and other bodily fluids,

providing a unique platform for intercellular communication.

Recent research highlights the pivotal role of exosomes in

metabolic regulation during physical activity, especially in

endurance exercises (39, 71, 72). Here is an overview of the role

of exosomes in exercise-induced metabolic regulation.

Bioactive Molecules in Exosomes: During exercise, the bioactive

molecules within exosomes, such as peptides and nucleic acids

(collectively termed exerkines), undergo alterations. Studies

indicate that endurance exercise induces the release of exosomes,

particularly peptides and nucleic acids from skeletal muscle and

other tissues (73, 74). These bioactive molecules can exert

endocrine-like effects, impacting the pathophysiology of

conditions like obesity and Type 2 Diabetes (73–75).

Intercellular Communication Role of Exosomes: Functioning as

endocrine-like vesicles, exosomes can carry proteins, microRNAs,

and other nucleic acids, facilitating communication between cells and

tissues, and even among organs. This contributes to the formation of

a coordinated metabolic network within the body (72, 74, 76).

Future Therapeutic Potential of Exosomes: Researchers

hypothesize that future therapies for obesity and Type 2 Diabetes

might involve the use of modified exosomes enriched with

exerkines. These exosomes, through their contained bioactive

molecules, could positively regulate metabolic health, offering new

therapeutic possibilities for these metabolic diseases (73, 74, 76).

Release of Exosomes and Exercise Intensity: Interestingly, studies

have also discovered that with increasing exercise intensity, the

concentration of exosomes in circulation correspondingly rises.
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This further suggests a critical role of exosomes in metabolic

regulation during exercise (73, 77).
3.2.2 Anti-fatigue and antioxidant potential
of exosomes

Recent research has unveiled the significance of exosomes in

combating fatigue and oxidative stress (78–81). In the realm of anti-

fatigue, exosomes are believed to improve cellular energy

metabolism and enhance cells’ resistance to fatigue and damage.

The mechanistic repertoire of exosomes in cellular bioenergetics

encompasses the enhancement of mitochondrial efficacy, the

amplification of adenosine triphosphate (ATP) synthesis, and the

optimization of oxidative phosphorylation efficiency (78, 79).

Additionally, the exosomal content of select RNA species and

proteins may actuate specific metabolic cascades, thereby

underpinning recuperative processes subsequent to physical

exertion (78, 80, 81).

In the context of antioxidative activity, exosomes possess

proficiency in the sequestration and neutralization of reactive

oxygen species (80–82). This antioxidative mechanism is

predominantly ascribed to the presence of enzymatic constituents

within exosomes, such as catalases, sulfiredoxins, and an array of

redox-modulating molecules. These enzymes are adept at

obliterating surplus free radicals, thereby mitigating oxidative

stress and attenuating cellular damage. Moreover, exosomes exert

a modulatory effect on intracellular antioxidant pathways, including

the Nrf2 axis, thereby reinforcing the cellular defense against

oxidative insults (82). The exosomal complement of bioactive

RNA and proteins also fine-tunes the redox equilibrium, which

bolsters their antioxidative properties.

Empirical investigations have corroborated that exosomal

antioxidants, for instance, glutathione and superoxide dismutase,

are capable of neutralizing excessive reactive species, ameliorating

oxidative detriment (82, 83). This plays an instrumental role in

diminishing muscular fatigue post-exercise and decelerating cellular

senescence. Furthermore, exosomal antioxidants are pivotal in

sustaining intracellular redox homeostasis, thus endorsing

normative cellular operations (84, 85). Additionally, exosomes

harbor an ensemble of anti-fatigue molecular entities such as heat

shock proteins and antioxidative enzymes, orchestrating the cellular

stress response and fostering recuperation (82, 86). In response to

fatigue-inducing stimuli, cellular systems can escalate the release of

these anti-fatigue proteins via exosomes, thereby enhancing

endurance and resilience.

3.2.3 Enhancing athlete performance
Exosomes are implicated as pivotal entities in the mediation of

myocyte repair, a process of particular pertinence to athletes

undergoing rigorous training regimens (12, 52, 53, 87). In the

aftermath of high-intensity exercise, athletes frequently endure

microtraumas within muscular t issues , prec ipi ta t ing

inflammation and consequent discomfort. Investigations have

substantiated that exosomes possess the capability to

encapsulate and convey growth factors, microRNAs, and an

array of other bioactive compounds to myocytes experiencing
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trauma. This facilitates a cascade of cellular activities inclusive of

proliferation, motility, and morphological specialization, thereby

expediting the restoration and rejuvenation of compromised

tissues. In addition, exosomes have been observed to potentiate

athletic stamina. The myriad bioactive molecules harbored within

exosomes are known to initiate a spectrum of metabolic processes

that ampl i fy the efficacy of mitochondria l oxidat ive

phosphorylation (39, 88, 89). This suggests that in the milieu of

sustained and intensive exertion, the myocytes of athletes are

equipped to uphold an elevated rate of adenosine triphosphate

(ATP) synthesis, thereby augmenting endurance.

In addition, exosomes can augment athletes’ antioxidative

capabilities. During exercise, increased oxygen consumption leads

to the production of reactive oxygen species (ROS), which can cause

cellular damage (8, 48, 82, 83). However, antioxidative enzymes and

other molecules within exosomes can effectively scavenge these free

radicals, protecting cells from damage and expediting the recovery

process. Lastly, exosomes can modulate immune responses, reducing

post-exercise inflammatory reactions. Specific proteins and RNA

molecules within exosomes can influence the activation and

secretion of immune cells, thereby inhibiting the production and

release of inflammatory cytokines and reducing post-exercise

inflammation (Figure 1) (50, 90, 91).
4 Perspectives and challenges

4.1 Technological innovation
and optimization

Future research endeavors will continually drive innovation and

optimization in exosome extraction, purification, and preparation

techniques. This includes developing more efficient extraction

methods, enhancing purification efficacy, and reducing

production costs. Technological advancements will contribute to

improving the quality and yield of exosome formulations, thereby

increasing their feasibility for clinical applications (3, 92–94).

Emerging technologies shaping exosome research include

advanced nanoengineering approaches for precision therapeutics.

Techniques like aptamer-guided targeting allow for the

development of exosomal delivery systems that are more specific

and effective. Additionally, microfluidic engineering and post-

isolation modifications of exosomes are enhancing their

application in nanomedicine. These innovations are crucial in

refining exosome-based therapies, making them more targeted

and efficient for use in sports medicine and beyond.
4.2 Multidisciplinary collaboration

Exosome research necessitates collaboration across multiple

disciplines, including cell biology, molecular biology, clinical

medicine, and engineering. Such collaboration will aid in a deeper

understanding of the biological properties, mechanisms, and

clinical applications of exosomes and help address various
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challenges in exosome therapy. Cross-disciplinary teamwork will be

a significant trend in future exosome research (95, 96). For example,

bioengineering and nanoengineering techniques can be used to

develop targeted exosomal delivery systems. These systems can be

engineered with aptamers or chemical antibodies for precision

medicine, enhancing the specificity and efficacy of exosome-based

therapies (97–99).
4.3 Personalized therapy

The future development of exosome therapy will increasingly

focus on personalized treatment strategies. Tailoring exosome

formulations and treatment plans based on patient’s genetic,

molecular, and physiological characteristics can enhance

therapeutic outcomes and minimize unnecessary side effects (100–

102). The extent to which AI and machine learning can aid in the

progression of personalized therapy needs to be explored further.
4.4 Clinical trials and regulatory approval

More clinical trials are needed in the future to validate the safety

and efficacy of exosome therapy. Strict regulatory approval and

compliance are essential to ensure patient safety and treatment

reliability. Formulating clear clinical trial protocols and regulatory

policies will be a crucial task moving forward (103, 104).
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4.5 Long-term safety and
efficacy monitoring

Monitoring the long-term safety and efficacy of exosome therapy

poses one of the future challenges. As patients undergo prolonged

exosome therapy, effective monitoring methods need to be established

to assess long-term impacts and side effects. This will require large-

scale patient follow-up studies and data analysis (105, 106).
4.6 Standardization of production
and storage

To meet future clinical demands, standardized processes for the

production and storage of exosome formulations are necessary.

This includes ensuring consistency, stability, and purity of exosome

formulations to meet diverse patient needs. Standardized processes

will aid in enhancing the scalability and feasibility of exosome

therapy (71, 107, 108).
4.7 Limitation and clinic-lab gap

In the field of exosome research in sports medicine, the translation

of laboratory findings to clinical practice faces several challenges.

These include ensuring the stability and consistent quality of exosome

preparations, understanding the complex mechanisms of exosome-
FIGURE 1

The role of exosomes on sports medicine-related issues.
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cell interactions, and addressing safety concerns such as immune

responses and potential long-term effects. Regulatory hurdles also play

a significant role, as there is a need for standardized protocols and

guidelines for exosome therapy. Moreover, ethical considerations,

particularly in the context of enhancing athletic performance, must

be thoroughly addressed. These challenges require multidisciplinary

collaboration and advancements in both research methodologies and

regulatory frameworks.

In summary, exosomes hold vast potential for clinical treatment in

sports medicine-related diseases. However, future development must

address challenges in technological innovation, multidisciplinary

collaboration, personalized therapy, clinical trials and regulatory

approval, long-term monitoring, and standardization of production.

By overcoming these challenges, exosome therapy has the potential to

offer more effective and safer treatment strategies for diseases in the

field of sports medicine, improving patients’ quality of life. This will

require close collaboration among the scientific community, medical

institutions, and governmental regulatory bodies to propel the future

development of exosome therapy.
5 Summary

Research advancements in the field of sports medicine reveal the

substantial potential of exosomes, which have already achieved some

encouraging results in clinical translation. Here’s a summary of the

research progress and clinical translation potential of exosomes in

sports medicine, emphasizing future research directions.
5.1 Research progress

Anti-inflammatory and Antioxidative Effects: Exosomes, rich in

various anti-inflammatory factors and antioxidants, emerge as

powerful tools for treating exercise-related diseases. Accompanying

sports injuries are inflammation and oxidative stress, where exosomes

can facilitate healing and recovery by inhibiting inflammatory

responses and reducing oxidative damage.

Tissue Repair: Growth factors and signaling molecules in

exosomes have the potential to promote tissue repair and

regeneration. This is particularly vital for the treatment of sports-

related muscle, skeletal injuries, and cartilage damage. Exosomes

can activate stem cells and aid in repairing damaged tissues.

Optimization of Athletic Performance: Some studies have also

explored the application of exosomes in enhancing athletic

performance. Growth factors and proteins within exosomes can

stimulate muscle growth and repair, improving muscle strength and

endurance, and thereby aiding in enhancing athletic performance.
5.2 Clinical translation potential

Treating Sports Injuries: Exosome therapy can be employed in

treating sports-related injuries such as muscle strains, fracture

healing, and cartilage repair. It can accelerate the healing process,

and reduce pain and inflammation, thereby shortening recovery time.
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Joint Health: For joint diseases like osteoarthritis, exosome

therapy shows potential in anti-inflammatory and joint-protective

actions. Injecting exosomes into damaged joints can alleviate pain

and improve joint functionality.

Cardiovascular Rehabilitation: Antioxidants and cardioprotective

factors in exosomes aid in cardiovascular rehabilitation. They can

reduce cardiac damage, improve cardiac function, and lower the risk

of cardiovascular diseases.

In summary, the research progress and clinical translational

potential of exosomes in sports medicine are exciting, but further

in-depth studies and clinical validation are still needed. Future

research directions should focus on an in-depth understanding of

the mechanism, individualized treatment, more clinical trials, and

the establishment of standardized preparation and quality control

processes to fully explore the application prospects of exosomes in

the field of sports medicine.
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Neuroinflammation has been identified as another significant pathogenic factor

in Alzheimer’s disease following Ab amyloid deposition and tau protein

hyperphosphorylation, activated in the central nervous system by glial cells in

response to injury-related and pathogen-related molecular patterns. Moderate

glial cell activity can be neuroprotective; however, excessive glial cell activation

advances the pathology of Alzheimer’s disease and is accompanied by structural

changes in the brain interface, with peripheral immune cells entering the brain

through the blood-bra in barr ier , creat ing a vic ious circ le . The

immunomodulatory properties of mesenchymal stem cells (MSCs) are primarily

conveyed through extracellular vesicles (EVs). MSC-EVs participate in chronic

inflammatory and immune processes by transferring nucleic acids, proteins and

lipids from the parent cell to the recipient cell, thus MSC-EVs retain their

immunomodulatory capacity while avoiding the safety issues associated with

living cell therapy, making them a promising focus for immunomodulatory

therapy. In this review, we discuss the modulatory effects of MSC-EVs on

Alzheimer’s disease-associated immune cells and the mechanisms involved in

their treatment of the condition. We have found a clinical trial of MSC-EVs in

Alzheimer’s disease treatment and outlined the challenges of this approach.

Overall, MSC-EVs have the potential to provide a safe and effective treatment

option for Alzheimer’s disease by targeting neuroinflammation.
KEYWORDS

neuroinflammation, Alzheimer’s disease, mesenchymal stem cells, extracellular vesicles,
central nervous immune system, peripheral immune system
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition

characterized by cognitive decline, memory impairments, and

motor abnormalities that impact language, behavior, and

visuospatial orientation (1). With the growth of the economy and

the increasing average age of the population, the incidence of

Alzheimer’s disease is on the rise. According to the World Health

Organization’s 2019 report, there are approximately 55 million

individuals worldwide affected by Alzheimer’s, a number

projected to reach around 139 million by 2050 (2, 3). The exact

pathogenesis of Alzheimer’s disease remains unclear, although it is

widely believed to be influenced by factors such as aging, genetics,

environment, and nutrition (4). Over the past few decades, the

neuropathological diagnostic criteria for AD have focused on the

presence of extracellular Ab amyloid deposits known as neuritic

plaques and intracellular tau protein hyperphosphorylation referred

to as neurofibrillary tangles (NFTs) (5). However, therapeutic

compounds tested for AD have failed to yield significant results

(6) , and there is mounting evidence suggest ing that

neuroinflammation, as a third pathological mechanism, precedes

the formation of amyloid Ab and tau protein hyperphosphorylation

(7–9). Neuroinflammation refers to the presence of inflammation in

the central nervous system, where glial cells are activated to respond

to damage (10, 11), playing a role in neuroprotection (12). However,

with the development of AD, glial cells are excessively activated,

leading to an increase in pro-inflammatory cytokines, ultimately

resulting in neuroinflammation and neurotoxicity (10), and further

exacerbat ing the pathology of Ab and tau through

various mechanisms.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with

the capacity for self-renewal and multidirectional differentiation

and are derived from numerous tissues in the body, including bone

marrow, fat, muscle, lung, etc (13). Extracellular vesicles (EVs) are

multifunctional intercellular messengers. They are cell-derived

nano-sized double-membrane structures that contain proteins,

lipids, RNA, metabolites, growth factors, and cytokines. As a cell-

free bio-entity, MSC-EVs have garnered significant attention as a

promising therapeutic candidate, exhibiting comparable or even
Frontiers in Immunology 0260
superior efficacy when compared to MSCs themselves (14). In

recent years, MSC-EVs have shown tremendous therapeutic

potential in various diseases (15–18), including cardiovascular

diseases, tumors, chronic kidney diseases, liver fibrosis,

autoimmune diseases, and of course, neurological disorders such

as stroke, Parkinson’s disease, and Alzheimer’s disease. In this

comprehensive analysis, we delved into the alterations that occur

in the innate and adaptive immune system in Alzheimer’s disease.

In addition, we have explored the immunomodulatory role of MSC-

EVs, especially targeting immune cells, and the relevant therapeutic

mechanisms for AD. Finally, we look forward to the future with

anticipation, contemplating the potentials and obstacles of MSC-

EVs for clinical applications in AD.
The immunomodulatory effects of
MSC-EVs on CNS innate immune cells

It is widely believed that MSCs exert their therapeutic effects in

various diseases by means of immunomodulation and tissue

regeneration. This is achieved through the secretion of paracrine

factors, including a class of membranous vesicles known as

extracellular vesicles (EVs) (19). EVs are released into the

extracellular environment by both healthy and apoptotic cells.

Among the three primary subtypes of EVs, namely exosomes

(exo), microvesicles (MVs), and apoptotic bodies, exosomes are

the most abundant, ranging in size from 40 to 120 nm (19–21)

(Table 1). To identify and distinguish MSC-EVs, various techniques

are employed, include Electron microscopy, Nanoparticle tracking

analysis (NTA), Flow cytometry, Western blotting and RNA/

protein analysis (Table 2). MSC- EVs possess a diverse array of

immunomodulatory properties, primarily targeting key

components of the innate and adaptive immune systems, such as

T and B lymphocytes, macrophages, dendritic cells, neutrophils,

and natural killer cells (22). Many studies have confirmed that

extracellular vesicles play an important role in intercellular

communication. They transport bioactive lipids, mRNA, miRNA,

lncRNA, and other paracrine messenger molecules, as well as

genomic DNA, mitochondrial DNA, and various types of proteins
TABLE 1 The characterization of different types of extracellular vesicles.

Characteristic Exosomes Microvesicles Apoptotic
bodies

Size(nm) 40-120 100-1000 50-4000

Morphology Homogenous cup-shape Heterogeneous irregular Heterogeneous
irregular

Origin Endosomal Plasma membrane Apoptotic cells

Proteins CD63, CD81, CD9, annexins, heat-shock proteins, Alix,
Tsg101, clathrin, caveolins, integrins, TfRs

Integrins, flotillins, selectins, CD40, metalloproteinases Histones

Lipids Lysobisphosphatidic acid, cholesterol, ceramide,
sphingomyelin and low concentration of phosphatidylserine

High amount of cholesterol, sphingomyelin, ceramide,
high concentration of phosphatidylserine

High concentration
of phosphatidylserine

Nucleic acids mRNA and miRNA mRNA and miRNA mRNA, miRNA,
fragments of DNA
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(23). This process of establishing intercellular communication

through the transfer of bioactive molecules can alter the activity

of cells under physiological and pathological conditions (24).
Neuroinflammation and CNS innate
immunity in AD

Neuroinflammation has been demonstrated to be a major factor

in the pathogenesis and progression of AD, activated by damage-

associated molecular patterns (DAMPs) or pathogen-associated

molecular patterns (PAMPs) (7, 25). Cells contain five major

pattern recognition receptors (PRRs), including Toll-like

receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like

receptors (RLRs), nucleotide-binding oligomerization domain

(NOD)-like receptors (NLRs), C-type lectin receptors (CLRs) and

melanoma 2 (AIM2)-like receptors (ALRs), responsible for

recognizing DAMPs and PAMPs, inducing inflammatory

signaling pathways and immune responses that induce cell death

to eliminate infected cells (26). The inflammatory response in the

CNS is predominantly mediated by glial cells, including microglia

and astrocytes. During the early stages of AD, microglia and

astrocytes, which are innate immune cells , assume a

neuroprotective role (12). However, as the disease progresses, glial

cells become excessively activated and secrete substantial amounts

of pro-inflammatory cytokines , thereby exacerbating

neuroinflammation and further contributing to Ab and tau

protein deposition (10, 27). Consequently, this leads to synaptic

damage, neuronal processes impairment, disruption of the blood-

brain barrier (BBB), and infiltration of certain peripheral immune

cells into the brain (28). Hence, an appropriate immune response
Frontiers in Immunology 0361
aids in the clearance of Ab and Tau deposits, while an excessive

immune response fosters neuroinflammatory brain damage (29).
Microglia
As innate immune cells of the central nervous system, microglia

are inactive and quiescent in the healthy brain, monitoring the

surrounding neuronal environment and other glial cell

communication (30). However, microglia are activated in

pathological conditions such as neurodegenerative diseases,

strokes and tumor invasion (31). Initially, activated microglia

have an active role in the clearance of Ab through phagocytosis;

over a period of time, sustained activation also leads to a decrease in

the enzymatic activity of microglia to degrade Ab and a decrease in

the efficiency of binding and phagocytosis of Ab (32). The resultant

pro-inflammatory cytokines also reduce the phagocytic activity of

microglia, and they may also convert microglia to a pro-

inflammatory phenotype (33, 34). In addition, pro-inflammatory

microglia increase phosphorylation of tau, exacerbating the

pathology of tau (35).

Microglia are able to progress towards a pro-inflammatory

phenotype after sensing DAMPs and PAMPs through PRRs such

as TLRs, RLRs and NLRs (36), which are at highly expressed in

microglia in AD and cause inflammatory responses and pro-

inflammatory cytokine secretion through PRRs signaling (37, 38).

Under normal conditions, microglia clear Ab by using surface

receptors (CD14, TLR2, TLR4, a6b1 integrin, CD47) and

scavenger receptors (CD36) (39, 40); with the TLR2, TLR4 and

TLR4 coreceptor CD14 playing a major role (41). However, TLR2

and TLR4 in chronically activated microglia induce the production

of Ab (41) and lose the ability of Ab elimination (42, 43). Related

literature has reported that TLR2-deficient microglia cause

phenotypic changes in microglia that reduce Ab-triggered
inflammatory activation and enhance phagocytosis of Ab (44),

and TLR2/4-deficient mice exhibit better neurocognitive and

behavioral patterns in response to Ab1-42 peptide than wild-type

mice (45). Thus innate immune activation of microglia is implicated

in AD pathogenesis.

Inflammasomes are multi-protein complexes involving

intracytoplasmic pattern recognition receptors (PRRs) assembled

with receptor proteins (NLR or ALR protein family), junctional

proteins (ASC), and effector proteins (caspases) as the underlying

structure, and are an essential component of the innate immune

system, capable of recognizing PAMPs and DAMPs. A series of

studies by Prof. Heneka’s team revealed that NLRP3 can be

activated by persistently activated microglia in the APP/PS1

mouse model, thereby mediating caspase-1 activation and

elevated expression levels of the inflammatory factor IL-1b, and
that inhibition of NLRP3 activity reduces Ab load and decreases the

production of pro-inflammatory cytokines and cognitive

impairment (46). Furthermore, the team revealed the pathological

relationship between NLRP3 and tau and showed that inhibition of

NLRP3 function was able to regulate tau kinase and phosphatase

thereby reducing tau hyperphosphorylation and aggregation (47).

Thus, deposition of Ab leads to the pathological development of

tau, in which NLRP3 provides a key role.
TABLE 2 Techniques and Methods to identified MSC-EVs.

Technique Method Identified

Electron
microscopy

allows for the
visualization of the
vesicles and their
characteristic size
and morphology

distinguish exosomes from other
types of extracellular vesicles

NTA uses laser light
scattering to
measure the size and
concentration of
particles in a sample

determine the size distribution of
MSC-EVs and estimate
their concentration

Flow
cytometry

used to analyze the
surface markers of
MSC-EVs

labeling the vesicles with specific
antibodies against known exosomal
markers to provide information
about the protein composition of
the vesicles

Western
blotting

used to detect
specific proteins in
MSC-EVs

by probing for exosomal markers to
confirm the identity of the vesicles
as exosomes

RNA/
protein
analysis

MSC-EVs can be
isolated and their
RNA and protein
content can
be analyzed

RNA sequencing and proteomics can
provide information about the cargo
carried by the vesicles, which can
help in their identification
and characterization
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In addition, activated NLRP3 promotes the oligomerization of ASC

to form large intracellular macromolecular aggregates, termed ASC

spots. ASC spots have been reported to be released into the extracellular

space and propagate inflammatory responses via prion-like transport

mediated by phagocytosis in neighbouring macrophages (48). Friker

et al. showed that in AD mice, ASC expression was increased and

interacted extracellularly with Ab to form an intensely toxic ASC-Ab
complex that was capable of causing scorch death of microglia and

preventing the clearance of Ab bymicroglia (49). However, the detailed

molecular mechanisms underlying the release of intracellular ASC

spots into the extracellular space, and their role in neuroinflammation,

remain unknown.

Activation of the microglia-associated PRRs signaling pathway

induce the secretion of pro-inflammatory cytokines that prompt

microglia to clear Ab, but the release of pro-inflammatory cytokine

and activation of inflammasome caused by excessive microglia

activation further contributes to AD pathology.

Astrocyte
Astrocytes are the most common glial cells in the brain (50) and

play an important role in regulating blood flow, maintaining the

blood-brain barrier (BBB), providing energy metabolites to

neurons, regulating extracellular ion homeostasis and modulating

synaptic activity (51). Astrocytes express numerous receptors for

PAMPs and DAMPs known to trigger innate immune responses,

particularly TLRs, including TLR4 (52), in response to activators of

innate immune responses (53). In contrast, astrocytes exhibit a

response in response to CNS injury and disease that is often termed

astroglial cell reactivity (54). Reactive astrocytes are an integral part

of the innate immunity of the central nervous system. Similar to

microglia, reactive astrocytes are divided into pro-inflammatory A1

and immunomodulatory (neuroprotective) A2 subsets (55). Pro-

inflammatory reactive astrocytes upregulate complement cascade

genes and induce pro-inflammatory factors such as IL-1b and TNF-

a, while neuroprotective reactive astrocytes upregulate and support

neuronal growth with a range of neurotrophic factors (56).

Professor Barres’ research has shown that reactive astrocytes A1

lose the function of resting astrocytes to form synapses and produce

toxic effects on neurons. In addition, as synaptic loss is also a

characteristic feature of AD, Barres et al. also found that in AD,

nearly 60% of astrocytes in the prefrontal cortex (the active site of

the disease) are in the A1 condition and drive the disease

progression in AD due to the high toxicity of A1 to neurons and

oligodendrocytes (57).

Although the innate immune sensing of astrocytes is not well

understood, many studies have shown that astrocytes and microglia

regulate each other’s functions by secreting cytokines. On the one

hand, the inflammatory factors TNF-a, IL-1 and C1q secreted by

activated microglia induce the transformation of resting astrocytes

into neurotoxic reactive astrocytes A1 (57); on the other hand, the

large amount of IL-3 secreted by astrocytes is able to bind to the IL-

3a receptor aberrantly expressed by microglia in AD disease and is
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capable of regulating microglia to perform the clearance of Ab
function (58). Thus, the interaction between astrocytes and

microglia may become a new therapeutic direction.
MSC-EVs inhibit glial cell activity

As previously mentioned, the excessive activation of glial cells

exacerbates the neuroinflammatory pathology of Alzheimer’s

disease. Numerous in vitro and in vivo experiments have

demonstrated that the extracellular vesicles derived from

mesenchymal stem cells (MSCs) inhibit the activity of glial cells,

thereby reducing the expression of pro-inflammatory cytokines and

alleviating neuroinflammation. Mao Ding et al. discovered that

extracellular vesicles from human umbilical cord MSCs regulate the

levels of inflammatory cytokines by modulating the activity of

microglial cells in vitro. Injection of extracellular vesicles derived

from human umbilical cord MSCs into AD mouse models has been

shown to improve cognitive impairment and promote the clearance

of Ab. Additionally, there is a decrease in the number of

inflammatory microglial cells, an increase in the levels of

immunoregulatory microglial cells, a reduction in the levels of

pro-inflammatory cytokines (IL-1b and TNF-a) in the peripheral

blood and brain of mice, and an elevation in the levels of anti-

inflammatory cytokines (IL-10 and TGF-b) (59). In addition, the

Mesenchymal stem cell-derived exosomes can also reduce the

activity of astrocytes. In a study on exosomes derived from

hypoxia-preconditioned MSCs (PC-MSCs), injection of PC-MSC

exosomes significantly improved the learning and memory abilities

of APP/PS1 mice compared to exosomes from normoxic MSCs. The

activity of microglia and astrocytes was reduced, plaque deposition

and Ab levels were decreased, and the expression of growth-related

protein 43, synaptophysin 1, and IL-10 was increased. The levels of

neuroglial fibrillary acidic protein, ionized calcium-binding adapter

molecule 1, TNF-a, IL-1b, as well as the activation of STAT3 and

NF-kB, all sharply decreased. This may be attributed to the higher

expression of miR-21 in PC-MSC exosomes (60). Some studies have

indicated that the levels of miRNA-21 significantly decrease in the

presence of chronic inflammation and cellular apoptosis. However,

the mesenchymal stem cells in the extracellular matrix exhibit high

levels of miRNA-21, which contribute to the reduction of

inflammation and cellular apoptosis (61). Therefore, the

extracellular vesicles released by mesenchymal stem cells

containing miRNA can inhibit the activity of immune cells and

induce their phenotypic transformation into anti-inflammatory.

Vascular dementia (VaD) is another common cause of dementia,

following Alzheimer’s disease. In the establishment of a VaD rat

model through bilateral carotid artery ligation, there is an increase

in inflammatory microglial cells. HUCMSC-Evs, by activating the

PI3K/AKT/Nrf2 pathway, suppresses the activity of inflammatory

microglial cells, inflammation, and oxidative stress, thereby

protecting the neural function of VaD rats (62).
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The immunomodulatory effects of
MSC-EVs on peripheral immune cells

Peripheral immune cell infiltration in AD

As mentioned above, excessive protein deposition in AD

triggers a shift in glial cells towards an inflammatory phenotype,

the release of pro-inflammatory cytokines and complement, causing

hyperact ivat ion of gl ia l ce l ls and a vicious cycle of

neurodegeneration. In this state, structural or biological changes

occur at the brain interface, allowing peripheral immune cells to

infiltrate the brain parenchyma through the blood-brain barrier

(63), choroid plexus (64, 65) or meninges (66, 67), exacerbating the

pathological development of AD. Single cell sequencing has shown

that peripheral immune cells include myeloid cells such as natural

killer cells (NK cells), polymorphonuclear neutrophils (PMNs),

monocytes/macrophages, dendritic cells (68), and adaptive

immune cells such as T cells (69) and B cells (70, 71). Due to the

unclear role of dendritic cells in AD, as well as the controversial

results regarding how MSC-EVs regulate B cells. Here we focused

on macrophages and T cells.
Monocytes/macrophages
In AD, damage to the central nervous system leads to increased

permeability of the BBB, favoring infiltration of peripheral

monocytes. Ab has been shown to induce the release of

chemokines, such as monocyte chelator proteins (MCPs), capable

of attracting monocytes. Pro-inflammatory cytokines such as IL-6

and TNF-a produced by monocytes to enhance their phagocytosis

of Ab (72). A recent study has shown that inflammatory

monocytes/macrophages are elevated in cell cultures stimulated

by Ab in AD patients. These cells express TLR2, TLR4, IL-6 and

CCR2, which in turn can facilitate the migration of monocytes/

macrophages across the BBB into the brain. Research has shown

that patients with AD and mild cognitive impairment (MCI) exhibit

higher expression of TLR3 and TLR8 in monocytes/macrophages,

as well as production of IL-23. Additionally, AD monocytes/

macrophages also possess independent MHC-II/Ab42 complexes.

These findings suggest that monocytes/macrophages in AD exhibit

inflammatory characteristics and are involved in both innate and

adaptive immune responses through TLR stimulation.

Furthermore, they may present Ab peptides in an MHC-

restricted manner (73). In the presence of soluble or mildly

aggregated Ab, there is an increase in T cell proliferation and

pro-inflammatory cytokine secretion. These observations indicate

that Ab may not only act as an antigen but also as a more

widespread positive regulator of peripheral adaptive immune

responses. When activated T cells cross the blood-brain barrier

and enter the brain, they can also modulate adaptive immune

responses within the brain (74). In parallel, alterations in the

monocyte/macrophage subpopulation were observed in AD (75,

76), but whether this alteration is due to a shift in the monocyte

phenotype or the gradual death of classical monocytes remains to be

further investigated.
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T cell
Lymphocytes are an indispensable component of the adaptive

immune system, and mounting evidence suggests that adaptive

immune cells play a crucial role in the pathophysiology of

neurodegenerative diseases such as Alzheimer’s disease (AD). T

cells infiltrate the central nervous system during the onset of AD,

promoting neuroinflammation (69, 77–79). On the one hand,

helper T cells cross the blood-brain barrier and interact with glial

cells, triggering immune and inflammatory responses, ultimately

leading to neuroinflammation and neuronal damage. Browne et al.

(80). found a significant presence of T cells, particularly Ab-specific
Th1 cells, in the brains of APP/PS1 mice, which increased activation

of microglia and Ab deposition through the production of IFN-g,
resulting in cognitive impairment. In vitro experiments conducted

by McQuillan et al. (81). also demonstrated that Ab-specific Th1

and Th17 cells induce glial cells to produce pro-inflammatory

cytokines , while Th2 cel ls attenuate this effect . The

aforementioned study elucidates that the regulation of T cell

activation on microglia is contingent upon their cellular

phenotype. Furthermore, T cell activation can also promote the

activation and proliferation of glial cells, thereby exacerbating the

inflammatory response. Earlier work by Yong et al. (82)

demonstrated that IFN-g produced by T cells induces

proliferation of astrocytes in vitro and facilitates reactive

astrogliosis in the brain. Currently, IL-17 produced by Th17 cells

has been repeatedly confirmed as an effective stimulant for

astrocytes. IL-17 stimulation activates inducible nitric oxide

synthase (83), regulates the expression of macrophage

inflammatory protein-1a (MIP-1a) through the PI3K/Akt and

NF-kB pathways (84), and enhances the IL-6 signaling pathway

in astrocytes (85). On the other hand, the infiltration of cytotoxic T

cells is associated with the deterioration of AD (69, 77, 78). A recent

study discovered the presence of clonally expanded CD8+ cells in

the cerebrospinal fluid of AD patients, with TEMRA being the

predominant subset (69). These cells are associated with immune

memory and can release inflammatory factors and cytotoxic

molecules. Furthermore, the cytotoxic effector genes of these cells

are highly expressed in the hippocampus of AD patients.

Additionally, the levels of TEMRA cells in the peripheral blood of

AD patients show a negative correlation with cognitive levels, as

well as a negative correlation with central memory T cells (TCM)

and effector memory T cells (TEM). This suggests that adaptive

immune cells may also play a role in Alzheimer’s disease, and CD8+

T cells may impact neurodegeneration and/or cognitive impairment

in AD.

Other immune cells
NK cells are potent cytotoxic effectors against infected

pathogens and tumor cells (86, 87). They play a crucial role in

bridging the innate and adaptive immune systems by secreting

cytokines and interacting with other immune cells. Compared to

healthy elderly individuals of matching age, the distribution of NK

cells in AD patients remains unchanged. However, in the early

stages of AD, specifically in cases of amnestic mild cognitive

impairment (aMCI), NK cells are activated and exhibit stronger
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activity (88). For instance, increased production of granule enzyme

B and pro-inflammatory cytokines (TNFa, IFNg) has been

observed in aMCI subjects, contrasting with NK cells in

confirmed cases of mild AD (mAD) (87). The activated state of

NK cells may be a congenital immune response to cope with

unidentified challenges, which may include viral or microbial

agents. Furthermore, this activation state may contribute to the

occurrence of neuroinflammation. Therefore, the protective role of

NK cells may no longer be effective in the progression from aMCI to

AD, and NK cells could potentially be considered as biomarkers for

the early stages of AD.

At the same time, polymorphonuclear neutrophils (PMN), as

frontline immune cells, also participate in the early stages of AD.

The functional changes of these cells during different stages of AD

pathology may be associated with pathological stimuli (89). CD177

expression was increased in mAD but not in healthy individuals or

aMCI patients. Expression of CD14 and CD16 was lower in the

PMN of patients with mAD compared with controls, whereas it was

unchanged in patients with aMCI. Only the PMN of aMCI patients

expressed lower levels of CD88. The production of inflammatory

cytokines (TNFa, IL-6, IL-1b, IL-12p70) and chemokines (MIP-1a,
MIP-1b, IL-8) in response to LPS stimulation was very low in

patients with aMCI and virtually absent in patients with mAD.

TLR2 is only expressed at lower levels in aMCI. We therefore

suggest that since AD may be the result of a pathogen challenge,

neutrophils at the front line will fight the pathogen and instruct

other immune cells to intervene. In this way, neutrophils may be

involved in the earliest stages of AD pathogenesis.

Although the extracellular vesicles of MSCs have shown

potential therapeutic effects in immune regulation, further

research is needed to understand their role in modulating

immune cells in AD. AD is a neurodegenerative disorder that is

associated with abnormal activation of the immune system and

inflammatory responses. Therefore, understanding the regulatory

effects of MSCs extracellular vesicles on immune cells in

Alzheimer’s disease is of great significance in uncovering the

mechanisms of disease progression and developing new

treatment strategies.
The mechanism of MSC-EVs in
treating AD

The immunomodulatory effects of MSC-EVs on immune cells

mainly manifest in inhibiting glial cell activity, reducing the

expression of inflammatory factors, thereby alleviating

neuroinflammatory reactions; inhibiting the proliferation and

differentiation of lymphocytes, promoting the differentiation of

lymphocytes into anti-inflammatory subtypes; and inducing

macrophages to transition from a pro-inflammatory phenotype to

an anti-inflammatory phenotype. In addition, the MSC-EVs in the

treatment of Alzheimer’s disease also includes the clearance of Ab,
neuroprotective effects and as a potential drug delivery vehicle.
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The clearance of Ab

Ab is a hallmark pathological protein of AD, which are believed to

be associated with neuronal damage and death. Once they exceed the

clearance capacity of neuroglial cells, abnormal accumulation will lead

to gradual decline in memory and cognitive dysfunction. It has been

proven that clearing pathogenic proteins is beneficial for treating AD

(90). MSCs-EVs can reduce the deposition of Ab in the body through

several different ways. Firstly, by inhibiting the expression of neutral

sphingomyelinase-2 (nSMase2), the secretion function of pathological

cells in AD patients can be reduced. This leads to a decrease in

pathological exosomes and ultimately lowers the level of Ab in the

brain (91). Additionally, the reduction of nSMase2 can inhibit the

conversion of sphingomyelin to ceramide, thereby increasing the level

of sphingomyelin and promoting the secretion of exosomes from

normal neurons. These exosomes can induce conformational

changes in Ab deposits, transforming them into fiber tissue without

causing toxic effects on brain tissue. Surrounding microglial cells can

uptake and degrade these fiber tissues, thereby reducing the amount of

Ab (92). Moreover, the surface of exosomes is rich in

glycosphingolipids, which facilitate the binding of Ab to exosomes.

This characteristic enables exosomes to effectively serve as carriers for

adsorbing Ab and accelerating its removal from the body (93).

Secondly, neprilysin (NEP) and insulin-degrading enzyme (IDE), as

well as zinc metallopeptidase, are believed to be involved in the

degradation of Ab in the brain (94). As early as 2000, researchers

injected radiolabeled synthetic Ab peptides into the hippocampus of

rats and observed that endogenous NEP could subsequently

proteolytically degrade the peptides (95). In mice with NEP or IDE

deficiencies, endogenous Ab levels increased in a gene-dose-dependent

manner (96, 97). Thirdly, research has found that in the human body,

enkephalin is one of the enzymes in brain tissue that is most effective in

breaking down and absorbing Ab (98). Experiments have shown that

when fat MSCs exosomes are added to the environment of AD model

cells with high expression of Ab-related proteins, the amount of Ab
detected in the cells and surrounding environment significantly

decreases. This is due to the fact that fat MSCs exosomes are rich in

enkephalinase levels that exceed the average (99). Hence, the crucial

role of MSC-EVs in Ab degradation highlights their potential in

Alzheimer’s disease treatment.
Neuroprotective effects of MSC-Evs

Another pathological hallmark of AD is synaptic dysfunction,

which is directly associated with cognitive impairment. The

experimental results from Mariana et al. (100) show that MSCs

and their exosomes can protect hippocampal neurons and related

synapses from damage caused by oxidative stress reactions resulting

from Ab deposition. Cui et al. (60) summarized the experimental

results and speculated that MSC exosomes may improve learning

and memory abilities in APP/PS1 double transgenic AD model

mice by improving the function of damaged synapses and immune
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regulation at the site of injury. They found that exosomes extracted

from mesenchymal stem cells subjected to hypoxic preconditioning

significantly enhanced the expression of synaptic proteins (synapsin

1 and PSD95). The expression levels of synaptic proteins can to

some extent reflect the function of synapses, and synapsin 1 and

PSD95 are synaptic proteins involved in neural signal transmission

and maintaining synaptic integrity. Another experiment showed

that after fusion with neural cells, MSC exosomes can transfer miR-

133b into neurons, promoting axonal repair and reducing neural

damage caused by modeling. Additionally, MSC exosomes are rich

in miR-17-92, and increasing their exogenous content can promote

the generation of oligodendrocytes and axonal growth. In a

transient cerebral ischemia mouse model, intravenous injection of

exosomes with high expression of miR-17-92 enhanced neuronal

plasticity and axonal growth speed compared to injection of normal

MSC exosomes, achieving the effect of promoting neural function

recovery (101).
Potential drug delivery vehicle

The lipid bilayer structure of exosomes gives them excellent

biocompatibility, supporting the loading of hydrophobic or

hydrophilic drugs (102). Mesenchymal stem cell-derived

exosomes can directly bind to membrane receptors through their

exosomal exosome, allowing their contents to be internalized into

target cells, or deliver bioactive substances to target cells through

fusion with the plasma membrane. In addition, exosomes can easily

cross the blood-brain barrier (BBB) and increase the concentration

of drugs in the brain (103). Furthermore, exosome administration

can avoid some complications, including intracranial infection,

non-specific absorption, and drug toxicity, due to the low

immunogenicity of exosomes (104). Previous studies have shown

that exosomes can deliver drugs to the brains of AD mice (104).

Furthermore, by using peptide-modified exosomes expressing the

membrane protein Lamp2b, exosomes produced by engineered

dendritic cells can bind to neuron-specific rabies virus

glycoprotein (RVG) peptide, improving the cognitive function of

AD transgenic mice (105).
Blood exosomes as biomarkers of
Alzheimer’s disease

In addition to potential therapeutic value, EVs can also serve as

biomarkers, which is important in clinical applications. In

particular blood exosomes, which are EVs secreted by living cells

into the circulating blood, are regarded as a relatively noninvasive

novel tool for monitoring brain physiology and disease states, and

brain-derived exosomes in peripheral blood is an ideal biomarker

for AD. A meta-analysis described the diagnostic performance of

biomarkers of blood exosomes in AD (Registration No.

