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Editorial on the Research Topic

Community series in progress of allo- and xeno-transplantation facilitating
the initial xeno-kidney and islet clinical trials, volume II
The advent of xenotransplantation has ushered in a new era of possibilities in

addressing the severe organ shortage crisis. The current Research Topic in this volume

of “Progress of Allo- and Xeno-transplantation Facilitating the Initial Xeno-Kidney and

Islet Clinical Trials” offers a collection of pioneering studies that explore various facets of

xenotransplantation, particularly focusing on kidney and islet transplantation. This

editorial provides an overview of the contributing articles, highlighting their key findings

and placing them within the broader context of transplantation research.
1 Challenges and opportunities in the islet
transplantation microenvironment

Chen et al. presented a comprehensive summary of the challenges and opportunities in

the islet transplantation microenvironment. Their study underscores the importance of the

microenvironment in determining transplantation outcomes and offers insights into

potential strategies to improve islet graft survival with a focus on inflammatory

cytokines, immune cells, and vascular endothelial cells.
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2 Pancreatic islet transplantation:
current advances and challenges

In a similar topic but with a different approach, Wang et al.

provided a thorough review of the current advances and challenges

in pancreatic islet transplantation. They discuss the issues related to

islet sourcing, transplantation sites, and immune rejection. Their

study highlights the feasibility of inducing stem cells to differentiate

into b-like cells in vitro and explores the potential of porcine islets

in addressing the shortage of islet donors.
3 Co-expression of HLA-E and HLA-G
on genetically modified porcine
endothelial cells

To improve the outcomes in xenotransplantation, Cross-Najafi

et al. investigated the co-expression of HLA-E and HLA-G on

genetically modified porcine endothelial cells. Their findings

demonstrated that the co-expression of HLA-E and HLA-G can

significantly attenuate human NK cell-mediated degranulation,

shedding light on more successful xenotransplantation outcomes.
4 Combined islet and kidney
xenotransplantation for
diabetic nephropathy

A mini-review by Eisenson et al. provided an update on the

ongoing research in combined islet and kidney xenotransplantation

for diabetic nephropathy. The authors highlighted the potential of

this dual approach in addressing both diabetes and kidney failure,

showcasing promising preliminary results with evidence from the

published literature.
5 Human PD-L1 overexpression in
porcine kidneys

In original research by Schmalkuche et al., the effect of human

PD-L1 overexpression in porcine kidneys has been explored. This

interesting study showed that human PD-L1 genetic modification can

reduce xenogeneic human T-cell immune responses, thus enhancing

the viability of porcine kidneys in case of clinical xenotransplantation.
6 Genetically modified pigs targeting
complement activation

Sun et al. discussed the cutting-edge genetic modifications in

pigs aimed at targeting complement activation, which has been a

major barrier in xenotransplantation. Their study provides valuable
Frontiers in Immunology 026
insights into the genetic engineering techniques that can mitigate

immune rejection.
7 Microenvironment and survival in
kidney transplantation

Huang et al. conducted a bibliometric analysis to examine the

relationship between the microenvironment and survival in kidney

transplantation. Their analysis identifies key trends and research

hotspots, offering a roadmap for future studies in this critical area.
8 Advances in
hepatocyte microencapsulation

Wangetal.reviewedtheadvancesinhepatocytemicroencapsulation,

focusing on selecting materials and preservation methods.

Their comprehensive review highlights the progress made in

enhancing the viability and functionality of encapsulated hepatocytes

for transplantation.
9 Developments in
kidney xenotransplantation

Xu and He presented a detailed overview of the developments

in kidney xenotransplantation. Their study highlights the

significant strides made in genetic modifications and

immunosuppressive protocols, which are crucial for the success of

clinical xenotransplantation.
10 Ethical and legislative advances
in xenotransplantation

With his expertise over decades, Hawthorne discussed the

ethical and legislative advances in xenotransplantation, with a

main focus on cardiac xenotransplants. His paper emphasizes the

importance of ethical considerations and regulatory frameworks in

advancing xenotransplantation to clinical practice in a safe manner.
11 Anesthesia and surgery in
kidney xenotransplantation

Zhang et al. explored the role of anesthesia and surgical

techniques in advancing kidney xenotransplantation to clinical

practice. Their study bridges the gap between preclinical and

clinical practices, offering insights into optimizing surgical outcomes.

The collection of articles by many experts in this volume

provides a comprehensive overview of the current state of

xenotransplantation research. Each study contributes valuable
frontiersin.org
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knowledge to the field, addressing various challenges and proposing

innovative solutions.

As we move closer to clinical reality with limited cases

happening all over the world, it is imperative to continue

interdisciplinary collaboration and rigorous research to overcome

the remaining hurdles in xenotransplantation worldwide. This

collective effort will lead to successful clinical trials and

ultimately, a wider application of xenotransplantation in

addressing the organ shortage crisis globally.
Author contributions

LM: Writing – original draft. BE: Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study
Frontiers in Immunology 037
was supported by the Shenzhen Science and Technology Program

(JCYJ20230807115107015, GCZX2015043017281705), the

National Key R&D Program of China (2017YFC1103704),

Shenzhen High-level Hospital Construction Fund (2019).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1439832
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Sina Naserian,
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Co-expression of HLA-E and
HLA-G on genetically modified
porcine endothelial cells
attenuates human NK cell-
mediated degranulation

Arthur A. Cross-Najafi 1, Kristine Farag1, Abdulkadir Isidan1,
Wei Li2, Wenjun Zhang1, Zhansong Lin3, Julia R. Walsh1,
Kevin Lopez1, Yujin Park1, Nancy G. Higgins4,
David K.C. Cooper5, Burcin Ekser1* and Ping Li1*

1Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis,
IN, United States, 2Department of Microbiology and Immunology, Indiana University School of
Medicine, Indianapolis, IN, United States, 3Ragon Institute of Massachusetts General Hospital (MGH),
Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States, 4Transplant
Immunology, Indiana University Health, Indianapolis, IN, United States, 5Center for Transplantation
Sciences, Massachusetts General Hospital/Harvard Medical School, Cambridge, MA, United States
Natural killer (NK) cells play an important role in immune rejection in solid organ

transplantation. To mitigate human NK cell activation in xenotransplantation,

introducing inhibitory ligands on xenografts via genetic engineering of pigs may

protect the graft from human NK cell-mediated cytotoxicity and ultimately improve

xenograft survival. In this study, non-classical HLA class I molecules HLA-E and HLA-

G were introduced in an immortalized porcine liver endothelial cell line with

disruption of five genes (GGTA1, CMAH, b4galNT2, SLA-I a chain, and b-2
microglobulin) encoding three major carbohydrate xenoantigens (aGal, Neu5Gc,
and Sda) and swine leukocyte antigen class I (SLA-I) molecules. Expression of HLA-E

and/or HLA-G on pig cells were confirmed by flow cytometry. Endogenous HLA-G

molecules as well as exogenous HLA-G VL9 peptide could dramatically enhance

HLA-E expression on transfected pig cells. We found that co-expression of HLA-E

andHLA-Gon porcine cells led to a significant reduction in humanNK cell activation

compared to the cells expressing HLA-E or HLA-G alone and the parental cell line.

NK cell activation was assessed by analysis of CD107a expression in CD3-CD56+

population gated from human peripheral blood mononuclear cells. CD107a is a

sensitive marker of NK cell activation and correlates with NK cell degranulation and

cytotoxicity. HLA-E and/or HLA-G on pig cells did not show reactivity to human sera

IgG and IgM antibodies. This in vitro study demonstrated that co-expression of HLA-

E and HLA-G on genetically modified porcine endothelial cells provided a superior

inhibition in human xenoreactive NK cells, which may guide further genetic

engineering of pigs to prevent human NK cell mediated rejection.

KEYWORDS

xenotransplantation, natural killer cells, immune tolerance, immune rejection, HLA-E,
HLA-G, inhibitory ligands and receptors, degranulation
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Introduction

Pig-to-human xenotransplantation offers a promising solution

to address the persistent organ shortage (1). Interspecies

incompatibilities result in robust human immune responses

directed against the porcine xenograft. The consequence is rapid

destruction and failure of the transplanted organ. Genetic

modification (GM) of pigs has proven to be a valuable strategy

for improving pig-human compatibility (2). Recent advancements

in the genetic engineering of pigs have brought us closer to

achieving successful xenotransplantation (3). In 2022, the first

genetically modified pig-to-human cardiac xenotransplant was

performed, which kept the recipient alive for two months (4).

This groundbreaking event marks an important turning point:

hyperacute xenograft rejection is no longer an absolute

contraindication to xenotransplantation. Despite this exciting fact,

acute and chronic organ rejection remain major barriers to

successful pig-to-human xenotransplantation. To achieve long-

term survival of pig xenografts and reduce the need for life-long

immunosuppressive therapy with deleterious side effects, further

GMs of pig tissues and organs are needed. These GMs will aim to

reduce cell-mediated immune responses and improve major

histocompatibility complex (MHC) compatibilities (5–10).

Human NK cells comprise the first line of defense of the innate

immune system and are also involved in adaptive immunity. In

solid organ transplantation, NK cell infiltration has been

characterized with increased graft rejection in both allografts and

xenografts (11, 12). NK cells can discriminate self, non-self, and

abnormal cells (virus-infected cells or tumor cells) quickly, using a

variety of cell-surface receptors which interact with the ligands on

target cells (13). The balance of inhibitory and activating signals

determines NK cell activation or inhibition. NK cell inhibitory

ligands such as non-classical human leukocyte antigens (HLA)-E

and -G are highly expressed in the human placenta (14), and

contribute to establishing and maintaining immune tolerance at

the maternal-fetal interface (15). Attempts have been made to

investigate the role of HLA-E and HLA-G on porcine cells in

regulating human NK cell activation in vitro and different inhibition

pathways have been revealed (16, 17). Unlike classical HLA class I

molecules, HLA-E and HLA-G display a limited polymorphism and

are not considered in HLA typing for allotransplantation (18, 19).

HLA-G plays an immunomodulatory role by binding the inhibitory

receptors: Ig-like transcript 2 (ILT2) on dendritic cells, B cells, NK

cells, and T cells; ILT4 on cells of myeloid origin; and killer cell

immunoglobulin-like receptor 2DL4 (KIR2DL4) on NK cells (20–

23). HLA-G expression is beneficial and promotes graft tolerance in

solid organ transplantation, as evidenced by increased HLA-G

expression in allografts and/or plasma correlating with improved

graft acceptance (24, 25). Forte et al. reported that HLA-G

expression inhibits the rolling adhesion of activated human NK

cells on porcine endothelial cells (26) and partially protects porcine

cells against direct human NK cytotoxicity (27). The protective role

of HLA-E on porcine cells in human NK cell-mediated cytotoxicity

has been reported (10, 28, 29). The HLA-E molecules present a

highly conserved set of nonameric peptides (VL9) derived from the

leader sequence of HLA-A/B/C/G molecules to NK cells and
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specific CD8 T cells (30). HLA-E-VL9 complex is a major

inhibitory ligand for the NK inhibitory receptor NKG2A (31).

VL9 peptides stabilize HLA-E molecules and determine HLA-E

expression on cell surface. Previous studies demonstrated that

HLA-E molecule loaded with the HLA-G leader peptide exhibited

the highest affinity for NKG2A receptor (32) and co-expression

HLA-G and HLA-E on swine endothelial cells efficiently enhanced

the inhibition of NK cell-mediated cytotoxicity (33). Recent ex vivo

studies indicated that transgenic expression of HLA-E attenuated

porcine lung xenograft injury and reduced NK cell recruitment in

pig limbs when perfused with human blood (34, 35).

In this study, an immortalized porcine liver-derived endothelial

cell line (ipLDEC) with five-gene knockout (5GKO) (36) was used

to express HLA-E, HLA-G, or co-express HLA-E and HLA-G

molecules , namely 5GKO.HLA-E, 5GKO.HLA-G, and

5GKO.HLA-E.HLA-G cells. Human NK cell responses to these

three modified cells as well as the parental 5GKO cells were

evaluated by examining CD107a surface expression on CD3-

CD56+ population. CD107a, also known as lysosomal-associated

membrane protein-1 (LAMP-1), is a functional marker for NK cell

activation, which correlates with both cytokine secretion and NK

cell-mediated cytotoxicity (37). The reactivity of human antibodies

to HLA-E and/or HLA-G-expressing porcine cells was examined by

a flow cytometry-based assay.
Materials and methods

Establishment of genetically modified
porcine endothelial cell lines

The five-gene knockout cell line (5GKO, GGTA1/CMAH/

b4galNT2/SLA-I a chain/b-2 microglobulin) was generated from

ipLDEC, as previously described (36). The 5GKO cell line served as

the parental cell line to express HLA-E and/or HLA-G molecules.

HLA-G is a heterodimer protein consisting of a heavy chain and

b-2 microglobulin (B2M) subunits encoded by two genes located on

different chromosomes. A single chain gene was designed by linking

the HLA-G heavy cha in (NCBI r e f e r ence number :

NM_001363567.2) and B2M (NCBI reference number:

NM_004048.4) genes with self-cleaving peptide P2A DNA

fragment, synthesized by Integrated DNA Technologies (IDT,

Coralville, IA), and inserted downstream of the CMV promoter

in an expression vector derived from pEGFP-N1, which had EGFP

gene removed (Figure 1A). This recombinant plasmid was delivered

into 5GKO ipLDEC by electroporation using the Neon Transfection

System (Thermo Fisher Scientific, Waltham, MA). The transfected

cells were cultured in selective media containing G418 at 200 ng/mL

for 10 days. HLA-G expression was verified by flow cytometry using

PE-conjugated mouse anti-HLA-G antibody (Clone 87G,

BioLegend, San Diego, CA). 5GKO cells were used as a control

(Figure 1B). 5GKO.HLA-G cells were isolated by a BD FACSAria

Fusion cell sorter (BD Biosciences, San Jose, CA) (Figure 1C).

The HLA-E molecule is a trimeric complex, consisting of a

heavy chain, B2M, and a signal peptide derived from other HLA

class I molecules (30). To ensure HLA-E expression in porcine cells,
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theHLA-E heavy chain gene (HLA-E*010301 allele, NCBI reference

number: NM_005516.6) was modified by replacing its original

signal peptide DNA sequence with HLA-B*07:02 signal peptide

(VMAPRTVLL, NCBI Reference Sequence: NM_005514.8) DNA

sequence, then linked to B2M gene with P2A DNA fragment. This

single-chain HLA-E gene was synthesized by IDT and subsequently

cloned to the downstream of the CMV promoter in an expression

vector derived from pEGFP-N1 (Figure 1A). This plasmid was

delivered into 5GKO and 5GKO.HLA-G cells by electroporation,

respectively. The transfected cells were cultured in selective media

containing G418 at 200 ng/mL for 10 days. HLA-E expression was

confirmed by flow cytometry using APC-conjugated mouse anti-

HLA-E antibody (Clone 3D12, BioLegend). 5GKO.HLA-E and

5GKO.HLA-E.HLA-G cells were isolated by a BD FACSAria

Fusion cell sorter (BD Biosciences) using APC-conjugated mouse

anti-HLA-E antibody and PE-conjugated mouse anti-HLA-G

antibody (BioLegend) (Figures 1D, E). Both HLA-E antibody and

HLA-G antibody are specific. Cross-reactivity of HLA-E antibody

to HLA-G molecules or HLA-G antibody to HLA-E molecules has

not been observed.
Stability and expression level of HLA-E and
HLA-G on 5GKO cell lines

HLA-E and HLA-G surface expression on 5GKO cells were

examined four times for three weeks after flow sorting. 5GKO.HLA-

E, 5GKO.HLA-G, and 5GKO.HLA-E.HLA-G were stained with

APC-conjugated mouse anti-HLA-E antibody and PE-conjugated

mouse anti-HLA-G antibody (BioLegend), as described above.

HLA-E and HLA-G expression were measured by the percentage

of positive cells as well as the mean fluorescence of intensity (MFI).
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The percentage of HLA-E or HLA-G positive cells was compared

between 5GKO.HLA-E and 5GKO.HLA-E.HLA-G cells or between

5GKO.HLA-G and 5GKO.HLA-E.HLA-G cells at each time point.

HLA-E MFI was compared between 5GKO.HLA-E and

5GKO.HLA-E.HLA-G cells while HLA-G MFI was compared

between 5GKO.HLA-G and 5GKO.HLA-E.HLA-G cells.
HLA-E expression on 5GKO.HLA-E cells
pulsed with HLA-G VL9 peptides

HLA-G VL9 peptide (VMAPRTLFL) was synthesized at purity

of 95.1% by GenScript Biotech (Piscataway, NJ). 5GKO.HLA-E cells

were incubated with HLA-G peptides at final concentrations of 25

µM, 50 µM, and 100 µM in a CO2 incubator at 37°C overnight.

5GKO.HLA-E cells alone were used as a control. HLA-E expression

on pig cells was measured by APC-conjugated mouse anti-HLA-E

antibody staining and analyzed by an LSRFortessa flow cytometer

(BD Biosciences). Experiments were repeated three times with

similar results.
Human NK cell degranulation in response
to porcine endothelial cell stimulation

NK cell degranulation assay was performed in a similar fashion

as previously described (36, 38). CD107a is a functional marker and

widely used for identification of NK cell activity (37, 39, 40).

Commercially available buffy coats were acquired from Versiti

Indiana Blood Center. Fresh whole blood was drawn from two

human donors following the guidelines of the Institutional Review

Board (IRB) of Indiana University, IRB#11013. Human peripheral
A

B D EC

FIGURE 1

Expression of HLA-E and/or HLA-G on 5GKO cells. (A) Schematic of expression cassettes with a single chain gene of HLA-E and HLA-G. Flow cytometry
analysis of cell surface expression of HLA-E and HLA-G on 5GKO (B), 5GKO.HLA-G (C), 5GKO.HLA-E (D), and 5GKO.HLA-E.HLA-G (E) cell lines.
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blood mononuclear cells (PBMCs) were isolated from buffy coat

and fresh whole blood using Ficoll-Paque Plus (GE-Healthcare,

Pittsburgh, PA) and Lymphoprep (STEMCELL Technologies,

Vancouver, Canada) gradient centrifugation, respectively, for a

total of 5 human donors. PBMCs from 5 donors were cultured in

RPMI1640 with 10% FBS, 1% penicillin/streptomycin, and 20 ng/

mL recombinant human IL-2 (rhIL-2) (BioLegend) at 37°C in a 5%

CO2 incubator for 5 days. 5GKO, 5GKO.HLA-E, 5GKO.HLA-G,

and 5GKO.HLA-E.HLA-G cells were plated at 5 ×104 per well in a

Biocoat collagen I-coated 48-well plate (Corning Incorporated,

Corning, NY) one day prior to co-culture. PBMCs were added to

porcine cells at 5 ×105 per well and co-cultured for 2 hours at 37°C

in a CO2 incubator. Cultured cells were then collected and stained

with fixable viability dye eFluor 780 (Thermo Fisher Scientific) and

fluorochrome-conjugated antibodies against human CD45, CD3,

CD56, and CD107a (BioLegend). Cells were fixed with 2% PFA for

15 minutes at room temperature and subsequently analyzed using

an LSRFortessa flow cytometer (BD Biosciences). 70,000 - 80,000

events were acquired in lymphocyte gate. After pre-gating on

CD45+ live singlets, NK cell degranulation activity was assessed

by the percentage of CD107a positive cells in a CD3-CD56+ cell

population. Flow data were analyzed using FlowJo v10 software (BD

Biosciences). The experiment was repeated three times to obtain

technical replicates.
Human serum antibody reactivity to
porcine endothelial cells expressing HLA-E
and HLA-G

Human antibody binding to porcine endothelial cells was

examined, as previously described (36). Briefly, 2×105 porcine

cells (5GKO, 5GKO.HLA-E, 5GKO.HLA-G, and 5GKO.HLA-

E.HLA-G) were washed and incubated with 25% heat-inactivated

human serum in EX-CELL 610-HSF serum-free medium (Sigma, St.

Louis, MO) with 0.1% sodium azide for 1 hour at 4°C. Human sera

were obtained from patients on the kidney transplant waitlist, 10

sera with high panel reactive antibody (PRA) and 10 sera with low

PRA, for a total of 20 samples (n = 20). Each pig cell line was washed

three times with EX-CELL 610-HSF serum-free medium and

stained with goat anti-human IgG Alexa Fluor 488 or donkey

anti-human IgM Alexa Fluor 647 (Jackson ImmunoResearch

Laboratories Inc., West Grove, PA) for 30 minutes at 4°C,

respectively. Cells were washed, fixed with 2% PFA for 15

minutes at room temperature, and subsequently analyzed using

an LSRFortessa flow cytometer (BD Biosciences). Flow data were

analyzed using FlowJo v10 software (BD Biosciences). Each pig cell

line stained with goat anti-human IgG Alexa Fluor 488 or donkey

anti-human IgM Alexa Fluor 647 was used as background and

subtracted from each corresponding sera binding group. Human

IgG and IgM bindings to pig cells were analyzed by stratification

into low PRA and high PRA sera groups. The difference between

low PRA and high PRA sera binding to each individual modified

cell line was also compared.
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Statistical analysis

Statistical analyses were performed using GraphPad Prism 9

software (GraphPad Software, San Diego, CA). A normality test was

used to assess data distribution. An ordinary one-way ANOVA

multiple comparisons test with Šıd́ák’s correction was used to

analyze the differences among multiple groups. Student’s t-test

was used to analyze the differences between the two groups. A p-

value less than 0.05 was considered statistically significant.
Results

Expression of HLA-E and/or HLA-G
molecules on porcine endothelial cells

Three porcine cell lines expressing HLA-E, HLA-G, and co-

expressing HLA-E and HLA-G were successfully established

(Figures 1C–E). Stability of HLA-E and HLA-G molecules on

porcine cells was examined. During the three-week culture, HLA-

E expression on 5GKO.HLA-E.HLA-G was much more stable

compared to HLA-E on 5GKO.HLA-E cells as indicated by the

percentage of HLA-E positive cells (Figure 2A). In addition,

5GKO.HLA-E.HLA-G cells exhibited significantly higher HLA-E

expression than 5GKO.HLA-E cells (p < 0.05) (Figure 2C). HLA-G

expression was comparable between 5GKO.HLA-G and

5GKO.HLA-E.HLA-G cells (Figures 2B, D). These results indicate

that HLA-E molecules are stable and more highly expressed on

5GKO.HLA-E.HLA-G cells than on 5GKO.HLA-E cells. All cells

were examined by flow cytometry to ensure HLA-E or HLA-G

expression prior to being used in the functional assays.
Enhanced HLA-E expression on
5GKO.HLA-E cells by pulsing exogenous
HLA-G VL9 peptides

A recent study indicated that HLA class I signal peptide

polymorphism influences surface HLA-E expression as well as

NKG2A-HLA-E engagement (41). Surface HLA-E is unstable and

is rapidly internalized (42). In 5GKO.HLA-E.HLA-G cells, HLA-E

can bind to either HLA-B*07:02 VL9 or HLA-G VL9 peptides. In

5GKO.HLA-E cells, HLA-E can only bind HLA-B*07:02 VL9

peptides. To understand the mechanism by which 5GKO.HLA-

E.HLA-G cells exhibited much higher HLA-E expression than

5GKO.HLA-E cells, we determined whether HLA-G VL9 peptide

could enhance HLA-E expression on 5GKO.HLA-E cells.

5GKO.HLA-E cells were pulsed with HLA-G VL9 peptides at 25

µM, 50 µM, or 100 µM, and incubated overnight. HLA-E surface

expression by flow cytometric analysis revealed that exogenous HLA-

G VL9 peptides could significantly increase HLA-E expression on

5GKO.HLA-E cells in a dose dependent manner (Figure 3). This

result suggests that HLA-G VL9 peptides can stabilize HLA-E

molecules and enhance HLA-E expression on 5GKO.HLA-E cells.
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Inhibition of human NK cell degranulation
by co-expression of HLA-E and HLA-G on
porcine endothelial cells

Human NK cell response to pig cell stimulation was examined by

CD107a expression on NK cells. Our previous study demonstrated that

5GKO cells, likeWT and TKO (triple-gene knockout,GGTA1/CMAH/
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b4galNT2) cells, could activate human NK cell. Despite the elimination

of four xenoantigens (aGal, Neu5Gc, Sda, and SLA-I), 5GKO cells

maintained the capability to trigger human NK cell degranulation (36).

5GKO cells were used as a control in this study. The gating strategy to

identify the NK cell population (CD3-CD56+) was shown in Figure 4A.

Representative flow plots showing human NK cell degranulation in

response to stimulation by each modified cell line as assessed by the
A B

DC

FIGURE 2

Comparison of HLA-E and HLA-G stability and cell surface expression on porcine cells. The percentage of HLA-E positive cells (A) and HLA-G
positive cells (B) in modified pig cells were examined at different time points. (C) Abundance of cell surface HLA-E was compared between
5GKO.HLA-E and 5GKO.HLA-E.HLA-G cell lines. (D) Abundance of cell surface HLA-G was compared between 5GKO.HLA-G and 5GKO.HLA-E.HLA-
G cell lines. Data presented as mean ± SEM. Student’s t-test was used to analyze the difference between two groups. ns, not significant; *p < 0.05.
FIGURE 3

Increased HLA-E expression on 5GKO.HLA-E cells after pulsing with HLA-G VL9 peptides. 5GKO.HLA-E cells were incubated with HLA-G VL9
peptides at 25 µM, 50 µM, or 100 µM overnight. HLA-E expression was analyzed by flow cytometry using APC-conjugated mouse anti-HLA-E
antibody. ns, not significant; *p < 0.05; ***p<0.001.
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percentage of CD107a positive cells in CD3-CD56+ population were

shown in Figure 4B. Ordinary one-way ANOVAmultiple comparisons

indicated that co-expression of HLA-E and HLA-G on 5GKO cells

significantly inhibited CD107a expression on human NK cell

compared to 5GKO (p < 0.0001), 5GKO.HLA-E (p < 0.001), and

5GKO.HLA-G (p < 0.01) (Figure 4C). Further Student’s t-test indicated

that HLA-G expression on 5GKO cells significantly inhibited CD107a

expression on NK cells compared to 5GKO cells (p <0.05) while HLA-

E expression on 5GKO failed to inhibit CD107a expression on NK cells

compared to 5GKO cells (p = 0.1853).
Human sera antibodies did not react
to HLA-E and HLA-G molecules on
5GKO cells

To test whether non-classical HLA class I molecules HLA-E and

HLA-G could react to pre-existing HLA class I antibodies, human

antibody (IgG and IgM) binding to 5GKO, 5GKO.HLA-E,
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5GKO.HLA-G, and 5GKO.HLA-E.HLA-G cells was examined. A

total of twenty human sera samples including ten high PRA sera

and ten low PRA sera from the patients on the kidney transplant

waitlist were used in this experiment. No statistically significant

differences in human IgG or IgM binding among groups were

observed: IgG with low PRA sera (p = 0.66), IgG with high PRA sera

(p = 0.88), IgM with low PRA sera (p = 0.88), and IgM with high

PRA sera (p = 0.75) (Figures 5A–D). No statistically significant

difference was observed among groups in human IgG or IgM

binding with the combination of the high PRA and low PRA sera

(data not shown). In addition, there were no significant differences

between low PRA sera and high PRA sera in IgG binding to 5GKO

(p = 0.65), 5GKO.HLA-E (p = 0.67), 5GKO.HLA-G (p = 0.56),

5GKO.HLA-E.HLA-G (p = 0.53) (Figure 5E) as well as IgM binding

to 5GKO (p = 0.48), 5GKO.HLA-E (p = 0.37), 5GKO.HLA-G (p =

0.28), 5GKO.HLA-E.HLA-G (p = 0.43) (Figure 5F). These results

indicate that HLA-E and HLA-G on porcine cells do not react to

existing antibodies in human sera, even from highly

sensitized individuals.
A

B

C

FIGURE 4

Inhibition of human NK cell degranulation by 5GKO cells expressing HLA-E and HLA-G molecules. rhIL-2 treated PBMCs (n=5) were co-cultured
with 5GKO, 5GKO.HLA-E, 5GKO.HLA-G, and 5GKO.HLA-E.HLA-G cells for 2 hours. NK cell degranulation was accessed by CD107a surface
expression. (A) Gating strategy to identify and refine NK cell population. (B) Representative flow plots showing NK cell degranulation in response to
the simulation of the modified porcine cells by assessing the percentage of CD107a positive cells in CD3-CD56+ population. PBMC alone was used
as a control. (C) Three independent experiments were performed to evaluate NK cell degranulation. Data presented as mean ± SEM. Ordinary one-
way ANOVA multiple comparisons test was used to analyze the differences among multiple groups. 5GKO.HLA-E.HLA-G was selected as a control
group. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Discussion

Expressing inhibitory ligands on porcine cells to induce human

NK cell tolerance is a practical approach to protect xenografts from

human NK cell-mediated destruction (43). We showed that co-

expressing HLA-E and HLA-G on a genetically modified 5GKO cell

line synergistically reduced human NK cell activation as compared

to cells expressing either HLA-E or HLA-G alone as well as 5GKO

parental cells. Our study indicated that HLA-E and HLA-G on

porcine endothelial cells did not react to human sera antibodies, and

the expression of HLA-E and HLA-G is unlikely to elicit antibody-

mediated immune responses.

HLA-E and HLA-G are immunoregulatory molecules and their

cooperation has been found in immunosuppressive environments,
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including physiological (immune tolerance at maternal/fetal

interface during pregnancy) and pathological (immune evasion of

both tumor and viral infection) conditions (44). The role of HLA-E

and HLA-G in inhibiting human NK cell activation has been

previously demonstrated in xenotransplantation research (10, 16,

17, 26, 33). In the current study, we found that co-expression of

HLA-G and HLA-E on porcine endothelial cells effectively inhibited

human NK cell degranulation. HLA-E stability and abundance on

porcine cells play a key role in inhibiting human NK cell activation.

HLA-E expression level was much higher on 5GKO.HLA-E.HLA-G

cells, compared to 5GKO.HLA-E cells. HLA-G VL9 peptides were

constantly generated from endogenous HLA-G molecules in

5GKO.HLA-E.HLA-G cells, which could stabilize HLA-E

molecules and increase HLA-E expression. A surplus of HLA-G
A B

D
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C

FIGURE 5

Human antibody reactivity to 5GKO cells expressing HLA-E and/or HLA-G molecules. 5GKO, 5GKO.HLA-E, 5GKO.HLA-G, and 5GKO.HLA-E.HLA-G cells
were incubated with heat-inactivated human sera (n = 20), and then stained with goat anti-human IgG Alexa Fluor 488 or donkey anti-human IgM Alexa
Fluor 647. Each cell line stained with the secondary antibody was used as a negative control. Human antibody binding was assessed by flow cytometry.
Data presented as mean ± SEM. Ordinary one-way ANOVA multiple comparisons test was used to analyze the differences in (A) IgG binding with low
PRA sera, (B) IgG binding with high PRA sera, (C) IgM binding with low PRA sera, and (D) IgM binding with high PRA sera, among multiple groups.
(E) Comparison of low PRA sera and high PRA sera in IgG binding to individual modified pig cells was analyzed by the Student’s t-test. (F) Comparison of
low PRA sera and high PRA sera in IgM binding to individual modified pig cells was analyzed via Student’s t-test. ns, not significant.
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VL9 peptides may be the primary mechanism for the robust

increase in cell-surface HLA-E. HLA-E expression on

5GKO.HLA-E cells could also be enhanced by pulsing exogenous

HLA-G VL9 peptides in a dose-dependent manner. The stabilized

HLA-E-VL9 complexes engage with human NK cell inhibitory

receptor NKG2A to protect healthy cells from NK cell-mediated

lysis. Previous study indicated that the HLA-E molecules loaded

with the HLA-G VL9 peptides exhibited the highest affinity to

inhibitory receptor NKG2A compared to the VL9 peptides from

HLA-B and HLA-C (32). This magnified inhibition was not

associated with HLA-E and HLA-G co-localization on pig cells

when co-cultured with human NK cells (unpublished data). In

addition, HLA-E and HLA-G interact with different inhibitory

receptors on human NK cells through CD94/NKG2-dependent

and independent pathways (17, 45). Therefore, co-expression

of HLA-E and HLA-G on pig cells leads to a synergistic

reduction in human NK cell activation and may provide a novel

approach to effectively protect xenografts from human NK cell-

mediated cytotoxicity.

In this study, human antibodies (both IgG and IgM) did not

react to HLA-E and HLA-G on pig cells. Even across the

stratification of human sera with low PRA and high PRA, there

was no appreciable increase in antibody binding to HLA-E and

HLA-G molecules. These findings suggest that even in highly

sensitized individuals, there would likely be no substantial

increase in antibody-mediated rejection induced by porcine

organs expressing HLA-E and HLA-G.

In human allotransplantation, HLA-E and HLA-G expression

can be used to predict transplant outcomes. For example, elevated

HLA-G in allografts and in the circulation of recipients was

associated with improved graft acceptance in solid organ

transplantation (46). In contrast, increased HLA-E expression was

found in acute cellular rejection (ACR) biopsies compared to

biopsies with no rejection signs, which was correlated with

numbers of HLA class I leader peptide mismatches and reduced

renal allograft survival (47). Interaction of HLA-E with mismatched

HLA class I leader peptides with activating NKG2C receptor may

contribute to graft rejection. Recent study demonstrated that mouse

and human antibody could bind HLA-E-VL9 complex and enhance

NK cell cytotoxicity (48). In xenotransplantation, HLA-E-VL9

complexes could be designed and engineered in pig with the

purpose of avoiding antibody binding, facilitating NKG2A

interaction, and promoting NK cell inhibition.

The next step will be generating transgenic pigs co-expressing

HLA-E and HLA-G. Targeting HLA-E and HLA-G genes to the safe

harbor loci in the pig genome can control the copy number of

transgene while avoiding undesirable position effects. Studies have

shown that the porcine Rosa26 locus and elongation factor 1 alpha

(PEF1-alpha) locus are ideal for the integration of transgene for

constitutive and ubiquitous expression (49, 50). CRISPR/Cas9-

directed targeting of HLA-E and HLA-G constructs to these loci

would facilitate transgenic pig production.
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In conclusion, our results provide valuable insight into potential

mechanisms for overcoming human NK cell-mediated immune

rejection in xenotransplantation. Further optimization of this

approach, in addition to in vivo validation studies, will provide

context for the clinical applicability of these GMs in pig-to-human

xenotransplantation. The field of xenotransplantation is rapidly

progressing, and systematically evaluating potential GMs to

optimize pig-to-human compatibility will be crucial to addressing

the organ shortage.
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in the islet transplantation
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of inflammatory cytokine,
immune cells, and vascular
endothelial cells

Qi-dong Chen1, Long Liu2, Xiao-hong Zhao3, Jun-bo Liang1*

and Shao-wei Li4,5*

1Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China, 2Department of
Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang
University, Hangzhou, Zhejiang, China, 3Department of Pharmacy, Taizhou Hospital, Zhejiang
University , Taizhou, Zhejiang, China, 4Department of Gastroenterology, Taizhou Hospital of Zhejiang
Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China, 5Key Laboratory of
Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang
Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
It is now understood that islet transplantation serves as a b-cell replacement

therapy for type 1 diabetes. Many factors impact the survival of transplanted

islets, especially those related to the microenvironment. This review explored

microenvironmental components, including vascular endothelial cells,

inflammatory cytokines, and immune cells, and their profound effects on post-

islet transplantation survival rates. Furthermore, it revealed therapeutic strategies

aimed at targeting these elements. Current evidence suggests that vascular

endothelial cells are pivotal in facilitating vascularization and nutrient supply

and establishing a new microcirculation network for transplanted islets.

Consequently, preserving the functionality of vascular endothelial cells

emerges as a crucial strategy to enhance the survival of islet transplantation.

Release of cytokines will lead to activation of immune cells and production and

release of further cytokines. While immune cells hold undeniable significance in

regulating immune responses, their activation can result in rejection reactions.

Thus, establishing immunological tolerance within the recipient’s body is

essential for sustaining graft functionality. Indeed, future research endeavors

should be directed toward developing precise strategies for modulating the

microenvironment to achieve higher survival rates and more sustained

transplantation outcomes. While acknowledging certain limitations inherent to

this review, it provides valuable insights that can guide further exploration in the

field of islet transplantation. In conclusion, the microenvironment plays a

paramount role in islet transplantation. Importantly, we discuss novel
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perspectives that could lead to broader clinical applications and improved

patient outcomes in islet transplantation.
KEYWORDS

islets transplantation, microenvironment, inflammatory cytokines, vascular endothelial
cells, immune cells
1 Introduction

Type I diabetes mellitus (T1DM) results from the absence of

islet b cells, typically due to autoimmune attacks or surgical

pancreas removal (1). The typical symptoms of high blood sugar

due to insulin deficiency often manifest rapidly and include

increased urination, thirst, weight loss, abdominal discomfort,

and headaches. Without appropriate replacement therapy,

patients may ultimately develop microvascular complications,

ketoacidosis, and even death (2, 3). In 1921, Franklin Banting’s

discovery of insulin revolutionized the management of T1DM,

turning it into a manageable chronic condition. The development

of rapid and long-acting insulins and the clinical use of insulin

pumps combined with continuous glucose monitoring (CGM) have

led to remarkable therapeutic advancements (4). However, the

reliance on CGM, insulin pumps, dietary control, and increased

physical activity places significant financial and psychological stress

on patients and their families. Moreover, these exogenous therapies,

CGMs and insulin pumps have a delayed detection and control of

blood glucose levels, whereas pancreatic cells are able to detect

blood glucose levels more quickly and accurately and deliver

precisely measured amounts of insulin (5). Moreover, although

intensified insulin treatment regimens can ameliorate glycated

hemoglobin levels, they do not provide protection against

diabetes complications (6). Pancreas transplantation becomes a

consideration when patients face severe metabolic complications,

incapacitating problems with exogenous insulin therapy or failure

of insulin-based management to prevent acute complications (7).

By transplanting an entire vascularized pancreas, we can restore the

natural balance between blood glucose and insulin (8).

Nevertheless, this approach remains challenging, primarily due to

immunological considerations. While the matching of the donor

pancreas to the recipient’s HLA type is a desirable goal to prevent

hyperacute and acute rejection (9). The paramount consideration

lies in ensuring compatibility, meaning the absence of pre-existing

HLA antibodies specific to the donor’s HLA antigens in the

recipient (10). Furthermore, the presence of postoperative

complications is often a contributing factor to transplant failure

(7). Hence, the concept of islet transplantation emerged as a less

invasive and complication-prone cellular therapy (11).

Unfortunately, many issues must be addressed to improve

survival after islet transplantation, including islet viability,

effective implantation, islet function, and immune response

resulting in islet damage (12). Currently, islet transplantation
0219
primarily involves intrahepatic transplantation into the portal

vein due to its accessibility and lower morbidity (13). Regrettably,

immediate islet loss post-transplantation can be as high as 50%-70%

(14). It is widely thought that transplanted islets are directly

exposed to blood in the liver and its complex microenvironment,

significantly contributing to this early loss. Factors include

immediate blood-mediated inflammatory responses, immune

reactions, and the impact of angiogenesis on the transplanted

islets (15, 16).

This paper aims to summarize the influence of the

microenvironment on islet survival post-transplantation, with a

particular focus on inflammatory cytokines, vascular endothelial

cells, immune cells, and potential strategies to address

these challenges.
2 The process of islet transplantation

Currently, the primary source of pancreatic islets for clinical

transplantation is deceased donors. An ideal donor should meet the

following criteria: age between 20 and 50 years, BMI less than 30 kg/

m², and HbA1c less than 6.5% (17–20).

Once the pancreas is excised, it should be promptly preserved in

a cold storage solution to ensure the quality of preservation. To

obtain clinically usable islet preparations, pancreatic tissue must

undergo enzymatic digestion using a mixture of collagenase and

protease enzymes. This process disperses acinar cells while

minimizing damage to the islets.

Following the completion of enzymatic digestion, pancreatic

islets must undergo purification, as impure islet preparations

exhibit reduced functionality compared to their purified

counterparts. Moreover, infusing larger tissue volumes from

insufficiently purified islets can lead to increased portal vein

pressure, raising the risk of portal vein thrombosis. Post-

purification, the isolated islets can be cultured in a suitable

medium for 24-72 hours to assess their functionality and

viability (21).

The final pancreatic islet cell product is suspended in a

transplantation culture medium and loaded into sterile infusion

bags containing 70 units of heparin per kilogram of recipient body

weight (20). During the surgical process, access to the portal vein

system is achieved through percutaneous or minimally invasive

abdominal approaches, allowing for direct infusion of the islets into

the portal vein system. The islets are then retained within the small
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portal vein branches within the liver parenchyma, ultimately

establishing microvascular blood supply (22).
3 Microenvironmental factors in
islet transplantation

3.1 Vascular endothelial cells

3.1.1 Relationship between vascular endothelial
cell and islet survival

Endothelial cells (ECs) are a predominant cell type within the

pancreatic islets, organized into a precisely regulated and

morphologically distinct microcirculation network that facilitates

a high degree of vascularization within the pancreatic tissue. As

shown in Figure 1, in human islets of Langerhans (with a diameter

of 40-60 μm), b-cells are located at the core, while blood vessels are

situated in the periphery. In larger islets, micro vessels penetrate

and branch within the islet’s interior, and the insulin produced by

these b-cells is transported to the peripheral circulation through the

microvasculature within the islets (23). The survival and

functionality of endothelial cells are therefore paramount for

rapid and efficient blood perfusion after pancreatic islet
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transplantation (24, 25). However, when the islets were cultured

prior to transplantation, the ECs within the islets decreased rapidly

and disappeared after 7 days of culture (26).

In the days following pancreatic islet transplantation, processes

of angiogenesis, neovascularization, and vascular reconstruction

swiftly ensue. These dynamic events primarily involve the

participation of donor endothelial cells, recipient’s local vascular

cells, and recruited cells from the bone marrow (27, 28). Ultimately,

the vascular system formed within the transplanted islets represents

a mosaic of cells from both donor and recipient origins. The

reconstitution of blood flow within the transplanted islets occurs

within 7-14 days, yet the post-reconstruction vascular density

exhibits a reduction compared to native islets, amounting to 24%

of the native pancreatic islet vascular density (29, 30).

Furthermore, an increasing body of research suggests that

endothelial cells play a constructive role within the pancreatic

islet microenvironment, engaging in crosstalk with b-cells (31,

32). Endothelial cells function as endocrine cells, releasing various

active molecules through distinct molecular pathways, such as

Hepatocyte Growth Factor (HGF), Thrombospondin-1 (TSP-1),

laminin, collagen, among others, inducing nearby b-cells to

differentiate, proliferate, survive, and enhance insulin secretion

(33–35). Consequently, promoting post-islet transplantation
FIGURE 1

The process of pancreatic islet transplantation and the microenvironmental challenges faced by pancreatic islets, including vascular endothelial cells,
immune cells, and IBMIR(immediate blood-mediated inflammatory response). APC(antigen presentation cell) CTL(cytotoxic T lymphocytes).
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vascularization may emerge as a novel therapeutic target for

diabetes treatment.

Vascular endothelial growth factor (VEGF), generated by b cells

within islets, plays a pivotal role in regulating islet vascular

development and vascular homeostasis. In ECs, VEGF induces

cell migration and proliferation and maintains fenestrations.

Insufficient VEGF levels have been correlated with decreased

capillary density and vascular permeability within islets,

subsequently impairing their functionality (36). However, studies

indicate that endogenous angiogenic factors produced by

transplanted islets might be inadequate to induce angiogenesis in

the early post-transplantation period (37). For instance, Montazeri

et al. demonstrated that a porous collagen scaffold loaded with

VEGF within rat pancreatic islet transplants facilitated vascular

generation and improved graft functionality (38). Similarly, Yin

et al., utilizing VEGF-conjugated alginate material to encapsulate

transplanted islets, exhibited sustained angiogenic promotion upon

subcutaneous transplantation (39). However, an excess of vascular

endothelial growth factor (VEGF) is not universally beneficial, as its

overexpression can lead to vascular dysfunction and pancreatic islet

impairment (40). Therefore, investigating the appropriate VEGF

concentration within the microenvironment is of paramount

importance for facilitating early vascular formation in

transplanted islets.

In addition to leveraging the angiogenic properties of VEGF to

stimulate vascular development, cell-based adjunct therapy during

transplantation represents a promising strategy for enhancing the

process of pancreatic islet revascularization. Given the limited

survival characteristics and plasticity of mature endothelial cells,

endothelial progenitor cells (EPCs) emerge as an optimal choice.

EPCs, originating from the bone marrow, possess the capacity to

migrate to sites of tissue injury or ischemia and actively participate

in angiogenesis and endothelial regeneration (41). Moreover, the

utilization of autologous blood for EPC isolation can effectively

mitigate the risk of rejection. Research conducted by Daniella et al.

has demonstrated that the co-transplantation of EPCs significantly

augments the engraftment rate of transplanted islets and improves

initial glycemic control (42). Studies by Liza et al. further

underscore that islet grafts encapsulating endothelial progenitor

cells exhibit markedly enhanced blood perfusion and oxygen

tension compared to control grafts (43). Beyond endothelial cells,

specific cell types have also been identified with angiogenesis-

promoting capabilities. Research suggests that M2-type

macrophages can also stimulate neovascularization in

transplanted islets, reduce cellular apoptosis, and enhance islet

graft survival (44).

These findings suggest that vascular endothelial cells can

improve the survival and function of transplanted islets by

promoting angiogenesis.

3.1.2 The effect of angiogenesis on pancreatic
oxygen supply

Despite being in direct contact with the bloodstream within the

portal vein, early vascularization deficiencies in transplanted islets

lead to their reliance on surface oxygen diffusion rather than direct
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arterial perfusion with oxygenated blood (45). Research by K. E.

Dionne et al. demonstrated that isolated Langerhans islets exhibited

diminished insulin secretion due to hypoxia. This reduction in

insulin secretion correlated with the presence of intra- and extra-

islet Oxygen partial pressure gradients, resulting in a radial decline

in islet cell exposure to low Oxygen partial pressure levels from the

periphery to the core (46). Furthermore, under hypoxic conditions,

aerobic glucose metabolism shifts to anaerobic glycolysis, ultimately

triggering caspase-3 activation and islet cell apoptosis (47).

