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PET/CT and MRI in prostate cancer
Prostate cancer (PCa) represents one of the leading causes of cancer-related mortality

(1). Age, African ancestry, and a family history of PCa are widely recognized as established

risk factors (2). PCa exhibits a wide spectrum of aggressiveness, ranging from slow-growing

to highly life-threatening. Large-scale trials have demonstrated that low-grade PCa (grade

group 1) is associated with a very low risk of cancer-specific death. On the other hand,

cancers classified in grade groups 3 through 5 display significantly higher metastatic

potential and accounted for the majority of the estimated deaths from PCa (3). This

diversity in the lethality of different PCa subtypes underscores the critical need for precise

and accurate diagnosis of PCa. At diagnosis, 13% of PCa patients will have regional lymph

node involvement and 8% will have distant metastasis (4). The most common site of

metastatic PCa (mPCa) involvement is the bone, accounting for up to 90% of mPCa.

Visceral organ involvement, such as in the lung, liver, adrenal gland, and brain, is less

common. When compared to localized PCa, the 5-year survival rate of mPCa declines

significantly from 100% to 34.1%. Early detection of mPCa is crucial for treatment. The U.S.

Food and Drug Administration (FDA) sanctioned the assessment of prostate-specific

antigen (PSA), a protein discharged by both healthy and cancerous prostate cells, in 1986

(5). Initially authorized for tracking patients with confirmed PCa, it was later endorsed in

1994 to assist in detecting PCa alongside digital rectal examination (DRE) in individuals

aged 50 and above. Recently, screening for PCa using serum PSA has come under

considerable criticism due to several trials demonstrating that using PSA serum levels

often leads to overdiagnosis and overtreatment, as well as the inability to accurately

differentiate between low-, intermediate-, and high-risk aggressive disease. PCa diagnosis is

currently based on the gold standard invasive procedure of transrectal ultrasound (TRUS)-

guided needle biopsy of the prostate. The diagnostic biopsy is informed by the combination

of any of the following: elevated PSA serum levels, PSA kinetics, abnormal DRE, family

history, race, or abnormal previous biopsy. Gleason score, cancer stage, and cancer core

information are all obtained from biopsy, and frequent or periodic biopsies are not

amenable for patients. Individuals with elevated PSA levels upon screening have the

option to pursue additional examinations to determine the necessity for biopsy,

multiparametric magnetic resonance imaging (MRI) to pinpoint biopsy sites, or both.

Those diagnosed with low-risk or favorable intermediate-risk PCa may opt for active

surveillance, involving periodic PSA tests and biopsies, instead of immediate curative
frontiersin.org01
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treatments such as surgery or radiation therapy (5). Using a 12-core

systematic prostate biopsy tends to yield inaccuracies in diagnosis,

leading to both overdiagnosis and underdiagnosis of prostate cancer

(3). Employing MRI targeting during biopsies can potentially

mitigate the misclassification of PCa, especially in men with MRI-

visible lesions. In patients displaying MRI-visible lesions, utilizing a

combined biopsy approach resulted in increased detection of PCa.

Nevertheless, relying solely on MRI-targeted biopsy led to an

underestimation of the histologic grade for certain tumors.

Following radical prostatectomy, the occurrence of upgrades to

grade group 3 or higher during histopathological analysis was

notably reduced after implementing combined biopsy techniques

(3). The European Association of Nuclear Medicine (EANM) has

recently introduced a molecular imaging TNM (miTNM)

classification utilizing prostate-specific membrane antigen

(PSMA) positron emission tomography (PET) scan/computed

tomography (CT) observations (6). It is anticipated that the

prognosis of the miT, miN, and miM substages will likely be

more favorable compared to their conventional T, N, and M

counterparts due to the enhanced sensitivity of PSMA PET/CT

over standard bone scans and abdominopelvic CT scans. However,

the extent of this prognostic improvement and its practical

significance and implications remain to be thoroughly evaluated.

MRI of the prostate has been, however, recommended as the initial

diagnostic test for men presenting with suspected PCa, with a

negative MRI enabling safe avoidance of biopsy and a positive

result enabling MRI-directed sampling of lesions (7). Evidence

supports the role of the MRI-directed pathway for PCa diagnosis,

with improved performance over the previous clinical standard of

systematic TRUS needle biopsy of the prostate. In terms of

localizing the primary tumor for diagnostic biopsy, MRI prior to

biopsy is becoming common practice to identify more clinically

significant PCa (International Society of Urological Pathology

[ISUP] grade group ≥2) and reduce the diagnosis of non-

clinically significant disease (8). The main role of prostate MRI is

to detect only clinically significant PCa. The prevalence of clinically

significant PCa in men referred to urology clinics has been reported

as ~30%, indicating that a substantial proportion of patients might

unnecessarily undergo an invasive biopsy procedure; however, a

negative MRI would enable up to half of these patients to safely

avoid biopsy (9). Conversely, a positive MRI can directly target

tumor lesions to provide pathologically accurate tissue sampling

(9). The negative predictive value (NPV) of MRI is high (~90%) and

has little variability among centers, whereas a comparatively low

positive predictive value (PPV) of 17%, 46%, and 75% has been

reported for lesions with a Prostate Imaging- Reporting and Data

System (PI-RADS) score of 3, 4, and 5, respectively (9). MRI lesions

are assessed using the PI-RADS score, ranging from 1 to 5. Higher

scores signify lesions that are more clinically suspicious, aiding in

the stratification of PCa risk. Prostate MRI, when interpreted using

the PI-RADS, enhances the initial detection of clinically significant

PCa (csPCa) compared to standard biopsy, thus aiding in the

reduction of overdiagnosis. However, despite these benefits,

approximately 15% of csPCa cases may still evade detection.

Additionally, the PPV of PI-RADS can vary among different

institutions. To tackle these challenges effectively, strategies must
Frontiers in Oncology 02
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be implemented to minimize interobserver variability in

interpretation. Recognizing the evolving demands in prostate

MRI interpretation, specialized scoring systems have emerged

beyond PI-RADS to address specific scenarios and unmet needs.

Examples include the Prostate Imaging Quality (PI-QUAL) score,

designed for assessing the image quality of mpMRI examinations.

Additionally, the Prostate Cancer Radiologic Estimation of Change

in Sequential Evaluation (PRECISE) recommendations offer

guidance for evaluating serial mpMRI examinations during active

surveillance. For assessing local recurrence after radical

prostatectomy or radiation therapy, the Prostate Imaging for

Recurrence Reporting System (PI-RR) score is utilized, while the

Prostate Imaging after Focal Ablation (PI-FAB) score is employed

to assess local recurrence after focal therapy. These specialized

scoring systems cater to specific clinical scenarios, providing

tailored and comprehensive evaluation methods beyond the scope

of traditional PI-RADS (10). It has been shown that MRI performs

best as a rule- out test; however, results from studies in which MRI-

detected lesions were compared with histopathology on

prostatectomy specimens showed that 8–24% of Grade Group 2

PCa might be MRI occult (9), which could mainly be ascribed to

technical limitations, the presence of cribriform glands, and/or a

sparse pattern of tumor growth. It has been reported that the

diagnostic strategy involving PSAs low sensitivity, the

invasiveness of prostate biopsy sampling, and the variability in

performing and interpreting MRI is constrained by various factors.

Successful implementation of this approach necessitates

experienced clinicians, optimized equipment, effective

interdisciplinary communication, and standardized workflows.

Each component of the pathway must be carefully executed to

achieve the anticipated results. PCa can vary tremendously in its

clinical behavior and response to treatment. Due to this and its

substantial global incidence, there is an ongoing need for improved

diagnostic, risk-stratification, and therapeutic approaches to

optimize patient outcomes. PSMA PET has begun to

revolutionize the landscape of PCa management from both a

diagnostic and therapeutic perspective. PSMA, a transmembrane

glycoprotein (11), was initially identified on prostate cells in 1987

(12) and cloned and characterized in 1993 (13). It was further noted

to be preferentially expressed on malignant versus benign prostate

cells, prompting researchers to develop it as a target for molecular

imaging and theranostic applications (14). The expression of PSMA

in tumors is, however, absent in 15–20% of men diagnosed with

castration-resistant prostate cancer (CRPC), but the precise

mechanisms behind this phenomenon are still unclear (15).

PSMA PET has evolved as an imaging tool capable of driving

more accurate and targeted approaches to PCa management.

Recently, Weiner et al. detailed the historical development and

contemporary impact of PSMA PET in PCa care, highlighting the

advancements made and promising future directions which will be

guided by clinical trials (16). In a pooled analysis of multiple

prospective studies, Kawada et al. (17) showed PSMA PET

increased sensitivity for detecting csPCa from 84 to 91%

compared to MRI alone. Prior work has shown that PSMA PET

is better able to detect more PCa in patients with biochemical

recurrence compared to Choline- or Fluciclovine-based PET after
frontiersin.org
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primary radiation or surgery (18, 19). Specifically, when the PSA is

≤0.5 ng/mL in these patients, the detection rate is only 12.5% for

Choline-based PET and 50% for PSMA PET. In a similarly designed

prospective study of patients with PSA 0.2-2.0 ng/mL following

surgery for PCa, the detection rate for Fluciclovine-based PET was

26%, while PSMA-based PET detected PCa in 56% (18). Additional

phase III trials are required to further investigate whether PSMA

PET imaging can effectively guide patients in avoiding unnecessary

prostate biopsies.

Recent years have witnessed substantial progress in leveraging

artificial intelligence (AI) and computer-aided diagnosis to enhance

the diagnosis of PCa, encompassing both radiological and

histological domains (Figure 1). These AI-based tools have

demonstrated potential in enhancing the efficiency and precision

of radiologists by streamlining or enhancing human workflow.

Likewise, longstanding challenges in PCa histopathology, such as

limited interobserver and intraobserver agreement in measurements

and Gleason grading, are being addressed through the integration of

these innovative techniques (20–23).

This Research Topic has provided an open discussion of how

PET/CT and MRI impact the diagnosis of PCa. Liu et al. evaluated

the feasibility and diagnostic performance of PSMA based 18F-

DCFPyL PET/CT-ultrasound (PET/CT-US) or PET/MRI-

ultrasound (PET/MRI-US) fusion targeted biopsy for intra-

prostatic PET-positive lesions. From April 2018 to November

2019, they prospectively enrolled 55 subjects to perform PET/CT-

US or PET/MRI-US fusion targeted biopsies for solitary PET-

positive prostate lesions (two to four cores/lesion). The positive

rates of PCa based on patients and biopsy cores were calculated

respectively. With reference to the pathological results of biopsy

cores, the MR signal characteristics in the area of the PET-positive

lesion were analyzed for the patients who underwent PET/MRI.

One hundred forty-six biopsy cores (82.0%) from 51 (92.7%)

patients were positive for PCa; 47 (85.5%) were positive for
Frontiers in Oncology 03
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csPCa. It is noteworthy that nine patients underwent both 18F-

DCFPyL PET/CT and PET/MRI examinations; the seven patients

with PCa showed abnormal MR signal in the area of the PET-

positive lesion while the other two patients with prostatic

hyperplasia and prostatitis showed normal MR signal in the area

of the PET-positive lesion. This study indicated that 18F-DCFPyL

PET/CT-US or PET/MRI-US fusion targeted prostate biopsies may

be valuable for PCa diagnosis and have a high detection rate of

clinically significant PCa for PET-positive lesions. PET/MR can rule

out some false PET-positive lesions, which may potentially reduce

unnecessary prostate biopsies.

In a recent meta-analysis involving patients with non-small cell

lung cancer, there was no discernible contrast between whole-body

magnetic resonance imaging (WBMRI) and PET/CT. However,

such a comparative study is lacking in the context of PCa. Zhan

et al. undertook a comparison between WBMRI and PET/CT for

detecting bone metastases in PCa patients. Their analysis

encompassed four prospective and one retrospective study,

involving a total of 657 patients. Significant disparities were noted

between WBMRI and PET/CT concerning sensitivity and negative

likelihood ratios, whereas no notable differences were observed for

specificity and positive likelihood ratios. The diagnostic odds ratio

for WBMRI was found to be similar to that of PET/CT. PET/CT

demonstrated higher sensitivity and negative likelihood ratios in

detecting bone metastases from PCa compared to WBMRI, while

no significant distinctions were detected for specificity and positive

likelihood ratios. Walter et al. conducted an assessment of the

MonaLisa prostate biopsy system focusing on safety, tolerability,

and patient-related outcomes. This prospective study involved 228

patients who underwent Robotic-assisted transperineal MRI-US-

fusion guided biopsy of the prostate. The study evaluated peri-

operative side effects, functional outcomes, and patient satisfaction.

On the day of biopsy, the mean pain score was 1.3 points on the

Visual Analog Scale (VAS), which remained consistent on the
A B C

FIGURE 1

The diagnostic pathway for PCa strives to achieve timely identification of clinically significant PCa while minimizing the detection of insignificant
cases. This approach seeks to strike a balance between diagnostic accuracy and the potential burden on individuals and healthcare providers.
Utilizing artificial intelligence, we integrate data from various scales (A) to enhance the diagnosis and treatment of prostate cancer. Within the
collected dataset, the AI-driven system identifies and extrapolates the features and data points most pertinent to generating the ultimate outcome
(B). The integration of diverse data and features culminates in a refined categorization of the condition (C), emphasizing that integration involves
intricate connections among diverse characteristics observed across multiple scales, rather than a mere summation of individual outcomes.
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following day. Overall, 14% of patients experienced grade I

complications according to the Clavien-Dindo classification, with

no higher-grade complications reported. Gross hematuria,

hematospermia, and acute urinary retention occurred in 63.6%,

43%, and 14% of patients, respectively, while only one patient

developed urinary tract infection. The authors concluded that

robotic-assisted transperineal MRI-US-fusion guided biopsy of

the prostate, performed under general anesthesia, is a safe and

well-tolerated procedure. They attribute this favorable risk profile

and tolerability to the minimally invasive approach involving two

entry points, which allows for the omission of perioperative

prophylaxis while minimizing the risk of infectious complications.

In their manuscript, Gaudiano et al. provided an overview of both

the common and rare features of different types of granulomatous

prostatitis (GP) on mpMRI through a comprehensive literature

review. Their aim was to identify radiological criteria for

distinguishing this inflammatory condition from PCa and

reducing the need for TRUS prostate biopsy whenever possible.

Specifically, they focused on evaluating GP features within the

multiparametric study protocol, which includes T2-weighted

(T2w) imaging, diffusion-weighted imaging (DWI) with apparent

diffusion coefficient (ADC) mapping, and dynamic contrast-

enhanced (DCE) sequences. The primary limitation they

encountered was the scarcity of large-scale studies on this topic

due to the rarity of the disease. Consequently, the literature

predominantly comprises case reports and small case series,

which precluded a detailed statistical analysis. Through their

literature review, they concluded that mpMRI of the prostate

could be instrumental in distinguishing Bacille Calmette-Guérin

(BCG)-induced GP from PCa, particularly by accurately assessing

the characteristic “ring enhancement” of prostate lesions on

multiphase contrast-enhanced MRI within a specific clinical

context. They suggested that an mpMRI follow-up of prostatic

lesions could be safely conducted in such cases. However, they

noted that differentiating other types of non-necrotic GP, such as

nonspecific granulomatous prostatitis, xanthogranulomatous

prostatitis, and diffuse or nodular BCG-induced GP, based solely

on mpMRI features, including PSA values, was not feasible. In these

instances, a targeted biopsy remained the necessary approach for

accurate diagnosis.

In their study, Wenhao et al. assessed the utility of quantitative

T2 star (T2*) values derived from T2* mapping sequences in

mpMRI for diagnosing and grading PI-RADS 3 PCa. They

prospectively enrolled patients with PCa or benign prostatic

hyperplasia (BPH) and collected imaging indicators, including

T2* values and ADC values. Additionally, they measured levels of

proteins involved in iron metabolism using enzyme-linked

immunosorbent assays. Their findings revealed significant

differences in three iron metabolism indexes - ferritin, hepcidin,

and ferric ion (Fe) - as well as T2* values between the PCa and BPH

groups and between the low ISUP group (ISUP ≤ 2) and the high

ISUP group (ISUP > 2). Moreover, a significant correlation was

observed between the levels of these three indicators and T2* values.

Further receiver operating characteristic analysis demonstrated that

the levels of iron metabolism-related indexes and T2* values

exhibited strong performance in diagnosing and grading PCa.
Frontiers in Oncology 04
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Their study highlighted the potential of T2* values in detecting

and predicting the grade of PCa, as they reflect the tumor’s iron

metabolism. This finding suggests that T2* values could serve as a

valuable tool in the future for diagnosing and grading PCa,

providing a foundation for improved clinical decision-making in

PCa management. Zhang et al. conducted a comparative analysis

between 99mTc-PSMA single-photon emission computed

tomography (SPECT)/CT and mpMRI in detecting primary PCa.

Their prospective study involved fifty-six men with suspected PCa,

categorized into high- (Gleason score > 7), intermediate- (Gleason

score = 7), and low-risk groups (Gleason score < 7). All patients

underwent both 99mTc-PSMA SPECT/CT and mpMRI within an

average interval of 3 days. They utilized maximum standardized

uptake value (SUVmax), minimum ADCmin, and their ratio

(SUVmax/ADCmin) as imaging parameters to differentiate between

benign and malignant prostatic lesions. Their findings indicated

that 99mTc-PSMA SPECT/CT and mpMRI exhibited comparable

performance in detecting primary PCa, with sensitivities of 97.7%

and 90.9%, specificities of 75.0% and 75.0%, and areas under the

curve (AUC) of 97.4% and 95.1%, respectively. Moreover, the AUC

of SUVmax/ADCmin surpassed those of SUVmax or ADCmin alone.

The authors identified a threshold of >7.0×103 for SUVmax/ADCmin

in prostatic lesions, indicating a higher likelihood of malignancy.

Additionally, when SUVmax/ADCmin exceeded >27.0×103, patients

with PCa might exhibit lymph node and bone metastases. SUVmax

exhibited a positive correlation with the Gleason score, while

ADCmin displayed a negative correlation. SUVmax/ADCmin

showed a positive correlation with the Gleason score and

emerged as the primary predictor of the high-risk group. The

combination of 99mTc-PSMA SPECT/CT and mpMRI yielded

improved diagnostic efficacy for PCa compared to either modality

alone. Notably, SUVmax/ADCmin emerged as a valuable differential

diagnostic imaging parameter in this context.

Huang et al. conducted a comprehensive meta-analysis and

systematic review to compare the diagnostic effectiveness of 68Ga-

PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI in patients with

biochemically recurrent PCa after radical prostatectomy and hybrid

radiotherapy and radical prostatectomy. Their analysis included

studies evaluating the utility of 68Ga-PSMA-11 PET/CT or PET/

MRI as a screening tool for detecting biochemically recurrent PCa.

A total of 37 studies involving 8409 patients were scrutinized. To

assess heterogeneity, the I2 statistic was employed, with the random

effect model used in cases of substantial heterogeneity (I2 > 50%)

and the fixed model in other instances. Additionally, the authors

evaluated the quality of the included studies using the Quality

Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)

method. The combined total detection rates for 68Ga-PSMA-11

PET/CT and PET/MRI were 0.70 (95% CI: 0.65-0.75) and 0.71 (95%

CI: 0.67-0.75), respectively. The authors found no significant

difference in the overall detection rates for biochemical relapse

between 68Ga-PSMA-11 PET/CT and PET/MRI. Moreover, the

detection rates were unaffected by PSA values. Their analysis

suggests that the diagnostic efficacy of 68Ga-PSMA-11 PET/CT is

comparable to that of 68Ga-PSMA-11 PET/MRI in detecting

biochemically recurrent PCa. However, they cautioned that not all

studies employed pathological biopsies as the gold standard,
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highlighting the need for additional larger prospective studies to

address this limitation.

In 2023, Mehmood et al. addressed the challenges posed by

high-resolution and multiresolution MRI in PCa diagnosis by

leveraging computer-aided diagnostic (CAD) methods. With the

rapid advancement of medical technology, deep learning methods

have gained prominence in this domain. These techniques not only

improve diagnostic efficiency but also mitigate observer variability,

consistently surpassing traditional approaches. However, resource

constraints remain a significant hurdle in distinguishing aggressive

from non-aggressive cancers in PCa treatment. Their study aimed

to harness MRI images for PCa identification by integrating deep

learning and transfer learning. They explored various convolutional

neural network (CNN)-based deep learning methods for classifying

PCa-related MRI images. In their approach, they developed a

method for PCa classification using transfer learning on a limited

image dataset to achieve high performance, aiding radiologists in

prompt PCa identification. Their proposed methodology utilized

the EfficientNet architecture pre-trained on the ImageNet dataset,

incorporating three branches for feature extraction from different

MRI sequences. The fusion of these extracted features significantly

enhanced the model’s ability to accurately distinguish MRI images.

Their model achieved a notable accuracy rate of 88.89% in

classifying PCa. Comparative analysis revealed that their

approach outperformed both traditional hand-crafted feature

techniques and existing deep learning methods in PCa

classification. This underscores the efficacy of their methodology

in learning distinctive features from prostate images and accurately

identifying cancerous regions.

Zhao et al. aimed to develop a robust model for predicting csPCa

(pathological grade group ≥ 2) in PI-RADS 3 lesions within the

transition zone by comparing the performance of combination

models. Their study involved 243 men who underwent 3-Tesla

MRI and ultrasound-guided transrectal biopsy, divided into a

training cohort of 170 patients and a separate testing cohort of 73

patients. Manual segmentation of T2-weighted imaging (T2WI) and

diffusion-weighted imaging (DWI) images was performed for PI-

RADS 3 lesions to extract mean apparent diffusion coefficient (ADC)

values and conduct radiomic analysis. Predictive clinical factors were

identified using both univariate and multivariate logistic models, and

the least absolute shrinkage and selection operator (LASSO)

regression models were employed for feature selection and

constructing radiomic signatures. The authors developed nine

models combining clinical factors, radiological features, and

radiomics, utilizing logistic and XGboost methods. The

performance of these models was evaluated using ROC analysis

and the Delong test. Among the 243 participants with a median

age of 70 years, 30 were diagnosed with csPCa, leaving 213 without a

csPCa diagnosis. PSA density (PSAD) emerged as the sole significant

clinical factor, identified through univariate and multivariate logistic

models. Seven radiomic features correlated with csPCa prediction.

The XGboost model exhibited superior performance compared to

eight other models (AUC of the training cohort: 0.949, and validation

cohort: 0.913). However, it did not surpass the PSAD+MADCmodel

in both the training and testing cohorts. Their findings demonstrated

that the machine learning XGboost model performed best in
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predicting csPCa in PI-RADS 3 lesions within the transitional zone.

However, the addition of radiomic classifiers did not significantly

enhance the performance over the compound model of clinical and

radiological findings. Thus, the Mean ADC+PSAD model was

deemed the most effective and generalizable option for quantitative

prostate evaluation.

Zhou et al. developed an artificial intelligence (AI)-based model

for predicting the progression of castration-resistant prostate cancer

(CRPC) by integrating multimodal data. They retrospectively

collected data from 399 patients diagnosed with PCa across three

medical centers. Regions of interest (ROIs) were delineated from

three MRI sequences, namely T2WI, diffusion-weighted imaging

(DWI), and ADC, and the largest section of each ROI was extracted

using a cropping tool. Representative pathological hematoxylin and

eosin-stained slides were selected for training a deep-learning

model. Subsequently, a joint combined model nomogram was

constructed. The predictive performance and goodness of fit of

the model were evaluated using ROC curves and calibration curves.

Decision curve analysis curves and Kaplan-Meier survival curves

were generated to assess the clinical net benefit of the model and its

association with progression-free survival. The AUC of the machine

learning (ML) model was determined to be 0.755. The best-

performing deep learning model for radiomics and pathomics

was identified as the ResNet-50 model, achieving AUC values of

0.768 and 0.752, respectively. The nomogram graph illustrated that

the DL model contributed the most, resulting in an AUC of 0.86 for

the combined model. Calibration curves and DCA indicated that

the combined model exhibited good calibration ability and provided

a net clinical benefit. Additionally, the KM curve suggested that the

model integrating multimodal data could guide patient prognosis

and management strategies effectively. Overall, the integration of

multimodal data significantly enhanced the prediction of PCa

progression to CRPC. Abrahamsen et al. introduced a novel

method of accounting for bone in pelvic PET/MR AC by directly

predicting the errors in the PET image space caused by the lack of

bone in four-class Dixon-based attenuation correction. A CNN was

trained to predict the four-class AC error map relative to CT-based

attenuation correction. Dixon MR images and the four-class

attenuation correction µ-map were used as input to the models.

CT and PET/MR examinations for 22 patients ([18F] FDG) were

used for training and validation, and 17 patients were used for

testing (6 [18F] PSMA-1007 and 11 [68Ga] Ga-PSMA-11). A

quantitative analysis of PSMA uptake using voxel- and lesion-

based error metrics was subsequently used to assess performance.

In the voxel-based analysis, the proposed model reduced the

median root mean squared percentage error from 12.1% and

8.6% for the four- and five-class Dixon-based AC methods,

respectively, to 6.2%. The median absolute percentage error in the

maximum standardized uptake value (SUVmax) in bone lesions

improved from 20.0% and 7.0% for four- and five-class Dixon-

based AC methods to 3.8%. The proposed method reduces the

voxel-based error and SUVmax errors in bone lesions when

compared to the four- and five-class Dixon-based AC models. It

is indubitable that MRI and PCa-specific PET represent two widely

applicable, rapidly developing technologies that are becoming

increasingly important to PCa diagnosis and management. While
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the adoption of these techniques will help us make the most

informed decisions with patients, it is important to recognize that

the clinical benefits and cost-effectiveness of their use are still being

evaluated and debated. It should also underline that consistent

image interpretation is crucial for ensuring comparable data across

different clinical trials and for effectively translating research

findings into routine clinical practice (24).

A significant increase in the annual number of new PCa cases is

expected, with cases projected to rise from 1.4 million in 2020 to 2.9

million by 2040 (25). This rise is attributed to shifting age

demographics and improvements in life expectancy, particularly

driving increases in the disease burden. Late diagnosis of PCa is a

widespread issue globally, with low- and middle-income countries

(LMICs) particularly affected, where late diagnosis is common. To

mitigate the adverse impact of this upward trend, urgent

establishment of systems for earlier diagnosis in LMICs is

imperative. Trials of screening are urgently required in these

regions to provide valuable insights into improving early

diagnosis strategies. Early diagnosis systems must incorporate

innovative combinations of personnel and harness the growing

capabilities of AI-based algorithms to assist in the interpretation of

scans and biopsy samples. This multifaceted approach is essential to

address the challenges posed by rising case numbers and improve

outcomes for individuals affected by prostate cancer worldwide.

Tackling the intricate dimensions of PCa, both in its temporal

progression and spatial manifestations, holds the promise of

uncovering deeper insights into its origins and evolution (26).

This comprehensive approach stands to provide a more cohesive

conceptual framework, enhance the interpretation of experimental

findings, guide targeted research endeavors, and offer a systematic

way to organize the vast array of existing knowledge by identifying

commonalities or shared characteristics among different types of

tumors. Encouragingly, collaboration among experts from diverse

disciplines such as engineering, clinical medicine, biology, and

mathematics continues to drive forward efforts towards achieving

a unified and quantifiable understanding of cancer’s complexities.
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Crucially, technology plays an indispensable role in this pursuit,

serving as a vital catalyst for scientific progress.
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Objectives: The purpose of this study was to evaluate the feasibility and diagnostic
performance of prostate-specific membrane antigen (PSMA) based 18F-DCFPyL PET/CT-
ultrasound (PET/CT-US) or PET/MRI-ultrasound (PET/MRI-US) fusion targeted biopsy for
intra-prostatic PET-positive lesions.

Methods: From April 2018 to November 2019, we prospectively enrolled 55 candidates
to perform PET/CT-US or PET/MRI-US fusion targeted biopsies for solitary PET-positive
prostate lesions (two to four cores/lesion). The positive rates of prostate cancer based on
patients and biopsy cores were calculated respectively. With reference to the pathological
results of biopsy cores, the MR signal characteristics in the area of the PET-positive lesion
were analyzed for the patients who underwent PET/MRI.

Results: A total of 178 biopsy cores were taken on the 55 patients. One hundred forty-six
biopsy cores (82.0%, 146/178) from 51 (92.7%, 51/55) patients were positive for prostate
cancer; 47 (85.5%, 47/55) were clinically significant prostate cancer. It is noteworthy that
nine patients underwent both 18F-DCFPyL PET/CT and PET/MRI examinations; the seven
patients with prostate cancer showed abnormal MR signal in the area of the PET-positive
lesion while the other two patients with prostatic hyperplasia and prostatitis showed
normal MR signal in the area of the PET-positive lesion.

Conclusion: This study indicated that 18F-DCFPyL PET/CT-US or PET/MRI-US fusion
targeted prostate biopsies may be valuable for prostate cancer diagnosis and have a high
detection rate of clinically significant prostate cancer for PET-positive lesions. PET/MR can
rule out some false PET-positive lesions, which may potentially reduce unnecessary
prostate biopsies.
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INTRODUCTION

Prostate cancer remains one of themost commonmale malignancies
worldwide. Systematic 12-core transrectal ultrasound-guided
prostate biopsy and histopathology are the most commonly
used techniques for the diagnosis of prostate cancer before
radical prostatectomy (1). However, biopsies are invasive,
painful, and prone to potential complications. Normal prostate
tissue, benign prostate diseases, and clinically insignificant
prostate cancer are often detected by this conventional biopsy
scheme. In addition, this conventional approach is poor at
sampling the anterior, midline, and apex of the prostate, which
leads to the underdiagnosis of patients with clinically significant
prostate cancer.

Much progress has been made in recent years towards
developing a targeted prostate biopsy. Clinicians are constantly
exploring newmethods, such as direct in-bore MRI guidance and
image fusion guidance targeted prostate biopsy, to improve the
detection of clinically significant prostate cancer and reduce the
number of biopsy procedures and associated complications (2).
However, 24% of men with negative multiparametric MRI have a
significant risk of harboring clinically significant prostate
cancer (3).

PSMA is a type II transmembrane glycoprotein with enzymatic
carboxypeptidase activity. PSMA is overexpressed on almost all
types of prostate cancer cells, making PMSA an ideal target for the
diagnosis and treatment of prostate cancer. Compared with
conventional imaging modalities, such as CT and MR, both
68Ga and 18F labeled PSMA PET imaging has a higher
sensitivity and specificity for prostate cancer (4–7). 18F-
DCFPyL is a very promising 18F-labeled PSMA tracer that is
currently under investigation. A previous study showed that 18F
labeled PSMA provides better image quality and the ability to
display small lesions (8). The purpose of our study was to explore
the feasibility and diagnostic performance of 18F-DCFPyL PET/
CT or PET/MRI and ultrasound (PET/CT-US or PET/MRI-US)
fusion-targeted prostate biopsy for intra-prostatic PET-positive
lesion diagnosis.
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MATERIALS AND METHODS

Study Population
Between April 2018 and November 2019, 213 consecutive
patients performed 18F-DCFPyL PET/CT or PET/MRI because
of elevated PSA, digital rectal examination, ultrasound, or MRI
suspected prostate cancer. The patients with solitary PET-
positive prostate lesions were assessed for eligibility for 18F-
DCFPyL PET targeted biopsy and informed of the potential
harms and benefits of this method. The inclusion criteria
were: (1) 18F-DCFPyL PET/CT or PET/MRI showed solitary
radioactive concentration (PET-positive lesion) in the prostate;
and, (2) the solitary PET-positive lesion involved less than one
half of one lobe; and, (3) a targeted biopsy performed by 18F-
DCFPyL PET/CT-US or PET/MRI-US targeted at the solitary
intraprostatic PET-positive lesion. Patients were excluded if
(1)18F-DCFPyL PET/CT or PET/MRI showed multiple or no
PET-positive lesion in the prostate; and (2) they chose systematic
biopsy instead of our targeted biopsy way or refused any prostate
biopsy. All procedures were approved by the local ethics board
and all the enrolled subjects provided informed consent.

18F-DCFPyL PET/CT and PET/MRI
Examinations
18F-DCFPyL was synthesized by our nuclear medicine
department (radiochemical purity > 98%, specific activity 54–
90 GBq/mmol). Quality control report was provided in Table 1.

PET/CT was performed from the ears to the upper thigh on a
Siemens Biograph 64 operating in 3D emission mode with CT-
derived attenuation correction (120 kV, 100 mAs, 5.0 mm Slice,
0.9 Pitch). The PET acquisition time was 2 min per bed position.
CT maps were used for PET attenuation correction. PET data
were reconstructed using ordered subset expectation maximization
(OSEM; 3 iterations, 21 subsets, 168 × 168 matrix) and a transaxial
resolution of 5.0 mm (full-width at half-maximum).

PET/MRI was performed on a hybrid PET/MRI scanner
(Biograph mMR, Siemens Healthcare, Erlangen). The MR
protocol consisted of T1W fast spin echo (2D, transversal, TR
TABLE 1 | Quality control report.

Test Specification Average Original (n = 4)

Initial appearance Clear, colorless solution, no visible particulate matter Conforms
Appearance, 240 min after end of synthesis Clear, colorless solution, no visible particulate matter Conforms
Initial radiochemical purity, % ≥95% 100%
pH, initial 4.5–8.5 6.5
Chemical purity DCFPyL 3.87 ± 0.13 mg/ml
Yield ≥20 mCi [18F]DCFPyL (referenced to assay recorded at end of filtration) 347 ± 45 mCi
Specific activity ≥1,000 mCi/mmol of [18F]DCFPyL (referenced to end of filtration) 65 ± 23 GBq/mmol
Residual solvent analysis Acetonitrile ≤400 ppm

Tetrabutylammonium ≤400 ppm
0 ppm
0 ppm

Radionuclidic identity t1/2 = 105–115 min 109.8 ± 2.3 min
Radionuclidic purity 99.5% associated with 18F (0.511 and 1.022 MeV) Conforms
Identity (high-performance liquid chromatography, HPLC) HPLC retention time matches reference standard Conforms
Filter integrity Bubble point ≥13 psi 17.3 ± 0.6 psi
Endotoxin ≤15 EU/ml <5 EU/ml
Sterility No growth observed Conforms
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500 ms, TE 13 ms, flip angle 150°, 15 slices, Slice thickness 5 mm,
field of view (FOV) 300 × 300, voxel size 1.2 × 1.2 × 5.0 mm3), T2W
(transversal, TR 3810 ms, TE 78 ms, flip angle 150°, 20 slices, Slice
thickness 3mm, FOV 240 × 240, voxel size 0.8 × 0.8 × 3.0mm3) fast
spin echo, high b value DWI (2D, transversal, TR 6500 ms, TE
93 ms, 20 slices, Slice thickness 3 mm, FOV 380 × 380, voxel size
2.4 × 2.4 × 3.0 mm3, b-values 0, 1,000 and 2,000 s/mm2), and PET
acquisition for the pelvic region. PET images were reconstructed
with 3 iterations and 21 subsets. MRI‐based attenuation correction
was applied using DIXON‐volume interpolated breath-hold
examination (VIBE) sequences comprising in‐ and opposed‐
phase as well as fat‐ and water‐saturated images.

Prostate Biopsy Procedure
18F-DCFPyL PET/CT-US or PET/MRI-US fusion targeted
prostate biopsy for the intra-prostatic PET-positive lesions
were performed with the BK Predictive Fusion prostate biopsy
system (BK Medical Technology Shanghai Co., Ltd). Patients
were given fluoroquinolone antibiotic prophylaxis and
prescribed enemas on the day before the procedure, and again
3 h before the procedure. Before the targeted biopsy, the 18F-
DCFPyL PET/CT or PET/MRI imaging data were imported into
the BK Predictive Fusion prostate biopsy system workstation,
and the boundaries of the prostate were delineated on CT or
T2W images. A standardized uptake value (SUV) of 2.5 was used
to delineate the boundary of PET-positive lesions marked as
Frontiers in Oncology | www.frontiersin.org 314
targets for biopsy. The SUVmax, SUVmean, and volume of
lesions were also recorded for further analysis. The patients
were placed in the Trendelenburg position and administered
local anesthesia of 1% lidocaine. During the biopsy procedure,
the previous delineated prostate volume from the CT or T2W
images was then registered with the prostate volume acquired
from the three-dimensional transrectal ultrasonography with
real-time tracking of the ultrasound probe. Subsequently, an
algorithm determined the precise three-dimensional real-time
information about the localization of targets in the PET-positive
lesion for needle placement during the ultrasound-guided
biopsy. Transrectal biopsies were performed with two to four
cores for each PET-positive lesion. A schematic diagram of a
targeted prostate biopsy procedure is shown in Figure 1.

Compared with targeted biopsy, systematic biopsy causes
greater suffering to patients, both psychologically and
physically (post-biopsy complications). Some patients,
particularly elders, are unwilling to undergo systematic biopsy.
In contrast, 18F-DCFPyL PET positive lesions have high
diagnostic value for prostate cancer. For patients with single
PET positive lesion, targeted biopsy (two to four cores) alone can
achieve good detection rate and reduce patients’ pain. However,
only targeted biopsy for PET-positive lesion might miss some
PET-negative prostate cancer lesions. The advantages and
disadvantages of the two biopsy methods were informed to
the patients.
FIGURE 1 | 18F-DCFPyL PET/CT-US or PET/MRI-US fusion targeted prostate biopsy for the intraprostatic PET-positive lesions were performed with the BK
Predictive Fusion prostate biopsy system (A). The boundaries of the prostate were delineated on the CT image (B, white circle). The PET-positive lesion was marked
as the target for biopsy (C, pink circle). The previous delineated prostate and PET-positive lesion from PET/CT was registered to the prostate volume acquired from
the three-dimensional transrectal ultrasonography; the puncture needle (D, arrow) then reached the target biopsy area.
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Histopathologic Analysis
The prostate biopsies were analyzed by two pathologists, each
with over 10 years of experience in prostate pathology. Analyzed
biopsy features include the total number of biopsy cores,
percentage of cores involving adenocarcinoma, and the
number of positive biopsy cores. In our study, clinically
significant prostate cancer was defined as the presence of a
single biopsy core indicating disease of Gleason score 3 + 4
(Gleason sum of 7) or greater (the Gleason score is composed of
a primary [most predominant] grade plus a secondary [highest
non-predominant] grade); the range for a primary or secondary
grade is from 3 to 5, with the Gleason sum ranging from 6 to 10
(3, 9–12).
RESULTS

A total of 55 patients (mean age: 67, range: 49–84) with solitary
PET-positive prostate lesions agreed to undergo 18F-DCFPyL
PET/CT-US or PET/MRI-US fusion targeted prostate biopsy
were enrolled in this study (Figure 2). Among them, two cases
had previous negative prostate biopsy and 53 cases were biopsy-
naive. Finally, no significant complications occurred in any
patient after the biopsy. An overview of the study population is
shown in Table 2.

Among the 55 patients, 32 patients received PET/CT
examinations along, 14 patients received PET/MRI
examinations along, and 9 patients underwent both PET/CT
and PET/MRI scans sequentially within 2 h. The average volume
of the target biopsy area was 3.68 ± 2.18 cm3 (range: 0.7–
9.82 cm3). The average SUVmax ± SD was 15.47 ± 12.25
(range: 4.36–59.34), and the average SUVmean ± SD was 7.07 ±
4.68 (range: 3.39–30.30).

A total of 178 core biopsies were performed, 146 (82.0%, 146/
178) samples were malignant. According to the biopsy
pathology, fusion-targeted biopsy identified 51 (92.7%, 51/55)
patients as having prostate cancer; 47 (85.5%, 47/55) of these
Frontiers in Oncology | www.frontiersin.org 415
55 patients were clinically significant prostate cancer while 4
(7.3%, 4/55) were clinically insignificant prostate cancer. The
detection rates of clinically significant prostate cancer by PET/
CT-US and PET/MRI-US were 87.5% (28/32) and 82.6% (19/
23), respectively.

Among the 55 patients, 32 were examined using only 18F-
DCFPyL PET/CT; 28 were diagnosed with clinically significant
cancer, 2 with clinically insignificant cancer, and 2 with benign
prostatic hyperplasia.

Of the 14 patients examined using only 18F-DCFPyL PET/
MR, 13 were diagnosed with clinically significant cancer, and
1 was diagnosed with clinically insignificant cancer. All of
these 14 patients showed abnormal MR signals (low T2 signal,
high DWI signal, decreased ADC value) in the area of PET-
positive lesions.
FIGURE 2 | Prostate biopsy algorithm of study subjects.
TABLE 2 | Clinical characteristics of the 55 patients enrolled in the study.

Patient characteristics Total
(n = 55)

PET/CT-US
(n = 32)

PET/MRI-US
(n = 23)

Age (year; mean ± SD) 67.02 ± 9.05 67.91 ± 9.43 65.78 ± 8.53
PSA (ng/ml; mean ± SD) 14.37 ± 10.31 13.82 ± 7.97 15.13 ± 13.05
Target volume (cm3; mean ±
SD)

3.68 ± 2.18 4.14 ± 2.17 3.04 ± 2.08

SUVmax (mean ± SD) 15.47 ± 12.25 15.19 ± 12.53 15.85 ± 12.10
SUVmean (mean ± SD) 7.07 ± 4.68 7.37 ± 5.22 6.65 ± 3.87
Total number of cores from
targeted biopsy

178 103 75

Positive cores on targeted
biopsy (%)

146 (82.0%) 85 (82.5%) 61 (81.3%)

Men with prostate cancer 51 (92.7%) 30 (93.8%) 21 (91.3%)
No. Gleason score

Gleason 3 + 3 4 2 2
Gleason 3 + 4 13 5 8
Gleason 4 + 3 16 10 6
Gleason 4 + 4 10 5 5
Gleason 5 + 3 1 1 0
Gleason 4 + 5 7 7 0

Men with clinically significant
prostate cancer (%)

85.5% (47/55) 87.5% (28/32) 82.6% (19/23)
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Of the nine patients that underwent successive examinations
of 18F-DCFPyL PET/CT and PET/MRI, seven examinations
showed abnormal MR signal (decreased T2 signal, low ADC
value, and increased DWI signal at both 1,000 and 2,000 s/mm2)
in the area of the PET-positive lesions (a typical case is shown in
Figure 3), and the subsequent pathology confirmed prostate
cancer in all cases. The other two patients showed normal MR
signal in the area of the PET-positive lesions (a typical case is
shown in Figure 4), and the subsequent biopsy confirmed
prostatic hyperplasia and prostatitis.
DISCUSSION

This preliminary study demonstrates that for patients with
clinical suspicion of prostate cancer and PSMA (18F-DCFPyL)
PET-positive lesions, using PET/CT-US or PET/MRI-US fusion-
targeted prostate biopsy had a high detection rate of clinically
significant prostate cancer. Furthermore, PET/MRI was able to
identify the false positive lesions by PSMA PET. To our
knowledge, this is the first study to explore the feasibility and
diagnostic performance of PSMA PET/CT-US and PET/MRI-US
fusion targeted prostate biopsy.