CRD4200173498) (106). The findings revealed that individuals

with preclinical Alzheimer’s disease, mild cognitive impairment,

and Alzheimer’s disease exhibited elevated levels of core
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biomarkers, including Ab1-42, P-T181-tau, P-S396-tau, and T-

tau, in blood neuron-derived exosomes. Furthermore, there was

an increase in molecules associated with other risk factors, such as

C1q for neuroinflammation, P-S312-IRS-1 for metabolism disorder,

HGF for neurotrophic deficiency, VEGF-D for vascular injury, and

cathepsin D for autophagy-lysosomal system dysfunction. At the

genetic level, the differential expression of REST, a transcription-

related factor, and miR-132, a microRNA, also influenced RNA

splicing, transport, and translation. These findings confirm the

potential of the aforementioned core molecules and additional

risk-related factors in blood exosomes as candidate biomarkers

for preclinical and clinical Alzheimer’s disease. Consequently, these

findings support the further development of exosome biomarkers

for a clinical blood test for Alzheimer’s disease.
Application of MSC-EVs in clinical
practice and their advantages
and limitations

There is presently an ongoing clinical trial, led by Ruijin

Hospital affiliated with Shanghai Jiao Tong University, which

aims to assess the safety and efficacy of utilizing allogeneic

adipose-derived mesenchymal stem cells in patients with

Alzheimer’s disease (www.clinicaltrials.gov). Although the clinical

trial is still awaiting results, the therapeutic efficacy of MSC-EVs has

shown promising outcomes in other conditions, such as pre-

eclampsia (NCT03562715) and chronic ulcers (NCT04134676).

The advantages of MSC-EVs mainly lie in the following aspects:

(1) The nanoscale MSC-EVs reduce vascular obstruction and are

more capable of penetrating the blood-brain barrier (107); (2)

MSC-EVs cannot replicate, avoiding uncontrolled division and

reducing the risk of tumor formation during proliferation (108),

as well as preventing mutations and DNA damage caused by cell

transplantation (109); (3) MSC-EVs have low immunogenicity,

making allogeneic applications possible (110); (4) Mesenchymal

stem cells can produce a large amount of EVs, whose composition

remains unchanged, facilitating storage and suitable for large-scale

production (111). Apart from these advantages, the clinical

application of MSC-EVs, especially in the context of AD, still

faces certain limitations, primarily including: (1) the current

methods for extracting MSC-EVs are time-consuming and

inefficient, necessitating further exploration and research into

efficient extraction methods that can be effectively applied in

clinical settings; (2) Due to the different composition of cytokines

in mesenchymal stem cell-derived extracellular vesicles from

different sources, the clinical application relies on time-saving,

cost-effective, and efficient methods. Further research is needed

for the development of effective biomarkers for extracellular

vesicles; (3) the specific mechanisms by which MSC-EVs regulate

immune responses, promote Ab degradation, and enhance axonal

growth remain unclear and require further experimental

investigation; (4) due to the complex biological composition of

MSC-EVs, their safety when applied in animal models and the
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significance of specific therapeutic molecules within MSC-EVs

warrant further attention.
Conclusion

As a progressive neurodegenerative disease, Alzheimer’s disease

currently lacks a cure. Previous research on the pathogenesis of

Alzheimer’s disease has primarily focused on the abnormal

accumulation of neurofibrillary tangles (NFTs) and amyloid

plaques (Ab). However, clinical trials targeting this mechanism

have ended in failure, indicating that NFTs and Ab are not the

primary causes of Alzheimer’s disease. In recent years, studies have

discovered that excessive immune response in the central nervous

system may be a significant factor in protein deposition. In this

pathological state, peripheral immune cells gather in the brain

parenchyma through a compromised blood-brain barrier, further

exacerbating the progression of Alzheimer’s disease. Mesenchymal

stem cell-derived extracellular vesicles (MSC-EVs), as a cell-free

therapy, have demonstrated excellent immunomodulatory effects
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on both central nervous system immune cells and peripheral

immune cells. They have also shown two major benefits in

Alzhe imer ’ s d i s ea se : c l ea r ing pro te in depos i t s and

neuroprotection (Figure 1). Compared to the MSC - Evs as drug

delivery carrier alone, directly isolated MSC-EVs retain natural

substances and surface markers, which can minimize immune

rejection and other potential complications. Engineering vesicles

can by modifying the composition of vesicle or surface

characteristics, load specific drugs or therapeutic molecules, so as

to realize precise targeting and controlled release, but the

engineering process can be complex and may alter the natural

properties of the vesicles. The choice between direct isolation of

MSC-EVs or preparation of engineered vesicles as therapeutic

interventions depends on the specific application and desired

outcomes. Further research and clinical trials are needed to

determine which approach is more effective and practical in

different therapeutic contexts. Currently, there is an ongoing

study investigating the safety and efficacy of MSC-EVs in treating

Alzheimer’s disease. It is believed that in the near future, further

exploration of its therapeutic mechanisms and optimization of
FIGURE 1

In the early stages of AD, immune cells, microglia, and astrocytes in the central nervous system are activated to clear protein deposits. However, as
the disease progresses, glial cells become overactivated, leading to the secretion of a large number of pro-inflammatory cytokines. This not only
exacerbates protein deposition but also damages the blood-brain barrier, allowing peripheral immune cells such as T cells and macrophages to
infiltrate the brain, further exacerbating neuroinflammation and causing a vicious cycle. Extracellular vesicles derived from mesenchymal stem cells
can regulate peripheral immune cells, inhibit overactive glial cells, and play a therapeutic role in Alzheimer’s disease by promoting neuroprotection
and clearing protein deposits.
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treatment strategies will provide more effective treatment options

for Alzheimer’s disease patients.
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108. Reza-Zaldivar EE, Hernández-Sapiéns MA, Minjarez B, Gutiérrez-Mercado
YK, Márquez-Aguirre AL, Canales-Aguirre AA. Potential effects of MSC-derived
exosomes in neuroplasticity in Alzheimer's disease. Front Cell Neurosci (2018)
12:317. doi: 10.3389/fncel.2018.00317

109. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-
free therapy. Stem Cells (2017) 35(4):851–8. doi: 10.1002/stem.2575

110. Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic
applications of extracellular vesicles. J Control Release (2016) 244(Pt B):167–83.
doi: 10.1016/j.jconrel.2016.07.054

111. Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, et al. Mesenchymal stem cell:
an efficient mass producer of exosomes for drug delivery. Adv Drug Delivery Rev (2013)
65(3):336–41. doi: 10.1016/j.addr.2012.07.001
frontiersin.org

https://doi.org/10.4049/jimmunol.1200947
https://doi.org/10.1016/j.bbi.2010.01.003
https://doi.org/10.1073/pnas.88.16.7016
https://doi.org/10.1016/s0165-5728(01)00391-5
https://doi.org/10.1007/s11481-014-9553-1
https://doi.org/10.4049/jimmunol.1000142
https://doi.org/10.1081/cnv-120001185
https://doi.org/10.3233/JAD-143054
https://doi.org/10.1016/j.jpsychires.2006.01.010
https://doi.org/10.3233/JAD-170124
https://doi.org/10.1016/j.febslet.2014.11.027
https://doi.org/10.1074/jbc.M111.324616
https://doi.org/10.1016/j.neurobiolaging.2014.02.012
https://doi.org/10.1074/jbc.M114.577213
https://doi.org/10.1016/j.redox.2019.101283
https://doi.org/10.1038/72237
https://doi.org/10.1126/science.1059946
https://doi.org/10.1126/science.1059946
https://doi.org/10.1073/pnas.0230450100
https://doi.org/10.4062/biomolther.2012.20.3.245
https://doi.org/10.1038/srep01197
https://doi.org/10.1074/jbc.M117.807180
https://doi.org/10.1074/jbc.M117.807180
https://doi.org/10.1161/STROKEAHA.116.015204
https://doi.org/10.1161/STROKEAHA.116.015204
https://doi.org/10.1016/j.nano.2017.09.011
https://doi.org/10.1016/j.jconrel.2018.08.035
https://doi.org/10.1039/c9nr01255a
https://doi.org/10.1186/s12979-019-0150-2
https://doi.org/10.4103/1673-5374.335832
https://doi.org/10.1007/s12035-019-01663-0
https://doi.org/10.1007/s12035-019-01663-0
https://doi.org/10.3389/fncel.2018.00317
https://doi.org/10.1002/stem.2575
https://doi.org/10.1016/j.jconrel.2016.07.054
https://doi.org/10.1016/j.addr.2012.07.001
https://doi.org/10.3389/fimmu.2023.1325530
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chun Wai Mai,
UCSI University, Malaysia

REVIEWED BY

Noa B Martin-Cofreces,
Princess University Hospital, Spain
Giorgio Mangino,
Sapienza University of Rome, Italy

*CORRESPONDENCE

Jean-Philippe Herbeuval

jean-philippe.herbeuval@parisdescartes.fr

Thibaut Fourniols

thibaut.fourniols@everzom.com

†These authors have contributed
equally to this work and share
last authorship

RECEIVED 14 December 2023
ACCEPTED 24 January 2024

PUBLISHED 08 February 2024

CITATION

Wong C, Stoilova I, Gazeau F, Herbeuval J-P
and Fourniols T (2024) Mesenchymal stromal
cell derived extracellular vesicles as a
therapeutic tool: immune regulation, MSC
priming, and applications to SLE.
Front. Immunol. 15:1355845.
doi: 10.3389/fimmu.2024.1355845

COPYRIGHT

© 2024 Wong, Stoilova, Gazeau, Herbeuval
and Fourniols. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 08 February 2024

DOI 10.3389/fimmu.2024.1355845
Mesenchymal stromal cell
derived extracellular vesicles as a
therapeutic tool: immune
regulation, MSC priming, and
applications to SLE
Christophe Wong1,2,3, Ivana Stoilova2,3, Florence Gazeau4,
Jean-Philippe Herbeuval2,3*† and Thibaut Fourniols1*†

1EVerZom, Paris, France, 2Centre National de la Recherche Scientifique (CNRS) Unité Mixte de
Recherche (UMR) 8601, Université Paris Cité, Paris, France, 3Chemistry and Biology, Modeling and
Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France, 4Matière et Systèmes
Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease

characterized by a dysfunction of the immune system. Mesenchymal stromal

cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles

carryingadiverse rangeofbioactivemolecules, suchasproteins,miRNAs, and lipids.

Despite themethodological disparities, recent works onMSC-EVs have highlighted

their broad immunosuppressive effect, thus driving forwards the potential of MSC-

EVs in the treatment of chronic diseases. Nonetheless, their mechanismof action is

still unclear, and better understanding is needed for clinical application. Therefore,

we describe in this review the diverse range of bioactive molecules mediating their

immunomodulatory effect, the techniques and possibilities for enhancing their

immune activity, and finally the potential application to SLE.
KEYWORDS

extracellular vesicles, secretome, immune regulation, mesenchymal stromal cell,
priming, systemic lupus erythematosus
1 Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, associated with

multiorgan damage and variable clinical manifestations (1). SLE is a multifactorial disorder,

in which the phenotype is modulated by a combination of genetic, epigenetic,

environmental, hormonal and immunoregulatory factors. SLE is characterized by a

dysfunction of the immune system, notably a presence of autoreactive T cells and

hyperactive B cells, leading to a loss of tolerance, production of autoantibodies against

self-antigens formation and deposition of immune complexes, as well as a sustained

systemic inflammation. SLE is classified as interferonopathy, since type I interferons (IFN-
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I) play a crucial role in the development of the disease (2). The

chronic production of IFN-I, especially IFN-a, is a key

characteristic of SLE and contributes to the autoimmune process

(3). IFN-I stimulates the activation of interferon producing cells,

such as plasmacytoid dendritic cells (pDCs), which are responsible

for elevated levels of IFN-a in blood plasma and organs (4). The

excessive signaling of IFN-I results in the increased expression of

various pro-inflammatory cytokines, chemokines, and markers of

immune cell activation. This, in turn, contributes to the

dysregulation of the immune system and the generation of

autoantibodies. Additionally, prolonged exposure to IFN-I can

boost the activation and survival of autoreactive B cells and

encourage the differentiation of T cells into pro-inflammatory

subsets, sustaining the autoimmune response (5). SLE manifests

through periods of flares and remissions, with symptoms showing

considerable variation among individuals. Treatment objectives

revolve around managing symptoms, mitigating inflammation,

and safeguarding against organ damage. Due to its clinical

heterogeneity and complex pathogenesis, SLE remains hard to

diagnose and the available treatments show limited efficiency.

Long considered as platelet debris, EVs have gained critical

interest from the scientific community in the recent years (6). EVs

are released by all cellular organisms and can be defined by their

heterogeneity. Indeed, apart from their structural definition, a cell

secreted particle enclosed by a lipidic bilayer, EVs differ from their

sources, biogenesis, biophysical, biochemical characteristics and

functional activity (7). A standard classification can be established

based on the biogenesis of EVs: exosomes are generally small sized

extracellular vesicles, from endosomal origin, released by

multivesicular bodies (MVBs). Ectosomes can be defined as

extracellular vesicles stemming from the plasma membrane. EV

biogenesis pathways and mechanisms of interaction with target cells

have been extensively reviewed (8, 9). EVs are heterogenous in size

and have a diameter varying in the range of the nanometer.

However, EVs are not the only nanometer-sized particles secreted

by cells and there is still no specific markers allowing an efficient

separation of EVs. Thus, guidelines have been set by the

international community regarding ways of purifying and

characterizing EVs. Transmembranal proteins such as

tetraspanins, cytosolic proteins such as TSG101, and other cell-

dependent proteins have been used to demonstrate the EV nature

and to some extent the degree of purity of an EV preparation (10).

EVs have been linked with a variety of cellular functions, and can

affect other cells with their surface proteins or the cargo

encapsulated by EVs. EVs carry diverse proteins, nucleic acids

and lipids from their parent cell, which can in turn be delivered

to the recipient cell. EVs have a fundamental role in the immune

system and in immune-related diseases, highlighting their potential

either as a new biomarker or a therapeutic tool (7).

In the field of mesenchymal stromal cells (MSCs), EVs have

emerged as a potential avenue for cell-free therapy. MSCs have been

used for their immunosuppressive capabilities, with utilization in

clinical trials and availability on the market. Nonetheless, the use of

MSCs can carry some drawbacks and EVs have been looked into as
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a cell-free alternative. More specifically, as EVs carry the same

biological molecules as their parent cells, the effect of MSCs is

partially mediated by them with paracrine actions. EVs have shown

to have the same immunomodulatory and regenerative potential

than their parent cells, and have thus become a promising

alternative to MSCs themselves for therapies (11, 12). More

broadly, the secretome embraces not only the previously

mentioned EVs but also a variety of proteins, lipids, and nucleic

acids. These components may be either inside or adsorbed to EVs,

or freely present in the secretome (13). This added complexity of

which fractions holds the therapeutical activity and the issues of

standardization regarding means of production, concentration, and

characterization in the field of EVs make any conclusion towards

the effect of MSC derived EVs or MSC derived secretome a

complex equation.
2 Multiparametric influence on the
immunomodulatory potential of
MSC-EVs

In order to understand which fract ions hold the

immunomodulatory potential, the next part focuses on having a

critical look over the many parameters influencing MSC-EV

immune activity. Some scientific papers use the term exosomes to

describe their fractions, while they could be more accurately defined

as EVs or even secretome. Various downstream processes such as

size exclusion chromatography (SEC), polyethylene glycol (PEG)

and ultracentrifugation broadly used by the scientific community

separate selectively the content of the secretome (14), and alter the

composition of the protein corona of EVs (15). The protein corona

is a set of proteins and other molecules adsorbed to the EVs. These

prote ins can be b ioac t ive and media te par t o f the

immunomodulatory potential (16, 17). All of this heterogeneity of

me thods br ings a t the s ame t ime s t r eng th to the

immunomodulatory response of EVs as a global effect, but brings

hardship as to determine what is driving this specific effect. A

number of studies showed the difference of potency between the

secretome, the EV free fraction, and the fractions containing EVs.

Papait et al. showed that amniotic MSCs derived conditioned media

(e.g secretome) and the EV free fraction (meaning the supernatant

after ultracentrifugation) maintained their immunomodulatory

potential by inhibition of T cell, promotion of Tregs, shifted

monocytes towards M2 instead of M1, but also reduction of the

maturation of dendritic cells. The EV fraction collected after

ultracentrifugation had no effect even though these EVs were

uptaken (18). Another study has found no effect of the three

fractions on the inhibition of T cell proliferation (19). These

differences in results might be from methodological differences,

specifically in the dose parameter (e.g. protein amount in ug or

particles concentration measured by Nanoparticles Tracking

Analysis (NTA)), cell sources of EVs, or downstream processes. A

recent study has shown that the immunomodulatory potential of
frontiersin.org
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MSCs is independent of EVs, which runs counter to most results in

the literature using EV-enriched fractions (20). González-Cubero

et al. showed that EVs and soluble fractions from conditioned

media promote an in vitro anti-inflammatory modulation in

intervertebral disc degeneration in a “highly synergistic way”, thus

highlighting that the use of the whole secretome rather than isolated

EVs might be more beneficial for therapy (21). While it is still hard

to understand what exactly mediates the immunomodulatory

potential, the effect might come from a synergistic combination of

both the soluble factors from the secretome and the EVs.

Other factors have also been shown to have an impact on the

immunomodulatory potential of EVs or secretome. Indeed, the

donor of primary cells, the source of MSCs, the passage doubling

number, and the production method (which will be addressed later

on) can influence the secretome content and thus the potency of

EVs (22–25). Immortalized MSCs might be a solution for

reproducible batches of secretome/EVs for therapeutic use (26).

The characterization of the secretome of MSCs shows the

presence of both pro and anti-inflammatory molecules. While the

secretome of MSC-EVs has shown to have high levels of IL-6 and

IL-8 (27), a recent study showed that the conditioned media derived

from umbilical cord (UC)-MSC promoted anti-inflammatory

macrophages polarization. This despite a mostly pro-

inflammatory profile of cytokines, though the authors have only

investigated surface markers of M2 macrophages (28). MSC-EVs

contain nucleic acids, which may bind to TLR7 and 9 as foreign

nucleic acids and trigger a pro-inflammatory cascade. However, this

review hasn’t found any reports of inflammation induced by MSC-

EV-associated DNA (29).

The methods to assess EV immune potency are also critical. The

dose of EV is differently calculated, either with particles
Frontiers in Immunology 0372
concentration, protein concentration, or even EVs per receptor

cells, which may result in some disparities in results (30). Some

studies tend to isolate a specific cell type for their in vitro potency,

though immune cells do not uptake homogenously EVs. Monocytes

seem to uptake the highest proportion of MSC-EVs (18, 31, 32).

Nonetheless, even though EVs are not uptaken by lymphocytes,

studies on MSC-EVs and on EV-free fractions added to PBMCs

have shown an immunosuppressive effect on T cells, thus

independent of the uptake (18, 33, 34). Others have shown that

MSC-EVs failed to suppress lymphocyte proliferation (35). The

immunomodulatory effect ofMSCs onB cells is independent of secreted

EVs (36). This reinforces that the global immunomodulatory effect

might not be entirelymediatedbyEVs, but also through soluble factors

of the secretome. The effect of EVs onT cells could also bemediated in

an indirect way, through the actions on EV-uptaking immune cells

(37, 38).

Regarding the immunoregulatory effect of MSC-EVs on

immune cells, some reviews have already discussed it thoroughly,

either as a comprehensive overview (39), or more precisely in the

case of SLE (40). Thus, in the next part, this review will focus on the

immunomodulatory factors in the secretome of MSCs.
3 The immunomodulatory bioactive
molecules of MSC-derived secretome
and EVs

The immunomodulatory potential of MSC-EVs could be driven

by a broad range of bioactive molecules, including proteins, nucleic

acids, and lipids. Many evidences suggest the importance of specific
FIGURE 1

The immunomodulatory bioactive molecules of MSC-derived secretome and EVs.
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bioactive proteins mediating the immunomodulatory effect of

MSC-EVs. This review focuses on the supposed localization of the

bioactive molecules, though it is important to remember that

soluble proteins secreted by MSCs are also probably carried by

EVs. The lack of studies comparing EV-free conditioned media and

purified EV fractions makes the localization of all bioactive

molecules a hard task. (Figure 1) is a proposition of the

immunomodulatory bioactive molecules of MSC-derived

secretome and EVs.
3.1 Soluble proteins secreted by MSCs

The immune regulation of MSCs can be mediated by soluble

proteins secreted by MSCs.

IL-10 is an anti-inflammatory cytokine secreted by immune

cells such as macrophages, dendritic cells, Th and Tregs, amongst

others. IL-10 induces a strong immunosuppressive response in

immune cells, targeting specific genes, cytokines and chemokines

production. An in-depth focus on IL-10 and its effects has already

been reviewed (41). IL-10 is also secreted by MSCs and mediates

part of MSC-EVs immunomodulatory activity. Jiang et al. showed

cardioprotective effects of MSC-EVs using in vivo models of pigs,

which were “largely blunted” after IL-10 knockdown (IL10KD).

Using in vitromodels, IL10KDMSC-EVs achieved less inhibition of

T-cell proliferation than control MSC-EVs (42). These results are in

accordance with Eirin et al. observation on their model of kidney

inflammation, showing an IL-10 dependent immunomodulation of

MSC-EVs (43). MSC-EVs derived from MSC overexpressing IL-10

showed higher concentrations of IL-10, enhanced the suppressive

effect of these EVs on Th1 and Th17 and upregulated Tregs in vitro

(44). IL-10 thus mediates the immunosuppressive effect of MSCs.

Hepatocyte growth factor (HGF) is secreted by MSCs, which

can mediate immunosuppressive effects. The effect of HGF in the

scope of MSCs has already been described (45, 46). Chen et al.

showed that knockdown of HGF secretion by MSCs abrogate the

suppression of T cell proliferation, and monocytes cultured with

HGF alone or MSCs can secrete high levels of IL-10 through ERK1/

2 pathway (47). In the case of MSC-EVs, treatment with MSC

derived “microvesicles” reduced IL-6 production and increased IL-

10 production in the conditioned media of endothelial cells, which

was reverted after knockdown of HGF in MSCs. Notably, MSC-

derived conditioned media had a higher regulative activity than

microvesicles (48).

Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a

protein implicated in the immunomodulatory effects of MSCs.

TSG-6 is a multifunctional protein with anti-inflammatory

properties, and can interact with a broad variety of ligands such

as chemokines. TSG-6 is overexpressed in a pro-inflammatory

environment (49). Chaubey et al. showed the presence of TSG-6

in UC-MSC-EVs was linked to the therapeutic efficiency in their

model of mouse lung disease (50). TSG-6 in canine MSC-EVs

played a key role in the downregulation of pro-inflammatory

cytokines, the polarization of M1 to M2 and the increase of Tregs

in the colon (51). Human bone marrow(BM)-MSC derived EVs
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containing TSG-6 decreased pro-inflammatory cytokines in scar

tissues, inhibited collagen deposition, thus suppressing scar

formation. This effect was enhanced using BM-MSC modified to

overexpress TSG-6, and reverted to the normal after knockdown,

showing a TSG-6 dependent effect of MSC-EVs (52). Lu et et al.

showed that AD-MSC derived EVs had therapeutic effects in their

model of spinal cord ischemia reperfusion injury by transmitting

TSG-6 (53). Other studies have shown the importance of TSG-6 in

MSC conditioned media for immunomodulatory activity (54, 55).
3.2 Proteins adsorbed to the corona &
membrane proteins

IL-1 receptor antagonist (IL-1RA) has also been found in the

secretome of MSCs. IL-1a and IL-1b, potent inflammatory

cytokines can bind to IL-1R, eliciting a MyD88-dependent

inflammatory cascade. On the other hand, IL-1RA can bind

without triggering any downstream signaling, therefore acting as

a potent antagonist of IL-1a and IL-1b and shutting down immune

responses. An in-depth report of the actions of MSC-derived IL-

1RA can be found (56). Kou et al. showed that IL-1RA was found in

the supernatant of cultured mouse MSCs after centrifugation at

3,000 g and 20,000 g, and not in the pelleted fraction representing

the bigger EVs, but was found in was in the EV pelleted fraction

they call “small EVs” after ultracentrifugation at 120 000g. Using

various methods of microscopy, they showed that IL-1RA was

carried by EVs on their surface. They subsequently demonstrated

that IL-1RA associated EV release was controlled by Fas through

binding with Fap-1 and Cav-1 and upregulated when the MSCs

were treated with TNF-a (57).

Transforming Growth Factor Beta (TGF-b) is a cytokine carried
by MSC-EVs (58). TGF-b can bind on its receptor TGF-bRII, which
triggers a downstream cascade targeting a variety of growth factors

and inflammatory cytokines. TGF-b1 can be found either bounded

to the plasma membrane, or in soluble form (59). TGF-b has a

pleiotropic function on the regulation of immune cells. TGF-b
suppresses T cells while promoting Tregs, regulates B cell activation,

promotes expression of IDO in pDCs, inhibits DC function,

amongst other actions (60, 61). TGF-b has been studied in MSC-

EVs regarding its immunosuppressive activity. Alvarez et al. showed

that TGF-b1 was primarily present in MSC-EV fraction, compared

to EV free supernatant and that the immunomodulatory activity of

MSC-EVs on CD4+ T cells is partially mediated by TGF-b1 (62).

This same conclusion has been advanced by another group in a

canine model (34). Kim et al. showed that amongst other molecules,

TGF-b had a significant influence on the immunomodulatory

properties of MSC-EVs in their model of cornea. Silencing of

TGF-b1 resulted in the loss of MSC-EV suppressive effects, while

overexpression resulted in more effective EVs in the suppression of

T-cell receptor IL-2 and IFN-g secretion in activated splenocytes

(25). Song et al. used MSC-EVs produced in 3D with exogenous

TGF-b3, which resulted in higher levels of TGF-b1 compared to

non-treated 3D MSC-EVs, and higher immunomodulatory activity

of treated EVs (63).
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CD73 is one of the three conventional surface markers to

identify MSCs (64). But it is also one of the enzyme of purinergic

signaling, responsible for transforming Adenosine monophosphate

(AMP) into Adenosine (Ado), a nucleoside known for its

immunosuppressive role on T cells and Th17 cells (65). Indeed,

CD73+ engineered UC-MSC derived EVs reduced concentration of

ATP while increasing the levels of adenosine compared to non-

engineered EVs. These engineered EVs improved the functional

recovery after spinal cord injury, improving the polarization from

M1 to M2 phenotype, but also downregulated more the pro-

inflammatory cytokines after spinal cord injury compared to the

native EVs, while it also upregulated more the anti-inflammatory

cytokines such as IL-10 (66). Another study has shown that

conditioning of MSCs with pro-inflammatory cytokines promoted

the expression of CD73 in EVs, and that these EVs reprogram

macrophages from M1 to M2 phenotype (67). Although MSCs and

hence their EVs express CD39 (at a low level) and CD73, a study has

shown that efficient adenosine production from ATP requires

cooperation with activated T-cells expressing CD39 (68). The co-

culture in the previous study significantly increased the expression

of CD39 in MSCs and of CD73 in T-cells, supporting the previous

findings of Saldanha-Araujo et al. (69). In the case of SLE, patients

show a silenced activity of CD73 and CD38 in B cells, resulting in

decrease of production of anti-inflammatory adenosine (70). MSC-

EVs may thus constitute a potential therapeutic approach for the

treatment of SLE due to their high expression of CD73. Other

methods of overexpressing this enzyme could be also used to further

improve the treatment.
3.2.1 Immune checkpoints

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an important

regulator of T cell activation (71). It can bind to CD80 and CD86,

resulting in an inhibition response rather than a stimulatory one by

CD28. Furthermore, CTLA-4 can also bind to DCs, resulting in a

downregulation of CD80 and CD86 (72). CTLA-4 expressed on

Tregs stabilizes the interaction with T cells allowing for the Treg

mediated suppression of T cell (73). CTLA-4 has been shown to be

expressed by MSCs under different isoforms. CTLA-4 can be found

as a transmembrane protein or can also be secreted. Secreted

CTLA-4 by BM-MSCs has been significantly increased under

hypoxic conditions. The authors have also shown a CTLA-4

mediated inhibitory effect of the secretion of TNF-a induced by

PHA of PBMCs (74). As far as we know, there are no studies

directly showing the presence of CTLA-4 in the membrane of MSC-

EVs. As CTLA-4 is expressed in MSCs, their derived EVs could

potentially carry it.

On the contrary, PD-L1 has been found on the surface of MSC-

EVs. PD-L1 binds to the receptor programmed death-1 (PD-1),

expressed on T cell surface, leading to an inhibition of their

activation (75, 76). Wu et al. have shown that PD-L1

overexpressing MSC-EVs have enhanced therapeutic activity

compared to native EVs in a model of LPS-induced pneumonia

in mice (77). Other teams also used PD-L1 overexpressing MSC-
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EVs, showing an increased therapeutic activity in their in vitro and

in vivo models. Notably, the use of anti-PD-L1 antibody reverted

the effect to the level of wild type MSC-EVs, suggesting a PD-L1/

PD-1 dependent immunosuppression (76–79). Pro-inflammatory

and hypoxia MSC conditioning resulted in higher levels of IDO and

PD-L1 in EVs, resulting in higher immunomodulatory activity (80).

In regard to SLE, CD4+/CD25+/Foxp3+ Tregs from SLE patients

expressed significantly lower amounts of PD-L1 compared to

healthy patients (81).

HLA-G is a non-classic major histocompatibility complex

(MHC) molecule which can mediate immunosuppression. HLA-

G can bind to receptors expressed in immune cells, such as CD158d,

CD85j, CD85d, CD8 and CD160, and can polarize macrophages

towards an M2 phenotype, inhibits the proliferation of T cells,

induces Tregs, inhibits the maturation of DCs amongst other

actions. There are seven different isoforms, with four membrane

bound (HLA-G1, G2, G3, and G4), and three soluble isoforms

(HLA-G5, G6, and G7) (82–85). A limited number of studies have

examined the impact of human leukocyte antigen G (HLA-G) in

MSC-EVs. Selmani et al. showed that HLA-G5 can be found in the

secretome of BM-MSCs. BM-MSCs secreted HLA-G5 in an IL-10

dependent manner. Interestingly, they noted a decrease of HLA-G

expression over passages, but HLA-G5 content in supernatants was

not affected. They further demonstrated that HLA-G5 is necessary

for the suppression of allogenic T-cell and the expansion of Tregs,

and the inhibition of “NK-cell mediated cytolysis and interferon-y

secretion” (86). HLA-G has been found in “high levels” of MSC-EVs

of four bone marrow donors, purified by PEGylation and

ultracentrifugation (87). This could indicate that HLA-G can

indeed be found in the secretome, but also linked with MSC-EVs.

In the same vein, HLA-G, in both its membrane and soluble

isoforms, has also been identified in UC-MSCs, without

specifying their EVs (88).
3.2.2 Apoptose inducing ligands

FasL or CD178 or CD95 Ligand induces apoptotic death upon

binding with its receptor Fas. Interestingly, FasL induces cell death

only in its membrane-bound form (mFasL) while its soluble form

(sFasL) binds to Fas without induction of the proapoptotic signaling

pathway, thus competing with its membrane-bound form (89).

sFasL is found after cleavage of mFasL by metalloproteinases

(MMPs). sFasL can trigger inflammatory pathways such as NF-

kB (90). As a matter of fact, MMPs are found in the secretome of

MSCs after priming with IL-1b (91), and might cleave FasL into

sFasL at the surface of MSCs and their EVs, which might in turn

compete with FasL. It is not known in the detail in the case of MSCs

and EVs how this dynamic between pro-inflammatory sFasL,

MMPs and pro-apoptotic mFasL plays out regarding the

immunomodulatory potential of MSC-EVs. Some studies have

shown a FasL dependent apoptotic effect using MSCs, but little

has been done with MSC-EVs. Vacaru et al. used modified MSCs

overexpressing FasL which showed improved death induction in

CD4+ and CD8+ T cells, but has not looked into the effect of EVs
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(92). Akiyama et al. showed that bone marrowMSCs induced T-cell

apototosis via Fas/FasL pathway. Recruitment of T cells was

induced by secretion of Fas-regulated monocyte chemotactic

protein 1 (MCP-1) (93). Wang et al. induced apoptotic EVs in

mouse MSCs, and showed that these EVs used FasL to induce

apoptosis in Multiple myeloma cells in vivo in mice (94).
3.3 EV cargos

Indoleamine 2,3-dioxygenase (IDO), is an immunosuppressive

enzyme leading to the degradation of tryptophan to kynurenine and

other metabolites, resulting in stopping T-cell proliferation,

induction and activation of regulatory T cells (95). Kynurenine

produced by DCs can be taken up by T cells through the large

neutral amino acid transporter (LAT-1), and induces FoxP3

expression, resulting in Tregs differentiation. Kynurenine also

inhibits the expression of retinoic acid receptor-related orphan

receptor-gt (ROR-gt), thus suppressing the differentiation of Th17

cells. Kynurenine can also induce tolerogenic phenotype in DCs

(96). IDO activation in plasmacytoid dendritic cells (pDC) induce

immune tolerance and inhibition of IFN-I production (97, 98). As

SLE is characterized by an enhanced IFN-I production by pDC,

IDO could be a key immune modulator of MSC-EVs in SLE

treatment. In MSCs, IDO is present in MSC-EVs and in cells, but

only after IFN-y pre conditioning. Increased levels of IDO

expression result in higher levels of Kynurenine, both in the cell

and in the EVs. EVs unprimed with IFN-g showed no

immunomodulatory properties, while primed EVs suppressed T-

cell and induced Treg cells (99). MSC-EVs from overexpressing

IDO MSCs have shown to activate M2 polarization in an IDO

dependent manner (100). Another study showed an effect of

unprimed MSC-EVs on inhibition of PBMC proliferation, but no

statistically significant increase of Tregs proportion. Treatment with

MSC-EVs primed with IFN-g and TGF-b showed a higher increase

in the proportion of Tregs compared to conditions primed with

on l y on e mo l e cu l e , o r unp r imed . Th i s i n c r e a s ed

immunomodulatory activity was linked with a higher

concentration of IDO and IL-10 (101). However, Serejo et al.

showed that while IFN-y pre-treatment of MSCs did increase the

expression of IDO in both cells and EVs, it did not result in

increased T-cell suppression of proliferation (102). Another study

found that conditioned media from primed cells successfully

suppressed T cell proliferation, while primed MSC-EVs, and

unprimed CM and EVs had no effect (103). The authors

hypothesize that the absence of immunomodulatory effect could

be due to a difference in experimental methodology. These studies

show that IFN-g priming is needed for IDO expression, which could

mediate the immunosuppressive effect of MSC-EVs.

Regarding the iNOS-NO axis, the immunosuppressive activity

of MSCs from human, monkey and pig is mostly mediated through

IDO rather than iNOS, whereas MSCs derived from rat, hamster

and rabbit mostly use iNOS (104). For that reason, we are

redirecting to another review which has already described in-
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depth the role of iNOS in the immunomodulatory potential of

MSCs and their EVs (105).
3.3.1 miRNAs

The immunomodulatory potential of MSC-EVs could also be

mediated through miRNAs. miRNA are non-coding small nucleic

acid of around twenty nucleotides which interfere with mRNA

translation. As such, when delivered to the immune cells, miRNAs

can influence their function through the inhibition of transcription

factors or targeting of specific pathways regarding maturation,

activation of the immune cells (106). miRNAs can be transported

and delivered to other cells by extracellular vesicles, which make

them a potent molecule responsible for the immunomodulatory

potential of MSC-EVs. MSC-EVs have been found to be enriched in

various miRNAs, with differentially expressed miRNAs depending

on the source of the MSC-EVs (107). This should be kept in mind

looking at potential immunomodulatory mediated miRNAs action

as they could be weakly enriched in a specific source of MSC-EVs.

Kim et al. identified let-7b-5p and miR-21-5p as key

microRNAs mediating the immunomodulatory effect of MSC-

EVs (25). miR-21-5p, identified as one of the most enriched

miRNA in MSC-EVs, targets CCR7 resulting in attenuated DC

migration and function (108). miR-146a has been shown by Song

et al. to promote M1-M2 transition and plays a protective role in

sepsis (109). miR-181c in UC-MSC-EVs repressed inflammation by

suppressing TLR4 (110). miR-155 has been shown to significantly

reduce the proliferation of activated PBMCs, by targeting miR-221

as a potential inflammation mediator (111). miR-223 in MSC-EVs

could also restrain adhesion and migration of T cells (112). A lot of

other miRNAs have been identified as a potential mediator of MSC-

EVs immunomodulatory effects (113). A few studies have

highlighted limitations of current RNA-sequencing methods,

which could raise concerns over the reproducibility and

comparability of sequencing data across library preparation

platforms (114, 115). Nonetheless, Srinivasan et al. indicate that

technical variability is smaller than biological variability regarding

the use of small RNAs in EVs (116). miRNAs have thus shown to

mediate a broad Immunosuppressive effect of MSC-EVs.
3.3.2 Lipid mediators

While the scientific community has been mainly focused on the

immunomodulatory impact of miRNAs and various proteins, some

bioactive lipids have been coming in light.

Lipid mediators are lipids derived from polyunsaturated fatty

acid (PUFAs) who can promote inflammation or resolution. PUFAs

can be modified by different types of enzymes into a diversity of

bioactive lipids. Among them, specialized pro resolving mediators

(SPMs) such as resolvins or maresins are known to be anti-

inflammatory and play a key role in the resolution of

inflammation. The regulatory effect of SPMs on immune cells has
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already been described extensively (117, 118). Regulatory lipid

mediators have been found in MSC-EVs (119–121), and their

concentration can be increased by priming MSCs with PUFAs, or

even with pro-inflammatory cytokines (121, 122). Enzymes of the

many lipid mediators pathways are carried by MSC and their EVs.

Cardiac MSCs and their EVs carry 5-LO and 15-LO, enzymes which

play a role in transforming PUFAs in SPMs (123). Thus, these

enzymes are able to modify dynamically the concentration in

various SPMs inside EVs. PUFA supplementation of MSCs to

improve the immunomodulatory potential has already been

described in the literature (124, 125). Secretome of primed MSC

with different types of PUFA promoted an immunoregulatory

phenotype in macrophages (126). While lipid mediators may play

a role in the immunomodulatory effect of MSC-EVs, little research

has been done about them.

Prostaglandin E2 (PGE2) is a lipid mediator belonging to the

prostaglandin family. PGE2 is produced by the enzymes COX-1 and

COX-2 from the w-3 PUFAs arachidonic acid (AA) and can bind

on EP receptors expressed on the surface of immune cells (45). EP2

and EP4 receptors, upon binding, upregulates cAMP levels whereas

EP3 downregulates it (127). PGE2 binds on EP2 and EP4 receptors

and regulates T helper cells (128). PGE2 has shown to have a broad

immunomodulatory effect. It promotes an anti-inflammatory

phenotype in macrophages, has ambivalent effects on DCs

depending on their development stage, suppresses T cell

activation and promotes Treg cells (129, 130). PGE2 can also

induce neutrophils to produce less pro-inflammatory lipid

mediators and increase the production of anti-inflammatory lipid

mediators such as Lipoxins (131). In prostate cancer cells, PGE2 has

been found either to be carried with EVs but also secreted as a

soluble factor (132). PGE2 is expressed in MSCs, carried by their

EVs, and the cells can be primed with w-3 PUFA to express more

PGE2 (121). Conditioned media from human MSCs spheroids

inhibited pro-inflammatory cytokines and increased the secretion

of anti-inflammatory cytokines in LPS stimulated macrophages, in a

PGE2 dependent manner, mediated by binding on the EP4 receptor

(133). MSC-EVs from pluripotent stem cells isolated by anion-

exchange chromatography were able to inhibit the activating effects

of dendritic cells on group 2 innate lymphoid cell, mediated by

PGE2 binding on EP2/EP4 (134). TNF-a and IFN-g were reduced
in activated splenocytes, partially through PGE2/COX2 (135).

These studies show the importance of bioactive lipids in the

therapeutic activity of MSC-EVs.

In the end, multiple mechanism of actions have been proposed,

using in vitro and in vivo models. Taking all these studies into

account, the immunomodulatory potential of MSC-EVs is probably

mediated not by one specific pathway, but by a combination of all

these bioactive molecules. Since these molecules are located in the

secretome either as a soluble fraction, in the membrane of the EVs,

or inside the EVs, it appears that managing to keep all these

bioactive molecules as a part of the secretome downstream

process will be key for keeping MSC-related potency.

Many studies discussed before used different techniques to

enhance the quantity of immunomodulatory molecules in MSC-
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EVs. In the next part, we discuss the techniques to obtain MSC-EVs

with a higher immunomodulatory potential.
4 MSC priming for enhanced
immunomodulatory potential

MSCs have an important role in tissue repair and can be

mobilized to the sites of tissue damage and inflammation. Thus,

MSCs in vivo are often subject to inflammatory stimuli such as but

not limited to, damage-associated molecular patterns (DAMPs),

pathogen-associated molecular patterns (PAMPs), pro-

inflammatory cytokines from activated immune cells, or hypoxia

(136, 137). Attempts to recreate this environment in vitro have been

used to increase the immunomodulatory potential of MSC-EVs. As

a matter of fact, MSCs have high plasticity regarding their

immunomodulatory potential: an anti-inflammatory environment

might inhibit the immunosuppressive activity of MSCs, while a pro-

inflammatory one will enhance it (138, 139). This can explain why

some immunomodulatory molecules such as IDO are only

produced under a pro-inflammatory environment. (Table 1)

summarizes all the priming methods for MSC-EV enhanced

immunomodulatory potential.

Priming or conditioning MSCs with different methods have

shown to induce different EV release, membrane markers,

differential uptake and activation of T cell subsets (167). Priming

also modifies the miRNA and protein EV cargo (168–170).

Importantly, the source of MSCs and the inter-donor variability

within the same source of MSCs has an impact on the response to

priming and thus the improvement of immunosuppressive effect of

MSC-EVs. Peltzer et al. showed that PCA failed to discriminate

groups between MSC- EVs from 5 donors without priming, with

IFN-g priming and hypoxia, regarding their differential miRNA

expression, showing that inter-individual variability was stronger,

especially regarding their response to priming (171). Gorgun et al.

showed that while priming had a significant effect on the secretome

of MSCs, it did not majorly affect the miRNA in their EVs (172). A

recent study was able to discriminate hypoxia and normoxia group

looking at their miRNA, possibly underlying a donor disparity

between studies (173). Jin et al. showed that priming overcame the

MSC inter-donor variability by looking at gene expression (174).

Priming with a cocktail of cytokines resulted in two different

responses in different donors of MSCs (140). These studies show

that priming MSC has significative changes on the biophysical,

biochemical and bioactive properties of MSC-EVs, but the changes

might be hidden by donor- and source-dependent differences.