Therefore, complete vascularization of transplanted islets is

crucial for providing an adequate oxygen supply to reverse

these phenomena.

In a study by Haofei Li et al., GelMA/HepMA/VEGF scaffolds

were found to recruit human umbilical vein endothelial cells,

fostering a rich vascular network around the scaffold. This

augmented neovascular network significantly increased

subcutaneous oxygen content, enhancing islet vitality, especially

in the early stages of islet transplantation (48). Liza Grapensparr

et al. enveloped human islet transplants with endothelial progenitor

cells derived from umbilical cord blood and placed them in the

subcapsular space of the kidney in non-obese diabetic/severe

combined immunodeficiency mice . Four weeks post-

transplantation, blood flow perfusion and oxygen tension of the

grafts were assessed using laser Doppler flowmetry and Clark

microelectrodes, respectively. Notably, islet transplants with

incorporated endothelial progenitor cells exhibited significantly

higher blood flow perfusion and oxygen tension compared to

control grafts (43).

In conclusion, recruiting vascular endothelial cells and

promoting angiogenesis are believed to ameliorate the oxygen

supply situation for transplanted islets.

3.1.3 The role of microcirculation on
pancreatic islets

The microcirculation within pancreatic islet primarily consists

of vascular endothelial cells, that facilitates the delivery of nutrients

and waste clearance in response to glucose fluctuations. It achieves

this while avoiding significant changes in hydrostatic pressure to

preserve the integrity of islet capillary exchange (49). Traditionally,

islets were considered independent of the surrounding exocrine

tissue, lacking an integrated capillary network connecting the

endocrine and exocrine pancreas. Blood flow within islets was

believed to be unidirectional, with the sole connection between

the endocrine and exocrine systems being the islet-acinar portal

vein through which blood exits the islet and enters the exocrine

tissue (50). Currently, there are three main models regarding the

concept of islet perfusion: 1. Non-b cells being perfused before b-
cells, allowing other endocrine cells to influence downstream b-cell
function. 2. b-cells being perfused before other endocrine cells. In

this scenario, b-cells are given a relatively high perfusion priority, so

they dominate the function of the islets. 3. No distinct perfusion

order. However, recent studies have indicated that both mouse and

human islets are not confined to the closed “glomerulus-like”

structure but rather exhibit an open arrangement where islet

capillaries continuously merge with capillaries of the exocrine
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pancreas (51, 52). Blood flow within the islet microcirculation holds

significance for islet development and the regulation of the islet

hormone network, with microcirculatory abnormalities impeding

insulin production and accelerating the progression of diabetes

(53). In a study by Chieko Ihoriya et al. changes in islet

microcirculation were investigated by administering varying doses

of Angiotensin II or Angiotensin I receptor blockers via intravenous

injection. Their study revealed that islet microcirculatory blood flow

decreased after islet vasoconstriction, subsequently leading to

reduced glucose-stimulated insulin secretion (54).

Hence, during the isolation of islets from the pancreas for

transplantation purposes, the detachment not only physically

separates islets from their complete capillary network but also

introduces potential differences in function and structure

compared to islets within the native environment. These

differences may impact the functionality of transplanted islets.

In conclusion, the reconstruction of islet microcirculation is of

great significance to improve the survival and reproduce the

function of transplanted islets.
3.2 Inflammatory cytokine

3.2.1 Inflammatory cytokines and islet damage
The early loss of transplanted islet vitality due to early

inflammatory responses poses a significant challenge to the long-

term survival rate of pancreatic islet transplantation, akin to other

organ or tissue transplants. In fact, it is estimated that up to 80% of

transplanted islets are lost during the initial inflammatory

reaction (55).

As shown in Figure 1, the immediate blood-mediated

inflammatory response (IBMIR) plays a key role in this process.

Traditional pancreatic islet transplantation via the portal vein

exposes islets directly to the blood, triggering IBMIR. IBMIR is

initiated by strong activation of the coagulation cascade, where

negatively charged surface of the islets activate the intrinsic

coagulation pathway (56), and islet-expressed tissue factor (TF)

induces the extrinsic coagulation pathway (57). This cascade

activates thrombin, prompting endothelial cells to release pro-

inflammatory cytokines such as interleukin-6 (IL-6) and IL-8,

leading to the recruitment and accumulation of nearby

neutrophils and macrophages. Simultaneously, macrophages

release an array of pro-inflammatory factors, including

interferon-gamma (IFN-g), IL-1b, IL-6, and IL-8, sustaining the

inflammatory response (58). The islets themselves also secrete

numerous inflammatory factors like monocyte chemoattractant

protein-1 (MCP-1), IFN-g, IFN-g-inducible protein-10 (IP-10),

IL-6, and IL-8 due to hypoxia and stress (58). These pro-

inflammatory factors further trigger inflammatory reactions,

escalating islet cell apoptosis and causing damage to

transplanted islets.

Additionally, the activation of the complement system is a

crucial aspect of IBMIR, reflected in increased complement

concentrations in the serum of pancreatic islet transplant

recipients (59). The activation of complement proteins C3a and

C5a leads to leukocyte recruitment and accumulation, upregulation
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of endothelial and platelet adhesion molecules, and the generation

of reactive oxygen species (ROS) (60). ROS can activate the NF-kB
signaling pathway through protein, lipid, and nucleic acid

degradation, ultimately inducing b-cell death (61).

In summary, recipients of pancreatic islet transplants generate

inflammatory responses that, influenced by various inflammatory

cytokines, lead to early loss and functional deactivation of

transplanted islets.
3.2.2 The potential of anti-inflammatory therapy
to improve islet graft survival

Considering that early inflammatory responses within the

transplantation microenvironment significantly contribute to the

early loss and functional decline of transplanted islets, it becomes

imperative to enhance anti-inflammatory management during the

peri-transplant period becomes imperative. Based on a 20-year

cohort from a Canadian single-center study, the combined use of

IL-1 receptor antagonist (anakinra) and TNF inhibitor (etanercept)

during transplantation has shown potential to increase the

likelihood of sustained graft survival (62).

Numerous preclinical studies also support the perspective of

anti-inflammatory treatment to improve graft survival. Quercetin,

as an inflammation-modulating compound, holds promise in

ameliorating post-transplant islet injury. In an in vitro study,

quercetin-3-o-glucoside (C3G) treatment significantly reduced

inflammatory markers IL-1b and NLRP3 protein expression in

grafts (63). Bilirubin is the ultimate product of heme metabolism,

and numerous clinical studies have demonstrated an inverse

correlation between plasma bilirubin levels and various diseases

(64–67). In animal models, bilirubin has exhibited anti-

inflammatory activity, including in conditions such as

endotoxemia, sepsis, and ischemia-reperfusion injury (68–71). Its

mechanisms of action include the inhibition of inflammatory cell

infiltration and the reduction of nitric oxide (NO) production (72–

74). Therefore, due to its anti-inflammatory and cellular protective

properties, bilirubin is considered a potential drug for protecting

transplanted islets and mitigating inflammatory damage. In

research by Zhu et al., exposure of INS-1 cells, simulating rat

insulinoma, to cytokine-induced inflammation (IL-1b, TNF-a,
and IFN-g) resulted in cellular damage. Bilirubin, at appropriate

lower concentrations, effectively mitigated INS-1 cell viability

reduction and reduced cytokine-induced cell apoptosis, thereby

protecting insulin secretion functionality (75). Additionally, pre-

conditioning with purified bilirubin at the isolation stage improved

overall islet survival by downregulating the expression of pro-

inflammatory genes (MCP-1, TNF-a) (76). Antonio Citro et al.

validated in a mouse experiment that CXCR1/2 inhibitors reduced

leukocyte recruitment induced by transplantation, significantly

prolonging graft rejection onset in a syngeneic allograft

environment (77).

Moreover, the damage response of donor islets during

separation and purification activates graft inflammation, exerting

negative impacts. Tissue factor (TF) is considered a “danger signal,”

highly present on the islet surface, and can elicit IBMIR by

activating the extrinsic coagulation pathway. Clinical outcomes of
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islet transplantation have been directly correlated with TF

expression levels, suggesting that TF blockade represents a novel

therapeutic avenue to enhance the survival rate of type 1 diabetes

islet transplantation (78). Strategies to inhibit TF function have

been explored, including monoclonal antibodies, inactivated FVIIa

factor, small-molecule inhibitors, and siRNA (78). Another “danger

signal,” high mobility group box-1 protein (HMGB1), released from

donor-derived islets, often signifies adverse outcomes in

transplanted islets (79). Research by Nobuhide Matsuoka et al.

indicated that treatment with HMGB1-specific antibodies

prevented early islet graft loss and suppressed the production of

IFN-g by NKT cells and Gr-1(+)CD11b(+) cells (80). Eun Hee Jo

et al. employed the HMGB1 receptor antagonist, HMGB1 A box, as

an innovative approach for the encapsulation of isolated pancreatic

islets, which were subsequently co-cultured with macrophages. The

findings demonstrated a notable decrease in TNF-a secretion by

macrophages co-cultured with encapsulated islets compared to

non-encapsulated ones. Moreover, following transplantation of

the encapsulated islets into diabetic mice, there was a twofold

increase in islet survival rates (81). Thus, targeting the pathways

mediated by HMGB1 offers potential intervention for early

islet loss.

Activation of the complement system is integral to IBMIR since

it serves as a crucial mediator for the release of inflammatory

cytokines. Complement-derived anaphylatoxins C3a and C5a

released upon IBMIR activation are believed to participate in

leukocyte recruitment and infiltration. Therefore, drugs targeting

complement activation also hold potential therapeutic effects to

inhibit inflammation and improve transplantation outcomes.

Complement C5a receptor inhibitor peptide (C5aIP) weakens the

link between complement and coagulation cascades by inhibiting

the upregulation of white blood cell tissue factor expression,

specifically in the liver (82). Importantly, the soluble complement

receptor 1 inhibitor sCR1 and TP10 exert protective effects on post-

transplant islets (83, 84).

However, drugs targeting only a fraction of IBMIR processes are

unlikely to block all elements of the reaction (i.e., coagulation,

complement activation, production of pro-inflammatory

mediators); thus, a combination of multiple drugs is necessary to

enhance post-transplant islet survival.
3.3 Immune cells

3.3.1 Effector immune cells and regulatory
immune cells

Effector immune cells refer to a specific class of cells within the

immune system that play a crucial role when the body faces

infection or immune challenges. These cells are primarily

responsible for eliminating infectious agents or abnormal cells to

maintain an effective immune response. Key effector immune cells

include cytotoxic T cells (CD8+ T cells), macrophages, natural killer

(NK) cells, plasma cells, and CD4+ T helper cells.

Cytotoxic CD8+ T cells play a pivotal role in graft rejection

reactions. CD8+ T cells directly eliminate cells presenting non-self-

antigens by releasing cytotoxic molecules, such as granules and
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perforins, or by inducing apoptosis through cell surface

interactions, like the binding of FAS ligand (also known as

CD95L) on T cells to FAS receptors on target cells (85). Activated

CD8+ T cells that infiltrate transplanted organs also induce the

activation of macrophages, particularly through the expression of

proinflammatory cytokines, such as IFN-g (86).
Natural killer cells (NK cells) are innate immune lymphocytes

that control the spread and subsequent tissue damage caused by

various types of tumors and microbial infections through MHC-

independent cytotoxicity (87). Recent research indicates that NK

cells also act as regulatory cells interacting with dendritic cells,

macrophages, T cells, and endothelial cells, modulating immune

responses accordingly (88).

Macrophages are typically characterized as proinflammatory

and exhibit M1 polarization during acute rejection reactions,

producing proinflammatory cytokines, which result in direct cell

damage and coordination of the proinflammatory immune

response (89). Their major role is phagocytosis, recognizing

damaged allogeneic transplant tissue through pattern recognition

receptors, such as Toll-like receptors. As antigen-presenting cells,

macrophages can present alloantigens in MHC class II molecules,

thereby promoting adaptive immune responses (90).

Plasma cells are another type of effector immune cell derived

from B cells and form the cornerstone of humoral immunity. They

enable the body to combat foreign invaders, not only by

neutralizing pathogens but also by performing various effector

functions, including the regulation of hypersensitivity reactions,

activation of the complement cascade, and modulation of mucosal

microbial communities. However, their activity can be problematic

in solid organ transplantation (91). In transplantation, plasma cells

can produce donor-specific antibodies (DSAs), which, by activating

the complement system, lead to acute and chronic rejection,

resulting in vascular damage and graft loss (92). The impact of

DSAs has been extensively assessed in various solid organ

transplantations (93–95).

Regulatory immune cells constitute a specialized class of cells

within the immune system, primarily tasked with maintaining

immune homeostasis and preventing excessive immune

responses. These cells play a pivotal role in regulating immune

responses, suppressing autoimmunity, and limiting inflammatory

processes. They include regulatory T cells, regulatory B cells,

suppressive macrophages, and NK cells.

Treg cells, a subset of CD4+ T cells, are a crucial component of

regulatory immune cells. Treg cells can be categorized as thymus

derived Treg cells, which develop in the thymus. Their

differentiation, maintenance, and functionality are tightly

regulated by the expression of the transcription factor Foxp3

(Forkhead box P3). Another pathway for Treg cell generation

occurs in peripheral blood cells under the influence of antigen

stimulation and the appropriate combination of cytokines,

including IL-2 and transforming growth factor (TGF)-beta (96).

The interest in regulatory B cells (Bregs) dates to the 1970s, with

evidence suggesting that B cells can modulate the immune system

by producing “suppressive” antibodies. Regulatory B cells (Bregs)

discovered in mice and humans have been shown to downregulate

inflammation associated with various pathological processes,
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including autoimmune diseases, transplant rejection, anti-tumor

responses, and infections. These cells have the capacity to produce

anti-inflammatory cytokines such as IL-10, TGF-beta, and IL-35,

and are considered to have the foundational capacity to induce

regulatory T cells (Tregs), contributing to their regulatory

potential (97).

Macrophages can exhibit both protective and pathological

functions. In transplantation, macrophage activation initially

occurs due to tissue damage associated with ischemia-reperfusion

and may lead to early graft injury. In contrast, alternatively

activated macrophages can suppress the production of

proinflammatory cytokines by classically activated macrophages

and facilitate wound healing and tissue repair. This repair process

is highly critical in the early post-transplantation period, as wound

healing helps reestablish tissue homeostasis (98).

CD4+ T helper cells play a crucial role in immune rejection.

They coordinate the activation of other immune cells, such as B cells

and cytotoxic T cells, to enhance the immune response against

allogeneic substances. These CD4+ T cells possess the ability to

produce and release various cytokines, including interferon-gamma

(IFN-g) and interleukin-2 (IL-2). Additionally, CD4+ T cells

actively interact with B cells, promoting the generation of

antibodies and thereby strengthening humoral immunity (99, 100).

3.3.2 Relationship between immune cells and
damage to transplanted islets

Like most organ transplants, immune rejection is a common

occurrence in pancreatic islet transplant recipients, contributing to

the loss of islet graft function (101).

Immunological react ions manifest as unexplained

hyperglycemia, unexpected reduction in C-peptide levels,

susceptibility events, and heightened immunological risk. It is

widely acknowledged that the human immune system comprises

both the innate and adaptive immune systems, featuring immune

cells like macrophages, dendritic cells (DCs), natural killer (NK)

cells, B cells, and T cells. Macrophages engage primarily in

phagocytosis, while DCs can be categorized into lymphoid tissue-

resident and non-lymphoid tissue-resident subsets, with their

principal role being antigen presentation. They express major

histocompatibility complex (MHC) class I and II antigens,

thereby activating CD8+ cytotoxic T lymphocytes (CTL) and

CD4+ helper cells. NK cells, part of the innate immune system,

are known for their ability to eliminate virus-infected or cancer

cells, and they can also contribute to adaptive immune responses by

releasing pro-inflammatory cytokines such as IFN-g. The

cytotoxicity of NK cells is finely regulated by activating and

inhibitory receptors, including human killer cell Ig-like receptors

(KIRs) and mouse c-type lectin-like family receptors (102). B

lymphocytes are chiefly responsible for antibody production.

When the islets are transplanted into the recipient, B lymphocytes

can recognize the antigens that are foreign to the organ and produce

antibodies to attack these antigens, causing damage to the

transplanted tissue. T lymphocytes exist in various subtypes, such

as helper T cells (Th1), Th2, Th17, and regulatory T cells (Tregs).

Immune rejection following transplantation initiates with the
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infiltration of innate immune cells, especially macrophages, into

the transplanted islets, followed by donor-specific lymphocyte

responses involving CD4+ and CD8+ T cells and B cells.

The activation of T cells primarily occurs through three

pathways: First, DCs can directly migrate from the transplanted

islets to secondary lymphoid organs, where they present donor

MHC molecules, thereby activating allogeneic T cell responses. In

the semi-direct pathway, DCs and other antigen-presenting cells

(APCs) can phagocytose allogeneic cells, present allogeneic MHC

molecules on their surface, and subsequently activate T cells.

Allogeneic proteins are degraded by recipient APCs, and

allogeneic peptides are presented on self-MHC molecules. These

allogeneic peptide-self-MHC complexes can be recognized by T cell

receptors (103).

The exogenous peptides or antigens are initially internalized

and processed by antigen-presenting cells, such as dendritic cells

and macrophages. These antigen-presenting cells bind antigenic

fragments with major histocompatibility complex (MHC)

molecules, forming MHC-antigen complexes. T cells recognize

these MHC-antigen complexes through their T cell receptors

(TCRs) (104). CD8+ T cells bind MHC-I-antigen complexes,

while CD4+ T cells bind MHC II-antigen complexes, through

their respective TCRs, subsequently activating T cells and leading

to T cell proliferation and differentiation. Through the interaction

of CD40-CD40L, activated T cells engage in vital crosstalk with B

cells, initiating a cascade of signaling events. This interaction

propels the further development of B cells, transforming them

into cells with the capacity to generate antibodies, thereby

strengthening the humoral immune response (105). This process

holds significance in the context of organ transplantation,

enhancing immune responses against allogeneic substances and

potentially correlating with transplant immune rejection. In the

context of transplant rejection, T cells can distinguish MHC and

foreign antigens within the transplanted organ, triggering a

rejection response aimed at disrupting the integrity of the

transplanted organ (106, 107). Upon activation, CD8+ T cells

secrete cytotoxic molecules, including perforin and granzyme B,

leading to the direct killing of transplanted islet cells as presented in

Figure 1. In contrast, CD4+ T cells do not directly harm grafts;

instead, they enhance the function of CD8+ cells and secrete a range

of inflammatory factors, such as TNF-a and IFN-g, resulting in

local inflammatory cell infiltration and damage to b cells in the

transplanted islets (108). Furthermore, the interaction between CD4

+ T cells and B cells promotes the activation of B cells, leading to

their differentiation into antibody-producing cells known as Plasma

B cells. These Plasma B cells produce antibodies, ultimately

resulting in damage to the transplanted pancreatic islets (106).

3.3.3 Potential applications for suppression of
immune rejection

In conventional approaches, clinicians often employ

immunosuppressive drugs (ISDs) to inhibit the proliferation and

function of effector T cells, thereby attenuating the body’s rejection

response (109). Early immunosuppressive regimens primarily

consisted of corticosteroids, azathioprine, and cyclosporine (110).
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However, this therapeutic approach yielded insulin independence

in only approximately 10% of patients within a year. In recent years,

the development of the “Edmonton protocol” has significantly

improved clinical outcomes of pancreatic islet transplantation.

This novel immunosuppressive regimen involves sirolimus, low-

dose tacrolimus, and induction with anti-interleukin-2 receptor

antibodies. Remarkably, this regimen achieves a high rate of

insulin independence, with approximately 80% of patients

becoming insulin-independent within a year (111). Unfortunately,

this protocol necessitates lifelong medication, which diminishes

patients’ quality of life, and raises the risk of various adverse

reactions, such as susceptibility to infections and potential

secondary malignancies (112). In addition, because ISDs are

absorbed through the intestine and islets are infiltrated directly

into the bloodstream via the portal vein, ISDs would have a direct

toxic effect on pancreatic islet beta cells, further reducing the

survival of transplanted islets (113, 114). Consequently, the

ultimate goal of pancreatic islet transplantation is to attain donor-

specific immune tolerance. Indeed, there is an urgent need for new

strategies to avoid lifelong use of immunosuppressive agents,

enhance graft survival rates, and improve secretion function.

T cell depletion represents a promising strategy. Recent studies

have shown that anti-CD3 induction therapy, by depleting a

significant number of T cells, holds great potential for promoting

immune suppression. An anti-CD3 immunotoxin based on

diphtheria toxin has been demonstrated to induce tolerance

(115). Marı́ a M Coronel et al. devised an immunosuppressive

regimen involving programmed death ligand-1 mediated by

biomaterials to treat an allogeneic islet transplantation model.

This approach was characterized by the enrichment of CD206+

programmed death 1+ macrophages and the depletion of cytotoxic

T cells in the graft microenvironment (116). In addition, the

induction of stable mixed chimerism by bone marrow

transplantation is widely recognized as a reliable and robust

method of tolerance induction (117). By mimicking central

tolerance, it is possible to achieve almost complete elimination of

donor-specific T cells in recipients. Selective long-term depletion of

donor-specific T-cell clones in the host and donor-specific graft

tolerance have been achieved in preclinical rodent models (118).

However, considerations of toxicity associated with recipient

preconditioning and the threat of graft-versus-host disease have

hampered the clinical application of this method.

Regulatory T cells (Tregs), capable of suppressing the activation

and function of effector T cells, play a crucial role in maintaining

immune homeostasis (119). In recent years, the characteristics of

Treg cells have been harnessed to inhibit immune rejection post-

transplantation. In this regard, Dario Gerace et al. engineered stem

cell-derived islet cells to secrete interleukin-10 (IL-10),

transforming growth factor-b (TGF-b), and modified IL-2 in

addition to targeting human leukocyte antigen (HLA) and PD-L1,

recruiting Tregs to enhance immune tolerance within the graft

microenvironment. Results demonstrated that engineered human

islet cell grafts transplanted into non-obese diabetic (NOD) mice

resisted allogeneic rejection for up to 8 weeks (120). Besides, Evelina
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et al. co-transplanted islets with a plasmid encoding the chemokine

CCL22 into the muscle of MHC-mismatched mice, resulting in

localized accumulation of Tregs due to the expression and secretion

of pCCL22 in muscle cells. Consequently, the population of effector

T lymphocytes around the islets decreased significantly, and the

onset of immune rejection was markedly delayed compared to the

control group (121). In conclusion, Ying Li et al. designed a poly

(lactic-co-glycolic acid) microparticle (PLGA MP) system for the

local release of TGF-b1, which, when co-incubated with CD4+ T

cells in vitro, efficiently generated antigen-specific induced Tregs

(iTregs) with potent immunosuppressive functions, providing

substantial protection for the graft (122).

While Treg cell therapy continues to evolve, it indiscriminately

suppresses the immune system without achieving a permanent

resolution of certain diseases. Transgenic Tregs offer significant

promise in addressing these issues. CAR-Treg cells, an emerging

immunotherapy, employ CAR (Chimeric Antigen Receptor)

technology, a synthetic receptor that empowers immune cells to

selectively recognize and target specific antigens. This allows

regulatory T cells to modulate immune responses and reduce

inflammation to prevent the immune response from damaging

the graft (123). Boardman et al. discovered that, in a human skin

xenograft transplant model using immunodeficient mice,

adoptively transferred CAR-Tregs were more effective in

alleviating allogeneic immune-mediated skin damage caused by

peripheral blood mononuclear cell transplants compared to

polyclonal Tregs. In vitro experiments demonstrated that CAR-

Tregs produced anti-inflammatory interleukin-10 (IL-10) in the

presence of alloantigen (124). These findings highlight the potential

benefits of CAR-Tregs in graft-specific immunosuppression. The

therapeutic potential of antigen specific Tregs has been confirmed

in numerous autoimmune diseases, including T1D, colitis,

transplant rejection, and hemophilia (125–128).

Graft modification prior to transplantation is an excellent

strategy to reduce rejection and improve clinical applicability. Ali

Zafar et al. maintained isolated porcine pancreatic islet cells in a

three-dimensional rotating cell culture system and allowed them to

aggregate with human amniotic epithelial cells. In a porcine-mouse

islet transplantation model, the stem cell-modified islets had better

insulin secretion than natural islets, and the allogeneic response to

them by CD4+ T cells was significantly reduced (129). This provides

a new way of thinking about xenogeneic islet transplantation.

In addition to immune response inhibition, some researchers

have employed islet encapsulation methods to physically isolate

cells from the host using a barrier that restricts the infiltration of

immune cells and antibodies while allowing the penetration of

oxygen, nutrients, and insulin. Interestingly, Yesl Jun et al. prepared

collagen-alginate composite fiber-encapsulated islets using a

microfluid ic p la t form to s imula te the natura l i s l e t

microenvironment. The results demonstrated that composite

fiber-encapsulated islets exhibited higher viability and more stable

insulin secretion compared to free islets (130). Su et al. designed a

hydrogel network and presented inhibitory peptides against the IL-

1 receptor on the surface of pancreatic islet cells and showed that
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these peptide-modified hydrogels were effective in protecting the

encapsulated cells from specific T-lymphocyte attack (131). These

results suggest that encapsulating cells and tissues in hydrogels with

anti-inflammatory or immunosuppressive agents may be a novel

strategy to improve the function of cells and tissues in

transplantation and tissue engineering.

Due to individual variations, specific treatment regimens may

not be universally applicable. In the management of transplant

patients, the use of biomarkers contributes to achieving genuinely

personalized therapy. Immunological biomarkers offer a better

reflection of the activity of drugs (or drug combinations), going

beyond mere concentration measurements and providing greater

value compared to pharmacokinet ic assessments for

immunosuppressive agents (132). Brunet et al. conducted a

comprehensive review of the application of biomarkers in

transplantation, discussing three categories of biomarkers: [1]

those related to rejection risk (allograft reactivity/tolerance), [2]

those reflecting individual responses to immunosuppressive agents,

and [3] those associated with graft dysfunction (133). The objective

of individualized immunosuppression is to minimize the toxicity

associated with immunosuppressive regimens, with the potential to

enhance long-term allograft survival without compromising short-

term allograft survival (134). Thus, optimizing immunosuppression

holds significant importance in improving the clinical prognosis of

pancreatic islet transplant recipients. However, current research on

biomarkers remains in its preliminary stages, with numerous

limitations. The immune system exhibits significant variability

among different individuals, posing a challenge in the quest for

universal biomarkers applicable to all patients. The immune status

is a dynamic and multifaceted process influenced by various factors.

Variability in biomarkers over time and in different environments

may hinder accurate predictions of immune states in certain

circumstances. Furthermore, the mechanisms underlying

transplant immune rejection are intricate, involving multiple cell

types and signaling pathways. Thus, relying on a single or limited

set of biomarkers may inadequately capture the comprehensive

assessment of immune status (135–137).

3.3.4 Immune checkpoint blockade
Antibody-mediated immune checkpoint blockade represents a

revolutionary cancer immunotherapy. These same mechanisms can

be reutilized to control destructive allogeneic immune responses in

the transplant setting. Currently, one of the most effective and

durable immunotherapies in clinical use revolves around the

programmed cell death-1 (PD-1) pathway. The PD-1/PD-L1 axis

plays a pivotal role in regulating alloimmune responses in the

transplant environment (138). Experimental models of fully

mismatched allogeneic heart transplants have demonstrated the

necessity of intact PD-1/PD-L1 interactions and blocking PD-1

results in prolonged rejection times (139). Overexpression of the

immune checkpoint protein programmed death-ligand 1 (PD-L1)

protects human islet-like organ allografts, enabling them to

maintain glucose homeostasis for 50 days in immune-competent

diabetic mice (140). Shirwan and colleagues have engineered a

synthetic biomaterial platform for local delivery of a chimeric
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streptavidin-affibody/programmed cell death-1 ligand 1 (SA-PD-

L1) protein to reprogram local immune responses to transplanted

islets. In a mouse model of diabetes, only when mice received SA-

PD-L1-presenting biomaterial and brief rapamycin treatment could

local induction of allograft acceptance be achieved. Immunological

profiling showed an increase in regulatory T cells and anergic cells

following SA-PD-L1 hydrogel delivery (138).

The CD47/SIRPa pathway is involved in regulating innate and

adaptive immune responses. This system negatively regulates

macrophage activation and phagocytosis, adhesion, platelet

activation, and antibody-dependent cell-mediated cytotoxicity and

phagocytosis (141–143). It has been reported that the interaction

between CD47 expressed on dendritic cells (DCs) and antibodies or

SIRPa expressed on T cells can inhibit DC activation and their

secretion of pro-inflammatory cytokines, leading to a weakened T

cell response (144, 145). Shirwan and colleagues have constructed a

chimeric structure, SA-CD47, containing the extracellular domain

of CD47 modified to include a streptavidin (SA) moiety. In a

murine marginal mass islet transplant model, SA-CD47-

engineered islets demonstrated superior engraftment and function

compared to the SA control group (146).

CTLA-4, cytotoxic T-lymphocyte-associated antigen 4, is a

critical immune checkpoint protein and a negative regulator.

CTLA-4 exerts its inhibitory effects by interacting with B7

molecules on antigen-presenting cells, thereby suppressing T cell

activation (147). Zhang and colleagues employed inkjet-based

bioprinting technology to precisely deliver trace amounts of

murine CTLA4/Fc fusion protein into human decellularized

dermal matrix scaffolds. These scaffolds were co-transplanted with

allogeneic islets under the renal capsule, establishing an immune-

regulatory microenvironment around the allogeneic islets,

achieving long-term engraftment of low-dose allogeneic islet

cells (148).

Fas (CD95) and Fas ligand (FasL) play significant roles in

immune function, including inducing cell apoptosis and

regulating T cell activation (149). Fas deficiency in mice results in

abnormal accumulation of antigen-specific T cells during chronic

viral infections and under steady-state conditions (150, 151).

Furthermore, loss-of-function mutations in genes encoding Fas

and FasL lead to autoimmune lymphoproliferative syndrome

(ALPS), suggesting the role of Fas and FasL in controlling

lymphocyte proliferation and maintaining immune tolerance

(152). Michael Skoumal and colleagues modified allogeneic islets

with biotin and transiently displayed SA-FasL on their surface in a

peritoneal fat pad using a micro-porous scaffold. After a short

course (15 days) of rapamycin treatment, they observed sustained

survival (153).
4 Non- hepatic transplant site

The portal vein/liver is currently the preferred site for clinical islet

transplantation, accounting for 90% of clinical islet transplantations.

However, early extensive islet damage due to the influence of the

portal vein microenvironment has been observed following
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transplantation. The development of alternative transplantation sites

may make it possible to implement strategies to modulate the islet

microenvironment in ways not currently feasible in the liver, thereby

improving survival and transplantation outcomes (154, 155).

Benjamin and colleagues suggest further research into the

subcapsular space below the kidney as a site for clinical islet

transplantation. This anatomical location may avoid early IBMIR-

mediated damage to the islets and may promote vascular

reconstruction (156).

Intramuscular and subcutaneous spaces are important

candidates, as the transplantation and biopsy procedures are

simple, minimally invasive, and have fewer complications.

Although these sites are characterized by low vascularity and

hypoxia, many experimental trials have been conducted to

enhance outcomes of intramuscular and subcutaneous islet

transplantation, with a focus on early vascularization of the

transplanted islets (157).

Lonnie D. Shea and colleagues report the use of a proteolytically

degradable synthetic hydrogel functionalized with vasculogenic

factors for localized delivery, engineered to deliver islet grafts to

extrahepatic transplant sites through in situ gelation under

physiological conditions. These hydrogels induced differences in

vascularization and innate immune responses among subcutaneous,

small bowel mesentery, and epididymal fat pad transplant sites,

with improved vascularization and reduced inflammation observed

at the epididymal fat pad site. This biomaterial-based strategy

improved the survival, engraftment, and function of individual

pancreatic islet grafts (158).

The spleen has been studied as a candidate site for islet

transplantation for a long time. Its advantages include

physiological insulin drainage and immune regulation, which

have recently been demonstrated to contribute to islet

regeneration. Additionally, the spleen serves as a reservoir for

mesenchymal stem cells that aid in tissue repair (159).

Zhen Liang and colleagues successfully implanted human

pluripotent stem cell-derived islets into the abdominal

transplantation site - the rectus sheath of eight non-human

primates (5 males and 3 females), improving blood glucose

control in diabetic primates (160).

These results suggest that non-hepatic sites as transplantation

targets are worthy of further exploration.
5 Conclusion

In this comprehensive review, we have meticulously

summarized the impact of the microenvironment on pancreatic

islet transplant survival. We emphasize the pivotal role of

inflammatory cytokines, vascular endothelial cells, and immune

cells in enhancing overall transplant outcomes.

Preserving the functionality of vascular endothelial cells is the

cornerstone for improving transplant survival. Controlling the

levels of inflammatory factors helps to reduce the damage of
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the graft caused by the early inflammatory response; however,

further research is needed to explore how to maintain defense

against pathogenic microorganisms while suppressing undesired

immune response against the graft to ensure the safe survival of the

transplants. In the realm of immune cells, achieving a delicate

balance is of paramount importance. Efforts are being made toward

advances in individualized immunosuppression, immune

modulation therapies, cell engineering, novel drug formulations,

and immune checkpoint blockade for more precise immune

regulation and suppression. Additionally, non-hepatic transplant

sites also warrant further exploration.

In conclusion, the microenvironment profoundly influences the

success of pancreatic islet transplantation. Future research should

prioritize the fine-tuning of the microenvironment to enhance

transplant efficacy.
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Developments in
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Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
The search for kidney xenografts that are appropriate for patients with end-stage

renal disease has been ongoing since the beginning of the last century. Themajor

cause of xenograft loss is hyperacute and acute rejection, and this has almost

been overcome via scientific progress. The success of two pre-clinical trials of

a1,3-galactosyltransferase gene-knockout porcine kidneys in brain-dead

patients in 2021 triggered research enthusiasm for kidney xenotransplantation.

This minireview summarizes key issues from an immunological perspective: the

discovery of key xenoantigens, investigations into key co-stimulatory signal

inhibition, gene-editing technology, and immune tolerance induction. Further

developments in immunology, particularly immunometabolism, might help

promote the long-term outcomes of kidney xenografts.
KEYWORDS

kidney xenotransplantation, a-Gal, CD40L-CD40, gene editing, tolerance induction
1 Introduction

Xenotransplantation can play key roles in reducing the kidney donor shortage. Since

the first kidney xenotransplant in 1906 (1), great strides have led to achievements in

xenotransplantation such that the risk of hyperacute and acute rejection is almost overcome

(2, 3). Significant progress has been made in key issues in xenotransplantation (4–6).

Important events in kidney xenotransplantation and the advancements of immunological

theories and techniques in corresponding periods are listed in Figure 1.

Here we especially discuss the pivotal developments of kidney xenotransplantation

from an immunological perspective (Table 1).
2 Key xenoantigens

The recognition of xenoantigens involved in hyperacute rejection has been a long and

tortuous road. The first interzygotic twin transplantation in 1953 resulted in long recipient

survival and revealed a new direction for organ transplantation. With the discovery and

application of immunosuppressive agents, hyperacute rejection after allotransplantation

could be controlled, and the survival of recipients gradually increased. However, hyperacute
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rejection after xenotransplantation cannot be controlled by the

empirical application of immunosuppressive agents (7).

Recipient rabbits treated with homogenized guinea pig liver

mixtures survived longer after guinea pig kidney grafts were

transplanted (8). This inspired many attempts to reduce

hyperacute rejection of xenografts, such as the selective removal

of plasma components (9), elimination of extant antibodies,

inhibition of coagulation, as well as the synthesis of complement

and antibodies (10). The results suggested that hyperacute rejection

of xenografts is strongly associated with donor antigens, plasma

composition, and antibody synthesis, similar to hyperacute

rejection during allotransplantation.
2.1 a-Gal antigen

The red blood cell surface galactose antigen (DGala1→3DGal)

that induces hyperacute homotransplant rejection due to an ABO

mismatch was identified in the late 1980s (11). During

xenotransplantation, hyperacute rejection results in an abnormal

increase in immunoglobulin (Ig)M serum levels rather than in IgG
Frontiers in Immunology 0233
levels. This indicates that the recipient’s immune system first

recognizes the specific antigens harbored in xenografts.

Due to the emergence of monoclonal antibodies (mAbs) using

hybridomas, human anti-swine antibodies waere generated and used

to iden t i f y s i gn ifican t ca rbohydra t e s t ruc tu re s fo r

xenotransplantation (12). Then the a-galactosyltransferase (a-Gal)
was found, which is encoded by the a-1,3-galactosyltransferase
(GGTA1) gene (13). Other carbohydrate antigens, such as non-

fucosylated chondroitin sulfate monolayers and linear antigens, are

also found, locating on the surfaces of all porcine vascular

endothelial cells. These antigens tightly bind to anti-Gal isogalectin

b4 antibodies and specifically bind to natural, human anti-a-Gal
antibodies. Gal epitopes are expressed abundantly in the brush

margins of proximal convoluted tubules, moderately in distal

convoluted tubules, and not at all in renal collecting tubules and

glomeruli. A specific antigen-antibody reaction activates the

complement system, leading to a powerful cytotoxic effect that

leads to hyperacute grafts (14–18). The discovery of the a-Gal
antigen was a major breakthrough in xenotransplantation.

Thereafter, considerable efforts were directed toward decreasing

hyperacute rejection of kidney xenotransplants by removing anti-
FIGURE 1

Timeline of developments in kidney xenotransplantation 1906-2022.
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porcine antibodies in vitro, short-term infusions of specific

carbohydrates (19), or the absorption of anti-xenoantigen

antibodies produced in the spleen and kidneys (20). Soluble Gal

proteins can partially inhibit human rejection of porcine kidneys.

Intravenous infusions of bovine serum albumin-Gal in vivo can

essentially maintain the depletion of circulating anti-Gal antibodies

and prevent or delay antibody deposition and the acute humoral

rejection of pig-to-baboon xenografts, but it might be associated

with liver damage (21).
2.2 Non-a-galantigens (Neu5Gc, CMAH
and B4GalNT2)

Transgenic technology was established in 1981 using

microinjections; and a transgenic mouse model was created in

1982. The first generation of the gene-editing tool, zinc finger

nuclease, was introduced during the late 1990s, and another,

transcriptional activator-like effector nuclease, was identified in

2009. These gene-editing techniques had a positive global impact

on life sciences.

Pigs with a-Gal knockout (a-Gal-/-, GTKO) are important

xenotransplantation models (22–24). In the a-Gal-/- pigs to

baboon kidney xenotransplantation models, most recipients did

not develop hyperacute rejection; however, they succumbed to acute

humoral rejection. The significantly increased abundance of

peripheral anti-non-a-Gal antibodies in recipients suggested that

non-a-Gal antigens in kidney xenografts might trigger the

production of large amounts of corresponding antibodies.

Thereafter, non-a-Gal antigens were recognized as obstacles to a-
Gal-/- pig organ xenotransplantation (25). The a-Gal antigen is

crucial for hyperacute rejection, and non-a-Gal antigens play

important roles in humoral rejection of xenotransplants. In

addition to a-Gal and non-a-Gal, other carbohydrate antigens

have a complex spatial distribution in porcine kidneys and are

strongly associated with the outcome of porcine kidney

xenotransplantation (26).
Frontiers in Immunology 0334
Non-a-Gal antigens, such as N-glycolylneuraminic acid

(Neu5Gc; HD antigen), encoded by the cytidine monophospho-N-

acetylneuraminic acid hydroxylase (cMAH) gene have been identified

(27, 28). Compared with GGTA1-/- pig xenotransplantation, humoral

rejection is reduced in GGTA1-/-/CMAH-/- pigs xenotransplantation

(29), implying that the immune heritability of the Neu5Gc antigen

po ten t i a l l y p l ay s an impor tan t ro l e in p i g -human

xenotransplantation. The other carbohydrate non-a-Gal antigen,
glycosyltransferase, (SD(a) antigen), is encoded by the b-1,4-N-
acetyl-galactosaminyl transferase (B4GalNT2) gene (30, 31).

Clustered regularly interspaced short palindromic repeats

(CRISPR)-associated protein (Cas9) is a third-generation gene-

editing tool. Porcine embryonic fibroblasts with GGTA1-/-/Gal-/-

were initially created using CRISPR/Cas9 in 2014 (32). Since then,

CRISPR/Cas9 has become the preferred means of generating

genetically engineered pigs. The serum of many waitlisted

patients contained only a minimal number of antibodies that

reacted with peripheral blood mononuclear cells from GGTA1-/-/

CMAH-/-/B4GalNT2-/- pigs. However, anti-human leukocyte

antigen antibodies in some sensitized patients cross-reacted with

porcine major histocompatibility complex (MHC) I antibodies

(33). Pigs with simultaneous MHC and three antigen (GGTA1/

CMAH/B4GalNT2) inactivation have been generated using the

CRISPR/Cas method (34). Natural and inducible anti-SDa plays

important roles in GTKO pig-to-rhesus monkey xenotransplant

rejection, thus providing further support for the notion that Gal

and SDa antigens should be simultaneously targeted (35).

Exploration of new key non-a-Gal antigens is currently

underway (36).
2.3 SLAs

SLAs are being discovered to play an important role in swine

innate and adoptive immune responses. In some sensitized kidney

transplant-waitlisted patients, some human leucocyte antigen

(HLA) antibodies cross-react with SLA class I (37). SLA II is

also a xenoantigen (38, 39). And triple (GGTA1, CMAH, B2M)

genes modified pigs expressed the SLA Ilow phenotype, which

effects on immune status and susceptibility to human immune

responses (40). In vitro human TNF-a could increase SLA I

expression, while human IL-17 could decrease TNF-a-mediated

SLA-I upregulation (41), and downregulation of SLA expression

decreases the strength of xenogeneic immune responses towards

renal tubular epithelial cells (42). These data may support the

SLA-silencing strategy application to prevent xenogeneic cellular

immune responses.
3 Blocking CD40L-CD40
co-stimulatory signals

Diversity and specificity of immunoglobulins suggests that

cellular and humoral immune responses are not separate entities,

but complementary components. T and B lymphocytes interact
TABLE 1 Critical progress in promoting kidney xenograft survival.

Discovery of xenoantigens

Carbohydrate antigen a-Gal

Non-a-Gal

Proteantigen SLA

Investigation into key co-stimulatory signal pathways

Anti-CD40/anti-CD40L

Establishment of genetically engineered pigs

CRISPR/Cas9//Human CD55, CD59, CD46, CD39

Immune tolerance induction by chimerism

“Thymus kidney”

Bone marrow/Hematopoietic cells
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to activate and differentiate into effector cells under specific

circumstances. During this process, co-stimulatory signals, such

as cluster of differentiation (CD) 40 and its ligand CD40L,

CD28-B7, and inducible T cell co-stimulator ligand (ICOS)

and its ligand ICOSL, play indispensable roles, and the effects

of CD40L-CD40 signaling on xenotransplantation have been

extensively investigated.

The 35 kDa polypeptide CD40 is mainly expressed in B

lymphocytes (43, 44). After CD40L was identified (44–46),

numerous in vivo and in vitro findings showed that the CD40L-

CD40 pathway is essential for T cell responses and specific antibody

production by B lymphocytes (47–52). The biological effects of anti-

CD40L mAb, as well as other related mAbs, including anti-CD80,

anti-CD86 mAbs, and biologicals, such as hCTLA4-Ig, have been

extensively studied in vitro and in vivo (53–55). Results suggest that

blocking the CD40-CD40L pathway, or combined blocking of the

CD28-B7 signal could effectively inhibit T cell activation and

suppress the production of specific antibodies.

Data from pig to non-human primates (NHPs) organ

xenotransplants reveal that anti-CD40L mAb suppresses CD40-

CD40L co-stimulatory signals and decreases T cell-mediated

immune responses, whereas natural anti-Gal antibodies are

detectable at baseline (56). The application of anti-CD40L mAbs

to NHPs is safe (57, 58) and blocking the CD40L-CD40 signal

might induce immune nonresponse to a xenotransplant (59, 60);

thus, prolonging xenograft survival (61–64). By comparison, co-

stimulation blockades with an anti-CD40L agent is more successful

than with an anti-CD40 agent (65–67).

Currently, the immunosuppressive regimen based on the

blockade of the CD40-CD40L co-stimulation pathway is

considered as an extremely important development in the

xenotransplantation. As a biological agent, the affinity and

effective doses of these mAbs for individuals, the mechanism of

action, and the potential side effects, require further investigation.
4 Genetically engineered
pig establishment

Expression of the end-stage complement suppressor human

CD59 seems to promote the survival of transplanted organs in vitro

(68, 69). The complement protein CD55 (decay acceleration factor)

regulates complements, whereas CD46 is an inhibitory regulator of

the complement system. Knocking human CD55, CD59, and CD46

into the pig genomes resulted in their expression in vascular

endothelial cells and suppressed damage caused by complement

activation (70). Cynomolgus monkeys that received GGTA1-/-/

CD55 transgene (Tg) pig kidneys survived for >90 days (71),

which was surprising at the time. This also suggested that human

CD55 knock-in promotes xenograft survival, in addition to

preventing ureteral stenosis. Recipient rhesus monkeys with low

levels of anti-pig antibodies were screened as recipients of GTKO/

human CD55 Tg pigs’ kidneys, and the anti-CD40L mAbs applied

after transplantation and conventional immunosuppressive

protocol resulted in the recipients surviving for >125 days (72).
Frontiers in Immunology 0435
Thrombomodulin, endothelial protein C receptors, CD39, and

other factors function in the regulation of human coagulation.

Thrombomodulin and CD39 are involved in complement

activation and the coagulation cascade during heterogeneous

immune regulation (73–75). In the GTKO/human CD46, CD55,

thrombomodulin, endothelial protein C receptors, and CD39 Tg

porcine to baboon kidney xenotransplantation models, recipients

who received anti-thymocyte globulin (ATG) and anti-CD20 mAb

induction, along with anti-CD40 mAb-based immunosuppression

therapy survived for up to 136 days (76). In the GTKO/human

CD55 Tg porcine to rhesus monkey kidney xenotransplantation

models, rhesus monkeys with low antibody titers were selected,

some who received transient pan-T cell destruction and the anti-

CD40L mAb-based immunotherapy protocol survived for 405

days (77).