The trade-off between detection rate and the number of
biopsy cores is a major concern with men suspected of
prostate cancer. As the number of biopsy cores increases, the
Frontiers in Oncology | www.frontiersin.org 516
detection rate of prostate cancer increases but the portion of low-
grade prostate cancer detected also increases. In addition, more
biopsies lead to post-biopsy complications, including urinary
retention, infection, hematuria, and hematochezia. Although
prostate cancer screening strategies with repeated PSA testing
and an extended-core prostate biopsy protocol reduces the
incidence and mortality of advanced disease, it also leads to a
significant proportion of overdiagnosis and consequently
overtreatment for some low-risk tumors that may not result in
symptoms or death from the disease during a patient’s lifetime
(13). Overdiagnosis and overtreatment of non-lethal tumors
expose patients with insignificant prostate cancer to
unnecessary side-effects. Thus, it is critical that the location
and characteristics of prostate cancer are known before making
treatment decisions.

A systematic 12-core transrectal ultrasound-guided biopsy is
clinically recommended (14), and the rate of prostate cancer
detection for a first systematic transrectal ultrasound-guided
biopsy is typically 30–50% (15). Even the extended biopsy
schemes with more than 12 cores may still miss almost a third
of prostate cancers (16). Magnetic resonance imaging and
ultrasonography (MRI-US) fusion targeted prostate biopsy has
the advantages of accurate localization of lesions and real-time
imaging, and it has been gradually applied to clinical practice.
According to one systematic review, the median detection rate of
prostate cancer was 43.4% with the standard biopsy strategy
FIGURE 3 | PET/CT found one PET-positive lesion in the prostate gland (A: PET, B: CT, C: fused PET/CT). PET/MRI showed short T2 signal (D: PET, E: T2WI,
F: fused PET/T2WI), high DWI signal (G: PET, H: DWI, I: fused PET/DWI), and a decreased ADC value at the site of the PET-positive lesion (J: PET, K: ADC map,
L: fused PET/ADC map). The subsequent pathology confirmed prostate cancer.
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versus 50.5% with MRI-US image fusion targeted biopsy (17). No
obvious advantage of MRI/US fusion-guided biopsy was
observed in terms of the cancer detection rate compared to a
standard systematic biopsy (18).

The accurate detection and delineation of intra-prostatic
tumors are important for diagnosis and treatment decisions for
patients with primary prostate cancer. Radionuclide 18F or 68Ga
labeled PSMA PET imaging has great value in the diagnosis of
prostate cancer. After prostatectomy, a histology map of the
prostate was reconstructed, and the histological extension of each
segment (132 segments from six patients) of the prostate was
compared with PSMA PET images, the correlation of histological
results with PSMA PET images showed a specificity and
sensitivity of 92%, respectively (19). Some studies have
validated the performance of PSMA PET/CT to define the
gross tumor volume (GTV) through comparison with histology
and have reported good results with high sensitivity and
specificity in the detection of primary prostate cancer (19–21).
In a recent study, 31 patients with previously negative prostate
biopsy, but persistently elevated serum PSA, were imaged with
68Ga-labeled PSMA PET/CT and then underwent both standard
systematic biopsy and PET/CT-US fusion targeted biopsy (9):
Among the 13 patients who were negative on PSMA PET
imaging, none were diagnosed with clinically significant
cancer; in the 18 patients positive by PSMA PET imaging,
PET/CT-US fusion targeted biopsy detected all 12 patients
Frontiers in Oncology | www.frontiersin.org 617
with clinically significant cancer while standard systematic
biopsy detected only 10 patients. These preliminary results
suggest that PSMA PET might be a useful tool to identify and
define malignant lesions prior to prostate biopsy. The results of
our study showed that fusion of 18F-DCFPyL PET/CT or PET/
MRI with ultrasound is beneficial and feasible for guiding
targeted prostate biopsy. In addition, this preliminary result
indicates that 18F-DCFPyL PET/CT-US or PET/MRI-US fusion
targeted prostate biopsy may be a good way to reduce over-
diagnosis of clinically insignificant prostate cancer and improve
detection of clinically significant cancer. This method allows
urologists to progress from blind, systematic biopsies to biopsies
that are mapped, targeted, and tracked. More rigorous and
comprehensive studies should be designed to prove the clinical
value of PET/CT-US and PET/MRI-US fusion targeted
prostate biopsies.

In this study, there were only four patients whose biopsy
pathology was negative for prostate cancer yielding a 7.3% (4/55)
false-positive rate for the 18F-DCFPyL PET-positive lesions.
There are several possibilities why the PET-positive lesions
were not malignant. According to a case report, a patient with
2two focal PSMA-positive areas in the prostate gland,
one corresponded to prostate cancer (Gleason score 4 + 3),
while the other had no evidence of malignancy despite high
PSMA expression on immunohistochemistry (22). Another
explanation for the false positive cases may be the motion
FIGURE 4 | PET/CT found one PET-positive lesion in the prostate gland (A: PET, B: CT, C: fused PET/CT). PET/MRI showed no obviously abnormal signal on T2WI
(D: PET, E: T2WI, F: fused PET/T2WI), DWI (G: PET, H: DWI, I: fused PET/DWI), or the ADC map at the site of the PET-positive lesion (J: PET, K: ADC map, L:
fused PET/ADC map). The subsequent pathology confirmed prostatic hyperplasia and prostatitis.
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during PET/CT examinations. Even if a true prostate cancer
lesion is correctly declared by 18F-DCFPyL PET, there is a
possibility that it may be missed on biopsy if PET and CT
indicated different locations. In contrast, urologists can consider
the lesion localization provided by MR images when performing
PET/MRI-US fusion targeted prostate biopsies to help improve
the target position precision of biopsy cores.

Prostate cancer is typically characterized by abnormal MR
signal (low signal on T2-weighted images, high signal on DWI,
and low ADC value) and high PSMA uptake on PET/MR. Benign
prostate diseases such as prostatitis, benign prostatic hyperplasia
(BPH), and scarring are heterogeneous and may sometimes
appear similar to prostate cancer on MRI (23), but they
generally do not show obvious PSMA uptake. Prostate tumors
with small size and low grade can have atypical manifestations
on PSMA PET/MR. When compared with the radical
prostatectomy specimens pathology, 5.9% intra-prostatic
tumors were non-avid for 68Ga-PSMA PET, and 5.4% intra-
prostatic tumors were not detected by mp-MRI (24). PET/MRI is
a new multi-modal imaging technique that is expected to
improve the diagnostic performance of imaging, especially in
cases where soft-tissue evaluation is crucial, such as prostate
cancer (4, 25). In our study, nine patients underwent both 18F-
DCFPyL PET/CT and PET/MRI successively, and seven of these
patients had abnormal MR signal in the area of the PET-positive
lesions that were prostate cancer. The other two cases showed no
obvious abnormal MR signal in the area of the PET-positive
lesions were hyperplasia and prostatitis. PET/MRI is expected to
further improve the prostate biopsy efficacy by reducing
unnecessary prostate biopsies in some patients with PET-
positive and MR-negative lesions.

Theoretically, targeted biopsies only for PSMA PET-positive
lesion cannot rule out the presence of prostate cancer lesion in
the PET-negative area of prostate. Thus, systematic prostate
biopsy can provide added value to PET targeted biopsy. Zhang
LL et al. (26) performed targeted biopsies alone for 25 patients
with PSMA-avid lesions, and 21 patients were diagnosed with
prostate cancer by targeted biopsy. The other four patients with
initially negative by targeted biopsy underwent supplementary
systematic biopsy, two of themwere still negative, and two patients
were confirmed as prostate cancer by the supplementary
systematic biopsy. To our knowledge, there is no published
literature making direct comparison between systematic biopsy
and targeted biopsy in the same patient cohort.

PSMA labeled ligands appear very promising for diagnosis
and treatment of prostate cancer (27). While MRI has been
effective in the detection of significant prostate cancer, its use in
the identification and quantification of extra-prostatic disease is
limited. This gap is now being filled by PSMA PET (28). Published
studies (4, 29) have shown that PSMA PET (PET/CT or PET/
MRI) exceeds MRI in the diagnosis and characterization of
prostate cancer. A systematic review and meta-analysis from 13
studies showed the overall pooled sensitivity of PSMAPET/CT for
staging in prostate cancer were 92% (30). MRI-US fusion-guided
biopsies detected more clinically significant cancers than standard
biopsy techniques (12, 17, 31–33). In our study, prostate biopsies
Frontiers in Oncology | www.frontiersin.org 718
performed on targeted 18F-DCFPyL PET-positive lesions of 55
patients had a high detection rate (51/55, 92.7%) of prostate
cancer, and a high proportion (85.5%, 47/55) were clinically
significant prostate cancer.

There are several limitations to our study. Firstly, the sample
size was small, and the subsets of those getting PET/CT-US and
PET/MRI-US guided biopsy were not randomized and
prospectively powered but were rather convenience sample.
Considering the limited number of cases in this study, we were
unable to compare the diagnostic value between PET/CT-US and
PET/MRI-US. Secondly, this study only used 18F-DCFPyL PET/
CT-US and PET/MRI-US guided biopsy for targeted PET-
positive lesions; therefore, we were unable to directly compare
them with the systematic prostate biopsies. Thirdly, this study
used the biopsy pathology for the diagnosis of prostate cancer
and did not compare the pathological results of the biopsy with
radical prostatectomy. This is because some patients included in
this study were given endocrine therapy before the surgical
operation, which will lead to the failure of the postoperative
Gleason score evaluation, and other patients did not undergo
radical prostatectomy due to advanced age or other factors.
Lastly, although PSMA PET/CT-US or PET/MRI-US fusion
targeted biopsy is of high diagnostic value, it is costly and can
only be available in some general hospitals with the ability to
synthesize PSMA labeled ligands and the equipment of PET/CT
or PET/MRI scanner.
CONCLUSION

In this study, 18F-DCFPyL PET/CT-US or PET/MRI-US fusion-
targeted prostate biopsy proved to be feasible for prostate cancer
diagnosis due to its high detection rate of clinically significant
prostate cancer. PET/MR can rule out some false PET-positive
lesions, which may potentially reduce unnecessary prostate
biopsies. For patients with pacemakers or claustrophobia, 18F-
DCFPyL PET/CT-US guided prostate biopsy remains a
good alternative.
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Purpose: A recent meta-analysis in patients with non-small cell lung cancer showed

no difference between whole-body magnetic resonance imaging (WBMRI) and positron

emission tomography/computed tomography (PET/CT), but no such study is available

for prostate cancer (PCa). This study aimed to compare WBMRI and PET/CT for bone

metastasis detection in patients with PCa.

Materials and Methods: PubMed, Embase, and the Cochrane library were searched

for papers published up to April 2020. The population was the patients with untreated

prostate cancer diagnosed by WBMRI or PET/CT. The outcomes were the true positive

and negative and false positive and negative rates for WBMRI and PET/CT. The

summarized sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood

ratios (NLR), and diagnostic odds ratios (DOR) were calculated with their 95% confidence

intervals (CIs).

Results: Four prospective and one retrospective study are included (657 patients).

Significant differences are observed between WBMRI and PET/CT for sensitivity

(WBMRI/PET/CT: 0.896; 95% CI: 0.813–0.987; P = 0.025) and NLR (WBMRI/PET/CT:

2.38; 95% CI: 1.13–5.01; P = 0.023), but not for specificity (WBMRI/PET/CT: 0.939;

95% CI: 0.855–1.031; P = 0.184) and PLR (WBMRI/PET/CT: 0.42; 95% CI: 0.08–2.22;

P = 0.305). WBMRI has a similar a DOR compared with PET/CT (WBMRI/PET/CT:

0.13; 95% CI: 0.02–1.11; P = 0.062). The summary area under the receiver operating

characteristic curves for WBMRI is 0.88 (standard error: 0.032) and 0.98 (standard error:

0.013) for PET/CT for diagnosing bone metastases in PCa.

Conclusion: PET/CT presents a higher sensitivity and NLR for the bone metastasis

detection from PCa, whereas no differences are found for specificity and PLR, compared

with WBMRI.

Keywords: prostate cancer, magnetic resonance imaging, positron emission tomography, computed tomography,

bone metastasis, meta-analysis
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INTRODUCTION

Prostate cancer (PCa) is the most common cancer in males and
among themost lethal cancers inmenworldwide (1, 2, 12). About
10% of patients with PCa have bone metastasis at presentation,
with a rate as high as 80% for patients with advanced PCa (3, 4),
and about 33% of the remaining patients will develop metastases
during follow-up (5, 6). In addition, patients presenting small
numbers of metastases have a better prognosis than those with
a widespread disease (7) and may benefit from salvage targeted
therapies in the metastatic setting (8, 12).

In patients with PCa in whom distant metastases are
suspected, whole-body imaging (WBI) (head, neck, torso, and
the proximal part of the limbs) can be used to guide the
treatments (8, 12). Among the available modalities, 18F-fluoride
(NaF) positron emission tomography/computed tomography
(PET/CT), 18F-fluorocholine (FCH) PET/CT, and whole-body
magnetic resonance imaging (WBMRI) have been proposed
for PCa metastasis detection (9, 10, 38). WBMRI enables the
detection of lymph node metastases and distant metastases in
one test (11). Multi-parametric MRI has a better performance
than a classical bone scan and targeted X-ray for detecting bone
metastasis (12) and might have better performance than PET/CT
(13, 14). Choline PET/CT may have a better detection rate of
bone metastases compared to bone scans at the initial staging or
restaging after a biochemical recurrence in men with PCa (15).
18F-choline PETmay have poor sensitivity but high specificity for
bone metastasis detection in men with PCa (16).

A recent meta-analysis has compared the diagnostic
performance in staging between WBMRI and PET/CT in
patients with non-small cell lung cancer and showed no
difference between the two imaging modalities (17). There are
no guidelines specific to the diagnosis of bone metastases in PCa,
and there are no meta-analyses comparing WBMRI and PET/CT
in PCa.

Therefore, the aim of this meta-analysis was to compare
WBMRI and PET/CT for bone metastasis detection in patients
with PCa. The results could provide some guidance for the
treatment strategy of patients with PCa.

MATERIALS AND METHODS

Literature Search
This meta-analysis was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (18). Papers published up to April 2020
were searched for in PubMed, Embase, and the Cochrane
library using the MeSH term “Prostatic Neoplasms,” and relevant
keywords such as “whole-body magnetic resonance imaging.”
The relevant articles were searched for using the PICO principle
(19), followed by screening based on the eligibility criteria:
(1) population: patients with untreated primary PCa who
underwent WBMRI or PET/CT for bone metastasis detection;
(2) interventions: both WBMRI and PET/CT for the diagnosis of
bone metastases; (3) outcomes: the numbers of patients with true
positive, false positive, false negative, and true negative results for

WBMRI and PET/CT; (4) study type: focused on humans; and
(5) language: limited to English.

Data Extraction
The study characteristics (authors, year of publication, the
country where the study was performed, type of study design,
PSA levels, type of PET/CT, and sample size), treatment
parameters (number of case analyses) were based on patients or
lesions, standard reference per the study, and age of the patients,
and primary outcomes (true positive, false positive, false negative,
and true negative results for WBMRI and PET/CT) were
extracted by two authors (Yuefu Zhan and Guangming Zhang)
independently. Discrepancies were solved by the discussion.

Quality of the Evidence
Four prospective cohort studies and one retrospective cohort
study could be included. The quality assessment was conducted
independently by two authors (Yuefu Zhan and Guangming
Zhang) using the Quality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2) for this particular review (20). The risk
of bias was evaluated using the risk of bias in non-randomized
studies of interventions tool (ROBINS-I) (21). Discrepancies in
the quality assessment were solved by discussion.

Statistical Analysis
The summarized sensitivity, specificity, positive likelihood ratios
(PLR), negative likelihood ratios (NLR), and diagnostic odds
ratios (DOR) are presented with their corresponding 95%
confidence intervals (CIs) and were obtained by means of a
bivariate regression model using random effects based on the
true positive and negative and false positive and negative rates
in each study. The summary receiver operating characteristic
(ROC) curve and the area under the curve (AUC) for WBMRI
and PET/CT were calculated using a hierarchical regression
model. The effect estimates and the corresponding 95% CIs of
the diagnostic parameters were available for each study. The
summary ratios between WBMRI and PET/CT and 95% CIs for
sensitivity, specificity, PLR, NLR, DOR, andAUCwere computed
by random-effects models. The heterogeneity across the included
studies was calculated using the I2 and Q statistic, and a P < 0.05
was regarded as significant heterogeneity. Two-sided P < 0.05
are considered statistically significant across the studies included.
The statistical analyses were conducted using the MetaDiSc
software (version 1.4) and STATA SE 14.0 software (StataCorp,
College Station, TX, USA). No publication analysis could be
performed because the number of included studies was<10 (22).

RESULTS

Selection and Characteristics of the
Studies
Figure 1 presents the study selection process. A total of 158
records were initially identified, and 141 were examined after
the duplicates were removed. Twenty-nine were preliminarily
excluded, and 112 full-text articles were evaluated for eligibility.
Among them, 107 were excluded (32 because of study
aim/design, 45 because of the population, 25 because of
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FIGURE 1 | Study selection process.
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the intervention, and five because they were not accessible).
Therefore, five studies were included (23–27).

There are four prospective studies (24–27) and one
retrospective study (23). Three studies are based on the
patient (24–27) and two on the lesions (23, 26). The five studies
included 657 patients. Table 1 presents the characteristics of the
studies and the diagnostic values of WBMRI and PET/CT for
each individual study. Two studies used 11C-choline-PET/CT,
two used F-NaF-PET/CT, and one used Ga-PSMA-PET/CT.

Table 2 presents the quality assessment of the studies
included. One retrospective study (23) and three prospective
studies (24–26) do not meet three criteria: avoidance of a
case-control design, avoidance of inappropriate exclusions, and
the use of a prespecified threshold. The study by Dyrberg
et al. (27) meets only three criteria. For all five studies,
it is uncertain whether the reference standard results were
interpreted without knowledge of the results of the index test.
Supplementary Table 1 presents the ROBINS-I evaluation.

Sensitivity
The summary sensitivities for WBMRI and PET/CT for bone
metastasis detection in PCa are 0.84 (95% CI: 0.77–0.89) and
0.94 (95% CI: 0.89–0.98), respectively (Figure 2). A significant
difference is observed between WBMRI and PET/CT for
sensitivity (ratio between WBMRI and PET/CT: 0.896; 95%
CI: 0.813–0.987; P = 0.025; I2 = 0.0%, Pheterogeneity = 0.686)
(Supplementary Figure 1; Table 3).

Specificity
The summary specificities forWBMRI and PET/CT for detecting
bone metastases in PCa are 0.89 (95% CI: 0.86–0.91) and
0.98 (95% CI: 0.96–0.99), respectively (Figure 3). No significant
difference is observed between WBMRI and PET/CT for
specificity (ratio between WBMRI and PET/CT: 0.939; 95% CI:
0.855–1.031; P = 0.184; I2 = 78.8%, Pheterogeneity = 0.001)
(Supplementary Figure 2; Table 3).

Positive Likelihood Ratio
The summary PLRs for WBMRI and PET/CT for detecting bone
metastases in PCa are 6.89 (95% CI: 3.59–13.25) and 23.39
(95% CI: 2.56–214.03), respectively (Supplementary Figure 3).
WBMRI is not associated with a significant difference in
PLR compared with PET/CT (ratio between WBMRI and
PET/CT: 0.42; 95% CI: 0.08–2.22; P = 0.305; I2 = 76.1%,
Pheterogeneity = 0.002) (Supplementary Figure 5; Table 3).

Negative Likelihood Ratio
The summary NLRs for WBMRI and PET/CT for detecting bone
metastases in PCa are 0.21 (95% CI: 0.14–0.29) and 0.07 (95%
CI: 0.04–0.13), respectively (Supplementary Figure 4). WBMRI
was associated with a significant difference in NLR compared
with PET/CT (ratio between WBMRI and PET/CT: 2.38; 95%
CI: 1.13–5.01; P = 0.023; I2 = 0.0%, Pheterogeneity = 0.476)
(Supplementary Figure 6; Table 3).

Diagnostic Odds Ratio
The summary DOR in WBMRI for detecting bone metastases
of PCa is 44.93 (95% CI: 14.44–139.80; I2 = 47.2%, T
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TABLE 2 | Quality evaluation of the included studies using the QUADAS-2 tool.

References

Eschmann et al. (23) Mosavi et al. (24) Jambor et al. (25) Wieder et al. (26) Dyrberg et al.

(27)

Patient selection Was a consecutive or random sample of

patients enrolled?

Y Y Y Y Y

Was a case-control design avoided? N N N N Y

Did the study avoid inappropriate

exclusions?

N N N N N

Index test(s) Were the index test results interpreted

without knowledge of the results of the

reference standard?

Y Y Y Y U

If a threshold was used, was it

prespecified?

N N N N N

Reference standard Is the reference standard likely to correctly

classify the target condition?

Y Y Y Y N

Were the reference standard results

interpreted without knowledge of the

results of the index test?

U U U U U

Flow and timing Was there an appropriate interval between

index test(s) and reference standard?

Y Y Y Y U

Did all patients receive a reference

standard?

Y Y Y Y U

Did patients receive the same reference

standard?

Y Y Y Y U

Were all patients included in the analysis? Y Y Y Y Y

FIGURE 2 | Summary results for sensitivity for whole-body magnetic resonance imaging (WBMRI) (A) and positron emission tomography/computed tomography

(PET/CT) (B).
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TABLE 3 | Relative risk ratios between WBMRI and PET/CT for sensitivity, specificity, PLR, NLR, and DOR.

Outcomes N Relative risk ratio (95% CI) P I2 (%) P for heterogeneity

Sensitivity 5 0.896 (0.813, 0.987) 0.025 0 0.686

Specificity 5 0.939 (0.855, 1.031) 0.184 78.8 0.001

PLR 5 0.416 (0.078, 1.031) 0.305 76.1 0.002

NLR 5 2.378 (1.127, 5.014) 0.023 0 0.476

DOR 5 0.130 (0.015, 1.108) 0.062 46.8 0.111

PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio.

FIGURE 3 | Summary results for specificity in whole-body magnetic resonance imaging (WBMRI) (A) and positron emission tomography/computed tomography

(PET/CT) (B).

Pheterogeneity = 0.108) (Supplementary Figure 7). The DOR

of PET/CT is 402.92 (95% CI: 70.93–2288.91; I2 = 51.3%,
Pheterogeneity = 0.084) (Supplementary Figure 7). WBMRI has a
similar a DOR compared with PET/CT (ratio between WBMRI
and PET/CT: 0.13; 95% CI: 0.02–1.11; P = 0.062; I2 = 46.8%,
Pheterogeneity = 0.111) (Supplementary Figure 8).

ROC Analysis
The summary AUC for WBMRI is 0.88 (standard error: 0.032)
and 0.98 (standard error: 0.013) for PET/CT for diagnosing bone
metastases in PCa (Supplementary Figure 9).

Discussion
A recent meta-analysis revealed no difference between WBMRI
and PET/CT in non-small cell lung cancer (17), but no such
study is available for PCa. Therefore, this meta-analysis aims
to compare WBMRI and PET/CT for bone metastasis detection

in patients with PCa. The results show that PET/CT presents a
higher sensitivity and NLR for bone metastasis detection from
PCa, whereas no differences are found for specificity and PLR,
compared with WBMRI.

A previous meta-analysis of four studies that compared
WBMRI and PET/CT for the detection of metastases from lung
cancer showed that there are no differences in the diagnostic
yield of WBMRI and PET/CT for the detection of the M status
of lung cancer (17). A meta-analysis of MRI, choline-PET/CT,
bone SPECT, and bone scintigraphy for the detection of bone
metastasis from PCa showed that on a per-patient basis, MRI
was better than choline-PET/CT and scintigraphy, while on a
per-lesion basis, choline-PET/CT was better than bone SPECT
and scintigraphy (14). That meta-analysis did not consider
the N stage. Similar results were also suggested by a review by
Pesapane et al. (28) in breast cancer. Importantly, that review
suggested that WMBRI could be more sensitive than PET/CT

Frontiers in Oncology | www.frontiersin.org 6 May 2021 | Volume 11 | Article 63383326

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhan et al. Two Methods Detected Bone Metastasis

for visceral metastases (28–30) and small hepatic and brain
metastases (28, 31, 32), but WBMRI could be associated with
more false-positives that PET/CT for bone metastases because
bone marrow edema caused by benign lesions can appear as
metastases on the apparent diffusion coefficient (ADC) map
(28). A review highlighted that modern PET/CT protocols have
a better diagnostic value than MRI for the detection of PCa
metastases but that MRI still has a role to play (33). Since the
present meta-analyses only examined bone metastases, this
edema from benign lesions might explain, at least in part, why
WBMRI fared less well than PET/CT. Nevertheless, other studies
in patients with breast cancer reported a similar diagnostic
value of WBMRI compared with 19F-FDG PET/CT for bone
metastases (34), highlighting that the DWI maps must not be
read alone but in combination with the morphological changes
(28). Gutzeit et al. (35) reported better performance of WBMRI
compared with PET/CT for skeletal metastases in PCa and
breast cancer, while the SKELETA trial (25) reported equivalent
diagnostic value for bone metastases from PCa. Those conflicting
results can be due to the differences in imaging protocols, magnet
strength, and radiologist experience among the different centers.
Nevertheless, both WBMRI and PET/CT have been shown to
be better than CT and bone scan in terms of sensitivity and
specificity for bone metastases (36).

The results of this meta-analysis must be considered in light
of its limitations. In one study (25), besides PCa, the authors
also included patients with breast cancer for comparing the
detection of bone metastases; for this meta-analysis, the data
pertaining to PCa had to be extracted. Of the five included
studies, the analyses are patient-based in three studies and
lesion-based in two. The cancer stage for inclusion varied
among studies. Among the five studies, three different PET/CT
modalities were used. Several studies did not report the true/false
positive/negative, and those numbers had to be estimated based
on the reported information, such as sensitivity, specificity,
PLR, NLR, and the total number of cases, using the Revman
software. Regarding stratification based on the risk group,
as the risk level of the included patients was not specifically
defined in the included studies, and as the number of studies
was small, any results in terms of the stratification of risk groups
would probably not lead to firm conclusions. This study had

heterogeneity, which could be due to different patient risk levels
among the included studies and variations in guidelines and
country-level practice.

In conclusion, PET/CT presents a higher sensitivity and NLR
for the detection of bone metastases from PCa, whereas no
differences are found regarding specificity and PLR compared
with WBMRI. Although this meta-analysis suggests a possibly
better diagnostic performance of PET/CT in the detection
of bone metastases in patients with PCa compared with
WBMRI, compared with PET/CT, WBMRI is less expensive,
more available, less time-consuming, and radiation-free. Further
high-quality studies comparing the diagnostic performance
of various imaging modalities and optimizing the WBMRI
protocols are still needed to improve metastasis early detection
in patients with PCa in clinical practice. In addition, novel
prostate-specific membrane antigen-based imaging modalities
are being developed, further improving the detection of PCa
metastases (37). Those modalities will have to be examined in
the future.
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Hans Helge Seifert1 and Christian Wetterauer1,3,4*
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University Hospital Basel, Basel, Switzerland, 3University of Basel, Basel, Switzerland, 4Department of
Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
Introduction: Robotic-assisted transperineal MRI-US-fusion guided biopsy of

the prostate is a novel and highly accurate procedure. The aim of this study was

to evaluate the MonaLisa prostate biopsy system in terms of safety, tolerability,

and patient-related outcomes.

Methods: This prospective study included 228 patients, who had undergone

Robotic-assisted transperineal MRI-US-fusion guided biopsy of the prostate at

the University Hospital Basel between January 2020 and June 2022. Peri-

operative side effects, functional outcomes and patient satisfaction were

assessed.

Results: Mean pain score on the day of biopsy was 1.3 points on VAS, which

remained constant on the day after biopsy. Overall, 32 of 228 patients (14%)

developed grade I complications according to Clavien-Dindo classification. No

higher-grade complications occurred. Gross haematuria, hematospermia and

acute urinary retention occurred in 145/228 (63.6%), 98/228 (43%) and 32/228

(14%) patients, respectively. One patient (0.4%) developed urinary tract infection.

Conclusions: Robotic-assisted transperineal MRI-US-fusion guided biopsy of

the prostate performed under general anesthesia is a safe and well tolerated

procedure. This technique allows to omit perioperative prophylaxis and at the

same time minimizes the risk of infectious complications. We attribute the

favorable risk profile and tolerability to the minimal invasive approach via two

entry points.
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Introduction

Prostate cancer (PCa) is the second most common

malignant disease in men worldwide (1) Suspicion for PCa is

based on pathological digital rectal examination (DRE),

prostate specific antigen (PSA) or magnetic resonance image

(MRI) findings and indicates, as standard of care, a biopsy of

the prostate (PBx) for histopathological verification (2). PBx

represents one of the most common urological procedures,

with more than 1 million interventions performed in Europe

and the United States every year (3). PBx can be performed via

a transrectal (TR) or transperineal (TP) route, each approach

being associated with specific benefits and limitations. TR

offers practicability in the in-office setup due to feasibility

under local anesthesia reflected by the majority of PBx being

performed via the TR approach in the US (93.1 – 99.2%) (4).

However, punction of the prostate through the rectum ampulla

is associated with a significant risk for infectious complications

(5). The incidence for infectious complications after TR-PBx
ranges between 5 and 7% with a hospitalization rate of about

2% (2, 3). Rising rates of fluorchinolone-resistance organisms,

which could be found in up to 30% of rectal swab cultures prior

to TR-PBx, possibly aggravate the situation (2). With the TP

approach infectious complications are significantly lower, even

negligible (2, 6, 7). Technological advances in diagnostics of

PCa, like the implementation of multiparametric MRI

(mpMRI) and MRI-targeted PBx have increased the detection

rate of significant PCa, simultaneously decreasing the detection

rate of clinical insignificant PCa (8). Newly available robotic-

assisted biopsy systems like MonaLisa combine the robotic

precision with the preferable transperineal approach.

Furthermore, this system allows for a minimal-invasive and

gentle sampling requiring only two puncture sites and thus

promising lower complication rates and patient tolerability.
Abbreviations: 5-ARI, 5-alpha-reductase inhibitor; AC, anticoagulation;

AIDS, acquired immune deficiency syndrome; AUR, acute urinary

retention; BC, biopsy cores; DRE, digital rectal examination; ICIQ,

International Consultation on Incontinence Questionnaire – Urinary

Incontinence; IPSS, International Prostate Symptom Score; i.v.,

intravenous; INF, histology-proven inflammation; LUTS, lower urinary

tract symptoms; mpMRI, multiparametric MRI; MRI, magnetic resonance

image; MUD, male urinary disfunction; MMUD, medication for male urinary

dysfunction; NIH-CPSI, National Institutes of Health - Chronic Prostatitis

Symptom Index; PBx, biopsy of the prostate; PCa, Prostate cancer; p.o., per os;

PSA, prostate specific antigen; PV, prostate volume; QoL, quality of life; RA-

TP-PBx, Robotic-assisted transperineal MRI-US-fusion guided biopsy of the

prostate; SD, standard deviation; TP, transperineal; TP-PBx, transperineal

biopsy of the prostate; TR, transrectal; TR-PBx, transrectal biopsy of the

prostate; TRUS, transrectal ultrasound; UTI, urinary tract infections; VAS,

visual analog scale.
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The robotic-assisted MRI-TRUS-fusion allows for highly

precise biopsies with maximal reproducibility, while safely

sparing the neurovascular bundle. So far there are no

prospective reports on patient related outcomes in terms of

tolerability and complications after robotic-assisted

transperineal MRI-US-fusion guided biopsy of the prostate

(RA-TP-PBx). An upcoming PBx bearing uncertainty regarding

a suspected malignant disease as well as the interventional

risks, poses a physical and psychological burden for patients.

Therefore, the ideal biopsy technique is as painless as possible

and combines low complication rates with upmost diagnostic

precision. The aim of this study was to evaluate the MonaLisa

prostate biopsy system in terms of safety, tolerability, and

patient-related outcomes.
Materials and methods

This prospective study analyses the safety profile and functional

results of 228 patients, who had undergone RA-TP-PBx at the

University Hospital Basel between January 2020 and June 2022.

Indication for biopsy resulted from suspicious DRE, elevated PSA

values or suspicious lesions in mpMRI. Imaging was performed in

all patients prior to biopsy, suspicious lesions were classified

according to PI-RADS v2.1. The study was approved by the local

ethics committee (ID 2020-01381) and was performed in

accordance with the Declaration of Helsinki. All patients

provided written informed consent. Side effects, clinical,

functional, histological, and demographic data were collected and

assessed. In addition, medication for male urinary dysfunction, type

of anticoagulation and immunodeficiency, including diabetes

mellitus type 2, immunosuppressants or acquired immune

deficiency syndrome (AIDS), were recorded.
Biopsy technique

A 3D model of the prostate, including suspicious lesions, was

generated by a skilled team of radiologists (DJW, PB) and RA-TP-

PBx was performed with an iSR’obot™MonaLisa device (Biobot©)

(Figure 1) by one experienced surgeon (CW). Anticoagulation with

factor Xa inhibitors and phenprocoumon was discontinued and

bridged with low-molecular-weight heparin according to the

individual risk of a thromboembolic event. Therapy with

acetylsalicylic acid was continued and was used to bridge patients

under therapy with clopidogrel. Standardized, anti-infective

prophylaxis was administered to the first 60 (26.3%) patients.

After the initial implementation phase of the new biopsy

technique anti-infective prophylaxis was omitted if not indicated

by positive findings in preoperative urine culture. After RA-TP-PBx
no transurethral catheter was used by default. A detailed description

of our procedure has already been published previously (9).
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Analysis and statistical methods

Validated questionnaires, including “International Prostate

Symptom Score” (IPSS) with quality of life (QoL), “International

Consultation on Incontinence Questionnaire – Urinary

Incontinence” (ICIQ), and “National Institutes of Health -

Chronic Prostatitis Symptom Index” (NIH-CPSI) were used to

assess functional outcome before and about one week after biopsy.

Additionally, the occurrence of side-effects including acute urinary

retention (AUR), gross hematuria, hematospermia, pain according

to visual analog scale for pain (VAS, 1 – 10 points), urinary tract

infections (UTI), local complications and patient satisfaction were

collected and analyzed.

Database was created using Excel (Microsoft©), statistical

analyses were performed with SPSS Statistics 24.0 (IBM©). The

Chi-squared and Fisher`s exact tests were used to compare

nominal data. For determination of significant differences

among the normally distributed data the Student`s t test

(dependent/independent) was applied. Logistic regression was

used for binary classification, i.e. to estimate the posterior

probability of a binary response based on a list of independent

predictor variables. This probability is described by a generalized

linear model. Odd`s ratio was performed for risk assessment. All

tests were performed at a two-sided significance level of a = 0.05.
Results

Transperineal robotic-assisted biopsy of the prostate was

successfully performed in 228 men with suspicious mpMRI-
Frontiers in Oncology 03
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lesions and/or PSA-constellation. Mean (range) age, PSA, and

prostate volume (PV) were 64.9 years (46 – 84), 11.8 ng/ml (0.2 -

561) and 48.4 ml (9 – 310), respectively. Detailed patient baseline

characteristics are summarized in Table 1. At the time of biopsy, 63/

228 (27.6%) patients took regular medication for male urinary

dysfunction. 59/228 (25.9%) took anticoagulant medication, of

which 38 patients had biopsy under ongoing antiplatelet therapy.

38/228 (16.7%) patients presented a form of immunodeficiency as

stated in the methods. Mean pain score on the day of biopsy was 1.3

points on VAS, which remained constant on the day after biopsy

(1.2 points). Overall, 32 of 228 patients (14%) developed grade I

complications according to Clavien-Dindo classification. No

higher-grade complications occurred. The most common side-

effect observed after biopsy was gross haematuria 145/228

(63.6%), which was self-limiting and none of these patients

required treatment. 59/145 (25.9%) patients reported gross

haematuria duration of more than 3 days. Hematospermia

occurred in 98/228 (43%) patients. Anticoagulant therapy,

continued antiplatelet medication, PV (≥ 40 ml), biopsy proven

inflammation or number of biopsy cores (≥ 25) had no significant

influence on occurrence of haematuria/-spermia. Acute urinary

retention (AUR) occurred in 32/228 (14%) patients. Patients who

developed AUR had a significant higher baseline IPSS-Score (13.2

vs. 10; p 0.02), a bigger prostate volume (61.4 vs. 46 ml; p 0.008) and

more biopsy cores taken (29 vs. 25; p 0.009). However, number of

biopsy cores (≥ 25), PV (≥ 40 ml) and medication for male urinary

dysfunction couldn`t be identified as individual risk factors for the

occurrence of AUR. IPSS ≥ 8 (moderate/severe symptoms) and

biopsy proven inflammation showed only a tendential association
FIGURE 1

Robotic-assisted transperineal MRI-TRUS-fusion guided biopsy of the prostate.
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to an increased risk of AUR (OR = 2.49 and 2.29, respectively).

Using multivariate multiple regression, only for AUR a significant

overall model (p = 0.04) was demonstrated, with none of the

predictors providing a clear prediction. Significant influence was

shown for IPSS ≥ 8 on “Change of IPSS”, although this result is

considered random with regard to the insignificant overall model.

No statistically significant change of functional scores (IPSS, QoL

and ICIQ) occurred in our cohort shortly after biopsy. One patient

(0.4%) developed urinary tract infection (UTI). 66/228 (28.9%) had

undergone prostate biopsy priorly. 48/66 (84.2%) of these patients

favored transperineal robotic-assisted biopsy over all other methods

and rated transperineal robotic-assisted biopsy as the most pleasant

biopsy approach. Regarding local conditions, haematoma at

puncture, local skin infection and bleeding from puncture site

occurred in 8/228 (3.5%), 0/228 (0%) and 10/228 (4.4%),

respectively. Detailed data for functional outcome and side-effects

are summarized in Table 2. Notably, no patients with

immunodeficiency developed any infectious complications.

Sub-group-analysis for the functional outcome and side

effects and subgroup specifications are summarized in Table 3

and Supplementary Table 1, respectively.
Discussion

To the best of our knowledge, this is the first prospective

study to evaluate safety, tolerability, side effects, and functional
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outcome of transperineal robotic-assisted prostate biopsy.

Transrectal ultrasound-guided biopsy of the prostate still is

used as the standard approach for obtaining representative

samples for identification and classification of PCa (10).

However, the current EAU Guidelines 2022 clearly favor the

perineal access route, due to the lower risk of infectious

complications (1). Our study reports the outcomes of robotic-

assisted perineal biopsy, that requires only two puncture sites.

The applied sampling strategy provides histologic evaluation of

the entire gland including suspicious lesions (9). Overall, 14% of

our patients developed grade I complications according to

Clavien-Dindo classification. The superior tolerability of the

RA-TP-PBx is highlighted by the mean value of 1.3 points on

VAS for pain on the day of and 1.2 points on the days after

biopsy. TP-PBx performed under general anesthesia also displays

a favorable pain profile (VAS 1.3) as compared to TP-PBx (VAS

2) and TR-PBx (VAS 2) in local anesthesia (11). Furthermore,

most patients (84.2%) of our cohort having undergone

conventional non-robotic biopsy, preferred RA-TP-PBx.

Although, feasibility of the TP-PBx in local anesthesia was

shown in various studies (6, 12), general anesthesia is

recommended in RA-TP-PBx in order to enable maximum

diagnostic accuracy. Hematuria and hematospermia were

identified as most common side effects. Rates of occurrence

were comparable to other studies reporting sides effects of TP-

PBx and TR-PBx (13). Notably, none of our patients developed

significant gross hematuria requiring bladder irrigation. A
TABLE 1 Baseline characteristics.

Parameter Patients (n) Mean ± SD (range)

Age (years) 228 64.9 ± 7.6 (46 – 84)

Prostate volume (cm3) 228 48.4 ± 30.1 (9 – 310)

Serum PSA (ng/ml) 226 11.8 ± 39.1 (0.2 – 561)

Number of biopsy cores (total) 228 25.6 ± 8.2 (5 – 51)

IPSS 216 10.5 ± 7.2 (0 – 34)

ICIQ 210 1.2 ± 2.6 (0 – 14)

QoL 217 1.6 ± 1.5 (0 – 5)

NIH-CPSI (total) 173 7.8 ± 6.4 (0 – 40)

NIH-CPSI (pain) 173 1.7 ± 3 (0 – 21)

NIH-CPSI (micturition) 173 2.8 ± 2.2 (0 – 10)

NIH-CPSI (Quality of life) 173 3.5 ± 2.9 (0 – 12)

Patients (n) %

Suspicious DRE 36 15.8

Under “Active surveillance” 31 13.6

Previous biopsy 66 28.9

Immunodeficiency 38 16.7

Medication for MUD 63 27.6

Anticoagulation 59 25.9

Perioperative antibiotic prophylaxis/therapy 76 33.3
SD, standard deviation; PSA, prostate-specific antigen; IPSS, international prostate symptom score; ICIQ, international consultation on incontinence questionnaire; QoL, quality of life;
NIH-CPSI, chronic prostatitis symptom index; DRE, digital rectal examination; MUD, male urinary dysfunction.
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further advantage of the TP-PBx is the absence of hematochezia

or rectal bleeding, which is described with an incidence of up to

45% in transrectal biopsy (3). In our cohort, the rate of AUR

after RA-TP-PBx was 14%, which is comparable to the study of

Pepe et al. with 11.1% on saturation TP-PBx and > 24 cores taken

(14), yet higher than in studies with lower number of biopsy

cores taken (10–18) with rates of AUR ranging from 1.4% to

6.7% (15, 16). Even though the number of biopsy cores is

considered a risk factor for AUR (14), the number of cores

(≥25) had no significant impact on the risk of appearance of an

AUR in our cohort applying a target saturation approach (9).