One way to recreate the inflammatory conditions of tissue

damage is to target Toll-Like Receptors (TLRs), which recognize

various types of molecules such as DAMPs and PAMPs. LPS-

preconditioned MSC-EVs were more efficient in converting THP-

1 to M2 phenotype in vitro, and in relieving inflammation in vivo

than untreated MSC-EVs, notably through miR-let-7b (141). LPS-

primed MSC-EVs were significantly more efficient at increasing M2

and reducing M1 polarization in vitro, and were more effective in
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TABLE 1 MSC-priming for increased MSC derived secretome and EVs enhanced immunomodulatory potential.

Priming used Cell Type Bioactive molecule and mean
of action

Immunoregulatory effect Reference

IFN-g (1000U/mL)
TNF-a (1000U/mL)
IL-1b (10ng/mL)
24h

Nasal mucosa and
BM-MSC EVs

Increase of PD-L1, PD-L2, ICAM-1 Suppressed CD3+ T cells
Enhanced therapeutic effects in GvHD mice

(140)

LPS (100ng/mL)
48h

UC-MSC EVs miR-let-7b Regulation of TLR4/NF-kB/
STAT3/AKT signaling pathway

Increased M2 polarization (141)

LPS BM-MSC EVs AKT1/AKT2 signaling Decreased of pro-inflammatory cytokines levels
Promoted M2 polarization
Alleviated myocardial injury
Reduced post-infarction inflammation

(142)

LPS (10ng to 10mg/mL)
Poly (I:C) (100ng to
100mg/mL)
6h

UC-MSC EVs Decreased of pro-inflammatory cytokines levels
Promoted M2 polarization

(143)

LPS (100ng/mL
1ug/mL)

BM-MSC EVs LPS-concentration dependent variation of
macrophages markers

(144)

LPS (1mg/mL)
24h

Periodontal ligament
MSC EVs

miR-433-3p
TLR2/TLR4/NF-kB p65

Promoted M1 phenotype (145)

LPS (10ng/mL)
Poly (I:C) (1mg/mL)
1h

Human
multipotent MSC

Increased expression of immune suppressive
factors with LPS
Pro inflammatory phenotype with Poly (I:C)

(146)

IFN-g (10ng/mL)
TNF-a (15ng/mL)
72h

Human multipotent
MSC EVs

A20
TSG-6

Enhanced T cell suppression
Increased levels of immunomodulatory proteins

(147)

IFN-g (10ng/mL)
48h

Adipose MSC
Secretome

Promoted M2 polarization (148)

IL-1b (25ng/mL)
24h

Human BM-
MSC EVs

miR-147b
Inhibition of NF-kb pathway

Inhibited inflammatory factors expression in
osteoarthritis cells

(149)

IL-1b (10ng/mL)
12h

Mouse MSC EVs miR-21 targets PDCD4 Higher expression of immunosuppressive factors
in MSCs
Promoted M2 polarization
Alleviated sepsis in mice

(150)

IFN-g (100ng/mL)
24/48h

UC-MSC EVs Loss of protection against ischemic acute kidney
injury
No differences in Treg induction

(151)

TGF-b (10ng/mL)
IFN-g (1000IU/mL)
72h

UC-MSC EVs IDO, IL-10 Increased proportion of Tregs
Higher levels in IDO, IL-10 and IFN-y
Similar levels of PBMC proliferation inhibition

(101)

Atorvastatin
1mgmol/L
48h

Mouse MSC EVs lncRNA H19 Improved cardiac function
Ameliorated fibrosis after myocardial infarction
Reduced cardiac apoptosis and inflammation

(152)

IDO overexpression Mouse BM-MSC EVs IDO Accelerated repair process after acute kidney
injury
Reduced fibrosis, inflammation
Promoted M2 polarization

(100)

IL-10 overexpression Human UC-
MSC EVs

IL-10 Enhanced suppressive effect on Tcells
Differentiation of Th1/Th17 cells
Upregulated Tregs
Ameliorated autoimmune uveitis

(44)

TSG-6 overexpression Human BM-
MSC EVs

TSG-6 Attenuated scar pathological injury
Decreased inflammation

(52)

TGF-b, PTX3, let-7b-
5p, miR-21-5p
overexpression

Human MSC EVs TGF-b, PTX3, let-7b-5p, miR-21-5p Decreased inflammation from Th1 and TH17
cells

(25)

(Continued)
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TABLE 1 Continued

Priming used Cell Type Bioactive molecule and mean
of action

Immunoregulatory effect Reference

Suppressed TLR4 and TCR signaling
in splenocytes

CD73 overexpression Human UC-
MSC EVs

CD73, Promotion cAMP/PKA
signaling pathway

Decreased inflammation and ATP
Promoted M2 polarization
Ameliorated recovery after spinal cord injury

(66)

PD-L1 overexpression Mouse BM-MSC EVs PD-L1
PD-1/PD-L1 pathway

Alleviated pneumonia
Reduced levels of inflammation

(77)

PD-L1 overexpression BM-MSC EVs PD-L1 Prolonged allograft survival
Increased Treg proportion and suppressive effect
on T cell proliferation

(78)

PD-L1 overexpression Mouse BM-MSC EVs PD-L1 Inhibited immune cells activation
Reduced inflammation in colon
Ameliorated ulcerative colitis and psoriasis

(79)

miR-
181a overexpression

Human UC-
MSC EVs

miR-181a targeting c-Fos gene in PBMCs Decreased levels of inflammation
Increased Treg polarization
Retarded ischemic damage in vivo

(153)

miR-
126 overexpression

Mouse adipose
MSC EVs

miR-126 Ameliorated functional recovery after stroke
Inhibited microglial activation and inflammation
after ischemic stroke

(154)

TRAIL overexpression Human adult
MSC EVs

TRAIL Induced apoptosis in cancer cell lines (155)

Hypoxia Mouse adipose
MSC EVs

lncRNA-Gm37494 upregulated Promoted functional recovery after spinal cord
injury
Promoted M2 polarization and
suppressed inflammation

(156)

Hypoxia Bone MSC EVs mIR-216a-5p enrichment
TLR4/NF-kB/PI3K/AKT signaling cascades

Promoted M2 polarization
Increased functional recovery after spinal
cord injury

(157)

IFN-g (50ng/mL)
TNF-a (10ng/mL)
IL-1b (10ng/mL)
HIF-overexpression

Human dental pulp
MSC EVs

Promoted M2 polarization
Reduced inflammation and PBMC adhesion
Ameliorated fibrosis
Attenuated TNBS-induced colitis in mice

(80)

Hypoxia Human adipose MSC
EVs

Improved renal recovery after Ischemic injury
Promoted M2 polarization

(158)

Spheroid Human amnion
MSC EVs

Inhibited activated PBMC proliferation (159)

Spheroid Human
MSC secretome

Aggregation method influenced PGE2 secretion
Suppressed T-cell
Polarized M2 polarization
Enhanced expression of
immunomodulatory factors

(160)

Spheroid Human adipose MSC Protective effect against colitis
Inhibited immune cell infiltration in colon

(161)

Spheroid
TNF-a, IFN-g (20
ng/mL)

Human UC-
MSC EVs

Increased HGF levels in secretome
Enhanced reduction of NF-kB and pro
inflammatory cytokines expression
Anti-apoptotic and anti-fibrotic effect

(162)

Spheroid Human BM-
MSC EVs

Lower kynurenine concentration
Lower anti-inflammatory effect in lungs and
lower anti-fibrotic effect

(163)

Aggregates in
WAVE bioreactor

Human BM-
MSC EVs

Higher miR-21-5p and miR-22-3p expression
Higher inhibition of CD8+ T cell proliferation

(164)

(Continued)
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relieving post-infarction inflammation in mice (142). Hwang et al.

showed that TLR-3 and 4 primed MSCs secretomes were more

successful in reducing pro-inflammatory cytokines from LPS-

induced macrophages. EVs were key in increasing the percentage

of M2 (143). Notably, Kink et al. showed that the concentration of

LPS for priming MSC resulted in EVs having different effects on

macrophage receptors expression, which might explain the effect of

the next studies (144). Indeed, some studies show that TLR-priming

does not always result in enhanced immunosuppressive effect.

Recent results from Cui et al. showed that LPS primed MSC-EVs

induced a M1 and not a M2 phenotype (145). Previous results from

Waterman et al. showed a pro-inflammatory phenotype MSCs after

TLR-4 priming, and anti-inflammatory phenotype after TLR-3

priming (146). All in all, these results show that priming through

TLRs might be an interesting method to prime MSC-EVs, though

some optimization of concentration of priming might be important

to achieve the highest enhanced immunosuppressive effect.

A second way to prime MSCs is to use pro-inflammatory

cytokines. A study by Cheng et al. showed that priming with

IFN-g and TNF-a resulted with higher suppression of T cell

proliferation and induced a different protein profile with higher

levels of anti-inflammatory proteins such as TSG-6 and A20 (147).

Ragni et al. showed that IFN-g priming changes the proteins

secreted by MSCs and the miRNA content of their EVs, resulting

in a diminution of M1 polarization (148). Priming with IL-1b
resulted in higher anti-inflammatory activity of EVs, with a

significant increase of mir-147b, which partially mediated the

immunomodulatory effect of primed MSC-EVs in osteoarthritis

cells (149). IL-1b priming on mouse MSC resulted in an enhanced

macrophage polarization to M2 in vivo and in vitro, and a better

therapeutic effect on septic mice by MSC-EVs. Equivalent priming

also induced higher expression of miR-21, which mediated the effect

of MSC-EVs on sepsis (150). Nonetheless, conditioning does not

always result in better activity: priming with IFN-g did not induce a

better therapeutic effect in T-cell modulation activity, and induced a

loss of protection against ischemic acute kidney injury (151). A few

teams have also tried cocktails of different pro-inflammatory

molecules, compared to one-molecule priming. A combination of

IFN-g and TGF-b priming resulted in a higher proportion of Treg

cells after treatment with EVs, but also elevated levels of IFN-g, IL-
10 and IDO within these EVs. The combination of priming resulted

in better immunomodulatory effect than EVs derived from

untreated MSC, or MSCs treated with only one of the molecules
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(101). Hackel et al. showed a variation of response between MSCs

when treated with multicytokine combination of IFN-g, TNF-a and

IL-1b. One group of 3 donors secreted more PD-L1 with the full

priming compared to two-cytokines priming, and the other group

of 3 other donors responded equally with 3 and 2-cytokine priming.

Nonetheless, priming still induced higher levels of PD-L1 and PD-

L2 compared to non-primed EVs. Higher therapeutic effects of

primed MSC-EVs were mediated by PD-1 ligands (140). Priming

MSCs with pro-inflammatory components has been shown to

modify the whole secretome, elevating the level of anti-

inflammatory molecules in the secretome and in EVs, thus

mediating higher potency and therapeutical effects of MSC-EVs.

Priming with higher number of cytokines seems to induce a higher

immunomodulatory effect of EVs.

Other molecules have also been used to prime MSCs.

Condit ioning with Atorvastat in resul ted in a bet ter

cardioprotective effect on infarcted rat heart, with a better

inhibition of TNF-a and Il-6 in the tissue of the infarct zone (152).

Genetic modifications of MSC producing EVs can improve the

immunomodulatory potential of MSC-EVs. A few studies already

described above have targeted specific immunomodulatory proteins

such as IDO (100), IL-10 (44), TSG-6 (52), TGF-b, PTX3, miR-let7-

5p and miR-21-5p (25), CD73 (66), PD-L1 (77–79), in order to

secrete more of these specific proteins and induce a better

immunoregulatory activity of MSC-EVs. Genetic modifications

can also target the expression of bioactive miRNAs.

Overexpression of miRNA-181a induced better inhibition of the

inflammatory response, increased the percentage of Tregs among

PBMCs, and delayed ischemic damage in vivo (153).

Overexpression of miRNA-126 promoted functional recovery

after stroke by suppressing microglia activation (154). Genetic

modifications can also target molecules which are not

constitutively expressed by MSCs. A study has shown that

modified MSCs for the expression of TRAIL secrete EVs with

TRAIL, and are able to induce apoptosis in various cell lines (155).

Conditioning of MSC in hypoxia has also been shown to

improve the immunomodulatory potential of MSC-EVs. Hypoxic

environment leads to increased levels of hypoxia-inducible factors,

notably HIF-1a, which regulates many physiological pathways,

including angiogenesis (175). The effect of hypoxia on the

immune-modulatory properties of BM-MSCs has already been

reviewed (176). Extracellular vesicles derived from hypoxia

conditioned MSCs were more effective in decreasing levels of pro-
TABLE 1 Continued

Priming used Cell Type Bioactive molecule and mean
of action

Immunoregulatory effect Reference

Hollow Fiber
3D culture

Human UC-
MSC EVs

Improved renal function after kidney injury
Reduced inflammatory factors
Repressed T cell proliferation and
macrophage infiltration

(165)

Hollow Fiber
3D culture

Human UC-
MSC EVs

Decreased expression of inflammatory factors
Improved cardiac function in acute myocardial
infarction
Promoted M2 polarization

(166)
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inflammatory cytokines and in shifting microglia from M1 to M2

polarization, compared to non-treated MSC-derived EVs (156).

Same results were observed by another group (157). Hypoxia was

also shown to increase the expression of HGF (172), which we have

already discussed the immunomodulatory effect. Gómez-Ferrer

et al. showed that double-primed hypoxia + inflammation MSC-

derived EVs were more efficient in repolarizing M1 to M2-like

phenotype than single-primed inflammation MSC-EVs. These EVs

promoted healing in a TNBS induced mouse colitis, partially

through reduction of pro-inflammatory cytokines (80). Hypoxic

UC-MSC-derived EVs inhibited more efficiently maturation of DCs

(177). Hypoxia treated AD-MSC EVs were more efficient in

reducing macrophage infiltration, reducing levels of Il-6, though

MCP-1 levels were higher, compared to non-treated MSC-EVs, in

renal tissue after ischemia reperfusion injury (158). Thus, hypoxia

conditioning of MSCs could be a relevant technique to enhance the

MSC-EV immunosuppressive functions for chronic diseases.

Finally, a few studies have reported higher potency with EVs

derived from MSC cultured in 3D. 3D culture of MSCs englobes a

great variety of techniques, including but not limited to

microcarriers, diverse scaffolds, microgels, and spheroids, which

can be then cultured in bioreactors or other types of vessels. 3D

culture better mimics the natural cell conditions, and increases the

levels of secreted angiogenic and immunomodulatory factors (178).

Bulati et al. were able to differentially cluster between IFN-g
primed and 3D spheroid cultured MSCs by looking at their miRNA

EVs (179). Many studies have shown that MSCs have increased

immunomodulatory potential after 3D spheroid culture (159–161).

EVs derived from pro-inflammatory primed MSC spheroids had an

enhanced anti-inflammatory effect by decreasing the expression of

NF-kB, IL-8 and IL-6 in TNF-induced inflammation in HK2 cells,

compared to 3D cultured only EVs and 2D cultured EVs (162).

Nonetheless, Kusuma et al. have shown contrasting results where

3D spheroid cultured MSC-EVs produced significantly less IDO,

and that overall, these EVs had a lower immunosuppressive and

therapeutic potency than 2D MSC-EVs (163). Further studies are

needed to understand the impact of MSC-EVs derived

from spheroids.

Regarding MSC culture in bioreactors, 3D cultured in WAVE

bioreactor MSC-EVs induced same decrease in M1 markers

expression in macrophages than 2D MSC-EVS, but had enhanced

suppression of CD8+ T cell proliferation (164). Hollow Fiber

bioreactor systems have gained popularity for the 3D culture of

MSC for EV research. 3D cultured MSC-EVs using this system were

more efficient than 2D cultured MSC-EVs in alleviating acute

kidney injury, notably by reducing inflammatory factors,

repressing T cell and macrophage infiltration (165). Sun et al. also

used the hollow fiber system, and found that 3D-MSC EVs

exhibited a stronger anti-inflammatory effect on stimulated

monocytes, but also in acute myocardial infarction rats (166).

Thus, 3D culture in bioreactor seems to enhance the immune-

modulatory potential of MSC-EVs.

Other than MSCs, other EVs have been showing

immunosuppressive potential for a therapeutic approach. Namely,

tumor cells like sarcoma cells evade the immune system, which is
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partially mediated by the release of EVs (180, 181). EVs derived

from Ewing Sarcoma induced a pro-inflammatory response on

myeloid cells, but impaired the maturation and function of

dendritic cells (182). Droste et al. wrote an in-depth review about

tumor derived EVs, their effect on immune cells and how in vivo

animal models help understand the potential of these EVs (183).

Based on their broad immunosuppressive effects and the

possibility to enhance them through a variety of techniques,

MSC-EVs could be a promising therapeutic solution for the

treatment of SLE.
5 EVs for diagnosis and treatment
of SLE

5.1 EVs for diagnosis of SLE

Recent studies suggested that EVs open a new perspective for

both diagnosis and treatment of SLE. Several teams reported

differences between the EV profile of SLE patients and healthy

controls. First, the number of total EV was found to vary. Most

studies reported an increase of total EVs in SLE patients (184–189),

while Nielsen et al. reported a decrease (190). Apart from the

number of EV, their composition has also been shown to differ

between SLE patients and healthy controls. Østergaard et al.

outlined a decrease in the level of cytoskeletal, mitochondrial and

organelle proteins contained in microparticles from SLE patients

(191). Additionally, Chuang et al. recently reported an

overexpression of Eosinophil Cationic Protein (ECP) in SLE T

cell-derived EVs and demonstrated their pro-inflammatory

property in a mouse model (192).

Aside from protein-containing EVs, attention was drawn to

miRNA-containing EVs. Li et al. reported compared to healthy

controls, an increase of miR-21 and miR-155, and a decrease of

miR-146a in serum EVs (193). Additionally, the expression of miR-

21 and miR-146a were negatively associated with respectively anti-

SSA/RO antibodies and anti-dsDNA antibodies, which are

important features of SLE pathogenesis. The decrease of miR-

146a-containing exosomes in the serum of SLE patients was also

demonstrated by Dong et al., who suggested that miR-146a is

internalized into MSCs and contributes to MSC senescence in

SLE patients by targeting the TRAF6/NF-kB pathway (194).

Interestingly, Perez-Hernandez et al. had previously found an

increase in the urinary miR-146a-containing exosomes in SLE

patients (195), suggesting that the location of the EVs should be

also taken into consideration. Furthermore, Tan et al. showed that

exosomal miR-451a is downregulated in the serum of SLE patients

and correlates with the SLE disease activity and renal damage, due

to its implication in intercellular communication (196). It has also

been demonstrated that microRNAs-containing exosomes, isolated

from the plasma of SLE patients, can activate pDCs through the

receptor TLR7 and induce excessive production of IFN-a, leading
to a chronic state of inflammation in SLE (197). Overall, the EV

profile of SLE patients seem to significantly differ from the one of
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healthy controls, which outlines them as prominent biomarkers for

SLE. Moreover, their presence in various body fluids, such as blood,

urine and saliva, guarantee a facilitated access for diagnosis and

could replace the rather invasive biopsies traditionally used for

monitoring the disease progression.
5.2 MSC-EVs for treatment of SLE

Allogenic MSCs have already been used as a potential treatment

for SLE (198, 199). As the broad immunosuppressive effect of MSCs

is mediated by the secretome and EVs, they represent a potential

alternative for the treatment of SLE (200). Multiple studies have

already been carried using MRL/lpr mice model. Xie et al. have

tested the effect of human umbilical cord MSCs and their EVs on a

classical animal model of SLE. They have shown that UC-MSCs

exert immunoregulatory effects on SLE, partially mediated by their

EVs. UC-MSC-EVs were able to inhibit CD4+ T cells in their

model, but lower amounts of TGF-b and IL-17 were found in the

supernatant (201). Another study also using UC-MSC-EVs has

shown an amelioration of SLE after EV administration in MRL/lpr

mice by inducing M2 macrophages polarization and increasing

regulatory T cell (202). BM-MSC-EVs promoted anti-inflammatory

phenotype of macrophages, and induced recruitment of Tregs in

murine lupus nephritis model. Notably, they showed the

importance of miR-16 and miR-21 in the polarization of

macrophages (203). Another study has compared tooth MSCs

and their EVs to treat SLE in the same MRL/lpr mice model. The

administration of EVs exerted a therapeutic effect on this model by

rescuing the immune microenvironment. Furthermore, they have

shown a decreased effect with the presence of RNase, hinting at the

importance of RNA in the immunomodulatory potential of EVs

(204). BM-MSC derived apoptotic vesicles ameliorated lupus in the

same model, by suppressing activated CD4+ T cells (205).

Dou et al. showed that MSC-EVs reduced the expression of pro-

inflammatory cytokines and promoted M2 polarization of

macrophages, notably through tsRNA-21109. This same RNA is

downregulated in SLE patients, which sheds light on possible means

of action of MSC-EVs in SLE (206). Chen et al. investigated the

effect of MSC-EVs in diffuse alveolar hemorrhage (DAH) mice, an

uncommon but fatal complication of SLE. EVs alleviated symptoms

of DAH, decreased the expression of pro-inflammatory factors and

enhanced M2 polarization (207).

Tu et al. showed a lower expression of miR-19b, an imbalance

between Th17 and Tregs, a much higher expression of pro-

inflammatory cytokines in PBMCs from SLE patients. UC-MSC

EVs treatment increased the expression of miR-19b, regulated the

Th17/Tregs balance and reduced the expression of pro-

inflammatory factors (208). The amount of B cells in SLE patients

is significantly upregulated. UC-MSC-EVs promoted B cell

apoptosis, inhibited overactivation and decreased the levels of

pro-inflammatory cytokines, possibly through regulation of the

upregulated miR-155 in SLE patients (209). Type I IFN release by

pDCs is closely related to the severity of SLE. While MSCs have

shown to reduce the release of IFN-a and inhibit the function of
Frontiers in Immunology 1281
pDCs (210, 211), no studies regarding the impact of MSC-EVs have

been carried. Overall, these studies show the therapeutic potential of

MSC-EVs for the treatment of SLE.
6 Conclusion

The emerging field of EVs presents a promising avenue for

therapeutic treatment. EVs carry a variety of membrane and soluble

proteins, and play a key role in immune processes. Thus, EVs could

be used for diagnostic as a biomarker, or a therapeutic tool. More

specifically, MSC-EVs mediate a broad immunosuppressive effect,

showcasing their potential as a cell-free therapy for SLE. Further

techniques such as pre-conditioning of MSCs, genetic modification

or EV engineering could enhance their immunomodulatory activity

and could be applied to further therapeutic applications of EVs.

However, a more specific understanding of whether the

immunoregulatory activity is mediated by EV-associated bioactive

molecules, soluble factors, or both is needed. The impact of the

many sources of heterogeneity in EV studies on these immune

mediators should be investigated. The EV field still suffers from

barriers such as standardization of isolation and characterization

methods, Good Manufacturing Practice (GMP)-compliant large

scale production, or specific guidelines for validation of EVs as a

therapeutic tool, which in turn hinders the use of EVs for the

treatment of SLE. Furthermore, regarding SLE, the role of EVs on

pDC activation should be further investigated to understand their

potential role on chronic production of IFN-I in SLE. Similarly, a

fine characterization of pDC derived EVs content should be carried

out prior considering the use of EVs as therapeutic strategy. The

effect of MSC-EVs regarding the regulation of interferon

product ion of pDCs should be invest igated. Final ly ,

methodological studies on the dosage and administration interval

of MSC-EVs in SLE are still essential to advance their

therapeutic development.
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5. Dieudonné Y, Gies V, Guffroy A, Keime C, Bird AK, Liesveld J, et al. Transitional
B cells in quiescent SLE: An early checkpoint imprinted by IFN. J Autoimmunity.
(2019) 102:150–8. doi: 10.1016/j.jaut.2019.05.002

6. Couch Y, Buzàs EI, Vizio DD, Gho YS, Harrison P, Hill AF, et al. A brief history of
nearly EV-erything – The rise and rise of extracellular vesicles. J Extracell Vesicles.
(2021) 10(14):e12144. doi: 10.1002/jev2.12144

7. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev
Immunol (2023) 23(4):236–50. doi: 10.1038/s41577-022-00763-8

8. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol
(2018) 28(8):R435–44. doi: 10.1016/j.cub.2018.01.059

9. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular
vesicles. Nat Rev Mol Cell Biol (2018) 19(4):213–28. doi: 10.1038/nrm.2017.125
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The secretome of macrophages
has a differential impact
on spinal cord injury
recovery according to
the polarization protocol
José Lentilhas-Graça1,2,3, Diogo J. Santos1,2†, João Afonso1,2†,
Andreia Monteiro1,2, Andreia G. Pinho1,2, Vera M. Mendes3,
Marta S. Dias3,4, Eduardo D. Gomes1,2, Rui Lima1,2,
Luı́s S. Fernandes1,2, Fernando Fernandes-Amorim1,2,
Inês M. Pereira1,2, Nı́dia de Sousa1,2, Jorge R. Cibrão1,2,
Aline M. Fernandes1,2, Sofia C. Serra1,2, Luı́s A. Rocha1,2,
Jonas Campos1,2, Tiffany S. Pinho1,2, Susana Monteiro1,2,
Bruno Manadas3, António J. Salgado1,2, Ramiro D. Almeida3,4

and Nuno A. Silva1,2*

1Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho,
Braga, Portugal, 2ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal, 3CNC—
Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal, 4iBiMED-
Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
Introduction: The inflammatory response after spinal cord injury (SCI) is an

important contributor to secondary damage. Infiltrating macrophages can

acquire a spectrum of activation states, however, the microenvironment at the

SCI site favors macrophage polarization into a pro-inflammatory phenotype,

which is one of the reasons why macrophage transplantation has failed.

Methods: In this study, we investigated the therapeutic potential of the

macrophage secretome for SCI recovery. We investigated the effect of the

secretome in vitro using peripheral and CNS-derived neurons and human

neural stem cells. Moreover, we perform a pre-clinical trial using a SCI

compression mice model and analyzed the recovery of motor, sensory and

autonomic functions. Instead of transplanting the cells, we injected the paracrine

factors and extracellular vesicles that they secrete, avoiding the loss of the

phenotype of the transplanted cells due to local environmental cues.

Results:We demonstrated that different macrophage phenotypes have a distinct

effect on neuronal growth and survival, namely, the alternative activation with IL-

10 and TGF-b1 (M(IL-10+TGF-b1)) promotes significant axonal regeneration. We

also observed that systemic injection of soluble factors and extracellular vesicles

derived from M(IL-10+TGF-b1) macrophages promotes significant functional

recovery after compressive SCI and leads to higher survival of spinal cord

neurons. Additionally, the M(IL-10+TGF-b1) secretome supported the recovery

of bladder function and decreased microglial activation, astrogliosis and fibrotic

scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-b1)-derived
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secretome identified clusters of proteins involved in axon extension, dendritic

spine maintenance, cell polarity establishment, and regulation of

astrocytic activation.

Discussion:Overall, our results demonstrated that macrophages-derived soluble

factors and extracellular vesicles might be a promising therapy for SCI with

possible clinical applications.
KEYWORDS

spinal cord injury, macrophages, secretome, neuroimmunology, neuroregeneration
Background

Spinal cord injury (SCI) is a devastating neurological disorder

that strongly affects the physiological, psychological, and social

behaviors of affected people. There is an urgent need to develop

new therapeutic strategies for SCI repair (1). The spinal cord

trauma, known as “primary injury”, triggers a cascade of events,

termed “secondary injury”, leading to further neurological damage

and contributing to regeneration failure after SCI (2). These include

glutamate excitotoxicity, a potent and dysfunctional inflammatory

response, release of molecules that inhibit axonal growth, and

formation of a glial scar. From all these events, the defective

immune response is one of the most important players in SCI

pathophysiology. Circulating monocytes infiltrate the spinal cord

and differentiate into macrophages in a multiphasic manner, where

they should perform multiple functions involved in the wound

healing process (3). It was recently demonstrated that the spleen

releases the first monocytes that infiltrate the injured spinal cord

(4). Moreover, Swirsky et al. characterized the splenic monocyte

reservoir as a major source of the pro-inflammatory subtype during

acute injury (5).

Macrophages can acquire a diverse spectrum of activation states

with various functionalities. Macrophage activation can range from

the most pro-inflammatory or classically activated phenotype to the

anti-inflammatory/pro-repair or alternatively activated phenotype.

Pro-inflammatory macrophages are important during the acute

response to trauma and facilitate innate immunity to remove

wound debris from the injury site. These macrophages release

reactive oxygen species (ROS) and pro-inflammatory cytokines,

such as IL-1b and TNF-a (6). Macrophages can acquire this

phenotype in vitro by stimulating naïve macrophages with

lipopolysaccharide (LPS) and IFN-g (commonly known as M1).

In contrast, alternatively activated macrophages secrete

immunosuppressive cytokines, growth factors, and upregulate

ECM components (e.g., IL-10, TGF-b1, and IGF-1) (7, 8). These

macrophages exhibit tissue repair properties by promoting cell

proliferation and maturation, tissue remodeling and stabilization,

and adjusting and resolving inflammatory processes. These tasks are

not performed by a single type of alternatively activated
0288
macrophage. Instead, they are subdivided into four distinct

subtypes (commonly known as M2a, M2b, M2c, and M2d) that

differ in cell surface markers, secreted cytokines, and biological

functions (6). Herein, we focus on two alternatively activated

macrophages, the M2a and M2c. The first can be obtained in vitro

by stimulating naïve macrophages with IL-4 and IL-13, and their

function is associated with a decrease in the inflammatory response,

promotion of cell proliferation and migration, and facilitation of

apoptosis. After SCI these cells fail to activate an appropriate pro-

regenerative response (6). Whereas, the M2c macrophages have

functions related to resolving inflammation, ECM synthesis, and

promoting tissue maturation/repair. These cells can be obtained by

activating naïve macrophages with TGF-b1 and IL-10. The

significance of M2c cells in SCI repair remains largely unexplored

because these cells do not populate the lesion site, impeding the

initiation of the remodeling phase (6). Overall, the immune

response at the initial stages after SCI resembles that in non-CNS

injured tissues (9). However, pro-inflammatory macrophages

quickly become the predominant cell type at the injury site (10),

and pro-repair macrophages are unable to populate the injured

tissue. The pro-inflammatory response is associated with fibrosis,

oxidative damage, and neurodegeneration, contributing to wound

healing failure (11).

Previous studies transplanted alternatively activated

macrophages into the injured spinal cord to promote tissue repair

and regeneration (12, 13). This therapeutic approach reached

clinical testing, but failed to show any therapeutic effects (14).

The reason behind this clinical trial failure may lie in the spinal cord

microenvironment after injury. Indeed, a previous study reported

that bone marrow-derived macrophages polarized in vitro by IL-4

failed to retain their typical markers when transplanted into the

injured spinal cord (10). Moreover, it was demonstrated that

intracellular accumulation of iron by macrophages induces a

rapid switch from a pro-regenerative to a pro-inflammatory

phenotype in spinal cord tissue (15). Thus, it is important to find

alternative approaches for M2 macrophage transplantation. A

possible alternative is to administer the secretome of macrophages

instead of transplanting them into the SCI microenvironment. The

secretome can be defined as the soluble factors, lipids, and
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extracellular vesicles secreted by a cell, tissue, or organism into the

extracellular space under defined time and conditions (16).

Herein, we explored whether systemic injections of secretome

derived from different macrophage phenotypes have a therapeutic

effect after SCI.
Materials and methods

Macrophages isolation and culture

Macrophages were obtained by differentiating monocytes

extracted from the mouse spleens. C57BL/6 mice (~8 weeks old)

were sacrificed by cervical dislocation, and their spleen was

removed under aseptic conditions and kept on ice-cold VLE-

RPMI 1640 (Merck KGaA) with 1% (v/v) penicillin-streptomycin

(pen/strep, Gibco). The spleen was mechanically dissociated using

two microscope slides until no major fragments were observed. The

solution was centrifuged at 1200 rpm for 7 min and the supernatant

was discarded. Ammonium-chloride-potassium (ACK) lysis

solution was used to lyse erythrocytes (2mL/spleen). After adding

HBSS (8mL/spleen, Gibco), centrifugation was performed, and the

cell pellet was resuspended in RPMI for hematocytomer cell

counting. Cells were plated at a density of 1 million cells/cm2 in

RPMI medium 1% (v/v) pen/strep (Gibco) for 3 h. The monocytes

(≈10% of the total cells) are the first to adhere under serum

starvation. After this time, the non-adherent cells were discarded

and the medium was replaced by RPMI with 10% (v/v) fetal bovine

serum (FBS, Millipore), 1% (v/v) pen/strep, and 50 ng/mL of

macrophage colony-stimulating factor (M-CSF, Biolegend) to

differentiate monocytes into macrophages. The cells were

maintained at 37°C and 5% (v/v) CO2 for a minimum of 7 days,

with medium exchanges every 3/4 days. To achieve a pro-

inflammatory phenotype, macrophages were stimulated with IFN-

g (20 ng/mL, Peprotech) and LPS (100 ng/mL, Sigma) for 24 h. One

pro-regenerative phenotype was achieved by stimulation with IL-4

(20 ng/mL, Biolegend) and IL-13 (20 ng/mL, Peprotech), and the

other phenotype was obtained with IL-10 (20 ng/mL, Peprotech)

and TGF-b1 (20ng/mL, R&D Systems) stimulation. All

polarizations were performed in RPMI with 10% FBS, 1% (v/v)

pen/strep and 50 ng/mL of M-CSF.

The macrophage secretome was collected after each

polarization. Briefly, cells were washed five times with PBS

without Ca2+ and Mg2+ (Merck, KGaA), followed by two washes

with RPMI 1% (v/v) pen/strep. After a 12-hour incubation with 16

mL (213ul/cm2) of basal medium (RPMI) with 1% (v/v) pen/strep,

the medium was collected, centrifuged at 1200 rpm for 5 min, and

the supernatant was snap frozen with liquid nitrogen and stored at

-80°C.
qPCR

Macrophage mRNA levels were analyzed using qPCR by

extracting RNA from cells grown in T25 flasks. Briefly, 6 h after

polarization, TripleXtractor (Grisp) was added to the flasks for 5
Frontiers in Immunology 0389
min. RNA was extracted and diluted in GRS PCR Grade Water

(Grisp) following the manufacturer’s instructions. cDNA was

synthesized from 1 μg of RNA using the Xpert cDNA Synthesis

Supermix (with gDNA eraser, Grisp) protocol. qPCR was

performed on these samples using Xpert Fast SYBR blue

mastermix (Grisp) with ROX reference dye. After mixing the

mastermix with the respective primers (500 nM) and the cDNA

on a PCR plate (Nerbe Plus), the reaction was performed on a 7500

Fast Real-Time PCR system (Applied Biosystems). The

amplification was performed by heating at 95°C for 2 minutes

succeeded by 40 cycles at 95°C for 5 s and 30 s at 60°C. Melt curve

analysis was used to assess the specificity of the gene amplification.

The primers used are listed in Table 1. The target genes were

normalized to three reference genes: Gadph, Hprt and 18s. Fold-

change levels were calculated using the 2-DDct method relative to

non-stimulated macrophages and normalized to the reference

genes (17).
Axonal growth assay – dorsal root ganglia

Dorsal root ganglia (DRG) explants were used to study the

impact of splenic macrophages on axonal growth. This assay was

accomplished following a well-established protocol (18, 19). Briefly,

DRG from thoracic regions of neonatal Wistar Han rat pups (P5-7)

were removed and placed on ice-cold HBSS with 1% (v/v) pen/strep.

Peripheral nerves attached to the DRG were removed, and the

cleaned DRG were used. Two assays were performed. The first

consisted of placing the DRG on top of a collagen extracellular

matrix gel (3D culture), which was on top of polarized macrophages.

Collagen gels were prepared by combining rat tail collagen type I

(Corning) at a final concentration of 89.6% (v/v) with 10% (v/v)

Dulbecco Modified Eagle Medium (DMEM, Gibco) 10x and 0.4%
TABLE 1 Primers for semi-quantitative Real Time-PCR.

Gene Forward Reverse

GAPDH GGG CCC ACT TGA AGG
GTG GA

TGG ACT GTG GTC ATG
AGC CCT T

HPRT GCT GGT GAA AAG GAC
CTC T

CAC AGG ACT AGA ACA
CCT GC

18s GTA ACC CGT TGA ACC
CCA TT

CCA TCC AAT CGG TAG
TAG CG

iNOS CTC GGA GGT TCA CCT
CAC TGT

GCT GGA AGC CAC TGA
CAC TT

TNF-a GCC ACC ACG CTC TTC
TGT CT

TGA GGG TCT GGG CCA
TAG AAC

EGR2 TTG ACC AGA TGA ACG
GAG TG

CCA GAG AGG AGG TGG
AAG TG

IRF4 ACA GGA GCT GGA GGG
ATT ATG

CTG TCA CCT GGC AAC
CAT TT

ARG1 GTG TAC ATT GGC TTG
CGA GA

GGT CTC TTC CAT CAC
CTT GC

HIF1-a GCA CTA GAC AAA GTT CAC
CTG AGA

CGC TAT CCA CAT CAA
AGC AA
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(v/v) of sodium bicarbonate (7.5% (w/v), Sigma). After forming 30

uL gel droplets at 37°C and 5% (v/v) CO2 for a minimum of 90 min,

the gels were transferred to the macrophages’ wells. The other assay

consisted of direct placement of the DRG on top of polarized

macrophages to study direct cellular interactions (2D culture).

Both assays were performed in Neurobasal (Gibco) medium

supplemented with 2% (v/v) B27 (Gibco), 2 mM L-glutamine

(Invitrogen), 6 mg/mL D-glucose (Sigma), 1% (v/v) pen/strep, and

50 ng/mL of M-CSF with medium changes every two days and

maintained at 37°C and 5% (v/v) CO2 for four (3D) or three (2D)

days. The cells were then fixed and immunocytochemistry was

performed. The area occupied by the axons in each dorsal root

ganglia explant was calculated using the ImageJ (NIH) plugin

Neurite-J. Using confocal microscopy, the entire area with

positive staining for Neurofilament was acquired. Then, the image

was automatically translated to 8 bits and a binary mask was created

with the aid of the “Analysis Particles” function which enables the

correct segmentation of axonal structures based on an intensity-

threshold image coupled with morphological parameters such as

structure size and area. The mask generated can then be added as an

input to the Neurite-J plugin.
Axonal growth assay –CNS-derived
neuronal culture

Cortical neurons were dissected and isolated from Wistar rats

E17 embryos as described previously (20). To physically and

fluidically separate distal axons from cell bodies, neurons were

plated in microfluidic chambers as described previously (21).

Microfluidic chambers were assembled onto an ibiTreat low wall

50 mm μ-Dish (ibidi) and coated with poly-D-lysine (PDL) 0.1 mg/

mL overnight at 37°C and 2 μg/mL laminin for 2 h at 37°C. Cortical

neurons were plated in the somal compartment of microfluidic

chambers at a density of 50,000 cells per chamber. Cells were

maintained in a humidified 5% CO2 incubator at 37°C and treated

with 10 μM 5-Fluoro-2′-deoxyuridine (5’-FDU) on day 4 to inhibit

glial cell proliferation.

On day 5, distal axons were submitted to a 20-hour starving and

after which axons were treated with M(IL-10+TGF-b1)-derived

secretome or control medium. 25 μl of secretome was locally

applied to the axonal compartment of the microfluidic chamber

for 14 h. Neurobasal medium with 1% penicillin/streptomycin was

used for control cultures. A higher volume of culture medium was

maintained in the somal compartment to ensure fluidic isolation of

the axonal compartment and, therefore, restrict the treatment to

distal axons. After 14 h of local treatment, population-wide axonal

growth was assessed by live-cell imaging microscopy.
Neurospheres derived from human
induced neural stem cells

Neurospheres were generated by culturing human induced

pluripotent stem cells (hiPSCs) in vitronectin XF™ treated plates

with mTeSR 1 (both from Stem Cell Technology). After 7 days,
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spontaneous differentiation was initiated by the generation of

Embryoid Bodies (EBs). For that, cells were detached by using

TrypLE™ Express Enzyme (ThermoFisher) and plate into low

attachment 96 well plate in Advanced DMEM/12 supplemented

with 15% (v/v) knockout serum replacement (KSR,

ThermoFischer), 1% (v/v) non-essential amino acids (NEAA,

ThermoFischer), 2% (v/v) glutamax (ThermoFischer), 2-

mercaptoethanol (55 mM, ThermoFischer), and Y-27632 (5 mM,

Rho-associated protein kinase inhibitor, StemCell Technology). The

hole medium was changed every other day. On day 6, 6-9 EBs were

transferred from 96 well plates to non-adherent plates (35 mm) and

were cultured in Advanced DMEM/12 supplemented with 1% (v/v)

non-essential amino acids, 1% (v/v) glutamax, 1% (v/v) of N2

supplement (ThermoFischer), and heparin (1mg/mL, Sigma-

Aldrich) to induce neural differentiation. After 5 days, 6-9

neurospheres were plated into 24 well plates, pre-treated with

poly-D-lysin/laminin (76 mg/mL, 20 mg/mL, respectively), and

cultured in differentiation media: DMEM/F12: Neurobasal (1:1,

both from ThermoFisher), 0.5% of N2 supplement, 1% (v/v)

NEAA, 1% (v/v) glutamax, 55 mM 2-mercaptoethanol, 2% (v/v)

B27 supplement (ThermoFischer), and insulin (2.5 mg/mL, Sigma).

After 2 days, the culture medium was replaced by 500 μl of

secretome. Cells were incubated for 2 days and fixed for further

analysis using immunofluorescence.
Immunocytochemistry

Cells/DRG/Neurospheres were first incubated with 4% (v/v) PFA

for 20 min, and then permeabilized with Triton-X100 0.2% diluted in

PBS (PBS-T) for 5 minutes, at room temperature (RT). 10% FBS

(Millipore) in PBS was used as a blocking solution for 1 h, followed by

the addition of the primary antibodies for 2 h. For macrophages was

used the rat anti-CD11b (1:100, BioLegend) and rabbit anti-iNOS

(1:100, Abcam), for DRGS the mouse anti-neurofilament (1:200,

Millipore) and for neurospheres the Anti-bIII Tubulin (1:100, mouse

– Millipore). After washing, Alexa Fluor 488 goat anti-rat (1:1000,

Invitrogen) and Alexa Fluor 594 goat anti-rabbit (1:1000, Invitrogen)

secondary antibodies were added for another hour, diluted in

blocking solution. Finally, the samples were counterstained with

40,6-diamidino-2-phenylindoledihydrochloride (DAPI) (1 μg/mL,

Sigma) for 10 min and in the case of DRGs with and Phalloidin

(1:500, Sigma) for 45 min at RT. Images were obtained using a

confocal microscope (Olympus FV1000) for 3D cultures and an

Olympus IX81 fluorescence microscope for 2D cultures. To calculate

the axonal area, maximum distance reached by axons, and axonal

arborization, ImageJ software was used, as previously described (22).
Live imaging of CNS-derived neurons

Live imaging was performed using a Zeiss LSM 880 microscope

with an Airyscan and a Plan-Apo Chromat 20x/0.8 Ph2 objective.