The obtained experience in kidney xenotransplantation of

genetically engineered pigs to NHPs has provided a solid

foundation for pre-clinical trials. The surgeries, a-Gal knockout
pigs to brain-dead patient kidney xenotransplantation, were

conducted in the USA in 2021, and the survival of xenografts was

54 (2) and 74 (3) h.
5 Tolerance induction by chimerism

5.1 Thymus co-transplantation

Attempts to induce immune tolerance in xenografts by multiple

low-dose xenoantigen inoculations have been unsuccessful.

Transplanting fetal porcine thymus and liver tissues into mice to

eliminate T and natural killer cells and removing the thymus

induces specific tolerance to porcine antigens (78). The mouse

CD4+ T cell repertoire developed in implanted pig thymus grafts

indicated positive selection by porcine (xenogeneic) MHC antigens

and negative selection by both mice (recipients) and porcine MHC;

this suggested a high level of tolerant immunocompetence (79–81).

Findings of kidney allotransplantation in large animals have

indicated that the thymus is essential for rapid and stable

immune tolerance (82, 83), implying the potential value of

thymus transplants to induce tolerance.

The “thymus kidney” was invented by placing thymus tissues

under a kidney quilt to facilitate autologous thymus transplantation.

The results suggested that the abundance of peripheral

CD4+CD45RA+ T cells increased steadily from 30 to 150 days

after transplanting “thymus kidneys” into athymic micropigs, and

recipient pigs had acquired immune tolerance. Vascularized donor

thymus tissue can induce rapid and stable immune tolerance in

recipients to MHC-unmatched allograft (84–86).

In “thymus kidneys” xenotransplantation models, recipient

baboons transplanted with a “thymus kidney” graft from a

human CD55 Tg pig survived for 30 days, and live thymic

epithelial cells and thymic bodies, including a few baboon

lymphocytes, were discovered under the renal capsule and

omentum of the baboons. The “thymus kidney” can induce the

production of non-responsive donor-specific cells and stable

amounts of anti-a-Gal antibodies, thus inducing immune
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tolerance across the genetic immune barrier (87). Transplanting

GTKO pig kidneys with the vascular thymus into baboons

significantly extended recipients’ survival (88). Recipient baboons

with or without cortisol transplanted with “thymus kidneys” from

GTKO micropigs survived for >80 days with no signs of cellular

rejection or IgG deposition in the transplants and no loss of the

transplanted kidneys, suggesting establishment of donor-specific T

cell tolerance (89).

Fetal porcine thymus grafts containing mice thymic epithelial

cells implanted into mice improved the development of T cells in

the thymus, increased the likelihood that they would develop

tolerance to the grafts, and reconstructed the T cell population

(90). The method for preparing donor thymus grafts enriched with

recipient thymic epithelial cells in large animals (cynomolgus

monkeys and micropigs) was established (91). This should induce

the tolerance of transplanted solid organs, including the

kidneys (92).

Mouse T cell receptor–transgenic T cells can be functionally

educated using porcine MHC antigens (93). Human T cells develop

normally in porcine thymus grafts and form specific tolerance to

porcine MHC in immunodeficient mice (94). However, a mouse

with a transplanted porcine thymus would develop analogous

autoimmune diseases, in which mouse CD4+ T cells play a key

role (95). Therefore, the differentiation of host T precursor cells in

the porcine thymus should differ from the normal physiological

state. The number of Tregs in the athymic mice that were grafted

with porcine thymus was close to normal, but the regulatory

function was not (96). Moreover, T cell differentiation in

humanized mice after bone marrow (BM) transplantation

revealed that the positive selection was inadequate (97).

These findings should be helpful for thymus transplantation in

large animals. Autologous thymus tissues were co-transplanted with

GTKO porcine kidneys in the clinical trial of transplantation in two

brain-dead patients (2). The results exceeded expectations; however,

the mechanisms of tolerance induction need to be further explored.
5.2 BM or hematopoietic cell
co-transplantation

Transplanted BM or hematopoietic cells can establish chimera-

induced tolerance (98). Long-term survival has been achieved using

kidneys co-transplanted with BM (99). Moreover, the role of

CD4+CD25+FoxP3+Treg cells in these results cannot be ignored

(100–102).

Simon et al. (103) injected large doses of porcine spleen cells

into baboons and found that low-level chimera status was

maintained for almost 1.5 years, during which the baboons did

not get sick. These results suggested that donor leukocyte infusion

can be used to induce per iphera l to l erance dur ing

xenotransplantat ion. Perhaps infusing BM cel ls with

differentiation potential would be more advantageous for

establishing chimera-induced immune tolerance.

Griesemer et al. found that baboons transplanted with GTKO

BM alone in vivo developed peripheral chimeras within 28 days, and

the abundance of anti-GTKO porcine antibody or porcine-specific
Frontiers in Immunology 0536
cytotoxicity did not increase. However, anti-porcine and other

specific antibodies appeared 14 days after transplantation in

baboons that were co-transplanted with BM cells and kidneys,

and relatively high levels of anti-Gal antibodies were detected

when the porcine kidney was rejected (104). These data suggested

that BM infusion is associated with a loss of anti-Gal antibodies. To

improve chimerism, the infusion method was modified, and the

results were successful, the donor pig kidneys in the two groups

survived for 47 and 60 days, respectively (105).

The cell- and species-specific CD47/Signal regulatory protein a
(Sirp-a) signaling pathway might be involved in clearing cells

derived from porcine BM cells in recipients. Porcine BM

transferred the human CD47 gene survived much longer in a

recipient baboon, and the chimeras prolonged the survival of

porcine skin grafts (106).
6 Research interests

In the past decades, many solutions have been applied to solve

the ethics and theoretical issues in kidney xenotransplantation, and

the breakthrough achieved are encouraging. In addition to

immunology-related issues, the transmission of porcine

xenotransplantation-relevant viruses (such as porcine endogenous

retroviruses, PERV) were well controlled (107). However, whether

PERV remains inactivated depends on the stability of porcine

genomes after modified by CRISPR/Cas 9 technique.

Comprehensive analysis suggested that, these following issues

should be studied in deepth for a better survival of kidney xenografts.
6.1 Gene-editing techniques should
be perfected

Although CRISPR/Cas9 technology is widely applied, it has

some limitations, such as off-target effects, low delivery efficiency,

and the immune heritability of Cas9 protein. Any unexpected

changes in the human (or xenograft) genome could result in

serious and unintended consequences, including the activation of

proto-oncogenes and production of new single nucleotide

polymorphisms that can alter cellular behavior. In addition, >60%

of the population harbors components of humoral and cellular

immune responses to Cas9. Therefore, if sustained, Cas9 expression

is required during treatment and the immune response induced by

the Cas9 must be considered (108). Improvements in CRISPR/Cas9

technology will be conducive to the long-term outcome of clinical

kidney xenotransplantation (109).
6.2 Deeply investigate the rejection
mechanisms of xenotransplantation

6.2.1 Porcine carbohydrate antigens
NHPs often serve as transplant recipients to determine the efficacy

of xenotransplantation. However, the expression profile of a-Gal in
NHPs differs from that in humans (110). Therefore, data from NHPs
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can only provide a reference for clinical xenotransplantation.

Techniques have been developed to knock out multiple porcine

genes (33, 111). However, recent data indicated that the loss of the

non-Gal antigen, Neu5Gc, is associated with increased humoral

rejection in pig-baboon kidney xenotransplants (112, 113).

Therefore, an in-depth investigation of porcine carbohydrate

antigens might provide a more comprehensive understanding of

their roles in xenotransplantation.
6.2.2 The function and mechanism of
novel molecules

In the most recent GTKO pig-baboon kidney xenotransplantation

with an anti-CD40 mAb-based immunosuppressive regimen, results

indicated that ATG and anti-CD20 mAb eliminated peripheral T and

B lymphocytes and inhibited lymphocyte recovery; a decreased

abundance of memory CD8+ T cells might determine long-term

outcomes (114). The hCD47 expression in porcine endothelial cells

and podocytes reduced the phagocytic effects of human and baboon

macrophages on porcine endothelial cells and podocytes by rectifying

the inter-species incompatibility of CD47/Sirp-a signaling (115).

Results suggest that the expression of human CD47 in donor pig

renal glomerular cells might be an important strategy for preventing

proteinuria after xenotransplantation. The results of an in vivo study

suggested that porcine podocytes expressing hCD47 inhibit the

development of albuminuria in GTKO/hCD47 Tg pig-baboon

kidney xenotransplantation (116). The underlying mechanism

deserves more intensive investigation.

6.2.3 Each type of immune cell involving
xenograft rejection

In addition to T and B lymphocyte, monocyte, macrophages,

neutrophils, and natural killer (NK) cells should all involve in the

initiation and advancements of rejection and outcome of

xenografts. Nevertheless, we are just scratching the surface of the

iceberg about the function and mechanisms of each type of cells. For

instance, NK cells may play an effector role by releasing cytotoxicity

granules against xenogeneic cells, or an affector role on other

immune cells through cytokine secretion (117), and much work

need to be carried out to promote xenograft acceptance by driving

NK cells (118).

6.2.4 The discrepancy in metabolism between
kidney xenograft donors and human

Pigs, NHPs, and humans significantly differ biologically and

physiologically (119–121). All findings suggested that specific

immune tolerance induction or immunosuppression regimen

need to be developed, and immune mechanism of chronic

rejection needs to be explored from multi-angle exploration.

Accumulating evidence suggests that various metabolites and

metabolic networks intersect with the induction, regulation, and

maintenance of trained immunity (122). Metabolism and the

immunological state are inextricably linked, and immunometabolism

is recognized as a major mechanism that is central to adaptive and

innate immune regulation (123). Now, whether, which, and how

metabolites are involved in immune regulation of kidney xenografts
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remains to be determined. Kidney xenografts grow abnormally in hosts

like any other xenograft. The threshold for the ratio of transplanted

kidney volume to host body weight is 25 cm2/kg; beyond this threshold,

kidney xenografts become ischemic (124). This phenomenon reflects

physiological differences between GTKO pigs and baboons and more

importantly, a link between metabolism and the renal xenograft

immune response. This is confirmed by the results that rituximab

and CTLA4Ig might confer benefits in terms of symptomatic

treatments (125–127).
7 Conclusion

Compared with the understanding of the alloimmune response,

that of the heterologous immune mechanism is still in its infancy

(128, 129). We believe that a deeper understanding of immunological

theories and the development of techniques will continue to promote

the progress of kidney xenotransplantation. Further studies of

immunomechanisms in kidney xenotransplantation might help to

promote the survival of kidney xenografts.
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Human PD-L1 overexpression
decreases xenogeneic human T-
cell immune responses towards
porcine kidneys
Katharina Schmalkuche1,2, Tamina Rother1, Sevval Besli 1,
Reinhard Schwinzer2,3, Rainer Blasczyk1, Björn Petersen2,4

and Constanca Figueiredo1,2*

1Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School,
Hannover, Germany, 2Transregional Collaborative Research Centre 127, Hannover Medical School,
Hannover, Germany, 3Transplantation Laboratory, Clinic for General, Visceral and Transplantation-
Surgery, Hannover Medical School, Hannover, Germany, 4Department of Biotechnology, Institute of
Farm Animal Genetics, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health,
Neustadt am Rübenberge, Germany
Xenotransplantation offers a promising alternative to circumvent the lack of

donated human organs available for transplantation. Different attempts to

improve the survival of xenografts led to the generation of transgenic pigs

expressing various combinations of human protective genes or knocked out

for specific antigens. Currently, testing the efficiency of porcine organs carrying

different genetic modifications in preventing xenogeneic immune responses

completely relies on in vitro assays, humanized mouse models, or non-human

primate transplantation models. However, these tests are often associated with

major concerns due to reproducibility and generation of insufficient data as well

as they raise ethical, logistical, and economic issues. In this study, we investigated

the feasibility of specifically assessing the strength of human T-cell responses

towards the kidneys of wild-type (WT) or transgenic pigs overexpressing human

programmed death-1 ligand 1 (hPD-L1) during ex vivo kidney perfusion (EVKP).

Human T cells were shown to adhere to the endothelium and transmigrate into

WT and hPD-L1 kidneys. However, transcript levels of TNF-a and IFN-y as well as

cytotoxic molecules such as granzyme B and perforin secreted by human T cells

were significantly decreased in the tissue of hPD-L1 kidneys in comparison to WT

kidneys. These results were confirmed via in vitro assays using renal endothelial

cells (ECs) isolated fromWT and hPD-L1 transgenic pigs. Both CD4+ and CD8+ T

cells showed significantly lower proliferation rates after exposure to hPD-L1

porcine renal ECs in comparison to WT ECs. In addition, the secretion of pro-

inflammatory cytokines was significantly reduced in cultures using hPD-L1 ECs in

comparison to WT ECs. Remarkably, hPD-L1 EC survival was significantly

increased in cytotoxic assays. This study demonstrates the feasibility of

evaluating the human response of specific immune subsets such as human T
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cells towards the whole xenograft during EVKP. This may represent a robust

strategy to assess the potency of different genetic modifications to prevent

xenogeneic immune responses and thereby predict the risk of immune rejection

of new genetically engineered xenografts.
KEYWORDS

xenotransplantation, kidney transplantation, ex vivo organ perfusion, T-cell immune
response, genetic engineering, programmed cell death-1 ligand 1 (PD-L1)
1 Introduction

Kidney transplantation represents the only curative treatment

for patients with end-stage kidney failure (1). However, the

availability of human kidneys suitable for transplantation is often

associated with long periods on the transplant waiting lists. The

discrepancy between the number of organs available and the

increasing requirement for an organ presents a major obstacle

and limits the number of successful kidney transplantations. On

average, 18 patients from the waiting list die per day in Europe

without receiving the chance of a life-prolonging organ (2).

Xenotransplantation provides a promising alternative to

allogeneic transplantation by circumventing the bottleneck

regarding available organs. However, despite similar organ size

and physiology, genetic differences between species lead to

immunological barriers and are a limiting factor for clinical

success (1). The establishment of a variety of genetic

modifications for xenotransplantation in combination with

immunosuppressive and anti-inflammatory agents represents a

promising approach to minimizing the risk of rejection (3).

Transgenic pigs expressing human protective genes and knocked

out for specific immune antigens significantly improved graft

survival. In 2001, the first alpha-1,3-galactosyltransferase

(GGTA1) deficient pigs were generated, providing a breakthrough

success in xenotransplantation of porcine organs by reducing

hyperacute rejection (HAR) (4–6). The generation of the first

triple KO (GGTA1/Cytidine monophosphate-N-acetylneuraminic

acid hydroxylase (CMAH)/b-1,4-acetyl-galactosaminyltransferase 2

(b4GalNT2)) pigs presented an additional milestone in overcoming

HAR and acute humoral xenograft rejection (AHXR) (7). However,

acute cellular rejection (ACR) remains the major obstacle to a

successful xenotransplantation outcome and constitutes a

considerable hurdle for long-term graft survival (8). In addition

to the involvement of NK cells, macrophages, neutrophils, and B

cells, T cells play a leading role in ACR (9, 10). T-cell receptor

interaction with MHC, costimulation, and cytokine secretion

regulate the activation of naïve T cells, which initiates a

programmed differentiation pathway and determines the strength

and functionality of the immune responses (11).

Organs of genetically engineered pigs might have the capacity to

modulate human cellular immune responses and therefore
0242
represent a promising approach to support long-term xenograft

survival. Attenuation of T-cell immune responses by preventing T-

cell activation could demonstrate a benefit in reducing ACR (10). In

cancer research, previous studies have shown that the binding of

human programmed death-1 ligand 1 (hPD-L1) to the programmed

death-1 (PD-1) receptor on T cells leads to the reduction of PD-1+

cell proliferation, inhibition of cytokine secretion, and induction of

apoptosis (12). In a xenogeneic setting, Buermann et al. indicated

that hPD-L1 peripheral blood mononuclear cells (PBMCs) severe

the potential to reduce CD4+ T-cell proliferation and induce a low

immunogenic, immune-protected status (13). However, the full

effect of hPD-L1 overexpression on the porcine renal tissue in

preventing human immune responses remains to be evaluated.

So far, potential human immune responses to xenografts

carrying different combinations of genetic modifications can only

be characterized in vitro using cultured human immune cells, in

humanized mice models, or non-human primate (NHP) models

after xenotransplantation (10, 14). However, the data generated

using in vitro assays is often insufficient and reflects the immune

response against a single target cell type and not against the

complete tissue as in the case of transplantation. Studies based on

humanized mouse models are strongly dependent on the degree of

humanization and capacity to mount reliable immune responses.

On the other hand, xenogenic immune responses can be

successfully evaluated by transplanting NHPs in a preclinical

state, but this strategy is associated with several ethical, logistic,

and economic concerns (15, 16). Hence, precise assays enabling the

assessment of specific human immune responses towards the

xenograft in its complete multi-cell type and structure complexity

are highly desirable. Ex vivo kidney perfusion (EVKP) has emerged

as a promising technology for assessing the quality of kidneys

during preservation and has also been shown to serve as a

platform for organ conditioning, allowing targeted treatment and

quality improvement (17). In this study, we evaluate the feasibilityof

specifically assessing T-cell immune responses during EVKP,

without the influence of other immune cells. This strategy may

allow the characterization of the direct impact of specific genetic

modifications in the T-cell immune response using a complete

organ as a target and not only specific cell subtypes as in

conventional in vitro assays. This strategy may enable an initial

evaluation of the efficacy of specific genetic modifications and might
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contribute to reduce and refine the number of animals used for the

unavoidable preclinical tests on NHPs.
2 Materials and methods

2.1 Experimental groups and
kidney retrieval

In this study, kidneys from 10 wildtype (WT) (non-perfused WT

kidneys (n = 3), perfusions of WT kidneys without human T cells (n =

3), perfusion of WT kidneys with human T cells (n = 4)) and two

genetically modified landrace pigs with GGTA1-KO and hPD-L1

overexpression were used. One kidney from each animal was used

for perfusion. For organ retrieval, pigs were anesthetized with Propofol

(i.v.) and euthanized with pentobarbital (i.v.). After circulatory death,

an anterior midline incision was performed and rectus abdominis

muscles were separated. The retroperitoneum and peri-renal space are

exposed via blunt dissection. Following the dissection of the aorta and

inferior vena cava, the kidneys were removed en bloc with these vessels.

Kidneys were flushed with 200 mL cold (4°C) Custodiol (Dr. Franz

Köhler Chemie GmbH, Bensheim, Germany) and stored on ice during

transport to the laboratory.
2.2 Isolation of human T cells

PBMCs were isolated from human blood from different healthy

donors immediately before the start of perfusion. Briefly, human

blood was diluted 1:2 with Dulbecco’s Phosphate Buffered Saline

(Lonza, Basel, Switzerland) and centrifuged by density gradient

centrifugation in Lymphosep (C. C. Pro, Oberdorba, Germany).

Afterward, the CD3+ cell population was isolated by negative

magnetic bead isolation using the human Pan T Cell Isolation Kit

(Miltenyi Biotec Inc., Auburn, California, USA) according to the

manufacturer’s instructions. In this study, 3.5x107 T cells were used

for perfusion.
2.3 Normothermic EVKP

Kidneys were connected to the Kidney Assist® perfusion device

(XVIVO B.V., Groningen, Netherlands) via an artery cannula. After

kidneys had been warmed up to 37°C for 30 minutes, organs were

perfused for 4 hours with 1 L of Williams´s Media E (WME)

(Thermo Fisher Scientific, Waltham, Massachusetts, USA)

supplemented with 7,15 g HEPES (Sigma Aldrich, Darmstadt,

Germany), 50 g/L Bovine Serum Albumin (Sigma Aldrich) and

0,80 g Creatinine (Sigma Aldrich) as previously described (18, 19).

T cells were injected into the perfusion system after the perfusate

temperature reached 37°C. Perfusion flow, vascular resistance,

oxygen saturation, and perfusate temperature were monitored

every 30 minutes. After 270 minutes, EVKP was finished and

kidneys were flushed with 1 L Custodiol. Non-perfused WT

kidneys (n = 3), perfusions of WT kidneys without human T cells
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(n = 3), and perfusions only with T cells (n = 3) served as controls to

WT (n = 4) and hPD-L1 kidneys (n = 2) perfused with T cells.
2.4 Histological evaluation

Immediately after perfusion, renal tissues were fixed in 4%

paraformaldehyde and embedded in paraffin after 3 days. Tissue

slices were stained with hematoxylin and eosin for analyses of renal

structure. For immunohistochemistry, tissue slices were stained

with anti-human CD3 (UCHT1; BioLegend, San Diego, USA) or

CD274 Polyclonal Antibody (Bioss Antibodies, Woburn,

Massachusetts, USA) by using the Zytochem Plus HRP Polymer

System (Zytomed Systems, Berlin, Germany). Counterstaining was

performed using Papanicolaou’s solution and samples were fixed

with DPX Mountant (Sigma-Aldrich, St. Louis, Missouri, USA).

Afterward, visualization was performed using a Keyence

microscope (Keyence, Itasca, Illinois, USA) and samples were

quantified via QuPath v0.3.0 bioimage analysis software (open

source; https://qupath.github.io/).
2.5 Perfusate analyses

2.5.1 Lactate dehydrogenase activity
Perfusate samples were collected at different time points (0, 30,

90, 150, 210, and 270 minutes) of perfusion. Lactate dehydrogenase

(LDH) activity in perfusate samples was calculated using the

colorimetric Cytotoxicity Detection Kit (LDH) (Roche, Basel,

Switzerland) according to the manufacturer’s instructions. The

optical density (OD) of the colorimetric assay was used to

determine the extent of LDH release.

2.5.2 Lactate levels
Perfusate samples were collected at different time points (0, 30, 90,

150, 210, and 270 minutes) after perfusion start to quantify lactate

levels in the perfusate using the Lactate-Glo Assay System (Promega,

Madison, Wisconsin, USA) according to the manufacturer’s protocol.

For analysis, perfusate samples were diluted 1:50 with DPBS (Lonza),

and relative luminescence units (RLU) were calculated using Lumat LB

9507 (Berthold Technologies, Zug, Switzerland) luminometer. L-lactate

concentrations were measured by extrapolation using a standard curve.
2.6 Quantitative real-time polymerase
chain reaction

Pooled tissues collected from 3 regions of the renal cortex and

medulla (upper, lower, middle region) were fixed in RNAlater™

Stabilization Solution (Merck, Darmstadt, Germany) immediately

after perfusion. Total RNA was isolated using RNeasy Mini Kit

(Qiagen, Hilden, Germany) and reverse transcribed to cDNA by

High-Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, California, USA). Transcript levels of

human tumor necrosis factor-alpha (TNF-a) (Hs00174128_m1;
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Thermo Fisher Scientific) , interferon-gamma (IFN-g)
(Hs00194264_m1; Thermo Fisher Scientific), granzyme B

(GZMB) (Hs00188051_m1; Thermo Fisher Scientific), and

perforin (Hs00169473_m1; Thermo Fisher Scientific) were

measured by utilizing TaqMan Gene Expression Master Mix

(Thermo Fisher Scientific). All samples were analyzed in

triplicates using the StepOnePlus Real-Time PCR system and

results were evaluated by StepOnePlus Software v2.3 (Applied

Biosystems). GAPDH (Hs02786624_g1, Thermo Fisher Scientific)

was used as an endogenous control for the normalization of

mRNA levels.
2.7 Isolation of renal endothelial cells

Biopsies were collected from three regions of the kidney (upper,

lower, middle region) of unperfused WT or unperfused hPD-L1

renal cortex and medulla. Biopsies were pooled and digested with

Collagenase Type I (Sigma-Aldrich) to obtain a single-cell

suspension. Cells were cultured in endothelial cell growth

medium (EGM-2) (Lonza) on gelatin-coated plates. EC

phenotyping was performed by analyzing CD31 and CD144

expression using APC/Cyanine7 anti-human CD31 (WM59;

BioLegend) and Alexa Fluor® 647 mouse anti-human CD144 (55-

7H1; BD Biosciences, Franklin Lakes, New Jersey, USA) antibodies.

PD-L1 expression was evaluated using APC anti-human CD274

antibody (29E.2A3; BioLegend). Data were evaluated by BD

FACSCanto™ II Clinical Flow Cytometer System (BD

Biosciences) and results were analyzed using FlowJo software

v10.6.2 (BD Biosciences).
2.8 Human T-cell proliferation assay

24 hours before the start of cell co-culturing (day 0), 2x104

target cells (WT and hPD-L1 ECs) were seeded in triplicates onto a

96-well plate. On day 1, 2x105 T cells from four healthy donors were

labeled with the cell proliferation dye efluor 670 (Thermo Fischer

Scientific). Afterward, T cells were added in a 10:1 (E: T) ratio to the

ECs and cultured in RPMI 1640 Medium (Lonza) supplemented

with 5% AB serum (c.c.pro GmbH) and interleukin (IL)-2 (100 and

U/mL; Prepotech, New Jersey, USA). After 7 days of co-culturing,

the experiment was finished and T cells were stained with FITC

anti-human CD3 antibody (UCHT1; BioLegend), APC/Cyanine7

anti-human CD4 antibody (SK3; BioLegend), and PE anti-human

CD8 antibody (SK1; BioLegend). T-cell proliferation rates were

evaluated by comparing proliferation values of day 0 with day 7

using BD FACSCanto™ II Clinical Flow Cytometer System (BD

Biosciences) and results were analyzed using FlowJo software

v10.6.2 (BD Biosciences).
2.9 Real-time cytotoxicity assay

24 hours before the experiment started, 2x104 target cells (WT

and hPD-L1 ECs) were seeded in duplicates onto microtiter plates
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(E-Plates©; Agilent Technologies, California, USA). After achieving

a confluent EC monolayer, 2x105 T cells were isolated from three

different donors and added in a ratio of 10:1 (E:T) to the target cells.

Cells were cultured in RPMI 1640 medium (Lonza) supplemented

with 5% human serum AB (c.c.pro GmbH) and IL-2 (100 U/mL)

(Prepotech) for 140 hours. Cell proliferation as a function of real-

time changes in electrical impedance, also referred to as cell index,

was continuously monitored using the xCELLigence Real-Time Cell

Analyzer (Agilent Technologies).
2.10 Cytokine multiplex analyses

Pro-inflammatory cytokine profile indicating a xenogenetic T-

cell response was determined in the real-time cytotoxicity assay´s

supernatant using the MILLIPLEX Human Cytokine/Chemokine/

Growth Factor Panel A Magnetic Bead Panel (Merck KGaA,

Darmstadt, Germany). Briefly, secretion levels of human IFN-g,
IL-8, interferon gamma-induced protein 10 (IP-10), granulocyte-

macrophage colony-stimulating factor (GM-CSF), IL-5, IL-10, IL-

1b, and IL12p70 were quantified in 25 µL centrifuged perfusate

samples collected at the end of the assay (time point 140 hours) and

measured using Luminex® 100/200 analyzer (Luminex Corp.,

Austin, Texas, USA). Standard and sample preparations were

performed according to the manufacturer’s instructions. Cytokine

levels were calculated using the Xponent software version 3.1

(Luminex Corp.).
2.11 Statistical analyses

All data are presented as mean ± standard deviation. For

comparison between two groups, the student’s t-test was used.

One-way ANOVA with multiple comparisons was applied to

compare data with one variable between more than two groups.

Two-way ANOVA was used for comparisons of data with two

categorical variables between more than two groups. p < 0.05 were

considered significant and defined as *p < 0.05, ** p < 0.01, ***p <

0.001, and ****p < 0.0001. All statistical analyses were performed

using GraphPad Prism version 8 software (GraphPad Software Inc,

San Diego, California, USA).
3 Results

3.1 hPD-L1 expression on renal tissue of
WT and transgenic pigs

ECs play crucial roles during graft rejection by several

mechanisms including antigen presentation to circulating T cells,

or by triggering inflammatory processes and thrombosis (20).

Therefore, we confirmed the overexpression of hPD-L1 on renal

ECs isolated from the transgenic pigs. Expression of typical markers

such as CD31 and CD144 on isolated WT (CD31: 93.30 ± 4.67%;

CD31+ CD144+: 75.37 ± 14.06%) and hPD-L1 ECs (CD31: 99.86 ±

0.19%; CD31+ CD144+: 46.47 ± 10.71%) showed no significant
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differences between the groups (Figures 1A, B). Remarkably, flow

cytometry analyses revealed significantly (p < 0.0001) increased PD-

L1 expression on hPD-L1 (MFI: 4832.50 ± 11.50) in comparison to

WT (MFI: 342.00 ± 80.70) ECs (Figures 1C, D). Accordingly,

immunohistochemically quantification showed significantly (p <

0.01) increased PD-L1 expression in the renal tissue of hPD-L1

(94.94 ± 2.15%) in comparison to WT (45.13 ± 9.17%) pig-derived

tissues (Figures 1E, F).
3.2 Effect of T cells on EVKP parameters

EVKP represents a promising opportunity to provide optimal

organ preservation and quality assessment between organ retrieval

and transplantation (17). In this study, we specifically evaluated ex

vivo human T-cell immune responses targeting the renal

endothelium during normothermic EVKP as an alternative

method to assessment after transplantation. After a 30-minute

warm-up period of the perfusion solution to 37°C, the perfusion

temperature was kept constant at normothermic temperatures of

36-37°C for the entire perfusion period. WT kidneys perfused

without T cells, WT kidneys perfused with T cells, and hPD-L1

kidneys perfused with T cells reached average flow rates of 158.93 ±
Frontiers in Immunology 0545
27.75 mL/min, 153.34 ± 15.35 mL/min, and 145.45 ± 19.93 mL/min,

respectively, with corresponding vascular resistance (VR) values of

0.22 ± 0.15 mmHg/mL/min, 0.25 ± 0.05 mmHg/mL/min, and 0.21

± 0.07 mmHg/mL/min. During the entire perfusion, oxygen

saturation in the perfusate was maintained at constant values of

81.41 ± 4.06%, 81.94 ± 2.10%, and 80.01 ± 1.92%, respectively.

Despite initial variations in perfusion parameters during the warm-

up phase, no significant differences were observed in flow rate, VR,

perfusion temperature, and oxygen saturation during

normothermic EVKP (Figures 2A–F).
3.3 Perfusion with human T cells does not
induce tissue damage

Histological analyses were performed to evaluate tissue

integrity after EVKP. The histopathological findings suggested

no significant difference between kidney perfusions with and

without T cells, or between T-cell perfusions of WT and hPD-L1

kidneys. However, all perfused kidneys exhibited mild dilatation

of Bowman’s capsule and potentially reversible moderate acute

intratubular injury with overall intact renal morphology

(Figures 3A–D).
A B

D E

F

C

FIGURE 1

Endothelial cell (EC) isolation from WT and hPD-L1 kidneys. (A) Representative dot plots of CD31+ and CD144+ expression on renal ECs. (B) Mean
and standard deviation of CD31+ and CD31+ CD144+ expression on ECs isolated from WT (n = 3) and hPD-L1 (n = 2) kidneys. (C) Representative
histogram shows PD-L1 expression on WT and hPD-L1 ECs. (D) MFI and standard deviation of PD-L1 expression on ECs (WT: n = 3; hPD-L1: n = 2).
(E) Immunohistochemistry staining demonstrated representative PD-L1 expression on WT and hPD-L1 kidney tissues (Scale bar: 50µm). Arrows
indicate endothelial cells. (F) Mean percentage and standard deviation of PD-L1 expression on immunohistochemistry stained tissues (WT: n = 4;
hPD-L1: n = 2). Statistical significance was evaluated using an unpaired t-test (**p < 0.01; ****p < 0.0001).
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LDH activity levels are considered a marker to assess tissue

integrity (21, 22). During EVKP, no significant differences in

LDH levels were observed in perfusion solution of kidney

perfusions without T cells (T270: 0.87 ± 0.10), WT kidney

perfusions with T cells (T270: 1.04 ± 0.20), and hPD-L1 kidney
Frontiers in Immunology 0646
perfusions with T cells (T270: 0.72 ± 0.14) compared to the LDH

activity level absence detected in perfusions only with T

cells (Figure 3E).

Lactate levels are commonly used as a marker to evaluate

tissue integrity and indicate signs of acute injury (23). An
FIGURE 2

Normothermic ex vivo kidney perfusion (EVKP) with human T cells. (A) Schematic representation of the EVKP system. The figure illustrates the kidney
retrieval from a donor pig, the isolation of the T cells from human blood, and the main components of the perfusion system (perfusion reservoir,
thermo unit, pump unit, oxygenator). (B) Representative dot plots show CD3+ expression on human T cells after isolation. (C–E) Representative
pictures of the kidney during perfusion. (C) Picture displays the clamp placed in the renal artery, (D) the arterial connection of the kidney to the
perfusion system, and (E) the kidney perfusion system. (F) Graphs display the monitored flow rate, vascular resistance (VR), temperature, and oxygen
partial pressure of wildtype (WT) kidney perfusions without T cells (n = 3), WT kidney perfusions with T cells (n = 4), and programmed death ligand-1
(hPD-L1) kidney perfusions with T cells (n = 2). Graphs show means and standard deviations.
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increase in the lactate concentration in the perfusion solution

was detected during the perfusion of WT kidneys without T cells

as well as WT and hPD-L1 kidney perfusions with T cells. As

expected, no lactate increase could be detected in control runs

only with T cells over time. In contrast, lactate concentrations of

kidney perfusions without T cells (T270: 6756.84 ± 1461.59 µM),

WT kidney perfusions with T cells (T270: 8260.99 ± 1025.62 µM),

and hPD-L1 kidney perfusions with T cells (T270: 8272.83 ±

50.13 µM) increased throughout the perfusion time (Figure 3F).
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The results suggest that xenogeneic T cells do not significantly

affect kidney integrity or tissue injury during EVKP.
3.4 hPD-L1 ECs induce weaker xenogeneic
T-cell immune responses

Immunohistochemical analyses of perfused tissue allowed the

detection of T-cell transmigration into the tissue. Whereas no T-cell
FIGURE 3

Quality assessment of the kidney after EVKP. (A–D) Histological analysis of kidneys after EVKP. Representative pictures of hematoxylin and eosin-
stained renal cortex: (A) unperfused WT kidney, (B) WT kidney perfused without T cells, (C) WT kidney perfused with xenoreactive human T cells, and
(D) hPD-L1 kidney perfused with xenoreactive T cells. Scale bar 50 µm. (E) Lactate dehydrogenase (LDH) activity and (F) lactate levels were
quantified in perfusates at different time points (0, 30, 90, 150, 210, and 270 minutes). Graphs represent means and standard deviations of perfusions
only with T cells (n = 3), WT kidney perfusions without T cells (n = 4), WT kidney perfusions with T cells (n = 3), and hPD-L1 kidney perfusions with T
cells (n = 2).
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infiltration occurred in the tissue perfused without T cells, CD3+

cells were detected in the tissue perfused with T cells from both WT

and hPD-L1 kidneys after the end of the perfusion. The

transmigrated T cells were predominantly localized in the renal

tubule after four hours of perfusion, however, individual T cells had

already infiltrated into the tissue (Figure 4A). This data shows that

during EVKP, T cells are capable to adhere and transmigrate into

the renal tissue where they might respond to it.

The transcript levels of human cytokines including TNF-a and

IFN-g, as well as GZMB, and perforin were measured to investigate

xenogeneic T-cell responses. Human T cells were demonstrated to
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respond specifically to porcine kidney tissue, as evidenced by

increased T-cell transcript levels of cytokines and cytotoxic

molecules in perfused WT and hPD-L1 porcine kidney tissues

compared to porcine tissues perfused without T cells, where they

were not detectable. TNF-a, IFN-g, GZMB, and perforin transcript

levels of hPD-L1 kidneys were reduced by 70.08 ± 4.94% (p < 0.01),

40.35 ± 8.00% (p < 0.01), 48.92 ± 6.35% (p < 0.001), and 65.03 ±

4.15% (non-significantly), respectively, in comparison to WT

kidneys (99.99 ± 31.59%, 99.96 ± 16.78%, 99.96 ± 12.13%, 99.95

± 74.83%) (Figure 4B). These data suggest that hPD-L1 kidneys may

induce weaker xenogeneic T-cell immune responses.
A

B

FIGURE 4

Evaluation of T-cell infiltration in renal tissue and assessment of xenogeneic T-cell immune response after EVKP. (A) CD3+ immunohistochemistry
staining of the perfused kidney without T cells and with human T cells (WT and hPD-L1) after the end of perfusion. Arrows point to the infiltrated T
cells (Scale bar: 100µm). (B) Relative quantification (RQ) of tumor necrosis factor-alpha (TNF-a), interferon-gamma (IFN-g), granzyme B (GZMB), and
perforin transcript levels detected in kidney tissue perfused without T cells (n = 3), WT kidney tissue perfused with T cells (n = 4), and hPD-L1 kidney
tissue perfused with T cells (n = 2). Statistical significance was evaluated using one-way ANOVA (*p < 0.05, **p < 0.01, and ***p < 0.001).
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3.5 hPD-L1 overexpression on porcine ECs
shows a protective effect against
xenogeneic T-cell responses

Antigen-specific immune responses are usually associated with

an increase in T-cell proliferation rates (24). We have assessed the

capacity of human helper or cytotoxic T-cell subpopulations to

proliferate after exposition to EC isolated fromWT or hPD-L1 pigs.

In this xenogeneic setup, significantly reduced CD4+ helper and

CD8+ cytotoxic T-cell proliferation was observed when hPD-L1

ECs were analyzed (CD4+: 16.38 ± 0.96%, p < 0.05; CD8+: 51.10 ±

4.70%, p < 0.01) in comparison to the proliferation rates detected

with WT ECs (CD4+: 23.80 ± 5.09%; CD8+: 68.08 ± 4.21). A similar

effect was observed in cultures using both CD4+ and CD8+ T cells

(i.e. CD3+ T-cell populations). While only 26.68 ± 1.26 (p < 0.0001)

of CD3+ cells proliferated in the presence of hPD-L1 ECs, 40.78 ±

2.12% CD3+ cells proliferated after exposure to WT ECs

(Figures 5A, B).

Cytokines are important mediators of immune responses after

transplantation (25). Levels of cytokines detected in the cell culture

supernatants of T cells incubated with hPD-L1 ECs were lower than

those measured in WT ECs: IL-1b: 6.45 ± 8.47 ng/µL vs. 0.98 ± 1.38

ng/µL, IL-5: 37.97 ± 17.33 ng/µL vs. 6.91 ± 4.29 ng/µL, IL-8: 2368.43

± 2456.10 ng/µL vs. 497.71 ± 501.51 ng/µL; IL-10: 28.92 ± 23.55 ng/

µL vs. 9.79 ± 7.31 ng/µL; IL-12p70: 2.32 ± 1.60 ng/µL vs. 2.19 ± 2.48

ng/µL; GM-CSF: 1839.99 ± 798.28 ng/µL vs. 360.34 ± 267.17 ng/µL;

IFN-g: 1838.99 ± 798.28 ng/µL vs. 360.34 ± 268.17 ng/µL, and IP-10:

1720.55 ± 955.90 ng/µL vs. 1004.77 ± 1002.40 ng/µL (Figure 5C).

In addition, assessment of T-cell-mediated cytotoxicity is

critical for evaluating the capacity of the xenogeneic immune

response to injure the graft, as even a small number of T cells

may lead to organ rejection (26, 27). Compared toWT ECs, hPD-L1

ECs co-cultured with human T cells exhibited higher survival rates

(CI, Cell index) over time (140 hours). After 30 hours, the survival

rate of hPD-L1 ECs (CI: 0.91 ± 0.04, p < 0.05) was significantly

increased in comparison to WT ECs (CI: 0.46 ± 0.11). This effect

was even more pronounced after 60 hours (hPD-L1 CI60-140: 0.98 ±

0.23 vs. WTCI60-140: 0.09 ± 0.07, p < 0.0001) (Figure 5D).

Altogether, these data indicate that hPD-L1 overexpression on

renal endothelial cells induces significantly weaker immune

responses and results in protection against T-cell xeno-cytotoxicity.
4 Discussion

Xenotransplantation of porcine organs represents a promising

approach to circumvent the shortage of human organs available for

transplantation. Breakthrough advances in the field of

xenotransplantation have been made by the revolutionized

CRISPR-Cas9 technology, which allows the development of

multigene-modified pigs such as triple KO (GGTA1/CMAH/

b4GalNT2) pigs to overcome HAR and AHXR (28). In 2021, the

first kidney xenotransplantations from pig-to-human were

performed. Two genetically modified kidneys were transplanted
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into brain-dead patients observing graft survival of 54 hours (29). In

January 2022, the first heart xenotransplantation from pig-to-

human was performed. The patient survived two months with the

xenogeneic transplant (30).

Currently, the pre-clinical evaluation of the efficiency of novel

genetic modifications introduced to pigs in preventing human

immune responses relies on the use of NHPs. However, on the

one hand, the application of NHPs is associated with relevant

ethical and moral evaluation in terms of social, health, religious,

legal, and regulatory considerations (15), and on the other hand,

NHPs do not represent identically pig-to-human coagulation and

immune responses due to the species intrinsic genetic differences.

First, macaques carry a “hypercoagulable” phenotype, which can

lead to increased coagulopathy compared to humans. Also in

contras t to humans , NHP and pigs express the N-

glycolylneuraminic acid (Neu5Gc) and therefore NHP does not

form specific anti-pig Neu5Gc antibodies as it occurs after

xenotransplantation in humans (31). The application of in vitro

immunological assays to establish and test novel genetic

modifications is highly desirable. However, such assays often

focus on the use of a single cell type and do not represent the

level of organ complexity in cell composition and 3D structure,

making them prone to deliver insufficient data.

EVKP emerged as a novel strategy for organ preservation with

the potential to reduce storage damage, improve graft assessment,

and potentially contribute to graft survival after transplantation

(32). EVKP allows the maintenance of the organ under

physiological parameters supported by continuous oxygen

delivery, and pulsatile flow through the renal vasculature at

normothermic conditions (33, 34). These physiological

environments were shown to be appropriate for evaluating the

human xenogeneic T-cell immune response ex vivo. This assay may

be used as a first assessment of the T-cell response towards

genetically engineered pig kidneys not only to elucidate cellular

and molecular mechanisms but also to allow the reduction of

animals and refinement of NHP pre-clinical studies. It should be

mentioned, that this strategy alone is not sufficient to replace the

preclinical studies, as they provide further indispensable results in

terms of longer evaluation time, graft function, and safety.

Recently, ex vivo organ perfusion (EVOP) has gained plenty of

attention as a model to evaluate human xenogeneic immune

response. Previous studies using ex vivo heart perfusion with

human whole blood showed an increase of cytokines such as IL-

2, IL-4, and IFN-g as well as cytotoxic molecule secretion such as

GZMB and perforin by T-cell subsets (35). Moreover, pig kidneys

have been perfused with human whole blood (36) or human

peripheral blood lymphocytes (37). In this study, we used EVKP

as a model perfusing porcine kidneys with freshly isolated human T

cells to assess the pig-to-human T cell-mediated xenogeneic

immune responses. This allows us to evaluate precisely the impact

of specific genetic modifications in the pig kidney on human

xenogeneic T-cell responses without the interference of other

immune cell subpopulations that might have been activated due

to the perfusion conditions.
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The graft endothelium is the first immune checkpoint between

the recipient’s immune system and the renal graft (38). However,

recent studies also indicate that renal proximal tubular

epithelial cells may also be directly recognized by T cells,

which may immediately contribute to rejection (39, 40). Our
Frontiers in Immunology 1050
immunohistochemistry analyses after EVKP indicate the presence

of human T-cell focal adhesions in different kidney regions where

the recognition of xenoantigens may occur. Our results are

consistent with previous studies in rats examining the levels of T-

cell infiltration after transplantation of PD-L1-expressing porcine B
A

B

D

C

FIGURE 5

hPD-L1 overexpression on porcine ECs shows a protective effect against xenogeneic T-cell responses. (A) Representation of CD3+, CD4+, and CD8+

T-cell proliferation on day 1 and day 7. Proliferation rates of T cells co-cultured without target cells (T cells only) and xenoreactive human T cells
isolated from four donors co-cultured with WT and hPD-L1 ECs were evaluated. (B) Mean and standard deviation of CD3+, CD4+, and CD8+ T-cell
proliferation of T cells alone or exposed to WT and hPD-L1 ECs. Statistical significance was evaluated using one-way ANOVA (*p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001). (C) Heat map represents cytokine release profile after exposure of human T cells to WT and hPD-L1 ECs for 140
hours. Color saturation represents the average values of the concentrations (n = 3) of IFN-g, interleukin 8 (IL-8), interferon gamma-induced protein
10 (IP-10), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, IL-10, IL-1b, and IL-12p70. (D) Normalized cell index of WT and hPD-
L1 ECs incubated for 6 days with human T cells (n = 3). Statistical significance was evaluated using two-way ANOVA (*p < 0.05, **p < 0.01, ***p <
0.001, and ****p < 0.0001).
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cells under the renal capsule. Compared to the mock-transfected

control cells, which showed scattered to moderate T-cell infiltration

after 7 days, the number of infiltrated T cells remained low in the

rats transplanted with hPD-L1 cells (41).

To assess the strength of the T-cell immune responses we have

evaluated the up-regulation of immunomodulators and cytotoxic

molecules. Cytokines such as TNF-a or IFN-g play a crucial role in

the processes such as immunemodulation and inflammatory response.

TNF-a is both a pro-inflammatory and an anti-inflammatory cytokine

secreted by effector CD4+ and CD8+ T cells (42, 43). Low TNF-a
concentrations contribute to cell survival, differentiation, and

proliferation, however, excessive activation of TNF-a signaling is

often associated with chronic inflammation (44). IFN-g is secreted by

T-helper cells and contributes to the activation of macrophages (45).