Using multivariate multiple regression, an significant overall

model (p = 0.04) for AUR was shown, with none of the

predictors providing a clear prediction. RA-TP-PBx allows for

complete diagnostic coverage of the prostate via only two

puncture sites. This sterile and minimally invasive approach

resulted in the occurrence of only one UTI (0.4%) requiring

intravenous antibiotic treatment. Notably, this patient had

received antibiotic treatment with oral cephalosporine

according to resistency profile, however the duration of pre-

treatment (single dose) turned out to be insufficient given the
Frontiers in Oncology 05
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histopathology also revealed acute inflammation. The rate of

UTI is comparable to other studies reporting rates of UTI after

TP-PBx between 0 – 0.7% (15–17). In contrast, TR- PBx is

associated with higher rates of infectious complications ranging

between 2 - 5% despite antibiotic prophylaxis (11, 18, 19). In line

with the study of Günzel et al. (11), omission of standard

perioperative antibiotic prophylaxis in TP- PBx did not result

in a significant increase of infections. Notably, none of the

immunodeficient patients developed infectious complications

indicating that the sterile and minimally invasive biopsy

technique enables to safely omit perioperative antibiotic

prophylaxis even in patients at special risk for the

development of infectious complications. Requiring no

antibiotic prophylaxis helps to reduce the risk of antibiotic

related complications and the development of drug resistant

bacteria. Our results corroborate the findings from other groups

(20). However, single center data, limited patient number and

non-randomized trial design without a control group represent

limitations of this study. Further studies are required to confirm

our results. Nevertheless, this work indicates the superior safety

profile of robotic assisted transperineal prostate biopsy as
TABLE 2 Functional outcomes and side effects.

Parameter Mean ± SD (range) Mean ± SD (range) p – value*
Before biopsy After biopsy

IPSS 10.5 ± 7.2 (0 – 34) 11 ± 7.4 (1 – 34) 0.23

ICIQ 1.2 ± 2.6 (0 – 14) 1.6 ± 2.8 (0 – 13) 0.12

QoL 1.6 ± 1.5 (0 – 5) 1.7 ± 1.5 (0 – 5) 0.44

Parameter Mean ± SD (range) p – value#

Pain on the day of biopsy 1.3 ± 1.9 (0 – 9) 0.68

Pain on following day 1.2 ± 1.9 (0 – 10)

Change of IPSS1 0.4 ± 5.2 [(-) 31 – (+) 22] –

Change of ICIQ1 0.3 ± 2.3 [(-) 13 – (+) 8] –

Change of QoL1 0.1 ± 1.4 [(-) 5 – (+) 5] –

Parameter Total (n) %

Acute urinary retention 32 14

Gross hematuria 145 63.6

Duration of hematuria (1 day) 34 14.9

Duration of hematuria (2-3 days) 51 22.4

Duration of hematuria (>3 days) 59 25.9

Hematospermia 98 43

Urinary tract Infection 1 0.4

Perineal bleeding 10 4.4

Perineal hematoma 8 3.5

Skin infection 0 0

Histology-proven Inflammation 73 32

Negative biopsy 95 40

Positive biopsy 133 60
fro
SD, standard deviation; IPSS, international prostate symptom score; ICIQ, international consultation on incontinence questionnaire; QoL, quality of life.
1change of functional parameters (-) decrease of score after biopsy, (+) increase of score after biopsy.
*p – value determined by a dependent Student`s t test.
#p – value determined by an independent Student`s t test.
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compared to a transrectal approach. We assume that the

minimally invasive biopsy technique via only two entry points

diminished local tissue trauma and subsequently reduced the

risk for infectious complications.
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TABLE 3 Functional outcome and side-effects - Subgroup analysis.

Parameter MMUDyes/no ACyes/no BC<25/≥25 INFyes/no PV<40/≥40 IPSS<8/≥8 MMR
p – value*

Acute urinary retention 0.63 0.19 0.33 0.06 0.57 0.06 0.04

Gross hematuria 0.7 0.97 0.45 0.3 0.69 0.3 0.75

Hematospermia 0.5 0.17 0.45 0.45 0.55 0.03 0.17

Perineal hematoma 0.18 0.55 0.59 0.45 0.97 0.92 0.71

Change of IPSS1 0.55 0.75 0.72 0.28 0.52 0.01 0.09

Change of ICIQ1 0.73 0.58 0.32 0.85 0.75 0.19 0.75

Parameter Complication n Mean ± SD (range) p –value#

PV AUR no 192 46 ± 24.1 (9 – 217) 0.009

AUR yes 31 61.4 ± 52.2 (27.5 – 310)

Number of biopsy cores AUR no 196 25 ± 7.9 (5 – 46) 0.009

AUR yes 32 29 ± 9.2 (5 – 51)

IPSS (before biopsy) AUR no 185 10 ± 7.1 (0 – 32) 0.02

AUR yes 30 13.2 ± 7.6 (3 – 34)

PV - Pain on day of biopsy No pain 103 44.6 ± 17.8 (18 – 88) 0.4

> 0 points 107 47.1 ± 24.5 (9 – 173)

PV - Pain on following day No pain 111 45.5 ± 20.3 (9 – 120) 0.8

> 0 points 99 46.4 ± 22.9 (14 – 173)

BC - Pain on day of biopsy No pain 104 26.6 ± 7.9 (5 – 51) 0.25

> 0 points 108 24.5 ± 8.4 (5 – 41)

BC - Pain on following day No pain 112 26.3 ± 8.1 (5 – 51) 0.56

> 0 points 100 24.7 ± 8.3 (6 – 41)
fronti
NIH-CPSI, chronic prostatitis symptom index; INF, histology-proven inflammation; MMUD, medication for male urinary dysfunction; AC, anticoagulation; BC, biopsy cores; PV, prostate
volume; IPSS, international prostate symptom score; MMR, multivariate multiple regression (overall model); ICIQ, international consultation on incontinence questionnaire; SD, standard
deviation; AUR, acute urinary retention.
*p – value determined using multivariate multiple regression.
#p – value determined by an independent Student`s t test.
1change of functional parameters (-) decrease of score after biopsy, (+) increase of score after biopsy.
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Introduction: Prostate cancer is one of the most common malignant tumors in

Chinese men, which is rich in iron metabolic activity and is closely related to all

stages of prostate cancer progression. Since the current diagnostic methods are

insufficient, we aimed to evaluate the value of quantitative T2 star values from the

T2* mapping sequences in multiparametric magnetic resonance imaging

(mpMRI) in the diagnosis and grading of PI-RADS 3 prostate cancer (PCa).

Methods: We prospectively enrolled patients with PCa or benign prostatic

hyperplasia (BPH) admitted to our hospital from January 2021 to November

2022. Imaging indicators, including the T2* value and apparent diffusion

coefficient (ADC) value, were collected, and enzyme-linked immunosorbent

assays (ELISAs) were used to measure the levels of proteins involved in iron

metabolism in the patients. ROC curves were drawn to explore whether the T2*

value could be used for the diagnosis and grading of PCa.

Results: We found that three iron metabolism indexes, ferritin, hepcidin, and the

ferric ion (Fe), and the T2* value were significantly different between the PCa

group and BPH group and between the low International Society of Urology

Pathology (ISUP) group (ISUP ≤ 2) and the high ISUP group (ISUP>2). Additionally,

there was a significant correlation between the levels of these three indicators

and the T2* value. Further ROC analysis showed that the levels of iron

metabolism-related indexes and T2* values performed well in diagnosing and

grading PCa.

Discussion: The T2* value has good value in detecting and predicting the grade

of prostate cancer and can reflect the ironmetabolism of the tumor, which could

provide a foundation for the diagnosis and grading of PCa in the future.

KEYWORDS

prostate cancer, PI-RADS, iron mentalism, multiparametric magnetic resonance
imaging, diagnosis
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1 Introduction

Prostate cancer (PCa) is one of the most common malignancies

in male and the second leading cause of cancer-related death in

adult men worldwide; in China, PCa ranks ninth in the incidence of

male malignancies (1). According to CA-A CANCER JOURNAL

FOR CLINICIANS ‘s forecast, there will be 288,300 new cases of

PCa in the United States in 2023, and 34,700 patients will die of

prostate cancer2200 (2). Nearly 30% of new cancer cases are PCa.

More importantly, despite the continuous progress of prostate

diagnostic technology, the incidence of PCa in China is increasing

yearly, and the proportion of advanced prostate cancer is

significantly higher than that in other countries. This may be due

to the limitations of screening and the high rate of missed diagnosis.

Many patients are elderly, and because of the subtle nature of PCa

symptoms, they are diagnosed for the first time because of frequent

urination and other lower urinary tract symptoms (LUTS).

Therefore, the accurate screening of PCa in patients with benign

prostatic hyperplasia is the most important method to improve the

detection rate of PCa.

To date, the diagnosis of PCa mainly depends on two methods:

the measurement of serum total prostate-specific antigen (TPSA)

levels and multiparametric magnetic resonance imaging (mpMRI).

In recent years, noninvasive methods, such as PSA measurements,

have been developed for evaluating preoperative PCa lesions, and

the diagnostic value of these methods for determining progression

and prognosis has been evaluated. Although TPSA assays have high

sensitivity, their low specificity has led to the overuse of prostate

biopsy. Therefore, improving the efficiency of PCa diagnosis and

avoiding unnecessary invasive examinations are pivotal

components of the diagnosis and treatment of PCa. mpMRI of

the prostate is currently another important component of

noninvasive PCa diagnosis. mpMRI is not burdened by the

economic costs associated with the surgical injury caused by

prostate biopsy or fa lse-posi t ive resul ts and can be

comprehensively performed before surgery to assess the location,

boundaries, and environment of the tumor. The apparent diffusion

coefficient (ADC) value has also been discussed with regard to its

relation to the pathological stage and prognosis of PCa (3). PI-

RADS is currently one of the most widely used scoring criteria for

PCa. It is used to evaluate the likelihood of focal prostate nodules to

be PCa by scoring T2 and diffusion-weighted imaging (DWI)

sequences. According to the difference in high and low signals

and clarity, the PI-RADS divides the prostate score into five grades,

of which the third grade represents possible PCa. Although patients

with third grade tumors exhibit clear qualitative criteria, there are

subjective differences to a certain extent, the requirements for the

center are higher, and different radiologists may have different

opinions. Moreover, some PCa lesions with 2- or 4-point

characteristics are often included in the 3-point category, in

which there are a large number of incorrect scores. In addition,

there is still a debate about whether lesions with PI-RADS3 scores

need invasive puncture. According to studies, the positive rate of

PCa puncture with PI-RADS3 patients is only 20%, which greatly

affects the detection of PCa. Previous studies have assessed the

prevalence of PCa in PI-RADS3 lesions and found that PI-RADS
Frontiers in Oncology 02
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scores do not provide accurate guidance for clinical management

(with or without biopsies), and the rate of missed diagnosis is the

main problem at present. For patients with PI-RADS3, the

ambiguous PI-RADS score does not represent a better prognosis

than the higher PI-RADS grade. Although the ADC value can help

to judge the malignancy of malignant prostate tumors to some

extent, it has obvious limitations. Some PI-RADS3 patients often

have a very poor International Society of Urology Pathology (ISUP)

grade, which seriously affects their survival and prognosis.

Therefore, the two existing noninvasive examination items cannot

provide effective guidance on the PI-RADS score, and the diagnosis

of PI-RADS3 score of PCa is still in the exploratory stage (4–6). So

far, many tools, such as biomarkers, associated with mpMRI have

aimed to solved this particular problem, such as SelectMDx (7),

4Kscore, ExosomeDx™ (8) and PCA3 (9). These biomarkers can

improve the specificity of PCa by combining with mpMRI, and have

a significant improvement compared with traditional TPSA or

prostate-specific antigen density (PSAD).

With the in-depth study of iron metabolism, increasing

evidence has shown a correlation between iron metabolism and

the occurrence and progression of malignant tumors (10). Iron is

one of the basic nutrients needed by cancer cells. When tumor cells

are in an iron-rich environment, the growth and invasion of cancer

cells are significantly faster than those in an iron-deficient

environment. However, too much iron can cause another

problem: oxidative damage to cancer cells. When cancer cells are

exposed to too much iron, iron promotes another phenomenon by

activating oxidative damage: iron death, a mechanism that damages

the structure of cancer cells. However, cancer cells form protective

mechanisms against oxidative damage and iron death, which are

different in all types of cancers and have similar mechanisms in

PCa. In cancer cells, the activity of antioxidant enzymes is increased,

so cancer cells do not immediately undergo the killing caused by

fast-acting iron in the iron-rich environment, so a very large

amount of iron is needed to cause the death of cancer cells.

Cancer cells use iron for important biochemical reactions, such as

DNA synthesis, mitochondrial metabolism, angiogenesis and

metastatic cell proliferation. In PCa, iron is also very important

for the occurrence and development of tumors. Like other tumors,

the growth of PCa cells requires sufficient iron, which can activate

enzymes that control the transcriptional activity of androgen

receptor (AR) in PCa, which is an important initiating factor.

Moreover, iron can reactivate the activity of enzymes in cancer

cells, thereby increasing energy production and extracellular matrix

degradation. Recent studies have confirmed that the content of iron

in PCa cells is increased, while in normal cells near PCa cells, iron

levels are lower (11). Many kinds of iron metabolism molecules

have been shown to promote or inhibit the progression of PCa. For

patients with PI-RADS3 prostate disease whose imaging results are

unclear, whether the difference in iron metabolism can help to

improve the detection rate of PI-RADS3 is a direction that needs

attention to guide clinical diagnosis and treatment from a

microscopic point of view.

Here, we introduce a less-used MR sequence in urology, since

the unclear anatomical division, difficulty in parameter adjustment,

small prostate volume and so on. The T2* mapping sequence was
frontiersin.org
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initially used to assess iron deposition in the heart and spleen (12).

In the context of liver surgery, the T2* mapping sequence can be

used to quantitatively determine liver iron deposition and iron

overload based on the difference in T2 relaxation time and has

better accuracy than liver biopsy (13). MRI signal decay is affected

by the iron content of the tissue; the higher the iron content, the

faster the signal decay. In turn, the T2* value represents the iron

content as represented by the R2* relaxation rate (14). In the field of

PCa, whether the T2* mapping sequence can increase the detection

rate of PCa from a new perspective by predicting iron metabolism

in patients with PI-RADS3 is unknown. In summary, the

assessment of PI-RADS3 seems to have become a key challenge,

and a large number of patients with PCa that cannot be diagnosed

by TPSA or mpMRI based on T2+DWI sequences are included in

this category. This limitation greatly affects the detection rate and

prognosis of these patients, and a new method needs to be

introduced to address this problem. In the field of urology,

whether T2* mapping can be used to evaluate prostatic iron

deposition to help diagnose prostate malignant tumors and even

evaluate prognosis remains unknown. Therefore, the aim of this

study was to prospectively evaluate the role of quantitative

measurement of intratumoral iron deposition based on T2*

mapping sequence as a noninvasive biomarker of iron

metabolism in PCa with PI-RADS 3.
2 Materials and methods

2.1 Participants

This prospective study was approved by the Medical Ethics

Committee of the First Affiliated Hospital of Soochow University

(Suzhou, China; 2021; No. 133). Written informed consent was

obtained from all the patients. Patients were included from January

2021 to November 2022. Patients hospitalized in the First Affiliated

Hospital of Soochow University diagnosed with prostate diseases

were prospectively subjected to mpMRI before prostate biopsy. The

sequence included T2, DWI, ADC and T2* mapping. Serum

samples were also collected. Two radiologists rescored all patients

based on PI-RADS and included patients with PI-RADS3 in this

study. Then, retrospective collection of data regarding the clinical

indicators of patients in this study, including TPSA levels, prostate

volume, pathological grade and others, was performed. The

inclusion criteria were as follows: (1) MRI of the prostate,

including T2-weighted imaging (T2WI), DWI, and T2* mapping-

weighted imaging and surgery- (laparoscopic radical prostatectomy

or transurethral resection of prostate) and postoperative pathology-

confirmed PI-RADS 3 PCa or benign prostatic hyperplasia (BPH);

(2) MRI examination at our hospital less than six weeks after

prostate surgery; and (3) The lack of acute hepatitis or blood

diseases affecting iron metabolism. Exclusion criteria were as

follows: (1) treatment for PCa before surgery, such as endocrine

therapy or radiotherapy; (2) other diseases affecting iron

metabolism except PCa; and (3) film reading hampered by MRI

artifacts. Based on the primary criteria, our study included 90

patients, including 56 with PCa and 34 with BPH. Ninety-three
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patients were excluded because of their incorrect PI-RADS score,

three patients were excluded because they had received endocrine

therapy, one patient was excluded due to an MRI artifact, and one

patient was excluded due to reclassification of the PI-RADS score.

In accordance with the PCa grading system, patients were divided

into five categories. Grades assigned by the ISUP to patients 1, 2, 3,

4, and 5 were 4, 18, 17, 4, and 13, respectively. The PRISMA flow

chart was shown in Figure 1.
2.2 Serum and tissue samples

Preoperative blood was collected from the two groups of

patients. Serum and erythrocytes were rapidly and carefully

separated by centrifugation at 3000 rpm for 10 minutes. The

expression levels of ferritin and hepcidin in serum were measured

by enzyme-linked immunosorbent assay (ELISA). After the prostate

tissue was acquired after laparoscopic radical prostatectomy or

transurethral resection of prostate, the specimens were then

mashed with an appropriate amount of normal saline. The

supernatant was collected by centrifugation at 3000 rpm for 10

minutes, and the tissue homogenate was detected by ELISA. The

process was carried out in strict accordance with the

kit instructions.
2.3 MRI protocol

Examinations were performed by using a 3.0 T clinical MR

scanner (Skyra; Siemens Medical, Germany) with a dedicated 16-

channel body-phased array coil. All images of 90 patients were

assessed by 2 physicians respectively based on the PI-RADS score.

Through the former study and following practice (15), an axial fast

spin echo T2-weighted sequence was performed with the following

parameters: repetition time/echo time (TR/TE) 7590/104 ms, slice
FIGURE 1

PRISMA flow diagram of patients involved and order of the processes.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1185057
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


D et al. 10.3389/fonc.2023.1185057
number 25, slice thickness 3 mm, intersection gap 0 mm, field of

view (FOV) 200 mm, voxel size 0.5*0.5*3 and flip angle 120°. T2*

relaxation time maps were obtained using a multiecho fast field

sequence. The parameters used were as follows: TR 265 ms, TE 4.92,

7.38, 9.84, 12.30, and 14.76 ms, slice number 30, slice thickness

3 mm, intersection gap 0.6 mm, FOV 380 mm, voxel size 1.5*1.5*3

and flip angle 50°.
2.4 PI-RADS score

The images obtained from the mpMRI scans were transferred to

the Picture Archiving and Communication System (PACS), and the

scores were rescored according to the PI-RADS V2.0 by 2 physicians

with 10 years of experience in prostateMR diagnosis. The raters knew

the patient’s baseline data but were blinded to the pathology results.
2.5 Correlation of the T2* value

The slice that showed the greatest extent of the lesion area was

selected on the PACS, and the region of interest (ROI) was set. For

multiple suspected tumor sites, the one with lowest T2* value was

eventually selected for delineating the ROI. Considering the

difficulty of sampling, we generally select an area of 1cm*1cm-

sized circular area as the ROI. For tumors with too large lesions, we

use the area with the lowest T2* value. Each measurement was

repeated 3 times, and the average value was taken. After

prostatectomy, each prostate pathology image was divided into

5 mm thick slices. Using the corresponding positions on the MR

images, experienced pathologists manually marked six points on the

prostate pathology images—the basal section, the apex, the

peripheral zone, the central gland, the tip and the urinary tract—

which were aligned with the corresponding parts on the MRI

images. Symbols were used to identify various distinct

morphological characteristics and then used to align the images

with the step-section slices. For patients with BPH, the prostate was

also corresponded to the six positions as described above, and the
Frontiers in Oncology 04
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average value of the 1cm*1cm circular area of the transitional zone

of hyperplasia is taken.
2.6 Data analyses

All data were tested with SPSS 22.0 software (IBM, Armonk,

NY, USA). According to the normality test, the baseline data do not

fit a normal distribution, and are presented as medians

(interquartile range), and group comparisons were made using

nonparametric tests. Spearman correlation was used for

correlation analysis. Taking the pathological results as the gold

standard, the ROC curve was drawn. The difference was considered

statistically significant at p<0.05, and applied to all evaluations.
3 Results

3.1 Patient characteristics

The pathological findings of 90 patients were included in this

prospective study, including 34 patients with BPH and 56 patients

with PCa. To explore differences in patient clinical data, we

compared the TPSA, ratio of free to total PSA (F/TPSA), prostate

volume, apparent diffusion coefficient (ADC) value, T2* value,

ferritin, hepcidin, and Fe between the BPH and Pica groups. The

results showed that the differences for all indicators between the two

groups were statistically significant (all p<0.05; Table 1). The PCa

group had higher TPSA, ferritin, hepcidin, and Fe levels than the

BPH group, while the FTPSA, ADC value, T2* value, and prostate

volume were lower than those of the BPH group.

Considering that active monitoring (AS) can be selected for

ISUP 1 and some ISUP 2 lesions, to avoid unnecessary repeated

puncture and radical surgery, we further divided PCa patients into

ISUP ≤ 2 and ISUP > 2 (Table 2). No statistically significant

differences in TPSA or prostate volume were found between the

two groups (p=0.09 and p=0.151, respectively). The rest of the

indicators were significantly different.
TABLE 1 Patient clinical data [medians (interquartile range)].

Characteristic Pca BPH P

Patient(n) 56 34 –

TPSA(ng ml-1) 15.85 (8.31,25.77) 8 (4.86,12.45) <0.001

F/TPSA 0.12 (0.08,0.15) 0.15 (0.12,0.22) 0.019

Prostate volume(cm3) 34.85 (28.3,51.59) 59.08 (38.45,73.96) 0.001

ADC(*10-3 mm2/s) 0.695 (0.629,0.768) 0.756 (0.696,0.865) 0.02

T2*(ms) 42.02 (29.76,47) 54.34 (47.46,57.68) <0.001

Ferritin(ng ml-1) 98.03 (82.92,113.69) 84.03 (78.05,92.49) 0.001

Hepcidin(ng ml-1) 114.12 (97.34,126.51) 100.74 (94.73,109.85) 0.008

Fe(mmol ml-1) 31.78 (27.27,36.07) 25.11 (22.52,30.03) <0.001
TPSA, Total prostate-specific antigen; F/TPSA, Ratio of free to total PSA; ADC, Apparent diffusion coefficient; Fe, Ferric ion.
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3.2 Correlation of BPH patient indicators
with TPSA and T2* values

Next, we analyzed the correlation between the levels of serum

markers and prostate volume and TPSA levels or T2* value, and the

results showed that in BPH patients, the TPSA level was correlated

with the prostate volume (p<0.001; Table 3), while no correlations

were observed between the remaining markers and either TPSA or

the T2* value (both P > 0.05).
3.3 Correlation of PCa patient indicators
with ISUP and T2* values

Next, we further analyzed the correlation between PCa patient

indicators and ISUP grade and T2* value, and the results showed

that TPSA, ADC value, ferritin, hepcidin, and Fe were all correlated

with ISUP grade and T2* value. It is worth noting that the
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correlation coefficients of the T2* value, ferritin, hepcidin, and Fe

with ISUP were -0.661, 0.52, 0.411, and 0.535, respectively (all p<

0.01; Table 4). Both the T2* mapping sequence and iron-related

indexes better predicted the ISUP grade of PCa patients and

performed well in evaluating the prognosis of patients. In

addition, a correlation between the T2* value and ferritin,

hepcidin, and Fe was observed (Table 4).
3.4 T2* value in diagnosing PCa

Then, we investigated the diagnostic value of the T2* value for

PCa, as shown in Figure 2A. The ROC curve showed that the T2*

value performed well in distinguishing PCa and BPH (AUC=0.865,

p<0.001), while the TPSA, ADC value, ferritin, hepcidin, and Fe had

AUCs of 0.746, 0.647, 0.704, 0.667, and 0.748, respectively

(Figure 2B). This finding suggests that TPSA, ferritin and Fe also

have good performance in the diagnosis of PCa.
TABLE 3 Associations between various parameters and TPSA or the T2* value in BPH.

Characteristic TPSA F/TPSA Prostate volume Ferritin Hepcidin Fe

r p r p r p r p r p r p

T2* value -0.222 0.206 0.159 0.243 -0.099 0.577 0.075 0.673 0.062 0.726 -0.33 0.057

TPSA – – -0.202 0.134 0.695 <0.001 0.041 0.817 0.127 0.475 0.111 0.531
frontier
TPSA, Total prostate-specific antigen; ADC, Apparent diffusion coefficient; Fe, Ferric ion.
TABLE 4 Associations between indicators and ISUP grade or T2* value in PCa.

Characteristic TPSA T2* Value ADC Value Ferritin Hepcidin Fe

r p r p r p r p r p r p

ISUP 0.349 0.008 -0.661 <0.001 -0.432 0.001 0.52 <0.001 0.411 0.002 0.535 <0.001

T2* Value -0.386 0.003 – – 0.482 <0.001 -0.441 0.001 -0.324 0.015 -0.541 <0.001
TPSA, Total prostate-specific antigen; ADC, Apparent diffusion coefficient; Fe, Ferric ion; ISUP, International Society of Urology Pathology.
TABLE 2 PCa Patient clinical data [medians (interquartile range)].

Characteristic ISUP ≤ 2 ISUP>2 P

Patient(n) 22 34 –

tPSA(ng ml-1) 14.67 (6.58,22.42) 17.34 (11.37,32.87) 0.09

F/TPSA 0.14 (0.12,0.19) 0.1 (0.08,0.14) 0.017

Prostate volume(cm3) 43.95 (34.02,52.96) 32.41 (25.35,49.49) 0.151

ADC(*10-3 mm2/s) 0.760 (0.684,0.877) 0.671 (0.619,0.729) 0.004

T2*(ms) 47.03 (43.46,49) 34.57 (28.13,42.1) <0.001

Ferritin(ng ml-1) 88.51 (73.13,98.56) 109.08 (93.5,116.87) 0.002

Hepcidin(ng ml-1) 105.73 (77.68,115.32) 117.16 (105.21,132.06) 0.012

Fe(mmol ml-1) 28.1 (23.56,32.05) 33.42 (29.51,37.53) 0.001

Nerve invasion(n) 14 (63.6%) 25 (73.5%) 0.889

Magin invasion(n) 8 (36.4%) 13 (38.2%) 0.436
TPSA, Total prostate-specific antigen; F/TPSA, Ratio of free to total PSA; ADC, Apparent diffusion coefficient; Fe, Ferric ion.
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3.5 The T2* value predicts ISUP grade in
PCa patients

Finally, we explored the role of the T2* value in discriminating

between PCa patients with ISUP ≤2 and >2. The ROC analysis

results showed that the T2* value could significantly differentiate

between the grades of PCa (AUC=0.867, p<0.001); the AUCs of the

other markers are shown in Figures 2C, D.
4 Discussion

Prostate cancer morbidity and mortality are rising in Asia, with

current diagnoses mainly relying on PSA, digital rectal exam (DRE)

and mpMRI, as as reported above, posing a new challenge to PCa

diagnosis. The focus of the diagnosis of PCa is to differentiate it from

BPH, which is associated with symptoms that oftenmask the existence

of PCa. With the advancement of MRI technology, mpMRI has

become an effective modality for the noninvasive diagnosis of PCa.

The existing routine sequence and the general qualitative PI-RADS

scoring model are gradually becoming inadequate for meeting current

requirements. Whether needle biopsy should be performed for a PI-

RADS score of 3 and the positive rate of needle biopsy were not

satisfactory. A 2016 multicenter prospective study showed that the

detection rates of PCa were 13%, 31%, and 71% for lesions with a PI-
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RADS score greater than or equal to 3, respectively (16); other studies

have made similar arguments (17–19). Interestingly, a study showed

that for PI-RADS3 patients, dividing them into low-risk and high-risk

groups according to the 0.5 ml threshold of lesion volume may help

physicians make clinical decisions, but there is no large-scale central

study to confirm this, and studies are mostly limited to the T1-2

clinical stage (20). Therefore, for PCa patients with PI-RADS 3, the

lower detection rate of conventional MR sequences affects the

diagnosis of early-stage PCa or clinically significant PCa. In the

classic T2+DWI sequence, patients with PI-RADS 3 mostly showed

heterogeneous low signals on T2 sequences and isointensity or mild

hyperintensity on high b-value DWI sequences. In a previous study,

the sensitivity of the T2 sequence + DWI sequence was significantly

higher than that of the T2 sequence alone (81% vs. 54%, p<0.01), and

the specificity of the T2 sequence + DWI sequence and T2 sequence

alone was basically the same (21). DWI reveals obvious differences in

the ADC values of patients with PCa and BPH, but there is a large

overlap. Consequently, the ADC value alone is not recommended for

the differential diagnosis of prostate diseases (22, 23). Models

incorporating the qualitative ADC value and qualitative PI-RADS

score have improved diagnostic efficiency over the PI-RADS score

alone (24). At present, the detection rate of the conventional T2

sequence + DWI sequence is affected by the disease characteristics of

the population, the quality of MR imaging, the experience of the

reader, and the accuracy of prostate biopsy.
D

A B

C

FIGURE 2

ROC curve of the markers. (A) Diagnostic utility of TPSA, T2* value and ADC value in the PCA and BPH group. (B) Diagnostic utility of ferritin,
hepcidin and Fe in the PCA and BPH group. (C) Diagnostic utility of T2* value and ADC value in the low ISUP and high ISUP group. (D) Diagnostic
utility of ferritin, hepcidin and Fe in the low ISUP and high ISUP group.
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Angiogenesis and tumor metastasis are closely related to cellular

iron metabolism. It has been proven that reducing intracellular iron

metabolism inhibits tumor cell growth in both hormone-dependent

and hormone-resistant cells (25). As a key factor in iron metabolism,

hepcidin plays a crucial role, as it regulates the ferritin receptor on the

cell membrane, preventing iron from leaving the cell. Subsequently,

there is an increase in free iron production in tumor cells, which

increases tumor cell invasiveness and promotes tumor cell growth. In

this study, a higher level of serum hepcidin was found in the PCa

group. In addition, the serum hepcidin levels were correlated with the

ISUP grade. Elevated ferritin levels have been reported in other tumors

(26–28), and in urine, ferritin heavy and light chains were confirmed

to be different between the PCa and BPH groups. However, the effects

of serum ferritin on PCa stage, progression, and prognosis need

further experimental verification. In our study, the serum ferritin

level was positively correlated with ISUP grade. Compared with

systemic iron metabolism, local total Fe in prostate tissue can better

reflect the significance of iron metabolism in PCa due to the presence

of many confounding factors. At present, most studies have collected

data on the trace iron in blood, and there are few studies on Fe in

tissues. However, many experiments have confirmed that the iron

content of PCa cells increases, and there is often iron overload (25). In

this study, Fe level was positively correlated with ISUP grade and

negatively correlated with T2* value; that is, the T2* value could reflect

local iron metabolism in the prostate to a certain extent. In conclusion,

for the first time, we identified the differences in iron metabolism in

patients with PI-RADS 3. Although they had similar imaging findings,

there were significant differences in iron metabolism in patients. The

findings represent a considerable difference in iron metabolism that

can be assessed during the diagnosis of PCa. The results showed that

the levels of three indexes of iron metabolism were positively

correlated with ISUP, suggesting that under similar imaging

conditions, the degree of active iron metabolism in the tumor

represents the prognosis of patients with PCa to some extent. It is

interesting to note that there is also a significant negative correlation

between the T2* value and the levels of three indicators of iron

metabolism in patients with PCa, of which Fe concentration is the

most significant, which means that the T2* value is similar to the

prediction of liver iron deposition in the field of urology.

We assessed iron metabolism in prostate disorders using the

T2* mapping sequence in mpMRI. We found that the T2* value was

lower in the PCa group than in BPH group (p<0.001). In the PCa

group, the T2* value was negatively correlated with ISUP grade, and

patients with ISUP>2 tended to have a lower T2* value. Compared

to the traditional ADC value, the TPSA and T2* values had better

performance in distinguishing PCa and BPH and in distinguishing

ISUP ≤ 2 and ISUP>2 (AUC=0.865 and 0.867, respectively). As a

traditional PCa diagnostic index, TPSA still has good performance

in diagnosing PCa (AUC=0.746), but there was no significant

difference within the PCa group (p=0.08). The ADC value is used

as a quantitative indicator; however, in identifying PCa, the

diagnostic performance was not as good as TPSA or the T2*

value (AUC=0.647), but it was able to achieve greater diagnostic

performance within the PCa group (AUC=0.729), which is

consistent with previous papers showing that the ADC value can

be used to predict PCa staging, grading and prognosis (29, 30).
Frontiers in Oncology 07
42
To verify whether the T2* value can represent iron metabolism,

we added three iron metabolism-related indicators, hepcidin,

ferritin, and Fe, to our study and found that the levels were

significantly different between PCa and BPH (p<0.01). Notably,

within the PCa group, the three metrics were still significantly

different between the ISUP groups (p=0.002, 0.012, 0.001,

respectively). In further ROC curve analysis, Ferritin

(AUC=0.704), Hepcidin (AUC=0.667) and Fe (AUC=0.748)

showed good performance in the diagnosis of prostate cancer.

When considering the risk stratification of prostate cancer, the

diagnostic efficiency of the Ferritin (AUC=0.743), Hepcidin

(AUC=0.7) and Fe (AUC=0.771) is further improved, suggesting

that even in patients with prostate cancer, different progression

often has different iron metabolism. In the PCa group, the three

indexes were all negatively correlated with the T2* value, indicating

that the T2* mapping sequence could reflect iron metabolism in

PCa to a certain extent and reflect the progression of the disease.

Through this study, we hope to drive the adoption of radiomics

and metabonomics in the management of current PI-RADS3

patients. From a radiological standpoint, it might increase the

overall diagnostic efficiency; on the other hand, it might allow us

to rule out unnecessary biopsies from a clinical perspective,

avoiding the risk of possible complications in selected patients.

Inevitably, this article has some limitations. First, the sample

size was relatively small, and it is necessary to conduct a

multicenter, prospective, large-scale study to confirm the current

conclusions. Second, the article lacks prognostic follow-up data, and

whether the T2* value can be used as a prognostic indicator remains

to be explored. Finally, although the accuracy of sampling was

adequate, there are still uncontrollable corresponding errors, and it

is necessary to wait for better sampling methods.
5 Conclusion

In conclusion, the validation of tissue extraction and metabolic

analysis based on T2* Mapping sequence could provide a practical

basis for non-invasive preoperative evaluation of patients with

prostate malignancies using this technology, and could provide

the possibility to discover potential iron metabolism-related

therapeutic targets in the future.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed and

approved by the Medical Ethics Committee of the First Affiliated

Hospital of Soochow University (Suzhou, China; 2021; No. 133).

The patients/participants provided their written informed consent

to participate in this study.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1185057
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


D et al. 10.3389/fonc.2023.1185057
Author contributions

WD analyzed data and wrote the manuscript. YH and XZ

developed the project. XW,WZ and GL edited the manuscript. GZL

and YL performed MRI examinations. All authors contributed to

the article and approved the submitted version.
Funding

This work was supported by grants from the 2018 16th Science

and Technology Development Plan of Suzhou, Suzhou, China

(No. SS201863).
Frontiers in Oncology 08
43
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA,
Vaarala MH, et al. MRI-Targeted or standard biopsy for prostate-cancer diagnosis.
N Engl J Med (2018) 378(19):1767–77. doi: 10.1056/NEJMoa1801993

2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: A Cancer J
Clin (2023) 73(1):17–48. doi: 10.3322/caac.21763

3. Boschheidgen M, Schimmöller L, Arsov C, Ziayee F, Morawitz J, Valentin B, et al.
MRI Grading for the prediction of prostate cancer aggressiveness. Eur Radiol (2022) 32
(4):2351–9. doi: 10.1007/s00330-021-08332-8

4. Schoots IG. MRI In early prostate cancer detection: how to manage indeterminate
or equivocal PI-RADS 3 lesions? Trans Androl Urol (2018) 7(1):70–82. doi: 10.21037/
tau.2017.12.31

5. Mazzone E, Stabile A, Pellegrino F, Basile G, Cignoli D, Cirulli GO, et al. Positive
predictive value of prostate imaging reporting and data system version 2 for the
detection of clinically significant prostate cancer: a systematic review and meta-
analysis. Eur Urol Oncol (2021) 4(5):697–713. doi: 10.1016/j.euo.2020.12.004
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Multiparametric magnetic resonance imaging (mpMRI) is currently the most

effective diagnostic tool for detecting prostate cancer (PCa) and evaluating

adenocarcinoma-mimicking lesions of the prostate gland, among which

granulomatous prostatitis (GP) represents the most interesting diagnostic

challenge. GP consists of a heterogeneous group of chronic inflammatory

lesions that can be differentiated into four types: idiopathic, infective,

iatrogenic, and associated with systemic granulomatous disease. The

incidence of GP is growing due to the increase in endourological surgical

interventions and the adoption of intravesical instillation of Bacillus Calmette-

Guerin in patients with non-muscle invasive bladder cancer; therefore, the

difficulty lies in identifying specific features of GP on mpMRI to avoid the use

of transrectal prostate biopsy as much as possible.

KEYWORDS

prostate cancer, granulomatous prostatitis, non-specific granulomatous prostatitis,
granulomatous prostatitis induced by BCG, multiparametric magnetic resonance
imaging, PI-RADS score
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1 Introduction

There has recently been increasing interest in the diagnostic

impact of multiparametric magnetic resonance imaging (mpMRI),

which has become crucial for detecting prostate cancer (PCa) in

both the peripheral and transition zones (PZ and TZ) and

evaluating adenocarcinoma-mimicking lesions of the prostate

gland, before planning a transrectal ultrasound (TRUS)/MRI

fusion targeted biopsy (1).

As a matter of fact, a valid assessment of suspicious areas in

mpMRI is a determinant for avoiding biopsy in patients without

target lesions, for averting errors of overdiagnosis related to random

biopsies, and for differentiating tumor-like lesions from PCa, which

can be monitored in a periodic follow-up (2, 3).

Of the adenocarcinoma-mimicking lesions of the prostate gland,

granulomatous prostatitis (GP) usually has the same clinical

appearance as PCa, with obstructive and/or irritative symptoms, a

diffuse or focal enlargement of the gland at digital rectal examination,

and increasing levels of prostate-specific antigen (PSA) (4).

GP comprises a heterogeneous group of chronic inflammatory

lesions of often unknown etiology and pathogenesis usually

occurring in the PZ (5), which are relatively rare, accounting for

3.3% of all benign conditions of the gland (6), and are the best

tumor mimickers.

Nevertheless, the incidence of GP is growing due to the increase

of endourological surgical interventions and the adoption of

intravesical instillation of Bacillus Calmette-Guerin (BCG) in

patients with non-muscle invasive bladder cancer (NMIBC) (6, 7).

The GP is classified into four types, based on etiopathogenetic

entities (Table 1) and the corresponding histopathological findings

(Table 2), which we will analyze in detail.

Regarding the mpMRI features of GP, large series studies are

not available due to the rarity of the disease; therefore, in the

literature, mainly case reports and small case series are reported.

Nevertheless, in this paper, we intend to illustrate both the most

common and the least frequent features of the various types of GP

on mpMRI, through a narrative literature review, in order to

highlight any radiological criteria for the differential diagnosis

between this inflammatory condition and PCa and avoid as much

as possible the use of TRUS prostate biopsy. Particularly, we want to

focus on evaluating the GP features on the multiparametric study
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protocol, including T2-weighted (T2w), diffusion-weighted imaging

(DWI) with apparent diffusion coefficient (ADC) map, and

dynamic contrast-enhanced (DCE) sequences.
2 Materials and methods

This literature review was conducted by searching on PubMed

the following keywords: “granulomatous prostatitis” AND “MRI”

OR “mpMRI” OR “multiparametric magnetic resonance imaging”

OR “magnetic resonance imaging” and including articles published

from 2002 to 2022.

The bibliographic search produced 46 results.

After a reading of the titles and abstracts, articles that did not

focus on the characteristics of GP on mpMRI were eliminated, the

30 remaining articles were read thoroughly, and, after the

elimination of repetitive, irrelevant, and unrelated articles, 15

publications remained (Figure 1).

The selected articles were the ones focused on the peculiar

characteristics, and other main variants, of the different types of GP

on mpMRI, in the perspective of the differential diagnosis with PCa.

We have attempted to include a variety of articles to ensure a

comprehensive and exhaustive assessment of the various forms of

GP, selecting the articles focused on mpMRI appearance with a

preference for case series rather than case reports.

We prioritized papers with a protocol study adhering as much

as possible to the Prostate Imaging Reporting and Data System (PI-

RADS) guidelines, including high-resolution T2w in the axial,

sagittal, and coronal planes; T1w in the axial plane; and multi-b

values and high-b value DWI, with the corresponding ADC map

and DCE sequences.

In an article (8), it was specified that, being a retrospective

analysis, the imaging parameters were not standardized; thus, 5, 4,

and 1 of the 10 patients underwent a spin-echo T1w, gradient-echo

T1w, and unenhanced T1w, respectively, while the other sequences

were the same. For the same reason, in another article (9), the

images after infusion of gadolinium were not available.

Table 3 shows the detailed description of the technical

equipment used by each author group.

In all the articles, it was emphasized that the confirmatory

diagnosis was histopathological through a target or random sub
TABLE 1 Etiological classification of granulomatous prostatitis.