During live imaging cells were maintained in a 37°C and 5% CO2

environment. A tiled phase-contrast image was obtained for each
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condition immediately before treatment (t=0 h) and after 6, 10 and

14 hours of treatment.

Images were processed and quantified using ImageJ software

version 1.51n. A region of interest (ROI) was chosen to encompass

the entire length of the axonal compartment, and the same size ROI

was used for all samples. The Feature J Hessian plugin was applied

with the following settings: largest eigenvalue of the Hessian Tensor,

smoothing scale = 2.0). The Local Threshold was adjusted to

include all axons in the axonal network. A binary image was

generated, and the Skeletonize (2D/3D) plugin was used to obtain

a skeletonized image of the axonal network. Finally, the Analyze

Skeleton (2D/3D) was applied with the following settings: prune

cycle method=none, show detailed info. A Branch Information

table was generated using the software, and the sum of all branch

lengths was further calculated, giving the population-wide total

axonal length. The results were normalized for t=0 under the

respective treatment conditions.
Spinal cord injury surgery

All experiments were performed after obtaining consent from

the ethical Subcommittee in Life and Health Sciences (SECVS;

ID:018/2019, University of Minho) and were conducted in

accordance with the local regulations on animal care and

experimentation (European Union Directive 2010/63/EU). The

ARRIVE guidelines for reporting animal research have been

followed (23). C57BL/6J mice (Charles River) were maintained

under sterile conditions and in light, humidity, and temperature-

controlled rooms. Food and water were provided ad libitum.

Animals were handled for 1 week prior to SCI surgery.

Spinal cord surgery was performed as previously described (24).

Briefly, 42 C57BL/6J adult female mice (10-15 weeks age) were used

in this study. Anesthesia was delivered intraperitoneally (ip) using

Imalgene (ketamine, 75 mg/kg, Richter Pharma AG) and Dormitor

(medetomidine, 1 mg/kg, Pfizer). Mice were shaved and disinfected

with chlorohexidine. A dorsal midline incision was then made at the

thoracic level (T5-T12). The paravertebral muscles were retracted,

and the spinal process and laminar arc of T8-T9 were removed to

expose the spinal cord. The spinal cord was compressed using fine

forceps for 5 seconds. The wound was closed with 9 mm autoclip

(Braintree Scientific), and anesthesia was reverted with Antisedan

(atipamezole, Orion Corporation) applied subcutaneously. The

injured animals were randomly divided into four experimental

groups: 1) M(INF-g+LPS) secretome (n=10); 2) M(IL-4+IL-13)

secretome (n=11), 3) M(IL-10+TGF-b1) secretome (n=10), and 4)

vehicle (RPMI medium with 1% pen/strep, n=11). Treatment was

delivered by intraperitoneal injections (500 μl), and the first

injections were administered 3, 6, 9, 14 days post-injury and once

a week afterwards. Eight animals did not survive the

experimental protocol.

In a separate cohort of animals, we employed the same protocol

to induce spinal cord injury, and the same method and schedule to

deliver the treatment. However, this time, we utilized (C57BL/6J x

CBA)F1 mice expressing the Thy1-GFP transgene. Following spinal

cord compression, the injured animals were randomly assigned to
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two experimental groups: 1) M(IL-10+TGF-b1) secretome (n=3), and 2)

vehicle (RPMI medium with 1% pen/strep, n=3). Treatment was

delivered by intraperitoneal injections (500 μl) as described above.
Post-operative care

After surgery and throughout all in vivo experiments, animals

were closely monitored and cared for, as previously described (16).

A solution containing the antibiotic enrofloxacin (Baytril, 5 mg/mL,

Bayer), the analgesic buprenorphine (Bupaq, 0.05 mg/kg, Richer

Pharma AG), vitamins (Duphalyte, Pfizer), and saline (0.09% NaCl)

was administered subcutaneously twice a day until the animals

showed autonomy and no infections detected. Manual bladder

voiding was performed twice a day during the first week and once

every day until sacrifice or spontaneous restoration of bladder

control was achieved. Food pellets were provided on the cage

floor during the first few days to allow easy access. Animals were

also monitored for body temperature, correct scarring of the

surgical incision, and recovery of general activities (grooming and

nesting for example). Five days after surgery, the staples were

removed, and the animals were regrouped to promote

socialization and decrease anxiety and stress. Animals were

monitored during the experiment for humane endpoints: wounds,

autophagy behavior, or weight loss (>20% of their baseline weight).
Locomotor analysis

The BMS test was used to evaluate locomotor behavior (25), 3

days post-injury and once a week thereafter for 37 days. The mice

were placed in an open arena for 4 min, and their locomotor

function was evaluated by two independent observers who were

blinded to the experimental groups. Each animal was scored on a

scale ranging from 0 to 9. Animals presenting a BMS score greater

than 1 in the first BMS assessment (3 dpi) was excluded because of

incomplete spinal cord compression.
Bladder function

The bladders were manually voided and the animals were

placed in the cage with water provided ad libitum overnight.

Water weights in the cage bottles were measured before and after

the experiment to assess water intake. Bladders were then voided

into a beaker and the urine was weighed. The ratio between water

intake and urine was calculated to assess bladder control in the

different experimental groups. If the amount of urine was less than

0.1 g we considered that the animal regained total bladder control.
Von Frey

The Von Frey test was used to determine tactile sensitivity by

measuring how much force is required to elicit movement of the
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paw fingers, using the up-and-down method with Von Frey

monofilaments, as previously described (26). The experimental

setting consisted of placing the mice in an elevated mesh

restrained inside a standard perforated box. Before the test

started, each animal was habituated to the test conditions. A total

of 9 monofilaments were used, ranging from 0.008 to 1.4 g. Both

paws were stimulated with the central monofilament (0.16 g). If the

animal moved the fingers of the paw, a weaker monofilament was

used; otherwise, a stronger monofilament was applied. The test was

performed until: 1) observed response to the 0.008 g monofilament,

2) no response to 1.4 g monofilaments, or 3) after a total of five

measures around the threshold. 50% threshold was calculated using

the formula:

50%  threshold =
10(x _ f+kd )

10000

Where xf is the value of the final monofilament used (log units),

K is the tabular value for the pattern of positive/negative responses,

and d is the mean difference between stimuli (0.267).
Flow cytometry

Nine days post-injury, approximately 50 mL of blood was

collected from the tail vein of the animals. Erythrocytes were

depleted with ACK lysis solution. The cell pellet was then washed

with FACS buffer (PBS, 10% BSA, 0.1% azide). 1x106 cells were

stained. The Fc portion was blocked using anti-mouse CD16/CD32

(Biolegend). Cell staining was performed by incubating a cocktail of

antibodies for 30min at 4°C (Table 2). After washing, the cells were

re-suspended in 200 mL FACS buffer. Precision counting beads

(Biolegend) were added to the single-cell suspensions according to

the manufacturer’s instructions to calculate the final cell

concentrations. Cells were acquired using an LSRII Flow

Cytometer (BD Pharminogen) and analyzed using Flow Jo

software version 10.4. The gating strategy used can be found in

the Supplementary Data (Supplementary Figure S5).
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Spinal cord collection, processing
and immunohistochemistry

To understand the molecular and cellular effects of the different

treatments on the spinal cord injury environment, an

immunohistochemistry protocol to mark GFAP (astrocytes), Iba-

1 (macrophages/microglia), PDGFR (fibrosis), and NeuN (mature

neurons) was performed on mouse spinal cords. First, at 5 weeks

post-injury mice were anesthetized and perfused with 20 mL of cold

PBS and then with 4% PFA. A dorsal incision was made to remove

the spinal cord with the vertebral column. The isolated spinal cords

were then fixed with 4% PFA for 24h at 4°C. After, the tissue was

placed on 30% saccharose solution until reaching saturation point,

which was then cut into 1 cm fragments centered in the lesion site.

Next, the spinal cords were embedded in optimal cutting

temperature (OCT) solution and frozen in isopentane and liquid

nitrogen. Using a Leica CM 1900 cryostat, the spinal cords were cut

into transverse sections of 20 μm and mounted onto microscope

slides (SuperFrost Plus) that were stored at -20°C for further use.

On the day of immunohistochemistry, slides with frozen

sections were thawed at RT and cleaned with PBS to remove any

remaining cryopreservation solution. This was followed by

permeabilization with PBS-T 0.2% (v/v) for 10 min and a

blocking solution of 5% (v/v) FCS in PBS-T 0.2% (v/v) for 30

min. An overnight incubation at 4°C was then performed with the

following primary antibodies: rabbit anti-GFAP (1:200, DAKO),

rabbit anti-Iba-1 (1:200, Wako), PDGFR (1:1000, Abcam), and

rabbit anti-NeuN (1:200, D4G4O). The next day, after washing,

the samples were incubated with Alexa Fluor 594 goat anti-rabbit

(1:1000) (Abcam) secondary antibody for 3 h at RT. Cells were then

counterstained with DAPI for 20 min before mounting the slides in

Immu-Mount® (Thermo Scientific) for subsequent image analysis.

A negative control (primary antibodies omitted) was performed to

discard any background as positive staining (Supplementary

Figure S6).

Imaging was performed using an Olympus Widefield Inverted

Microscope IX81. GFAP staining was evaluated by measuring the
TABLE 2 Flow cytometry analysis summary of markers expressed on different cell populations.

Marker Fluorochrome Company Target Dilution

CD86 PerCpCy5.5 Biolegend Myeloid cells 1/100

CD11b PE Biolegend Myeloid cells 1/200

CD11c BV 605 Biolegend Mostly dendritic cells 1/100

NK 1.1 BV 510 Biolegend Natural killer 1/100

CD19 FITC Biolegend B lymphocytes 1/200

CD3 APC Biolegend T lymphocytes 1/100

CD45 PeCy7 Biolegend Leukocytes 1/200

Ly6C BV711 Biolegend Monocytes 1/100

Ly6G BV650 Biolegend Granulocytes 1/100

CD16/32 None Biolegend Fc Block 1/25
fr
ontiersin.org

https://doi.org/10.3389/fimmu.2024.1354479
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lentilhas-Graça et al. 10.3389/fimmu.2024.1354479
area of astrogliosis morphology, normalized to the total GFAP area.

IBA-1 was evaluated by assessing the area of ramified macrophages/

total microglia. Fibrosis was evaluated by assessing the area of

PDGFR+ area normalized for total spinal cord area. The location of

the spinocerebellar (SCT), rubrospinal (RST) and the corticospinal

tracts (CST) were identified using the spinal cord atlas developed by

Paxinos, Watson and Kayalioglu (27). The positive area for Thy1-

GFP was calculated and divided for the total area of the tract in each

spinal section. Positive Thy1-GFP and total areas were calculated

using the plugin Neurite-J from the ImageJ (NIH) software as

described above. NeuN staining was measured by counting the

number of positive cells in laminae VIII and IX of both

ventral horns.
Proteomics analysis

The secretome was first concentrated (×100) using

ultracentrifugation with falcons with 5 kDa cut-off filter

(Vivaspin, GE Healthcare). A protein precipitation step using

TCA to a final concentration of 20% was performed, and protein

pellets were re-suspended in 35mL of Laemmli sample buffer.

Protein extracts from each sample were separated by SDS-PAGE

for approximately 16 min at 110 V (Short-GeLC Approach) (1) and

stained with Coomassie Brilliant Blue G-250. Each lane was divided

into three separate gel fractions for a destaining step using a

solution of 50 mM ammonium bicarbonate with 30% acetonitrile,

followed by overnight protein digestion with trypsin. Peptide

extraction from the gel was performed using solutions containing

different percentages of acetonitrile (30, 50, and 98%) with 1% of

formic acid. For protein identification, each fraction was analyzed

separately, and for protein quantification, fractions from each

sample were combined, and a single analysis per sample was

performed by LC-MS/MS.

Samples were analyzed on a NanoLC™ 425 System (Eksigent)

coupled to a Triple TOF™ 6600 mass spectrometer (Sciex) and the

ionization source (ESI DuoSpray™ Source). The chromatographic

separation was performed on a Triart C18 Capillary Column 1/32”

(12 nm, S-3mm, 150 x 0.3 mm, YMC) and using a Triart C18

Capillary Guard Column (0.5 × 5 mm, 3 mm, 12nm, YMC) at 50°C.

The flow rate was set to 5 mL/min, and mobile phases A and B were

5% DMSO plus 0.1% formic acid in water and 5% DMSO plus 0.1%

formic acid in acetonitrile, respectively. The LC program was

performed as follows: 5 – 30% of B (0 - 50 min), 30 – 98% of B

(50 - 52 min), 98% of B (52 - 54 min), 98 - 5% of B (54 - 56 min),

and 5% of B (56 - 65 min). The ionization source was operated in

the positive mode set to an ion spray voltage of 5500 V, 25 psi for

nebulizer gas 1 (GS1), 10 psi for nebulizer gas 2 (GS2), 25 psi for the

curtain gas (CUR), and source temperature (TEM) at 100°C. For

data-dependent acquisition (DDA) experiments, the mass

spectrometer was set to scanning full spectra (m/z 350-2250) for

250 ms, followed by up to 100 MS/MS scans (m/z 100 – 1500).

Candidate ions with a charge state between +1 and +5 and counts

above the minimum threshold of 10 counts per second were isolated
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for fragmentation, and one MS/MS spectrum was collected before

adding those ions to the exclusion list for 15 s (mass spectrometer

operated by Analyst® TF 1.8.1, Sciex®). The rolling collision enErgy

was used with a collision enErgy spread of 5. For SWATH

experiments, the mass spectrometer was operated in a looped

product ion mode and specifically tuned to a set of 42

overlapping windows, covering the precursor mass range of 350-

1400 m/z. A 50 ms survey scan (350-2250 m/z) was acquired at the

beginning of each cycle, and SWATH-MS/MS spectra were

collected from 100-2250 m/z for 50 ms, resulting in a cycle time

of 2.2 seconds.

Protein identification was performed using the ProteinPilot™

software (v5.0.2, Sciex) for each sample. The paragon method

parameters were as follows: searched against the reviewed Mus

musculus database from SwissProt, cysteine alkylation by

acrylamide, digestion by trypsin, and gel-based ID. An independent

False Discovery Rate (FDR) analysis using the target-decoy approach

provided by Protein Pilot™, was performed to assess the quality of

the identifications. SWATH data processing was performed using

SWATH™ processing plug-in for PeakView™ (v2.0.01, Sciex®).

Relative protein quantification was performed in all samples using

information from the Ion-Library search. Quantification results were

obtained for peptides with less than 1% of FDR for at least one of the

samples by calculating the sum of up to five fragments/peptides.

Relative peptide peak areas were normalized to the internal standard

peak areas. Protein quantities were obtained by the sum of up to 15

peptides/proteins. Protein–protein interactions and network analysis

was constructed using the online STRING database (https://string-

db.org) version 11.5, depicting both functional and physical protein

associations with a medium confidence level (0.4), and organized into

clusters through k means clustering method. All identified proteins

were then subjected to an over-representation analysis using the

ConsensusPathDB. From a total of 368 proteins identified using LC-

MS/MS, we focused the analysis on those that presented higher

concentrations (fold changes of 2 or higher) between the two groups.

These proteins were then grouped by function using the UniProt

database and a heat map of their concentration was plotted with a cut

off of 5 (ratios higher than 5 were color-expressed as 5). The mass

spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (28) partner

repository with the dataset identifier PXD048453.
LEGENDplex

The concentration of relevant cytokines was evaluated in the

secretomes of polarized macrophages using the LEGENDplex™

Mouse Macrophage/Microgl ia Panel kit according to

manufacturer’s instructions. The secretome was first concentrated

(×10) using ultracentrifugation with falcons with 5 kDa cut-off filter

(Vivaspin, GE Healthcare). Then, reagents were prepared from the

stocks provided, and standard serial dilutions were prepared to

generate a standard curve. Assay buffer (25μL) was added to

standard and sample wells in a 1:1 ratio. 25μL of mixed beads
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were added to each well, and the plate was incubated for 2 hours at

RT with continuous agitation at 800 rpm. After a centrifugation of

250g for 5min, beads were washed with 1x wash buffer for 1min.

25μL of detection antibodies was added to each well, followed by 1

hour of incubation at RT with agitation at 800 rpm. 25μL of

Streptavidin-phycoerythrin (SA-PE) was added directly to the

previous solution, and the plate was incubated for 30 minutes at

RT with agitation at 800 rpm. After a wash step with 150μL of 1x

wash buffer, the samples were ready to read on the flow cytometer.

For that, samples were vortexed, and 300 beads per analyte were

acquired in a BD LSRII Flow Cytometer (BD, Pharminogen). The

FCS files were analyzed using Biolegend’s LEGENDplex™ data

analysis software site. Concentration values were subsequently

divided by 10 to account for the concentration step, providing an

accurate representation of the actual cytokine concentration present

in the secretome.
Statistical analysis

Statistical analyses were performed using GraphPad Prism

software, version 8.0.1. The normality of the data was evaluated

using the Shapiro-Wilk normality test. Gene expression, axonal

regeneration in vitro, weight loss, bladder function, chronic pain,

LEGENDplex, and flow cytometry data were analyzed using One-

Way ANOVA followed by Tukey’s multiple comparison test. Data

from the BMS score, astrogliosis, fibrosis, spinal tracts area, axonal

arborization, and ramified microglia were assessed by two-way

ANOVA followed by Tukey’s multiple comparison test. Live
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imaging data were assessed by unpaired, non-parametric t-test

(Mann-Whitney test). Statistical significance was defined as p<

0.05 (95% confidence level). Data are presented as mean ±

standard error (SEM).
Results

Monocytes isolation, differentiation
and polarization

To successfully culture spleen-derived macrophages (Sp-MФ),

we isolated monocytes from the spleen and cultured them in the

presence of macrophage colony-stimulating factor (M-CSF) to

stimulate the survival, proliferation, and differentiation of

monocytes into macrophages (Figure 1A). Using our protocol, we

were able to obtain a highly enriched culture (97% purity) of Sp-

MФ (Figure 1B). Without M-CSF, it was impossible to establish and

maintain the cells (Supplementary Figure S1A), indicating that M-

CSF is essential for the Sp-MФ culture.

To polarize macrophages into different phenotypes, we

stimulated macrophages for 24h with 20 ng/mL of IFN-g plus 100
ng/mL of LPS (classical activation) or with 20 ng/mL of IL-4 plus 20

ng/mL of IL-13 or 20 ng/mL of IL-10 plus 20 ng/mL of TGF-b1
(alternative activation). With immunocytochemistry it was possible

to confirm that the classical activation leads to the polarization of

89% of the macrophages (Supplementary Figure S1B). Moreover,

proteomics analysis of the secreted proteins of each macrophage

population revealed that out of 487 proteins identified, 81 were
B

C

A

FIGURE 1

Isolation, differentiation, and polarization of macrophages. (A) Splenic monocytes cultured with macrophage colony-stimulating factor (M-CSF) for 7
days differentiated into macrophages; (B) with a culture purity of 97%. (C) Macrophages stimulated for 6 h with INF-g and LPS significantly
overexpressed iNOS (2, 7 df, p<0.0001) and TNF-a (2, 7 df, p<0.0001). Macrophages stimulated with IL-4 and IL-13 significantly overexpressed EGR2
(2, 6 df, p<0.0001), IRF4 (2, 6 df, p=0.0216), and Arg-1 (p=0.0020); and Macrophages stimulated with IL-10 and TGF-b1 significantly overexpressed
ARG1 (p=0.0357), and HIF-1a.(2, 8 df, p=0.0032). Target genes were normalized to three reference genes: GADPH, HPRT and 18s. Fold-change
levels were calculated by the 2-DDct method related to non-stimulated macrophages. In immunocytochemistry photomicrographs macrophages
were quantified using the anti-CD11b antibody (green) and nuclei were stained with DAPI (blue). One Way ANOVA followed with Tukey post-hoc test
was used for statistical analysis. Arg-1 data were analyzed using the Mann Whitney test because normality was not achieved using the Shapiro-Wilk
test. Data is presented as mean ± standard error (SEM). df= degrees of freedom, * or #- p< 0.05; **- p< 0.01; ***- p< 0.001. Scale bar =50 µm. n=3.
2 independent experiments were performed.
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exclusive secreted by M(INF-g+LPS) macrophages, 35 by M(IL-4+IL-13),

and 90 by M(IL-10+TGF-b1) macrophages (Supplementary Figure

S1C). Using the Protein Analysis Through Evolutionary

Relationships (PANTHER) tool, we further demonstrated

distinctions in the protein classes among these populations of

proteins (Supplementary Figure S1D). Metabolite interconversion

enzymes were identified as a common protein class between the

different macrophage populations, but as can be observed by the pie

charts, the protein class or the percentage of proteins in different

classes varied considerably among each cell phenotype

(Supplementary Figure S1D). Additionally, the phenotypes of

each macrophage population was also confirmed by gene

expression analysis. qPCR revealed that Sp-MФ are easily

polarized in vitro; namely, when macrophages were stimulated

with IL-4+IL-13, they significantly overexpressed EGR2 and IRF4,

and these genes were not overexpressed when macrophages were

stimulated with IL-10+TGF-b1 (Figure 1C). The ARG1 gene was

significantly overexpressed in the two populations of macrophages

with alternative activation, however more overexpressed in the M

(IL-4+IL-13) phenotype than in the M(IL-10+TGF-b1) macrophages. In

contrast, the IL-10+TGF-b1 stimulation protocol led to a significant

increase in HIF-1a expression, and these gene was not

overexpressed with the IL-4+IL-13 stimuli. Using gene expression,

we also confirm that macrophages under classic activation stimuli

significantly overexpressed iNOS and TNF-a genes (Figure 1C). All

these genes are known to be specifically overexpressed in these
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phenotypes (29). These results showed that we were able to obtain

three different subsets of macrophages, one with classical activation

(M(INF-g+LPS)) and two with alternative activation (M(IL-10+TGF-b1);

M(IL-4+IL-13)).
IL-10 and TGF-b1 activation promotes
higher axonal growth

The effects of each macrophage subtype on axonal growth were

then investigated. Spleen-derived macrophages polarized into M

(INF-g+LPS), M(IL-10+TGF-b1) or M(IL-4+IL-13) were co-cultured with

DRGs growing in three dimensions (Figure 2). DRGs cultured

without macrophages were used as baseline. The results showed

that DRGs co-cultured with M(IL-10+TGF-b1) and M(IL-4+IL-13)

macrophages had significantly higher axonal arborization than

those co-cultured with M(INF-g+LPS) or than basal levels

(Figure 2A). DRGs co-cultured with M(IL-10+TGF-b1) and M(IL-4

+IL-13) macrophages also presented significantly longer axons

(Figure 2B) than those co-cultured with M(INF-g+LPS). Concerning

the total axonal area, only M(IL-10+TGF-b1) condition showed

significant differences from baseline (Figure 2C). We also

performed a similar experiment with DRGs growing in two

dimensions, which did not allow axonal growth in depth, but

enabled direct contact between macrophages and DRGs
B
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FIGURE 2

Classical (M(INF-g+LPS)) or alternative (M(IL-4+IL-13); M(IL-10+TGF-b1)) activated macrophages co-cultured with dorsal root ganglia (DRGs) in 3D collagen
hydrogels. DRGs were stained with Neurofilament (green), Macrophages and DRGs stained with Phalloidin (red) and nuclei counterstained with DAPI
(blue). (A) DRGs co-cultured with M(IL-4+IL-13) and M(IL-10+TGF-b1) macrophages had significantly higher axonal arborization (3, 12 df, p<0.0001) and (B)
significantly longer axons (3, 14 df, p=0.0172) than M(INF-g+LPS) group and basal levels. (C) M(IL-10+TGF-b1) condition also showed significant higher
axonal area than basal levels (3, 14 df, p= 0.0292). Statistical analysis for axonal arborization employed two-way ANOVA followed by Tukey’s multiple
comparisons test, while total area and distance were analyzed using one-way ANOVA followed by Tukey’s test. Data is presented as mean ±
standard error (SEM). df= degrees of freedom, *- p< 0.05; ***- p< 0.001. Scale bar =100 µm; M(IFN-g+LPS) n= 3; M(IL-4+IL-13) n=5; M(IL-10+TGF-b1) n=5. 2
independent experiments were performed.
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(Supplementary Figure S2). Interestingly, under these conditions,

only the DRGs co-cultured with M(IL-10+TGF-b1) macrophages

presented significantly higher axonal arborization (Supplementary

Figure S2A) than those co-cultured with the other subtypes of

macrophages, these DRGs also have significantly longest neurite

(Supplementary Figure S2B), and higher axonal area

(Supplementary Figure S2C) than M(IL-4+IL-13) macrophages. It is

important to point out that without the collagen matrix, axonal

growth is significantly reduced, and not even the direct contact of

the macrophages compensates for the absence of the 3D matrix.

The neuronal effects of the molecules and extracellular vesicles

secreted by the different subtypes of splenic macrophages were also

tested using human-derived neurospheres obtained from iPSCs.

Neurospheres were allowed to differentiate into neurons for two

days and then cultured with the secretome derived from each

macrophage subtype (Figure 3A). It proved challenging to

establish the baseline level of neuronal growth devoid of secreted

factors as attempts to culture human neurospheres solely in basal

medium were unsuccessful, leading to detachment from the culture

plates and rendering meaningful analysis unfeasible. Nonetheless,

we conducted a positive control using the regular culture medium

to provide a comparative reference point. The total axonal area

divided by the number of neurospheres was analyzed as described

for the DRGs (see materials and methods section). As expected, the

positive control group presented an overall neuronal area higher

than all the groups, but notably it was only significantly different

when compared with the M(INF-g+LPS) and M(IL-4+IL-13) groups, but

not with the M(IL-10+TGF-b1)-derived secretome (Figure 3B). Results

also demonstrated that the M(IL-10+TGF-b1) secretome significantly

promoted more axon preservation/regeneration than M(IL-4+IL-13)

secretome (Figure 3B). Both subtypes are pro-regenerative;

however, our in vitro results showed that the M(IL-10+TGF-b1)-

derived secretome has higher regenerative capabilities. For this

reason, we then tested only the secretome derived from this sub-

population in CNS-derived neurons. Primary cortical neurons were

plated in the soma compartment of microfluidic chambers

(Figures 4A, B), and neuronal growth was live imaged

(Supplementary Video 1) in the axonal compartment for 14h

(Figures 4C, D). The results demonstrated that M(IL-10+TGF-b1)-

derived secretome promoted significant axonal regeneration

compared with the control medium (Figure 4E).
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M(IL-10+TGF-b1) derived secretome promotes
functional recovery in vivo

In vitro experiments demonstrated that the soluble factors and

extracellular vesicles secreted by macrophages may have therapeutic

potential for neural repair. Therefore, we tested whether

intraperitoneal injections (500 μL) of macrophage-derived

secretome could be used as a therapy for spinal cord injury. Forty-

two mice were subjected to compression SCI and 3, 6, 9, and 14 days

post-injury (and then once a week up to 28 dpi) were treated with

secretome derived from different macrophage subtypes (Figure 5A).

During the experimental protocol, all animals lost weight without

significant differences between groups (Figure 5B). To evaluate motor

function, we performed the BMS test, in which a higher score

indicates higher motor recovery. We found that mice treated with

M(IL-10+TGF-b1) secretome had significantly higher BMS scores than

those treated with the vehicle or M(IL-4+IL-13) (Figure 5C). Only

animals treated with this pro-regenerative cocktail (M(IL-10+TGF-b1)

secretome) were able to perform weight-supported plantar stepping,

while the other treatment regimens only led to extensive ankle

movement recovery without weight support. Interestingly, in the

first 2/3 weeks post-injury, mice treated with the pro-inflammatory

cocktail (M(INF-g+LPS) secretome) presented a functional recovery very

close to those treated with the M(IL-10+TGF-b1) secretome, indicating

that this pro-inflammatory cocktail may be beneficial in the early

phase. However, continuing with M(INF-g+LPS) secretome treatment,

the functional recovery stabilized, and the therapeutic effect

disappeared (Figure 5C), indicating that the non-resolving nature of

chronic exposure to this pro-inflammatory cocktail is detrimental.

Four weeks post-injury, we performed the von Frey filament test to

assess the mechanical sensitivity function of the animals. We did not

detect any statistical differences; however, mice treated with the pro-

inflammatory cocktail (M(INF-g+LPS) secretome) had lower values,

indicating that this treatment may lead to hypersensitivity. In

contrast, the vehicle and M(IL-10+TGF-b1) secretome groups showed

higher values in the von Frey filament test (Figure 5D), indicating less

hypersensitivity. We also analyzed mouse autonomic function,

namely bladder function, using the ration between water intake and

amount of urine in the bladder. Bladder recovery is an important

priority for people living with SCI (30). Our results showed that mice

treated with the M(IL-10+TGF-b1) secretome had a significant recovery
BA

FIGURE 3

Axonal area of differentiated Neural Stem Cells obtained from human induced Pluripotent Stem Cells. (A) Axonal area was stained using anti-bIII
tubulin antibody (green) and nuclei counterstained with DAPI (blue); (B) Statistical analysis demonstrated that the factors secreted by M(IL-10+TGF-b1)

macrophages are able to significantly preserve/regenerate the differentiated neurons (2, 18, p=0.0364) than the M(IL-4+IL-13)-secreted factors. One
Way ANOVA followed by Tukey post-hoc test was used for statistical analysis. Data is presented as mean ± standard error (SEM). *- p< 0.05; M(IFN-

g+LPS) n=6; M(IL-4+IL-13) n=9; M(IL-10+TGF-b1) n=6; +Ct n=9. Scale bar=1 mm. 2 independent experiments were performed.
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of bladder control compared to those treated with vehicle and M(INF-

g+LPS) secretome (Figure 5E). This preclinical trial demonstrated that

the therapeutic effect of the molecules and extracellular vesicles

secreted by the different subtypes of macrophages varies depending

on the phenotype, even when using two pro-regenerative phenotypes.
M(IL-10+TGF-b1) derived secretome
modulates pathophysiological events
leading to neuronal survival in vivo

To understand the effect of the secretome on the immune response,

we collected blood from all groups nine days post-injury and used

healthy mice as controls. Flow cytometry was used to verify the

inflammatory profile of leukocytes in circulation, which could

infiltrate the injured spinal cord. Analysis revealed that mice treated

with vehicle, M(INF-g+LPS) and M(IL-10+TGF-b1) secretome had a

significantly higher frequency of myeloid cells in circulation

(Figure 6A). Mice treated with the M(INF-g+LPS) secretome had a

significantly higher frequency of monocytes than the M(IL-10+TGF-b1)

secretome (Figure 6B). Mice treated with vehicle or M(INF-g+LPS)

secretome had a significantly higher frequency of Ly6Chigh

monocytes (Figure 6C). It is noteworthy that the Ly6Chigh monocytes

are prone to become pro-inflammatory macrophages (31). M(INF-g
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+LPS) also presented significantly more Ly6Clow-med monocytes in

circulation (Figure 6D). All animals with SCI had significantly more

circulating neutrophils (Figure 6E). Concerning the rest of myeloid

cells, M(INF-g+LPS) also presented significant increase (Figure 6F). No

differences were observed between the groups for B cells (Figure 6G).M

(INF-g+LPS) and vehicle-treated mice had a significantly lower frequency

of T cells (Figure 6H). Of note, the number of animals used in the flow

cytometry analysis varies from that used in functional recovery data

because we opted to spare some animals during this sub-acute phase

due to their weakened state. To conduct flow cytometry of circulating

leukocytes blood collection was necessary, we decide to prioritize the

well-being of the animals avoiding unnecessary risks of losing mice.

Thirty-eight days post-injury, the animals were sacrificed and the

spinal cords were collected for histological analysis. IBA-1antibody was

used to study the morphology of microglia and distinguish between

ramified and amoeboid microglia (Figure 7A). Rostral-caudal analysis

of the spinal cord showed that mice treated with the pro-regenerative

cocktail M(IL-10+TGF-b1) had a significantly higher percentage of

ramified microglia than mice treated with the pro-inflammatory

cocktail M(INF-g+LPS), or the M(IL-4+IL-13)-secreted factors (Figure 7B).

The GFAP antibody was used to analyze astrogliosis. Areas of

clustered GFAP overstaining were considered astrogliosis

(Figure 7C). The analysis revealed that mice treated with the pro-

regenerative cocktail, M(IL-10+TGF-b1) secretome, had significantly
B
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FIGURE 4

The effect of M(IL-10+TGF-b1)-derived secretome on the CNS neurons. (A) Schematic representation of the microfluidic chambers used. (B) Brightfield
images of the axonal and somal compartments of the microfluidic chambers. (C) Schematic representation of the workflow used. (D) Brightfield
images of axons growing under the effect of the soluble factors and extracellular vesicles secreted by M(IL-10+TGF-b1) macrophages or Vehicle
(Neurobasal Medium). In red is represented the length of the axon at baseline and in green after 14h of live imaging. (E) The secretome of M(IL-10

+TGF-b1) macrophages promotes significantly axonal regeneration (p= 0.0286). Statistical significance tested by unpaired, non-parametric t-test
(Mann-Whitney test). Data is presented as mean ± standard error (SEM). *- p< 0.05; n=4, DIV= days in vitro. 2 independent experiments
were performed.
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lower astrogliosis (Figure 7D), which indicate that these animals

presented diminished scar.

Neurons from the ventral horns, namely from lamina VIII and

IX, were counted using an anti-NeuN antibody (Supplementary

Figure S3A). Mice treated with M(IL-10+TGF-b1) secretome have

significantly more neurons than animals treated with the pro-

inflammatory-derived secretome (Supplementary Figure S3B).

Finally, concerning fibrosis, the rostral-caudal analysis did not

detect significant differences in the PDGFR+ area (Supplementary

Figure S3C) between the treated groups when all areas of the spinal

cord were analyzed (Supplementary Figure S3D); however, caudally

to the injury epicenter, mice treated with the M(IL-10+TGF-b1)

secretome have significantly less fibrosis than the other

treatments (Supplementary Figure S3E).
M(IL-10+TGF-b1) derived secretome preserved
ascending and descending spinal tracts
after SCI

Considering the functional and histological outcomes

obtained from our pre-clinical trial, we executed a subsequent in
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vivo protocol with a focused objective: to assess the therapeutic

efficacy of M(IL-10+TGF-b1) secretome specifically in the

preservation of spinal tracts critical for locomotion. These tracts

include the corticospinal tract (CST), rubrospinal tract (RST), and

spinocerebellar tract (SCT). Within this cohort of animals, we

employed mice harboring the Thy1-GFP transgene, and the

percentage of positive area for Thy1-GFP in each distinct spinal

tract was calculated (Figure 8A). The analysis encompassed a

range spanning 600 μm to 2000 μm in both rostral and caudal

directions from the epicenter. The vicinity of the epicenter was

excluded from the analysis due to challenges in pinpointing the

exact location of the spinal tracts. Results demonstrated that the

administration of M(IL-10+TGF-b1) secretome significantly

contributes to the preservation of the spinocerebellar tract

caudally to the epicenter (Figure 8B), both the rostral and

caudal portions of the rubrospinal tract (Figure 8C), and the

preservation of the corticospinal tract (Figure 8D) in the rostral

region. Significant differences were also observed between the

rostral and caudal regions, however, only in the motor tracts (RST

and CST). Specifically, the rostral regions exhibited a markedly

higher extent of neuronal preservation in comparison to the

caudal regions (Figures 8C, D).
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FIGURE 5

Pre-clinical evaluation of macrophages derived secretome using a SCI compression model. (A) Schematic layout of the in vivo testing. (B) The
treatment had no effect on weight of the animals 38 dpi (3, 25 df, p=0.6013). (C) Animals treated with M(IL-10+TGF-b1)-derived secretome presented
significantly better functional scores than the other treatment groups, namely than the Vehicle (3, 25 df, p=0.0465) and M(IL-4+IL-13) group (3, 25 df,
p= 0.0047) at 28 days and the M(IL-4+IL-13) at 37 days (3, 25 df, p= 0.0359). (D) No significantly differences were observed on the hypersensitivity of
the animals 38 dpi, however, M(INF-g+LPS)-treated mice presented a tendency to be more hypersensitive (3, 25 df, p=0.5097). (E) Animals treated with
M(IL-10+TGF-b1)-derived secretome presented significant recovery of the bladder function when assessed 38 dpi (3, 22 df, p= 0.0137). Two-way
repeated measure ANOVA was used to analyze statistical differences on the BMS data and One-Way ANOVA was used to analyze statistical
differences on the other functional tests followed by the multiple comparison test Tukey. Data is presented as mean ± standard error (SEM). * or #-
p< 0.05; ##- p< 0.01; df= degrees of freedom, Vehicle n=8; M(INF-g+LPS) n=7; M(IL-4+IL-13) n=8; M(IL-10+TGF-b1) n=6. 1 independent experiment
was performed.
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M(IL-10+TGF-b1) secretome present
molecules involve with anti-inflammatory,
phagocytosis and tissue repair/
remodeling processes

In order to understand which proteins secreted by the different

phenotypes of macrophages could be important for the differences

observed both in vitro and in vivo, we identified and quantified the

proteins produced by the macrophages using both the bead-based

immunoassay LEGENDplex and liquid chromatography with mass

spectrometry (LC-MS/MS). LC-MS/MS allows a broader and non-

target analysis; however, it may not detect small and low-

concentrated proteins, such as cytokines and chemokines. For this

reason, we complemented LC-MS/MS analysis with the

immunoassay LEGENDplex. The results demonstrated that pro-

inflammatory cytokines such as TNF-a, G-CSF and IL12p40 were

present almost only in the secretome of M(INF-g+LPS) and were

significantly different from the other groups (Supplementary Figure

S4). These results were expected because these cytokines are

characteristic of proinflammatory macrophages. Additionally, the

cytokine/hormone G-CSF was also significantly elevated in the M

(INF-g+LPS) secretome (Supplementary Figure S4). In turn, TGF-b1, a
cytokine with anti-inflammatory properties, was present in higher

quantities in the M(IL-10+TGF-b1) and M(IL-4+IL-13) subsets; however,

only in the pro-regenerative phenotype M(IL-10+TGF-b1) that this

cytokine reached significant differences (Supplementary Figure S4).
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The macrophage subsets that presented interesting results both in

vivo and in the LegendPlex assay were the M(IL-10+TGF-b1) and M

(INF-g+LPS) phenotypes, and therefore, a detailed proteomics analysis

was only performed in the secretome derived from these two

populations. From a total of 452 proteins identified, we focused

the analysis on those that presented higher concentrations (fold

changes of 2 or higher) between the two groups. These proteins

were grouped by function using the UniProt database, and the

results revealed that 14 out of 17 pro-inflammatory proteins were

overconcentrated in the M(INF-g+LPS) secretome, and 3 out of 4 anti-

inflammatory proteins were overconcentrated in the M(IL-10+TGF-b1)

secretome (Figure 9A). Moreover, the M(IL-10+TGF-b1) secretome was

also enriched in proteins involved in phagocytosis (9 out of 10) and

in proteins involved in tissue repair/remodeling (7 out of 8)

(Figure 9A). These results were expected because the M(INF-g+LPS)

and M(IL-10+TGF-b1) subsets are classified as pro-inflammatory and

anti-inflammatory/repairing, respectively. Finally, protein–protein

interaction network analysis was constructed using the online

STRING database depicting both functional and physical protein

associations and the results revealed that the secretome of M(INF-

g+LPS) contains proteins from just one cluster, which can be

considered a cluster related to the inflammatory process, since

these proteins are involved in antigen processing and presentation

of peptide antigen, T cell-mediated cytotoxicity, and complement

activation (Figure 9B). In contrast, the M(IL-10+TGF-b1) secretome

contained proteins from three different clusters, a cluster of proteins
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FIGURE 6

Leukocytes in circulation 9 days post injury. Blood was collected from the tail vein and process for analysis using flow cytometry. (A) Animals treated with
vehicle, M(INF-g+LPS) and M(IL-10+TGF-b1)-derived secretome had significantly higher myeloid cells than control mice (4, 17 df, p=0.0240). (B) Animals treated
with M(INF-g+LPS)-derived secretome had significantly higher frequency of monocytes than M(IL-10+TGF-b1) secretome group and control (4, 17 df, p=0.0457).
(C) Animals treated with vehicle or M(INF-g+LPS)-derived secretome had a significantly higher frequency of Ly6Chigh monocytes (4, 17 df, p=0.0282) than
control mice. (D) M(INF-g+LPS) group also had significantly more Ly6Cmed+low monocytes than M(IL-4+IL-13)-treated mice (4, 17 df, p=0.0457). (E) Animals
without a SCI had significantly lower frequency of Neutrophils (4, 17 df, p=0.0055). (F) M(IL-4+IL-13)-treated mice had significantly less other myeloid cells
than vehicle and M(INF-g+LPS)-treated animals (4, 17 df, p=0.0358). (G) No differences were observed for B Cells (4, 17 df, p=0.8721) and (H) M(INF-g+LPS) and
vehicle-treated mice had significantly lower frequency of T cells (4, 17 df, p=0.0011) than control mice. One-Way ANOVA was used to analyze statistical
differences followed by the multiple comparison test Tukey. Data is presented as mean ± standard error (SEM). *- p< 0.05; **- p< 0.01; df= degrees of
freedom, Control n= 5; Vehicle n=5; M(INF-g+LPS) n=4; M(IL-4+IL-13) n=5; M(IL-10+TGF-b1) n=4. 1 independent experiment was performed.
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more related to metabolic processes (Cluster 1), with proteins that

participate in Ganglioside and Glycosphingolipid catabolic

processes (Figure 9B). Two other clusters were identified, with

proteins that participate in relevant biological and cellular

processes, such as astrocyte activation involved in immune

response, regulation of dendritic spine maintenance, and

regulation of response to wounding (Cluster 2), and proteins that

play a role in axon extension and central nervous system neuron

development (Cluster 3), some of which may be responsible for the

improvements observed in vivo (Figure 9B).
Discussion

After injury, the immune system is fundamental for promoting

adequate tissue repair and regeneration. However, it is well known

that the immune response after SCI is dysfunctional and is an

important contributor to the secondary damage observed after

primary injury. Several therapeutic approaches have been

designed to shut down the immune response after SCI; however,

more important than shutting it down is to transform a

dysfunctional response into a regenerative one. After SCI, splenic

and bone marrow-derived monocytes infiltrate the lesion site and

differentiate into macrophages (4). There is abundant literature

exploring bone marrow-derived monocytes in an SCI context (10,

32–34), however, less is known about splenic monocytes. The spleen

is not just important for erythrocyte recycling and immune

response to pathogens. After injury, immune cells in the spleen
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become rapidly activated and mobilize to sites of damaged tissue.