Perforin and granzymes are important effector molecules of cytotoxic T

cell-mediated cell death. The cytotoxic granules of T cells contain the

pore-forming protein perforin and serine proteases (granzymes) (46),

which can be considered markers for rejection (47). Accordingly, this

study demonstrated the feasibility of assessing the activation of T cells

by the pig kidney based on the upregulation of TNF-a, IFN-g, GZMB,

and perforin transcript levels during EVKP. Remarkably, we could

demonstrate that transcript levels of those molecules were

downregulated during hPD-L1 kidney perfusion compared to the

WT kidneys, suggesting a potential protective effect of hPD-L1

against acute cellular rejection mediated by xenoreactive T cells.

The value of evaluating human T-cell responses during EVKP

relies on the feasibility of assessing T-cell recognition, activation,

and functionality in a nearly physiological setup. However, several

parameters associated with the perfusion such as pressure or flow

rates may influence the T-cell response towards the organ.

Furthermore, a limitation in the assessment of the feasibility of

evaluating such responses was the number of hPD-L1 transgenic

pigs available for this study. Therefore, we performed additional in

vitro studies to confirm the results obtained during EVKP with

human T cells.

Previous studies have indicated that PD-L1 overexpression

inhibits the proliferation of human xenogeneic CD4+ T cells and

induces T-cell apoptosis (8, 13, 48, 49). Accordingly, our results

showed reduced CD4+ T-cell proliferation rates after exposure to

porcine renal ECs. In addition, reduced CD8+ T-cell proliferation

was also observed.

Previously, we and others have shown that the cytokine

secretion profile of T cells is associated with the strength of their

response to target cells. In addition, secretion of pro-inflammatory

cytokines such as IFN-g or IL-1b was shown to correlate with

kidney rejection. Also, in the pig-to-primate xenotransplantation

setting, specific cytokines such as IFN-g were demonstrated to be

relevant systemic inflammatory factors that might contribute to the

loss of xenograft function (50–52). On the other hand, decreased

levels of cytokines such as IL-6, IL-10, IL-12, TNF-a, and IFN-g
have been associated with increased immunologic tolerance,

reduced risk of acute rejection, and thus prolonged graft survival

(53, 54). Our results indicate that the overexpression of hPD-L1 in

porcine renal ECs significantly decreases the T-cell cytokine

secretion. This suggests that the overexpression of hPD-L1 might

contribute to xenograft survival.
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PD-L1 expression is known to compromise T cell-mediated

cytotoxicity against tumors (55). In the field of xenotransplantation,

in vitro studies using a porcine B cell line overexpressing PD-L1

were shown to induce lower T-cell activation and cytotoxicity (48).

Interestingly, in the pig-to-rat cell transplantation model,

overexpression of PD-L1 was also demonstrated to induce weaker

antibody-mediated immune responses (41). Our results using ECs

isolated from the kidneys of hPD-L1 transgenic pigs confirmed that

the overexpression of hPD-L1 contributes to the attenuation of T-

cell cytotoxicity.

Unfortunately, a-Gal knockout pig kidneys were not available for
this study and we only had access to two PD-L1 kidneys. Nevertheless,

this study showed the feasibility of investigating T-cell immune

responses during EVKP and that by using two types of kidneys (WT

vs. PD-L1) alteration in the strength of the immune responses could be

detectable. Furthermore, the responses observed during EVKP were in

accordance with previously published data and with the results

obtained during the in vitro assays performed in this study.

In summary, we represented the feasibility of evaluating the

strength of human xenogeneic T-cell immune responses towards

the pig kidney in its original complexity at cellular and structural

levels during EVOP. Remarkably, we demonstrated that the

immunogenicity of hPD-L1 kidneys for xenoreactive T cells was

reduced compared with WT kidneys in both EVKP and in vitro

assays. Hence, EVOPmay be used in the future as a robust platform,

ethically justifiable, and cost-effective approach to investigate

additional genetic modifications that might contribute to the

success of xenotransplantation.
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In this state-of-the-art review we detail the journey of xenotransplantation from

its infancy, detailing one of the first published cases and the subsequent journey

the field took in its inception and development. With a focus on the science,

technological advances, precautions required along with the potential limitations

in application, the ethics, guidance’s, and legislative advances that are required to

reach the safe and efficacious clinical application of xenotransplantation. Along

with a view over the past several decades with the overall significant

advancements in pre-clinical study outcomes particularly in islet, kidney, and

heart xenotransplantation, to ultimately reach the pinnacle of successful clinical

heart and kidney xenotransplants. It outlines the importance for the appropriate

guidance’s required to have been developed by experts, scientists, clinicians, and

other players who helped develop the field over the past decades. It also touches

upon patient advocacy along with perspectives and expectations of patients,

along with public opinion and media influence on the understanding and

perception of xenotransplantation. It discusses the legislative environment in

different jurisdictions which are reviewed in line with current clinical practices. All

of which are ultimately based upon the guidance’s developed from a strong

long-term collaboration between the International Xenotransplantation

Association, the World Health Organisation and The Transplantation Society;

each having constantly undertaken consultation and outreach to help develop

best practice for clinical xenotransplantation application. These clearly helped

forge the legislative frameworks required along with harmonization and

standardization of regulations which are detailed here. Also, in relation to the

significant advances in the context of initial xeno-kidney trials and the even

greater potential for clinical xeno-islet trials to commence we discuss the

significant advantages of xenotransplantation and the ultimate benefit to

our patients.
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1 Introduction

Xenotransplantation, the latest frontier in transplantation is the

process of retrieving organs, tissues or cells from one species and

transplanting them into another. It has long been heralded as the

ultimate solution to the overwhelming shortage of human organs

available for transplantation (1). The concept of utilizing non-

human organ and tissue sources to meet the overwhelming

demand on conventional donors has captured the attention of

clinicians, scientists, healthcare providers, and patients alike for

many decades but has also been a concept for hundreds of years

(Figure 1). As can be seen in Figure 1, which is a timeline of some of

the major landmarks in the journey of xenotransplantation. The

first published attempts of xenotransplantation occurred with xeno-

transfusion occurring in the 1600’s then in the 1800’s xeno-skin

transplants were attempted prior to more ambitious attempts at

kidney xenotransplantation. There has been a long line of endeavor

as advancements in medical science and technology have brought

the prospect of xenotransplantation closer to reality. Importantly

the ethical and legislative landscape surrounding this pioneering

field has undertaken renewed and ever-increasing attention but still

requires ongoing updates (2–4). A large effort from the

International Xenotransplantation Association (IXA) in

conjunction with others such as the World Health Organisation

(WHO) and the Transplantation Society (TTS) have been

constantly undertaken, however as the field progresses more

needs to be done from a broader international and national

regulatory perspective.

Xenotransplantation offers us the potential to save countless

lives by providing a readily available supply of organs, tissues and

cells, significantly reducing the waiting time for transplants, and

alleviating the suffering of patients on transplant wait lists. It is also

a major means by which we can actively abolish the trade in

trafficked organs and organ transplant tourism. However, with

this promise comes a complex web of ethical considerations and

legal frameworks that must be carefully navigated to ensure the

responsible and ethical translation of xenotransplantation from the

laboratory to the clinic. With this we must ensure that the same

endemic issues do not occur with xenotransplantation that have

occurred with human organ transplantation such as xenotransplant

tourism (5) and unethical processes used to make profits at the

expense of the animals used and the patients that may be misled

into undertaking unapproved procedures (6).

Historically, xenotransplantation has faced significant

challenges, including the perceived/potential for the transmission

of diseases from animals to humans (xenozoonosis) (7), concerns

over animal welfare (when breeding and producing the donor

animals) (8), cultural and religious issues particularly the notion

of crossing species boundaries in the use of their tissues for

transplantation (6). These challenges led to the imposition of
Abbreviations: aGal, galactose-a1,3-galactose; BD, brain-dead; DPF, designated

pathogen free; IXA, International Xenotransplantation Association; NHP, non-

human-primates; PERV, porcine endogenous retroviruses; TTS, the

Transplantation Society; FDA, Food and Drug Administration; WHO, World

Health Organisation; WT, wild-type.
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strict regulations along with embargos and a nuanced ethical

debate that continues to shape the direction of the field. In recent

years, ground-breaking advancements in genetic engineering has

rapidly accelerated the field which offers new hope, massively

advancing the creation of genetically modified pigs with organs

engineered for compatibility with the human immune system (9).

These developments have paved the way for the initiation of trials in

humans involving xeno-hearts approved under “compassionate

use” for live patients (10) along with xeno-hearts and kidneys

being studied clinically in a new model using “Brain Dead”

recipients (11, 12) along with very successful preclinical trials

using transgenic pig islet cells (13).

In this review, we explore the ethical and legislative advances

that are underpinning xenotransplantation as it moves toward

broadly accepted clinical translation. We delve into the ethical

considerations surrounding xenotransplantation, examining

questions related to the potential risks of xenozoonotic disease

transmission, animal rights, their use, and the public’s perception of

this innovative medical approach. We also survey the changes in

legislative frameworks governing xenotransplantation, charting

their evolution over time, and highlighting the necessity of

harmonization and standardisation in regulations worldwide.

With a focus on what has been undertaken from the peak

governing bodies of the WHO, TTS and the IXA (4)

As the initial clinical trials of xeno-kidneys (12) and hearts (14)

bring us closer to the long-awaited reality of xenotransplantation, it

is imperative to reflect on the ethical and legislative progress that

has brought us to this pivotal moment (4). The careful balance

between scientific innovation, human health, and ethical

responsibility is at the heart of this transformational journey, and

it is through a comprehensive understanding of these advances that

we can move forward confidently, ethically and legislatively with the

world focusing on xenotransplantation (6).
2 Historical perspective

Xenotransplantation has long been heralded as a potential

solution to the overwhelming shortage of human organs, tissues

and cells available for transplantation (1). The concept of utilizing

non-human sources to meet the organ demand has captured the

imagination of scientists, healthcare providers, and patients alike.

As advancements in science and technology have brought the

prospect of xenotransplantation closer to reality, the ethical and

legislative landscape surrounding this pioneering field has gained

increasing attention especially with the last few years of accelerated

progress and commencement of limited life-saving heart and

kidney xenotransplantation which have been approved under

special compassionate use authorization (i.e., a specific treatment

for patients with immediate life-threatening conditions to have

access to investigational products outside of an U.S Food and Drug

Administration (FDA) -approved clinical trial when no comparable

or alternative therapeutic treatment exists to treat the patient’s life

threatening illness) (10–12, 15).

Historically, xenotransplantation’s journey has been marked by

both hope and challenge. As seen in Figure 1. Xenotransplantation has
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1355609
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hawthorne 10.3389/fimmu.2024.1355609
been attempted in many and various settings with many unusual

attempts from rather bizarre initial concepts and treatments to now

becoming clinical reality. The first published attempt of

xenotransplantation took place in the early 17th century when xeno-

transfusion was first attempted in June of 1667, in Paris. Jean-Baptiste

Denis, a French physician, doctor of King Louis XIV, and Paul

Emmerez, surgeon, transfused what we assume to be a small amount

of blood from a lamb into a 15-yr-old boy (16). Unfortunately, on the

second attempted use of xeno-transfusion it proved unsuccessful and

resulted in the death of the patient after which xeno-transfusion was

outlawed by the French government (16).

In 1906 the first reported successful kidney xenotransplant was

carried out by Mathieu Jaboulay after he and Alexis Carrel perfected

the technique of vascular anastomosis. Jaboulay used the vascular

technique to transplant a pig kidney onto the brachial artery and

cephalic vein of a 48-yr-old woman. Immediately and for the first

day and a half he saw significant urine output, but on the third day,

he was forced to remove the kidney because of vascular thrombosis

(17). Sadly, a lack of understanding of immunology, hematology

and any of the intricacies of transplantation, let alone the issues of

cross-species xenotransplantation prevented any chance of longer-

term success. These early attempts were characterized by a lack of

ethical and scientific groundwork, and the risks and consequences

of such procedures were often not well understood.

The ensuing centuries saw sporadic and largely unsuccessful

attempts at xenotransplantation, with frequent instances of graft

rejection and infections that further tempered enthusiasm for the

field (18–20). Moreover, as medical ethics evolved and animal

welfare concerns gained prominence, the scientific community

was challenged to grapple with the significant ethical implications

of these procedures, especially when it came to the use of animals

involved in the pre-clinical trials and as a source of organs, tissues

and cells for transplantation into humans (6).

In the latter half of the 20th century, with the advent of organ

transplantation and the increasing demand for donor organs, the

potential of xenotransplantation was revisited with renewed

enthusiasm pushing the field forward. The discovery of alpha Gal

as the mechanism responsible for causing hyperacute rejection

(HAR) (21) and the concept of utilizing specifically designed

genetically modified pigs (9, 13, 22), capable of providing organs

less immunogenic to the human immune system, marked a
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significant turning point in xenotransplantation’s history. These

developments paved the way for the initiation of initial clinical trials

involving xeno-kidneys and soon to be islet cell xenotransplants.

As we explore the ethical and legislative advances propelling

xenotransplantation toward clinical translation, we must

acknowledge the lessons of history. The historical backdrop of

early, less-informed attempts, coupled with ethical concerns, has

played an instrumental role in shaping the ethical and legislative

frameworks we see today (23). The careful balance between scientific

innovation, human health, and ethical responsibility is at the heart of

this transformational journey. It is through an understanding of these

historical challenges that we can appreciate the significance of the

ethical and legislative advances discussed in this review, as they

propel us closer to the long-awaited reality of xenotransplantation

that now seems to be underway (11, 14).
3 Major ethical considerations

The remarkable potential of xenotransplantation to address the

critical shortage of human organs has been met with considerable

ethical scrutiny, raising profound questions and dilemmas that

must be thoughtfully addressed. A number of the core areas of

ethical concern that have been central to the discourse surrounding

xenotransplantation are: the potential for xenozoonosis, public and

regulatory issues, crossing of species boundaries and ensuring

appropriate animal ethics. However, these must be balanced

against the absolute positive gains for the overwhelming number

of potential patients that can benefit from xenotransplantation

when there are so many medical, financial and social issues for

these patients. As can be seen in Figure 2, the balance between the

negative aspects of their disease versus receiving a cure from the

transplant is overwhelmingly weighted to the positive. This is

because the benefits far outweigh the problems of ongoing and

increasing ill health, secondary complications, invalidity and

ultimately death. However, there are not enough human donor

organs available for transplantation and using this single example,

the case of patients suffering from type 1 diabetes, there are

innumerable patients that could benefit from islet cell

xenotransplantation with it being life changing and lifesaving.
FIGURE 1

A concise timeline of some of the major developments that have occurred in the field of xenotransplantation. From the first recorded attempt of a
xeno-blood transfusion to the current advent of successful clinical xenotransplants of transgenic pig organs to humans.
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3.1 Potential xenozoonosis

One ethical concern intrinsic to xenotransplantation relates to

the potential for the transmission of diseases from animals to

humans, a phenomenon known as xenozoonosis. The concept of

transmission although theoretical is not unfounded, as various

pathogens, including retroviruses, have been identified in pigs

could be potential threats in immunocompromised transplant

recipients and then theoretically spread to direct close contacts

and the broader community (24, 25).

As such this raises potential ethical dilemmas. The duty to

protect the broader community and prevent the spread of

theoretically potential infectious diseases must be weighed against

the need to explore novel medical solutions to help these patients

suffering from end stage organ failure and other diseases (6). The

possibility of creating animals free from such pathogens as porcine

endogenous retroviruses (PERV) through genetic engineering (26)

has already been shown to be possible along with raising donor

animals in designated pathogen free (DPF) facilities. Along with

pigs that have limited pathogens including restricted PERV (27) or

where studies have shown no potential for transmission (28, 29).

Despite best intensions and even following screening of donor

animals we have seen that donor pig organs can still potentially

have undetectable porcine viruses such as cytomegalovirus or

porcine roseolovirus (PCMV/PRV) detected posttransplant in the

donor tissue by plasma microbial cell-free DNA (30). This occurred

despite pre-transplant screening and following transplantation into

a patient (25).

From a patient and community perspective it is therefore

essential for the patients, their family and immediate direct

contacts along with the community to understand that if there

were in fact a positive case of transmission of a xenozoonosis into a

xenotransplant patient that there may well be serious implications

to all involved. These implications are potentially as severe as life-

long restriction and quarantine of the recipient and may extend to

their direct close contacts (25). As part of all Xenotransplantation

trial participation it has been advised by the WHO and IXA

“Changsha Communique” that all xenograft recipients’ commit to

lifelong xenozoonotic monitoring, including agreement to

quarantine as a measure to prevent any serious potential spread

of infection if detected or suspected (4, 31). As part of the enlistment
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and education process of patients, patients should be advised of

these requirements at the time of prospective trial participation and

informed consent process. If the participants choose to they should

have the right to withdraw from a xenotransplant trial prior to

transplantation. However, once they have been informed, consented

and commenced in the trial having undergone xenotransplantation,

recipients would be subject to the regulations governing infection

containment at a National and International level. Most countries

have in place legislation that enforces such quarantinable

regulations in relation to communicable diseases (8, 32, 33).

As additional safeguards we also have significant arrays of new

antiviral agents capable of eliminating or treating such disease

potential (34). Yet, it is essential to ensure that the risk of

transmission is minimized and that robust safety measures are in

place to protect recipients. This however, does require further

address by responsible organizations (WHO, TTS, IXA) and

legislators in the many and various international jurisdictions (2–4).
3.2 Public and regulatory support

Addressing these ethical concerns is not only a moral

imperative but also crucial for gaining public and regulatory

support for xenotransplantation. Public perception of the ethics

surrounding xenotransplantation can significantly influence its

acceptance and, consequently, the regulatory environment. As

such there has been significant engagement with both societal and

religious organizations to ensure robust understanding of the key

concepts and garner opinion and support (6, 35, 36).

The IXA has endeavored to undertake public engagement with

ongoing dialogue which are essential to fostering trust with

transparency and acceptance. It is incumbent on the broader

scientific community and policymakers to communicate the steps

taken to mitigate ethical concerns and to provide evidence of the

rigorous ethical oversight and animal welfare standards applied in

xenotransplantation research. Furthermore the governing

organization of xenotransplantation the IXA is maintaining its

mission to promote xenotransplantation as a safe, ethical, and

effective therapeutic modality by; fostering the science of

xenotransplantation through promotion of ethical clinical and

pre-clinical research, productive discourse, and collaboration;
FIGURE 2

Diagram detailing the conundrum faced by patients suffering from Type 1 diabetes. From the impactful, negative factors affecting them resulting
from their disease. To the positive outcomes achieved by having a transplant and the capacity for xenotransplantation to offer more patients a cure.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1355609
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hawthorne 10.3389/fimmu.2024.1355609
along with further educating health care providers and lay persons

through broad, representative participation in interactive public

debate; and also guiding the development of scientifically sound,

internationally consistent public policy that is responsive to new

developments in the field and acknowledges varying social, ethical

and legal frameworks (37). Along with ongoing engagement with

regulatory bodies and other agencies to ensure they balance the

advancement of science but safeguarding the ethical principles. This

is actively being undertaken with a strong push from the IXA to

engage numerous agencies globally to ensure this continues to occur

and keep pace with the rapidly developing technologies (8).
3.3 Crossing species boundaries

Xenotransplantation challenges the traditional conceptual

boundaries that separate humans from animals. It poses profound

philosophical and ethical questions about the nature of different

species and the moral obligation we owe to different species. As we

engage in practices that involve genetic modification and the use of

animals for human benefit, the ethical boundaries are changing with

increasing pressure on ethics committees and legislators to keep

track with the pace of change, and we have a moral imperative to

ensure that we do keep pace and provide adequate oversight (6).

Some ethicists argue that xenotransplantation exemplifies the

Anthropocentric approach (38), emphasizing human interests over

those of animals, while others advocate for a more inclusive

biocentric perspective that values all forms of life equally (39).

The challenge is to find a balance between medical innovation and

ethical responsibility to both animal and man (6).
3.4 Animal welfare

Xenotransplantation necessitates the use of animals as organ

donors. Pigs being primarily used due to their physiological

compatibility with humans, their ability to be bred in large

numbers at a rapid rate, and their ability to be readily genetically

altered. This along with their longstanding acceptance as a source of

medical products such as drugs and heart valves and other

decellularized tissues. With by far the strongest reason being there

acceptance as a major food supply and source of products for man

for as long as they have been domesticated should ensure their ease

of use ethically (6). However, the welfare of these animals is of

paramount concern. As some organizations push the principal that

pigs are not merely commodities but sentient beings with the

capacity to experience pain and suffering.

The major issues raised are to ensure the donor pigs are being

ethically and humanely cared for and ensure the process of genetic

manipulation does not cause them any health issues. One could

argue that the facilities and conditions that these animals are housed

and the care they receive is of a superior level to a normal

commercial piggery due to the highly controlled and run facilities

including the need for donor animals to be in DPF facilities.

Underpinning this is the fact that all animal research projects

including the breeding of, care and handling of the animals are
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under scrutiny of ethics committees (6). The genetic modifications

required for these donor animals have been carefully designed to

ensure they do not affect the health of the source pigs at all. Therefor

from an ethical standpoint the level of suffering could be perceived

as minimal or negligible. On the other hand, the potential benefit

for patients is very high, being lifesaving and life changing (6).

There are also the ethical concerns for pre-clinical study

recipients the various animals used and especially the non-human-

primates (NHP) which are the benchmark for preclinical trials. Their

use is highly recommended prior to acceptance of any program

moving to the clinic, and has been advised in many guidance’s such as

the “Changsha Communique” that recommend their use to provide

safe and efficacious treatment regimen and modalities prior to

commencement of any clinical trials (4). So much so that the

United States, Food and Drug Administration (FDA) reviewed the

NHP preclinical data prior to granting permission for the Baltimore,

MD, USA XenoHeart team at the University of Maryland School of

Medicine approval for the first pig-to-human heart transplant to be

granted (40). The strictest of compliance on ethical grounds is

required for any animal study let alone the massive scrutiny

undertaken by authorities for NHP research related projects. In

most jurisdictions special permission is required, even following

appropriate animal ethics approval. Researchers are only allowed to

undertake any study with NHPs once accredited and specifically

approved due to community concern for their care as they are viewed

as so similar to humans.

Scholars and ethicists have explored various strategies to

mitigate these concerns. The concept of “minimum moral

standing,” as proposed by Rollin, asserts that pigs raised for

xenotransplantation should be provided with living conditions

and treatment that accord them a minimum level of moral

consideration (41). This includes efforts to reduce suffering and

enhance the overall welfare of the animals. Ethical guidelines and

regulations often inspired by principles of animal welfare, have been

developed to ensure humane treatment throughout the animals’

lives and the very best moral and ethical care for all animals.
4 Legislative frameworks

Xenotransplantation stands at the intersection of cutting-edge medical

science and a complex regulatory landscape. The ethical and safety

concerns surrounding xenotransplantation have led to the development

of a multifaceted legislative framework designed to ensure both the

advancement of this field and the protection of public health.
4.1 Existing legislative frameworks

Legislative oversight of xenotransplantation varies across

different countries and regions. In the United States (USA), the

Food and Drug Administration (FDA) and the Centres for

Medicare and Medicaid Services (CMS) (8, 42) are the primary

regulatory bodies tasked with overseeing xenotransplantation

research and clinical trials. While in China it is the Chinese FDA,
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Korea (Korean FDA), Argentina (AFDA) whilst in Europe it is the

European Medicines Agency (EMA) (43) and in Australia the

Therapeutics Goods Administration (TGA) that are charged with

establishing regulations and underpinning legislation to

support this.

These existing frameworks typically encompass some updates to

their regulations, including safety assessments, informed consent,

monitoring for xenozoonotic diseases, and research and clinical trial

oversight. Such legislation should ideally aim to strike a balance

between encouraging scientific innovation and ensuring that risks are

rigorously assessed and mitigated with a background based upon

preclinical trials, some requiring or suggestive of non-human primate

trials as a lead-in to proof of concept for clinical trials (4, 8, 42).
4.2 Evolution of legislative frameworks

The legislative landscape for xenotransplantation has evolved

significantly over the years. As science has advanced, the regulations

have been adapted to keep pace with the changing landscape in

transplantation but it still lacks the oversight and ability to completely

control all that occurs. Despite the best policies and guidance’s more

universal legislation is required to outlaw and prevent organ

trafficking and ongoing issues associated with unscrupulous

operators (44). The early years of xenotransplantation were

characterized by limited regulatory oversight and fragmented

approaches to the management of potential risks due to limited

legislation to this new field. However, significant oversight was

established early on by the WHO, TTS and IXA to ensure there

were guidance’s developed to underpin the field (2–4).

However, high-profile setbacks and scientific developments

have prompted a revaluation of regulatory frameworks. An

example of this was the identification of porcine endogenous

retroviruses (PERVs) which raised concerns by government

legislators about the potential transmission of these retroviruses

to immunocompromised transplant recipients (45). As a result,

several jurisdictions-initiated moratorium preventing any clinical

xenotransplantation trials from commencing and as such a stronger

focus was placed on the assessment and management of this risk in

regulatory guidelines (46).

Recently, regulatory bodies have intensified their efforts to provide

comprehensive guidelines for xenotransplantation, reflecting a growing

recognition of the field’s incredible potential with a balance against the

risks. Some guidance’s such as from the USA FDA have addressed

issues such as genetic modifications in source animals, monitoring for

infectious agents, and the ethical treatment of donor animals (42). And

the USA government and other jurisdictions legislating and licensing

biological products such as xenografts, tissues and cells under specific

biological products legislation (47).
4.3 Harmonization and standardization
of regulations

One of the most pressing needs in the field of xenotransplantation

is the harmonization and standardization of regulations on an
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distinct legislative frameworks, which can create challenges for

researchers and clinicians working in the field. These disparities can

hinder the progress of clinical trials and create unnecessary hurdles for

advancing this promising technology. Harmonization and

standardization are essential for streamlining the path from research

to clinical application. By establishing consistent regulations that are

internationally recognized and harmonized, xenotransplantation can

transcend geographical boundaries, allowing for more efficient and

effective collaboration among researchers and acceptance of

international clinical trials and also their results (48). As such the

IXA in conjunction with the TTS and WHO have for the past decades

have been undertaking significant engagement since they combined

efforts to establish guidance’s and a xenotransplant registry (49). A

significant amount of work has been done by these organizations to

ensure there has been expert consultation at an international level. A

number of high-level consultations have resulted in the design and

development of internationally established guidance’s published under

the IXA, TTS, and WHO frameworks with the first published in 2008

with the “Changsha Communique” being drafted and guidance’s now

update by multiple panels of international experts on multiple

occasions (2–4).
5 Clinical xenotransplant studies

The transition from laboratory research to clinical practice is a

pivotal phase in the journey of xenotransplantation, and it is

marked by the initiation of clinical studies of various kind. These

have to date involved the transplantation of organs or tissues from

genetically modified pigs into human recipients. In recent years, two

types of clinical studies have gained prominence: xeno-heart and

kidney transplantation (50–52).
5.1 Overview of initial xeno-cardiac, kidney
and islet cell trials

5.1.1 Xeno-cardiac and kidney clinical programs
Current clinical studies involving xeno-heart and kidney

transplantation have sought to address the critical shortage of

available human organs for transplantation. These studies have

used specifically developed transgenic pigs that have been

genetically modified to be less immunogenic, coagulopathic and

prevent hyperacute xenograft rejection.

To date two successful long-term transgenic pig heart

xenotransplants into live human patients have been undertaken

(40). They have been defined as successful on multiple levels. Firstly,

and most importantly they did not undergo hyperacute xenograft

rejection, the primary and most significant barrier to xenograft

success. Secondly, on the ground of function, these hearts were

functional and life supporting for several months. Lastly, the

patients were off VA-ECMO, extubated and on no supportive

inotropic agents with normal cardiac index and normal

biventricular function as demonstrated by echocardiography (14).

It is important to understand that both pig-to-human heart
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xenotransplants were performed following permission for the

procedures being granted under Expanded Access authorization

by the United Stated, FDA (also known as “compassionate

use”) (40).

There have also been several transgenic pig kidney and heart

xenotransplants performed in a new clinical recipient research

modality. These few early attempts have utilized brain-dead (BD)

recipients for transplantation studies and are in their very early

stages, having faced various challenges from an ethical perspective.

These studies have once again utilized transgenic pigs as the source

of donor organs. They have been specifically produced to avoid

hyperacute xenograft rejection and provide function in human

patients. The first of these kidney studies were taken to only 74

hours posttransplant due to strict ethical constraints. Despite this

no hyperacute rejection was observed, and the kidneys remained

viable until termination with no chimerism or transmission of

porcine retroviruses detected (11). There were two transgenic pig

heart xenotransplants also performed in two recently deceased BD

recipients. These were only able to be run to 66 hours

posttransplant again due to ethical constraints of this model. For

both hearts, they also found no evidence of cellular or antibody-

mediated rejection, as assessed using histology, flow cytometry and

a cytotoxic crossmatch assay. Moreover, they found no evidence of

zoonotic transmission from the donor pigs to the human

recipients (52).

The transgenic pig kidney xenotransplant studies have

continued with several others being undertaken in the same

modality in BD recipients. The most recent having been taken

out as far as 61 days posttransplant. Despite favorable short-term

outcomes and absence of hyperacute injuries, their findings suggest

that antibody-mediated rejection in transgenic pig-to-human

kidney xenografts might be occurring. The caveat here being the

limited transgenesis of these particular donor pig organs playing a

significant role (53).

Despite these initial issues and the question of validity of testing

the xeno-kidneys in BD recipients due to their altered metabolic

state, they represent a promising approach to expand the way to test

the safety and efficacy of xeno-organs prior to undertaking

xenotransplants in clinical trials. These studies have the potential

to increase the data to support the use of xeno-organs to increase

the pool of available organs for patients with end-stage renal disease

(11, 54).
5.1.2 Islet cell trials
Islet cells, clusters of cells in the pancreas that produce insulin,

have been the focus of many pre-clinical trials aiming to provide a

treatment for type 1 diabetes. In these studies, islet cells from

genetically engineered pigs have been transplanted into various

animal models where they have had diabetes induced and are

transplanted to potentially restore insulin production. For decades

there have also been a significant number of early attempts with

both free and encapsulated islets to treat human patients suffering

from Type 1 diabetes (55, 56). These have had variable results and

no study to date has shown significant change or complete

resolution of the recipient’s diabetic state. This has been due to
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the use in the most part of wild type pig islets rather than purpose

developed and bred transgenic pigs (55, 56). However, results from

preclinical xeno-islet trials have shown great promise in improving

glucose control in non-human-primates establishing it as a

potential therapeutic modality for treating diabetic patients (13).

5.2 Significance of clinical trials in
advancing xenotransplantation

The significance of clinical xeno-heart, kidney and islet cell

trials in moving xenotransplantation towards clinical reality cannot

be overstated. These trials mark a crucial step in the validation of

the safety and efficacy of xenotransplantation in humans. Their

outcomes will inform researchers, healthcare providers, regulatory

bodies, and the public about the feasibility of this innovative

medical approach (57, 58).

Successful trials may also pave the way for wider acceptance of

xenotransplantation as a viable solution to the organ shortage crisis.

By demonstrating the effectiveness of modified pig organs and

addressing safety concerns, clinical trials can build the case for

regulatory approval and wider adoption (46, 59).
6 Patient perspectives

The success and acceptance of xenotransplantation hinge not

only on scientific progress but also on the perspectives and

expectations of patients who may ultimately benefit from this

innovative medical approach. Understanding the views of

prospective recipients and incorporating their voices is essential

for the responsible advancement of xenotransplantation (60).

6.1 Perspectives and expectations of patients
Patients facing organ failure or debilitating medical conditions

have high expectations for xenotransplantation. They see it as a

beacon of hope, offering the prospect of a healthier and more

fulfilling life. For patients on waiting lists for human organs,

xenotransplantation represents a potential lifeline, providing the

promise of shorter waiting times and increased access

to transplantation.

However, it’s crucial to recognize that patients also have

concerns and uncertainties, including the long-term outcomes of

xenotransplantation, potential health risks, and the implications of

receiving an organ from another species. Patient perspectives

encompass a range of emotions, from hope and optimism to

apprehension and caution. Addressing these concerns and

providing accurate information is paramount in ensuring patient

engagement and consent (61).

6.2 Informed consent and patient advocacy
In the realm of clinical trials for xenotransplantation, informed

consent is a cornerstone of ethical practice. Patients must be fully

informed about the experimental nature of the procedure, the

potential risks, and the expected benefits. Informed consent

allows patients to make autonomous decisions and plays a vital

role in respecting their autonomy (39).
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Patient advocacy organizations and support networks also play

a crucial role in ensuring that patient perspectives are heard and

addressed. These organizations work to protect patients’ rights,

advocate for transparency, and provide a platform for patients to

voice their concerns and expectations. Their role in the

xenotransplantation landscape is pivotal in safeguarding the

interests of patients.

Patient perspectives and informed consent are not only ethical

imperatives but also contribute to the overall success and

sustainability of xenotransplantation. By ensuring patients are

well-informed and actively engaged in the decision-making

process, the field can progress responsibly and ethically,

addressing the hopes and concerns of those it aims to benefit (13).
7 Public opinion and media influence

Public opinion and media coverage play a pivotal role in

shaping the trajectory of xenotransplantation, influencing public

perception, regulatory decisions, and the overall direction of this

ground-breaking field.

7.1 Shaping the future of xenotransplantation
Public opinion wields a considerable impact on the acceptance

and progress of xenotransplantation. As a novel medical approach

with ethical and scientific complexities, xenotransplantation has the

potential to stir both excitement and apprehension among the

public. Positive public sentiment can foster support for research,

funding, and regulatory approvals, whereas negative perceptions

may hinder its advancement (62).

Media coverage significantly influences public opinion by serving

as a primary source of information and shaping public discourse.

Journalistic narratives can frame xenotransplantation as a ground-

breaking medical solution or alternatively in a negative way posing it

as a scary and risky endeavor, impacting how it is perceived by the

masses (63). It is therefore imperative that the media provides

balanced, accurate, and accessible information and in doing so will

be vital in shaping the future of xenotransplantation.

7.2 Disseminating information and
potential misconceptions

Media outlets serve as conduits for disseminating information

about xenotransplantation. The media plays an important role in

educating the public about the science, ethics, and potential benefits

of xenotransplantation. However, the media can also perpetuate

misconceptions, oversimplify complex issues, or sensationalize

scientific advancements, which may lead to unwarranted public

fears and concerns.

The responsible dissemination of information is paramount.

Accurate, balanced, and well-informed media coverage is essential in

fostering a constructive public dialogue, minimizing misconceptions,

and ensuring that public sentiment is based on sound knowledge.

Scientists, healthcare providers, and the xenotransplantation

community have a shared responsibility to engage with the media to

provide accurate and clear information (63, 64).
Frontiers in Immunology 0861
Public opinion and media influence are pivotal factors in the

development of xenotransplantation, influencing the degree of

support, funding, and public acceptance. The media’s role in

accurately disseminating information and minimizing

misconceptions is key to ensuring that public opinion is well-

informed and that decis ions regarding the future of

xenotransplantation are made based on a balanced understanding

of the risks and benefits (65).
8 International collaboration
for xenotransplantation

In t e rna t i ona l co l l abora t i on i s a co rne r s tone o f

xenotransplantation research, and its significance extends to the

establishment of common standards, guidelines, and best practices.

This global cooperation is crucial for the responsible advancement

of the field and the harmonization of regulatory and

ethical frameworks.

8.1 Importance of global collaboration
Xenotransplantation is not limited by geographic boundaries as

seen in the geographical makeup of the broad membership of the

IXA and of the significant publications from various units around

the world. Researchers, scientists, and healthcare providers

contribute their expertise and insights to propel this innovative

field forward and the pre-clinical and novel and new use of models

such as the BD recipient are synergistic and provide novel

information that is perceived to not able to be achieved in NHP.

The sharing of knowledge, data, and research findings fosters a

collective understanding of the complexities involved in

xenotransplantation (66).

Global collaboration is essential in harnessing diverse

perspectives and experiences to address common challenges, such

as the prevention of zoonotic diseases, the ethical treatment of

animals, and the assessment of safety and efficacy (67, 68). This

collective effort accelerates the translation of xenotransplantation

from research to clinical practice and ensures that there is minimal

risk of xenozoonosis or other potential issues (48).

8.2 Establishing common standards
and guidelines

International collaboration in xenotransplantation research also

enables the establishment of common standards, guidelines, and

best practices. As the field progresses, consensus on regulatory,

ethical, and scientific parameters becomes increasingly vital. Such

harmonization streamlines the path from research to

clinical application.

Common standards ensure that xenotransplantation research

adheres to shared principles, such as animal welfare, patient safety,

and ethical practices. International cooperation allows for the

identification of gaps and discrepancies in current regulatory

frameworks, enabling the development of more comprehensive

and universally applicable guidelines such as the “Changsha

Communique” (4).
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Global collaboration in xenotransplantation research is not

merely a choice but a necessity. By pooling resources, knowledge,

and expertise from diverse regions, the field can progress with a

unified vision. International cooperation helps establish common

standards and guidelines, facilitating the responsible and ethical

advancement of xenotransplantation and its translation to clinical

reality (31) along with ensuring the registries are supported to be

able to capture and report on the fields clinical efforts (69).
9 Conclusion

The journey of xenotransplantation, the transplantation of

organs or tissues from one species to another, has witnessed

significant advancements and encountered ethical, legislative, and

scientific challenges. This review has delved into various facets of

xenotransplantation, emphasizing its potential to address the

critical organ shortage crisis while highlighting the essential

elements required for its responsible and successful translation to

clinical reality.

9.1 Take home messages
9.1.1 Ethical and legislative advances

The historical context, ethical considerations, and legislative

frameworks have been pivotal in shaping the path of

xenotransplantation. From early attempts at cross-species

transplantation to the contemporary emphasis on animal welfare

and informed consent, the field has evolved significantly.

9.1.2 Advancements in genetic engineering

Genetic engineering has ushered in a new era for

xenotransplantation, allowing for the creation of genetically

modified pigs with organs more compatible with human

recipients. These “designer pigs” represent a breakthrough in

reducing immunological barriers.

9.1.3 Clinical xenotransplant trials

The initiation of clinical studies involving xeno-hearts, kidneys

and islet cells marks a critical step in validating the safety and

efficacy of xenotransplantation in humans. These studies can move

forward to trials which hold the potential to significantly expand the

pool of available organs and improve treatment options for many

diseases and conditions.

9.1.4 Patient perspectives

Patients eagerly anticipate the prospects of xenotransplantation,

viewing it as a lifeline for lifesaving or life-improving interventions.

Understanding and addressing their perspectives and expectations

are essential for responsible clinical progress.

9.1.5 Public opinion and media influence

Public opinion and media coverage play a substantial role in

shaping the future of xenotransplantation. The media’s role in

disseminating accurate and balanced information is critical in

fostering constructive public dialogue and minimizing misconceptions.
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9.2 Continuing ethical and
legislative advancements

Ethical and legislative advancements are indispensable as

xenotransplantation moves closer to clinical translation. The

responsible treatment of animals, transparent informed consent,

and comprehensive regulatory frameworks are fundamental to

ensuring ethical and safe practices.
9.3 Alleviating the organ shortage crisis

The potential of xenotransplantation to alleviate the organ

shortage crisis cannot be overstated. As clinical trials progress and

demonstrate the viability of xenotransplantation, it stands as a

beacon of hope for those awaiting life-saving organ transplants.
9.4 Promising future
for xenotransplantation

The promising future for xenotransplantation lies in its

potential to bridge the gap between the demand for organs and

their limited supply. With continued collaboration, ethical

diligence, and advancements in science, xenotransplantation can

move from the realm of theoretical possibility to practical reality.

To bring xenotransplantation to the clinic, the scientific

community, regulatory bodies, and the media must work in

harmony. International collaboration is essential to continue to

establish common standards and guidelines, enabling the field to

progress responsibly and ethically in a universal fashion on an

international stage.

As we navigate the uncharted frontiers of xenotransplantation

and further clinical application, ethical decisions and legislation that

accompany it, the future looks promising, provided we remain

steadfast in our commitment to science, ethics, and the well-being

of both humans and animals. This review underscores the

remarkable potential of xenotransplantation while recognizing the

importance of treading the path to the clinic with care, diligence,

empathy, and informed action including harmonization of

guidance’s’ and legislation internationally.
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Combined islet and kidney
xenotransplantation for diabetic
nephropathy: an update in
ongoing research for a clinically
relevant application of porcine
islet transplantation
Daniel L. Eisenson1, Hayato Iwase1, Weili Chen1, Yu Hisadome1,
Wanxing Cui2, Michelle R. Santillan1, Alexander C. Schulick1,
Du Gu1, Amanda Maxwell3, Kristy Koenig1, Zhaoli Sun1,
Daniel Warren1 and Kazuhiko Yamada1*

1Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore,
MD, United States, 2Cell Therapy and Manufacturing, Medstar Georgetown University Hospital,
Washington DC, United States, 3Research Animal Resources, The Johns Hopkins University School of
Medicine, Baltimore, MD, United States
Combined islet and kidney xenotransplantation for the treatment of diabetic

nephropathy represents a compelling and increasingly relevant therapeutic

possibility for an ever-growing number of patients who would benefit from

both durable renal replacement and cure of the underlying cause of their renal

insufficiency: diabetes. Here we briefly review immune barriers to islet

transplantation, highlight preclinical progress in the field, and summarize our

experience with combined islet and kidney xenotransplantation, including both

challenges with islet-kidney composite grafts as well as our recent success with

sequential kidney followed by islet xenotransplantation in a pig-to-

baboon model.
KEYWORDS

islet xenotransplantation, islet-kidney, xenogeneic immune response, tolerance,
xenotransplantation
Abbreviations: ELISpot, enzyme-linked immunosorbent spot assay; GalTKO, a-1,3 Galactosyl transferase

gene knockout; hCD55, human CD55; hCD59, human CD59; hCD47, human CD47; IBMIR, instant blood-

mediated inflammatory reaction; I-K, islet-kidney; IEQ, islet equivalents; IFN-g, interferon gamma; IPN, islet

particle number; mAb, monoclonal antibody; Nab, natural antibody; NHP, non-human primate; NK, natural

killer; PTFE, PolyTetraFluoroEthylene; VTL, vascularized thymic lobe.
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Introduction

Diabetes is a leading cause of both cardiovascular disease and end

stage renal disease (ESRD), and incidence is increasing across the

country and across the globe (1). Human islet transplantation is an

effective treatment for diabetic patients but requires lifelong

immunosuppression: prospective islet transplant recipients must

weigh the risks of immunosuppression against the short- and long-

term complications of diabetes. Patients with diabetic nephropathy

represent a unique – and growing – population that would benefit

from both islet and kidney transplantation. Indeed, the favorable risk-

to-benefit considerations of combined islet and kidney

transplantation in this population inspired recent promising clinical

studies in islet after kidney transplantation led by the Clinical Islet

Transplantation (CIT) Consortium (2). However, at present these

procedures are rare, due, in part, to a shortage of deceased donor

organs (3). Xenotransplantation using organs derived from pigs may

overcome this organ shortage and allow for broader application of

combined islet and kidney transplantation.

The past several years have seen enormous progress in the field

of xenotransplantation, with advances in gene-editing and

immunosuppression leading to long-term survivals of both kidney

and heart xenografts in pig-to-nonhuman primate (NHP) studies

(4–7), as well as early studies (preclinical and clinical) in humans

(8–10). Clinical translation of porcine islet transplantation predated

these recent successes in solid organ xenotransplantation, with

encouraging pig-to-NHP studies leading to several small clinical

studies using porcine islets in humans (11–21). However, results of

these early studies in clinical islet xenotransplantation have been

mixed. While these differences between outcomes of preclinical and

clinical xenogeneic islet transplantation may be partly explained by

differences in the immunosuppression regimens used in the clinical

trials – notably, CD40/CD40L costimulatory blockade, which has

been critical to success in most preclinical studies, was not utilized –

further trials have been limited by more recent consensus guidelines

outlining an international framework to promote standardized

clinical translation of pig-to-human islet transplantation from

source pig development and manufacturing to patient

monitoring (22).

Moreover, in the many years since these clinical studies in islet

xenotransplantation were conducted, the landscape of diabetes

management has changed. Patients with diabetes have other

options for durable disease management. Innovations in glucose

monitoring and the rapid development of hybrid closed-loop

insulin delivery systems have improved quality of life for patients

living with diabetes (23), and ongoing clinical trials of novel

stem-cell derived islet cell therapy have published early

and highly promising results (24). However, porcine islet

xenotransplantation remains a compelling therapeutic possibility

for patients with diabetic nephropathy who need both kidney and

islet replacement. In these patients, there are minimal added risks

associated with islet transplantation, as these patients are already on

immunosuppression for their kidney grafts; in fact, islets may help

protect against premature kidney graft loss associated with diabetes

(25) as well as improve long-term vascular diabetic outcomes (26).

Here, we will briefly highlight immunologic barriers in porcine islet
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transplantation, chronicle preclinical progress in the field, and

summarize our own experience in combined islet and kidney

transplantation, using both 1) vascularized islets in an islet-kidney

composite graft, and 2) our more recent strategy of sequential

kidney followed by islet xenotransplantation.
Immunologic barriers in pig-to-
primate islet xenotransplantation

Porcine xenografts, including pig islets, elicit robust immune

responses in humans. These responses involve both innate barriers

(27) – including preformed natural antibodies (Nabs) and species

incompatibilities in complement and coagulation systems leading to

dysregulation – and adaptive immune components (reviewed in

(28)). As with transplantation of solid organs, humoral immunity

remains a key obstacle to long-term xenograft survival, and T cell-

targeted immunosuppression strategies have been critical for

prolonging islet survival (20, 29),. Unlike transplantation of other

organs, however, transplanted islets also trigger an immediate

inflammatory response, known as instant blood-mediated

inflammatory reaction (IBMIR) (30, 31), related to expression of

tissue factor on islets and leading to activation of innate responses

that subsequently consume islets (32, 33). Although IBMIR is seen

in auto- and allogeneic islet transplantation, greater immune

barriers in xenotransplantation may lead to more pronounced

islet losses (34, 35) as high as 70% in some studies (36).
Preclinical progress in porcine islet
xenotransplantation: encapsulation
and source pig genetic modifications

Various strategies have been developed to overcome these

short- and long-term immunologic hurdles, including islet

encapsulation and source pig genetic modifications – both of

which are intended to reduce the immunogenicity of the

porcine islets.