Idiopathic
• Typical non-specific granulomatous prostatitis
• Xanthogranulomatous prostatitis

Infective

• After Bacillus Calmette-Guerin vesical instillations
• Bacterial (Tuberculosis, Brucellosis, Syphilis)
• Fungal (Coccididiomycosis, Cryptococcosis, Blastomycosis, Histoplasmosis, Paracoccidioidomycosis)
• Parasitic (Schistosomiasis, Echinococcosis, Enterobiasis)
• Viral (Herpes simplex virus)

Iatrogenic
• Post-surgical (TURP)
• Actinic

Associated with other rare systemic granulomatous diseases
• Sarcoidosis, rheumatoid arthritis
• Wegener’s granulomatosis
• Polyarteritis nodosa, Churg–Strauss syndrome
TURP, transurethral resection of the prostate.
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head prostate biopsy, even if a central pathological review was

not specified.

In five articles (8, 9, 12, 15, 18), it has been underlined that

mpMRI imaging wax interpreted by two radiologists with many

years of post-training experience (from a minimum of 3 years to a

maximum of 18 years), and in another article (14), it has been

emphasized that diagnostic mpMRI studies were subjected to

radiological evaluation at a multidisciplinary conference on

prostate imaging.
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The findings obtained in the articles are summarized in Table 4

and described in detail in the following sections.
2.1 Multiparametric MRI features and
histopathological correlation

Based on histopathological findings and underlying etiology,

the GP is classified into four types:
FIGURE 1

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.
TABLE 2 Histopathological features of granulomatous prostatitis types.

GP types Histopathological features

Idiopathic
• Non-caseous granulomas with a periglandular distribution, consisting of epithelioid cells, neutrophils, histiocytes,
lymphocytes, and desquamated cells. Dilated ducts are usually observed
• In the xanthogranulomatous subtype, focal accumulations of cholesterol-laden histiocytes are usually seen in the prostate

Infective
• Confluent foci of well-formed caseous granulomas with Langhan’s-type giant cell, surrounded by epithelioid histiocytes
• In BCG-related GP, caseating or noncaseating granulomas are also seen, although acid-fast bacilli are variably present;
Ziehl–Neelsen stain can be useful in obtaining a final diagnosis

Iatrogenic
• Dense inflammation of the prostatic stroma, usually with the presence of rheumatoid-like nodules consisting of palisading
histiocytes with foci of fibrinoid necrosis

Associated with other rare systemic
granulomatous diseases

• Depending on the primary granulomatous disease
GP, granulomatous prostatitis; BCG, Bacillus Calmette-Guerin.
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Fron
1. Idiopathic (non-specific and non-necrotic)

2. Infective (specific, non-necrotic or necrotic)

3. Iatrogenic (post-surgical)

4. Associated with systemic granulomatous disease (4)
2.1.1 Idiopathic granulomatous prostatitis

Non-specific granulomatous prostatitis (NSGP) represents the

most common type among GP, accounting for approximately 60%–

77.7% (6).

The etiology of NSGP is unknown, but some studies have

hypothesized an autoimmune reaction to cell debris, secretion

spilling, and bacterial toxins into the stroma, resulting in blockage

of the ducts and reflux of urine (10).

Histologically, NSGP is characterized by histiocytoid

granulomas with clusters of macrophages, intermingled with

multinucleated giant cell, lymphocytes, plasma cells, and

neutrophils. The multinucleated giant cells might be absent

(6) (Table 2).

According to the literature, the typical pattern at the mpMRI

shows a tumor-like appearance with hypointensity on T2w,

hyperintensity on DWI, and low ADC values (6, 11–13) (Table 4;

Figures 2–4).

In particular, on T2w, all lesions have lower signal intensity (SI)

when compared to femoral head bone and demonstrate higher SI

when compared with the obturator muscle (11).

On DWI, all lesions have higher signal intensity than the

residual normal PZ (8). Many authors have demonstrated that

the values of ADC in GP are lower than in high-grade PCa (5, 11,
tiers in Oncology 04
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13); thus, some authors have proposed using a nomogram that

utilizes ADC values threshold to distinguish NSGP from PCa (14).

On DCE, almost all the lesions showed a moderate

hyperenhancement after the administration of gadolinium-based

contrast agent (5, 11, 13). However, in some patients with NSGP,

DCE showed high and early enhancement followed by early wash-

out (5), which is the typical pattern of PCa (15), while others

highlighted a mild or scarce enhancement (5) (Table 4).

Some authors proposed that moderate hyperenhancement

together with low ADC value may suggest the diagnosis of GP

rather than PCa (13).

Some cases of diffuse GP may present with hyperintensity on

T1w (16).

Morphologically, these lesions are nodular and circumscribed,

with a diameter < 1.5 cm (12) (Figure 2) or between 1 and 3.5 cm (5)

(Figure 3), usually confined to the PZ; more rarely can NSGP affect

the whole PZ (Figure 4) or both the PZ and TZ; the involvement of

only the TZ is an exception (5, 12) (Table 4).

Although it is infrequent, some cases in the literature report the

presence of bulging and/or irregularity of the glandular capsule in

NSGP while extra-capsular extension is usually absent (11, 12).

The xanthogranulomatous prostatitis (XGP) is a very rare

subtype of NSGP and very few cases are reported in the literature.

The distinctive histological feature is the presence of lipid-laden

macrophages called “foamy histiocyte” in the inflammatory

cell infiltrate.

The mpMRI showed isointensity on T1w, hypointensity on

T2w, marked hyperintensity on DWI, low signal on ADC map, and

hyperenhancement on DCE. Unlike NSGP, XGP has a patchy or

diffuse involvement of the PZ with disappearance of the normal
TABLE 3 Detailed description of the technical equipment used by each author group.

Authors Scanner Endorectal coil Study protocol PI-RADS score

Kitzing YX et al. (4) 3 T No T2, T1, multi b-DWI, ADC maps and DCE ≥3

Bertelli E et al. (5) 1.5 T No T2, T1, multi b-DWI, ADC maps and DCE ≥3

Crocetto F et al. (6) Not reported Not reported Not reported ≥3

Suzuki T et al. (8) 1.5 T No T2, T1, multi b-DWI, ADC maps (no DCE) Not reported

Wang Z et al. (9) 3 T No T2, T1, multi b-DWI, ADC maps (no DCE) Not reported

Cheng Y et al. (10) Not reported Not reported T2, T1, multi b-DWI, ADC maps, and DCE Not reported

Lee SM et al. (11) 1.5 T No T2, T1, multi b-DWI, ADC maps, and DCE ≥3

Gottlieb et al. (12) 3 T No T2, T1, multi b-DWI, ADC maps, and DCE ≥3

Bour L et al. (13) 1.5 T Yes (4/5 patients) T2, T1, multi b-DWI, ADC maps, and DCE Not reported

Rais-Bahrami S et al. (14) 3 T No T2, T1, multi b-DWI, ADC maps, and DCE ≥3

Kawada H et al. (15) 1.5 T No T2, T1, multi b-DWI, ADC maps, and DCE Not reported

Han C et al. (16) Not reported No T2, T1, multi b-DWI, ADC maps, and DCE ≥3

Suditu N et al. (17) Recommended 3 T Recommended T2, T1, multi b-DWI, ADC maps, and DCE Not reported

Lee S et al. (18) 3 T No T2, T1, multi b-DWI, ADC maps, and DCE ≥3 (except type C₌1)

De Luca L et al. (19) 3 T No T2, T1, multi b-DWI, ADC maps, and DCE ≥3
PI-RADS, Prostate Imaging Reporting and Data System; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; DCE, dynamic contrast enhanced.
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demarcation between PZ and TZ while the prostate capsule is

always preserved (10) (Table 4).

2.1.2 Infective granulomatous prostatitis
and iatrogenic (post-surgical)
granulomatous prostatitis

The cases reported in literature of infective GP are caused by

some infectious agents such as virus-like herpes zoster, fungi like

Cryptococcus, and bacteria like Mycobacterium tuberculosis and

Treponema pallidum (4, 16) (Table 1).

The histological features are usually characterized by

granulomas with epithelioid and multinucleated giant cell

infiltration with caseous necrosis (4) (Table 2).

Among the iatrogenic causes are as follows: transurethral

resection of the prostate (TURP) or the bladder (TURB), prostate

biopsy, and open adenomectomy (6) (Table 1).

The most common etiology of specific GP is caused by a later

complication of intravesical instillation of BCG; the BCG

immunotherapy, given after TURB, is the most effective adjuvant

treatment for intermediate and high-grade NMIBC (9).
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Some studies proved that 75%–100% of the patients who

undergo BCG instillations develop specific GP (17).

The appearance of tubercular GP is variable (16); in fact, three

patterns can be identified: diffuse, nodular, and cystic (8).

The most common type is the diffuse pattern in which there is a

heterogeneous, non-circumscribed, diffused involvement of the PZ

with frequent extension in the TZ and the presence of capsular

bulging, without invasion of peri-prostatic tissue (8, 12).

On mpMRI, diffuse pattern of non-necrotic GP shows low T2

signal intensity, similar to SI of bone marrow but lower than the SI

of the normal PZ (8) (Table 4).

These lesions, typical of the acute phase, are associated with

diffuse restriction on DWI, moderate or marked enhancement on

DCE (4), and a decreased signal on the ADCmap images (12); these

features make them difficult to distinguish from cancer (Table 4).

The nodular pattern is characterized by the presence of solid

nodules, polygonal in shape (8) and measuring > 1.5 cm (12), with

marked hypointensity of signal in T2w sequences and isointensity

of signal on T1w sequences if compared with obturator muscle

(8) (Table 4).
TABLE 4 Multiparametric MRI features of the various types of granulomatous prostatitis.

Non-specific granulomatous prostatitis (NSGP)

Sequences Typical pattern Less frequent patterns Subtype: Xantogranulomatous prostatitis

T2w
Hypointense circumscribed nodule
in the PZ
Diameter < 1.5 cm

Hypointense nodule
Diameter between 1 and 3.5 cm
Both the PZ and TZ
The involvement of only the TZ
is an exception

Hypointensity with patchy or diffuse involvement of the PZ associated with
disappearance of the normal demarcation between PZ and TZ

DWI Hyperintensity Hyperintensity Hyperintensity

ADC map Low ADC value Low ADC value Low ADC value

DCE Moderate hyperenhancement
High and early enhancement
followed by early wash-out

Diffuse hyperenhancement

Specific granulomatous prostatitis (infective and iatrogenic)

Sequences Diffuse pattern Nodular pattern Cystic pattern

T2w

Diffuse, heterogeneous, non-
circumscribed, hypointensity of the
PZ
Frequent extension in the TZ
Presence of capsular bulging

Solid nodule, polygonal in shape,
markedly hypointense
Diameter > 1.5 cm

Hyperintense nodule with peripheral hypointensity
Central necrosis (caseation)

DWI Hyperintensity Hyperintensity Hyperintensity

ADC map Low ADC value Low ADC value Low ADC value

DCE Moderate or marked enhancement
Contrast enhancement
inhomogeneous, early, and
prolonged

Early and prolonged peripheral rim enhancement with avascular core (“ring
enhancement pattern”)

Associated with systemic granulomatous disease

Sequences

T2w Hypointensity

DWI Hyperintensity

ADC map Low ADC value

DCE Diffuse contrast enhancement
DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; DCE, dynamic contrast enhanced; PZ, peripheral zone; TZ, transition zone.
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All nodular lesions show higher signal intensity on DWI,

because DWI reflects the cell density increased by the presence of

lymphocytes during acute inflammation (8), and lower SI on ADC

when compared to the normal PZ (9) (Table 4).

If there are no necrotic areas, the contrast enhancement is

inhomogeneous, early and prolonged (5, 9).

The cystic pattern with mural nodules is caused by central

caseous necrosis that manifests with the tubercular granuloma (16).

Therefore, in necrotic GP, central necrosis (caseation) is

hyperintense on T2w sequences, with marked signal restriction

on high b-value DWI, low ADC value, and total lack of contrast

enhancement (4, 6), while mural nodules show hypointensity on

T2w sequences with contrast enhancement on DCE imaging (8)

(Table 4; Figures 5, 6).

Thus, onDCEsequences, these lesionshave a typical enhancement

behavior characterized by an early and prolonged peripheral rim

enhancement with avascular core due to caseous necrosis, already

described as “ring enhancement” (5, 15, 16) (Figures 5, 6).

Recently, Lee et al. (18) focused on the multiphase contrast

enhancement pattern of BCG-induced GP lesions in a cohort of 24

patients. They found three typical patterns of vascularity based on

sequential changes and histological findings: pattern A

demonstrated diffuse enhancement, pattern B demonstrated

lesions with ring enhancement, and pattern C demonstrated poor

rim enhancement. Types A and B are regarded as acute stages,

which show diffusion restriction on DWI and intense enhancement,

and the difference is, respectively, the absence and presence of a

well-defined poorly enhancing area in types A and B; type C is a

chronic lesion showing poor enhancement and a low signal

intensity on high b-value DWI.
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2.1.3 Associated with systemic
granulomatous disease

Some articles in the literature report a suspected correlation

between GP and systemic disease such as psoriasis, sarcoidosis,

rheumatoid arthritis, Wegener’s granulomatosis, polyarteritis

nodosa, and Churg–Strauss syndrome (Table 1) . The

histopathological features depend on the primary granulomatous

disease (Table 2).

Usually, it is a nodular lesion that can involve both the peripheral

and transition zones with a capsular irregularity. mpMRI shows a low

signal intensity on T2w, a significant signal restriction on DWI with

low ADC and a diffuse contrast enhancement on DCE (Table 4).

It is interesting to note that there could be a link between GP

and systemic granulomatous diseases, because these conditions are

characterized by an abnormal response of the immune system that

could play a direct role in their pathogenesis (19).

3 Discussion and conclusion

GP is a relatively rare chronic inflammatory disease of the

prostate (5), which represents approximately 3.3% of all benign

conditions of the gland (6), whose incidence is increasing due to the

growth of endourological surgical interventions and the adoption of

intravesical instillation of BCG in patients with NMIBC (6).

Despite being a benign condition, GP represents one of the

main adenocarcinoma-mimicking lesions and in most cases

produces PI-RADS ≥ 3 findings at mpMRI, placing a high

suspicion of PCa. In a cohort of 105 biopsied PI-RADS 5 lesions,

Pepe et al. found six (5.7%) GP, with five non-specific GP and one

specific GP secondary to prostatic M. tuberculosis (20).
FIGURE 2

Non-specific granulomatous prostatitis in a 56-year-old patient with a PSA value of 6 ng/ml. The axial T2-weighted sequence shows a hypointense
nodule in the left mid-peripheral zone (PZ) (arrow in A) with high hyperintensity on the DWI image (arrow in B), marked hypointensity on the ADC
map (arrow in C), and high contrast enhancement on the DCE image (arrow in D).
FIGURE 3

Non-specific granulomatous prostatitis in a 47-year-old patient with a PSA value of 9.81 ng/ml. The axial T2-weighted sequence shows a large
hypointense area in the anterior left peripheral zone (PZ) with bulging of the glandular capsule (arrow in A) with diffuse hyperintensity on the DWI
image (arrow in B), marked hypointensity on the ADC map (arrow in C), and diffuse mild enhancement on the DCE image (arrow in D).
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In this article, we have tried to identify the peculiar characteristics

of the GP at mpMRI, through a narrative review of the literature, with

the aim of improving the differential diagnosis with adenocarcinoma

and avoid the use of prostate biopsy as much as possible.

NSGP, including XGP, is a very rare inflammatory condition

and radiological reports at mpMRI are too few. According to the

literature, we have seen that the typical pattern of NSGP at the

mpMRI shows nodular lesions, confined to the PZ, with a tumor-

like appearance (6, 11–13). Although DCE images are not specific,

moderate or scarce hyperenhancement together with a very low

ADC value may suggest the diagnosis of GP rather than PCa (13);

therefore, in these cases, and in agreement with the referring

urologist, a wait-and-see attitude could be proposed with a re-

evaluation on mpMRI after a few months to value the possible self-

resolution of the inflammatory picture (19). However, in cases

where DCE images showed high and early enhancement followed

by early wash-out (5), there is the presence of bulging and/or

irregularity of the glandular capsule, or there are no clear parameters

to differentiate NSGP from PCa, the use of biopsy is mandatory.

In most cases, NSGP resolves spontaneously without treatments

with normalization of PSA level (19); however, careful follow-up is
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required after this diagnosis in order to exclude the coexistence of

an occult PCa.

Nowadays, intravesical BCG instillation is widely used as a

treatment for non-muscle invasive bladder cancer after

transurethral resection though the immune system activation and

the induction of inflammatory response (21). The intraprostatic

reflux of contaminated urines from urethra can cause the BCG-

induced GP and it usually involves the PZ because of the obtuse

angle between the PZ and the urethra (18).

The BCG-induced GP can present variable appearances,

probably based on the different stages of the disease. At a certain

stage of the development of the disease, some cavitated nodules with

a characteristic cystic pattern appear. This pattern consists of

hyperintensity on T2 sequences, with marked hyperintensity on

high b-value DWI and low ADC value; on DCE sequences, there is a

typical enhancement behavior characterized by an early and

prolonged peripheral rim enhancement with avascular core.

Kawada et al. (15) first analyzed the multiphase contrast

enhancement pattern of BCG-induced GP lesions on gadolinium-

enhanced MR images showing this characteristic appearance

defined “ring enhancement”. The histological analysis confirmed
FIGURE 5

Bacillus Calmette-Guérin-induced granulomatous prostatitis in a 58-year-old patient with a PSA value of 1.17 ng/ml. The first mpMRI at diagnosis
showed diffuse alteration of the peripheral zone (PZ) with a hypointense nodule in the right middle lobe in the T2-weighted sequence (arrow in A)
with hyperintensity on the DWI image (arrow in B), marked hypointensity on the ADC map (arrow in C), and typical “ring enhancement” on the DCE
image (arrow in D). The corresponding sequences of the 5-month mpMRI follow-up (E–H) showed almost complete resolution of the
aforementioned findings.
FIGURE 4

Non-specific granulomatous prostatitis in a 66-year-old patient with a PSA value of 15.92 ng/ml. The axial T2-weighted sequence shows diffuse
hypointensity and thickening of the peripheral zone (PZ) with preservation of the glandular capsule and pseudocapsule (arrows in A). The entire PZ
appears diffusely hyperintense on the DWI image (arrows in B) and markedly hypointense on the ADC map (arrows in C) with diffuse high contrast
enhancement on the DCE image (arrow in D).
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the correspondence between the granulomatous tissue with central

caseation necrosis and the ring enhancement area. The authors

concluded that this appearance could be considered characteristic of

the BCG-induced GP and could be useful to differentiate it from

PCa. More recently, Lee et al. (18) attempted to differentiate PCa

from BCG-induced GP on the basis of the multiphase contrast

enhancement pattern. During the acute phase of the disease, the

diffuse enhancement pattern, also called pattern A, prevails and the

diagnosis of PCa is more challenging; thus, follow-up or a biopsy is

needed. A possible differentiation with PCa can be made in the

presence of lesions with ring enhancement, in pattern B, or chronic

lesions, in pattern C.

Recognizing the key role of the DCE sequence is fundamental

for obtaining the proper identification of caseating granulomas as

their high values in DWI sequence could lead to an incorrect

diagnosis; this observation highlights the limits of the

biparametric MRI protocol in the evaluation of this pathology

and suggests the need for the multiparametric MRI protocol in

patients with recent intravesical BCG instillation.

Furthermore, a mpMRI follow-up of prostatic lesions, as an

alternative to a biopsy, is suggested in patients with suspicious

lesions and a history of vesical instillation of BCG for bladder

carcinoma as these granulomas can decrease in size, thus suggesting

an antitubercular therapy, when required (9). As in the study of Lee

et al. (18), the date interval for follow-up after the first diagnosis

varied considerably in our study, thus denying a correlation

between duration and stage of the disease. No further and precise

indications can be extracted from the literature regarding this.

Finally, the present study outlined the limits of the correct

assignment of the PI-RADS score in evaluating the radiological

findings of benign inflammatory conditions, the proper classification

of which can be obtained from its complete clinical context. Therefore,

the need to integrate the PI-RADS system in the evaluation of specific

benign conditions such as inflammatory diseases can be argued.

The main limitation of the present study is the lack of large

series studies on this topic, owing to the rarity of the disease. In fact,
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mainly case reports and small case series are reported in the

literature; thus, a detailed statistical analysis has not been possible.

As a result of the review of the literature, we can conclude that

mpMRI of the prostate may play a key role in differentiating BCG-

induced GP from adenocarcinoma of the prostate on the basis of the

correct evaluation of the typical “ring enhancement” of the prostate

lesions on the multiphase contrast-enhanced MRI, in the presence

of specific clinical context; an mpMRI follow-up of prostatic lesions

can be safely carried out. Conversely, the correct diagnosis of other

cases of non-necrotic GP (including NSGP, XGP, and diffuse or

nodular BCG-induced GP) is not possible on the basis of the

mpMRI features, even when considering the PSA values; a

targeted biopsy remains the mandatory approach.
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FIGURE 6

Bacillus Calmette-Guérin-induced granulomatous prostatitis in a 53-year-old patient with a PSA value of 5 ng/ml. The first mpMRI at diagnosis
showed diffuse alteration of the peripheral zone (PZ) with an inhomogeneous hypointense nodule in the right middle lobe in the T2-weighted
sequence (arrow in A) with hyperintensity on the DWI image (arrow in B), marked hypointensity on the ADC map (arrow in C), and typical “ring
enhancement” on the DCE image (arrow in D). The corresponding sequences of the 7-month mpMRI follow-up (E–H) showed complete resolution
of the aforementioned findings.
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calmette-guérin-induced granulomatous prostatitis in five patients. Korean J Radiol
(2015) 16(2):342–8. doi: 10.3348/kjr.2015.16.2.342

16. Han C, Zhu L, Liu X, Ma S, Liu Y, Wang X. Differential diagnosis of uncommon
prostate diseases: combining mpMRI and clinical information. Insights Imaging (2021)
12(1):79. doi: 10.1186/s13244-021-01024-3

17. Suditu N, Negru D. Bacillus calmette-guérin therapy-associated granulomatous
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68Ga-PSMA-11 PET/CT
versus 68Ga-PSMA-11
PET/MRI for the detection
of biochemically recurrent
prostate cancer: a systematic
review and meta-analysis

Ruizhe Huang, Yizhen Li, Haowen Wu, Boyi Liu,
Xuanjun Zhang and Zhongxi Zhang*

The First Clinical College, Changsha Medical University, Changsha, China
Purpose:Our aimwas to conduct a meta-analysis and systematic review in order

to compare the diagnostic efficacy of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11

PET/MRI in patients with biochemically recurrent after radical prostatectomy and

biochemically recurrent prostate cancers (BCR) after hybrid RT and RP.

Methods: Up until February 2023, we searched PubMed, Embase, and Web of

Science for pertinent papers. Studies examining the utility of 68Ga-PSMA-11 PET/

CT or PET/MRI as a screening tool for biochemically recurrent prostate cancer

were included. To measure heterogeneity, we employed the I2 statistic. In cases

of substantial heterogeneity (I2 > 50%), we used the random effect model to

produce a forest plot. In other cases, we utilized the fixed model. Furthermore,

we assessed the quality of the studies included using the Quality Assessment of

Diagnostic Performance Studies (QUADAS-2) method.

Results: In total, 37 studies involving 8409 patients were examined. For 68Ga-

PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI, the combined total detection rate

was 0.70 (95% CI: 0.65-0.75) and 0.71 (95% CI:0.67-0.75), respectively. 68Ga-

PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI did not substantially differ in terms

of the overall detection rate for BCR (P = 0.58). The detection rate was

unaffected by the PSA values (all P > 0.05).

Conclusion: The diagnostic efficacy of 68Ga-PSMA-11 PET/CT appears to be

equivalent to that of 68Ga-PSMA-11 PET/MRI in detecting biochemically

recurrent prostate cancer. Nonetheless, it should be noted that not all studies

have used pathological biopsies as the gold standard. Therefore, additional larger

prospective studies are needed to address this issue.

Systematic review registration: identifier CRD42023410039.
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1 Introduction

One of the most prevalent diseases in the world, prostate cancer

(PCa) has an annual incidence increase of 3% from 2014 to 2019

(1). Radiation therapy and radical surgery are the two most

frequently used treatments for prostate cancer. A rise in prostate-

specific antigen (PSA) levels following treatment, however, is a sign

that over 30% of people may still experience disease recurrence

(2, 3). In clinical practice, biochemical recurrence (BCR) of PCa is

fairly typical. BCR is defined as an absolute rise in PSA level of 2 ng/

ml over the lowest post-treatment PSA level following radiation

therapy (RT) or a serum PSA level exceeding a threshold of 0.2 ng/

ml twice after radical prostatectomy (RP) (4).

Imaging techniques are advised for individuals with

biochemical recurrence who have serum prostate-specific antigen

levels greater than 10 ng/mL or PSA doubling times shorter than 6

months (5). However, the ability of these traditional imaging

techniques to diagnose aggressive lesions, bone involvement, and

nodal metastases is restricted. It is essential to discover more

sophisticated imaging techniques to detect the metastasis of the

early BCR in order to increase diagnostic precision and select an

appropriate treatment strategy.

EANM/SNMMI guidelines recently provided updated guidance

and standards for the indication, acquisition, and interpretation of

PSMA PET/CT for prostate cancer imaging (Fendler et al.).

Currently, several guidelines highlight the superior accuracy of

PSMA-ligand PET for staging primary disease (EAU, ESMO,

NCCN) or consider additional value (ASCO) in this setting.

PSMA-ligand PET/CT evaluation of BCR/BCP is recommended

in documents produced by the EAU, ASCO, and NCCN (Fendler

et al.). Moreover, evidence is growing in terms of PSMA-guided

treatments, particularly metastases-directed therapy (Ceci et al.,

Rovera et al., Fendler et al., Phillips et al.) (6–9).

A type II membrane glycoprotein with 750 amino acids,

prostate-specific membrane antigen(PSMA), is highly produced

in prostate cancer cells (10). As a result, PSMA is thought to be a

good candidate for PCa PET scanning. There are several

radiopharmaceuticals that target PSMA, including 68Ga-PSMA-

11, 18F-DCFPyL, and 18F-PSMA-1007 (11, 12).

Gallium-68 (68Ga)-labeled prostate-specific membrane

antigen (PSMA-11), a new PET radiopharmaceutical, has

recently gained attention as a promising imaging tool for the

identification of recurrent prostate cancer. In patients with rising

PSA levels, 68Ga-PSMA-11 PET has demonstrated great sensitivity

and specificity for the detection of recurrent prostate cancer.

However, uncertainty persists over the ideal imaging mode for
68Ga-PSMA-11 PET.

Despite systematic reviews or meta-analyses have evaluated the

diagnostic efficacy of 68Ga-PSMA-11PET/CT and PET/MRI in

earlier study, the amount of included article is insufficient (10,

13). This meta-analysis will enable more detailed and objective

comparison of the diagnostic performance of 68Ga-PSMA-11 PET/

CT and 68Ga-PSMA-11PET/MRI in detecting biochemical

recurrent prostate. Our aim was to conduct a meta-analysis and

systematic review in order to compare the diagnostic efficacy of
Frontiers in Oncology 02
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68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI in patients

with biochemically recurrent prostate cancer in patient-

based analysis.

2 Manuscript formatting

2.1 Material and methods

This article was written according to Preferred Reporting Items

for a Systematic Review and Meta-analysis of Diagnostic Test

Accuracy (PRISMA-DTA) guidelines. Moreover, our registration

number is CRD42023410039.

2.1.1 Search strategy
The search strategy described below was used to perform a

thorough search of the PubMed, Embase, and Web of Science

databases until February 2023. (1) PET MRI OR PET MR OR

positron emission tomography/magnetic resonance imaging OR

PET CT OR positron emission tomography OR positron emission

tomography/computed tomography; (2) regeneration OR recurrent

OR relapse OR recrudescence; (3) prostate cancers OR prostate

neoplasm OR prostate tumor OR prostatic tumor. For the reference

list, we also go through the search and consider articles that may

meet the inclusion criteria.

2.1.2 Inclusion and exclusion criteria
Only study that fulfilled all of the following requirements were

included: (1) articles evaluating the diagnostic performance of 68Ga-

PSMA-11 PET/CT or 68Ga-PSMA-11 PET/MRI for biochemically

recurrent prostate cancer in patient-based analysis; (2) number of

patients ≥ 10; (3) retrospective or prospective studies; (4) English

articles. The exclusion criteria were: (1) Irrelevant topic; (2)

duplicated articles; (3) case reports, abstract, letters, review, or

meta-analysis; (4) The full-text versions of the selected articles

were screen to see if they fulfilled the inclusion criteria after the

titles and abstracts of the articles were assessed in accordance with

the inclusion and exclusion criteria. Disagreements among the

researchers were resolved by consensus.
2.2 Quality assessment and data extraction

Two researchers separately evaluated the included studies’

quality using the Quality Assessment of Diagnostic Performance

Studies (QUADAS-2) method. The applicability and bias risk of

each study was assessed. Regarding bias risk and applicability, each

study was given a rating of high, low, or unclear. A third reviewer

was involved to resolve any possible conflicts. For the study,

RevMan (version 5.4) was employed.

Two researchers independently extracted data for each of the

included articles. The information that was extracted included the

following: (1) the author, year of publication; (2) study

characteristics, such as country, study design, analysis, and

reference standard; (3) patient characteristics, such as number of

patients, clinical indication, mean/median age, chemotherapy
frontiersin.org
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before PET; (4) technical characteristics, such as imaging test types,

scanner modality, ligand dose, and time from injection to

acquisition. When not explicitly mentioned, data were manually

extracted from the literature, tables, and figures. We emailed the

respective authors for more information when the paper lacked the

information. Two researchers reached an accord to resolve

their disagreements.

2.2.1 Data synthesis and statistical analysis
Heterogeneity was assessed using the I2 statistic. A forest plot

was constructed in the random-effect model if the significant

heterogeneity was observed (I2 > 50%), otherwise, the fixed model

would be applied. All of them used DerSimonian and Laird method.

Proportions were transformed with the Freeman-Tukey double

inverse sine transformation, and confidence intervals were

calculated using the Jackson method. For the presence of

heterogeneity (I2>50%), we used meta-regression and sensitivity

analysis to find out the source of heterogeneity.

Publication bias was evaluated using Egger’s test. A statistically

significant P value was two-tailed and with the threshold of 0.05.

Statistical analyses were performed in R software environment for

statistical computing and graphics version 4.2.2
2.3 Results

2.3.1 Literature search and study selection
After removing 2757 duplicate studies from the primary search,

3016 studies were identified out of the 5773 articles that were

initially found. Based on the study’s title or abstract, 1465 papers

were disqualified. A total of 1496 investigations were collectively

omitted from case reports, abstracts, letters, reviews, or meta-

analyses. There were still 55 studies for full-text screening, and

another 18 were disqualified due to the following reasons: non-

English studies (n = 3); cannot extract positivity rate data (n = 7);

and different radiotracers (n = 8). 37 studies that satisfied the

criteria for the meta-analysis were finally included, including 25

articles for 68Ga-PSMA-11 PET/CT (14–38) and 13 articles for
68Ga-PSMA-11 PET/MRI (4, 26, 39–49). One of the studies

included not only 68Ga-PSMA-11 PET/CT but also 68Ga-PSMA-

11 PET/MRI. Figure 1 illustrates the PRISMA flow chart of the

study selection procedure.

2.3.2 Study description and quality assessment
study description and quality assessment

The study and patient characteristics from the 37 studies

covering 8409 patients were listed in Table 1. Tables 2, 3 showed

the technical the parts. Additionally, using the Quality Assessment

of Diagnostic Accuracy Studies (QUADAS-2) tool, a quality

assessment of the relevant studies was conducted. The quality

evaluation chart reveals that flow and timing are the key areas

where there is a high risk of bias (Figure 2). This is due to the fact

that most studies did not analyze all of the enrolled patients, which

caused this issue. Overall, the risk of bias of the included articles

was satisfactory.
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2.3.3 Diagnostic performance of 68Ga-PSMA-11
PET/CT and PET/MRI for biochemically recurrent
prostate cancer

In comparison to 68Ga-PSMA-11 PET/CT, which had a positivity

rate of 0.70 (95% Cl: 0.65-0.75), 68Ga-PSMA-11 PET/MRI had a

positivity rate of 0.71 (95% Cl: 0.67-0.75). The analysis included 8409

patients from 37 studies. There was no statistically significant

difference in the overall detection rate between 68Ga-PSMA-11

PET/CT and 68Ga-PSMA-11 PET/MRI (P=0.58) (Figure 3).

Regarding the pooled overall detection rate of 68Ga-PSMA-11

PET/CT and 68Ga-PSMA-11 PET/MRI for BCR, the I2 was 93%

and 81%, respectively. For 68Ga-PSMA-11 PET/CT, the subgroup

analysis and meta-regression analysis showed that the data analysis

(qualitative vs. quantitative) was the possible cause of

heterogeneity, while the study design (The number of patients:

Greater than 56 vs. less than or equal to 56) was identified as the

potential cause of heterogeneity for the 68Ga-PSMA-11 PET/MRI

studies Tables 4, 5. There were no potential sources of

heterogeneity found by the sensitivity analysis. The result

revealed only slight variations in the data, with values ranging

from 0.70 to 0.74 for the 68Ga-PSMA-11 PET/MRI and from 0.69

to 0.71 for the 68Ga-PSMA-11 PET/CT. Overall, the detection rates

remained consistent and stable after sensitivity analysis.

(Supplementary Tables 1, 2).

According to the funnel plot and Egger’s test, both the 68Ga-

PSMA-11 PET/CT (P = 0.39) and the 68Ga-PSMA-11 PET/MRI

(P = 0.28) showed no sign of publication bias (Supplementary

Tables 1 and 2).

2.3.4 BCR positivity rate for 68Ga-PSMA-11 PET/
CT and 68Ga-PSMA-11 PET/MRI according to the
different PSA subgroups

For 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI, the

detection rates were 0.47 (95% CI: 0.42-0.51) and 0.45 (95% CI:

0.24-0.67) for PSA levels <0.5 ng/ml, and when PSA levels were >

0.5 ng/ml, the detection rates were 0.77 (95% CI: 0.72-0.82) and 0.90

(95% CI: 0.79-0.98); Detection rates at PSA levels <0.2 ng/ml were

0.42 (95% CI: 0.36-0.47) and 0.13 (95% CI: 0.00-0.51); For PSA

levels 0.2-0.5 ng/ml, the detection rates were 0.51 (95% CI: 0.41-

0.62) and 0.46 (95% CI: 0.23-0.69); For PSA levels 0.5-1.0 ng/mL,

detection rates were 0.63 (95% CI: 0.55-0.71) and 0.73 (95% CI:

0.45-0.95); For PSA values 1.0-2.0 ng/mL, the detection rates were

0.76 (95% CI: 0.69-0.82) and 0.63 (95% CI: 0.30-0.92); the detection

rates for PSA levels > 2.0 ng/ml were 0.90 (95% CI: 0.85-0.93) and

0.89 (95% CI: 0.77-0.98). The only significant difference 68Ga-

PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI was at PSA

levels > 0.5 ng/ml (P=0.04) (Figures 4–10).
2.4 Discussion

According to previous studies, PET/MRI with PSMA imaging

agent has a slightly higher diagnostic performance than PET/CT for

local recurrence and lymph node recurrence (10, 44, 46, 49).

However, according to Huo et al. and Glemser et al., there is no
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FIGURE 1

The flow chart for the PRISMA study selection procedure.
TABLE 1 Characteristics of the studies and patients.

Author Year Types
of

imaging
tests

Study characteristics Patient characteristics

Country Study
design

Analysis No. of
patients

PSA level prior to
PET (ng/ml)

Mean/
Median
age

Previous
treatment

Gühne et al. 2022 PET/CT Germany Retro PB 83 Median = 1.3 Median = 70 Mixed

Duan et al. (15) 2022 PET/CT USA Pro PB 58 NA NA Mixed

Uprimny et al.
(16)

2021 PET/CT Austria Retro PB 440 NA NA Mixed

Lengana et al.
(17)

2021 PET/CT South
Africa

Pro PB 21 Mean = 2.6 Mean = 68.6 Mixed

Plaza López
et al. (18)

2021 PET/CT Spain Retro PB 14 Mean = 1.8 Mean = 71.1 Mixed

Yuminaga et al.
(19)

2021 PET/CT Australia Pro PB 384 Median = 0.5 Median = 69.5 RP

Tseng et al. (20) 2021 PET/CT China Pro PB 34 Median = 0.5 Median = 67 RP

Strauss et al.
(21)

2021 PET/CT Germany Retro PB 142 Median = 2.3 NA RP

(Continued)
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TABLE 1 Continued

Author Year Types
of

imaging
tests

Study characteristics Patient characteristics

Country Study
design

Analysis No. of
patients

PSA level prior to
PET (ng/ml)

Mean/
Median
age

Previous
treatment

Ribeiro et al.
(22)

2021 PET/CT Brazil Retro PB 57 NA Median = 69 NA

Morawitz et al.
(23)

2021 PET/CT Germany Retro PB 36 Median = 1.5 Median = 71 RP

Lawal et al. (24) 2021 PET/CT South
Africa

Retro PB 247 Median = 2.7 Mean = 65.7 Mixed

Kroenke et al.
(25)

2021 PET/CT Germany Retro PB 127 Median = 0.7 Median = 69.0 RP

Jentjens et al. 2021 PET/CT Belgium Pro PB 34 Median = 0.8 Median = 67.5 Mixed

Fourquet et al.
(27)

2021 PET/CT France Retro PB 294 NA Mean = 68.0 RP

Dadgar et al.
(28)

2021 PET/CT Iran Retro PB 19 Median = 1.7 Median = 72.0 Mixed

Cerci et al. 2021 PET/CT Brazil Pro PB 1004 Mean = 1.6 Mean = 67.3 Mixed

Carvalho et al.
(30)

2021 PET/CT Portugal Pro PB 70 NA NA Mixed

Afshar-Oromieh
et al. (31)

2021 PET/CT Germany Retro PB 2533 NA Median = 68 RP

Abghari-Gerst
et al.

2021 PET/CT USA Pro PB 1539 median:7 Mean = 67.3 Mixed

Seniaray et al.
(33)

2020 PET/CT India Retro PB 170 NA NA Mixed

Regula et al.
(34)

2020 PET/CT Sweden Pro PB 30 Median = 5 Median = 70 Mixed

Rauscher et al.
(35)

2020 PET/CT Germany Retro PB 102 Median = 0.9 Median = 69 RP

Radzina et al.
(36)

2020 PET/CT Latvia Pro PB 32 Median = 1.1 Mean = 63 Mixed

Miksch et al.
(37)

2020 PET/CT Germany Retro PB 116 Mean = 0.2 Mean = 67.6 RP

Huits et al. (38) 2020 PET/CT Netherlands Retro PB 100 Median = 0.5 Mean = 65 RP

Glemser et al.
(47)

2022 PET/MRI Germany Retro PB 53 median:1.6 mean:67.7 mixed

Afshar et al. 2013 PET/MRI Germany Pro PB 20 median:2.62 mean:69.6 mixed

Grubmüller
et al.

2017 PET/MRI Austria Retro PB 71 median:1.04 NA RP

Guberina et al. 2019 PET/MRI Germany Retro PB 93 median:1.64 NA RP

Mai et al. 2021 PET/MRI Belgium Pro PB 20 median:0.79 mean:67.5 mixed

Joshi et al. (43) 2020 PET/MRI Australia Pro PB 21 median:0.69 median:68 mixed

T. Lake et al.
(41)

2017 PET/MRI USA Pro PB 55 mean:7.9 mean:68.3 mixed

Kranzbühler
et al.

2019 PET/MRI Switzerland Retro PB 66 median:0.23 NA mixed

Lütje et al. (40) 2017 PET/MRI Germany Retro PB 25 mean3.9 mean:70.5 RP

(Continued)
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significant difference between the overall detection rates of the two

imaging modalities (13, 47). Thus controversy remains regarding

the diagnostic performance of both imaging modalities for

biochemical recurrent prostate cancer. The aim of this study was

to quantitatively compare the diagnostic performance of the two

diagnostic modalities for biochemical recurrent prostate cancer.

In the present study, the capability of two imaging modalities to

identify BCR was comprehensively reviewed and assessed. The

detection rates in patient-based analysis for 68Ga-PSMA-11 PET/

CT and 68Ga-PSMA-11 PET/MRI were 0.70 (95% Cl: 0.65; 0.75)

and 0.73 (95% Cl: 0.64; 0.81) accordingly. Between these two

imaging modalities, there was no significant difference (P=0.58).

A significant difference between these two imaging modalities for

PSA levels aspect only existed when PSA was higher than 0.5,

according to the study (P=0.04) (Figure 7).
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PET/MRI provides metabolic, anatomical, and functional

information in a single modality by combining the strengths of

PET and MRI. While MRI offers precise anatomical and functional

information through techniques like perfusion and diffusion-

weighted imaging, PSMA-11 PET provides metabolic information

by detecting PSMA expression in prostate cancer cells. With the use

of this extensive information, clinicians can make a more thorough

evaluation of the kind and severity of prostate cancer. PET/MRI

detection rates may be superior to PET/CT for PSA levels higher

than 0.5 due to the fact that PET/MRI provides more precise and

detailed anatomical data, particularly in terms of soft tissue

contrast (48). In order to more precisely localize probable tumor

lesions, PSMA-11 PET/MRI can provide detailed anatomical

information on the prostate region, including its shape, location,

and size (36).
TABLE 1 Continued

Author Year Types
of

imaging
tests

Study characteristics Patient characteristics

Country Study
design

Analysis No. of
patients

PSA level prior to
PET (ng/ml)

Mean/
Median
age

Previous
treatment

Mapelli et al.
(39)

2022 PET/MRI Italy Pro PB 35 mean:1.88 mean:70 mixed

Martinez et al.
(4)

2022 PET/MRI USA Pro PB 109 mean:5.56 mean:69 mixed

Alonso et al.
(48)

2018 PET/MRI India Pro PB 36 median:3.3 mean:64.7 mixed

Freitag et al.
(49)

2017 PET/MRI Germany Retro PB 119 median:1.70 NA RP
PB, patient-based; Pro, prospective; Retro, retrospective; NA, not available.
TABLE 2 Technical aspects of included 68Ga-PSMA-11 PET/MRI studies.