This activation and mobilization was first observed after myocardial

ischemia and also demonstrated after SCI (5, 24). Splenic

monocytes infiltrated the spinal cord in the acute phase of the

injury, peaking at 7 days, whereas bone marrow-derived monocytes

only infiltrated the cord 1 week after injury (4). Although the spleen

has been characterized as the major source of pro-inflammatory

monocytes after SCI (4), in ischemic brain injury models, splenic

monocytes have been demonstrated to be key effector cells that

modulate meningeal and parenchymal immune responses and limit

ischemic injury, leading to improved functional outcomes (35). This

indicates a complex interplay between the recruited splenic

monocytes and the tissue microenvironment that finally

determines the macrophage phenotype.

For these reasons, in this work, we aimed to study and further

characterize splenic-derived macrophages in an SCI context, as this

cell population may play a key role in tissue repair.

In this study, we used a protocol that led to a highly pure (97%)

culture of primary splenic macrophages without the need to use cell

sorting or magnetic beads separation kits. It is difficult to compare

our purity with other protocols in the literature because the vast

majority of studies do not disclaim this value (36–38) or use

macrophage cell lines instead of primary cells (39). We

demonstrated that splenic monocytes are similar to monocytes

from other origins in terms of plasticity and are easily polarized

into pro-inflammatory or pro-regenerative phenotypes. Moreover,

we demonstrated that different splenic macrophage phenotypes

have distinct effects on axonal growth and neuroprotection.
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FIGURE 7

Histological analysis of the spinal cord 38 dpi. (A) Representative image of microglia from M(IL-10+TGF-b1)-treated group, cells were stained using the
antibody anti-IBA1 (red) and the area of the ramified microglia was analyzed. (B) Rostral-caudal analysis demonstrated that the animals treated with
M(IL-10+TGF-b1)-derived secretome presented overall significantly more ramified microglia than M(IL-4+IL-13) group (3, 239 df, p=0.0058) and presented
more ramified microglia than the M(INF-g+LPS) group at 800 µm caudal to the injury (3, 239 df, p=0.0469). (C) Representative image of astrocytes
from vehicle-treated group, cells were stained with anti-GFAP antibody (red) and astrogliosis were analyzed by quantification of the area of clustered
GFAP overstaining (areas impossible to distinguish individual astrocytes). (D) Rostral-caudal analysis demonstrated that mice treated with M(IL-10+TGF-

b1)-derived secretome had significantly less astrogliosis than the animals treated with M(IL-4+IL-13) or M(INF-g+LPS) secretome (3, 231 df p<0.0001).
Differences in both microglia and astrocytes analysis were detected using two-way ANOVA followed by Tukey’s multiple comparisons test. A total of
284 spinal cord slices were observed to analyze astrogliosis and 301 slices to microglia. Data is presented as mean ± standard error (SEM). * or #- p<
0.05; **- p< 0.01; Vehicle n=7; M(INF-g+LPS) n=6; M(IL-4+IL-13) n=8; M(IL-10+TGF-b1) n=6. 1 independent experiment was performed.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1354479
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lentilhas-Graça et al. 10.3389/fimmu.2024.1354479
Namely, classical activation (pro-inflammatory) has a detrimental

impact, whereas alternative activation promotes axonal

regeneration and neuroprotection. To the best of our knowledge,

these biological effects were first described in our work for spleen-

derived macrophages; however, these effects were also previously

demonstrated in bone marrow-derived macrophages (10, 40). It is

important to point out that the vast majority of the research in the

literature only studied one type of alternative activation of

macrophages (using IL-4); herein, we showed that activation with

TGF-b1 and IL-10 has significantly superior biological effects than

activation with IL-4 and IL-13, not only in vitro but also in an in

vivo SCI model.

As previously mentioned, the microenvironment at the SCI site

favors predominant and sustained macrophage polarization into a

pro-inflammatory phenotype, which is detrimental to tissue repair

(15). Some authors have investigated the therapeutic effect of

transplanting alternatively activated macrophages into the

damaged spinal cord to balance the ratio between pro- and anti-

inflammatory macrophages at the injury site (12, 32). However,

clinical trials have failed to demonstrate a significant therapeutic
Frontiers in Immunology 15101
effect. Clinical results did not support the treatment of acute SCI

with autologous incubated macrophage therapy (14). The reason

behind this disappointing result may be that transplanted

macrophages fail to retain their pro-regenerative phenotype when

transplanted into the injured spinal cord (10). Kroner and

colleagues demonstrated that intracellular accumulation of iron

by macrophages induces a rapid switch from a pro-regenerative to a

pro-inflammatory phenotype in the spinal cord tissue (15).

Therefore, in this study, we decided to inject the soluble factors

and extracellular vesicles produced by macrophages (secretome)

instead of transplanting the cells. Herein, we explored whether

systemic injections of secretomes derived from different

macrophage phenotypes have a therapeutic effect after SCI. We

tested the complete secretome rather than separating the soluble

and vesicular fractions, because our previous evidence

demonstrated that for SCI repair, the secretome as a whole is

advantageous over the individual fractions (41). The local

immune response after SCI is known to be dysfunctional;

however, SCI also leads to the systemic dysregulation of the

immune response. For instance, it was demonstrated that SCI
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FIGURE 8

Histological analysis of ascending and descending spinal tracts 38 dpi. (A) Representative images of Thy1-GFP animals from M(IL-10+TGF-b1) and
Vehicle-treated group. The positive area for Thy1-GFP (green) was calculated and divided for the total area of the tract in each spinal section. The
analysis encompassed a range spanning 600 µm to 2000 µm in both rostral and caudal directions from the epicenter. (B) The secretome derived
from M(IL-10+TGF-b1) macrophages significantly promoted higher neuronal preservation of spinocerebellar tract (SCT) in the caudal region (3, 65 df,
p=0.0007) when compared with vehicle treatment. (C) Animals treated with M(IL-10+TGF-b1) secretome also revealed a higher preservation of the
rubrospinal tract (RST) both in the rostral (3, 64 df, p<0.0001) and in the caudal region (3, 64 df, p=0.0010). Moreover, the treatment effect was
significantly higher in the rostral region than in the caudal (3, 64 df,<0.0001). (D) Likewise, the M(IL-10+TGF-b1) secretome significantly preserved the
corticospinal tract (CST) descending axons, namely rostrally from the epicenter (3, 74 df, p<0.0001), and this preservation was significantly higher in
the rostral than in the caudal region (3, 74 df, p<0.0001). Two-way ANOVA followed by Tukey’s multiple comparisons test was used to analyze
statistical differences. A total of 163 spinal cord slices were analyzed. Data is presented as mean ± standard error (SEM). ***- p< 0.001. Vehicle n=3;
M(IL-10+TGF-b1) n=3. 1 independent experiment was performed.
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could promote pro-inflammatory responses that damage peripheral

organs (42, 43). Moreover, our group previously demonstrated that

the infiltration of neutrophils into the injured spinal cord is affected

by neural communication between the spinal cord and the spleen

(24). The combined factors of local environment and systemic

dysregulation of the immune response led us to choose the

systemic administration of secretome instead of local

administration or local transplantation of macrophages. In this

way, we not only avoided losing the phenotype of the transplanted

cells due to local environmental cues, but we are also able to

modulate/prime immune cells even before they infiltrate the

spinal cord. Notably, in our experimental animal model, the

blood-spinal cord barrier (BSCB) is disrupted due to the

mechanical compression, allowing the systemic-injected molecules

to reach the spinal cord tissue. However, it is crucial to acknowledge

that, even with this scenario, the majority of systemically delivered

secretome is directed towards peripheral organs such as the liver,

lungs, and spleen (44–46). Moreover, in some clinical scenarios, the

BSCB may remain intact, in these situations intrathecal

administration may be necessary.

In this study, we observed that the M(IL-10+TGF-b1)-derived

secretome is the most effective treatment in promoting functional

recovery after compressive SCI. Additionally, factors and

extracellular vesicles secreted by M(IL-10+TGF-b1) also supported

the recovery of bladder function. Regain of bladder control is an

important functional priority for persons living with SCI (30, 47).

Interestingly, up to 3 weeks post-injury, treatment with the pro-

inflammatory secretome, M(INF-g+LPS), had a similar therapeutic

effect to the M(IL-10+TGF-b1) secretome; however, the continued
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injection of molecules derived from the pro-inflammatory

phenotype was shown to be detrimental in the long term. In line

with this observation, previous research performed by Freria and

colleagues demonstrated that preconditioning microglia with LPS

injection before ischemic SCI elicits reactive spinal cord microglia

and confers neuroprotection, leading to functional recovery (48).

Indeed, a pro-inflammatory response seems to be necessary, at least

in the acute phase or before injury; however, our results show that if

this pro-inflammatory stimulus continues over time, the

therapeutic effect ceases and becomes disadvantageous. We also

observed that animals treated with the pro-inflammatory secretome

tend to have more neuropathic pain. This data is in accordance with

the current literature demonstrating that inflammation in the spinal

cord leads to mechanical allodynia (49, 50). Microglia activation in

the spinal cord is critical for developing pain hypersensitivity

through the production of pro-inflammatory cytokines,

chemokines and extracellular proteases (51). Activated microglia

directly interacts with nociceptors and interneurons by modulating

cell surface receptors and ion channels (52).

The identification and quantification of the molecules on the

secretome were studied using flow cytometry, through the

Legendplex immunoassay kit, and proteomic analysis using LC-

MS/MS. Proteomics data were further examined using the STRING

database, a web-based open resource that analyzes all known and

predicted associations between proteins, including physical and

functional interactions (53). Cluster analysis of the M(INF-g+LPS)-

derived secretome revealed that only one class of proteins was

functionally enriched. Namely, proteins associated with a pro-

inflammatory response, such as molecules related to positive
BA

FIGURE 9

Proteomic analysis by LC-MS/MS focused on the proteins that presented higher concentration in the secretome. (A) 14 out of 17 pro-inflammatory
proteins were overconcentrated in M(INF-g+LPS)-derived secretome; 3 out of 4 anti-inflammatory proteins were overconcentrated in M(IL-10+TGF-b1)

secretome; M(IL-10+TGF-b1) secretome was enriched in proteins involved on phagocytosis (9 out of 10) and in proteins involved in tissue repair/
remodeling (7 out of 8). (B) Cluster analysis using the STRING database revealed that the secretome of M(INF-g+LPS) macrophages only presented
proteins related to the inflammatory process (antigen processing and presentation of peptide antigen, T cell mediated cytotoxicity and complement
activation); M(IL-10+TGF-b1) macrophages secreted proteins were classified into three main clusters: Cluster 1 - proteins related with metabolic
process; Cluster 2 - proteins that participate in biological processes, such as, astrocyte activation, involved in immune response, regulation of
dendritic spine maintenance and regulation of response to wounding; and Cluster 3 - proteins that play a role in cellular processes such as axon
extension and central nervous system neuron development. Proteins were identified using the KEGG Orthology database. 1 independent experiment
was performed.
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regulation of T cells cytotoxicity and lymphocytes, mediate

immunity, as well as complement activation molecules and

proteins involved in antigen processing and presentation of

peptide antigen. The immunoassay also revealed that the

cytokines TNF-a, IL-12p40, and G-CSF were enriched in the M

(INF-g+LPS) secretome. On the other hand, analysis of the M(IL-10

+TGF-b1)-derived secretome showed that these macrophages secrete

a wide variety of proteins structured in three main functional

clusters: 1) proteins involved in phagocytosis; 2) proteins involved

in tissue remodeling/response to wounding; and 3) proteins with

anti-inflammatory properties. Moreover, STRING analysis

identified clusters of proteins on the M(IL-10+TGF-b1) secretome

involved in axon extension, dendritic spine maintenance,

establishment of cell polarity, and regulation of astrocytic

activation. Looking for individual proteins enriched in the M(IL-10

+TGF-b1) secretome, it is possible to find some proteins with a known

effect after SCI. For instance, it was demonstrated that Anexinn 1a

administration decreased caspase-3 and IL-1b expression, reduced

tissue damage, and protected axons of long descending pathways in

vivo (54). In this context, the presence of Anexinn 1a within the

secretome likely contributed to the preservation of long descending

and ascending spinal tract. Our findings underscore the capacity of

the M(IL-10+TGF-b1) secretome to significantly support the structural

integrity of crucial neuronal tracts, including the ascending

spinocerebellar tract (SCT) and the descending rubrospinal (RST)

and corticospinal tracts (CST). Notably, these tracts assume pivotal

roles in locomotion. For instance, the significance of SCT neurons

in orchestrating the genesis and perpetuation of locomotor behavior

in both neonatal and adult mice has been previously described (55).

SCT neurons exhibit inherent rhythmogenic attributes and intricate

circuit connectivity with spinal interneurons within the locomotor

central pattern generator (55). Moreover, the indispensability of this

neuronal pathway for motor function restoration in human

individuals afflicted with spinal cord injuries has been well

documented (56–58).

Likewise, the RST plays a multifaceted role in various

components of dexterous motor functions. Disruptions within the

RST give rise to deficits in intricate motor tasks such as reaching

and grasping, as well as stepping movements (59). Evidently, the

structural soundness of the RST is indispensable for limb

coordination during activities encompassing food retrieval and

ambulation. Equally pivotal, the contribution of CST neurons to

voluntary movement has been extensively elucidated (60, 61), as has

the paramount importance of this spinal tract in effecting motor

recovery in SCI patients (62, 63). It is important to note that a

higher degree of neuronal preservation was observed within regions

that continue to receive afferent neuronal input. Consequently, the

rostral portions of the descending tract demonstrate a superior level

of neuronal preservation compared to their caudal counterparts due

to the enduring reception of supraspinal information. In contrast,

the ascending tract exhibits an inverse relationship, wherein higher

preservation is evident in caudal regions due to the persistence of

afferent input.

Progranulin is another protein enriched in the M(IL-10+TGF-b1)

secretome, which may play a key role in repairing the injured spinal

cord. Progranulin deficiency has been demonstrated to promote
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neuroinflammation and apoptosis and exacerbate damage (64).

Moreover, progranulin protects lysosomal function and enhances

the autophagic flux of microglia, allowing these cells to acquire an

anti-inflammatory phenotype (65) and modulate the expression of

GFAP, thereby decreasing the pro-inflammatory activation of

astrocytes (66, 67). Indeed, previous studies have demonstrated

that microglia respond rapidly to pathological stimuli, influencing

then the fate of astrocytes (68, 69). Additional, using single-cell

RNA sequencing, Brennan and colleagues revealed that microglia

play a pivotal role in controlling stereotypical astrocyte-specific

functions triggered by SCI, including upregulation of inflammatory

genes, lipid processing, cell adhesion, and proliferation (70). Pro-

inflammatory microglia release IL-1b, TNF-a, and complement

component 1 subcomponent q (C1q), inducing the formation of

inflammatory reactive astrocytes, commonly referred to as A1.

Conversely, anti-inflammatory microglia promote the induction

of pro-regenerative astrocytes, known as A2, thereby mitigating

inflammation and exerting neuroprotective effects (68). Our

histological analysis revealed that systemic injections of M(IL-10

+TGF-b1) secretome resulted in fewer amoeboid microglia and

reduced astrogliosis in the spinal cord tissue 5 weeks post-injury.

The factors present in the secretome likely influenced the microglial

phenotype, leading to decreased astrogliosis.

TGF-b1 is elevated in the M(IL-10+TGF-b1) secretome; however,

its role after SCI is more controversial. Some studies have stated that

TGF-b1 might have a detrimental role after SCI (71, 72), while

others have shown that it may have a therapeutic role (73, 74). One

study described TGF-b1 as an inducer and promoter of fibroblasts

distribution and fibrotic scar formation (72). However, in this study

we specifically analyzed the fibrotic scar and observed a significantly

reduction of fibrosis on M(IL-10+TGF-b1)-treated animals; therefore,

the systemic administration or the presence of other molecules on

the secretome seems to inhibit this effect of TGF-b1 on fibrosis. One
possible explanation for this finding is that it may be an indirect

effect mediated by the modified microglia, similar to the mechanism

observed in astrogliosis. It was demonstrated that microglia

activated with anti-inflammatory factors can attenuate

neuroinflammation-induced scarring by rescuing the expression

of Arf and Rho GAP adapter protein 3 (75). Additionally,

transplantation of neonatal microglia and single-cell RNA

sequencing studies have highlighted the crucial role of microglia

in scar-free healing (76). It is also important to point out that

PDGFR+ cells may play a multifaceted role after spinal cord injury,

with conflicting findings reported in the literature. As a major

pericyte marker, PDGFRb has been associated with the

proliferation of scar-forming cells (77). Studies suggest that

inhibiting the proliferation of PDGFRb+ pericytes reduces fibrotic

scar formation by fibroblasts, thereby promoting axon regeneration

and functional recovery following SCI (78). On the contrary,

evidence also indicates a positive role for PDGFRb+ pericytes in

sealing the lesion core after SCI, aiding in injury containment and

protecting neural tissue (77, 79). However, it was demonstrated that

PDGFR+ cells that contribute to normal tissue healing and

regeneration return to their physiological niche, and that their

prolonged presence in the tissue resulted in tissue fibrosis and

aberrant healing (80). Our analysis was performed 38 days after
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injury, which may indicate that these cells are contributing to tissue

fibrosis instead of tissue healing.

Finally, Dihydropyrimidinase-related protein 2, also known as

Collapsin Response Mediator Protein-2 (CRMP2), is recognized for

its affinity for tubulin heterodimers and functions in regulating the

microtubule network, playing an important role in neuronal

polarity establishment and axonal guidance (81). Several authors

have identified CRMP2 as a crucial molecule for axonal

regeneration (82, 83). The presence of this protein in the M(IL-10

+TGF-b1) secretome may be crucial for explaining the regeneration

observed when using DRGs. In vivo CRMP2 was also identified as a

contributor to the maintenance of spinal-cord regenerative ability

(84), playing a key role in promoting axonal regeneration and

leading to functional motor improvements (85). Recently, the

function of CRMP2 was also described in human cells. The

GADD45G/p38 MAPK/CDC25B signaling pathway promotes

dephosphorylation of phosphorylated CRMP2 which in turn

facilitates microtubule polymerization and leads to neurite

outgrowth in human neurons (86).

Identifying the mechanism of action of our therapeutic

approach is challenging; most likely, several proteins and

extracellular vesicles have a distinct therapeutic action over time.

Nonetheless, future experiments will focus on blocking some of the

most promising candidates to understand whether the beneficial

effects of the M(IL-10+TGF-b1) secretome have one or several origins.

In the first week after SCI, most of the monocytes circulating in the

blood will be derived from the spleen reservoir (4), so in a putative

clinical situation there is no need to obtain monocytes from the

spleen of the person with SCI, a sample of blood will work.

However, in future experiments, we will also have to test whether

the M(IL-10+TGF-b1) secretome obtained from monocytes isolated

from blood has the same therapeutic action as those obtained

directly from the spleen. Finally, in this study, we started the

treatment 3 days after injury, which means that in a clinical

scenario patients need to receive injections of the allogeneic-

derived secretome. For autologous treatment, we will need to

assess whether the M(IL-10+TGF-b1) secretome maintains its

therapeutic effect when administered at least 10 days post-injury.
Conclusions

In this study, we demonstrated that different splenic

macrophage phenotypes secrete factors and extracellular vesicles

with distinct therapeutic effects. We conclude that systemic

injection of the M(IL-10+TGF-b1) secretome is the most effective

treatment in promoting functional motor recovery after

compressive SCI. Additionally, the M(IL-10+TGF-b1) secretome

supported the recovery of bladder function. Proteomic analysis

showed that these macrophages secrete a wide variety of proteins

involved in axon extension, dendritic spine maintenance,

establishment of cell polarity, and regulation of astrocytic

activation. The results presented herein are promising, and

additional research is needed to optimize and characterize this

therapy so that it can be translated to clinical use.
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SUPPLEMENTARY FIGURE 1

Splenic macrophages characterization. (A) MCS-F is essential for the survival

and proliferation and differentiation of splenic monocytes into macrophages.
(B) After 24h of polarization with the pro-inflammatory molecules LPS and

INF-g, 89% of the macrophages expressed iNOS. (C) A total of 487 proteins
identified, 81 were exclusive to the secretome of M(INF-g+LPS) macrophages,

35 to M(IL-4+IL-13), and 90 to M(IL-10+TGF-b1). (D) Using the PANTHER tool was

possible to identified metabolite interconversion enzymes (dark blue) as a
common protein class between the different macrophage populations, but as

can be observed by the pie charts, the protein class and the percentage of
proteins in different classes varied considerably among each cell phenotype.

Anti-CD11b antibody was used to identify macrophages (green), anti-iNOS
antibody was used to confirm the polarization (red) and nuclei was
Frontiers in Immunology 19105
counterstained with DAPI (blue). Scale bar =50 µm. 2 independent
experiments were performed for the in vitro data and 1 independent

experiment for proteomics analysis.

SUPPLEMENTARY FIGURE 2

Classical (M(INF-g+LPS)) or alternative (M(IL-4+IL-13); M(IL-10+TGF-b1)) activated
macrophages co-cultured with dorsal root ganglia (DRGs) in 2D. DRGs

stained with Neurofilament (green), Macrophages and DRGs stained with
Phalloidin (red) and nuclei counterstained with DAPI (blue). (A) DRGs co-

cultured with M(IL-10+TGF-b1) macrophages had significantly higher axonal

arborization (3, 17 df, p<0.0001) and (B) significantly longer axons
(p=0.0247) than the than M(IL-4+IL-13). (C) M(IL-10+TGF-b1) also had significant

more axonal area (0.0240) than the M(IL-4+IL-13). Two way ANOVA followed by
Tukey post-hoc test was used for axonal arborization analysis and Kruskal-

Wallis test followed by Dunn’s multiple comparisons test was used for longer
distance and axonal area analysis. Data is presented as mean ± standard error

(SEM). *- p< 0.05; ***- p< 0.001. Scale bar =200 µm; M(INF-g+LPS) n=5; M(IL-4

+IL-13) n=4; M(IL-10+TGF-b1) n=5. 2 independent experiments were performed.

SUPPLEMENTARY FIGURE 3

Histological analysis of the spinal cord. (A) Representative image of gray

matter neurons from M(IL-10+TGF-b1)-treated group, cell bodies were
measured by counting the number of positive NeuN cells (red) in laminae

VIII and IX of both ventral horns. (B) Rostral-caudal analysis demonstrated that

the secretome derived from M(IL-10+TGF-b1) cells significantly promoted
neuronal survival at the ventral horns (3, 253 df, p= 0.0438) when

compared with M(IFN-g+LPS). (C) Representative image of fibrotic scar from
vehicle-treated group, anti-PDGFRb antibody (red) was used to analyze

fibrosis in the spinal cord. (D) Although there are not significant differences
in PDGFRb+ total area between treated groups, (E) rostral caudal analysis
show that mice treated with M(IL-10+TGF-b1)-derived secretome had

significantly less fibrosis caudally to the injury area (3, 49 df, p= 0.0370).
ANOVA followed by the Tukey post-hoc test was used to analyze statistical

differences. A total of 312 spinal cord slices were observed to analyze
neuronal survival and 134 slices (53 for the caudal calculation) for fibrosis.

Data is presented as mean ± standard error (SEM). *- p< 0.05. Vehicle n=7; M

(INF-g+LPS) n=6; M(IL-4+IL-13) n=8; M(IL-10+TGF-b1) n=6. 1 independent experiment

was performed.

SUPPLEMENTARY FIGURE 4

LEGENDplex immunoassay. The pro-inflammatory cytokines TNF-a, G-CSF
and IL12p40 were significantly concentrated on the secretome of M(INF-g+LPS).

The cytokine/hormone G-CSF was also significantly concentrated on the M

(INF-g+LPS)-derived secretome. TGF-b1, a cytokine with anti-inflammatory

properties was significantly concentrated in the M(IL-10+TGF-b1)-derived

secretome. Data was analyzed using the two-way ANOVA (2, 130 df,
p<0.0001) followed by the Tukey’s multiple comparisons test. Data is

presented as mean ± standard error (SEM). *- p< 0.05; ***- p< 0.001, M(IFN-

g+LPS) n=4; M(IL-4+IL-13) n=6; M(IL-10+TGF-b1) n=6. Concentration values plotted

in the graph were divided by 10 to account for the concentration step
performed before the analysis. The values for CXCL-1, IL-12p70, and IL-10

were below the limit of detection and were consequently excluded from the

analysis. 1 independent experiment was performed.

SUPPLEMENTARY FIGURE 5

Gating strategy used for flow cytometry analysis of mice blood cells. Doublets

were excluded by FSC-A vs FSC-H scatter. Blood total cells were gated by
SSC-A vs FSC-A scatter. Leukocytes were gated by CD45+ cells and on this

population lymphocytes and myeloid cells were distinguished by CD11b

expression. In lymphocytes population, CD3+CD19- cells were defined as T
cells and CD3-CD19+ cells were defined as B cells. Inmyeloid cell population,

Ly6G vs Ly6C allowed the selection of neutrophils (Ly6G+Ly6C+) and
monocytes (Ly6G-Ly6C+). The selection of eosinophils vs monocytes Ly6C

intermediate vs monocytes Ly6C high was made based on Ly6C vs SSC-
A gating.

SUPPLEMENTARY FIGURE 6

Negative control fluorescence images of the Alexa Fluor 594 goat anti-rabbit

antibody (red) both at the injury site and 800mm from the injury site. DAPI
(blue) was used as structural marker.
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Mitochondrial extracellular
vesicles, autoimmunity
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For many decades viral infections have been suspected as ‘triggers’ of

autoimmune disease, but mechanisms for how this could occur have been

difficult to establish. Recent studies have shown that viral infections that are

commonly associated with viral myocarditis and other autoimmune diseases

such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are

released from cells in mitochondrial vesicles that are able to activate the innate

immune response. Studies have shown that Toll-like receptor (TLR)4 and the

inflammasome pathway are activated by mitochondrial components.

Autoreactivity against cardiac myosin and heart-specific immune responses

that occur after infection with viruses where the heart is not the primary site of

infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the

highest density of mitochondria in the body. Evidence exists for

autoantibodies against mitochondrial antigens in patients with myocarditis

and dilated cardiomyopathy. Defects in tolerance mechanisms like

autoimmune regulator gene (AIRE) may further increase the likelihood of

autoreactivity against mitochondrial antigens leading to autoimmune disease.

The focus of this review is to summarize current literature regarding the role of

viral infection in the production of extracellular vesicles containing

mitochondria and virus and the development of myocarditis.
KEYWORDS

autoimmune disease, extracellular vesicles, mitochondria, mitochondrial-derived
vesicles, myocarditis, AIRE, coxsackievirus
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Highlights
Fron
• Mitochondrial extracellular vesicles contain CVB3

• Extracel lular vesicles containing mitochondrial

components activate TLR4/NLRP3

• Autoantibodies against mitochondria are found in patients

with myocarditis

• The autoimmune regulator AIRE may bind few

mitochondrial genes
Introduction

The immune system protects the host against infection by

specifically recognizing and eliminating foreign pathogens, but in

the process must avoid responding to host antigens. During

maturation of the immune system, immune cells that react

against self-antigens are eliminated providing an immune system

that is ‘tolerant’ to self (1). T cells that escape central tolerance are

additionally regulated with peripheral tolerance mechanisms that

include the conversion of self-reactive T cells to regulatory T cells.

Autoimmunity that progresses to autoimmune disease can occur if

this process breaks down (2). Genetic and environmental factors

contribute to the development of autoimmune diseases, but twin

studies indicate that environmental factors are a significant

contributor (3, 4). For many decades viral infections have been

suspected as ‘triggers’ of autoimmune disease, but mechanisms for

how this could occur have been difficult to establish (2, 5, 6). Recent

findings suggest that subversion of host cellular extracellular vesicle

(EV) processing by viral infections may lead not only to activation

of the immune response against the virus but also against

mitochondrial or other self-antigens thereby contributing to the

development of autoimmune disease. In this review, we describe

EVs with mitochondrial content, their relationship to viral

infections such as coxsackievirus B3 (CVB3), and their potential

role in driving autoimmune diseases with a focus on myocarditis.
Extracellular vesicles

In the last decade there has been a major increase in interest in

EVs in their role in cell-to-cell communication, as biomarkers and

as therapeutics (7, 8). Many terms and definitions are used to

describe EVs, and in this review we use the term EVs to refer to all

extracellular, lipid bilayer, sub-cellular particles and their functional

contents with sizes ranging from several nm to several mm (9, 10).

This umbrella term includes the widely recognized major subgroups

termed exosomes, microvesicles, and apoptotic bodies, which are

currently distinguishable only by their theorized origin and size but

not by experimental means (11). EVs are engaged in cellular

communication in both health and disease as transporters of

molecular signals in the form of nucleic acids (e.g., DNA, mRNA,
tiers in Immunology 02109
microRNA/miRs, long-coding RNA/lcRNA and circular RNA/

circRNA), proteins and lipids (11).

When tissue environments are perturbed or cells become

damaged as occurs during a viral infection, EV content changes

based on cellular reprogramming in response to pathological stress

(11, 12). EVs can either activate or inhibit innate and adaptive

immune cell responses based on their content (13–15). EVs have

been demonstrated to express major histocompatibility complex

(MHC) class I or II and directly activate innate antigen presenting

cells (APCs) or adaptive T and B cells in an antigen/self-antigen-

specific manner (16, 17). Tetraspanins like CD9, CD63 and CD81,

which are commonly used to characterize EVs, bind factors on

innate immune cells like integrins (i.e., CD11b) that are important

in activating and modulating immune responses (12, 18).
Viral infection and EVs

Importantly, many viruses use EV cellular machinery (i.e.,

exosome endosomal sorting complexes required for the transport/

ESCRT pathway) for viral transmission such as cytomegalovirus,

coxsackievirus, SARS-CoV-2, human immunodeficiency virus 1

(HIV-1), hepatitis viruses B, C and E (HBV, HCV, and HEV), and

multiple members of the human herpesvirus (HHV) family (reviewed

in (19–22). As a result, EVs can contain infectious virus, viral particles

and/or viral proteins following infection that can subvert the immune

response to promote viral replication. Important from an autoimmune

disease context, a ‘mix’ of self and foreign antigens in/on EVs that may

occur after viral infection may be presented to APCs and drive the

immune response to target not only the infectious agent but also host

antigens resulting in an autoimmune response.
EVs and autoimmune disease

The role of EVs in the development of autoimmune disease has

been studied in patients and animal models. A review article by

Tian et al. recently examined the role of EVs in a number of

autoimmune diseases including thyroiditis, systemic lupus

erythematosus (SLE), multiple sclerosis (MS), rheumatoid

arthritis (RA), anti-phospholipid syndrome and type I diabetes

(23). Many investigators have reported that the number of

circulating EVs are elevated in patients with autoimmune disease

compared to controls (24–26); however, the wide variety of

methods and procedures for isolating EVs as well as differences in

storage conditions makes it difficult to interpret these findings.

Studies examining changes in EV content and function may

provide a clearer picture of their effects in patients with

autoimmune disease. MicroRNA (miRs) content in blood EVs

(exosomes) were identified as biomarkers that distinguished

patients with relapsing-remitting MS (i.e., miR-15b-5p, miR-451a,

miR-30b-5p, miR-342-3p) from those with progressive MS or

healthy controls (27, 28). Eight out of the nine miRs that were

identified in the study were confirmed in a separate group of

patients indicating that the miRs/EVs could serve as biomarkers
frontiersin.org
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to predict MS type. Similar results have been found for other

autoimmune diseases like type I diabetes (29). EVs have also been

found to either promote inflammation/remodeling or to inhibit

harmful immune responses for a number of autoimmune diseases

including RA (30–33), Hashimoto’s thyroiditis (34), type I diabetes

(35), SLE (36), and myocarditis (15). Additionally, EVs have been

found with immunoglobulins (Ig) on their surface including IgG or

internally in the form of self-antigen-complement-Ig immune

complexes (ICs) (37, 38) suggesting that EVs may initiate and/or

promote autoimmune damage and inflammation via ICs (39–42).

Understanding the role of EVs in autoimmune disease is an

emerging field with many questions still to be answered.
Mitochondrial extracellular vesicles

Another form of EVs that have received recent attention and

may play a role in autoimmune disease are those that contain host

cellular components such as mitochondria (e.g., primarily

mitochondrial proteins or RNA) (43). The earliest evidence of

mitochondria and mitochondrial components in vesicles comes

from a description by Vishwa Nath in 1932 of work by Koltzoff in

1906 studying sperm cells from Paratelphusa spinigera (44).

Koltzoff and Nath observed sub-cellular structures in crab

spermatocytes undergoing a process that sounds similar to our

current understanding of mitochondrial-derived vesicles (MDVs)

(intracellular vesicles for mitochondrial transport) (44–46) or

mitophagosomes (mitochondria fission products contained in

autophagosomes for selective autophagy) (47, 48). Both MDVs

and fragmented mitochondria fission products can be sent to

autophagosomes for selective autophagy (46, 49) in a specific

lysosomal degradation of mitochondria process referred to as

‘mitophagy’ (49). The formation of the endoplasmic reticulum

barrier around fragmented mitochondrial pieces (i.e., the

autophagosome), a process that occurs in receptor-mediated

mitophagy, is what Nath suspected protected these structures

(which he only knew as another membrane around a

mitochondrial mass) from rupture and lysis when exposed to

acetic acid (44). Another process that has been referred to as

‘mitoptosis’ involves selective removal of damaged mitochondria

from the cell in vesicles (i.e., EVs) that are generally referred to as
Frontiers in Immunology 03110
mitochondrial EVs (50) or mitovesicles (51) that contain whole or

pieces of mitochondria (52, 53). See images of mitochondrial EVs

budding from cardiac myocytes in Figure 1 (54). Importantly, this

process can occur for healthy physiological removal or transfer of

mitochondria as well as for damaged mitochondria (55).

EVs that contain mitochondria lack standardized definitions

but are known to contain inner and outer mitochondrial membrane

components, mitochondrial nucleic acid (i.e., DNA, RNA), and/or

cardiolipin - a signature phospholipid that is more concentrated in

mitochondrial membranes than cellular membranes (9). The two

known major populations of mitochondrial EVs also differ in terms

of their size: MDVs are smaller (30-100 nm) and EVs containing

larger mitochondrial components or whole mitochondria have a

larger size.
Coxsackievirus B3-induced
mitochondrial EVs

For decades, small non-enveloped RNA viruses like CVB3 were

thought to cause host cell lysis as the primary method of viral

dissemination, but recent evidence has demonstrated that infectious

CVB3 and viral particles are released in mitochondrial EVs (47, 56).

The first evidence that CVB3 infection disrupts cardiac

mitochondria was published in 1964 using young Swiss white

mice (Webster strain) inoculated with tissue culture-derived virus

(57). Investigators utilized microscopy to assess subcellular changes

to the myocardium during viral infection. Notably, they identified

an increase in mitochondrial fission, disruption of mitochondrial

cristae, and smaller mitochondria with additional membranes that

enclosed them that likely depict mitophagosomes (57). A later study

from 1997 identified CVB3 localization around and within cardiac

mitochondria during myocarditis in mice (Figure 2) (58).

In 2017, Roberta Gottlieb’s laboratory published a study

demonstrating CVB3 viral transmission via EVs containing

mitochondrial components (47). Using an in vitro neural

progenitor stem cell model of viral infection, Robinson et al.

demonstrated that CVB3 localizes to the mitochondrial

compartment of infected cells and is later ejected from cells in

vesicles containing virus, inner and outer mitochondrial membrane

components, and autophagy machinery (i.e., microtubule-
FIGURE 1

Mitochondrial derived vesicles (MDVs) from cardiac mitochondria. Widefield transmission electron microscopic images of mitochondria isolated from
bovine heart. (A) 60-100 nm vesicles containing mitochondria. Scale bar, 500 nm, (B) MDV budding from mitochondria containing inner and outer
mitochondrial membrane, (C) Protrusion of MDV from mitochondria showing constriction at its base, (D) MDV forming with only outer
mitochondrial membrane. Panels (B–D), scale bars 100 nm. Reused with permission from (54).
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associated protein light chain 3/LC3-II) (47). Using electron

microscopy, they found these particles ranged in size from 100-

200 nm in diameter and contained single or multiple virions

(Figure 3) (47). They also observed that the ejected particles were

infectious to adjacent uninfected host cells.

The protein dynamin-related protein 1 (Drp1) is required for

mitochondria to undergo fission. Drs. Gottlieb and Sin showed that

CVB3 infection led to Drp1-induced mitochondrial fission resulting

in damaged mitochondria being processed into mitophagosomes

via mitophagy and released from host HL-1 cardiomyocytes in

culture as mitochondrial EVs (48). The role of fission in the

production of mitochondrial vesicles was confirmed by

inhibition/blocking mitochondrial fission machinery using

mitochondrial division inhibitor-1 (Mdivi-1) or direct inhibition

of Drp1 with siRNA which resulted in less viral replication and

fewer/no virus containing EVs in the culture supernatant (48). Dr.

Sin’s group additionally showed that Tank binding kinase I (TBK1)

increased phosphorylation of GABA type A receptor associated

protein-like (GABARAPL) proteins leading to EVs that contain

mitochondria being released from the cells (59). CVB3 infection has

also been shown to perturb syntaxin-17 facilitated mitophagosome-

lysosomal fusion, which may lead to build up and release of formed

mitophagosomes from the cell (60). Thus, these studies confirm that

CVB3 localizes to mitochondria and is released in mitochondrial
Frontiers in Immunology 04111
vesicles. Further research is needed to better understand the

molecular mechanisms of intracellular mitophagosome formation

in the context of viral infections to determine how viruses take

advantage of mitochondrial compartments and evade intracellular

degradation by targeted autophagy. A summary of our current

understanding of CVB3-mitochondria interaction and the

development of EV populations containing mitochondria and

virus is illustrated in Figure 4.
Mitochondrial autoimmunity
and myocarditis

It turns out that many viruses are known to localize to

mitochondria (61–64), utilize mitochondrial machinery for

replication (48, 65), evade immune responses within EVs (66)

and modify cellular processes (59, 60, 67). Importantly, most of

the viruses that are associated with causing myocarditis [e.g., CVB,

influenza, HIV, poliovirus, hepatitis C virus, SARS-CoV-22 (68,

69)] have been found to target mitochondria to gain a replicative

advantage (61–64) and are ejected from cells/tissues in EVs (60, 65,

70, 71) suggesting that these mechanisms may provide an

explanation for how viruses could cause autoimmune disease.
Mitochondrial autoantibodies in patients
with myocarditis

Dr. Peter Schultheiss, a major contributor to the fields of cardiology

and myocarditis, began identifying and characterizing autoimmune

antibodies in patients with myocarditis in the 1970s. In 1978, Bolte and

Schultheiss reported that 76% of 17 patients with viral myocarditis had

autoantibodies in sera and 41% of these were anti-nuclear antibodies

(72). They went on to show that autoantibodies against the adenine

nucleotide transporter (ANT), which is a component of the inner

mitochondrial membrane, were elevated in patients with myocarditis

and dilated cardiomyopathy (DCM) (73, 74). Myocarditis progresses to

DCM in susceptible patients and animal models (75). Patients with

suspected or confirmed viral myocarditis or cardiomyopathy/DCM

had the highest reactivity to anti-mitochondrial antigen and highest

expression of anti-mitochondrial antibodies (74). Further analysis

found that the sera had uniquely specific reactivity toward cardiac

mitochondrial antigen compared to liver or kidney mitochondrial

antigen (76).

Another group independently reported that patients with various

cardiomyopathies including myocarditis had autoantibodies reactive

against mitochondrial proteins (77). They found that 13% with acute

myocarditis, 31% of patients with DCM, and 33% with hypertrophic

cardiomyopathy generated antibody responses specifically to the M7

antigen of the mitochondrial enzyme sarcosine dehydrogenase, and

25% of these reacted against the cardiac-specific form of the

mitochondrial antigen (77). Another group observed autoantibodies

against ANT in patients diagnosed with myocarditis or DCM (78).

They also observed cardiac-specific reactivity and suggested

mitochondrial autoimmune activity as a potential mechanism for the
FIGURE 2

CVB3 localizes around and within murine cardiac mitochondria
during myocarditis. Immunogold electron micrograph of mouse
cardiomyocyte with CVB3 myocarditis on day 8 post infection. Black
dots (arrows) are gold staining of CVB3 viral genome localizing
around and in cardiomyocyte mitochondria. Scale bar, 100 nm. Mt,
mitochondria; Mf, myofibril. Reused with permission from (58).
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development of DCM following acute myocarditis (78). This agrees

with our current understanding of the development of DCM following

acute myocarditis (75, 79, 80).
Mitochondrial autoantibodies in models
of myocarditis

Although viral-induced myocarditis is often categorized as a

distinct condition from autoimmune myocarditis clinically and in

animal models, the distinction between the two conditions is not

clear-cut because patients with viral myocarditis and mouse models of

viral myocarditis have been demonstrated to develop autoantibodies

and autoreactive T and B cells against cardiac myosin and other self-

antigens including mitochondria (2, 39, 79, 81–83).

Importantly, a study examining autoantibody levels that

compared experimental autoimmune myocarditis (EAM) to
Frontiers in Immunology 05112
CVB3-induced myocarditis in mice found that ANT was only

produced after viral infection but not in EAM suggesting that

viral infection was necessary for the production of mitochondrial

autoantibodies whereas both models produced autoantibodies

against cardiac myosin (84). Additionally, Lin et al. showed that

depletion of Drp1 (required for fission) in mice using the

mitochondrial fission inhibitor Mdivi-1 reduced CVB3

myocarditis and restored mitochondrial function in the heart (71)

suggesting that mitochondrial EVs containing virus may increase

myocarditis, although they did not examine this in the study.