Broadly , i s le t encapsulat ion technologies inc lude

microencapsulation of islets in alginate matrix, and macro-

encapsulation of immobilized islets in bi-layered PTFE with a

common oxygenation chamber (37). This microencapsulation

technique successfully reversed diabetes for up to six months in

preclinical studies of rhesus macaques (38), and was subsequently

used in two nationally regulated clinical studies of porcine islet

xenotransplantation in New Zealand and Argentina. Follow-up

studies confirmed modest clinical benefit including reduction in

HbA1c, hospitalization, and severe hypoglycemic and/or

hyperglycemic events (21, 39) The key advantage of these

technologies is that encapsulation may protect islets from

the recipient immune system and obviate the need for

immunosuppression; whereas islet transplantation alone is

currently reserved for patients with hypoglycemic unawareness

due to the morbidity of immunosuppression, transplantation of

encapsulated islets without immunosuppression may tilt the risk-
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benefit ratio in favor of islet transplantation for cure of diabetes.

Still, important hurdles remain in broader clinical application

of this technology including variable recipient immune responses

to the encapsulation material, which may lead to fibrosis of

encapsulated grafts.

Source pig genetic modification is another strategy to overcome

innate immune barriers and can be divided into two major

categories: elimination of carbohydrate antigens that are targets of

preformed antibodies, and correction of species incompatibilities.

In solid organ xenotransplantation, preformed antibody

binding leads to hyperacute rejection of graft; in free islet

xenotransplantation, preformed antibody binding leads to an

amplified IBMIR with islet loss (40). While elimination of targets

of preformed Nabs (particularly elimination of a-gal with creation

of a-1,3 Galactosyl transferase gene knockout or GalTKO source

pigs) has been essential for successful pig-to-NHP heart and kidney

xenotransplantation (4, 41, 42), the impact of using GalTKO source

pigs on xenograft survival in islet transplantation is less conclusive,

which may be a function of changes in a-gal expression with

islet maturation (43–45). Similarly, correcting for species

incompatibilities between porcine and primate complement

regulatory systems through individual insertion of human

complement regulatory proteins may not significantly reduce the

incidence of IBMIR (44). However, combining carbohydrate

antigen gene knockouts with complement regulatory transgenes

proves additive: xenogeneic islets from GalTKO.hCD55.hCD59 and

GalTKO.hCD39.hCD46 source pigs demonstrated reduced islet loss

and attenuated IBMIR (15, 16). More recently, islets derived from

neonatal GalTKO.hCD55.hCD59 source pigs demonstrated cure of

diabetes with >1 year of insulin independence in the stringent pig-

to-baboon model (46).
Combined kidney and islet
xenotransplantation to broaden
clinical applicability of porcine
islet xenotransplantation

Marked improvements in diabetes management and emerging

therapies have changed the risk-benefit calculus associated with

islet transplantation more broadly, and porcine islet

xenotransplantation in particular. As described in the preceding

section, encapsulation technologies – which may allow for durable

glucose control without immunosuppression – remain one relevant

application for porcine islet xenotransplantation. Another relevant

strategy is combining porcine islet xenotransplantation with solid

organ xenotransplantation. This strategy has already been

employed with success by the CIT consortium treating diabetic

nephropathy with islet transplantation after kidney transplantation,

but broader application is limited by the shortage of deceased donor

organs. The following sections detail our preclinical experience with

combined islet and kidney transplantation, including both

composite islet-kidney transplantation as well as kidney-first

sequential islet and kidney xenotransplantation.
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Combined islet and kidney
xenotransplantation: our experience
with composite islet-kidney
xenotransplantation

Composite islet-kidney transplantation for
cure of diabetic nephropathy: concept and
supporting allogeneic data

As detailed above, xenogeneic islets are susceptible to destruction

by both innate and adaptive mechanisms. The senior author of this

review has demonstrated that transplanting pre-vascularized islets as

part of a composite organ protects islets from innate immune

destruction by circumventing the typical pathway that triggers

IBMIR (47–49). We have previously reported successful preparation

of composite islet-kidney (I-K) grafts which maintained

normoglycemia and normal renal function after transplantation in

pig-to-pig and nonhuman primate allogeneic transplantation models

(Figure 1). Islets are isolated and pre-vascularized under autologous

renal capsule, with subsequent transplantation of composite I-K graft

(50). Preclinical allotransplantation studies in both pigs and in NHPs

have demonstrated that this procedure preserves islets, likely by

limiting innate immune destruction: diabetes is cured in animals

who undergo composite I-K transplantation, while animals who

undergo conventional free islet injection with the same islet

equivalents (IEQs) remain insulin dependent (51, 52). Additional

preclinical studies have demonstrated further improvements in islet

yield and function with islet protective strategies including siRNA

silencing of apoptotic genes (53). However, practical challenges have

limited successful translation of this composite organ strategy for cure

of diabetes and kidney failure in pig-to-NHP transplantation.
Challenges with translation of allogeneic
results to xenogeneic pig-to-non-human
primate model

While I-K composite organs are ideally created in the same

animal with autologous pig islets transplanted under autologous

renal capsule, size constraints in our NHP recipient prevent

successful I-K transplantation using a single source pig: a small

(<30kg) source pig is needed for successful pig-to-NHP kidney

transplantation, while a large (>60kg) source pig is needed in

order to obtain sufficient islets for reversal of diabetes. This is a

limitation primarily in our preclinical pig-to-NHP model, as larger

kidneys from size matched >60kg pigs will likely be appropriate for

human adult recipients. Nevertheless, overcoming this experimental

constraint is critical to demonstration of composite I-K success. Our

own attempts to isolate islets from juvenile source pig pancreases

recapitulated the work of other investigators, confirming low islet-

equivalent yield from juvenile pigs (54, 55). Accordingly, we elected

to use two different source pigs for composite organ creation: large

pigs would be used for islets, pre-vascularized prior to

transplantation under the renal capsule of a smaller pig.
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Using different source pigs for I-K composite organ creation

introduced other challenges. Allogeneic islets from one source pig

transplanted under the renal capsule of another source pig are

vulnerable to recipient source pig immune responses, as with any

allogeneic transplant. Strategies to mitigate these responses include 1)

use of related pairs (cloned, inbred, or MHC-matched), and 2)

minimization of the islet pre-vascularization period under allogeneic

renal capsule.
Using related pairs for composite islet-
kidney creation

Although the use of genetically identical (cloned) pairs for islet-

kidney creation would be ideal, previous experiments have

demonstrated long-term survival of skin and heart grafts without

immunosuppression in highly inbred swine (56). Indeed, inbred

animals, defined by co-ancestry >0.9, accepted allogeneic skin grafts

for >340 days and accepted allogeneic heart grafts for >265 days without

immunosuppression. MHC-matched pairs (co-ancestry >0.75) also

allowed for acceptance of kidney grafts without immunosuppression,

although hearts and islets were not accepted (50, 56, 57). Over the last

three years, we have optimized composite I-K preparation using MHC-

matched source pigs. As opposed to autologous I-K preparation,

successful allogeneic preparation requires immunosuppression with

both high dose tacrolimus and MMF. I-K preparation may be further

optimized with reduction in pre-vascularization period from 6 weeks to

2 weeks. Still, it remains unclear whether I-K preparation in MHC-

matched pairs preserves sufficient islets for reversal of diabetes in a

xenogeneic recipient. We plan to revisit the composite I-K strategy in

xenotransplantation when cloned pigs or highly inbred GalTKO pigs

are available for these experiments.
Combined islet and kidney
xenotransplantation: recent success
with sequential kidney followed by
islet xenotransplantation

Definitive evaluation of composite I-K transplantation in a pig-

to-NHP model also requires a control: independent kidney and free
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islet transplantation. Negative controls were present in previous

studies of composite IK technologies – in pig-to-pig, baboon-to-

baboon, and macaque-to-macaque models – and demonstrated

preservation of islets with composite I-K transplantation across

allogeneic barriers. In the past year, due to lack of inbred or cloned

source pigs, we tested an alternative strategy for combined islet and

kidney transplantation across a xenogeneic barrier that would also

serve as a control of the composite I-K strategy. This alternative

approach involves delayed islet transplantation after kidney and

vascularized thymus transplantation (role of vascularized thymus

transplantation in the induction of tolerance across xenogeneic

barriers reviewed in (28)), using a recipient size-matched kidney

and thymus source pig, as well as a large source pig for islets. Notably

this approach (without thymus co-transplantation) is also similar to

recent work in human islet-after-kidney transplantation conducted

by the CIT consortium. Although additional cases are required, we

have achieved reversal of diabetes and life-supporting renal function

for 180 days with this kidney-first sequential islet and kidney

xenotransplantation (52). To our knowledge, this is the first

demonstration of maintenance of durable normoglycemia and

stable creatinine with porcine kidney and islets in a diabetic and

life-supporting pig-to-baboon combined kidney, vascularized thymus

and islet xenotransplantation model. These preliminary results were

recently presented at the International Xenotransplantation

Association Congress (San Diego, 2023), and are described in detail

in the following sections:
Methods: source pigs, recipient baboons,
immunosuppression regimen, and
transplantation procedures

In this experiment, we used two GalTKO.hCD55 source pigs

from the National Swine Resource and Research Center (Sus scrofa

domesticus, source: University of Missouri-Columbia, Columbia,

MO) and one baboon recipient from the National Research and

Resources Program (MD Anderson, Houston TX). Baboon

recipient underwent B and T cell depletion with rituximab and

rabbit anti-thymocyte globulin, followed by maintenance

immunosuppression with anti-CD40 mAb (Nonhuman Primate

Reagent Resource, University of Massachusetts Medical School,
FIGURE 1

Schematic diagrams of preparation of a composite islet-kidney graft in donor and allogeneic composite islet-kidney transplantation in a recipient.
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Worcester, MA). The baboon received kidney and vascularized

thymic lobe grafts from a GalTKO.hCD55 (11.7kg) source pig on

POD 0 with bilateral native nephrectomy. Diabetes was

subsequently induced with streptozosin (STZ. 100mg/kg on POD

5, 50mg/kg on POD 9). After confirmation of diabetes, baboon

underwent free islet transplantation into the portal vein, with islets

isolated from unrelated GalTKO.hCD55 (95kg) source pig. Islet

isolation was performed as previously described (58) and yielded

101K islet equivalents (IEQs) and 194K islet particle number (IPN).

All animals were used in compliance with guidelines provided by

the Animal Care and Use Committee at The Johns Hopkins

University School of Medicine.
Results: islet-after-kidney pig-to-baboon
xenotransplantation cures diabetes and
renal insufficiency

Both renal insufficiency and diabetes were cured with kidney-

first sequential islet and kidney xenotransplantation. The baboon

recipient maintained normal serum creatinine with no evidence of

rejection for six months following kidney and islet transplant but was

euthanized due to sepsis related to pyelonephritis in setting of stent

occlusion on POD180. Immediately after islet transplantation,

hyperglycemia was reversed with normalization of blood sugars

from >250mg/dL (pre-transplant) to 80-110 mg/dL. Porcine islets

functioned and maintained normal BG levels without any exogenous

insulin treatment throughout the recipient’s postoperative course.

Post-mortem evaluation of liver confirmed presence of insulin-

staining islets.
Discussion: timing of sequential transplants
and immunomodulatory strategies may be
important for success of islet-after-
kidney xenotransplantation

As referenced above (see Preclinical progress in porcine islet

xenotransplantation), investigators have recently achieved cure of

diabetes in baboons using pooled islets from neonatal genetically

modified pig donors (46). However, this required an average of 14

neonatal pancreases (70 piglets for 5 baboon recipients). In our

model, we have achieved normoglycemia using islets derived from a

single source adult pig with an administered islet mass of 12,500 IEQ/

kg. Of note, this is within range though slightly less than was required

in the recent clinical islet-after-kidney transplantation studies where

successful islet transplants averaged >16,000 IEQ/kg (2).

One reason for the success of free islet transplantation in this

model may be timing of sequential transplants: kidney-first

transplantation promotes absorption of anti-pig antibodies, likely

reducing IBMIR following islet transplantation, corresponding to

reduced loss of islets. This may have enabled durable reversal of

diabetes with fewer islet equivalents as compared with clinical islet-

after-kidney transplantation. Indeed, the possible antibody
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absorption benefits of sequential transplant timing is less clear in

the clinical islet-after-kidney studies, where islet transplantation

occurred well after index kidney transplantation.

Lastly, adjunctive immunomodulatory strategies may also have

played a role in the durable xenograft survival in this case. This

animal received vascularized thymic lobe (VTL) graft co-

transplantation from the kidney source pig, which has been

shown to prolong xenograft survival in pig-to-baboon renal

xenotransplantation (reviewed in (28)). Interferon gamma (IFN-

g) enzyme-linked immunosorbent spot (ELISpot) assay was

performed to assess the potential immunomodulatory effect of

VTL co-transplantation in this case. ELISpot assay at POD 180

demonstrated pig-specific unresponsiveness, suggesting that

co-transplanted VTL graft may promote immunomodulatory

effects. Further studies will clarify the mechanisms of in vitro

unresponsiveness (59).

Additional cases are needed to replicate this work, but these

encouraging results indicate that our negative control strategy,

sequential kidney followed by islet xenotransplantation may

reverse diabetes and renal insufficiency.
Porcine islet xenotransplantation: the
best path forward may be dual
indication transplantation

Porcine islet xenotransplantation is one promising strategy for

cure of diabetes among an evolving landscape of emerging therapies

in diabetes management. While islet-alone xenotransplantation

strategies continue to show improvement with source pig genetic

modifications and refinements to immunosuppression regimens,

approaches like encapsulation which allow for reversal of diabetes

without immunosuppression may be more clinically relevant.

Porcine islet xenotransplantation, in conjunction with kidney

xenotransplantation, remains a particularly compelling therapeutic

possibility for patients with diabetic nephropathy who require both

kidney and islet replacement, and who have already committed to

immunosuppression for their kidney grafts. Composite islet-kidney

transplantation has proven challenging in xenogeneic preclinical

models; however, preliminary studies in islet-after-kidney

xenotransplantation are promising and may point to a path

forward with combined islet and kidney transplantation for

diabetic nephropathy.
Author contributions

DE: Conceptualization, Formal Analysis, Investigation,

Methodology, Writing – original draft. HI: Data curation,

Formal Analysis, Investigation, Writing – review & editing. WLC:

Formal Analysis, Methodology, Writing – review & editing.

YH: Formal Analysis, Investigation, Writing – review & editing.

WXC: Methodology, Writing – review & editing. MS: Formal
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1351717
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Eisenson et al. 10.3389/fimmu.2024.1351717
Analysis, Investigation, Writing – review & editing. AS: Investigation,

Writing – review & editing. DG: Methodology, Writing – review &

editing. AM: Investigation, Writing – review & editing. KK:

Methodology, Project administration, Writing – review & editing.

ZS: Methodology, Supervision, Writing – review & editing. DW:

Investigation, Methodology, Project administration, Writing – review

& editing. KY: Conceptualization, Investigation, Methodology, Project

administration, Supervision, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Frontiers in Immunology 0670
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Divers J, Mayer-Davis EJ, Lawrence JM, Isom S, Dabelea D, Dolan L, et al. Trends
in incidence of type 1 and type 2 diabetes among youths - selected counties and Indian
reservations, United States, 2002-2015.MMWRMorbMortal Wkly Rep. (2020) 69:161–
5. doi: 10.15585/mmwr.mm6906a3

2. Markmann JF, Rickels MR, Eggerman TL, Bridges ND, Lafontant DE, Qidwai J,
et al. Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes. Am J
Transplant. (2021) 21:1477–92. doi: 10.1111/ajt.16174

3. Gamble A, Pepper AR, Bruni A, Shapiro AMJ. The journey of islet cell
transplantation and future development. Islets. (2018) 10:80–94. doi: 10.1080/
19382014.2018.1428511

4. Rivard CJ, Tanabe T, Lanaspa MA,Watanabe H, Nomura S, Andres-Hernando A,
et al. Upregulation of CD80 on glomerular podocytes plays an important role in
development of proteinuria following pig-to-baboon xeno-renal transplantation - an
experimental study. Transpl Int. (2018) 31:1164–77. doi: 10.1111/tri.13273

5. Adams AB, Lovasik BP, Faber DA, Burlak C, Breeden C, Estrada JL, et al. Anti-C5
antibody tesidolumab reduces early antibody-mediated rejection and prolongs
survival in renal xenotransplantation. Ann Surg. (2021) 274:473–80. doi: 10.1097/
SLA.0000000000004996

6. Ma D, Hirose T, Lassiter G, Sasaki H, Rosales I, Coe TM, et al. Kidney
transplantation from triple-knockout pigs expressing multiple human proteins in
cynomolgus macaques. Am J Transplant. (2022) 22:46–57. doi: 10.1111/ajt.16780

7. Mohiuddin MM, Goerlich CE, Singh AK, Zhang T, Tatarov I, Lewis B, et al.
Progressive genetic modifications of porcine cardiac xenografts extend survival to 9
months. Xenotransplantation. (2022) 29:e12744. doi: 10.1111/xen.12744

8. Griffith BP, Goerlich CE, Singh AK, Rothblatt M, Lau CL, Shah A, et al.
Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med.
(2022) 387:35–44. doi: 10.1056/NEJMoa2201422

9. Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M, et al.
Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med. (2022)
386:1889–98. doi: 10.1056/NEJMoa2120238

10. Locke JE, Kumar V, Anderson D, Porrett PM. Normal graft function after
pig-to-human kidney xenotransplant. JAMA Surg. (2023). doi: 10.1001/
jamasurg.2023.2774

11. Groth CG, Korsgren O, Tibell A, Tollemar J, Moller E, Bolinder J, et al.
Transplantation of porcine fetal pancreas to diabetic patients. Lancet. (1994)
344:1402–4. doi: 10.1016/s0140-6736(94)90570-3

12. Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJ, Bracho-Blanchet E,
Castillo A, Ramirez-Gonzalez B, et al. Long-term follow-up of patients with type 1
diabetes transplanted with neonatal pig islets. Clin Exp Immunol. (2010) 162:537–42.
doi: 10.1111/j.1365-2249.2010.04273.x

13. Valdes-Gonzalez RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez
AJ, Davila-Perez R, et al. Xenotransplantation of porcine neonatal islets of Langerhans
and Sertoli cells: a 4-year study. Eur J Endocrinol. (2005) 153:419–27. doi: 10.1530/
eje.1.01982

14. Rood PP, Bottino R, Balamurugan AN, Smetanka C, Ayares D, Groth CG, et al.
Reduction of early graft loss after intraportal porcine islet transplantation in monkeys.
Transplantation. (2007) 83:202–10. doi: 10.1097/01.tp.0000250680.36942.c6

15. Bottino R, Wijkstrom M, Windt der van DJ, Hara H, Ezzelarab M, Murase N,
et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J
Transplant. (2014) 14:2275–87. doi: 10.1111/ajt.12868
16. Hawthorne WJ, Salvaris EJ, Phillips P, Hawkes J, Liuwantara D, Burns H, et al.
Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J
Transplant. (2014) 14:1300–9. doi: 10.1111/ajt.12722

17. Shin JS, Kim JM, Min BH, Yoon IH, Kim HJ, Kim JS, et al. Pre-clinical results in
pig-to-non-human primate islet xenotransplantation using anti-CD40 antibody
(2C10R4)-based immunosuppression. Xenotransplantation. (2018) 25. doi: 10.1111/
xen.12356

18. Min BH, Shin JS, Kim JM, Kang SJ, KimHJ, Yoon IH, et al. Delayed revascularization
of islets after transplantation by IL-6 blockade in pig to non-human primate islet
xenotransplantation model. Xenotransplantation. (2018) 25. doi: 10.1111/xen.12374

19. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, et al. Long-term
survival of neonatal porcine islets in nonhuman primates by targeting costimulation
pathways. Nat Med. (2006) 12:304–6. doi: 10.1038/nm1375

20. Hering BJ, Wijkstrom M, Graham ML, Hardstedt M, Aasheim TC, Jie T, et al.
Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine
islets in immunosuppressed nonhuman primates. Nat Med. (2006) 12:301–3.
doi: 10.1038/nm1369

21. Matsumoto S, Abalovich A, Wechsler C, Wynyard S, Elliott RB. Clinical benefit
of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine. (2016)
12:255–62. doi: 10.1016/j.ebiom.2016.08.034

22. Hering BJ, Wijkstrom M, Graham ML, Hardstedt M, Aasheim TC, Jie T,
et al. First update of the International Xenotransplantation Association consensus
statement on conditions for undertaking clinical trials of porcine islet products in type
1 diabetes–Executive summary. Xenotransplantation. (2016) 23:3–13. doi: 10.1111/
xen.12231

23. Templer S. Closed-loop insulin delivery systems: past, present, and future directions.
Front Endocrinol (Lausanne). (2022) 13:919942. doi: 10.3389/fendo.2022.919942

24. Reichman TW, Ricordi C, Naji A, Markmann JF, Perkins BA, Wijkstrom M,
et al. 836-P: glucose-dependent insulin production and insulin-independence in type 1
diabetes from stem cell–derived, fully differentiated islet cells—Updated data from the
VX-880 clinical trial. Diabetes. (2023) 72. doi: 10.2337/db23-836-P

25. Larkins NG, Wong G, Johnson DW, Hawley C, Teixeira-Pinto A, Pleass H, et al.
Early graft loss following transplantation from expanded criteria donors. Transplant
Direct. (2021) 7:e783. doi: 10.1097/TXD.0000000000001235

26. Fiorina P, Folli F, Maffi P, Placidi C, Venturini M, Finzi G, et al. Islet transplantation
improves vascular diabetic complications in patients with diabetes who underwent kidney
transplantation: a comparison between kidney-pancreas and kidney-alone transplantation.
Transplantation. (2003) 75:1296–301. doi: 10.1097/01.TP.0000061788.32639.D9

27. Mok D, Black M, Gupta N, Arefanian H, Tredget E, Rayat GR. Early immune
mechanisms of neonatal porcine islet xenograft rejection. Xenotransplantation. (2019)
26:e12546. doi: 10.1111/xen.12546

28. Eisenson DL, Hisadome Y, Yamada K. Progress in xenotransplantation:
immunologic barriers, advances in gene editing, and successful tolerance induction
strategies in pig-to-primate transplantation. Front Immunol. (2022) 13:899657.
doi: 10.3389/fimmu.2022.899657

29. Vadori M, Cozzi E. The immunological barriers to xenotransplantation. Tissue
Antigens. (2015) 86:239–53. doi: 10.1111/tan.12669

30. Naziruddin B, Iwahashi S, Kanak MA, Takita M, Itoh T, Levy MF. Evidence for
instant blood-mediated inflammatory reaction in clinical autologous islet
transplantation. Am J Transplant. (2014) 14:428–37. doi: 10.1111/ajt.12558
frontiersin.org

https://doi.org/10.15585/mmwr.mm6906a3
https://doi.org/10.1111/ajt.16174
https://doi.org/10.1080/19382014.2018.1428511
https://doi.org/10.1080/19382014.2018.1428511
https://doi.org/10.1111/tri.13273
https://doi.org/10.1097/SLA.0000000000004996
https://doi.org/10.1097/SLA.0000000000004996
https://doi.org/10.1111/ajt.16780
https://doi.org/10.1111/xen.12744
https://doi.org/10.1056/NEJMoa2201422
https://doi.org/10.1056/NEJMoa2120238
https://doi.org/10.1001/jamasurg.2023.2774
https://doi.org/10.1001/jamasurg.2023.2774
https://doi.org/10.1016/s0140-6736(94)90570-3
https://doi.org/10.1111/j.1365-2249.2010.04273.x
https://doi.org/10.1530/eje.1.01982
https://doi.org/10.1530/eje.1.01982
https://doi.org/10.1097/01.tp.0000250680.36942.c6
https://doi.org/10.1111/ajt.12868
https://doi.org/10.1111/ajt.12722
https://doi.org/10.1111/xen.12356
https://doi.org/10.1111/xen.12356
https://doi.org/10.1111/xen.12374
https://doi.org/10.1038/nm1375
https://doi.org/10.1038/nm1369
https://doi.org/10.1016/j.ebiom.2016.08.034
https://doi.org/10.1111/xen.12231
https://doi.org/10.1111/xen.12231
https://doi.org/10.3389/fendo.2022.919942
https://doi.org/10.2337/db23-836-P
https://doi.org/10.1097/TXD.0000000000001235
https://doi.org/10.1097/01.TP.0000061788.32639.D9
https://doi.org/10.1111/xen.12546
https://doi.org/10.3389/fimmu.2022.899657
https://doi.org/10.1111/tan.12669
https://doi.org/10.1111/ajt.12558
https://doi.org/10.3389/fimmu.2024.1351717
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Eisenson et al. 10.3389/fimmu.2024.1351717
31. Nilsson B, Ekdahl KN, Korsgren O. Control of instant blood-mediated
inflammatory reaction to improve islets of Langerhans engraftment. Curr Opin
Organ Transplant. (2011) 16:620–6. doi: 10.1097/MOT.0b013e32834c2393

32. Ji M, Yi S, Smith-Hurst H, Phillips P, Wu J, Hawthorne W, et al. The importance
of tissue factor expression by porcine NICC in triggering IBMIR in the xenograft
setting. Transplantation. (2011) 91:841–6. doi: 10.1097/TP.0b013e3182106091

33. Kourtzelis I, Magnusson PU, Kotlabova K, Lambris JD, Chavakis T. Regulation
of instant blood mediated inflammatory reaction (IBMIR) in pancreatic islet xeno-
transplantation: points for therapeutic interventions. Adv Exp Med Biol. (2015)
865:171–88. doi: 10.1007/978-3-319-18603-0_11

34. Bennet W, Sundberg B, Lundgren T, Tibell A, Groth CG, Richards A, et al.
Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after
intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and
heparin. Transplantation. (2000) 69:711–9. doi: 10.1097/00007890-200003150-00007

35. Miyagawa S, Yamamoto A, Matsunami K, Wang D, Takama Y, Ueno T, et al.
Complement regulation in the GalT KO era. Xenotransplantation. (2010) 17:11–25.
doi: 10.1111/xen.2010.17.issue-1

36. Davalli AM, Ogawa Y, Scaglia L, Wu YJ, Hollister J, Bonner-Weir S, et al.
Function, mass, and replication of porcine and rat islets transplanted into diabetic nude
mice. Diabetes. (1995) 44:104–11. doi: 10.2337/diab.44.1.104

37. Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, et al. Pig-to-primate islet
xenotransplantation: past, present, and future. Cell Transplant. (2017) 26:925–47.
doi: 10.3727/096368917X694859

38. Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets
allows correction of streptozotocin-induced diabetes in primates up to 6 months
without immunosuppression. Transplantation. (2010) 90:1054–62. doi: 10.1097/
TP.0b013e3181f6e267

39. Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R. Microbiological safety
of the first clinical pig islet xenotransplantation trial in New Zealand.
Xenotransplantation. (2014) 21:309–23. doi: 10.1111/xen.12102

40. Rayat GR, Rajotte RV, Elliott JF, Korbutt GS. Expression of Gal alpha(1,3)gal on
neonatal porcine islet beta-cells and susceptibility to human antibody/complement
lysis. Diabetes. (1998) 47:1406–11. doi: 10.2337/diabetes.47.9.1406

41. Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, et al. Marked
prolongation of porcine renal xenograft survival in baboons through the use of
alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of
vascularized thymic tissue. Nat Med. (2005) 11:32–4. doi: 10.1038/nm1172

42. Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM, et al. Heart
transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as
donors: initial experience. Nat Med. (2005) 11:29–31. doi: 10.1038/nm1171

43. Rayat GR, Rajotte RV, Hering BJ, Binette TM, Korbutt GS. In vitro and in vivo
expression of Galalpha-(1,3)Gal on porcine islet cells is age dependent. J Endocrinol.
(2003) 177:127–35. doi: 10.1677/joe.0.1770127

44. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, et al.
Long-term controlled normoglycemia in diabetic non-human primates after
transplantation with hCD46 transgenic porcine islets. Am J Transplant. (2009)
9:2716–26. doi: 10.1111/j.1600-6143.2009.02850.x

45. Thompson P, Badell IR, Lowe M, Cano J, Song M, Leopardi F, et al. Islet
xenotransplantation using gal-deficient neonatal donors improves engraftment and
function. Am J Transplant. (2011) 11:2593–602. doi: 10.1111/j.1600-6143.2011.03720.x
Frontiers in Immunology 0771
46. Hawthorne WJ, Salvaris EJ, Chew YV, Burns H, Hawkes J, Barlow H, et al.
Xenotransplantation of genetically modified neonatal pig islets cures diabetes in
baboons. Front Immunol. (2022) 13:898948. doi: 10.3389/fimmu.2022.898948

47. Yamada K, Shimizu A, Utsugi R, Ierino FL, Gargollo P, Haller GW, et al. Thymic
transplantation in miniature swine. II. Induction of tolerance by transplantation of
composite thymokidneys to thymectomized recipients. J Immunol. (2000) 164:3079–
86. doi: 10.4049/jimmunol.164.6.3079

48. LaMattina JC, Kumagai N, Barth RN, Yamamoto S, Kitamura H, Moran SG,
et al. Vascularized thymic lobe transplantation in miniature swine: I. Vascularized
thymic lobe allografts support thymopoiesis. Transplantation. (2002) 73:826–31.
doi: 10.1097/00007890-200203150-00032

49. Yamada K, Vagefi PA, Utsugi R, Kitamura H, Barth RN, LaMattina JC, et al.
Thymic transplantation in miniature swine: III. Induction of tolerance by
transplantation of composite thymokidneys across fully major histocompatibility
complex-mismatched barriers. Transplantation. (2003) 76:530–6. doi: 10.1097/
01.TP.0000080608.42480.E8

50. Kumagai N, LaMattina JC, Kamano C, Vagefi PA, Barth RN, JJ, et al.
Vascularized islet cell transplantation in miniature Swine: islet-kidney allografts
correct the diabetic hyperglycemia induced by total pancreatectomy. Diabetes. (2002)
51:3220–8. doi: 10.2337/diabetes.51.11.3220

51. Kumagai N, O’neil JJ, Barth RN, LaMattina JC, Utsugi R, Moran SG, et al.
Vascularized islet-cell transplantation in miniature swine. I. Preparation of vascularized
islet kidneys. Transplantation. (2002) 74:1223–30. doi: 10.1097/00007890-200211150-00005

52. Yamada K, Hirakata A, Tchipashvili V, Shimizu A, Iwaki H, Griesemer A,
et al. Composite islet-kidneys from single baboon donors cure diabetes across fully
allogenic barriers. Am J Transplant. (2011) 11:2603–12. doi: 10.1111/j.1600-6143.2011.
03733.x

53. Pomposelli T, Wang P, Takeuchi K, Miyake K, Ariyoshi Y, Watanabe H, et al.
Protection of pancreatic islets using theranostic silencing nanoparticles in a baboon
model of islet transplantation. Diabetes. (2020) 69:2414–22. doi: 10.2337/db20-0517

54. Bottino R, Balamurugan AN, Smetanka C, Bertera S, He J, Rood PP, et al.
Isolation outcome and functional characteristics of young and adult pig pancreatic
islets for transplantation studies. Xenotransplantation. (2007) 14:74–82. doi: 10.1111/
j.1399-3089.2006.00374.x

55. Kim JH, Kim HI, Lee KW, Yu JE, Kim SH, Park HS, et al. Influence of strain and age
differences on the yields of porcine islet isolation: extremely high islet yields from SPF CMS
miniature pigs. Xenotransplantation. (2007) 14:60–6. doi: 10.1111/j.1399-3089.2006.00364.x

56. Mezrich JD, Haller GW, Arn JS, Houser SL, Madsen JC, Sachs DH.
Histocompatible miniature swine: an inbred large-animal model. Transplantation.
(2003) 75:904–7. doi: 10.1097/01.TP.0000054839.43852.BF

57. Fuchimoto Y, Yamada K, Shimizu A, Yasumoto A, Sawada T, Huang CH, et al.
Relationship between chimerism and tolerance in a kidney transplantation model.
J Immunol. (1999) 162:5704–11. doi: 10.4049/jimmunol.162.10.5704.

58. Cui W, Gu Y, Miyamoto M, Tanaka M, Xu B, Imamura M, et al. Novel method
for isolation of adult porcine pancreatic islets with two-stage digestion procedure. Cell
Transplant. (1999) 8:391–8. doi: 10.1177/096368979900800408

59. Griesemer AD, Lamattina JC, Okumi M, Etter JD, Shimizu A, Sachs DH,
et al. Linked suppression across an MHC-mismatched barrier in a miniature swine
kidney transplantation model. J Immunol. (2008) 181:4027–36. doi: 10.4049/
jimmunol.181.6.4027
frontiersin.org

https://doi.org/10.1097/MOT.0b013e32834c2393
https://doi.org/10.1097/TP.0b013e3182106091
https://doi.org/10.1007/978-3-319-18603-0_11
https://doi.org/10.1097/00007890-200003150-00007
https://doi.org/10.1111/xen.2010.17.issue-1
https://doi.org/10.2337/diab.44.1.104
https://doi.org/10.3727/096368917X694859
https://doi.org/10.1097/TP.0b013e3181f6e267
https://doi.org/10.1097/TP.0b013e3181f6e267
https://doi.org/10.1111/xen.12102
https://doi.org/10.2337/diabetes.47.9.1406
https://doi.org/10.1038/nm1172
https://doi.org/10.1038/nm1171
https://doi.org/10.1677/joe.0.1770127
https://doi.org/10.1111/j.1600-6143.2009.02850.x
https://doi.org/10.1111/j.1600-6143.2011.03720.x
https://doi.org/10.3389/fimmu.2022.898948
https://doi.org/10.4049/jimmunol.164.6.3079
https://doi.org/10.1097/00007890-200203150-00032
https://doi.org/10.1097/01.TP.0000080608.42480.E8
https://doi.org/10.1097/01.TP.0000080608.42480.E8
https://doi.org/10.2337/diabetes.51.11.3220
https://doi.org/10.1097/00007890-200211150-00005
https://doi.org/10.1111/j.1600-6143.2011.03733.x
https://doi.org/10.1111/j.1600-6143.2011.03733.x
https://doi.org/10.2337/db20-0517
https://doi.org/10.1111/j.1399-3089.2006.00374.x
https://doi.org/10.1111/j.1399-3089.2006.00374.x
https://doi.org/10.1111/j.1399-3089.2006.00364.x
https://doi.org/10.1097/01.TP.0000054839.43852.BF
https://doi.org/10.4049/jimmunol.162.10.5704
https://doi.org/10.1177/096368979900800408
https://doi.org/10.4049/jimmunol.181.6.4027
https://doi.org/10.4049/jimmunol.181.6.4027
https://doi.org/10.3389/fimmu.2024.1351717
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Lisha Mou,
Shenzhen Second People’s Hospital, China

REVIEWED BY

Dafei Chai,
Xuzhou Medical University, China
Rongkai Yan,
The Ohio State University, United States

*CORRESPONDENCE

Yi Wang

w_yi2022@163.com

Jianzhen Lv

cancan912@163.com;

Si-Yuan Song

si-yuan.song@bcm.edu

†These authors have contributed equally to
this work

RECEIVED 15 February 2024

ACCEPTED 13 March 2024
PUBLISHED 22 March 2024

CITATION

Zhang X, Wang H, Xie Q, Zhang Y, Yang Y,
Yuan M, Cui Y, Song S-Y, Lv J and Wang Y
(2024) Advancing kidney xenotransplantation
with anesthesia and surgery - bridging
preclinical and clinical frontiers challenges
and prospects.
Front. Immunol. 15:1386382.
doi: 10.3389/fimmu.2024.1386382

COPYRIGHT

© 2024 Zhang, Wang, Xie, Zhang, Yang, Yuan,
Cui, Song, Lv and Wang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 22 March 2024

DOI 10.3389/fimmu.2024.1386382
Advancing kidney
xenotransplantation with
anesthesia and surgery -
bridging preclinical and clinical
frontiers challenges
and prospects
Xiaojian Zhang1†, Hailian Wang2†, Qin Xie3†, Yang Zhang4†,
Yixin Yang5, Man Yuan6, Yuqi Cui7, Si-Yuan Song8*,
Jianzhen Lv9* and Yi Wang2*

1Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of
Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and
Technology of China, Chengdu, China, 2Clinical Immunology Translational Medicine Key Laboratory
of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and
Technology of China, Chengdu, China, 3Department of Critical Care Medicine, Zhongnan Hospital of
Wuhan University, Wuhan, China, 4Department of Anesthesiology, Perioperative and Pain Medicine,
Stanford University School of Medicine, Standford, CA, United States, 5The First Clinical Medical
College of Norman Bethune University of Medical Sciences, Jilin, China, 6Eye Center, Renmin
Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China, 7Department of Geriatrics,
Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock,
AR, United States, 8Department of Neuroscience, Baylor College of Medicine, Houston, TX, United
States, 9School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
Xenotransplantation is emerging as a vital solution to the critical shortage of

organs available for transplantation, significantly propelled by advancements in

genetic engineering and the development of sophisticated immunosuppressive

treatments. Specifically, the transplantation of kidneys from genetically

engineered pigs into human patients has made significant progress, offering a

potential clinical solution to the shortage of human kidney supply. Recent trials

involving the transplantation of these modified porcine kidneys into deceased

human bodies have underscored the practicality of this approach, advancing the

field towards potential clinical applications. However, numerous challenges

remain, especially in the domains of identifying suitable donor-recipient

matches and formulating effective immunosuppressive protocols crucial for

transplant success. Critical to advancing xenotransplantation into clinical

settings are the nuanced considerations of anesthesia and surgical practices

required for these complex procedures. The precise genetic modification of

porcine kidneys marks a significant leap in addressing the biological and

immunological hurdles that have traditionally challenged xenotransplantation.

Yet, the success of these transplants hinges on the process of meticulously

matching these organs with human recipients, which demands thorough

understanding of immunological compatibility, the risk of organ rejection, and

the prevention of zoonotic disease transmission. In parallel, the development and

optimization of immunosuppressive protocols are imperative to mitigate

rejection risks while minimizing side effects, necessitating innovative

approaches in both pharmacology and clinical practices. Furthermore, the
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post-operative care of recipients, encompassing vigilant monitoring for signs of

organ rejection, infectious disease surveillance, and psychological support, is

crucial for ensuring post-transplant life quality. This comprehensive care

highlights the importance of a multidisciplinary approach involving transplant

surgeons, anesthesiologists, immunologists, infectiologists and psychiatrists. The

integration of anesthesia and surgical expertise is particularly vital, ensuring the

best possible outcomes of those patients undergoing these novel transplants,

through safe procedural practices. As xenotransplantation moving closer to

clinical reality, establishing consensus guidelines on various aspects, including

donor-recipient selection, immunosuppression, as well as surgical and

anesthetic management of these transplants, is essential. Addressing these

challenges through rigorous research and collective collaboration will be the

key, not only to navigate the ethical, medical, and logistical complexities of

introducing kidney xenotransplantation into mainstream clinical practice, but

also itself marks a new era in organ transplantation.
KEYWORDS

xenogeneic kidney transplantation, genetically modified pigs, anesthesia, immunological
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1 Introduction

Kidney transplantation is thought of the gold standard

treatment for those end-stage renal disease patients, which will

present substantial improvement in quality of life and life

expectancy. This procedure, particularly allogenic kidney

transplantation, has achieved remarkable success in extending

lives (1, 2). Nonetheless, the ongoing shortage of available organs

for transplantation represents a significant hurdle, failing clinical

demand. In response, the medical community has broadened the

donor pool, such as utilizing organs from both deceased and living

donors, including those marginal donors or undergoing ABO-

incompatible transplants. Such efforts, while commendable, have

not sufficiently mitigated the organ scarcity crisis. This situation

underscores the urgent necessity for innovative strategies to

augment the organ donor pool. Integrating advanced surgical

techniques and anesthesia practices in the transplantation process

is also vital, not only to ensure patient safety during these complex

procedures but also to potentially increase the viability of organs

from the marginal donors for transplantation. By refining surgical

and anesthetic methodologies, the transplantation community can

enhance post-operative outcomes and expand the criteria for donor

acceptance, thereby addressing the pressing demand for kidney

transplants (1).

Xenotransplantation, the process of transplanting organs or tissues

between different species, has emerged as a pivotal solution in the quest

to alleviate the organ shortage. Recent advancements in the realms of

genetic engineering and immunosuppression, particularly through the

use of targeted monoclonal antibodies, have propelled forward the
0273
research into kidney xenotransplantation. Experiments involving the

transplantation of genetically modified porcine kidneys into non-

human recipients have demonstrated significant progress, through

those extended graft survival times reported (3). These achievements

underscore the potential of xenotransplantation to bridge the gap in

organ demand. However, translating these findings to human

recipients is met with caution, due to the inherent biological and

immunological differences, as well as the looming concerns over safety

and ethical implications. The journey toward the clinical application of

porcine-to-human kidney transplants is fraught with uncertainties,

necessitating rigorous investigation and ethical deliberation.

The exploration of xenotransplantation, as a viable source of

kidneys for transplantation, is gaining momentum, underpinned by

the pressing need to address the organ shortage crisis. This

approach not only promises to expand the donor pool but also to

pioneer new frontiers in transplantation medicine (4). Advances in

genetic modification techniques aim to enhance organ compatibility

and reduce the likelihood of rejection and cross-species infection,

marking a significant leap towards making xenotransplantation a

reality for patients in need (4).

Moreover, the field of xenotransplantation is evolving alongside

considerations of ethical standards and regulatory frameworks,

ensuring that the development and potential clinical implementation

are conducted with the utmost care for safety and ethical integrity. As

the scientific community continues to unravel the complexities of

xenogeneic organ transplantation, the collective goal remains clear: to

provide a sustainable, ethical solution to the organ shortage crisis,

ultimately saving more lives through innovative medical

breakthroughs (5).
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In essence, the path forward in xenotransplantation research

and its prospective clinical application is laden with challenges yet

brimming with potential. Through continued interdisciplinary

collaboration, rigorous ethical scrutiny, and innovative scientific

inquiry, xenotransplantation holds the promise of significantly

impacting the future of organ transplantation, offering hope to

countless individuals awaiting life-saving transplants.
2 Donor selection in
kidney transplantation

In the advancement of xenogeneic kidney transplantation, the

selection and genetic engineering of donor animals are paramount to

ensuring the safety and efficacy of this innovative treatment

approach. Due to the potential risk of virus transmission that

makes non-human primates (NHPs) less suitable as xenotransplant

donors, pigs have become the preferred source for donor organs. Pig

kidneys, with their physiological and anatomical similarities to

human kidneys, offer a practical alternative. They not only closely

match human kidneys in size and function but also have the

advantage of rapid reproduction and the capability for precise

genetic modifications. However, the considerable genetic disparities

between pigs and humans pose a significant challenge, often resulting

in strong immune rejection and the failure of the transplant. To

counteract these issues, genetic engineering plays a critical role.

The advent of CRISPR/Cas9 gene-editing technology has been a

game-changer in this field. By targeting specific genes, scientists can

reduce the risk of hyperacute and acute rejection responses. For instance,

the elimination of the a-1,3-galactosyltransferase (GGTA1) gene in pigs

prevents the expression of the aGal xenoantigen, significantly lowering
the chances of hyperacute rejection. Further modifications, such as the

deletion of the b-1,4-N-acetylgalactosaminyltransferase (b4GalNT2) and
cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH)

genes, have been shown to mitigate acute vascular rejections that are not

mediated by aGal antigens (6). The integration of human genes

encoding complement regulatory proteins, anticoagulants, immune

regulators, and other protective elements into the pig genome further

enhances the compatibility of porcine kidneys with human recipients.

These include genes for human complement regulatory proteins (hCD46

and hCD55), which help protect the transplanted organ from the

recipient’s immune system, and genes like human thrombomodulin

(hTBM) and human endothelial protein C receptor (hEPCR), which

work to prevent clotting and improve graft survival (6–11) (Figure 1).

Research institutions, such as the University of Alabama, have

made significant strides by utilizing pigs with a comprehensive suite of

genetic modifications, including enhancements to immune regulation

and coagulation profiles, as well as the removal of specific antigens

known to trigger rejection (12). This meticulous genetic engineering

aims to produce organs that are not only less likely to be rejected but

also capable of performing their physiological functions without

inducing harmful side effects in the recipient.
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The continuous exploration and refinement of these genetic

modifications underscore the complexity of making xenotransplantation

a viable clinical option. As researchers dive deeper into the genetic

underpinnings of immune rejection and organ compatibility,

xenotransplantation alleviating the organ shortage crisis is coming true.

Yet, it is essential to balance the enthusiasm for these technological

advances with a careful assessment of their long-term implications for

both organ recipients and the broader field of transplantation medicine.

Future research must also address the ethical considerations

and regulatory challenges associated with xenotransplantation. As

genetic engineering techniques become more sophisticated,

consensus of the moral, ethical, and societal implications of using

genetically modified animals for organ transplantation must be

reached. Those topics warranting immediate attention includes

animal welfare, the potential impact on natural ecosystems, and

the long-term health outcomes for transplant recipients. Moreover,

as the field progresses towards potential clinical applications,

establishing clear and comprehensive regulatory frameworks will

be crucial to ensuring the safety, efficacy, and ethical integrity of

organ xenotransplantation.

While the genetic engineering of pigs for kidney xenotransplantation

represents a frontier of medical science with the potential to dramatically

expand the organ donor pool, it also poses a myriad of scientific, ethical,

and regulatory challenges. Navigating these complexities will require

concerted efforts from researchers, ethicists, and policymakers, with the

ultimate goal of making xenotransplantation a safe, ethical, and effective

solution for the millions worldwide in need of life-saving

organ transplants.
3 Xenotransplantation
recipient selection

Historically, xenotransplantation has traversed a challenging path,

with initial attempts to transplant animal organs into humans dating

back to the early 20th century, notably beginning in 1906 (13). The

pursuit of understanding xenotransplantation’s complexities led

researchers to utilize animal models that have smaller body sizes,

despite their significant genetic differences from humans (e.g., a 33.4%

nucleotide difference between mice and rats, compared to a 2.6%

difference between macaques and baboons). These models, particularly

rodents, were instrumental in elucidating the humoral and cellular

dynamics of xenotransplantation. Up until 2012, rodents were the

backbone of xenotransplantation studies, contributing to

approximately 95% of research in the field. The advent of

sophisticated genetic editing technologies has recently shifted the

preference towards NHPs as models, given their closer genetic

proximity to humans, which allows for more accurate simulation of

immunosuppressive strategies and rejection mechanisms.