Author Year Scanner Modality(PET/MRI) Ligand dose Time from injection to acquisition Image analysis

Glemser et al. (47) 2022 NA 71-287MBq 170min for PET/MRI quantitative

Afshar et al. 2013 Siemens Biograph 76-259 MBq 90min for PET/MRI quantitative

Grubmüller et al. 2017 Siemens Biograph Mmr NA NA qualitative

Guberina et al. 2019 Siemens Biograph Mmr 66–167 MBq 167min for PET/MRI quantitative

Mai et al. 2021 GE Healthcare NA NA quantitative

Joshi et al. (43) 2020 NA 150MBq 45-60min for PET/MRI quantitative

T. Lake et al. (41) 2017 GE SIGNA PET/MR 201.5 ± 52.9 MBq 65min for PET/MRI qualitative

Kranzbühler et al. 2019 GE SIGNA PET/MR 130 ± 16 MBq NA quantitative

Lütje et al. (40) 2017 Siemens Healthcare 118 ± 23 MBq 175 ± 45 min for PET/MRI quantitative

Mapelli et al. (39) 2022 SIGNA PET/MRI 129-288MBq 60min for PET/MRI quantitative

Martinez et al. (4) 2022 Siemens Biograph mMR 148MBq 90min for PET/MRI quantitative

Alonso et al. (48) 2018 GE Discovery 2.0 MBq/kg NA quantitative

Freitag et al. (49) 2017 Siemens Biograph mMR 202 ± 69 MBq 70min for PET/MRI quantitative
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In addition, compared to PET/CT, PET/MRI often has lower

radiation doses, which may be advantageous for younger patients or

those who need numerous follow-up exams, lowering the risk of

radiation exposure. It’s important to remember that clinical

practices may vary between different medical facilities, even

though PSMA-11 PET/MRI may be advantageous when PSA is

greater than 0.5. It is important to stress that this is only an

observation or trend and does not always mean that PSMA-11

PET/MRI is always preferable than PSMA-11 PET/CT.

Compared to previous meta-analyses (13), the current meta-

study found that 68Ga-PSMA-11 PET CT and 68Ga-PSM A-11 PET-

MRI had similar results in terms of diagnostic performance and

detection rates for the detection of biochemically recurrent prostate

cancer. This shows that for the same detection performance, PET/CT

is more cost-effective. These findings are consistent with previous

meta-analyses. The main disadvantage of the previous meta-analysis
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is the small sample size, while the main advantage of the meta-

analysis in this article is the large sample size(including 37 studies).

However, due to the recent development of 68Ga-PSMA-11 PET/

MRI, there is limited study in this field and a scarcity of comparable

evidence available. Future head-to-head studies that systematically

assesses both modalities might produce novel findings.

The findings of the meta-analysis contrasting 68Ga-PSMA-11

PET/CT and 68Ga-PSMA-11 PET/MRI for the identification of

biochemically recurring prostate cancer can have significant

repercussions for future study in the field as well as for policy

and practice. To make the best use of various imaging modalities in

clinical practice, these findings can inspire future study paths, help

decision-making, and enhance patient management. The diagnosis

of PSMA-PET has a significant impact on the management of

recurrent patients, allowing clinicians to select better treatment

options to treat them, such as the treatment of recurrent M1a
TABLE 3 Technical aspects of included 68Ga-PSMA-11 PET/CT studies.

Author Year Scanner Modality(PET/CT) Ligand dose Time from injection to acquisition Image analysis

Gühne et al. 2022 Siemens Healthineers 243.2 ± 35.8MBq 71min for PET/CT quantitative

Duan et al. (15) 2022 GE Healthcare 146.5 ± 16.7MBq 86.8 ± 11.5min for PET/CT quantitative

Uprimny et al. (16) 2021 GE Healthcare 95.0–216.0 MBq 67min for PET/CT quantitative

Lengana et al. (17) 2021 Siemens Biograph 40 NA 60min for PET/CT qualitative

Plaza López et al. (18) 2021 GE HealthCare 2.2 MBq/kg 60min for PET/CT qualitative

Yuminaga et al. (19) 2021 Philips GEMINI TOF 150-300 MBq 50-70min for PET/CT qualitative

Tseng et al. (20) 2021 Siemens Healthineers 88.4-182.8 MBq 60min for PET/CT qualitative

Strauss et al. (21) 2021 Siemens Biograph 193.6 ± 62.87MBq 80-90min for PET/CT quantitative

Ribeiro et al. (22) 2021 Philips Health NA 60min for PET/CT qualitative

Morawitz et al. (23) 2021 Siemens Healthineers 182 ± 45 MBq NA quantitative

Lawal et al. (24) 2021 Siemens Medical Solution 2MBq/kg 60min for PET/CT qualitative

Kroenke et al. (25) 2021 Siemens Medical Solutions 51-248 MBq 42-116min for PET/CT quantitative

Jentjens et al. 2021 Siemens Healthineers 1.8MBq/kg 60min for PET/CT quantitative

Fourquet et al. (27) 2021 Philips Medical Systems 1.2MBq/kg 60-90min for PET/CT quantitative

Dadgar et al. (28) 2021 Siemens 126-187 MBq 60min for PET/CT quantitative

Cerci et al. 2021 NA 2MBq/kg 60-90min for PET/CT qualitative

Carvalho et al. (30) 2021 Siemens Biography 2MBq/kg 60min for PET/CT quantitative

Afshar-Oromieh et al. (31) 2021 NA 52–480 MBq NA quantitative

Seniaray et al. (33) 2020 NA 132–222 MBq 45 ± 15min for PET/CT qualitative

Regula et al. (34) 2020 GE Healthcare 1.3–2.9 MBq/kg 60-78min for PET/CT quantitative

Rauscher et al. (35) 2020 Biograph-Mct 94–232 MBq 41-85min for PET/CT quantitative

Radzina et al. (36) 2020 Gemini TF64 1.8-2.2 MBq/kg 51-81min for PET/CT quantitative

Miksch et al. (37) 2020 Siemens Biograph-Mct 162.7 ± 22.3 MBq 64.4 ± 12.2min for PET/CT qualitative

Huits et al. (38) 2020 Philips Ingenuity 2.0 MBq/kg 60min for PET/CT qualitative

Abghari-Gerst et al. 2021 GE Discovery NA 61min for PET/CT quantitative
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FIGURE 2

Graph of risk of bias and applicability of all eligible studies based on QUADAS-2 tool.
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FIGURE 3
68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI forest plots for biochemically recurrent prostate cancer. In each study, positive results were
represented by squares, and the 95% confidence interval was shown by horizontal bars.
TABLE 4 Subgroup analysis and meta-regression analysis of diagnostic performance of 68Ga-PSMA-11 PET/MRI.

Covariate/Subgroup Studies, n Positivity rate (95%CI) P-value

Study design 0.82

Prospective 7 0.74(0.58-0.88)

Retrospective 6 0.72(0.61-0.82)

Treatment 0.35

RP 4 0.73(0.64-0.81)

Mixed 9 0.70(0.61-0.78)

The number of patients 0.03

>56 5 0.64(0.55-0.73)

≤56 8 0.79(0.68-0.89)

Image analysis 0.72

Qualitative 2 0.73(0.64-0.81)

Quantitative 11 0.72(0.63-0.81)
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prostate cancer, the MDT approach of targeting PSMA-positive

lesions according to the pattern of recurrence (sLND, SBRT,

combination of sLND and SBRT). Based on the PSMA-PET

method, these treatments were chosen (50–53).

Both 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI

demonstrated high heterogeneity in terms of overall detection rates.

In an attempt to find out the source of this heterogeneity, we

conducted sensitivity analysis and meta-regression. Our findings

showed that for PET/CT, the primary cause of heterogeneity was

image analysis (P=0.03). On the other hand, for PET/MRI, the
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primary cause of heterogeneity appeared to be the number of

patients involved in the studies (P=0.03). The sensitivity analysis

did not identify any potential sources of heterogeneity.

It is also important to note the limitations of our meta-analysis.

First of all, the gold standard for pathology was not available for all of

the patients. Secondly, many of the included studies were retrospective

studies, further lager prospective studies are needed. Finally, the

included study used various protocols, such as different methods for

administering contrast agents, different contrast procedures, and

varied standards for interpretation, which may cause heterogeneity.
TABLE 5 Subgroup analysis and meta-regression analysis of diagnostic performance of 68Ga-PSMA-11 PET/CT.

Covariate/Subgroup Studies, n Positivity rate (95%CI) P-value

Study design 0.66

Prospective 10 0.70(0.65-0.75)

Retrospective 15 0.71(0.66-0.76)

Treatment 0.90

RP 10 0.71(0.66-0.75)

Mixed 14 0.71(0.63-0.78)

The number of patients 0.93

>307 20 0.70(0.64-0.76)

≤307 5 0.70(0.61-0.79)

Image analysis 0.03

Qualitative 10 0.70(0.65-0.75)

Quantitative 15 0.74(0.69-0.79)

8.7 Positivity analysis of overall detection rate for 68Ga-PSMA-11 PET/MRI

8.8 　 8.9 68Ga-PSMA-11 PET/MRI

8.10 Positivity rate
(95% CI)

8.11 I2

8.12 Omitting Glemser et al. 8.13 0.73 [0.63,0.82] 8.14 82.40%

8.15 Omitting Afshar et al. 8.16 0.72 [0.63,0.81] 8.17 82.30%

8.18 Omitting Grubmüller et al. 8.19 0.74 [0.65, 0.82] 8.20 81.50%

8.21 Omitting Guberina et al. 8.22 0.74 [0.64, 0.82] 8.23 82.30%

8.24 Omitting Mai et al. 8.25 0.74 [0.65,0.82] 8.26 81.90%

8.27 Omitting Joshi et al. 8.28 0.73 [0.64,0.82] 8.29 82.50%

8.30 Omitting T. Lake et al. 8.31 0.71 [0.62, 0.79] 8.32 78.10%

8.33 Omitting Kranzbühler et al. 8.34 0.74 [0.66,0.82] 8.35 80.00%

8.36 Omitting Lütje et al. 8.37 0.70 [0.63, 0.76] 8.38 71.60%

8.39 Omitting Mapelli et al. 8.40 0.73 [0.63, 0.82] 8.41 82.40%

8.42 Omitting Martinez et al. 8.43 0.74 [0.66, 0.83] 8.44 78.60%

8.45 Omitting Alonso et al. 8.46 0.73 [0.63, 0.81] 8.47 82.40%

8.48 Omitting Freitag et al. 8.49 0.72 [0.63, 0.81] 8.50 81.20%
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FIGURE 4

Forest plot of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI detection rates in patients with PSA<0.5.
FIGURE 5

Forest plot of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI detection rates in patients with PSA>0.5.
FIGURE 6

Forest plot of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI detection rates in patients with PSA≤ 0.2.
Frontiers in Oncology frontiersin.org11
63

https://doi.org/10.3389/fonc.2023.1216894
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2023.1216894
FIGURE 7

Forest plot of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI detection rates in patients with 0.2<PSA<0.5.
FIGURE 8

Forest plot of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI detection rates in patients with 0.5≤PSA<1.0.
FIGURE 9

Forest plot of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI detection rates in patients with 1.0≤PSA<2.0.
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2.5 Conclusion

The diagnostic efficacy of 68Ga-PSMA-11 PET/CT appears to be

equivalent to that of 68Ga-PSMA-11 PET/MRI in detecting

biochemically recurrent prostate cancer. Nonetheless, it should be

noted that not all studies have used pathological biopsies as the gold

standard. Therefore, additional larger head-to-head prospective

studies are needed to address this issue.
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Pelvic PET/MR attenuation
correction in the image space
using deep learning

Bendik Skarre Abrahamsen1*, Ingerid Skjei Knudtsen1,
Live Eikenes1, Tone Frost Bathen1,2 and Mattijs Elschot1,2

1Department of Circulation and Medical Imaging, Norwegian University of Science and Technology,
Trondheim, Norway, 2Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim
University Hospital, Trondheim, Norway
Introduction: The five-class Dixon-based PET/MR attenuation correction (AC)

model, which adds bone information to the four-class model by registering

major bones from a bone atlas, has been shown to be error-prone. In this study,

we introduce a novel method of accounting for bone in pelvic PET/MR AC by

directly predicting the errors in the PET image space caused by the lack of bone

in four-class Dixon-based attenuation correction.

Methods: A convolutional neural network was trained to predict the four-class

AC error map relative to CT-based attenuation correction. Dixon MR images and

the four-class attenuation correction µ-map were used as input to the models.

CT and PET/MR examinations for 22 patients ([18F]FDG) were used for training

and validation, and 17 patients were used for testing (6 [18F]PSMA-1007 and 11

[68Ga]Ga-PSMA-11). A quantitative analysis of PSMA uptake using voxel- and

lesion-based error metrics was used to assess performance.

Results: In the voxel-based analysis, the proposed model reduced the median

root mean squared percentage error from 12.1% and 8.6% for the four- and five-

class Dixon-based AC methods, respectively, to 6.2%. The median absolute

percentage error in the maximum standardized uptake value (SUVmax) in bone

lesions improved from 20.0% and 7.0% for four- and five-class Dixon-based AC

methods to 3.8%.

Conclusion: The proposed method reduces the voxel-based error and SUVmax

errors in bone lesions when compared to the four- and five-class Dixon-based

AC models.

KEYWORDS

PET/MR, attenuation correction, deep learning, prostate cancer, artificial intelligence
frontiers, MRAC, pseudo-CT
Abbreviations: AC, attenuation correction; LAC, linear attenuation coefficient; MAE, mean absolute error;

MAPE, mean absolute percentage error; PET4C, PET images reconstructed using four-class Dixon-based µ-

map; PET5C, PET images reconstructed using five-class Dixon-based µ-map with bone registered from bone

atlas; PETMR+CT, PET images reconstructed using four-class Dixon-based µ-map with bone information from

CT; PETcor, reconstructed PET4C corrected using the proposed method; PI, postinjection time; RMSPE, root-

mean-squared percentage error
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1 Introduction

The advent of prostate-specific membrane antigen (PSMA)

tracers has led to the increasing adoption of PET as the modality

of choice in diagnosing recurrent prostate cancer (1). For this

patient group, [68Ga]GaPSMA-11 PET/MR has been shown to

have similar diagnostic performance to [68Ga]Ga-PSMA-11 PET/

CT in nodal and osseous metastasis (2–4) and superior performance

in the detection of local recurrences due to the higher soft-tissue

contrast provided by MR (2, 5). However, attenuation correction

(AC), which is the most important correction required for

quantitatively accurate PET imaging, remains a challenge in PET/

MR imaging (6–8).

For PET/CT, the contrast of the CT images is dependent on the

electron density of the imaged tissue, which in turn is related to the

linear attenuation coefficient (LAC) of the PET photons (6, 9). A

piecewise linear transformation of the CT Hounsfield units can be

used to estimate the LAC at the PET photon energy of 511 keV (10).

This approach is widely accepted as AC for PET/CT in clinical

practice (6, 11). Since the signal in MR comes from proton densities

and tissue relaxation times, no such straightforward relationship

between the MR intensity values and LAC at the PET photon energy

exists (6, 9, 11).

In current clinical practice, whole-body PET/MR AC is typically

derived from Dixon MR sequences. These sequences are time-

efficient to acquire and are available in all commercially available

clinical PET/MR scanners (12). In four-class Dixon-based AC,

Dixon MR images are segmented into four components: fat, lung,

soft tissue, and background air, and each component is

subsequently assigned a respective predefined LAC (13). Bone,

although highly attenuating, is not accounted for in this four-class

attenuation correction model. Disregarding the bone can lead to an

underestimation of the standardized uptake values in and near the

bone. For the pelvic region in particular, errors as large as 30% have

been found in the most impacted bone lesions (14). In the staging of

prostate cancer recurrence after definitive therapy, bone lesions are

also fairly common and can be expected in more than 20% of the

cases (15). In restaging after salvage radiotherapy, bone lesions are

even more common and are observed in as many as 45% of

cases (16).

The short T2* relaxation times and low proton density of

cortical bone cause the MR signal to decay quickly in bone tissue

(17) and make bone hard to distinguish from air in conventional

MR images. Thus, in the four-class Dixon-based AC model, bone is

classified as soft tissue. To tackle this issue, Paulus et al. (18)

proposed the five-class Dixon-based AC model. This model is an

atlas-based approach for whole-body PET AC based on individual

registration of the major bones (skull, femur, hips, and spine,

including sacrum) from a bone atlas consisting of paired Dixon

MR images and bone masks. However, this method is prone to

registration errors and misses bones entirely in some cases (19, 20).

In a recent retrospective study of 200 patients, it was advised not to

use this form of AC for PSMA PET/MR without great caution and

thorough inspection of the resulting µ-maps (20).
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Several deep learning-based approaches have also been

suggested to improve AC in PET/MR. These approaches can

broadly be categorized into those that only use the Dixon images

(7, 21), those that require other MR sequences than the standard

Dixon images (22–25), and approaches that only use the PET data

(26). A different way to categorize these approaches is by whether

their goal is to create a pseudo-CT image or a µ-map (21–23, 25, 27)

or to directly correct or predict the corrected PET image itself (26).

An obvious limitation of the acquisition of additional MR

sequences for AC purposes is that it requires additional scan

time. Approaches that rely on the PET data itself as input data,

either for µ-map prediction or for direct prediction of the corrected

PET image itself, are dependent on the tracer for which the model is

trained. These models are thus not directly applicable to multiple

tracers without retraining the model.

We introduce a novel, deep learning-based approach to

improving AC in pelvic PET/MR acquisitions. The proposed

method aims to directly correct the errors in the PET images

caused by bones not being included in the four-class AC model

rather than predicting new µ-maps. For this purpose, a voxel-wise

correction map is predicted by a convolutional neural network

using Dixon MR and the four-class µ-map as input. The predicted

correction map can subsequently be applied as a postprocessing

step directly in the PET image space to correct PET images

reconstructed with the four-class µ-map without re-

reconstruction of the images. Additionally, the proposed model

requires no additional sequences beyond the standard Dixon MR

images and does not require retraining to be used with multiple

tracers. In this work, we evaluated the quantitative impact of the

proposed method on PSMA uptake in the pelvic region of patients

suspected of recurrence of prostate cancer.
2 Materials and methods

2.1 Patient selection and data acquisition

This study included 49 patients who underwent same-day PET/

CT and PET/MR procedures following a single tracer injection. The

included cohort consisted of male patients with suspicion of

lymphoma and lung cancer scanned with [18F]FDG (FDG), which

was used for training and validation of the proposedmodel. A separate

cohort with patients suspected of recurrence of prostate cancer after

radical treatment scanned with [68Ga]Ga-PSMA-11 or [18F]PSMA-

1007 was used as the test set. The PET acquisitions included one to five

bed positions, where data were acquired for 5–10 min per bed.

Patients with sphincter pumps and metal implants were excluded,

as were those with imperfect coregistration between MR and CT.

PET and MR images were acquired on a 3T Biograph mMR

PET/MR scanner (Siemens Healthineers, Erlangen, Germany,

updates MR B20P and MR E11). A standard Dixon sequence was

acquired for attenuation correction purposes. The scan parameters

and resolution of the Dixon series varied within the dataset. The

parameters of the Dixon series are summarized in Table 1.
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Low-dose CT images were acquired at a Biograph64 PET/CT

scanner (Siemens Healthineers, Erlangen, Germany) using adaptive

exposure control (tube voltage: 120 kV, peak and tube current

median: 34.8, range: 17–52, slice thickness: 3 mm, matrix: 512 ×

512, and pixel spacing: 1.5 mm × 1.5 mm). The CT images were

acquired arms-up as opposed to the MR images. The PET images

from the PET/CT examination were not used in this study.
2.2 µ-Map generation

To generate the reference standard µ-map, the CT images were

first registered to the Dixon MR images with the Elastix registration

toolbox (28, 29) using a composite registration scheme consisting of

a rigid and a deformable stage (Supplementary Section 1). To obtain

an accurate registration between CT and MR, arms were masked

out from the MR images and corresponding four-class µ-maps.

After the registration, the CT Hounsfield unit values were scaled to

their corresponding LAC at 511 keV according to parameters by

Burger et al. (10).

Due to the difficulty of attaining perfect coregistration in soft

tissue and bone simultaneously, only the bone information was

transferred into the Dixon four-class µ-map from the scanner

console to generate the reference standard µ-map image as

opposed to using a scaled registered CT directly. Bone

information was defined as all voxels within the CT image with a

LAC of >0.1 cm−1. This approach is similar to Bradshaw et al. (25),

who also used MR-based AC for the soft tissue classes and

coregistered bone information from CT images to form the

reference standard µ-map. The CT-to-MR coregistration of each

case was closely examined, and only images found to perform well

upon visual inspection were kept in the dataset. The bone

information was only inserted in a mask covering the pelvic

region, which was defined as all slices from approximately the

upper thighs to approximately vertebrae L2 of the lumbar spine.
2.3 PET reconstruction

PET reconstructions were performed using the Siemens

proprietary offline PET reconstruction tools (E7tools, Siemens

Healthineers, Erlangen, Germany) or at the scanner console with

the following reconstruction settings: ordinary Poisson ordered-

subset expectation-maximization algorithm with three iterations, 21

subsets, and a 4-mm Gaussian postreconstruction filter with

resolution modeling included in the reconstruction (PSF). The
Frontiers in Oncology 03
70
PET volumes were reconstructed with a 344 × 344 matrix with an

in-plane resolution of 2.1 mm × 2.1 mm and a slice thickness of 2.0

mm. Absolute scaling (30) was used for scatter correction in

patients imaged with [68Ga]Ga-PSMA-11, and relative scaling was

used for [18F]PSMA-1007 images and FDG images (31).
2.4 Correction method

A deep convolutional neural network was trained to predict the

correction map between the PET images reconstructed using the

reference standard µ-map, referred to as PETCT+MR, and the PET

images reconstructed using the Dixon-based four-class µ-map,

PET4C. The correction map was calculated as shown in Eq (1)

For more details, see Supplementary Section 2.

Correction map  =
PET4C−PETCT+MR

PET4C
(1)

The correction map was only estimated within the mask

covering the pelvic region. Dixon in-phase, Dixon out-of-phase,

and the four-class Dixon-based µ-map were used as inputs to the

network. The images were resampled to the PET image space and

min–max scaled to intensities in the range [0,1]. A threshold

intensity mask was used to set intensity values outside the body

contour to zero.

An overview of the network architecture is given in Figure 1.

The network consisted of a nine-block ResNet (33) architecture

inspired by Johnson et al. (32) and Wang et al. (35). The network

was trained using L2 loss and an Adam optimizer (36) for 100

epochs with a linearly decaying learning rate starting from epoch

50. The code for training the network and the hyperparameters used

in the final model is available on github (https://github.com/ntnu-

mr-cancer/PETMR-4CMRAC-Correction-maps).

Results for additional tested network architectures can be found

in Supplementary Section 3. The output of the network is a

predicted correction map, which is used to correct the PET4C

images by solving Eq (1). for PETCT+MR. The resulting corrected

PET image will be referred to as PETcor. An overview of the

methods from image acquisition to corrected PET images is given

in Figure 2.
2.5 Analysis and statistics

Voxel- and lesion-based analysis was performed to assess the

performance of the method. For the voxel-based analysis, only
TABLE 1 Scan parameters for the different Dixon series contained in the dataset.

Dixon series Spacing (mm) TR (ms) TE1 (ms) TE2 (ms)

1 2.1 × 2.1 × 3.0 3.8 1.2 1.2

2 1.3 × 1.3 × 3.0 3.8 1.2 2.5

3 2.1 × 2.1 × 2.6 3.8 1.2 2.5

4 2.6 × 2.6 × 3.1 3.6 1.2 2.5
fro
The enumeration of the series is arbitrary. The flip angle was 10° for all variations.
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voxels within the pelvic mask that had an activity concentration of >

300 Bq ml−1 were used in the calculation. The relative error image

(REx), defined as shown in Eq. (2),ResNet generator architecture

REx   =
Ix − IGS
IGS

(2)

Where I is the image intensity, GS represents the reference

standard PET image PETCT+MR, and x is either PET image that is

compared to the PETCT+MR (i.e., PETcor or PET4C). REx was used as

a basis to calculate the mean absolute percentage error (MAPE) and

root-mean-squared percentage error (RMSPE) that were used as

quantitative metrics in the voxel-based analysis. MAPE and RMSPE

were defined as shown in Eq. (3)

MAPE  = 1
nmask o

i∈mask

RExk k

RMSPE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
REx

+ s 2
REx

q
,

(3)

Where µREx and sREx are the mean and standard deviation, REx
and nmask are the number of voxels within the mask that satisfy the

activity concentration threshold. It is understood that the

summation in the definition of MAPE and the summations

performed in calculating µREx and sREx in RMSPE are performed

only over nmask.

To assess lesion performance, lesions were extracted from

radiology reports. The lesion performance was measured as the

relative error and MAPE of the maximum standardized uptake

values (SUVmax) of the corresponding lesions between the

PET images.

All presented values are given as medians with ranges in

brackets unless otherwise mentioned. A two-sided Wilcoxon

signed-rank test was performed to assess whether there were any

differences between RMSPE values of the PETcor image and PET

images reconstructed using four- and five-class Dixon-based AC

(PET4C and PET5C) in the test set. A test of difference was also made

for each of the tracers in the test set separately. Benjamini–
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Hochberg correction was used to correct the p-value for multiple

comparisons where applicable (37). A Mann–Whitney U test was

used to compare differences between the RMSPE of [68Ga]Ga-

PSMA-11 and [18F]PSMA-1007 images. No statistical tests were

performed for the lesion-based analysis due to the limited number

of samples. A difference was considered significant if p < 0.05

was achieved.
3 Results

From the 49 included patients, two patients were removed from

the dataset due to severe artifacts in the PET images and eight were

removed due to suboptimal coregistration between CT and MR. This

resulted in a training set consisting of 18 patients scanned with FDG,

a validation set of four patients scanned with FDG, and a test set

consisting of 17 patients scanned with [68Ga]Ga-PSMA-11 or [18F]

PSMA-1007. An overview of the dataset is presented in Table 2, and a

flow diagram of patient inclusion can be found in the Supplementary

Material (S1). From radiology reports of patients in the test set, 16

soft tissue lesions and four bone lesions were extracted.

Training the convolutional neural network took approximately

4 h on a single NVIDIA GeForce GTX 1080 Ti. An example of a

corrected PET image can be seen in Figure 3. The corrected PET

images were found to closely resemble the reference standard

PETCT+MR images.

The voxel-based RMSPE and MAPE were 12.1% [8.6%, 15.4%]

and 6.2% [4.0%, 10.3%], respectively, for the PET4C images and 8.6%

[5.3%, 11.5%] and 3.5% [2.3%, 5.1%], respectively, for the PET5C

images. In the PETcor images, the RMSPE was 6.2% [4.1%, 8.6%] and

the MAPE was 3.3% [2.3%, 4.6%]. The error in PETcor is thus

approximately reduced by half compared to the PET4C images. A

significant difference was found between the RMSPE of the PETcor

images and the PET4C images (p < 0.0001) and between PETcor

images and the PET5C images (p < 0.0001). A significant difference
FIGURE 1

The network architecture is based on ideas proposed by Johnson et al. (32). It consists of nine residual blocks (33) (ResBlocks) between a
convolutional front-end and a transposed convolutional back-end. The convolutional front-end downsamples the images to one-fourth of their
original resolution, and the transpose convolutional back-end upsamples the images to their original resolution. The figure was made using
PlotNeuralNet (34).
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TABLE 2 Summary statistics for included patients.

Fold Train Val Test Test

Tracer FDG (n = 18) FDG (n = 4) 18F-PSMA (n = 6) 68Ga-PSMA (n = 11)

PI (min) 98 [88–157] 116 [90–168] 136 [116–165] 58 [48–105]

Weight (kg) 88 [71–120] 82 [73–92] 78 [62–86] 85 [74–103]

Dose (MBq) 352 [280–478] 328 [290–368] 200 [153–218] 149 [133–157]
F
rontiers in Oncology
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Data is given as median values with ranges in brackets. Fold specifies which part of the data was used for training (Train), validation (Val) and testing (Test) of the model. PI = time between tracer
injection and image acquisition.
FIGURE 2

Graphical overview of the methodology from acquisition to generation of the corrected PET image (PETcor). The node labeled + refers to overwriting
linear attenuation coefficients (LAC) in the four-class Dixon-based µ-map with CT bone information scaled to LAC at 511 keV. The nodes labeled
+/-represent the creation of the correction map as specified in Eq (1), and the application of the correction map to PET reconstructed with the four-
class Dixon-based µ-map (PET4C). PETMR+CT is PET reconstructed using reference standard µ-map, which is obtained by using a four-class Dixon-
based µ-map for soft tissue and bone information from a co-registered CT image.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1220009
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Abrahamsen et al. 10.3389/fonc.2023.1220009
was also found between the RMSPE values for [68Ga]Ga-PSMA-11

and [18F]PSMA-1007 patients individually between PETcor and both

PET4C and PET5C, as shown in Figure 4. No significant difference was

found when comparing the RMSPE of PETcor between patients

acquired with [68Ga]Ga-PSMA-11 and [18F]PSMA-1007.

The lesion performance is summarized in Table 3 and Figure 5.

Performance in soft tissue lesions improved marginally from a

MAPE of 2.9% [0.8%, 6.5%] in PET4C to 2.2% [0.1%, 8.1%] for

PETcor. For bone lesions, we observed more than a fivefold decrease

in MAPE from 20.0% [12.0%, 30.4%] in PET4C to 3.8% [1.0%, 9.2%]

in PETcor. PET5C, in comparison to the proposed model, had lower

MAPE in soft tissue lesions and higher MAPE in bone lesions.
Frontiers in Oncology 06
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We observed a decrease in performance with increasing

postinjection time (PI) in the test set. In a simple linear

regression model, a significant linear trend (p < 0.05, r2 = 0.30)

was found between the voxel-based RMSPE measurements and the

PI time (see Supplementary Section 5 for further details).
4 Discussion

In this study, we propose a novel attenuation correction method

that seeks to directly correct for the errors obtained by not including

bone when using the conventional four-class Dixon-based AC. We
B C

D E F

A

FIGURE 3

The figure shows axial and coronal images of PET4C (A), PETcor (B), and PETCT (C). The PET4C error (D) is the relative error image between the PET4C
image and PETMR+CT, and the PETcor error (E) is the relative error image between PETcor and PETMR+CT. Values outside the body contour in the
relative error images are set to zero. The Dixon out-of-phase image is given as an anatomical correlate (F). A lesion located in the os pubis is
highlighted in all images.
FIGURE 4

Box-and-whisker plot of the root mean squared percentage error performance stratified by radionuclide for PET reconstructed using four- and five-
class Dixon-based attenuation correction (PET4C and PET5C) and the proposed model (PETcor). The central line within each box is the median. The
box edges extend from the 25th to the 75th percentile. Values were considered outliers if they were more than 1.5 times the interquartile ranges of
the box edges. The whiskers extend to the most extreme nonoutlier value in the data. *p < 0.05; **p < 0.01.
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show that the model reduces quantification errors in a voxel-based

analysis and in bone lesions compared to four- and five-class

Dixon-based methods. For soft tissue lesions, the performance

remains similar to that of the four-class Dixon-based AC model.

Our method can be directly applied as a correction filter in the

image space to PET4C images without the need for additional

reconstruction or the acquisition of additional MR sequences. It

can thus also be used to correct PET4C images retrospectively, as

long as Dixon MR images are available. This distinguishes it from

other models that seek to improve pseudo-CT generation. The

model also only relies on Dixon MR images, which are fast to

acquire. Furthermore, like the models that predict pseudo-CT

images from MR series (21–23, 25, 27), but unlike the models

that predict the pseudo-CT images or AC and scatter-corrected PET

directly from non-attenuation corrected PET (26, 38, 39), the

predicted correction maps are not tracer-dependent.

We observed that the proposed method is robust to variations

in tracer type and scatter correction method. The training and

validation sets consisted of FDG images, whereas the test set

consisted of [68Ga]Ga-PSMA11 and [18F]PSMA-1007 images.

Since there were no [68Ga]Ga-PSMA-11 images in the training
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data, the model had only seen images reconstructed using relative

scaling during scatter correction in training. Nevertheless, no

differences in performance were seen between [68Ga]Ga-PSMA-11

and [18F]PSMA-1007 patients in the test set.

A decrease in performance was seen with increasing PI. This

trend can be explained by the higher number of counts acquired at

lower PI, making the correction map that the model tries to predict

less noisy. All patients had PET/MR and PET/CT acquisition

performed on the same day. For around half of the patients in

the test set, the PET/CT images were acquired at what was

considered the optimal PI for the given tracer, and the PET/MR

images were acquired once the PET/CT examination was finished.

If all PET/MR had been acquired closer to the recommended PI, we

would expect to see a slight increase in performance.

Multiple other methods have been suggested for improving

PET/MR attenuation correction in the pelvic region (7, 22, 23, 25,

27). Bradshaw et al. (25) proposed a model based on the Deep

Medic CNN architecture (40). In this model, T2 and T1 Lava Flex

images were used for the prediction of pseudo-CT images, resulting

in an RMSPE of 4.9% in the reconstructed PET image. Leynes et al.

(23) used Dixon-based images and zero-echo-time images as input
TABLE 3 Lesion performance of PET images reconstructed using four- and five-class Dixon-based µ-maps (PET4C and PET5C) and PET corrected using
the proposed model (PETcor) relative to the reference standard.

Type Bone (n = 4) Soft tissue (n = 16)

Model Error

4-class Absolute percentage error 20.0% [12.0%, 30.4%] 2.9% [0.8%, 6.5%]

Relative error −20.0% [−30.4%, − 12.0%] −2.7% [−6.5%, 6.4%]

5-class Absolute percentage error 7.0% [2.1%, 23.7%] 0.9% [0.0%, 2.6%]

Relative error −7.0% [−23.7%, −2.1%] −0.5% [−2.6%, 2.5%]

Corrected Absolute percentage error 3.8% [1.0%, 9.2%] 2.2% [0.1%, 8.1%]

Relative error 1.3% [−6.0%, 9.2%] −1.9% [−8.1%, 4.4%]
Statistics are given as medians, with ranges in brackets.
FIGURE 5

Box-and-whisker plot of the mean absolute error of soft-tissue and bone lesions for PET reconstructed using four- and five-class Dixon-based
attenuation correction (PET4C and PET5C) and the proposed model (PETcor). The central line within each box is the median. The box edges extend
from the 25th to the 75th percentile. Values were considered outliers if they were more than 1.5 times the interquartile ranges of the box edges.
The whiskers extend to the most extreme nonoutlier value in the data.
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to a deep learning model based on the UNET architecture to

generate µ-maps. The resulting PET reconstruction had an

RMSPE of 2.85%. Similar to Bradshaw et al. (25), Torrado-

Carvajal et al. (7) used a UNET-like architecture to create a

pseudo-CT image using solely Dixon MR images as input. Their

approach resulted in an absolute mean relative change of 1.83%.

A different family of models is composed of models that use non-

attenuation corrected PET images as input and either the pseudo-CT

(41) or the attenuation and scatter-corrected PET as output (26, 38).

Though good performance can be obtained with these models, they

are tracer-dependent and would likely need to be retrained for

optimal performance with each new tracer. In addition, the models

proposed in the literature (26, 38, 41) have only been trained and

validated on PET/CT data so far, and their performance is yet to be

assessed using data acquired on the PET/MR system.

Though many methods have been proposed, it is difficult to

directly compare their performance. As pointed out by Lee (42),

there is substantial heterogeneity in the choice of PET

reconstruction parameters and performance metrics. There is

also no reference dataset that can be used to benchmark the

performance of different models. What is considered gold

standard AC also varies between studies. In this study, we

directly estimate the error of not including bones in the four-

class Dixon-based µ-maps. The most common is to use registered

CT images translated to LAC at 511 keV as the gold standard µ-

map. This does, however, rely on a close-to-perfect coregistration

between CT and MR images, which can be difficult to obtain in

practice (25, 43, 44). We adopted a method similar to Bradshaw

et al. (25) in which soft-tissue classes and air in the µ-map are

derived from the MR images, and bone and osseous tissues are

derived from the CT images.

A primary limitation of this study is the limited number of

patients. The training set consisted of only 18 patients, and the test

set consisted of 17 patients. Since the model was trained using a 2D

network, this still constituted a considerable number of images, but

we do not expect that the limited training set was able to capture all

the expected interpatient variability. The number of lesions was also

limited. In bone, where the model had the largest impact in our

testing, only four lesions were found.

The current method is also limited to pelvic imaging only.

Adapting to a different clinical application would require retraining

of the model. Additionally, in the current work, only a limited

subset of reconstruction parameters was used, and we did not

evaluate the robustness of the method toward changes in

reconstruction parameters. However, since the method is trained

to predict correction maps for the PET images directly, we suspect

the model to be subject to similar variability between reconstruction

parameters as SUVmax measurements themselves (45, 46). Lastly,

the model is only tested on a specific patient cohort consisting of

elderly male patients. Consequently, the model must be evaluated

on a larger and more diverse patient cohort before implementation

in clinical practice is justified.
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5 Conclusion

Direct correction of four-class Dixon-based AC PET in the

image space is a viable method for improving AC of pelvic PSMA

PET/MR imaging. The method is tracer-independent, requires only

the Dixon MR series and the four-class Dixon-based µ-map, and

can be retrospectively applied to PET data without the need for re-

reconstruction. It gives superior performance to the four- and five-

class Dixon-based AC in a voxel-based RMSPE analysis and for

quantification of bone lesion uptake.
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Improving diagnostic efficacy of
primary prostate cancer with
combined 99mTc-PSMA SPECT/
CT and multiparametric-MRI and
quantitative parameters

Yu Zhang1,2,3†, Yuanying Shi1†, Liefu Ye4,5, Tao Li4,5,
Yongbao Wei4,5, Zhiyi Lin1,2,3* and Wenxin Chen1,2,3*

1Department of Nuclear Medicine, Shengli Clinical Medical College of Fujian Medical University,
Fuzhou, China, 2Department of Nuclear Medicine, Fujian Provincial Hospital, Fuzhou, China,
3Department of Nuclear Medicine, Fujian Research Institute of Nuclear Medicine, Fuzhou, China,
4Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China,
5Department of Urology, Fujian Provincial Hospital, Fuzhou, China
Purpose: This prospective study aimed to evaluate the difference between
99mTc-PSMA single-photon emission computed tomography (SPECT)/CT and

multiparametric magnetic resonance imaging (mpMRI) in the detection of

primary prostate cancer (PCa).

Materials and methods: Fifty-six men with suspected PCa between October

2019 and November 2022 were prospectively enrolled in this study. The median

age of the patients was 70 years (range, 29-87 years). Patients were divided into

high-(Gleason score>7, n=31), medium- (Gleason score=7, n=6) and low-risk

groups (Gleason score < 7, n=6). All patients underwent 99mTc-PSMA SPECT/CT

and mpMRI at an average interval of 3 days (range, 1-7 days). The maximum

standardized uptake value (SUVmax), the minimum apparent diffusion coefficient

(ADCmin), and their ratio (SUVmax/ADCmin) were used as imaging parameters to

distinguish benign from malignant prostatic lesions.

Results: Of the 56 patients, 12 were pathologically diagnosed with a benign

disease, and 44 were diagnosed with PCa. 99mTc-PSMA SPECT/CT and mpMRI

showed no significant difference in the detection of primary PCa (kappa =0.401,

P=0.002), with sensitivities of 97.7% (43/44) and 90.9% (40/44), specificities of

75.0% (9/12) and 75.0% (9/12), and AUC of 97.4% and 95.1%, respectively. The

AUC of SUVmax/ADCmin was better than those of SUVmax or ADCmin alone. When

SUVmax/ADCmin in the prostatic lesion was >7.0×103, the lesion wasmore likely to

be malignant. When SUVmax/ADCmin in the prostatic lesion is >27.0×103, the PCa

patient may have lymph node and bone metastases. SUVmax was positively

correlated with the Gleason score (r=0.61, P=0.008), whereas ADCmin was

negatively correlated with the Gleason score (r=-0.35, P=0.023). SUVmax/

ADCmin was positively correlated with the Gleason score (r=0.59, P=0.023).
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SUVmax/ADCmin was the main predictor of the high-risk group, with an optimal

cut-off value of 15.0×103.

Conclusions: The combination of 99mTc-PSMA SPECT/CT and mpMRI can

improve the diagnostic efficacy for PCa compared with either modality alone;

SUVmax/ADCmin is a valuable differential diagnostic imaging parameter.
KEYWORDS

prostate-specific membrane antigen, magnetic resonance imaging, prostate cancer,
single-photon emission computed tomography, technetium radioisotopes
Introduction

Prostate cancer (PCa) is one of the most common malignancies

in men (1). Early diagnosis and accurate grading of PCa are of great

significance for formulating therapeutic strategies and improving

prognosis (2). Multiparametric magnetic resonance imaging

(mpMRI) is a well-established tool for the appraisal of primary

PCa and has shown high affectability (3, 4). Prostate biopsy remains

the gold standard for PCa diagnosis. In addition to providing

evidence for diagnosis, the pathological results can also provide

the classification and grouping information of PCa. Ultrasound-

guided puncture biopsy still has a high false-negative rate of 20-

25%, and there are complications such as bleeding, infection, pain,

and urinary retention (3). Therefore, it is important to explore a

noninvasive preoperative diagnosis method for PCa to improve

puncture accuracy and avoid unnecessary biopsy. Current strategies

used to locally stage PCa and recognize the exact location of disease

foci depend on the results of systematic or targeted biopsies and

mpMRI. However, mpMRI has limited specificity (4–6). Although

targeted mpMRI biopsies have significantly improved the

identification of clinical PCa, there is still over a 30% chance of

missing primary PCa in men (7). Therefore, additional

complementary methods are required to better characterize and

identify primary PCa.