Overall, these findings suggest that viral infection may be an

important mechanism to produce mitochondrial autoantibodies

found in patients with autoimmune diseases.
Anti-mitochondrial antibodies in rheumatic
autoimmune diseases

Anti-mitochondrial antibodies (for example, antibodies that

target cardiolipin, mitofusin 1, mitochondrial DNA or

mitochondrial RNA) are commonly found in patients with

rheumatic autoimmune diseases such as RA, SLE, and anti-

phospholipid syndrome (85–87). Mobarrez et al. reports most

larger EVs (0.7 - 3.0 mm) found in SLE patients contain

functional mitochondrial components, as indicated by the

presence of the translocase of outer mitochondrial membrane 20

(TOMM20) and hexokinase1 (25). Elevated levels of these type of

EVs containing mitochondria are positively associated with

increased SLE disease activity, proinflammatory cytokines, and

anti-dsDNA antibodies, suggesting that these EVs may be

involved in disease pathogenesis (25). Becker et al. recently

reviewed the mechanism of immune activation leading to

autoimmune disease by mitochondria in these rheumatic

conditions but does not discuss the potential role of viral

infections in the process or whether the mitochondrial EVs also

contain virus or viral components (85). These findings suggest that

damage to mitochondria resulting in autoimmune responses may

be a common mechanism in the pathogenesis of many

autoimmune diseases.
Activation of autoimmunity by
mitochondrial EVs

One possible mechanism where myocarditis and other

autoimmune diseases could be induced and/or exacerbated by

mitochondrial EVs is by activation of Toll-like receptor (TLR)4,

interleukin (IL)-1b and leucin-rich repeat (LRR)-containing protein
(NLRP)3, which is a pathway that has been demonstrated to

increase myocarditis and viral replication in CVB3 models of

myocardit is (88, 89). Mitochondria are known to be

immunogenic and the TLR4/NLRP3 signaling pathway can be

activated by mitochondrial components such as cytochrome c,

mitochondrial transcription factor A (TFAM), ATP and

cardiolipin, which can all be found in mitochondrial EVs, to

initiate a proinflammatory and profibrotic immune response (90–
FIGURE 3

CVB3 identified in EVs using transmission electron microscopy.
(A) Widefield transmission electron microscopic view of single virion
(green arrow) in an extracellular EV or free virion (pink arrow) from
culture of CVB3 in C2C12 cells. (B) Higher digital magnification
(dashed purple box) of a virus-like particle revealed an icosahedral
shape structure (dashed green polygon) slightly larger than 31 nm in
diameter enclosed within a membrane structure. (C) Large EV
containing multiple virions (green arrows). Scale bars = 100 nm.
Reused with permission from (47).
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94). Mitochondrial and viral antigens may be expressed on the cell

surface or interior of EVs and activate APCs via MHC class II

presentation, TLRs or be processed for presentation after the EV

lipid membrane has ‘merged’ with an APC (23).

However, not all mitochondria found in EVs stimulate the innate

immune response. In some cases, healthy mitochondria within EVs are

found to fuse with recipient mitochondria in cultured cardiomyocytes

and in a mouse model of myocardial infarction where they improve

mitochondrial function and disease (95). These investigators showed a

similar improvement in doxorubicin-induced toxicity in cultured

cardiomyocytes (96). Thus, transfer of healthy intact mitochondria

within EVs represents a novel and potentially viable therapy for

patients with mitochondrial damage or dysfunction (97, 98).
Tolerance against mitochondrial
antigens and myocarditis

As mentioned earlier, a key feature of the immune response that

protects against the development of autoimmunity is the generation

of tolerance to self-antigens that occurs in the thymus (1). Since the
Frontiers in Immunology 06113
generation of T cell receptors (TCRs) in the thymus is a random

process, negative selection of T cells that react too strongly to self-

antigen is required to prevent autoimmunity. To determine whether

there are too many self-reactive T cells, the thymus utilizes the

autoimmune regulator gene (AIRE) and dendritic cells (99, 100).
AIRE and tolerance to self

AIRE is a transcriptional regulator that protects against self-

reactivity by inducing the production of tissue-specific antigens

normally not expressed in the thymus, a process that occurs in

medullary thymic epithelial cells (mTECs) (99). Resident dendritic

cells of the thymus take up self-proteins and present them to T cells. If

reactivity to self-antigen is too strong, dendritic cells undergo cytokine

signalling programs that destroy autoreactive T cells (99). Migratory

and peripheral dendritic cell populations further contribute to negative

selection of autoreactive T cells by selecting against cells reactive to

peripheral antigen from other tissue microenvironments. Migratory

dendritic cells take up antigen in their respective resident tissues and

travel to the thymus whereas peripheral dendritic cells test autoreactive
FIGURE 4

Formation of mitochondrial EVs from cardiomyocytes after CVB3 infection (1). CVB3 gains entry to cardiomyocytes via the coxsackievirus
adrenoreceptor (CAR) or passive entry from previously formed mitochondrial EVs containing replicative virus (2). CVB3 mitochondrial localization
induces mitochondrial stress and damage leading to (3a) mitochondrial-derived vesicle (MDV) formation and Drp1-mediated mitochondrial fission
and recruitment of the endoplasmic reticulum (ER) for autophagosome formation alongside LC3 lipidation (LC3-II). (3b) MDVs containing replicative
and or non-replicative viral particles may either eject from the cell or join multi-vesicular bodies before release from cardiomyocytes (MDVs can also
be slated for receptor mediated mitophagy and potentially escape the cell without GABARAPL phosphorylation, which is not shown in this diagram)
(4). LC3-II binds mitophagy adaptors situated on the outer mitochondrial membrane to form a mitophagosome with GABARAPL proteins on the
endoplasmic reticulum (ER) facing the cytosol (5). Phosphorylation of the mitophagosome on GABARAPL proteins by tank-binding kinase 1 (TBK1)
leads mitophagosomes to subsequent (6) lysosomal fusion and degradation (7). Non-phosphorylated mitophagosomes do not proceed to fusion
with the lysosome but either (8) join the multivesicular body for cell release and dissemination or are ejected alone. The resulting EVs containing
mitochondrial components and viral particles (replicative and/or non-replicative) we term as “mitopods” or mitochondrial escape-pods for CVB3.
The two major sources of mitopods are MDV-derived or fission-derived. Another possible distinguishing feature of fission-derived versus MDV-
derived mitopods would be an additional membrane derived from the ER. This figure was created using BioRender.
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T cells in the periphery (i.e., their tissue of origin) thereby inducing,

depending on the conditions, cell deletion, anergy or polarization

toward a regulatory phenotype (100). It is estimated that there are

1,140 murine genes that interact with or localize to mitochondrial

compartments (101), so AIRE should protect the host from developing

autoimmunity against these mitochondrial antigens. One important

question is whether mitochondrial genes represent a gap in the normal

negative selection criteria in the thymus.
AIRE and mitochondrial autoimmunity

To our knowledge, no studies examining the function of AIRE

describe its ability to produce mitochondrial self-antigen. Two

major studies exist with publically available data of AIRE

genomic binding and related expression (102, 103). A study by

Bansal et al. reported murine transcriptomic data that examined

AIRE binding using chromatin immunoprecipitation (ChIP)

sequencing (ChIPseq). We examined whether any of the antigens

that they reported for AIRE were directed against mitochondrial

antigens using their published transcript-level data. They did not

have protein/proteomic level data available to assess this question.

They estimated AIREs coverage of genes by assessing transcription

among AIRE knockout (KO) mice versus wild type (WT) controls

in data derived from mouse mTECs (103). A negative log fold-

change (LogFC) indicated downregulation of the transcript in the

AIRE KO mice, suggesting that in WT conditions, AIRE may be

responsible, in part, for regulating the transcription of a respective

gene. To determine AIRE regulation of mitochondrial related genes,

we performed a keyword search for “mitochondri” (which yielded

results for mitochondrial, mitochondria, and mitochondrion) in the

gene description column of their dataset, which yielded 315 genes.

Among these, 20 were significantly downregulated at an FDR p ≤

0.05 comparing AIREWT to KO indicating that AIRE may regulate

only 6.3% of the 315 mitochondrial related genes. We also assessed

the potential role of AIRE to regulate 85 murine nuclear-encoded

mitochondrial respiratory chain genes using keyword searches in

the gene name column for “nduf,” “sdh,” “cox,” “uqcc,” and “atp,”

which are the prefixes for gene names among components of

respiratory complexes I-V, respectively. Their data showed a

significant downregulation of 2 of 85 (2.3%) nuclear encoded

mitochondrial respiratory chain genes in AIRE KO vs WT

samples. Mitochondrial genes that were regulated by AIRE are

listed in Table 1. Thus, only a small percentage of potential

mitochondrial genes were regulated by AIRE using this method.

More research is needed to better understand whether AIRE

contributes to tolerance against mitochondrial antigens. Thus, a

lack of mitochondrial tolerance may be one possible explanation for

the development of mitochondrial targeted autoimmune responses

in myocarditis and other autoimmune diseases.
Summary

In summary, we propose the following possible scenario for the

role of mitochondrial EVs in the induction of autoimmune diseases
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like myocarditis. The initial infection with virus will activate

antiviral TLRs like TLR3, 7, 8, 9 in the first few minutes/hours

after infection. The virus will traffic to the mitochondria at the local

site of infection and mitochondria within the virus’ favorite cell

type/primary tropism to obtain a replicative advantage. The virus

will be released from the cell in mitochondrial EVs. Mitochondrial

components expressed within or on the surface of the EVs then

activate TLR4 on APCs. The presence of virus/viral particles and

mitochondrial components together may create a strong ‘adjuvant’

effect to activate the immune response. During the viremic stage of

viral replication, which typically occurs in the first few days after

viral infection, the virus within EVs can traffic through the

bloodstream or lymphatics to the heart where infection of cardiac

tissues can occur in a non-viral receptor specific manner via EVs or

also with viral receptors if they are present in cardiac tissue. For

example, CVB3 may enter cardiac cells via coxsackievirus-
TABLE 1 Mitochondria related and respiratory complex genes expressed
by AIRE in mice from Bansal et al. (103) in order of FDR p value.

Gene
Symbol

Nominal
p value

FDR
p value

LogFCa Category

Mrpl13 0.0000163 0.000559 -1.29492 Mito Related

Mrps30 0.0000776 0.00182 -0.85468 Mito Related

Gls2 0.000243 0.00422 -0.87328 Mito Related

Mtarc1 0.000294 0.00486 -0.74663 Mito Related

Slc25a13 0.000842 0.0107 -0.84998 Mito Related

Cox7a2l 0.000932 0.0116 -0.87238 Resp Chain

Tmem243 0.00111 0.0131 -0.68091 Mito Related

Cox17 0.00149 0.0161 -0.67956 Resp Chain

Immp1l 0.00158 0.0167 -0.58226 Mito Related

Mtrf1l 0.00211 0.0208 -0.5228 Mito Related

Mrpl22 0.00219 0.0215 -0.58552 Mito Related

Mtarc2 0.00239 0.0228 -0.54555 Mito Related

Mterf1 0.00289 0.0260 -0.46945 Mito Related

Mrpl47 0.00307 0.0273 -0.52963 Mito Related

Mto1 0.00388 0.0325 -0.45504 Mito Related

Tomm20 0.00433 0.0349 -0.53508 Mito Related

Micu2 0.0049 0.0381 -0.46659 Mito Related

Diablo 0.00498 0.0385 -0.47024 Mito Related

Tk2 0.00512 0.0394 -0.44682 Mito Related

Bcat2 0.0069 0.0489 -0.53663 Mito Related
aBcat2, branched chain amino acid transaminase 2; Cox7a2l, cytochrome c oxidase subunit
7A2-like; Cox17, cytochrome c oxidase copper chaperone; Diablo, IAP-binding mitochondrial
protein; Gls2, glutaminase 2; Immpl1, inner mitochondrial membrane peptidase subunit 1;
LogFC, Log Fold-Change; Micu2, mitochondrial calcium uptake 2; Mito Related,
mitochondrial related; Mrpl13, mitochondrial ribosomal protein L13; Mrpl22/47,
mitochondrial ribosomal protein L22/47; Mrps30, mitochondrial ribosomal protein S30;
Mtarc1/2, mitochondrial amidoxime reducing component 1/2; Mterf1, mitochondrial
transcription termination factor 1; Mto1, mitochondrial tRNA translations optimization 1;
Mtrf1l, mitochondrial translation release factor 1-like; Resp Chain, respiratory chain;
Slc25a13, solute carrier family 25 member 13; Tk2, thymidine kinase 2; Tmem243,
transmembrane protein 243; Tomm20, translocase of outer mitochondrial membrane 20.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1374796
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Di Florio et al. 10.3389/fimmu.2024.1374796
adenovirus receptor (CAR) which is expressed in the heart. Release

of mitochondrial EVs from mitochondrially rich cardiomyocytes

may drive a cardiac-specific autoimmune response because the

mitochondrial content in/on EVs may contain heart specific

mitochondrial antigens. TLR4 signaling has been found to be an

important pathway in the pathogenesis of many autoimmune

diseases including myocarditis. Autoantibodies against

mitochondrial components are found in patients with many

different autoimmune diseases including myocarditis and in viral

animal models of myocarditis providing evidence of an

autoimmune response against mitochondria. Whether

mitochondrial EVs that originate from the heart occur at a

sufficient level to activate a cardiac-specific autoimmune response

may be one reason why myocarditis occurs only rarely. Defects in

AIRE may also confer susceptibility to autoimmune responses

against mitochondrial antigens in some patients.
Conclusions

For decades the question of whether viruses can cause

autoimmune disease has lacked a plausible explanation. Evidence

exists that viral infections cause myocarditis that is also associated

with autoimmune responses against the heart in patients and

animal models, yet how viruses could cause autoimmunity in

myocarditis is not clear. Recent evidence substantiates that many

viruses, and in particular the viruses that are associated with clinical

cases of myocarditis, target mitochondria to promote viral

replication and to evade the immune response they are ejected

from cells within EVs. Often these EVs also contain mitochondrial

components. It is known that EVs contain proteins, receptors and

other components that identify them as originating from self-tissue.

EVs that contain replicative virus and/or virus particles and

mitochondrial components may form powerful danger signals to

the immune system activating TLR4- a key pathway in the

pathogenesis of myocarditis and DCM. Autoantibodies against

mitochondrial components and specifically cardiac mitochondria

are found in patients with myocarditis and DCM providing insight

that viral infections may promote the release of mitochondrial

antigens to activate an autoimmune response. Additionally,

defects in AIRE may allow heightened self-reactivity against

mitochondrial antigens. These mechanisms provide an

explanation for how viral infections may initiate or promote

autoimmune diseases like myocarditis.
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Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell

of origin. They are derived from cells through exocytosis, are ingested by target

cells, and can transfer biological signals between local or distant cells. Therefore,

exosomes are often modified in reaction to pathological processes, including

infection, cancer, cardiovascular diseases and in response to metabolic

perturbations such as obesity and diabetes, all of which involve a significant

inflammatory aspect. Here, we discuss how immune cell-derived exosomes

origin from neutrophils, T lymphocytes, macrophages impact on the immune

reprogramming of diabetes and the associated complications. Besides, exosomes

derived from stem cells and their immunomodulatory properties and anti-

inflammation effect in diabetes are also reviewed. Moreover, As an important

addition to previous reviews, we describes promising directions involving

engineered exosomes as well as current challenges of clinical applications in

diabetic therapy. Further research on exosomes will explore their potential in

translational medicine and provide new avenues for the development of effective

clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.
KEYWORDS

exosomes, diabetes, anti-inflammation, immune cells, clinical application
1 Introduction

Diabetes mellitus, a group of metabolic disorders characterized by prolonged high

blood sugar levels, is a global health issue affecting over 400 million people worldwide (1).

This number is expected to surge to approximately 700 million by 2045 (2). The disease

occurs either due to insufficient insulin production by the pancreas or the body’s inability to

effectively utilize the produced insulin (3). The most common symptoms include weight
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loss, polydipsia, polyuria, and constant hunger. If not properly

managed, diabetes mellitus can lead to severe complications such as

kidney failure, unhealed wounds, vision loss, heart attacks, nerve

damage, and even increase the risk of cancer (4). There are three

main types of diabetes: type 1 diabetes mellitus (T1DM), type 2

diabetes mellitus (T2DM), and gestational diabetes mellitus. T1DM

and T2DM account for 7-12% and 85-90% of global diabetes cases

respectively. The rapid increase in diabetes mellitus cases worldwide

underscores the disease’s significance as a public health concern.

Besides traditional treatment with insulin and oral anti-diabetic

drugs, clinicians are attempting to enhance patient care through the

use of cell therapies involving embryonic stem cells (ESC),

induced pluripotent stem cells (iPSC), and adult mesenchymal

stem cells (MSC) (5). However, there are unintended safety

concerns such as immune rejection, genetic or disease transfer,

and ectopic cell differentiation existing in whole-cell therapy.

Recently, exosomes have been reported to play a role in multiple

diseases and have been shown to be key mediators of various

pathogenetic mechanisms. Compared with cell-based therapy,

exosomes contain large amounts of bioactive molecules including

proteins and nucleic acids. They exhibit high biocompatibility and

low immunogenicity (6), and are able to circulate into distant sites

and freely pass across the blood-brain barrier duo to their nanoscale

size (7).

Recent studies have shown that exosomes play a role in the

occurrence, development, and treatment of diabetes and its

complications. However, there are few summaries from the

perspective of immunity and inflammation regarding the

treatment and mechanisms of exosomes from different cell

sources in diabetes and its complications. This review summarizes

the latest advances concerning the roles of exosomes and immune

regulation/inflammation in diabetes.
2 Description of exosomes

Exosomes are small membrane-bound vesicles secreted by cells,

usually between 30 and 200 nanometers in diameter. They play an

important role in transmitting information between cells, regulating

cell function, and participating in the occurrence and development

of diseases (8). The biogenesis of exosomes involves three processes:

generation, release, and uptake (9). Within the cells, membrane

proteins and lipid molecules responsible for membrane synthesis

are synthesized and packaged into endoplasmic reticulum vesicles.

Subsequently, these vesicles fuse into polyvesicles. Vesicles in

polyvesicles can further fuse to form exosomes (9). The release of

exosomes is mainly accomplished through the fusion of polyvesicles

with cell membranes. When the polyvesicles fuse with the cell

membrane, the inner vesicles are released outside the cell to form

exosomes (10). Exosomes are taken up by target cells by means of

membrane fusion and endocytosis, and then release their cargo into

the cytoplasm to exert their effects (11).Therefore, exosomes may

manipulate recipient cells and other organs over a long

distance (12).

Previous studies have demonstrated that exosomes, functioning

as intercellular junctions, transport proteins, lipids, and nucleic
Frontiers in Immunology 02119
acids to target cells. They are involved in a variety of biological

processes including nucleic acid regulation, antigen presentation,

metabolite transportation, and inflammation management.

Furthermore, they hold potential as diagnostic and therapeutic

tools for various diseases (13). Significantly, small non-coding

RNAs (ncRNAs), which are approximately 19 to 24 nts in length

and are a subset of nucleic acids, have garnered considerable interest

within the scientific community due to their regulatory function

(14). In this review, we have summarized the involvement of

exosomes derived from immune cells and non-immune cells

(such as stem cells) in the occurrence and intervention

mechanisms of diabetes and its complications, many of which

involve ncRNAs (Table 1), based on recent reports. Thus, delivery

of multiple ncRNAs via exosomes may have promise over a wide

range of applications.
3 Immune cell-derived exosomes
and diabetes

In 1996, Raposo et al. reported that B lymphocytes secrete

antigen-presenting vesicles (36). Since then, more and more studies

have found that exosomes secreted by immune cells interact with

cells in the immune system to regulate immune responses (37).

Therefore, these membranous vesicles are being explored as

potential immunotherapeutic reagents. Immune cell-derived

exosomes can activate the immune system through various

mechanisms (38). Firstly, they can directly activate immune cells

such as dendritic cells and T cells through antigen presentation on

their surface. Secondly, they can indirectly activate immune cells by

releasing immune-stimulating molecules such as cytokines and

chemical mediators. In addition, immunogenic exosomes may

also regulate the function of immune cells by transferring

immune-related nucleic acid molecules such as miRNA and

mRNA. Previous studies have shown that immune-derived

exosomes played a role in the development and progression of

diabetes mellitus, making them a key regulator in the disease (39).
3.1 The roles of neutrophils-derived
exosomes in diabetes

Polymorphonuclear neutrophils (PMNs), which make up 40-

70% of all white blood cells in humans, are the most prevalent type

of granulocytes. Neutrophils act as the first line of defense against

invasive pathogens in the host and have a natural ability to

phagocytose pathogens (40). Thus, neutrophils serve as important

immune and secretory cells and play a crucial role in inflammation

and infection processes (41). The status of the parent cell is reflected

in the neutrophils-EXOs, which exhibit strong antibacterial ability

due to the presence of components like myeloperoxidase, elastase,

dermcidin, and lysozyme (42). In a recent research, investigators

loaded extracellular matrix (ECM) hydrogel with vascular

endothelial growth factor (VEGF)-encapsulated activated

neutrophil exosome mimetics (aPMNEM) to develop VEGF-

aPMNEM-ECM hybrid hydrogel for treating chronic diabetic
frontiersin.org
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TABLE 1 Changes of exosomal ncRNAs in diabetes.

Source Models Contents Alteration Functions References

adipose
tissue macrophages

T2DM miR-210 increase promoted diabetes pathogenesis by regulating glucose uptake and
mitochondrial CIV activity

(15)

adipose
tissue macrophage

T2DM miR-29a increase induced insulin resistance (16)

M1 macrophage T2DM miR-212-5p increase restricted insulin secretion (17)

bone marrow-
derived
macrophages

T2DM miR-144-5p increase impaired bone regeneration (18)

macrophage Diabetic
vascular
disease

miR-150-5p decrease promoted resistin expression in macrophages (19)

M2 macrophages Diabetic
nephropathy

miR-93-5p increase attenuated LPS-induced podocyte apoptosis (20)

EPCs Diabetic
wounds

miRNA-221-3p increase downregulated the expression of p27 and p57 proteins in the cell
cycle signaling pathway

(21)

EPCs Diabetic
wounds

miR-126-3p increase promoted the recovery of tubulogenic function of high-glucose-
impaired HUVECs.

(22)

EPCs Diabetic
stroke

miR-126 increase attenuated acute injury and promoted neurological
function recovery

(23)

EPCs Diabetic
wounds

mmu_circ_0000250 increase enhanced the therapeutic effect of ADSC-exosomes to promote
wound healing

(24)

ADSC Diabetic
wounds

miR-132 increase reduced inflammation, promoting angiogenesis and stimulated
M2-macrophages polarization, promote wound healing

(25)

ADSC Diabetic
wounds

miR-21-5p increase induced M2 polarization of macrophages and augmented skin
wound healing

(26)

HypADSCs Diabetic
wounds

miR-21-3p/miR-
126-5p/miR-31-5p

increase promoted diabetic wounds healing and inhibited inflammation (27)

HypADSCs Diabetic
wounds

miR-99b/miR-
146-a

decrease promoted diabetic wounds healing and inhibited inflammation (27)

MSCs Diabetic
kidney
disease

miR-424-5p increase alleviated high glucose-induced cell apoptosis and EMT (28)

MSCs Diabetic
kidney
disease

miR-22-3p increase protected podocytes and reduced inflammation (29)

MSCs Diabetic
nephropathy

miR-146a-5p decrease restored renal function, facilitated M2 macrophage polarization (30)

MSCs Retinal
inflammation

miR-126 decrease reduced high glucose-induced HMGB1 expression and the activity
of the NLRP3 inflammasome

(31)

MSCs Diabetic
wounds

miR -155 increase NA (32)

MSCs Diabetic
foot ulcer

lncRNA H19 decrease prevented the apoptosis and inflammation of fibroblasts, leading to
the stimulated wound-healing process

(33)

MSCs Diabetic
wound

lncRNA KLF3-AS1 increase down-regulated miR-383, boosted expression of VEGFA (34)

MSCs Diabetic
stroke

miR-9 decrease promoted white matter remodeling and anti-
inflammatory responses

(35)
F
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EPCs, endothelial progenitor cells; ADSC, adipocyte-derived stem cell; HypADSCs, hypoxia adipose stem cell; MSCs, mesenchymal stem cells; T2DM, type 2 diabetes mellitus; CIV,continuous
intravenous infusion; LPS, lipopolysaccharide; HUVECs, human umbilical vein endothelial cells; EMT, epithelial-mesenchymal transition; HMGB1,high mobility group box 1 protein; NLRP3,
nod-like receptor thermal protein domain associated protein 3; VEGFA, vascular endothelial growth factor A; NA, not applicable.
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wounds (40). Compared to directly using exosomes or using

exosomes derived from other cells, this aPMNEM-ECM based

biomaterial has the following advantages (1): for wound infection

treatment, aPMNEM can play an antibacterial role via bactericidal-

associated proteins (2); as a carrier, aPMNEM can deliver cytokines,

and protect them from degradation (3); as a hermosensitive

material, ECM can function as an in situ gel in vivo and increase

the residence of aPMNEM. The study not only provided a

functional biomaterial for the regeneration of chronic diabetic

wounds but also created a promising platform for cytokine

therapy, which can potentially be used to treat different diseases

by loading various available cytokines in aPMNEM-ECM (40).
3.2 The roles of T lymphocytes-derived
exosomes in diabetes

Type 1 diabetes mellitus is an autoimmune disorder characterized

by infiltration of the islets of Langerhans by immune cells and by

selective elimination of the insulin-secreting b cells (43). Regazzi’s team
reported that miR-142-3p, miR-142-5p and miR-155 are particularly

enriched in T lymphocytes of 8 weeks NOD mice with respect to

mouse pancreatic islets (44). In type 1 diabetes, T lymphocytes-EXOs

carrying specific microRNAs that induce chemokine expression and

apoptosis in recipient pancreatic b cells. The inactivation of miR-142-

3p/-5p and miR-155 in b cells leads to increased insulin levels,

decreased insulitis scores, reduced inflammation, and provides

protection against diabetes development in NOD mice (44).
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3.3 The roles of macrophages-derived
exosomes in diabetes

Macrophage-derived exosomes have been shown to have

diverse functions in immune regulation, tissue repair, and

communication between cells (45). Based on the functional

profiles, macrophages are divided into two sub-populations: type

1 macrophages (M1, pro-inflammation) and type 2 macrophages

(M2, anti-inflammation) (46). M1 macrophages play a role in the

early phase of inflammation and are linked to tissue damage and

pro-inflammatory activities, whereas M2 macrophages release

cytokines that suppress inflammation and have anti-inflammatory

effects (47). Recent studies have shown that the macrophages-EXOs

contribute to the progression of diabetes (48) (Figure 1).

3.3.1 Exosomes derived from M1 macrophages
3.3.1.1 Impairing insulin sensitivity, secretion and glucose
uptake through miRNAs

Chronic tissue inflammation caused by accumulation of M1

macrophages is an important hallmark of insulin resistance.

According to prior research, the population of activated M1

macrophages residing within adipose tissue increased in obese

mice, resulting in an increased ratio of M1 to M2 macrophages

(49). The M1 macrophage is the predominant cell responsible for

secreting exosomes containing miR-29a in obese mice (16). MiR-

29a targets peroxisome proliferator-activated receptor-d, leading to
impairments of insulin sensitivity both in vitro and in vivo (16).

Moreover, M1 macrophage secreted exosomal miRNA may directly
FIGURE 1

How macrophage derived-exosomes contribute to the pathogenesis, complications, and therapy of diabetes. Diabetic environment induce
macrophage to M1 polarization, and the M1 macrophage secret exosomes which contains abnormal ncRNAs that promote diabetes and associated
complications. Converting the ratio of M1/M2 macrophage polarization is supposed to be a therapeutic application, which accelerates diabetes
recovery via various mechanisms. CIV, complex IV; MMP-9, matrix metalloproteinase-9; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a; p-AKT,
phospho-Akt; PI3K, phosphoinositide 3-kinase; TLR4, toll-like receptor 4; MCP-1, monocyte chemotactic protein-1; interleukin-1b; NLRP3, NOD-like
receptor thermal protein domain associated protein 3; PPARg, peroxisome proliferator-activated receptor g; GLUT4, glucose transporter type 4;

UCP1, uncoupling protein 1; OXPHOX, oxidative phosphorylation :inhibit :promote.
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give rise to beta cell impairment. Qian et al. reported that the M1

macrophage-EXOs contained miR-212-5p, which regulated the

Protein Kinase B (Akt)/Glycogen synthase kinase3b (GSK-3b)/b-
catenin pathway in receptor beta cells by targeting the sirtuin 2 gene

to restrict insulin secretion (17). Thus, targeting miRNA or

inhibiting M1 macrophage-EXOs could be manipulated to inhibit

beta cell injury in T2DM.

3.3.1.2 Promoting autophagy deficiency and
resistin expression

It was found that high glucose stimulation promoted the

polarization of macrophages to the M1-phenotype and produced

more exosomes, thereby inducing activation of NOD-like receptor

thermal protein domain associated protein 3 (NLRP3)

inflammasome and autophagy defects in mesangial cells,

promoting development of diabetic nephropathy (50). Besides,

exosomal miR-7002-5p are highly expressed in high glucose

treated macrophages, which suppress autophagy activity through

targeting Atg9b in mouse tubular epithelial cell and C57 mouse

kidney (51). In addition to regulate functions of kidney,

macrophage-derived exosomes shows impact on diabetic vascular

diseases. For example, under high glucose conditions, macrophage-

derived exosomal metastasis associated lung adenocarcinoma

transcript 1 (MALAT1) is upregulated, inhibiting the expression

of miR-150-5p and counteracting its inhibitory effect on

macrophage resistance factor expression, and promoting vascular

diseases. Thus, macrophage-EXOs containing MALAT1 may serve

as a novel target for diabetic vascular diseases (19).

3.3.1.3 Impairing bone fracture healing

Patients with diabetes have an increased risk of nonunion and

delayed union of fractures. Exosomes derived from diabetic bone

marrow-derived macrophages (dBMDM-EXOs) transfer miR-144-

5p to bone marrow stromal cells, inhibiting the expression of Smad1,

thereby reducing bone repair and regeneration both in vivo and in

vitro (18). Suppression of miR-144-5p remarkably reversed the

adverse effects of dBMDM-EXOs on the osteogenic potential and

the ability of fracture repair (18). However, the author didn’t test the

ratio of M1/M2 or confirm the phenotype of the macrophages that

transferred specific miRNAs. Given the function of M1macrophages,

they may be the predominant cell responsible for secreting exosomes

containing miR-144-5p, which can lead to bone impairment.

3.3.2 Exosomes derived from M2 macrophages
(M2 macrophages-EXOs)

M2 macrophages release cytokines that play a role in anti-

inflammatory and tissue repair (47). Previous data validate the

association between treatment of diabetic-related diseases and the

exosomes secreted by M2 macrophages. For example, the M2

macrophages-EXOs reduced lipopolysaccharides-induced

podocyte apoptosis by regulating the miR-93-5p/TLR4 axis,

which provided a new perspective for the treatment of diabetic

nephropathy patients (20). Tuan et al. Demonstrated (52) that M2
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macrophage-EXOs could control chronic inflammatory diseases

caused by excessive energy storage. Interleukin 4 (IL-4)

stimulated THP-1 macrophage-derived extracellular vesicles can

improve the homeostasis of adipose factors, retargeting the energy

metabolism of macrophages and adipocytes, thereby controlling the

occurrence of cardiac metabolic tissue inflammation in obesity-

related diabetes.

In addition to diabetic nephropathy and cardiac diseases, M2

macrophage-EXOs are necessary for accelerating diabetic bone

fracture healing. A research has shown that M2 macrophage-

EXOs can activate the Hedgehog signaling pathway in BMSCs in

a high glucose and high insulin microenvironment, promoting

osteogenic differentiation. This suggests that they can serve as a

new approach for reshaping the immune homeostasis in diabetic

bone (53). Additionally, the research has demonstrated that M2

macrophage-EXOs induced the transformation of M1 macrophages

into M2 macrophages by stimulating the phosphoinositide 3-kinase

(PI3K)/AKT pathway, significantly reducing the proportion of M1

macrophages and regulating the bone immune microenvironment,

thereby accelerating diabetic bone fracture healing (54).
4 Exosomes derived from stem cell
and their effect on immune/
inflammation in diabetes

In recent years, exosomes-based therapy have gained increasing

attention for their comparatively high safety, biocompatibility and

low immunogenicity (6). This part reviewed the exosomes from

different kinds of stem cells and their main mechanisms underlying

regulatory effects on inflammation/immunity in diabetes (Figure 2).
4.1 Cord-blood-derived stem cells

Cord blood-derived stem cells are multipotent stem cells that

exhibit a distinct phenotype characterized by both embryonic and

hematopoietic markers, distinguishing them from other known

stem cell types (55, 56). Phenotypic characterization reveals that

CBSCs exhibit embryonic cell markers. Moreover, CBSCs exhibit

minimal immunogenicity, as evidenced by their low expression of

major histocompatibility complex (MHC) antigens and their

inability to stimulate the proliferation of allogeneic lymphocytes

(55, 57). Specifically, CBSCs adhere firmly to culture dishes,

displaying a large rounded morphology, and are resistant to

common detachment methods (trypsin/EDTA), facilitating the

collection of suspended lymphocytes after co-culture (55, 57).

Based on the unique properties of immune modulation

mentioned above and their ability to adhere tightly to the surface

of Petri dishes, a new technology called Stem Cell Educator (SCE)

therapy was designated for use in clinical trials (58, 59). Stem Cell

Educator therapy (Educator therapy) has been utilized with a

closed-loop system and open-loop system. During SCE therapy, a
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patient’s peripheral blood mononuclear cells (PBMCs) are collected

and circulated through a cell separator, where they are co-cultured

with adherent human CBSCs in vitro. The resulting “educated”

cells, known as CBSC-treated PBMCs, are then reintroduced into

the patient’s circulation (60). These “educated” immune cells can

educate other immune cells after infusion, thereby reverse the root

cause(s) of the autoimmune disease and resulting in the long-lasting

clinical efficacy of Educator therapy. Unlike traditional immune

therapies, SCE therapy does not destroy the cells responsible for

autoimmunity but modifies them (61). The clinical phase 1/2 trials

indicate that SCE therapy reverses autoimmunity, promotes

regeneration of islet b cells, and improves metabolic control for

the treatment of Type 1 diabetes (59, 62, 63) and T2DM (59, 63).

Mechanistic studies revealed that the secretion of CBSC-

derived exosomes (CBSC-EXOs) enabled polarization of human

blood monocytes/macrophages into M2 macrophages, thereby

fundamentally correcting self-immunity and inducing immune

tolerance through various molecular and cellular mechanisms (60).

CBSC-EXOs preferably and quickly bind to monocytes within 2-3 h.

During the coculture of CBSCs with patient’s immune cells for

clinical treatment during 8-9 h, the SCE-treated monocytes may

transport the CBSC-EXOs back into the body, potentially leading to

additional M2 differentiation and induction of tolerance (59, 62).

Therefore, Educator therapy is the leading immunotherapy to date to

safely and efficiently correct autoimmunity through CBSCs mediated

immune modulation and anti-inflammatory clinical effects, without

the safety and ethical concerns associated with conventional immune

and/or stem-cell based approaches.
4.2 Endothelial progenitor cells

Chronic diabetic foot ulceration (DFU) is among the most

debilitating long-standing diabetes complications and it is also one

of the main causes of physical disability. DFU is partially a result of

unregulated foot wound infection caused by neuropathy, hindered
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angiogenesis, chronic low-grade inflammation, and peripheral

vascular/arterial disease (64). Prolonged hyperglycemia intensifies

the expression of inflammatory cytokines and reactive oxygen

species (ROS), which severely impede angiogenesis (65–67). Thus,

wound healing in diabetes always heavily relies on the formation of

new blood vessels to restore reperfusion (68). EPCs are the

precursors of endothelial cells, which hold great potential in

treating chronic non-healing diabetic wounds because of their

abilities for vascular and neuronal protection, repair and regenesis

(69, 70). Nevertheless, the direct utilization of stem/progenitor cells

is constrained by concerns such as potential immunological

rejection, chromosomal variation, and emboli formation (71–73).

Therefore, it is crucial to devise a new approach that can maximize

the therapeutic benefits of stem/progenitor cells while mitigating

the risks associated with their direct application.

It has been reported that the exosomes derived from EPCs

(EPC-EXOs) can regulate vascular endothelial cells through

miRNA. For example (21), EPC-EXOs exhibited a high

expression of miRNA-221-3p. Treating skin wounds in diabetic

mice with EPC-EXOs demonstrated a similar effect to that seen with

miRNA-221-3p administration. MiRNA-221-3p potentially

downregulated critical proteins in the AGERAGE signaling

pathway, inhibiting reactive oxygen species generation and

inactivating nuclear factor-kappa B (NF-kB). This process may

reduce inflammatory responses, cell apoptosis, and microvascular

diseases. Except for miRNA-221-3p, recent results revealed that

treatment with miR-126-3 overexpressing EPC-EXOs accelerated

the healing of rat skin wounds and resulted in better tissue repair

with slower scar formation. In this process, the expression of

caspase-1, NRLP3, interleukin-1b, inteleukin-18, PIK3R2 and

SPRED1 was suppressed, promoting diabetic wound repair (22).

Exosomes derived from EPCs were reported to promote

angiogenesis and the homing ability of EPCs in diabetic wound

healing. Li et al. treated a diabetic rat wound model with EPC-EXOs

and found that exosomes enhanced the proliferation, migration and

tube formation of vascular endothelial cells in vitro. Furthermore,
FIGURE 2

Exosomes from different kinds of stem cells and their main mechanisms underlying regulatory effects on inflammation/immunity in diabetes. CBSCs,
cord-blood-derived stem cells; EPCs, endothelial progenitor cells; ADSCs, adipose stem cells; UCSCs, umbilical cord mesenchymal stem cells;
BMSCs, bone marrow-derived mesenchymal stem cells.
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endothelial cells stimulated with EPC-EXOs showed increase

expression of angiogenesis-related molecules such as fibroblast

growth factor-1 (FGF-1), VEGFA, VEGFR-2, angiotensin I, E-

selectin, Chemokine (C-X-C motif) ligand-16 (CXCR-16),

endothelial nitric oxide synthase and IL-8 (74). In addition to

promoting angiogenesis in wound healing, microvesicles derived

from EPCs were demonstrated to be capable of changing the

properties of adipose stem cells (ADSCs), thereby, improving

their homing ability to migrate to the wound site. Tu TC et al.

transfected exosomes derived from Alde-Low EPCs (EMVs) into

human ADSCs. After receiving EMVs, the ADSCs showed a

remarkable elevation in the expression of the CXCR4 chemokine

receptor in vitro, and CD45+ inflammatory cells were successfully

recruited to the wound sites in vivo, promoting ischemic skin

repair (75).

Diabetes mellitus not only increases the risk of ischemia-

reperfusion by 3-4 times compared to those without diabetes

mellitus, but also exacerbates cerebral damage due to impaired

endothelial function and reduced angiogenesis (23). EPCs were

demonstrated to hold great potential in the treatment of stoke due

to the cerebrovascular protection in the acute phase and promoting

neurological recovery in chronic phases (76, 77). Previously

experiment in mice indicated that enrichment of miR126

enhanced the therapeutic efficacy of EPC-EXOs on diabetic

ischemic stroke by attenuating acute injury and promoting

neurological function recovery (23).

Moreover, EPC-EXOs could potentially be a potential

therapeutic application for treating Aherosclerosis (AS) resulting

from diabetes. AS is a major macrovascular complication of

diabetes mellitus characterized by inflammation and endothelial

damage (78). The dysfunction of the endothelium is considered an

early marker of AS. EPCs are derived from bone marrow and can

differentiate into endothelium cells. In cases where ECs are

damaged, EPCs may replace them to assist in the recovery from

endothelial dysfunction (79). It was demonstrated that EPCs-EXOs

had a significant impact on reducing D-AS plaques, lowering the

levels of inflammatory factors such as intercellular cell adhesion

molecule-1, IL-8, and C-reactive protein, decreasing oxidative stress

factors like malondialdehyde and superoxide dismutase, and

improving the function of thoracic aorta vasodilation and

constriction in a mouse model of diabetic AS (80).
4.3 Mesenchymal stem cell

Mesenchymal stem cells possess various biological

characteristics, such as immunomodulation, anti-inflammatory

properties, and promotion of angiogenesis, making them widely

used in clinical treatment and regenerative medicine (81). MSC-

EXOs have been shown to be similar effective as MSCs in the

treatment of diabetes and related complications (82–84), but in

some contexts, they exert different biological properties (85).

4.3.1 Adipose stem cells
Adipocyte-derived stem cells have been attracting attention as

an effective therapeutic tool for tissue regeneration. Exosomes
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derived from ADSCs (ADSC-EXOs) can ameliorate inflammation

by regulating immune cells, thereby promoting the treatment of

diabetes and its related complications.

4.3.1.1 ADSC-EXOs modulate macrophage polarization
and immune cell activities in diabetes

Zhao et al. demonstrated that treatment with ADSC-EXOs

improved metabolic homeostasis in obese mice, including

enhanced insulin sensitivity (27.8% improvement), reduced

obesity, and alleviated hepatic steatosis. ADSC-EXOs induced M2

macrophage polarization, reduced inflammation, and promoted

Beiging in white adipose tissues (WAT) of diet-induced obese

mice. Such exosomes carried active signal transducer and

activator of transcription 3 (STAT3), which facilitated arginase-1

expression in macrophages, leading to the induction of anti-

inflammatory M2 phenotypes. Additionally, the M2 macrophages

induced by ADSC-EXOs stimulated ADSC proliferation and lactate

production, thereby promoting WAT beiging and maintaining

homeostasis in response to high-fat challenge (86). Luo et al.

reported that overexpression of hematopoietic prostaglandin D

synthase HPGDS in ADSCs accelerated chronic wound healing

by improving the anti-inflammatory state and promoting M2

macrophage polarization in type 2 diabetic mice (87). As for M1

macrophages, ADSCs-EXOs play an immunosuppressive role by

reducing IFN-a secretion, thus inhibiting activation of T cells,

leading to enhanced aggregation capacity of M1 macrophages (88,

89). Besides, ADSC-EXOs promoted T-regulatory cell activation

and facilitated wound healing by inhibiting interferon-g production

and M1 macrophage accumulation in an EFGR signal-dependent

manner (90).

Moreover, recent research found ADSC-EXOs to be a vital source

of non-coding RNA to enhance M2 macrophage polarization and

promote diabetic wound healing. For example, hypoxic treatment

significantly increased circ-Snhg11 contents in ADSC-EXOs and

promoted M2 polarization by inhibiting miR-144-3p expression

and the STAT3 signaling pathway in skin wounds (91, 92). In

another study, the in vivo experiment demonstrated that exosomes

derived from miR-132-overexpressing ADSC significantly improved

the survival of skin flaps and accelerated diabetic wound healing. This

was achieved by reducing local inflammation, promoting

angiogenesis, and stimulating M2 macrophage polarization through

the NF-kB signaling pathway (25). Li et al. found that treating

diabetic foot ulcer wounds with ADSC-EXOs increased miR-21-5p

levels in macrophages, promoted M2 polarization, and inhibited

Keuppel-like factor 6 KLF6, which has been reported to enhance

the inflammatory phenotype in macrophages (26).