The utilization of brain-dead individuals as recipients of pig

kidney transplants has served as a crucial intermediary step towards

clinical xenotransplantation research (14). Although this model has

provided invaluable insights, it is limited by the short survival times
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of the recipients, which restricts the exploration of long-term

complications such as viral transmissions or abnormal organ

growth (15). Establishing a standardized selection criterion for

human recipients of xenotransplant organs remains a work in

progress. Proposals suggest prioritizing individuals for whom

conventional treatments have failed, or who face long waiting time

for allogeneic transplants due to immunological sensitivities, such as

a high level of panel reactive antibodies (PRA) (16). However, the

selection of highly sensitized patients poses its own set of challenges,

including the potential for adverse reactions between pig (swine

leukocyte antigen, SLA) and human (human leukocyte antigen, HLA)

antigens (16, 17). The field of xenotransplantation is at a critical

juncture, requiring expanded research efforts to explore not only the

scientific and ethical ramifications of these procedures but also the

practical aspects of preparing for and managing post-transplant care.

While the literature is currently sparse on the preoperative

preparation and rehabilitation of recipients in the context of

xenotransplantation, the lessons learned from allogeneic

transplantation underscore the importance of comprehensive

preoperative assessments and perioperative care. The clinical trials

conducted at New York University and the University of Alabama at

Birmingham involving xenotransplantation of kidneys into brain-

dead human subjects have yielded valuable insights for perioperative

management. Standard protocols for managing brain-dead patients

before organ donation typically involve the administration of

vasopressors, levothyroxine, steroids, and other interventions aimed
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at maintaining normal hemodynamics. During intraoperative

anesthesia care, efforts mirror those in human-to-human kidney

transplantation, encompassing administering immunosuppressive

agents, maintaining metabolic stability, and optimizing

hemodynamics to ensure adequate renal perfusion. To translate

these findings into clinical practice, adherence to established

standards of care is imperative. These pilot studies primarily

addressed early-phase recovery, focusing on aspects such as

hyperacute rejection, intraoperative life-threatening complications,

and kidney function. Their findings lay the groundwork for future

investigations to refine clinical practices in xenotransplantation (12,

18).. As xenotransplantation inches closer to clinical reality, the focus

must also broaden to include patient rehabilitation and long-term

care strategies that are tailored to the unique challenges of xenogeneic

organ transp lants . Addi t iona l ly , the exp lora t ion of

xenotransplantation as a bridge therapy for patients with end-stage

renal disease presents an area ripe for investigation. This approach

could potentially offer a lifeline to patients awaiting allogeneic

transplants, with the added advantage of not precluding future

allogeneic kidney transplants (19). The integration of

xenotransplantation into the broader organ transplantation field

raises complex questions regarding organ functionality, ethical

considerations, and long-term patient outcomes. With kidneys

playing a multifaceted role in human physiology, determining

whether pig kidneys can fully meet human needs requires

meticulous study. As research progresses, it will be crucial to
FIGURE 1

Genetic modifications in donor pigs for kidney xenotransplantation. This figure illustrates the CRISPR/Cas9 gene-editing technology and its application
to donor pigs to enhance compatibility for kidney xenotransplantation (A), while part B addresses the complications related to xenograft rejection (B).
The genetic modifications are listed as follows: GGTA1, alpha-1,3-galactosyltransferase; b4GalNT2, beta-1,4-N-acetylgalactosaminyltransferase 2; CMAH,
cytidine monophosphate-N-acetylneuraminic acid hydroxylase; PREVs, porcine endogenous retroviruses, including PERV-A, PERV-B, PERV-C,
inactivated to prevent cross-species viral transmission; hCD46, human membrane cofactor protein; hCD55, human decay-accelerating factor; hTBM,
human thrombomodulin; hEPCR, human endothelial protein C receptor; hCD59, human protectin; hB2M, human beta-2 microglobulin; HLA-E, human
leukocyte antigen E; hCD47, human integrin-associated protein; hTHBD, human thrombomodulin; hTFPI, human tissue factor pathway inhibitor; hCD39,
human ectonucleoside triphosphate diphosphohydrolase 1.
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develop clear guidelines for recipient selection, manage expectations

regarding the outcomes of xenotransplantation, and ensure ethical

standards are upheld in the pursuit of expanding the organ

donor pool.
4 Challenges in
kidney xenotransplantation

Xenotransplantation presents a multifaceted array of

challenges, from immunological barriers to ethical considerations,

each requiring meticulous attention to ensure the viability and

success of organ transplants from pigs to humans.

The immunosuppressive regimen is pivotal in xenotransplantation,

with a focus on minimizing the recipient’s immune response to the

xenograft. Standard immunosuppressants such as tacrolimus,

cyclosporine, mycophenolic acid (MPA), sirolimus, and

corticosteroids form the cornerstone of current strategies. The

evolution of immunosuppression has seen the introduction of novel

agents targeting specific pathways critical for T-cell activation and the

complement system. Anti-CD40 and anti-CD154 antibodies, for

instance, have demonstrated potential in prolonging the survival of

xenografts by inhibiting the CD40/CD154 co-stimulation pathway, a

crucial step in T-cell mediated rejection (20, 21). Meanwhile,

complement system inhibition, necessary to avert hyperacute

rejection and thrombosis, relies on advanced strategies such as the

use of C1 inhibitors and monoclonal antibodies like sutimlimab to

suppress complement activation (22–24).

The physiological functions of pig kidneys, including

erythropoietin (EPO) production and the regulation of the renin-

angiotensin-aldosterone system (RAAS), along with maintaining

proper acid-base balance, are critical for the graft’s integration and

function within the human body (25, 26). The brain-dead decedents

experience disrupted homeostasis and physiological functions, posing

significant challenges even in critical care settings to preserve

hemodynamic, hormonal, metabolic, and immune stability. In the

initial pilot studies, standard intraoperative anesthesia and

postoperative critical care protocols were implemented to ensure the

maintenance of these vital parameters, mirroring established clinical

practices (12, 18). The common complications include coagulopathy,

stemming from endothelial damage and acute rejection, further

complicate the post-transplant scenario, necessitating ongoing

research and development of strategies to mitigate these effects.

Viral infections, particularly those associated with porcine

endogenous retroviruses (PERV) and porcine cytomegalovirus

(PCMV/PRV), pose significant risks for xenotransplantation.

Nevertheless, both preclinical and clinical investigations

conducted thorough pathogen screening to exclude prevalent

viruses in pig donors, such as PERV-3 and PCMV. The post-

transplantation virus detection in the decedents also remained

negative (12, 27) However, the limitations of these negative

findings are underscored by the relatively short observation

periods. Consequently, developing future strategies to detect and

eliminate these viruses is imperative to uphold the safety of both the

graft and the recipient (28).
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Additionally, the ethical landscape of xenotransplantation,

encompassing animal rights, public attitudes, and regulatory

milestones such as the FDA’s 2022 approval of a pig-to-human heart

transplant, presents ongoing challenges (29). The pilot

xenotransplantation trials have underscored various ethical and

medicolegal considerations inherent in xenotransplantation research

(12, 18). In these studies, brain-dead decedents were precluded from

organ donation, and obtaining proper informed consent from their

families was deemed essential. Notably, the absence of specific

legislation governing xenotransplantation necessitates evolution of

the regulatory frameworks to enhance research protocols and future

clinical applications. Consultation with ethics committees is imperative

to ensure adherence to established guidelines such as the Uniform

Anatomical Gift Act (UAGA) and the dead-donor rule, while also

acknowledging the cultural and religious nuances surrounding organ

transplantation (30). Public acceptance and ethical considerations

remain integral to the advancement and clinical application of

xenotransplantation, highlighting the need for continued research,

dialogue, and education in this evolving field.

In summary, xenotransplantation’s journey towards becoming

a viable clinical option is fraught with complex immunological,

physiological, virological, and ethical challenges. Each step forward

requires a careful balance of innovation, safety, and ethical

considerations, with the ultimate goal of expanding the organ

donor pool and saving lives.
5 Conclusion and perspectives

Xenotransplantation has shown considerable promise in early-

stage studies, bridging a critical gap between theoretical potential and

practical clinical application (31). This transition from laboratory

success to real-world efficacy underscores the importance of

preclinical research as an essential step. This phase serves not only to

validate findings from controlled laboratory settings in more clinically

relevant scenarios but also to identify unforeseen challenges that may

not be apparent in initial studies. The intricate dance between clinical

application and laboratory research is informed by these challenges,

directing the trajectory of future investigations. The exploration of

genetically engineered pigs, particularly those modified with multiple

genes, marks a significant advancement in this field (3). However,

delving deeper into the specific functions of these genetic modifications

and the discovery of new xenoantigens remain critical areas for further

research. The protracted process of breeding these genetically altered

pigs also poses a logistical challenge, emphasizing the need for

streamlining breeding techniques to enhance research efficiency.

The ethical considerations surrounding the selection of

participants for clinical trials, especially the inclusion of end-stage

renal disease patients or those not eligible for conventional transplants,

continue to provoke debate. Alternatively, the use of brain-dead

individuals in preclinical studies presents a less contentious pathway,

aligning with both ethical standards and research needs. Meanwhile,

the quest for optimal immunosuppression strategies remains ongoing,

with the current regimens requiring refinement to improve outcomes

and reduce adverse effects. The consistency in selecting donor
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genotypes and standardizing perioperative care protocols also presents

a significant hurdle, mirroring the complexity of translating

xenotransplantation into a clinically viable option. Persistent issues

such as graft rejection, inflammation, coagulation disorders,

maintaining the physiological function of transplanted kidneys, and

managing the risk of viral transmission underscore the multifaceted

challenges ahead.

As preclinical research progresses, it is imperative to tackle these

obstacles head-on, paving the way for the successful integration of

xenotransplantation into clinical practice. The future of this innovative

field hinges on our ability to navigate these complexities, requiring a

concerted effort from researchers, clinicians, and ethicists alike. By

addressing the nuanced challenges of genetic engineering,

immunosuppression, and clinical trial design, xenotransplantation

can move closer to becoming a tangible solution for the organ

shortage crisis. Furthermore, enhancing the understanding of

xenograft physiology and immunology will be crucial in developing

targeted interventions that minimize rejection and improve long-term

graft survival. Through these endeavors, xenotransplantation stands on

the cusp of transitioning from an experimental procedure to a

revolutionary treatment modality, offering hope to thousands of

patients awaiting life-saving organ transplants.
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Background: Kidney transplantation is considered the most effective treatment

for end-stage renal failure. Recent studies have shown that the significance of the

immune microenvironment after kidney transplantation in determining

prognosis of patients. Therefore, this study aimed to conduct a bibliometric

analysis to provide an overview of the knowledge structure and research trends

regarding the immune microenvironment and survival in kidney transplantation.

Methods: Our search included relevant publications from 2013 to 2023 retrieved

from the Web of Science core repository and finally included 865 articles. To

perform the bibliometric analysis, we utilized tools such as VOSviewer, CiteSpace,

and the R package “bibliometrix”. The analysis focused on various aspects,

including country, author, year, topic, reference, and keyword clustering.

Results: Based on the inclusion criteria, a total of 865 articles were found, with a

trend of steady increase. China and the United States were the countries with the

most publications. Nanjing Medical University was the most productive

institution. High-frequency keywords were clustered into 6 areas, including

kidney transplantation, transforming growth factor b, macrophage, antibody-

mediated rejection, necrosis factor alpha, and dysfunction. Antibody mediated

rejection (2019-2023) was the main area of research in recent years.
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Conclusion: This groundbreaking bibliometric study comprehensively

summarizes the research trends and advances related to the immune

microenvironment and survival after kidney transplantation. It identifies recent

frontiers of research and highlights promising directions for future studies,

potentially offering fresh perspectives to scholars in the field.
KEYWORDS

Ci teSpace , b ib l iometr ics , VOSview, k idney t ransp lantat ion , immune
microenvironment, survival
1 Introduction

Kidney transplantation has become the preferred procedure for

the treatment of patients with kidney failure because it is the most

effective treatment, both medically and economically (1–3). Advances

in immunosuppressive drugs and protocols have markedly reduced

the incidence of graft rejection and improved survival rates of patients

in recent years (3–5). Nonetheless, improving long-term transplant

outcomes remains a crucial challenge (4). Many current studies have

shown that allograft reaction is the major cause of late kidney

transplant failure (6–8). Therefore, new treatments are necessary to

improve long-term graft survival and suppress allograft reactions.

Many studies have identified that the immunemicroenvironment

(immune cells, cytokines, etc.) plays a key role in coordinating the

immune response after kidney transplantation. Therefore, they can be

investigated for potential applications in new therapeutic strategies

(9–11). Cells in the immune microenvironment play a critical role in

prolonging the survival of kidney transplant patients after kidney

transplantation (12, 13). Therefore, this study systematically explores

the publications and hotspots of research related to the relationship

between the immune microenvironment and patient survival after

kidney transplantation.

The term “bibliometric analysis” refers to the use of mathematical

and statistical methods that are commonly used to provide a

comprehensive picture of the current status of a field, publication

trends, scientific output of researchers, institutions, and countries, and

future research hotspots (14, 15). This method has been widely used in

several fields. To the best of our knowledge, there have been no

published bibliometric analyses of the immune microenvironment

after kidney transplantation. Therefore, this study is aimed to reveal

difficult problems and research hotspots related to the immune

microenvironment after kidney transplantation over the past 10 years.
2 Materials and methods

2.1 Data collection

We conducted a literature search on the Web of Science Core

Collection (WoSCC) database on August 21. The search formula
0280
was as follow TS = (“Cytokines” OR “Chemokines” OR “Growth

Differentiation Factor 15”OR “Hematopoietic Cell Growth Factors”

OR “Hepatocyte Growth Factor” OR “Interferons” OR “Interleukin

1 Receptor Antagonist Protein” OR “Interleukins” OR “Leukemia

Inhibitory Factor” OR “Lymphokines” OR “Monokines” OR

“Oncostatin M” OR “Osteopontin” OR “Thymic Stromal

Lymphopoietin” OR “Transforming Growth Factor beta” OR

“Tumor Necrosis Factors”) AND (“Kidney Transplantation”)

AND (“Language = English”), and the type of documents is set to

“articles”. The search was limited to the period from August 21,

2013 to August 21, 2024. Two authors read the abstract and full text

and exclude articles that are not relevant to the articles. The flow

chart of the included articles is shown in Figure 1, and a total of 865

articles were selected for bibliometric analysis.
2.2 Data analysis

In this study, CiteSpace 6.1. R3, VOSviewer 1.6.18, and

Microsoft Excel 2019 were used for the bibliometric analysis,

visualization methods, and integration analysis (5, 16).

VOSviewer can extract key information from a wide range of

publications, including lead authors, and analyze country and

institution, keywords, scientific partnerships, citations, and co-

citations (17). CiteSpace explores the current state of research,

research hotspots, research frontiers, and development process of

a scientific field by generating a series of visual knowledge maps that

reveal the trends in the field (18). The Excel software program was

used to analyze the annual publications.
3 Results

3.1 Annual publications

Based on our inclusion criteria (Figure 1), a total of 865 articles

were included in the study. As shown in Figure 2, the number of

papers related to the immune microenvironment after kidney

transplantation has fluctuated over the past 10 years, reaching a

peak in 2017, with a generally stable trend.
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3.2 Distribution of countries/regions
and institution

As shown in Figure 3A, China is the most published country,

followed by the United States, Germany, Netherlands and Japan.

Afterward, we filtered and visualized all countries based on the

number of publications greater than or equal to 2, and built a

collaboration network (Figure 3B). We discovered that there are

many positive collaborations between different countries. For

example, China has close collaborations with the United States;

the United States has also actively collaborated with Australia,

Japan, France, and the United Kingdom. As shown in the figure,

the top six universities come from five countries, with one-third of

them located in China. The six universities that have published the

most relevant papers are Harvard Medical School, Leiden

University, Nanjing Medical University, Oslo University Hospital,

Pomeranian Medical University, and Sichuan University. In the last

decade, the number of papers published in China has increased

rapidly year by year, followed by France (Figure 4).
3.3 Authors and institutions of
relevant articles

Among these publications, the Chinese authors published the

most papers, followed by the United States (Figure 5A). We

constructed a collaborative network based on authors with a
Frontiers in Immunology 0381
number of publications greater than or equal to two. The largest

nodes and the most relevant publications, and they were closely

related to each other (Figure 5B).
3.4 Analysis of co-cited references and
reference burst

When two or more references are cited in more than one article,

the two references are considered to be in a co-citation relationship

(18). The most cited country was China with 3,877 citations,

followed by the United States with 3,306 citations (Figure 6A).

The main cited relevant institution was Nanjing Medical University

with 47 articles, followed by Pomeranian Medical University with

43 articles (Figure 6B).

A citation burst is a document that is frequently cited by

scholars in a particular field over a certain period of time. In our

study, CiteSpace identified ten documents with strong citation

bursts (Figure 6C). The earliest citation bursts for references

appeared in 2015 and the latest in 2021. The literature with the

strongest citation outbreak (strength = 5.28) is “The Banff 2017

Kidney Meeting Report: Revised diagnostic criteria for chronic

active T cell-mediated rejection, antibody-mediated rejection, and

prospects for integrative endpoints for next-generation clinical

trials” (19), citing an outbreak period of 2019–2023. Overall, the

outbreak strength of the ten publicatio.
3.5 Keywords used in co-citation networks

Different visual clusters of keywords used in published articles

were mapped using VOSview and CiteSpace (20). Clustered network

visualizations and frequency heat maps of keywords were created on

VOSview. CiteSpace was connected to the carrot 2 system to analyze

the key topics and related common words, which were shown as

follows: kidney transplantation, cytokines, rapid kidney injury,

mesenchymal stem cells, and immunosuppression (Figures 7A–C).

The yellower color represents the latest hot keywords. We used

CiteSpace software to complete the analysis of keyword bursts in the

immune microenvironment of kidney transplantation (Figure 7D).

“TGF-b”, “macrophage” and “antibody-mediated rejection” appeared

earlier and were noticed earlier. The keywords with the strongest
FIGURE 2

Annual yield of research on the immune microenvironment related to survival after kidney transplantation.
FIGURE 1

Screening flowchart for inclusion of studies.
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cited outbreaks were even transplantation (strength=5.84), TGF-b
(strength=5.61) andmacrophages (strength=5.14). Macrophage is the

keyword with stronger outbreaks that appeared in 2018, which could

be a hotspot for research or a turning point with prospective

research implication.
4 Discussion

4.1 General information study

This is the first bibliometric and visual analysis of the immune

microenvironment in kidney transplantation between 2013 and

2023. A total of 865 articles from SCI-E were included in this study,

and each retrieved article was screened to ensure relevance to the

topic. The publications and citation frequency related to the
Frontiers in Immunology 0482
immune microenvironment after kidney transplantation have

shown a consistent increase, making it an active research topic

over the last decade (Figure 2). China, the United States, and

Germany were major contributors to this research area. China

published the most cited papers, indicating that it has conducted in-

depth research in this area (Figure 3). Among the top six selected

institutions, the United States institutions mainly collaborated with

German research institutions.

China and the United States are the main countries conducting

research on the immune microenvironment of kidney transplantation,

with China in the first place. About one-third of the top 6 research

organizations are located in China, followed by the United States. We

have noticed close cooperation between the four countries - the United

States, China, Germany and Japan. In terms of authors, there are good

collaborations between some authors, such as Ruoyun Tan, Li Sun,

Zhen Xu, Min Gu, and Zijie Wang. One of the most influential is the

article published in Frontiers in immunology in 2021 and 2022. It is

entitled “Combined Immunotherapy With Belatacept and BTLA

Overexpression Attenuates Acute Rejection Following Kidney

Transplantation” and “Diagnostic Biomarkers and Immune

Infiltration in Patients With T Cell-Mediated Rejection After Kidney

Transplantation.”They focused on the role played by T-lymphocytes in

the immune microenvironment after kidney transplantation in

mediating transplant rejection and its clinical use (13, 21).

In terms of institutions, we find that Nanjing Medical University

has the most publications. The authors, Ruoyun Tan, Li Sun Min Gu,

and Zijie Wang, are from Nanjing Medical University. China and the

United States as major countries for research, but the breadth and

strength of inter-institutional collaborations are not ideal. Clearly,

this situation will hinder the development of the research field in the

long run. Therefore, we strongly recommend that research

institutions in various countries develop extensive cooperation and

communication to promote the development of the immune

microenvironment in kidney transplantation.
4.2 Hotspots and Frontiers

The basic structure of research in the field of the immune

microenvironment after kidney transplantation can be revealed

using literature co-citation networks and keyword clustering
FIGURE 4

Top 10 countries in terms of articles published in the field between 2013-2023.
A

B

FIGURE 3

Map of collaboration between different countries (A). Trends in
publication distribution in the top five countries (B).
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analyses. The strongest references citation bursts were the meeting

summaries of the 12th and 13th Banff Transplant Pathology

Conferences. The goal of both meetings hopes to provide a greater

understanding of graft immune rejection through the continued

integration of advances in histologic, serologic, and molecular

diagnostic techniques. To provide precise comprehensive scoring,

accurate and routine diagnostics for clinical trials (22, 23). By

scrutinizing these analyses, a great deal of valuable information can

be gleaned, including TGF-b, and macrophages and antibody-

mediated rejection. These findings help to identify emerging trends

and research hotspots in the field of the immune microenvironment

after kidney transplantation.

4.2.1 Kidney transplantation and macrophages
Macrophages are a key immune system for innate immunity

and have a wide range of tissue-resident cell surface receptors,

including pattern recognition receptors for damage-associated

molecular patterns (DAMPs), complement products, chemokines,

Fc fragments, and toll-like receptors (TLRs) (17). It is well known

that macrophages play a key role in organogenesis, tissue

homeostasis and promotion of tissue injury.

A unique feature of macrophages in allogeneic transplantation is

that donor macrophages are transferred with the donor organ at the

time of transplantation and recipient monocyte-derived macrophages

are subsequently recruited into the allogeneic graft (18). In early severe

renal rejection transplants, macrophages account for approximately

60% of the immune cells. Macrophages play a key role in acute cell-

mediated rejection and antibody-mediated rejection (24, 25). The

major cause of long-term renal transplant failure is histologic

interstitial fibrosis and tubular atrophy. The current study found

that intercellular communication between renal parenchymal cells

and donor-derived macrophages, detected several years after

transplantation, plays a key role in the proliferation of damage (19, 20).

In summary, there is growing evidence of the important role of

macrophages in tissue inflammation and repair. In recent years,

there has been a renewed and increasing emphasis on macrophages.

Thus, macrophages are promising therapeutic targets for clinical

transplantation (26). Currently, regulatory cell therapy, which aims

to protect the immunomodulation of organ grafts, has become an

attractive therapeutic approach (27). This approach focuses on

expanding specific populations of regulatory immune cells in vitro

in the form of cell-based medicinal products (CBMPs), which are

then infused into transplant recipients to minimize graft rejection.

The CBMPs studied so far mainly consist of two polyclonal T

regulatory (pTreg-1 and pTreg-2), two donor antigen-reactive Treg

(darTreg-CSB and darTreg-sBC), a tolerogenic dendritic cell

(autologous tolerogenic dendritic cell [ATDC]) and a regulatory

macrophage (Mreg) cell product (28). The current study found that

compared to immunosuppressants, regulatory cell therapy has good

efficacy in both early and late kidney transplantation with fewer

infectious complications and side effects. This is serving as a major

direction for future research (27–32).

4.2.2 Kidney transplantation and TGF-b
Cytokines play a key role in coordinating the immune response

after kidney transplantation. Therefore, it is crucial to understand the
A

B

FIGURE 5

Collaborative networks between authors and between countries (A).
Countries associated with authorsVisualization map between
authors (B).
A

B

C

FIGURE 6

Institution (A), country (B) and the 10 most cited references to
which the publication relates. The red bar indicates the year with the
most citations (C).
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role of cytokines in the allogeneic immune response (33). Among all

cytokines, TGF-b is a multifaceted cytokine that regulates pro- and

anti-inflammatory responses depending on the microenvironment and

target cell type (34). In addition, TGF-b signaling regulates a broad

spectrum of biological processes involved in tissue homeostasis and

injury responses, including cell growth and differentiation, migration,

survival and death (35). To date, three major isoforms of TGF-b (TGF-
b1, TGF-b2 and TGF-b3) encoding for TGFB1, TGFB2 and TGFB3,

respectively, have been identified in humans. Of these, TGF-b1 is the

most common and best characterized isoform (10).

Interstitial fibrosis is an important factor in graft loss in chronic

transplant kidney injury (19). TGF-b1 is a key fibrotic cytokine

involved in fibrosis in a variety of chronic kidney and other organ

diseases (20). Expression of TGF-b can be detected in allograft

patients, especially in failed kidney graft tissues (36).

In kidney transplantation, TGF-b1 has been a topic of interest

and most investigators believe that TGF-b1 affects allograft survival
in different ways (37). It has been shown that TGF-b1 cells are

closely associated with the short-term prognosis of clinical kidney

transplantation. Several clinical studies have found that elevated

serum TGF-b1 levels after long-term kidney transplantation may

have a positive effect on long-term graft survival and may be a

predictor of graft survival and function (21, 24–26).
4.3 Kidney transplantation and cell therapy

The combination of general immunosuppressive drugs

improves graft survival cycles. However, graft survival has been
Frontiers in Immunology 0684
shortened by chronic rejection and immunosuppressive side effects

and has been stagnant for the past decade (1, 38). To address this

problem, organ transplantation urgently requires new strategies to

reduce our dependence on immunosuppressive drugs to prevent

allograft rejection. Currently, the use of cell-based drug products is

the state-of-the-art method to reduce immunosuppression in organ

transplantation (28). Regulatory cell therapy has emerged as an

attractive therapeutic approach to establish immunomodulation

aimed at protecting organ grafts (39–41). Currently, common

types of regulatory cell therapy include regulatory T cells (Treg),

monocyte-derived dendritic cells, and regulatory macrophages. Of

these, regulatory T cells are most commonly utilized in clinical

practice (42–44). Other cell therapies are currently in clinical testing

(45, 46). Current studies have shown that cell therapy is safe and has

fewer infectious complications. Thus, immune cell therapy is a

potentially useful treatment for renal transplant recipients, reducing

the burden of general immunosuppression as well as improving

long-term outcomes (28, 47).
4.4 Advantages and shortcomings

This study has several unique advantages over traditional reviews.

First, we systematically analyzed the studies on the correlation

between immune microenvironment and survival after kidney

transplantation for the first time by using bibliometric methods.

Second, the bibliometric analysis objectively and comprehensively

quantifies and evolves the research hotspots and trends in a certain

field through mathematical techniques, which can provide a
A B

DC

FIGURE 7

Clustering of keywords in studies related to the immune microenvironment and survival after kidney transplantation (A–C). Top 25 most cited
keywords (D).
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comprehensive guide for scholars concerned with related research.

Finally, in this review, not only the evidence of hotspots and trends of

the correlation between immune microenvironment and survival

after kidney transplantation is objectively presented, but also the

current research results and outlook are systematically summarized.

Therefore, it is hoped that the summarization of the existing research

results will help researchers to quickly identify their strengths and

weaknesses, thus promoting the development of the field.

Of course, but there are still some limitations that may affect its

findings. First, the data used in this paper are exclusively from the

WoSCC database, excluding other databases, which may have missed

some relevant studies. Second, we only analyzed literature published

in English, ignoring studies in other languages. Although the search

terms related to the immune microenvironment contained most of

the content, they were still lacking, leading to potentially biased

results. Some of the relevant literature was not included in the study.

The year 2023 is not yet finished ending and only currently published

literature was included, which may have excluded some valuable

information. Finally, only articles were included without considering

political and social publications such as reviews, editorials and books.
5 Conclusion

The immune microenvironment after kidney transplantation

has important research value and applications for patient survival.

This study utilized the CiteSpace software to evaluate potential

collaborators and collaborating institutions, status, and cutting-

edge new ideas, thus providing future research trends for exploring

and developing the relevance of the immune microenvironment in

survival after kidney transplantation. China and the United States

have been the leading countries in the last decade. Many studies

have shown that immune cells play an important role in the

immune microenvironment of kidney transplantation, providing

a new therapeutic direction for immunosuppression after kidney

transplantation. Overall, the results of this study provide valuable

information for guiding future research.
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In the quest to address the critical shortage of donor organs for transplantation,

xenotransplantation stands out as a promising solution, offering amore abundant

supply of donor organs. Yet, its widespread clinical adoption remains hindered by

significant challenges, chief among them being immunological rejection. Central

to this issue is the role of the complement system, an essential component of

innate immunity that frequently triggers acute and chronic rejection through

hyperacute immune responses. Such responses can rapidly lead to transplant

embolism, compromising the function of the transplanted organ and ultimately

causing graft fai lure. This review delves into three key areas of

xenotransplantation research. It begins by examining the mechanisms through

which xenotransplantation activates both the classical and alternative

complement pathways. It then assesses the current landscape of

xenotransplantation from donor pigs, with a particular emphasis on the

innovative strides made in genetically engineering pigs to evade complement

system activation. These modifications are critical in mitigating the discordance

between pig endogenous retroviruses and human immune molecules.

Additionally, the review discusses pharmacological interventions designed to

support transplantation. By exploring the intricate relationship between the

complement system and xenotransplantation, this retrospective analysis not

only underscores the scientific and clinical importance of this field but also

sheds light on the potential pathways to overcoming one of the major barriers to

the success of xenografts. As such, the insights offered here hold significant

promise for advancing xenotransplantation from a research concept to a viable

clinical reality.
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1 Introduction

As of 2019, China’s organ donor registration boasted close to

1.7 million volunteers, a testament to its advancements in the field

of organ transplantation. In that same year, China ranked as the

world’s second-largest provider of allogeneic transplants,

showcasing over 10,000 kidney and 5,000 liver transplants at the

4th China-International Organ Donation Conference (1). A

significant policy shift in 2015 marked the transition to voluntary

organ donations from Chinese citizens as the exclusive legal source

for transplants (2), which, despite its ethical merits, has led to an

even greater deficit in available human organs for transplantation

and hindered research due to the scarcity.

This backdrop has propelled xenotransplantation to the

forefront as a promising solution to this shortage. Research in

this domain has progressively moved toward identifying specific

donor species, with primates being an initial choice due to their

genetic closeness to humans. However, the use of baboon organs

has consistently resulted in patient fatalities (3), steering the

scientific focus toward pigs as suitable organ donors. Pigs, with

their comparable organ size to humans and favorable breeding

traits, are currently the focal point of xenotransplantation research

(4–6). The journey of xenotransplantation, illustrated in Figure 1, is

now directed toward the development of transgenic pigs, which are

being heralded as the next step in transplantation science.

The hyperacute rejection of transplants, primarily driven by the

complement system, has been a longstanding challenge. This

system’s activation leads to the production of active compounds

like C3a and C3b (7), which catalyze immune inflammation and

graft endothelial thromboembolism. The discovery of a-Gal on
graft surfaces as a trigger for complement activation has steered the

development of a-Gal knockout (a-GalKO) pigs. Chinese research
teams, such as the one led by Pandengke, have been at the helm of

creating and refining a-Gal and b-Gal knockout pigs for several
Frontiers in Immunology 0288
generations. A milestone was achieved in June 2020 with the

cloning of a pig possessing triple knockouts, a significant leap

made possible by gene editing technologies targeting the

B4GalNT2 and CMAH genes (8).

The crux of this article revolves around the utilization of gene

editing to modify pig donors, aiming to mitigate the issue of

complement activation-induced hyperacute rejection post-

xenotransplantation. We discuss dual approaches to this end: the

genetic elimination of the a-Gal epitope from xenograft

endothelium and the introduction of human complement

regulatory proteins (hCRPs) into grafts via transgenesis.

Additionally, we explore the pharmaceutical avenues developed to

inhibit the complement system, a critical strategy to counter

rejection in xenotransplantation.
2 Xenograft activates the
complement system

Xenograft transplantation challenges the human immune

system, particularly through the activation of the complement

system, a sophisticated network of over 50 proteins crucial for the

immune response (9). It can be activated via three primary

pathways: the classical pathway (CL), the alternative pathway

(AP), and the lectin pathway (MBL) (10), all leading to the

potential destruction of the xenograft.

The classical pathway is initiated by the C1 complex binding to

antigen-antibody complexes, leading to the activation of C4 and C2,

and subsequently, the formation of C3 convertase (11). This

enzyme is pivotal in cleaving C3 into C3a and C3b, with C3b

joining with C4b2a to form C5 convertase, advancing the

complement cascade (12). In contrast, the alternative pathway,

triggered by substances like natural polysaccharides, relies on the

spontaneous hydrolysis of C3 and the formation of a fluid-phase C3
FIGURE 1

Milestones in the history of xenotransplantation. This timeline graphically represents the pivotal moments and groundbreaking achievements in the
field of xenotransplantation from the early 20th century to modern day.
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convertase, leading to a modest production of C3b that enhances

phagocytosis and anaphylatoxin production (13, 14). The lectin

pathway starts with MBL binding to microorganism surface

carbohydrates, recruiting MASP-1 and MASP-2 to form C3

convertase, mirroring the classical pathway’s initial steps (15, 16).

Xenotransplantation, especially from pig donors to primate

recipients, introduces immunological hurdles due to the rapid

complement-mediated response that often leads to hyperacute

rejection (HAR), characterized by graft embolism and failure (7,

17). The presence of natural antibodies in the recipient binding to

pig endothelial cell surface glycoproteins, such as a-galactosidase
(a-Gal) and N-acetylneuraminic acid hydroxylase (Neu5Gc

protein), activates the complement system, leading to clotting,

vascular embolism, and graft failure (18, 19). Studies have shown

that pig hearts transplanted into baboons are susceptible to this

rapid rejection, with serum analysis revealing IgM-a-Gal antibodies
bound to a-Gal, triggering the complement activation pathways

(18, 19).

However, genetic engineering offers promising strategies to

circumvent HAR by modifying donor pigs to reduce the human

complement system’s activation effects on graft survival. Knocking

out genes encoding heterologous endothelial antigens and creating

transgenic pigs expressing hCRPs are at the forefront of these

strategies (20). In vitro studies using pancreatic islets from a-
GalKO pigs showed reduced antibody deposition and lower levels

of complement activation, suggesting a diminished role of the lectin

pathway in xenograft rejection (18, 19).

Further research into the immunological interactions between

pig tissues and primate hosts has revealed that even in the absence

of preformed natural antibodies, HAR can occur, potentially

through the alternative complement pathway (21, 22). This

indicates a complex interplay between the classical and alternative

pathways in graft rejection, where the alternative pathway may

exacerbate C3a deposition within grafts, amplifying inflammatory

and immune responses (23).

Complement proteins C3a and C5a, along with the membrane

attack complex formed via the classical and alternative pathways,
Frontiers in Immunology 0389
play critical roles in xenograft tissue lysis. These proteins not only

mediate inflammation but also activate coagulation cascades,

contributing to the risk of thromboembolism in xenografts (24).

Studies have shown that inflammation induced by complement

activation can significantly reduce the expression of porcine

thrombomodulin, an anti-inflammatory molecule, on vascular

endothelial cells, highlighting the interconnectedness of

inflammation and thrombosis in xenotransplantation (25).

Addressing the challenge of HAR in xenotransplantation

requires innovative approaches to prevent complement activation.

Genetic modifications in pig donors, such as eliminating a-Gal
epitopes and introducing hCRPs, represent vital steps toward

improving graft survival and reducing complement-mediated

rejection risks. These strategies not only aim to mitigate the

immediate immunological challenges but also open new avenues

for long-term success in xenotransplantation, potentially

transforming it into a viable solution for organ shortages (20).
3 Genetic modifications in pigs

Pigs are optimal donors for xenotransplantation due to their

genetic, physiological, and anatomical similarities to humans,

alongside their capability for breeding in controlled environments

(26, 27). Despite these advantages, the genetic differences between

pigs and humans can lead to immunological discordance and

potential organ rejection. Advancements in genetic engineering

and somatic cell nuclear transfer have facilitated modifications to

the pig genome to reduce organ immunogenicity, aiming to prevent

the human immune system from rejecting pig organ transplants

(27, 28) (Figure 2). This progress is pivotal in addressing immune

rejections, with research exploring the growth of human organs

within pigs through chimeric methods, although sti l l

predominantly in rodent models.

The risk of viral infection, particularly from porcine

endogenous retroviruses (PERVs), represents a significant

challenge in xenotransplantation (29). Strategies to mitigate this
FIGURE 2

Process of creating gene-edited pig donors for xenotransplantation. This flowchart illustrates the stages of developing gene-edited pigs for organ
donation to human recipients.
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risk include breeding pigs in specific-pathogen-free (SPF)

environments and selecting pigs free from PERV-C to reduce the

risk of PERV-A/C-mediated transmission to humans (30).

Although endogenous retroviruses remain inactive within their

host species, causing no apparent disease, they could potentially

become active and infectious upon transmission to a recipient (27,

31, 32). Immune molecular incompatibility poses another obstacle,

with the immune system targeting foreign grafts, notably triggered

by pre-existing natural xenoantibodies recognizing Gal epitopes

(33–35). Genetically engineered pigs lacking alpha-1,3-Gal epitopes

represent a crucial step toward overcoming HAR and other forms of

immune rejection (27, 28).

Non-specific immune reactions, such as the instant blood-

mediated inflammatory reaction (IBMIR), significantly challenge

xenogeneic islet transplantation, leading to substantial graft loss

(36). Addressing these reactions involves genetic modifications of

donor animals, anticoagulation therapies, and the use of anti-

inflammatory treatments to preserve graft integrity and prevent

adaptive immune activation (37).
4 Genetic modification of pigs
for xenotransplantation

The development of genetically engineered pigs marks a

significant leap forward in addressing the challenges of

xenotransplantation from pigs to primates. Through cutting-edge

genome editing techniques, scientists have been able to introduce

precise modifications into the pig genome to mitigate xenograft

rejection and diminish the risk of interspecies infection (28).

Among the most promising modifications are the disruption of

the a-Gal and the incorporation of hCRPs, which have shown

considerable promise in preclinical studies involving pig-to-non-

human primate transplants.

Recent breakthroughs in gene editing, powered by artificial

nuclease technologies, have significantly expanded the possibilities

for generating gene-edited pigs. These technologies, including zinc

finger nuclease (ZFN) (38), transcription activator-like effector

nuclease (TALEN) (39), and the CRISPR/Cas system (40–43),

have enabled not only simple gene knockouts and knock-ins but

also complex multi-gene editing, precision point mutations, and

conditional gene modifications. These advancements allow for gene

editing at various developmental stages of pigs, offering new

avenues for creating donor pigs with optimized genetic traits

for xenotransplantation.

The hCRPs play a crucial role in maintaining the delicate

balance between complement activation and inhibition. Proteins

such as decay-accelerating factor (hDAF), membrane cofactor

protein (hMCP), and reactive membrane cleavage inhibitor

(hCD59) prevent unregulated complement activity, which could

otherwise lead to continuous production of complement

components and exacerbate endothelial damage in xenografts

(44). The expression of these hCRPs in donor pigs can

significantly reduce the risk of hyperacute rejection by limiting

the formation of the membrane attack complex (MAC) and

mitigating complement-mediated damage.
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The application of DAF (CD55), a membrane component found

on various human cells, has been explored for its potential to protect

grafts from early rejection phases (45, 46). DAF can disrupt C3

convertases on the cell surface, effectively downregulating

complement activation. Studies have demonstrated that expressing

hDAF in pig islets and other tissues can enhance protection

against human complement-mediated lysis and extend graft

survival (47, 48). Similarly, the expression of human h-transferase,

an inhibitor of the alternative complement pathway, has been

shown to provide significant protection for xenografts against

human complement attack, as evidenced by experiments with

transgenic pig livers transplanted into baboons (49, 50). These

genetic modifications underscore the potential of genetically

engineered pigs to overcome some of the most significant barriers

to successful xenotransplantation.

Membrane cofactor protein (MCP, CD46) plays a crucial role in

preventing the amplification loop of C3b deposition mediated by

alternative convertase. In an innovative approach, researchers

employed a-GalKO pigs that were genetically modified to express

human CD46 across all tissues, including the heart, exhibiting

elevated levels of human CD46 expression. This genetic

modification not only prevented B cell infiltration but also

significantly reduced T cell activity in the peripheral blood of

transplants, indicating an effective suppression of the T cell-

mediated response to xenoantigens (51).

Human CD59 serves as a protective mechanism against

autologous cell damage by the human complement system,

specifically by inhibiting the formation of the membrane attack

complex (MAC) during the final stage of complement activation (7,

52). Utilizing embryonic germ (EG) cells, which unlike somatic cells

can proliferate indefinitely while remaining undifferentiated, Hosup

Shim (53) developed a method to create transgenic pigs capable of

expressing human CD59. These EG cells, derived from primordial

germ cells (PGC) (54), were genetically modified with a 456 bp

fragment of the hCD59 gene, encompassing the entire coding

region, obtained from human fibroblast genes (55). Post-

transfection into porcine EG cells (56), these modified cells

exhibited significantly higher mitochondrial activity when

exposed to human serum containing complement, compared to

non-transgenic controls, demonstrating enhanced survival under

HAR conditions.

The development of multi-transgenic pigs offers a promising

strategy to mitigate xenograft damage more effectively. For instance,

pig cells expressing human CD59 have shown increased resistance

to lysis by human macrophages (57). Furthermore, the expression

of a1,2-fucosyltransferase (H-transferase, HT), alongside the

knockout of the a1,3-galactosyltransferase (GT) gene, presents a

viable alternative strategy. Combining gene edits to express both

hCD59 and human HT, or to achieve a-GalKO, enhances the

protective effects against human serum, thereby improving cell and

organ survival post-transplantation (58). Transgenic pigs

expressing human CD55, CD59, and H-Transferase have shown

significant reduction in complement-mediated graft destruction

(50), although these modifications alone could not completely

prevent humoral rejection, characterized by antibody deposition

and thrombotic microangiopathy. This suggests that while
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1383936
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1383936
significant strides have been made, further research is necessary to

minimize rejection mechanisms in xenotransplantation (28).
5 Complement system target drugs
for transplantation therapy

The complement system plays a crucial role in innate immunity

and immune regulation, protecting against infections and

participating in various physiological and pathological processes

(59). Despite its protective functions, dysregulated complement

activation can contribute to detrimental effects, including

inflammation and tissue damage. A deeper understanding of the

complement system’s components and mechanisms has spurred the

development of therapeutic drugs aimed at modulating

complement activity. These drugs target various complement

pathways, offering potential treatments for infectious,

inflammatory, traumatic, cancerous, autoimmune, or age-related

conditions, as well as preventing transplant rejection (60).

Eculizumab, the first drug targeting the complement system,

has revolutionized the treatment landscape for diseases like

paroxysmal nocturnal hemoglobinuria (PNH), significantly

improving patient outcomes (59, 61). In the context of organ

transplantation, the complement system is implicated in several

complications, including ischemia-reperfusion injury and antibody-

mediated rejection. Therapeutics such as C1-1NH (Cinryze,

Berinert, Ruconest, Cetor) and Soliris are making their way into

clinical practice, showing promise but with varying efficacy levels

(62). Future research is needed to identify the most effective

complement inhibitors and devise optimal treatment strategies.

The development programs for inhibitors targeting over a dozen

distinct complement pathways are summarized, with some already

undergoing clinical trials in both healthy volunteers and patients

(62–64). This broad spectrum of complement-targeted therapies

underscores the system’s significance across a range of medical

conditions and its potential as a therapeutic target in transplant

medicine, where controlling complement activation could mitigate

transplant rejection and improve graft survival.
6 Conclusions and perspective

The critical shortage of human organs for transplantation is a

global challenge, and xenotransplantation has emerged as a

promising approach to address this dilemma. Genetically

engineered pigs are at the forefront of donor options in

xenotransplantation, offering a viable solution to the organ

shortage crisis. Advances in gene editing technologies, such as

CRISPR/Cas9, TALEN, and somatic cell nuclear transfer (SCNT),

have significantly propelled xenotransplantation research forward,

enabling precise genetic modifications in pig donors.

The complement system plays a dual role in xenotransplantation:

it is a key player in the immune response against porcine endothelial
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cells following the binding of anti-porcine antibodies and

contributes to ischemia-reperfusion injury (IRI). Additionally, its

involvement in coagulation, inflammation, and the adaptive

immune response adds layers of complexity to its function in

xenograft rejection. Despite these immunobiological challenges, the

advent of genetically modified pigs, alongside an expanding array of

immunosuppressants and anti-inflammatory medications, is

progressively overcoming the hurdles faced by xenotransplantation.