Prostate-specific membrane antigen (PSMA) is a type II

transmembrane protein that is overexpressed on the surface of

90% of PCa cells. Its expression positively correlates with the degree

of malignancy (8). Published studies have demonstrated the

superiority of 68Ga/18F-PSMA PET/CT or PET/MR in the

detection of primary PCa. However, PET/CT or PET/MR is not

widely available in less developed countries, and far fewer

institutions have PET/CT or PET/MR devices than SPECT/CT

devices. The limited production of 68Ga from 68Ge-68Ga

generator and 18F from cyclotron, combined with the relatively

short half-life of 68Ga (67.71 min) and 18F (109.8min), results in the

need for multiple rounds of production per day to maintain patient

use, limiting the number of patient tests per day. Although clinical

SPECT system sensitivity and resolution are not as good as those of

PET, the recent combination of SPECT and CT and the ability to

quantify tissue radioactivity concentration in absolute units have

resulted in a significant improvement in imaging quality. 99mTc,
02
79
available from 99Mo-99mTc generators, is a nuclide routinely used in

SPECT imaging, has good physical properties (half-life is

361.2 min), and is inexpensive and widely available. Thus, 99mTc-

based PSMA ligands are a cost-effective clinical alternative. Our

previous study showed that 99mTc-labelled PSMA molecular probe

(99mTc-HYNIC-Glu-Urea-A, herein referred to as 99mTc-PSMA)

single-photon emission computed tomography (SPECT)/CT can

display bone metastases of PCa with high sensitivity and specificity

(9), with only a small amount of radiation uptake in the intestinal

tract and no significant radiation uptake in other major organs (10).

However, to our knowledge, 99mTc-PSMA SPECT/CT has rarely

been reported for the diagnosis of primary PCa. In recent years,

with the development of imaging technology, mpMRI including

functional sequences such as diffusion weighted imaging(DWI) had

been widely used in the diagnosis and preoperative localization of

PCa (5). The ADCmin from DWI reflects the degree of diffusion of

water molecules in the tumor tissue. SUVmax represents PSMA

expression associated with the biological characteristics of tumors.

Our study aimed to evaluate the difference between 99mTc-PSMA

SPECT/CT and mpMRI for the detection of primary PCa.
Materials and methods

Ethical approval

This study was approved by the ethics committee of Fujian

Provincial Hospital (reference number, K2019-10-017) and

conducted in compliance with the principles of the Declaration of

Helsinki. Furthermore, informed consent was obtained from all

participants and/or their legal guardians.
Sample size calculation

We conducted a prospective head-to-head observational study

to analyze the diagnostic efficacy between 99mTc-PSMA SPECT/CT

and mpMRI in treatment-naive PCa. In this study, the sensitivity

and specificity of 99mTc-PSMA SPECT/CT and mpMRI in the

diagnosis of PCa were assumed to be greater than 50%

(H0 = 50%). Referring to similar published literature on 68Ga-
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PSMA PET/CT and mpMRI (11), a sensitivity and specificity value

of 80% was assumed. PASS 11 software (Power Analysis and Sample

Size, NCSS, LLC) was used to estimate the required sample size.

Assuming a=0.05 (unilateral), b=0.1, and a 1:1 ratio between the

groups, the calculations indicated that at least 46 patients needed to

be included in the study. Consequently, 56 individuals were

enrolled in this study.
Patient selection

Fifty-six men were enrolled in this study between October 2019

and November 2022. The inclusion criteria were as follows (2): ①

digital rectal examination touching the prostate nodules; ②

transrectal ultrasound suspected PCa; ③ PSA>10 ng/mL or

progressive PSA increase (12); ④ no treatment administered

before the scan; and ⑤ complete medical records, control data,

and clinical follow-up results. The exclusion criteria were as follows:

① the presence of severe syndromes that were difficult to manage; ②

active or upcoming participation in other clinical drug trials; ③ lack

of regular review or follow-up results; ④ a second primary tumor,

and ⑤ inability to obtain relevant contrast imaging and clinical data.

All eligible patients underwent 99mTc-PSMA SPECT/CT and

mpMRI at an average interval of 3 days (1–7 days). None of the

patients received antineoplastic therapy between the two scans.

After both scans were completed, a transrectal needle prostate

biopsy was performed. The patient characteristics are presented

in Table 1.
99mTc-PSMA SPECT/CT
acquisition protocol

The PSMA lyophilized kit (HYNIC-PSMA) (patent number,

Zl202010878750.4) was provided by the Shanghai Engineering

Research Centre of Molecular Imaging Probes. The synthesis

procedure has been reported previously (9). The radiochemical

purity was>95%. All patients were injected intravenously with a

dose of 0.74 GBq (20 mCi) 99mTc-PSMA. Whole-body planar

imaging and regional (neck-pelvic) SPECT/CT were performed

2 h after injection using a Discovery NM/CT 670Pro (GE, USA)

with low-energy, high-resolution collimators. The image acquisition

protocol was as follows: planar imaging: peak energy 140 keV

(99mTc) and scan velocity 15 cm/min in a 256×1025 matrix.

Regional SPECT/CT: camera matrix size 128×128, zoom 1.0,

rotation 360°, and 30 s/frame for 60 frames. Low-dose CT (130

keV; 60 mA) was used.
mpMRI acquisition protocol

mpMRI was performed with a high-field system (Magnetom

Prisma 3.0T, Siemens, The Germany) using a standardized protocol

with pelvic external phased-array coils. The sequences included:

transverse T1-weighted imaging (T1WI) (repetition time [TR]
Frontiers in Oncology 03
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=500ms, echo time [TE]=12ms, field-of-view [FOV]=20 cm×20

cm, matrix=320×256); T2-weighted imaging (T2WI) (TR=5800ms,

TE=106ms, FOV=20 cm×20 cm, matrix=320×256); fat-suppression

spectral presaturation attenuated inversion recovery-T2WI

(TR=5800ms, TE=97ms, FOV=20 cm×20 cm, matrix=320×240),

and diffusion weighted imaging (DWI) (TR=5100ms, TE=64ms,

FOV=20 cm×20 cm, matrix=114×114, b=50s/mm2, 600 s/mm2,

1500 s/mm2, 3000 s/mm2). The section thickness of each sequence

was 3.5 mm.
Image analysis

99mTc-PSMA SPECT/CT and mpMRI images were

independently read by two nuclear medicine physicians and two

radiologists, respectively. The readers were blinded to the mpMRI

and 99mTc-PSMA SPECT/CT clinical reports and other readers’

findings. 99mTc-PSMA SPECT/CT and mpMRI were performed on

a workstation (Xeleris, General Electric, Waukesha, WI) and

(syngo.via, Siemens Healthineers, respectively). The locations of

lesions on mpMRI and 99mTc-PSMA SPECT/CT images were

compared, and lesions with the same locations on the two scans
TABLE 1 Patient characteristics.

Patient characteristic Value

No. of patients 56

Age (years), median (IQR) 70 (29-87)

serum PSA(ng/mL), median (IQR) 14.8 (5.1-710.0)

PI-RADS score, n (%)

1-2 8 (14.3%)

3 5 (8.9%)

4-5 43 (76.8%)

Pathological features of the specimen

benign nodules, n (%) 12 (21.4%)

adenocarcinoma, n (%) 43 (76.8%)

neuroendocrine carcinoma, n (%) 1 (1.8%)

Gleason score

<7 (low risk), n (%) 6 (14.0%)

=7 (intermediate risk), n (%) 6 (14.0%)

>7 (high risk), n (%) 31 (72.0%)

IUSP GG

1-3 (low-grade), n (%) 12 (28.0%)

≥4 (high-grade), n (%) 31 (72.0%)

Prostatectomy

Yes, n (%) 23 (41.1%)

No, n (%) 33 (58.9%)
IQR, interquartile range; IUSP GG, International Society of Urological Pathology Grade
Group; PSA, prostate specific antigen; PI-RADS, prostate imaging reporting and data system.
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were selected as the primary lesion to extract parameters

for analysis.
Diagnostic criteria for primary PCa

On mpMRI, combined with the reconstructed apparent

diffusion coefficient (ADC) images, a lesion with a prostate

imaging reporting and data system (PI-RADS) score > 3 was

considered a positive lesion (PCa) (13). The lesions’ region of

interest (ROI) was delineated, and the lowest ADC (ADCmin) was

calculated. On SPECT/CT, areas with higher imaging agent uptake

than normal prostate tissue after excluding physiological uptake

were considered positive lesions (PCa). For imaging-based

quantification analysis, Q.Metrix software (Q.Metrix GE

Healthcare) was used (14). Acquisition information, including

camera sensitivity, activities in full and empty syringes,

administration time, and scan time, was input into the system.

The volume of interest (VOI) was delineated, and the NM was 0.4.

The calculated maximum standardized uptake value (SUV) voxel

volume was 3.2×10-3 mL. VOI-related quantitative parameters were

automat ica l l y genera ted , and SUVmax was used for

quantitative analysis.
Diagnostic criteria for PCa metastases

On mpMRI, ①lymph node metastases: round, short-axis

diameter>8 mm, uneven signals in lymph nodes on T2WI,

irregular boundaries, and evident enhancement on dynamic

contrast-enhanced (DCE) (15); ② bone metastases: low signal

intensity on T1WI and T2WI, limited diffusion on DWI, and

early enhancement after contrast agent injection on DEC (16, 17).

On SPECT/CT, ①lymph node and bone metastases: uptake than

normal tissue(lesion SUVmax≥liver SUVmax) after excluding

lacrimal glands, salivary glands, kidneys, bladder and intestines

physiological uptake. The SUVmax of all focal SPECT-positive sites

was determined based on the ROI basis (17). In the quantification

analysis, the size of each SPECT-positive bone and lymph node

correlated with the SUVmax.
Validation of findings

Prostate needle biopsies were performed in all participants. We

used a protocol for transperineal MRI/PSMA-ultrasound fusion

targeted and systematic biopsy. In brief, the image-guide (cognitive

guidance, MRI/US and PSMA/US) technique was used. Targeted

and systematic biopsies were performed in the same session. The

number of biopsy cores was as follows: 3-4 cores for targeted biopsy

and 10-12 cores for systematic biopsy. If the biopsy results were

positive, patients with surgical indications underwent radical

prostatectomy, and the pathological results were based on the

gross specimen. For patients without surgical indications,

pathological results were based on biopsy results. If the needle

biopsy results are negative and the clinical symptoms are highly
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indicative of PCa, the patient’s serum PSA value and imaging

(mpMRI, 99mTc-PSMA SPECT/CT) should be followed up for 3-6

months. If the disease does not progress, PCa could be excluded. If

the disease progresses, an additional needle biopsy should be

performed (12). Not all bone and lymph node lesions showed

positive pathological results. Thus, the validated method reported

in previous studies was used (9, 17). All patients were followed up

for at least 6 months (or until death). Serum PSA levels were

reviewed every 3 months for all patients. The subsequent

therapeutic schedule options depended on the patient’s condition,

including radical prostatectomy, local radiation therapy, and

chemotherapy. Future imaging modalities were selected according

to their respective clinical needs and were not bound by a specific

protocol. Patients who met at least one of the following conditions

were metastases: ① Response to therapy (hormone therapy and

radiation) and subsequent serum PSA decline were confirmed by

follow-up examination (MRI, CT, PET, etc.); ② two or more

imaging examinations recommended metastases, and ③ PSA≥100

ng/mL, suggesting distant metastases (18).
Statistical analysis

Data analysis was performed using SPSS 19.0 software

(statistical product and service solutions, Chicago, Illinois).

McNemar’s test was used to compare the cancer detection

concordance rates between 99mTc-PSMA SPECT/CT and mpMRI.

The Mann-Whitney U test was used to compare the differences in

quantitative diagnostic parameters among the different groups.

Receiver operating characteristic (ROC) analysis was performed

to evaluate the sensitivity, specificity, area under the ROC curve

(AUC), and a cut-off value of each parameter. The Kruskal-Wallis

test was used to compare the differences in quantitative diagnostic

parameters among different tumor size groups. The correlation

between the Gleason Score and SUVmax, ADCmin, and SUVmax/

ADCmin was evaluated using Spearman correlation analysis.

Logistic regression analysis was used to calculate predictors of the

Gleason score. P<0.05 was considered statistically significant.
Results

Overall results

Among the 56 participants, 44 (78.5%) were diagnosed with

PCa, and 12 (21.5%) with prostate hyperplasia (BPH). A flowchart

illustrating the participant inclusion procedure is shown in Figure 1.

Among the 44 patients with PCa, one (2%) had neuroendocrine

carcinoma, and 43 (98%) had adenocarcinoma. The surgical

indications were judged by the urological surgeon according to

the clinical status of the patient (2).The 23 patients with PCa

diagnosed by puncture underwent robot-assisted laparoscopic

radical prostatectomy (RP); postoperative pathology results were

consistent with those of puncture in 11 (11/23,47.8%) patients. 12

(12/23,52.2%) patients with PCa experienced pathological

upgrading. The Gleason score of patients who underwent surgery
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was based on the surgical specimen, and the Gleason score of

patients who did not undergo surgery was based on the puncture

specimen. Among 44 patients with PCa, 23 (52.3%) had metastases.
Sensitivity and specificity analyses

For all 56 patients, the sensitivity of 99mTc-PSMA SPECT/CT

and mpMRI in detecting primary PCa was 97.7% (43/44) and 90.9%

(40/44), respectively; the difference was not statistically significant

(c2 = 0.102, P=0.749). Their specificity was 75.0% (9/12) and 75.0%

(9/12), respectively, with no statistically significant difference

(c2 = 1.333, P=0.248) (Table 2). ROC curve analysis revealed an

accuracy, as measured by AUC, of 97.4% (95% CI. 93.7%-100.0%)

for 99mTc-PSMA, 95.1% (95% CI. 88.8%-100.0%) for mpMRI, and

9 8 . 2% ( 9 5% C I . 9 5 . 2% - 1 0 0 . 0% ) f o r 9 9mT c - P SMA

+mpMRI (Figure 2).
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Differences in quantitative parameters
among different groups

The Mann-Whitney U test was used to compare differences in

quantitative diagnostic parameters among the different groups

(Table 2). The SUVmax/ADCmin of the PCa group was

significantly higher than that of the BPH group, and the SUVmax/

ADCmin of the subgroup with metastases was higher than that of the

subgroup without metastasis (Table 2). In 99mTc-PSMA SPECT/CT

combined with mpMRI, when the cut-off value for SUVmax/ADCmin

was set at 7.0×103, the sensitivity and specificity of SUVmax/ADCmin

in PCa were 93.2% (95%CI.85.7%-100.0%) and 100.0% (95%

CI.100.0%-100.0%), respectively, with a Youden index of 0.932

and an AUC of 0.982 (95% CI. 95.2%-100.0%) (Figure 3). When

the cut-off value for SUVmax/ADCmin was set at 27.0×103, the

sensitivity and specificity of SUVmax/ADCmin in PCa with

metastases was 76.2% (95%CI.58.0%-99.4%) and 73.9% (95%
FIGURE 1

Flowchart of participant selection in the study. 99mTc-PSMA SPECT/CT, 99mTc-labelled prostate-specific membrane antigen molecular probe single
photon emission computed tomography; MRI, magnetic resonance imaging.
TABLE 2 99mTc-PSMA SPECT/CT and mpMRI in the diagnosis of primary prostate cancer.

Pathological diagnosis

99mTc-PSMA mpMRI

Positive Negative Positive Negative

Positive (n=44) 43 1 40 4

Negative (n=12) 3 9 3 9

Total 46 10 43 13

PPV 0.935 (95% CI. 0.863-1.000) 0.930 (95% CI. 0.854-0.100)

NPV 0.900 (95% CI. 0.714-1.000) 0.692 (95% CI. 0.414-0.943)
f

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; 99mTc-PSMA SPECT/CT, 99mTc-labelled prostate-specific membrane antigen molecular probe single
photon emission computed tomography; mpMRI, multiparametric magnetic resonance imaging.
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CI.56.0%-91.9%), respectively, with a Youden index=0.501 and

AUC=0.760 (95% CI. 61.0%-91.0%) (Figure 3A).
Difference between tumor size and
quantitative parameters

The 44 prostatic lesions detected were grouped according to

their maximum tumor diameter: G1 (7/44, maximum diameter <

1.0 cm), G2 (23/44, maximum diameter: 1.0 cm-3.0 cm), and G3

(14/44, maximum diameter > 3.0 cm). The Kruska–Wallis test was

used to compare the differences in quantitative diagnostic

parameters among different tumor size groups. There were

differences in SUVmax/ADCmin among the tumor size groups; the

larger the tumor size, the larger the SUVmax/ADCmin

value (Figure 4).
Relationship between Gleason score and
quantitative parameters

Gleason scoring is unsuitable for treating neuroendocrine PCa

(19). Therefore, 43 patients with PCa were enrolled in this cohort

study. Spearman correlation analysis was used, and the results

revealed that ADCmin showed a weak negative correlation with

Gleason score (r=-0.35, P=0.023), whereas SUVmax (r=0.61,

P=0.008) and SUVmax/ADCmin (r=0.59, P=0.023) showed a

moderate positive correlation with Gleason score (Figure 5).

Based on the Gleason score, the patients were divided into high-
FIGURE 2

Receiver operating curve (ROC) for 99mTc-PSMA SPECT/CT, mpMRI,
and 99mTc-PSMA SPECT/CT+ mpMRI for detection of primary
prostate cancer (n=56). 99mTc-PSMA SPECT/CT, 99mTc-labelled
prostate-specific membrane antigen molecular probe single photon
emission computed tomography; mpMRI, multiparametric magnetic
resonance imaging; SUVmax, maximum standardized uptake value;
ADCmin, the minimum apparent diffusion coefficient.
A B

FIGURE 3

Receiver operating curve (ROC) for (A)99mTc-PSMA SPECT/CT, mpMRI, and 99mTc-PSMA SPECT/CT+ mpMRI for detecting prostate cancer with
metastases (n=44) and for (B) 99mTc-PSMA SPECT/CT, mpMRI and 99mTc-PSMA SPECT/CT+ mpMRI for detection of prostate cancer with Gleason
score ≥7 (n=43). 99mTc-PSMA SPECT/CT, 99mTc-labelled prostate-specific membrane antigen molecular probe single photon emission computed
tomography; mpMRI, multiparametric magnetic resonance imaging; SUVmax, maximum standardized uptake value; ADCmin, the minimum apparent
diffusion coefficient.
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A B

C

FIGURE 4

Box plot of different parameters and tumor size. (A) Differences among SUVmax and tumor size. (B) Differences among ADCmin and tumor size. (C)
Differences among SUVmax/ADCmin and tumor size. SUVmax, maximum standardized uptake value; ADCmin, the minimum apparent diffusion coefficient.
A B

DC

FIGURE 5

Scatter plots of the different parameters and Gleason score. (A) Correlations among ADCmin and Gleason score in prostate cancer (PCa) lesions.
(B) Correlations among SUVmax and Gleason score in PCa lesions. (C) Correlations among SUVmax and ADCmin in PCa lesions. (D) Correlations among
SUVmax/ADCmin and Gleason score in PCa lesions. SUVmax, maximum standardized uptake value; ADCmin, the minimum apparent diffusion coefficient.
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(Gleason score>7, n=31), medium- (Gleason score=7a, n=4;Gleason

score=7b, n=2) and low-risk groups (Gleason score < 7, n=6).

According to the Mann-Whitney U test, there were statistical

differences in SUVmax, ADCmin, and SUVmax/ADCmin between

the high-, medium- and low-risk groups (all P < 0.05) (Table 3).

With the presence of a high-risk group (yes=1, no=0) as the

dependent variable, and age, serum PSA level, and SUVmax/

ADCmin as the independent variables, logistic regression analysis

showed that SUVmax/ADCmin was independently correlated with

the presence of a high-risk group; for every 1×103 increase in

SUVmax/ADCmin, the detection rate of the high-risk group

increased by 55.7% (OR=1.557, P=0.042). When the cut-off value

for SUVmax/ADCmin was set at 15.0×103, the sensitivity and

specificity of SUVmax/ADCmin in the high-risk PCa group were

78.4% (95%CI.65.1%-91.6%) and 100.0% (95%CI.100.0%-100.0%),

respectively, with a Youden index of 0.784 and AUC of 0.928 (95%

CI. 84.0%-100.0%) (Figure 3B) (Table 4).
Discussion

The labeling method for 99mTc-HYNIC-Glu-Urea-A(99mTc-

PSMA) is simple and has high radiochemical purity (10).

Previous studies have demonstrated the high diagnostic efficacy of
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99mTc-PSMA SPECT/CT in detecting recurrent biochemical lesions

after radical prostatectomy and bone metastases of PCa (9, 20).

With the introduction of imaging technology, the diagnosis and

initial management of localized PCa are increasingly dependent on

imaging findings. 99mTc-PSMA SPECT/CT is predominantly used

in the primary PCa staging of regional and distant diseases.

However, little is known about the value of 99mTc-PSMA SPECT/

CT for the primary detection of lesions within the prostate. To our

knowledge, this is the first comparison between 99mTc-PSMA

SPECT/CT and mpMRI for primary PCa lesions.

In our cohort study, 99mTc-PSMA SPECT/CT and mpMRI had

limited specificity for detecting primary PCa lesions. SUVmax and

ADCmin are important quantitative parameters in SPECT/CT and

mpMRI, respectively. Typical PCa foci showed localized high-

uptake foci on 99mTc-PSMA SPECT/CT and low-signal foci on

mpMRI ADC maps (Figure 6). Previous studies on PCa detection

by PET have shown that there may be a certain degree of correlation

between mpMRI and PET parameters in the same PCa lesion; that

is, SUVmax and ADCmin were negatively correlated (21, 22).

Therefore, it is essential to study whether combining these two

imaging techniques can further improve the diagnostic efficacy of

PCa. In our study, SUVmax was positively correlated with the

Gleason score, while ADCmin was negatively correlated. Based on

the above results, we combined the two parameters and used the
TABLE 3 Difference between the three diagnostic parameters among different groups.

Group (No. of patients)
99mTc-PSMA mpMRI 99mTc-PSMA+ mpMRI

SUVmax ADCmin SUVmax/ADCmin

Prostate hyperplasia (n=12) 0.00 (0.00-0.54) △ 0.69 (0.57-0.81)×10-3□ 0.00 (0.00-6.51)×103▽

Prostate cancer (n=44) 10.60 (0.00-23.48) 0.41 (0.24-0.96)×10-3 26.87 (0.00-663.50)×103

Gleason score<7(n=6) 4.90 (0.00-8.30) * 0.57 (0.40-0.96)×10-3# 8.22 (0.00-14.66)×103★

Gleason score=7(n=6) 6.360 (4.20-11.00) 0.44 (0.32-0.56)×10-3 14.80 (9.19-34.82)×103

Gleason score>7(n=31) 12.00 (4.28-23.48) 0.37 (0.24-0.90)×10-3 33.14 (9.19-66.35)×103

Metastases (n=21) 12.00 (0.00-20.70) ▴ 0.37 (0.24-0.57)×10-3♦ 35.40 (0.00-66.35)×103•

No metastasis (n=23) 7.80 (3.30-23.48) 0.49 (0.28-0.96)×10-3 14.77 (5.96-43.38)×103
99mTc-PSMA SPECT/CT, 99mTc-labelled prostate-specific membrane antigen molecular probe single photon emission computed tomography; mpMRI, multiparametric magnetic resonance
imaging.
Comparison of SUVmax between groups: △compared to the prostate cancer group, P=0.005; ▴compared with the no metastasis subgroup, P=0.007; * compared between the Gleason score
subgroup, P < 0.001.
Comparison of ADCmin between groups: □compared to the prostate cancer group, P=0.002; ♦compared with the no metastasis subgroup, P=0.009; # compared between the Gleason score
subgroup, P=0.012.
Comparison of SUVmax/ADCmin between groups: ▽compared to the prostate cancer group, P=0.003; •compared with the no metastasis subgroup, P=0.003; ★ compared between the Gleason
score subgroup, P < 0.001.
TABLE 4 Multivariate logistic regression analysis of related factors of Gleason score.

Independent variable OR value
95% CI for OR value

P-value
Lower Upper

Age (years) 0.998 0.864 1.152 0.977

PSA (ng/mL) 1.028 0.977 1.081 0.288

SUVmax/ADCmin (×10
3) 1.557 1.015 2.388 0.042
fron
CI, confidence interval; OR, odds ratio; PSA, prostate specific antigen, SUVmax/ADCmin, maximum standardized uptake value/minimum apparent diffusion coefficient.
tiersin.org

https://doi.org/10.3389/fonc.2023.1193370
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1193370
ratio to construct a new parameter (SUVmax/ADCmin) to obtain a

more significant correlation with the Gleason score. The results of

this study are consistent with our expectations. SUVmax/ADCmin

was positively correlated with the Gleason score, which was also

consistent with previous 68Ga-PSMA PET/CT and mpMRI-related

research results (23–25). In addition, Schmidkonz et al. confirmed

that SUVmax in prostatic lesions could be used to predict primary

PCa and lymph node and bone metastases. This may be the higher

the uptake of PSMA in prostatic lesions, the higher the malignancy

of the lesions, resulting in an increased risk of bone or lymph node

metastasis (25). However, approximately 10% of patients with

primary PCa have low PSMA expression (26). Some false-

negative results were obtained in the clinical setting when

SUVmax was used separately. The ratio SUVmax/ADCmin

synthesizes the expression of PSMA and the degree of diffusion of

water molecules (27). The present study found that the diagnostic

efficacy of SUVmax/ADCmin was better than that of SUVmax or

ADCmin alone. SUVmax/ADCmin may be used as a predictive

parameter for PCa, helping to distinguish benign and malignant

lesions of PCa and determine whether there were metastases. The

result was also consistent with previous 18F-choline PET/MRI

related research (21). Zhang et al. conducted a retrospective 68Ga-

PSMA-11 PET/CT analysis of 42 patients with moderate-and high-

risk PCa who underwent RP, and found that SUVmax in local

prostate lesions was significantly higher in the group with pelvic

lymph node metastases than in the group without lymph node
Frontiers in Oncology 09
86
metastases (28). In our study, the larger the prostatic lesion size, the

higher the SUVmax/ADCmin. When SUVmax/ADCmin in the

prostatic lesion was >7.0×103, the lesion was more likely to be

malignant. When SUVmax/ADCmin in the prostatic lesion is

>27.0×103, the patient with PCa may have lymph node and bone

metastases. Hence, we postulated that SUVmax combined with

ADCmin (SUVmax/ADCmin) might decrease bias and improve

diagnostic accuracy.

The prognosis of PCa is closely related to the Gleason score

grading system (29). The Gleason score is a critical indicator of the

pathological results of prostate biopsy. In the previous study on

PSMA, Kasperzyk et al. evaluated the expression of PSMA in PCa

tissues by immunohistochemical staining, and found that Gleason

score in the group with high PSMA expression was significantly

higher than that in the group with low PSMA expression (30).

Uprimny et al. retrospectively analyzed the 68Ga-PSMA-11 PET/CT

examination data of 90 patients with PCa confirmed by prostate

biopsy, and found that SUVmax was significantly positively

correlated with Gleason score (31).In our study, patients with

PCa were divided into high-,medium- and low-risk groups with a

Gleason score of 7 as the cut-off value. Our results showed that

SUVmax/ADCmin was the main predictor of the high-risk group,

with an optimal cut-off value of 15.0×103. This suggests that

SUVmax/ADCmin ratio is a useful imaging parameter for

evaluating tumor biology and prognosis, which may significantly

impact the selection of therapeutic strategies.
FIGURE 6

A 79-year-old man with progressive dysuria. The PSA level was 15.31 ng/mL at the time of 99mTc-PSMA SPECT/CT and mpMRI. Whole-body planar
99mTc-PSMA (A) and transverse SPECT/CT (B, D) showed foci of increased PSMA uptake in the left-anterior (red arrow, SUVmax=13.10, SUVmax/
ADCmin=16.7×10

3). Hypointense signals were shown on apparent diffusion coefficient (ADC) (G), red arrow), and hyperintense signals on diffusion-
weighted imaging (DWI) (E), red arrow) in the left transitional band of the prostatic apex. Dynamic contrast-enhanced (DCE) scanning was
significantly enhanced (C), red arrow). (F) Prostatic lesion was confirmed pathologically as prostate cancer (hematoxylin and eosin (HE) staining,
100×magnification; Gleason score: 4 + 5 = 9). 99mTc-PSMA SPECT/CT, 99mTc-labelled prostate-specific membrane antigen molecular probe single
photon emission computed tomography; mpMRI, multiparametric magnetic resonance imaging; SUVmax, maximum standardized uptake value;
ADCmin, the minimum apparent diffusion coefficient.
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This study had some limitations. Among the 44 patients

diagnosed with PCa, 21 did not undergo RP, and gross specimens

could not be obtained; only puncture biopsy could be used as the

final pathological result. The pathological grading of puncture

lesions may differ from actual grading. Furthermore, this was a

single-center study with a small sample size, and the conclusions

should be verified in a large-scale sample cohort. We did not

evaluate the role of SUVmax/ADCmin in predicting prognosis at

follow-up. However, this exploratory study is still valuable as the

first clinical quantitative application of 99mTc-PSMA SPECT/CT

combined with mpMRI in PCa lesions. In a future study, we aim to

develop a novel analytical approach based on a radiomics

quantitative model derived from 99mTc-PSMA SPECT/CT and

mpMRI for noninvasive prediction of intraprostatic lesions in

patients with PCa and prognosis.
Conclusion

In this prospective study, our results revealed that combined
99mTc-PSMA SPECT/CT and mpMRI had a higher diagnostic

accuracy for detecting treatment-naive PCa than either modality

alone. In addition, SUVmax/ADCmin is a promising molecular

imaging parameter for diagnosing PCa and evaluating its

biological behavior.
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Prostate cancer (PCa) is a major global concern, particularly for men,

emphasizing the urgency of early detection to reduce mortality. As the second

leading cause of cancer-related male deaths worldwide, precise and efficient

diagnostic methods are crucial. Due to high and multiresolution MRI in PCa,

computer-aided diagnostic (CAD) methods have emerged to assist radiologists

in identifying anomalies. However, the rapid advancement of medical

technology has led to the adoption of deep learning methods. These

techniques enhance diagnostic efficiency, reduce observer variability, and

consistently outperform traditional approaches. Resource constraints that can

distinguish whether a cancer is aggressive or not is a significant problem in PCa

treatment. This study aims to identify PCa using MRI images by combining deep

learning and transfer learning (TL). Researchers have explored numerous CNN-

based Deep Learning methods for classifying MRI images related to PCa. In this

study, we have developed an approach for the classification of PCa using transfer

learning on a limited number of images to achieve high performance and help

radiologists instantly identify PCa. The proposed methodology adopts the

EfficientNet architecture, pre-trained on the ImageNet dataset, and

incorporates three branches for feature extraction from different MRI

sequences. The extracted features are then combined, significantly enhancing

the model’s ability to distinguish MRI images accurately. Our model

demonstrated remarkable results in classifying prostate cancer, achieving an

accuracy rate of 88.89%. Furthermore, comparative results indicate that our

approach achieve higher accuracy than both traditional hand-crafted feature

techniques and existing deep learning techniques in PCa classification. The

proposed methodology can learn more distinctive features in prostate images

and correctly identify cancer.
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1 Introduction

A major challenge for medical science is cancer, which is the

most widespread disease in humans around the globe. Cancer cells

exhibit aggressive growth rates, and their precise diagnosis is pivotal

to a patient’s survival. The most prevalent cancer diagnosed in men

worldwide is PCa. Alarming statistics from the American Cancer

Society predict approximately 288,300 new PCa cases in the United

States by 2023, with an estimated 34,700 fatalities cancer society (1).

The conventional method for PCa classification relies on the

Gleason Score (GS), as determined by analyzing biopsy samples.

However, this conventional biopsy method has been found to exhibit

reduced sensitivity in accurately identifying PCa. Furthermore, the

Gleason classification method encounters challenges stemming from

variations in interpretation, encompassing discrepancies among

different observers (interobserver variability) and inconsistencies

within assessments made by the same observer (intraobserver

variability). These variations can predominantly be attributed to the

heavy reliance on human interpretation within the Gleason

classification method ŞCheck that all equations and special

characters are displayed correctly.erbănescu et al. (2). Recent

advancements in mpMRI have emerged as a pivotal tool for

assessing the risk of PCa and improving the grading and

classification of PCa Oberlin et al. (3); Bardis et al. (4). High-grade

PCa is frequently characterized by the presence of more densely

packed structures which can be effectively identified through the

utilization of advanced MRI-based machine learning techniques.

These approaches enable the detection and assessment of high-

grade PCa, thereby enhancing diagnostic precision and treatment

planning for patients. This study aims to create an automated method

for classifying PCa, aiding radiologists’ assessments.

The implementation of quantitative assessments of mpMRI

offers radiologists a valuable, noninvasive tool to enhance their

clinical decision-making processes. Furthermore, it helps mitigate

the discrepancies that can arise due to differences between readers.

With the growing interest in the integration of artificial intelligence

(AI) with medical practice, empowered by enhanced computational

capabilities and the emergence of new AI methodologies, there has

been a surge in studies introducing CAD approaches. These systems

leverage machine-learning and deep-learning approaches to detect

and classify tumors in medical imagery, with a pronounced impact

on PCa detection and classification Abbasi et al. (5). This study aims

to build an automated PCa classification method, addressing the

limitations of traditional GS and improving the diagnostic potential

offered by mp-MRI. Early-stage PCa identification is extremely

important and beneficial for treatments. Identification of PCa using

MRI images improves the rate of early diagnosis and assists in

building a Computer Aided Diagnostic (CAD) system Jin et al. (6);

Reda et al. (7). A pivotal objective within CAD systems is the

development of objective and reproducible metrics for automated

analysis Cem Birbiri et al. (8). The continuous refinement of PCa

classification techniques holds significant importance, particularly

in distinguishing between low and high-grade cancers.

To identify PCa, several approaches have been proposed. Most

of them used traditional machine-learning approaches, to classify

images and train classifiers Bardis et al. (4); Monni et al. (9); Abbasi
Frontiers in Oncology 02
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et al. (5); Gillies et al. (10); Fehr et al. (11); Vignati et al. (12); Liu

et al. (13); Ullah et al. (14); Shahzad et al. (15); Laghari et al. (16);

Sobecki et al. (17); Giannini et al. (18); Wang et al. (19); Schelb et al.

(20); Wildeboer et al. (21); Wibmer et al. (22). Many of these

approaches used features of low radiomics focused on previous

clinical reports, which may not fully leverage the entire information

within the MRI images Källén et al. (23). Moreover, unsupervised

approaches were previously used to acquire features that may

contain unnecessary information or may exclude essential clues.

Deep learning approaches recently acquired great performance and

are widely used in classifying and identification tasks of both

medical applications Esteva et al. (24); Albarqouni et al. (25);

Yuan and Meng (26) and natural images LeCun et al. (27). They

can train classifiers and learn features jointly. Because deep learning

techniques have enormous potential and success, the authors use

them to classify PCa. Deep learning-based architectures have

yielded remarkable results because of their capability to

autonomously acquire and represent features Tsehay et al. (28).

Compared to conventional approaches, CNN-based models such as

Alexnet demonstrated improved performance Kiraly et al. (29). A

challenge associated with architectures like this is the substantial

data needed for effective training such as in Chen et al. (30). Using

transfer learning is an easier way to handle this problem. In order to

extract features and identify data from one domain into another,

transfer learning employs training experience as a sort of knowledge

sharing Le et al. (31). Good performance can be accomplished with

small training images by using the transfer learning technique

Wildeboer et al. (32); Zhong et al. (33) that applies models of

pre-trained images from other datasets. Furthermore, various MRI

sequences of PCa present different concerns, and it is important to

consider an effective way to incorporate different details. By

combining details derived from multi-parametric images, a

descriptive representation of PCa may be gained Cem Birbiri

et al. (8).

A multi-parametric MRI transfer learning (mp-TL) system to

identify PCa is presented in this study. To obtain features from

various MRI sequences, the proposed transfer learning model has

three branches: ADC and T2w (sagittal, trans-axial). The features

extracted from these categories are combined in the model. For this

study, we aim to utilize transfer learning techniques leveraging a

family of networks of pre-trained EfficientNet models for the

classification of prostate images. Compound scaling is used in

the recently proposed Efficient-Nets architecture to balance the

network’s three dimensions (Depth, Height, and Width). The

proposed method demonstrates good performance in effectively

classifying PCa images, contributing to enhanced diagnosis. The

improvement in classifying PCa techniques is necessary to

distinguish low and high-grade cancer. There is a need for an

efficient deep learning-based architecture that efficiently classifies

PCa images. In the proposed methodology, the important step for

the classification of MRI images is the pre-processing stage. Pre-

processing is used to process the PCa MRI images, and then the

classification and feature extraction of PCa images is performed

using deep CNN models. The contribution of this study is based on

the classification of images and results in comparison with existing

approaches. These are a few of this study’s major contributions.
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• The proposed approach here harnesses transfer learning to

jointly analyze multiple MRI sequences, rather than

focusing solely on a single MRI sequence. This enables us

to extract more discriminative features, leading to a

substantial enhancement in PCa classification.

• To demonstrate the model’s effectiveness, the authors

evaluate the PCa dataset utilizing a diverse range of

Efficient-Net Models, encompassing B0, B5, and B7.

• Multi-view ensemble approach is used for classifying multi-

parametric MRI images.

• An Efficient-Net model with fine-tuning and an additional

Global Average Pooling (GAP) layer at the model’s end,

serves as a crucial component. This not only extracts vital

information but also forwards it to the activation function

for further processing.

• The proposed approach’s effectiveness is highlighted through

extensive experimentation conducted on the PCa dataset.
2 Related work

Numerous studies have been carried out by researchers to

predict prostate MRI imaging. The literature on MRI image

classification encompasses a range of both deep-learning and

machine-learning techniques. There are various PCa MRI datasets

that can be used for classification tasks, such as prostatex, ACRIN,

and I2CVB. However, accessibility to these datasets is often limited

or incomplete for many researchers. In contrast, Prostatex is a

publ ic ly access ib le datase t spec ifica l ly intended for

research purposes.

For the MRI imaging classification of PCa, Chen et al. (34)

suggested a deep-learning method focused on classification. A deep

convolutional neural network, such as InceptionV3 and VGG-16

underwent pre-training on the ImageNet dataset. Subsequently, the

multi-parametric magnetic resonance imaging dataset was fine-

tuned. Xu et al. (35) employed residual networks for the identifying

PCa. ResNets have demonstrated a capacity to learn both low-level

and high-level features, making them well-suited for detecting

subtle and intricate patterns in medical images, which are often

indicative of diseases like PCa.Their study showcased the feasibility

of training residual networks to acquire features that are valuable

for identifying suspicious indicative of PCa.

In this study, Alkadi et al. (36), the authors employ a deep

convolutional neural network to segment prostate lesions in T2W

MRI images. They introduce a 3D sliding window technique for 3D

context while maintaining computational efficiency. The approach

distinguishes cancerous and non-cancerous tissues, with

comparable results to multi-parametric systems, avoiding intricate

alignment steps. This comprehensive study Viswanath et al. (37)

assesses the performance of supervised classifiers in a multisite

approach for detecting prostate cancer (PCa) extent using T2w

MRI. The primary focus is on radiomic features extracted from

high-resolution T2 images. The aim is to enhance the accuracy and

timeliness of diagnoses in the context of medical imaging,
tiers in Oncology 03
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particularly for PCa detection, where early and precise

identification is critical for effective treatment.

Authors in this study Muhammad et al. (38) have highlighted

the potential of utilizing a combination of multiple parameters,

either as individual parameters or integrated multiple parameters

within a machine learning framework, to enhance diagnostic

capabilities. Their Schelb et al. (20) study highlights the

effectiveness of training deep learning models to recognize and

segment lesions in T2 and diffusion MRI data, significantly

improving the clinical evaluation of MRI data. The UNet model

was trained using cross-validation, incorporating split-sample

techniques, and subsequently validated using an external test set.

Singh et al. (39) suggest the use of deep neural networks for

cribriform pattern classification. In this study, the authors

introduce an automated image classification system employing

deep learning and hand-crafted features to analyze prostate

images. The focus is on detecting cribriform patterns, with results

demonstrating diagnostic potential.

With notable advancements in computer vision, particularly in

target recognition and identification through deep convolutional

neural networks, the medical imaging research community is

increasingly delving into the exploration of diverse CNN

architectures. These architectures offer substantial potential for

enhancing the accuracy of cancer detection systems. In this study,

Yoo et al. (40) developed and introduced an automated pipeline

based on CNN. This pipeline is designed to analyze images on a per-

patient basis, aiming to detect clinically relevant PCa.

Bulten et al. (41) reported that the implementation of a semi-

automatic labeling system eliminated the need for pathologists to

manually annotate the images. A high degree of agreement with the

reference norm has been obtained by the established framework.

The deep learning method outperformed pathologists in different

observation trials. Li et al. (42) clarify that for the diagnosis of

disease, histology analysis is also seen as the gold standard. By

reducing test time and inter-observer variability, computer-aided

diagnostic software can theoretically further optimize existing

pathology workflows. Previous cancer grading analyses have

predominantly focused on the classification of predefined regions

of significance or the handling of extensive volumes of fine-

grained annotations.

Using a Genetic Algorithm, Namdar et al. (43) recommended

fine-tuning a qualified CNN for enhanced PCa diagnosis, resulting

in an improved AUC. Furthermore, Kwon et al. (44) proposed a

radiomics-based method for prostate image identification. The

purpose was to identify multi-parametric MRI for clinically

important PCa. Lay et al. (45) stated because MR imaging has its

limitations, researchers suggest a different PCa detection technique

that can be most effective. The cancer detection approach trains

random ferns on MR sequences in the absence of one or more of

these MR sequences and then uses these random ferns to add the

MR sequences.

An approach for evaluating the grade for PCa has been suggested

in this paper by Abraham and Nair (46). In this method, features are

extracted utilizing deep network autoencoders in conjunction with

hand-crafted features, subsequently categorized with a softmax

classifier. Song et al. (47) have shown that radiologists manually
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mark the regions of significance for PCa and measure the scores for

each area. The authors developed a model on patch-based DCNN

that utilizes a combination of MRI data to distinguish between

cancerous and non-cancerous patients of PCa.