These findings delineate novel exosome-mediated mechanisms

for ADSC-macrophage crosstalk that facilitates immune and

metabolic homeostasis, thus providing potential therapy for

obesity and diabetes.

4.3.1.2 ADSC-EXOs revers the inflammatory condition in
wound healing

Wound healing can be delayed by chronic and excessive

inflammation, therefore a well-regulated inflammation guarantees

wound healing (88). ADSCs-EXOs contain immunoregulatory
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proteins such as tumor necrosis factor-a (TNF-a), macrophage

colony-stimulating factor and retinol-binding protein 4 (93). In

addition to the local effects, ADSC-EXOs can reverse the systematic

inflammatory condition in diabetes models. Qiu et al. demonstrated

that high glucose treatment significantly increased inflammatory

factors IL-6, IL-1b, and TNF-a levels in EPCs from healthy

volunteers. Such elevated levels could be partially and completely

reversed by ADSC-EXOs and linc00511-overexpressing ADSCs (94).

They found Exosomes from linc00511-overexpressing ADSCs

promotes diabetic foot ulcers healing by accelerating angiogenesis

via suppressing PAQR3-induced Twist1 ubiquitin degradation as well

as suppressed inflammatory. Zhang et al. found that ADSC-EXOs

significantly reduced levels of inflammatory cytokines IL-6, TNF-a,

and monocyte chemotactic protein-1 (MCP-1) by decreasing ROS

production and protecting mitochondrial function via sirtuin-3 (95).

Wang et al. found that hypoxic ADSC-EXOs exhibited distinct

miRNA expression profiles compared to ADSC-EXOs. Specifically,

up-regulation of miR-21-3p, miR-126-5p, and miR-31-5p, and

down-regulation of miR-99b and miR-146-a in hypoxic ADSC-

EXOs promoted wound healing in diabetic mice and suppressed

inflammatory factors through the PI3K/AKT signaling pathway (27).

Shi reported that exosomes derived from mmu_circ_0000250-

modified ADSCs promoted wound healing in diabetic mice by

inducing miR-128-3p/SIRT1-mediated autophagy and improving

the hyperglycemic-induced inflammatory microenvironment and

recover the function of EPCs (24).

4.3.2 Umbilical cord mesenchymal stem cells
Human umbilical cord tissue (Wharton’s jelly) serves as a potent

and rich source of MSCs. UCSCs-derived exosomes (UCSC-EXOs)

have shown promising results in the treatment of diabetes and may

become a successful strategy for treating diabetes and its

complications. Injection of UCSC-EXOs significantly ameliorated

hyperglycemia in rats with T2DM (96). Besides, UCSC-EXOs also

contributes to the therapy of other diabetic complications, such as

diabetic nephropathy, retinopathy and wound ulcer.

4.3.2.1 UCSC-EXOs increase insulin sensitivity by suppress
inflammatory factors

Chronic inflammation in tissues is typically the primary cause

of insulin resistance, which results in the secretion of pro-

inflammatory cytokines such as tumor necrosis factor alpha

(TNF-a) or IL-6 by inflammatory cells. These cytokines then

inhibit the activation of the insulin signaling pathway (97, 98). It

is found that injection of human UCSC-EXOs significantly

ameliorated hyperglycemia in rats with T2DM. UCSC-EXOs

could increase insulin sensitivity by increasing the activation of

insulin/AKT signaling pathway and inhibiting the secretion of

proinflammatory cytokines like TNF-a, which could reverse

insulin resistance in T2DM (96).

4.3.2.2 The role of UCSC-EXOs in diabetic nephropathy

It is demonstrated that UCSC-EXOs could be a promising

treatment strategy for diabetic nephropathy rats. Xiang et al.

reported that UCSC-EXOs apparently reduced the levels of pro-

inflammatory cytokines (IL-6, IL-1b, and TNF-a) and pro-fibrotic
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factor transforming growth factor b (TGF-b) in the kidney and

blood of diabetic nephropathy rats. In vitro experiments showed

that umbilical cord MSC conditioned medium and UCSC-EXOs

decreased the production of these cytokines in high glucose injured

renal tubular epithelial cells, and renal glomerular endothelial cells

(99). Besides, UCSC-EXOs miR-424-5p can inhibit the activation of

yes associated protein 1 in HK2 cells, reduce cell apoptosis, and

epithelial-to-mesenchymal transition induced by high glucose,

thereby attenuating diabetic nephropathy (28). MiR-22-3p, highly

expressed in UCSC-EXOs, may play a protective role in podocytes

and diabetic mice by regulating the NLRP3 inflammasome. This

suggests that MSC-derived exosomes could be a promising cell-free

therapeutic strategy for diabetic kidney disease (29). Another study

showed that UCSC-EXOs miR-146a-5p enhanced M2 macrophage

polarization by inhibiting the TRAF6/STAT1 signaling pathway,

thereby protecting against diabetic nephropathy in rats (30).

4.3.2.3 The role of UCSC-EXOs in wound healing and
diabetic retinopathy

UCSC-EXOs serve as a novel therapeutic approach to enhance

wound healing in diabetes. Studies have shown that UCSC-EXOs

can induce anti-inflammatory macrophages (100), leading to a

reduction in the expression of inflammatory factors such as IL-

1b, IL-6, and TNF-a (101), as well as promoting angiogenesis and

collagen deposition. Furthermore, UCSC-EXOs have the potential

to inhibit oxidative stress injury, thereby facilitating macro-level

angiogenesis and ultimately expediting the healing of diabetic

wounds (101).

In addition to diabetic wounds, diabetic retinopathy is another

common complication of diabetes. Previous studies have shown the

therapeutic effect of UCSC-EXOs in diabetic retinopathy. For

example, the administration of miR-126-expressing UCSC-EXOs

significantly reduced high glucose-induced high-mobility group box

1 expression and the activity of the NLRP3 inflammasome in

human retinal endothelial cells, therefore suppressing suppressed

inflammation in diabetic rats (31).

At last, UCSC-EXOs treatment could be beneficial for diabetic

rats to recover from the anemia-like symptoms and increase

immunity by improving the erythrocytes and hemoglobin levels

as well as maintaining the number of white blood cells (102). 1 mg/

kg of UCSC-EXOs improved glucose tolerance in T2DM rats and

ameliorate insulin resistance. Moreover, there was no significant

difference in white blood cells, neutrophils, lymphocytes,

monocytes, eosinophils, and basophils between the diabetic rat

groups treated with both glibenclamide (one of the traditional

hypoglycemic drug) and 1 mg/kg of UCSC-EXOs and the non-

diabetic animal group. This finding suggests that the administration

of UCSC-EXOs at 1 mg/kg could improve the immune system of

diabetic rats, which is essential for reducing infections and

increasing survival rates (102).

4.3.3 Bone marrow-derived mesenchymal
stem cells

Bone marrow mesenchymal stem cells are multilineage

progenitors with self-renewal, multidirectional differentiation, and

pleiotropic paracrine functions (103). It is demonstrated that purified
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BMSC-derived exosomes (BMSC-EXOs) have more specific distinct

benefits in damaged tissue repair than BMSCs themselves, including

superior stability, tissue permeability, excellent biocompatibility, and

immunomodulatory properties (104).

4.3.3.1 The role of BMSC-EXOs in diabetic wound healing

Accumulative studies have shown that BMSC-EXOs contribute

to wound healing through non-coding RNAs. For example, Liu

et al. found that miR-155-inhibitor-loaded BMSC-EXOs enhanced

keratinocytes migration, FGF-7 recovery, and anti-inflammatory

effects in vitro. Additionally, they could also be utilized to treat a

diabetic wound model by promoting collagen deposition,

angiogenesis, and re-epithelization. The functional coordination

between miR-155-inhibitor and BMSC-EXOs played a crucial role

in enhancing diabetic wound healing (32). Li reported that the

injection of BMSC-EXOs overexpressing lncRNA H19 facilitated

wound healing in mice with diabetic foot ulcers. Results revealed

that BMSC-EXOs overexpressing lncRNA H19 led to higher level of

IL-10 and lower levels of IL-1b and TNF-a, and the mechanism by

which was associated with promoting fibroblast proliferation and

migration, inhibiting cell apoptosis and inflammation (33). In a

murine diabetic cutaneous wound model, exosomes from lncRNA

KLF3-AS1-expressing BMSCs demonstrated the best effects in

promoting cutaneous wound healing in diabetic mice, which were

associated with minimal weight loss, increased blood vessel

formation, reduced inflammation, decreased miR-383 expression,

and up-regulated VEGFA (34). Except for non-coding RNAs, the

anti-inflammation effect by BMSC-EXOs could induced by specific

pathways that may not directly related to non-coding RNAs. Wang

reported that the wounds treated with exosomes showed reduced

inflammation, with decreased levels of the inflammatory cytokines

TNF-a and IL-1b, and increased levels of the anti-inflammatory

cytokines IL-4 and IL-10 (105). Such regenerative and anti-

inflammatory effects were eliminated by Lenti-sh-Nrf2

administration, suggesting the participation of the activation of

Nrf2 anti-oxidant pathway in wound healing by exosomes. In

addition to miRNAs, Liu et al. reported that melatonin-pretreated

BMSC-EXOs could promote diabetic wound healing by suppressing

the inflammatory response, which was achieved by increasing the

ratio of M2 polarization to M1 polarization through activating the

phosphatase and tensin homolog/AKT signaling pathway (106).
4.3.3.2 The role of BMSC-EXOs in diabetic stroke

Diabetes increases the risk of stroke by 3-4 fold, and about 30%

of stroke patients suffer from diabetes (107). Treating patients with

diabetic stroke is challenging because it may cause extensive damage

to the cerebral vasculature, exacerbate neurological deficits, enhance

inflammatory responses, which are prone to recurrent strokes (108,

109). Therefore, it is crucial to devise therapeutic strategies

specifically aimed at enhancing neurological function after stroke

in individuals with diabetes. MSCs interact with and alter brain

parenchymal cells via the secretion of trophic and growth factors as

well as exosomes to exert therapeutic effects (110). Exosome therapy

offers several advantages compared to cell therapy, as exosomes do

not elicit immune rejection, do not cause vascular obstruction, and
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have a low risk of triggering tumors or malignant transformation

(111). Besides, exosomes are more suitable for clinical use since they

are relatively stable, can be obtained in large quantities from a small

number of cells, and can be stored until therapeutic needed (112).

Therefore, systemic administration of exosomes could be a method

of delivering the active components of cell therapy to the central

nervous system (113).

Studies (35, 114) have indicated that T2DM stroke was associated

with increased inflammatory responses and proinflammatory

microglial/macrophage phenotype. The inflammatory factor matrix

metalloproteinase-9 (MMP-9) was elevated after stroke and has been

implicated in aggravating blood-brain barrier disruption, neuronal

death, myelin degradation and white matter injury. In addition, the

inflammatory factor MCP-1 was elevated in the serum of both

diabetic and stroke patients, and it aids in the accumulation of

phagocytic M1 macrophages in the infarct border (115, 116).

However, T2DM-BMSC-EXOs treatment has been demonstrated to

significantly decrease activated microglia, M1 macrophage, and

inflammatory factors MMP-9 and MCP-1 expression in the

ischemic brain in T2DM stroke rats (35). Such therapeutic effects

in neurological functional recovery were only induced by injection of

exosomes derived from BMSCs of T2DM rats but not from BMSCs of

non-diabetic animals, which may be partially mediated by decreasing

miR-9 and upregulating ABCA1-IGFR1 pathway (35).

4.3.3.3 The role of BMSC-EXOs in diabetic retinopathy

BMSCs-Exos also possess other immunomodulatory properties

and can suppress the activation and function of various immune

cells involved in islet transplantation and diabetic retinopathy. It is

reported that co-delivery of siFas and anti-miR-375 by BMSCs and

derived exosomes suppressed early apoptosis of transplanted

human islets, while further immune activity could be suppressed

by intravenously injection of human BMSC and PBMC co-cultured

exosomes. Thus, BMSC and peripheral blood mononuclear cell co-

cultured exosomes performed a immunosuppressive effect for

improving islet transplantation (117). Besides, BMSC-EXOs

improve diabetes-induced retinal damage by inhibiting the Wnt/

b-catenin signaling pathway, subsequently reducing oxidative

stress, inflammation, and angiogenesis (118). BMSC-EXOs miR-

146a regulates the inflammatory response of diabetic retinopathy by

mediating the TLR4/MyD88/NF-kB pathway, reducing the levels of

TNF-a, IL-1b, and IL-6 (119).
5 Exosomes as an innovative
therapeutic tools for diabetes: current
status and promising directions

5.1 Promising directions

Exosomes exhibit high biocompatibility and low immunogenicity,

which makes them have great potential in delivering nucleic acid

sequences and chemotherapy drugs (6). However, studies have

shown that the natural half-life of most exosomes in vivo is

relatively short (<6 h) (120), and the contents of natural exosomes
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are limited by the secreting cells, resulting in limited therapeutic

effects when loaded with drug molecules. To date, increasing

researches demonstrated that under certain stress or modified

conditions, stem cells can produce more exosomes or exosomes

with different compositions compared to basal conditions.

Meanwhile, many studies demonstrated the beneficial effects of

modified or pretreated stem cell-derived exosomes on preventing

comorbidities or microvascular complications in diabetes. These
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benefits mainly stem from the following three perspectives

(Table 2): a. Exosomes from genetically modified stem cells display

enhanced effects on diabetic wound healing compared to wild-type

exosomes; b. By adding specific drugs to the culture medium, cells

may secrete exosomes that are more effective in targeting

angiogenesis, anti-inflammation, promoting proliferation and

migration, and inhibiting apoptosis; c. Under certain stress

conditions, such as hypoxia, cells may secrete exosomes that
TABLE 2 Pre-intervention to improve the function of exosomes in the treatment of diabetes.

Disease
and

animal

Cell type
releasing

Exo
Intervention Pathways Effect: in virto Effect: in vivo

Effect on
inflammation
/immune
system

ref

Diabetic
cutaneous
wound, Rat

hAMSCs
miR-21-
5p overexpressing

Wnt/b-catenin
pathways ↑

proliferation and migration of
keratinocyte cells ↑

vessel growth and
maturing ↑,
wound healing
process ↑

inflammatory
cell infiltration↓

(121)

Diabetic
wound,
Mice

hAMSCs hypoxia PI3K/Akt pathways ↑
fibroblast proliferation and
migration ↑

re-
epithelialization ↑

CD31↑, TGF-b ↑,
COLI ↑ and COLIII
↑, IL-6 ↓

(27)

Diabetic
full-
thickness
excisional
wound,
Mice

ADSCs
mmu_circ_0000250-
overexpressing

miR-128-3p/
SIRT1 pathway↑

HG-induced EPC apoptosis ↓,
autophagy of EPC ↑

wound closure ↑
SIRT1-mediated
anti-inflammatory ↑

(24)

Diabetic
foot
ulcer, Mice

ADSCs
mmu_circ_0001052
overexpressing

miR-106a-5p ↓,
FGF4/p38MAPK
pathway ↑

proliferation ↑, migration and
angiogenesis of high glucose-
induced HUVEC ↑

speed of healing ↑ NA (122)

Diabetic
foot
ulcer, Rat

ADSC Nrf2 overexpression
SMP30 ↑, VEGF ↑, p-
VEGFR2 ↑, ROS ↓

increased cell viability ↑, tube
formation of EPCs ↑

Ulcerated area ↓,
angiogenesis ↑,
inflammation ↓,
oxidative stress ↓

IL-1b ↓, IL-6 ↓,
TNF-a ↓

(123)

Diabetic
full-
thickness
wounds, Rat

BMSC
atorvastatin
pretreated

AKT/eNOS
pathway ↑

endothelial cell angiogenesis↑
Ascularization ↑ ,
the wound
healing ↑

NA (124)

Diabetic full
thickness
dermal
dorsal
defect, Rat

BMSC
pioglitazone-
pretreated

PI3K/AKT/eNOS
pathway ↑

migration and tube formation
↑, wound repair ↑, VEGF
expression of HUVEC ↑

diabetic wound
healing ↑,
angiogenesis ↑

NA (125)

Diabetic
full-
thickness
dermal
defect, Rat

BMSC
melatonin-
pretreated

PTEN/AKT
pathway ↑

ratio of M2 polarization to
M1 polarization in RAW264.7
cells ↑

angiogenesis and
collagen
synthesis ↑

ratio of M2 / M1
polarization ↑,IL-1b
↓, TNF-a ↓, IL-10
↑, Arg-1 ↑

(106)

Diabetic
punch
biopsy
excisional
wound,
Mice

BMSC
HOTAIR
overexpressing

NA
HOTAIR ↑,VEGF ↑ in
endothelial cells

angiogenesis ↑ and
wound healin ↑

NA (125)

Diabetic
foot
ulcer, mice

BMSC
lncRNA
H19 overexpression

miR-152-3p-mediated
PTEN inhibition ↓

apoptosis and inflammation
of fibroblasts ↓

flammatory cells ↓,
granulation tissues
thicker around
the wound

IL-10 ↑, IL-1b ↓,
TNF-a ↓

(33)

(Continued)
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perform better in promoting fibroblast proliferation and migration,

and enhancing reepithelialization in chronic wounds. All the above

demonstrated that preconditioning or pre-treatment of diabetic

MSCs with various agents/stress can be used to optimize/improve

cellular function prior to their use in cell therapy.

In addition to modify the donor cells that produce exosomes,

direct modification to purified natural exosomes may efficiently and

quickly obtain a large number of engineered exosomes, and reduce

the uncertainty in the cell culture process, which is of great

significance for the mass production of engineered exosomes. For

example, taking advantage of natural availability and biocompatibility

of exosomes as extracellular miRNA transporting particles (121), Lv

et al. reported a human hASC-exos-based miRNA delivery strategy

which loaded miRNA into hASC-exos by electroporation. Besides

electroporation, other physical methods such as ultrasonic

homogenization (128), freeze-thaw cycle (129), may also allow

drugs to enter the exosomes more easily, achieving the purpose of

engineering exosomes. However, such methods were usually used in
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treatment of cancers in vitro or in vivo in animal models, therefore,

future research will focus more on the application of these methods in

the treatment of diabetes and the associated complications.

Finally, in recent years, due to the high biocompatibility and

modifiability, composite hydrogels loaded with exosomes and other

nanoparticles have gained increasing attention in managing chronic

diabetic wounds. Compared to traditional stem cell therapy, which

has been shown to have short survival times, poor stability, and a

high risk of immune rejection in diabetic ulcers (130), exosomes-

loaded composite hydrogels have been demonstrated to possess

superior functions in angiogenesis, anti-inflammatory,

antibacterial, and antioxidant properties (Table 3). Since different

agents have varying applicability, advantages and disadvantages for

wound healing, various therapeutic agents can be incorporated

inside the multifunctional hydrogel to create an outstanding drug

delivery system (143). Thus, the exosomes-loaded, “all-in-one”

composite hydrogels may achieve a controlled drug delivery in

diabetic wound healing, prone to better drug applications.
TABLE 2 Continued

Disease
and

animal

Cell type
releasing

Exo
Intervention Pathways Effect: in virto Effect: in vivo

Effect on
inflammation
/immune
system

ref

diabetic
wounds rat

HEK293
miR-31-
5p overexpression

HIF1AN ↓, EMP-1↓

cell proliferation ↑ and
migration ↑ in ECs, HFF-1
cells and HaCaT cells;
capillary-like construction
activity ↑ in ECs

proangiogenesis ↑,
profi ↑, brogenesis
↑,
reepithelization↑

NA (126)

Diabetic
cutaneous
wound, Rat

UC-MSC
Lipopolysaccharide-
pretreated

M2 macrophage
polarization ↑
through let-7b via
TLR4/NF-kB/STAT3/
AKT pathway

converted inflammatory
THP-1 cells to
M2 polarization

inflammatory cell
infiltration ↓, new
small capillaries
and
woundhealing ↑

anti-inflammatory
cytokines ↑, M2
macrophage
activation ↑

(127)
frontier
hAMSCs, human adipose-derived mesenchymal stem cells; ADSCs, adipocyte-derived stem cells; ADSC, adipocyte-derived stem cell; BMSC, bone mesenchymal stem cells; HEK293, human
embryonic kidney 293T cells; UC-MSC, Umbilical cord-derived mesenchymal stem cells; PI3K, phosphatidyl-inositol 3-kinase; AKT, protein kinase b; SIRT1, silent information regulator 1;
FGF4, fibroblast growth factor 4; p38MAPK, P38 mitogen-activated protein kinase; SMP30, senescence marker protein 30; VEGF, vascular endothelial growth factor; VEGFR2 , vascular
endothelial growth factor receptor 2; ROS, reactive oxygen species; eNOS, endothelial nitric oxide synthase; NA, ot applicabl; HIF1AN, hypoxia inducible factor 1 subunit alpha inhibitor; EMP-1,
EPO mimetic peptide-1; TLR4, toll-like receptor 4; NF-kB,nuclear factor kappa-B; STAT3, Signal transducer and activator of transcription 3; EPC, endothelial progenitor cells; HUVEC, human
umbilical vein endothelial cells; VEGF, vascular endothelial growth factor; HOTAIR, HOX transcript antisense RNA; ECs, early career specialists; THP, human monocytic-leukemia cells; CD31,
platelet endothelial cell adhesion molecule-1; TGF-b, transforming growth factor b; COLI, Collagen I; IL-6, Interleukin 6; IL-1b, Interleukin-1b; TNF-a,Tumor Necrosis Factor-a; IL-10,
Interleukin-10; Arg-1, Arginase 1; IL-1b, Interleukin-1b.
TABLE 3 Functions of composite hydrogels in the treatment of diabetic wound healing (2020 to date).

Publication
year

Cell type
releasing
EXOs

Hydrogels Anti-
inflammatory

effect

Antibacterial
effect

Angiogenesis Antioxidant
effect ref

2020 CBSCs PF-127 hydrogel
inflammatory cell
infiltration ↓

unknown TGFb-1 ↑, VEGF ↑ unknown (130)

2022 M2F
HA-based hydrogels
composed of MnO2 and
FGF-2

unknow + angiogenic ability ↑
ameliorated
ROS damage

(127)

2022 ADSCs
ADSC-exo@MMP-
PEG smart

unknow unknown

CD31 and a-SMA
↑, re-
epithelialization and
collagen
deposition ↑

ROS level ↓ (131)

(Continued)
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TABLE 3 Continued

Publication
year

Cell type
releasing
EXOs

Hydrogels Anti-
inflammatory

effect

Antibacterial
effect

Angiogenesis Antioxidant
effect ref

2022 HUVECs
GelMA/PEGDA@T+exos
MNs patch

unknow unknown angiogenesis ↑ unknown (132)

2022 BMSCs
carboxyethyl chitosan
-dialdehyde carboxymethyl
cellulose hydrogel

skewing macrophage
M1 to
M2 phenotype

+

Angiogenesis ↑,
VEGF-mediated
signaling
pathways ↑

unknown (133)

2022 ESCs Gel-VH-EVs unknow unknown
angiogenesis ↑, HIF-
1a-mediated
pathway ↑

unknown (134)

2023 ADSCs

hydrogel loaded with 4-
Arm-PEG-Thiol, Ag+,
exosomes, CNTs, and
metformin hydrochloride

IL-6 ↓, TNF-a ↓,
ICAM and VCAM ↓

+
density and quantity
of blood vessels ↑

ROS and mtROS
production ↓

(135)

2023 M2F
hydrogel combined with
bioactive M2-Exos and
gold nanorods

proinflammatory
cytokines ↓

+
CD31+ ↑, vascular
network
formation ↑

SOD1 ↑,
PRDX2 ↑

(136)

2023 ADSCs extracellular matrix hydrogel TNF-a ↓, IL-6 ↓ unknow

collagen deposition
↑, skin regeneration
↑, blood vessel
numbers ↑

unknown (136)

2023 PMN
VEGF-aPMNEM-ECM
hybrid hydrogel

M1 macrophage
transform to M2
macrophage ↑

+
number of
blood vessels↑

unknown (40)

2023 ADSCs GelMA-Exo hydrogels unknow unknow
proliferation,
invasion, and tube
formation ↑

unknown (137)

2023 HUVECs
ADM Fe3+@PA-
Exos/GelMA

IL-1b ↓ +
proliferation and
migration
impairment ↓

SOD and GSH-
Px activity ↑

(138)

2023 HUVECs
hypoxic exosomes-loaded
HGM-QCS hydrogels

IL-6 ↓, TNF-a ↓,
ICAM-1↓, SELE ↓,
VCAM-1 ↓, M2
polarization ↑

+
collagen deposition
↑, angiogenesis ↑

ROS level ↓ (139)

2024
Umbilical
cord blood

UCB-Exos into an ABA-type
amphiphilic hydrogel

unknow unknow
proliferation and
tube formation ↑

unknown (140)

2024 Whole blood
P-Exos-loaded
CMC hydrogeL

unknow unknow

angiogenesis ↑,
VEGF mediated
signaling
pathways ↑

unknown (141)

2024 hUC-MSCs
hydrogel composed of
chitosan nanoparticles,
MSC- derived, BG, and TiO2

TGF-b and IL-10 ↑,
TNF-a ↓, IL-1b ↓,
IL-6 ↓

+

enhanced
angiogenesis of ECs
by targeting VEGFA
and VEGFR2

unknown (142)
F
rontiers in Immuno
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M2F, M2 macrophages; ADSCs, adipose-derived stem cells; HUVECs, human umbilical vein endothelial cells; BMSCs, bone marrow mesenchymal stromal cells; ESCs, embryonic stem cell;
PMN, polymorphonuclear neutrophils; hUC-MSCs, human umbilical cord mesenchymal stem cells; MnO2, manganese dioxide; FGF-2, fibroblast growth factor-2; MMP, matrix
metalloproteinases; PEG, polyethylene glycol; GelMA, gelatin methacryloyl; PEGDA, poly (ethylene glycol) diacrylate; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a; ICAM,
intercellular cell adhesion molecule; VCAM, vascular cell adhesion molecule; IL-1b, interleukin—1b; ICAM-1, intercellular cell adhesion molecule-1; VCAM-1, vascular cell adhesion
molecule-1; TGF-b, transforming growth factor-b; IL-10, interleukin-10; VEGF, vascular endothelial growth factor; CD31, platelet endothelial cell adhesion molecule-1; a-SMA, a-smooth
muscle actin; VEGFA, vascular endothelial growth factor A; VEGFR2, vascular endothelial growth factor receptor 2; ROS, reactive oxygen species; mtROS, mitochondrial reactive oxygen species;
SOD1, recombinant superoxide dismutase 1; PRDX2, peroxiredoxin-2; GSH-Px, glutathione peroxidase; SOD, recombinant superoxide dismutase.
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5.2 Current challenges of
clinical applications

So far, there are mainly three challenges in the clinical

translations of exosomes. Firstly, minimize the therapeutic

efficacy differences caused by physiological and structural

variations between human and animals. Exosomes derived from

various stem cell sources have been used in wound healing

treatments across animal models including mice (144, 145), rats

(123), rabbits (146), consistently demonstrating positive effects

such as improved wound closure, reduced healing time, enhanced

angiogenesis, and diminished scar formation. However, the

outcomes of these preclinical studies do not necessarily translate

to human skin due to significant differences in skin structure and

physiology, with pig skin being the closest analogue to human

skin. Porcine models have emerged as promising models to

study wound healing, they possess similar anatomically and

physiologically characteristics to humans, including a relatively

thick epidermis, distinct rete pegs, dermal papillae, and dense

elastic fibers in the dermis (147), porcine collagen (148) et al. In

contrast to rodent, rabbit, and canine skin, which exhibits loos

adherence to the subcutaneous fascia, porcine skin closely adheres

to the underlying structures, resembling human skin (149). The

turnover time of pig epidermis is similar to the human epidermis

(150). Moreover, the immune cells in pig skin resemble those

found in human skin (151). According to research by Sullivan and

colleagues, pig models were 78% concordant with human studies.

This result exceeded other small-mammal and in vitro models,

which were only 53% and 57% concordant (152). Therefore, it is

crucial to validate the biological effects of exosomes on wound

healing using a pig model.

Secondly, the clinical translation of engineered extracellular

vesicles is urgently needed. So far, clinical applications of these

exosomes are limited to only a few clinical trials exploring the

therapeutic effects of stem cell-derived exosomes for diabetes and its

complications, such as wound healing. According to data from

ClinicalTrials.gov, to date, three completed clinical trials have

utilized exosomes derived from plasma (NCT02565264), adipose

t issue (NCT05475418) , and mesenchymal stem cel l s

(NCT05813379) for wound healing. Another (NCT04134676) has

explored the use of stem cell-conditioned medium for chronic ulcer

wounds. Apart from wound treatment, very few clinical trials have

investigated the use of exosomes for other diabetic conditions [only

one for Type 1 diabetes (NCT02138331)].

Thirdly, The scaling-up manufacture of “Good Manufacturing

Practice” (GMP)-grade exosomes is the most difficult component in

the clinical use of exosomes. Challenges in the further clinical

application of exosomes include quality control, such as the cell-

culture system, purification, characterization/physicochemical and

biological properties of exosomes, as well as the establishment of a

“gold standard” for potency assay. Thus, advances in scaling-up

technology for GMP-compliant exosomes manufacturing will

enhance the clinical applications of these entities for diabetes and

the related complications in the near future.
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6 Concluding remarks and
future perspectives

As a promising candidate for novel cell free therapy, exosomes

may be widely used as an alternative to stem cells in management of

a variety of immunity-related diseases or inflammation response for

maintenance of the microenvironment for tissue homeostasis and

tissue regeneration upon injury. In this review article, we describe

how immune cell-derived exosomes origin from neutrophils, T

lymphocytes and macrophages impact on diabetes and the

associated complications. We also discuss the stem cell-derived

exosomes and their role in immunomodulatory and inflammation

in the progress of diabetic complications. In addition, promising

directions involving engineered exosomes as well as current

challenges of clinical applications are reviewed. The enhanced

properties of engineered exosomes have been verified in lab,

which proves that they have great clinical application prospects.

However, there is still a long way to go before commercial exosome

products are ready for the market, due to the lack of clinical trials

and quality control for scaling-up manufacture.

In addition to the above challenges, some questions remain

unanswered, which needs more attention to be paid to in the future.

For example, how do exosomes transferred specific miRNAs target

the genes in recipient cells? Besides, studies about gestational

diabetes mellitus (GDM) are still limited. Although researchers

have found that some exosomal non-coding RNAs in peripheral

blood may be early diagnostic markers for GDM, it is unknown how

exosomes interact with the immune system and contribute to the

pathophysiology of GDM. Nevertheless, we remain confident that

the hurdles facing these innovative approaches will be surmounted

and that they will do influence the treatment of diabetes.
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Dıéz-Tejedor E, et al. Role of exosomes as a treatment and potential biomarker for
stroke. Trans Stroke Res. (2019) 10:241–9. doi: 10.1007/s12975-018-0654-7

111. Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of
stroke. Front Cell Neurosci. (2014) 8:377. doi: 10.3389/fncel.2014.00377

112. Codispoti B, Marrelli M, Paduano F, Tatullo M. NANOmetric BIO-banked
MSC-derived exosome (NANOBIOME) as a novel approach to regenerative medicine.
J Clin Med. (2018) 7. doi: 10.3390/jcm7100357

113. Moon GJ, Sung JH, Kim DH, Kim EH, Cho YH, Son JP, et al. Application of
mesenchymal stem cell-derived extracellular vesicles for stroke: biodistribution and
microRNA study. Trans Stroke Res. (2019) 10:509–21. doi: 10.1007/s12975-018-0668-1

114. Ma S, Wang J, Wang Y, Dai X, Xu F, Gao X, et al. Diabetes mellitus impairs
white matter repair and long-term functional deficits after cerebral ischemia. Stroke.
(2018) 49:2453–63. doi: 10.1161/STROKEAHA.118.021452

115. Bose S, Cho J. Role of chemokine CCL2 and its receptor CCR2 in
neurodegenerative diseases. Arch Pharmacal Res. (2013) 36:1039–50. doi: 10.1007/
s12272-013-0161-z

116. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte
chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb
Blood Flow Metab. (2002) 22:308–17. doi: 10.1097/00004647-200203000-00008

117. Wen D, Peng Y, Liu D, Weizmann Y, Mahato RI. Mesenchymal stem cell and
derived exosome as small RNA carrier and Immunomodulator to improve islet
transplantation. J Controlled Release. (2016) 238:166–75. doi: 10.1016/
j.jconrel.2016.07.044

118. Ebrahim N, El-Halim HEA, Helal OK, El-Azab NE, Badr OAM, Hassouna A,
et al. Effect of bone marrow mesenchymal stem cells-derived exosomes on diabetes-
induced retinal injury: Implication of Wnt/b-catenin signaling pathway. Biomed
Pharmacother = Biomed Pharmacother. (2022) 154:113554. doi: 10.1016/
j.biopha.2022.113554

119. Methods In Medicine CAM. Retracted: Mesenchymal Stem Cell Exosomal
miR-146a Mediates the Regulation of the TLR4/MyD88/NF-kB Signaling Pathway in
Inflammation due to Diabetic Retinopathy. Comput Math Methods Med. (2023)
2023:9826235. doi: 10.1155/2023/9826235

120. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and
friends. J Cell Biol. (2013) 200:373–83. doi: 10.1083/jcb.201211138

121. Lv Q, Deng J, Chen Y,Wang Y, Liu B, Liu J. Engineered human adipose stem-cell-
derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing.
Mol Pharmaceutics. (2020) 17:1723–33. doi: 10.1021/acs.molpharmaceut.0c00177

122. Liang ZH, Pan NF, Lin SS, Qiu ZY, Liang P, Wang J, et al. Exosomes from
mmu_circ_0001052-modified adipose-derived stem cells promote angiogenesis of DFU
via miR-106a-5p and FGF4/p38MAPK pathway. Stem Cell Res Ther. (2022) 13:336.
doi: 10.1186/s13287-022-03015-7

123. Li X, Xie X, Lian W, Shi R, Han S, Zhang H, et al. Exosomes from adipose-
derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by
promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. (2018)
50:1–14. doi: 10.1038/s12276-018-0058-5

124. Yu M, Liu W, Li J, Lu J, Lu H, Jia W, et al. Exosomes derived from atorvastatin-
pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/
eNOS pathway. Stem Cell Res Ther. (2020) 11:350. doi: 10.1186/s13287-020-01824-2

125. Born LJ, Chang KH, Shoureshi P, Lay F, Bengali S, Hsu ATW, et al. HOTAIR-
loaded mesenchymal stem/stromal cell extracellular vesicles enhance angiogenesis and
wound healing. Adv Healthcare Mater. (2022) 11:e2002070. doi: 10.1002/
adhm.202002070

126. Huang J, Yu M, Yin W, Liang B, Li A, Li J, et al. Development of a novel RNAi
therapy: Engineered miR-31 exosomes promoted the healing of diabetic wounds.
Bioactive Mater. (2021) 6:2841–53. doi: 10.1016/j.bioactmat.2021.02.007

127. Xiong Y, Chen L, Liu P, Yu T, Lin C, Yan C, et al. All-in-one: multifunctional
hydrogel accelerates oxidative diabetic wound healing through timed-release of
exosome and fibroblast growth factor. Small (Weinheim an der Bergstrasse
Germany). (2022) 18:e2104229. doi: 10.1002/smll.202104229

128. Du J, Wan Z, Wang C, Lu F, Wei M, Wang D, et al. Designer exosomes for
targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy.
Theranostics. (2021) 11:8185–96. doi: 10.7150/thno.59121
frontiersin.org

https://doi.org/10.1038/s41598-020-67460-1
https://doi.org/10.3390/ijms22083851
https://doi.org/10.2337/db17-0356
https://doi.org/10.1186/s13287-022-03082-w
https://doi.org/10.1186/s13287-022-03082-w
https://doi.org/10.3389/fimmu.2016.00160
https://doi.org/10.3389/fimmu.2016.00160
https://doi.org/10.1038/ni0901-764
https://doi.org/10.4049/jimmunol.1502139
https://doi.org/10.3390/pharmaceutics14102065
https://doi.org/10.1016/j.biopha.2022.113463
https://doi.org/10.3389/fimmu.2014.00556
https://doi.org/10.1016/j.diabres.2021.109032
https://doi.org/10.3390/cells11162568
https://doi.org/10.1021/acsnano.7b07643
https://doi.org/10.1021/acsnano.7b07643
https://doi.org/10.1152/ajpendo.00194.2007
https://doi.org/10.1016/j.cell.2017.08.035
https://doi.org/10.1186/s13287-020-01852-y
https://doi.org/10.3390/ijms231810421
https://doi.org/10.3389/fbioe.2022.829868
https://doi.org/10.3390/pharmaceutics14030649
https://doi.org/10.1186/s13287-018-0914-1
https://doi.org/10.1186/s13287-023-03345-0
https://doi.org/10.15283/ijsc21067
https://doi.org/10.1186/s13287-020-01756-x
https://doi.org/10.1007/s12975-016-0464-8
https://doi.org/10.1001/archneurol.2011.146
https://doi.org/10.1161/STROKEAHA.110.596486
https://doi.org/10.1007/s12975-018-0654-7
https://doi.org/10.3389/fncel.2014.00377
https://doi.org/10.3390/jcm7100357
https://doi.org/10.1007/s12975-018-0668-1
https://doi.org/10.1161/STROKEAHA.118.021452
https://doi.org/10.1007/s12272-013-0161-z
https://doi.org/10.1007/s12272-013-0161-z
https://doi.org/10.1097/00004647-200203000-00008
https://doi.org/10.1016/j.jconrel.2016.07.044
https://doi.org/10.1016/j.jconrel.2016.07.044
https://doi.org/10.1016/j.biopha.2022.113554
https://doi.org/10.1016/j.biopha.2022.113554
https://doi.org/10.1155/2023/9826235
https://doi.org/10.1083/jcb.201211138
https://doi.org/10.1021/acs.molpharmaceut.0c00177
https://doi.org/10.1186/s13287-022-03015-7
https://doi.org/10.1038/s12276-018-0058-5
https://doi.org/10.1186/s13287-020-01824-2
https://doi.org/10.1002/adhm.202002070
https://doi.org/10.1002/adhm.202002070
https://doi.org/10.1016/j.bioactmat.2021.02.007
https://doi.org/10.1002/smll.202104229
https://doi.org/10.7150/thno.59121
https://doi.org/10.3389/fimmu.2024.1357378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1357378
129. Dumontel B, Susa F, Limongi T, Vighetto V, Debellis D, Canta M, et al.
Nanotechnological engineering of extracellular vesicles for the development of
actively targeted hybrid nanodevices. Cell Biosci. (2022) 12:61. doi: 10.1186/
s13578-022-00784-9

130. Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem
cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic
wound healing and complete skin regeneration. Int J Nanomed. (2020) 15:5911–26.
doi: 10.2147/IJN.S249129

131. Jiang T, Liu S, Wu Z, Li Q, Ren S, Chen J, et al. ADSC-exo@MMP-PEG smart
hydrogel promotes diabetic wound healing by optimizing cellular functions and
relieving oxidative stress. Mater Today Bio. (2022) 16:100365. doi: 10.1016/
j.mtbio.2022.100365

132. Yuan M, Liu K, Jiang T, Li S, Chen J, Wu Z, et al. GelMA/PEGDA
microneedles patch loaded with HUVECs-derived exosomes and Tazarotene
promote diabetic wound healing. J Nanobiotechnol. (2022) 20:147. doi: 10.1186/
s12951-022-01354-4

133. Geng X, Qi Y, Liu X, Shi Y, Li H, Zhao L. A multifunctional antibacterial and
self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived
exosomes for accelerating diabetic wound healing. Biomater Adv. (2022) 133:112613.
doi: 10.1016/j.msec.2021.112613

134. Wang Y, Cao Z, Wei Q, Ma K, Hu W, Huang Q, et al. VH298-loaded
extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic
wound healing by HIF-1a-mediated enhancement of angiogenesis. Acta Biomater.
(2022) 147:342–55. doi: 10.1016/j.actbio.2022.05.018

135. Zhang Y, Li M, Wang Y, Han F, Shen K, Luo L, et al. Exosome/metformin-
loaded self-healing conductive hydrogel rescues microvascular dysfunction and
promotes chronic diabetic wound healing by inhibiting mitochondrial fission.
Bioactive Mater. (2023) 26:323–36. doi: 10.1016/j.bioactmat.2023.01.020

136. Song Y, You Y, Xu X, Lu J, Huang X, Zhang J, et al. Adipose-derived
mesenchymal stem cell-derived exosomes biopotentiated extracellular matrix
hydrogels accelerate diabetic wound healing and skin regeneration. Adv Sci
(Weinheim Baden-Wurttemberg Germany). (2023) 10:e2304023. doi: 10.1002/
advs.202304023

137. Hu N, Cai Z, Jiang X, Wang C, Tang T, Xu T, et al. Hypoxia-pretreated ADSC-
derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic
wound healing. Acta Biomater. (2023) 157:175–86. doi: 10.1016/j.actbio.2022.11.057

138. Xiang K, Chen J, Guo J, Li G, Kang Y, Wang C, et al. Multifunctional ADM
hydrogel containing endothelial cell-exosomes for diabetic wound healing. Mater
Today Bio. (2023) 23:100863. doi: 10.1016/j.mtbio.2023.100863

139. Cheng P, Xie X, Hu L, Zhou W, Mi B, Xiong Y, et al. Hypoxia endothelial cells-
derived exosomes facilitate diabetic wound healing through improving endothelial cell
function and promoting M2 macrophages polarization. Bioactive Mater. (2024)
33:157–73. doi: 10.1016/j.bioactmat.2023.10.020
Frontiers in Immunology 17134
140. Liu K, Gong B, Li T, Lei H, Li J, Tang J, et al. Bioactive self-healing umbilical
cord blood exosomes hydrogel for promoting chronic diabetic wound healing. Biochem
Biophys Res Commun. (2024) 690:149241. doi: 10.1016/j.bbrc.2023.149241

141. Huang L, Shi Y, Li M,Wang T, Zhao L. Plasma exosomes loaded pH-responsive
carboxymethylcellulose hydrogel promotes wound repair by activating the vascular
endothelial growth factor signaling pathway in type 1 diabetic mice. J Biomed
Nanotechnol. (2021) 17:2021–33. doi: 10.1166/jbn.2021.3165