Current genetic engineering efforts targeting complement

regulatory mechanisms have effectively mitigated concerns

related to complement activation. However, there remains a

potential necessity for anti-complement and anti-inflammatory

interventions, especially in acute settings, to ensure the long-term

success and acceptance of xenotransplantation as a feasible solution

to the organ shortage crisis.
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Liver failure represents a critical medical condition with a traditionally grim

prognosis, where treatment options have been notably limited. Historically,

liver transplantation has stood as the sole definitive cure, yet the stark disparity

between the limited availability of liver donations and the high demand for such

organs has significantly hampered its feasibility. This discrepancy has

necessitated the exploration of hepatocyte transplantation as a temporary,

supportive intervention. In light of this, our review delves into the burgeoning

field of hepatocyte transplantation, with a focus on the latest advancements in

maintaining hepatocyte function, co-microencapsulation techniques,

xenogeneic hepatocyte transplantation, and the selection of materials for

microencapsulation. Our examination of hepatocyte microencapsulation

research highlights that, to date, most studies have been conducted in vitro or

using liver failure mouse models, with a notable paucity of experiments on larger

mammals. The functionality of microencapsulated hepatocytes is primarily

inferred through indirect measures such as urea and albumin production and

the rate of ammonia clearance. Furthermore, research on the mechanisms

underlying hepatocyte co-microencapsulation remains limited, and the

practicality of xenogeneic hepatocyte transplantation requires further

validation. The potential of hepatocyte microencapsulation extends beyond

the current scope of application, suggesting a promising horizon for liver

failure treatment modalities. Innovations in encapsulation materials and

techniques aim to enhance cell viability and function, indicating a need for

comprehensive studies that bridge the gap between small-scale laboratory

success and clinical applicability. Moreover, the integration of bioengineering

and regenerative medicine offers novel pathways to refine hepatocyte

transplantation, potentially overcoming the challenges of immune rejection

and ensuring the long-term functionality of transplanted cells. In conclusion,
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while hepatocyte microencapsulation and transplantation herald a new era in

liver failure therapy, significant strides must be made to translate these

experimental approaches into viable clinical solutions. Future research should

aim to expand the experimental models to include larger mammals, thereby

providing a clearer understanding of the clinical potential of these therapies.

Additionally, a deeper exploration into the mechanisms of cell survival and

function within microcapsules, alongside the development of innovative

encapsulation materials, will be critical in advancing the field and offering new

hope to patients with liver failure.
KEYWORDS

hepatocyte encapsulation, microencapsulation, coculture, xenotransplantation,
alginate
1 Introduction

1.1 The evolution of liver transplantation

The liver, one of the human body’s largest and most versatile

organs, is incredible for being able to detoxificate, metabolize, and

maintain complex interactions with other organs like the kidney

and spleen. Despite its critical role, individuals suffering from liver-

based metabolic disorders (LBMD), hepatocellular carcinoma,

fulminant liver failure, and end-stage liver diseases often face

limited treatment options. The landscape of liver disease

treatment underwent a significant transformation in 1963 when

Thomas E. Starzl and his team pioneered the first clinical trials of

orthotopic liver transplantation (LT) in three patients (1). This

groundbreaking procedure offered a new lease on life for patients

with severe liver conditions, improving their lifespan and quality of

life. The procedure’s advantages include the liver’s remarkable

regenerative ability, which minimizes donor risk, and an overall

increase in population survival rates. However, LT is not without its

drawbacks, including surgical complications, high costs, and the

requirement for lifelong immunosuppression. Above all, the

chronic shortage of available organs has been a persistent hurdle,

underscoring the need for more feasible treatment alternatives.
1.2 The advent and progress of
hepatocyte transplantation

The growing discrepancy between the demand for liver

transplants and the available supply, as highlighted in recent

reports by the Organ Procurement and Transplantation Network

(OPTN) and the Scientific Registry of Transplant Recipients

(SRTR), underscores the urgent need for alternative liver tissue

sources. Hepatocytes, or liver cells, possess distinct characteristics

that make them particularly appealing for transplantation; they

retain functional capabilities even when isolated, and cryopreserved
0295
hepatocytes can be rapidly deployed for urgent therapeutic needs.

This realization sparked interest in the potential of hepatocyte

transplantation (HT) as a viable alternative to LT for managing

LBMD and acute liver failure (ALF). Although hepatocyte

transplantation is limited by many obstacles in clinical practice,

researchers are constantly working to overcome them. Tasks

remains to solve include scarce supply of reliable and high-quality

hepatocytes, sub-optimal survival and regeneration after hepatocyte

transplantation with transient phenotype, and urgent need of more

effective immunosuppressive protocols to reduce rejection (2).

Demonstrated to functionally mimic the liver to a certain extent,

especially in acute cases, HT presents several advantages over

traditional LT. One donor liver could potentially benefit multiple

patients, depending on the yield of viable cells obtained and the

specific needs of each patient (3). HT offers a less invasive approach

compared to LT, eliminating the need for major surgery.

Additionally, the ability to repeat hepatocyte infusions and

preserve cells for future use means that patients on the liver

transplant waitlist can maintain some liver function until a

suitable organ match is found. Furthermore, the lower costs,

reduced risks, and fewer complications associated with HT have

contributed to its growing popularity as a promising treatment

alternative. The various encapsulation methods discussed herein are

summarized in Figure 1, providing a concise overview of the

innovative approaches in hepatocyte transplantation.

2 Advancements in encapsulation
materials for
hepatocyte transplantation

2.1 Factors and mechanism related

Hepatocyte Transplantation demonstrates several important

factors. The location of encapsulated hepatocytes within recipients

can influence their viability and functionality. Existing literature and
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experiments suggest that the implantation site plays a crucial role in

the success of hepatocyte transplantation. For instance, encapsulated

hepatocytes transplanted into the peritoneal cavity may benefit from

the rich blood supply and immune-privileged status, which could

enhance cell survival and function (4). The microenvironment at the

transplantation site, including factors like oxygenation and nutrient

availability, can significantly impact the encapsulated hepatocytes’

ability to maintain their liver-specific functions.

The dose or number of transplanted hepatocytes is a critical

factor affecting transplant efficiency and the therapeutic outcome,

which together with the place of transplantation, will largely decide

the condition of hepatocytes (5). Determining the optimal number

of hepatocytes for transplantation remains a challenge and is subject

to ongoing research. The efficiency of transplantation and

subsequent liver function recovery is likely dose-dependent,

requiring a balance between sufficient cell mass for therapeutic

effect and the host’s capacity to integrate and support the

transplanted cells. Studies have suggested that a higher number of

transplanted hepatocytes may improve the functional recovery in

liver failure models, but this must be balanced against the risk of

potential complications such as portal hypertension or

embolization (6). Future research should aim to establish

standardized protocols for dosing and to explore the mechanisms

underlying dose-dependent effects on transplantation outcomes.

The detailed discussion on the underlying mechanisms of

encapsulated hepatocytes is limited. Potential mechanisms behind

the improved viability and function of encapsulated hepatocytes

involve several aspects, including enhanced protection from
Frontiers in Immunology 0396
immunological rejection, improved microenvironmental control

within the capsules, and the supportive effects of co-encapsulated

cells (7). For instance, encapsulation materials like alginate provide

a semi-permeable barrier that can protect hepatocytes from the

host’s immune response while allowing the exchange of nutrients

and metabolic products (8). Additionally, co-microencapsulation

with supportive cell types, such as mesenchymal stem cells, may

provide trophic support and promote a more physiologically

relevant microenvironment that enhances hepatocyte function (9).
2.2 Addressing immune
rejection challenges

Addressing challenges such as immune rejection after hepatocyte

transplantation, encapsulation emerges as a straightforward,

economical, and effective strategy. The critical aspects of this

approach—material selection, encapsulation technique optimization,

and culture environment adaptation—are key to successful hepatocyte

encapsulation. The choice of encapsulation material is particularly

crucial as it directly impacts the encapsulated hepatocytes’ functionality

and viability by influencing oxygen and nutrient transfer.
2.3 Alginate’s role in
hepatocyte microencapsulation

Alginate, a material favored for its biocompatibility, ease of gel

formation, and unique physicochemical properties, stands out in
FIGURE 1

Encapsulation approaches for hepatocytes. The various encapsulation methods discussed herein are summarized, providing a concise overview of
the innovative approaches in hepatocyte transplantation. The approaches include alginate plus low temperature, alginate plus plasma, type 1
collagen and PEG, alginate plus diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB), collagen plus mesenchymal stem cells,
and alginate plus other cells.
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the realm of hepatocyte microencapsulation. Miranda et al.

observed that alginate-encapsulated hepatocyte aggregates

exhibited significantly enhanced albumin production, urea

synthesis, and enzymatic activities such as 7-ethoxycoumarin O-

deethylase and uridine diphosphate glucuronosyltransferase (UGT)

compared to non-encapsulated controls (8). Notably, these

encapsulated hepatocytes demonstrated improved functional

outcomes when cultured in a bioreactor system, maintaining

performance over three weeks.

In a novel exploration, Nhu-Mai et al. revealed that alginate

hydrogel could shield human hepatoma-derived cells (Huh-7), the

most commonly used cell line recently with high permissiveness,

from Hepatitis C Virus (HCV) infection (10). This protective effect,

dependent on the concentration and duration of culture, suggests

alginate hydrogel’s broader viral defense capability, irrespective

of encapsulation.
2.4 Optimization and comparative studies

Further research by Lan et al. compared the survival and

metabolic function of hepatocytes encapsulated in different

alginate compositions, SLM100 and SLG100, demonstrating

sustained viability, enzyme secretion, and antioxidant activity

under 3D culture conditions, albeit with reduced proliferation

rates (11). Saeed Azandeh et al. investigated the impact of

alginate hydrogel concentrations on Human Wharton’s Jelly-

derived Mesenchymal Stem Cells (HWJ-MSCs) (12). They

discovered that a 1.5% alginate concentration was more

conducive to cell proliferation and urea production than a 2.5%

concentration, highlighting the importance of finding the optimal

alginate concentration for hepatocyte viability. Jitraruch et al.

proposed an optimized protocol for producing alginate-

encapsulated human hepatocytes, which demonstrated superior

mechanical stability and ideal bead size for enhanced cell viability

(13). Similarly, Pasqua et al. developed a technique for culturing

hepatocytes in 1.5% alginate beads, facilitating the autonomous

formation of spheroids with maintained liver functions over two

weeks (14). Durkut et al. evaluated the viability and metabolism of

primary rat hepatocytes encapsulated in various matrices and

subjected to different cryopreservation conditions (15). Their

findings indicated that cryopreservation in liquid nitrogen (LN2)

best preserved hepatic functions and viability, with ACA-

encapsulated hepatocytes maintaining nearly 90% of their

metabolic activity post-thaw. These studies collectively underscore

the significance of material selection and encapsulation conditions

in enhancing the therapeutic potential of hepatocyte

transplantation, paving the way for innovative approaches to liver

disease treatment. The quest to mitigate immune rejection reactions

post hepatocyte transplantation has steered research towards

hepatocyte encapsulation as a viable, cost-effective solution. Key

to this endeavor is the meticulous selection of encapsulation

materials, microencapsulation methodologies, and the fine-tuning

of the culture environment, all of which are pivotal for the

successful encapsulation of hepatocytes.
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2.5 Novel encapsulation materials
and techniques

Stephanie H. Capone and associates explored various material

combinations for cell microencapsulation, including alginate alone,

alginate combined with type I collagen, with or without poly-L-

lysine and alginate coatings (16). They discovered that

incorporating collagen and polylysine enhanced the mechanical

resilience of the beads but compromised vitamin B12 mass transfer

kinetics. Alginate-collagen beads notably enhanced HepG2/C3A

viability with increased metabolism rate. Upon subcutaneous

implantation in mice, they also mitigated inflammation,

spotlighting the crucial balance between mechanical strength, cell

behavior, and biocompatibility. Subhas C. and his team innovated

silk sericin–alginate–chitosan microcapsules, creating a sericin and

alginate microbead core with a chitosan outer shell (17). These

microcapsules, characterized by their spherical shape and glossy

surface, demonstrated high cell viability and uniform encapsulation

under confocal microscopy, indicating an optimized living

microenvironment for the encapsulated cells.
2.6 Cell source considerations for
clinical transplantation

A significant challenge in hepatocyte transplantation research

has been sourcing cells that are both functional and safe for clinical

use. Traditionally, hepatocellular carcinoma (HCC) cell lines such

as HepG2, HepaRG, and HepG2/C3A have been extensively utilized

in research due to their ease of propagation and maintenance.

However, these cells are derived from liver cancers and, as such, are

not suitable for clinical transplantation purposes. Their immortal

nature, potential for uncontrolled proliferation, and inferior

functionality compared to primary hepatocytes limit their

applicability in therapeutic contexts. Recognizing these

limitations, the field is increasingly turning towards human

pluripotent stem cells (hPSCs) as a potential source of

hepatocyte-like cells (HLCs) for transplantation. hPSCs, including

both embryonic stem cells (ESCs) and induced pluripotent stem

cells (iPSCs), possess the capacity for unlimited self-renewal and the

potential to differentiate into any cell type, including hepatocyte-

like cells. This differentiation is achieved through the mimicking of

liver development stages in vitro, leading to the generation of cells

that exhibit key hepatocyte functions such as albumin secretion,

urea production, and drug-metabolizing enzyme activity.

The use of hPSC-derived HLCs presents a promising avenue for

overcoming the cell source limitation in hepatocyte transplantation.

These cells could provide a renewable, ethically accessible, and

potentially customizable source of hepatocytes for therapeutic

applications. Furthermore, advancements in differentiation

protocols and three-dimensional culture systems are enhancing

the functional maturation of HLCs, bringing them closer to the

functionality of primary human hepatocytes. However, challenges

remain in the clinical application of hPSC-derived HLCs, including

ensuring the efficiency and consistency of differentiation protocols,
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the purity and safety of the cell populations (e.g., eliminating the

risk of tumorigenicity), and the long-term functionality and

integration of the transplanted cells in vivo. Addressing these

challenges requires ongoing research and collaboration between

stem cell biologists, tissue engineers, and clinical researchers. While

HCC cell lines have provided valuable insights into liver biology and

disease, the transition towards clinical transplantation necessitates

the exploration of alternative cell sources like hPSC-derived HLCs.

The promise of these cells in providing a viable, ethical, and

functional source for hepatocyte transplantation underscores the

importance of continued research and development in this exciting

area of regenerative medicine.
2.7 Enhancing Liver-specific functions

Meng Tian et al. developed Galactosylated alginate (GA)–

chitosan oligomer microcapsules, adjusting membrane porosity

and thickness to balance mechanical stability and permeability

(18). This selective permeability effectively transported human

serum albumin while blocking immunoglobulin G, enhancing

liver-specific functions within the microcapsules. In the study by

Ying He et al., Cytodex 3 microcarriers formed the core of the

microcapsules, enveloped by an alginic acid-chitosan-alginate

(ACA) polyelectrolyte layer (19). Utilizing an aqueous two-phase

emulsification technique, L02 cells on Cytodex-3 microcarriers were

encased within a thin conformable layer, facilitating equitable

transport of nutrients and wastes. These microcapsules

consistently produced urea and human albumin in vitro and

demonstrated the capability to stabilize serum markers in

acetaminophen-damaged rats post-transplantation. Christian

Siltanen et al. utilized a coaxial flow-focused droplet microfluidics

approach to craft microcapsules with liquid cores and polyethylene

glycol (PEG) shells (20). This encapsulation facilitated rapid

aggregation of primary hepatocytes into dense globules,

preserving liver function leaped from normally 1-2 days to 10

days. The technique also offered the flexibility to tailor the

mechanical properties and permeability of the gel, making it

adaptable for further experimental investigations. Shahla

Khodabakhsh Aghdam et al. explored the incorporation of

galactosylchitosan (GC) and collagen (COL) into alginate

microcapsules, subsequently coated with chitosan to produce

alginate-galactosylated chitosan-collagen/chitosan (AGCCol/C)

microcapsules (21). This addition significantly influenced the

hydrogels’ physical properties, enhancing the proliferation of

HepG2 cells, and up-regulating the expression of P450 and

albumin mRNA, demonstrating improved biocompatibility.

anhong Zhang et al. adopted a one-step spray method to fabricate

microcapsules using hyaluronic acid (HA)/sodium alginate (SA) as

the core and chitosan (CS) as the shell (22). This method not only

ensured high viability of C3A cells in vitro but also enhanced urea

and albumin synthesis, highlighting HA’s role in promoting

CYP450 gene expressions. Such advancements suggest a

promising direction in hepatocyte microencapsulation techniques

for liver transplantation applications. Further details and

comparative analyses of these methodologies are summarized in
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Table 1, offering a comprehensive overview of the state-of-the-art in

hepatocyte microencapsulation. Hyaluronic acid (HA) has been

observed to enhance the expression of genes related to the

cytochrome P450 family after a duration of three days. Utilizing

an encapsulation technique, it was noted that the functionality of

hepatocytes was markedly preserved, providing an improved

habitat conducive to their survival. This method is seen as a

potential option for the transplantation of hepatocyte

microcapsules. Chan et al. explored an alternative approach by

employing Double-emulsion (DE) droplets to generate

microencapsulated homotypic or heterotypic hepatocyte

spheroids within an alginate-collagen composite hydrogel, moving

away from the sole use of alginate (42). Their microfluidics-based

technique, which eliminates the necessity for spheroid loading and

allows for the control over spheroid characteristics, has shown to

enhance hepatocyte performance. This includes increased albumin

and urea secretion, as well as improved cytochrome P450 activity.

Moreover, hepatocyte function was further enhanced when co-

cultured with endothelial progenitor cells at an optimal ratio of 5 to

1 in alginate-collagen. In contrast, Lee et al. experimented with

hybrid hydrogels of varying stiffness to encapsulate HepaRG cells,

either individually or with support cells. They utilized tissue

engineering approaches to fabricate three-dimensional (3-D) liver

models in vitro (43). When the elasticity of these 3D liver models

was adjusted to closely match the range of 2.3-5.9 kPa, there was a

notable increase in hepatic gene expression, albumin secretion,

cytochrome p450-3A4 activity, and drug metabolism capabilities.

This model also demonstrated the ability to extend the viability and

functionality of hepatocytes over extended culture periods. Further

contributing to this field, Cui and colleagues demonstrated that

utilizing gelatin methacryloyl (GelMA) hydrogel as a base for

constructing 3D lobule-like microtissues offers advantages for

hepatocyte functionality (44). The GelMA hydrogel, shaped by a

digital micromirror device (DMD)-based microfluidic channel,

allows for the encapsulation of hepatocytes within micromodules

featuring a central radial-type hole. After prolonged co-culture,

hepatocytes encapsulated alongside fibroblasts showed an increase

in albumin secretion and maintained over 90% cell survival rate.

Chang et al. opted for volvox sphere microbeads to encapsulate

hepatocytes, providing a dual-layer three-dimensional environment

for the cells (45). This innovative approach contributes to the

growing body of research focused on improving hepatocyte

culture methods and transplantation strategies. Dynamic

bioreactor cultures of AML12 hepatocytes together with rat

mesenchymal stem cells (MSCs) demonstrated significant

enhancements, with MSCs evolving into hepatocyte-like cells,

doubling albumin (ALB) secretion, and increasing cytokeratin 18

expression by 2.5 times. In models of CCl4-induced liver damage in

rats, encapsulation of MSCs and hepatocytes within volvox spheres

markedly reduced AST and ALT levels, aiding liver repair and new

tissue formation (46). Kim’s investigation into a three-dimensional

heparin-based hydrogel scaffold for hepatocyte culture revealed that

such encapsulated hepatocytes maintained high-level functionality,

including albumin and urea synthesis, for up to three weeks. The

addition of hepatocyte growth factor (HGF) into the hydrogel

further enhanced these synthesis processes (47).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1385022
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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Gevaert et al. compared HepG2 cell encapsulation effects

between galactosylated gelatin and Methacrylamide modified

gelatin, finding that methacrylamide modification had little

impact on viability, whereas galactosylated gelatin significantly

enhanced specific gene expression over long-term culture (>21

days) (48). Lee and co-researchers discovered that hepatic

function in primary human hepatocytes (PHHs) encapsulated

within biodegradable hydrogel systems was best maintained with

hydrogels of intermediate initial degradability, outperforming

Matrigel in cytochrome P450 functional assays (49). Wang et al.

introduced a one-step synthesis method for creating composite

hydrogel capsules (CHCs) characterized by uniformity,

biocompatibility, stability, and high-throughput capabilities,

showing that hepatocytes encapsulated in CHCs exhibited

enhanced viability, growth, and liver-specific functions (50).

Tirella’s study presented a protein/hydrogel formulation as a

novel encapsulation choice, enhancing nutrient exchange and

providing a 3D adhesive framework for cells. This study also

included encapsulating ratiometric optical nanosensors within

hepatocytes to monitor microenvironmental pH changes under

stress, noting improved albumin secretion and urea production in

encapsulated hepatocytes compared to controls (51). Khanal et al.

developed a method for creating polymeric nanofiber-integrated

alginate (PNA) hydrogel microcapsules using a Nano-in-micro

(NIM) system, with PNA-10 showing optimal support for HepG2

cell growth and maintenance of liver-specific metabolic functions

(52). Zheng and colleagues’ research on self-bonding real-time

shape-programmable microcapsules via photo-induced

electrodeposition (PIED) of cell-laden alginate hydrogel found

that pre-coating with fibroblasts led to robust assembly through

fibroblast-ECM interactions, closely mimicking tissue

morphogenesis. HepG2 cells encapsulated in these new

microcapsules showed nearly double the albumin and urea

secretion compared to non-fibroblast-coated encapsulations (53).

Yu et al. experimented with microcapsules of various inner

structures and deformability, finding that hepatocyte viability was

consistent across different types, but cell activity was significantly

reduced in capsules with lower deformability (54). Cui’s work on

spatially assembling gear-like microstructures from photo-

crosslinkable poly (ethylene glycol) diacrylate (PEGDA) hydrogel,

which co-encapsulated hepatocytes and fibroblasts, resulted in 3D

lobule-like micro-architectures with high cell viability and

proliferation, significantly enhancing albumin secretion and urea

synthesis (55). Liu and colleagues’ study on encapsulated rat liver

(RLC-18) cells forming hepatic lobule-shaped microtissue (HLSM)

reported superior hepatic-specific functions in these structures

compared to normal cell spheroids after 14 days of culture in

poly-L-lysine-alginate microcapsules (56). Moriyama et al.

developed a method for producing hydrogel microbeads using an

octa-thiolated PEG derivative (8-arm PEGSH), which maintained

higher levels of specific functions including albumin secretion and

urea production when HepG2 cells were encapsulated (57). Agarwal

and team’s application of decellularized Caprine liver ECM

(CLECM) derived hydrogel for 2D and 3D hepatocyte cultures

showed significantly enhanced functions, including albumin, urea,

glycogen, and GAGs synthesis, and the formation of bile canaliculi-
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like structures and better expression of mature hepatocyte markers

compared to collagen coatings (58). Zhang et al. investigated the

effects of 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid

methyl ester (ITE) on Huh7 cells/C3A cells in both monolayer

cultures and microspheres, noting significant improvements in

protein levels and metabolic activities of major cytochrome P450

enzymes (59). Ravichandran et al. explored two methods to

generate photocrosslinkable methacrylated liver extracellular

matrix (LivMA) hydrogels, finding better cytocompatibility for

encapsulated hepatocytes despite different mechanical properties

(60). Zhang and colleagues compared hepatocytes encapsulated in

lupeol liposomes and Gal-lupeol liposomes, with the latter showing

higher cell-uptake and apoptotic efficiency in HepG2 cells, along

with reduced expressions of AKT/mTOR-related proteins and

markers in vitro and in vivo, demonstrating liver targeting effects

in FVB mice (61). Leroux introduced a novel hybrid alginate

microcapsule using an aqueous stable titania precursor

(TiBALDH) and a cationic polyamine (PDDAC), leading to

increased mechanical stability and maintained hepatocyte

functions for up to 43 days (62). Sk’s novel synthesis of photo-

crosslinkable glycidyl methacrylate (GMA) functionalized gelatins

(Gelatin-GMA) enhanced cell growth and cellular functions in

Huh-7.5 cells encapsulated in 3D hydrogel scaffolds.

The cultivation environment’s materials for microencapsulated

cells significantly impact cell function preservation. Tostoes et al.

discovered that liver-specific functions such as urea production,

phase I drug metabolizing activity, and oxygen uptake in hepatocytes

encapsulated within ultra-high viscous alginate spheroids were

substantially improved under a continuous perfusion system

compared to a traditional 50% medium change routine, tripling the

performance. However, albumin output remained consistent across

both feeding methods (63). Sofia P. et al. proposed a three-dimensional

culture strategy for HepaRG cells in alginate microcapsules without

dimethyl sulfoxide (DMSO), enhancing hepatocyte differentiation

significantly over 2D cultures. This approach yielded a higher

prevalence of hepatocyte-like over biliary-like cells, alongside

improved protein secretion and ammonia detoxification, despite

some variance in basal gene expression levels (64).
2.8 Challenges of translating encapsulation
materials to clinical use

The diversity of materials used for the microencapsulation of

hepatocytes presents a spectrum of opportunities and challenges for

clinical translation. Among these, photo-crosslinkable

methacrylate-based materials have gained attention for their

versatility, tunability, and the precision with which they can be

manipulated using light. However, translating such advanced

materials into clinical use encompasses several hurdles,

particularly concerning safety, efficacy, and regulatory approval.

2.8.1 Safety and biocompatibility
The primary concern with any biomaterial intended for clinical

use is its safety and biocompatibility. Photo-crosslinkable

methacrylates, while useful in creating stable and customizable
Frontiers in Immunology 08101
encapsulation systems, must be rigorously tested to ensure they

do not elicit adverse immune responses, cause inflammation, or

release toxic degradation products within the body. Long-term

biocompatibility studies are essential to assess the risks of using

these materials in humans.

2.8.2 Degradation and clearance
Understanding the degradation behavior of methacrylate-based

materials in vivo is crucial. The materials must degrade at a rate that

is compatible with tissue healing and regeneration processes

without causing obstruction or toxicity. Moreover, the

degradation products must be safely metabolizable or excretable

by the human body.

2.8.3 Regulatory approval
Gaining regulatory approval for new biomaterials can be a

complex and lengthy process. Regulatory bodies, such as the U.S.

Food and Drug Administration (FDA) and the European Medicines

Agency (EMA), require comprehensive data on the manufacturing

process, quality control, safety, and efficacy of the biomaterials. For

photo-crosslinkable methacrylates and other novel encapsulation

materials, demonstrating compliance with these requirements

involves extensive preclinical and clinical testing.

2.8.4 Scalability and consistency
Translating laboratory-scale encapsulation processes to clinical-

scale production presents challenges in ensuring scalability,

consistency, and cost-effectiveness of the material synthesis and

encapsulation procedures. Ensuring that the properties of photo-

crosslinkable methacrylates remain consistent across batches is

critical for maintaining the reliability of the encapsulation system.

2.8.5 Ethical and legal considerations
The use of synthetic materials in medicine also raises ethical and

legal considerations, particularly regarding long-term outcomes and

patient consent. Patients must be fully informed of the benefits and

risks associated with the use of such materials in treatments. While

photo-crosslinkable methacrylate-based materials and other

innovative encapsulation strategies offer significant potential for

enhancing hepatocyte transplantation therapies, their path to

clinical application is paved with challenges. Addressing these

requires a multidisciplinary effort, combining insights from

materials science, biology, medicine, and regulatory science to

ensure that the benefits of these advanced materials can be safely

and effectively realized in clinical settings.
2.9 Future directions in
hepatocyte encapsulation

Despite the promising attributes of embryonic stem cells, such

as high proliferation, renewability, and pluripotency, their

differentiation into hepatocytes faces technical challenges,

requiring an optimal culture microenvironment. Tim Maguire

et al. explored how an alginate-based microenvironment supports
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cell viability, promotes differentiation, and enhances the

functionality of embryonic stem cell-derived hepatocytes,

demonstrating urea and albumin synthesis as key functional

indicators. This finding suggests a viable alternative for sourcing

human hepatocytes for transplantation (65). MacPherson and

colleagues designed a 3D scaffold from a non-fibrous hydrogel,

emphasizing mechanical properties and nanofiber morphology to

enhance hepatocyte culture. Their findings showed stable

maintenance of primary human hepatocytes’ viability and

functionality, outperforming Matrigel in cytochrome P450 assays

(66). Chen et al. assessed the stability of various alginate-based

microcapsules in plasma, finding that alginate-a-poly (L-lysine)-

alginate (a-APA) microcapsules demonstrated superior stability

over alginate-ϵ-poly (L-lysine)-alginate (ϵ-APA) and alginate–

chitosan–alginate (ACA) capsules. The stability of these capsules

was influenced by different factors, with heparin significantly

affecting a-APA microcapsules, while HCO3- and H2PO4-/

HPO42- impacted ϵ-APA and ACA capsules, respectively (67).

Liu introduced a method for creating porous alginate beads (PABs)

using an aqueous two-phase system (ATPS) emulsion technique,

blending a cell/dextran (Dex) mixture with an alginate (Alg)/

polyethylene glycol (PEG) mixture. This approach allowed for

control over the pore size, improving cell activity, proliferation,

and function of encapsulated HeLa and human liver cancer cells

compared to those in general alginate beads (GABs) (68).

Shogo Nagata et al. devised a technique for encapsulating cells

within nucleocapsid hydrogel microfibers, creating a fibrous 3D

ECM-rich microenvironment suitable for in vitro liver tissue

formation. Induced pluripotent stem cell-derived hepatocytes

(iPSC-hepatocytes) in this setup displayed liver-specific

characteristics, including albumin secretion and liver marker gene

expression, and maintained structural stability, indicating their

potential for liver failure rescue. Transplantation of these

microfibers into immunodeficient mice showed human albumin

presence in peripheral blood after three days, confirming their

viability and function as implants (69). Further details are

presented in Table 1.
3 Enhancing hepatocyte viability
and functionality

Ensuring high activity levels in hepatocytes is crucial for their

ability to substitute for failing liver functions. However, hepatocytes

are notably delicate, with even minor damages potentially leading to

cell death and loss of activity. For microencapsulated liver cells to

fulfill their intended roles post-transplantation, preserving their

viability and functionality becomes a critical concern.
3.1 Hepatocyte cryopreservation

The primary strategy for the long-term storage of

microencapsulated hepatocytes is cryopreservation. The

effectiveness of this method and the ability of hepatocytes to

resume their functions upon thawing are areas of active research.
Frontiers in Immunology 09102
Mai and colleagues demonstrated that primary rodent hepatocytes

could retain their synthetic functions temporarily through

encapsulation and cryopreservation as early as 2005 (70). Despite

the influence of immortalization on certain hepatocyte-specific

functions remains questionable, which is to remove the upper

limit of cell proliferation set by telomerase by either gene

reactivation or deactivation, their findings suggested that both

naïve and genetically modified hepatocytes could maintain

metabolic functions and improve survival rates in xenogeneic

recipients with liver failure when encapsulated, cryopreserved,

and then transplanted, marking a significant advancement in

hepatocyte therapy.

A subsequent study by Hang focused on the functional recovery

of hepatocytes after cryopreservation (71). Results showed that pre-

incubation at 4°C for 12–24 hours, followed by encapsulation in

alginate–poly-L-lysine–alginate microcapsules, significantly

enhanced hepatocyte functions, including mRNA and protein

levels, as well as albumin and urea secretion post-thawing. The

morphology and albumin production of post-thaw hepatocytes

closely matched those of directly cultured groups over several

days, underscoring the reliability of cryopreservation for

hepatocyte storage despite potential risks to cell viability

and functionality.

Kilbride et al.’s research revealed that alginate-encapsulated

HepG2 liver microcapsules subjected to cryopreservation and

subsequent short-term exposure to temperatures below 10°C from

1 to 90 minutes showed increased cell proliferation during 7-16

days of culture (72). This method presents a more efficient and cost-

effective approach to achieving higher cell densities (73).

Recent work by Jitraruch et al. identified a pan-caspase inhibitor

(ZVAD) that enhances the ultrastructure of cryopreserved

hepatocyte microbeads and reduces cell apoptosis when combined

with other cytoprotectants such as des-feroxamine (DFO), and

human serum albumin (HSA) in the cryopreservation process

(74). This improved cryopreservation technique optimizes the use

of hepatocytes for emergency applications.
3.2 Alternative strategies for sustaining
hepatocyte function

The liver’s metabolic capacity is immense, capable of processing

nutrients as well as detoxifying substances and drugs. Koizumi et al.

were the first to demonstrate that primary rat hepatocytes retain

their drug metabolism and transport activit ies post-

cryopreservation when encapsulated (75). Activities of a specific

drug-metabolizing enzyme (CYP3A2) and drug transport for

several substrates were maintained up to 120 days using a novel

cryopreservation technique developed by the researchers.

Encapsulation aims to shield hepatocytes from the host’s

immune system, yet the release of bioactive molecules from

hepatocytes can potentially trigger immune responses (31). The

extent of this reaction depends on the encapsulation material’s

permeability and the host’s sensitivity. In animal studies, Baldini

et al. showed that long-term cryopreserved encapsulated porcine

hepatocytes maintained significant activity and viability when
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transplanted into rats without immunosuppression (4). Although

the ultrastructure and morphological activity of encapsulated

hepatocytes were maintained post-explant, albumin synthesis was

adversely affected, indicating a need for further improvements in

maintaining bio-activity post-transplantation. Maximizing the use

of donor livers involves isolating hepatocytes for propagation,

making the retention of their functional capabilities post-isolation

critically important.

Another investigation intended to test efficacy of bioartificial

liver device in 2014. In this investigation, the evaluation of Alginate-

chitosan microencapsulated hepatocytes’ bioactivity was based on

several metrics: cell proliferation, efficiency in ammonia

detoxification, albumin production, and the rate of diazepam

metabolism. The findings highlighted that, with the exception of

cell proliferation which remained constant, immortalized human

hepatocytes (HepLL) groups demonstrated superior performance in

ammonia detoxification, albumin production, and diazepam

metabolism compared to the HepG2 groups across all time points

(29). Additionally, the viability of hepatocytes in spinner cultures

showed variability over time, with day 10 marking the peak of cell

growth, metabolic activity, and functionality.

Yamada et al. introduced a culture and encapsulation technique

utilizing a Thermo-reversible gelation polymer (TGP), which

transitions from solid to liquid states with temperature changes.

This study revealed that hepatocytes encapsulated in TGPmaintained

over 70% viability after being cryopreserved in liquid nitrogen. Post-

transplantation into the rat spleen, these hepatocytes were capable of

performing liver-specific functions and secreting albumin (23).

Li and colleagues devised a method for hepatocyte

encapsulation that involved micropatterning on collagen I to

direct cell–cell interactions in two dimensions, followed by the

formation of stable aggregates through collagenase digestion for

three-dimensional encapsulation in polyethylene glycol (PEG)

diacrylate. This configuration preserved the encapsulated

hepatocytes’ specific functions for up to 50 days (27).

Lu and associates developed an innovative diversion-type

microcapsule-suspension fluidized bed bioreactor (DMFBB), offering

several enhancements over the traditional fluidized bed bioreactor

(FBB), especially under conditions of high perfusion velocity. The

research noted a significant reduction in the void volume of alginate/

chitosan microcapsules and lower damage rates during the fluidization

process in the DMFBB. It was observed that encapsulated C3A cells

exhibited higher survival rates and activities of CYP1A2 and CYP3A4

in the DMFBB, though improvements in albumin and urea synthesis

were modest. Additionally, there was a notable upregulation in the

transcription levels of various CYP450-related genes and an albumin-

related gene in C3A cells within the DMFBB (24).
3.3 Enhancing hepatocyte function
through co-microencapsulation

As hepatocyte transplantation emerges as a viable option for

treating acute liver failure, the sustained activity and functionality of

individual hepatocytes until the point of liver transplantation

remain challenges. Recognizing that the liver comprises not only
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hepatocytes but also non-parenchymal derivatives, which provide

essential structural, biochemical support, and nutrients,

underscores the pivotal role mesenchymal cells play in vivo. Their

presence is crucial for supporting the physiological activities of

hepatocytes. This understanding has spurred interest in the co-

culture and co-microencapsulation of hepatocytes with various

mesenchymal cells to augment hepatocyte survival and

functionality, particularly for cell transplantation applications

primarily investigated in animal models. While co-culture and co-

microencapsulation differ significantly, insights from hepatocyte

co-culture studies offer valuable perspectives for advancing co-

microencapsulation strategies. Initial investigations by Rahman

et al. demonstrated the protective effects of co-encapsulating

HepG2 cells with Sertoli cells in animal models of acute hepatic

failure (AHF), achieving localized immunosuppression and

enhancing HepG2 cell survival post-intraperitoneal injection in

rats (76). This approach suggested a novel strategy for cell

transplantation, potentially reducing rejection risks by locally

generating immunosuppressive environments.

Zheng et al. conducted further research to ascertain the efficacy

of co-microencapsulating Sertoli cells with HepG2 cells in a rat

model, aiming to establish a method of local immunosuppression

facilitated by the unique immunoprivileged nature of Sertoli cells

(30). Their findings indicated that such co-microencapsulation

could enhance the function and bioactivity of hepatocytes in

models of acute liver failure, offering a more effective solution

than either mixed or solely microencapsulated hepatocytes and

Sertoli cells.

Moreover, Liu and collaborators explored the potential of co-

encapsulating hepatocytes with bone marrow stem cells using a

novel two-step cell encapsulation technique. This method proved to

enhance hepatocyte viability and support liver function in models of

acute liver failure (34). Compared to traditional single-step

encapsulation, this innovative approach resulted in extended

hepatocyte viability beyond four months post-transplantation,

with a noticeable reduction in host reaction and improved

hepatocyte function due to the synergistic effects of co-

encapsulation with bone marrow cells. Further investigations

confirmed the superior viability and functionality of this co-

encapsulation strategy both in vitro and in vivo, demonstrating its

capacity to ameliorate conditions like hyperbilirubinemia in Gunn

rats post-transplantation (36).

Isoda et al. identified bone marrow stromal cells (BMSCs) as

another promising candidate for hepatocyte co-culture, showing

significant support for differentiated hepatocyte functions, notably

in enhancing urea synthesis and albumin secretion (37). Their

sandwich-like co-culture model, comprising a monolayer of

BMSCs, a semi-permeable membrane, and freshly isolated

hepatocytes, revealed the critical role of interleukin-6 in

maintaining these key hepatocyte functions.

The exploration of mesenchymal stem cells (MSCs), known for

their limited self-renewal while multidirectional differentiation

capabilities, has become a focal point of recent research (40). The

minimal ethical and legal hurdles associated with MSCs, coupled

with their easy extraction from various sources including umbilical

cord, endometrial polyps, menstrual blood, bone marrow, and
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adipose tissue, make them a compelling option for experiments in

hepatocyte co-encapsulation. Shi and colleagues highlighted the

potential of bone marrow mesenchymal stem cells (BM-MSCs) in

enhancing hepatocyte functionality when co-encapsulated,

observing significant improvements in hepatocyte survival, liver

function, and cellular changes post-transplantation using

immunofluorescence microscopy. This study illustrated not only

an increase in the specific functions of hepatocytes, such as albumin

secretion and urea synthesis, but also an enhancement in cell cycle

progression in vitro. Furthermore, hepatocyte transplantation

strategies incorporating co-encapsulation demonstrated enhanced

viability and bioactivity in rats models of acute liver failure, with

MSCs potentially differentiating into hepatocyte-like cells and

assuming liver metabolic functions (25).

Fitzpatrick et al. explored the advantages of coculturing human

MSCs with hepatocytes, observing significant benefits in hepatocyte

functions and viability when in direct or indirect contact with MSCs

(26). This interaction notably increased albumin and urea

production, with peak effects observed around day 15 for

albumin. The study confirmed that coculturing hepatocytes with

MSCs could enhance hepatocyte viability by up to 16%, suggesting a

promising approach for cell transplantation.

Yang et al. developed a tissue engineering-based platform using

cell-laden microbeads in a 3D printed tubular perfusion bioreactor,

finding that co-encapsulation of human hepatocytes with collagen

and MSCs resulted in improved cell activity and maintenance of

parenchymal cell functions for up to 30 days (77). This setup

facilitated better oxygen and medium diffusion, vital for

sustaining cell vitality. Montanari and colleagues focused on the

coculture and co-microencapsulation of porcine hepatocytes with

human MSCs, identifying a beneficial role of MSCs in enhancing

hepatocyte bioactivity and function (28). Their findings indicated

that while hepatocyte viability may initially decrease,

coencapsulation with MSCs led to sustained albumin secretion

and diazepam metabolism, underlining the positive impact of

MSCs on hepatocyte functionality.

Iansante et al. established a high-throughput system for cell

encapsulation research, enabling the comparison of various

conditions such as cell numbers, combinations, and alginate

modifications (39). Their platform revealed that MSCs could

notably improve the behavior and function of hepatocyte

microcapsules. This enhancement was further validated through

low-throughput analysis, underscoring the promising role of MSCs

in boosting hepatocyte function.

Kong and colleagues demonstrated the therapeutic effects of co-

encapsulating hepatocytes with HNF4a-overexpressing human

umbilical cord MSCs (HNF4a-UMSCs) in models of acute liver

failure (33). Their research showed that HNF4a-UMSCs could

significantly enhance hepatocyte microbead functions and

accelerate M2 macrophage polarization, potentially reducing the

inflammatory response through the paracrine factor HB-EGF

secreted by HNF4a-UMSCs. This study not only confirmed the

functional benefits of co-encapsulation but also highlighted the

underlying mechanisms contributing to improved outcomes in

acute liver failure treatment.
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Gao et al. explored co-encapsulation of hepatocytes with islets

to create a bioartificial liver support system, showing a marked

improvement in survival rates and biochemical parameters in ALF

mice models (32). Takayama et al. discovered that co-culturing

hepatocytes with human umbilical vein endothelial cells (HUVECs)

enhances cellular functions, attributing this improvement to

increased expression of certain genes linked to cell-to-cell

communication (38). This insight into gene expression dynamics

underlines the potential of co-culture systems in advancing liver

tissue engineering.

Kim and colleagues developed a co-culture system based on cell

sheets, demonstrating sustained albumin secretion and enhanced

expression of hepatocyte-specific genes, thus significantly

preserving hepatocyte functions (41). Nishikawa et al. showed

that co-cultivating rat hepatocytes with NIH/3T3 fibroblasts on

collagen-immobilized PDMS membranes enhances growth and

function, notably albumin secretion, by providing ample

oxygen (35).

Kukla et al. found that co-encapsulation of primary human

hepatocytes with supportive fibroblasts significantly improves

hepatic functions and gene expression, highlighting the benefits of

incorporating 3T3-J2 murine embryonic fibroblasts or primary

human hepatic stellate cells (HSCs) (78). Zhang et al.’s research

on co-encapsulating hepatocytes with adipose-derived stem cells

(ADSCs) demonstrated dramatic advantages in enhancing

hepatocyte functions and viability, suggesting a potent cell-based

therapy for liver failure (79). Teng and colleagues introduced a

strategy employing rat hepatocytes and human fetal liver stromal

cells (hFLSCs) for acute liver failure treatment, showing that the co-

encapsulated approach significantly improves survival and hepatic

function, partly due to the release of basic fibroblast growth factor

(bFGF) (80). Qiu et al. confirmed the efficacy of co-encapsulating

hepatocytes with HUVECs in treating fulminant hepatic failure

(FHF), observing improved biochemical parameters and reduced

mortality in rat models (81).

Liu’s study on co-encapsulating human hepatocyte-derived liver

progenitor-like cells (HepLPCs) with HUVECs highlighted the

potential of this approach in ameliorating liver injury in mice,

facilitated by the secretion of glial cell line-derived neurotrophic

factor (GDNF) from HUVECs (82). Song et al. demonstrated that co-

encapsulation of human induced pluripotent stem cell-derived

hepatocyte-like cells with stromal cells in hydrogel capsules

maintains human albumin and a1-antitrypsin levels effectively in

mouse sera, mirroring the performance of primary hepatocyte

aggregates (83). Most recently, Xiang Yuan’s research on

proliferating human hepatocytes (ProliHHs) revealed that

Encapsulated ProliHHs could be engineered, intraperitoneally

transplanted to those liver-failure animals, causing liver functions

to reinforce though alleviated hyperammonemia and hypoglycemia,

leading to less severe post-hepatectomy liver failure (PHLF) with

minimal inflammatory response, adverse effects or tumorigenic (84).

These findings collectively underscore the vast potential of co-

encapsulation strategies in enhancing hepatocyte functionality and

viability, offering new avenues for liver failure treatment and tissue

engineering. Further details are summarized in Table 2.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1385022
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 The selection of materials for hepatocyte microencapsulation and its influence.

Result Reference
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TABLE 2 Continued
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4 The impact of xenotransplantation

With hepatocyte transplantation emerging as a notable strategy

for addressing acute liver diseases, the scarcity of human liver

donations has prompted the exploration of xenotransplantation.

This approach, involving the transplantation of hepatocytes from

other species, offers a potential solution to the shortage of allogeneic

hepatocytes. However, numerous challenges, including

immunological rejection and the potential for anaphylactic

reactions to xenoproteins, necessitate further investigation.

Studies have shown that encapsulation can enhance the survival

and function of both fresh and cryopreserved porcine hepatocytes

in models of fulminant liver failure (85). These studies revealed two

critical phases: an in vitro decline in metabolic functions over a

week post-transplantation and an in vivo extension of survival rates

and maintenance of metabolic functions in encapsulated

hepatocytes compared to non-encapsulated controls. Sgrio et al.

discovered that encapsulated human hepatocytes, immortalized to

stabilize metabolic functions, could substantially support

metabolism and mitigate liver regeneration inhibition in acute

liver failure models by reducing inflammatory stress (86). This

dual approach highlights the need for distinct research focuses on

metabolic function and regeneration in acute liver failure studies.

Furthermore, encapsulated transplantation was found to

significantly reduce cytokine levels, illustrating a decrease in

inflammatory stress and a restraint on the regeneration of

remaining hepatocytes (87).

Investigations into porcine hepatocytes as a xenotransplantation

source have identified potential limitations, including safety concerns

related to porcine endogenous retroviruses. Despite these challenges,

studies have demonstrated therapeutic effects of encapsulated porcine

hepatocytes in rodent and non-human primate models of fulminant

liver failure (88). The use of neonatal pig re-aggregated liver cells

(NPRLCs) has shown promise in improving survival rates and

metabolic function in acute liver failure models, suggesting an

alternative to alleviate the human hepatocyte shortage (89).

Machaidze et al. explored the transplantation of encapsulated

miniature swine hepatocytes in baboons with fulminant liver

failure, revealing a temporary support to liver metabolism and a

restoration of normal liver functions in the majority of the treated

animals (82). This indicates a viable method for large mammal

xenotransplantation. Varaa et al. examined the effects of umbilical

cord stem cells (UCSCs) and UCSC-derived hepatocyte-like cells

(HLCs) encapsulated in high mannuronic alginate scaffolds on

acute liver failure models, showcasing significant improvements

in liver function markers (90).