According to Lemaitre et al. (48), new magnetic resonance

imaging (MRI) approaches have emerged to enhance diagnostic

accuracy. However, factors like observer variability and the visibility

and complexity of lesions can still impact diagnosis. In this respect,

CAD-based applications are designed to support radiologists in

their clinical practice. Taking account of all MRI modalities, the

authors suggest a CAD method. The goal of this CAD scheme was

to detect the prostate position of cancer. Liu et al. (49) stated that for

the classification of PCa, deep learning architecture was developed

using the 3D multipara-metric MRI data. The Xmas-Net model was

used for extracting features in this study. Mehrtash et al. (50) have

demonstrated that to better detect PCa Computer-assisted

diagnosis of MRI PCa may be used as a method of clinical

decision support to help interpretation by radiologists. CNN

models are used to detect the probability of a patient being

affected or not.Yang et al. (51) provides an integrated method for

detecting PCa that can simultaneously image PCa and locate lesions

based on characteristics of the deep convolutionary neural network

and SVM.
3 Transfer learning

TL is a technique for transferring information across domains

Orenstein and Beijbom (52). Deep learning is a challenging and

time-intensive process, especially in medical imaging, where a

substantial amount of training data is needed to understand

certain patterns. To address the challenge of limited data, medical
Frontiers in Oncology 04
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imaging datasets are utilized to fine-tune the weights of deep

learning models that were previously trained for different

computer vision applications, thus accelerating the training

process. The strategy frequently used in various computer vision

problems is fine-tuning transfer learning. For classification, the

dense layers are well-tuned, while the top layers are frozen. The

proposed methodology for classifying prostate images using

transfer learning is shown in Figure 1.
4 Materials and methods

The prostate dataset was obtained from the Cancer Imaging

Archive Nolan (53). The dataset consists of prostate MRI images

which are labeled with the help of radiologists. After performing

minor data preprocessing, we carefully selected 221 cases of prostate

cancer for our dataset. Our dataset comprised 98 cases of low-grade

and 123 cases of high-grade cancer. Every patient included in the

study exhibited an initial screening result that raised suspicions

regarding prostate cancer. Subsequently, each of these patients

underwent a biopsy, from which a GS was determined. These

cases are annotated with two-class labels distinguishing between

low-grade (GS = 3 + 4, 3 + 3) and high-grade (GS = 4 + 4, 4 + 3,

5 + 3, 3 + 5) cancer. For each case, T2w (sagittal and transaxial) and

ADC images were provided to conduct experiments.

In our experimental setup, we adopted a systematic approach to

partitioning the dataset to ensure robust training and evaluation of

our model. We performed a random selection process, wherein 80%

of the dataset was utilized for various purposes, including training

and validation, while the remaining 20% of the images were

exclusively designated as the test set. Within this 80% portion of

the dataset, we further allocated distinct proportions for training
FIGURE 1

The top layers (last) are fine-tuned using TL.
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and validation. Approximately 50% of the dataset was allocated for

training, which served as the foundation for our transfer learning

process. The remaining 30% of this 80% portion was dedicated to

the validation set. This set played a pivotal role in monitoring the

model’s performance during training. By periodically evaluating the

model’s predictions on this validation subset, we could make

informed decisions regarding hyperparameter tuning and model

adjustments, ultimately ensuring that our model’s generalization

capabilities were optimized. Lastly, the 20% of the images that

constituted the test set were kept entirely separate from the training

and validation data. This segregation ensured that our model was

assessed on entirely unseen data, mirroring real-world scenarios

where it would be applied to make predictions. The test set served to

evaluate the model’s performance, providing a reliable measure of

its ability to generalize to new and previously unseen data. Through

this well-structured data partitioning strategy, we aimed to achieve

a robust and thorough assessment of our model’s capabilities, while

also upholding the principles of fairness, rigor, and transparency in

our experimental approach.
4.1 Proposed approach

This study presented a transfer learning model that utilizes

multiparametric MRI for the classification of PCa into low-grade

and high-grade. In Figure 2, the proposed model is mentioned. To

learn features from multiparametric sequences (ADC, T2w), the

authors make a transfer learning model with three branches and

combine them to gain discriminative descriptors. A significant

amount of training data is needed for deep convolution neural

networks in medical imaging. When the available data is
Frontiers in Oncology 05
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insufficient, deep CNNs often rely on pre-trained models. These

models have been previously trained on extensive datasets, allowing

for knowledge transfer, which is a fundamental aspect of TL.

Figure 3 describes the suggested model’s workflow. Transfer

learning-based multi-parametric MRI model to automatic PCa

identification is presented in this study. Various sequences of MRI

reveal distinct aspects of PCa. T2-weighted (T2w) and ADC (Apparent

Diffusion Coefficient) imaging modalities offer distinct insights, and

their integration can significantly enhance the accuracy of PCa

classification. To learn features from multi-parametric sequences

T2w (sagittal and transaxial) and ADC, the authors make a transfer

learning model with three branches of architecture to gain features

separately for each modality and then combine them to gain one

feature vector. We feed these sequences simultaneously in the network

and their concatenation after the convolutional layer. Such a fusion

approach allows the learning process to generate effective and

discriminating PCa-related characteristics of multiple modalities

mutually influenced by each other. To achieve better performance,

we fine-tune our model by changing the top layers and defining the last

layer classes to two nodes, as we identify PCa as a low-grade and high-

grade form of cancer. After optimizing the MPTL methodology, we

could perform the task of classifying prostate images. The performance

of classifying PCa could be further improved by improving the ability

to combine learned features.
4.2 Transfer learning using a single
sequence to extract features

Due to the limited availability of prostate cancer data, we have

opted for a transfer learning strategy instead of training an entire
FIGURE 2

Proposed model.
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deep-learning neural network from the ground up. Specifically, we

have harnessed the power of established deep learning architectures

like ConvNets, AlexNet, and VGGNet, which have previously been

trained on ImageNet datasets and are readily accessible as pre-

trained networks. By implementing the EfficientNet architecture

across multiple MRI series, we can extract essential features from

ADC, T2w sagittal, and T2w transaxial images. This innovative

approach allows us to transfer the knowledge acquired from

ImageNet and effectively characterize PCa images.
4.3 A multisequence MRI-based feature
fusion method

Different MRI modalities of PCa demonstrate different aspects.

Various sequences of MRI disclose various PCa kinds. To provide

separate and complementary data, T2w and ADC are recorded, and

their combination can effectively increase the precision of PCa
Frontiers in Oncology 06
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diagnosis. It is efficient to obtain the simultaneous information from

MRI in deep learning method to optimize the relation between

different MRIs. We feed these sequences simultaneously in the

network and their concatenation after the convolutional layer. Such

a fusion approach allows the learning process to generate effective

and discriminating PCa-related characteristics of multiple

modalities mutually influenced by each other. The performance is

seen as the final joint characteristic after fully connected layers.
4.4 Developing a fine-tuned
training strategy

In our approach utilizing the Efficient-Net architecture, we took

several steps to enhance the classification of PCa into high and low-

grade. We integrated fully connected layers into the network and

fine-tuned it using our dataset. This fine-tuning process was pivotal

in adapting the model to our specific classification task. To boost the
FIGURE 3

Workflow of the proposed model.
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feature extraction capabilities of our model, we introduced custom

layers, including global average pooling within the classification

layers. This addition helped in capturing more nuanced features

from the medical images, which is crucial in accurately classifying

cancer. What sets our approach apart is the use of Efficient-Net

architectures, which come with distinct advantages. These models

are not only faster in classification, being 6.1× faster compared to

existing CNN models, but they are also significantly smaller, being

8.4× smaller. Importantly, their compact size doesn’t compromise

their accuracy. Our Efficient-Net models leveraged TL based on

architectures pre-trained on the extensive ImageNet dataset, known

for its high accuracy and efficiency. This TL approach allowed us to

benefit from the knowledge embedded in these pre-trained models,

especially when our own dataset was limited. To further enhance

the training process and ensure robustness, we employed data

augmentation. This technique plays a crucial role in augmenting

the dataset, increasing the diversity of training samples, and

consequently, improving the model’s ability to generalize to

unseen data. It is particularly effective in preventing overfitting, a

common challenge in classification tasks. One notable aspect of our

strategy is the use of a pre-trained model as a feature extractor. In

this approach, the last fully connected layer is removed, and the

remaining layers are treated as a fixed feature extractor. This

significantly accelerates the training process. In essence, our

approach combines the advantages of Efficient-Net architectures,

Transfer Learning, data augmentation, and a pre-trained feature

extractor to enhance the classification of prostate cancer. Figure 4

provides a visual representation of our model in action,
Frontiers in Oncology 07
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demonstrating its potential in the field of medical image

classification. The performance of the baseline Efficient-Net

architecture is demonstrated in Figure 5.
4.5 Evaluation metrics

The output of input images is typically evaluated using the

evaluation matrices listed below. The confusion matrix can be used

to measure these matrices, including accuracy, precision, recall, and

F1-score. The confusion matrix has four different types of

parameters, where TP denotes a true positive, TN denotes a true

negative, FP denotes a false positive, and FN denotes a false

negative. as shown in Table 1 and equations are given below.

True Positives: The precise predicted positive values

demonstrate that the predicted and the actual class value are

both positive.

True Negatives: These are the accurately predicted negative

values, showing that both the predicted and the actual class value

are negative.

False Positives: When the predicted class is true but the actual

class is false.

False Negatives: When the predicted class is no but the actual

class is yes.

Accuracy: Accuracy is the most used performance metric, which

may be calculated as the ratio of correctly expected observations to

all observations. Having high accuracy will lead one to believe that

our models outperform.
FIGURE 4

Model into work.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1225490
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mehmood et al. 10.3389/fonc.2023.1225490
Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision: Precision is the ratio of accurately predicted positive

observations to all predicted positive observations.

Precision =
TP

TP + FP
(2)

Recall: Recall is defined as the ratio of accurately predicted

positive observations to all of the actual class observations.

Recall =
TP

TP + FN
(3)

F1 score: The weighted average of recall and accuracy is the

Score. This score takes into consideration both false positives and
Frontiers in Oncology 08
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false negatives. Although it is not as easy to immediately understand

as accuracy, it is typically more beneficial than precision, especially

if we have an uneven class distribution. If false positives and false

negatives result in equal losses, accuracy performs better. It is

simpler to include both accuracies and recall if the cost of false

positives and negatives is significantly different.

F1 − Score =
2� Precision   xRecall
Precision + Recall

(4)
4.6 Experimental settings

To get generalized results, the authors repeated the experiment

several times, looking at different learning and test data
TABLE 1 Literature review regarding PCa classification.

Author(s) Description of Research Methodology Dataset Used Evaluation Measures

Chenet al. (34) Use transfer learning for
prediction of PCa

InceptionV3,
VGG-16

PROSTATEx AUC, ROC

Xu et al. (35) Utilize the residual networks for detecting PCa Res-Net PROSTATEx ROC, HoM

Alkadi et al. (36) Using deep
convolutional encoder-decoder for detection

DCNN I2CVB Accuracy, DSC, IoU

Kwon et al. (44) Apply CART and LASSO for
detecting PCa

CART,
LASSO

PROSTATEx ROC, AUC

Lay et al. (45) Apply Random ferns for
classifying
PCa

Random
ferns

PROSTATEx ROC, AUC

Abraham and Nair (46) CNN inceptionV3 for feature pooling and
selection

CNN, SVM PROSTATEx Accuracy, kappa,
PPV

Songet al. (47) Model with patchbased DCNN for PCa DCNN PROSTATEx AUC

Lemaitre et al. (48) RF classifier for feature learning and classification RF
classifier

I2CVB AUC

Liu et al. (49) Xmas-Net
model used for extracting
features

Xmas-Net PROSTATEx ROC, AUC

Mehrtash et al. (50) Probability of patient being
affected or not

CNN PROSTATEx ROC

Yanget al. (51) The model with DCNN, SVM to
detect PCa

DCNN, SVM PROSTATEx FROC, ROC,
LLF, NL
FIGURE 5

Efficient-net baseline model.
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combinations. To increase the robustness of the presented MPTL

approach and to reduce overfitting, the authors used the data

augmentation technique to increase the size of the training data

of different image transformations. Before transferring images as

input to the networks, the authors conducted some preprocessing

steps. To fit the model, images are resized or reshaped from the

original size to 244 × 244 for the family of Efficient-Net models for

image classification. The Adam optimizer was used to further train

the entire set of pre-trained Efficient-Net models.

The settings utilized to conduct the experiments are as follows.
Fron
• Experiment carried out using a Google Colab Pro platform

with a GPU T4 P100 and 25 Gigabytes memory.

• Batch size of 16.

• Learning rate from le-1 to le-6 with weight decay of le-4.

• Epochs are set to 150.

• The Adam optimizer was used to further train the whole set

of pre-trained Efficient-Net models Perez and Wang (54).
4.7 Experiments and results

We conducted an extensive comparative analysis to evaluate

our proposed model alongside eight baseline methods. Initially, we

employed a transfer learning model without fine-tuning, utilizing

image features directly from ImageNet for experimentation. We

then delved into three additional baseline experiments, finetuning

single MRI sequences, specifically T2-weighted (T2w) and ADC

(Apparent Diffusion Coefficient), for prostate cancer classification.

Subsequently, we extended our experiments to three more baseline

experiments, employing two MRI parameters as input. The

comprehensive classification results for both our method and the

eight baseline methods are meticulously detailed in Table 2.

To assess the classification performance of our proposed MPTL

model, we carried out a comprehensive evaluation, comparing it

with state-of-the-art prostate cancer classification methods,

including both deep learning and machine learning-based

approaches. These comparisons were conducted using our

prostate cancer datasets, and we followed the experiment settings
tiers in Oncology 09
97
outlined in these reference papers to ensure a fair and equitable

assessment. Table 3 meticulously presents the precision, recall, and

accuracy metrics achieved by both our approach and the

comparative methodologies. It’s noteworthy that deep learning-

based techniques outperformed methods relying on traditional

radiomics features or conventional machine learning approaches.

This observation highlights the capability of deep learning-based

techniques to capture more distinctive features for the identification

of prostate cancer.

Our method performs better at classification than the preceding

approaches. This is due to the fact that convergence issues and over-

fitting issues with little data on PCa also hinder deep network

training. In comparison, the image details in the transfer learning

model using Efficient-Net were considered by our MPTL model.

Therefore, as compared to previous classification techniques, our

technique evaluates more precise parameters for PCa and achieves

more efficiency.

This method classified the input image into cancer types with

low and high grades. We elaborate on the experimental results

performance to distinguish between the aggressive and non-

aggressive forms of cancer. The Efficient-Net B7 architecture,

which was trained on images of PCa, produces the greatest

results. Table 3 shows the results of the proposed methods. In

Şerbănescu et al. (2), authors apply the Google-Net approach for the

identification of PCa classification for binary classification to

distinguish low and high-grade forms of cancer and achieve 60.9

accuracies and performance. In Chen et al. (34) authors apply the

VGG-16 approach for the identification of PCa classification for

binary classification to distinguish the low and high-grade forms of

cancer and achieve 83 accuracies and performance.

In Kwon et al. (44), authors apply the CART approach for the

identification of PCa classification for binary classification to

distinguish the low and high-grade forms of cancer and achieve

82.0 accuracies and performance. In Le et al. (31), authors apply the

ResNet approach for the identification of PCa classification for

binary classification to distinguish low and high-grade forms of

cancer and achieve 82.09 accuracies and performance. In

Muhammad et al. (55), authors apply the inceptionV3 approach

for the identification of PCa classification for binary classification to

distinguish the low and high-grade forms of cancer and achieve

80.09 accuracies and performance.
TABLE 2 Comparison results of PCa classification.

References Methods Accuracy Precision Precision F1-score

Chen et al. Chen et al. (34) VGG-16 83 82.42 88.23 86.78

Kwon et al. Kwon et al. (44) CART 82.0 81.84 81.46 79.61

Le et al. Le et al. (31) ResNet 82.09 82.27 82.88 82.34

Muhammad Muhammad et al. (55) inceptionV3 80.09 78.95 83.96 81.61

Serbanescu et al. Şerbănescuet al. (2) GoogleNet 60.9 58.78 59.36 57.89

Present work (MPTL)

EfficientNet-B0 84.44 87.5 84.0 85.71

EfficientNet-B5 86.67 83.33 90.90 86.95

EfficientNet-B7 88.89 91.67 88.0 89.47
f
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The comparison results of different methods withmulti-parametric

modalities are shown in Table 2. The results demonstrate that our

proposed approach with a fusion of three modalities performs better

results than single modalities and pair of modalities which depicts that

our approach performance is better on multiple modalities.

The learning curve for accuracy and loss during training and

validation is depicted in Figures 6, 7. Our approach also shows

better identification performance compared with the other machine

learning approaches with extraction features from a single MRI

sequence, showing that the methods based on deep learning will

learn more high-level discriminative features. ROC curves of PCa

classification are shown in Figure 8. The results demonstrate the

performance of the model to identify input images is classified as

low and high-grade forms of cancer that are aggressive and non-

aggressive forms of cancer.
4.8 Cross dataset validation

To comprehensively evaluate the generalization performance of

the proposed Multi-Parameter Transfer Learning (MPTL) model,
Frontiers in Oncology 10
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an extensive experiment was conducted across diverse datasets. The

primary objective of this experiment was to showcase the

practicality and effectiveness of the MPTL framework in real-

world scenarios where data sources may vary significantly.

For this purpose, we strategically leveraged two distinct

datasets, both of which are publicly available to ensure

transparency and reproducibility in our research. The first

dataset, sourced from the Cancer Imaging Archive Nolan (53), is

a substantial collection of medical images related to prostate cancer.

The second dataset, referred to as I2CVB G. Lemaitre et al. (56),

provides an additional set of prostate MRI images for comparative

analysis. It’s worth noting that these datasets bring a wealth of

diversity to the experiment. They exhibit variations in terms of

image characteristics such as shapes, angles, sizes, resolutions, and

formats. This diversity mirrors the real-world scenario where

medical imaging data can originate from various sources and

possess inherent dissimilarities. After minor cleaning, our training

process was conducted on a robust training set comprising 5096

images from the first dataset. Subsequently, we rigorously assessed

the model’s performance on an independent test set comprising

1371 images sourced from the I2CVB dataset. This demarcation of
FIGURE 6

Accuracy curves of PCa classification.
TABLE 3 Comparison results of PCa MRI.

Accuracy Precision Recall F1-score

MPTL-B0 84.44 87.5 84.0 85.71

T2w sagittal 71.43 72.13 73.79 72.66

T2w transaxial 73.78 71.43 79.39 75.44

ADC 74.72 73.86 78.30 76.06

ADC and T2w sagittal 81.81 82.97 86.67 84.78

ADC and T2w transaxial 83.33 85.1 83.34 84.20

Sagittal and T2w transaxial 82.21 86.95 83.33 85.10

MPTL-B5 86.67 83.33 90.90 86.95

MPTL-B7 88.89 91.67 88.0 89.47
f

FIGURE 7

Loss curves of PCa classification.
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training and testing datasets enabled us to simulate a real-world

scenario where a model is required to adapt and generalize across

distinct data sources.

The results obtained in this cross-dataset experiment are highly

encouraging. The proposed MPTL framework exhibited remarkable

performance, further emphasizing its versatility and effectiveness in

handling diverse data sources. Specifically, our model achieved an

accuracy rate of 86.65%, indicating its capability to make correct

classifications. The precision rate, measuring the model’s ability to

correctly classify positive cases, stood at an impressive 83.36%.

Furthermore, the recall rate, signifying the model’s capacity to

identify all relevant instances, reached an impressive 89.18%. Lastly,

the F1-score, which strikes a balance between precision and recall,

demonstrated a robust performance at 86.13%. These outcomes

underscore the generalization power of the MPTL framework for

the classification of prostate MRI images. The model’s consistent and

high-quality performance across datasets with diverse characteristics

reinforces its potential utility in real-world medical applications,

where data heterogeneity is often encountered.
5 Conclusion

In terms of replacing manual cancer assessment by radiologists

using MRI images, CAD plays a critical role. There are, however,

numerous risks and a high level of complexity involved in this task,

along with expert-level opinions. The manual extraction of

handcrafted features and subsequent classification not only

consumes time but also introduces a higher likelihood of errors.

To streamline the assessment process for radiologists and mitigate

diagnostic errors, the necessity for an automated decision-making

classification model becomes evident. In this paper, we introduce an

innovative MPTL model for the automatic classification of PCa.

Our model leverages knowledge from ImageNet to aid in the feature

learning process from multi-parametric MRI (mp-MRI) sequences.

These transferred features are combined to enhance the accuracy of

PCa classification. A refined fine-tuning method including global
Frontiers in Oncology 11
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average pooling is further applied to enhance PCa classification. As

a result, the learned features exhibit significantly enhanced

discriminative capabilities. Through an extensive series of

comparative studies, we have highlighted the exceptional

performance of our model in direct comparison to the prevailing

state-of-the-art cancer classification methods. Our empirical results

unequivocally establish the efficacy of our proposed approach in

achieving high-precision PCa classification. Our findings highlight

the potential benefits of transfer learning techniques from natural

images to the medical domain, potentially offering valuable

solutions in scenarios where the availability of annotated training

datasets is limited for various practical considerations.
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ROC curves of PCa.
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lesions in the transitional zone

Ying-Ying Zhao1†, Mei-Lian Xiong2†, Yue-Feng Liu3,
Li-Juan Duan1, Jia-Li Chen1, Zhen Xing2, Yan-Shun Lin1*
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Purpose: This bi-institutional study aimed to establish a robust model for

predicting clinically significant prostate cancer (csPCa) (pathological grade

group ≥ 2) in PI-RADS 3 lesions in the transition zone by comparing the

performance of combination models.

Materials and methods: This study included 243 consecutive men who

underwent 3-Tesla magnetic resonance imaging (MRI) and ultrasound-guided

transrectal biopsy from January 2020 and April 2022 which is divided into a

training cohort of 170 patients and a separate testing cohort of 73 patients. T2WI

and DWI images were manually segmented for PI-RADS 3 lesions for the mean

ADC and radiomic analysis. Predictive clinical factors were identified using both

univariate and multivariate logistic models. The least absolute shrinkage and

selection operator (LASSO) regression models were deployed for feature

selection and for constructing radiomic signatures. We developed nine models

utilizing clinical factors, radiological features, and radiomics, leveraging logistic

and XGboost methods. The performances of these models was subsequently

compared using Receiver Operating Characteristic (ROC) analysis and the

Delong test.

Results: Out of the 243 participants with a median age of 70 years, 30 were

diagnosed with csPCa, leaving 213 without a csPCa diagnosis. Prostate-specific

antigen density (PSAD) stood out as the only significant clinical factor (odds ratio

[OR], 1.068; 95% confidence interval [CI], 1.029–1.115), discovered through the

univariate and multivariate logistic models. Seven radiomic features correlated

with csPCa prediction. Notably, the XGboost model outperformed eight other

models (AUC of the training cohort: 0.949, and validation cohort: 0.913).

However, it did not surpass the PSAD+MADC model (P > 0.05) in the training

and testing cohorts (AUC, 0.949 vs. 0.888 and 0.913 vs. 0.854, respectively).

Conclusion: The machine learning XGboost model presented the best

performance in predicting csPCa in PI-RADS 3 lesions within the transitional
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zone. However, the addition of radiomic classifiers did not display any significant

enhancement over the compound model of clinical and radiological findings.

The most exemplary and generalized option for quantitative prostate evaluation

was Mean ADC+PSAD.
KEYWORDS

magnetic resonance imaging, prostate cancer, PI-RADS, transitional zone, radiomics
1 Introduction

Prostate cancer is the most common cancer affecting men

worldwide (1), with a lifetime risk as high as 37% (2). By 2040,

global prostate cancer incidences are projected to rise to nearly 2.3

million new cases and 740 000 deaths (3). Multi-Magnetic resonance

imaging (mpMRI) of the prostate, which helps improve the detection,

localization, and staging of prostate cancer (PCa), has been established

as the de facto standard for the imaging assessment of suspected PCa

(4). A large-sample study demonstrated that utilizing MRI for initial

screening before biopsy can minimize needless biopsies by

approximately half for cases with a PI-RADS score of 3 or higher,

and prevent the overdiagnosis of clinically insignificant lesions (5).

The Prostate Imaging Reporting and Data System (PI-RADS) has

undergone continuous refinement and updates since its conception,

allowing for more standardized assessments of prostate lesions. The

most recent iteration, PI-RADSv2.1 revised in 2019, standardizes the

terminology, interpretation, and contents of MRI reports (6). Lesions

are classified into five categories (1 to 5), based on their anatomical

location and MRI signal changes. Higher categories correlate with a

higher probability of detecting clinically significant prostate cancer

(csPCa). Lesions categorized as PI-RADS 1 and 2 bear an exceedingly

low cancer detection rate (CDR) of less than 5% (7, 8) and necessitate

only follow-up. In contrast, lesions classified as PI-RADS 4 and 5

have an extremely high CDR (40–80%) (7, 8) calling for further

biopsy. However, PI-RADS 3 lesions present a moderate CDR,

indicating an ambiguous risk of malignancy.

PI-RADS 3 lesions are frequently identified in patients undergoing

MRI examinations, with reported incidences ranging from 22%–32%

(9); However, most studies indicate a relatively low detection rate for

csPCa, between 2%–22.9% (10, 11). Concurrently, the false negative

rate for csPCa is notably high at 16.2% for cases with PI-RADS scores

of 3 or higher (5). Current guidelines offer no explicit direction for

subsequent treatment of PI-RADS 3 lesions, thereby presenting a

dilemma for urologists in deciding between follow-up prostate-

specific antigen (PSA) testing and imaging monitoring, or immediate

biopsy. It is crucial to selectively submit patients likely to have csPCa to

undergo prostate biopsy, maximizing the benefits from the procedure

and potential aggressive treatment strategies.

Although the implementation of PI-RADSv2.1 has boosted the

precision in identifying csPCa, PI-RADS 3 lesions remain elusive

within the “gray zone” of mpMRI evaluations, especially for the

transition zone (TZ). Benign prostatic hyperplasia, a common
02
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condition in elderly men, creates a degree of organized chaos

within the TZ, hampering accurate lesion categorization (12).

Recent studies suggest exploiting radiomic features and mean

apparent diffusion coefficient (ADC) values to quantitively

evaluate MRI enhances diagnostic accuracy for TZ lesions over

mere qualitative PI-RADS assessment (13–15). Engel et al. reported

that the risk stratification for prostatic TZ lesions could be

improved through a quantitative diffusion-weighted imaging

(DWI) analysis (4). Another study demonstrated an achievable

specificity and sensitivity through downgrading PI-RADS lesions at

or above 4 based on mean ADC values or machine learning

algorithms (15). Ultimately, radiomics hold potential in

algorithmically identifying csPCa in PI-RADS 3 lesions (13–16).

A greater balance between biopsy-associated complications,

overdiagnosis, and overlooking csPCa diagnosis might be

achieved using radiomics prostate MRI. For patients with both

PI-RADS 3 and a low risk of csPCa, immediate biopsy can possibly

be deferred. However, previous studies of this nature typically

involved smaller cohorts from a single institution and lacked

distinction between PZ and TZ lesions (17).

Therefore, we hypothesized that the characteristics of detected

TZ lesions can be improved through radiomics. This study aimed to

assess different algorithm models for risk stratification among

patients with PI-RADS 3 in the TZ, using a combination of

individual clinical characteristics and radiological data.

2 Materials and methods

2.1 Demographic information and
clinical data

This retrospective study included patients from two institutions

(The First Affiliated Hospital of Fujian Medical University and

Fuqing Hospital). The institutional ethics committee approved this

study and waived the requirement for informed consent. Data were

retrospectively collected from men who underwent MRI and biopsy

examinations between January 2020 and April 2022 according to

the following eligibility criteria: (a) men with PI-RADS 3 lesions

(v2.1 standard), (b) PI-RADS 3 lesions confirmed by pathology and

matched to the MR images in the same region, and (c) ultrasound-

guided prostate biopsy or radical surgery performed within 1 month

of the MRI examination. The exclusion criteria were: (a) biopsy or a

history of treatment (antihormonal therapy, radiation therapy, focal
frontiersin.org
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therapy, or prostatectomy) for prostate cancer prior to the MRI

examination, (b) multiple primary cancers or a previous history of

cancer, (c) incomplete sequences or severe artefacts on MRI images,

and (d) any PI-RADS 4 or 5 lesions. Figure 1 presents the flowchart

of the inclusion and exclusion criteria of the study.

The following clinical and laboratory data were collected: age, the

most recent serological value of total prostate-specific antigen (tPSA;

ng/mL), free prostate-specific antigen (fPSA; ng/mL), fPSA/tPSA (f/t),

prostate volume(V), PSA density (total PSA/prostatic volume ratio

[PSAD]) during MRI examination and final histopathological analysis,

andmean ADC value (mm2/s). Themean ADC value was calculated in

volumes of interest (VOIs), encompassing the entire lesion without

exceeding the lesion margins. Table 1 presents the baseline

epidemiologic and clinical characteristics, including tumor location,

pathological findings, and clinical assessment.

A 12-core systematic biopsy was performed by urologists with

three to five years of transrectal ultrasound-guided prostate biopsy

experience. Based on biopsy results, the patients were divided into

two cohorts: the csPCa and no csPCa (benign and Grade Group 1

[GG1]) groups. The primary endpoint of csPCa was defined as

patients with≥GG2 (Gleason 3 + 4) prostate cancer.
2.2 MRI examination

During the study period, prostate MRI was performed at

Institution 1 using a 3.0T scanner (Spectra; Siemens Healthineers),
Frontiers in Oncology 03
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whereas it was performed using a 3.0T MRI system (Philips Ingenia,

Amsterdam, the Netherlands) at Institution 2. Standard multichannel

body coils and integrated spine phased-array coils were used

according to the guidelines of the European Society of Urogenital

Radiology (18). Appendix Table 1 summarizes the details of the MRI

protocols of each institution.
2.3 MRI lesion segmentation

To confirm that the lesions were classified as PI-RADS 3 as per

the PI-RADS v2.1 guidelines, the MR images were interpreted by

two radiologists (Y. Y. Z. and M. L. X.) with 6 and 10 years of

experience in prostate MRI interpretation, respectively, who were

blinded to the pathological data. In cases of disagreement, a final

consensus was reached by re-reading.

Axial T2-weighted and diffusion-weighted images in DICOM

format were downloaded from the picture archiving and

communication system (PACS). The MRI index lesions were

manually segmented by an investigator (Y. Y. Z.). Given the

importance of heterogeneity analysis while avoiding partial volume

effects, VOIs encompassing the entire lesion, including bleeding,

necrosis, and cystic areas, the urethra, ejaculatory duct, and other

normal anatomical structures were drawn on each slice with the lesion.

Segmentation was performed under the supervision of another

radiologist (T.H.C. with 20 years of experience in prostate MRI),

using the dedicated software ITK-SNAP (version 3.8.0 for Win,
Patients underwent mpMRI according to the European Society of Urogenital Radiology(ESUR)

guidelines at 3 Tesla scanner, and undergoing biopsy between January 2020 and May 2022

n=1819 1310+509

n=1475 patients were excluded that were scored

as PI-RADS categories 2 4 5 or the lesion were

located in the peripheral zone

PI-RADS category 3 lesions were included

n=344

n=69 patients were excluded because images

were performed on MRI scanners at other

facilities or with a 1.5-T magnet

n=23 patients excluded due to artifacts or

incomplete examination

n=6 patients excluded due to different treatment

prior to mpMRI

n=3 patients excluded due to history of other

tumors

Patients available for Study inclusion

n=243

FIGURE 1

Flowchart of the study population.
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http://www.itksnap.org/). In addition, segmentation was also

performed separately on axial T2-weighted and ADC images. The

background obturator internus in the corresponding or adjacent layers

was segmented for reference, excluding the muscle steatosis area while

encompassing at least 50 voxels in at least three adjacent sections.

For the intraobserver and interobserver agreement evaluation in

manual segmentation, we randomly selected 50 patients, and their

ROIs were delineated 1 month later by the same radiologists (Y. Y.

Z. and M. L. X.).
2.4 Image postprocessing and analysis

T2-weighted images were normalized by dividing the voxel

intensities by the mean value of the background obturator internus

tissue. Since ADC is a quantitative measurement, it was not

normalized. Radiomic feature calculations were performed using

the pyradiomics package of Python 3.7.1. (https://github.com/
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Radiomics/pyradiomics) (18) according to the analytical steps

depicted in Figure 2. Within each VOI, 14 volume and shape

features, 198 first-order histogram features, 264 grey-level co-

occurrence matrix (GLCM) features, 154 grey-level dependence

matrix (GLDM) features, 176 grey-level run length matrix

(GLRLM) features, 176 grey-level size zone matrix (GLSZM)

features, and 55 neighboring grey tone difference matrix

(NGTDM) features were calculated, resulting in 1037 features per

VOI. These features were calculated on both the ADCmaps and T2-

weighted images; thus, a total of 2074 radiomics features were

obtained for each lesion.
2.5 Radiomics feature selection and
signature building

All patients were randomly stratified into the training and testing

cohorts in a 7:3 ratio. The mean ADC was extracted from the
TABLE 1 The Characteristics of Demographic and Clinical Data of Patients with PIRADs 3 Lesions on MRI.

level Overall No csPCa csPCa p

n (n=243) (n=213) (n=30)

GGG (%) 0 183 (75.3) 183 (85.9) 0 (0.0) <0.001

1 30 (12.3) 30 (14.1) 0 (0.0)

2 19 (7.8) 0 (0.0) 19 (63.3)

3 8 (3.3) 0 (0.0) 8 (26.7)

4 3 (1.2) 0 (0.0) 3 (10.0)

age (median [IQR])
70 70 72

0.026
[66.00, 75.00] [65.00, 74.00] [68.00, 76.00]

MADC (median [IQR]×10-4)
8.22 8.39 6.98 <0.001

[7.51, 8.83] [7.68, 8.91] [6.43, 7.75]

MT2WI (median [IQR]×102)
2.85 2.85 2.81 0.742

[2.52, 3.38] [2.54, 3.38] [2.42, 3.53]

RT2WI (median [IQR])
3.05 3.06 2.98 0.346

[2.66, 3.40] [2.66, 3.43] [2.75, 3.18]

V (median [IQR])
50 51.94 43.04 0.012

[35.19, 66.60] [35.70, 69.18] [23,68, 52.56]

PSAD (median [IQR]×10-2)
17.69 16.54 38.34 <0.001

[10.10, 29.32] [9.81, 25.38] [19.19, 53.07]

tPSA (median [IQR])
8.65 8.38 10.67 0.009

[5.23, 13.55] [5.07, 12.30] [8.17, 19.18]

fPSA (median [IQR])
1.45 1.42 1.94 0.029

[0.95, 2.20] [0.90, 2.14] [1.35, 2.78]

f/t (median [IQR])
0.17 0.17 0.13 0.044

[0.12, 0.22] [0.14, 0.22] [0.10, 0.20]
frontie
GGG, Gleason grade group; MADC,mean apparent diffusion coefficient; V, the volume of prostate; PSAD, prostate specific antigen density; tPSA, total prostate specific antigen; fPSA,free prostate
specific antigen; f/t,fPSA/tPSA.
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radiomic dataset for separate analyses. Missing data were analyzed

using the Random Forest Multiple Interpolation method (R language

mice package). The features with ICC < 0.75 were filtered out.

Subsequently, upsampling was used to address sample imbalance in

the training cohort, and the Student’s t-test or Mann–Whitney U-test

was used for preliminary feature selection, which was determined

using the Shapiro–Wilk and Levene’s tests. The least absolute

shrinkage selection operator (LASSO)-logistic regression model was

used to select the predictive features, and the radiomics signature (rad

score) was calculated by adding the selected radiomics features,

weighted by their respective coefficients. This procedure was

performed separately on the T2-weighted and ADC images.
2.6 Creation and verification of model

Multivariate logistic regression analysis was used to identify

independent predictive clinical factors. Prediction models were

established based on clinical variables (clinical model),

radiological features (radiological model), radiomic signatures

(radiomics Model), and a combination of clinical variables,

radiological features, and radiomics features (logistic regression

and XGboost models) to generate a quantitative predictive tool

for csPCa diagnosis. Calibration curves were used to evaluate the

robustness of the model. Decision curve analysis (DCA) was used to

evaluate the net benefit of the model for clinical decision-making at

different threshold probabilities.
2.7 Statistical analysis

For demographic data, continuous variables were analyzed

using Student’s t-test or Mann–Whitney U test, as determined by

Shapiro–Wilk and Levene’s test. Continuous variables with normal

distribution were presented as mean ± standard deviation.
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Continuous variables with non-normal distribution were

presented as median (inter-quartile range [IQR]). Categorical

variables were analyzed using the chi-square test or Fisher’s exact

test. Univariate and multivariate logistic regression analyses were

used to identify the significant predictors of csPCa. LASSO logistic

regression analysis was used for screening the predictive radiomics

features. The eXtreme Gradient Boosting (XGboost) model was

created with stratified 10-fold cross-validation, and a grid search

was performed to identify the optimal hyperparameters for training

using the GridSearchCV function in Scikit-learn (estimated by ten-

fold cross-validation). The diagnostic performance of different

models for the prediction of csPCa was assessed using receiver

operating characteristic (ROC) curve analysis and by calculating the

accuracy, sensitivity, specificity, and area under the ROC curve

(AUC) with 95% CI. The Delong test was used to compare the

performance of the different models, regardless of whether they

differed significantly. All data analyses were performed using

Python (version 4.0.1; https://www.r-project.org) and R (version

3.7.3; https://www.python.org/downloads/) software. All tests were

two-sided, with statistical significance set at P ≤ 0.05.
3 Results

3.1 Demographic information and
clinical data

This study included 243 patients (median age, 70 years; IQR, 66–75

years). Prostate biopsy revealed that 213 (87.6%) patients did not have

csPCa [183(75.3%) men had no cancer, and 30 (12.3%) had GG1], and

30 (12.3%) patients had csPCa. The detection rate for csPCa was equal

to 13.7% (23/168 cases) vs 9.3% (7/75 cases) with PI-RADS 3 lesions

diagnosed in the institution 1 vs the institution 2. Themedian PSA level

was 8.65 ng/ml, with a mean prostate volume was 50.0 mL, and the

median PSAD was 0.17 ng/mL2. The patients were randomly allocated
FIGURE 2

Radiomics analysis workflow. Radiomics features were extracted from both T2-weighted images (T2WI) and apparent diffusion coefficient (ADC)
maps. The Student’s t-test or Mann–Whitney U-test and the least absolute shrinkage selection operator were used for feature selection, and the
models were constructed based on logistic regression and XGboost methods for predicting clinically significant prostate cancer.
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to the training (N = 170) and testing (N = 73) cohorts. Table 1 presents

the results of the comparison between the clinical factors of the csPCa

and no csPCa groups.

3.2 Radiomics features selection and
signature building

Initially, 2074 features were generated from the original T2-

weighted and ADC imaging data, and 233 features related to csPCa

diagnosis were selected. Highly correlated features were discarded

(correlation between two variables > 0.6). Subsequently, the seven

most predictive features were selected from the T2-weighted and

ADC images using LASSO-logistic regression (Figure 3 and

Table 2). The radiomic signature was then calculated by

weighting their respective coefficients. The boxplot depicted in

Figure 3 presents the differences between the two groups.

3.3 Development and validation of
individualized logistic prediction models

Univariable logistic regression analysis of all potential factors

identified age (odds ratio [OR], 1.075; 95% confidence interval [CI],

1.006–1.153), V (OR, 0.987; 95% CI, 0.974–0.998), PSAD (OR, 1.07; 95%

CI, 1.034–1.113), and MADC (OR, 0.242; 95% CI, 0.126–0.422) as the

independent parameters for csPCa prediction. When age, V, PSAD, and
Frontiers in Oncology 06
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MADC were included in the multivariate logistic regression analysis,

only PSAD and MADC remained significantly correlated with tumor

diagnosis (Table 3). Table 4 presents the eight models built for predicting

csPCa using radiomics, a clinical variable, and the MADC values.

3.4 Development of the XGboost
prediction model

Clinical factors (PSAD) and radiomic signatures were identified

as the predictors most significantly associated with csPCa diagnosis.

Therefore, these three features were employed as the input

variables, whereas diagnostic efficiency was considered the output

variance. The XGboost model hyperparameters were optimized

using grid search and ten-fold cross-validation. The other

parameters were set to default values. The detailed weights of the

trained XGboost with the PSAD, T2 score, and ADC score for

predicting csPCa are presented in Figure 4.

3.5 Performance comparisons of models

As shown in Tables 4, 5, and Figure 5, MADC was found to be the

best-performing single-parameter model, with an AUC of 0.856 (95%

CI, 0.782–0.923), and 0.788 (95% CI, 0.628–0.920) in the training and

testing cohorts, respectively (Figure 4 and Table 4). The best combined

models were PSAD +MADC (AUC, 0.888 [95% CI, 0.814–0.943], and
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FIGURE 3

Radiomics features selection by the least absolute shrinkage selection operator. (A, D) Coefficient profiles of radiomics features of the apparent
diffusion coefficient (ADC) and T2-weighted images (T2WI). (B, E) The adjustment penalty parameter l is -3.229 ×10-4 and -2.294×10-4 for the ADC
and T2WI, and seven features were selected according to 10-fold cross-validation. (C, F) The boxplot of radscores of the csPCa and No csPCa
groups in the training and testing cohorts of the ADC and T2WI.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1247682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1247682
0.854 [95% CI, 0.733–0.952] in the training and testing cohorts,

respectively) and PSAD + ADC score + T2 score (0.877 [95% CI,

0.791–0.954], and 0.812 [95% CI, 0.684–0.920] in the training and

testing cohorts, respectively) (Figure 5 and Table 4). However, they

showed no evidence of improvement compared with the MADC

model (P =0.162 and P = 0.687 in the training cohorts, respectively,

and P =0.303 and P = 0.818 in the testing cohorts, respectively).

The XGboost model demonstrated the highest performance

for predicting csPCa, with an AUC of 0.949 (95% CI, 0.904–0.983)

and 0.913 (95% CI, 0.816–0.984) in the training and testing

cohorts, respectively. Significant differences were observed

between the AUCs of the XGboost model and the other five

models (PSAD, ADC score, T2 score, PSAD + ADC score, and

PSAD + ADC score + T2 score) (Figure 4 and Tables 4, 5). The

AUCs of the training cohort were 0.949 vs. 0.778 vs. 0.747 vs.

0.731 vs. 0.849 vs. 0.877. The AUCs of the validation cohort were

0.913 vs. 0.620 vs. 0.688 vs. 0.740 vs. 0.757 vs. 0.812. However, it

did not outperform the PSAD+MADC model (AUC, 0.949 vs.