142. Shang S, Zhuang K, Chen J, Zhang M, Jiang S, Li W. A bioactive composite
hydrogel dressing that promotes healing of both acute and chronic diabetic skin
wounds. Bioactive Mater. (2024) 34:298–310. doi: 10.1016/j.bioactmat.2023.12.026

143. Lin Y, Liu X, Liu Z, Xu Y. Visible-light-driven photocatalysis-enhanced
nanozyme of tiO(2) nanotubes@MoS(2) nanoflowers for efficient wound healing
infected with multidrug-resistant bacteria. Small (Weinheim an der Bergstrasse
Germany). (2021) 17:e2103348. doi: 10.1002/smll.202103348

144. Qiu X, Liu J, Zheng C, Su Y, Bao L, Zhu B, et al. Exosomes released from
educated mesenchymal stem cells accelerate cutaneous wound healing via promoting
angiogenesis. Cell Proliferation. (2020) 53:e12830. doi: 10.1111/cpr.12830

145. Zhao G, Liu F, Liu Z, Zuo K, Wang B, Zhang Y, et al. MSC-derived exosomes
attenuate cell death through suppressing AIF nucleus translocation and enhance
cutaneous wound healing. Stem Cell Res Ther. (2020) 11:174. doi: 10.1186/s13287-
020-01616-8

146. Zhu YZ, Hu X, Zhang J, Wang ZH, Wu S, Yi YY. Extracellular vesicles derived
from human adipose-derived stem cell prevent the formation of hypertrophic scar in a
rabbit model. Ann Plast Surgery. (2020) 84:602–7. doi: 10.1097/SAP.0000000000002357

147. Lindblad WJ. Considerations for selecting the correct animal model for dermal
wound-healing studies. J Biomater Sci Polymer Edition. (2008) 19:1087–96.
doi: 10.1163/156856208784909390

148. Heinrich W, Lange PM, Stirtz T, Iancu C, Heidemann E. Isolation and
characterization of the large cyanogen bromide peptides from the alpha1- and alpha2-
chains of pig skin collagen. FEBS Lett. (1971) 16:63–7. doi: 10.1016/0014-5793(71)80687-7

149. Davidson JM. Animal models for wound repair. Arch Dermatol Res. (1998) 290
Suppl:S1–11. doi: 10.1007/PL00007448

150. Hoekstra MJ, Hupkens P, Dutrieux RP, Bosch MM, Brans TA, Kreis RW. A
comparative burn wound model in the New Yorkshire pig for the histopathological
evaluation of local therapeutic regimens: silver sulfadiazine cream as a standard. Br J
Plast Surgery. (1993) 46:585–9. doi: 10.1016/0007-1226(93)90111-N

151. Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin
and its value as a model for human skin. Mol Immunol. (2015) 66:14–21. doi: 10.1016/
j.molimm.2014.10.023

152. Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human
wound healing. Wound Repair Regeneration. (2001) 9:66–76. doi: 10.1046/j.1524-
475x.2001.00066.x
frontiersin.org

https://doi.org/10.1186/s13578-022-00784-9
https://doi.org/10.1186/s13578-022-00784-9
https://doi.org/10.2147/IJN.S249129
https://doi.org/10.1016/j.mtbio.2022.100365
https://doi.org/10.1016/j.mtbio.2022.100365
https://doi.org/10.1186/s12951-022-01354-4
https://doi.org/10.1186/s12951-022-01354-4
https://doi.org/10.1016/j.msec.2021.112613
https://doi.org/10.1016/j.actbio.2022.05.018
https://doi.org/10.1016/j.bioactmat.2023.01.020
https://doi.org/10.1002/advs.202304023
https://doi.org/10.1002/advs.202304023
https://doi.org/10.1016/j.actbio.2022.11.057
https://doi.org/10.1016/j.mtbio.2023.100863
https://doi.org/10.1016/j.bioactmat.2023.10.020
https://doi.org/10.1016/j.bbrc.2023.149241
https://doi.org/10.1166/jbn.2021.3165
https://doi.org/10.1016/j.bioactmat.2023.12.026
https://doi.org/10.1002/smll.202103348
https://doi.org/10.1111/cpr.12830
https://doi.org/10.1186/s13287-020-01616-8
https://doi.org/10.1186/s13287-020-01616-8
https://doi.org/10.1097/SAP.0000000000002357
https://doi.org/10.1163/156856208784909390
https://doi.org/10.1016/0014-5793(71)80687-7
https://doi.org/10.1007/PL00007448
https://doi.org/10.1016/0007-1226(93)90111-N
https://doi.org/10.1016/j.molimm.2014.10.023
https://doi.org/10.1016/j.molimm.2014.10.023
https://doi.org/10.1046/j.1524-475x.2001.00066.x
https://doi.org/10.1046/j.1524-475x.2001.00066.x
https://doi.org/10.3389/fimmu.2024.1357378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chun Wai Mai,
UCSI University, Malaysia

REVIEWED BY

Shareni Jeyamogan,
Northwestern University, United States
Somayeh Keshtkar,
Shiraz University of Medical Sciences, Iran

*CORRESPONDENCE

Giovanna Romeo

giovanna.romeo@uniroma1.it

†These authors have contributed
equally to this work and share
senior authorship

RECEIVED 23 December 2023

ACCEPTED 07 May 2024
PUBLISHED 17 May 2024

CITATION

Iuliano M, Grimaldi L, Rosa P, Scibetta S,
Bernardini N, Proietti I, Tolino E, Skroza N,
Potenza C, Mangino G and Romeo G (2024)
Extracellular vescicles in psoriasis: from
pathogenesis to possible roles in therapy.
Front. Immunol. 15:1360618.
doi: 10.3389/fimmu.2024.1360618

COPYRIGHT

© 2024 Iuliano, Grimaldi, Rosa, Scibetta,
Bernardini, Proietti, Tolino, Skroza, Potenza,
Mangino and Romeo. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 17 May 2024

DOI 10.3389/fimmu.2024.1360618
Extracellular vescicles in
psoriasis: from pathogenesis to
possible roles in therapy
Marco Iuliano1, Lorenzo Grimaldi1, Paolo Rosa1,2,
Sofia Scibetta1, Nicoletta Bernardini3, Ilaria Proietti3,
Ersilia Tolino3, Nevena Skroza1,3, Concetta Potenza1,3,
Giorgio Mangino1† and Giovanna Romeo1*†

1Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo
Pontino, Latina, Italy, 2ICOT, Istituto Chirurgico Ortopedico Traumatologico, Latina, Italy,
3Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
Psoriasis is a chronic inflammatory disease affecting skin and joints characterized

by a chronically altered immune and inflammatory response. Several factors

occur from the onset to the development of this disease due to different types of

cells spatially and temporally localized in the affected area, such as, keratinocytes,

macrophages, neutrophils and T helper lymphocytes. This scenario leads to the

chronic release of high levels of inflammatory mediators (i.e., IL-17, IL-23, IL-22,

TNF-a, S100 proteins, Defensins) and lastly parakeratosis and thickening of the

stratum spinosum. Extracellular vesicles (EVs) are small double membraned

biological nanoparticles that are secreted by all cell types and classified, based

on dimension and biogenesis, into exosomes, microvesicles and apoptotic

bodies. Their role as vessels for long range molecular signals renders them key

elements in the pathogenesis of psoriasis, as well as innovative platforms for

potential biomarker discovery and delivery of fine-tuned anti-inflammatory

therapies. In this review, the role of EVs in the pathogenesis of psoriasis and

the modulation of cellular microenvironment has been summarized. The

biotechnological implementation of EVs for therapy and research for new

biomarkers has been also discussed.
KEYWORDS

psoriasis pathogenesis, extracellular vesicles, exosomes, inflammatory microenvironment,
microRNA
1 Introduction

Psoriasis is a chronic inflammatory-mediated disease that affects the skin and has an

incidence of 2–3% of the world’s population (1). Despite the direct cause behind psoriasis

development is still unknown, many risk factors and molecular components have been

described. In the beginning, blood vessels enlarge and become tortuous. In this stage the
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dermis remains unaltered. Soon after, keratinocyte (KC)

hyperproliferation can be observed, accompanied by parakeratosis

(i.e., retention of nuclei by corneocytes). Lastly, during the late

stages, acanthosis becomes prevalent. This phenomenon is a result

of the KCs invading the higher layers of the skin and the thickening

of the stratum spinosum, producing a darker tone and a scaly

texture (2). A molecular trigger for psoriasis has also been

identified. In response to a physical trauma of the skin, KCs

release the cationic antimicrobial peptide (AMP) LL-37. DNA or

RNA fragments released from the lesion are bound to LL-37 and

form LL-37/self-DNA/RNA complexes found in psoriasis lesions,

which in turn activate TLR7/9-bearing dendritic cells (DCs). This

results in type I interferon (IFN) production and initiation of

inflammation. One of the main features of psoriasis is the

dysregulated and chronic immune response, stemming from a

vicious cycle between damaged KCs, DCs and local T cells.

Myeloid DCs in the skin are activated by pro-inflammatory

cytokines produced by damaged KCs such as Tumor Necrosis

Factor-a (TNF-a) Interleukin- (IL)-1b and IL-6 as well as the

LL-37/self-DNA/RNA complex. DCs, then, activate gd-T cells

polarization through the release of TNF-a, IL-23, IL-1b and IL-6.

The cycle is closed by matured gd-T cells who induce keratinocyte

aberrant differentiation program through IL-17 and the recruitment

of neutrophils and other immune cells. Plaque formation and

maintenance is enabled by the DC-macrophage IL-23/IL-17 axis

which promotes type 17 T helper (Th) and cytotoxic T lymphocyte

effector polarization (3). The causes of psoriasis development can be

both genetic and environmental (4). It is important to note that,

rather than being direct causes, they represent risk factors for

psoriasis and likely play roles with different weights in disease

emergence. It is, therefore, clear that psoriasis is a disease that

occurs when there is an interplay between environment, genetic

predisposition factors, an overactive immune system and altered

cell-to-cell intercommunication (2, 5).

Extracellular vesicles (EVs) are a class of small double

membraned nanoparticles that are secreted by all cell types and

mainly act as vessels for delivering cargo and molecular signals (6).

Based on their biogenesis and/or size, EVs can be categorized in

three subsets: exosomes or small EVs (s-EVs, 30–150 nm in

diameter, originating from the endosomal complex); microvesicles

or large EVs (l-EVs 100–1000 nm in diameter, secreted from the cell

membrane); apoptotic bodies (APs 50–5000 nm in diameter,

originated from plasma membrane blebbing during apoptosis)

(6–8). Nucleic acids (i.e., several type of RNAs) and proteins are

carried by EVs from a donor to an acceptor cell where modulation

of expression is carried out. The range of EV signaling can be

restricted to adjacent cells localized in the same tissue as the donor

cell but can also be extended to a systemic level. While long range

cell-to-cell communication is also possible with cell-free RNAs and

proteins, the protection provided by EVs from RNAses and

proteases represents a major advantage in long distance signaling

(8–10). EVs play a crucial role in the regulation of many patho-

physiological processes and the definition of the extracellular

environment. During disease development EVs are employed

both by the host and the pathogen or cancerous cells: the former

to regulate the immune response and induce the polarization of
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macrophages, neutrophils and of other effector cells; the latter to

prime the environment for further colonization. Regarding a typical

chronic inflammatory disease, as psoriasis, EVs have roles in the

regulation of the immune response but also as platforms for

therapeutic applications and delivery of innovative drugs.

Furthermore, the use of EVs has also had ramifications in disease

diagnosis. In recent times, RNA and proteins carried by EVs

through the blood stream have been profiled to find molecular

biomarkers positively correlated with many diseases. Indeed, such

biomarkers have become useful in keeping track of disease

progression and amelioration (11–14). The latter aspect is even

more important in the case of psoriasis where the patient evaluation

and follow-up is still based on clinical criteria, mainly the Psoriasis

Area and Severity Index (PASI) and the Dermatology Life Quality

Index (DLQI). Hence, the push to molecular characterization of

EVs in subjects affected by psoriasis to identify markers for patient

management, possibly through a liquid biopsy approach.

Here a selection of the studies about the influence and the

potential role of EVs both in the development of psoriasis and in

therapeutic intervention to contrast this disease, has been presented.

In particular, the review highlights the role of EVs in the composition

of psoriasis-associated secretome and microenvironment also

suggesting the EV involvement in the spreading of the disease

mediators and in the development of associated comorbidities.
2 EV release and composition

While it is not clear if EV production is influenced by psoriasis

and by its severity (15), in vitro experiments with HaCaT cells

performed by Mangino et al. have reported that IL-17A treatment

significantly alters the rate of EVs production (16). Moreover, the

size of the produced EVs was also subjected to modulation since an

enrichment in EVs below 450 nm in diameter was observed. Besides

IL-17A, other cytokines have been proven to have an effect in EV

release, both in size and cargo. To this end, Capriotti et al. (17)

carried out experiments by stimulating HaCaT KCs with

recombinant chemokines (i.e., IFN-g, TNF-a, IL-17A, IL-22 and

IL-23). EVs were subsequently isolated and analyzed through

Nanoparticle Tracking Analysis (NTA). The results revealed that

only IL-17A and INF-g modulated EV production, increasing the

quantity of EVs below 200 nm produced. Recently, EVs have

proven to be valuable elements to keep track of disease

progression and development. In this case psoriasis is not an

exception and there are many examples in which EVs have been

used to monitor both amelioration after treatment and disease

development. In fact, it has been proposed that the concentration of

EVs in psoriatic patients’ sera is indicative of the chronicity of the

disease (18–20).

The molecular cargo of the EVs is the result of an active process

orchestrated by specific pathways for exosomes and microvesicles

(21). The evaluation of the EVs content can be useful for the

discovery of new biomarkers and for determining the possible role

of EVs’ cargo in transferring competencies to the acceptor cell.

A study based on proteomic analysis on exosome from

KCs stimulated by psoriasis related inflammatory cytokines
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demonstrated that 72 (10.9%) proteins were up-regulated and 96

(14.5%) down-regulated. The Gene Ontology (GO) analysis showed

that the enrichment was focused on proteins linked to the immune

effector process, inflammatory response, endocytosis and in

molecules involved in serine hydrolase activity, serine-type

peptidase activity and heparin binding. The Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways analysis highlighted an

increase of proteins related to Wingless-related integration site

(Wnt), Nuclear Factor kappa B (NF-kB), cytokine-cytokine

receptor and Toll Like Receptor (TLR) pathways (22). The

microenvironmental stress can lead to a change in exosome

composition even if the abundance of Heat Shock Proteins

(HSPs) and S100 proteins remains univariate and there is not a

specific molecular inducer of neutrophils activation. This scenario

reinforces the hypothesis that the exosomes are subjected to

different methods of spreading messages from the producer cells

(22). One of the most important mediators of the psoriatic disease is

the IL-17, a cytokine produced by Th17 lymphocytes and KCs. The

composition of psoriasis-derived exosomes is dependent on the

severity of the disease. It has been discovered that IL-17A

expression increases 5 times from mild to severe psoriasis (15).

The altered regulation of the inflammation can be due to different

mechanisms. The control of the oxidative status is fundamental to

reduce the increase of reactive oxygen species (ROS) that can trigger

the induction of inflammation (23). It has been observed that while

the levels of iron and TIBC (Total iron-binding capacity) were

significantly lower in psoriasis patients compared to healthy donors,

Soluble transferrin receptor (sTfR) and Heme Oxygenase-1 (HO-1)

were over-expressed. HO-1 is an inducible enzyme which converts

heme into iron, carbon monoxide and biliverdin/bilirubin (24).

HO-1 plays fundamental roles in cytoprotection, membrane

cholesterol and oxysterols metabolism (25), and in the

development of the psoriatic lesion by negatively regulating Stat3

signaling (26). The function of HO-1 is mainly protective against

oxidative stress and inflammation (23). However, in presence of

chronic stress situations, the strong induction of HO-1 may result to

be cytotoxic due to extreme iron accumulation (27). In exosomes,

the increased HO-1 levels reflected the cytosolic situation and could

be a part of the non-specific defense against inflammation and ROS

increment into psoriatic KCs. In another study iron levels measured

through heme-oxygenase activity as other acute phase reactants

present in EVs were used to track disease progression and quantify

acuteness (28).

The mRNA cargo carried by EVs from IL-17A treated HaCaT

cells was enriched by neutrophil and lymphocyte chemoattractant

C-X-C motif ligand (CXCL)1, CXCL3, CXCL5, CXCL6 and C-C

motif ligand (CCL)20 and AMP Defensin-b2 (hBD2). The

aforementioned results were confirmed through neutralization of

rIL-17A by using anti-17-A antibody (i.e., Secukinumab). When

administered to the treated cells, Secukinumab reversed the CXCL1,

CXCL3, CXCL5, CXCL6, CCL20 and hBD2 mRNAs to levels

similar to those of the untreated controls. Interestingly, EVs

collected from IL-17A treated KCs also induced endogenous

expression of Defensin-b2 mRNAs in acceptor cell (16).

Furthermore, IL-17A and IL-23 increase the transcription levels

of hBD2 and hS100A12 in cells, and hBD2 in EVs. Conversely, IL-
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17A, TNF-a, IL-22 and IL-23 upregulated the levels of S100 calcium
binding protein A12 (S100A12) in the secreted EVs (17).

A massive study of miRNA exosome content from plasma

samples of psoriatic patients discovered 246 miRNAs differentially

expressed compared to exosomes from plasma of healthy donors. In

particular, 166 miRNAs were upregulated whereas 80 were

downregulated compared to healthy donors. Among those

analyzed, let-7d-3p, miR-125a-5p, -134–5p, -142–3p, -155–5p,

-375–3p, -485–5p, -941 and -1228–5p were the most deregulated.

Subsequently, a GO enrichment analysis allowed to define the

principal biological processes involved in relation to the

deregulated miRNAs. KEGG pathway enrichment analysis was

directed against miRNAs targets to find the associated pathways. It

has been found that cellular metabolic process, cellular process,

signal-organism cellular process, metabolic pathways, endocytosis,

apoptosis and spliceosome were the most affected among the others

(29). The characterization of exosome content of various cell types

concurring to the development of the psoriasis, highlights specific

miRNA profile for every cell type. Treg derived exosomes are

enriched with miR-146a-5p, -150–5p and -21–5p. Th1/Th17

derived exosomes contain high levels of miR-106a-5p, -155–5p and

-19a-3p. The possibility to create an in vitro model of the psoriasis

has been applied to study the miRNA profile from keratinocyte

treated derived exosomes: 28 miRNAs are enriched while 114 result

downmodulated compared to untreated cells. By evaluating the

circulant exosomes into psoriatic patient, it was an interesting

highlight as let-7b-5p and miR-30e-5p could be discriminant for

the development of cutaneous-only psoriasis with respect to psoriatic

arthritis, while miR-1305 dampen could be a master regulator of

psoriasis pathophysiology by modulating Wnt pathways (30).

Changes in serum miRNA population between patients with

plaque psoriasis, psoriatic arthritis and control patients have been

found by Lattekivi et al. (31), suggesting that EV mediated

communication could be crucial in the pathophysiological

development of these diseases. In this study, instead of an overall

change in EV bound miRNAs, major shifts in enrichment profiles

were discovered. These insights also usefully correlate with other

inflammatory diseases such as osteoarthritis (OA). A deregulated

miRNA that was previously found to be downregulated in psoriatic

skin biopsies, namely hsa-miR-99b-5p, was found to be deregulated

in sera collected from patients with plaque psoriasis. This data fits

also with the observation that hsa-miR-99b-5p has been positively

correlated with keratinocyte hyperproliferation. Hsa-miR-671–3p

was found to be down-modulated in patients with arthritic

psoriasis compared to the control groups. This miRNA

is also deregulated in OA and its role is to regulate the expression

of OA correlated genes in chondrocytes and osteoblasts

suggesting a possible connection between psoriasis and other

inflammatory diseases (32).

Exosome cargo could be defined also by circulating long non-

coding RNAs (lncRNAs). Such type of non-coding RNAs (ncRNAs)

are characterized by a sequence of more than 200 nucleotides, a

secondary structural conformation and regulatory of gene

expression function. The lncRNA PRINS (Psoriasis-susceptibility-

Related RNA Gene Induced by Stress) can contribute to the

pathogenesis of psoriasis by increasing the expression of the anti-
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apoptotic G1P3 gene but until now the presence of lncRNA PRINS

into KCs-derived or immune cells associated to psoriasis-derived

exosome is not well understood (33).

Besides nucleic acids and proteins, lipids also have a role in EV

mediated communication in normal physiology as in psoriasis. The

alteration of EV membranes and cargo in phospholipid

composition benefits the uptake in acceptor cells thus facilitating

effective cell-to-cell communication. Starting from the observation

that plasma lipidic profiles in psoriatic patients are altered, Paolino

et al. studied the phospholipid composition of plasma microvesicles

and exosomes (34). In psoriatic patients undergoing treatment with

Secukinumab, Ustekinumab, Adalimumab, an increased

production of microvesicles and exosomes in plasma was

recorded, with altered membrane phospholipid composition.

Membrane phosphatidylcholine, phosphatidylethanolamine,

phosphatidylglycerol and lysophosphatidylcholine were altered

in plasma exosomes from psoriatic patients in comparison

with those from healthy subjects. Moreover, in plasma

microvesicles from psoriatic patients, changes in sphingomyelin

and phosphatidylinositol levels were recorded. Interestingly,

treatments with the aforementioned drugs seemed to revert the

observed lipidic phenotypes. Ustekinumab reverted the

phosphatidylethanolamine and phosphatidylcholine levels in

exosomes back to levels comparable to those in healthy subjects.

Furthermore, a variation in microvesicle and exosome origin was

recorded by Takeshita et al. as an increased level of monocyte and

endothelial-derived microvesicles in psoriatic patients (32). These

data suggest that lipid profiles of the sera of patients could be a

potential tool for a quantitative diagnosis and management of

psoriasis. A resume about the molecular composition of EVs

related to psoriatic disease is shown on Table 1.
3 EV cellular trafficking
and microenvironment

Jiang et al. demonstrated the influence of EVs originating from

KCs treated with cytokines during psoriatic development,

specifically in Th1 and Th17 polarization (36). EVs derived from

cytokine-stimulated KCs have been shown to influence T cell

response to the point of over proliferation and activation, thus

leading to psoriasis. Small RNAs such as miRNAs have a major role

in regulating CD4+ T cell polarization into Th1 and Th17 subsets.

Indeed, the sequencing of RNA extracted from these EVs showed

that 28 miRNAs were upregulated while 114 were downmodulated.

Among these modulated miRNAs, miR-381–3p expression

increased in EVs from cytokine-treated KCs and in CD4+ T-cells

from psoriatic patients. In the receiving cells, IFN-g, IL-17A, IL-17F,
T-box expressed in T cells (T-bet), and RAR-related orphan

receptor gamma (RORgt) transcript levels enhancement and IFN-

g and IL-17A protein levels increase were observed. Since miR-381–

3p has been positively correlated with the Psoriasis Area Severity

Index (PASI) score, a clinical-quantitative scale used to determine

the severity of psoriasis cases, such evidence suggests the important

role of EV cargo in psoriasis development and management. During

the development of psoriasis, the Th cell-keratinocyte axis has a
Frontiers in Immunology 04138
crucial role. Although the underlying mechanism is not entirely

clear, it is understood that psoriatic KCs communicate with CD4+

cells and induce Th1 and Th17 polarization. This mechanism may

also modulate the hyper immune response that is associated with

psoriasis. Jiang et al. determined that miR-381–3p is carried from

psoriatic cells to CD4+ cells through vesicle trafficking, thus

polarizing T helper cells towards the Th1 and Th17 phenotype

(36). These findings can be considered both as an interesting

development in scientific understanding of psoriatic pathogenesis

and as an innovative platform to contrast this disease since these

KC-EVs could be implemented in immunomodulatory therapies.

Neutrophils are able to amplify the psoriatic inflammatory

deregulation by building the Neutrophils Extracellular Trap

(NETs), a structure composed by proteins and DNA that

promotes hBD2 expression in KCs and the induction of type 17

T helper cells from peripheral blood mononuclear cells. It has been

observed that cytokine-treated keratinocyte exosomes are able to

activate NF-kB and p38 pathways on neutrophils leading to the

production of IL-6, IL-8, and TNF-a, and so promoting the

induction of NETosis. The precise mechanism behind this process

has been not defined yet but it seems to be fundamental that the

inflammatory message from KC has been conveyed through

exosomes. The NET exploits its role when the structure is

complete and psoriatic KC-derived exosomes could also be a part

of this structure (22). The ability of the EVs derived from KCs

stimulated with psoriatic cytokines to induce NETs was investigated

also by Capriotti et al. (17). This was carried out by exposing

primary neutrophils to supernatant derived from HaCatT cells

treated with IFN-g, TNF-a, IL-17A, IL-22 and IL-23. All

cytokines, apart from IFNg, were able to induce the formation of

the neutrophil traps (17). Psoriatic lesions are known to be

characterized by a heightened migration and motility of KCs. To

further investigate this evidence, HaCat cells were incubated in

transwells with EVs from untreated or treated with IL-17A and

IFN-g HaCaT cell. While the cells exposed to the IL-17A treated

EVs showed no relevant change in motility compared to the

untreated controls, those treated with the IFN-g derived EVs were

able to migrate more than the controls. Behind these differences

between IL-17A and IFN-g, the authors speculate that the

hypercellularity seen in psoriatic lesions could be connected to

the effect of IL-17A of halting cell migration. Interestingly, IFN-g
has an opposite effect on NETosis, modulating the phenomenon

more than IL-17A (17).

The miRNAs activity can be modulated by the action of the

circular RNAs that are able to capture miRNAs due to their

structure. Circ_0024028 is a circular RNA highly expressed into

psoriasis lesions and IL-22 stimulated HaCaT cells. Moreover, it has

been demonstrated that in HaCaT cells Circ_0024028 upregulation

was associated with cell proliferation and migration and its

expression is dependent to IL-22 stimulus in a concentration-

dependent manner. With an elegant demonstration Zhang et al.

have found that circ_0024028 can be accumulated into exosome in

a specific manner and that exosomes are able to spread

circ_0024028 into surrounding cells. Probably the action of

circ_0024028 is related to the sponge of miR-486–3p that is an

inhibitor of retinoblastoma (pRB) and AKT serine/threonine kinase
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3 (AKT3) genes and an activator of extracellular matrix protein 1

(ECM1) level (39).

The ability of neutrophil-derived vesicles to interact with

immune cells for the orchestration of the adaptive immune

response is well documented. Shao et al. determined that,

Olfactomedin 4 protein (OLFM4), was expressed in exosomes

from neutrophils collected from generalized pustular psoriasis

(GPP) (40). This protein belongs to the olfactomedin family and

is known to be an anti-apoptotic and tumor promoting factor. In

their work, the authors approached exosome characterization from

a proteomic standpoint analyzing EV cargo from healthy and GPP

subjects. OLFM4 was not only found in mRNA form in psoriatic

neutrophils but also as a protein in circulating exosomes

(determined through Western Blot), shedding interesting

information on cell-to-cell communication between neutrophils

and psoriatic KCs. Interestingly, when recombinant OLFM4 was

introduced in KCs, a spike in CXCL1, CXCL2, CXCL8, and CCL20-
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containing exosomes was registered. This expression phenotype is

typically associated with a psoriatic microenvironment, which leads

to increased proliferation and migration of neutrophils and other

immune cells to the inflamed area. Thus, the role of OLFM4 has

been correlated with the exosome-assisted pathogenesis of GPP.

Mast cells derived exosomes contain phosphatidylcholine 2-

acylhydrolase (PLA2) and are able to bind CD1a on T lymphocytes,

thus stimulating an inflammatory response. This inflammatory

response was determined by Enzyme-Linked immuno-SPOT

(ELISPOT) experiments on T cells from healthy and psoriatic

subjects stimulated with mast cells derived exosomes. T cells from

psoriasis patients had a greater IFN-g, IL-17 and IL-22 production

due to an increased CD1a response compared to healthy

individuals. Such CD1a high T cells were preferentially localized

near the lesional skin but could also be found into the non-lesional

skin and peripheral blood. PLA2 was produced by endogenous

cytosolic phospholipase A2 group IV D (PLA2G4D) that was
TABLE 1 Schematic table summarizing the cargo carried by EVs or exosomes, the quality of modulation in the target cell and the resulting effects.

Component Mediator
Type

of regulation
Effects Origin References

mRNA hBD2
CXCL3
CCL20

Upregulated Pro-inflammatory HaCaT
(16)

S100A12
hBD2

Upregulated Pro-inflammatory pso-KC
(17)

ncRNA miR-146a-5p
miR-150–5p
miR-21–5p

Upregulated Pro-inflammatory Onco-regulatory Treg
(30)

miR-106a-5p
miR-155–5p
miR-19a-3p

Upregulated Pro-inflammatory Onco-regulatory Th17
(30)

miR-30e-5p
let-7b-5p

Downregulated
(in PsA)

Discriminates between cutaneous and
arthritic psoriasis

Blood (35)
(30)

miR-1305 Downregulated Amelioration of psoriasis development Blood (30)

miR-381–3p
miR-365–5p
miR-4488
miR-619–5p

Upregulated Role in Th1/Th17 polarization. pso-KC

(36)

miR-4505 Upregulated Induction of M1 macrophage differentiation. pso-KC (37)

ASO-210 Delivery Anti-inflammatory MSC-EVs (38)

circ_0024028 Expression Sponge activity for miR-486–3p. pso-KC (39)

Protein OLFM4 Expression Positively correlated with severity of GPP
Pro-inflammatory

pso-
Neutrophils

(40)

JPH203 Expression LAT-1 inhibitor. pso-KC (41)

Heme-oxygenase
sTfR

Upregulation Anti-inflammatory Blood
(28)

Lipids Pristimerin Expression Anti-inflammatory Melanoma
cells

(42)

Phosphatidylcholine
Phosphatidylethanolamine
Phosphatidylglycerol
Lysophosphatidylcholine

Upregulation Enrichment of EV plasma membrane in
psoriasis patients

pso-KC

(34)
RNAs, proteins or lipids that are expressed ex novo in EVs or exosomes and are delivered in innovative therapy strategies have been labeled as “Expression”.
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expressed in mast cells and KCs within psoriatic lesions, loaded into

exosomes and transferred to CD1a-expressing target cells in a

clathrin-dependent manner (43).

Psoriasis is characterized by the increase of the asymmetric

division of the basal stem cells. Such situation is caused by the

hyperactivation of the Par3/mInsc/LGN signaling pathway.

Moreover, proteinase-activated receptor (PAR) proteins cooperate

with atypical protein kinase C (aPKC) l to induce skin tumor and

to modulate inflammatory signaling. It has been observed that,

during psoriasis, macrophages show high levels of Par3 expression.

Exosomes derived from psoriatic macrophage containing Par3 are

able to induce asymmetric division of the basal stem cells and

inflammation when inoculated in mice skin (44).

Psoriatic KCs show a low expression of the vitamin D receptor

(VDR). It has been demonstrated that it is possible to induce M1

polarization and inhibition of apoptosis by stimulating

macrophages with HaCaT cells derived-VDR deficient exosomes.

Moreover, starting from the knowledge that miR-4505 was highly

express in psoriatic skin it has been observed that VDR deficient

HaCaT cells showed miR-4505 overexpression and the exosomes

produced by these cells exerted their M1 polarization and anti-

apoptotic activity through the delivery of miR-4505. The M1

polarization of the macrophages, then, seems central in

maintaining the inflammation (37). A table resuming all the

interaction mediated by EVs between KCs and other immune

cells located into psoriatic microenvironment has been

represented in Figure 1.
4 EVs and therapeutic applications

Zhang et al. demonstrated that EVs derived from IFN-g treated
mesenchymal stem cells (MSC-EVs) have the ability to effectively

modulate the proliferation of peripheral monocellular cells and T

cells in a psoriatic setting (38). MSC-EVs decreased the intensity and

presence of hallmark psoriatic symptoms such as skin thickness,

scaling and erythema, but also decreased the production of pro-

inflammatory cytokines such as IL-6, IL-17A, IFN-g and TNF-a.
Interestingly, Th cell subsets were also modulated with less exhausted

Th17 cells and more Th2 cells. Furthermore, these types of cells were

shown to be potentially effective tools in disease management. Indeed,

antisense nucleotides, in this case ASO-210, were delivered withmore

efficacy by using MSC-EVs. Nucleotide stability was also heightened,

resulting in a successful control of immune imbalance which is at the

core of psoriatic development. The ability of EVs to efficiently carry

and protect bioactive cargo has been exploited in experiments using

innovative compounds. In one case Jiang et al. used ultraviolet

induced EVs from cultured KCs to transport an inhibitor of LAT1

(JPH203) with the purpose of blocking the mTOR pathway through

leucine sequestration (41). Moreover, the exposure of KCs to UVB

radiation caused an accumulation of IL-1 receptor antagonists that,

when released in an in vitro model, effectively decreased IL-1

mediated inflammation. Positive results of the in vivo treatment

were also the blocking of NF-kB pathway. In successive in vivo

psoriasis imiquimod (IMQ)-induced murine experiments, the EVs
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significantly reduced the typical psoriatic symptoms like acanthosis as

well as suppressing the over-active immune reaction, pointed out by

the IL-17 release and Th17 expansion (41).

MSCs-exosomes are known to dampen chronic inflammation

associated with bowel disease, atopic dermatitis and chronic graft

versus host disease (GVHD). On the other hand, EVs derived from

umbilical cord blood mononuclear cell are able to downmodulate

the expression of inflammatory mediators namely IL-6, IL-8,

CXCL10, Cyclooxygenase 2 (COX2), S100A7, and hBD4 in a 3D

model of psoriatic skin. When the umbilical cord blood

mononuclear cell derived EVs had been administered to IMQ-

treated mice the inflammatory dampening was incomplete

suggesting a use in combination with standard therapies (45).

MSC derived exosomes are able to reduce the expression of IL-17,

IL-23 and C5b-9 in IMQ treated mouse skin. Zhang et al. have been

tested for topical application demonstrating that they remain along

the stratum corneum. Here they can regulate complements

components, one of the most induced molecules by NETosis.

Since neutrophils are the major producer of IL-17 during

psoriasis it could be reasonable to hypothesize that the MSC

exosome activity into the stratum corneum can finally damp the

inflammatory mediators into epidermis (46). A study confirmed

the ability of umbilical cord blood mononuclear cell derived

exosome to reduce inflammation. Specifically, they reduced

the expression of CCL20, IL-17 and IL-23 in IMQ-induced mice

and treated HaCaT cells. The entire inflammatory process of

psoriasis needs the orchestration of various factors. Mature DCs

participate to the development of the disease through the continue

production of IL-23 that activating Th17 cells, finally, producing an

abnormal production of IL-17, IL-21 and IL-22 and KCs

deregulation. The use of umbilical cord blood mononuclear cell

derived exosome can reduce the secretion of IL-23 by DCs.

Moreover, the phosphorylation of STAT3 is a central mechanism

of the IL-17/-23 axis and hucMSCs-Exo were able to inhibit this

process in the epidermis of IMQ-induced psoriatic mice and in

HaCaT cells (47).

The therapeutical uses of exosomes derived and modified from

tumor cells, immune cells or mesenchymal stem cells could be

promising. A characteristic of tumoral exosomes, as is the case of

melanoma derived exosomes, is the high presence of programmed

death-ligand 1 (PD-L1) expressed to achieve immune escape. Jia

et al. engineered exosome derived from melanoma cells by

introducing a natural anti-inflammatory triterpenoid substance

called Pristimerin. The combinatory activity of PD-1/PD-L1

interaction and Pristimerin allowed the engineered melanoma-

derived exosomes to dampen inflammation when administrated

to psoriatic skin more than the sum of each treatment. The activity

of the immune infiltrate in the psoriatic skin is fundamental for the

development of the disease. Macrophages are one of the most

important immune cells that collaborate into psoriatic

inflammation promotion. Engineered exosomes derived from

melanoma cells are able to reduce the inflammatory macrophages

infiltrate and to drive their polarization into M2 subset. In addition,

the interaction between PD-L1 on the surface of the exosomes and

PD-1 on the surface of immunosuppressive T cells produced the
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exhaustion of this kind of T cell so improving the inflammatory

status of the affected skin (42).

Correlation between psoriasis and other inflammatory diseases

and microbiota diversity has been a subject of scientific interest as of

recent years. In order to study microbial skin heterogeneity, a and b
diversity is usually employed. The former represents the diversity

within a sample of an ecological community, while the latter

is used to measure how much two distinct communities differ.

In this setting, interesting developments have also arisen in the

relationship between host and commensal bacteria of the skin,

intestinal mucosa and other tissues. Indeed, communication
Frontiers in Immunology 07141
between the host and non-pathogenic bacteria are crucial for

certain mechanisms such as tissue healthiness, functionality and

defense against pathogens and can be carried out through EVs.

Chang et al. expanded on this subject by performing metanalyses

of skin and intestine microbiota by analyzing the origin and diversity

of serum EVs (48). By searching EV contents for Microbial

Associated Molecular patterns (MicroAMPS), their findings

pointed out a lower richness and microbial diversity in intestinal

and skin microbiota in psoriatic patients. This is in line with previous

studies in which a decreased alpha-diversity was measured in the

intestinal microbiota of psoriasis patients, thus speculating an
FIGURE 1

Overview of keratinocytes and immune cells interactions in psoriatic microenvironment. The cartoon summarizes the main molecular mediators
found within the EVs and elucidates the resulting inflammatory effects obtained through EV trafficking. An emphasis has been given on the cell-to-
cell communication between psoriatic keratinocytes and immune cells (macrophages, T helper lymphocytes and neutrophils) localized in the lesion
area. The role of EVs in the psoriatic disease, in particular in the composition of psoriasis-associated secretome and microenvironment indicates the
EV involvement in the spreading of disease mediators and in the possible associated comorbidities. Created with BioRender.com.
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interesting correlation between dysbiosis, psoriasis and Inflammatory

Bowel Disease (IBS) related diseases. Furthermore, the authors found

that the presence of Staphylococcaceae, most importantly S. aureus,

took up a higher percentage of the entire microbiota in psoriatic

patients compared to healthy controls. This Gram-positive bacterium

is responsible for the inflammation of skin mucosa and KCs through

allergic reaction and release of alpha-toxins. S. aureus infection has

also been highly correlated with psoriasis severity (49). In conclusion,

analyzing EV content for Metabolism Associated Molecular Patterns

(MAMPS) or deviation from biochemical homeostasis could

represent a viable option for psoriasis diagnosis and management.

Commensal bacteria play an active role in skin health by promoting

regeneration after injury and by impeding pathogen colonization.

Among the many species that inhabit the skin microbiota, S.

epidermidis is one of the most active in protection against

pathogens and immunomodulation during inflammation. Chang

et al. reported that in psoriatic skin S. epidermidis and

Propionibacterium acnes were under-represented, suggesting a

possible role of these species in psoriasis contrast. Since the

mechanism through which the immunomodulation occurs is

unknown, it is possible to hypothesize that EVs could play a role in

signal transduction (48). Gomez-Chavez et al. presented a study in

which EVs extracted from two S. epidermidis strains, one commensal

(ATC12228) and a second one of clinical origin (983), were used to

test the effect on a psoriatic skin platform, namely the in vivo IMQ-

induced murine model (50). In an in vitro experiment with the

keratinocyte cell line HaCaT, both the ATC12228 and the 983

derived EVs were capable of inducing proinflammatory IL-6

expression, although EVs from the clinical strain induced a higher

level of other inflammatory mediators like Vascular endothelial

growth factor-A (VEGF-A), LL-37, IL-8, and IL-17F. In the in vivo

experiment using the IMQ-induced murine model the ATC12228

EVs actually reversed typical psoriatic symptoms like acanthosis and

cell infiltration as well as VEGF-A, IL-6, IL-23, IL-17F and IL-36

mRNA transcription. Conversely FoxP3 expression had no

significant change in expression and IL-36 receptor antagonist was

found to be increased. With these findings the authors evaluated the

therapeutic potential of S. epidermidis EVs in regulating the immune

response in psoriatic skin (51).

5 Discussion

This is a state of the art update on the importance and future

perspectives of EVs, the emergent regulatory biological structures in

virology, immunology and pathology, as explored by researchers

from both inside and outside the EV community. This work focused

on the role of EVs in the pathogenesis of the chronic inflammatory

disease, psoriasis.

EVs are heterogeneous, membrane-enclosed nanostructures that

are evolutionally conserved and released by cells of living organisms.

EVs are identified as an alternative secretory mechanism for

cytokines/chemokines and the regulatory role of specific cytokines

in vesicle release, trafficking and/or content is almost recognized.

Their role as important mediators of cell-to-cell communication in

physiologic and pathologic conditions has emerged in the last two
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decades. The composition of the EV cargo is diverse and critical for

intercellular communication. EV cargo is defined by the lineage of

the parental cells and their state of activation. EVs protect their

cargo, e.g. miRNAs secreted into the microenvironment are

preserved from serum RNAse degradation as a result of being

encapsulated inside a double membrane structure; once

transferred to recipient cells, EVs could promote inflammation by

regulating gene expression leading to multiple physiological changes

in cell proliferation, migration, intercellular communication and/or

stromal modification. The inflammatory microenvironment is

characterized by the presence and activity of specific combinations

of molecular, cellular and sub-cellular mediators derived from both

immune and non-immune cells that collectively contribute to

inflammation. Among the sub-cellular mediators are EVs that are

derived through budding processes from cellular membranes and

are secreted into the extracellular space by many cell types. Many

inflammatory-associated pathological disorders, ranging from

autoimmune diseases to cancer (52–55), are mainly characterized

by a microenvironment with specific inflammatory elements (i.e.,

immune cells infiltrate, cytokines, chemokines, AMPs and Damage-

associated molecular patterns). The role of EVs in the psoriatic

disease, in particular in the composition of psoriasis-associated

secretome and microenvironment indicates the EV involvement in

the spreading of disease mediators and in the possible

associated comorbidities.

However, the studies are still at their infancy in the dermatological

field. The sections on different topics of recent EV studies, from EV

specificity, production, cargo and extracellular functions, as well as

some pilot therapeutic applications, aim to address the emerging

challenges up to date limiting the broader translational use of EVs.

Themolecular cargo and the origin of EVs related to psoriatic disease is

outlined in Table 1. The main interactions mediated by EVs between

KCs and other immune cells located in the psoriatic microenvironment

are represented in Figure 1.

Likewise, the highlighted new strategies and more

comprehensive studies appear to be in progress to identify EV

subpopulations with high accuracy and selectivity. Notably, new

technologies have flourished in recent years allowing future

applications to benefit from EVs’ identification and profiling, with

the aim to detect and treat inflammatory skin diseases.
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