Xenotransplantat ion research suggest s that whi le

xenohepatocytes offer a readily available solution to hepatocyte

scarcity, the immunorejection challenge remains significant.

Therefore, less immunogenic transgenic pigs and innovative cell

encapsulation techniques are being considered as future research

directions to address these hurdles (91). This overview underscores

the complexities and potential of xenotransplantation in hepatocyte

therapy, emphasizing the need for ongoing investigation into

improving viability and functionality through advanced
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encapsulation methods and genetic modifications. Details on

these studies are summarized in Table 2.
5 Clinical applications and
future prospects

Although encapsulated hepatocyte technology has

demonstrated promising results in vitro and in animal models, its

transition to clinical applications presents a horizon ripe with

potential. The clinical implications of hepatocyte encapsulation

span several critical areas in liver failure treatment and

regenerative medicine.

One primary application envisaged for encapsulated

hepatocytes is in the development of a bioartificial liver device

(BAL). Such devices aim to provide temporary liver support for

patients with acute liver failure, bridging the gap to liver

regeneration or transplantation. Encapsulated hepatocytes within

BALs offer a biocompatible and immunoprotected environment,

which could enhance cell function and longevity, thus improving

the therapeutic efficacy of these devices. Moreover, the potential for

allogeneic or xenogeneic cell transplantation without the need for

lifelong immunosuppression could revolutionize the treatment

landscape for liver diseases. The microencapsulation technique

acts as a barrier to immune cells while allowing the exchange of

nutrients and metabolic waste, making it a promising approach for

cell transplantation therapies.

Clinical trials exploring the efficacy and safety of encapsulated

hepatocyte transplantation are crucial next steps. Such studies will

help determine the optimal cell sources, encapsulation materials,

and transplantation protocols. Additionally, understanding the

long-term outcomes of these interventions, including the risk of

potential complications and the durability of treatment effects, is

essential. Furthermore, integrating advances in biomaterials and

stem cell technology could enhance the clinical applicability of

hepatocyte encapsulation. For instance, the use of stem cell-derived

hepatocytes for encapsulation could overcome the limitations

associated with donor cell availability. Innovations in

encapsulation materials that mimic the liver extracellular matrix

could further support hepatocyte function and integration post-

transplantation. In conclusion, while encapsulated hepatocytes

herald a promising frontier in liver failure therapy, significant

efforts in clinical research and technology development are

necessary to translate these experimental approaches into viable

clinical solutions. The progression of encapsulated hepatocyte

technology into clinical trials and ultimately clinical practice

will require multidisciplinary collaboration among scientists,

clinicians, and regulatory bodies to ensure safety, efficacy, and

patient accessibility.
6 Summary and future directions

This review has delved into the advancements in hepatocyte

encapsulation research, emphasizing the strides made in preserving
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hepatocyte viabi l i ty , the innovative approach of co-

microencapsulation, the exploration of xenotransplantation, and

the development of novel encapsulation materials. Hepatocyte

transplantation represents a promising avenue for mitigating the

immune response challenges and addressing the scarcity of liver

donations, offering a beacon of hope for numerous patients. The

preservation of hepatocyte activity prior to transplantation is

predominantly managed through encapsulation techniques,

cryopreservation, enzyme inhibitors, and immunosuppressive

agents. Future investigations could enhance these methods by

fine-tuning temperature controls and elucidating the roles of

specific enzymes in the longevity and functionality of

transplanted hepatocytes.

The strategy of co-encapsulating hepatocytes with various cell

types, such as Sertoli cells, bone marrow mesenchymal stem cells

(MSCs), fibroblasts, adipose-derived stem cells, and human

umbilical vein endothelial cells (HUVECs), has shown to enhance

the survival and functionality of hepatocyte transplants. However,

the underlying mechanisms of these co-encapsulation benefits

remain to be fully understood and warrant further exploration.

Xenotransplantation has emerged as a viable strategy to broaden the

donor pool for hepatocyte transplantation. Research has

predominantly focused on encapsulating and transplanting

porcine or human liver cells into models of liver failure. These

preclinical endeavors have demonstrated notable improvements in

the functionality of transplanted liver cells. Advancements in the

materials used for hepatocyte microencapsulation have also been

significant, ranging from the optimization of traditional substances

like alginate to the introduction of novel materials and structures

for hepatocyte microcapsules, as well as refining the pre-

encapsulation cell culture environments.

Last but not least, some of the accomplishments in animal and

human-cell based studies are still in need of a more cautious attitude

towards clinical achievement in reality. Many experiments take

advantage of the marker serum albumin to check cell viability,

which indeed has a long half-life does not fit in a lot. Investigation

needs to be done on what actually happens to the liver cells from

stem cells to its ultimate form due to their unique ability of

regeneration, possibly using the Flow Cytometry techniques (92).

Looking ahead, hepatocyte microencapsulation research should

aim to diversify the sources of transplantable cells, minimize the

need for immunosuppression, and enhance the survival and
Frontiers in Immunology 15108
functionality of transplanted hepatocytes. Such efforts will not

only extend the applicability and safety of hepatocyte

microencapsulation techniques but will also provide greater

insights into liver cell biology and transplantation methodologies,

ultimately benefiting a wider spectrum of patients with liver failure.
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Diabetes is a prevalent chronic disease that traditionally requires severe reliance

on medication for treatment. Oral medication and exogenous insulin can only

temporarily maintain blood glucose levels and do not cure the disease. Most

patients need life-long injections of exogenous insulin. In recent years, advances

in islet transplantation have significantly advanced the treatment of diabetes,

a l lowing pat ients to d iscont inue exogenous insu l in and avoid

complications.Long-term follow-up results from recent reports on islet

transplantation suggest that they provide significant therapeutic benefit

although patients still require immunotherapy, suggesting the importance of

future transplantation strategies. Although organ shortage remains the primary

obstacle for the development of islet transplantation, new sources of islet cells,

such as stem cells and porcine islet cells, have been proposed, and are gradually

being incorporated into clinical research. Further research on new

transplantation sites, such as the subcutaneous space and mesenteric fat, may

eventually replace the traditional portal vein intra-islet cell infusion. Additionally,

the immunological rejection reaction in islet transplantation will be resolved

through the combined application of immunosuppressant agents, islet

encapsulation technology, and the most promising mesenchymal stem cells/

regulatory T cell and islet cell combined transplantation cell therapy. This review

summarizes the progress achieved in islet transplantation, and discusses the

research progress and potential solutions to the challenges faced.
KEYWORDS

pancreatic islet, transplantation, long-term outcomes, MSC/Treg, co-transplantation
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1 Introduction

Type 1 diabetes (T1D) is a chronic progressive metabolic disorder

characterized by hyperglycemia due to destruction of pancreatic b-
cells leading to severe insulin deficiency (1). In the early stages, blood

sugar levels can be controlled within the normal range using oral

hypoglycemic drugs or insulin injections. However, for some patients

with advanced diabetes, these interventions are limited in

effectiveness and cannot prevent complications, such as metabolic

disorders, vascular diseases, and nerve damage. Severe cases can lead

to limb necrosis, blindness, kidney failure, and life-threatening

conditions (2–4). Although significant progress has been made in

diabetes treatment in recent years with new technologies and

medications, such as insulin pumps and continuous glucose

monitoring devices, the treatment of diabetes remains a significant

burden for patients because of the need for dynamic blood sugar

monitoring and adjustment. Therefore, searching for new treatment

methods is a major issue in the field of diabetes.

Pancreatic islet transplantation (IT) is a procedure that involves the

purification of pancreatic islet cells from a donor pancreas, whether it is

xenogeneic and their infusion into the patient’s body, mainly through

the portal vein. This establishes an endogenous glucose-dependent

insulin secretion system, restoring physiological insulin secretion

patterns and achieving real-time, accurate blood glucose control. In

the long term, it can improve diabetic complications and enable insulin

independence, ultimately aiming to cure diabetes. It is considered an

ideal solution for diabetes (5). IT has garnered widespread attention as

an effective treatment for diabetes. However, many difficulties and

challenges have hindered its development (6).

Organ shortage is a global issue and hampers the development

of pancreatic IT. Approximately 8,000 organ donations occur

annually, but less than one-third of the pancreatic organs are

usable for IT (7, 8). The long-term clinical prognosis of patients

undergoing traditional portal vein transplantation is poor. Studies

have shown that post-transplantation inflammatory and immune

rejection reactions can lead to up to 60% pancreatic islet

dysfunction or necrosis. Furthermore, complications such as

portal hypertension, bleeding, and thrombosis can occur during

the portal vein transplantation procedure (9).

In response to these issues, numerous researchers have

proposed solutions, and the main research directions to address

the shortage of pancreatic islet organs focus on stem cell-derived

and porcine-derived islet cells. In terms of selecting new transplant

sites, options such as a subcutaneous pocket and the greater

omentum have certain advantages compared to the traditional

portal vein injection method. In addition, islet encapsulation

technology and cellular therapy for combined transplantation of

MSC/Treg and islet cells are also under active development to

induce immune tolerance in transplant recipients.

We herein report an overview of the current long-term

prognosis of patients following IT. Then, we discuss and elaborate

on the challenges faced in the IT process and the recent progress of

the corresponding solutions. We hope that this information will

offer guidance and reference for further research in the field of IT.
Frontiers in Immunology 02112
2 Current outcomes of pancreatic
islet transplantation

Clinical IT has been carried out since the 1970s (10), however,

for various reasons, its clinical efficacy has not been satisfactory. It

was not until 2000 that Shapiro et al. (11) proposed and established

a set of standards, including donor selection, transplantation of islet

equivalents, and postoperative immunosuppressive regimens. They

used a large number of isolated islet cells for transplantation and

implemented a new protocol after surgery using a corticosteroid-

free regimen and reduced doses of calcium channel blockers

(sirolimus, low-dose tacrolimus, and daclizumab), known as the

“Edmonton protocol” (11). Once this protocol was promoted,

clinical results showed significant improvement, marking an

important milestone in clinical IT. In 2006, a clinical islet

t ransp lan ta t ion t r i a l us ing the Edmonton pro toco l

(NCT00014911) was published, in which 36 subjects with T1D

were enrolled at nine transplant centers for islet transplantation

using the Edmonton protocol, with insulin independence and good

glycemic control as the endpoint 1 year after transplantation.

Results showed that a total of 16 subjects met the primary

endpoint, including 5 subjects who remained insulin independent

2 years after transplantation (12). This clinical trial suggests that

islet transplantation using the Edmonton protocol can restore long-

term endogenous insulin production and stabilize blood glucose

levels in T1D patients, but insulin independence may not persist. It

may be necessary to continue improving the immunosuppressive

regimen to achieve longer insulin independence after islet

transplantation. We summarize some clinical trials of

immunosuppressive regimen (Table 1) and using porcine islets in

non-human primates (Table 2).

In recent years, several research teams have published studies

on the long-term progress of IT, affirming its therapeutic effects and

providing new ideas for future treatment protocols (Figure 1). In

2016, Bernhard et al. published a phase III clinical trial for the

treatment of severe hypoglycemic complications in T1DM patients

through IT. The trial was conducted at 8 centers in North America

and included 48 T1DM patients who had been suffering for over 5

years. During the trial, each patient underwent one or more ITs.

The primary endpoints of the trial were achieving HbA1c <7.0% (53

mmol/mol) within the first year after the first transplant and

avoiding severe hypoglycemic events (SHEs) from day 28 to day

365. The results showed that 87.5% of the participants successfully

reached the primary endpoints within one year. IT enables blood

sugar control for patients with refractory SHEs and should be

considered when other treatments are ineffective (33). In 2023,

the team conducted a follow-up investigation of 398 patients with

T1DM and SHEs registered in the Collaborative Islet Transplant

Registry (CITR). They identified 4 factors that are most beneficial

for IT: patients ≥35 years old, infusion of 325,000 islet equivalents,

immunosuppression with T cell depletion or TNF-a inhibition, and

the use of rapamycin (mTOR) and calcineurin inhibitors. When

islet transplant recipients reach the milestone of 5 years after their

last islet cell infusion, approximately 95% of patients who meet
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these 4 common factors experience no SHEs and greatly benefit

from improved glycemic control (13).

In 2022, Marfil-Garza et al. from the University of Alberta,

Edmonton, Canada, published a study on the long-term results of

pancreatic islet cell transplantation over a period of 20 years. This is the
Frontiers in Immunology 03113
largest cohort study to date on the long-term outcomes of IT, including

255 patients from the Edmonton Protocol. This study showed that

despite the need for chronic immunosuppression therapy, islet cell

transplantation demonstrated good long-term safety. In this study, the

median follow-up time was 7.4 years, with 90% patient survival and a

median graft survival of 5.9 years. Patients surviving post-transplant

exhibit better insulin sensitivity and more stable blood glucose control

than non-survivors (34). This study is significant for understanding the

long-term effects of islet cell transplantation and for identifying

predictive factors. However, further research is needed to validate

these results and to continue to evaluate the risks and benefits of IT for

better treatment choices for patients.

In a retrospective, multicenter, observational cohort study, 1210

patients from the Pancreatic Islet Transplantation Collaborative

Registry at 39 centers worldwide were included. The study

demonstrated a linear inverse relationship between primary graft

function (PGF) at one month post-most recent IT and the five-year

cumulative incidence of adverse outcomes. This suggests an

association between early transplantation potential and long-term

clinical significance, which has important implications for b-cell
replacement therapies. Anticipated clinical outcomes can guide

personalized decisions regarding repeat islet injections based on a

predefined islet quality threshold, informing current practice. In

future trials, PGF may serve as an early and reliable surrogate

endpoint for successful IT. These findings highlight the potential of

evaluating and optimizing early IT to improve current b-cell
replacement outcomes through an enhanced islet survival and

function post-transplant. This can enhance the effectiveness of IT

and improve patient prognoses (35).

In conclusion, the latest research and clinical data unequivocally

support the safety and efficacy of pancreatic islet cell transplantation

in T1DM treatment. Furthermore, these studies offer promising new

directions for further optimization of IT and for achieving long-

term success.
TABLE 2 Immunosuppressive protocol for transplantation of porcine
pancreatic islets into nonhuman primates.

Immunosuppressive drugs Graft
survival
time

References

Anti‐CD154 mAb, basiliximab,
belatacept, sirolimus

>140 days (23)

CD154-specific and CD25-specific mAb,
FTY720 (or tacrolimus), everolimus

and leflunomide

>100 days (24)

CD40-specific monoclonal antibody (Chi220),
basiliximab, belatacept, sirolimus

203 days (25)

Belatacept and mycophenolate, LFA-1
blockade, basiliximab, tacrolimus,

111 days (26)

Cobra venom factor (CVF), anti-CD154 mAb,
low-dose Sirolimus, anti-thymocyte globulin

(ATG),Tregs

603 days (27)

ATG, anti‐CD40 mAb, CVF, adalimumab,
sirolimus, with or without belatacept

or tacrolimus

60 days (28)
TABLE 1 Different immunosuppressive regimens in islet transplantation.

Immunosuppression
therapy

Result References

Sirolimus, tacrolimus,
and daclizumab

Achieved sustained
insulin independence
for 11.9 months

(11, 13)

Sirolimus or mycophenolate,
belatacept (BELA) or
efalizumab (EFA)

Achieving insulin
independence after one
or two islet transplants

(14)

Thymoglobulin and sirolimus,
efalizumab, mycophenolic
acid (MMF)

All patients achieved
insulin independence
and complete remission
of hypoglycemic
episodes after the last
islet transplant

(15)

Anti-CD3 mAb and sirolimus,
maintained with sirolimus and
reduced-dose tacrolimus

Four of six recipients
achieved and
maintained insulin
independence with an
increased percentage of
CD4+ T cells

(16)

Antithymocyte globulin (ATG),
daclizumab, and etanercept,
maintained with mycophenolate
mofetil, sirolimus, and no or low-
dose tacrolimus

Insulin independence
and absence of
hypoglycemia was
achieved in all
8 recipients

(17)

Daclizumab, sirolimus,
tacrolimus, etanercept, exenatide

Improves islet graft
function and
contributes to insulin
independence with
reduced islets

(18)

Thymoglobulin induction, and
doubleblockage of IL-1b and
TNF-a as well as sirolimus-
free immunosuppression

Only one islet infusion
is required, significantly
improving the efficacy
of clinical
islet transplantation

(19)

Rapamycin, ATG, steroids and
interleukin-1Ra, rapamycin,
mycophenolate mofetil treatment
as maintenance therapy

This regimen is feasible
and safe but less
efficient in maintaining
graft survival than other
regimens based on T-
cell depletion

(20)

Induction immunosuppression
with T cell depletion and/or
TNF-a inhibition; and
maintenance with both
mechanistic target of rapamycin
(mTOR) and
calcineurin inhibitors

Safe to use and exerts a
great and significant
benefit in blood
glucose control

(21)

Alemtuzumab, basiliximab,
maintained withtacrolimus,
mycophenolatemofetil,
and prednisolone

This protocol for
postrenal islet
transplantation
significantly improves
islet allograft function
and improves
glycemic control

(22)
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3 b-cell replacement options: stem
cells and porcine islets

Pancreatic IT holds great promise in the treatment of T1DM.

However, the scarcity of pancreatic islets limits the development of

this technique. Several research teams have proposed different

solutions. Currently, the main focus of pancreatic cell replacement

strategies is on stem cells, including embryonic stem cells (ESCs) and

induced pluripotent stem cells (iPSCs), as well as porcine islets.
3.1 ESCs/iPSCs differentiate into islet
b-cells

The strategy for in vitro differentiation of ESCs/iPSCs into

pancreatic cells mimics the molecular regulatory mechanisms of

pancreatic development in vivo. It involves the use of a

combination of growth factors and small molecules to activate

developmental signaling pathways and transcription factor

networks. Through staged induction, pancreatic progenitor cells

and endocrine progenitor cells eventually differentiate into mature

endocrine cells (a, b, d) cells (36–39). D’Amour et al. first attempted

to establish a protocol for generating hormone-expressing cells that

can synthesize and release multiple hormones (40). Rezania et al.

reported a seven-step differentiation protocol, in which the resulting

cells expressed key markers of mature b-cells, such as MAFA, PDX1,

NKX6.1, and INS, and exhibited similar functionality to human islets

(Figure 2) (41). Subsequently, Pagliuca et al. utilized human ESCs and

employed a stepwise induction method with the addition of various

factors in basal medium to successfully cultivate insulin-secreting b-
cells (SC-b-cells), which functioned as fully functional pancreatic b-
cells. Upon transplantation into mice, SC-b-cells showed detectable

insulin secretion within two weeks, with secretion levels changing in
Frontiers in Immunology 04114
response to blood glucose levels (42, 43). Directed differentiation

protocols have also been reported for iPSCs, enabling the generation

of cells expressing insulin and other mature b-cell markers (44, 45).

Because ESCs/iPSCs have good proliferation and differentiation

ability and can produce large numbers of cells, they are ideal candidates

for differentiation into islet b-cells and have broad application

prospects for treating T1D. Therefore, how to produce SC-b-cells in
vitro in large quantities has become the focus of research. The key

transcription factors for differentiating ESCs/iPSCs into SC-b-cells in
vitro are PDX1 and NKX6.1, both of which are highly expressed in

pancreatic progenitor cells and required for producing monohormone,

glucose-reactive b-cells (46, 47). Several research teams have reported

differentiating ESCs/iPSCs into PDX1 and NKX6.1 co-expressing

pancreatic progenitor cells (48, 49) in monolayer culture, and with

improved experimental conditions, up to 90% of PDX1+/NKX6.1+ co-

positive pancreatic progenitor cells were produced. Simultaneously,

differentiating pancreatic progenitor cells into pancreatic b-cells has

also made substantial progress, and the efficiency of pancreatic

progenitor cells producing b-cells in vitro increased to about 40%

(21, 42), although these b-cells are still different from human b-cells in
other functions despite being responsive to glucose. To further improve

the function of SC-beta cells, multiple research teams provided insights,

such as Juan et al., who found that co-culturing with factors regulating

circadian rhythm could enhance SC-beta cell function (50), Leonardo

by altering the signaling pathway of SC-b-cells differentiation process

(51), while Aharon et al. modified the nutrients in the medium used for

in vitro differentiation to further enhance generating functional SC-b-
cells in vitro (52), and could also induce SC-b-cells by simulating the

3D culture system of human pancreatic development (53). In addition,

Isaura (54) and Mariana (55) et al. recently updated and detailed the

recent progress in using ESCs/iPSCs derived islet b-cells in vitro. Some

of the above protocols, although not reaching the level of the original

human islet b-cells, promoted the development of stem cells

differentiating into islet b-cells in vitro.
FIGURE 1

Main development process of clinical islet transplantation.1970S (10), 2000S (11, 12), 2010S (29, 30), 2020S (31, 32).
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With the continuous development of stem cell technology,

pancreatic b-cells products derived from ESCs/iPSCs are

gradually used in clinical trials. A clinical trial conducted in 2014

(NCT02239354) used a stem cell-derived pancreatic endoderm cell

population (PEC-01) developed by ViaCyte, Inc., which matured

into insulin-producing endocrine cells in vivo over several months

in animal models (56–58)., and in the clinical trials they have

developed an immune protective device (PEC - Encap, VC - 01) is

used to encapsulate PEC - 01, the device is a kind of biological

membranes in order to eliminate the need for immunosuppression.

The results of the trial showed that PEC-01 cell population could

differentiate into b-cells and other islet cells after implantation

under the patient’s skin, but excessive fibrosis around the device

resulted in the end of the trial due to immune rejection (29, 30). To

address this problem, the new device was modified with an opening

in the biofilm that allowed vascularization, enhanced nutrient

exchange so that host cells could also penetrate the device, and

immunosuppress ive therapy was admini s te red a f te r

transplantation, while a more mature and functional cell

population (PEC-02) was used. The results of a subsequent

clinical trial (NCT03163511), published in 2021, showed that

transplanted cells matured from pancreatic progenitor cells to

pancreatic endocrine cells six months after transplantation,

producing glucose-reactive C-peptide (59, 60) in six of the 17

patients who underwent the trial. Although the circulating

C-peptide levels observed in these studies are still low, all

demonstrate the potential of ESCs/iPSCs to differentiate into

renewable islet b-cells. Most importantly, both studies, although

in early stage clinical studies, did not identify any serious safety

issues related to the transplanted cells, including tumor formation.

ViaCyte was later acquired by Vertex. Another direction of clinical

trials is transplanting fully differentiated SC-b-cells, which have
Frontiers in Immunology 05115
been successful in non-human primates (61, 62). The most

promising clinical trial to date is Vertex’s Phase I/II trial in 2021

(NCT04786262), which uses cells made of fully differentiated islet

cells derived from pluripotent stem cells (VX-880) injected into the

liver via a traditional portal route. Immunosuppressive therapy was

also used to protect the transplanted islet cells from immune

rejection. Some early results from the trial were recently

published, with significant circulating C-peptide levels detected

three months after transplantation and patients’ blood sugar

significantly controlled, And well tolerated treatment (63). VX-

880 is a novel stem cell derived product for the treatment of T1D,

and the trial is continuing in the United States and Canada to

further evaluate the safety and efficacy of the product. As the

technology develops, more clinical trials are expected.

In addition to using ESC/iPSC-based techniques to induce the

differentiation of transplantable b-cells in vitro, Zeng et al. proposed
an alternative solution. Using single-cell sequencing technology,

they discovered a previously unreported cell population in the

mouse pancreas: protein C receptor-positive (Procr+) pancreatic

cell population. These Procr+ endocrine progenitor cells can be

cultured and induced to differentiate into islet-like cells. In a

transplantation model of diabetic mice, transplanted islet-like

organs reversed the disease (36). This finding provides a new

direction for the direct extraction of target cells from the pancreas

and induction of their differentiation into islet-like organs.
3.2 Islet cells of porcine islet origin

In addition to using stem cell-derived islet beta cells to replace

donor islet cells, another potential option is xenotransplantation

using porcine islets. Compared to human islets, pig reproduction is
FIGURE 2

(A) The seven stages of differentiation of iPSCs into mature b-like cells. (B) Stem cell-derived beta cells and porcine islet-derived beta cells, which
can be modified by a number of techniques and transplanted to potential transplantation sites.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1391504
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1391504
easier and pig islets are more readily available. More importantly, pig

insulin is highly similar to human insulin, differing by only one

amino acid. Pig insulin has been used to treat diabetes for decades.

Pigs have organs similar in size to humans, enabling production of a

sufficient number of islets for xenotransplantation. They are the most

promising donor source for xenotransplantation. Although more

porcine islet cells are required to achieve adequate insulin secretion

compared to human donor islets, porcine islets appear to outperform

human islets in studies. Porcine islet cell xenotransplantation has

achieved insulin function in non-human primates, suggesting

feasibility in clinical settings. Shin et al. reported long-term survival

of adult porcine islets transplanted into five rhesus monkeys for over

20 months. These early trials suggest pig islets have great potential to

address donor islet shortages for T1D patients.

However, there are still some urgent problems to be solved in

the use of porcine islet xenotransplantation, the first of which is

graft rejection. For example, infusion of porcine islets into the portal

vein leads to activation of complement and clotting pathways,

resulting in platelet aggregation and thrombosis at the transplant

site and hyperacute rejection (64). This is followed by human

responses to porcine islet antigens (Galactose a1,3-galactose and

N-Glycolylneuraminic acid), as well as zoonotic infections caused

by endogenous retroviruses.

In the meantime, solutions are being tried. One strategy is

encapsulating islet cells without immunosuppression to solve the

immune rejection problem in porcine islet xenotransplantation.

Various natural or synthetic biomaterials are used for

encapsulation, such as polyethylene glycol diacrylate (PEG-DA)

(65), agarose (66), and other biological materials like alginate (67).

Coating islet cells with alginate films containing polyethylene glycol

acrylate has allowed survival up to 6 months without

immunosuppression (68, 69). However, encapsulation risks hypoxia

and nutrient deficiency in islet cells, delayed glucose and insulin

diffusion affecting glucose regulation (70). One possible

immunosuppression approach is co-stimulatory blocking. Studies

in non-human primates showed anti-CD154 monoclonal

antibodies combined with stimulus-blocking and standard

immunization regimens injected through the portal vein prolonged

transplanted porcine mice survival. However, no clinically available

anti-CD154 monoclonal antibodies exist due to high thrombosis risk

(71). We summarized relevant studies using immunosuppressive

therapy to prolong porcine islet survival post-transplantation in

Table 2. Technological developments like gene editing technologies

like CRISPR/Cas9 potentially eliminate endogenous viruses in pigs,

improving porcine islet xenotransplantation safety to humans (31).

Gene editing overexpresses or knocks out multiple genes finding the

best transgenic pigs for islet transplantation, avoiding

xenotransplantation rejection (72). Recent studies showed targeted

controlled mutational events successfully generated in pig cells

through nuclease-directed homologous recombination (32).

In general, various differentiation protocols are available to

induce the transformation of ESCs/iPSCs into insulin-producing

cells. Clinical trial results have shown its safety and tolerance,

making it a hot topic in current research with broad application

prospects. However, the approach of directly selecting cells from the

pancreatic tissue to induce pancreatic-like organs should not be
Frontiers in Immunology 06116
abandoned. Finally, although extensive data on pig islets are still

required from nonhuman primates for safety validation before

clinical trials, they have gained popularity among many

researchers. These different sources of b-cell replacement provide

abundant choices for future clinical applications, allowing

personalized treatment plans based on individual patient

conditions. We summarized the advantages and disadvantages of

using ESCs/iPSCs derived islet b-cells and porcine islet instead of b-
cells as shown in Table 3.
4 Ongoing challenges of islet
transplantation immunosuppression

One of the greatest challenges that currently exists with islet

transplantation is the post-transplant-induced recipient immune

rejection, which may be responsible for the progressive decline in

islet function in the years following islet transplantation as well as the

inability of some patients to completely wean themselves from

exogenous insulin therapy. These immune reactions include, but

are not limited to: blood-mediated immediate inflammatory response

(IBMIR) (73), recurrent autoimmune reactions (74, 75), and

allogeneic rejection (76–78). Therefore, there is a clinical need to

use high-quality islets from multiple donors or multiple inputs to

counteract the substantial cell loss that occurs after transplantation

(79). Currently, in order to overcome immune rejection after islet

transplantation, in addition to the application of immunosuppressive

drug, other new options have been explored, the most promising of

which include the combined transplantation of mesenchymal stem

cells (MSCs)/regulatory T cells (Tregs) and islet cells as well as the

application of islet encapsulation techniques (Figure 3).
4.1 MSCs/Tregs were co-transplanted with
islet cells

Mesenchymal stem cells (MSC),also known as stromal cells or

mesenchymal progenitor cells, are a kind of non-hematopoietic stem
TABLE 3 Comparison between SC-b-cells and porcine islets for the
imminent cure of T1D.

Type Advantages Disadvantages

SC-b-cells • The ability to proliferate and
differentiate indefinitely
• Easy to genetically engineer
• Potential for standardized
industrial production
• Encapsulation reduces
immune rejection

• Difficulty in vitro
differentiation
• Lower functional performance
of stem cell-derived islet cells
compared to primary human
islets
• Use of different pluripotent
stem cell lines and protocols

Porcine
islets

• Easy access to islet donors
• Functionally similar to
human pancreatic islets
• Successful trials in non-
human primates
• Encapsulation to render long-
term function

• Immune rejection due to
xenotransplantation
• Zoonotic infections caused by
endogenous retroviruses
• Porcine islet antigen
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cells derived from mesoderm, with multi-directional differentiation

potential and strong self-renewal ability (80). MSC is relatively easy to

obtain, can be obtained from human and rodent peripheral blood,

placental tissue, umbilical cord blood, bone marrow cavity tissue and

adipose tissue and other tissues and organs, and can be expanded and

induced to differentiate in vitro, so it has been widely concerned and

applied in the field of tissue engineering and regeneration. MSCs can

improve the efficacy of IT in animal models, especially in regulating

immune responses and protecting islet transplants (81–83). MSCs

can improve insulin resistance in peripheral tissues through potential

immunomodulatory and anti-inflammatory effects and promote

pancreatic b-cell regeneration and protection (84, 85). Multiple

studies have shown that, when co-cultured or co-transplanted with

islet cells, MSCs can protect islet cells from apoptosis due to hypoxia

and inflammatory cytokines through their secretory function, thus

improving the survival of islet grafts in vivo and promoting the early

recovery of the islet function (86, 87). In 2021, Kenyon et al. reported

that islet cells and MSCs could be co-transplanted in non-human

primate IT experiments. The results showed that the rejection-free

survival and overall survival of treated islet grafts were significantly

extended (88). Wang et al. used engineered MSCs as helper cells for

islet co-transplantation and obtained similar results in diabetic mice.

MSCs can induce local immune regulation and are potentially

suitable for IT (89). Another study in patients with chronic

pancreatitis showed that co-transplantation of autologous MSCs

and islets is a safe and potential strategy for improving the islet

function after transplantation (90). Generally speaking, co-

transplantation with islet cells, it was found that mesenchymal stem

cells had the functions of nutrition, support and protection to islet b-
cells, as well as anti-inflammatory and immune regulation.

Regulatory T cells constitute a subset of T cells characterized by the

presence of typical biological markers such as CD4+CD25+FoxP3+.

These cells wield potent immunomodulatory functions and are pivotal
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in regulating immune homeostasis, upholding self-tolerance, and

preventing excessive activation of the immune system (91). Tregs are

considered a promising alternative to pharmacological agents that

promote the engraftment and survival of transplanted organs/tissues

(92–94). Tregs mainly produce self-tolerance, tolerance to alloantigens,

and transplantation tolerance by inhibiting the activation and function

of reactive effector T-cells (94). Currently, Treg therapy can be applied in

two situations in IT: to promote the survival of islets during the initial

transplantation and to induce peripheral tolerance to eliminate

immunosuppression. The addition of Tregs at the time of islet

infusion has been explored as a method to reduce the initial islet graft

loss and improve islet engraftment (95–97). It has been reported that, in

clinical models, Treg expansion in vitro and subsequent reinjection into

patients can induce long-term remission of T1DM (98, 99). Although

there are few relevant reports, a large amount of preclinical evidence

shows that Treg-based treatment has benefits (100–102). Zielinski et al.

recently reported a two-year study using a combined infusion of Tregs

and rituximab to treat pediatric patients with T1DM. The study results

show that combination therapy can delay disease progression compared

with Treg or rituximab alone, and patients who received combination

therapy were able to maintain higher insulin sensitivity and fasting C-

peptide levels than patients in the single-treatment and control groups.

Furthermore, patients who received Tregs alone had higher C-peptide

levels than those in the untreated control group. Another ongoing

clinical trial (NCT03182426) is observing the benefits of T cell depletion

and dual anti-inflammatory treatment. If successful, it will provide new

benefits to islet transplant patients.

With the development of IT, most traditional immunosuppressive

drugs require continuous medication and cannot completely solve the

problem of immune rejection in islet transplants. Cell therapy co-

transplanted with MSCs/Tregs and islets has shown great advantages,

although it is still in the experimental stage, and its application

scenarios are broad.
FIGURE 3

Different protocols for dealing with immune rejection after islet transplantation.
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4.2 Islet encapsulation

Islet encapsulation represents a promising approach to tackle

host immune rejection, employing biomaterials to envelop islets in a

protective barrier. This allows oxygen and nutrients to permeate

islet cells while enabling secreted insulin to disseminate into the

bloodstream. Concurrently, it shields islet cells from assault by the

host immune system (103–105). This technology has developed

rapidly over the past century and can be categorized into micro and

macro-encapsulation based on different processes.

Micro-encapsulation technology encapsulates islets in a thin layer

of biomaterials, facilitating exchange of nutrients, oxygen, and

metabolites. Transplantation of these micro-encapsulated islets is also

simplified. Alginate stands out as a particularly promising biomaterial

due to its superior biocompatibility and ease of manufacture. Studies

confirm alginate reduces post-transplantation immune rejection and

enhances survival of encapsulated islet cells (105). For instance,

incorporating chemokine CXCL12 into alginate micro-encapsulation

protects islets and boosts islet cell function even without

immunosuppressants (106). This alginate-based micro-encapsulation

method has also been applied to encapsulate SC-b-cells, exhibiting no
excessive fibrosis post-transplantation sans immunosuppressive

therapy (107). It has emerged as a key biomaterial for b-cell
encapsulation studies. Recently, research teams have modified

extracellular matrix (ECM) components into alginate, simulating the

pancreatic microenvironment to safeguard coated islet cells from

immune cell and inflammatory factor impacts while promoting

insulin secretion by islet b-cells (108, 109). Nevertheless, several

challenges persist in leveraging micro-encapsulation, especially post-

implantation, presenting potential issues.

Another macro-encapsulation technique can prevent direct

graft-host immune cell contact and spread, and enable easy

removal of any post-transplantation safety issues, and evaluating

graft efficacy at any time, unavailable with micro-encapsulation

(110). Macro-encapsulation has combated host immune rejection

but is limited by inadequate oxygen and nutrient exchange before

blood vessel formation around the device (30). Adding vascular

endothelial growth factor (VEGF) and pre-vascularization

improved this (111, 112). Recently, Wang et al. developed a new

device with immunoprotective hydrogel and thermoplastic silica

gel-polycarbonate-polyurethane maintaining islet function for up to

200 days (113) in allogeneic rodent islet transplant models. Another

macro-encapsulation type encapsulated SC-b cells with amphoteric

modified alginate gel, reversing hyperglycemia for 238 days (114)

post-implantation in severe combined immunodeficiency (SCID)

mice. Many research teams are studying islet packaging, and we

summarize recent progress in Table 4.
4.3 Optimal transplant site

Currently, most clinical IT methods involve injecting islet cells

through the hepatic portal vein under ultrasound guidance. This is a

conventional, mature method (11, 121). However, portal vein IT

can cause postoperative bleeding, vascular emboli formation, portal

hypertension, and periportal fatty degeneration. In particular, the
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blood-mediated acute inflammatory response (IBMIR) caused by

portal vein transplantation can result in massive graft loss in the

very early stages of transplantation (122), suggesting that the liver is

not the most suitable site for IT. Researchers are exploring different

organs and sites (Figure 2B) to determine the best location for islet

cell transplantation (Table 5).

The omentum represents a potentially valuable transplant site,

offering avoidance of IBMIR compared to traditional portal vein

inflow. This richly vascularized tissue secretes various growth

factors (e.g. CXCR4, VEGF, and SDF-1) that promote islet

vascularization and survival (131, 132). In addition, omentum

possesses immunomodulatory capabilities and can monitor the

graft for prompt removal if adverse reactions occur. Omental

transplantation using biological scaffolds has been used for

clinical applications. A US trial (NCT02213003) transplanted

pancreatic islets into the omentum of T1DM patients (133).

Insulin independence was achieved by day 17 post-transplant but

declined approximately one year later. Another ongoing trial

(NCT02821026) has shown limited success. However, in 2023,

Deng et al. reported a method of omental allogeneic IT in

nonhuman primates using locally applied recombinant thrombin

(Recothrom) and the recipient’s autologous plasma to design a

degradable matrix for islet fixation. Normal blood sugar and insulin

independence were achieved at one week post-transplant, with

stable expression thereafter. This study provides strategies for the

clinical translation of omental transplantation.

The subcutaneous space is another ideal transplant site. It is a

relatively avascular region that is easily accessible to biomaterials or

macroscopically encapsulated islets. In 2020, Yu et al. reported

successful subcutaneous IT in various immune-competent and

immune-naïve animal models using a device-free islet survival

matrix to achieve long-term normoglycemia. This method has

been used for mice, pigs, and humans. Islet cell transplant models

have the advantages of simplicity, safety, and reproducibility (134).

With the clinical application of ESCs/iPSC-derived islet-like cells

and islet encapsulation technology, the subcutaneous cavity can be

easily monitored and removed, making it a promising transplant

method. However, the skin lacks relative blood vessels and cannot

obtain early-stage nutrients and oxygen, which limits its clinical

application. To address this, Darling et al. tested a biodegradable

temporary matrix based on a polyurethane scaffold that forms good

blood vessels within the skin. In a porcine islet transplant model,

grafts maintained normal function and survived for over three

months (128). In addition, the immune response hinders

subcutaneous transplantation. Therefore, the development of

advanced biomaterials with angiogenesis and immune modulation

capabilities may be the next step for the long-term islet survival and

function in the skin.

In addition to the two aforementioned research hotspots of

transplant sites, studies on transplanting islets into the intrapleural

(135), skeletal muscle (136), anterior chamber of the eye (ACE)

(137), and other sites have been reported (138–140). However,

research on these aspects is still in its infancy, and there is a large

gap in clinical applications. Due to the application of bioengineering

materials and macro-encapsulated islet grafts, the greater omentum

and subcutaneous space seem to be ideal sites for IT in the future.
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4.4 Immunosuppression

Although several of the above options are effective in mitigating

the immune rejection caused by islet transplantation and are the way

forward, immunosuppressive therapy is still required at this time to

ensure islet survival and function. The goal of immunosuppression is

to provide effective and sustained immune protection in the smallest

effective amount without suffering from the side effects associated

with immunosuppression. Since inflammation leads to significant

islet loss, anti-inflammatory drugs reduce damage from pro-

inflammatory factors and may improve islet cell function in the

early post-transplant period (141). Therefore, in order to attenuate

the IBMIR response that occurs after islet transplantation and

thereby reduce islet loss, several anti-inflammatory therapies have

been used in the perioperative period of islet transplantation,
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including TNF-a inhibitors (etanercept), IL-1 receptor antagonists

(anabolic acid), and a1-antitrypsin. Enalcipro, which targets TNF-a,
is a potent antitumor agent that is widely used in T1D patients with

allogeneic transplantation (17), and its use in mouse animal models

results in a reduction of inflammatory markers and has been shown

to have a sustained effect on autoimmunity (142). And in another

study in an immunodeficient mouse islet transplant model, it was

found that the percentage of mice achieving normal blood glucose

levels after transplantation with the combination of etanercept and

anabolic acid was 87.5%, compared to 45.45% with etanercept alone,

and 53.9% with anabolic acid alone, suggesting that the combined

use of etanercept and anabolic acid significantly improves the

function of islet grafts (143). However, a recent study showed that

although the use of etanercept demonstrated better islet function in

the pre-transplant period, this advantage was not found to be

sustained at the subsequent 1- or 2-year follow-up, and therefore,

different doses or prolonged use of etanercept need to be explored

to benefit patients (144). Another promising anti-inflammatory is

a1-antitrypsin, which is a serine protease inhibitor, has been shown

in several preclinical studies in animal islet transplantation models

to attenuate the IBMIR response and prevent islet cell apoptosis

while inhibiting cytokine-induced islet inflammatory responses

(145, 146).
5 Conclusion and outlook

In terms of long-term results of islet transplantation, this study

has greatly advanced research in the treatment of diabetes, and

optimized protocols for long-term efficacy of islet transplantation

have demonstrated the superiority of this approach, eliminating the

dependence on exogenous insulin in a significant proportion of

patients, thus avoiding diabetes-related complications. However

islet transplantation still faces challenges such as shortage of islet

sources and immunosuppression. To address the shortage of islet

donors, we highlight stem cell-derived pancreatic b-cells and porcine
islets as future solutions. Where stem cells are differentiated in vitro

to generate pancreatic b-cells are being investigated for more efficient

differentiation protocols, cell culture expansion methods and islet

encapsulation techniques to optimize production to provide

protection against the patient’s autoimmune response. Porcine islet

xenotransplantation is becoming a reality and if successful will

provide a constant supply of high quality islet donors, however,

xenoantigens and strong immunosuppressive responses are currently

the main challenges and gene editing using CRISPR-Cas9 is expected

to bring a brighter future for porcine islet xenotransplantation. In

addition to overcome the immunosuppression, islet encapsulation

technology is currently being developed, and various encapsulation

materials: natural or synthetic biomaterials are showing clear

advantages in several preclinical and clinical trials, and although

the ideal biocompatible material is still a matter of debate, it is

undeniable that islet encapsulation technology provides a barrier to

protect transplanted islets, and in the future it will be mainly useful in

preventing hyperfibrosis, promoting local vascularization, and

preventing the emergence of chronic immunosuppressive rejection.
TABLE 4 Different strategies and biomaterials for islet encapsulation.

Encapsulation
material

Result References

Carboxymethyl
cellulose coated

chitosan
(CS@CMC) microgels

Long-term glucose regulation for
180 days was achieved in post-

transplant diabetic mice

(115)

Methacrylated gelatin
(GelMA),

methacrylated heparin
(HepMA) and VEGF

Reversed blood sugar levels in
diabetic mice from high to normal
blood sugar for at least 90 days

(116)

Zwitterionically
modified

alginate hydrogel

Hyperglycemia was reversed in
SCID mice for 238 days

(114)

Immunoprotective
hydrogel core and

thermoplastic silicone-
polycarbonate-

urethane

In an allogeneic rodent islet
transplantation model, use of the
device was shown to maintain islet

function for up to 200 days

(113)

Polytetrafluorethylene
(PTFE)-membrane

Exhibit a rapid, vaso-independent
and glucose-stimulated insulin
response, early improvement of

hyperglycemia and reduced fibrosis

(117)

Silicon
nanopore membranes

Islets encapsulated with this device
exhibit a highly active and biphasic

insulin response to dynamic
glucose stimulation

(118)

PTFE After implantation, the patient
experienced increased fasting C-
peptide levels, increased glucose-
reactive C-peptide levels, and
mixed diet-stimulated C-

peptide secretion.

(59)

Polyethylene glycol
diacrylate (PEGDA)

The absence of
immunosuppression reverses the
signs of diabetes and leads to
insulin-independent status or

significantly reduced
insulin requirements

(119)

Polyethylenglycol
(PEG)

Reverse diabetes and maintain
normal blood sugar for more than

80 days

(120)
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MSCs/Tregs and islet cell co-transplantation shows a broader

prospect, which can minimize the use of immunosuppressant and

reduce the side effects of immunosuppressant once it is successfully

applied. Since islet grafts do not survive long term after portal vein

infusion, which suggests that this site is not the optimal site for islet

transplantation, subcutaneous lumen and greater omentum based

encapsulation device is a more attractive strategy in comparison. Not

only does it provide a physical barrier that reduces the destruction of

the transplanted islets by the body’s immune cells, thereby improving

islet survival and function. At the same time, this strategy can be

adapted as needed, such as removing the device in the event of an

adverse reaction, and this flexibility can also be applied to

individualize treatment as the patient’s specific needs evolve.

The recent advent of single-cell sequencing technology (scRNA-

seq) has ushered in a new era of molecular dissection, which is

capable of revealing differential gene expression at the level of

individual cells (147). In the field of islet transplantation, scRNA-

seq may help to reveal the characteristics of different cell types in

allogeneic islet transplants and be able to pinpoint cellular stress

responses and pathophysiological changes in different grafts, which

may further prolong islet graft survival and functional

improvement, ultimately leading to insulin independence (148).

In conclusion, with the innovative research carried out on islet

source acquisition, immunosuppression protocols, and graft site

reselection for islet transplantation, this technology will certainly be

driven to greater maturity.
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TABLE 5 Selection of transplantation sites other than the liver.

Transplantation
sites

Receptor Bio-materials Result References

Omentum Diabetic rats Hydrogels Transplanted pancreatic islets show high rates of peri-islet and intra-islet
hemotransfusion and reverse diabetes

(123)

T1D patient Biocompatible Plasma-
Thrombin Gel

Stable glycemic control over 9 months, but relapse after 1 year (124)

Lewis rats Plasma-
thrombin bioscaffold

Maintained normal blood glucose for 100 days post-transplant (125)

Intramuscular 7 years
old patient

Quality of life improves, but exogenous insulin is still needed (126)

Lewis rats Significantly lower blood sugar levels after islet transplantation (127)

Subcutaneous space Diabetic
mice

Biodegradable
temporizing matrix

Porcine islet cells survive more than 100 days after transplantation and
secrete C-peptide

(128)

Diabetic
mice

Methacrylic acid-
polyethylene glycol

Reversal of diabetes by injection of 600 rodent islet equivalents for 70 days (129)

Anterior Chamber of the
Eye (ACE)

Baboon Decreased exogenous insulin requirement, no serious adverse effects seen (130)
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