0.888 and 0.913 vs. 0.854, respectively) (P > 0.05) in the training

and testing cohorts, respectively.
4 Discussion

Precise definition of PI-RADS 3 lesions in the transition zone

(TZ) presents a significant challenge due to the atypical imaging
Frontiers in Oncology 07
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features associated with these lesions. This is complicated by the

reality that malignant epithelial cells often associated with csPCa are,

in this classification, usually distributed sparsely and arranged around

the acinar structures. Subsequently, csPCa imaging and benign

conditions like hyperplasia, inflammation, and fibrosis can exhibit

significant overlap (19). This can result in near imperceptible changes

to MRI signal, leading to high rates of interpretation migration and

fair inter-observer agreement (20). Furthermore, prostatic

hyperplasia in elderly men, predominantly originating in the TZ, is

intrinsically heterogeneous and comprises ill-defined tissues, often

mistaken for csPCa due to their cellular and vascular nature (12).

Currently, there is a shortage of effective means to refine lesion

classification, leaving clinical management unclear.

Radiomic analysis provides a non-invasive tool using existing

MRI images to obtain data about target organs and tissues. Its

strength lies in eliminating subjective interpretation and observer

reliance, concurrently analyzing hundreds of imaging features. This

allows for a thorough characterization of tumor heterogeneity,

reflecting tumor cellularity, proliferation, angiogenesis, hypoxia,

and necrosis (21). Guiding classification, risk stratification, and

clinical decision-making measures for suspicious lesions form key

aspects of its performance duties (16, 22, 23). Consequently,

radiomic analysis shows immense potential in distinguishing

csPCas from painless or benign cases (22, 23).

Several studies have probed into the function of radiomics in

prostate imaging (24–26). Hou et al. evaluated radiomics machine
TABLE 2 The final 7 radiomics features selected from T2WI and ADC.

Features Coef OR

ADC.wavelet.HLH_glszm_SizeZoneNonUniformityNormalized -0.60887 0.543965

ADC.wavelet.LLL_firstorder_10Percentile -0.15362 0.857601

ADC.exponential_firstorder_Energy -0.12684 0.880874

ADC.wavelet.HHL_glrlm_LongRunHighGrayLevelEmphasis 0.270977 1.311245

T2WI.original_shape_Sphericity -0.29877 0.741728

T2WI.wavelet.LHL_glcm_MCC -0.06151 0.940344

T2WI.wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis -0.03154 0.968952
TABLE 3 Results of univariate and multivariate logistic regression analyses.

Facotrs Uni_OR Uni_95%CI Uni_P Mul_OR Mul_95%CI Mul_P

age 1.075 (1.006~1.153) 0.036 1.067 (0.968~1.178) 0.188

T 1.034 (0.99~1.076) 0.117 – – –

F 1.276 (0.969~1.654) 0.07 – – –

F/T 0.174 (0~1.228) 0.588 – – –

V 0.987 (0.974~0.998) 0.035 0.995 (0.981~1.008) 0.506

PSAD 1.07 (1.034~1.113) <0.001 1.068 (1.029~1.115) 0.001

MT2WI 0.902 (0.525~1.373) 0.666 – – –

RT2WI 0.854 (0.356~1.96) 0.715 – – –

MADC 0.242 (0.126~0.422) <0.001 0.231 (0.107~0.437) <0.001
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learning (ML) models and reported an enhanced risk stratification,

superior to subjective radiologist evaluation for identifying csPCa in

PI-RADS v2 category 3 lesions, with the AUC of radiomics ML

models ranging from 0.87–0.89 (24). In a different study, Li et al.

utilized a support vector machine (SVM) classification to stratify

the Gleason Score (GS) of prostate cancer in the central gland using

mpMRI. This approach showcased exceptional performance, with

AUC values oscillating between 0.97 (CI 0.94–0.99) and 0.91 (CI

0.85–0.95) (25). Schelb et al. used a U-Net trained with T2-weighted

and diffusion-weighted images, thereby achieving a performance on

par with that of PI-RADS assessment (26). These studies collectively

attest to the superior performance of radiomics in detecting

prostate lesions.

Our study exhibits a classification capability that is, at the very

least, comparable to those reported in the literature, thereby

reiterating the utility of radiomics in prostate MRI. As reported in

Table 4, the XGboost model showed the best performance, with

AUC values of 0.949 and 0.913 in the training and testing cohorts,

respectively. This indicates the XGboost model’s robust capacity to

recognize csPCa, indicating that machine learning’s potential as an

efficient and noninvasive instrument for the prediction of csPCa in

PI-RADS 3 lesions. Commonly deployed to address classification

issues, XGboost stands as the most accurate model for predicting 1-

year survival among non-small cell lung cancer patients diagnosed

with bone metastases (27). XGboost can also infer the tissue sources

of 10 unique cancer types and outperforms traditional machine

learning algorithms (28).
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The predictive potential of clinical and radiological biomarkers

for diagnosing prostate cancer associated with equivocal PI-RADS 3

lesions undergoing biopsy has been evaluated positively in previous

studies (29, 30). For instance, Brancato et al. concluded that the

most vital feature for the detection of cancer in PI-RADS 3 lesions

was based on ADC maps (31). Our data also supported the use of

quantitative ADC measurements for decision-making in PI-RADS

3 lesions, with AUC of 0.856 (0.782–0.923) and 0.788 (0.628–0.920)

in the training and testing cohorts, respectively. Efficient at

discerning the microenvironment of neoplastic tissues, ADC can

identify alterations in compartmental volumes, such as stroma,

epithelium, and lumen space, and cellularity (32), It currently serves

as best parameter for prostate MRI assessment (4, 33). Moreover,

ADC has been consistently proven to be inversely correlated with

factors like tumor grade, tumor aggressiveness, and pathological

stage (34–36). We compared the performance of the mean ADC

with biparametric radiomics to assess whether it had an added value

over that of machine learning. The Delong test results revealed

superior performance from XGboost models as opposed to the

mean ADC model in the training cohorts. However, this superiority

was not replicated in the testing cohorts. Moreover, it did not

outperform the PSAD+MADC model (AUC, 0.949 vs. 0.888 and

0.913 vs. 0.854, respectively) (P > 0.05) in both the training and

testing cohorts. Thus, within the context of our study, ADC values

remained the most decisive parameter, aligning with previous

studies’ findings (33, 36). Bonekamp et al. (36) compared the

performance of biparametric contrast-free radiomics with that of
TABLE 4 The performance of different models in training and testing cohorts for predicting tumor diagnosis in csPCa patients.

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training MADC 0.856 (0.782-0.923) 0.765 0.905 0.745

PSAD 0.778 (0.661-0.888) 0.806 0.714 0.819

ADCscore 0.747 (0.640-0.850) 0.5 0.952 0.436

T2score 0.731 (0.616-0.838) 0.694 0.762 0.685

PSAD+MADC 0.888 (0.814-0.943) 0.688 1 0.644

PSAD+T2score 0.814 (0.689-0.913) 0.829 0.714 0.846

PSAD+ADCscore 0.849 (0.752-0.929) 0.859 0.762 0.872

PSAD+ADCscore+T2score 0.877 (0.791-0.954) 0.824 0.81 0.826

XGboost 0.949 (0.904-0.983) 0.894 0.905 0.893

Testing MADC 0.788 (0.628-0.920) 0.699 0.778 0.688

PSAD 0.620 (0.371-0.846) 0.795 0.556 0.828

ADCscore 0.688 (0.540-0.818) 0.548 0.889 0.5

T2score 0.740 (0.557-0.882) 0.767 0.556 0.797

PSAD+MADC 0.854 (0.733-0.952) 0.63 0.889 0.594

PSAD+T2score 0.809 (0.676-0.922) 0.781 0.556 0.812

PSAD+ADCscore 0.757 (0.627-0.877) 0.74 0.333 0.797

PSAD+ADCscore+T2score 0.812 (0.684-0.920) 0.822 0.667 0.844

XGboost 0.913 (0.816-0.984) 0.904 0.889 0.906
MADC, mean ADC; PSAD, PSA density; XGboost, XGboost machine learning model.
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machine learning for detecting csPCa, also concluded that the

performance of radiomic machine learning did not exceed that of

the mean ADC. This finding is coherent with the results observed in

our study.

However, several differences from the present study should be

noted. Prior studies did not conduct separate analyses for peripheral

zone (PZ) and TZ lesions. Given that the lesion characteristics

significantly differ between PZ and TZ, and the primary sequences

vary, it is recommended to perform targeted analysis based on

lesions in different zones rather than combining them. Second,
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some studies exploring the intelligent diagnosis of PI-RADS 3

lesions were confined to basic radiomic features (33, 35, 36) and

overlooked the additional diagnostic value of clinical indicators.

Compared with these similar studies, the present study evaluated

clinical features associated with csPCa, encompassing age, tPSA,

fPSA, fPSA/tPSA, prostate volume, and PSA density. However, only

one of these, specifically PSAD, proved useful for building

predictive models.

MRI application as an adjuvant examination rather than a

clinical triage tool can pose challenges, considering negative
TABLE 5 The performance comparisons of different models in training and testing cohorts.

Model MADC PSAD
PSAD +
MADC

ADCscore T2score
PSAD +
T2score

PSAD +
ADCscore

PSAD +
ADCscore +
T2score

XGboost

MADC / 0.219 0.162 0.099 0.046 0.505 0.909 0.687 0.023

PSAD 0.322 / 0.014 0.674 0.467 0.247 0.019 0.005 0.000

PSAD +
MADC

0.303 0.06 / 0.031 0.007 0.132 0.357 0.805 0.075

ADCscore 0.367 0.684 0.078 / 0.857 0.38 0.047 0.018 0.000

T2score 0.653 0.519 0.295 0.534 / 0.049 0.061 0.002 0.000

PSAD +
T2score

0.846 0.043 0.513 0.19 0.493 / 0.377 0.022 0.001

PSAD +
ADCscore

0.771 0.183 0.146 0.337 0.88 0.304 / 0.18 0.004

PSAD +
ADCscore 0.818 0.158 0.611 0.017 0.34 0.953 0.307 / 0.003

+ T2score

XGboost 0.133 0.038 0.368 0.000 0.008 0.098 0.015 0.018 /
f

Based on Delong.test, the upper right of the diagonal (yellow) was the P value of model comparisons in the training set, and the down left of the diagonal (blue) was the P value of model
comparisons in the testing set.
A

B

FIGURE 4

(A) The Beeswarm plot depicts the predictive value of each feature for each patient, and (B) the bar plot depicts the importance of each feature.
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findings do not necessarily discourage further progression to a

biopsy, potentially leading to overtreatment (37). Integrating MRI

findings with PSAD may mitigate these concerns. PSAD also

constitutes an essential component of the best-performing

XGboost model in this study, and has been extensively

investigated in several studies (38–40). A large multi-institutional

collaborative study showed that among the men with a solitary PI-

RADS 3 lesion on MRI, nearly 87% of those with a low PSAD had

no or only GG1 prostate cancer. In contrast, as PSAD increases, the

rate of csPCa detection increases to more than one-third of men

biopsied (37). Several studies have identified an independent

association of PSAD with csPCa, even in patients with serum

PSA levels slightly exceeding or within the normal range–a

common occurrence across various clinical scenarios, such as

early diagnosis, repeat biopsy, and active surveillance (38).

Roscigno et al. (39) reported that higher PSAD was associated

with an elevated risk of reclassification, with 0.20 as the threshold in

definitive or follow-up biopsy. Washino et al. (40) increased the

negative predictive value (NPV) of PI-RADS from 0.84 to 0.96 by

using PSAD with a cut-off value of 0.15 ng/mL/cc. Ullrich et al. (41)

concluded that if the PSAD cut-off was 0.15 ng/mL2, 53% of patients

with a PI-RADS v2 score of 3 would have avoided biopsy.

In our study, the predictive performance of radiomics machine

learning models did not surpass that of the comprehensive model

combining clinical variables and radiological features (MADC +

PSAD). This may change with the development of next-generation

machine learning techniques for larger-scale cohorts in multicentric

setups, as machine learning methods rely on large amounts of

training and testing data. These tools typically do not require

segmentation or handcrafted radiomic features. In the current

study, more traditional machine learning methods were used due

to the relatively small sample size and number of csPCa cases.

Our study had several limitations. The retrospective design of

this study, combined with the lack of results from radical

prostatectomy specimens as a reference standard, means that
Frontiers in Oncology 10
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selection bias and biopsy bias are potential issues. In addition, the

PI-RADS 3 dataset is notably small and imbalanced. A more sizable,

balanced study group would better facilitate radiomic analyses and

aid in formulating robust predictive models. Lastly, identifying PI-

RADS 3 lesions can prove challenging, making some

lesions ambiguous.
5 Conclusions

Radiomics–based algorithms, notably the XGboost models,

demonstrated substantial proficiency in predicting csPCa in PI-

RADS 3 lesions in TZ. This could potentially elevate the rate of

prostate-positive biopsy for PI-RADS 3 while decreasing the

incidence of unnecessary biopsies. Predictions yielded by the

XGboost classifier could serve as a crucial reference for clinical

decision-making. However, in the current cohort, no additional

benefits of the radiomic classifiers were observed over the combined

model of clinical and radiological findings, suggesting the mean

ADC+PSAD as the most generalized and optimal choice for

quantitative prostate assessment.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by ethics

committee of Fuqing City Hospital Affiliated to Fujian Medical

University. The studies were conducted in accordance with the local
A B

FIGURE 5

Receiver operating characteristic (ROC) analysis of the parameter models in clinically significant prostate cancer (csPCa) of PI-RADS 3 Lesions
prediction. (A, B) ROC curves for selected logistic models and XGboost models tested for csPCa prediction in the (A) training cohort and (B) testing
cohort. Plus signs indicate parameter combinations in the multivariable models, and data in brackets are 95% confidence intervals. See Table 4 for
corresponding area under the ROC curve (AUC) values and additional models.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1247682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1247682
legislation and institutional requirements. The participants

provided their written informed consent to participate in this

study. Written informed consent was obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article.
Author contributions

T-HC and Y-SL established the central thrust of our study. Y-YZ

and M-LX drafted the manuscript, which was revised by ZX, and

L-JD. Y-FL and J-LC analyzed the research data. All authors

contributed to the article and approved the submitted version.
Funding

Our study was funded by the Fuzhou Health System Science and

Technology Plan Project (2022-S-wq-17) and the Startup Fund for

scientific research of Fujian Medical University (No. 2019QH1097).
Frontiers in Oncology 11
112
Acknowledgments

We are extremely grateful for the support and help from our

department at the First Affiliated Hospital of FujianMedical University.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin
(2022) 72:7–33. doi: 10.3322/caac.21708

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin
(2021) 71:7–33. doi: 10.3322/caac.21654

3. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer
observatory: cancer today. International Agency for Research on Cancer: Lyon, France
(2020). Available at: https://gco.iarc.fr/today.

4. Engel H, Oerther B, Reisert M, Kellner E, Sigle A, Gratzke C, et al. Quantitative
analysis of diffusion weighted imaging may improve risk stratification of prostatic
transition zone lesions. In Vivo (2022) 36:2323–31. doi: 10.21873/invivo.12963

5. Pepe P, Garufi A, Priolo GD, Galia A, Fraggetta F, Pennisi M. Is it time to perform
only magnetic resonance imaging targeted cores? Our experience with 1,032 men who
underwent prostate biopsy. J Urol (2018) 200(4):774–8. doi: 10.1016/j.juro.2018.04.061

6. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al.
Prostate imaging reporting and data system version 2.1: 2019 update of prostate
imaging reporting and data system version 2. Eur Urol (2019) 76:340–51. doi: 10.1016/
j.eururo.2019.02.033

7. Wang ZB, Wei CG, Zhang YY, Pan P, Dai GC, Tu J, et al. The Role of PSA Density
among PI-RADS v2.1 Categories to Avoid an Unnecessary Transition Zone Biopsy in
Patients with PSA 4-20 ng/mL. BioMed Res Int (2021) 2021:3995789. doi: 10.1155/
2021/3995789

8. Oerther B, Engel H, Bamberg F, Sigle A, Gratzke C, Benndorf M. Cancer detection
rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis
on lesion level and patient level. Prostate Cancer Prostatic Dis (2022) 25:256–63.
doi: 10.1038/s41391-021-00417-1

9. Moldovan PC, Van den Broeck T, Sylvester R, Marconi L, Bellmunt J, van den
Bergh RCN, et al. What is the negative predictive value of multiparametric magnetic
resonance imaging in excluding prostate cancer at biopsy? A systematic review and
meta-analysis from the European association of urology prostate cancer guidelines
panel. Eur Urol (2017) 72:250–66. doi: 10.1016/j.eururo.2017.02.026

10. Thaiss WM,Moser S, Hepp T, Kruck S, Rausch S, Scharpf M, et al. Head-to-head
comparison of biparametric versus multiparametric MRI of the prostate before robot-
assisted transperineal fusion prostate biopsy. World J Urol (2022) 40:2431–8.
doi: 10.1007/s00345-022-04120-1

11. Stabile A, Dell'Oglio P, De Cobelli F, Esposito A, Gandaglia G, Fossati N, et al.
Association between prostate imaging reporting and data system (PI-RADS) score for
the index lesion and multifocal, clinically significant prostate cancer. Eur Urol Oncol
(2018) 1:29–36. doi: 10.1016/j.euo.2018.01.002

12. Weinreb JC. Organized chaos: does PI-RADS version 2 work in the transition
zone? Radiology (2018) 288:492–4. doi: 10.1148/radiol.2018180123
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Appendix

APPENDIX 1 Acquisition Parameters of the Multiparametric MRI Protocol f
or both institution.

Parameter
T2WI DWI

Institution 1 Institution 2 Institution 1 Institution 2

Echo time (msec) 72 93 72 93

Repetition time (msec) 4000 5960 4000 6900

Flip angle (°) 90 150 – –

Matrix 128×128 256×256 128×128 256×256

Field of view (mm2) 360×360 160×160 360×360 190×260

Number of slices 36 40 32 40

Slice thickness (mm) 4 3 4 3

spacing between slices 0.5 0 1 0

b-values (s/mm2) – – 100/800/2000 50/800/1500
F
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castration-resistant prostate
cancer using deep learning: a
multicenter retrospective study
Chuan Zhou1,2†, Yun-Feng Zhang3†, Sheng Guo3,
Yu-Qian Huang4, Xiao-Ni Qiao5, Rong Wang1,6, Lian-
Ping Zhao3,6, De-Hui Chang3,5, Li-Ming Zhao7, Ming-Xu Da1,2,3*

and Feng-Hai Zhou1,2,3,8*

1The First Clinical Medical College of Lanzhou University, Lanzhou, China, 2National Health
Commission of People’s Republic of China (NHC) Key Laboratory of Diagnosis and Therapy of
Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China, 3The First Clinical Medical College
of Gansu University of Chinese Medicine, Lanzhou, China, 4Department of Center of Medical
Cosmetology, Chengdu Second People’s Hospital, Chengdu, China, 5Department of Urology, The
940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China, 6Department of
Radiology, Gansu Provincial Hospital, Lanzhou, China, 7Department of Urology, Second People’s
Hospital of Gansu Province, Lanzhou, China, 8Department of Urology, Gansu Provincial Hospital,
Lanzhou, China
Purpose: Patients with advanced prostate cancer (PCa) often develop castration-

resistant PCa (CRPC) with poor prognosis. Prognostic information obtained from

multiparametric magnetic resonance imaging (mpMRI) and histopathology

specimens can be effectively utilized through artificial intelligence (AI)

techniques. The objective of this study is to construct an AI-based CRPC

progress prediction model by integrating multimodal data.

Methods and materials: Data from 399 patients diagnosed with PCa at three

medical centers between January 2018 and January 2021 were collected

retrospectively. We delineated regions of interest (ROIs) from 3 MRI sequences

viz, T2WI, DWI, and ADC and utilized a cropping tool to extract the largest section

of each ROI. We selected representative pathological hematoxylin and eosin

(H&E) slides for deep-learning model training. A joint combined model

nomogram was constructed. ROC curves and calibration curves were plotted

to assess the predictive performance and goodness of fit of the model. We

generated decision curve analysis (DCA) curves and Kaplan–Meier (KM) survival

curves to evaluate the clinical net benefit of the model and its association with

progression-free survival (PFS).

Results: The AUC of the machine learning (ML) model was 0.755. The best deep

learning (DL) model for radiomics and pathomics was the ResNet-50model, with

an AUC of 0.768 and 0.752, respectively. The nomogram graph showed that DL

model contributed themost, and the AUC for the combinedmodel was 0.86. The

calibration curves and DCA indicate that the combined model had a good

calibration ability and net clinical benefit. The KM curve indicated that the

model integrating multimodal data can guide patient prognosis and

management strategies.
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Abbreviations: ADC, apparent diffusion coefficient; ADT

therapy; AI, Artificial intelligence; AUC, area un
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Conclusion: The integration of multimodal data effectively improves the

prediction of risk for the progression of PCa to CRPC.
KEYWORDS

radiomics, pathomics, castration-resistant prostate cancer, deep learning, multi-modal
1 Introduction

Prostate cancer (PCa) affects men worldwide and is a significant

health concern, with a global incidence rate of 13.5% (1).

Additionally, the mortality rate of 6.7% makes PCa the fifth

leading cause of death among men (2). Androgen deprivation

therapy (ADT) is considered the primary treatment modality for

men diagnosed with advanced symptomatic PCa, also known as

castration-sensitive PCa (CSPC) (3). However, subsequent to the

initial favorable treatment response, it is frequently observed in PCa

patients that there is a decline in response and eventual progression

to CRPC, which is characterized by a dismal prognosis (3). The

median duration and mean survival period of patients until

progression to CRPC range from 18 to 24 months and 24 to 30

months (4, 5), respectively. The status of the depot condition

(testosterone [TST] 50 ng/dL or 1.7 nmol/L) and subsequent

disease development (a sustained rise in prostate-specific antigen

[PSA] and progression seen in images) are now the two most

important criteria for detecting CRPC. However, tailored precision

medicine is limited by the use of monomodal indicators such as

PSA and serum testosterone (6, 7). The early detection of CRPC can

help physicians determine the optimal timing for administering

second-line therapies, possibly increasing the survival rate among

patients. Predicting the risk of CRPC is an important factor

affecting prognosis in patients with severe PCa. There is an

urgent need for early diagnosis and precise management of CRPC.

Despite advancements in technology, there are still persistent

challenges in accurately detecting, characterizing, and monitoring

cancers (8). The assessment of diseases through radiographic

methods primarily relies on visual evaluations, which can be
, Androgen deprivation

der the curve; CNN,
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enhanced by advanced computational analyses. Notably, AI holds

the potential to significantly improve the qualitative interpretation of

cancer imaging by expert clinicians (9). This includes the ability to

accurately delineate tumor volumes over time, infer the tumor’s

genotype and biological progression from its radiographic

phenotype, and predict clinical outcomes (10). Radiomics, and

pathomics have rapidly emerged as cutting-edge techniques to aid

and enhance the interpretation of vast medical imaging data, which

may benefit clinical applications. The techniques have the ability to

directly process images, giving rise to numerous subdomains for

further research (11). Clinical outcomes, such as survival, response to

treatment, and recurrence, may be accurately predicted using AI

models that use multimodal data (12–14). The utilization of

radiomics and pathomics exhibits significant promise in enhancing

clinical decision-making processes and ultimately enhancing patient

outcomes via medical imaging techniques (15–17).

Hence, to effectively and precisely anticipate the likelihood of

developing CRPC without invasive procedures. We constructed

radiomics and pathomics prediction models based on deep-learning

algorithms and investigated their application value in clinical

decision-making and the prognosis of PCa. This may allow more

accurate prediction of the risk of CRPC and provide a reference for

accurate diagnosis and treatment of PCa.
2 Materials and methods

Clinicopathological data from patients with PCa were acquired

retrospectively from the electronic medical record system of the

three centers (center A; center B; center C) after receiving approval

from the ethics committee of the local institution. This retrospective

study was also approved by the Ethics Committee of the Gansu

Provincial Geriatrics Association (2022-61), and the requirement

for informed consent was waived. Our research program was

designed based on the AI model of a local institution.
2.1 Participants

We conducted a retrospective study including patients with a

pathologically confirmed diagnosis of PCa from the three centers

between January 2018 and February 2021. The inclusion criteria

were (a) first pathological diagnosis of PCa; (b) use of the same

ADT treatment regimen; (c) availability of all MRI scans within 30
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days of PCa diagnosis to exclude confounding effects of medication

on measurements; and (d) no missing stained tissue slides. The

exclusion criteria were (a) missing clinical information; (b) poor

quality of MRI images (inability to identify the specific location of

the lesion); (c) poor quality of stained tissue slides (uneven

staining); and (d) missing follow-up information.

Clinical data from 399 patients with PCa were collected, including

254 from the Gansu Provincial Hospital (Center A), 112 from the 940

Hospital of Joint Logistics Support Force of Chinese PLA (Center B),

and 33 from the Second People’s Hospital of Gansu Province

(Center C). Figure 1 shows the flowchart for patient recruitment.
2.2 Prostate tumor segmentation

A radiologist (R.W) with 5 years of experience in prostate MRI

diagnosis and a urologist (FH.Z) with 30 years of experience in PCa

MRI diagnosis were involved in delineating the regions of interest

(ROIs). Disagreements regarding individual lesions were resolved

after consultation with a third radiologist (LP. Z), and a consensus

was attained. The radiologist were unaware of the patients’ CRPC

status and adhered to the guidelines outlined the Prostate Imaging

Reporting and Data System Version 2 (PI-RADS-V2). Once the

delineation of the Region of Interest (ROI) was finalized, a random
Frontiers in Oncology 03
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screening of the 11 features extracted from the ADC sequences was

performed. Subsequently, Mann-Whitney U tests were conducted

on both sets of features to ascertain the presence of any potential

bias in the results obtained by the two experts (R.W and FH.Z)

during the delineation process. The main sequence parameters of

mp-MRI in Supplementary Table 1. The ITK-SNAP software,

version 4.0.0 (http://itk-snap.org), was used to annotate the ROIs

for each patient from three sequences, including T2-weighted

(T2WI), diffusion-weighted imaging (DWI), and apparent

diffusion coefficient (ADC). The volume of interest was created

by overlapping the ROIs of each patient. To pretrain the DL model,

2-dimensional (2D) ROIs were extracted from the original images

of the three sequences by using a clipping tool based on the tumor’s

3D segmentation mask. The standard protocol of Digital Imaging

and Communications in Medicine (DICOM) is commonly used for

managing medical imaging information and related data. To ensure

data quality, we standardized it to a resampling format with a

resolution of 1 cm × 1 cm × 1 cm and performed N4 bias correction

on all images before delineation.

A pathologist (X.Z) selected a histopathological hematoxylin

and eosin (H&E) slide (20×10 magnification) of a typical tumor

area as the pathological image for the patient. To prevent data

heterogeneity, we used Photoshop to adjust each histopathological

slide to the same pixel size (640×480) for pretraining the DL model.
FIGURE 1

Flow chart of patient recruitment. Center (A) Gansu Provincial Hospital; Center (B) The 940 Hospital of Joint Logistics Support Force of Chinese PLA;
Center (C) Second People’s Hospital of Gansu Province.
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Overall, 141 patients from Center A were included in the training

group, while 60 patients from Center B and Center C were included

in the external validation group for building ML and DL models.
2.3 Signature construction

2.3.1 Radiomics signature construction
PyRadiomics (http://www.radiomics.io/pyradiomics.html) was

used for extracting radiomics features. Additionally, the Z-score was

employed for dataset standardization ([column−mean]/standard).

The method involved using the Spearman correlation coefficient to

evaluate the consistency among observers in feature extraction.

Features with a correlation coefficient greater than 0.9 were

considered reliable and formed a feature set for subsequent

analysis. Normalization was performed by subtracting the mean

value of each feature and dividing it by the standard deviation. The

least absolute shrinkage and selection operator (LASSO) algorithm

was used for feature selection and construction, with multiple

iterations to assess the importance of each feature. Lastly, ML

classifiers, such as logistic regression (LR) and support vector

machines (SVM), were utilized to build the predictive models.

2.3.2 DL signature construction
In this study, ResNet-50, ResNet-34, ResNet-18, Vgg19, and

other deep transfer learning (DTL) models were used for model

pretraining. The number of iterations (epochs) was set to 100, with

a batch size of 32. Imagenet was employed as the regularization

method. To enhance the interpretability of the model’s decision-

making process, we applied the Gradient-weighted Class Activation

Mapping (Grad-CAM) method for visual analysis of the model.

This method utilizes the gradient information from the last

convolutional layer of the neural network to generate a weighted

fusion of the class activation map. This class activation map

highlights the important regions of the classified target image,

thereby allowing us to better understand the decision-making

principles of the model.

2.3.3 Construction of nomogram
We integrated radiomics models, DL models, and pathomics

models to construct a nomogram and investigated the contributions

of various modalities in the joint model.
2.4 Model evaluation

To evaluate the predictive performance of the models, we plotted

ROC curves for each model and calculated the area under the curve

(AUC) values. Decision curve analysis (DCA) curves and calibration

curves were used to assess the net clinical benefit and goodness of fit

of the joint model. Kaplan–Meier (KM) curves were used to evaluate

its relationship with progression-free survival (PFS).
Frontiers in Oncology 04
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2.5 Statistical analysis

Statistical Package for Social Sciences (SPSS) 23.0 and R statistical

software (version 3.6.1 R, https://www.r-project.org/) were used for

statistical analysis. The Kolmogorov–Smirnov test was used to evaluate

the normality of the measures, and those that conformed to a normal

distribution were expressed as x ± s. The measures that did not

conform to a normal distribution were expressed as the median

(upper and lower quartiles). An independent samples t-test

(normally distributed with equal variance) or Mann–Whitney U-test

(skewed distribution or unequal variance) was used to compare the

measures. Multi-factor LR analysis was used to screen out the

independent predictors to construct the prediction model and plot

the nomogram. The AUC of the receiver operating characteristics

(ROC) was calculated to evaluate the discriminative power of the

model. A DCA curve was plotted to compare the clinical value of the

model. A p-value of <0.05 indicated a statistically significant difference.
3 Results

3.1 Clinical characteristics

The study flow is shown in Figure 2. A total of 198 patients were

excluded for not meeting the inclusion criteria, and 201 patients

were included; 93 included patients progressed to CRPC. Statistical

analysis revealed no significant differences in clinical features

between the training and validation groups (Table 1).
3.2 Feature selection and
signature construction

We extracted 2553 radiomic features using PyRadiomics. According

to the ROI results presented by the two experts, a random selection of 11

features derived fromADC sequences was subjected to aMann-Whitney

U test. The analysis revealed no statistically significant distinction

between the two groups of features (Supplementary Table 2). Seven

radiomic features were selected using the LASSO algorithm (Figures 3A–

C). Three 2D ROIs with maximum cross-sections were chosen, and

different deep-learning models were used for pretraining and external

validation. Model evaluation (Table 2) demonstrated that ResNet-50 had

better overall performance in the external validation set, with the lowest

loss value. This indicates that ResNet-50 had fewer errors during the

training process and converged faster than any other Convolutional

Neural Network(CNN)model (Figures 4A, B). In terms of model

interpretability, each model had distinct attention regions in the

samples. In comparison, ResNet-50 had clearer attention regions

primarily focused on the internal regions of the tumor, while the

tumor regions in the surrounding tissue were not activated (Figure 5).

Furthermore, the ResNet-50 model performed better in the ADC

sequence among the three sequences (Table 3).
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TABLE 1 Comparison of clinical data of patients with prostate cancer in the training set and validation set.

Characteristic Training Set
(n=140)

External Validation Set
(n=61)

t/Z/X2

Value
P
Value

Age 0.000c 0.985

≤65 30 13

>65 110 48

BMI 0.563c 0.755

<25 96 40

25-30 40 20

>30 4 1

BM 0.394c 0.530

yes 71 28

no 69 33

Gleason Score 0.915c 0.822

≤6 4 3

3+4 15 7

4+3 13 4

≥8 108 47

tPSA 61.99(31.49,100.00) 55.11(29.88,100.00) -0.357b 0.721

Volume 46.30(32.13,67.18) 40.30(29.65,62.99) -0.939b 0.348

PASD 1.11(0.59,1.94) 1.23(0.45,2.05) -0.302b 0.763

ALP 84.00(64.25,130.75) 94.00(70.00,129.00) -1.002b 0.316

(Continued)
F
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FIGURE 2

Schematic outline of the study. SVM, support vector machine; ROI, region of interest.
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3.3 Validation of radiomics and
pathomics signature

The predictive performance of the models was evaluated using

ROC analysis. The best ML model for radiomics was SVM, with an
Frontiers in Oncology 06
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AUC of 0.755 (Figure 6A). For DTL and pathomics, the best model

was ResNet-50, with AUC values of 0.768, 0.714, 0.684, and 0.752

(Figures 6B–E). The nomogram graph showed that DTL

contributed the most in the combined model (Figure 7), and the

AUC of the combined model was 0.86 (Figure 8). Calibration curve
A B

C

FIGURE 3

(A) Coefficient profiles of the features in the LASSO model are shown. Each feature is represented by a different color line indicating its
corresponding coefficient. (B) Tuning parameter (l) selection in the LASSO model. (C) Weights for each feature in the model. LASSO, least absolute
shrinkage and selection operator.
TABLE 1 Continued

Characteristic Training Set
(n=140)

External Validation Set
(n=61)

t/Z/X2

Value
P
Value

Fbg 3.44(2.82,4.36) 3.37(2.88,4.35) -0.514b 0.607

NEUT 3.57(2.91,4.82) 3.57(2.70,4.95) -0.444b 0.657

Lym 1.36(0.93,1.85) 1.38(1.02,1.95) -0.866b 0.386

M 0.44(0.35,0.56) 0.44(0.36,0.57) -0.381b 0.703

Hb 142.00(126.25,154.00) 141.00(125.50,152.00) -0.499b 0.618

PLT 173.50(137.00,215.25) 170.00(144.50,211.00) -0.070b 0.944

SII 753.01±784.31 592.98±480.61 -1.769a 0.079

TST 11.20(1.13,18.98) 1.50(1.00,14.75) -1.737b 0.082
a:statistical analysis performed using T-test;b:statistical analysis performed using Mann-Whitney test.c: statistical analysis performed using X2 test. BMI, Body Mass Index; BM, Bone Metastasis;
PSAD, PSA density; ALP, Alkaline phosphatase; Fbg, Fibrinogen; NEUT, Neutrophil; Lym, lymphocyte; M, Monocyte; Hb, Hemoglobin; PLT, Platelet; SII, Systemic immune inflammatory index,
SII= PLT* NLR; TST, testosterone.
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analysis showed that the joint model has a good fit and strong

calibration capability (Figure 9). The DCA curve showed that all

models had good clinical net benefit, with the combined model

showing higher net benefit (Figure 10).
3.4 Prognosis

In the classification study of CRPC risks, a total of 87 patients

experienced tumor progression-related events. The KM curve

analysis showed that the joint model suggests significantly lower

PFS for patients at high risk of CRPC compared to those at low

risk (Figure 11).
4 Discussion

To our knowledge, in this retrospective cohort study conducted

across multiple centers, a novel prediction model was developed and

validated for the first time. This model integrated radiomics, DTL, and

pathomics data to provide strong predictive capabilities in primary

prostate cancer progressing to CRPC following two years of ADT. The

utilization of multiparametric radiological modeling, as employed in

this investigation, may aid urologist in evaluating the probability of

CRPC progression and formulating personalized treatment strategies.

The prognosis of CRPC is notably unfavorable, and the

challenges in its treatment are diverse among patients (18). The

acquisition of reliable data from an initial diagnosis of localized PCa

managed with ADT is constrained in clinical practice (19). Previous

research has demonstrated a significant correlation between N-

glycan score and adverse prognosis in CRPC (20). Additionally, the

assessment of skeletal muscle index and skeletal muscle attenuation

holds predictive value for the prognosis of metastatic CRPC (21).

PSA nadir and Grade 5 were both associated with CRPC

progression (22). It was also established that AR-V7 mRNA,

significantly predicted biochemical recurrences and CRPC

progression (23). However, none of these findings provided

specific and prospective indications regarding the likelihood of

castration-CRPC progression in patients with PCa. Our approach

demonstrated significant predictive performance and provided

therapeutic advantage. In addition, the calibration curve and KM

survival curve were well-suited for the model and provided useful

predictive information for patients with PCa. This finding could

potentially be attributed to the multimodal data integration and the

selection of suitable AI methodologies.
4.1 Multimodal data integration

Data fusion addresses inference problems by amalgamating data

from various modalities that provide different viewpoints on a shared

phenomenon (24, 25). Consequently, the integration of multiple

modalities may facilitate the resolution of such challenges with
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greater precision compared to the utilization of singular modalities

(26). This is particularly important in medicine, as similar results

from different measurement techniques might provide different

conclusions (27, 28). In recent years, the growing prevalence of

original studies utilizing imaging and pathology images in the field

of prostate cancer has created an opportunity for AI technology to

demonstrate its potential (29, 30). Additionally, DL approaches have

direct applications for segmentation, multimodal data integration

and model construction (31).

We used late-stage fusion, also known as decision-level fusion,

to train a separate model for each modality and then aggregate the
Frontiers in Oncology 08
122
predictions from each model to produce a final prediction.

Aggregation can be done by averaging, majority voting, and

Bayesian-based rules among other methods (32). During the data

collection phase, we found that some of the data were missing and

incomplete, while late fusion still maintained the predictive power.

Since each model is trained individually, aggregation methods, such

as majority voting, can be applied even if one mode is missing. In

contrast, if the unimodal data do not complement one another or

have weak interdependencies, late fusion may be preferred due to its

simpler design and fewer parameters in comparison to other fusion

procedures. This is also advantageous in instances with insufficient
FIGURE 5

Regions of attention in prostate cancer MRI analysis with different DL models. MRI, magnetic resonance imaging.
A B

FIGURE 4

Loss value of different DL models in the training set varied with the iteration steps. (A) radiomics model (B) pathomics model.
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data. In this study, MRI and H&E tissue sections were weakly

complementary to each other, and hence our post-fusion model

demonstrated good predictive ability. Examples of late fusion

include the integration of imaging data with non-imaging inputs,

such as the fusion of MRI scans and PSA blood tests for PCa

diagnosis (33). Survival prediction using the fusion of genomics and

histology profiles by Chen et al. was also performed (34).
4.2 Supervised method

In this study, we selected a supervised AI approach for training

radiomics models using radiology image annotations with patient

outcomes to input data into predefined labels (e.g., cancer/non-

cancer) (35). Since the feature extraction was not part of the

learning process, the models typically had more simple

architecture and lower computation costs. An additional benefit

was a high level of interpretability because the predictive features

could be related to the data. In contrast, the feature extraction was

time-consuming and could translate human bias to the models.

Based on the sample size included in this study, the supervised

method was sufficient due to its simplicity and ability to learn from

our radiomics model.

Self-supervised techniques effectively leverage accessible

unlabeled data to acquire superior image features, subsequently

transferring this acquired knowledge to supervised models.

Consequently, supervised methods like CNNs are employed to

address diverse pretexting tasks, wherein labels are automatically

generated from the data (36). Notably, self-supervised methods are

particularly well-suited for more robust computational systems and

higher-resolution images (37, 38).
4.3 Model selection for DL

DL is the current state-of-the-art ML algorithm, which simulates

the connections between the neurons of the human brain. It learns

and extracts complex high-level features from the input data through

multi-layer neural networks, thus realizing automatic classification,

recognition, and prediction of data. Traditional deep CNNs often

encounter the issues of gradient vanishing or gradient explosion as

the number of network layers increases, leading to challenging model

training. ResNet addresses this problem by introducing the concept of

residual connections. The structure promotes the flow of gradients

and information transfer, thereby facilitating the training of deeper

networks. In this study, we selected DL models including ResNet-50,

ResNet-34, ResNet-18, and Vgg19 for pre-training. Comparing these

models revealed that ResNet-50 outperformed the others. The main

advantage of ResNet-50 lies in its ability to effectively train very deep

neural networks while avoiding issues such as gradient vanishing and

gradient explosion. Consequently, it excels in image classification

tasks and can manage large and complex datasets. Due to its versatile

application and remarkable performance, ResNet-50 serves as a

benchmark model in various computer vision tasks and is widely
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utilized in target detection, image segmentation, and image

generation. In Lei et al.’s training study of MRI DL involving 396

patients with PCa, training a DL model for PCa classification using

pairs of ResNet-50 anti-paradigms improved the generalization and

classification abilities of the model (39). In another pathomics study,

texture features captured using the ResNet DL framework were able

to better distinguish unique Gleason patterns (40).
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4.4 Limitations

The study has limitations. First, this is a retrospective study from a

multicenter institution, and potential biases, such as differences in MRI

acquisition parameters, are inevitable. However, as mentioned

previously, we completed the data alignment and pre-processed the

images tominimize the impactof thesedifferenceson theresults. Second,
FIGURE 7

Nomodiagram of the combined model.
A

B D

EC

FIGURE 6

ROC curve analysis for each model. (A) Radiomics. (B-D) DL (ADC, DWI, and T2WI) (E) Pathomics. T2WI, T2-weighted imaging; DWI, diffusion-
weighted imaging; ADC, apparent diffusion coefficient images; ROC, receiver operating characteristic.
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key prognostic factors in clinical characterizationwere not considered in

this study due to incomplete clinical data for most patients. Third, our

sample sizewas relatively small, andthenumberofpatientswithdifferent

Gleason score classifications was unevenly distributed, whichmay affect

the stability and reproducibility of our model. Therefore, the results of

this study need to be validated externally using a large sample and a

multi-region, multicenter institution in the future.
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5 Conclusions

In summary, we collected a multimodal dataset from patients

who developed CRPC and used it to develop and integrate

radiological and histopathological models to improve CRPC risk

prediction. This result encourages to conduct further large-scale

studies utilizing multimodal DL.
FIGURE 8

ROC curve analysis for the combined model.
FIGURE 9

Calibration curve of the combined model indicates a better
agreement between the predicted probabilities and the actual
observed frequencies.
FIGURE 10

Decision curves showed that each model could achieve clinical
benefit and that the net benefit of the combined model was better.
FIGURE 11

KM survival curve analysis demonstrates that multimodal data can
serve as a reliable predictor of the risk of CRPC occurrence. CRPC,
castration-resistant prostate cancer.
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